

LANSDOWNE 2.0 EVENT CENTRE (PHASE 1)

Transportation Impact Assessment Report Step 4 – Strategy Report

23/08/2024

DOCUMENT CONTROL ISSUE SHEET

Project & Document Details

Project Name	Lansdowne 2.0 Event Centre TIA (Phase 1)
Project Number	C000218
Document Title	Lansdowne 2.0 Phase 1 Event Centre Transportation Impact Assessment

Document History

Issue	Status	Reason for Issue	Issued to
0.1	Initial Submission	Site Plan Control Application Submission	City of Ottawa
0.2	Updated Submission	Inclusion of Certification Form and TDM Checklist	City of Ottawa

Issue Control

Issue	Date	Author	Contributors	Autho	orization
ISSUE	Date	Autiloi	Continuators	Name	Signature
0.1	07/08/2024	AA, AD, HM	CA, AD, KL	Hassan M.	
0.2	23/08/2024	AA, AD, HM	CA, AD, KL	Hassan M.	

Certification Form for Transportation Impact Assessment (TIA) Study

TIA Reports

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines and 2023 amendments.

Please note that the Certification is only required for the submission of a TIA. The Screening can be undertaken by a non-certified individual for the purpose of identifying if a TIA is needed or not.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that they meet the four criteria listed below.

CERTIFICATION

√	I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines; (Update effective July 2023)
√	I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
√	I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
√	I am either a licensed or registered¹ professional in good standing, whose field of expertise is either transportation engineering
	or transportation planning.

City Of Ottawa Planning, Real Estate and Economic Development 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 111

¹ License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at	Houston	this	23	_ day of _	August	, ₂₀ <u>24</u> .
	(City)					
Name :	Hassan Al Madhou	ın, P.Eng				
Professio	nal title: Director, P	.Eng				
	1 Mil					
Signatur	e of individual certifier	that they m	eet the	above fou	r criteria	

Office Contact Information (Please Print)				
Address:	Address: 141 Avenue du Président-Kennedy, Casier #18 local SB-7250			
City / Postal Code: Montreal, Quebec H2X 1Y4				
Telephone / Extension: 979-330-3157				
Email Address: hassan.madhoun@momentum-transport.com				

Stamp

EXECUTIVE SUMMARY

The City of Ottawa is proceeding with a Site Plan Control application for a new multipurpose event centre at Lansdowne Park. This Transportation Impact Assessment (TIA) has been prepared by Momentum Transport Consultancy in support of the Lansdowne 2.0 Event Centre (Phase 1) "the development", located at 1015 Bank Street, Ottawa, K1S 3W7. The development is located within the Glebe neighbourhood of Ottawa, Ontario and is bounded by Bank Street to the west, Holmwood Avenue to the north, and Queen Elizabeth Driveway along the Rideau Canal to the east and south.

This Site Plan Application for the new event centre represents the first phase of development for the Lansdowne 2.0 project, which seeks to demolish the existing functionally obsolete north stadium stands and arena complex at Lansdowne Park and build a new world-class event centre. The Lansdowne 2.0 redevelopment plan features a new multi-purpose event centre, new north stadium stands, as well as additional residential housing, destination retail, and office space. The full buildout timeframe is slated to occur between 2032 and 2036.

This TIA document covers screening and scoping, which involve regulatory triggers, existing and planned conditions, horizon years, and exemptions. The forecasting section details updated travel demand for the development to reflect the revised Lansdowne 2.0 development concept made in September 2023. The TIA report outlines the design and accommodation for sustainable modes, circulation and access, parking, intersections, transportation demand management, and transit.

The overall Lansdowne 2.0 proposed plan includes the following phases of development:

Phase 1 (Anticipated completion of 2028) consists of building a new 5,500 seat (up to 6,500 spectators) multipurpose event centre that will be home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, the PWHL Ottawa, and other indoor events such as shows and concerts.

As this phase of Lansdowne 2.0 replaces the programming provided at the existing 9,800 seat TD Place Arena, it is not expected to generate additional transportation demands to Lansdowne.

Phase 2 (Anticipated completion between 2030 and 2031) consists of replacing the existing functionally obsolete north stadium stands and arena complex at TD Place Stadium with a new 11,200 seat (12,100 spectator) north stand structure. This new facility replaces the existing north stadium stands, which currently has a capacity of 14,028 spectators, and would result in a reduction of approximately 2,000 spectator capacity at

TD Place Stadium. This venue will continue to be the home of the CFL's Ottawa RedBlacks and the CPL's Ottawa Atlético.

As this phase of Lansdowne 2.0 replaces existing programming currently provided at TD Place Stadium, it is not expected to generate additional transportation demands to Lansdowne.

Phase 3 (Anticipated completion between 2032 and 2036) represents the full build-out of Lansdowne 2.0 and consists of replacing the existing 41,000 ft² of commercial retail and box office annex to the Stadium on Exhibition Way with 49,635 ft² of new podium-level commercial retail space. This represents a net increase of 8,635 ft² of commercial retail space from what is currently provided today. In addition, this phase includes the construction of two new residential towers with a total of 770 new dwelling units. Additional underground parking space will be constructed by extending the existing facility to accommodate an additional 386 parking spaces to service the new residential units and additional retail space, resulting in a total of 1,766 underground parking spaces at Lansdowne.

The full build-out of Lansdowne 2.0 development is anticipated to generate between **130** and **180** net new auto trips (two-way) during the Weekday AM, Weekday PM, and Weekend Saturday and Sunday peak periods.

Under Phase 1, which is the focus of this TIA submission, no additional trip generation demands are forecasted as the proposed multi-purpose event centre replaces the existing programming at the Arena at TD Place. It is anticipated that internal circulation and access within Lansdowne will be altered in an interim operating condition in 2028 during the construction of subsequent phases of Lansdowne 2.0.

Under the scenarios of Existing Conditions, the interim 2028 Future Conditions (i.e., the completion of the new event centre and construction of subsequent phases of Lansdowne 2.0), and the 2033 Future Conditions (Full Buildout of Lansdowne 2.0), all study area intersections are shown to operate acceptably with similar levels of services currently observed today.

In conclusion, the analysis found that Phase 1 of Lansdowne 2.0 will result in minimal impact on the area's overall traffic operations and can be accommodated within the proposed Lansdowne 2.0 concept. From a transportation standpoint, the proposed multipurpose Event Centre can be accommodated by the future transportation network with the continued adoption of the existing comprehensive Transportation Demand Management strategy.

TABLE OF CONTENTS

1.	Scr	eening	1
	1.2 1.3 1.4	Summary of Development Trip Generation Trigger Location Triggers Safety Triggers Summary	1 2 2 3 3
2.	Sco	pping	4
	2.1	Existing and Planned Conditions	4
		Proposed Development Existing Conditions Planned Conditions	4 12 40
	2.2	Study Area and Time Periods	42
		Study Area Time Periods Horizon Years	42 42 42
	2.3	Exemptions Review	43
3.	For	recasting	44
	3.1	Development Generated Travel Demand	44
		Existing Trip Generation Future Trip Generation and Mode Shares Trip Distribution Trip Assignment	44 44 50 51
	3.2	Background Network Travel Demand	56
		Transportation Network Plans Background Growth Other Developments	56 56 56
	3.3	Demand Rationalization	56
		2028 Total Future Traffic Volumes 2033 Total Future Traffic Volumes	57 66
4.	Stra	ategy Report	72
	4.1	Development Design	72
		Design for Sustainable Modes Circulation and Access New Street Networks	72 73 73
	4.2	Parking	77
		Parking Supply Spillover Parking	77 77
	4.3	Boundary Street Design	78

		Design Concept	78
	4.4	Access Intersection Design	83
		Access Location Intersection Control	83
	4.5	Transportation Demand Management	83
		TDM Program	84
	4.6	Neighbourhood Traffic Management	84
	4.7	Transit	84
		Route Capacity	84
	4.8	Intersection Design	86
		Intersection Control Intersection Design	86
5.	Sur	nmary and Conclusions	126
		•	
Tab	les		
Table	1.1:	Summary of Development	1
		Trip Generation Trigger	
		Trip Generation Triggers	
		Safety Triggers	
		Summary	
		Collision Summary	
		City of Ottawa Transportation Master Plan Projects	
		Background Developments	
		Exemptions Review	
		Lansdowne 2.0 Land Uses and Trip Generation Rates	
		Internal Capture Trips.	
		Lansdowne 2.0 Person Trips Generated by Land Use	
		Assumed Mode Share by Land Use	
		Lansdowne 2.0 Future Trip Generation by Travel Mode	
		Site Trip Directional Distribution	
		Trip Assignment for Newly Generated Trips	
		MMLOS Targets and Results (Segments)	
		Existing Weekday AM and PM Peak Hour Conditions (Study Area Intersections)	
		Existing Weekday AM and PM Peak Hour Conditions (Internal Lansdowne Intersections)	
		Existing Weekend Saturday Peak Hour Conditions (Study Area Intersections)	
		Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)	
		Existing Weekend Sunday Peak Hour Conditions (Study Area Intersections)	
		Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)	
		Existing Minor Event (Arena at TD Place) Peak Hour Conditions	
		Existing Minor Event (Arena at TD Place) Internal Lansdowne Intersections	
		D: Existing Major Event (Stadium at TD Place) Peak Hour Conditions	
		1: 2028 Future Weekday AM and PM Peak Hour	
		2: 2028 Future Weekday AM and PM Peak (Internal Lansdowne Intersections)	
Table	4.13	3: 2028 Future Weekend Saturday Peak Hour (Study Area Intersections)	105
Table	4.14	4: 2028 Future Weekend Saturday Peak Hour (Internal Lansdowne Intersections)	107

Table 4.15: 2028 Future Weekend Sunday Peak Hour (Study Area Intersections)	108
Table 4.16: 2028 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)	
Table 4.17: 2028 Future Minor Event Peak Hour (Study Area Intersections)	
Table 4.18: 2028 Future Minor Event Peak Hour (Internal Lansdowne Intersections)	
Table 4.19: 2033 Future Weekday AM and PM Peak Hour	
Table 4.20: 2033 Future Weekend Saturday Peak Hour (Study Area Intersections)	
Table 4.21: 2033 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)	
Table 4.22: 2033 Future Minor Event Peak Hour (Study Area Intersections)	
Table 4.23: 2033 Future Major Event Peak Hour (Study Area Intersections)	
Table 1.20. 2000 Fatare Major Event Foat Floar (Glady Floar Interestions)	120
Figures	
Figure 2.1: Site Location	
Figure 2.2: Lansdowne 2.0 Event Centre Site Plan	
Figure 2.3: Lansdowne 2.0 Redevelopment Concept	
Figure 2.4: Existing Site Zoning	11
Figure 2.5: Existing Lane Configuration and Traffic Control	
Figure 2.6: Existing Pedestrian and Cycling Network	16
Figure 2.7: Study Area Transit Route and Stops	17
Figure 2.8: Carleton U Park & Shuttle Route (Ottawa 67's and PWHL Ottawa)	18
Figure 2.9: Enhanced Transit and Shuttle Service to TD Place	18
Figure 2.10: Existing Internal Site Circulation	20
Figure 2.11: Existing Internal Site Circulation (Minor Events)	21
Figure 2.12: Existing Internal Site Circulation (Major Events)	
Figure 2.13: Existing Weekday AM and PM Traffic Volumes	
Figure 2.14: Existing Weekday AM and PM On-site Traffic Volumes	
Figure 2.15: Existing Weekday/Weekend Pedestrian Volumes	
Figure 2.16: Existing Weekday/Weekend Bicycle Volumes	
Figure 2.17: Existing Saturday PM Traffic Volumes	
Figure 2.18: Existing Saturday PM On-site Traffic Volumes	
Figure 2.19: Existing Sunday PM Traffic Volumes	
Figure 2.20: Existing Sunday PM On-site Traffic Volumes	
Figure 2.21: Existing Minor Event Traffic Volumes	
Figure 2.22: Existing Minor event Ingress/Egress On-site Traffic Volumes	
Figure 2.23: Existing Minor Event Pedestrian Volumes	
Figure 2.24: Existing Minor Event Fedesarian Volumes	
Figure 2.25: Existing Major Event Traffic Volumes	
Figure 2.26: Existing Major Event Pedestrian Volumes	
Figure 2.27: Existing Major Event Fedestrial Volumes	
Figure 2.28: Background Developments Key Plan	
Figure 3.1: Lansdowne 2.0 Site Traffic Assignment Assumptions	
Figure 3.2: Lansdowne 2.0 Site Volumes (Weekday AM/PM Peak)	
Figure 3.3: Lansdowne 2.0 Site Volumes (Saturday Peak)	
Figure 3.4: Lansdowne 2.0 Site Volumes (Sunday Peak)	
Figure 3.5: 2028 Total Future Traffic Volumes (Weekday AM / PM)	
Figure 3.6: 2028 Total Future Traffic Volumes On-site (Weekday AM / PM)	
Figure 3.7: 2028 Total Future Traffic Volumes (Saturday PM)	
Figure 3.8: 2028 Total Future Traffic Volumes on-site (Saturday PM)	
Figure 3.9: 2028 Total Future Traffic Volumes (Sunday PM)	62

Figure 3.10: 2028 Total Future Traffic Volumes on-site (Sunday PM)	63
Figure 3.11: 2028 Total Future Traffic Volumes Minor Event	64
Figure 3.12:2028 Total Future Traffic Volumes on-site Minor Event	65
Figure 3.13: 2033 Total Future Traffic Volumes (Weekday AM / PM)	67
Figure 3.14: 2033 Total Future Traffic Volumes (Saturday PM)	68
Figure 3.15: 2033 Total Future Traffic Volumes (Sunday PM)	69
Figure 3.16: 2033 Total Future Traffic Volumes Minor Event (Ingress and Egress)	70
Figure 3.17: 2033 Total Future Traffic Volumes Major Event (Ingress and Egress)	71
Figure 4.1: Lansdowne 2.0 Internal Site Circulation Plan (Regular Operations)	74
Figure 4.2: Lansdowne 2.0 Internal Site Circulation Plan (Minor Events)	75
Figure 4.3: Lansdowne 2.0 Internal Site Circulation Plan (Major Events)	76
Figure 4.4: Study Area MMLOS Segments	79

Appendices

Appendix A - Turning Movement Count Data

Appendix B - Intersection Collision Data

Appendix C - MMLOS Analysis Data

Appendix D - TDM CheckList

Appendix E - Synchro Summary Sheets

1. SCREENING

1.1 Summary of Development

Table 1.1: Summary of Development

Municipal Address	1015 Bank Street, Ottawa, K1S 3W7		
Description of Location	TD Place at Lansdowne, situated at the southeast quadrant of the intersection of Bank Street and Holmwood Avenue.		
Land Use Classification	Mixed-Use Sports & Entertainment District (High-rise residential, retail, office, outdoor stadium, indoor arena and event centre)		
	Phase 1:		
	Indoor Multi-Purpose Event Centre: 5,500 seats (6,500 spectators) Phase 2:		
Development Size (m²) [sq-ft] {unites}	New North Stadium Stands: 11,200 seats (12,100 spectators) Phase 3:		
	Office : 2,323 m² [25,000 sq-ft] (net increase of 1324 m² or 14,240 sq-ft)		
	Retail : 4,611 m ² [49,635 sq-ft] (net increase of 802 m ² or 8,635 sq-ft)		
	Residential: 770 new dwelling units		
	Four existing site access locations:		
Number of Accesses and Locations	 Bank Street / Exhibition Way Bank Street / Marché Way Queen Elizabeth Driveway / Princess Patricia Way Holmwood Parking Garage Ramp (Private, Residents Only Access) 		
	Phase 1 - Event Center (2028) Existing Land Use		
Phase of Development	Phase 2 - North Stadium Stands + Retail Podium (2029/2030) Existing Land Use		
	Phase 3 – Residential Towers (2031)		
Buildout Year	2032 to 2036		

If available, <u>please attach a sketch of the development or site plan</u> to this form.

1.2 Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Table 1.2: Trip Generation Trigger

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	×
Townhomes or apartments	90 units	✓
Office	3,500 m ²	×
Industrial	5,000 m ²	×
Fast-food restaurant or coffee shop	100 m ²	×
Destination retail	1,000 m ²	✓
Gas station or convenience market	75 m ²	×

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

1.3 Location Triggers

Table 1.3: Trip Generation Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		×
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *	√	

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' $\underline{\text{the Location Trigger is}}$ satisfied.

1.4 Safety Triggers

Table 1.4: Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		×
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		×
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		×
Is the proposed driveway within auxiliary lanes of an intersection?		×
Does the proposed driveway make use of an existing median break that serves an existing site?		×
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		×
Does the development include a drive-thru facility?		×

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

1.5 Summary

Table 1.5: Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	√	
Does the development satisfy the Location Trigger?	✓	
Does the development satisfy the Safety Trigger?		×

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

2. SCOPING

2.1 Existing and Planned Conditions

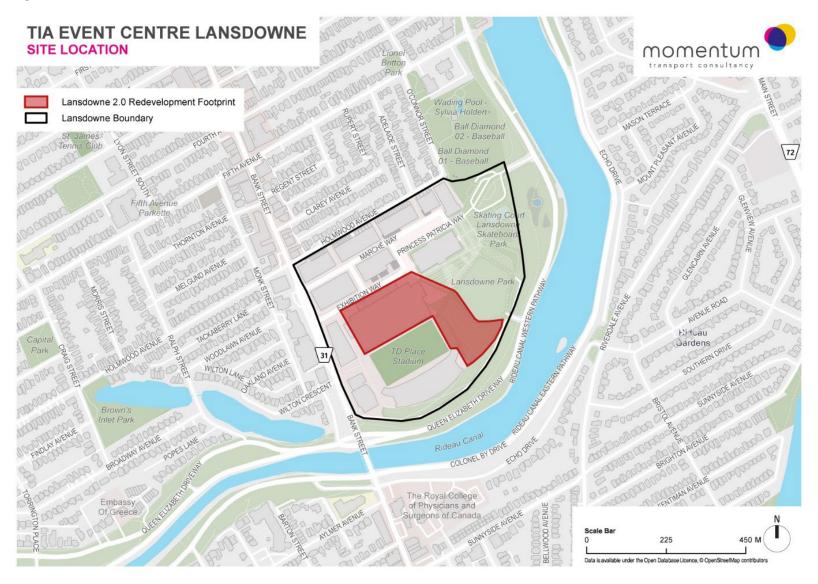
PROPOSED DEVELOPMENT

The City of Ottawa is proceeding with a Site Plan Control application for a new multi-purpose event centre at Lansdowne Park.

Lansdowne Park is located within the Glebe neighbourhood of Ottawa, Ontario and is bounded by Bank Street to the west, Holmwood Avenue to the north, and Queen Elizabeth Driveway along the Rideau Canal to the east and south.

The new event centre replaces the existing TD Place Arena (previously known as the Ottawa Civic Centre) with a multi-purpose venue with a seated capacity of 5,500 seats (total spectator capacity of 6,500 including standing-only).

This Site Plan Application for the new event centre represents the first phase of development for the Lansdowne 2.0 project, which seeks to demolish the existing functionally obsolete north stadium stands and arena complex at Lansdowne Park and build a new world-class event centre.


The Lansdown 2.0 redevelopment plan features a new multi-purpose event centre, new north stadium stands, as well as additional residential housing, destination retail, and office space.

Lansdowne Park currently consists of:

- TD Place Stadium: a 24,000-seat outdoor stadium that is home to the Canadian Football League's (CFL) Ottawa RedBlacks and Canadian Premier League's (CPL) Ottawa Atlético;
- TD Place Arena: a 9,800-seat indoor multipurpose venue and arena (formerly known as the Ottawa Civic Centre) home to the Ontario Hockey League's (OHL) Ottawa 67's, the Canadian Elite Basketball League's (CEBL) Ottawa BlackJacks, and the Professional Women's Hockey League's (PWHL) Ottawa team;
- 280 residential units within two condominium towers and townhomes;
- Approximately 360,000 ft² of destination-based commercial retail and office space;
 and
- An 18-acre urban park that includes the historic Aberdeen Pavilion exhibition hall and Horticulture Building.
- 1,380 space underground parking garage for public and residential use.

Figure 2.1 illustrates the site location and Lansdowne 2.0 redevelopment footprint.

Figure 2.1: Site Location

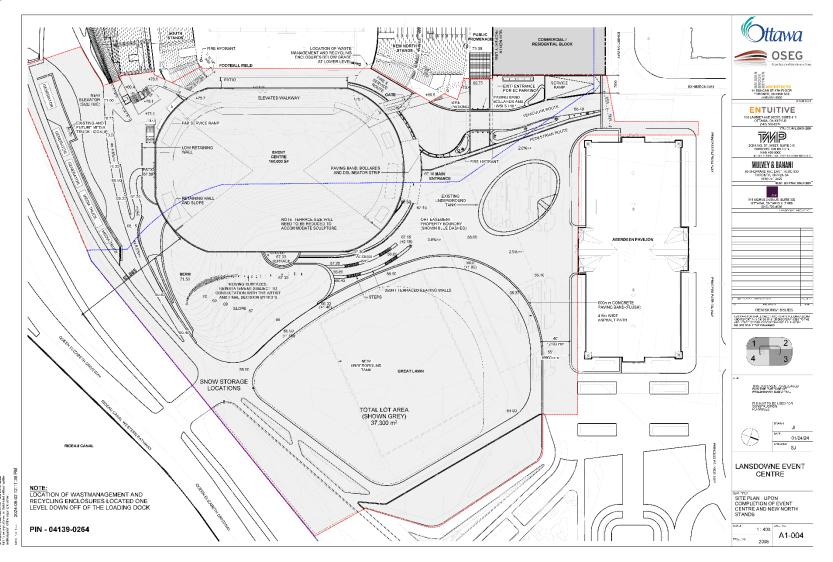
This Transportation Impact Assessment (TIA) is submitted in support of the Site Plan Application for Phase 1 of the Lansdowne 2.0 redevelopment plan.

The proposed improvements include the construction of a new 5,550 seat (6,500 attendee) multi-purpose event centre and associated public realm improvements at the Great Lawn south of the Aberdeen Pavilion. Other improvements include the provision of a dedicated layby for media and broadcast trucks south of the new event centre.

Spectator access to the new event centre will be provided at the North Main Entrance facing the Aberdeen Pavilion and Exhibition Way.

Additional gateway entrances are provided at the South Entrance (Patio) and East Entrance (Terrace) which will be used for evacuation egress, and when required for events with expanded capacity inclusive of additional floor seating and standing-only tickets (i.e. 6,500 attendees).

All event centre entrance locations connect to multi-use pathways within Lansdowne with connections to existing external pathways located on Queen Elizabeth Driveway and sidewalks on Bank Street and Holmwood Drive.


Similar to the current vehicle access and circulation arrangements at Lansdowne, vehicular access is restricted to Bank Street at Exhibition Way and Marche Way, as well as Queen Elizabeth Driveway at Princess Patricia Way.

Limited special use access is also provided at Queen Elizabeth Driveway and the Great Lawn to facilitate emergency vehicle access and limited special use by shuttle buses when permitted.

Truck deliveries and the load-in / load-out of shows and concerts at the new event centre will be facilitated at the existing service ramp located on Exhibition Way. The new event centre will feature a 15.4m wide entrance at Exhibition Way to provide access to the new event centre and Great Lawn, including a limited use vehicle route to allow for AODA pick-up and drop-off by ParaTranspo for patrons with mobility needs.

Figure 2.2 illustrates the proposed Site Plan for the new event centre at Lansdowne.

Figure 2.2: Lansdowne 2.0 Event Centre Site Plan

The Lansdowne 2.0 redevelopment plan is anticipated to occur over three phases:

Phase 1:

Phase 1 consists of building a new 5,500 seat (up to 6,500 spectators) multipurpose event centre that will be home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, the PWHL Ottawa, and other indoor events such as shows and concerts.

Other improvements include landscaping and public realm improvements at the Great Lawn located south of the Aberdeen Pavilion to accommodate the new event centre and allow for additional programming opportunities at Lansdowne Park.

As this phase of Lansdowne 2.0 replaces the programming provided at the existing 9,800 seat TD Place Arena, it is not expected to generate additional transportation demands to Lansdowne.

Phase 1 is anticipated to be completed in 2028.

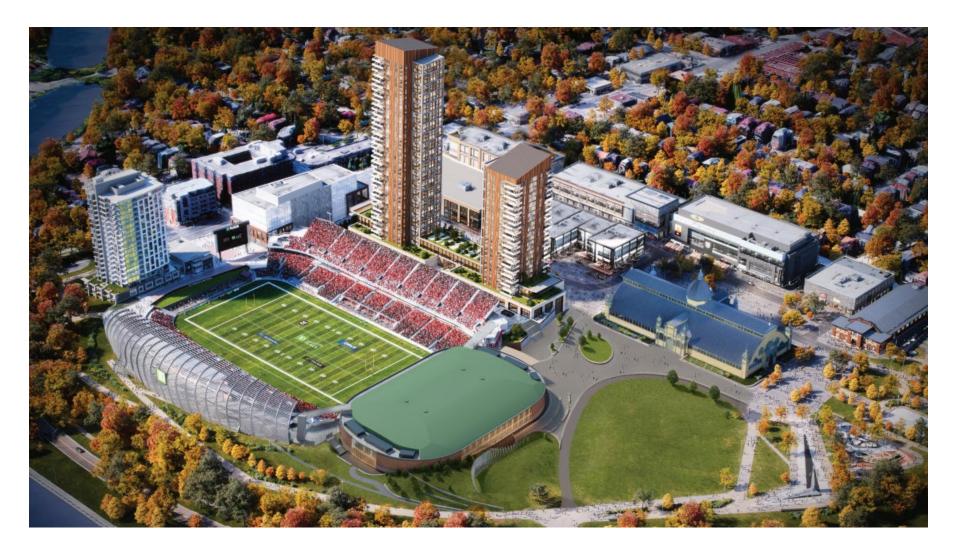
Phase 2:

Phase 2 consists of replacing the existing functionally obsolete north stadium stands and arena complex at TD Place Stadium with a new 11,200 seat (12,100 spectator) north stand structure. This new facility replaces the existing north stadium stands, which currently has a capacity of 14,028 spectators, and would result in a reduction of approximately 2,000 spectator capacity at TD Place Stadium. This venue will continue to be the home of the CFL's Ottawa RedBlacks and the CPL's Ottawa Atlético.

This phase of Lansdowne 2.0 replaces existing programming currently provided at TD Place Stadium. As a result, it is not expected to generate additional transportation demands to Lansdowne.

Phase 2 is anticipated to be completed between 2030 and 2031.

Phase 3:


Phase 3 consists of replacing the existing 41,000 ft² of commercial retail and box office annex to the Stadium on Exhibition Way with 49,635 ft² of new podium-level commercial retail space. This represents a net increase of 8,635 ft² of commercial retail space from what is currently provided today.

In addition, this phase includes the construction of two new residential towers with a total of 770 new dwelling units. Additional underground parking space will be constructed by extending the existing facility to accommodate an additional 386 parking spaces to service the new residential units and additional retail space, resulting in a total of 1,766 underground parking spaces at Lansdowne. Underground parking will continue be accessed at existing access ramps located on Exhibition Way, and Princess Patricia Way near Queen Elizabeth Driveway.

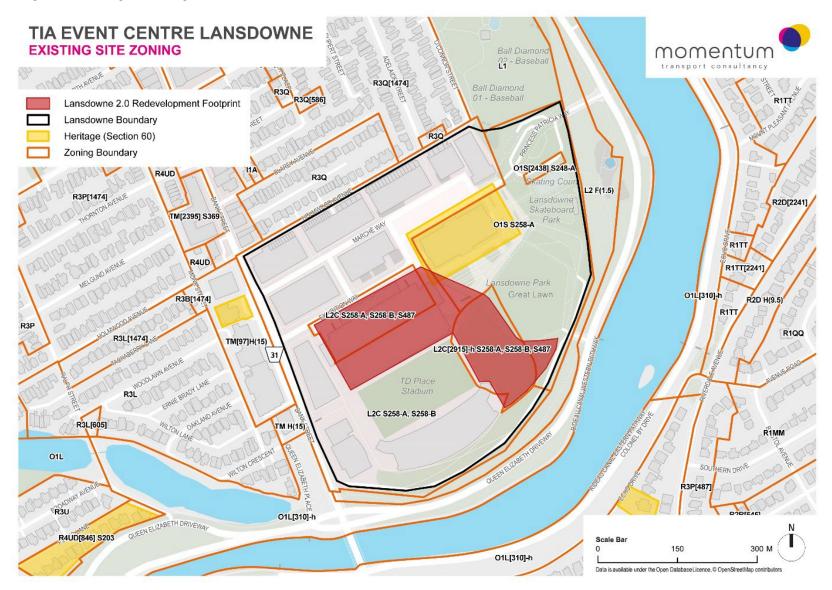
Phase is anticipated to be completed between 2032 and 2036.

Figure 2.3 illustrates a rendering of the Lansdowne 2.0 redevelopment concept.

Figure 2.3: Lansdowne 2.0 Redevelopment Concept

The site currently carries three different zoning designations. The western portion of the proposed site is zoned L2C S258-A S258-B and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the L2 – Major Leisure Facility Zone is to:

- Accommodate major, urban City-wide sports, recreational and cultural facilities addressed under the Major Urban Facilities policies of the Official Plan.
- Permit a broad range and intensity of leisure, recreational, cultural and related uses; and
- Allow a moderate density and scale of development.


The eastern portion of the proposed site is zoned O1S S258-A and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the O1- Parks and Open Space Zone is to:

- Permit parks, open space and related and compatible uses to locate in areas designated as General Urban Area, General Rural Area, Major Open Space, Mixed Use Centre, Village, Greenbelt Rural and Central Area as well as in Major Recreational Pathway areas and along River Corridors as identified in the Official Plan, and
- Ensure that the range of permitted uses and applicable regulations is in keeping with the low scale, low intensity open space nature of these lands.

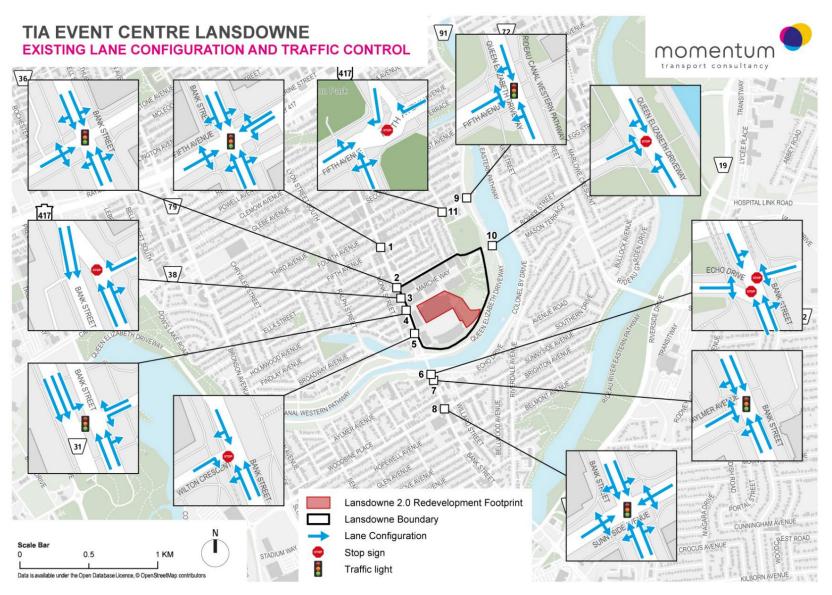
Following the Lansdowne 2.0 Zoning By-Law Amendment (ZBA) application and subsequent changes made in November 2023, the parcel east of TD Place Stadium was zoned as L2C[2915]-h S258-A, S258-B, S487 to permit a broad range and intensity of leisure, recreational, cultural and related uses including sports arenas.

Figure 2.4 illustrates the existing site zoning at Lansdowne.

Figure 2.4: Existing Site Zoning

EXISTING CONDITIONS

2.1.1 Roads and Traffic Control


The roadways and intersections under consideration in the study area are described below:

- Bank Street: Bank Street is a four-lane arterial roadway with a posted speed limit of 40 km/h. The street is under the jurisdiction of the City of Ottawa. Sidewalks are provided on both sides of Bank Street. The roadway is designated as a Local Cycling Route as per the City of Ottawa's Bike Plan and is also designated as a truck route. Bank Street currently provides two access connections to Lansdowne with a signalized, full access movement at Exhibition Way, and an unsignalized right-in/right-out only access at Marché Way. On-Street parking is permitted north of Holmwood Avenue. On-street parking on Bank Street across the frontage of the subject site is prohibited at all times. As part of the Bank Street Canal Bridge Rehabilitation Project, 1.5m cycle tracks have been implemented on both sides of the Bank Street Bridge between Exhibition Way and Aylmer Avenue in conjunction with a 3-lane cross-section (2 northbound lanes, 1 southbound lane). Other than the newly installed cycling lanes on the Bank Street Bridge, there is a northbound bike lane on Bank Street across the frontage of the site.
- Queen Elizabeth Driveway: Queen Elizabeth Driveway is a two-lane scenic parkway that runs along the Rideau Canal and has a posted speed limit of 40 km/h. The parkway is a federal roadway under the jurisdiction of the National Capital Commission (NCC). In the vicinity of Lansdowne, the parkway features multi-use pathways on both sides. Queen Elizabeth Driveway is designated as a Major Pathway as per the City of Ottawa Bike Plan. The parkway currently provides two access connections to Lansdowne with an unsignalized, full-movements intersection at Princess Patricia Way, as well as a restricted special-use access located on the south side at the Great Lawn. On-street parking on Queen Elizabeth Driveway is prohibited at all times.
- **Fifth Avenue:** Fifth Avenue is a two-lane collector roadway with a posted speed limit of 40 km/h east of Bank Street, and a posted speed limit of 30km/h west of the Bank Street. There are existing sidewalks along both sides of the roadway. The south side of Fifth Avenue features an on-street cycling lane. The roadway is designated as a Local Route per the City of Ottawa Bike Plan. On-street parking on Fifth Avenue in the vicinity of the subject site is permitted on the northside of the roadway.
- Holmwood Avenue: Holmwood Avenue is a two-lane local road with a default speed limit of 30 km/h. East of the intersection with Bank Street, Holmwood Avenue is a one-way street providing access in the eastbound direction. The road features a cycling lane on the northside. West of the Bank Street intersection, Holmwood Avenue is a two-way street. On-street parking on Holmwood Avenue in the vicinity of the subject site is permitted on the southside of the roadway. Holmwood Avenue also includes access to the underground parking garage at Lansdowne what is restricted for residential uses only, and occasionally provides limited exit from the site during major events at Lansdowne.
- Exhibition Way: Exhibition Way is a two-way private roadway that functions as the primary access point to Lansdowne and TD Place. The intersection with Bank Street is signalized with an auxiliary left turn lane in the southbound direction. There are existing sidewalks along both sides of the roadway. There are auxiliary left and right turn lanes in the west bound direction. Designated on-street parking spaces are provided with varying time limits.

- Marché Way: Marché Way is a two-way private roadway that functions as the secondary access point to Lansdowne and TD Place. The intersection with Bank Street is unsignalized and functions as a right-in/right-out only access connection. There are existing sidewalks along both sides of the roadway. Designated on-street parking spaces are provided with varying time limits.
- Wilton Crescent: Wilton Crescent is a two-lane local roadway with a posted speed limit of 30 km/h. Left turn movements from Wilton Crescent to Bank Street are prohibited at all times. The intersection with Bank Street is stop controlled along Wilton Crescent. There are existing sidewalks along both sides of the roadway. Across the frontage of the subject site, Wilton Crescent is designated as a local route as per the City of Ottawa Bike Plan. On-street parking is permitted on the northside of the roadway at specific times.
- **Echo Drive:** Echo Drive is a one-lane local roadway with a default speed limit of 40 km/h. Through and left turns off Echo Drive are prohibited. Echo Drive is a one-way road stop controlled along Echo Drive. The roadway has a sidewalk on the northside. Echo Drive is designated as a local route as per the City of Ottawa's ultimate Cycling Plan.
- **Aylmer Avenue:** Aylmer Avenue is a two-lane local roadway with a posted speed limit of 30 km/h. Sidewalks are provided along both sides of Aylmer Avenue. On-street parking is permitted on the northside of the roadway.
- Sunnyside Avenue: Sunnyside Avenue is a two-lane collector roadway with a posted speed limit of 30 km/h. The roadway west of the intersection with Bank Street is designated as local route as per the City of Ottawa Bike Plan. On-street parking is permitted on the southside of the roadway west of the intersection with Bank Street.
- O'Connor Street: O'Connor Street is a two-lane local roadway with a posted speed limit of 30 km/h. The roadway is designated as a local route as per the City of Ottawa Bike Plan. South of Fifth Avenue, O'Connor Street is a one-way local road with a dedicated bike lane on the northside, and on-street parking permitted on the southside of the roadway. North of Fifth Avenue, O'Connor Street is a two-way local road with on-street parking permitted on the eastside.

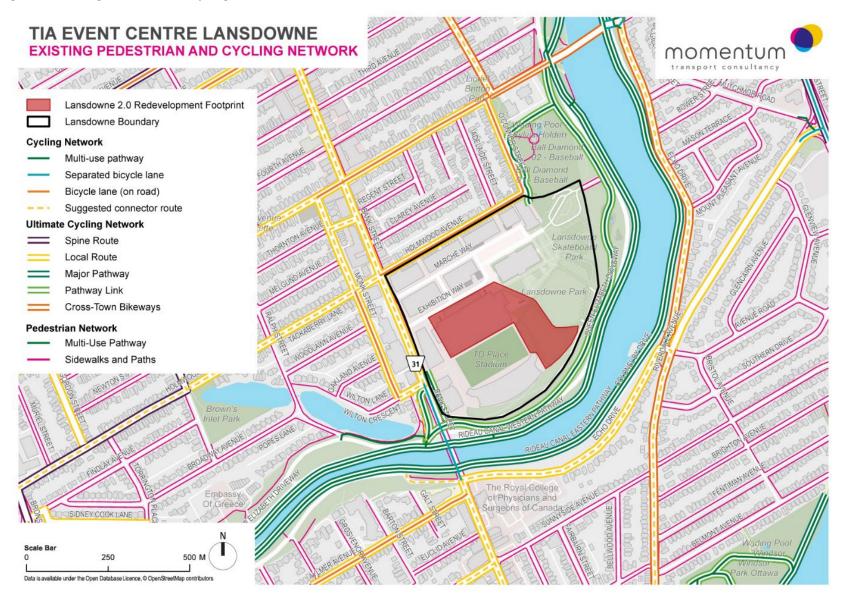
Figure 2.5 illustrates the existing lane configuration and traffic control

Figure 2.5: Existing Lane Configuration and Traffic Control

2.1.2 Walking and Cycling

The study area is adequately connected to pedestrian facilities with sidewalks along all study area roadways.

All study area corridors are currently designated as Suggested Cycling routes as per the City of Ottawa Bike Plan. Queen Elizabeth Driveway, which is under the jurisdiction of the NCC, features off-street multi-use pathways.


There are currently dedicated bike lanes on Fifth Avenue (east of Bank Street), Aylmer Avenue, and Holmwood Avenue (east of the Bank Street) which forms a connection to the O'Connor Street bike lanes and cycle tracks.

The Flora Footbridge connection, which was opened in June 2019, provides a cycling and walking connection on both sides of the Rideau Canal at Fifth Avenue / Clegg Street. 1.5m cycle tracks have been implemented on both sides of the Bank Street Bridge between Exhibition Way and Aylmer Avenue.

Under the Ultimate Cycling Network, all study area roadways are envisioned as Local Cycling Routes that form connections to nearby Spine Routes including O'Conner Street and Glebe Avenue, as well as multi-use pathways along Queen Elizabeth Driveway.

Figure 2.6 illustrates existing and planned pedestrian and cycling facilities within the vicinity of Lansdowne.

Figure 2.6: Existing Pedestrian and Cycling Network

2.1.3 Transit

OC Transpo transit service is currently provided at Lansdowne through OC Transpo bus routes 6 and 7.

Route 6 is a Frequent Route that runs 7 days per week in all time periods between Greenboro and Rockcliffe. It runs with 15-minute headways or less during the weekday peak periods and 15-minute or less headways during the weekend peak periods.

Route 7 is a Frequent Route that runs 7 days per week in all time periods between Carleton University and St. Laurent. It runs with 15-minute headways or less during both peak periods during weekdays and 15-minutes or less headways during the weekend peak.

Bus stops are provided at the intersection of Bank Street and Exhibition Way.

Figure 2.7 illustrates transit routes in the vicinity of Lansdowne.

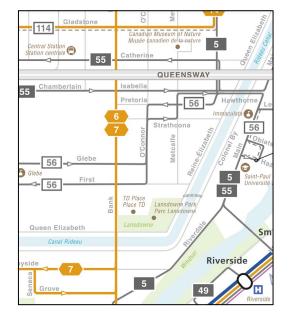
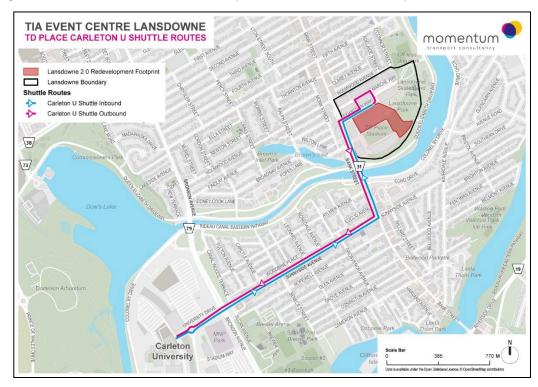


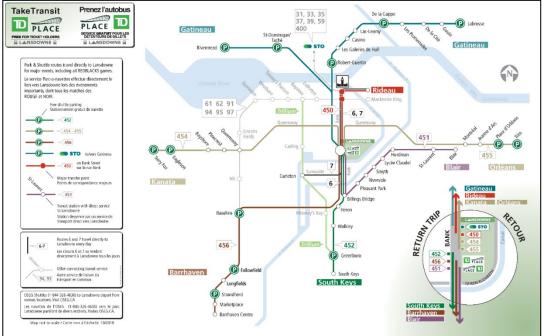
Figure 2.7: Study Area Transit Route and Stops

Enhanced transit services are provided to support special events at Lansdowne and TD Place. This includes the provision of free transit to ticketholders for all events held at Lansdowne through an innovative program that is the first of its kind for large venues. The cost of transit service is free of charge for event goers and is bourn by the Ottawa Sports and Entertainment Group (OSEG) for any service enhancements provided for events with 5,000 or more attendees. Transit service for special events includes providing supplemental trips on OC Transpo routes 6 and 7 for minor events with attendance levels of 10,000 or less.

For Ottawa 67's and PHWL Ottawa games, park & shuttle service is provided to ticket holders from Carleton University. Ticket holders can park at Carleton University starting 90 minutes before the start of Ottawa 67's and PHWL Ottawa games with services provided until 60 minutes post-games. The cost of parking and shuttle service is free to ticket holders and is bourn by OSEG. Shuttle bus service is provided from Carleton University's P18 Parkade with service provided to Lansdowne provided through Sunnyside Avenue and Bank Street.

Figure 2.8 illustrates the Carleton U shuttle route for Ottawa 67's and PWHL Ottawa games.




Figure 2.8: Carleton U Park & Shuttle Route (Ottawa 67's and PWHL Ottawa)

For major events, which include events with 10,000 or more attendees, dedicated Park & Shuttle services is provided with event day services provided from OC Transpo Park & Ride locations, as well as privately run shuttles operated by OSEG. Major event transit service typically starts two hours prior to the start of a ticketed evet for ingress service, and two hours after the end of a ticketed event for egress service.

Figure 2.9 illustrates special event transit and shuttle services to TD Place.

TakeTransit

Figure 2.9: Enhanced Transit and Shuttle Service to TD Place

2.1.4 Traffic Management Measures

Traffic management measures are deployed at Lansdowne to manage traffic flow for day-to-day operations as well as during special events. Under regular day-to-day operations, vehicle access to the site is permitted on both Bank Street and Queen Elizabeth Driveway. Internal vehicle circulation is permitted through the site on Exhibition Way, Marche Way, and Princess Patricia Way, with the exception of a portion of Princess Patricia Way near the Aberdeen Pavilion that is a pedestrian-only zone. Other internal circulation pathways including Frank Clare Lane and the Great Lawn which are restricted use-only for emergency vehicles, deliveries, and accessible transit service (i.e. ParaTranspo) when required.

For minor events, such as events at TD Place Arena, vehicle access is permitted on both Bank Street and Queen Elizabeth Driveway. Depending on programming activities at TD Place and Lansdowne Park, traffic management measures to reduce vehicular through traffic on Exhibition Way are deployed to re-route internal traffic circulation to Marche Way, where pedestrian activity is lower.

For major events, traffic management measures include the deployment of traffic control devices and police point duty along Bank Street and Queen Elizabeth Driveway to help manage traffic flow and accommodate safe pedestrian crossings. Vehicle access to the site is restricted during major events at the stadium, such as football games, to minimize pedestrian and vehicle conflicts. Vehicle access from Bank Street is restricted at both Exhibition Way and Marche Way. Vehicle access is only permitted at the Queen Elizabeth Driveway access for underground parking garage and pick-ups / drop-offs at the shuttle loop. Vehicle circulation through the site is restricted. While access to Lansdowne is restricted during major events, existing retail patrons and residents continue to access the underground parking facility at Lansdowne from Queen Elizabeth Driveway, which will remain an important arterial road in the city's transportation network. In addition, residents are able to access underground parking through a residents-only underground garage ramp on Holmwood Avenue. In addition, onstreet parking on Bank Street is temporarily prohibited during large events in order to support special event enhanced transit and shuttle service operations to TD Place.

Lansdowne is designated as a pedestrian-priority zone and features many pedestrian-only pathways and connections. This includes pathway connections from Queen Elizabeth Driveway, a stairway gate entrance on Bank Street by TD Place Gate 1, and several laneways connecting to Holmwood Avenue at the northern side of the district.

Existing site access and internal circulation areas during normal operations, minor events, and major events are illustrated in Figure 2.10 through Figure 2.12.

Figure 2.10: Existing Internal Site Circulation

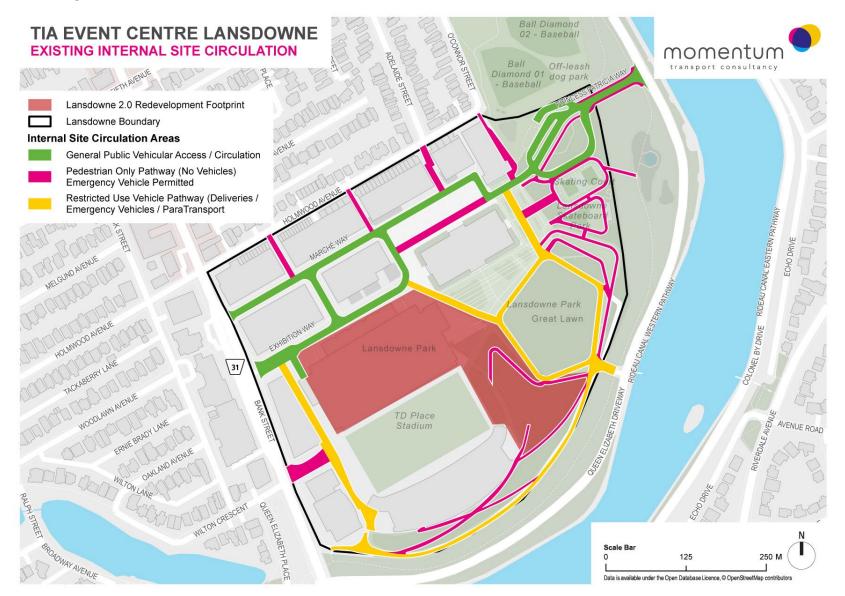


Figure 2.11: Existing Internal Site Circulation (Minor Events)

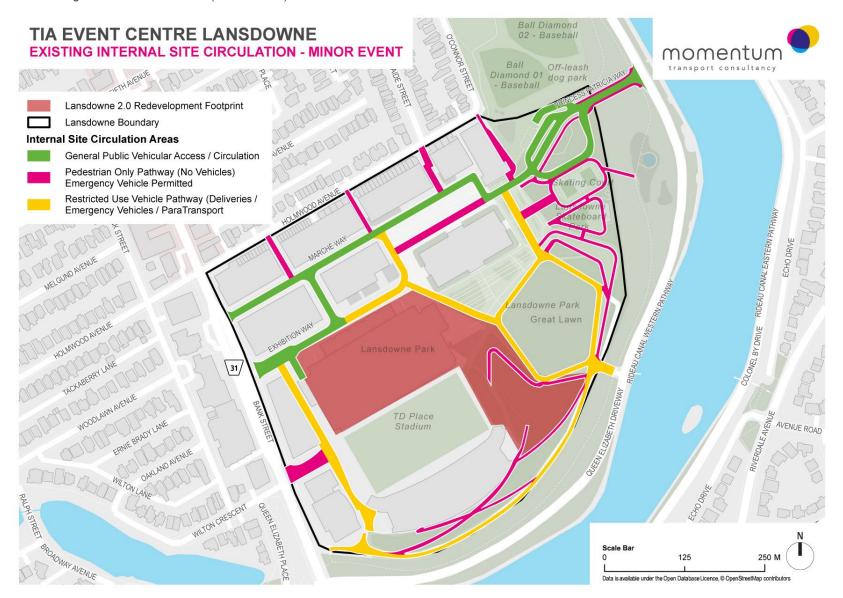
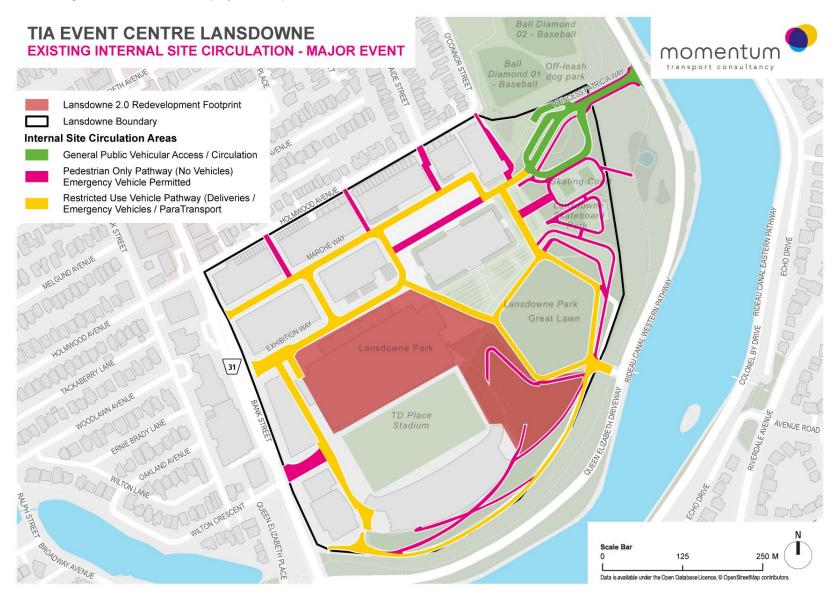



Figure 2.12: Existing Internal Site Circulation (Major Events)

2.1.5 Traffic Volumes

Recently collected intersection traffic data were obtained from the City of Ottawa. This included traffic data captured for regular weekdays (AM and PM peak periods), a weekday minor event at TD Place Arena, a weekday major event at TD Place Stadium, as well as the Saturday and Sunday weekend mid-day peaks with concurrent programming and events at TD Place and Lansdowne Park. Traffic data was obtained for the following periods:

Typical Weekday Period (AM/PM Peak):

Tuesday, May 3rd, 2022 / Wednesday, May 11th, 2022 (Weekday AM and PM).

Weekend Saturday Peak Period (Mid-Day Peak):

 Saturday, May 7th, 2022 (Saturday Mid-Day), representative of multi-event activity at Lansdowne including an Atlético Ottawa soccer match at TD Place Stadium (6:00 pm kick-off) with an attendance of 3,555 spectators.

Weekend Sunday Peak Period:

Sunday, June 9th, 2024 (Sunday Mid-Day), representative of multi-event activity at
Lansdowne inclusive of the weekly Ottawa Farmer's Market, retail activity, and three
back-to-back events at TD Place Arena for the Volleyball Nations League (VNL) featuring
tournament games throughout the day (11:00 am, 2:30 pm, and 6:00 pm matches).
Traffic captures on this day also reflects altered traffic patterns resulting from the planned
closure of Queen Elizabeth Driveway between Somerset Street and Fifth Avenue as part
of the National Capital Commission Weekend Bikedays programming on the driveway.

Minor Arena Event:

 Monday, May 9th, 2022 (Special Event Concert at the Arena at TD Place. Start time of 7:30 pm, End time of 10:30 pm.

Major Stadium Event:

 Friday, October 14th, 2022 (REDBLACKS Football Game at TD Place. Start time of 7:30pm, End time of approximately 10:30pm.

Intersection turning movement count summary data for the various time periods collected are Illustrated in Figure 2.13 through Figure 2.27.

Turning movement count data is documented in **Appendix A**.

Figure 2.13: Existing Weekday AM and PM Traffic Volumes

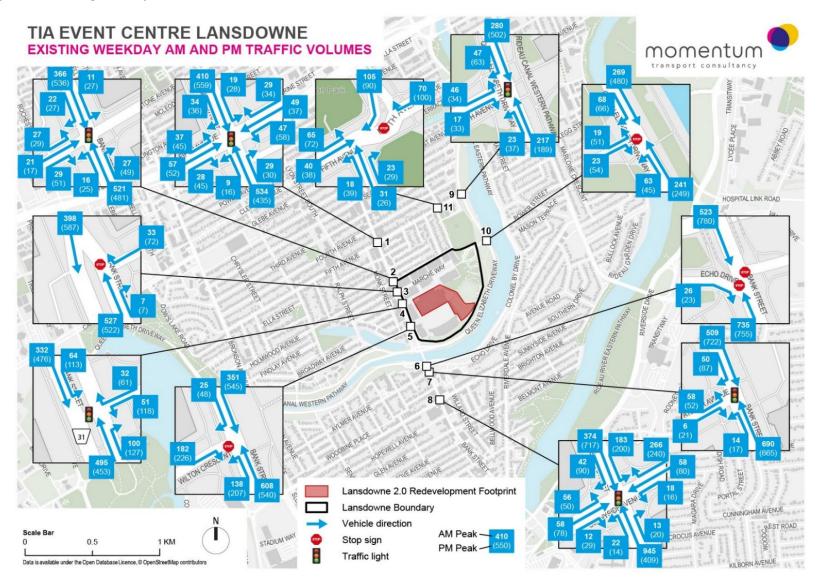


Figure 2.14: Existing Weekday AM and PM On-site Traffic Volumes

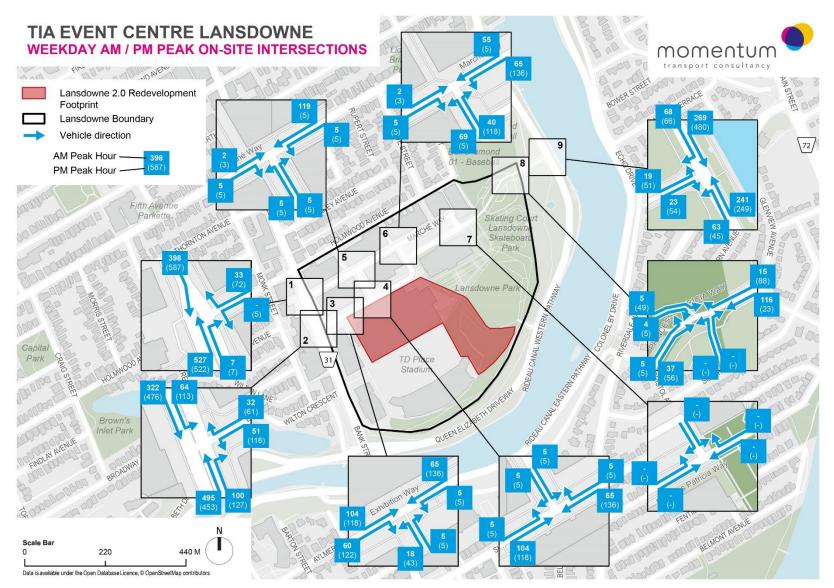


Figure 2.15: Existing Weekday/Weekend Pedestrian Volumes

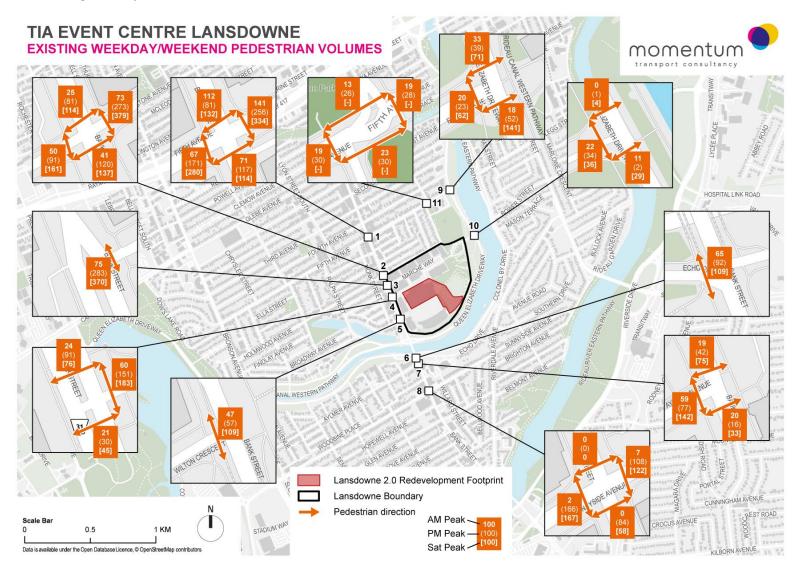


Figure 2.16: Existing Weekday/Weekend Bicycle Volumes

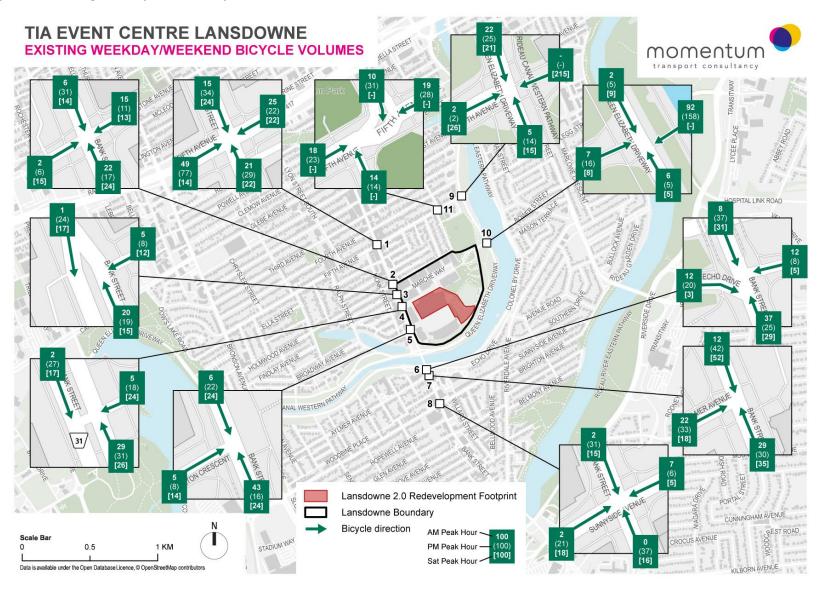


Figure 2.17: Existing Saturday PM Traffic Volumes

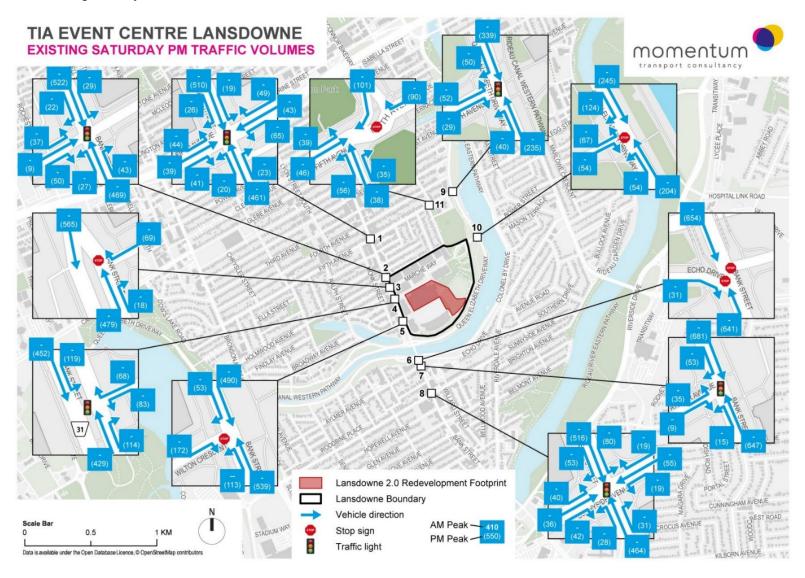


Figure 2.18: Existing Saturday PM On-site Traffic Volumes

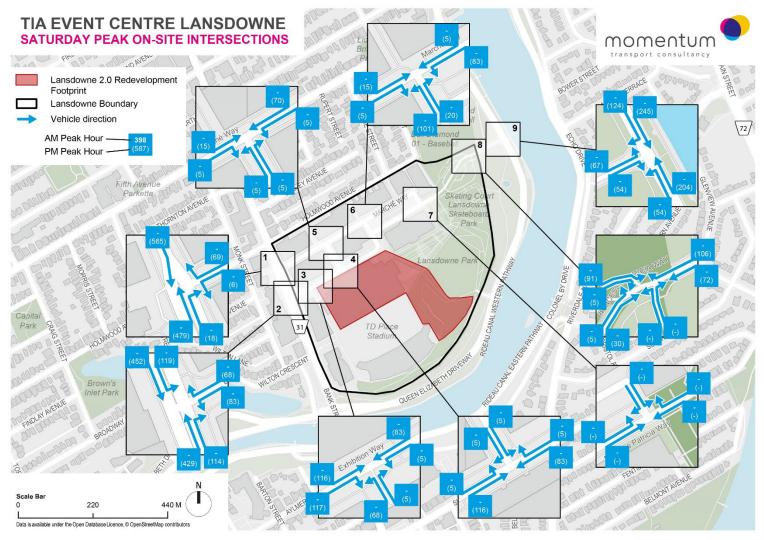


Figure 2.19: Existing Sunday PM Traffic Volumes

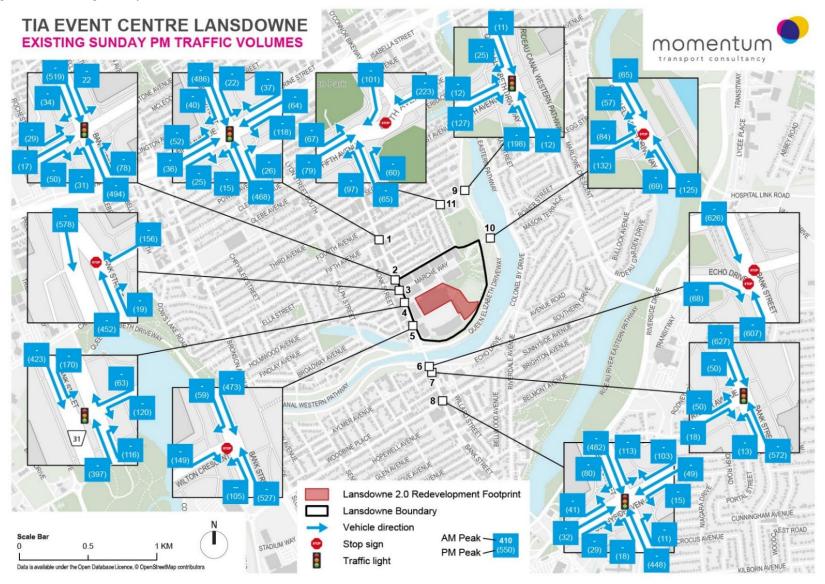


Figure 2.20: Existing Sunday PM On-site Traffic Volumes

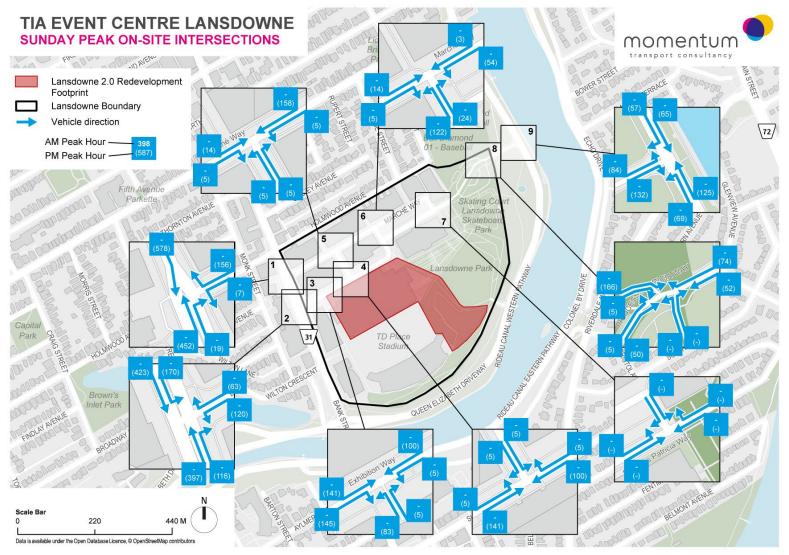


Figure 2.21: Existing Minor Event Traffic Volumes

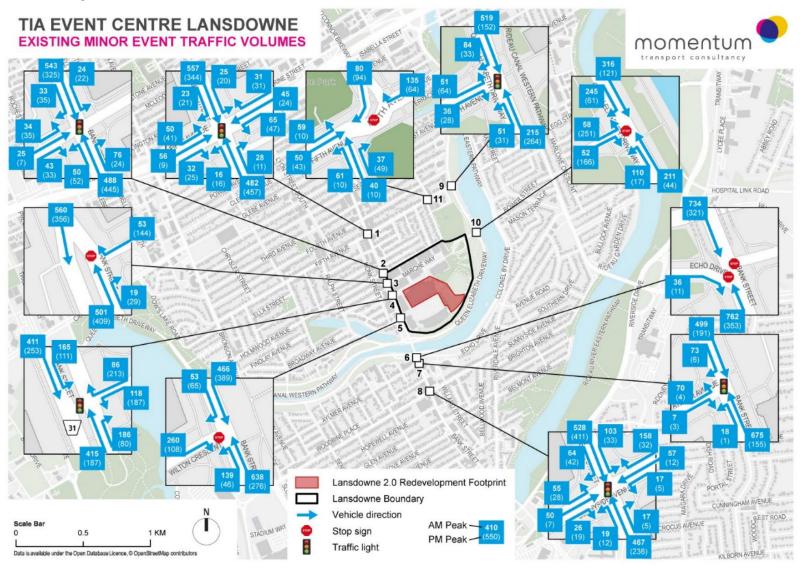


Figure 2.22: Existing Minor event Ingress/Egress On-site Traffic Volumes **TIA EVENT CENTRE LANSDOWNE** MINOR EVENT INGRESS / EGRESS ON-SITE INTERSECTIONS momentum Lansdowne 2.0 Redevelopment Footprint Lansdowne Boundary Vehicle direction Ingress 01 - Basel **Egress** Skating C Lansdov Skateboa Park Brown's QUEENELIZI Inlet Park Scale Bar

220

Data is available under the Open Database Licence, © OpenStreetMap contributors

440 M

Figure 2.23: Existing Minor Event Pedestrian Volumes

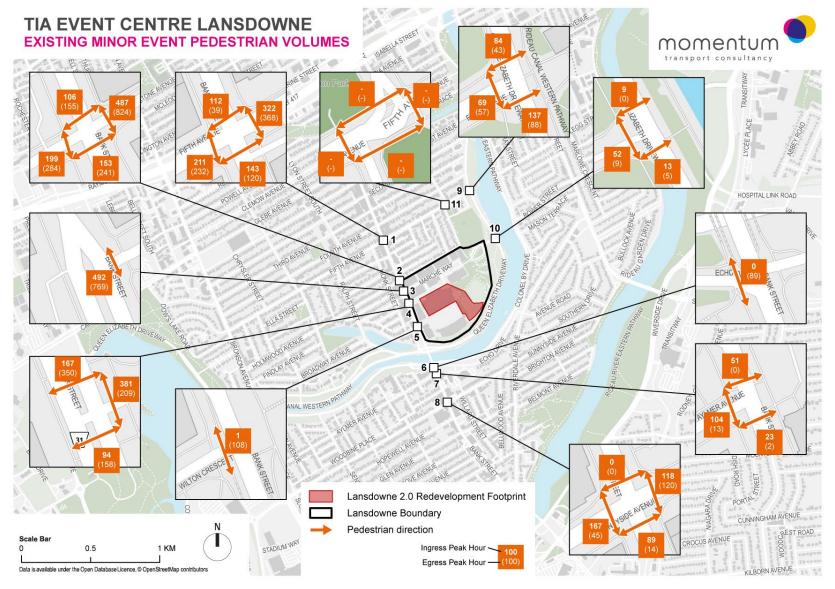


Figure 2.24: Existing Minor Event Bicycle Volumes

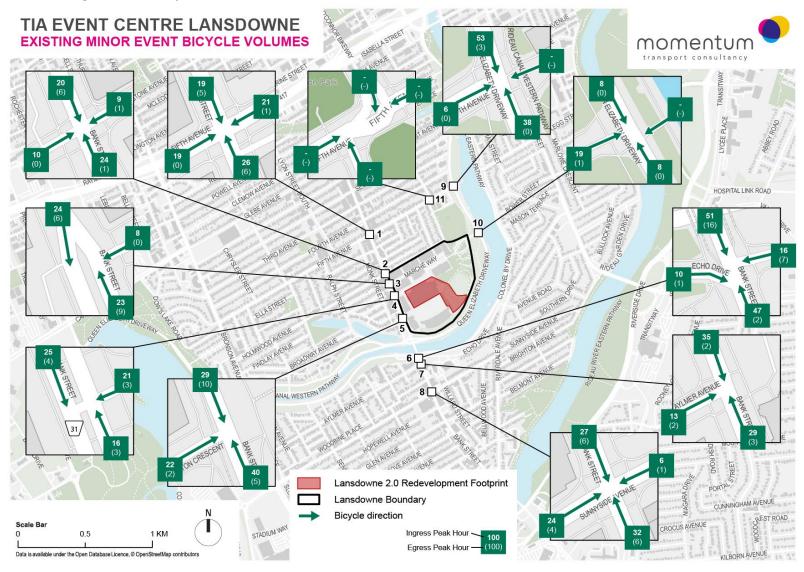


Figure 2.25: Existing Major Event Traffic Volumes

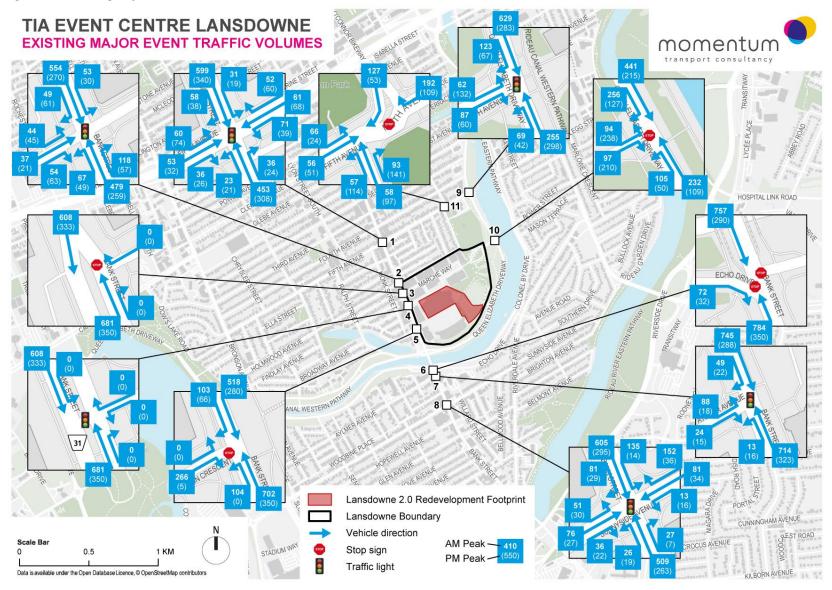


Figure 2.26: Existing Major Event Pedestrian Volumes

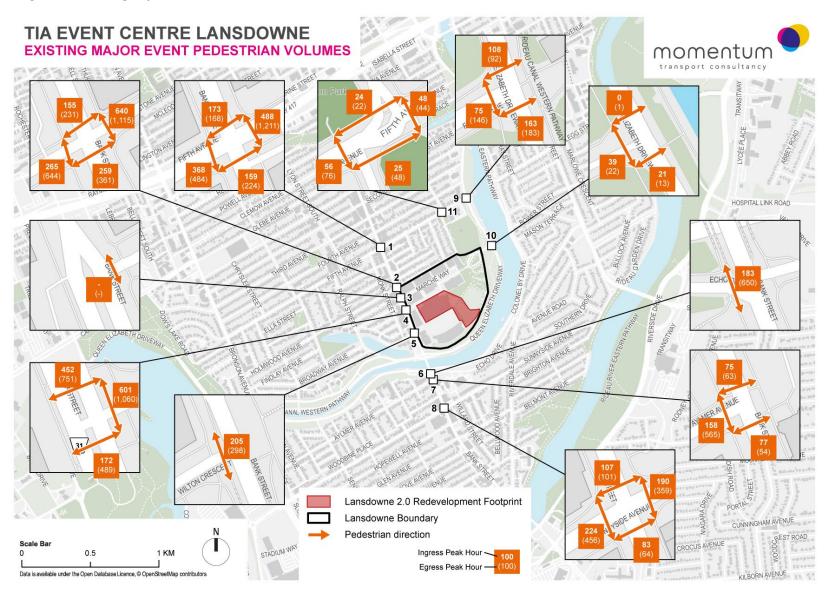
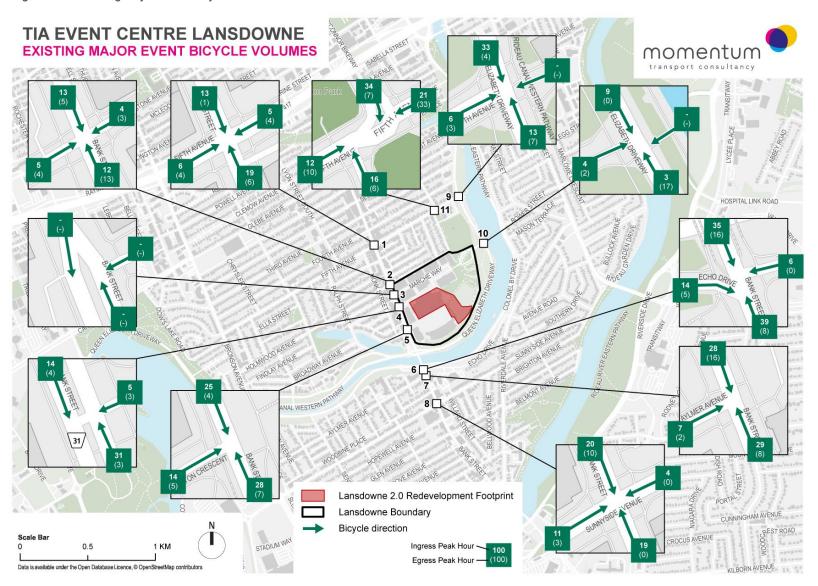



Figure 2.27: Existing Major Event Bicycle Volumes

2.1.6 Collision History

Collision data was provided by the City of Ottawa for the period January 2017 to December 2021 in the vicinity of Lansdowne and TD Place. The data was reviewed to determine if any intersections exhibited identifiable collision patterns.

Table 2.1 summarizes the collision class and impact types for study area intersections.

Table 2.1: Collision Summary

			IM	PACT TYPI	=	
LOCATION	CLASS	Sideswipe	Angle / Turning	Rear End	Single Vehicle	Other
Bank Street at	Property Damage	1		4	1	
Exhibition Way	Non-Fatal Injury					
Bank St at	Property Damage			1		
Marche Way	Non-Fatal Injury				1	
Bank St at	Property Damage	3	2	3	1	
Fifth Ave	Non-Fatal Injury		3	1	2	
Bank St at	Property Damage	3	6	2		
Holmwood Ave	Non-Fatal Injury		1			
Bank St at	Property Damage	2	3	3	1	
Wilton Cres	Non-Fatal Injury	1	3	1		
Bank St at	Property Damage	1	2			1
Echo Dr	Non-Fatal Injury					
Bank St at	Property Damage	4	2	4		
Aylmer Ave	Non-Fatal Injury			1	1	
Bank St at	Property Damage	7	5	1		
Sunnyside Ave	Non-Fatal Injury		3	1	3	
Queen Elizabeth Dr at	Property Damage			3		
Fifth Ave	Non-Fatal Injury					
Queen	Property Damage	1	2	1		
Elizabeth Dr at Princess Patricia Way	Non-Fatal Injury		2			1
Fifth Avenue at	Property Damage					2
O'Connor Street	Non-Fatal Injury					
	Property Damage	22	22	22	3	3
TOTAL	Non-Fatal Injury	1	12	4	7	1

Based on the collision data summarized above, the majority of collisions are classified as Property Damage only (74%), suggesting that the majority of collisions occurred at low speeds. No intersection or signal timing modifications are recommended. Collision summary data can be found in **Appendix B**.

PLANNED CONDITIONS

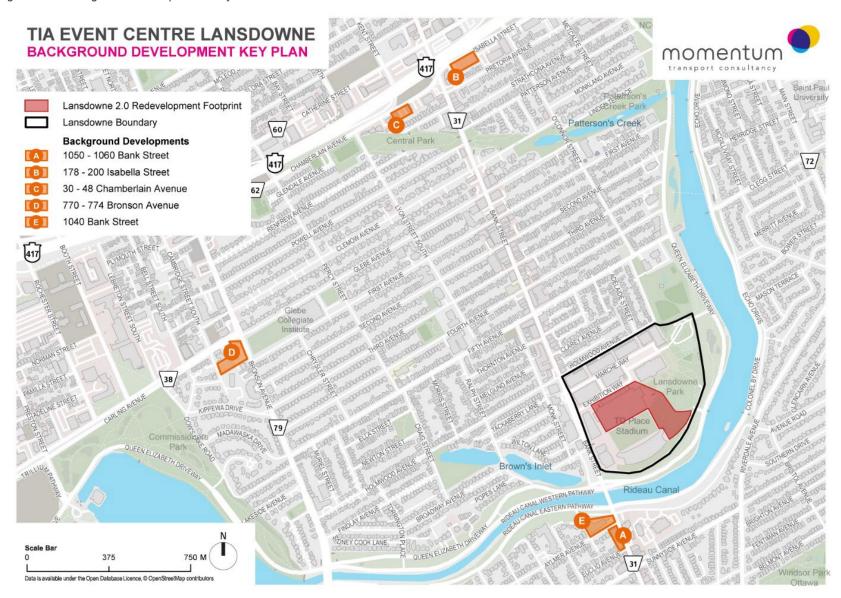
2.1.7 Road Network Modifications

Table 2.2 identifies the City of Ottawa's Transportation Master Plan (TMP) projects located in the vicinity of the subject site, as well as projects that are anticipated to influence modal share characteristics in the future.

Table 2.2: City of Ottawa Transportation Master Plan Projects

Project	Description	TMP Phase
	Transit signal priority between Wellington Street and Highway 417. May also include parking lane conversion in the immediate vicinity of selected intersections	
Bank Street	Transit signal priority between Highway 417 and Billings Bridge Station, including limited installation of queue jump lanes (in one direction only) at selected intersections	Affordable Network

The City of Ottawa is currently undertaking the *Bank Street Active Transportation and Transit Priority Feasibility Study* between Highway 417 to the Rideau Canal. The project, which is currently underway, seeks to identify options to improve transit service efficiency and reliability along the corridor, with improvements to the travel environment for walking and cycling. Recommendations to City of Ottawa Transportation Committee are expected to be provided in Spring 2025.


2.1.8 Future Background Developments

Several new developments are proposed in the vicinity of Lansdowne. The location of background developments are described in Table 2.3 and illustrated in Figure 2.28

Table 2.3: Background Developments

Plan Reference	Development	Location	Description			
А	1050 – 1060 Bank Street	West side of Bank Street between Aylmer and Euclid Avenue in the south portion of Ottawa	6 storey residential apartment (44) units and 825m² retail space (Buildout – 2024)			
В	178 – 200 Isabella Street	South of Highway 417 between Bank Street and O'Connor Street	16 storey mixed-use building with 251 dwellings units and approximately 355 m² of ground floor commercial space (Buildout – 2025)			
С	30-48 Chamberlain Avenue	South of Chamberlain Avenue, west of Bank Street	150 apartment units and approximately 400 m ² of ground floor retail space (Buildout – 2024)			
D	770 – 774 Bronson Avenue	Southwest corner of Bronson Avenue and Carling Avenue intersection	257 apartment dwelling unit and 71 student housing dwelling units (Buildout-2025)			
Е	1040 Bank Street	Northwest corner of Bank Street and Aylmer Avenue intersection	Redevelopment of the Southminister United Church including a six-storey condominium building adjacent to the church			

Figure 2.28: Background Developments Key Plan

2.2 Study Area and Time Periods

STUDY AREA

- **2.2.1** The following study area intersections are proposed for analysis:
 - 1. Bank Street at Fifth Avenue
 - 2. Bank Street at Holmwood Avenue
 - 3. Bank Street at Exhibition Way
 - 4. Bank Street at Wilton Crescent
 - 5. Bank Street at Echo Drive
 - 6. Bank Street at Aylmer Avenue
 - 7. Bank Street at Sunnyside Avenue
 - 8. Queen Elizabeth Driveway at Princess Patricia Way
 - 9. Queen Elizabeth Driveway at Fifth Avenue
 - 10. Bank Street at Marché Way
 - 11. Fifth Avenue at O'Connor Street

TIME PERIODS

- **2.2.2** The proposed scope of the transportation assessment includes the following analysis time periods:
 - Weekday AM Peak Hour of roadway
 - Weekday PM Peak Hour of roadway
 - Saturday Mid-Day Peak Hour of roadway
 - Sunday Mid-Day Peak Hour of roadway
 - · Weekday Minor and Major Events: Ingress and Egress Peak Hour

HORIZON YEARS

- **2.2.3** The proposed scope of the transportation assessment includes the following horizon years:
 - **2024 –** Existing Conditions;
 - 2028 Representing the anticipated completion and interim operating conditions of the during the construction of subsequent phases of Lansdowne 2.0 (i.e. – new North Stadium Stands and podium retail / residential towers).
 - **2033 –** Representing the anticipated full build-out of Lansdowne 2.0, inclusive of the new Event Centre, North Stadium Stands, podium retail, and residential towers.

2.3 Exemptions Review

Table 2.4 summarizes the Exemptions Review table from the City of Ottawa's 2017 *Transportation Impact Assessment Guidelines*.

Table 2.4: Exemptions Review

Module	Element	Exemption Considerations	Exempted?
Design Review Compo	nent		
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	No
	4.1.3 New Street Networks	Only required for plans of subdivision	Yes
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	No
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Yes
Network Impact Compo	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	No
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Yes
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Yes
4.9 Intersection Design	All Elements	Not required if site generation trigger is not met	No

3. FORECASTING

3.1 Development Generated Travel Demand

EXISTING TRIP GENERATION

Lansdowne is currently an active site featuring a variety of land uses including the Stadium at TD Place, the Arena at TD Place, 280 residential townhome and condo units, an 18-acre urban park, and approximately 360,000 ft² of commercial retail and office space.

The current vehicular trip generation characteristics of the site are captured through Turning Movement Count (TMC) data. Existing peak hour traffic volumes under Weekday AM, Weekday PM, and Weekend Saturday and Sunday peak hour conditions are summarized in Section 2.1.5.

FUTURE TRIP GENERATION AND MODE SHARES

Phase 1 of Lansdowne 2.0, which represents the construction of the new 5,500 seat multipurpose Event Centre, is not expected to generate any additional transportation demands or new travel patterns as the activities and programming associated with this new facility are currently in place at the Arena at TD Place.

Phase 2 of Lansdowne 2.0, which includes the demolition of the old north stadium stands and the construction of a new one is not expected to generate any new transportation demands or changes in travel patterns.

Phase 3 of Lansdowne 2.0, which includes the construction of new podium level retail and additional high-rise residential units within two new towers are expected to generate additional transportation demands at Lansdowne.

As a result, development generated travel demands are forecasted for the ultimate build-out of Lansdowne 2.0 which is assumed to be achieved by the 2033-year horizon for this study.

The Institute of Transportation (ITE) Trip Generation Manual (11th Edition) was used to forecast the auto trip generation for the multifamily housing and shopping center land uses and the TRANS Trip Generation Manual was used to forecast the auto trip generation for the residential land use. Land use codes 222 – Multi-Unit High Rise Building, and 820 – Shopping Centre were thought to be the most representative of the proposed land uses.

Table 3.1 outlines the assumed land uses and the trip generation rates (ITE) for each land use.

Table 3.1: Lansdowne 2.0 Land Uses and Trip Generation Rates

Phase 1	Phase 1 – New Event Centre (2028)														
N/A	Indoor Arena / Multi-Purpose Event Centre	Person Trips	5,500 Seats		Existing Land Use at Lansdowne. No Additional New Trips Forecasted										
Phase 2 – New North Stadium Stands (2031)															
N/A	Football Stadium	Person Trips	25,000 Seats		Existing Land Use at Lansdowne. No Additional New Trips Forecasted										
Phase 3	3 – Full Buildout	/ Podium Re	tail + New R	esidenti	al Units (20	033)									
LUC	Land Use	Trip Type	Units / GFA	W	/eekday / Peak Hou			eekday Peak Ho			rday Wee Peak Hou		Sui	nday Week Peak Hour	
			(ksf)	In	Out	Total	ln	Out	Total	In	Out	Total	ln	Out	Total
222	Multi-unit Residential (High-Rise)	Person Trips	770 units	16%	84%	0.76 / unit	64%	36%	0.58 / unit	56%	44%	0.74 / unit	51%	49%	0.85 / Unit
820	Shopping Center	Vehicle Trips	8.6 ksf	55%	45%	2.87 / ksf	50%	50%	4.09 / ksf	52%	48%	4.40 / ksf	49%	51%	2.35 / ksf
710	General Office	Person Trips	14.2 ksf	87%	% 13% 1.22 / 21% 79% 1.28 / 48% 52% 0.27 / ksf 36% 64% 0.17 / ksf							0.17 / ksf			

3.1.1 Trip Internalization

Trip Internalization refers to trips that are shared between two or more uses within the same site. This behaviour is typical for mixed-use developments that feature a variety of land uses that complement each other. When trip internalization occurs, a portion of the generated trips for each individual land use are drawn from other land uses within the same district, as opposed to new trips that are generated externally.

For new land uses proposed for Lansdowne 2.0, trip Internalization factors were applied to account for new site trips that are expected to be generated from within the site, or external trips that visit more than one land use within the subject development. Since these trips are contained within the district, accounting for each trip separately on the roadway network would result in double-counting trips. As a result, land uses with internal capture trips between one another ultimately had their net new trips adjusted consistent with acceptable industry standards.

For Lansdowne 2.0, a portion of the additional commercial retail land-uses are assumed to feature trip internalization with other land-uses and activities within the site include existing and future residential, office, and the existing retail land-uses.

Table 3.2 outlines the trip internalization rates assumed for the additional retail land uses assumed as part of the Lansdowne 2.0 development.

Trip internalization rates were developed based on the methodologies outlined in TRANS Trip Generation Manual and NCHRP Report 684 (Enhancing Internal Trip Capture Estimation for Mixed-Use Developments).

Table 3.2: Internal Capture Trips

LUC	Land Use	Trip	W	Weekday AM Peak			Weekday PM Peak			Weekend Peak Hour		
		Conversion	In	Out	Total	In	Out	Total	In	Out	Total	
820	Shopping Plaza	Internal Capture		15%			30%			15%		

Lansdowne 2.0 Additional Person Trips

New transportation demands associated with Lansdowne 2.0 additional development is outlined in Table 3.3.

Forecasted person trips for the proposed multi-unit residential towers, additional commercial retail, and general office spaces were derived using the ITE Trip Generation Manual.

The trip internalization factors outlined above were applied to the shopping plaza land use to capture internal trips.

Table 3.3: Lansdowne 2.0 Person Trips Generated by Land Use

LU C	Land Use	Trip Conversion	rip Conversion Weekday AM Peak			Weekday PM Peak			Saturda eak Ho		Sunday Peak Hour			
			ln	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total
222	Multi-Unit Residential (High-Rise)	Person Trips	94	492	585	286	161	447	319	251	570	334	321	655
		Auto Trips (Peak Hour)	14	11	25	18	18	35	20	18	38	19	19	38
		Auto Trip to Person Trip Factor					1.2	8 persor	ıs per ve	hicle				
820	Shopping	Initial Person Trips	17	14	32	32	23	45	25	23	49	24	25	49
020	Plaza	Internalization Factor	15%			30%			15%			15%		
		Internalization Trip Reduction	-3	-2	-5	-7	-7	-14	-4	-4	-7	-4	-4	-7
		Person Trips		12	27	16	16	31	21	19	42	20	21	42
710	General Office	Person Trips	15	2	17	4	14	18	2	2	4	1	2	2
	Lansdowne 2.0 New Person Trips (Peak Hour)			506	629	305	191	496	342	272	615	354	343	699

It is estimated that the Lansdowne 2.0 development is projected to result in a net increase of 629 person trips in the AM Peak Hour, 496 person trips in the PM Peak Hour, 615 trips during the Saturday Weekend Peak Hour, and 699 trips during the Sunday Weekend Peak Hour.

To reflect local travel characteristics, forecasted person trips were assigned and distributed to various travel modes (i.e., auto, passenger, transit, cycling and walking). Modal share percentages were adopted from the TRANS Trip Generation Manual.

The TRANS Trip Generation Manual provides trip generation and modal share rates for 26 geographic regions within Ottawa-Gatineau. For Lansdowne, the modal shares for the *Ottawa Inner Area (050)* were adopted for the High-Rise Multifamily Housing and Commercial landuses.

The Lansdowne 2.0 assumed modal shares are summarized below in Table 3.4.

Table 3.4: Assumed Mode Share by Land Use

Mode	222 -	Multiuse Fa	amily	820 - 0	710 -		
	AM	PM	Average	АМ	PM	Average	Office
Auto	26%	25%	26%	39%	22%	31%	45%
Passenger	7%	9%	8%	2%	4%	3%	7%
Transit	28%	21%	25%	16%	12%	14%	29%
Cycling	5%	6%	6%	3%	4%	4%	8%
Walking	34%	39%	37%	40%	58%	49%	11%

Residential Trips - Mode Shares

Section 4.2 (Table 8) of the *TRANS Trip Generation Manual (October 2020)* was utilized to determine the residential mode share for high rise multi-family housing for the Ottawa Inner Area district. The mode shares for the district, which is based on blended AM and PM peak period rates, include a 26% auto mode share, a 25% transit mode share, and a combined 43% modal share for walking and cycling.

Commercial Trips - Mode Shares

Section 6.3 (Table 13) of the *TRANS Trip Generation Summary Manual (October 2020)* was utilized to determine the commercial retail mode share for the Ottawa Inner Area district. The mode shares for the district, which is based on blended AM and PM peak period rates, include a 31% auto mode share, a 14% transit mode share, and a combined 53% modal share for walking and cycling.

Table 3.5 outlines the adjusted future trip generation estimate for Lansdowne 2.0 by travel mode.

Table 3.5: Lansdowne 2.0 Future Trip Generation by Travel Mode

LUC	Land Use	Modal Share %		Al	Weekday VI Peak Ho	ur		Weekday PM Peak Hour		Weekend Saturday Peak Hour			Weekend Sunday Peak Hour		
				In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total
		Auto Driver	26%	24	125	149	73	41	114	81	64	145	85	82	167
	Multi – Unit	Passenger	8%	7	39	47	23	13	36	26	20	46	27	26	52
222	(High-Rise)	Transit	25%	23	120	143	70	39	109	78	61	140	82	79	160
	(g)	Cycling	6%	5	27	32	16	9	25	18	14	31	18	18	36
		Walking	37%	34	179	214	104	59	163	116	92	208	122	117	239
		Auto Driver	31%	4	4	8	5	5	10	6	6	12	6	6	12
	Ob	Passenger	3%	0	0	1	0	0	1	1	1	1	1	1	1
820	Shopping Center	Transit	14%	2	2	4	2	2	4	3	3	6	3	3	6
	Contor	Cycling	4%	1	0	1	1	1	1	1	1	1	1	1	1
		Walking	49%	7	6	13	8	8	15	10	9	20	10	10	20
		Auto Driver	45%	7	1	8	2	6	8	1	1	2	0	1	1
		Passenger	7%	1	0	1	0	1	1	0	0	0	0	0	0
710	Office	Transit	29%	4	1	5	1	4	5	1	1	1	0	0	1
		Cycling	8%	1	0	1	0	1	1	0	0	0	0	0	0
		Walking	11%	2	0	2	0	2	2	0	0	0	0	0	0
		Auto	Driver	35	130	165	79	52	132	89	71	159	92	89	180
		Pas	senger	9	40	49	24	14	38	26	21	47	27	26	54
La	ansdowne 2.0		Transit	29	123	152	73	46	119	82	65	146	85	82	167
	Additional	Cycling		7	28	35	17	11	27	18	15	33	19	18	38
	Person Trips	Walking		43	186	229	112	68	180	127	101	228	132	127	259
		Total Perso (Pea	n Trips k Hour)	123	506	629	305	191	496	342	272	614	354	343	698

The total additional number of trips generated by the Lansdowne 2.0 development are outlined above by mode, with a total of 505, 466, and 628 person trips forecasted for the Weekday AM, Weekday PM, and Weekend Saturday peak hours, respectively.

Out of the total trips forecasted, the additional auto trips forecasted as part of the Lansdowne 2.0 development are estimated to be 165, 132, and 159, and 189 vehicle trips in the Weekday AM, Weekday PM, Saturday, and Sunday peak hours

TRIP DISTRIBUTION

Cardinal trip distribution to and from Lansdowne was developed based on the 2011 TRANS Origin-Destination Survey for the Ottawa Inner Area region.

Based on the origin-destination data, trip distributions were estimated based on directions to the north, east, south and west. The data indicates that up to 32% of trips surveyed within the Ottawa Inner Area started and ended within the same district, and upwards of 10% of trips have an origin/destination to the Ottawa Centre region north of the district towards downtown Ottawa. The remaining trips were found to be distributed to other regions throughout Ottawa-Gatineau.

Table 3.6 outlines the trip distribution assumptions to/from Lansdowne based on the 2011 TRANS Origin-Destination Survey.

Table	3.6:	Site	Trip	Directional	Distribution
1 4010	0.0.	Oilu	1110	Directional	DISHIDUHUH

Direction	Trip Distribution
North	35%
East	21%
South	32%
West	13%
Total	100%

As Lansdowne is bound by two north-south corridors, namely Bank Street to the west, and Queen Elizabeth Driveway to the east, site trip distribution assumptions were refined in the north-south direction, representing localized trip distribution on Bank Street and Queen Elizabeth Driveway.

Table 3.7 outlines the assumed directional trip distributions based on access to nearby regional corridors including the Queensway (Highway 417) to the north, Bronson Avenue to the west, and Riverside Drive and Heron Road to the south.

Table 3.7: Refined Directional Trip Distribution Assumptions

Direction	Study Area Trip Distribution
North	50%
South	50%

TRIP ASSIGNMENT

Additional Lansdowne 2.0 site generated trips were assigned to the study area road network based on the assumed trip distribution assumptions. In addition, a review of existing traffic data was performed to estimate the traffic volume split between Bank Street, Holmwood Avenue, and Queen Elizabeth Driveway.

Currently, 65% of Lansdowne specific public traffic utilizes Bank Street for access to/from Lansdowne, with the remaining 35% utilizing QED.

Based on parking gate data provided by OSEG for the private residential Holmwood garage ramp, it is estimated that there are approximately 90 residential vehicles utilizing the Holmwood residential garage access per day.

It is assumed that the new residential tenants will also have access to the Holmwood garage ramp. As a result, a proportion of new residential based trips were assumed to utilize the private, restricted-use Holmwood garage ramp for access.

The following site access assumptions were adopted:

• 55% of new site trips are assumed to access Lansdowne via Bank Street.

30% of new site trips are assumed to access Lansdowne via Queen Elizabeth Driveway.

• **15**% of new site trips, specifically a proportion of additional residential trips, are assumed to access the underground private garage access via Holmwood Avenue.

Table 3.8 summarizes new Lansdowne 2.0 site generated vehicle trips and their respective assignment to Bank Street, Queen Elizabeth Driveway, and the private underground parking garage access ramp.

Table 3.8: Trip Assignment for Newly Generated Trips

Access	Weekday AM Peak Hour		Weekday PM Peak Hour		Saturday Peak Hour		Sunday Peak Hour	
	In	Out	ln	Out	In	Out	ln	Out
Bank Street	19	72	44	29	49	39	50	49
Queen Elizabeth Driveway	11	39	24	16	27	21	27	27
Holmwood Access*	5	20	12	8	13	11	14	13
Total New Vehicle Trips	35 10	130 65	79 13	52 32	89 15	71 9	92 18	89 80

^{*} Holmwood Access: Lansdowne residents access to private, restricted-use garage access.

Figure 3.1 illustrates the assumed site trip assignment assumptions for Lansdowne 2.0 additional vehicle trips.

Lansdowne 2.0 additional site generated vehicle trips are illustrated in Figure 3.2 through Figure 3.4.

Figure 3.1: Lansdowne 2.0 Site Traffic Assignment Assumptions

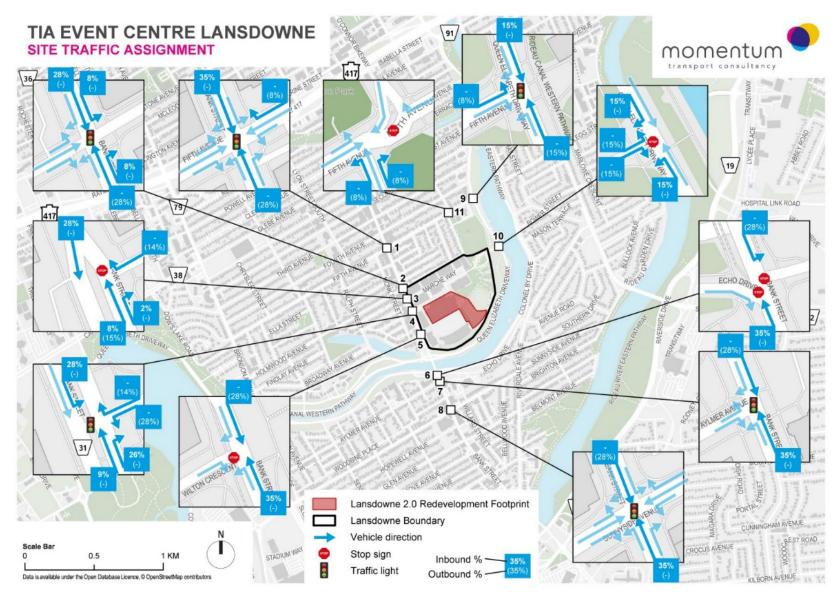


Figure 3.2: Lansdowne 2.0 Site Volumes (Weekday AM/PM Peak)

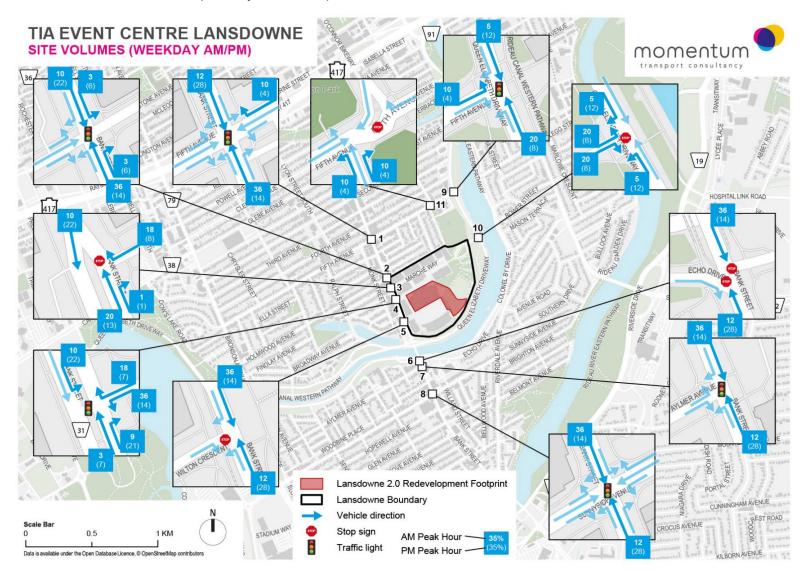


Figure 3.3: Lansdowne 2.0 Site Volumes (Saturday Peak)

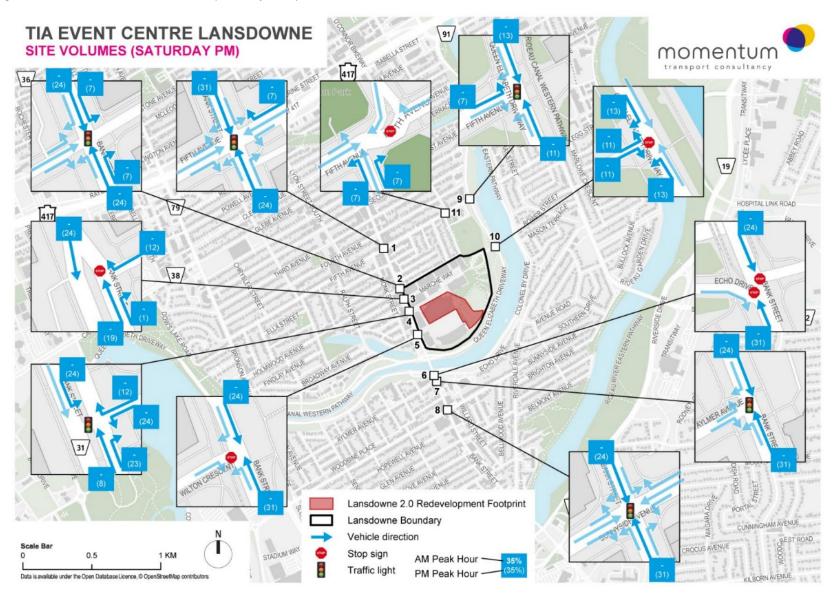
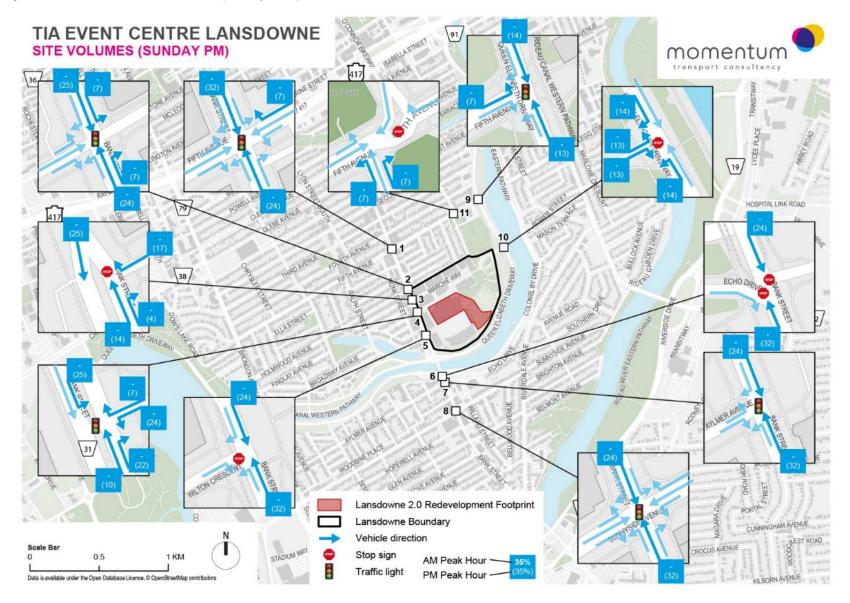



Figure 3.4: Lansdowne 2.0 Site Volumes (Sunday Peak)

3.2 Background Network Travel Demand

TRANSPORTATION NETWORK PLANS

The only road infrastructure project that is identified in the City of Ottawa Transportation Master Plan within the vicinity of Lansdowne is the proposed Transit Priority Corridor improvements on Bank Street.

In May 2022, City of Ottawa Transportation Committee directed staff to undertake an Active Transportation and Transit Operations Feasibility Study project of Bank Street between the Rideau Canal to Highway 417. The study is currently underway with recommendations to City Council expected to be provided in Spring 2025.

BACKGROUND GROWTH

Based on data readily available for the City of Ottawa, the average annual growth rate for traffic volumes in the vicinity of Lansdowne ranges between -2% to +0.2%, indicating a general reduction or limited growth in vehicular traffic volume on Bank Street and the surrounding roadway network. As a result, a 0.5% annual background growth rate was applied to forecast future background growth in traffic volumes.

OTHER DEVELOPMENTS

As outlined in Section 2.1.8, a number of nearby developments near Lansdowne are currently under construction or scheduled to be constructed within the horizons of the study. The traffic volumes from these developments were obtained from their respective traffic studies, where available, and added to the transportation network as part of background traffic growth.

3.3 Demand Rationalization

The current peak hour traffic volumes along Bank Street are in the range of 500 – 800 vehicles per hour per direction. Similar volumes are exhibited on Queen Elizabeth Driveway with peak hour volumes in the range of 300 – 600 vehicles per hour per direction.

The traffic volumes forecasted under the 2033 future build-out year are projected to be in the range of 600 – 900 vehicles per hour per direction for Bank Street, and 350 – 700 vehicles per hour per direction for Queen Elizabeth Driveway.

As the projected volumes fall within a similar range to existing conditions and are likely to be supported by the transportation network, no demand rationalization was undertaken.

2028 TOTAL FUTURE TRAFFIC VOLUMES

The 2028 Total Future horizon year represents the completion of Phase 1 of the Lansdowne 2.0 redevelopment program with the opening of the new multi-purpose Event Centre.

As the new multi-purpose Event Centre will not generate new additional transportation demands to Lansdowne, no new site generated trips have been added. A 0.5% annual growth rate was applied to existing traffic demands to account for background development growth.

It is anticipated that the new Event Centre will operate in an interim condition during construction of subsequent phases of Lansdowne 2.0: namely construction of the new North Stadium Stands (Phase 2), and the new podium retail and two residential towers (Phase 3).

During Phase 2 and Phase 3 construction of Lansdowne 2.0, site access is expected to be generally unaffected with access provided at both Bank Street and Queen Elizabeth Driveway. Site circulation within Lansdowne will need to be verified during Phase 2 and Phase 3 based on construability requirements and the construction footprint within Lansdowne, these details are expected to be addressed as part of the permitting and approvals of the subsequent Phase 2 and Phase 3.

While construction phasing details for Phase 2 and Phase 3 are still under development and will be addressed as part of subsequent approval phases, it is anticipated that during construction of Phase 2 and Phase 3, the underground parking garage ramp at Bank Street will be temporarily closed for public use to accommodate construction of the expanded underground parking garage for Lansdowne. The time and duration of impacts is still unknown.

To assess traffic operations during the operation of the new Event Centre, the 2028 horizon year was assumed to include the temporary closure of the Bank Street underground garage ramp. It is anticipated that access to Lansdowne from both Bank Street and Queen Elizabeth Driveway will be unaffected, with the temporary closure of the Bank Street garage ramp, public access to the underground parking garage will occur at the Princess Patricia Way underground garage ramp near Queen Elizabeth Driveway.

It is assumed that most of the traffic (assumption of **70%**) currently accessing the underground parking facilitates at the Exhibition Way underground garage ramp will continue to access Lansdowne on Bank Street and will travel through the site towards the Princess Patricia Way garage access.

The remaining portion of traffic (assumption of **30%**) currently accessing the underground parking facility at the Exhibition Way ramp near Bank Street are assumed to alter their travel patterns by shifting to Queen Elizabeth Driveway as the route to travel to Lansdowne. This includes **15%** diverting from Bank Street to Queen Elizbeth Driveway via Fifth Avenue, and **15%** choosing to travel on Queen Elizbeth Driveway further upstream as part of their journey to Lansdowne.

Figure 3.5 through Figure 3.12 summarize projected 2028 traffic volumes inclusive of background development growth and assumed internal circulation adjustments during the temporary closure of the Exhibition Way underground parking garage access during Phase 2 and Phase 3 construction.

Figure 3.5: 2028 Total Future Traffic Volumes (Weekday AM / PM)

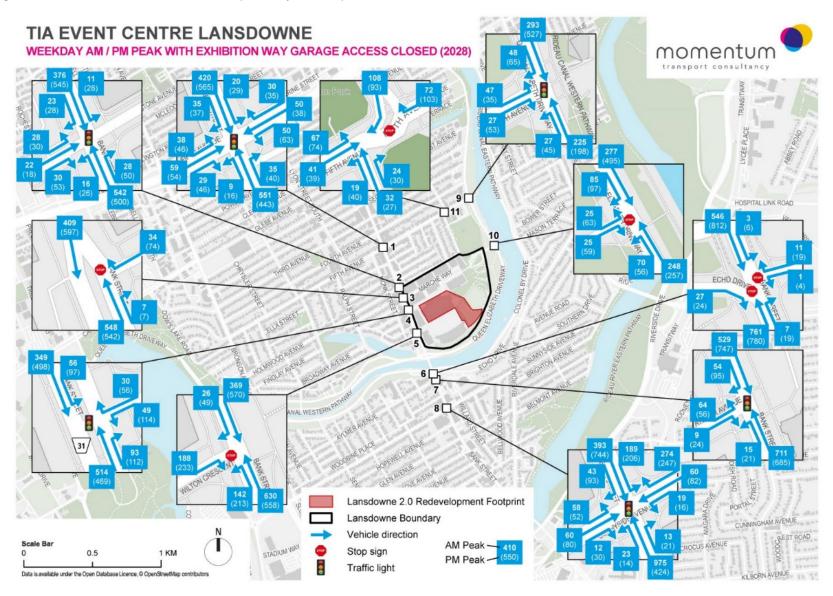


Figure 3.6: 2028 Total Future Traffic Volumes On-site (Weekday AM / PM)

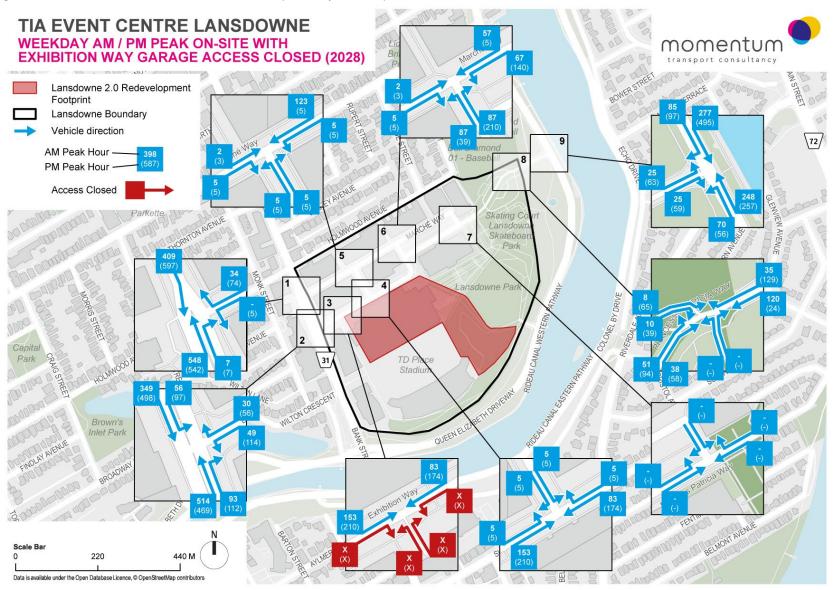


Figure 3.7: 2028 Total Future Traffic Volumes (Saturday PM)

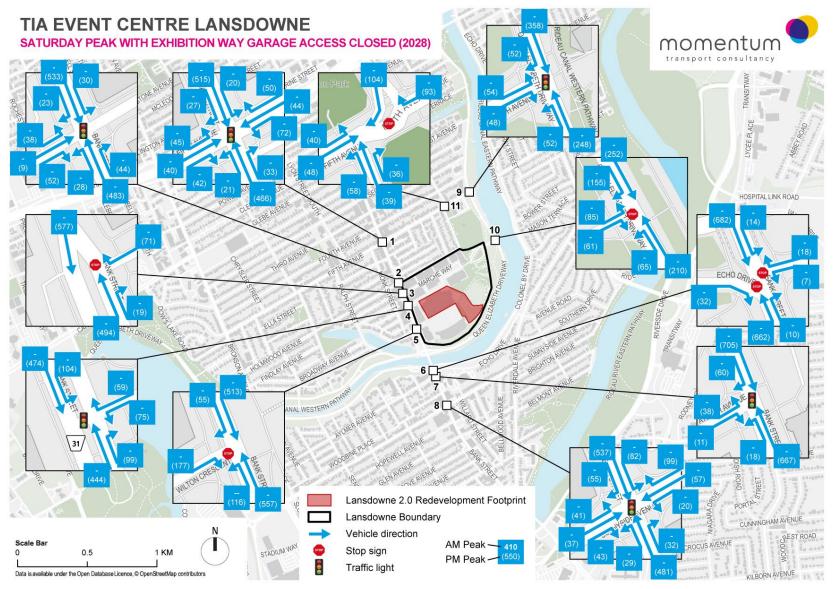


Figure 3.8: 2028 Total Future Traffic Volumes on-site (Saturday PM)

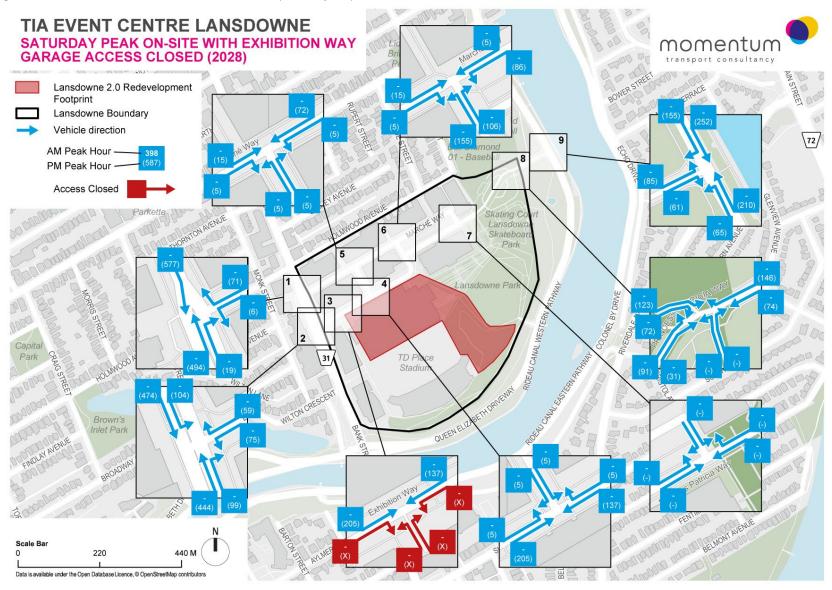


Figure 3.9: 2028 Total Future Traffic Volumes (Sunday PM)

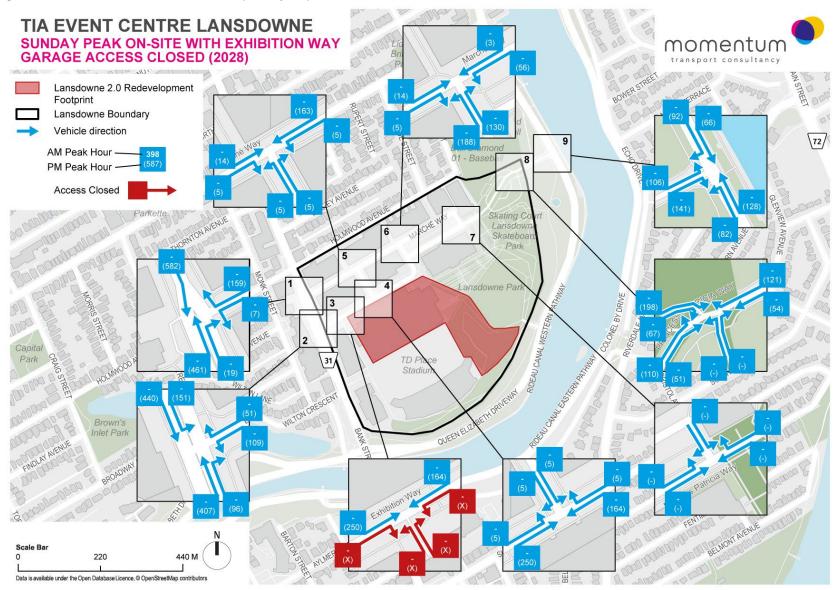


Figure 3.10: 2028 Total Future Traffic Volumes on-site (Sunday PM) TIA EVENT CENTRE LANSDOWNE SUNDAY PEAK WITH EXHIBITION WAY GARAGE ACCESS CLOSED (2028) momentum HOSPITAL LINK ROAD

Lansdowne 2.0 Redevelopment Footprint

AM Peak —

PM Peak -

Lansdowne Boundary Vehicle direction

Stop sign

Data is available under the Open Database Licence, © OpenStreetMap contributors

Traffic light

Figure 3.11: 2028 Total Future Traffic Volumes Minor Event

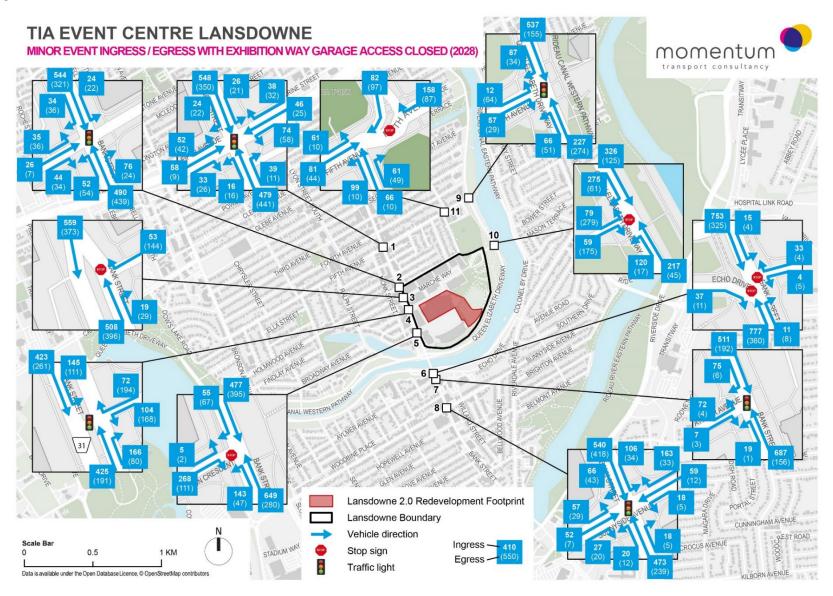
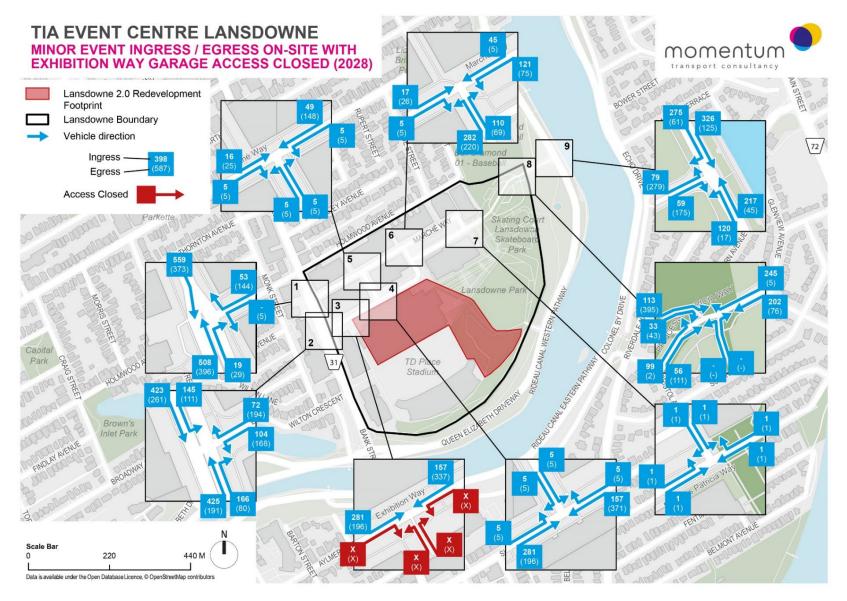



Figure 3.12:2028 Total Future Traffic Volumes on-site Minor Event

2033 TOTAL FUTURE TRAFFIC VOLUMES

The 2033 Total Future horizon year represents the full build-out of the Lansdowne 2.0 redevelopment project inclusive of the new Event Centre (Phase 1), North Stadium Stands (Phase 2), and additional retail podium and two residential towers (Phase 3).

2033 Total Future traffic volumes were developed by applying a 0.5% background growth rate, explicit background development volumes from nearby developments, as well as new additional site generated trips as outlined in Table 3.8 and Figure 3.1 through Figure 3.4.

Similar to 2028 conditions, 2033 Total Future traffic volumes were derived by applying an assumed background growth rate of 0.5% per year to existing traffic volumes. Additionally, explicit background development traffic, as well as the Lansdowne 2.0 site generated traffic volumes were added.

Figure 3.13 through Figure 3.17 summarize projected 2033 traffic volumes inclusive of background development growth and full-build out site generated traffic volumes for Lansdowne 2.0.

Figure 3.13: 2033 Total Future Traffic Volumes (Weekday AM / PM)

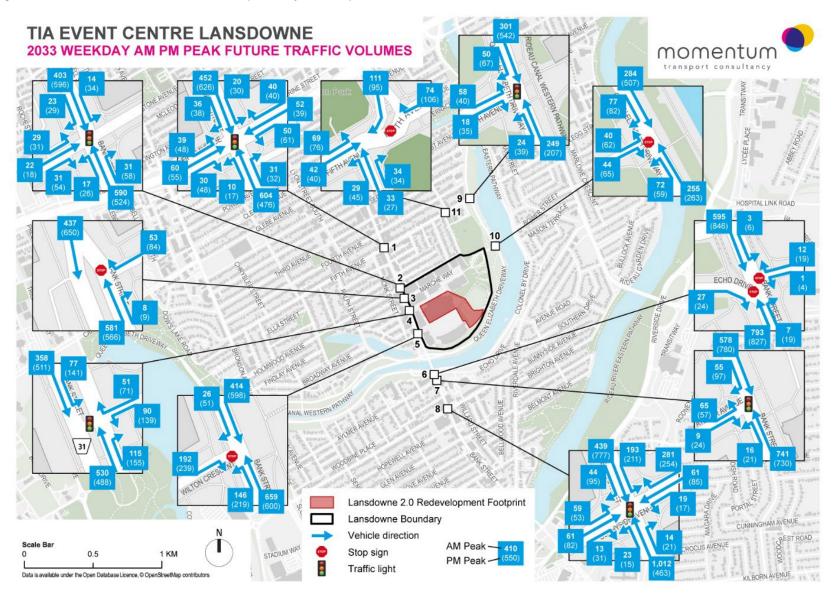


Figure 3.14: 2033 Total Future Traffic Volumes (Saturday PM)

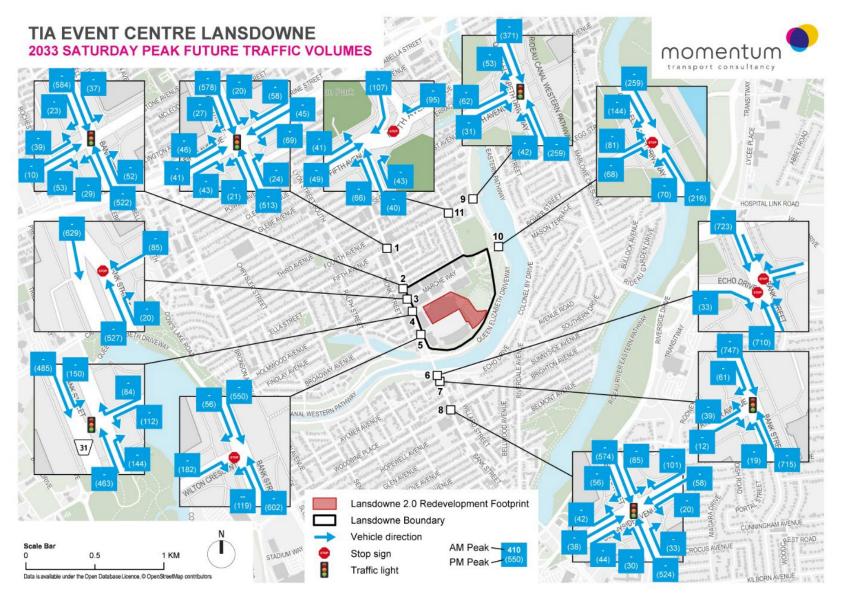


Figure 3.15: 2033 Total Future Traffic Volumes (Sunday PM)

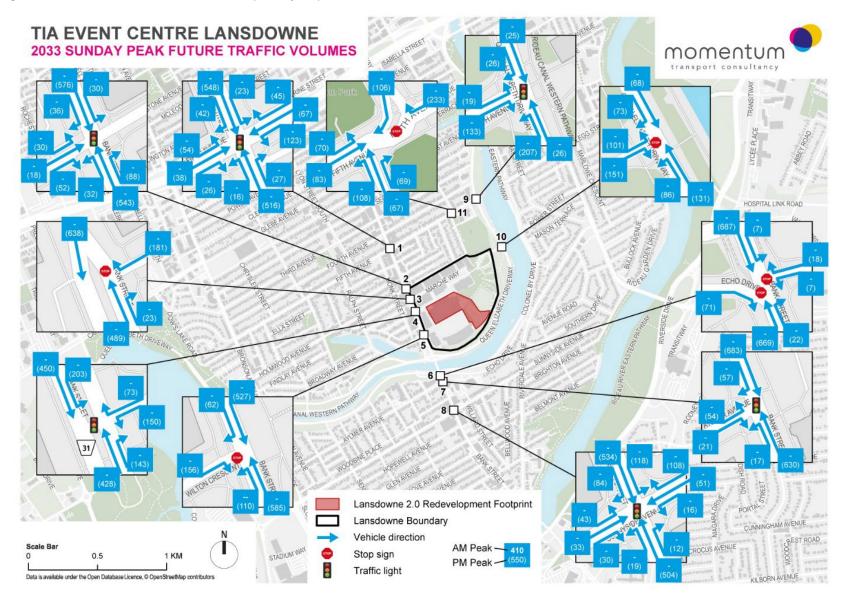


Figure 3.16: 2033 Total Future Traffic Volumes Minor Event (Ingress and Egress)

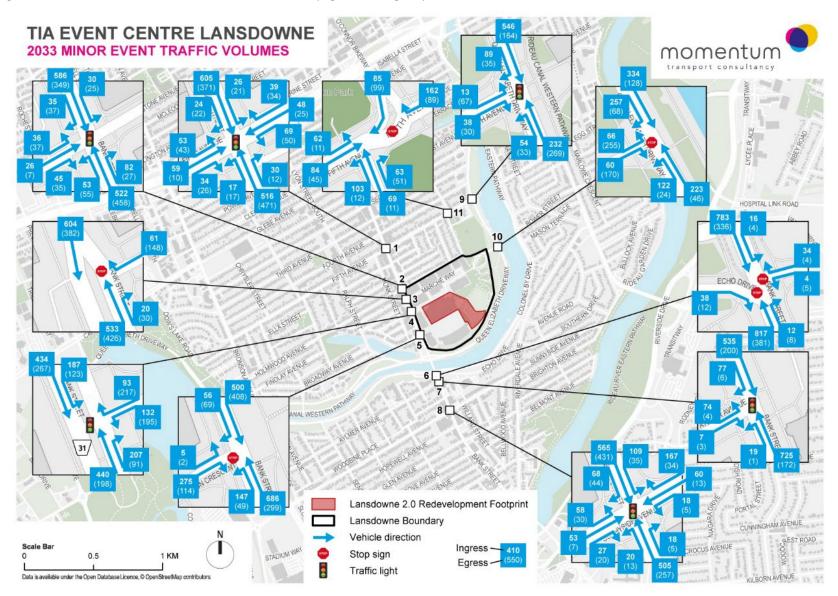
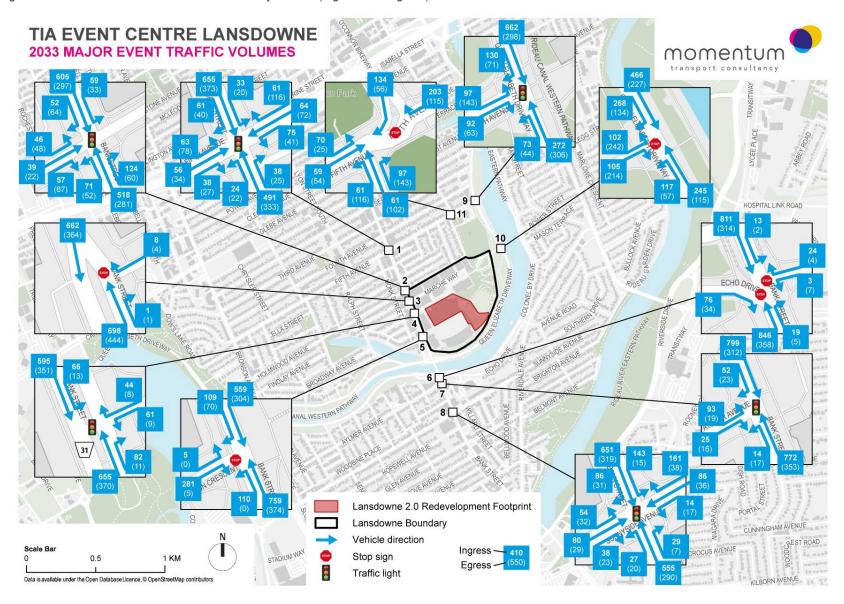



Figure 3.17: 2033 Total Future Traffic Volumes Major Event (Ingress and Egress)

4. STRATEGY REPORT

4.1 Development Design

DESIGN FOR SUSTAINABLE MODES

Bicycle facilities: Lansdowne is designed to accommodate cycling connectivity throughout the site. Many of the internal pathways, particularly Exhibition Way, Marche Way, and Princess Patricia Way, are designed as Pedestrian Priority Zones. Cycling access points to Lansdowne are provided at Bank Street at Exhibition Way and Marche Way, as well as three cycling connections to internal pathways on Holmwood Avenue. On the east and south side of Lansdowne, connections to the multi-use pathways on Queen Elizabeth Driveway are provided at numerous locations. Improved cycling crossing facilities are currently contemplated at the Queen Elizabeth Driveway and Princess Patricia Way site access intersection to Lansdowne. Surface bicycle parking is provided throughout the public realm at Lansdowne. In addition, for major events held on site, free valet bike parking storage is provided.

Pedestrian facilities: Lansdowne is designed to accommodate pedestrian movements throughout the site. Many of the internal pathways, particularly Exhibition Way, Marche Way, and Princess Patricia Way, are designed as Pedestrian Priority Zones. In recent years, the section of Princess Patricia Way between Exhibition Way and Marche Way (along the north side of the Aberdeen Pavilion) has been fully closed to vehicular traffic to better accommodate pedestrian flow. Pedestrian access points are currently to Lansdowne with pedestrian connections to Bank Street at Exhibition Way and Marche Way, as well as three pedestrian connections to sidewalks on Holmwood Avenue. On the east and south side of Lansdowne, pedestrian connections to the multi-use pathways on Queen Elizabeth Driveway are provided at numerous locations. Improved sidewalk and crossing facilities are currently contemplated at the Queen Elizabeth Driveway and Princess Patricia Way site access intersection to Lansdowne.

Parking areas: Lansdowne currently features an underground parking garage with a total of 1,380 spaces for public and residential use. As part of the Lansdowne 2.0 project, the underground parking garage is proposed to be expanded to include an additional 386 underground parking spaces dedicated to support the residential units and additional retail space, for a total of 1,766 parking spaces. Similar to today, access to the underground parking garage will be provided through two garage ramp entrances: one on Exhibition Way east of Bank Street, the other on Princess Patricia Way west of Queen Elizabeth Driveway. A residents-only private access to the underground garage is also available on Holmwood Avenue.

Transit facilities: Transit stops for OC Transpo routes 6 and 7 are currently serviced by stops located at the intersection of Bank Street and Exhibition Way. In addition, these bus stops accommodate 450-series enhanced transit service during Major Events held at Lansdowne. There are sidewalks along both sides of Bank Street as well as adequate pedestrian crosswalks to access the transit stops. The new multi-purpose event centre will be located within the 400 meter transit catchment area.

CIRCULATION AND ACCESS

Site access and circulation at Lansdowne is expected to continue to be provided at the existing site access intersections on Bank Street and Queen Elizabeth Driveway for general public access, as well as Holmwood Avenue at the restricted, residents-only underground garage access.

Site circulation is expected to be managed with similar traffic management measures deployed at Lansdowne today. This includes providing general public traffic access and circulation at designated roadways including Exhibition Way, Marche Way, and Princess Patricia Way.

Paved pathways located at the south of the site in and around the Great Lawn are expected to operate as a restricted / limit-use pathway for emergency vehicle access, deliveries, and designated shuttle services including accessible ParaTranspo service.

Traffic management measures during major events (i.e. stadium events with attendance levels of 15,000 or more) will continue to restrict vehicular access through Lansdowne with temporary vehicle restrictions placed at Bank Street access intersections. Vehicular access will continue to be restricted to the Queen Elizabeth Driveway intersection to provide access to the underground parking garage ramp at Princess Patricia Way, as well as for the shuttle loop for pick-up and drop-off activity. Vehicular circulation through the site will continue to be restricted during major events.

For minor events, particularly at the new event centre, traffic management measures will be required to restrict vehicular access to the new event centre main entrance area. This will require the deployment of traffic control devices at the intersection of Exhibition Way and the internal service road in order to divert inbound traffic from Bank Street to Marche Way. Permitted vehicles, including accessible ParaTranspo buses, will be permitted to travel on Exhibition Way to the designated accessible passenger pick-up and drop-off area.

Proposed site access and internal circulation schemes for regular operations, minor events, and major events after the completion of the Lansdowne 2.0 redevelopment program are illustrated in Figure 4.1 through Figure 4.3.

NEW STREET NETWORKS

Not applicable; exempted during screening and scoping.

Figure 4.1: Lansdowne 2.0 Internal Site Circulation Plan (Regular Operations)

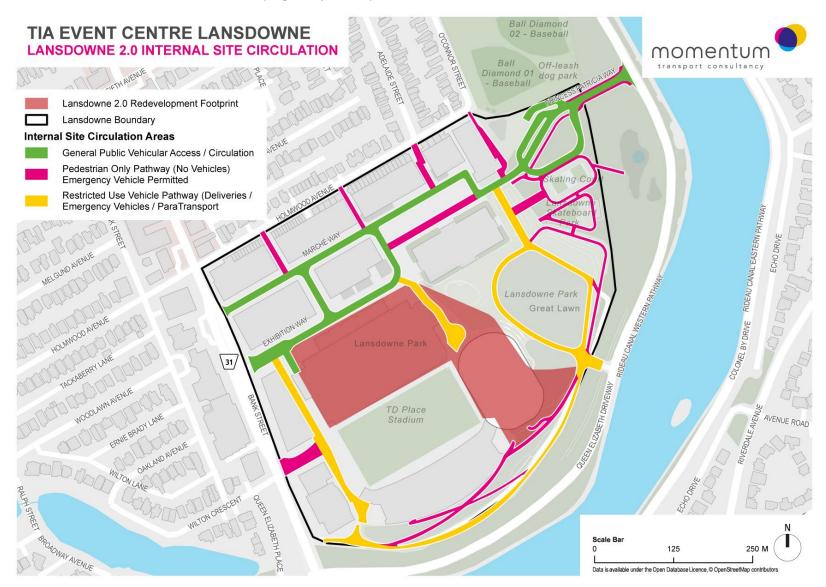


Figure 4.2: Lansdowne 2.0 Internal Site Circulation Plan (Minor Events)

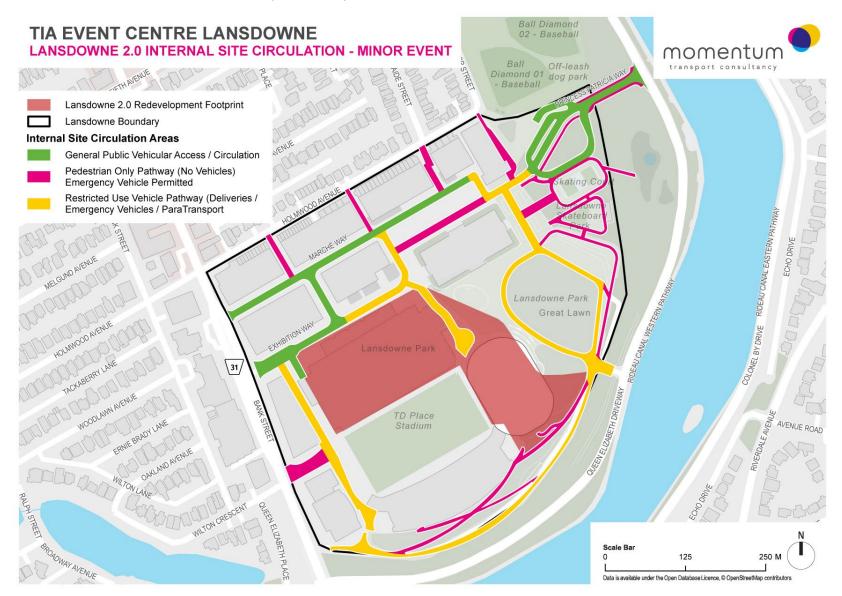
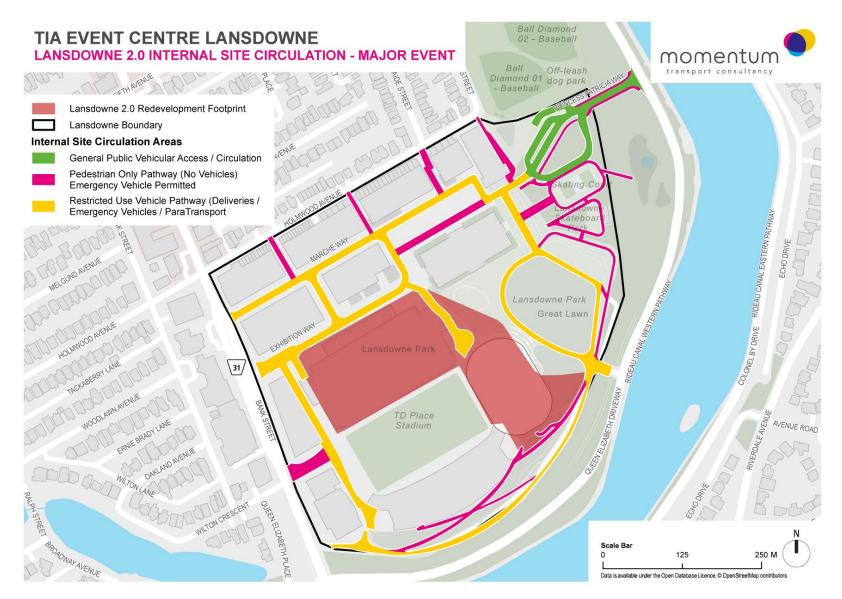



Figure 4.3: Lansdowne 2.0 Internal Site Circulation Plan (Major Events)

4.2 Parking

PARKING SUPPLY

Auto Parking - Lansdowne currently features an underground parking garage with a total of 1,380 spaces for public and residential use. No additional parking spaces are proposed as part of the proposed site plan application for the new event centre (Phase 1).

As part of the overall Lansdowne 2.0 project, the underground parking garage is proposed to be expanded to include an additional 386 underground parking spaces dedicated to support the additional retail space and residential units, for a total of 1,766 parking spaces. These additional spaces are contemplated as part of subsequent phases of development.

Bicycle Parking - Lansdowne benefits from existing surface bicycle parking that supports current day to day activity as well as special events at Lansdowne. No additional parking spaces are proposed as part of the proposed site plan application for the new event centre (Phase 1).

As part of the overall Lansdowne 2.0 project, additional bicycle parking spaces are required to subsequent phases of development at Lansdowne, namely Phase 3 for the new retail podium and two residential towers. Based on the City of Ottawa Zoning By-Laws, the minimum bicycle parking requirement for the subject property is 0.5 spaces per dwelling unit. To offset the reduced parking requirements and to encourage alternative modes of transportation, the residential bicycle parking rate is proposed to be increased to 1 space per dwelling unit, for a total of 770 bicycle parking spaces. All other bicycle parking requirements for non-residential uses are not proposed to be changed and will comply with the applicable requirements of Section 111 of the Zoning By-law.

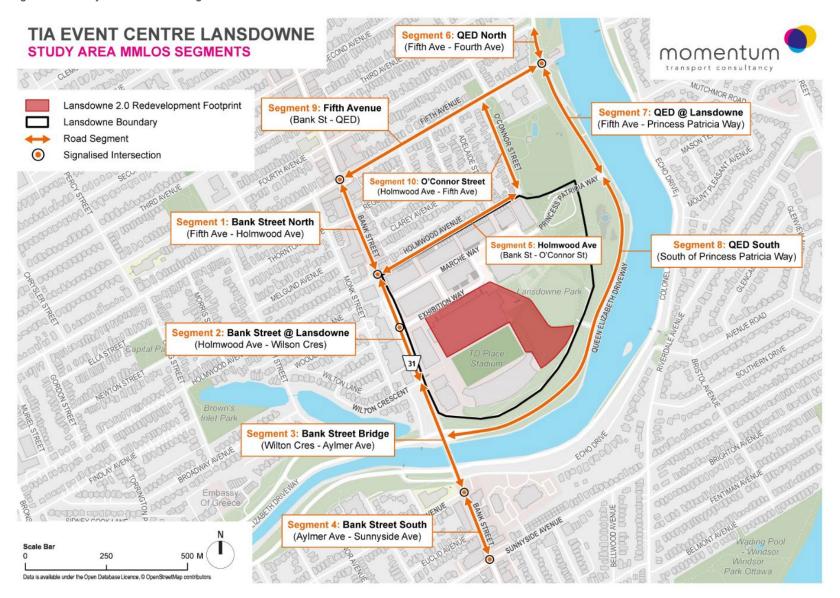
The total number and allocation of bicycle parking spaces will be finalized in subsequent phases of design development for Lansdowne 2.0.

SPILLOVER PARKING

Not applicable.

4.3 Boundary Street Design

DESIGN CONCEPT


Lansdowne is located in a unique geographic location within the City of Ottawa as it interfaces with Bank Street - a traditional Mainstreet to the west, Holmwood Avenue – a local residential street to the north, and the Queen Elizabeth Driveway – a scenic parkway with regional multiuse pathways.

A Multimodal Level of Service (MMLOS) analysis was conducted for the following key roadway segments interfacing with Lansdowne:

- Segment 1 Bank Street North (Fifth Avenue to Holmwood Avenue)
- Segment 2 Bank Street at Lansdowne (Holmwood Avenue to Wilton Crescent)
- Segment 3 Bank Street Bridge (Wilton Crescent to Aylmer Avenue)
- Segment 4 Bank Street South (Aylmer Avenue to Sunnyside Avenue)
- Segment 5 Holmwood Avenue (Bank Street to O'Connor Street)
- Segment 6 QED North (Fifth Avenue to Fourth Avenue)
- Segment 7 QED at Lansdowne (Fifth Avenue to Princess Patricia Way)
- Segment 8 QED South (South of Princess Patricia Way)
- Segment 9 Fifth Avenue (Bank Street to QED)
- Segment 10 O'Connor Street (Holmwood Avenue to Fifth Avenue)

Figure 4.4 illustrates location of the MMLOS segments assessed.

Figure 4.4: Study Area MMLOS Segments

4.3.1 Multi-Modal Level of Service (MMLOS)

As per the City of Ottawa Official Plan (Schedule A), Lansdowne falls within the Inner Urban Transect Policy Area, with Bank Street identified as a Mainstreet Corridor. For the purposes of the MMLOS analysis, the following designations were adopted from the Multi-Modal Level of Service (MMLOS) Guidelines:

Bank Street is classified as an Arterial road with a Traditional Main Street designation.

The following MMLOS targets were assumed for Bank Street:

Pedestrian Level of Service (PLOS) target of B.

Bicycle Level of Service (BLOS) target of C based on a Local Route designation.

Transit Level of Service (TLOS) target of D.

Truck Level of Service (TkLOS) target of D.

Auto Level of Service (LOS) of D.

Holmwood Avenue is classified as a Local road with a General Urban Area designation.

The following MMLOS targets were assumed for Holmwood Avenue:

Pedestrian Level of Service (PLOS) target of C.

Bicycle Level of Service (BLOS) target of B based on a Local Route designation .

No Transit Level of Service (TLOS) target is defined.

No Truck Level of Service (TkLOS) target is defined.

Auto Level of Service (LOS) of D.

Queen Elizabeth Driveway is classified as an Arterial with a General Urban Area designation.

The following MMLOS targets were assumed for Queen Elizabeth Driveway:

Pedestrian Level of Service (PLOS) target of A

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) was adopted as QED is not a truck route.

Auto Level of Service (LOS) of D

Fifth Avenue is classified as a Collector road with a General Urban Area designation.

The following MMLOS targets were assumed for Fifth Avenue:

Pedestrian Level of Service (PLOS) target of C

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) target is defined

Auto Level of Service (LOS) of D

O'Connor Street is classified as a Local Road with a General Urban Area designation.

The following MMLOS targets were assumed for O'Connor Street:

Pedestrian Level of Service (PLOS) target of C

Bicycle Level of Service (BLOS) target of B based on a Local Route designation

No Transit Level of Service (TLOS) target is defined

No Truck Level of Service (TkLOS) target is defined

Auto Level of Service (LOS) of D

Table 4.1 summarizes the MMLOS targets and performance for roadway segments.

Appendix C contains the detailed MMLOS analysis.

Table 4.1: MMLOS Targets and Results (Segments)

		PL	.os	BL	os	TL	os	TkL	.os
	Segment	Target	Actual	Target	Actual	Target	Actual	Target	Actual
1	Bank Street North (Fifth - Holmwood)	В	В	С	Е	D	F	D	D
2	Bank Street @ Lansdowne (Holmwood - Wilton)	В	С	С	E	D	F	D	D
3	Bank Street Bridge (Wilton - Aylmer)	В	С	С	А	D	D	D	D
4	Bank Street South (Aylmer - Sunnyside)	В	С	С	E	D	F	D	А
5	Holmwood Ave (Bank - O'Connor)	С	А	В	В	N/A	N/A	N/A	N/A
6	QED North (Fifth - Fourth)	Α	F	В	А	N/A	N/A	N/A	N/A
7	QED @ Lansdowne (Fifth - Princess Patricia Way)	А	В	В	А	N/A	N/A	N/A	N/A
8	QED South (South of Princess Patricia Way)	А	В	В	А	N/A	N/A	N/A	N/A
9	Fifth Ave (Bank - QED)	С	E	В	С	N/A	N/A	N/A	N/A
10	O'Connor St (Bank - QED)	С	E	В	А	N/A	N/A	N/A	N/A

Bank Street:

The PLOS target of B along Bank Street, across the frontage of Lansdowne, is currently being met on the east side of the road segment. On the west side of Bank Street, however, the target is not met due to the boulevard widths. As a whole segment, Bank Street, across the frontage of Lansdowne, does not meet the PLOS target.

The BLOS target of C along Bank Street, across the frontage of Lansdowne, is currently met in the northbound travel direction as there is a curbside bike lane. However, in the southbound travel direction there is no dedicated bicycling facility. As a whole segment, Bank Street, across the frontage of Lansdown, does not meet the BLOS target.

This BLOS target of C is not currently being met north of Wilton Crescent and south of Aylmer Avenue due to the number of vehicle lanes and lack of bicycling facilities. The BLOS target of C is, however, met over the Bank Street Bridge, between Wilton Crescent and Aylmer Avenue, due to the recently installed bicycle facilities. In order to improve the BLOS on Bank Street, improved bicycling facilities would be required.

The TLOS target of D along Bank Street, across the frontage of Lansdowne, is currently not being met due to the mixed operating condition of transit along the corridor and resulting congestion related delays. To improve the TLOS along Bank Street, improved transit priority measures can be implemented to limit delays to transit along the corridor.

Holmwood Avenue:

The BLOS target of B along Holmwood Avenue is currently being met on the southside of the road segment. However, the north side has a BLOS C due to the narrow bicycle lane width. Therefore, as a whole segment, Holmwood Avenue does not meet the BLOS target of B.

Queen Elizabeth Driveway:

The PLOS target of A along Queen Elizabeth Driveway is met for the sections south of Fifth Avenue which utilizes the multi-use pathway. North of Fifth Avenue, however, the PLOS is F because of the lack of a proper sidewalk on the west side of the corridor. It was noted, however, that there is an alternative sidewalk that is adjacent to the recent development at the Northwest corner of the intersection.

The BLOS target of B along Queen Elizabeth Driveway is currently being met due to the provision of a multi-use pathways along the Rideau Canal. It is notable however that this facility is shared with other AT users which can impact the quality of the service in practice and may put some of the higher speed cyclists into the traffic lane, especially during busy times.

Fifth Avenue:

The PLOS target of C along Fifth Avenue is currently not being met due to the sidewalk width, lack of buffer from traffic, and vehicle operating speeds.

The BLOS target of B is currently met on Fifth Avenue between Bank Street and O'Connor Street. However, this target is not met between O'Connor Street and Queen Elizabeth Driveway due to the narrow bike lane widths. As a whole, Fifth Avenue does not currently meet the BLOS target of B.

O'Connor Street:

The PLOS target of C along O'Connor Street is currently not being met due to the sidewalk widths and lack of buffer from traffic. In order to meet the PLOS target, wider sidewalks and/or boulevard buffers are needed on both sides of O'Connor Street.

The BLOS target of B along O'Connor Street is currently being met as the segment scores an LOS A in both directions of travel. It is to be noted, however, that while the southbound bike lane is separated from vehicle traffic, it traverses several residential driveways. This presents potential conflicting movements that are not reflected in the segment's BLOS.

4.4 Access Intersection Design

ACCESS LOCATION

Access to Lansdowne will continue to be facilitated at three key locations: a primary all-movements access at the intersection of Bank Street / Exhibition Way, a secondary all-movements access at Queen Elizabeth Driveway and Princess Patricia Way, and a minor right-in/right-out only access on Bank Street and Marche Way.

INTERSECTION CONTROL

The primary Bank Street / Exhibition Way intersection access is signalized and accommodates all-movements. The secondary Queen Elizabeth Driveway / Princess Patricia Way intersection access is Stop-Controlled on the minor approach. The minor Bank Street / Marche Way intersection is a right-in/right-out only intersection with a Stop-Control on the minor approach.

4.5 Transportation Demand Management

The initial Lansdowne Redevelopment project featured a comprehensive Transportation Demand Management (TDM) strategy to address day-to-day and special event transportation requirements. The Transportation Demand Management Plan (October 2011) for Lansdowne outlined strategies for encouraging residents, employees, and visitors to Lansdowne to utilize transit and active transportation modes to reduce reliance on single occupant vehicles (SOV) and automobile use. The plan included recommendations for both day-to-day operations (residents, employees and retail patrons), as well as for special events with attendance levels of 10,000 patrons (arena events), 25,000 patrons (stadium events), and 40,000 plus patrons (unique, expanded stadium events).

A hallmark of the TDM plan for Lansdowne is the provision of free transit service to all ticketholders attending ticketed events at Lansdowne. This innovative TDM strategy, which is the first of its kind in North America for a large mixed-use entertainment district, provides free transit to all ticketed events starting 2 hours prior to the start of events and 2 hours after the end of events held at Lansdowne. The cost of any enhanced transit service provided for events with attendance levels of 5,000 or more are bourn by OSEG.

The comprehensive TDM program implemented in 2014 as part of the original revitalization of Lansdowne Park will continue to play a critical role in supporting the transportation program for Lansdowne 2.0. This includes the provision of free transit for all ticketed events at Lansdowne.

TDM PROGRAM

The City of Ottawa's TDM-supportive design and infrastructure elements checklist was consulted to identify and incorporate TDM supportive measures into the design stage. An updated Transportation Demand Management Strategy for Lansdowne 2.0 was developed as part of the Lansdowne 2.0 Transportation Impact Assessment Study (Stantec – July 2023).

The TDM Checklist in support of the event centre (Phase 1) is included in Appendix D.

4.6 Neighbourhood Traffic Management

Not applicable; exempted during screening and scoping.

4.7 Transit

ROUTE CAPACITY

Service on Bank Street currently operates with headways of 12-minutes or less on both Routes 6 and 7.

As part of the TDM program for special events at Lansdowne. Ticketed events with attendance levels of 5,000 or less are accommodated with regularly scheduled bus service on Bank Street with no service enhancements.

For ticketed events with attendance levels between 5,000 and 10,000 attendees, service enhancements on bus Route 6 and 7 are provided to support additional transit ridership demands for events. enhanced service can range from 2 additional bus trips to 8 extra trips depending on depending on attendance levels. The cost of additional trips added to support events is bourn by OSEG.

It is anticipated that the current transit service enhancements provided for minor events (attendance levels of 10,000 or less) for Phase 1 (multi-purpose event centre) will be supported adequately through the current TDM program and transit service enhancements.

For the full-build out of Lansdowne 2.0 (i.e. Phase 3), transit modal shares of 25%, 14%, and 29% were assumed for the proposed multi-family residential, shopping center, and general office land-uses.

This is expected to result in a peak hour net increase in transit trips of 152 trips during the Weekday AM peak hour, 119 transit trips in the Weekday PM Peak hour, 146 transit trips in the Weekend Saturday peak hour, and 167 transit trips in the Weekend Sunday peak hour

Currently, OC Transpo Route 6 and Route 7 provide service along Bank Street with connections to key destinations in Ottawa. Service is provided on weekdays and weekends with an average headway of 12 minutes for each route in both directions. This translates to a total of 20 two-way transit trips on Bank Street at Lansdowne (5 trips per bus route, per direction).

The OC Transpo fleet is comprised of various bus types including 40' standard buses, higher capacity 60' articulated buses, and double-decker buses.

Depending on the fleet vehicle used, the passenger capacity across the fleet varies between 57 to 110 passengers per bus, depending on the bus type.

On average, the following capacities are provided:

Standard 40' buses: the total carrying capacity per bus ranges between 57 to 85 passengers (standing and seated). An assumed carrying capacity of 70 passengers is assumed for Standard 40' buses.

Articulated 60' buses: the total carrying capacity per bus is 110 passengers (standing and seated).

Double Decker buses: the total carrying capacity per bus ranges between 96 to 105 passengers (standing and seated). An assumed carrying capacity of 100 passengers per bus is assumed for Double Decker buses.

Based on the current 20 two-way transit trips along Bank Street, current transit passenger carrying capacity ranges between 1,400 passengers / hr to 2200 passengers per hour, depending on the fleet mix used.

For planning purposes, an average two-way transit carrying capacity of 1,870 passengers per hour is assumed.

OC Transpo currently utilizes all bus types on Routes 6 and 7 along Bank Street. OC Transpo plans vehicle fleet mix for each trip booking to match observed and projected ridership. Based on information provided by OC Transpo, the following passenger demands are to be assumed for current ridership by bus type:

Standard 40' Buses:

- 40 passengers per vehicle, averaged over an hour during off-peaks.
- 45 passengers per vehicle, averaged over an hour during peak periods.

Articulated 60' Buses:

- 60 passengers per vehicle, averaged over an hour during off-peaks.
- 70 passengers per vehicle, averaged over an hour during peak periods.

Double Decker Buses:

- 85 passengers per vehicle, averaged over an hour during off-peaks.
- 90 passengers per vehicle, averaged over an hour during peak periods.

Based on the transit ridership, current two-way transit demands along Bank Street range between 900 passengers / hr to 1,800 passengers per hour depending on the fleet mix used.

For planning purposes, an average two-way transit demand of 1,400 passengers / hr is assumed for current service along Bank Street on Routes 6 and 7.

It is anticipated that the current two-way transit demands generated by Lansdowne 2.0, which ranges between 119 to 167 passengers / hr, can be accommodated within the current scheduled services on Bank Street.

The provision for transit service requirements for the full-build out of Lansdowne 2.0 should be confirmed as part of subsequent studies in support of Phase 2 and Phase 3 of development.

4.8 Intersection Design

INTERSECTION CONTROL

The existing intersection control for Lansdowne will be maintained as part of the Lansdowne 2.0 redevelopment.

INTERSECTION DESIGN

An assessment of the study area intersections was undertaken to determine the operational characteristics under the various horizons identified in the Screening and Scoping report. Intersection operational analysis was performed with Synchro 12 software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

4.8.1 Existing Conditions

Intersection Capacity Analysis

Intersection operational analysis under Existing Conditions is summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix E.

Table 4.2: Existing Weekday AM and PM Peak Hour Conditions (Study Area Intersections)

Intersection	Intersection	•	proach /	LC	os	V	C	Total Delay (s)		Queue 95th (m)	
	Control	Mo	vement	AM	РМ	AM	РМ	AM	РМ	AM	PM
		EB	Left / Through / Right	С	D	0.36	0.65	21.9	35.1	27.2	31.7
			Left	С	С	0.18	0.39	22.9	33.1	14.0	17.3
Bank St & Fifth Ave	Signalized	WB	Through / Right	В	В	0.21	0.29	15.9	17.7	16.0	14.4
		NB	Left / Through / Right	Α	Α	0.38	0.27	3.8	9.7	8.2	43.6
		SB	Left / Through / Right	Α	Α	0.32	0.36	8.5	6.1	25.6	34.0
		_	overall ersection	Α	В	0.38	0.65	8.6	12.1		
		EB	Left / Through / Right	D	D	0.47	0.53	37.6	38.3	22.6	26.7
Bank St & Holmwood Ave	Signalized	NB	Left / Through / Right	Α	Α	0.29	0.30	2.6	1.9	10.8	9.0
		SB	Left / Through / Right	Α	Α	0.21	0.31	3.1	4.7	13.2	21.1
		Overall Intersection		Α	Α	0.47	0.53	5.4	6.1		

Intersection	Intersection		proach /	LC	os	V	/C		tal y (s)		ieue h (m)
	Control	Mo	vement	AM	PM	AM	PM	AM	PM	AM	РМ
		WB	Left	С	D	0.27	0.50	32.5	35.1	17.2	30.8
		VVD	Right	В	D	0.20	0.28	13.3	10.5	7.5	9.4
Bank St & Exhibition	Signalized	NB	Left / Through / Right	В	А	0.37	0.31	10.1	5.2	40.0	27.6
Way		SB	Left	Α	Α	0.14	0.28	8.5	4.8	11.6	6.5
			Through	Α	Α	0.16	0.23	6.7	3.1	22.7	9.6
			overall ersection	В	Α	0.37	0.50	10.1	7.3		
		EB	Right	С	F	0.49	0.82	22.0	53.2	15.6	40.8
Bank St &		NB	Left	В	В	0.20	0.36	10.7	13.6	5.7	13.7
Wilton Cr	Minor Stop		Through	Α	Α			1.8	3.3	5.7	13.7
			overall ersection	Α	В	0.49	0.82	4.8	10.2		
Bank St &		EB	Right	В	С	0.06	0.07	12.5	16.1	1.2	1.2
Echo Dr	Minor Stop		Overall Intersection		Α	0.06	0.07	0.3	0.2		
	Signalized	EB	Left / Right	С	С	0.26	0.34	29.5	31.1	19.9	22.8
Bank St &		NB	Left / Through	А	А	0.42	0.38	3.8	4.9	16.8	19.6
Aylmer Ave		SB	Through / Right	А	Α	0.33	0.45	7.2	7.6	28.1	43.7
			overall ersection	Α	Α	0.42	0.45	6.5	7.5		
			Left /								
		EB	Through / Right	С	D	0.43	0.65	26.8	42.2	32.6	53.6
Bank St &		WB	Left / Through / Right	С	D	0.76	0.93	22.5	53.1	67.9	98.3
Sunnyside Ave	Signalized	NB	Left / Through / Right	В	А	0.69	0.29	16.4	9.2	80.8	28.0
		SB	Left / Through / Right	В	С	0.78	0.88	19.2	20.2	30.7	130.2
			overall ersection	Α	В	0.10	0.32	1.6	2.6		
QED &		NB	Left / Through	А	Α	0.06	0.05	8.2	8.9	1.2	1.2
Princess Patricia Way	Minor Stop	EB	Left / Right	В	С	0.10	0.32	13.1	19.5	1.8	8.4
i atticia vvay	·		overall ersection	A	В	0.10	0.32	1.6	2.6		

Intersection	Intersection	-	proach /	LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	Mc	vement	AM	PM	AM	PM	AM	PM	AM	PM
		EB	Left / Right	В	D	0.21	0.37	17.6	36.6	12.9	22.0
Queen Elizabeth Dr & Fifth Ave	Signalized Minor Stop	NB	Left / Through	Α	Α	0.32	0.24	7.7	5.0	21.9	21.5
		SB	Through / Right	Α	Α	0.42	0.53	8.6	7.7	30.5	66.0
		_	Overall Intersection		Α	0.42	0.53	9.2	9.2		
Bank St &		WB	Left / Right	С	В	0.57	0.15	21.1	12.9	21.0	3.0
Marche Way		Overall Intersection		Α	A	0.57	0.15	4.6	0.8		
		EB	Left / Through	Α	Α	0.14	0.15	7.9	8.0		
		WB	Right	Α	Α	0.07	0.10	6.4	6.5		
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	Α	А	0.09	0.12	7.5	7.7		
		SB	Right	Α	Α	0.10	0.09	6.6	6.5		
		_	Overall ersection	Α	A	0.14	0.15	7.1	7.2		

Table 4.3: Existing Weekday AM and PM Peak Hour Conditions (Internal Lansdowne Intersections)

Intersection	Intersection	Appro		LO	os	V	/C	Total Delay (s)		Queue 95th (m)	
	Control	Move	ment	AM	PM	AM	PM	AM	PM	AM	PM
		WB	Left	Α	Α	0.0	0.01	0.0	0.1	0.0	0.1
Garage		VVD	Through	Α	Α		0.01	0.7	0.4		0.1
Access at Exhibition Way	Two-Way Stop	NB	Left / Right	В	С	0.05	0.14	12.9	15.6	0.2	3.6
		Overall Int	Α	Α	0.11	0.16	1.3	1.9			
Exhibition Way		EB	Left / Through	А	А	0.13	0.16	7.7	7.9		
and Service	All-Way	WB	Through / Right	Α	Α	0.08	0.18	7.4	7.9		
Roadway	Stop	SB	Left / Right	Α	Α	0.01	0.01	7.2	7.4		-
		Overall Int	ersection	Α	Α	0.14	0.18	7.6	7.9		
		EB	Left / Through	А	Α	0.00	0.01	6.7	6.6		
Marché Way and Service Roadway	All-Way	WB	Left / Through	Α	Α	0.15	0.01	7.7	7.1		
	Stop	NB	Left / Right	Α	Α	0.01	0.01	7.1	6.8		
		Overall Int	ersection	Α	Α	0.15	0.01	7.6	6.9	-	-

Marchá Wov		EB	Through / Right	Α	А	0.00	0.01	6.9	7.0		
Marché Way and Exhibition Way	All-Way	WB	Left / Through	Α	А	0.15	0.19	8.1	8.5		
vvay	Stop	NB	Left / Right	Α	А	0.14	0.14	7.8	7.4		
		Overall Int	ersection	Α	Α	0.16	0.19	8.0	7.9		
Garage		EB	Left	Α	Α	0.00	0.00	0.00	0.00	0.1	0.1
Access at Princess	Two-Way		Through	Α	Α	0.00	0.00	1.0	0.7	0.1	0.1
Patricia Way	Stop	SB	Left / Right	Α	А	0.01	0.07	9.3	9.5	0.3	1.7
		Overall Int	ersection	Α	Α	0.09	0.07	0.7	2.5		

All study area intersections are currently operating with overall acceptable levels of service under the Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is currently operating with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak). The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measures are recommended to improve intersection operations.

Table 4.4: Existing Weekend Saturday Peak Hour Conditions (Study Area Intersections)

						Total	Oueue
Intersection	Intersection Control		oach / ement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left /				
		EB	Through / Right	С	0.63	34.2	28.1
			Left	D	0.46	36.6	19.4
Bank St &		WB	Through / Right	В	0.39	18.5	17.0
Fifth Ave	Signalized	NB	Left / Through / Right	А	0.27	3.7	14.5
		SB	Left / Through / Right	A	0.29	5.1	28.2
		Overall In	tersection	Α	0.63	9.7	
		EB	Left / Through / Right	D	0.54	38.5	26.7
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	0.29	2.2	9.2
Ave		SB	Left / Through / Right	А	0.30	3.6	16.1
		Overall In	tersection	Α	0.54	5.7	
			Left	С	0.39	33.9	23.9
		WB	Right	В	0.33	11.8	10.4
			Left /				
Bank St & Exhibition	Signalized	NB	Through / Right	Α	0.28	4.5	22.7
Way		SB	Left	Α	0.28	6.9	16.5
		36	Through	Α	0.21	4.5	22.2
		Overall In	tersection	Α	0.39	7.0	
			Left	В	0.19	11.6	4.2
Bank St &		NB	Through	Α		1.8	4.2
Wilton Cr	Minor Stop	EB	Right	D	0.58	29.9	20.4
		Overall In	tersection	В	0.58	5.1	
Bank St &	Mirr Ot	EB	Right	В	0.08	14.3	1.8
Echo Dr	Minor Stop	Overall In	tersection	Α	0.08	0.3	
		EB	Left / Right	С	0.20	30.2	15.8
Bank St &	Signalized	NB	Left / Through	Α	0.37	5.5	22.4
Aylmer Ave	Signalized	SB	Through / Right	Α	0.40	7.2	38.4
		Overall In	tersection	Α	0.40	7.1	

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	E	0.75	59.8	37.5
Bank St &		WB	Left / Through / Right	D	0.71	35.9	38.6
Sunnyside Ave	Signalized	NB	Left / Through / Right	А	0.31	6.6	32.6
		SB	Left / Through / Right	A	0.44	4.1	11.2
		Overall In	tersection	В	0.75	13.2	
QED &		NB	Left / Through	А	0.05	8.3	1.2
Princess Patricia Way	Minor Stop	EB	Left / Right	С	0.28	15.2	6.6
Fatricia vvay		Overall In	tersection	Α	0.28	3.0	
		EB	Left / Right	D	0.42	37.3	25.2
QED &	Signalized	NB	Left / Through	Α	0.29	5.4	27.5
Fifth Ave	Oignalized	SB	Through / Right	Α	0.37	6.1	40.5
		Overall In	tersection	Α	0.42	9.2	
Bank St &	Minor Stop	WB	Left / Right	В	0.14	12.4	3.0
Marche Way	Willion Gtop	Overall In	tersection	Α	0.14	0.8	
		EB	Left / Through	Α	0.11	7.9	
		WB	Right	Α	0.09	6.5	
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	0.16	7.9	
		SB	Right	Α	0.10	6.6	
		Overall In	tersection	Α	0.16	7.2	

Table 4.5: Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)

Intersection	Intersection Control		proach / ovement	LOS	V/C	Total Delay (s)	Queue 95th (m)
Garage		WB	Left	Α	0.00	8.4	0
Access at	Two-Way	VVD	Through	Α		0	
Exhibition Way	Stop	NB	Left / Right	С	0.18	15.3	0.7
vvay		Overal	I Intersection	Α	0.19	2.9	
Exhibition		EB	Left / Through	Α	0.15	7.8	
Way and	All-Way Stop	WB	Through / Right	Α	0.11	7.5	
Service Roadway	Сюр	SB	Left / Right	Α	0.01	7.3	
Noadway		Overal	I Intersection	Α	0.15	7.7	
Marché Way		EB	Left / Through	Α	0.02	7	
and Service	All-Way Stop	WB	Left / Through	Α	0.09	7.4	
Roadway	2.56	NB	Left / Right	Α	0.01	7	
		Overal	I Intersection	Α	0.09	7.3	
Marché Way		EB	Through / Right	Α	0.02	7.3	
and Exhibition	All-Way Stop	WB	Left / Through	Α	0.12	8.1	
Way	2.04	NB	Left / Right	Α	0.15	8.1	
		Overal	I Intersection	Α	0.16	8.0	
Garago		EB	Left	Α	0.00	7.6	0.1
Garage Access at Princess	Two-Way Stop		Through	Α		0	0.1
Patricia Way	'	SB	Left / Right	В	0.13	10.1	3.5
		Overal	Intersection	Α	0.13	3.3	

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service under Weekend Saturday peak hour conditions.

Table 4.6: Existing Weekend Sunday Peak Hour Conditions (Study Area Intersections)

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	С	0.53	30.2	26.4
			Left	D	0.65	41.7	30.7
Bank St &		WB	Through / Right	С	0.36	20.1	20.0
Fifth Ave	Signalized	NB	Left / Through / Right	A	0.30	7.9	51.3
		SB	Left / Through / Right	A	0.33	6.5	30.8
		Overall In	tersection	В	0.65	12.9	
		EB	Left / Through / Right	D	0.53	38.2	26.7
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	0.34	7.2	49.5
Ave		SB	Left / Through / Right	А	0.30	8.2	44.3
		Overall In	tersection	Α	0.53	10.0	
		WB	Left	D	0.53	35.8	31.2
			Right	В	0.29	10.2	9.4
Bank St & Exhibition	Signalized	NB	Left / Through / Right	В	0.36	11.3	37.9
Way		SB	Left	В	0.41	12.4	26.0
		<u> </u>	Through	Α	0.21	5.1	23.4
		Overall In	tersection	В	0.53	11.6	
		NB	Left	В	0.18	11.4	5.1
Bank St &	Minor Stop		Through	Α		1.7	5.1
Wilton Cr	·	EB	Right	E	0.62	25.5	28.8
			tersection	Α	0.62	4.6	
Bank St & Echo Dr	Minor Stop	EB	Right	С	0.21	17.8	0.8
LONG DI		Overall In EB	tersection	A D	0.41 0.40	1.1 35.7	21.9
Bank St &		NB	Left / Right Left / Through	A	0.40	2.4	14.3
Aylmer Ave	Signalized	SB	Through / Right	А	0.31	3.4	26.2
		Overall In	tersection	Α	0.40	4.6	

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	E	0.78	67.8	34.5
Bank St &		WB	Left / Through / Right	С	0.70	32.8	35.5
Sunnyside Ave	Signalized	NB	Left / Through / Right	В	0.37	16.5	47.5
		SB	Left / Through / Right	А	0.49	4.7	11.3
		Overall In	tersection	В	0.78	16.5	
QED &		NB	Left / Through	Α	0.05	7.6	0.2
Princess	Minor Stop	EB	Left / Right	В	0.31	11.9	1.4
Patricia Way		Overall In	tersection	Α	0.23	5.3	
		EB	Left / Right	D	0.61	40.6	37.4
QED &	Signalized	NB	Left / Through	Α	0.29	7.3	27.9
Fifth Ave	Oignanzea	SB	Through / Right	Α	0.04	5.6	5.7
		Overall In	tersection	В	0.61	19.1	
Bank St &	Minor Stop	WB	Left / Right	В	0.30	14	1.3
Marche Way	Willion Gtop	Overall In	tersection	Α	0.27	1.9	
		EB	Left / Through	Α	0.23	9.9	0.9
		WB	Right	Α	0.30	9.4	1.3
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	В	0.34	10.6	1.5
		SB	Right	Α	0.14	8.5	0.5
		Overall In	tersection	Α	0.34	9.8	

Table 4.7: Existing Weekend Saturday Peak Hour Conditions (Internal Lansdowne Intersections)

Intersection	Intersection Control		proach / ovement	LOS	V/C	Total Delay (s)	Queue 95th (m)
Garage		WB	Left	Α	0.00	8.5	0
Access at	Two-Way	VVD	Through	Α		0	
Exhibition Way	Stop	NB	Left / Right	С	0.24	17.1	1
vvay		Overal	I Intersection	Α	0.25	3.2	
Exhibition		EB	Left / Through	Α	0.18	8	0.7
Way and	All-Way Stop	WB	Through / Right	Α	0.13	7.7	0.5
Service Roadway	Clop	SB	Left / Right	Α	0.01	7.4	0
Noadway		Overal	I Intersection	Α	0.18	7.9	
Marché Way		EB	Left / Through	Α	0.02	7.1	0.1
and Service	All-Way Stop	WB	Left / Through	Α	0.2	8	0.7
Roadway	2.56	NB	Left / Right	Α	0.01	7.2	0
		Overal	I Intersection	Α	0.20	7.9	
Marché Way		EB	Through / Right	Α	0.02	7.3	0.1
and Exhibition	All-Way Stop	WB	Left / Through	Α	0.07	7.9	0.3
Way	2.04	NB	Left / Right	Α	0.18	8.2	0.7
		Overal	I Intersection	Α	0.19	8.0	
Garage		EB	Left	Α	0.00	7.5	0
Access at Princess	Two-Way Stop		Through	Α		0	
Patricia Way	'	SB	Left / Right	В	0.23	10.7	0.9
		Overal	Intersection	Α	0.23	5.3	

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service under Weekend Saturday peak hour conditions.

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service on Weekend Sunday peak periods with concurrent events at Lansdowne.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS E. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measure is recommended to improve intersection operations.

Table 4.8: Existing Minor Event (Arena at TD Place) Peak Hour Conditions

Intersection	Intersection Control	Approach / Movement		LOS		V/C		Total Delay (s)		Queue 95th (m)	
				Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
Bank St & Fifth Ave	Signalized	EB	Left / Through / Right	D	С	0.65	0.51	36.9	31.9	32.3	18.8
		WB	Left	С	С	0.42	0.34	33.3	34.4	18.8	15.5
			Through / Right	В	В	0.30	0.30	19.0	19.5	15.6	12.6
		NB	Left / Through / Right	В	А	0.30	0.24	10.0	6.0	49.8	34.2
		SB	Left / Through / Right	Α	А	0.35	0.20	6.3	3.6	33.6	15.6
		Overall Intersection		В	A	0.65	0.51	12.6	9.0		
Bank St & Holmwood Ave	Signalized	EB	Left / Through / Right	D	D	0.54	0.47	38.1	37.7	27.8	22.3
		NB	Left / Through / Right	Α	А	0.37	0.29	2.9	3.7	13.9	22.1
		SB	Left / Through / Right	Α	А	0.32	0.20	4.8	4.4	20.2	24.4
		Overall Intersection		Α	Α	0.54	0.47	6.5	6.6		
	Signalized	WB	Left	D	D	0.50	0.64	35.1	36.4	30.8	43.5
Bank St & Exhibition Way			Right	В	D	0.37	0.57	10.5	9.6	11.2	16.2
		NB	Left / Through / Right	Α	А	0.33	0.17	4.9	4.9	26.6	12.4
		SB	Left	Α	Α	0.41	0.25	7.4	5.8	10.5	8.8
			Through	Α	Α	0.20	0.14	3.1	4.4	8.8	7.6
		Overall Intersection		Α	В	0.50	0.64	7.6	11.6		
Bank St & Wilton Cr	Minor Stop	EB	Right	F	С	0.85	0.32	52.8	18.8	45.6	7.8
		NB -	Left	В	В	0.19	0.07	12.1	10.3	5.3	1.8
			Through	Α	Α			2.2	0.6	5.3	1.8
			verall rsection	В	A	0.85	0.32	10.5	2.9		
Bank St & Echo Dr		EB	Right	С	В	0.11	0.02	15.8	10.4	2.4	0.6
	Minor Stop	Overall Intersection		A	A	0.11	0.02	0.4	0.2		

Intersection	Intersection	Approach / Movement		LOS		V/C		Total Delay (s)		Queue 95th (m)	
	Control			Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
Bank St & Aylmer Ave	Signalized	EB	Left / Right	D	С	0.35	0.03	36.4	27.2	26.1	4.4
		NB	Left / Through	А	А	0.39	0.08	5.4	5.3	23.6	8.1
		SB	Through / Right	A	A	0.32	0.10	6.4	5.2	28.0	9.6
			verall rsection	Α	Α	0.39	0.10	7.6	5.7		
Bank St & Sunnyside Ave	Signalized	EB	Left / Through / Right	D	D	0.73	0.48	52.2	44.4	#42.6	19.1
		WB	Left / Through / Right	С	С	0.76	0.33	32.6	20.8	49.7	11.9
		NB	Left / Through / Right	А	А	0.30	0.12	8.1	3.2	32.2	11.0
		SB	Left / Through / Right	А	А	0.53	0.24	7.5	3.5	23.4	21.2
		Overall Intersection		В	Α	0.76	0.48	15.2	7.0		
QED &	Minor Stop	NB	Left / Through	А	А	0.13	0.01	9.3	7.6	2.4	0.0
Princess Patricia Way		EB	Left / Right	С	С	0.36	0.59	21.6	16.1	9.6	24.0
		Overall Intersection		С	Α	0.36	0.59	3.4	10.4		
Queen Elizabeth Dr & Fifth Ave	Signalized	EB	Left / Right	С	С	0.38	0.39	28.6	28.7	22.4	23.4
		NB	Left / Through	А	Α	0.34	0.32	6.8	6.5	27.9	29.4
		SB	Through / Right	В	Α	0.63	0.20	10.7	5.6	78.2	18.0
		Overall Intersection		В	A	0.63	0.39	11.2	9.8		
Bank St & Marche Way	Minor Stop	WB	Left / Right	В	В	0.11	0.27	12.3	13.4	2.4	6.6
		Overall Intersection		Α	A	0.11	0.27	0.6	2.1		
Fifth Ave & O'Connor St	All-Way Stop	EB	Left / Through	Α	А	0.15	0.07	8.1	7.4		
		WB	Right	Α	Α	0.13	0.06	6.7	6.4		
		NB	Left / Through / Right	А	А	0.18	0.08	8.0	7.0		
		SB	Right	Α	Α	0.08	0.09	6.5	6.5		
			verall rsection	A	A	0.18	0.09	7.4	6.8		

Table 4.9: Existing Minor Event (Arena at TD Place) Internal Lansdowne Intersections

Intersection	Intersection	Approach / Movement		LOS		V/C		Total Delay (s)		Queue 95th (m)	
	Control			Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
Garage Access at Exhibition Way	Two-Way Stop	WB	Left	А	А	0.00		8.8	0	0	0
			Through	Α	Α		0	0	0		0
		NB	Left / Right	С	С	0.29	0.43	19.8	24.7	1.2	2.1
		Overall Intersection		A	A	0.30	0.44	3.3	5.2		
Exhibition	All-Way Stop	EB	Left / Through	А	Α	0.28	0.25	8.7	8.7	1.2	1
Way and		WB	Through / Right	А	Α	0.15	0.35	7.9	9.4	0.5	1.6
Service Roadway		SB	Left / Right	А	Α	0.01	0.01	7.6	7.9	0	0
rioddiid		Overall Intersection		A	A	0.29	0.36	8.4	9.1		
	All-Way Stop	EB	Left / Through	Α	Α	0.02	0.03	7	7.2	0.1	0.1
Marché Way and		WB	Left / Through	А	А	0.06	0.18	7.3	7.9	0.2	0.7
Service Roadway		NB	Left / Right	Α	Α	0.01	0.01	7	7.2	0	0
		Overall Intersection		Α	Α	0.07	0.18	7.2	7.8		
	All-Way Stop	EB	Through / Right	Α	Α	0.03	0.03	7.8	7.6	0.1	0.1
Marché Way and		WB	Left / Through	Α	Α	0.23	0.11	9.2	8.2	0.9	0.4
Exhibition Way		NB	Left / Right	Α	А	0.31	0.25	9.7	8.5	1.4	1
		Overall Intersection		Α	Α	0.32	0.25	9.4	8.3		
Garage Access at Princess Patricia Way	Two-Way Stop	EB	Left	Α	Α	0.00	0.00	8.1	7.4	0	0.00
			Through	Α	Α		0.00	0	0.00		0.00
		SB	Left / Right	В	В	0.14	0.47	11.3	13.2	0.5	19.6
			Overall Intersection		A	0.14	0.47	2.2	9.3		

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service during Minor Events held at the Arena at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

Table 4.10: Existing Major Event (Stadium at TD Place) Peak Hour Conditions

Intersection	Intersection		oroach /	LC	os	V/	С	To Dela		Que 95th	
mioreconom	Control	Мо	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
		EB	Left / Through / Right	D	D	0.67	0.65	35.8	36.0	34.5	31.8
			Left	С	С	0.42	0.21	30.3	24.7	19.8	12.1
Bank St &		WB	Through / Right	В	В	0.40	0.45	17.4	19.3	20.3	23.1
Fifth Ave	Signalized	NB	Left / Through / Right	Α	А	0.32	0.20	6.5	5.6	28.7	18.9
		SB	Left / Through / Right	Α	А	0.42	0.23	7.4	5.6	41.4	21.1
			verall rsection	В	В	0.67	0.65	11.6	11.8		
		EB	Left / Through / Right	D	D	0.61	0.61	38.5	38.7	34.1	32.8
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	А	0.48	0.25	7.1	5.0	38.8	17.4
Ave		SB	Left / Through / Right	Α	А	0.42	0.23	6.7	4.8	37.4	16.6
			verall rsection	Α	В	0.61	0.61	9.8	10.0		
		WB	Left Right		Movem	nents Temp	orarily Re	stricted Du	ring Major	Events	
Bank St & Exhibition	Signalized	NB	Left / Through / Right	Α	А	0.24	0.12	0.2	0.1	0.0	0.0
Way		SB	Left		Movem	nents Temp	orarily Re	stricted Du	ring Major	Events	
		J SB	Through	Α	Α	0.21	0.12	0.1	0.1	0.0	0.0
			verall rsection	Α	A	0.24	0.12	0.2	0.1		
		EB	Right	F	В	0.97	0.01	81.9	13.2	60.0	0.0
Bank St &		NB	Left	В	Α	0.19		12.1	0.0	5.3	0.0
Wilton Cr	Minor Stop		Through	Α				2.2		5.3	0.0
			verall rsection	С	A	0.97	0.01	14.2	0.1		
Bank St &		EB	Right	С	В	0.22	0.05	17.7	10.3	4.8	1.2
Echo Dr	Minor Stop		verall rsection	Α	A	0.22	0.05	0.8	0.5		

Intersection	Intersection			LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	Мо	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
		EB	Left / Right	D	С	0.50	0.17	38.1	23.5	33.9	11.4
Bank St & Aylmer Ave	Signalized	NB	Left / Through	A	А	0.41	0.19	7.8	5.9	43.3	16.6
/ tyllinoi / tvo	-	SB	Through / Right	A	А	0.43	0.17	7.9	5.5	47.0	14.4
			rsection	Α	Α	0.50	0.19	9.9	6.6	-	
		EB	Left / Through / Right	E	D	0.84	0.53	64.5	42.8	62.2	24.9
Bank St &		WB	Left / Through / Right	D	С	0.82	0.48	43.7	28.2	69.7	21.2
Bank St & Sunnyside Signalized Ave	NB	Left / Through / Right	А	А	0.36	0.15	7.8	4.1	31.4	13.6	
		SB	Left / Through / Right	В	А	0.68	0.18	12.8	4.1	64.8	15.4
			verall rsection	С	В	0.84	0.53	20.2	10.6		
QED &		NB	Left / Through	Α	А	0.14	0.05	9.9	8.2	3.0	0.6
Princess	Minor Stop	EB	Left / Right	F	E	0.77	0.87	50.5	39.7	34.2	58.8
Patricia Way			verall rsection	D	С	0.77	0.87	8.7	19.2		
		EB	Left / Right	С	D	0.58	0.68	33.3	36.7	35.6	45.8
Queen Elizabeth Dr	Signalized	NB	Left / Through	В	А	0.56	0.40	11.9	8.6	49.3	39.1
& Fifth Ave	OlgridiiZed	SB	Through / Right	В	Α	0.81	0.39	18.9	8.4	156.5	39.1
			verall rsection	В	В	0.81	0.68	18.8	14.6		
Bank St & Marche Way	Minor Stop	1	Left / Right verall rsection		Movem	nents Temp	oorarily Re	stricted Du	ring Major	Events	
		EB	Left / Through	Α	А	0.17	0.11	8.5	8.5		
		WB	Right	Α	Α	0.19	0.11	6.9	6.6		
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	В	0.26	0.43	8.4	10		
		SB	Right	Α	Α	0.13	0.05	6.7	6.4		
			verall rsection	Α	В	0.26	0.43	7.7	8.8		

As illustrated above, all study area intersections are currently operating with overall acceptable levels of service during Major Events held at the Stadium at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is currently operating with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

In addition, the eastbound approach at the Queen Elizabeth Drive and Princess Patricia Way intersection is shown to operate with an LOS rating of F and E for the Ingress and Egress periods, respectively. Although the analysis indicates that the movements are operating with delays, the performance of these intersections are adequately managed through the deployment of Ottawa Police Point duty as part of the traffic management measures for Major Events at Lansdowne.

No mitigation measures are recommended to improve intersection operations.

4.8.2 2028 Future Conditions

Intersection Capacity Analysis

Intersection operational analysis under Future 2028 Conditions are summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix E.

Table 4.11: 2028 Future Weekday AM and PM Peak Hour

Intersection	Intersection	Approach / Movement		LC	LOS		V/C		Total Delay (s)		eue ı (m)
	Control			AM	PM	AM	PM	AM	PM	AM	PM
		EB	Left / Through / Right	С	С	0.37	0.44	22.2	22.5	28.4	31.7
		WB	Left	С	С	0.20	0.26	23.1	24.4	14.8	17.9
Bank St &			Through / Right	В	В	0.21	0.20	15.9	14.1	16.4	14.3
Fifth Ave	Signalized	NB	Left / Through / Right	А	В	0.40	0.35	3.5	13.9	5.3	50.1
		SB	Left / Through / Right	А	А	0.33	0.44	8.6	9.8	26.4	37.5
		Overal	I Intersection	Α	В	0.40	0.44	8.6	13.4		

Intersection	Intersection	Approach / Movement		LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	IVI	ovement	AM	PM	AM	PM	AM	PM	AM	PM
		EB	Left / Through / Right	D	D	0.48	0.55	37.8	38.8	23.3	27.6
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	А	0.30	0.33	2.2	1.9	4.4	9.1
Ave		SB	Left / Through / Right	А	А	0.21	0.33	3.1	3.4	13.6	14.3
		Overa	II Intersection	Α	Α	0.48	0.55	5.2	5.5		
		WB	Left	С	D	0.26	0.51	32.4	35.4	16.5	30.2
		VVD	Right	В	В	0.19	0.27	13.5	10.6	7.1	9.0
Bank St & Exhibition	Signalized	NB	Left / Through / Right	А	А	0.36	0.32	9.1	5.5	40.8	29.0
Way		SB	Left	Α	Α	0.13	0.25	8.1	4.7	10.5	5.8
		SB	Through	Α	Α	0.16	0.24	6.6	3.1	23.7	10.2
		Overa	II Intersection	Α	Α	0.36	0.51	9.4	7.3		
		EB	Right	С	F	0.52	0.89	23.5	66.9	27.4	88.7
Bank St &	M: Ot	ND	Left	В	В	0.21	0.38	10.9	14.4	6.1	15.2
Wilton Cr	Minor Stop	NB	Through	Α	Α			1.9	3.8		
		Overa	II Intersection	Α	С	0.52	0.89	5.3	12.9		
Bank St &		EB	Right	В	С	0.06	0.1	12.8	20.0	2.2	3.2
Echo Dr	Minor Stop	Overa	II Intersection	Α	Α	0.36	0.53	0.3	0.3		
		EB	Left / Right	С	С	0.30	0.37	29.6	31.5	21.8	24.2
Bank St &	Signalized	NB	Left / Through	А	Α	0.44	0.41	3.5	4.3	m15.2	m14.2
Aylmer Ave	Oignanzoa	SB	Through / Right	Α	Α	0.35	0.48	7.4	8.0	29.5	47.8
		Overa	II Intersection	Α	Α	0.44	0.48	6.5	7.6		
		EB	Left / Through / Right	D	F	0.72	1.15	49.6	154.9	#47.3	#76.3
Bank St &		WB	Left / Through / Right	D	F	0.89	1.10	38.8	104	#80.4	#111.2
Sunnyside Ave	Signalized	NB	Left / Through / Right	D	С	0.96	0.45	43.1	20.4	#128.8	45.7
		SB	Left / Through / Right	В	С	1.14dl	0.91	16.2	20.6	30.9	#99.6
		Overa	II Intersection	С	D	0.96	1.15	34.9	45.7		

Intersection	Intersection	_	oproach /	LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	M	ovement	AM	PM	AM	PM	AM	PM	AM	PM
		NB	Left	Α	Α	0.06	0.06	8.3	9.1	1.6	1.7
QED & Princess	Minor Stop	IND	Through	Α				0			
Patricia Way	Willion Stop	EB	Left / Right	В	С	0.12	0.42	14.1	23.7	3.1	15.2
		Overa	I Intersection	Α	Α	0.10	0.42	1.8	2.6		
		EB	Left / Right	С	С	0.23	0.34	23.8	31.8	19.2	26.3
Queen Elizabeth Dr	Signalized	NB	Left / Through	С	В	0.50	0.44	21.3	15.0	48.5	42.6
& Fifth Ave	Signalized	SB	Through / Right	С	С	0.64	0.77	24.5	23.2	67.2	119.7
		Overa	I Intersection	С	С	0.64	0.77	23.2	21.9		
Bank St &	Minor Stop	WB	Right	В	Α	0.08	0.16	12.8	9.5	1.4	4.5
Marche Way	Willion Stop	Overa	I Intersection	Α	Α	0.08	0.16	0.4	0.9		
		EB	Left / Through	А	Α	0.15	0.16	8.4	8.6	0.5	0.6
		WB	Right	Α	Α	0.09	0.13	7.3	7.5	0.3	0.4
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	Α	0.10	0.13	7.9	8.2	0.3	0.5
		SB	Right	Α	Α	0.13	0.12	7.5	7.5	0.4	0.4
		Overa	I Intersection	Α	Α	0.15	0.16	7.8	8		

Table 4.12: 2028 Future Weekday AM and PM Peak (Internal Lansdowne Intersections)

Intersection	Intersection	Approach / Movement		LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control			AM	PM	AM	PM	AM	PM	AM	PM
Exhibition		EB	Left / Through	А	А	0.19	0.28	8.1	8.7	0.7	1.1
Way and Service Roadway	All-Way Stop	WB	Through / Right	Α	Α	0.11	0.23	7.6	8.4	0.4	0.9
		SB	Left / Right	Α	Α	0.01	0.01	7.4	7.7	0	
Noauway		Overall I	ntersection	Α	Α	0.20	0.53	7.9	8.5		
Marché Way	All-Way Stop	EB	Left / Through	А	Α	0.00	0.01	6.7	6.6		
and Service		WB	Left / Through	Α	Α	0.15	0.01	7.7	7.1	0.6	
Roadway	Сюр	NB	Left / Right	Α	Α	0.01	0.01	7.1	6.8		
		Overall I	ntersection	Α	Α	0.16	0.01	7.6	6.9		
Marché Way		EB	Through / Right	А	Α	0.00	0.01	7.1	7.4		
and Exhibition	All-Way Stop	WB	Left / Through	А	Α	0.17	0.21	8.4	9	0.6	0.8
Way	2.00	NB	Left / Right	Α	Α	0.21	0.29	8.2	8.5	8.0	1.3
		Overall I	ntersection	Α	Α	0.21	0.30	8.3	8.7		

_		EB	Left	Α	Α	0.04	0.07	7.7	7.8	1.0	1.8
Garage Access at Princess	Two-Way		Through	Α	Α			0			
Patricia Way	Stop	SB	Left / Right	Α	В	0.03	0.17	9.8	11.4	0.6	4.6
		Overall I	ntersection	A	A	0.04	0.17	2.2	4.7	-	1

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is projected to continue to operate with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak).

In addition, the eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

Table 4.13: 2028 Future Weekend Saturday Peak Hour (Study Area Intersections)

						Tatal	0
Intersection	Intersection Control		roach / vement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
			Left /				
		EB	Through / Right	С	0.39	20.6	27.0
			Left	С	0.28	24.7	19.9
Bank St &		WB	Through / Right	В	0.25	13.2	16.5
Fifth Ave	Signalized	NB	Left / Through / Right	В	0.36	12.9	51.0
		SB	Left / Through / Right	A	0.38	9.2	32.2
		Overall	Intersection	В	0.39	12.7	
		EB	Left / Through / Right	D	0.55	38.8	27.2
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	0.31	2.3	9.0
Ave		SB	Left / Through / Right	А	0.32	3.9	22.0
		Overall	Intersection	Α	0.55	6.0	
			Left	С	0.37	33.9	22.2
		WB	Right	В	0.31	11.8	9.7
Bank St & Exhibition	Signalized	NB	Left / Through / Right	А	0.29	4.5	23.3
Way			Left	Α	0.25	6.9	5.5
		SB	Through	Α	0.23	4.5	9.5
		Overall	Intersection	Α	0.37	5.9	
			Left	В	0.20	11.9	6.0
Bank St &		l ND			1	_	_
Dank Sta		NB	Through	Α		2	
Wilton Cr	Minor Stop		Through Right	A D		2 33.5	
	Minor Stop	EB	Through Right	A D	0.62	2 33.5 6.0	41.9
Wilton Cr		EB	Right Intersection	D		33.5	41.9
	Minor Stop Minor Stop	EB Overall I	Right	D A	0.62 0.62	33.5 6.0	41.9
Wilton Cr Bank St &		EB Overall I	Right Intersection Right	D A B	0.62 0.62 0.08	33.5 6.0 14.9	41.9
Wilton Cr Bank St &	Minor Stop	EB Overall I EB Overall I	Right Intersection Right Intersection	D A B	0.62 0.62 0.08 0.08	33.5 6.0 14.9 0.4	41.9 3.6
Wilton Cr Bank St & Echo Dr		EB Overall I EB EB	Right Intersection Right Intersection Left / Right Left /	D A B A C	0.62 0.62 0.08 0.08 0.23	33.5 6.0 14.9 0.4 30.2	41.9 3.6 16.7

Intersection	Intersection Control	Approach / Movement		LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	D	0.59	43.8	40.4
Bank St &		WB	Left / Through / Right	С	0.63	31.3	42.9
Sunnyside Ave	Signalized	NB	Left / Through / Right	С	0.55	22.1	55.8
		SB	Left / Through / Right	А	0.53	4.6	9.7
		Overall	Intersection	В	0.63	17.1	
		NB	Left	Α	0.07	8.4	1.6
QED & Princess	Minor Ston	IND	Through	Α		0	
Princess Patricia Way	Minor Stop	EB	Left / Right	С	0.36	17.6	11.9
		Overall	Α	0.36	3.8		
		EB	Left / Right	С	0.38	32.7	29.7
QED &	Signalized	NB	Left / Through	В	0.45	14.6	49.9
Fifth Ave	Cignalizad	SB	Through / Right	В	0.53	15.9	69.1
		Overall	Intersection	В	0.53	17.5	
		WB	Right	В	0.14	12.4	3.0
Bank St & Marche Way	Minor Stop	SB	Left	Α	0.00	9.3	0
		Overall	Intersection	Α	0.14	0.9	
		EB	Left / Through	Α	0.18	8.4	
		WB	Right	Α	0.13	8.4	
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	0.12	7.6	
		SB	Right	Α	0.13	7.5	
		Overall	Intersection	Α	0.18	8	

Table 4.14: 2028 Future Weekend Saturday Peak Hour (Internal Lansdowne Intersections)

Intersection	Intersection Control	Approach / Movement		LOS	V/C	Total Delay (s)	Queue 95th (m)
Exhibition		EB	Left / Through	А	0.27	8.6	
Way	All-Way	WB	Through / Right	А	0.18	8.1	
Service Roadway	Stop	SB	Left / Right	А	0.01	7.6	
Roadway			verall section	Α	0.27	8.4	
		EB	Left / Through	Α	0.01	7	
Marché Way and	All-Way	WB	Left / Through	Α	0.02	7	
Service Roadway	Stop	NB Left / Right		Α	0.1	7.4	
			verall section	Α		7.3	
		EB	Through / Right	Α	0.31	9.2	
Marché Way and	All-Way	WB	Left / Through	Α	0.03	7.7	
Exhibition Way	Stop	NB	Left / Right	Α	0.14	8.6	1
		_	verall section	Α		9	
		EB	Left	Α	0.08	7.9	1.9
Garage Access at	Two-Way		Through	Α		0	
Princess Patricia Way	Stop	SB	Left / Right	В	0.34	13.4	11.2
			Overall Intersection		0.34	6.2	

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekend Saturday peak hour conditions.

Table 4.15: 2028 Future Weekend Sunday Peak Hour (Study Area Intersections)

Intersection	Intersection Control	Movement		LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	С	0.38	22.6	26.8
			Left	С	0.48	29.3	33.0
Bank St &	Signalized	WB	Through / Right	В	027	16.6	20.2
Fifth Ave	oignam200	NB	Left / Through / Right	В	0.36	10.4	48.2
		SB	Left / Through / Right	Α	0.38	9.0	30.9
		Overal	I Intersection	В	0.48	13.0	
		EB	Left / Through / Right	D	0.55	38.5	26.9
Bank St & Holmwood	Signalized	NB	Left / Through / Right	Α	0.36	2.4	11.1
Ave	-	SB	Left / Through / Right	Α	0.31	9.3	44.5
		Overal	I Intersection	Α	0.55	8.2	
		WB	Left	D	0.55	37.9	28.9
		5	Right	В	0.27	11.0	8.5
Bank St & Exhibition	Signalized	NB	Left / Through / Right	В	0.36	11.5	38.1
Way		SB	Left	Α	0.38	8.4	11.1
		J JD	Through	Α	0.22	4.2	12.3
		Overal	I Intersection	В	0.55	10.8	
		NB	Left/Through	В	0.18	11.7	5.4
Bank St & Wilton Cr	Minor Stop	EB	Right	D	0.52	27.5	32.4
		Overal	I Intersection	Α	0.52	4.8	
Bank St &	Minor Stop	EB	Right	С	0.23	18.6	8.3
Echo Dr	Willion Stop	Overal	l Intersection	Α	0.23	1	
		EB	Left / Right	D	0.43	36.0	23.1
Bank St &		NB	Left / Through	Α	0.29	2.6	15.0
Aylmer Ave	Signalized	SB	Through / Right	Α	0.32	3.6	28.4
		Overal	I Intersection	Α	0.43	4.9	
		EB	Left / Through / Right	Е	0.77	65.0	34.8
Bank St &		WB	Left / Through / Right	С	0.71	34.0	36.5
Sunnyside Ave	Signalized	NB	Left / Through / Right	В	0.39	17.0	48.7
		SB	Left / Through / Right	Α	0.51	5.2	11.8
		Overal	I Intersection	В	0.77	16.8	

Intersection	Intersection Control	-	pproach / ovement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
QED &		NB	Left / Through	Α	0.06	7.7	3.3
Princess	Minor Stop	EB	Left / Right	В	0.39	13.3	13.3
Patricia Way		Overal	Intersection	Α	0.39	6.4	
		EB	Left / Right	С	0.59	29.9	35.1
QED &		NB	Left / Through	Α	0.38	9.3	30.5
Fifth Ave	Signalized	SB	Through / Right	Α	0.06	6.4	6.8
		Overal	I Intersection	Α	0.59	16.6	
Bank St &	Minor Ston	WB	Left / Right	С	0.33	15.1	9.3
Marche Way	Minor Stop	Overal	Intersection	Α	0.33	2	
		EB	Left / Through	Α	0.244	10	
		WB	Right	Α	0.315	0.6	
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	В	0.351	10.7	
		SB Right		Α	0.15	8.6	
		Overal	Intersection	Α		9.9	

Table 4.16: 2028 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)

Intersection	Intersection Control		roach / rement	LOS	V/C	Total Delay (s)	Queue 95th (m)
Exhibition		EB	Left / Through	Α	0.32	9.1	
Way and	All-Way Stop	WB	Through / Right	Α	0.22	8.4	
Service Roadway	Оюр	SB	Left / Right	Α	0.01	7.8	
Noauway		Overall I	ntersection	Α	0.32	8.8	
Marché Way		EB	Left / Through	А	0.01	7.2	
and Service	All-Way Stop	WB	Left / Through	А	0.02	7.1	
Roadway	Оюр	NB	Left / Right	Α	0.21	8	
		Overall I	ntersection	Α	0.21	7.9	
Marché Way		EB	Through / Right	А	0.4	9.6	
and Exhibition	All-Way Stop	WB	Left / Through	Α	0.03	7.8	
Way	0.05	NB	Left / Right	Α	0.1	8.4	
		Overall I	ntersection	Α	0.40	9.3	

Intersection	Intersection Control		Approach / Movement		V/C	Total Delay (s)	Queue 95th (m)
		EB	Left	Α	0.09	7.9	2.2
Garage Access at Princess	Two-Way		Through	Α		0	2.2
Patricia Way	Stop	SB	Left / Right	С	0.5	16.9	20.7
		Overall li	ntersection	A	0.5	8.9	

As illustrated in the tables above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2028 Future Weekend Sunday peak hour conditions.

Table 4.17: 2028 Future Minor Event Peak Hour (Study Area Intersections)

Intersection	Intersection	-	oproach /	LC	os	V/	C	To Dela		Que 95th	
	Control	IVI	ovement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
		EB	Left / Through / Right	С	В	0.45	0.25	24.4	17.5	32.8	16.9
			Left	С	С	0.30	0.22	25.1	23.6	20.5	16.6
Bank St &		WB	Through / Right	В	В	0.28	0.16	12.7	12.7	17.4	11.6
Fifth Ave	Signalized	NB	Left / Through / Right	В	В	0.37	0.31	13.5	11.4	53.4	39.7
		SB	Left / Through / Right	А	А	0.41	0.27	9.5	8.2	35.1	21.5
		Overal	I Intersection	В	В	0.45	0.31	13.5	11.4		
		EB	Left / Through / Right	D	D	0.56	0.48	38.5	38.1	28.3	22.9
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	А	0.38	0.29	3.0	3.8	13.0	22.0
Ave		SB	Left / Through / Right	А	А	0.33	0.21	3.6	2.6	9.7	7.0
		Overal	I Intersection	Α	Α	0.56	0.48	6.1	6.1		

Intersection	Intersection		oproach /	LC	os	V/	C	To Dela	tal y (s)	Que 95th	
	Control	М	ovement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
		WB	Left	D	D	0.48	0.63	35.1	36.7	28.2	40.2
		VVD	Right	В	Α	0.33	0.56	10.9	9.8	10.3	15.5
Bank St & Exhibition	Signalized	NB	Left / Through / Right	А	А	0.33	0.18	5.0	4.8	27.1	12.5
Way		SB	Left	А	Α	0.38	0.26	6.5	5.8	8.1	8.7
		36	Through	А	А	0.21	0.15	3.0	4.1	8.7	7.7
		Overal	I Intersection	Α	В	0.48	0.63	7.2	11.0		
		EB	Right	F	С	0.89	0.33	62.1	19.4	93.9	13.3
Bank St & Wilton Cr	Minor Stop	NB	Left	В	В	0.23	0.07	12	10.4	7.4	1.8
Willon Ci			Through	Α	А			2.5	0.6	7.4	1.8
		Overal	I Intersection	С	Α	0.89	0.33	12.7	3.2		
Bank St &	Minor Stop	EB	Right	С	В	0.11	0.01	16.3	10.4	5.4	0.7
Echo Dr	Willion Stop	Overal	I Intersection	Α	Α	0.11	0.01	0.4	0.2		
		EB	Left / Right	D	С	0.36	0.03	36.7	27.2	26.6	4.4
Bank St &	Signalized	NB	Left / Through	А	А	0.40	0.09	5.0	4.0	20.7	5.0
Aylmer Ave	Signalized	SB	Through / Right	А	А	0.34	0.11	6.5	5.3	29.5	9.7
		Overal	I Intersection	Α	Α	0.40	0.11	7.5	5.1		
		EB	Left / Through / Right	E	С	0.78	0.26	62.2	32.8	#58.0	20.1
Bank St &		WB	Left / Through / Right	D	В	0.81	0.20	40.2	16.3	#67.2	12.4
Sunnyside Ave	Signalized	NB	Left / Through / Right	С	В	0.49	0.24	21.2	17.8	51.4	25.1
		SB	Left / Through / Right	А	А	0.59	0.33	7.5	7.1	18.1	19.4
		Overal	I Intersection	С	В	0.81	0.33	21.4	12.5		
QED &		NB	Left / Through	А	Α	0.14	0.01	9.5	7.7	4.6	2.2
Princess Patricia Way	Minor Stop	EB	Left / Right	D	С	0.51	0.65	29.3	17.9	29.8	37.1
. alloid vvay		Overal	I Intersection	Α	В	0.51	0.65	4.8	11.8	-	
		EB	Left / Right	С	С	0.41	0.35	33.4	31.8	31.3	27.5
Queen Elizabeth Dr	Signalized	NB	Left / Through	С	В	0.67	0.45	23.0	14.6	65.8	53.2
& Fifth Ave	2.9.13.1204	SB	Through / Right	С	В	0.82	0.25	26.1	11.8	#148.1	28.9
		Overal	I Intersection	С	В	0.82	0.45	26.0	16.3		

Intersection	Intersection	Approach /		LC	LOS		V/C		Total Delay (s)		Queue 95th (m)	
	Control	IVI	ovement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress	
		WB	Left / Right	В	В	0.11	0.28	13	14	3.0	9.9	
Bank St & Marche Way	Minor Stop	SB	Through	А		0.00		9.4				
		Overal	I Intersection	Α	Α	0.11	0.28	0.6	2.2			
		EB	Left / Through	А	Α	0.16	0.07	8.7	7.7			
		WB	Right	А	Α	0.17	0.07	7.9	7.1			
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	Α	0.19	0.08	8.7	7.3			
		SB	Right	Α	Α	0.10	0.11	7.7	7.1			
		Overal	I Intersection	Α	Α	0.19	0.11	8.3	7.3	-		

Table 4.18: 2028 Future Minor Event Peak Hour (Internal Lansdowne Intersections)

Intersection	Intersection Control		pproach/	LC	os	V/	С	To Dela		Que 95th	
	Control	IV	lovement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
Exhibition		EB	Left / Through	В	А	0.42	0.27	10.1	9		
Way	All-Way	WB	Through / Right	Α	В	0.25	0.48	8.7	10.9		
Service Roadway	Stop	SB	Left / Right	Α	Α	0.01	0.01	8	8.2		
rtoadway			Overall ersection	A	В	0.42	0.48	9.6	10.2	ı	ı
		EB	Left / Through	Α	Α	0.02	0.03	7	7.2	-	
Marché Way and	All-Way	WB	Left / Through	Α	А	0.06	0.18	7.3	7.9	-	
Service Roadway	Stop	NB	Left / Right	А	А	0.01	0.01	7	7.2		
		0	Overall ersection	A	A	0.06	0.18	7.2	7.8		
		EB	Through / Right	Α	А	0.03	0.04	8.3	7.9	-	
Marché Way and	All-Way	WB	Left / Through	Α	Α	0.26	0.12	10	8.6		
Exhibition Way	Stop	NB	Left / Right	В	Α	0.53	0.37	12.6	9.8		
			Overall ersection	В	A	0.53	0.37	11.7	9.4		
Carago		EB	Left	А	А	0.09	0.00	8.6	7.4	2.5	0
Garage Access at Princess	Two-Way		Through	А	Α			0	0	2.5	
Patricia Way	Stop	SB	Left / Right	С	С	0.33	0.58	16.3	15.3	11.3	29.5
			Overall ersection	Α	В	0.33	0.58	4.8	11.3		

As illustrated above, all study area intersections are projected to operate acceptably under Future 2028 operating conditions with overall acceptable levels of service during Minor Events held at the Arena at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is expected to operate with a LOS F. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street. No mitigation measures are recommended to improve intersection operations.

4.8.3 2033 Total Future Conditions

Intersection Capacity Analysis

Intersection operational analysis under Future 2033 Full Build-Out Conditions are summarized in this section.

Detailed Synchro level of service analysis results can be found in Appendix E.

Table 4.19: 2033 Future Weekday AM and PM Peak Hour

Intersection	Intersection	Approach/ Movement		LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	Mc	ovement	AM	PM	AM	PM	AM	PM	AM	PM
		EB	Left / Through / Right	D	С	0.63	0.45	36.4	22.8	30.4	32.7
			Left	С	С	0.35	0.25	31.8	24.3	15.6	17.5
Bank St &		WB	Through / Right	С	В	0.38	0.21	20.1	13.7	18.1	14.7
Fifth Ave	Signalized	NB	Left / Through / Right	А	В	0.36	0.37	1.6	15.1	5.1	53.9
		SB	Left / Through / Right	А	В	0.30	0.48	5.6	10.3	26.0	42.4
			Overall ersection	A	В	0.63	0.48	8.4	14.0		
		EB	Left / Through / Right	D	D	0.48	0.56	37.7	38.8	23.5	27.8
Bank St & Holmwood	Signalized	NB	Left / Through / Right	Α	А	0.33	0.35	1.9	2.1	6.6	10.4
Ave		SB	Left / Through / Right	А	А	0.23	0.37	3.2	3.4	15.1	16.1
			Overall ersection	A	Α	0.48	0.56	4.9	5.5		
		WB	Left	С	D	0.43	0.57	34.6	36.1	25.4	34.7
		VVD	Right	В	Α	0.27	0.31	11.5	9.7	8.9	9.7
Bank St & Exhibition	Signalized	NB	Left / Through / Right	В	А	0.42	0.40	11.3	6.8	48.8	34.8
Way	-	0.0	Left	В	Α	0.19	0.43	10.5	8.0	14.2	9.5
		SB	Through	Α	Α	0.17	0.28	7.5	3.9	24.5	11.4
			Overall ersection	В	Α	0.43	0.57	11.9	8.8		
		ND	Left	В	С	0.22	0.41	11.3	15.1	6.7	16.9
Bank St &		NB	Through	Α	Α			2.2	4.3	6.7	16.9
Wilton Cr	Minor Stop	EB	Right	D	F	0.58	0.95	26.7	82.1	32.7	101
			Overall ersection	D	D	0.58	0.95	5.7	15.1	-	1

Intersection	Intersection	Approach/		LC	os	V/C		Total Delay (s)		Queue 95th (m)	
	Control	Mc	vement	AM	PM	AM	PM	AM	PM	AM	PM
Bank St &		EB	Right	В	С	0.07	0.11	13.5	20.9	2.4	3.5
Echo Dr	Minor Stop		Overall ersection	Α	Α	0.07	0.11	0.3	0.3		
		EB	Left / Right	С	С	0.30	0.38	29.7	31.6	22.1	24.5
Bank St &	Signalized	NB	Left / Through	Α	Α	0.46	0.44	4.1	4.7	M17.3	m17.4
Aylmer Ave	Signalized	SB	Through / Right	Α	Α	0.37	0.50	7.6	8.2	32.6	51.0
			Overall ersection	A	A	0.46	0.50	6.9	7.8		
		EB	Left / Through / Right	D	F	0.65	1.23	38.3	184.2	37.4	#79.2
Bank St &		WB	Left / Through / Right	С	F	0.88	1.14	33.7	116.2	#76.1	#116.6
Sunnyside Ave	Signalized	NB	Left / Through / Right	В	С	0.69	0.48	15.4	21.0	91.0	50.2
		SB	Left / Through / Right	С	С	1.20dl	0.95	21.4	27.0	#87.9	#117.3
			Overall ersection	С	D	0.88	1.23	21.6	53.0		
QED &		NB	Left / Through	Α	А	0.07	0.07	8.3	9.1	1.7	1.8
Princess Patricia Way	Minor Stop	EB	Left / Right	С	С	0.21	0.43	15	24.3	5.7	16.2
			Overall ersection	A	A	0.21	0.43	2.4	3.5		
		EB	Left / Right	С	С	0.35	0.28	30.8	30.7	21.1	23.1
Queen Elizabeth Dr	Signalized	NB	Left / Through	Α	В	0.26	0.43	5.2	14.7	26.1	42.4
& Fifth Ave	Olgridii20d	SB	Through / Right	А	С	0.32	0.79	5.7	24.5	34.5	#129.4
			Overall ersection	A	Α	0.32	0.79	2.4	22.4		
Bank St &	Minor Stop	WB	Left / Right	В	В	0.12	0.19	13.5	14.1	2.1	5.4
Marche Way	'		Overall ersection	A	A	0.12	0.19	0.7	1		
		EB	Left / Through	А	A	0.16	0.17	8.5	8.6		
Fifth Ave &	All-Way	WB	Right	Α	Α	0.09	0.13	7.4	7.6		
O'Connor St	Stop	NB	Left / Through / Right	А	Α	0.13	0.15	8	8.3		
		SB	Right	Α	Α	0.13	0.12	7.5	7.6		

Intersection	Intersection	Approach/	LOS		V/C		Total Delay (s)		Queue 95th (m)	
	Control Movement		AM	PM	AM	PM	AM	PM	AM	PM
		Overall Intersection	A	A	0.16	0.17	7.9	8		

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service under the 2033 Future Weekday AM and PM peak hour conditions.

The intersection of Bank Street and Sunnyside Avenue is projected to continue to operate with specific movements at or close to theoretical capacity in the southbound approach (AM Peak) and westbound approach (PM Peak).

In addition, the eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays during the PM peak hour. The delays are associated with limited gaps in traffic in the southbound direction associated with the recently installed 3-lane cross-section of Bank Street.

No mitigation measure are recommended to improve intersection operations.

Table 4.20: 2033 Future Weekend Saturday Peak Hour (Study Area Intersections)

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	С	0.40	20.9	28.0
			Left	С	0.27	24.6	19.2
Bank St &		WB	Through / Right	В	0.27	12.8	17.0
Fifth Ave	Signalized	NB	Left / Through / Right	В	0.39	14.3	56.9
		SB	Left / Through / Right	А	0.43	9.6	36.6
		Overall In	tersection	В	0.43	13.3	
		EB	Left / Through / Right	D	0.56	38.9	27.7
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	0.34	2.3	11.2
Ave		SB	Left / Through / Right	А	0.36	3.9	28.4
		Overall In	tersection	Α	0.56	5.8	

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		WD	Left	D	0.50	35.3	29.7
		WB	Right	В	0.36	10.6	11.0
Bank St & Exhibition	Signalized	NB	Left / Through / Right	А	0.34	5.4	29.8
Way		SB	Left	Α	0.40	7.0	9.9
			Through	Α	0.24	3.1	9.9
		Overall In	tersection	Α	0.50	7.4	
		NB	Left	В	0.19	12.3	6.5
Bank St &	Minor Stop	IND	Through	Α		2.3	6.5
Wilton Cr	Willion Stop	EB	Right	Е	0.68	39	64.1
		Overall In	tersection	Α	0.68	6.7	
Bank St &	Minor Stop	EB	Right	С	0.10	15.6	4.0
Echo Dr	Willion Stop	Overall In	tersection	Α	0.10	0.4	
		EB	Left / Right	С	0.24	30.0	17.3
Bank St &	Signalized	NB	Left / Through	А	0.42	6.6	35.6
Aylmer Ave		SB	Through / Right	А	0.45	7.7	44.2
		Overall In	tersection	Α	0.45	7.9	
		EB	Left / Through / Right	D	0.61	45.0	#43.8
Bank St &		WB	Left / Through / Right	С	0.64	32.0	#44.2
Sunnyside Ave	Signalized	NB	Left / Through / Right	С	0.59	23.1	61.7
		SB	Left / Through / Right	А	0.57	4.9	10.3
		Overall In	tersection	В	0.64	17.7	
QED &		NB	Left / Through	Α	0.07	8.4	1.7
Princess Patricia Way	Minor Stop	EB	Left / Right	С	0.37	17.8	12.3
		Overall In	tersection	Α	0.38	3.9	
		EB	Left / Right	С	0.35	31.9	27.5
QED & Fifth Ave	Signalized	NB	Left / Through	В	0.43	14.4	49.4
I iiiii Ave		SB	Through / Right	В	0.55	16.3	72.1
I	I	Overall In	tersection	В	0.55	17.3	

Intersection	Intersection Control	Movement		LOS	V/C	Total Delay (s)	Queue 95 th (m)
Bank St &	Minor Stop	WB	Left / Right	В	0.188	13.8	5.9
Marche Way	·	Overall In	tersection			1	
		EB	Left / Through	Α	0.133	8.5	
		WB	Right	Α	0.12	7.7	
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	0.21	8.6	
		SB	Right	Α	0.13	7.6	
		Overall In	tersection	Α	0.21	8.1	

As illustrated above, all study area intersections are projected to continue to operate with acceptable levels of service under 2033 Future Weekend Saturday conditions.

Table 4.21: 2033 Future Weekend Sunday Peak Hour (Internal Lansdowne Intersections)

Intersection	Intersection Control		oach / ment	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		EB	Left / Through / Right	С	0.39	22.9	27.3
			Left	С	0.47	29.0	32.2
Bank St &		WB	Through / Right	В	0.29	16.4	21.3
Fifth Ave	Signalized	NB	Left / Through / Right	А	0.38	10.0	46.7
		SB	Left / Through / Right	А	0.43	9.6	36.0
		Overall In	tersection	В	0.47	12.8	
		EB	Left / Through / Right	D	0.55	38.6	27.3
Bank St & Holmwood	Signalized	NB	Left / Through / Right	А	0.39	2.4	13.4
Ave		SB	Left / Through / Right	В	0.35	10.2	53.0
		Overall In	tersection	Α	0.55	8.5	
		WD	Left	D	0.63	38.2	36.7
Bank St &	0:	WB	Right	Α	0.31	9.4	9.6
Exhibition Way	Signalized	NB	Left / Through / Right	В	0.48	14.3	47.5

Intersection	Intersection Control		oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		SB	Left	В	0.61	17.3	#25.1
		36	Through	Α	0.25	4.6	12.6
		Overall In	tersection	В	0.63	14.0	
		NB	Left	В	0.19	12	6.0
Bank St &	Minor Stop	IND	Through	Α		2.1	6.0
Wilton Cr	Willion Otop	EB	Right	D	0.56	30.8	38.1
		Overall In	tersection	Α	0.56	5.2	
Bank St &	Minor Stop	EB	Right	С	0.25	19.8	9.4
Echo Dr	Willion Otop	Overall In	tersection	Α	0.25	1.0	
		EB	Left / Right	D	0.43	35.9	23.2
Bank St & Aylmer Ave	Signalized	NB	Left / Through	Α	0.31	3.1	20.6
Ayiiilei Ave		SB	Through / Right	Α	0.34	3.7	30.8
		Overall In	tersection	Α	0.43	5.1	
		EB	Left / Through / Right	Е	0.78	65.8	34.9
Bank St &		WB	Left / Through / Right	С	0.73	34.9	37.5
Sunnyside Ave	Signalized	NB	Left / Through / Right	В	0.43	17.7	54.1
		SB	Left / Through / Right	A	0.55	5.8	12.4
		Overall In		В	0.78	17.3	
QED &		NB	Left / Through	Α	0.07	7.7	1.6
Princess Patricia Way	Minor Stop	EB	Left / Right	В	0.39	13.2	14.1
		Overall In	tersection	Α	0.39	6.5	
		EB	Left / Right Left /	С	0.56	28.9	32.6
QED & Fifth Ave	Signalized	Signalized NB		Α	0.37	9.1	30.3
I IIIII AVE		SB	Through / Right	Α	0.06	6.3	7.1
		Overall In	tersection	В	0.56	15.7	
Bank St & Marche Way	Minor Stop	WB	Left / Right	С	0.39	16.3	12.3
-		Overall In	tersection	Α	0.39	2.3	
Fifth Ave & O'Connor St	All-Way Stop	EB	Left / Through	В	0.26	10.3	

Intersection	Intersection Control	Appro Move	oach / ement	LOS	V/C	Total Delay (s)	Queue 95 th (m)
		WB	Right	Α	0.33	9.9	
		NB	Left / Through / Right	В	0.39	11.3	
		SB	Right	Α	0.16	8.8	
		Overall In	tersection	В	0.39	10.3	

As illustrated above, all study area intersections are projected to continue to operate with acceptable levels of service under 2033 Future Weekend Sunday conditions.

Table 4.22: 2033 Future Minor Event Peak Hour (Study Area Intersections)

Intersection	Intersection		proach /	LC	os	V/C		Total Delay (s)		Queue 95th (m)			
	Control	MIC	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress		
		EB	Left / Through / Right	D	С	0.67	0.52	37.5	32.2	33.9	19.6		
			Left	С	С	0.44	0.36	33.2	35.0	19.6	16.3		
Bank St &		WB	Through / Right	В	В	0.40	0.32	15.9	19.2	18.1	13.1		
Fifth Ave	Signalized	NB	Left / Through / Right	В	А	0.33	0.25	11.1	6.4	56.1	37.3		
		SB	Left / Through / Right	А	А	0.38	0.21	6.9	3.7	38.3	17.2		
		Overall Intersection		В	A	0.67	0.52	13.1	9.2				
		EB	Left / Through / Right	D	D	0.55	0.48	38.2	37.9	28.8	23.3		
Bank St & Holmwood	Signalized	Signalized	Signalized	NB	Left / Through / Right	А	А	0.40	0.30	3.0	3.8	15.2	23.1
Ave		SB	Left / Through / Right	А	А	0.35	0.22	4.9	4.6	9.3	26.8		
			verall rsection	A	A	0.55	0.48	6.5	6.8				
		WB		Left	D	D	0.54	0.66	35.5	36.6	33.6	45.0	
		VVD	Right	В	D	0.38	0.58	10.1	9.4	11.3	16.1		
Bank St & Exhibition Way	Signalized	NB	Left / Through / Right	Α	Α	0.39	0.18	5.8	5.0	30.4	13.3		
		SB	Left	В	Α	0.54	0.28	12.3	6.3	19.0	10.0		
		SB	Through	Α	Α	0.23	0.15	3.6	4.4	9.4	8.1		

Intersection	Intersection	Approach / LOS		V/C		Total Delay (s)		Queue 95th (m)										
	Control	Mo	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress							
			verall rsection	A	В	0.54	0.66	8.9	11.5									
		EB	Right	F	С	0.94	0.34	72.4	19.8	103.7	14.2							
Bank St &		NB	Left	В	В	0.25	0.08	12.2	10.4	7.8	1.9							
Wilton Cr	Minor Stop	IND	Through	Α	Α			2.7	0.7	7.8	1.9							
			verall rsection	D	Α	0.94	0.34	14.3	3.2									
Bank St &		EB	Right	С	В	0.121	0.02	16.8	10.5	5.7	0.7							
Echo Dr	Minor Stop		verall rsection	Α		0.12	0.02	0.4	0.2									
		EB	Left / Right	D	С	0.36	0.03	36.7	27.2	27.1	4.4							
Bank St &	Signalizad	NB	Left / Through	А	Α	0.42	0.09	5.5	5.4	26.2	8.8							
Aylmer Ave	Signalized	SB	Through / Right	Α	А	0.34	0.11	6.6	5.3	31.0	10.0							
			verall rsection	A	A	0.42	0.11	7.8	5.7									
			Left / Through / Right	D	D	0.71	0.50	48.8	45.9	#47.4	19.7							
D - v l - O + 0		Signalized	Signalized	WB	Left / Through / Right	С	В	0.76	0.33	33.3	19.9	#59.8	12.3					
Bank St & Sunnyside Ave				Signalized	Signalized	Signalized	Signalized	Signalized	Signalized	Signalized	Signalized	NB	Left / Through / Right	А	А	0.34	0.14	8.9
		SB	Left / Through / Right	А	А	0.59	0.27	8.6	4.2	24.3	23.0							
			verall rsection	В	A	0.76	0.50	15.6	7.6									
QED &		NB	Left / Through	А	А	0.144	0.02	9.5	7.7	4.0	0.5							
Princess Patricia Way	Minor Stop	EB	Left / Right	D	С	0.457	0.625	26.3	17.4	17.5	33.7							
T atriola vvay			verall rsection					4.2	10.9									
		ЕВ	Left / Right	С	С	0.40	0.41	29.0	29.0	23.7	24.3							
Queen Elizabeth Dr	Elizabeth Dr & Signalized		Left / Through	А	А	0.37	0.33	7.2	6.7	31.3	30.8							
& Fifth Ave			Through / Right	В	А	0.67	0.21	11.7	5.7	88.0	19.4							
			verall rsection	В	A	0.67	0.41	12.0	10.0									
Bank St &	Minor Stop	WB	Left / Right	В	В	0.13	0.29	12.7	13.6	3.3	1.2							
Marche Way	willor Stop		verall rsection	Α	Α	0.13	0.29	0.7	2.1									

Intersection Control		Approach /		LOS		V/C		Total Delay (s)		Queue 95th (m)	
	Control	Movement		Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress
		EB	Left / Through	А	А	0.172	0.076	8.8	7.8		
		WB	Right	Α	Α	0.181	0.06	8	7.1		
Fifth Ave & O'Connor St	All-Way Stop	NB	Left / Through / Right	А	А	0.213	0.008	8.9	7.3		
		SB	Right	А	Α	0.11	0.113	7.7	7.2		
			verall rsection	A	A			8.4	7.3		

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service in the 2033 Future horizon year for Minor Events held at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays incurred on the minor approach. This occurs during the Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction as a result of the recently installed 3-lane cross-section of Bank Street.

No mitigation measures are recommended to improve intersection operations.

Table 4.23: 2033 Future Major Event Peak Hour (Study Area Intersections)

Intersection	Control Movement Ingl	LC	os	V/	С	To: Dela		Que 95th					
	Control	Мо	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress		
		EB		D	D	0.69	0.76	36.5	46.5	36.3	35.7		
			Left	С	С	0.43	0.21	30.7	24.3	20.8	12.7		
Bank St &		WB	Through / Right	В	В	0.42	0.58	17.5	18.9	21.8	29.6		
Fifth Ave	Signalized	NB	Left / Through / Right	А	А	0.35	0.24	6.9	6.4	31.6	20.5		
		SB	Left / Through / Right	А	А	0.47	0.27	8.0	6.5	46.8	23.3		
			verall rsection	В	В	0.69	0.76	12.0	13.8				
		EB	Left / Through / Right	D	D	0.62	0.62	38.5	38.9	35.3	34.2		
Bank St & Holmwood	Signalized	Signalized	NB	Left / Through / Right	А	А	0.52	0.27	4.2	3.6	47.6	20.1	
Ave			SB	Left / Through / Right	А	А	0.47	0.25	7.5	5.2	43.7	19.1	
		Overall Intersection		A	Α	0.62	0.62	8.8	9.5				
		WB	Left Right		Movem	ents Temporarily Restricted During Major Events							
Bank St & Exhibition	Signalized	NB	Left / Through / Right	А	С	0.36	0.15	4.9	2.4	31.8	13.7		
Way		SB	Left		Movem	nents Temp	orarily Re	stricted Dui	ring Major	Events			
			Through	Α	Α	0.28	0.14	3.8	1.8	18.7	10.1		
			verall rsection	A	Α	0.36	0.15	5.8	2.6				
		EB	Right	F	В	1.09	0.01	119	13.5	131.7	0.4		
Bank St &		NB	Left	В	А	0.21	0	12.6	0	6.4	0.0		
Wilton Cr		LIND	Through	Α				2.6	0	6.4	0.0		
			verall rsection	E	Α	1.09	0.01	20.5	0.1				
Bank St &		EB	Right	С	В	0.25	0.06	19.4	10.5	13.2	1.8		
Echo Dr	Minor Stop		verall rsection	Α	Α	0.25	0.06	0.9	0.5				

Intersection	Intersection	Approach /		LC	os	V/C		Total Delay (s)		Queue 95th (m)			
	Control	Мо	vement	Ingress	Egress	Ingress	Egress	Ingress	Egress	Ingress	Egress		
		EB	Left / Right	D	С	0.52	0.17	38.8	23.5	35.4	11.9		
Bank St & Aylmer Ave	Signalized	NB	Left / Through	Α	Α	0.44	0.21	8.2	6.0	48.3	18.2		
Ayimei Ave	3	SB	Through / Right	Α	Α	0.46	0.18	8.2	5.6	51.7	15.7		
			verall rsection	В	Α	0.52	0.21	10.3	6.6				
		EB	Left / Through / Right	E	D	0.88	0.56	72.0	43.6	#67.4	26.7		
Bank St &		WB	Left / Through / Right	D	С	0.86	0.48	49.0	28.4	#78.0	22.2		
Sunnyside Ave	Signalized	NB	Left / Through / Right	А	А	0.39	0.16	8.3	4.4	34.7	15.4		
			Left / Through / Right	В	А	0.76	0.19	15.4	4.3	#67.4	17.3		
			verall rsection	С	В	0.88	0.56	22.8	10.8	-			
QED &	Minor Stop		-	NB	Left / Through	В	А	0.16	0.05	10.2	8.3	4.9	1.3
Princess				EB	Left / Right	F	E	0.93	0.93	82.4	50.0	75.2	86.8
Patricia Way			verall rsection	С	С	0.93	0.93	14	23.5				
		EB	Left / Right	D	D	0.68	0.72	36.9	39	#45.2	#53.5		
Queen Elizabeth Dr &	Signalized	NB	Left / Through	В	Α	0.69	0.41	17.9	8.9	#70.0	40.7		
Fifth Ave	o.ig.ria.ii.20d	SB	Through / Right	С	Α	0.87	0.41	23.7	8.7	#169.4	42.0		
			verall rsection	С	В	0.87	0.72	24.1	15.5				
Bank St & Marche Way	Minor Stop	ı	Left / Right Overall		Moven	nents Temp	orarily Re	stricted Du	ring Major	Events			
		Inte	rsection Left /										
		EB	Through	В	A	0.21	0.13	10.1	9				
	1	WB	Right	Α	Α	0.28	0.16	9.7	8.4				
Fifth Ave & O'Connor St		NB	Left / Through / Right	А	В	0.26	0.49	9.2	11.4				
		SB	Right	Α	Α	0.19	0.08	8.6	7.7				
			verall rsection	A	В	0.28	0.49	9.5	8.8				

As illustrated above, all study area intersections are projected to continue to operate with overall acceptable levels of service during the 2033 Future horizon year for Major Events held at TD Place.

The eastbound approach at intersection of Bank Street and Wilton Crescent is projected to continue to operate with a LOS F due to vehicle delays incurred on the minor approach. This occurs during the event Ingress period which overlaps with the regular PM peak period. The delays at this intersection are not directly attributed to event traffic held at Lansdowne and are associated with limited gaps in traffic in the southbound direction due to the recently installed 3-lane cross-section of Bank Street.

In addition, the eastbound approach at the Queen Elizabeth Drive and Princess Patricia Way intersection is shown to operate with an LOS rating of E for the Ingress periods. Although the analysis indicates that the movements are operating with delays, the performance of these intersections are expected to continue to be adequately managed through the deployment of Ottawa Police Point duty as part of the traffic management measures for Major Events at Lansdowne.

No mitigation measures are recommended to improve intersection operations.

5. SUMMARY AND CONCLUSIONS

This Transportation Impact Assessment (TIA) was prepared in support of a Site Plan Application (SPA) for the proposed multi-purpose Event Centre at Lansdowne Park located in the Glebe community of Ottawa, Ontario.

The proposed multi-purpose Event Centre represents Phase 1 of the Lansdowne 2.0 plan which seeks to replace existing city-owned infrastructure while adding additional density to the site. The overall Lansdowne 2.0 proposed plan includes the following phases of development:

Phase 1 (Anticipated completion of 2028) consists of building a new 5,500 seat (up to 6,500 spectators) multipurpose event centre that will be home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, the PWHL Ottawa, and other indoor events such as shows and concerts. As this phase of Lansdowne 2.0 replaces the programming provided at the existing 9,800 seat TD Place Arena, it is not expected to generate additional transportation demands to Lansdowne.

Phase 2 (Anticipated completion between 2030 and 2031) consists of replacing the existing functionally obsolete north stadium stands and arena complex at TD Place Stadium with a new 11,200 seat (12,100 spectator) north stand structure. This new facility replaces the existing north stadium stands, which currently has a capacity of 14,028 spectators, and would result in a reduction of approximately 2,000 spectator capacity at TD Place Stadium. This venue will continue to be the home of the CFL's Ottawa RedBlacks and the CPL's Ottawa Atlético. As this phase of Lansdowne 2.0 replaces existing programming currently provided at TD Place Stadium, it is not expected to generate additional transportation demands to Lansdowne.

Phase 3 (Anticipated completion between 2032 and 2036) represents the full build-out of Lansdowne 2.0 and consists of replacing the existing 41,000 ft² of commercial retail and box office annex to the Stadium on Exhibition Way with 49,635 ft² of new podium-level commercial retail space. This represents a net increase of 8,635 ft² of commercial retail space from what is currently provided today. In addition, this phase includes the construction of two new residential towers with a total of 770 new dwelling units. Additional underground parking space will be constructed by extending the existing facility to accommodate an additional 386 parking spaces to service the new residential units and additional retail space, resulting in a total of 1,766 underground parking spaces at Lansdowne.

Under Phase 1, no additional trip generation demands are forecasted as the proposed multipurpose event centre replaces the existing programming at the Arena at TD Place. It is anticipated that internal circulation and access within Lansdowne will be altered in an interim operating condition in 2028 during the construction of subsequent phases of Lansdowne 2.0.

The full build-out of Lansdowne 2.0 development is anticipated to generate between 130 and 180 net new auto trips (two-way) during the Weekday AM, Weekday PM, and Weekend Saturday and Sunday peak periods.

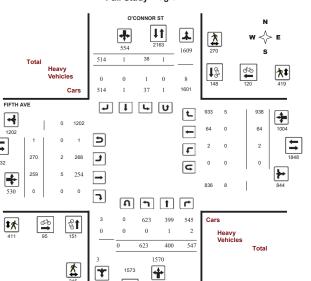
An analysis of study area intersections was completed under Existing Conditions, the interim 2028 Future Conditions (i.e. the completion of the new event centre and construction of subsequent phases of Lansdowne 2.0, as well as the 2033 Future Conditions (Full Build-Out of Lansdowne 2.0).

All study area intersections were shown to operate acceptably with similar levels of services currently observed today.

In conclusion, the analysis found that the anticipated Phase 1 of Lansdowne 2.0 will result in minimal impact to the overall traffic operations in the area. From a transportation standpoint, the proposed multi-purpose Event Centre can be accommodated by the future transportation network with the continued adoption of the existing comprehensive Transportation Demand Management strategy.

APPENDIX A - TURNING MOVEMENT COUNT DATA

Transportation Services - Traffic Services


Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: Start Time: 16:00 Device:

40983 Miovision

Full Study Diagram

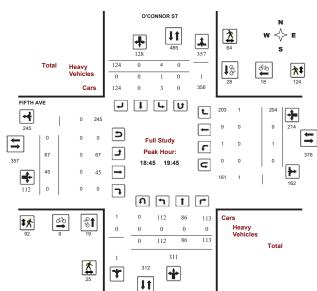
Ottawa

Start Time: 16:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST


WO No:

40983

Miovision

Survey Date: Friday, August 05, 2022 Device:

Full Study Peak Hour Diagram

June 16, 2023 Page 1 of 8 June 16, 2023 Page 2 of 8

40983

Miovision

Ottawa

Start Time: 16:00

Transportation Services - Traffic Services

11

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR S'

Survey Date: Friday, August 05, 2022 WO No:

Full Study 15 Minute Increments

	O'CONNOR ST									FIFTH AVE									
		No	orthbo	und		Sc	uthbou	ind			E	astbou	nd		We	estbour	nd		
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	
16:00	16:15	8	4	8	20	10	0	35	45	65	13	7	0	20	0	1	23	24	
16:15	16:30	12	11	9	32	2	0	26	28	60	7	10	0	17	0	0	30	30	
16:30	16:45	18	10	8	36	1	0	21	22	58	18	10	0	28	0	0	28	28	
16:45	17:00	15	11	7	33	3	0	27	31	64	10	6	0	16	0	0	35	35	
17:00	17:15	9	9	10	28	2	0	13	15	43	11	18	0	29	0	4	28	32	
17:15	17:30	19	13	22	54	6	0	17	23	77	6	13	0	19	0	1	27	28	
17:30	17:45	30	15	32	77	1	0	24	25	102	8	12	0	20	0	3	39	42	
17:45	18:00	24	17	19	60	3	0	27	30	90	10	6	0	16	0	6	52	58	
18:00	18:15	36	14	27	77	0	0	28	28	105	18	7	0	25	0	9	51	60	

623 400 547 1570 38 1 514 554 2124 270 259 0 530 2 64 938 1004 1534

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: 40983 Start Time: 16:00 Miovision Full Study Cyclist Volume

		O'CONNOR ST		-			
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
16:00 16:15	3	6	9	4	6	10	19
16:15 16:30	3	2	5	7	3	10	15
16:30 16:45	4	4	8	5	7	12	20
16:45 17:00	4	7	11	4	4	8	19
17:00 17:15	5	4	9	9	7	16	25
17:15 17:30	9	12	21	6	3	9	30
17:30 17:45	2	5	7	0	8	8	15
17:45 18:00	2	13	15	3	4	7	22
18:00 18:15	4	4	8	2	6	8	16
18:15 18:30	2	6	8	1	6	7	15
18:30 18:45	5	9	14	5	5	10	24
18:45 19:00	4	4	8	0	9	9	17
19:00 19:15	7	8	15	4	0	4	19
19:15 19:30	4	8	12	4	5	9	21
19:30 19:45	4	8	12	1	4	5	17
19:45 20:00	2	5	7	1	5	6	13
20:00 20:15	1	2	3	1	1	2	5
20:15 20:30	5	2	7	1	3	4	11
20:30 20:45	0	8	8	1	4	5	13
20:45 21:00	0	0	0	4	5	9	9
21:00 21:15	0	3	3	2	3	5	8
21:15 21:30	5	3	8	8	5	13	21
21:30 21:45	3	5	8	2	4	6	14
21:45 22:00	10	6	16	4	2	6	22
22:00 22:15	22	5	27	7	4	11	38
22:15 22:30	18	2	20	4	1	5	25
22:30 22:45	5	0	5	3	3	6	11
22:45 23:00	10	6	16	0	0	0	16
23:00 23:15	1	0	1	1	2	3	4
23:15 23:30	3	0	3	0	1	1	4
23:30 23:45	0	1	1	0	0	0	1
23:45 00:00	4	0	4	1	0	1	5
Total	151	148	299	95	120	215	514

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST

Start Time	Friday, Aug : 16:00	,			Device:		Miovision
		F	ull Stuc	dy Pedestriai	n Volume		
		O'CONNOR ST		.,	FIFTH AVE		
Time Period (E	NB Approach or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
16:00 16:15	2	9	11	13	8	21	32
16:15 16:30	5	7	12	10	4	14	26
16:30 16:45	6	14	20	18	11	29	49
16:45 17:00	5	3	8	6	7	13	21
17:00 17:15	9	18	27	10	7	17	44
17:15 17:30	6	1	7	18	7	25	32
17:30 17:45	7	7	14	17	7	24	38
17:45 18:00	3	8	11	10	21	31	42
18:00 18:15	9	8	17	11	13	24	41
18:15 18:30	15	21	36	19	35	54	90
18:30 18:45	3	14	17	21	29	50	67
8:45 19:00	5	17	22	20	16	36	58
19:00 19:15	7	21	28	33	39	72	100
19:15 19:30	10	17	27	25	48	73	100
19:30 19:45	3	9	12	14	21	35	47
19:45 20:00	12	7	19	17	17	34	53
20:00 20:15	5	10	15	3	4	7	22
20:15 20:30	10	3	13	3	2	5	18
20:30 20:45	8	0	8	4	1	5	13
20:45 21:00	6	6	12	0	4	4	16
21:00 21:15	11	4	15	3	4	7	22
21:15 21:30	17	10	27	8	11	19	46
21:30 21:45	4	5	9	6	5	11	20
21:45 22:00	13	10	23	8	14	22	45
22:00 22:15	16	9	25	35	28	63	88
2:15 22:30	22	6	28	49	20	69	97
2:30 22:45	26	3	29	20	17	37	66
22:45 23:00	0	10	10	6	7	13	23
23:00 23:15	0	3	3	1	0	1	4
23:15 23:30	0	0	0	0	1	1	1
23:30 23:45	n	7	7	n	9	9	16

Transportation Services - Traffic Services

Turning Movement Count - Study Results FIFTH AVE @ O'CONNOR ST

Survey Date: Friday, August 05, 2022 WO No: 40983 Start Time: 16:00 Device: Miovision

Full Study Heavy Vehicles

			0,00	ONNO	R ST				,	,,		FII	FTH A	VE					
	No	orthbo	und		Sc	uthbou	ind			Е	astbou	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
16:00 16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	2	1
17:00 17:15	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1
17:15 17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	2	1
17:45 18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00 18:15	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1	1
18:15 18:30	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1	1
18:30 18:45	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	1	2	3	2
18:45 19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:00 19:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15 19:30	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	1	1
19:30 19:45	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	1	1	1
19:45 20:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:00 20:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:15 20:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:30 20:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:45 21:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:00 21:15	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	2	1
21:15 21:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:30 21:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:45 22:00	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	2	3	2
22:00 22:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22:15 22:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22:30 22:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22:45 23:00	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	3	3	3	3
23:00 23:15	0	1	0	1	0	0	0	1	2	0	0	0	0	0	0	0	0	0	1
23:15 23:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:30 23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:45 00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total: None	0	1	2	3	1	0	0	9	12	2	5	0	7	0	0	5	13	20	16

June 16, 2023 June 16, 2023 Page 6 of 8 Page 7 of 8

Transportation Services - Traffic Services

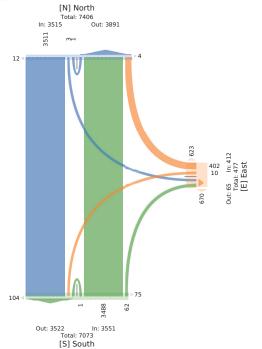
Turning Movement Count - Study Results FIFTH AVE @ O'CONNOR ST

Survey Date:	Friday, August 05, 2022		WO No:	40983
Start Time:	16:00		Device:	Miovision
		Full Study 15 Min	ute U-Turn Total	
		O'CONNOR ST	FIFTH AVE	

			O'CONNO	R ST	FI	FTH AVE	
	Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	16:00	16:15	0	0	0	0	0
_	16:15	16:30	0	0	0	0	0
-	16:30	16:45	0	0	0	0	0
_	16:45	17:00	0	1	0	0	1
_	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
_	17:45	18:00	0	0	0	0	0
	18:00	18:15	0	0	0	0	0
	18:15	18:30	0	0	0	0	0
	18:30	18:45	0	0	0	0	0
	18:45	19:00	0	0	0	0	0
	19:00	19:15	0	0	0	0	0
	19:15	19:30	0	0	0	0	0
	19:30	19:45	0	0	0	0	0
	19:45	20:00	0	0	0	0	0
	20:00	20:15	0	0	0	0	0
	20:15	20:30	0	0	0	0	0
Ξ	20:30	20:45	0	0	0	0	0
	20:45	21:00	0	0	0	0	0
Ξ	21:00	21:15	0	0	0	0	0
	21:15	21:30	0	0	1	0	1
Ξ	21:30	21:45	0	0	0	0	0
	21:45	22:00	0	0	0	0	0
Ξ	22:00	22:15	0	0	0	0	0
	22:15	22:30	0	0	0	0	0
Ξ	22:30	22:45	0	0	0	0	0
Ξ	22:45	23:00	0	0	0	0	0
Ξ	23:00	23:15	0	0	0	0	0
Ξ	23:15	23:30	0	0	0	0	0
Ξ	23:30	23:45	0	0	0	0	0
	23:45	00:00	0	0	0	0	0

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617

Leg	North					East					South					
Direction	Southbou	nd				Westbour	nd				Northbou	nd				
Time	T	L	U	App	Ped*	R	L	U	App	Ped*	R	T	U	App	Ped*	
2022-05-03 6:00AM	115	0	0	115	0	5	0	0	5	15	2	105	0	107	16	2
7:00AM	296	1	0	297	2	13	0	0	13	47	1	302	0	303	34	6
8:00AM	359	0	0	359	3	30	0	0	30	77	5	507	0	512	24	9
9:00AM	181	0	0	181	2	14	0	0	14	40	2	230	0	232	3	4
11:00AM	244	0	0	244	4	32	0	0	32	96	6	229	0	235	6	
12:00PM	452	0	0	452	1	58	1	0	59	205	10	435	0	445	13	9
1:00PM	455	0	0	455	1	56	2	0	58	155	9	455	0	464	22	9
3:00PM	279	0	0	279	0	37	1	0	38	118	6	234	0	240	7	
4:00PM	571	1	0	572	1	68	2	0	70	296	7	509	0	516	29	11
5:00PM	559	1	1	561	2	89	4	0	93	244	14	482	1	497	25	1
Total	3511	3	1	3515	16	402	10	0	412	1293	62	3488	1	3551	179	74
% Approach	99.9%	0.1%	0%	-	-	97.6%	2.4%	0%	-	-	1.7%	98.2%	0%	-	-	
% Total	47.0%	0%	0%	47.0%	-	5.4%	0.1%	0%	5.5%	-	0.8%	46.6%	0%	47.5%	-	
Lights and Motorcycles	3258	0	1	3259	-	369	10	0	379	-	58	3237	1	3296	-	65
% Lights and Motorcycles	92.8%	0%	100%	92.7%	-	91.8%	100%	0%	92.0%	-	93.5%	92.8%	100%	92.8%	-	92.
Heavy	173	0	0	173	-	23	0	0	23	-	0	152	0	152	-	3
% Heavy	4.9%	0%	0%	4.9%	-	5.7%	0%	0%	5.6%	-	0%	4.4%	0%	4.3%	-	4.
Bicycles on Road	80	3	0	83	-	10	0	0	10	-	4	99	0	103	-	1
% Bicycles on Road	2.3%	100%	0%	2.4%	-	2.5%	0%	0%	2.4%	-	6.5%	2.8%	0%	2.9%	-	2.0
Pedestrians	-	-	-	-	15	-	-	-	-	1271	-	-	-	-	179	
% Pedestrians	-	-	-	-	93.8%	-	-	-	-	98.3%	-	-	-	-	100%	
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	22	-	-	-	-	0	
Dicycles on Crosswalk																


^{*}Pedestrians and Bicycles on Crosswalk, L: Left, R: Right, T: Thru, U: U-Turn

Page 8 of 8 1 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

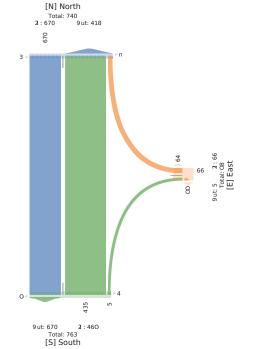
Deboto 14 - CUVID - DAING 31 & MUNICLE WAY - INCL.
The May 3, 2022 — 9-30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5360614-CUVID - DAINS ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
F M leaf.ngt30 F M h(130 F M6
F:: Aaa--e-19 P)C asi Md/daryr:e-, c eaHy, l ei e-@las-, v kyr:e- ds Bdai , v kyr:e- ds
Adr-Ra£l6
F:: MdHwesG
Intt (110 g), 9dra@lst 1478(1103, H048g85D

	_					_	_									_
9eP	OdoG					Ja-C					Edu G					
mitter Cirls	EduG. dus	si				S e-Cdus	i				OdoG. dusi					
Tlwe	T	9	W	FNN	l ei U	В	9	W	FNN	l ei U	В	T	W	FNN	l ei U	ls C
2022h04h03 gt30F M	(3	0	0	(3	5	50	0	0	50	5I	3	5I 0	0	5I 3	2	21
gtI 4F M	52I	0	0	52I	0	(0	0	(24	2	54D	0	54(I	2(
(t00F M	(I	0	0	(I	0	D	0	0	D	25	0	52(0	52(2	23
(t54F M	gD	0	0	gD	2	D	0	0	D	5(2	505	0	503	5	5(
Td@:	3(g	0	0	3(g	3	33	0	0	33	D(D	42D	0	43I	((8
* FNvidar)	500*	0*	0*	h	h	500*	0*	0*	h	h	573*	(g7D*	0*	h	h	
* TdG:	I52*	0*	0*	I572*	h	371*	0*	0*	37 *	h	07D*	4I 78*	0*	4473*	h	
1 c %	07g00	h	h	07g00	h	07g00	h	h	07g00	h	07824	07g3D	h	07g3I	h	07g2
91P)Gasi Md@doryr:e-	3DD	0	0	3DD	h	2D	0	0	2D	h	4	ID(0	I gI	h	gg
* 91P)Gasi Md@loryr:e-	(17D*	0*	0*	(17D*	h	g57g*	0*	0*	g57g*	h	D67I*	(07(*	0*	(078*	h	(270*
c eaHy	20	0	0	20	h	4	0	0	4	h	0	30	0	30	h	4
* c eaHy	470*	0*	0*	470*	h	5472*	0*	0*	5472*	h	0*	47D*	0*	478*	h	47D*
v Iryr:e- ds Bdai	5	0	0	5	h	5	0	0	5	h	2	5g	0	20	h	2:
* v lryr:e- ds Bdai	073*	0*	0*	073*	h	370*	0*	0*	370*	h	2g78*	37/*	0*	37D*	h	273*
l ei e-Glas-	h	h	h	h	3	h	h	h	h	D4	h	h	h	h	(
* 1 ei e-Glas-	h	h	h	h	500*	h	h	h	h	(I7(*	h	h	h	h	500*	
v Iryr:e- ds AodRa:L	h	h	h	h	0	h	h	h	h	I	h	h	h	h	0	
* v lryr:e- ds AodRa:L	h	h	h	h	0*	h	ŀ	h	h	475*	h	h	h	h	0*	

^Ul ei e-@las- asi v lryr:e- ds Aod--Ra:L79t 9ebÇBt B1P) ÇTt T) ou, Wt WhTuos


2 of 8 3 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022

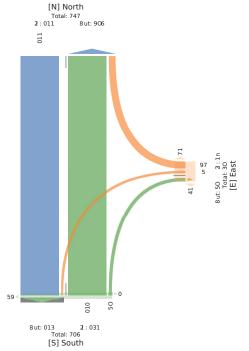
AM Peak (8:30 AM -9:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947989, Location: 45.399403, -75.68617

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2022
Mfl lay Lean g ZiB0 LM (tiB0 LM6
: Ak- A9599 giP (90 as I Mi G dryo As I reacy, Lel e9 (Jas S, Hiōyo As 9 is vial, Hiōyo As 9 is - d 995a As 6
: A Whice Res 9
k hml Dram 1 i oa (fish 1786 mtl 03, (D78545 t D

Ldi cff el. yh- IVŷ i bf (GaB) t 00 - i s9@Abd ff s kc OeNeas, f O, p 2K 76m - :
,, p =, .

1eP	Oi dCi					Ja9C					Ei uŒ					
k RieoŒis	Ei uG. i us	sl				S e9Ciusl					Oid).iusl					
TIRe	Т	1	W	: NN	Lel U	v	1	W	: NN	Lel U	v	T	W	: NN	Lel U	v εC
2022(07(03 t 2lB0LM	t 0D	0	0	t 0D	0	t3	t	0	tΙ	73	7	t 0m	0	ttI	5	237
t 2H 7LM	t 25	0	0	t 25	0	t D	0	0	t D	Im	3	t t m	0	t 22	0	257
t l00LM	ttm	0	0	ttm	0	t5	0	0	t5	3t	3	t 2D	0	t 30	I	257
t lt 7LM	ttI	0	0	ttI	0	t3	0	0	t3	Im	t	t 0m	0	tt0	m	230
Ti QA	I 55	0	0	I 55	0	7m	t	0	50	t 42	t 2	I5I	0	I DS	t m	t 002
* : NNi ao)	t 00*	0*	0*	((m#88*	t 8D*	0*	((287*	nD87*	0*	(((
* Ti G/	I 587*	0*	0*	I 587*	(78n#	* 80	0*	580*	(t 82*	I588*	0*	I D87*	((
Lr %	08n82	((0an82	(08454	02270	(08142	(08770	08n82	(08x8t	(08mi3
1 PP) © asl Mi€doyoAe9	121	0	0	I2I	(72	t	0	73	(t t	I3t	0	II2	(nt n
* 1PP) Oasl Mi@doyo&e9	nt 80*	0*	0*	nt 80*	(448 *	t 00*	0*	448*	(nt 8D*	n28n#	0*	n28ı#	(mt 8D*
r eacy	3t	0	0	3t	(D	0	0	D	(0	20	0	20	(74
* r eacy	58D*	0*	0*	58D*	(tt8m*	0*	0*	tt8D*	(0*	188*	0*	182*	(781*
HRoyo.Ae9is vial	t t	0	0	tt	(0	0	0	0	(t	t 3	0	tΙ	(27
* HRoyo Az9is vial	28 *	0*	0*	28*	(0*	0*	0*	0*	(48*	284*	0*	28n#	(287*
Lel e9@fas9	((((0	((((t 4t	((((t m	
* Lel e9@las9	(((((((((m87*	((((t 00*	(
HlōyoAz9 i s - di 99BaAu	((((0	((((ī	((((0	
* HRyoAr9is - di99BaAn	(((((((((087*	((((0*	(

ULel e9@las9asl HlöyoAs9is - di 99BaAs81h1ebÇvhvlP)ÇThT)du, WhW(Tuds


4 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

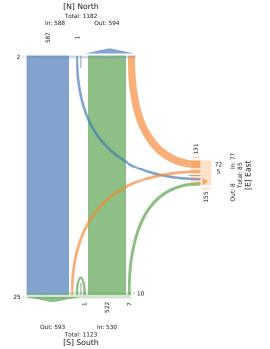
5300014 - CUVID - DAING SI @ MURICHE WAY - MAY... - INC.
Tue May 3, 2002 - DAING SI @ MURICHE WAY - MAY... - INC.
Tue May 3, 2002 - MAPPay kea(8 2-30 kM) : -30 kM)
I GS GILLE 8, Aghtl an P Middoryr@L, c early, kePelto\nnI, v Ayr@Ldn BdaP, v Ayr@Ldn s dillRac()
I GCMdFewent.
In - D47D5D i drat\nl-4. GDD003, 97. G51: 7

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Tue May 3, 2022 FM Feal Ing h FM (hg h FM6(: Ae-a9Feal 1 Pu-) 9 CClasses II dur o aH/ MPdP-B/Bhs, 1 ea/sy, Fevese-daHs, RdbyBhs PHwPav, RdbyBhs PH C-Pssk ad 6

) 9MPAemeHs IDg4n7484, i PBacPHgnh5344n03, (7h5 8. t 7

i eo	OP-a					J asc					EPua					
Dd-eBrdPH	EPua bPul	Hv				S esdPuF	Š/				OP-α bPu	ΗV				
Tdne	T	i	W) NN	FevU	W	i	W) NN	FevU	W	T	W) NN	FevU	IHc
2022(0h(03 ng hFM	t3t	0	0	t3t	0	t 4	t	0	20	. 4	0	t n3	0	t n3	n	2
ng80FM	t.t	0	0	t.t	t	t3	0	0	t3	. 7	t	tt7	0	118	h	2
ngnhFM	t nh	0	0	t nh	0	t 8	t	0	t 4	84	t	t 3n	0	t 3h	t n	- 2
hg0FM	t h0	t	0	t ht	t	22	3	0	2h	1.	h	t 28	t	t 3n	t 2	
TPas	h87	t	0	h88	2	72	h	0	77	28.	7	h22	t	h30	3h	t
*) NN-PaBr	4438*	052*	0*	((435h*	. 5h*	0*	((t 53*	485h*	052*	((
* TPas	n43:*	05 *	0*	n452*	(. 50*	05n*	0*	. 5n*	(05*	n357*	03 *	nn5n*	(
F1 %	03848	((05848	(057. t	05nt 7	(05720	(053h0	0988.	052h0	05400	(05
i dor os aHv MPdP-ByBBes	hn4	0	0	hn4	(. h	h	0	70	(7	n4t	t	n44	(t
* i dores aHv MPdP-ByBBes	435h*	0*	0*	435n*	(4053*	t 00*	0*	4054*	(t 00*	4n3 *	t 00*	4n52*	(43
1 eaAy	t h	0	0	t h	(2	0	0	2	(0	t 2	0	t2	(
* 1 eaAy	25 *	0*	0*	25 *	(25B*	0*	0*	25 *	(0*	253*	0*	253*	(2
RdByBBes PHwPav	23	t	0	2n	(h	0	0	h	(0	t 4	0	t 4	(
* RdByBBes PHwPav	354*	t 00*	0*	n3 *	(. 54*	0*	0*	. 5h*	(0*	35 *	0*	35 *	(n
Feveso-diHs	((((2	((((283	((((3h	
* Feveso-daHs	((((t 00*	((((4450*	((((t 00*	
RdByBles PHC-Pssk a9	((((0	((((3	((((0	
* RdByB9es PHC-Pssk a9	((((0*	((((t 50*	((((0*	


UFevesc-daHs aHv RdByBBes PHC-Pssk ag 5i gi efc, wgwdorc, TgTr-u, WgW(Tu-H

6 of 8

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

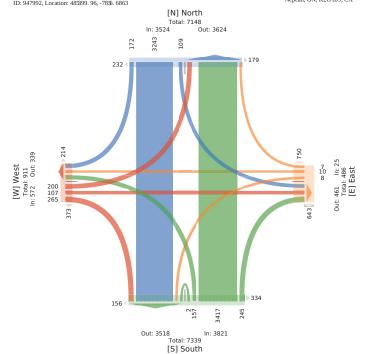
5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Tue May 3, 2021 9 - 8 - AM) 91 Cesall.AeaPi gus
AM AeaPi (8 - AM 9-8 - AM) 91 Cesall.AeaPi gus
Hit Lamend loct dia vB Mgigls/Ren, i eaCy, AeBenbloavn, wdkyRlen gv mgaB, wdkyRlen gv
t sgml aIP)
Hit MgcDevth
47 85(, 565, dgRalfqv8(- B55(03, 9 - b6b: .

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANKS 1 (@ HULMWOULD AVE - mi... - mi...
The May 3, 202 Fall Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947992, Location: 48599. 96, -785s. 6863

7 of 8

Leg	North						East						South						West					1
Direction	Southb	ound					Westbo	und					Northb	ound					Eastbox	ind				
Time	R	T	L	U	App	Ped*	R	T	L	U	App	Ped*	R	T	L	U	App	Ped*	R	T	L	U Ap	p Ped⁴	Int
2022-08-03 6:00AM	9	108	3	0	117	8	0	0	0	0	0	1.	2	99	7	0	10.	6	11	0	7	0 1	. 12	2
7:00AM	10	260	3	0	273	11	0	1	1	0	2	46	6	299	-	0	313	21	32	2	20	0 8	4 23	6
.:00AM	20	331	11	0	362	30	2	3	0	0	8	. 2	23	496	10	0	829	42	26	19	22	0 6	7 81	9
9:00AM	10	169	2	0	1.1	18	0	2	0	0	2	41	10	227	11	1	249	1.	14		12	0 3	4 28	4
11:00AM	10	219	-	0	237	28	1	0	1	0	2	106	12	227	9	0	24.	24	16	4	9	0 2	9 27	8
12:00PM	19	436	1.	0	473	73	2	2	0	0	4	223	32	437	18	0	4.4	79	27	13	3.	0 7	. 106	10
1:00PM	26	416	13	0	488	4.	1	0	1	0	2	206	30	484	29	0	813	80	3.	18	21	0 7	4 .6	10
3:00PM	12	266	10	0	2	29	0	0	1	0	1	132	21	242	12	0	278	40	17	10	18	0 4	2 8.	6
4:00PM	28	821	24	0	870	77	0	1	3	0	4	266	81	468	30	0	846	112	47	19	32	0 9	. 97	12
8:00PM	31	820	17	0	86.	9.	1	1	1	0	3	273	8.	471	26	1	886	9.	37	17	24	0 7	. 102	12
Total	172	3243	109	0	3824	411	7	10	-	0	28	1393	248	3417	187	2	3. 21	490	268	107	200	0 87	2 8.7	79
% Approach	459%	9250%	351%	0%	-	-	2. 50% 4	1050%	3250% (196		-	654%	. 954%	451%	051%		-	4653%	1.57%	3850% (196		П
% Total	252%	405 %	154%	0%	1451%		051%	051%	051% (196	053%	-	351%	4350%	250%	0%	1.51%	-	35%	153%	258% (1% 7529	6	
Lights and Motorcycles	164	3027	108	0	3296		2	0	0	0	2	-	227	3164	144	2	3837	-	244		191	0 82	3	73
% Lights and																								
Motorcycles							2.56%	0%	0% 0		. 50%	-	9257%		915%	100% 5					9898% (1% 91549		923
Heavy	3	147		0	182		0	0	1	0	1	-	1	176	4	0	1.1		12	3		0 2	_	- 3
% Heavy	157%		15 %		43%		0%		1258% (196	450%	-	054%		298%		457%				450% (1% 4509		49
Bicycles on Road	8	69		0	76		8	10	7	0	22	-	17	77	9	0	103		9	16	1	0 2	_	- 2
% Bicycles on Road	259%	23%	15 %	0%	252%		7154%	100%	. 798% (196.	. 50%	-	639%	253%	857%	0%	257%		354%	1850%	058% (1% 4989		25
Pedestrians	-			-	-	3. 6	-		-	-	-	1364	-	-	-	-	-	4.0		-	-		- 877	
% Pedestrians	-			-	-	9359%	-		-	-	- 5	9759%	-	-	-	-	- 5	9. 50%		-	-		- 9. 58%	
Bicycles on Crosswalk	-			-	-	28	-		-	-	-	29	-	-	-	-	-	10		-	-		- 10	
% Bicycles on Crosswalk	-			-		651%						251%	-					250%				-	- 157%	


*Pedestrians and Bicycles on Crosswalk5L; Left, R; Right, T; Thru, U; U-Turn

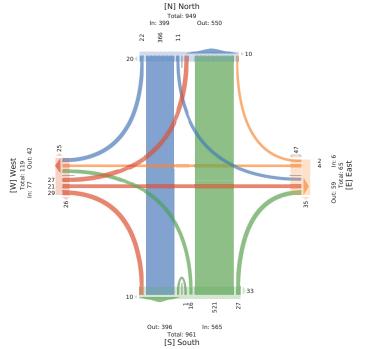
8 of 8 1 of 8

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5360614 - CUVID - DAINN 31 & HOLLWWOOD AVE - M... - INNC Tue May 3, 2022 — 9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 947992, Location: 485399. 96, -7856. 6863

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

9eP	CobO						Ja-C						EduG						S e-C						
mker Ods	EduG 5	dusi					S e-G	lus i					OdoG5	dusi					Ja-Gd	lus i					
The	В	Т	9	W	FNN	l ei U	В	Т	9	W	FNN	l ei U	В	T	9	W	FNN	l ei U	В	T	9	W	FNN	l ei U	ls C
2022h04h03 gt30F M	I	gf	I	0 0	(2	I	2	0	0	0	2	f8	8	f3(2	0	fID	(I	(8	0	f(f8	28
gtI 4F M	g	ff8	2	0	f 28	ff	0	2	0	0	2	24	ff	f 44	3	0	f8(f8	ff	I	(0	21	f0	32
(t00F M	D	(2	. 0	0	((f0	0	f	0	0	f	2f	4	ff(g	f	f33	4	f0	8	D	0	23	f2	2
(tf 4F M	3	DE) 2	0	g2	4	0	f	0	0	f	20	4	f0g	3	0	ff8	f3	I	2	4	0	ff	f 3	2f
TdG:	22	388	ff	0	3((30	2	I	0	0	8	g2	2D	42f	f8	f	484	13	2(2f	2D	0	DD	4f	fO
* FNNdar)	474*	(f7D*	2%+	0+	h	h	3373*	887D°	0+	0+	h	h	17g+	(272*	27g+	072*	h	h	3DID+	2D3+	347 *	0+	h	h	
* TdG:	27 *	3470*	f 7 *	0*	3g7f *	h	072*	07.*	0+	0+	078*	h	278*	I(7g*	f 74*	07F*	41 70°	h	27g*	270*	27B*	0*	DR+	h	
1 c %	07Bgg	070(3	073(3	h	070(8	h	h	ŀ	ı l	h	h	h	0788D	07g2f	07 3g	07240	07428	h	0784(07448	07040	h (07g28	h	078
9 IP) G asi MdGdcryr:e-	2f	311	ff	0	3DB	h	0	0	0	0	0	h	2I	IDE	f3	f	4f 0	h	2g	20	21	0	ID2	h	(4
* 9 IP) G asi MdQdryr:e-	(474*	(I70+	f 00*	0+	(172*	h	0*	0*	0+	0+	0+	h	gg (*	(078*	gf 73*	f 00*	(073*	h	(878*	(472*	gg7*	0+ (374*	h	(f74
c eaHy	f	2f	0	0	22	h	0	0	0	0	0	h	0	31	f	0	34	h	f	0	3	0	I	h	
* c eaHy	174*	47D*	0+	0+	474*	h	0+	0+	0+	0+	0+	h	0*	874*	873*	0+	872*	h	37.*	0+	ff7e	0+	472*	h	4%
v Iryr:e- ds Bdai	0	f	0	0	f	h	2	I	0	0	8	h	3	f4	2	0	20	h	0	f	0	0	f	h	
* v Iryr:e- ds Bdai	0+	073*	0+	0*	073*	h	f00*	f00*	0+	0+	f00*	h	ff7+	27(*	f 274*	0+	374*	h	0+	17g*	0+	0*	f 73*	h	270
l ei e-Glas-	h		1 1	ı h	h	24	h	ŀ	ı l	h	ı h	IB	h	h	1	ı h	h	Ιf	h	ı h	ı h	h	h	40	
* l ei e-Ghs-	h	- 1	1 1	n h	h	g373*	h	ŀ	ı l	h	h h	g(70*	h	h	ŀ	h h	h	(473*	h	h h	h	h	h	(g70*	
v Iryr:e- ds AndRa:L	h	- 1	1 1	n h	h	4	h	ŀ	ı l	h	h h	(h	h	ŀ	h h	h	2	h	h h	h	h	h	f	
* v lryr:e- ds AddRa:L	h	- 1	1 l	ı h	h	f 87D*	h	ŀ	1	h	h hi	f f 70*	h	h	1	n h	h	17D°	h	n h	ı h	h	h	270+	


^Ul ei e-@las- asi v Iryr:e- ds Aod--Ra:L79t 9e.ÇBt BIP) ÇTt T) ou, Wt WhTuos

2 of 8

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Tue May 3, 2022
AM Peak (8:30 AM - 9:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on
Crosswalk)
All Movements
ID: 947992, Location: 45.399896, -75.686563

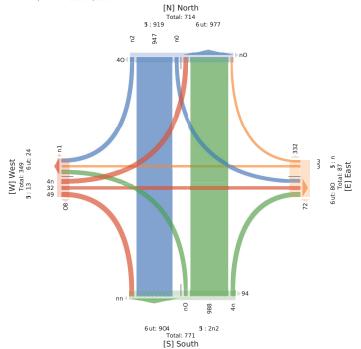
5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC Tue May 3, 2020 LM (t180 LM6 : A - A999-0 g 1970 osl Mi G dvyo-k-9, reacy, Lele9Glas9, HByo-k-9 is vial, HByo-k-9 is - d-989-a-M6 : AMMI ceRe G vk hrd Dm2, 11 caGl sh1478mm8n5, (DK7885453

Ottawa
Lolc Flel.yh-Rÿibf CGaBa
t00 -is9@AACEskd,
OeNeas, f O, p 2K 4Gm - :

3 of 8

we min Dinz, 11 ond			, (
1 eP	Oi dG						J a9C						Ei uG					П	S e9C						
k RiboŒi s	Ei uG	i usl					S e9C	usl					Oidŋ.	iusl					Ja9Cit	asl					
TIRe	v	T	1	W	: NN	Lel U	v	7	1	W	: NN	Lel U	v	T	1	W	: NN Le	lU	v	T	1	W	: NN	Lel U	иC
2022(04(03 t 2lB0LM	8	n8	3	0	t 0m	t 8	0		0	0	0	I 4	D	tt5	4	0	t 28	28	m	3	m	0	2t	30	24
t 2H 4LM	t	t 23	t t	0	t 34	21	t	t	0	0	2	58	D	tt2	4	0	t 2I	t 5	5	4	t 2	0	23	23	28
t h00LM	n	t OE	2	0	tt8	t t	0		0	0	0	10	t O	t 25	D	0	tI3	t 4	t 2	3	4	0	20	30	28
t lt 4LM	Е	ttt	I	0	t 22	t t	0		0	0	0	4D	8	tt2	t 0	0	t 30	5	D	I	5	0	t D	2t	250
Ti QA	. 24	I 3m	20	0	181	5I	t	t	0	0	2	2t 0	32	155	2D	0	424	54	3I	t 4	32	0	8t	t OI	t Omi
* : NNi ao)	472*	m07D*	17*	0*	((4070*	4070*	0*	0*	((57.*	8878*	47.*	0*	((I 270*	t 874*	3m4*	0*	((
* Ti GA	273*	I 072*	t 76*	0*	1178*	(07.*	07.*	0*	0*	072*	(27m²	127D°	274*	0* :	187 *	(37.*	t 7 *	27m²	0*	DI +	(
Lr %	0.5mi	07h0t	07/44	(07n94	((((((0785t	07h25	0.75mi	(07h2m	(07800	07000	0755D	(8 1870	(0.754
1 IP) (9 as l Mi Cidoyo Ar9	24	3n8	t m	0	112	(0	(0	0	0	(30	I 24	21	0	I Dm	(32	t2	32	0	IΒ	(mni
* 1 EP) © asl Mi Cobyo Ar9	t 00*	m07D*	n#70*	0*	mt 73*	(0+	0*	0*	0*	0*	(n878*	mt 72*	887 11 *	0* :	nt 72*	(mi7 *	8070*	t 00*	0+ r	1878*	(mt 73*
r eacy	0	3t	t	0	32	(0		0	0	0	(t	32	t	0	31	(0	2	0	0	2	(5
* r eacy	0*	DR *	470*	0*	575*	(0*	0*	0*	0*	0*	(37.*	57hf*	37D*	0*	574*	(0*	t 373*	0*	0*	274*	(572*
HRyoA9is vial	0	t 0	0	0	t O	(t	t	0	0	2	(t	m	1 2	0	t2	(2	t	0	0	3	(21
* HRoyoAr9is vial	0*	273*	0*	0*	27.*	(t 00*	t 00*	0*	0* 1	*00	(37.*	t 7hf	DH +	0*	278*	(47hf	57D*	0*	0*	37D*	(274*
Lel e9@las9	(((((52	((((208	(((((54	(((((t 02	
* Lel e9dlis 9	(((((пБ7пт	((((r	*Orm	(((((t0)+	(((((n	67 °	
HRiyoAe9 i s - di 99BaAa	(((((2	((((2	(((((0	(((((2	
* HRyoAr9 is - di99BaAs	(- ((- ((37.*	(- ((- (t 70*	((((())+	(((- ((t 7hf	


ULel e9@Bas9asl HRoyoAe9is - di 99BaAh71h1ebÇvhv IP) ÇThT) du, WhW(Tuds

4 of 8 5 of 8

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

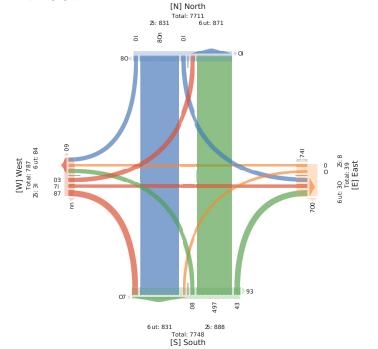
- 5360614 COVID DAING ST & HOLLWWOOD AVE M... TWIC The May 3, 2022 MSP3 1 & HOLLWWOOD AVE M... TWIC The May 3, 2022 MSP3 1 & HOLLWWOOD AVE M... TWIC MSP 1 & Gallel & Both and P. Michael & M. Ayr@Ldn BdaP, v.Ayr@Ldn s dill Rac() 1 (CMdFewent. nb D47DD2, i dratAln-45.3D06D1, 95.161513

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

55bbs14 - CUVID - DAWN 31 & FIRSTHING CONT.

THE MAY 3, 202 (1 fg h FM) (2 h Ge-ag9Feal 1 Pu) 99C3sess it for a lab MPP-lythes, 1 ea/ly, Feveschik, Rdlythes PHwPav, Rdlythes PH
C-Psk, 43 6
) 9MP/Pemeth
IDg4n7442, 1 PBndPtgnh84454, (7h8 5. h. 3

Ottawa
F-PAdvev bygCdty Pf: ccak a
t 00 CPHsce9bactPHD-,
OeNeaH,: O, p 2K hGl, C)


i eo	OP-a						J as	c					EPua						S esc						_
DdeBdPH	EPua b	PuHv					S e	scbPuHv					OP-art	PuHv					J asd P	υHν					
Tdne	W	T	i	W) NN	FevU	w	T	i	W) NN	FevU	w	T	i	W) NN	FevU	w	T	i	W) NN	FevU	III
2022(0h(03 ng hFM	h	ttn	5	0	t 27	22	0	0	t	0	t	7h	t 2	t 25	-	0	t n.	30	t n	7	5	0	24	23	31
ng80FM	5	t n7	4	0	t.n	20	0	t	0	0	t	. n	t t	tt4	n	0	t 3n	t 5	t n	3	n	0	2t	t 7	32
nghFM	7	t 33		0	t n.	t.	0	0	2	0	2	. 5	t3	ttn	5	0	t 3h	3h	t t	n	t t	0	2.	27	3
hg00FM	7	t n2	n	0	th3	32	0	t	0	0	t	72	t 3	t 20	7	0	t n0	37	t 2	3		0	2t	27	3
TPa9	27	h3.	27	0	h40	40	0	2	3	0	h	274	n4	n5t	2h	0	hhh	t 20	ht	t 7	24	0	47	4n	t2
*) NN-PaBr	n8 *	4085*	n8 *	0*	((0*	*080n	. 080*	0*	((585*	5.87*	n8h*	0*	((h28 *	t 78h*	2484*	0*	((
* TPa9	282*	n380*	282*	0* :	n788*	(0*	*280	082*	0*	08h*	(384*	358 *	280*	0* :	m8h*	(na *	t 8h*	288*	0*	785*	(
F1 %	085h7	0840.	08722	(08543	(((((((084t 7	0842h	085h7	(08425	(0&7h	08h7t	08 h4	(1	0 1380	(084
i dores aHv MPdP-ByBBes	2n	h0h	2h	0	hhn	(0	0	0	0	0	(nn	nh.	2n	0	h2n	(n5	t.	24	0	43	(tt
* idbresaHv MPcP-ByBBes	5584*	4n82*	428 *	0+	4384*	(0+	0*	0*	0*	0+	(5485*	4n&*	4. 80*	0* 4	ln8h*	(4n8 *	4n8 +	t 00*	0+ 4	th8t*	(438
1 eaAy	0	t 3	t	0	tn	(0	0	0	0	0	(0	t n	0	0	tn	(t	0	0	0	t	(
* 1 eaAy	0*	28h*	387*	0*	28n*	(0+	0+	0+	0*	0+	(0*	284*	0+	0*	28h*	(280*	0*	0*	0*	t 80+	(28
RdByBBs PHwPav	3	t 5	t	0	22	(0	2	3	0	h	(h	t t	t	0	t7	(2	t	0	0	3	(
* RdByBBs PHwPav	t t 8 *	38h*	387*	0*	387*	(0*	t 00*	t 00*	0* 1	t 00*	(t 082*	28*	n80*	0*	38 *	(384*	h84*	0*	0*	38 *	(38
FevesodiH	(((((5t	(((((273	(((((t 20	(((((4t	
* FevesodiHs	(((((-	*080	(((((-	4785*	(((((1	00*	(((((4	4. B*	
RdByBles PHC-Pssk a9	(((((4	(((((-	(((((0	(((((3	
* RdByBles PHC-Pssk a9	((((- (1	080*	(((((282*	- (- (- (- (- (0+	- (- (- (-(- (382*	

^UFevesc-daHs aHv RdByBBes PHC-Pssk a9 8i gi efç wgwdorç TgTr-u, WgW(Tu-H

6 of 8 7 of 8

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANK ST @ HOLLMWOOD AVE - M... - TMC
Tue May 3, 2021 9 - 8 - AM) 91 CesalLAeaPi gus
AM AeaPi (8 - AM 9 - 8 - AM) 91 CesalLAeaPi gus
Hit Lamend Icerdia vB Mgigls/Ren, i eaCy, AeBenbloavn, wdkyRlen gv mgaB, wdkyRlen gv
t sgml aIP)
Hit MgcDevth
47 85(, 552, dgRifkgv8(-685515b, 9 - 6b1b-b3

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947024, Location: 4859... 2, -. 8578408

	, .	85678														
Leg	North					S est										
Direction	Eouthbou					Northbou					Westbound					
Гime	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	
2022-08-03 6:00AM	2	. 7	0	70	1	114	26	0	140	0	3.	1	0	37	13	2
.:00AM	1.	237	0	288	3	30.	101	0	407	0	112	1	0	113	20	
7:00AM	26	314	0	340	2	8. 1	12.	0	697	0	176	1	0	17.	42	12
9:00AM	8	1	0	172	2	284	89	0	313	4	66	3	0	69	17	8
11:00AM	20	207	0	227	2	236	48	0	271	0	6.	1	0	67	28	8
12:00PM	36	410	0	446	6	467	104	0	8. 2	2	181	2	0	183	60	11
1:00PM	36	430	0	466	4	496	92	0	877	1	14.	3	0	180	69	12
3:00PM	31	272	0	313	3	267	. 9	0	34.	1	77	0	0	77	39	
4:00PM	43	83.	0	870	1	889	209	0	. 67	0	231	3	0	234	66	18
8:00PM	47	814	0	862	2	846	146	0	692	2	17.	3	0	190	78	14
Total	264	3177	0	3482	26	3719	977	0	470.	10	12.2	17	0	1290	43.	98
% Approach	. 56%	9254%	0%	-	-	. 954%	2056%	0%	-	-	9756%	154%	0%	-	-	
% Total	257%	3354%	0%	3652%	-	4050%	1053%	0%	8053%	-	1353%	052%	0%	1398%	-	
Lights and Motorcycles	282	2929	0	3171	-	3813	988	0	4467	-	1226	17	0	1244	-	77
% Lights and Motorcycles	9838%	9159%	0%	9251%	-	9250%	965 %	0%	9259%	-	9654%	100%	0%	9654%	-	935
Heavy	8	18.	0	162	-	166	11	0	1	-	4	0	0	4	-	3
% Heavy	159%	459%	0%	45 %	-	453%	151%		35 %	-	053%		0%	053%	-	35
Bicycles on Road		102	0	109	-	140	22	0	162	-	42	0	0	42	-	3
% Bicycles on Road	25 %	352%	0%	352%	-	35 %	252%	0%	354%	-	358%	0%	0%	353%	-	35
Pedestrians	-	-	-	-	21	-	-	-	-	10	-	-	-	-	420	
% Pedestrians	-	-	-	-	7057%	-	-	-	-	100%	-	-	-	-	9631%	
Bicycles on Crosswalk	-	-	-	-	8	-	-	-	-	0	-	-	-	-	1.	
% Bicycles on Crosswalk					1952%					0%					359%	

*Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

1 of 8 8 of 8

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

Deboto 14 - CUVID - DAINN 51 & WILLTON CRES - MA... - INC Tue May 3, 2022 ... - 1202 ...

[N] North Total: 7289 In: 3452 Out: 3837 3188 264 12 [W] West Total: 2542 In: 1290 Out: 1252 1272 226 988

> Out: 4460 In: 4807 Total: 9267 [S] South

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

53000 14 - COVID - BANK 51 @ WILLION CRES - MA... - IMC
Tue May 3, 2022
F M | eal.ngth; F M 6: th; F MA
F - 9 allel F/9, Sil ado Mrir drlyHel, v eaBy, l eoelic/adl, R)HyHel r d wrao, R)HyHel r d
9 cr Ilk a-LA
F - Mr Bemedil
IDt: 4g024, PrHi)r dt 4(3:8882, 68(3:5g(40))

PeC	Ords					Jruis					E eli					
D)œH)r d	Jruis.ru	do				Ords.ru	do				Sali. rudo					
T)me	W	T	W	FNN	l eoU	T	P	W	FNN	l eoU	W	P	W	FNN	l eoU	Idi
202260(603 gth(F M	8	5(0	82	0	h23	2:	0	h(2	0	4h	0	0	4h	h3	25(
gt30F M	h0	8(0	g(2	h((34	0	hg:	0	(h	0	0	(h	hg	32(
gt4(FM	(hh0	0	hh(0	hg(38	0	222	0	(4	0	0	(4	8	3: h
: t00F M	3	h0h	0	h04	2	h4(3g	0	hg3	0	35	h	0	38	h0	324
Tria-	2(3(h	0	385	4	50g	h3g	0	845	0	hg2	h	0	hg3	4g	h30(
* FNNraHs	575*	:374*	0*	6	6	gh7(*	hg7(*	0*	6	6	::7*	07(*	0*	6	6	6
* Tria-	h7 *	257.*	0*	2g7g*	6	4575*	h075*	0*	(872*	6	h37 *	07h*	0*	h470*	6	6
1 v %	0752(078: 5	6	07gh5	6	07gh8	07552	6	07g2:	6	07g24	072(0	6	07g2:	6	07g2(
P)Csi1 ado Mr ir cHyHe1	24	330	0	3(4	6	(3h	h2:	0	550	6	h88	h	0	h8g	6	hh: 2
* P)Csi1 ado MrircHyHe1	: 570*	: 470*	0*	: 47h*	6	g873*	:37(*	0*	gg7(*	6	:873*	h00*	0*	: 873*	6	: h73*
v eaBy	h	h8	0	hg	6	4h	2	0	43	6	h	0	0	h	6	52
* v eaBy	470*	47g*	0*	47g*	6	578*	h74*	0*	(7g*	6	07(*	0*	0*	07(*	6	4%*
R)HyHe1rd wrao	0	4	0	4	6	35	8	0	43	6	4	0	0	4	6	(h
* R)HyHe1rd wrao	0*	h7h*	0*	h7h*	6	(7*	(7h*	0*	(7g*	6	272*	0*	0*	272*	6	37 *
l eoe1ic)ad1	6	6	6	6	2	6	6	6	6	0	6	6	- 6	6	48	
* l eoe1ic)ad1	6	6	6	6	(070*	6	6	6	6	6	6	6	6	6	: 87 *	6
R)HyHe1 r d 9 cr 11k a-L	6	6	6	6	2	6	6	6	6	0	6	6	- 6	6	h	
* R)H/He1rd9cr1lka-L	6	6	6	6	(070*	6	6	6	6	6	6	6	6	6	27h*	6

Ul eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L7Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

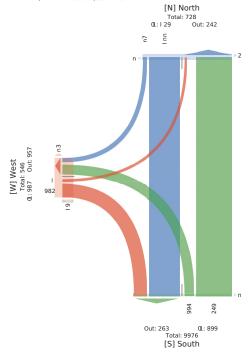
2 of 8 3 of 8

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
AM Peak (8:-9 AM) 1:-9 AMC
Ass.Lsairei (glt nd aor McctHyvsei, BeaRy, Pereidhaoi, whyvsei co mcar, whyvsei co LtHi II akC
Ass.McReDeod
47:158025, gcvadro: 59.316662,)69.189509

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2022
Mfl lay Lean g 2180 LM (t 180 LM6
: Ak- M9599 1970 gas I Mi G dryo Ak-9; r eacy, Lel e 90dlas 9, Hilloyo Ak-9 is v i al , Hilloyo Ak-9 is - d 3958 al

Ottawa
Lolc'Flel.yh-Rÿibf@GaBa
t00 -is9@iAAdEskd,
OeNeas, f O, p 2K 40m - :

Oi di)					JiuG					E e9C					
JiuG.ius	1				OidG.ius	il				Sa9Ci usl					
v	T	W	: NN	Lel U	T	1	W	: NN	Lel U	v	1	W	: NN	Lel U	vs C
D	n2	0	t 00	0	t 22	34	0	t 48	2	34	2	0	38	t 8	2mi
D	tt2	0	t 20	4	t 23	28	0	t 40	0	15	0	0	15	t 5	3t 5
4	tt4	0	t 20	Ţ	t 35	23	0	t 4m	0	40	t	0	4t	t 4	330
D	t 03	0	ttt	1	t 20	24	0	tI4	0	3I	t	0	34	20	2mt
. 2m	I 22	0	I4t	8	40t	t t 0	0	5t t	2	t 54	I	0	t 5m	5D	t 23t
571*	n875*	0*	((D270*	t DØ*	0*	((n875*	27/*	0*	(((
27/*	3I 73*	0*	3575*	(I 078*	Dhr	0*	I n/5*	(t 37I *	073*	0*	t 378*	((
07h05	07h08	(07h80	(07h2I	078125	(07h54	(OTEN I	07400	(07218	(07hBI
2D	3D4	0	It3	(I 5I	0.11	0	48I	(t St	I	0	t 54	(t t 42
n575*	m 2*	0*	m 75*	(n275*	t 00*	0*	n87h#	(n875*	t 00*	0*	n875*	(n875*
t	24	0	25	(2I	0	0	2I	(t	0	0	t	(4t
371*	47h₹	0*	47D*	(I 7D*	0*	0*	37h#	(075*	0*	0*	075*	(17*
0	t 2	0	t2	(t 3	0	0	t3	(3	0	0	3	(2E
0*	27D*	0*	278*	(275*	0*	0*	27.*	(t 7D*	0*	0*	t 7D*	(273*
((((5	((((2	((((58	
((((D478*	((((t 00*	((((mDP1*	(
((((t	((((0	((((t	
									0*					t 74*	
	v D D 4 D 2m 57* 27* 0705 2D n65* t 37*	Jiufj. ius V T T T T T T T T	Video Vide	Judy, us T W : NN	Ji i j j i i j i j i j i j i j i j i j	Ji i j j i i j i i j i j i j i j i j i	Ji of, live	Ji i j j i i i i i i i i i i i i i i i			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

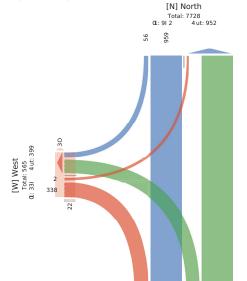

4/ :158025, g cvadtco: 59.316662, J69.189509	[N] North Total: 728 In: 453
	489
[W] West Totals 403 In: 924 out: 934 934 95 96 96 97 97 97 98 99 99 99 99	4 * 9
	942
	0 ut: 844 In: 503 Total: 9657 [S] South

4 of 8 5 of 8

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5300014 - CUVID - DAINN ST & WILLTON CRES - MA... - INVC TUE May 3, 2020 kM 9: -30 kM) 1 Gs Gillel & Aghtl an P Midror yr @L, c early, kePelto\u00e4nl, v Ayr @Ldn BdaP, v Ayr @Ldn s dill Rac() 1 (CMdfewent. nb - D47024, i drat\u00e4ln-45.310662, 955.175405

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC


5566814 - COVID - BANK Tue May 3, 2022 FM Feal 13rgt FM hgrgt F P –) -aCCCIs idorCacHM1:) ACCva-l (M(h6:	eAa Fe	al 9	1uA			: R1aH,	Biv	yv-eC1c			F	AL: il	OtheH. yn)	tta i i y 1 t	W
P – M1: ek ecrC													∩eN	f 00) 1 eac, 6 O.		
nh nDg402g, s 1vari1cngt 731 sed	08882, H	8t 754t g	0t			Llum					E eft		00.0	, 0 0,	, p zrc	
s ed I iAevri1c	J 1uro. 1u	-11				O1Ao, 1uc					E. eCr SaCr. 1ucF	,				
Tik e	R R	Т	W	PNN			n s	W	P NN	FeHU	R R	1 S	W	PNN	FeHU	_
2022h0t h03 3net FM		f g2	0	fr4	0		35	0	f85	renu 0	t3	0	0	13	f3	
gi00FM		f 3f	0	fgD	0		18	0	f85	0	g8	2	0	gD	f5	
grift FM		f 33	0	fgg	0		82	0	2f2	0	80	f	0	8f	fr	
giB0FM		f 3D	0	f g2	0		g2	0	f43	0	t 5	0	0	t5	f5	
Tlra	g4	t gt	0	t DB	0	t g0	208	0	8g8	0	225	3	0	22D	50	
* PNN4avo		Di 7D*	0*	h	h		2878*	0*	h	h	D478*	f 73*	0*	h	h	
* Tira-	37/*	3g78*	0*	3874*	h	3g7g*	f372*	0*	g875*	h	fg7g*	072*	0*	fg75*	h	
F9 9	075t3	07DgD	h	07028	h	07Dt3	07832	h	0748D	h	074f3	0738t	h	074f2	h	
s idorCacHM1r1Ayv-eC	g5	t 0D	0	ttt	h	t 0D	203	0	8f2	h	22f	3	0	22g	h	
* s idorCacHM1r1Ayv-eC	D: 74*	DBZe*	0*	D875*	h	Dg73*	D47f *	0*	D: 73*	h	D874*	f00*	0*	D874*	h	I
9 ea: y	f	ft	0	f5	h	f8	2	0	fD	h	0	0	0	0	h	1
* 9 ea: y		274*	0*	278*	h	37f*	f 70*	0*	27.*	h	0*	0*	0*	0*	h	1
Bivyv-eC1c R1aF	f f	2f	0	22	h	fg	2	0	f5	h	t	0	0	t	h	
* Bivyv-eC1c R1aF		37D*	0*	378*	h	275*	f 70*	0*	27/*	h	272*	0*	0*	272*	h	
FeHeQAac0		h	h	h	0	h	h	h	h	0	h	h	h	h	t 8	
* FeHeGAacC				h	h	h	h		h	h	h	h		h	Dt 70*	
Bivyv-eC1c) AltGwa-l	h			h	0		h	h	h	0	h	h		h	3	
* Bivvv-eC1c) AlCGwa-l	h	h	h	h	h	h	h	h	h		h	h	h	h	r 70*	

UFeHeGAacCacHBivyv-eC1c) AlGsva-l 7s ns ebr, RnRidor, TnToAu, WhWhTuAc

6 of 8

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

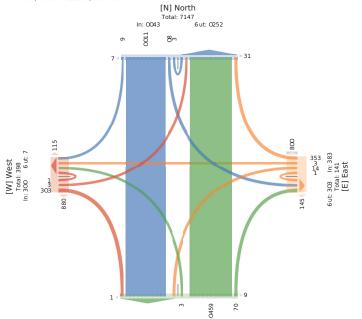
5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 2021 - (8): AMP -) 1 eGas Aeap Li uC
g sh sattet landro a H/ Mi d Gl/Bet, Leal y, AevetddaH, RdlyBet i Hwi av, RdlyBet i H
h G ttmsaP9
g ssMil el eHt
II (785028, ni Badl H 8: .376662, -6: .15: 80:

3n0

AG l dvev by(h dy i f) ccama O00 h i H cessacd H4 C, NepeaH,) N, K2G: J7, h g

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

Leg	North						East						South						West						
Direction	Southb	ound					Westbo	und					Northbo	ound					Eastbox	ind					
Time	R	T	L	U	App	Ped*	R	T	L	U	App	Ped+	R	T	L	U	App	Ped+	R	T	L	U	App	Ped+	Int
2022-08-03 6:00AM	0	118	0	0	118	0	1	0	0	0	1	12	0	140	0	0	140	0	1	0	0	0	1	17	28
.:00AM	0	340	1	0	341	2	7	0	1	0	9	16	7	403	0	0	411	2	14	0	0	0	14	2.	
7:00AM	0	494	2	0	496	4	9	0	0	0	9	43	6	694	0	0	. 00	0	17	0	0	0	17	. 0	122
9:00AM	0	242	4	0	246	0	4	0	1	0	8	14	4	30.	0	0	311	1	4	0	0	0	4	24	86
11:00AM	0	267	4	0		2	8	0	0	0	8	20		277	0	0	291	0	7	0	0	0	7	36	8.
12:00PM	0	880	7	0	887	1	9	1	9	1	20	. 2	13	862	1	0	8.6	0	16	0	1	0	1.	69	11.
1:00PM	0	8. 2	10	0		0	28	0	-	1	33	97	26	84.	0	0	8.3	3	14	0	0	0	14	63	120
3:00PM	1	3. 1	2	0		1	9	0	1	0	10	71	-	326	0	0	333	0	11	0	0	0	11	81	. 2
4:00PM	2	. 70	6	0	. 77	1	17	0	4	0	22	127	17	. 88	0	0	3	0	23	0	0	0	23	112	160
8:00PM	2	690	6	1	699	10	13	0	4	0	1.	130	11	673	0	0	694	1	32	0	0	2	34	76	144
Total	8	4422	43	1	44.1	21	101	1	2.	2	131	614	96	4.08	1	0	4702		141	0	1	2	144	886	984
% Approach	051%	9759%	150%	0%		-	51%	057%	2056%	158%			250% 9	9750%	0% (396	-		9. 59%	0%	05 %	154%		-	
% Total	051%	4653%	058%	0%	4657%	-	151%	0%	053%	0%	154%		150% 4	4953%	0% (096 E	3053%	-	158%	0%	0%	0%	158%	-	
Lights and Motorcycles	1	4137	40	1	4170	-	. 0	0	26	2	97		67	43.9	0	0	444.	-	138	0	1	2	137	-	776
% Lights and Motorcycles	2050%	9356%	9350%	100%	9358%		6953%	0%	9653%	100%	. 457%		. 057% 9	9351%	0% (096.5	9256%		985 %	0% 1	100% 1	100% 5	857%		92579
Heavy	0	162	0	0	162	-	1	0	0	0	1	-	1	170	- 1	0	172	-	1	0	0	0	1	-	34
% Heavy	0%	35 %	0%	0%	356%	-	150%	0%	0%	0%	057%	-	150%	357% 1	100%	396	357%	-	05 %	0%	0%	0%	05 %	-	3569
Bicycles on Road	4	122	3	0	129	-	30	- 1	1	0	32		2.	146	0	0	1.3		8	0	0	0	8	-	33
% Bicycles on Road	7050%	257%	. 50%	0%	259%	-	295 %	100%	35 %	0%	2454%	-	2751%	351%	0% (396	356%		338%	0%	0%	0%	338%	-	3569
Pedestrians	-	-	-	-	-	19	-	-	-	-	-	604	-	-	-	-	-	6	-	-	-	-	-	471	
% Pedestrians	-	-	-	-	-	90%%	-	-	-	-	-	9754%	-	-	-	-	-	785 %	-	-	-	-		763B%	
Bicycles on Crosswalk	-		-	-		2	-			-		10	-		-	-	-	1			-	-	-	. 8	


*Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5300014 - CUVID - DAINN 31 @ CEUTO DR - MAT US... - 1 MC TUE May 3, 2022 ... - 1 MC -

6 ut: O975 In: O251 Total: 7871 [S] South

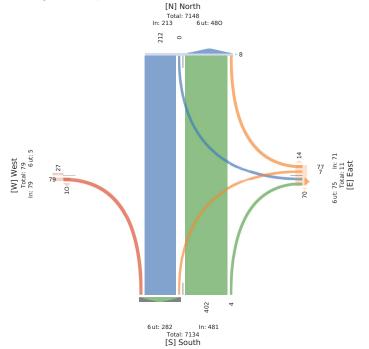
5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

53608 14 - COVID - BANK 51 @ ECHO DR - MAY 03... - 1 MC
Tue May 3, 2022
F M | eal.rgth, F M 6: th F MA
F - 9 allel F/9.5il ado Mrir drlyHel, v eaBy, l eoelic/adl, R)HyHel r d wrao, R)HyHel r d
9 cr 1lk a-LA
F - Mr Bemedil
IDt: 4g0(h, PrHi)rdt 4(73: (g8:, 68(75g4334)

PeC	Oro	is					J a1i						Eruis						S e1i						
D)œH)r d	Eru	is.rud	0				S eli.	rudo					Ords.	r udo					Jali.	rud	٥				
T)me	W	T	P	W	FNN	l eoU	W	T	P	W	FNN	l eoU	W	T	P	W	FNN	leoU	W	1	` P	W	FNN	l eoU	Idi
202260 (603 gth (F M	0	h04	0	0	h04	h	4	0	0	0	4	h2	2	h(4	0	0	h(5	0	4	. (0 (0	4	2(25
gt30F M	0	h20	h	0	h2h	3	4	0	0	0	4	h0	3	hg4	0	0	hg8	0	((0	0	(23	3h
gt4(FM	0	h(:	0	0	h(:	0	0	0	0	0	0	h0	h	2h(0	0	2h5	0	8	. (0 (0	g	hg	36
: t00F M	0	h42	2	0	h44	0	3	0	h	0	4	g	h	hg2	0	0	hg3	0	2	. (0	0	2	hh	33
Tr ia-	0	(2(3	0	(2g	4	hh	0	h	0	h2	40	8	83(0	0	842	0	h:	(0	0	h:	88	h30
* FNNraHs	0*	::74*	0万*	0*	6	6	:h78*	0*	g73*	0*	6	6	07.*	::7h*	0*	0*	6	6	h00*	0*	0*	0*	6	6	
* Tria-	0*	4074*	072*	0*	4075*	6	0%*	0*	07h*	0*	07.*	6	07(*	(57(*	0*	0* ((870*	6	h7(*	0*	0*	0*	h7(*	6	
l v %	6	07gh4	0738(6	07gh:	6	072(0	6	072(0	6	072(0	6	072(0	07g(0	6	6	07g(h	6	07(:4		6 6	6	07:4	6	0波:
P)Gsi1ado MrircHyHe1	0	(00	3	0	(03	6	2	0	h	0	3	6	h	55h	0	0	552	6	h:	(0 (0	h:	6	hhạ
* P)Csi1 ado MrircHyHe1	0*	:(2*	h00*	0*	:(28*	6	hg72*	0*	h00*	0*	2(70*	6	h473*	g: 7.*	0*	0* ;	g: 72*	6	h00*	0*	0*	0*	h00*	6	: h72
v eaBy	0	hg	0	0	hg	6	0	0	0	0	0	6	0	43	0	0	43	6	0) (0	0	0	6	
* v eaBy	0*	374*	0*	0*	374*	6	0*	0*	0*	0*	0*	6	0*	(7.*	0*	0*	(Ze*	6	0*	0*	0*	0*	0*	6	478
R)HyHe1rd wrao	0	8	0	0	8	6	:	0	0	0	- :	6	5	3h	0	0	38	6	0) (0 (0	0	6	(
* R)HyHe1rd wrao	0*	h73*	0*	0*	h/3*	6	gh7g*	0*	0*	0*	8(70*	6	g(78*	472*	0*	0*	(70*	6	0*	0*	0*	0*	0*	6	47h
l eoe1ic)ad1	6	6	. 6	6	6	3	6	6	- 6	6	6	38	6	6	- 6	6	6	0	- 1	6 1	6 6	6	6	5(
* 1 eoe1ic)ad1	6	- 6	. 6	6	68	B(70*	6	6	- 6	6	6:	27(*	6	6	- 6	6	6	6	- 1	6 1	6 6	6	6	g474*	
R)HyHe1 rd 9 cr11k a-L	6	- 6	. 6	6	6	h	6	6	- 6	6	6	3	6	6	- 6	6	6	0	-	ŝ	6 6	6 6	6	h2	
																	6								

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L7Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8


5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC
Tue May 3, 2022

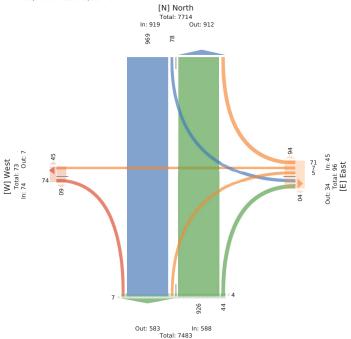
AM Peak (8:-9 AM)1:-9 AMC
AssLsatiei (glind aor MccHyysei, BeaRy, PereidHaoi, whyysei co mcar, whyysei co
Lititi asC
Ass McReDeod

1 1809-, gcvadro: 59,3l 986l,)69.185335

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC
Tue May 3, 2022
Mfl lay Lean g ZiB0 LM (tiB0 LM6
: A& A9959g BP / O sal Mi G dryo As q reacy, Lel e9 (Das Q, Hibyo As 9 is vial, Hibyo As 9 is - d 995a As 6
: A MH cRes 9
k hm Db4t, 1 i o a G is h 1 425 m 425 m (84 75 II 33 I

Ld cli el . yh- tiy i bf (GB t 00 - i s9@Abdīs k k
OeNeas, f O, p 2K 4Gm - :

3 of 8


1eP	Oi	13					J a9C						Ei uÇi						S e9C						
k ReoŒ s	Εiτ	G. i us	1				S e9Ci	usl					Oid).	iusl					Ja9Ci	us l					
TIRe	v	T	1	W	: NN	el U	v	T	1	W	: NN	Lel U	v	T	1	W	: NN Le	l U	v	T	1	W:	NN I	el U	wС
2022(04(03 t 2lB0LM	0	t 24	2	0	t 28	0	3	0	0	0	3	t 4	I	tI4	0	0	t I m	0	I	0	0	0	I	20	2DE
t 2H 4LM	0	t 4I	t	0	t 44	0	2	t	t	0	I	24	2	t 45	0	0	t 4D	0	3	0	0	0	3	t 4	320
t 100LM	0	t 5D	4	0	t 83	0	4	0	I	0	m	25	D	t I 8	0	0	t 44	0	2	0	0	0	2	tΙ	33n
t h 4LM	0	t 3D	2	0	t I O	0	m	0	t	0	t O	2D	D	t 30	0	0	t 3D	3	3	0	0	0	3	22	2mt
Ti G/	0	4D4	t 0	0	4m4	0	t m	t	5	0	25	mi	22	48E	0	0	500	3	t 2	0	0	0	t2	8t	t 233
* : NNi ao)	0*	nD3*	t 78*	0*	((837 *	37D*	237 *	0*	((378*	n573*	0*	0*	((t 00*	0* ()* 0	r	(((
* Ti G/	0*	1871*	07D*	0*	IDB*	(t 74*	* 10	074*	0*	27 *	(t 7D*	I57hf	0*	0* 1	DB*	(t 70*	0* ()* 0	* t	70*	((
Lr %	(07D85	07400	(07254	(0743t	(07384	(0753m	(07508	07h2I	((07hi 0	(07840	(((07	840	(07h04
1 IP) O as l Mi C doyo Ar9	0	4I I	t 0	0	44I	(t 8	0	5	0	23	(t 8	43n	0	0	445	(t 2	0	0	0	t2	(ttI4
* 1P)@asl																									
Mi @doyo&9	0*	nB70*		0*		(Dn94*	0*	t 00*	0*	DD74*	(8873*		0*	0* 1	n278*	(t 00*	0* ()* 0	* t((n27h#
r eacy	0	28	0	0	28	(0	0	0	0	0	(0	23	0	0	23	(0	0	0	0	0	(40
* r eacy	0*	175*	0*	0*	I74*	(0*	0*	0*	0*	0*	(0*	I 70*	0*	0*	37D*	(0*	0* ()* 0	*	0*	(17*
Hi∂yoAr9is vial	0		0	0	tΙ	(2	t	0	0	3	(4	t 5	0	0	2t	(0	0	0	0	0	(30
* HRoyoAr9is vial	0*	27/*	0*	0*	27*	(t 074*	*00 t	0*	0*	t 74*	(2278*	27D*	0*	0*	374*	(0*	0* ()* 0	p*	0*	(37*
Lel e9@las9	(((((0	(((((mi	(((((3	(((((8t	
* Lel e9@las9	(((((((((((t	00*	(((((10)*	(((((1)	*00	(
HRyoAr9is - di99BaAt	(((((0	(((((0	(((((0	(((((0	
* HRyoAr9 is - di99BaAr	(((((((((((0*	((((()*	(((((0*	-
Uk 1 ocas o 1 vm	_												_												

ULel e9@las9asl HloyoAe9is - di 99BaAa71h1ebCvhvlP)CThT)du, WhW(Tuds

4 of 8 5 of 8 5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5-3000 14 - COVID - DAING ST. & CUID DR - MAT US... - TIME THE MAY 3, 2022 MAPPay kea(& 2-30 kM) 9: -30 kM) I GS GILLE & Aghtt an P Mitdoryr @L, c early, kePelto lan L, v Ayr @Ldn Bda P, v Ayr @Ldn s dill Rac () I (CMd Ewent. nb. - D4705: , i d rat Alin - 45.3 (E761) 955.174334

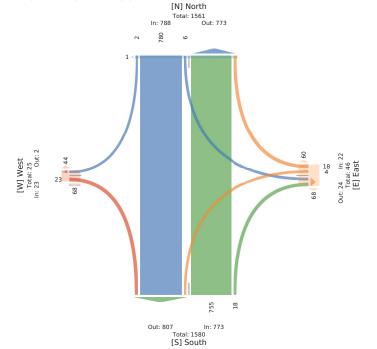
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

53668 (4 - CUVID - BAIN S I (@ ECHO DR - MAY U3... - I MIC Tue May 3, 2022 FM Feal In FM gt FMhg(6e:aAMFeal - 9u: 1 APA Ja)) Els dig Jar c M9:9:HyHk), - ea6y, Fece) osar), vsHyHk) 9r B9ac, vsHyHk) 9r P:9))RaAh 1 AMM56ewer) ImI Di-l0t 7, C9H609r Int 8ID 45D g5t 8 4n33n

Cei	O9:α	d					Ja)o						E9ual						S e)o					
ms:eHx9r	E9ua	db9ur c					Se)do	9ur c					O9: adb	9ur c					Ja)ob9	Jur c				
Гswe	В	3 T	C	W	1 NN	FecU	В	T	С	W	1 NN	FecU	В	T	C	W	1 NN	FecU	В	T	C '	W 1NN	FecU	kro
2022g0t g03 nI00FM	(755	t	0	742	0	n	0	7	0	t	34	2	74n	0	0	74.	0	D	0	0	0 D	3n	342
nI7t FM	(7D	0	0	7D	7	5	0	7	0	4	32	3	202	0	0	20t	0	3	0	0	0 3	3n	n7.
nI30FM	7	7 204	0	0	20D	0	2	0	0	0	2	3t		755	0	0	743	0	-	0	0	0 .	27	n0i
nInt FM	- 7	7 7DC	7	0	207	0	t	0	2	0	5	23	5	7D2	0	0	7DD	0	t	0	0	0 t	23	n7.
T9aA	. 2	2 540	-	0	544	7	74	0	n	0	22	724	74	St t	0	0	553	0	23	0	0	0 23	772	7. 0.
* 1 NN 9aHl	088*	DB0*	081*	0*	g	g	4781*	0*	7482*	0*	g	g	288*	D585*	0*	0*	g	g	700*	0* 0	0* 0	* 8	8	
* T9aA	.087*	n48 *	08n*	0*	nD87*	g	787*	0*	082*	0*	78h*	g	787*	n580*	0*	0* :	n487*	g	78n*	0* 0	0* 0	* 78h*	g	
F- %		g 08Dn2	082t 0	g	08Dn4	g	03 t 0	g	08 00	g	05504	g	035t 0	08027	g	g	0802.	g	08 3D	g	g	g08 3D	g	080
Csi do) ar c M9o9:HyHh)	(530	t	0	53t	g	73	0	n	0	75	8	7t	57.	0	0	537	g	23	0	0	0 23	8	7t 0.
* Csido) arc M9o9:HyHh)		D88 *	4388*	0*	D88*	g	5282*	0*	700*	0*	5588*	g	4388*	Dn84*	0*	0*	Dn8 *	g	700*	0* 0	0* 0*	* 700*	g	D881*
- ea6y	(7.	0	0	7.	g	0	0	0	0	0	g	0	75	0	0	75	g	0	0	0	0 0	8	3
* - ea6y	0*	287*	0*	0*	280*	g	0*	0*	0*	0*	0*	g	0*	288*	0*	0*	282*	g	0*	0* 0	0* 0	* 0*	g	287*
vsHyHh) 9r B9ac	- 2	2 3n	7	0	35	g	t	0	0	0	t	g	3	22	0	0	2t	g	0	0	0	0 0	g	!
* vsHyHk) 9r B9ac	700*	n8h*	7.85*	0*	n85*	g	2584*	0*	0*	0*	2285*	g	7.85*	28D*	0*	0*	382*	g	0*	0* 0)* 0 [,]	* 0*	g	n82*
Fece)asar)		g g		g g	g	- 7	8	g	g	g	g	72t	8		g g	g	g	0	g	g	g	g g	ID2	
* Fece)asar)		g 8		g g	g'	700*	8	g	g	g	gl	*88	8		g g	g	g	g	g	g	g	g g	4287*	
vsHyHh) 9r P:9))RaA		g g		g g	g	0	8	g	g	g	g	3	8		g g	g	g	0	g	g	g	g g		
* vsHvHh) 9r P:9))RaA		g g		g g	g	0*	8	g	g	g		288*	8		3 g	g	g		g	g	g	g g	758D*	

UFece)αsar) arc v sHyH&) 9r P:9))RaAl8Cl Cefq Bl Bsi dq Tl Td:u, Wl WgTu:r


6 of 8 7 of 8

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 03... - TMC
Tue May 3, 2022

MA éa9 k, AM 8: AM 8: AM-89) ela©AeaP s Lul
i © @ Glibeh ki norba cHMLrll vyv@h, s ea) y, AeFebrinich, Bruyv@h Lc RLaH, Bruyv@h Lc
i ILihwa@i CML) emech
ID47(50:.., t LvanLc4(: 67: 517, 81: 665(33)

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947085, Location: 48.3986, -58.674156

Provided by: City of Ottaw Provided by: City of Ottaw Nepean, ON, K2G 819, CA

Leg	North					Eouth					S est					
Direction	Eouthbou	nd				Northbou	nd				Wistbound	1				
Time	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	
2022-08-03 6:00AM	15	211	1	229	16	238	2	0	235	8	0	10	0	10	17	4
5:00AM	42	476	0	827	24	689	18	0	654	21	5	89	0	66	57	12
7:00AM	84	409	0	463	18	815	5	0	824	9	4	35	0	41	39	10
9:00AM	21	218	0	236	6	242	5	0	249	5	8	10	0	18	20	8
11:00AM	38	262	0	295	13	277	7	0	296	6	1	12	0	13	39	6
12:00PM	80	830	0	870	29	827	15	0	848	22	10	44	0	84	73	11
1:00PM	49	882	0	601	30	811	9	0	820	35	13	32	0	48	65	11
3:00PM	80	367	0	417	21	384	10	0	364	10	13	23	0	36	84	- :
4:00PM	65	662	0	529	48	626	18	0	641	27	12	83	0	68	100	14
8:00PM	66	827	0	894	83	842	21	0	863	48	14	43	0	85	103	12
Total	481	4223	1	4658	282	4802	111	0	4613	190	59	323	0	402	601	96
% Approach	9.6%	90.3%	0%	-	-	95.6%	2.4%	0%	-	-	19.5%	70.3%	0%	-	-	
% Total	4.5%	43.6%	0%	47.2%	-	46.8%	1.1%	0%	45.6%	-	0.7%	3.3%	0%	4.1%	-	
Lights and Motorcycles	343	4046	0	4379	-	4226	105	0	4333	-	52	274	0	386	-	91
% Lights and Motorcycles	56.1%	98.7%	0%	93.9%	-	93.9%	96.4%	0%	93.9%	-	91.1%	75.9%	0%	77.6%	-	93.
Heavy	15	139	1	185	-	149	4	0	183	-	8	15	0	22	-	3
% Heavy	3.7%	3.3%	100%	3.4%	-	3.3%	3.6%	0%	3.3%	-	6.3%	8.3%	0%	8.8%	-	3.4
Bicycles on Road	91	37	0	129	-	125	0	0	125	-	2	22	0	24	-	- 2
% Bicycles on Road	20.2%	0.9%	0%	2.7%	-	2.7%	0%	0%	2.7%	-	2.8%	6.7%	0%	6.0%	-	2.5
Pedestrians	-	-	-	-	230	-	-	-	-	169	-	-	-	-	473	
% Pedestrians	-	-	-	-	91.3%	-	-	-	-	77.9%	-	-	-	-	70.4%	
							-	-	-	21		-		-	117	
Bicycles on Crosswalk	-	-	-	-	22	-	-							-	11/	

*Pedestrians and Bicycles on Crosswalk, L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Deboto 14 - CUVID - DAINN 51 & ATLINER AVE - MAT... - IMC The May 3, 2022 — 9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 947085, Location: 48.3986, -58.674156

[N] North Total: 7289 1: 45n2 Out: 4635 4330 429 923 [W] West Total: 754 1:483 Out: 253 900 ▶77 666 4283

> Out: 4083 1 : 4590 Total: 6792 [S] South

[N] North Total: 7289 In: 005 Out: 934

085 08

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

53000 14 - CUVID - DANK 51 @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
F M | eal.rgth; F M 6: th; F MA
F - 9 allel r]% Sil ado Mrir dtyHel, v eaBy, l eoelic]adl, R)HyHel r d wrao, R)HyHel r d
9 cr Ilk a-LA
F - Mr Bemedil
IDt 47: 0(g, PrHi)r dt 7(84(5, fg(8: 7hg5)

PeC	Ords					Jruis					E eli					
D)œH)r d	Jruis.ru	do				Ords.ru	do				Sali. rud	0				
T)me	W	T	W	FNN	l eoU	T	P	W	FNN	l eoU	W	P	W	FNN	l eoU	Idi
202260(603 gth(F M	4	h0(0	hh7	h3	h74	2	0	h(h	5	7	hg	0	2h	37	2:5
gt30F M	h0	h33	0	h73	3	h40	(0	h4(h	2	hg	0	h4	hg	3(g
gt7(FM	h7	h(2	0	h55	3	h40	g	0	h4g	hh	0	h3	0	h3	h(3g5
: t00F M	hg	hh4	0	h35	2	h5h	0	0	h5h	2	0	hh	0	hh	h0	30:
Tr ia-	(0	(04	0	((4	2h	540	h7	0	g07	20	5	(:	0	57	g5	h32g
* FNNraHs	: 84*	4h8h*	0*	6	6	4: 80*	280*	0*	6	6	487*	4085*	0*	6	6	6
* Tria-	38 *	3:87*	0*	728h*	6	(280*	h8h*	0*	(38h*	6	* 380	787*	0*	78 *	6	6
1 v %	085g2	08 3:	6	08 7g	6	08 43	08(00	6	08 g4	6	08bg(08:3	6	08gg5	6	08 g5
P)Csi1 ado MrirdHyHe1	7h	743	0	(37	6	52(h3	0	53:	6	5	7:	0	(7	6	h225
* P)Csi1 ado MrircHyHe1	: 280*	4581*	0*	4(8*	6	4085*	4281*	0*	4085*	6	h00*	: 28 *	0*	: 787*	6	4287*
v eaBy	2	h3	0	h(6	35	h	0	3g	6	0	(0	(6	(g
* v eaBy	780*	285*	0*	28/*	6	(22*	g8h*	0*	(8*	6	0*	: 85*	0*	g8 *	6	788*
R)HyHe1rd wrao	g	3	0	h0	6	24	0	0	24	6	0	(0	(6	77
* R)HyHe1rd wrao	h789*	*380	0*	h8 *	6	782*	0*	0*	78h*	6	0*	: 85*	0*	g8 *	6	388*
l eoe1ic)ad1	6	6	6	6	h4	6	6	6	6	20	6	6	6	6	(4	
* l eoe1ic)ad1	6	6	6	6	408(*	6	6	6	6	h00*	6	6	6	6	gg&*	6
R)HyHe1 r d 9 cr 11k a-L	6	6	6	6	2	6	6	6	6	0	6	6	6	6	hg	
* R)H/He1rd9 cr11k a-L	6	6	6	6	48 *	6	6	6	6	0*	6	6	6	6	2287*	6

Ul eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST ⊚ AYLMER AVE - MAY... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM)1:-9 AMC
AssLsatiei (glind aor MccHbyvsei, BeaRy, PereidHaoi, whyvsei co mcar, whyvsei co
Lititi asC
Ass McReDeod

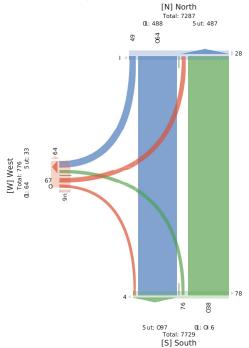
#:5.1098, gcvadco:.963591,)89611.-81

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2022
Mfl lay Lean gt 180 (M 6t 2180 LM:
(Ak. A959-9g 11P) Oas I Mi G dryo Akg r eacy, Lel e9Glas 9, Hibyo Akg is vial, Hibyo Akg is
- d 995a Ak:
(ASMic CRES O
k Mrl DD47, 1 i oadi sh I 488m45, 67485 Dt 75

Ottawa
Lolc'Flel.yh-Rÿibf@GaBa
t00 -is9@eAAaŒiskd,
OeNeas, f O, p 2K 4Gn - (

3 of 8

1eP	Oi dt)					JiuG					E e9C					
k RieoClis	JiuG.ius	ıl				OidG. ius	sl				Sa9Ci usl					
TIRe	v	T	W	(NN	Lel U	T	1	W	(NN	Lel U	v	1	W	(NN	Lel U	vs C
2022604603 t t l80(M	t 4	tt4	0	t 30	m	tIt	3	0	tII	3	0	7	0	7	2t	20
ttH4(M	20	t I 7	0	t 57	I	t I 7	4	0	t 42	3	t	4	0	5	t D	324
t 2100LM	t 4	tI2	0	t 47	3	t I m	2	0	t 4t	5	2	m	0	tt	t m	3t
t 2lt 4LM	t I	t 32	0	tI5	t 2	t 33	3	0	t 35	I	2	t 0	0	t 2	27	2m
Tì GA	. 5I	435	0	500	2D	470	t 3	0	4D8	t 5	4	3t	0	35	D4	t 2t
* (NNi ao)	t 087*	DnB*	0*	6	6	n780*	282*	0*	6	6	t 38n#	D58 *	0*	6	6	
* Ti GA	48*	1180*	0*	I n82*	6	I58D*	t 8 *	0*	I78D*	6	* 80	284*	0*	380*	6	
Lr %	08000	08n03	6	InCB0	6	08m44	08540	6	08ntD	6	08524	08700	6	0@DD	6	08n8
1 IP) Olas I Mi Cidoyo Ar9	13	40m	0	442	6	435	t3	0	4I m	6	4	24	0	30	6	113
* 1 EP) © asl MiCidoyo.4e9	5782*	m480*	0*	m280*	6	mi 80*	t 00*	0*	mi 82*	6	t 00*	D085*	0*	D88*	6	m28D*
r eacy	4	22	0	27	6	22	0	0	22	6	0	3	0	3	6	4
* r eacy	78D*	18*	0*	I 81*	6	381#	0*	0*	38D*	6	0*	n87*	0*	DB*	6	188*
HRyoAr9is vial	t 5	4	0	2t	6	t 2	0	0	t2	6	0	3	0	3	6	3.
* HRyoAe9is vial	2480*	08n#	0*	381*	6	28 *	0*	0*	28 *	6	0*	n87*	0*	DB*	6	380*
Lel e9@fis9	6	6	6	6	27	6	6	6	6	t 5	6	6	6	6	72	
* Lel e9@fis9	6	6	6	6	* B3n	6	6	6	6	t 00*	6	6	6	6	DI 87*	
HlōyoAr9 is - di 99BaAr	6	6	6	6	t	6	6	6	6	0	6	6	6	6	t 3	
* HRovo 4:9 i s - d 99Ba Au	6	6	6	6	385*	6	6	6	6	0*	6	6	6	6	t 488*	


[W] West Total: 764 In: 13 Out: 13	76
	Out: 070 In: 983 Total: 7675 [S] South

4 of 8 5 of 8

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5300014 - CUVID - DAINN ST. @ ATLINER AVE - MAY... - TIME
The May 3, 2021 9 M.): 2-30 kMJ
90 GS GILLE & Aghtta an Pidridoryr@L, c eatly, kePelto\nnl, v\Ayr@Ldn BdaP, v\Ayr@Ldn
s dillRa@L
9 (CMdfewent).
nb - D4705., i drat\nln-45\text{BISI},). 5\text{G174}: 1

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC


Cei	O9:ad					J 9uad					E e)o					
ms:eHs9r	J 9uadb9ur	c				O9:adb9u	rc				Sa)do9uro					
Tswe	В	T	W	1 NN	FecU	T	C	W	1 NN	FecU	В	C	W	1 NN	FecU	kro
2022g04g03 3r80FM	32	.15	0	22D	. 2	. 7.	t	0	. 74	3	2	I	0		30	t.
3rt 4FM	. D	. 72	0	.10	I	. DB	5	0	. 🛚	7		. t	0	24	2t	t (
t r00FM	. 4	. 5t	0	. 71	. I	. 7.	5	0	. 77	3	7	. 7	0	2t	24	31
t n 4FM	22	.10	0	2. 2	E	. t 0		0	.t.	. 0		. 2	0	. 3	24	35
T9osA	D7	722	0	D0I	t E	554	. 7	0	5D2	23	2.	42	0	73	. Ot	. 45
* 1 NN9aHI	. 08D*	DI 82*	0*	g	8	I 784*	284*	0*	g	g	2D8D*	7.82*	0*	g	g	
* T90aA	485*	t 582*	0*	4.87*	8	t 284*	.8*	0*	t 385*	8	. 88*	388*	0*	t 87*	g	
F- %	08524	I.B0	g	08005	8	08 2D	0870D	g	0E 20	8	0842D	08740	g	0872D	g	083
Csido) arc M9o9:HyHke)	4I	5I 5	0	744	8	532	. 7	0	5t I	8	. I	t 7	0	55	g	. t
* Csido) arc M9o9:HyHNe)	578D*	I58 *	0*	1388*	8	I 480*	. 00*	0*	I 482*	8	I 084*	108*	0*	I 08 *	g	It 80
- ea6y		. 7	0	. D	8	. 0	0	0	. 0	g	0	-	0		g	- 2
* - ea6y	.8*	28 *	0*	282*	8	. 81*	0*	0*	. 81*	8	0*	. a*	0*	.8*	g	. а
v sHyHh) 9r B9ac	27	I	0	35	8	23	0	0	23	g	2	t	0	5	g	
* vsHyHb) 9r B9ac	3.80*	. 82*	0*	t 8 *	8	384*	0*	0*	38 *	8	I 84*	787*	0*	D82*	g	t 82
Fece)asar)	g	g	g	g	t 2	g	g	g	g	. 5	g	g	g	g	77	
* Fece)asar)	g	g	g	g	D781*	g	g	g	g	5I 85*	g	g	g	g	7t 80*	
vsHyHe) 9r P:9))RaA	g	g	g	g	5	g	g	g	g	7	g	g	g	g	27	
* vsHyHe) 9r P:9))RaA	g	g	g	g	. 281*	g	g	g	g	308 *	g	g	g	g	2580*	

UFece) gsar) arc v sHyHa) 9r P:9))RaAl 8CnCefq BnBsi dq TnTd:u, WnWgTu:r

6 of 8 7 of 8

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 2020 8: (30 AM-89) ela@CAeaP s Lul
i @ Galthelk indohacHMLrLlvyv@h, s ea) y, AeFebrlinch, Bruyv@h Lc RLaH, Bruyv@h Lc
Il Lihwa@i @ML-| emecch
ID(4: 705., t LvanLc(: 569451, 8 567: b. 1

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947066, Location: 485403921, -. 835719. 4

Leg	North					Eouth					S est					
Direction	Eouthbou	nd				Northbour	nd				Wistbound					
Time	R	T	U	App	Ped*	T	L	U	App	Ped*	R	L	U	App	Ped*	Int
2022-08-03 6:00AM	8	42	0	4.	13	32	1	0	33	11	3	4	0			
.:00AM	23	1.4	0	19.	22	141		0	147	2.	8	1.	0	22	13	3
7:00AM	44	2. 1	0	318	4.	212	21	0	233	2.	18	46	0	61	20	6
9:00AM	24	107	0	132	18	73	13	0	96	11	11	20	0	31	7	2
11:00AM	30	131	0	161	19	61	8	0	66	23	9	17	0	2.	16	2
12:00PM	86	286	0	312	83	132	2.	0	189	. 2	16	38	0	81	26	8
1:00PM	83	240	0	293	46	13.	26	0	163	88	12	23	0	38	24	4
3:00PM	26	233	0	289	48	9.	23	0	120	3.	17	18	0	33	16	4
4:00PM	68	808	0	8.0	8.	16.	36	0	203	66	32	39	0	. 1	22	7
8:00PM	69	408	0	4.4	71	191	34	0	228	100	22	4.	0	69	39	-
Total	398	2368	0	2.60	397	1283	193	0	1446	429	143	264	0	40.	191	46
% Approach	1453%	785 %	0%	-	-	765 %	1353%	0%	-	-	3851%	6459%	0%	-	-	
% Total	756%	8153%	0%	8957%	-	2.52%	452%	0%	3153%	-	351%	85 %	0%	757%	-	
Lights and Motorcycles	36.	2329	0	2696	-	1222	193	0	1418	-	137	284	0	392	-	48
% Lights and Motorcycles	9259%	9758%	0%	9.5%	-	9.58%	100%	0%	9. 59%	-	9638%	9652%	0%	9653%	-	9. 5
Heavy	9	18	0	24	-	10	0	0	10	-	2	4	0	6	-	
% Heavy	253%	056%	0%	059%	-	057%	0%	0%	05 %	-	154%	158%	0%	158%	-	03
Bicycles on Road	19	21	0	40	-	21	0	0	21	-	3	6	0	9	-	
	457%	059%	0%	154%	-	15 %	0%	0%	158%	-	251%	253%	0%	252%	-	15
% Bicycles on Road			-	-	290	-	-	-	-	369	-	-	-	-	174	
% Bicycles on Road Pedestrians	-	-	-	_												
		-	-	-	. 259%	-	-	-	-	7630%	-	-	-	-	963%	
Pedestrians	-					-	-	-	-	7630% 60	-	-	-	-	9658%	

*Pedestrians and Bicycles on Crosswalk5L: Left, R: Right, T: Thru, U: U-Turn

8 of 8 1 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5300014 - COVID - QUEEN ELIZABETH DIWNT & PIR... - I MIC.
Tue May 3, 2022
Full Length (6:30 AM-9230 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 947066, Location: 485403921, - . 835719, 4

290

[N] North Total: 7288 1: 28n3 4ut: 0508 29n5 965

On3

23n

690 4 ut: 2530 1 : 077n Total: 9657 [S] South

[W] West Total: 665 1:738 4ut: 500

02n

n5

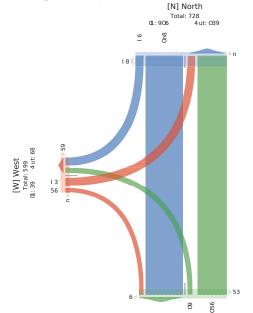
5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5360814-CVUIP-QUEEN ELIZABE H DRWY @ FIF... - IMC Tue May 3, 2022 F M l eal.ngth, F M 6: th (F MA F - 9 allel P/jScil ado Mrir drlyHel, v eaBy, l eoelicjadl, R)HyHel r d wrao, R)HyHel r d 9 cr Ilk a-LA F - Mr Bemedil ID: : 48077, Pr Hi)r dt 4(803: 2h, 66 (87gh: 54

PeC	Ords					Jruis					E eli					
D)œH)r d	Jruis. rud	lo				Ords.ru	do				Sali. rudo					
T)me	W	T	W	FNN	l eoU	T	P	W	FNN	l eoU	W	P	W	FNN	l eoU	Idi
202260(603 gth(F M	hg	74	0	g2	h4	(h	7	0	(5	7	2	5	0		g	h4g
gt30F M	h0	gh	0	: h	g	7g	3	0	5h	(4	h2	0	h7	4	h5g
gt4(FM	g	g3	0	: h	h7	(5	(0	72	5	g	h(0	23	4	h57
: t00F M	hh	(2	0	73	h0	4h	- 1	0	(0	(3	h2	0	h((h2g
Tria-	45	2g0	0	325	4g	2h5	23	0	240	23	h5	47	0	73	2h	73
* FNNraHs	h484*	g(87*	0*	6	6	: 084*	:87*	0*	6	6	2580*	5380*	0*	6	6	
* Tria-	58(*	4481*	0*	(h8*	6	3484*	385*	0*	3g8h*	6	285*	588*	0*	h030*	6	
l v %	08g0g	08g4g	6	08g:	6	085: g	0873:	6	08;4(6	08(3h	085(0	6	08754	6	08gg
P)Csi1 ado Mr ir cHyHe1	40	25g	0	3hg	6	2h(23	0	23g	6	h5	4(0	72	6	7h
* P)Gsi1 ado MrircHyHe1	g(8h*	::8*	0*	: 582*	6	::8h*	h00*	0*	::82*	6	h00*	:58g*	0*	: g8t*	6	: g8h*
v eaBy	2	0	0	2	6	2	0	0	2	6	0	0	0	0	6	
* veaBy	48*	0*	0*	087*	6	* 80	0*	0*	08g*	6	0*	0*	0*	0*	6	087*
R)HyHe1rd wrao	(2	0	5	6	0	0	0	0	6	0	h	0	h	6	
* R)HyHe1rd wrao	h087*	085*	0*	28h*	6	0*	0*	0*	0*	6	0*	282*	0*	h87*	6	h88*
l eoe1ic)ad1	6	6	6	6	33	6	6	6	6	hg	6	6	- 6	6	20	
* l eoe1ic)ad1	6	6	6	6	7g8g*	6	6	6	6	5g88*	6	6	6	6	:(82*	
R)HyHe1 rd 9 cr11k a-L	6	6	6	6	h(6	6	6	6	(6	6	- 6	6	h	
* R)H/He1rd 9 cr 11k a-L	6	6	6	6	3h88*	6	6	6	6	2h85*	6	6	6	6	48g*	

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd

2 of 8 3 of 8


5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022

AM Peak (8:-9 AM)1:-9 AMC
AssLsatiei (glind nor MccHyysei, BeaRy, PereidHaoi, whyysei co mcar, whyysei co
LHiII asC
Ass McReDeod

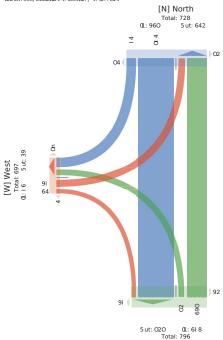
☐ 1580..., gcvadro: 5960312-,)1968-115

229

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022
Mfl lay Lean g 2 LM ht LM(
6: Aa-re-e \$\frac{1}{2}\text{BHP}\text{ aC MS}\sidyde-, o eary, Lel e-\hat{hBC}\, c \text{Elyde- sCHsal}\, c \text{Elyde- sC}
Ais--v an(
6: Msr eBeC)
Rekmt Db44, 9sda)B Ckt 78 03m2r\, 16784D m51

	Lisr II el . ykABy sb t 00 As G.)e::a OeNeaC, f O, p 2K	of))ava)EsCwi,
a		

9e1	Osi)P					Jsu)P					E e-)					
wffed)fsC	J su)P. su(1				Osi)P. suC	1				Sa-). suCl					
TiBe	H	T	W	6 NN	Lel U	T	9	W	6 NN	Lel U	Н	9	W	6 NN	Lel U	RC)
2022h07h03 t 2l00LM	t m	40	0	5m	1.1	27	5	0	32	2t	7	t 2	0	t 5	3	t 2
t 2kt 7LM	t 3	47	0	5D	D	2m	7	0	3I	2t	4	7	0	tt	t t	t 2
t 2l80LM	t I	47	0	5m	t m	37	4	0	It	t 7	t	D	0	m	7	t2
t 2N 7LM	t 0	44	0	54	t 7	13	m	0	72	t 7	I	t 0	0	tΙ	5	t I
Ts)a:	74	274	0	3t 2	73	t 32	25	0	t 7m	52	t 4	37	0	7t	24	72
* 6 NNsadP	t 58hff	1288 *	0*	h	h	D880*	t 580*	0*	h	h	3t 8I *	4D81*	0*	h	h	
* Ts)a:	* d80 t	I n80*	0*	7n8D*	h	2788*	782*	0*	3087*	h	38:*	485*	0*	nBD*	h	
Lo %	08535	08:D	h	08nDI	h	085D0	08570	h	08557	h	08445	084DD	h	0&2t	h	08n2
9RP)- aCl Ms)sidyd:e-	74	272	0	30D	h	t 2D	25	0	t 77	h	t 4	32	0	ID	h	7t
* 9HP)- aCl Ms)sidyd:e-	t 00*	* BOin	0*	mD85*	h	n580*	t 00*	0*	n587*	h	t 00*	mt 81 **	0*	mi8:*	h	n58nt
o ear y	0	3	0	3	h	3	0	0	3	h	0	t	0	t	h	
* o ear y	0*	t 82*	0*	t 80*	h	288*	0*	0*	t Shiff	h	0*	28h#	0*	280*	h	t 88*
c Rlycke- sCHsal	0	t	0	t	h	t	0	0	t	h	0	2	0	2	h	
* c Rlycke- sCHsal	0*	*B0	0*	088*	h	08D*	0*	0*	081*	h	0*	785*	0*	38h#	h	080
Lel e-)illiC-	h	h	h	h	12	h	h	h	h	45	h	h	h	h	24	
* Lel e-)ilàG-	h	h	h	h	5n82*	h	h	h	h	n88 *	h	h	h	h	t 00*	
c Rdyd:e- sCAisv a:n	h	h	h	h	tt	h	h	h	h	7	h	h	h	h	0	
* c Edyd:e- s C Ais v a:n	h	h	h	h	208D*	h	h	h	h	48n#	h	h	h	h	0*	


ULel e-)iTaG- aCl c Edyd:e- s C Ais--v a:n89 k9 eb), HkHFl P), TkTPiu, WkWhTuiC

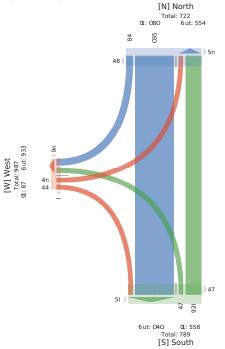
4 of 8 5 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Deboth 14 - COVID - QUEEN ELIZABETH DRAWT @ FIF... - TIMC Tue May 3, 20 224 ... : kM9 JI Classes ELAghs at P Mnhrdryoles, r eacy, kePesltilats, Habyoles nt v naP, Habyoles nt CdnssBal(9 JI MnceRet Is will Di7055, Lnoablat I 4. 6403 D2: , -1. 657: DI4

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

s ed	O1An					J 1uro					E eG					
I iAevri1c	J 1urob1u	:H				O1Aob1u	H				SaGb1ucF	I				
Tik e	R	T	W	PNN	FeHL	T	s	W	PNN	FeHL	R	S	W	PNN	FeHU	ner
2022h0t h03 3rgt FM	52	523	0	53t	5.	t g	4	0	72	5t	4	D	0	5.	55	25
gr00FM	5g	532	0	5g7	54	gt	D	0	tg	22	7	4	0	5g	g	25
gr6t FM	20	533	0	5t 3	54	g5	7	0	g.	54	D	50	0	5D	2	25
grB0FM	5.	55g	0	535		gD	5g	0	73	55	50		0	5.	7	25
T1ra-	73	t 02	0	t7t	70	54D	3.	0	227	77	33	3g	0	7.	23	4t
* PNN4avo	5582*	4481*	0*	h	ŀ	4387*	578g*	0*	h	h	gDB*	* 80 t	0*	h	h	
* T1ra-	. 88*	t 48 *	0*	7t 8D*	h	2280*	g88*	0*	278*	h	384*	g80*	0*	. 81*	h	
F9 %	08 44	08Dg3	h	08D2D	h	084. t	08775	h	081D	h	08475	084t 0	h	1 1480	h	0804
s idorCacHM1r1Ayv-eC	72	gD7	0	tt4	h	547	3.	0	223	h	35	33	0	7g	h	4g
* s idorCacHM1r1Aryv-eC	D48g*	D484*	0*	D481*	ŀ	D48g*	500*	0*	D48 *	h	D8D*	D 85*	0*	D:8*	h	D48 *
9 ea: y	5	2	0	3	h	3	0	0	3	h	0	5	0	5	h	
* 9 ea: y	587*	08g*	0*	* 80	h	587*	0*	0*	588*	h	0*	28D*	0*	58 *	h	084
Bivyv-eC1c R1aH	0	g	0	g	h	0	0	0	0	h	2	0	0	2	h	
* Bivyv-eC1c R1aH	0*	084*	0*	* 80	ŀ	0*	0*	0*	0*	h	785*	0*	0*	380*	h	08 *
FeHeQ:Aac C	h	h	h	h	3E	h	h	h	h	t 2	h	h	h	h	23	
* FeHeQAacC	h	h	h	h	7t 80*	h	h	h	h	. 481*	h	h	h	h	500*	
Bivyv-eC1c) Al@va-l	h	h	h	h	25	h	h	h	h	5g	h	h	h	h	0	
* Bivyv-eC1c) ACGwa-l	h	h	h	h	3t 80*	h	h	h	h	2582*	h	h	h	h	0*	


UFeHeGAacCacHBivyv-eC1c) AlGwa-l 8s ns efr, RnRidor, TnToAı, WhWhTuAc

6 of 8 7 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 2022 - (86: AMP -) 1 e Gas Aeap Li uC
g sh sattet landro a H/r Mi d Gl/Bet, Leal y, Aevetd@H, RdlyBet i Hwi av, RdlyBet i H
h G ttmsaP9
g ssMil el eltt
Dl (7850..., ni Badd H 8: 8803721, -b: 6 517b8

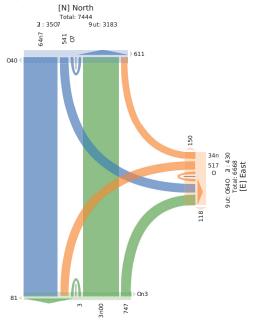
[S] South

AG l dvev f y(h dy i O) cama 100 h i H cessacd H4 C, NepeaH,) N, K2G: J7, h g

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

\$566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2022
Full Length (6 :
Il Ala-re- (Light- anl MPtP)G/Ge-, s eai y, dele-t)9an-, o 9G/Ge- Pn r Pal, o 9G/Ge- Pa
AJP--c all E
: Il MPi ev entR wkm01 2m LPGrPmvDn8k71 8D 9 m87n7k3

Leg	NP)th					Ea-t					SPuth					
R9eG9n	SPuth. Pu	n1				We-t. Pu	n1				NP)th. Pu	n1				
T9v e	T	L	U	: pp	de1*	r	L	U	: pp	de1*	r	T	U	: pp	de1*	Bet
202250nf03 8v00: M	Ik	30	2	œ	I	k	m	0	Œ	(3)	a	kD	0	000	0	23
I w00: M	23m	n₹	0	2kD	2m	3D	30	0	8m	22	DO	288	0	30I	D	88
7w0: M	2k0	I m	0	38m	21	172	nk	0	000	88	kD	DBO	0	mm	22	002
kw00: M	OnD	2D	2	C70	00	7	20	0	27	CI7	33	2CI	0	2n0	m	D
CO.00: M	OFk	DO	2	232	2m	2I	38	0	8D	83	Dm	Ck0	0	238	I	mi
CP:W0dM	37k	IO	0	DBO	Dr	mD	n2	0	008	OnD	73	373	0	D88	38	003
O@0dM	3kI	80	2	D80	10	nB	10	0	023	CBC	78	D02	0	DF7	30	(30)
3w0dM	2nB	33	0	278	D8	28	mO	0	H	000	mm	20k	0	28m	20	82
D@0dM	DBI	kD	3	n8D	kI	88	007	0	OPD	αc	000	IIB	0	mnD	37	CBO
m 0 0dM	Dn8	COOL	3	n83	77	IO	ODD.	0	αm	C80	CB2	DO2	0	mDD	2m	023
TPtal	2k08	nkD	CB	3mOB	IDO	3k0	niD8	0	k3I	k0m	8k8	30I I	3	3118	C7I	722
%: pp)PaCh	724 %	OB4k%	041%	5	5	DO8%	n⊽48%	040%	5	5	CF4D%	704n%	040%	5	5	
% TPtal	3m8%	142%	042%	D24 %	5	D4 %	848%	0%	0040%	5	741%	3140%	0%	Dmk%	5	
L9ght- an1 MPtP)CyCle-	287m	ni 0	CB	32I O	5	38I	mOO	0	71 k	5	82m	27n0	3	3DI 7	5	182
% L9ght- an1 MPtP)CyCle-	k240%	k840%	000%	k340%	5	kD40%	k348%	000%	k347%	5	7k47%	k248%	000%	k240%	5	k24
s eai y	CDF	20	0	CBk	5	(3)	00	0	20	5	23	œ	0	OBD	5	31
% s eai y	m4O%	341%	0%	D#%	5	248%	O\$7%	0%	240%	5	348%	D8%	0%	DB%	5	DB
o 9GyCle- Pn r Pa1	13	3	0	18	5	CB	2m	0	37	5	D7	78	0	CBD	5	21
% o 9GyCle- Pn r Pa1	24196	041%	0%	242%	5	348%	D8%	0%	D40%	5	84k%	247%	0%	341%	5	340
de1e-t)9in-	5	5	5	5	E80	5	5	5	5	770	5	5	5	5	Ωk	
% de1e-t)9an-	5	5	5	5	kI 4n%	5	5	5	5	kI 42%	5	5	5	5	km4 %	
						5	5	5	5	2m	5	5	5	5	7	
o 9CyCle- Pn A)Pc alH	5	5	5	5	00	5		- 5					- 5		7	


*de1e-t)9an- an1 o 93yCle- Pn A)P--c alH4LwLebt, r wr 9ght, TwTh)u, UwU5Tu)n

8 of 8 1 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5300014 - CUVID - DAINS 31 @ EAFIIGHTON WAY -... - 1 INIC. Tue May 3, 2022 Full Length (6 : Il Ala--e- (Lgbh- an1 MPtP)Q:Qe-, s eai y, de1e-t)9an-, o 9Q:Qe- Pn r Pa1, o 9Q:Qe- Pn A)P-c all E : Il MPi ev ent-R: wkn01 2m L PQ:QPmvDn8k71 8D 9 m87n7k3

9 ut: 3155 2 : 3007 Total: 0630 [S] South

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

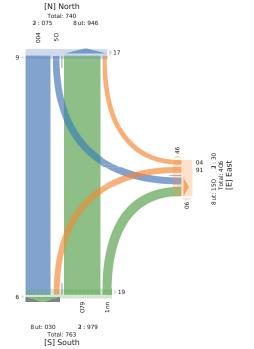
\$556814 - CUVID - BARN ST @ EARIDITION WATER - ... - TIME.
THE MAY 3, 2022

F M I eaL right (F M 6: th (F MA)
F - 9 - 31le 1 P)Csi1 ado Mrir dy'He1, v eaBy, I eoclicjad1, R)Hy'He1rd wrao, R)Hy'He1rd
F - Mr Bemedi1
IDt: (042(, Pr Hai)rd t 7(8: g457, 64(85g(g: 3)

h00 9 r d1ie-ai)r d Dc, OeNead, f O, p 2K (G, 9 F

PeC	Ords					J a1i					Eruis					
D)œH)r d	Eruis. rud	lo				S eli. rud	0				Ords. ruc	do				
T)me	T	P	W	FNN	l eoU	W	P	W	FNN	l eoU	W	T	W	FNN	l eoU	Idi
202260(603 gth(FM	52	20	0	g2	- :	h0	h0	0	20	2h	3h	: h	0	h22	4	2
gt30F M	45	h7	0	:0	(h7	hg	0	32	h5	25	h2g	0	h(7	:	2
gt7(FM	h04	22	0	h2:	7	5	h3	0	h:	h(22	h(3	0	h4(2	32
: t00F M	g4	g	0	:(5	2	h0	0	h2	h2	2h	h23	0	h77	7	2
Tria-	332	57	0	3:5	27	32	(h	0	g3	57	h00	7: (0	(:(22	h0-
* FNNraHs	g38g*	h582*	0*	6	6	3g85*	5h87*	0*	6	6	h58g*	g382*	0*	6	6	
* Tria-	308 *	580*	0*	358 *	6	380*	784*	0*	481*	6	:88*	758h*	0*	((87*	6	
1 v %	0844h	08424	6	08457	6	08(4h	085: 7	6	0857h	6	08g30	08g0h	6	08g77	6	08g
P)Cs i1 ado Mr ir cHyHe1	3h5	50	0	345	6	3h	74	0	4g	6	g4	77h	0	(2g	6	
* P)Csi1 ado MrircHyHe1	:(82*	:38g*	0*	: 78 *	6	:58 *	: 282*	0*	: 780*	6	g480*	g: 8h*	0*	gg81*	6	: h8
v eaBy	h7	7	0	hg	6	h	3	0	7	6	5	33	0	3:	6	
* v eaBy	782*	588*	0*	78(*	6	38h*	(8*	0*	78g*	6	580*	584*	0*	585*	6	(84
R)HyHe1rd wrao	2	0	0	2	6	0	h	0	h	6	4	2h	0	2g	6	
* R)HyHe1rd wrao	085*	0*	0*	* 380	6	0*	280*	0*	h82*	6	480*	782*	0*	781*	6	28
l eoe1ic)ad1	6	6	6	6	27	6	6	6	6	50	6	6	- 6	6	2h	
* l eoe1ic)ad1	6	6	6	6	h00*	6	6	6	6	:38g*	6	6	6	6	:(8(*	
R)HyHe1 r d 9 cr 11k a-L	6	6	6	6	0	6	6	6	6	7	6	6	- 6	6	h	
* R)HyHe1rd9 cr11k a-L	6	6	6	6	0*	6	6	6	6	588*	6	6	- 6	6	78 *	

U eoe1ic)ad1 ado R)HyHe1 r d 9 cr 11k a-L8Pt Peli, wt w)Csi, Tt Ts cu, Wt W6Tucd


2 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST ⊚ EXHIBITION WAY -... - TMC
Tue May 3, 2022

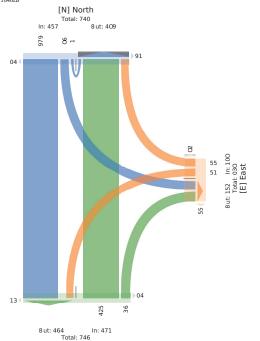
AM Peak (8:-9 AM)1:-9 AMC
AssLsatiei (glind aor MccHyvsei, BeaRy, PereidHaoi, whyvsei co mcar, whyvsei co
Lititi asC
Ass McReDeod

: 190529, gcvadco: . 968 851.,)596 89813

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2022
Mfl lay Lean g ZiB0 LM (tiB0 LM6
: A& A999-g BP / O sal Mi G dryo As r eacy, Lel e9 (Das S, Hiōyo As 9 is vial, Hiōyo As 9 is - d 995a As 6
: A SMiceRes O
k hm 10121, 1 i o a G is h 41 / 25 m 8 L5 4, (LT 25 8 18 m 8

3 of 8

1eP	Oi dij					J a9C					Ei uG					
k RiboŒis	Ei uG. i u	sl				S e9Ci us	1				Oid).ius	il				
TIRe	T	1	W	: NN	Lel U	v	1	W	: NN	Lel U	v	T	W	: NN	Lel U	νεC
2022(0I (03 t 2lB0LM	8I	t m	0	t 04	n	t2	t I	0	2D	2m	23	t 02	0	t 2I	D	2I
t 2hH LM	t 0m	18	t	t 28	I I	2t	t 0	0	3t	3D	23	nD	0	t 20	t 4	20
t h00LM	t 05	t I	0	t 2t	1.8	t D	t3	0	30	34	2t	110	0	t3t	t 3	28
t h I L M	mB	23	0	tt5	t E	t 5	23	0	3m	35	t 8	nD	0	ttI	8	20
Ti QA	3n8	п	t	45m	H	55	5t	0	t 2D	t 35	81	405	0	4m	42	t 08
: NNi ao)	8378	t 570*	072*	((1270*	4870*	0*	((t DB*	827D*	0*	((
* Ti GA	3572*	57h#	07.*	437 *	(57:*	175*	0*	tt7D*	(DB*	3D##	0*	4I 72*	(
Lr %	07h05	078t I	07210	07h20	(07063	075m0	(0.181.0	(07h20	07h4I	(07h48	(07h5
1 PP) Olasl Mi€doyo Ar9	318	D0	t	42m	(50	ID	0	ttD	(DD	3D8	0	4I I	(t 00
* 1 IP) Olas I Mi Cobyo As9	nt 7 *	nB73*	t 00*	nt 71*	(n07hf	n874*	0*	n27t*	(n075*	n87t*	0*	n27D*	(n27.*
r eacy	25	I	0	3t	(t	t	0	2	(4	t m	0	23	(I
* r eacy	575*	57D*	0*	575*	(t 7I *	t 75*	0*	t 75*	(47D*	47D*	0*	47D*	(I 72*
HRyoAe9is vial	m	0	0	m	(I	3	0	8	(4	m	0	t3	(3
* HRyoAe9is vial	273*	0*	0*	t 7hf	(D5*	47hf	0*	573*	(47D*	272*	0*	275*	(278*
Lel e9@fas 9	((((13	((((t 34	((((4t	
* Lel e9@fas9	((((n574*	((((n871*	((((mD5*	
HRyoAe9is - di99BaAa	((((2	((((2	((((t	
* HlöyoAz9 is - di 99BaAn	((((375*	((((t7I*	((((274*	


ULel e9@das9as1 HFoyoAs9is - di 99BaAn71h1ebCvhvFP)C,ThT)du, WhW(Tuds

4 of 8 5 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

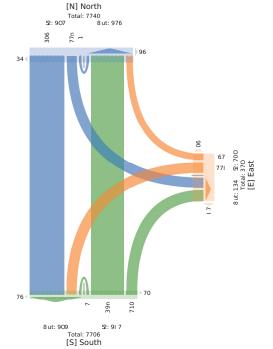
5300014 - COVID - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 3, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 1, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. @ CATHOTHON WAY - ... - TIME.
The May 2, 2022 - DAING ST. & CATHOTHON WAY - ... - TIME.
The May 2, 2022

[S] South

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Tue May 3, 2022 FM Feal Ing h FM (hg h FM6(: Ae-a9Feal 1 Pu-) 9 CChasses II dur o aH/ MPdP-B/Bhs, 1 ea/sy, Fevese-daHs, RdbyBhs PHwPav, RdbyBhs PH C-Pssk ad 6

) 9MPAemeHs IDg4h072h, i PBaαPHgnh88457. n, (7h8 5h543


i eo	OP-a					J asc					EPua					
DdeBxPH	EPua bPu	Hv				S esdPul	ł/				OP-œ bPu	Hv				
Tdne	T	i	W) NN	FevU	W	i	W) NN	FevU	W	T	W) NN	FevU	IH:
2022(0h(03 ng hFM	113	t 4	t	t 33	2n	2n	3t	0	hh	n.	24	tt2	t	t n2	4	3
ng80FM	t 2n	25	t	t h3	20	t 0	24	0	34	3n	2h	t 07	0	t 32	7	3
ngnhFM	tt2	30	0	t n2	30	t n	27	0	nt	3n	37	tt4	0	t h.	7	3
hg00FM	t 27	3.	0	t.3	22	t3	3t	0	nn	n3	3.	tth	0	t ht	t 0	3
TPa9	n7.	tt3	2	h4t	4.	. t	tt5	0	t 74	t h7	t 27	nh3	t	h5t	33	t3
*) NN-PaBr	508h*	t 48 *	088*	((3n8t *	. h84*	0*	((2t 84*	7580*	082*	((
* TPa9	3h82*	58h*	08:*	n387*	(n8h*	587*	0*	t 382*	(48n*	338h*	08 *	n380*	(
F1 %	084t 0	08500	08h00	08554	(08 2h	08542	(08773	(08574	084. h	082h0	084n7	(081
i dores aHv MPdP-ByBBes	nn0	tt2	2	hhn	(. 0	t 07	0	t.7	(tth	n22	t	h35	(t 2
* idorosaHvMPdP-ByBBes	428h*	448 *	t 00*	4387*	(458n*	4087*	0*	4388*	(408 *	4382*	t 00*	428 *	(438
1 eaAy	t h	0	0	t h	(0	0	0	0	(t	t n	0	t h	(
* 1 eaAy	382*	0*	0*	28h*	(0*	0*	0*	0*	(085*	38:*	0*	28 *	(28
RdByBBs PHwPav	2t	t	0	22	(t	tt	0	t 2	(t t	t 7	0	25	(
* RdByBles PHwPav	n8h*	084*	0*	387*	(* 81	48*	0*	.87*	(587*	385*	0*	n85*	(n8
Feveso-daHs	((((4t	((((t ht	((((30	
* FevesodaHs	((((4n85*	((((4.82*	((((4084*	
RdByBBes PHC-Pssk a9	((((h	((((((((3	
* RdByBles PHC-Pssk ag	- (- (- (- (h82*	(- (- (- (385*	- (- (- (- (48 *	

^UFeveso-daHs aHv RdByBBes PHC-Pssk a9 8i gi efc, wgwdorc, TgTr-u, WgW(Tu-H

6 of 8

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 2021 9-8 - AM) 91 CesaILAeaPi gus
AM AeaPi (8 - AM 9-8 - AM) 91 CesaILAeaPi gus
Bit Li amend loct dia vB Mgigls Ry Ren, i eaCy, AeBenbion, wdbyRlen gv mgaB, wdbyRlen gv
t sgm1 aiP)
Bit MgcDevils
47 85-0. 2-, dgRaifigv8(-6551. b(, 9 - 6b1-153

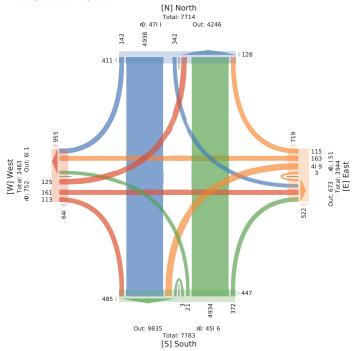
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Tue May 33, 200 JIPAO 9 M 33AO 9 M 2) M, - AO) ME) MC FI llangt (f & AO 9 M PAO 9 M , 33AO 9 M 2) M, - AO) ME) MC 9 IIII langt (f & AO 9 M PAO 9 M , 33AO 9 M 2) M, - AO) Me) MC 9 III Movamugh III MOVAMURGH (JAPAG-5, 200 M) MC 1 M A SAO (J

) ro 300 s ogi hıllahıbg Dr, N

	-																								
nut	Norh(Eaih						Sol h(Tuih						
Deluchubg	Sol h(b	ol ge					T uilbo	ol ge					Norh(b	ol ge					Eai Ibol	ge					
Winu	R	W		U	9 pp) ur +	R	W	п	U	9 pp) ue+	R	W	n	U	9 pp) ue+	R	W	n	U	9 pp)ue+	
2022104133 : Al09 M	4	33:	7	0	32P		8	5	32	0	2-	37	2	335	3	0	338	8		3	8	0	33	P	2
8A009 M	3:	2:4	:	0	278	2P	2-	32	22	3	47	:0	37	- 3P	4	0	-52	2P	35	38	-0	0	:3	-8	8
7A009 M	25	-:7	20	0	532	302		42	52	0	328	33:	2:	440	3-	0	47P	:7	3P	5-	-5	0	P:	:4	32
PA009 M	38	203	5	0	222	- P	5	7	2-	0	-4	: P	P	228		0	2- P	- 0	37	25	23	0	11	2:	4
33.4009 M	37	2-0	33	0	24P	5:	3:	34	- 0	0	:3	30P	32	22-	:	0	253	58	23	P	25	0	45	70	::
32.000) M	- 2	558	23	0	400	P7	- 2	-1	42	0	320	2-4	27	5:4	38	0	430	P7	27	2:	- P	0	P-	37P	32
3.400) M		550	37	0	5P3	4-	-7	25	:3	0	32-	3P5	20	525	3-	3	547	78	-2	3P	-4	0	7:	34-	334
- A00) M	32	282	7	0	2P2	84	34	22	2P	0	- ::	338	P	3P2	4	0	20:	:3	30	28	3:	0	4-	73	::
5.400) M	5:	432	34	0	48-	8P	25	53	44	0	320	25:	24	5:5	3-	0	402	P7	-3	- 5	54	0	330	3P2	3-1
4.00) M	-:	44P	27	0	: 2-	77	- 5	-8	47	0	32P	24P	-0	5-4	3:	0	573	337	54	42	54	0	352	382	3-8
Vélal	2- P	-530	3-P	0	-877	: 32	22:	243	- 75	3	7:2	352-	38P	- 53-	P2	3	-:74	:5-	223	242	2P:	0	8: P	3005	P30
% 9 pproac(8%		1	1	2:.2%	2P.3%	55.4%		1	1	5.P%	P2.: %	2.4%	0%	1	1	27.8%	2.7%	-7.4% (3%	1	1	
% Wolai	2.: %	- 8.4%	3.4%	0% 5	53.: %	1	2.4%	2.7%	5.2%	0%	P.4%	1	2.0%	-8.4%	3.0%	0% 5	0.4%	1	2.5%	2.7%	% (1% 7	7.5%	1	
nd (li age Molorcyclui	22:	-32-	3	0	- 572	1	3P-	384	-:4	3	8-5	1	342	- 30:	77	3	58	1	20P	3PP	27:	0	: P5	1	72
% nd (li age Molorcyclui	P5.: %	P3.: %	P4.8%	0% 1	93.P%	1	74.5%	: P.8%	P4.3% 3	300%	74.2%	1	75.P%	P3.0%	P4.8% 3	300% 1	0.7%	1	P5.: % I	3P.0%	P: .: % (3% P	0.2%	1	P0.8
Huavy	P	383		0	37-	1	33	P	32	0	-2	1	- :	374		0	3P5	1			4	0	33	1	5.
% Huavy	7%	4.0%	2.2%	0%	5.7%	1	5.P%	:%	3%	0%	8%	1	5%	4.5%	%	0%	4%	1	3.5%	3.2%	3.8% (3% 2	3.5%	1	5.:
Bdryclui og Roae	5	33:		0	32-	- 1	22	:8	8	0	P:	1	23	322	3	0	355	1	P	40	4	0	:5	1	52
% Bdryclui og Roae	3.8%	5%	2.2%	0%	2%	- 1	P.8%	2: .8%	3.7%	0%	33.3%	1	33.8%	:%	3.3%	0%	P%	1	5.3%	3P.7%	3.8% (3% 1	7%	1	5.8
) ueui hrdagi	1	1	1	. 1	1	48P	1	1	1	1	1	350-	1	1	1	1	1	:2-	- 1	1	1	1	- 1	PP2	
%) ueui hdagi	1	- 1	1	- 1	1	P5.: %	- 1	1	1	1	1	P7.:%	1	1	1	- 1	11	PP%	1	1	1	1	11	P7.7%	
Bdryclui og s roi i walk	- 1	- 1	- 1	- 1	- 1		- 1	- 1	- 1	- 1	- 1	20	- 1	- 1	- 1	- 1	- 1	20	- 1	- 1	- 1	- 1	- 1	32	

*) ueui lrdagi age Bd:yclui og s roi i walk. n Anufh, RARd: (h, WAW(rl , UAU IW rg


8 of 8 1 of 8 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

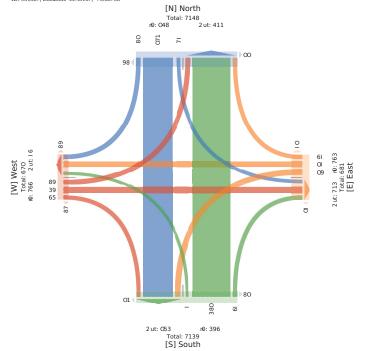
Wed May 11, 2022
Full Length (6:30 AM-9:30 AM, 11:30 AM-2 PM, 3:30 PM-6 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Concentral PM

All Movements
ID: 951387, Location: 45.40167, -75.68758

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

T ue May 33, 2022

F M1 tul. rgdh F M1 (6:0h F M:
F M. A:394 m1 f) G 30 ai e Mdxdar yr A49, c ually, I ueu9xilai 9, v Pyr A9 di Bdae, v Pyr A9 di - cd9Rs.a.:
F AMxdH


1 u)	f daC						Ga9s						J dEsC						T u9s					T
mRur sRli	JdEsC	dEi e					T u95	dEi e					f daC	dEie					Ga9:5d	Eie				
SRvu	В	S	1	W	F00	l ueU	В	S	1	W	FOO	lueU	В	S	1	W	FCO	l ue U	В	S	1	W F	00 lue	Ulás
2022(0h(33 gt3hF M	8	6g	I	0	30D	3E	Е) 3I	32	0	12	14	D	312	2	0	343	3D	I	8	g	0	3D 2	1 20
gtI 0F M	h	gD	h	0	6D	Ig	32	31	31	0	Ig	14	4	34h	4	0	3hI	38	I	33	32	0	28 3	4 I
gt4hF M	33	330	8	0	326	H	Е	20	30	0	ID	14	31	340	3	0	3h4	24	32	23	g	0	43 3	6 I
6t00F M	32	33h	I	0	310	26	I	I	32	0	3g	43	h	33E	2	0	324	3D	30	36	6	0	Ig 3	2 I
Sdsa/	14	430	36	0	48I	33E	26	46	4E	0	32h	34I	26	hI 4	6	0	hD2	D4	2g	hD	ID	0 3	322 8	g 32
* FOOdarC	DI+	gg78*	473°	0+	((2I 72*	1672*	I DB+	0*	((hB*	6I 74*	37B+	0+	((2I 70°	487D°	107+	0+	((
* SdsaA	27D*	I 270+	37h*	0+	1839*	(27/+	176*	170°	0+	67g+	(27 *	437D°	07D°	0+ 4	47B*	(272*	474*	275+	0* 67	h*	(
1 c %	0700g	07gHD	07h64	. (07gDg	(07804	07h63	07504	(07D6D	(07h8I	07632	07h8I	(07621	(07h8I	07008	07Lh0	(07	lh0	(076
1 P) Cs9 ai e Mdsdoryr As9	13	IDB	36	0	423	(28	2h	4h	0	68	(2h	46I	6	0	h2D	(2D	4D	Ih	0 3	306	(33
* 119 G9aie																								1
Mdsdcryr A9	6372*	607h*	300+	0+	60%+	(g67D*	h370*	6h7D°	0+	D87g*	(g872*	627 *	300*	0+ €	273*	(6874*	g27h*	647B*	0° g67	1+	(g6%
c uaHy	I	26	0	0	12	(I	3	- 2	0	8	(2	2h	0	0	2D	(0	3	3	0	2	(
* cuaHy	876*	DB+	0+	0+	876*	(307 +	270+	47.0	0+	47g+	(875*	47D*	0+	0+	47D*	(0+	37g*	27D*	0+ 37	B*	(h72
v Pryr Ar9 di Bdae	0	30	0	0	30	(0	21	0	0	2I	(2	38	0	0	3g	(3	6	3	0	33	(
* v Pryr Al-9 di Bdae	0+	274*	0+	0+	272*	(0+	4876*	0+	0+	3g74+	(875*	I 70+	0+	0+	173*	(I 78+	3h7g*	27D*	0+ 67	D+	(4%
l ueu9xilhi 9	((- (((332	(. (. (((343	(((((IB	(((((8	D
* l ueu9xalhi 9	((- (((6h7D°	(. (. (((6g78*	(((((5h75*	(((((6g7h	Т
v Prvr As9 di - od99R aAL																								
V IF YEARS OF - OUSSINAAL	((- (((h		. (. (. ((2	(((((1	(((((3

^Ul ueu9soBai 9 ai e v Pryr Au9 di - od99R a AL71 t 1 u.s, Bt BP) Cs, St SCoE, Wt W(SEoi

2 of 8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Wed May 11, 2022
AM Peak (8:15 AM - 9:15 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951387, Location: 45.40167, -75.68758

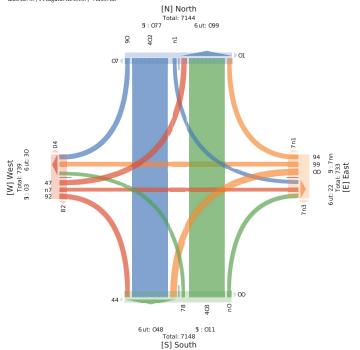
5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
T ue May 33, 202 pd M (32g 0 1 M6
h: Xa--u- 19B) - QE Ms [sidydtu-, o uary, l ueu-)liaG-, c Rlydtu- s CHsae, c Rlydtu- s C
Als--v a L16
h: Msr uBU-QRegknitt I J 9 s da)B Cg4n R038 D (bn81 D d

CHANA
Uttawa
l isr Feue 5yg ABy s. b))av a
300 As G-)u::a)Es Cwi,
f uQuaC, bf, N2p mHk, Ah

3 of 8

9u1	fsi)P						Ga-)						JsE)P						T u-)						
wFud)BC	JsE)P5	sEGr					T u-)5s	EGr					fsi)P5	s BCe					Ga-)5s	BGr					
SBu	H	S	9	W	h 00	LueU	Н	S	9	W	h 00	LueU	Н	S	9	W	h 000	l ueU	Н	S	9	W	h 00	I ueU	RC)
2022(0n(33 33g 0h M	8	333	D	0	324	Зп	k	8	20	0	t m	4π	I	334	2	0	324	22	k	4	3m	0	21	tΙ	t 33
33g4nh M	32	33k	4	0	3t m	t3	D	k	30	0	28	84	4	30k	4	0	33D	2m	32	m	k	0	28	42	t 04
32g00l M	8	30I	m	0	33k	t 0	D	- 1	33	0	28	Ιt	m	324	8	0	3t m	t2	D	m	33	0	2t	44	t Ot
32g3mi M	33	33I	4	0	3t t	2π	33	30	34	0	t m	n8	I	333	m	0	324	20	I	D	8	0	23	48	t 3t
Ss)a:	t m	4mB	20	0	m23	303	t 4	t t	nm	0	322	24I	2m	4mi	3D	0	mĐ0	kk	t 8	23	43	0	kI	3D0	32t 3
* h OGsadP	87.*	IkZ*	t 7k*	0+	((2Dk+	2D70+	4m3*	0+	((mD+	k378*	t 74°	9*	((t 87D°	2374*	437 *	0+	(((
* Ss)a:	27*	t DØ+	37B+	0+ 4	137 m †	(27.*	27D°	47hf	0+	k7k+	(270+	t DE2*	374*	0+ 4	078*	(27k*	37D°	t 7 *	0+	I 70+	((
10%	07Dk	07k4k	07Dk2	(07kt8	(07Dm0	07Dn0	07BI 4	(07123	(07Dm0	07k33	07001	(07k32	(0700	078Dk	07084	(07lk4	(07k84
9HP)- aCe Ms)sidyd:u-	t 4	424	31	0	4DB	(t 3	2D	n0	0	30I	(2t	43D	38	0	4n8	(t 4	31	40	0	k2	(33t 2
* 9HP)- aCe																									
Ms)sidyd:u-	kDB*		k070*	0+ 1	ct 72*	(k372*	137 *	k07k*	0+ 1	II 7m²	(k270*		k473* I	0+ k	372*	(k474*	I mD°	kDB*	0+ I	ct 7k*	(k270*
o uar y	3	20	3	0	22	(2	t	2	0	D	(3	t 3	3	0	tt	(0	3	0	0	3	(8t
* ouary	27k*	474*	mD+	0+	47.+	(mk*	kB*	t 78*	0+	miD*	(470+	87.*	mk+	0+	878*	(0+	47.0	0+	0+	370+	(m3*
c Rhydru- sCHsae	0	32	3	0	3t	(3	t	t	0	D	(3	30	0	0	33	(2	2	3	0	m	(t 8
* c Rhyd:u- sCHsae	0+	278*	mD+	0+	27m²	(27k+	kB*	mint	0+	miD*	(470+	272*	0+ (9*	272+	(mB+	k7nf	274+	0*	m3+	(27k+
l ueu-)i liiG-	(((((kE	(((((24t	(((((kD	(((((38k	
* l ueu-)iliiG-	((((- (k870+	((((()	+07. I	(((((1	kI 70+	(((((k	ck74*	(
c Rhyd:u- s C Aisv a:L	(((((4	(((((п	(((((2	(((((3	
* c Hyd:u-sCAisva:L	(((((470+	(((((270+	(((((270+	(((((07B+	(
T .																									

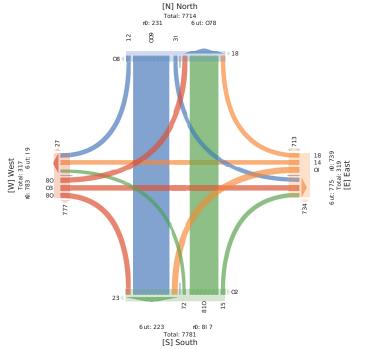

Ч ueu-)iAG- aGe c Rhyd:u- sCAis--v a:L79g9u.), HgHRP), SgSPiE, WgW(SEiC

5 of 8 4 of 8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

53000.14 - COVID - DANK 31 (@ FIFT AVE - MAT ... - TMC Wed May 11, 2022 Målday Peak (118 0 5 M - 128 0 PM9 5)] | MCCCA, Jul gånla Mt g myojeC r eacy, Pede Gpalah G HavyojeCt h v t ad, HavyojeCt h 1 nr (CBa)k9 5)) Mt ceRehg: wn81 Dt: 37, st oagla h84 D40167, -7D637D8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
T ue May 33, 2022
FM Fuil In FM gt FMhg(6u:caMFuil - 91:
PN) AGGGG1607ace M96:FH/HMCJ - us6y, FueuG:iacC, v iH/HMC9c B9ae, v iH/HMC9c) - 9:GRaAh
PAM956uvurC
kml Di3478, s 9Hri9c1 5n.503 t8, g8n.t 78n7



s ud	O9:ro						J aGr						E91ro						TuG						
mi:uHi9c	E91rob	91ce					T uGb!	91ce					O9:rob	91ce					J aGb9	1ce					
Siwu	В	S	s	W	PNN	FueU	В	S	s	W	PNN	FueU	В	S	s	W	PNN	FueU	В	S	s	W	PNN	FueU	ker
2022g0ng33 nI00FM	32	35n	n	0	3t 2	3n	t	8	20	0	44	t 0	33	335	n	0	340	44	33	38	32	0	50	54	4t n
nI3nFM	t	352	8	0	3nn	25	D	35	33	0	45	nn	Е	334	n	0	328	42	34	7	3t	0	48	57	4n4
nI40FM	n	32t	t	0	348	24	7	7	3n	0	43	72	n	DB	4	0	30n	2n	30	38	D	0	4t	53	40I
nI5nFM	34	35t	30	- 0	3t D	2t	33	7	32	0	43	t 2	n	333	4	0	33D	27	33	30	7	0	2D	50	457
S9raA		nnD	27	0	t 24	77	45	48	n7	0	32D	2nD	40	54n	3t	0	573	337	5n	n2	5n	0	352	382	348s
* PNN9aHb	n.7*	7D8*	5.n*	0+	g	8	2t .5*	27.8*	5n.0*	0+	g	g	t.2*	D0.5*	4.4*	0+	g	8	43.8*	4t .t *	43.8*	0+	g	8	
* S9raA	2.t *	50.8*	2.0*	0+ :	5n.4*	8	2.n*	2.8*	5.2*	0+	D5*	g	2.2*	43.t *	3.2*	0+ 4	4n.0*	g	4.4*	4.7*	4.4*	0+ 3	0.4*	g	
F- %	0.t 84	0.Dn2	0.800	g	0.085	8	0.70t	0.8n0	0.8n0	g	0.778	g	0.t n0	0.D4t	0.8n0	g	0.D84	g	0.D88	0.8n0	0.804	g	0.D45	g	0.057
s idorCace M9r9:HyHMC	4n	n38	27	0	n70	8	27	24	n8	0	307	g	2t	500	3n	0	553	g	52	4D	5n	0	32t	g	32nr
* s idorCace M9r9:H/HhC	D8.2*	D2.n+	300+	0+ 1	D4.3*	8	72.5*	t 2.2*	D7.4*	0+	74.8*	g	7t .8*	D2.0*	D4.7*	0+ I	DB.8+	10	D4.4*	8n.0*	300*	0+ 2	7.8*	g	D8.4*
- ua6y	0	3t	0	0	3t	8	3	3	0	0	2	g	0	32	. 0	0	32	8	3	0	0	0	3	8	43
* - ua6y	0+	2.D*	0+	0*	2.t *	8	2.D*	2.8*	0+	0+	3.t *	g	0+	2.7*	0+	0+	2.n*	8	2.2*	0*	0+	0+	0.8*	g	2.4*
v iHyHMC9c B9ae	3	2t	0	- 0	28	8	n	34	3	0	3D	g	5	24	3	0	27	8	2	34	0	0	3n	g	7I
* viHyHhC9c B9ae	2.7*	5.8*	0+	0+	5.4*	8	35.8*	4n.3*	3.8*	0+	35.8*	g	34.4*	n.4*	t.4*	0+	n.7*	8	5.5*	2n.0+	0+	0+ 3	0.t +	g	t.n+
Fueu@iacC	8			5 8	g	73	8		. 8	g	8	2nt	8		3 8	g	g	338	8	. 8	g	g	g	383	
* FueuGriacC	8			5 g	g	D2.0*	8	8	8	g	8	DF.7*	8		3 8	g	g	DD2*	8	8	g	g	gl	DD5*	
viHyHbC9c):90TRaA	8			5 g	g	8	8	8	8	g	8	. 4	8		3 8	g	g	3	8	8	g	g	g	3	
* viH/HhC9c):9CRaA	g			5 8	g	7.0+	8	. 8	8	g	8	3.2*	8		3 8	g	g	0.7*	8	. 8	g	g	8	0.t *	

UFueuG:iacCace viHyHuC9c):9CRaA.sIsufr, BIBidor, SISo:1, WIWgS1:c

6 of 8

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Wed May 11, 2022
PM Peak (5 PM - 6 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951387, Location: 45.40167, -75.68758

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

or dik alons

9 ILMr Bull ughd

DI APC3733, nr Hahr gA7QF0357, 15QB . 0-5.

) cr Bœue by Ai dy r f Olfluk 300 i r gdrullafur g 4 (Nupuag, ON, K2G CIP, i S

7 of 8

rut	Nrd(Each						Srlh(T udh						
4 onuHorg	Srll(b	rl ge					T ud	brl ge					Nrd(b	rlge					Eadibrl	ge					
Mi u	W	W	n	U	9 pp) ue*	w	W	n	U	9 pp) ue *	w	W	n	U	9 pp) ue*	W	W	n	U	9 pp) ue*	Igh
202210CI33 : A009 M	32	٠.	0	0	Œ	0	0	2	0	0	2	72	0	2.	-	0	-3	-	0	0	3	0	3	33	
5A009 M	-7	373	0	0	35C	-	0	3	0	0	3	377	0	3- C	22	3	3C.	3	7	2	3P	0	2C	2P	
. A009 M	- :-	2: P	0	0	5	0	0	7	0	0	7	3C2	0	273	2.5	0	-07	33	2-		3P	0	7.	22	Г
PA009 M	23	:	0	0	305	0	0	3	0	0	3	: P	0	300	35	0	335	7	C	3	-	0	37	3.	Г
33A009 M		3	0	0	35:	0	0	-	0	0	-	330	0	P:	3C	0	333	30	30	3	33	0	22	22	Г
32A00) M	53	-3C	0	0	*.:	3	0	C	0	0	С	232	0	3. 0	3C	0	3PC	3~	-0	33	2.	0	: P	-5	Г
3A00) M	7.	2: P	0	0	-35	3	0	32	0	0	32	3P2	0	3. 3	20	0	203	P	-0	3P	70	0	. P	- 5	Г
2A00) M	2	30	0	0	32	0	0	0	0	0	0	-	0	P	2	0	33	0	2	0	2	0	7	0	Г
- Al0) M	-3	22P	0	0	2:0	2	0	-	0	0	-	. 0	0	30.	2P	0	3-5	3	22	2	2.	0	(2	3C	
7A00) M	5C	7:0	0	0	GC	3	0	:	0	0	- :	220	0	2-7	7-	0	255	2	CD	33	75	0	30.	C3	Г
C400) M	33:	73-	3	0	G-0	2	0	-	0	0	-	- 3.	3	23.	:3	0	2.0	3:	7C	30	Œ	0	330	52	
Wilal	C3:	2-:.	3	0	2 C	30	0	70	0	0	70	3C72	3	3G-0	2P0	3	3. 22	50	223	2 -	2C	0	C72	- 37	C
% 9 ppcr aH(358P%	. 288%	0% (0%	1	1	0% 3	00%	0%6 0	0%	1	- 1	08%.	780%	3CBP%	08%	1	1	708 % 3	338 %	758 %	0%	1	1	
% What	P8 %	778 %	0% (0% (780%	1	0% (08 % (0%6 (9% (08 %	- 1	0%	2. 8P%	CIC%	0%	- 787%	1	782%	382%	78P%	0%3	8082%	1	Г
na (ldage MrlrcHyHud	CD:	2-0P	3	0	2.3:	1	0	0	0	0	0	- 1	0	3755	2.:	3	35: 7	1	232	0	2C3	0	7: -	1	
% not (lidage Mr lr cHyHud	P. 88%	P580% 3	300% (0% 1	258 %	1	0%	0% (096 0	0%	0%	1	0%1	P: 80%	P. 8 %	300%	P: 8 %	1	PCBP%	0%	P58 %	0%.	C87%	1	PC
v uaBy	P	3C	0	0	27	1	0	0	0	0	0	- 1	0	5	2	0	P	1		0	-	0	:	1	
% v uaBy	385%	08 %	0% (0%	08 %	1	0%	0% (0%6 0	0%	0%	- 1	0%	080%	085%	0%	080%	1	387%	0%	382%	0%	388%	1	
RdHyHudrg wrae	3	77	0	0	7C	1	0	70	0	0	70	- 1	3	7:	2	0	7P	1		2.4	7	0	5-	1	Г
% RoHyHudrg wrae	082%	38P%	0% (0%	38 %	1	0% 3	00%	0%6 0	0% 3	800%	- 1	300%	- 80%	085%	0%	285%	1	285%	300%	38 %	0% 3	8-80%	1	
) ueudkragd	1	1	1	1	1	30	1	1	1	1	1	CP-	1	1	1	1	1	:7	1	1	1	1	1	2: P	
%) ueudroagd	1	1	1	1	13	900%	1	1	1	1	1	80%	1	1	1	1	11	P387%	1	1	1	1	1.	CE5%	T
				-	- 1	0	- 1	- 1	1	- 1	- 1	P7P		- 1	- 1	- 1	- 1	-	- 1	- 1	- 1	1	- 1	7C	1
RoHHudrgi crock alm	1	1	1	1	1	0	1	1		1	1	P/P	1								1	1	1	/ (

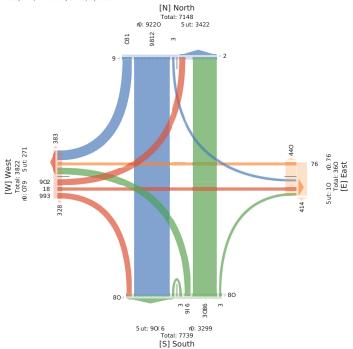
^{*)} ueudhoagd age RoHyHudrg i crddk aIm8n An ufh, wAwd (h, WAW(d, UAU IW) cg

8 of 8 1 of 8 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

Need May 11, 2022

Full Length (6:30 AM-9:30 AM, 3:30 PM-6 PM, 11:30 AM-1:1) PM, 1:1) PM-2 PMC

All slaiie (Loghti and Mrtr chlyflei, v eaBy, Pedeitcani, Rchyflei rn wrad, Rchyflei rn


scriik almC

All Mr Bel enti

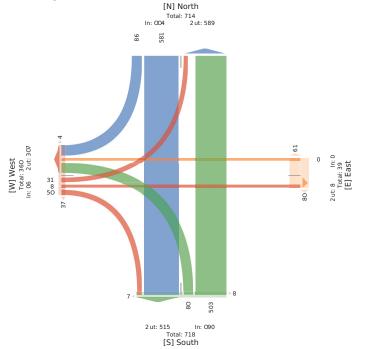
B: 9) 1811, Lr Hsten: 8) 780148, -4) 75, 034.

Pcr Baled by: s aty rf Ottak a 100 s rni tellatarn 5 c, Nepean, ON, K2G) J9, s A

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

55668 (4 - COVID - QUEEN ELIZABETH DRWT @ PRI... - TMC
T ue May 33, 2022
F M 1 ual. ng FM t h FM(
F6: 68AMAP BPJACE MS)sidyddiu'A o uary, 1 ueu/ki9nCA c 9lyddiuAs CHsae, c 9lyddiuAs C
: is Av af (
F6Msr uBu CA
Rvkhnižl 33, - s da)8 (x in 100341, t 4n17)g084g

- u1	f si)P					Ga	9					JsE)P					T uAj						
w9ud)9sC	JsE)P	is ECe				Τı	AJSs EC	è				fsi)P5s EGe					GaAj5s I	BCe					
S9Bu	H	S	-	W	F001 uel	H	S	-	W	FΦ	l ue U	Н	S	-	W	Fω	l ueU	Н	S	-	W	Fω	l ueU	RC)
2022t0nt33 gl00F M	30	70	0	0	40	(3	0	0	3	H	0	n7	32	0	7g	8	8	3	I	0	g	3	3I
gl8nF M	3g	m	n 0	0	48 ((3	0	0	3	18	0	n7	37	0	42	I	I	8	I	0	33	8	3n
gl80FM	28	78	0	0	g7 ((2	0	0	2	In	0	4h	20	0	hh	2	38	3	7	0	20	g	20
glinFM	34	h3	0	0	30g ((0	0	0	0	20	0	nθ	3m	0	7m	2	8	3	m	0	h	30	3g
Ss)a6	7g	27h	0	0	884	(I	0	0	I	3n2	0	213	78	0	80I	33	28	7	3h	0	Ig	22	7h
* FOOsadP	2012*	4hPg*	0* (0*	t	0*	300*	0*	0*	t	t	0*	4hl3* :	*400	0*	t	t	I 4lh*	32 Dr	8hD*	0*	t	I	
* Ss)a6	hlg*	8g1g*	0* (0* 1	gD*	0*	0D*	0*	0*	0D*	t	0*	8I IB*	hB*	0* 1	*dl8	t	813*	0D*	2ID*	0*	7 D *	I	
10%	0138h	01381	t	t	0134m	1	t	t	t	t	t	t	01 3 78	0₽agg	t	0147g	t	01028	t	013h2	Ţ	01h8h	t	0 <u>19</u> 8
- 9LP)AaGe Ms)sidyd6aA	74	277	0	0	888	(0	0	0	0	t	0	28m	78	0	2hg	t	22	0	3h	0	13	I	74
* - 9LP)AaGe																								
Ms)sidyd6aA			0* (0* I	סיסי	0*	0*	0*	0*	0*	t	0*	h4llat	300*	0* I	hg ID *	t	hnf3*	0*	300*	0* 1	gn iD *	t	h4 ID *
o uar y	3	3	0	0	2	(0	0	0	0	t	0	0	0	0	0	t	0	0	0	0	0	t	
* ouary	3 Dr	0D*	0* (0*	0D*	0*	0*	0*	0*	0*	t	0*	0*	0*	0*	0*	ī	0*	0*	0*	0*	0*	t	018*
c 9dyd6aAs CHs ae	0	2	0	0	2	(I	0	0	I	t	0	7	0	0	7	I	3	7	0	0	4	Ţ	3
* c9dyd6uAsCHsae	0*	013*	0* (0*	0D*	0*	300*	0*	0* :	300*	t	0*	21 b #	0*	0*	210*	I	113*	300*	0*	0* 3	3I D *	I	210*
l ueuAji9icA	t		t	t	t (1	t	t	I	Ţ	7I	Ε	t	t	t	t	33	I	I	t	I	Ţ	22	
* l ueuAji9aCA	ī	t	t	t	t	1	ī	t	I	Į.	12 B *	T.	t	t	t	t 3	*00	Ţ	t	t	I	t 3	*00	
c9dyd6aAsC: isAAva6L	t	t	t	t	t (1	t	t	I	ī	gg	I	ī	Ţ	t	ī	0	ī	t	t	I	I	0	
 c 9dvd6iAs C: is AAv a6L 				t	t	1		t	I	1	n#lb*	T	1	I	t	1	0*	I	I	T.	I	I	0*	


U ueu/Ji9aCAaCe c 9tyd6uAs C: is AAv a6LD-k-u.), HkH9lP), SkSPiE, WkWtSEiC

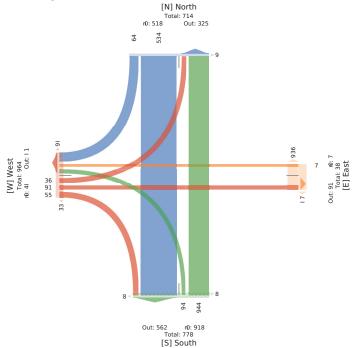
2 of 8 3 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Wed May 11, 2022
AM Peak (8 AM : 5 AMA9) 91lel (CSu'ij ahd Mrg moydel, r eacy, Pedel grahl, Hsoydel th v tad, Hsoydel th
) ri IlBa9A9Mrt ceRehj
wnl 5DI311, Ct oagr hl 3D30143, : 4DZ 80648

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
T ue May 33, 2022
Mileeay I ual. n82git 1 M h3git 1 M(
6: :A:a--u- 18PB) - aC Ms k idyd:u-, o uar y, l ueu-)iliiG-, c lidyd:u- sCHsae, c lidyd:u- sC
Ais--v a:L(
6: :Ms ru Bi uG)Rvgkt 3n83, 9sda)B Cgm In03Dn hD 14708D7

Ottawa l isr Reue 5ygAfly s. b))av a 300 As G)u:a)BC wi
f uOuaC, bf, N2p t Kk, A6


9u1	6 - DD						Ga-						JsE	n.					T)						
	fsi)P																		T u-)						
wlfud)lSC	JsE)P							-)5s B()P5s EG					Ga-)5s						
SIBu	H	S	9	W	600	l ueU	Н	S	9	W	600	l ueU	Н	S	9	W	600	l ueU	H	S	9	W	600	l ue U	RC)
2022h0t h33 32g8t 1 M	20	D	. 0	0	k7	0	0	3	0	0	3	t 0	0	8D	8	0	mθ	m	38	3	t	0	3k	3D	3t
32g80l M	3t	k4	. 0	0	333	0	0	3	0	0	3	44	0	t 3	t	0	t4	8	D	- 8	4	0	34	3	37
32gnt l M	3E	77	. 0	0	30t	3	0	2	0	0	2	nm	0	t 8	8	0	t4	0	4	8	D	0	34	33	30
3g00l M	3t	4t	0	0	70	0	0	3	0	0	3	t 3	0	84	4	0	n2	3	D	32	7	0	2D	33	3t
Ss)a:	4E	82E	0 0	0	8km	3	0	t	0	0	t	233	0	3DD	3E	0	3km	7	88	3k	24	0	DF	m0	4Γ
* 6 OOlsadP	3DI0*	7810*	0*	0*	h	h	0*	300*	0*	0*	h	h	0*	k3I2*	717*	0*	h	h	n218*	2min#	*8188	0*	h	h	
* Ss)a:	3010*	n7ID*	0*	0*	t 7ID*	h	0*	0ID*	0*	0*	0ID*	h	0*	24Inf	2lt *	0* 2	27lk*	h	mik*	217*	8lk*	0*	3314*	h	
10%	01787	017D0	ŀ	n h	0lk0m	h	h	ı l	h	h	h	h	h	01733	0ID07	h	0I7mm	h	0I48t	ŀ	017t D	h	OIEk2	h	0lk0
9 FtP)- aCe Ms)sidyd:u-	4t	837	0	0	878	h	0	0	0	0	0	h	0	3D0	3E	0	37D	h	83	0	2m	0	tt	h	42
* 9RP)- aGe																									
Ms)sidyd:u-	kD10*	kD12*	0*	0*	kD12*	h	0*	0*	0*	0*	0*	h	0*	k4I0*	300*	0* 1	k4Inf	h	k8lk*	0*	k218*	0*	D0lt *	h	k8I3*
o uar y	2	2	. 0	0	m	h	0	0	0	0	0	h	0	2	0	0	2	h	2	0	0	0	2	h	
* ouary	810*	014*	0*	0*	310*	h	0*	0*	0*	0*	0*	h	0*	313*	0*	0*	310*	h	413*	0*	0*	0*	214*	h	312*
c Rlyd:u- sCHsae	0	Γ	0 0	0	D	h	0	t	0	0	t	h	0	t	0	0	t	h	0	3k	. 2	0	23	h	8
* c Rlyd:u- sCHsae	0*	2B*	0*	0*	317*	h	0*	300*	0*	0*	300*	h	0*	217*	0*	0*	214*	h	0*	300*	DID*	0*	24lk*	h	t ID
l ueu-)i lii-C-	l	n l	n l	n h	h	3	h	ı	h	h	h	7m	h	h	ŀ	h	h	7	h	l l	ı h	h	h	88	
* lueu-)illàG-	l	1 1	n l	n h	h:	300*	h	ı	h	h	h	8kI7*	h	h	ŀ	h	h3	*00	h	. I	h h	h	h'	72lt *	_
c Rlyd:u- sCAisv a:L	ì	1 l	n h	n h	h	0	h	ı l	h	ı h	h	32D	h	h	ŀ	ı h	h	0	h	- l	ı h	h	h	D	
* c Elvd:u-sCAisva:L	1	. 1	n h	n h	h	0*	h	1	h	h	- L	4012*	h	h	h	h	h	0*	h	l l	. 1.	h	h'	BDit *	

Ч ueu-)i laG- aGe c ldyd:u- s CAis--v a:LI 9g9u.), HgHRP), SgSPiE, WgWlSEiC

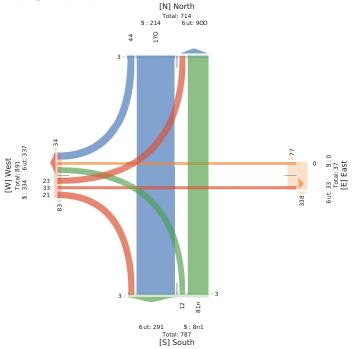
4 of 8 5 of 8 5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5-3000-14 - CUVID - QUEEN ELIZABETH DRWH @ FRI... - INNC Wed May 11, 2022 MAiday Peak (1281: PM-9)) | MCC(SA) if Jahd Mr g myo)eCr eacy, PedeGpAhG HAvyo)eCt h v t ad, HAvyo)eCt h I rt (TBa)k-9)) Mt ceRehgC wn81: 1D11, s t oagh h8D 3D017D, 57: 31, 067.

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

Tue May 33, 2022
FM Fual ligh FM (1gh FM6(: An-a9Fual 1 P)C9S shitii Idor Gi Have MPH-ByBhi, 1 ua/ly, Fueui Havi, RdbyBhi Pv wPae, RdbyBhi Pv
s-Pit Ra 36
C9MPA-mmvH

IDg4h3t 33, dPBaHdF	vgt h	₹ 038	t , (ł	3h75	. 0n8.														Ou	Nuav,	: U), p 2r	. 116#,	SC
dur	OP-H					Ja	iН					EP	H					T ui H			_			
DouBldPv	EP) Hit	P) ve				Т	ui HbP) v	e				OP	-HbP) v	e				Jai HoF) ve					1
Samu	W	S	d	W	CNN Fuel	V	w S	d	W	CNN	FueU	W	S	d	W	CNN	Fue U	W	S	d	W	CNN	Fue U	IvH
2022(0h(33 ng hFM	34	32h	0	0	3tt () (0 3	0	0	3	t h	0	h4	38	0	85	3	3h	3	34	0	nh	1	2h5
t g00FM	4	32t	0	0	3nn	3 (0 t	0	0	t	hh	0	50		0	5.	0	32	h	32	0	24	5	2nt
t g8hFM	20	322	0	0	3t 2) (0 2	0	0	2	h0	0	58	30	0	88	0	33	2	4	0	22	32	2t n
t gn0FM	3.	304	0	0	328) (0 0	0	0	0	h0	0	5n	30	0	8n	3	35	n	33	0	n0	3h	2n0
SPHS	55	t.0	0	0	ht 5	3 (0 8	0	0	8	200	0	2t 4	t h	0	24t	2	ht	33	h3	0	335	n8	45n
* CNN-PaB:	3273*	. 874*	0*	0*	((0*	300*	0*	0*	((0*	. t 78*	3h7h*	0*	((t 575*	47h*	*07.11	0*	((-
* SPH9	574*	t 47 *	0*	0* I	1578*	(0*	078*	0*	0*	078*	(0*	2h74*	t 78*	0* :	n07h*	(h75*	373*	h7h*	0*	3270*	(-
F1 %	07.2h	0745h	((074h2	((((((((0743t	05	(074n.	(07.2.	(075h.	(078h8	(074t 3
dorcH ave MPHP-ByB9ui	5h	t 8n	0	0	hn.	(1	0 0	0	0	0	(0	2t n	t 2	0	2. h	(h2	0	h0	0	302	(42h
* dorcH ave MPH-ByBhi	4 7h*	4 7h*	0*	0* 4	1 75*	0*	0*	0*	0*	0*	-	0*	4875*	4n7h*	0*	4574*	- (457h*	0*	4. 70*	0*	871*	- (4578*
1 uaAy	3		_	0	n	1	0 0			0	- (0		2		t	- (3				3	- (
* 1 uaAy	37h*			0*	07h*	(0*	0*		0*	0*	(0*	07 *		0*	37.*	(374*	0*	0*	0*	074*	(07.*
RdByBhi Pv wPae	0	h	0	0	h	(1	0 8	0	0	8	(0	t	3	0	h	(3	33	3	0	3n	(n0
* RoByBlui Pv wPae	0*	370*	0*	0*	074*	(0*	300*	0*	0*	300*	(0*	375*	272*	0*	378*	(374*	300*	270*	0*	3372*	(n73*
Fueui Hoavi	(. ((((:	š	(((((t 4	(. ((((2	(((((nt	
* Fueui Hoavi	(. ((((300*	Т	(((((2t 7h*	(((((300*	(((((-	4374*	(
RoByBhi Pv s -Piik a9	(- ((((()	(((((3h3	(((((0	(((((n	


^UFueui Hoavi ave RoByBui Pvs-Piika9I7dgdufḤwgworcḤSgSc-), WgW(S)-v

6 of 8

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC Wed May 11, 2022 PM Peak (5-6) PM OS-6) PM OS 1 eHao Peak u ACH so Laitiei (glit nd alb MAcN4RyRei, u eal y, Pedeidhaß, wHsyRei AB Mahad, wHsyRei AB LiHii adv so MA eDebi :9 - 3) 1611, gARadnB-6) 850176, 07) 81, 057.

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

The Mta 34, 2, 7, 18th Ms; 142 PM)

1FI Lingth (62:A2 - MS):A2 PM)

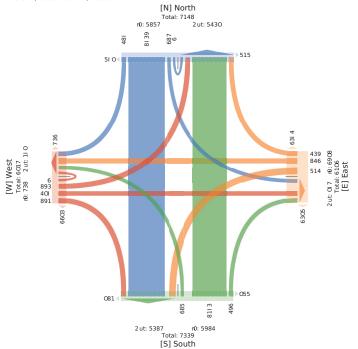
1 I Clussry (Lib w ugd Monorcacins3Hnava3Pndnsriugs3Bicacins og Roud3Bicacins og Crosswulk)

1 I Movrnings

10. 47468, 3 Locusiog: 78572613/39/83, 1/8.

Pro 622 Cogsenllueiog Dr3Ni

7 of 8


			-																						
Lnt	North						Euse						ToFeh						S rise						
Direction	ToFehbo	Fgd					S nsebo	Fgd					Norehb	oFgd					Eusebol	Fgd					
Wimn	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	Ige
, 2, , 92892y 62:22- M	68	, 7A	6,	2	, y2	87	6.	67	AA	2	18	. 1	62	, 68		2	, AA	Ay	,,	6A	, A	2	8.	. 1	1,
66:22- M	AB	7	, 2	2	87A	6A2	71	78	8.	2	674	, y6	, у	782	.,,	2	744	6, 7	A	72	8,	2	6A2	, yA	6A,
6, :22PM	7,	74y	, 6	2	812	67,	7,	AB	16	2	6A	7, 1	-,,	78.	6.	2	74.	6AA	A1	7y	72	2	6, A	, 7y	6A6
6:22PM	A,	7.,	61	2	8A2	68A	,7	7A	1A	2	6A2	74.	,7	711	6,	2	82,	67y	, у	A7	A	2	44	64.	6, 1
, :22PM	, 8	86,	6A	6	886	6, .	A6	, 4	1y	2	6, y	7.2	, 2	7y7	6A	2	82y	661	A7	, 2	Ay	6	4,	, 8,	6, y
A:22PM	, A	8, 1	64	2	81.	61.	A7	7,	1,	2	6A	12,	- , ,	718	61	2	82A	61.	78	A7	A,	2	666	A2,	6A,
7:22PM	, у	827	67	2	878	48	, у	8A	74	2	6, 4	82.	,.	7.8	6,	2	8,8	61A	A4	77	A,	2	668	A6A	6A6
8:22PM	A2	74.	6y	2	878	8.	, 4	76	7у	2	66y	748	A6	712	.,,	2	86A	6A4	74	64	A,	2	622	, 88	6, y
1:22PM	62	,,2	1	2	, A1	A6	64	64		2	12	6.2	6y	,,7	66	2	, 8,	8A	61	-	, 6	2	78	62,	84.
Vócul	, A4	Aty2	6A	6	7A7.	484	, y2	A, 6	71,	2	628A	A871	, 26	Al4y	6A7	2	72A,	62.2	A21	, 84	A2y	6	. yA	, 2, .	62A2
% - pprouch	838% 4	65496	A5 %	2%	9	9	. 89.8	A238%	7.A54% :	2%	9	9	852%	465y%	A5466 2	2%	9	9	A656%	, 45/% .	ABS % :	256%	9	9	
% Womi	, 5A66 J	A 38%	654%	2% 7	7,5%	9	,9%	A56%	798%	2% €	25 %	9	, 52%	A854%	654%	2% A	436%	9	A2%	, 58%	AD%	2%	. 38%	9	
Lit hes ugd Moeorcaclns	, AA	Ay7,	6Ay	6	766A	9	,74	, 88	71,	2	411	9	6.1	A74,	6AA	2 .	A 66	9	, 41	6y,	A22	6	y14	9	418
% Lit hes ugd Moeorcachts	4y58% 4	175406	445/06 6	522% 4	4751%	9	4,5%	y457%	622%	2% 4	165/%	9	4, 38%	4798% -	445/06 2	2% 4	798%	9	415/%	1157%	4y5y% 6	522%.	. 56%	9	4A5/9
Hnuva	6	62.	2	2	624	9	6	A	2	2	7	9	,	62y	2	2	624	9	,	,	6	2	8	9	
% Hnava	257%	,5/%	2%	2%	, 3B%	9	257%	254%	2%	2%	257%	9	652%	, 54%	2% 2	2%,	, 5y%	9	25/%	25 %	254%	2%	251%	9	,59
Bicaclus og Roud	8	6, 2	6	2	6, 1	9	, 2	1A	2	2	. A	9	6A	4.	6	2	66,	9	-	. 8	1	2	44	9	7,
% Bicaclus og Roud	, 56%	A2%	25y%	2%	, 54%	9	y57% I	6451%	2%	2%	y54%	9	138%	, 5y%	25/% 2	2%,	,5%	9	, 9%.	A 5 %	, 52%	2% €	665496	9	7369
Pndnseriugs	9	9	9	9	9	4AA	9	9	9	9	9	A621	9	9	9	9	9	621,	9	9	9	9	9	, 224	
% Pndnstriugs	9	9	9	9	9	4y54%	9	9	9	9	9.	4. 54%	9	9	9	9	94	. 54%	9	9	9	9	94	1455%	
Bicaclns og Crosswulk	9	9	9	9	9	, 1	9	9	9	9	9	72	9	9	9	9	9	6.	9	9	9	9	9	64	

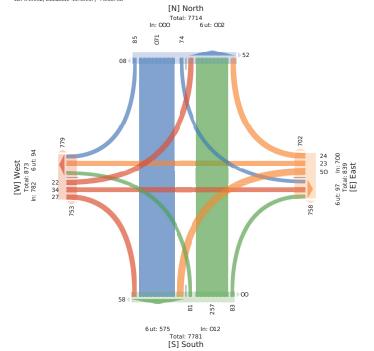
*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

8 of 8 1 of 6 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 949152, Location: 45.40167, -75.68758

\$566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
TueMus y3, 2, ,
MFFus I Lin g h (6: g4A92 1 M PA -92 1 M:
I) () Cinsla g bloos ur F Mcce-Hav)[1.33] LiFLsefter s3w(vav)[1.5 cr k cuF3w(vav)[1.5 cr KcuF3w(vav)[1.5]]
I) () MCRI I res
IB - 474A8, 3i cvadêr - 78572A y3lly85 by8b

Ld	(cHo						J use						TcEeo						t Ise						
OH.veOcr	TcEmf	cEr F					t Isef	:ErF					(cHof	cErF					J usef c	Er F					
SOI L	k	S	i	W	1 pp	1 IFU	k	S	i	W	1 pp	1 LFU	k	S	i	W	1 pp	1 LFU	k	S	i	W	1 pp	1 LFU	De
, 2, , P28P2y AA921 M	у	A, y		2	A72	9.	A9	A2	A	2	7,	. 9		A46	8	2	Α,.	9A	A9	4	A,	2	97	y.	П
A4781 M	b	A, 2	8	- 2	A99	, b	Ay	A7	Ay	2	7b	y4	8	A46	9	2	A, 9	92	Ą	A2	A9	2	98		Т
A, -221 M		A, y	,	2	A98	72	AA	. у	A	2	97	4y	9	A, 2	4	2	A9,	92	b	у	AA	. 2	,.	y4	
A, -ABI M	8	A9.		2	А⊽у	9,	b	A,	Æ	2	99	4y	4	AAA	. 9	2	A, 9	,.	b	A9	b	2	, 4	. 7	
Sceu)	,.	8.A2	A4	- 2	888	A9.	74	79	. 8	2	Аву	99.	, 9	7. A	, 2	2	827	AAy	7.A	. 94	77	2	A, 7	, bA	I
* 1 pplituvo	75y+	4A54+	957*	2*	P	F	9A5 *	, y57*	7A57*	2*	P	P	75 *	4AB+	752*	2*	P	P	995A*	9AB*	9838*	2*	P	P	1
* Sceu)	A54+	9b54*	A57+	2* 7	7A57+	F	95/*	95 *	754+	2* .	A46y+	P	Aby*	9757*	AB*	2* 5	9y5 +	P	95A*	, 54+	959*	2*	459*	P	1
1 B%	25b49	25494	25/82	P	2547,	F	25y. 4	25022	25688	P	25b8.	P	25 AA	254. 8	25B, b	P	254. ,	P	25ybb	25y82	25b4.	P	25b7A	P	2
i Otloes ur F McecHav)Ls	, 8	7yy	Ab	2	8, 2	F	72	9.A	8	2	A9.	P	.,,	7, b	- A4	2	7.4	P	72	, у	79	2	AA2	P	1
* i Odoes ur F																									Г
McecHav)Ls	4.5 *	493B*	475y+	2* 4	195y*	F	bA5 *	y, 54°	A22*	2* 1	b. 5 *	P	485y+	4, 3b+	4852*	2* 4	195A*	P	4y5 *	. 45 *	4y5y*	2* b	bb5y*	P	4,
BLuRa	2	AB	2	2	AB	F	2	A	. 2	2	A	P	2	A	2	2	A	P	A	. 2	2	2	A	P	Т
* BluRa	2*	, 54*	2*	2*	, 5y+	F	2*	, 59+	2*	2*	25 *	P	2*	93B+	2*	2*	95,+	P	,57*	2*	2*	2*	25b+	P	١,
w@rav)Ls cr k cuF	A	Ab	A	. 2	,2	F	4	AA	. 2	2	,2	P	A	. Ay	· A	. 2	A4	P	2	A,	A	. 2	A9	P	T
* w0vav)Ls cr k cuF	95o+	938*	859+	2*	95 +	F	Ab57*	, 85 +	2*	2* .	A, 5y+	P	759+	95y+	82*	2*	95b+	P	2*	925b*	, 59*	2+ A	A238+	P	8
l LFLsel@urs	P	F		P	P	A9,	P	· I)	P P	P	997	P	- I	P F	P	P	AA7	P	P	·	P	P	, b2	T
* 1 LFLsd@rrs	P	F		P	P.	4y5A°	P	·)	P P	P.	445*	P	- I	P F	P	P.	4y57*	P	P	F	P	P/	445 *	
w0xav)Ls cr CHrssmu)n	P	F		P	P	7	P	·)	P P	P	,	P	- I	P F	P	P	9	P	P	F	P	P	A	4
w@rav)Ls cr Clifssmu)n	P	P		P		. 54+	Р			P P		25 *	P	- 1		P		,5+	Р) p		P		257*	


4 LFLselflurs ur F w0/av)Ls cr Clftssmu)n5i - i LQBk - k 0doeBS- SolE3W- WPSEH

2 of 6

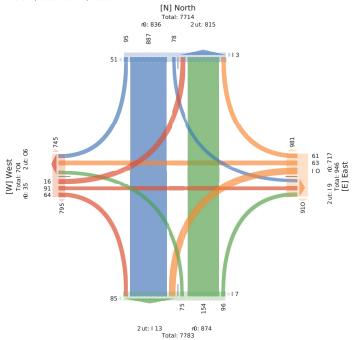
3 of 6

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movemens
ID: 949152, Location: 45.40167, -75.68758

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
TWeMusy 3.2, ...
0M OR4 langth (E.A. 20 M - , :A2 OM (- 9 1Fb)) OR4 CsiP
d) 0 jurte la Fibre ukw Mses Bakily F3 CRuta 30 Fwfrethil R3militak jFrs R I suw8militak jFrs R
0 BrrDu) (
d) Ms ISA Ret
7a: 8586., 3c slaudd R 5. lb.26 y 3-y. lf Oy. O


c Pv	t sRB						Eure						TsieB						n Fre						
h HFkeHR	Tsi eB	Nsi Rw					n FreN	i Rw					t sR B N	ki Rw					Eure%	Rw					
S14 F	I	S	с	W	d KK	0FwU	I	S	с	W	d KK	0FwU	I	S	с	W	d KK	0PwU	I	S	с	W	d KK	0FwL	7Re
, 2, , -22y 6:A20M	v	6, 2	5	2	6A6	5,	y	6,	6y	2	Æ	6, 5	5	660		2	6, y	52	y	f	62	2	, А	. 2	A
6:5. 0M	0	6A5		2	65y	. A	у	66	66	2	,8	6AO	f	662	A	2	668	A2	0	- 5	8	2	, 6	58	I
,:220M	f	658	5	2	6.8	6y	66	У	65	2	A,	6, y	-	66.A		2	6, A	, f	f	A	6A	. 2	,,	OA	A
,:6.0M	f	65O	,	2	6. f	A6	8	8	, f	2	55	66A	0	6, 8	5	2	656	,,	8	66	66	2	A6	٠,	I
Sseu)	, у	6	6.	2	. 8A	65A	A5	AB	fO	2	656	. 2,	, A	5y2	6y	2	. 62	660	A2	, 5	5A	. 2	8y	, A5	6.6
* d KKB:ukB	5lf *	8, 16*	, b *	2*	-	-	, 5li6*	, yly*	50h *	2*		-	5b *	8, h *	AbA*	2*	-	-	A218*	, 5by*	55 b A*	2*		-	
* Sseu)	, 12+	56b6*	6l6*	2*	55b *	-	, b *	, lg+	. li6*	2* (62b *	-	6b/*	A 12*	6bA*	2* .	AC12+	-	, h *	6bO*	Aq+	2*	yh *	-	
0C%	2bC55	21868	2by. 2		21852		2byy.	2by06	2bf.5	-	21606f	-	2lf	2186f	2bO 2	-	2182A	-	2bOAA	2b . f	26020		2by8A	-	216
c HiBer uRwMs es Black)Fr	, у	.,,	6.	2	. f5		A6	,.	fO	2	6, 5		, 2	55.	6y	2	5Q	-	A2	, 2	5,	2	8,	-	6,
* c NHBer uRw Mses Black)Fr		85by*	622*	2*	8. li6+	-	86b *	f 5li6*	622*	2* 1	Dyla*	-	Oyl2*	85by*	622*	2* 1	35b *	-	622*	OAbA*	8yly+	2* 1	85 kO *		85b
CFula	2	66	2	2	66	-	2	2	2	2	2	-	2	6.A	. 2	2	6A	-	2	2	2	2	2	-	
* CFula	2*	, l2+	2*	2*	6l8+		2*	2*	2*	2*	2*	-	2*	, bO*	2*	2*	, b +	-	2*	2*	2*	2*	2*	-	6b
miliak)FrsRIsuw	2	60	2	2	60	-	A	65	2	2	6y	-	A	6,	2	2	6.	-	2	5	6	2		-	
* militak)FrsRIsuw	2*	AbA*	2*	2*	A12+		CHO*	A 18*	2*	2* (6, b 6*	-	6Al2+	, lf *	2*	2*	, lg+	-	2*	6f by*	, b4+	2*	. h *	-	5b
0 PwFreHtiRr	-	-	-	-	-	65A	-	-		-	-	. 22	-	-	-	-	-	66y	-	-	-	-		, AA	
* 0PvFreHtiRt	-	-	-	-	-	622°	-	-	-	-	-	88¥ *	-	-	-	-	- 1	38b, *	-	-	-	-	- 8	38 lf +	
mHak)Fr s Ro Ps rrDu)l	-	-	-		-	2	-			-	-	-,	-	-	-	-	-	6	-	-	-		-	6	Г
* mlkakiFr sRo BrrDuil	-	-	-		-	70	-			-	-	215*		-	-	-	-	2hO*			-	-	-	215+	

UDFwFreHiller uRwmHilak)FrsRoBrrDu)lbc:cFp8I:I NiDe8S:SBH3W:W-SiFR

4 of 6 5 of 6 5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

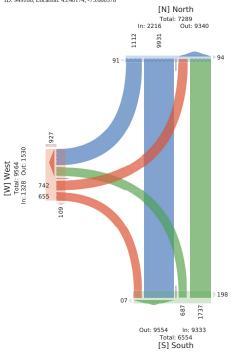
Sat May 7, 2021) (1:30 PM - 2:30 PM) - Overall Peak Hour All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 949152, Location: 45.40167, -75.68758

[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

53608 14 - COVID - QUEEN ELIZABETH DKWY @ PKL... - IMC TueMua 3/3, 27. - M91:A2 PM)

- Il Clusses (Lit he ugd Moorcaclns3Hnuva3Pndnseriugs3Bicaclns og Roud3Bicaclns og Crossvulk)
- Il Movmmags
- ID: 4746113Locusiog: 7857269738/83, 24y.


Lnt	North					ToFeh					E nse					
Dirncelog	ToFehboFg	d				NorehboFg	ξd				SuseboFgd					
Wmn	R	W	U	- pp	Pnd*	W	L	U	- pp	Pnd*	R	L	U	- pp	Pnd*	
, 2, , 92892y 62:22- M	A7	62A	2	6Ay	2	y.	6A	2	46	62	,,	67	2	A1	68	, 1
66:22- M	47	,,4	2	A, A		68A	81	2	, 24	4	82	A2	2	. 2	7y	10
6, :22PM	6, 1	, 17	2	A42	7	6y1	17	2	, 72	6,	77	88	2	44	AB	y,
6:22PM	4,	, 16	2	A8A.	8	, 64	A4	2	, 8.	, 1	71	14	2	668	72	у
,:22PM	668	A62	2	7, 8	,	648	11	2	, 16	, 7	81	12	2	661	88	
A22PM	676	A, A	2	717	-	, 6,	17	2	, y1	86	. 1	62,	2	6	. 7	4
7:22PM	674	A22	2	774	, 2	646	84	2	, 82	Α,	. 8	4.	2	6. A	y1	-
8:22PM	,7A	, 1y	2	862	1	6.4	41	2	,.8	, 7	7.	. 1	2	6A7	71	4
1:22PM	664	677	2	, 1A	6	4,	A	2	6A2	, 1	, 4	84	2		64	7
Weal	666A	,,26	2	AA67	7.	6828	748	2	, 222	, 67	711	8yA	2	62A4	76y	1.A
% - pprouch	AAEI%	1157%	2%	9	9	y85496	, 75 %	2%	9	9	7754%	8856%	2%	9	9	
% Week	6y98%	A751%	2%	8, 5, %	9	, A5y%	y5 %	2%	A638%	9	y5466	452%	2%	6157%	9	
Lit hes ugd Moeorcaclns	6244	, 67y	2	A, 71	9	6771	747	2	6472	9	788	817	2	6264	9	1,
% Lit hes ugd Moeorcaclns	4.5/%	4y38%	2%	4y54%	9	4156%	445 %	2%	4y52%	9	4y51%	4.57%	2%	4.56%	9	4y5
Hnuva	у	A	2	62	9		6	2	4	9		,	2	62	9	
% Hnuva				254%	- 0	258%	25 %	2%	258%	9	65y%	254%	2%	652%	9	25
	251%	256%	2%	25906	9	23076										
Bicaclns og Roud		256% 86	2%	25/10%	9	23076	2	2	86	9	A	y	2	62	9	6
	у	86			9			2 2%	86 , 51%	9	A 251%		2%	62%	9	
Bicaclns og Roud	y 251%	86	2 2%	8.	9 9 7y	86	2	2%		9 9 , 28					9 A, y	
Bicaclns og Roud % Bicaclns og Roud	y 251% 9	86 , 54%	2 2% 9	8. 65 %	9 7y 4y54%	86 A57%	2%	2% 9	,51%	9 , 28 485 %	251%	65,%	2%	652%	9 A y y. 57%	
Bicaclns og Roud % Bicaclns og Roud Pndnseriugs	y 251% 9	86 , 54% 9	2 2% 9	8. 65 %		86 A57% 9	2 2% 9	2% 9 9	, 51%		251% 9	65,% 9	2% 9	652%		65

*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6

1 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Sat May 7, 2022
Full Length (10:30 AM-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949166, Location: 45.40174, -75.680378

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
TUEMua y3, 2, 6,
MGFua I Lun g h (6 ; gA, 92 I M 1 A92 I M:
P) () Clustis g i does ur F McceHav)Ls3BLuRa3l LFLseHur s3w0av)Ls cr k cuF3w0av)Ls cr
CH-smu)n:
P) McRU Lre
B - 474/883i cvudr-75.72/g/73ly5.8b29yb

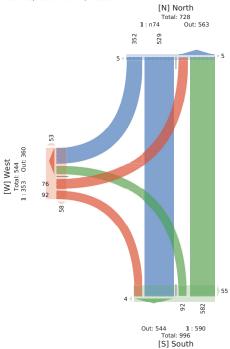
		,	IF f a- 0 422 Cci	COme cC seL))u	WQ DNequmu e0er 6 H3 5G43CP
se efcJrF					
k	i	W	P pp	1 LFU	De
A,	A2	2	,,	A2	Ab,
Ay	A6	2	99	b	, A2
A7	,,	2	98	A9	Ay2
AA	A4	2	92	A2	Ab8

			-													
i Id	(cHo					TcJeo					t Lse					
6 OHLveOcr	TcJ eof cJ	F				(cHofcJr	F				Eusef cJrF					
SŒ L	k	S	W	P pp	l LFU	S	i	W	P pp	1 LFU	k	i	W	P pp	l IFU	De
, 2, , 12512y A, -921 M	94	55	2	47	,	78	, 2	2	88	7	A,	A2	2	,,	A2	A
A, -751 M	92	b2	2	AA2	2	5,	A5	2	8y	b	Ay	A6	2	99	b	,,
A-221 M	, 5	5A	. 2	y8	,	7y	AA	2	5b	AB	A7	,,	2	98	A9	A
AASI M	92	54	2	b4	2	54	b	2	8y	9	AA	A4	2	92	A2	A
Scei)	A, 7	, 75	2	984	7	, 27	57	2	, 5b	9 <i>A</i>	57	8y	2	A, A	7A	у
* PppHtuvo	99.8*	88.7*	2*	1	1	y4.A*	, 2.4*	2*	1	1	77.8*	55.7*	2*	1	1	
* Scei)	A8.8*	9, .b*	2*	74.9*	1	, y.9*	y., *	2*	97.5*	1	y., *	4.2*	2*	A8., *	1	
1 B%	2.ybb	2.y84	1	2.b7A	1	2.b5,	2.8y5	1	2.45A	- 1	2.y47	2.y8,	1	2.b79	1	2.b
i Odoes ur F McecHav)Ls	Α,	, 9y	2	954	1	, 22	57	2	, 57	1	59	87	2	AAy	1	y:
* i Odoes ur F McecHrav)Ls	4b.7*	48.y*	2*	4y.9*	1	4b.2*	A22*	2*	4b.7*	- 1	4b.A*	45.5*	2*	48.y*	1	4y.8
BLuRa	A	2	2	A	1	A	2	2	A	1	A	2	2	A	1	
* BLuRa	2.b*	2*	2*	2.9*	1	2.5*	2*	2*	2.7*	- 1	A4*	2*	2*	2.b*	1	2.7
w0vav)Ls cr k cuF	A	b	2	4	1	9	2	2	9	1	2	9	2	9	1	
* w0vav)Ls cr k cuF	2.b*	9.9*	2*	, .7*	1	A5*	2*	2*	A, *	1	2*	7.5*	2*	, .5*	1	, .2
l LFIse l@ ur s	1	1	1	1	7	1	1	1	1	, 4	1	1	1	1	98	
* 1 LFLseHurs	1	1	1	1	A22*	1	1	1	1	49.5*	1	1	1	1	by.b*	
w0vav)Ls cr CHrssmu)n	1	1	1	1	2	1	1	1	1	,	1	1	1	1	5	
* w0vav)Ls cr CHrssmu)n	1	1	1	1	2*	1	1	1	1	8.5*	1	1	1	1	A, ., *	

U LFLseHiturs ur F w0vav)Ls cr CHtssmu)n. i - i L08k - k 0toe3S-SoH3W-WISJH

3 of 6 2 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC


Sat May 7, 2022ND (12:30 PM AI:30 PM)

Il Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

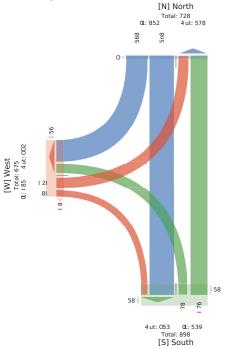
Il Movements

ID: 949155, Location: 4. 6/0174, #. 6/80378

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

\$568814 - COVID - QUEEN ELIZAGE IN DIVINE PROCESSES - INVECTIVE MIA 93, 2,

OM ORAL In grt h (16:A2 OM - 9:A2 OM(- 1 PF)uCO Rul sid)
o CC GocRe LHARRec unk Mid ImandRe3s FuPa30 PsR/redjunv31 vrandRei w Di uk31 vrandRei w r) iced uC(
o CCMi PF7 Fuce
8: 5.56993Hi musi w . 66 2by. 3-y6B9C2/yO



HFB	ti)eR					Ti deR					n Fce					
h s)Fn esi w	Ti deRN dv	νk				ti)eRNido	nk				EuceN dwk					
S∜ F	D	S	W	o KK	0FkU	S	Н	W	o KK	0FkU	D	Н	W	o KK	0FkU	8ve
, 2, , -26-2y 6:A20M	9,	96	2	b, y	2	. 9	, 6	2	yb	bb	5	, 2	2	, 5	b.	,,
6:. 60M	9.	99	2	bA2		. 9	,,	2	90	bA	bA	,,	2	A6	9	,,
9:220M	66	60	2	bbA	b	. y	b6	2	9,	bO	b6	, A	2	AO	bb	,1
9:b60M	9.	C9	2	b62	2	. 6	, A	2	90	0	b.	A9	2	62	0	, 9
Si eu	,.6	, y6	2	6, 2	A	bQ	Cl6	2	, 95	62	6b	b2b	2	b6,	A5	5.
* o KK)i umR	. yfb*	6, f5*	2*	-	-	90f. *	Abf9*	2*	-	-	AAØ*	99f. *	2*	-	-	
* Sieu	,9f2*	, 5f, *	2*	66fA*	-	b5f9*	5f2*	2*	, CØ9*	-	6f. *	b2fy*	2*	b9f, *	-	
0s %	2f56y	2fy5b	-	2fO9,	-	2f59O	2f062	-	2f56.	-	2f062	2fy, O	-	2fyCb	-	2fO
HABREC uwk Mi ei)mantFc	,.6	, y,	2	6by	-	bQ	06	2	, 9y	-	6b	55	2	b62	-	5.
* HNBRecuwk Miei)mantFc	b22*	50/5*	2*	55f. *	-	50f5*	b22*	2*	55fA*	-	b22*	502*	2*	5Ofy*	-	55fA
s FuPa	2	2	2	2	-	2	2	2	2	-	2	2	2	2	-	
* s FuPa	2*	2*	2*	2*	-	2*	2*	2*	2*	-	2*	2*	2*	2*	-	2
I vnantFc i wDi uk	2	A	2	A	-	,	2	2	,	-	2	,	2	,	-	
* IvnantEciwDiuk	2*	bfb*	2*	2f9*	-	bfb*	2*	2*	2fy*	-	2*	, f2*	2*	bfA*	-	2fy
0FkFce)vuwc	-	-	-	-	,	-	-	-	-	. 9	-	-	-	-	Ab	
* 0FkFoe)sussc	-	-	-	-	99fy*	-	-	-	-	5, f2*	-	-	-	-	y5f6*	
I vnam@ciwr)icc4u@	-	-	-	-	b	-	-	-	-		-	-	-	-	0	
* I wantEc i wr)i cc4 utC	-	-	-	-	AAEA*	-	-	-	-	02*	-	-	-	-	, 2f6*	

U) FkFce) vuwc uwk I vnam@c i wr) i cc4 u@fH: HFpe3D: DvBRe3S: SR)d3W: W-Sd)w

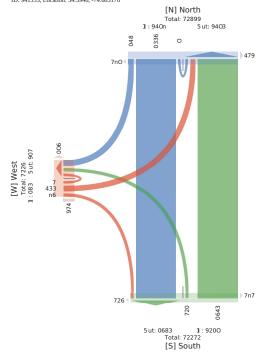
4 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Sat May 7, 2022
PM Peak (WKND) (1:30 PM - Q30 PM) - v rela#Peak o uAl
CHB illIch (i gint.adc Mutul B/Hél, o eary, Peceltigidi, RgByHél.ud wuac, RgByHél.ud s lulImalik)
CHMurel edtl.
9D: 454. QQ i uBatgid: 5160. 75, -716080378

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue Mua y3, 2.,
0FIL Lurg dr (62:A2 - M91:A2 PM)
1 Il Clussra (Lit hes ugd Moorcaclns3Hnuva3Pndnseriugs3Bicaclns og Roud3Bicaclns og
Crossvulk)
1 Il Movnmngs
ID: 476/8831.ocuslog: 87547139y73. 86y1

Provided ba: Clie of Oeuwu Provided ba: Clie of Oeuwu Provided ba: Clie of Oeuwu Nnpnug3ON3K, G 7143C-

5 of 6


Lnt	North					ToFeh					E nse					
Dirncelog	ToFeboF	gd				NorehboF	gd				SuseboFge	i				
Wmn	R	W	U	- pp	Pnd*	W	L	U	- pp	Pnd*	R	L	U	- pp	Pnd*	Ige
, 2, , 92792y 62:22- M	,7	, 4A	2	A6.	62	A21	у	2	A6A	62	,	, 1	2	,.	84	17
66:22- M	8y	162	2	17y	8y	7.8	6.	2	12,	,7	6A	81	2	74	6, 6	6A6
6, :22PM	7y	1AA	2	142	11	746	-	2	744	A		82	2	8.	667	6AA
6:22PM	78	1. 4	2	y8A	уу	1, A	67	2	1A	8,	4	A1	2	87	672	68,
, :22PM	11	14,	,	y12	. 7	18y	68	2	116	12	4	7.	2	1y	688	68.
A:22PM	14	177	2	y, 8	74	11.	6y	2	1.7	A8	62	16	6	y,	6, 2	68.
8:22PM	76	7y2	2	1, 6	4A	114	6y	2	1.1	82	6,	12	2	y,	62.	6Ay
7:22PM	76	761	2	71y	A7	7.1	8	2	742	, 8	6A	8y	2	12	4,	6, 6
1:22PM	61	, A6	2	, 8y	67	, 18	8	2	, 1.	у	A	68	2	6y	8A	7.A
Weel	8A1	84	,	7A, y	8. y	84A	628	2	728,	,.2	y4	Α.	6	81.	48,	62. A
% - pprouch	. 5 %	465 %	2%	9	9	4y54%	, 56%	2%	9	9	6154%	., 54%	25,96	9	9	
% Woed	852%	8756%	2%	845 %	9	8751%	652%	2%	8157%	9	25y%	ASI%	2%	854%	9	
Lit hes ugd Moeorcaclns	A42	812A	2	844A	9	81A6	622	2	8yA8	9	у8	A86	6	861	9	6268
% Lit hes ugd Moeorcaclns	. 458%	485 %	2%	4A5y%	9	4A5 %	415 %	2%	4.A54%	9	4.A5y%	. y54%	622%	54%	9	4A519
Hnuva	,	4y	2	44	9	4.	6	2	44	9	,	6	2	A	9	, 2
% Hnuva	257%	, 52%	2%	654%	9	, 52%	652%	2%	, 52%	9	, 57%	25466	2%	251%	9	6549
Bicaclns og Roud	88	6.4	,	, A7	9	, 21	A	2	, 24	9	A	81	2	84	9	84
% Bicaclns og Roud	6256%	A54%	622%	898%	9	85, %	, 54%	2%	856%	9	A5 %	6654%	2%	6257%	9	8579
Pndnseriugs	9	9	9	9	886	9	9	9	9	, 8.	9	9	9	9	. 1.	
% Pndnseriugs	9	9	9	9	4251%	9	9	9	9	51%	9	9	9	9	4, 56%	
Bicaclns og Crosswulk	9	9	9	9	81	9	9	9	9	A,	9	9	9	9	у8	
% Bicaclns og Crosswulk	9	9	9	9	458%	9	9	9	9	663B%	9	9	9	9	v54%	

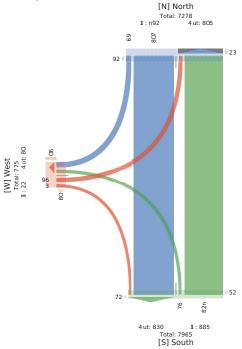
6 of 6 1 of 6

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941355, Location: 54.3946, -74.685176

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

53608.14-CUVID-DANK 51 @ ATLIMER AVE - MAY... - IMC
TUEMIU 3/3, 2,
MOFPia I Lun g h (6: gA_91 I M PA91 I M:
) GS_Gilli gilgöre i urF MHHABBÜ 3R Luva31 LFLi «Auci 3k ØBBÜ H: mHuF3k ØBBÜ H:
still viü:
) GCMHALDLei
45-71/6993d HBufH-91871. 3Ry15 b9/y.


dLo	(Her					THIer					t Lie					
6 OLEMEN:	THJerfHJc	F				(HverfHJ	:F				Eui ef HJ cF					
SØDL	m	S	W) pp	l LFU	S	d	W) pp	1 LFU	m	d	W) pp	1 IFU	4ce
, 2, , P21P2y A, -91l M	A,	Ay,	2	Ab9	, 8	A 8	,	2	A 1	AA	8	y	2	A2	8.	8
A-221 M	A	Ay.	2	A7,		Α.	9	2	Ay2	A2	,	9	2		81	8.
A-A11 M	A,	A 9	2	Ay.	, 8	Al A	8	2	A19	b	A	b	2	7	81	88
A821 M	A8	A 7	2	Ab,	A1	A y		2	Ay8	7	8	A	2	A7	9y	89
SHuC	18	. bA	2	y89	b8	. 9y	A1	2	,	8b	7	81	2	99	A18	A9:
*) ppvHuBr	y5 *	7, 3b*	2*	P	P	7y5y*	, 3B*	2*	P	P	, 251*	y751*	2*	P	P	
* SHuC	85y*	9y38*	2*	1.A52*	P	9957*	A52*	2*	9.52*	P	25 *	, 59*	2*	85A*	P	
1 R%	2571b	257y.	P	257b2	P	257y.	25,1	P	257.7	P	25.y	25LAb	P	25Lyb	P	257.
d0oreiucFMHHHBaB1ti	9.	. 8,	2	. yb	P	. 28	A1	2	. Ab	P	b	,7	2	8y	P	AB
* d0oreiucFMHHABaB0Li	b. 5b*	7, 5b*	2*	7, 59*	P	785 *	A22*	2*	7859*	P	bb57*	b, 57*	2*	b95A*	P	7, 5
Rluwa	2	A,	2	A,	P	A9	2	2	A9	P	2	2	2	2	P	
* Rluwa	2*	Ab*	2*	A5 *	P	,5*	2*	2*	, 5A*	P	2*	2*	2*	2*	P	A3b
k OBaBCLi Hc mHuF	у	8y	2	99	P	82	2	2	82	P	A		2	у	P	
* k OBaBCLi H: mHuF	A85 *	159*	2*	. 52*	P	95 *	2*	2*	931*	P	AA5A*	Ay5A*	2*	A157*	P	15
l LFLi educi	P	P	P	P	y1	P	P	P	P	88	P	P	P	P	A9,	
* 1 LFLi exûsci	P	P	P	P	7259*	P	P	P	P	b. 5b*	P	P	P	P	7, 5b*	
k (BaBCLi Hr s vHill uCa	P	P	P	P	b	P	P	P	P	1	P	P	P	P	AA	
* k 0BaB0Li Hc s vHiI u0a	p	р	P	P	75 *	P	р	P	P	A85 *	p	p	p	P	v5 *	

U LFLi eXuci ucF k (BaBCli Hc s vHi I uQi5d - dLQ8m-m0ore3S - Sr vJ 3W-WPSJ vc

2 of 6

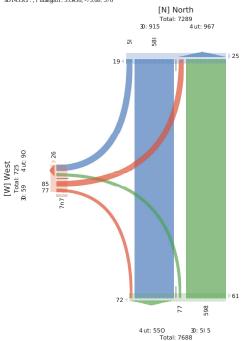
5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Sat May 7, 2022 Midday Peak (WKND) (12:3A PM) 1
G.S. Gillet (gihntl.aod Mrtr dlyHel., v eaby, Pedeltciaol, RiHyHel.ro wrad, RiHyHel.ro or (Imaß) 1
CMr Pel ectl.
40: 4A1533, gr Hstiro: 3A5446, -7A683176

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
TUEMus y3, 2, 4, 6, 6 AOM - 96 AOM(-1 PF)uCDFul sid
OC Gocfee HarRee und Mid i) mandFe3s FuPa30R4Fe3unvc3l vrandFeiw Diuk3l vrandFeiw
r) icest utCl
OCM: PET Forc
8a 65A 9: 3Hi musi v6: A95A/3-yAH Q. yf

3 of 6

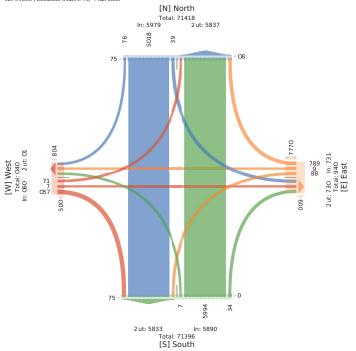

HFB	ti)eR					Ti deR					n Fce					1
h s)Fnesi w	Ti deRN d	uk				ti)eRN dv	k				EuceN dwk					i
S∜ F	D	S	W	o KK	0FkU	S	Н	W	o KK	0FkU	D	Н	W	o KK	0FkU	8ve
, 2, , -2A-2y , 6 A0M	. у	. f y	2	. Ω	, 0	. y:	2	2	. y:	. y	9	.,	2	. A	: 9	9
9@20M	.0	. yO	2	. 5f	5	. A5		2	. f9	y	,	. 2	2	٠,	9A	9
96 A0M		. A,	2	. f9	, 2	. f2	A	2	.fA		:	, 9	2	, у	: 2	9.
96920M	,,	. f .	2	. 09	. f	. Q	,	2	. α		,		2	. 9	, f	9
Sieut	f O	f AO	2	y, f	у9	f yA		2	fŒ	: f		Af	2	f y	.::	. : :
* oKK)iumR	5b *	52lf*	2*	-	-	5Ob *	. bf *	2*	-	-	.fb*	O9β.∗	2*	-	,	
* SieuC	: bf *	:: bA*	2*	: 5b *	-	: Atf *	2by*	2*	:fb*	-	2by*	9hO*	2*	: bA*	-	
0s %	2l5.,	2l5, f	-	215,:	-	2l52y	2bAA2	-	215.,	-	21f OO	2bAOy	-	2lf 2,	-	2150
HiBRec uwk Mi ei)mantFc	f.	f 99	2	f 5:	-	f,,	. 2	2	f9,	-		A	2	f A	-	. 9
* HiBRecuwk Miei)mantEc	Œby*	5f b, *	2*	5Abf*	-	5, b *	52b5*	2*	5, b *	-	. 22*	5f b *	2*	5yl2*	-	5: b
s FuPa		. A	2	. f	-	. 9		2	.:	-	2	2	2	2	-	
* s FuPa	. bA*	, l9*	2*	, h, *	-	. l6*	5b *	2*	,12∗	-	2*	2*	2*	2*	-	, 12
I vnantEciwDiuk	f	. 2	2	. f	-	:2	2	2	:2	-	2	,	2	,	-	
* IvnantEciwDiuk	CRO ₈	. bA*	2*	, h *	-	Ab5*	2*	2*	AlO*	-	2*	9hf*	2*	962*	-	915
0FkFoe)vuwc	-	-	-	-	f A	-	-	-	-		-	-	-	-	.,2	
* 0FkFoe)sussc	-	-	-	-	C2/5*	-	-	-	-	5Aby*	-	-	-	-	CB(8)*	
I vnann€ciwr)ico4u©.	-	-	-	-	0	-	-	-	-	,	-	-	-	-	,:	
* I vnantEc i wr)i cc4 uC	-	-	-	-	12*	-	-	-	-	: 19*	-	-	-	-	. f by*	

4 of 6 5 of 6

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Sat May 7, 2021) (21: 3 PM - OR 3 PM) - v relattPeak o uAl
CHB tilled, ightLade MutulByfiel, o eary, Peceltlgodl, Rgbyfiellud wuac, Rgbyfiellud slullmatk)
CHMurel edtl.
9D1435Q:, i uBstgud1: 3.0436, -73.68: 576

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC


Lnt	North						Euse						ToFeh						S nse						
Direction	ToFehl	oFgd					S nsebo	Fgd					Norehbo	oFgd					EuseboFg	şd					
Wimn	R	W	L	U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	Ige
, 2, , 92792y 62:22- M	2	, 58	7	2	, 54	6	4	2	8	2	6A	82	у	A2A	6	2	A66	2	68	2	6	2	67	A4	1,5
66:22- M	2	1,6	62	2	1A6	5	68	2	1	2	, 2	688	66	176	2	2	11,	6	A2	2	2	2	A2	622	6AB
6, :22PM	6	1AA	6A	2	18y	8	, 2	2	8	2	,8	6y1	5	182	2	2	185	2	A6	2	,	2	AA	6, 2	6A7,
6:22PM	6	18y	67	2	11A	A	65	6	1	2	, 7	656	66	1, ,	2	2	1AA	8	AA	2	6	2	AB	6AB	6A77
,:22PM	,	у6,	67	2	y, 4	y	65	,	1	2	, 1	, 81	68	177	2	2	114	7	A5	2	6	2	A4	6y6	681
A22PM	2	y, 2	1	2	y, 1	8	, 2	2	7	2	,7	A27	6y	154	2	2	y21	2	Al	6	6	2	A5	677	6847
8:22PM	1	154	68	2	y24	8	, 7	2	1	2	A6	, y6	6,	y, 8	2	2	yAl	4	AA	2	,	2	A7	6, y	6766
7:22PM	1	744	6,	2	16y	5	6A	2	8	2	6y	821	6,	y65	2	2	yA2	A	, у	2	6	2	, 5	6, 4	6A4,
1:22PM	2	, 44	A	2	A2,	2	1	2	A	2	4	661	1	AAI	2	2	АВ,	2	4	2	6	2	62	y7	11/
Weet	61	7, 28	4A	2	7A6A	A4	68A	А	88	2	642	6557	45	7A45	6	2	78Ay	.,	, 76	6	62	2	, 1,	6272	66, 2,
% - pprouch	2.A%	4y.4%	6.5%	2%	9	ć	y7.A%	6.1%	A, %	2%	9	9	6.5% 4	45., %	2% 2	:%	9	9	47.5% 2	.8%	A5% 2	2%	9	9	
% Woed	2.6%	B1.7%	2.5%	2% 1	By.8%	ć	6.A%	2%	2.8%	2%	6.y%	9	2.4% 8	Ву.у%	2% 2	% 8	35.7%	9	, ., %	2%	2.6%	2%	, .A%	9	
Lit hes ugd Moeorcaclns	2	85A2	y5	2	8425	ć	626	2	88	2	687	9	y7	8477	2	2	72A2	9	, A7	6	A	2	, A4	9	62A,
% Lit hes ugd Moeorcaclns	2%	4, .5% :	5A4%	2%	4, .8%	9	y2.1%	2%	622%	2%	y1.A%	S	y1.7% 4	4, .5%	2% 2	96.4	1, .7%	9	4A1% 6	22% A	2.2%	2% 4	16., %	9	4, .6%
Hnuva	2	626		2	626	ć	2	2	2	2	2	9	2	627	2	2	627	9	2	2	2	2	2	9	, 2
% Hnuva	2%	6.4%	2%	2%	6.4%	ć	296	2%	2%	2%	2%	9	2%	, .2%	2% 2	:%	6.4%	9	2%	2%	2% 2	2%	2%	9	6.5%
Bicaclns og Roud	61	, yA	67	2	A28	ć	8,	A	2	2	87	9	, A	, y5	6	2	A2,	9	61	2	у	2	, A	9	1ye
% Bicaclns og Roud	622%	7., %	51.6%	2%	7.y%	ć	, 4.8%	522%	2%	2%,	, Ay%	9	, A7%	7., % 6	522% 2	:%	7.1%	9	1.8%	2% y	2.2%	2%	5.5%	9	1.2%
						A6	9	9	9	9	9	657A	9	9	9	9	9		9	9	9	9	9	6261	
Pndnseriugs	9		-	9	9		-																		
% Pndnseriugs	9	9	9	9	9	y4.7%	9	9	9	9		45.A%	9	9		9		522%	9	9	-	9	94	41.5%	
		9	9			y4.7%	-		9			45.A%	9	9		9	9	622% 2	9	9	-	9		41.5%	

*Pndnseriugs ugd Bicaclns og Crosswulk. L: Lnf@R: Rit h@W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC 5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC
Sat May 7, 2022
Full Length (10:30 Ahr-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 94135., Location: 548894. 79, -7486. 5335

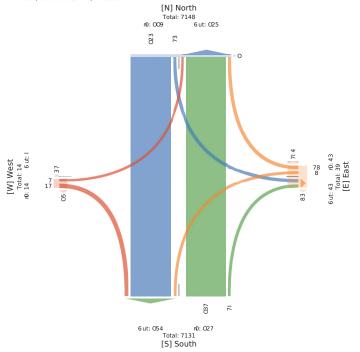
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC
TueMun y3, 2, (6 : gA92 1 M PA, 92 1 M:
1) C)Lasts g glosu ur F Mca:Hav)Ls3BLuRa31 LFLsettur s3w0av)Ls cr k cuF3w0av)Ls cr
LFLsentur:
1) McRL Lrs
1) McRL Lrs
16 - 4788633 cvuttr - 87.9475y43By7.b58998

Ottawa
l HcROFLF f a - COm cONeeumu A22 Ccr seL))ue0cr 6 H
(LpLur 3N(3h , K 7G43C1

1 of 6


Id.	(cF	ilo di					Juse						TcEeo						t Lse					
6 OH.veOcr	TcE	eof c Er	F				t Lsef	ErF					(cHof	cErF					JusefcE	rF				
SOI L	k	S	i	W	/ 1 pp	1 LFU	k	S	i	W	1 pp	1 LFU	k	S	i	W	1 pp	LFU	k	S	i	W 1	pp llF	Dе
, 2, , P27P2y AA921 M	2	Ay9	- 1	7 2	Ay5	8	9	2	A	2	8	95	9	Ab5	- 2	2	AyA	2	4	2	2	2	4 ,8	9
A4871 M	2	A85	-	2	A72	A	9	2	9	2	b	88	9	Ab9	2	2	Abb	2	b	2	2	2	b ,4	9
A, -221 M	2	A74		9 2	Ab,	A	b	2	,	2	5	7.A	9	Ay A	. 2	2	Ay8	2	5	2	A	2	4 ,5	9
A, -A71 M	2	Ay8		3 2	Ay5	2	7	2	A	2	b	89	А	. A94	- 2	2	A82	2	5	2	2	2	5 ,4	
Sceu)	2	b78	А	3 2	bb5	b	Ay	2	у	2	, 8	Ayb	A2	b8A	. 2	2	b7A	2	9A	2	A	2 5), AA	A
* 1 ppHruvo	2*	4y.4*	, .A*	2*	P	I	y2.5*	2*	, 4., *	2*	P	F	A7*	45.7*	2*	2*	P	P	4b.4* 2	18 g).A* 2	k	P	Р
* Sceu)	2*	8y.b*	A2*	2*	85.b*	I	A, *	2*	2.7*	2*	Ay*	F	2.y*	8b.b*	2*	2* 8	By.9*	P	, .9* 2	* 2	2.A* 2	۰, .9	*	P
1 B%	P	2.4A,	2.b72	2 1	2.427	I	2.5y7	P	2.759	P	2.5y7	F	2.759	2.495	I	P :	2.48,	P	2.42b	P2	., 72	P 2.59	99	P 2.
i Odoes ur F McecHav)Ls	2	b2y	A	9 2	b, 2	I	A8	2	у	2	, A	F	у	74y	- 2	2	b28	P	, 4	2	A	2 5	92	P A
* i Odoes ur F																								Т
McecHav)Ls	2*	4, .5*	4, .4*	2*	4, .5*	I	5, .8*	2*	A22*	2* 5	5y.7*	F	y2.2*	49.A*	2*	2* 4	1, .5*	P	49.7* 2	* A	22* 2	49.5	*	P4, .
BLuRa	2	Ay		2 2	Ay	I	2	2	2	2	2	F	2	A5	- 2	2	A5	P	2	2	2	2	2	P
* BluRa	2*	, .b*	2*	2*	, .7*	I	2*	2*	2*	2*	2*	F	2*	, .5*	2*	2*	, .5*	P	2* 2	18	2* 2	· 2	*	Ρ,.
w0vav)Ls cr k cuF	2	92		A 2	9A	I	9	2	2	2	9	F	9	, b	- 2	2	, 4	P	,	2	2	2	,	P
* w0vav)Ls cr k cuF	2*	8.b*	y.A*	2*	8.b*	I	Ay.b*	2*	2*	2* <i>I</i>	A, .7*	F	92.2*	8.A*	2*	2*	8.7*	P	b.7* 2		2* 2	b.9	*	P 8.
l LFLseHurs	P	I)	P I	. P	b	F	P	P	P	P	Ay8	I	1) I	P	P	2	P	P	P	P	P A24	ı
* l LFLseH0urs	P	I)	P I	P.	A22*	P	P	P	P	P.	45.4*	I	- 1	> I	P	P	P	P	P	P	P	P44.A*	Т
w0vav)Ls cr CHrssmu)n	P	I	,	P I	P	2	P	P	P	P	P	,	I	- 1) I	P	P	2	P	P	P	P	Р .	A.
* w0vav)Ls cr CHtssmu)n	р	T.)	P 1	P P	2*	T	P	р	P	D	AA*	T	. 1) I	P	p	D	P	P	P	P	P 2.4*	Т

Ul LFLseMurs urF w0vav)Ls cr CHrssmu)n. i - i L08k - k 0doe3S- SoHE3W-WFSEHI

2 of 6 3 of 6 5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 94135., Location: 54694. 79, -7468. 5335

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

Tue Mua y 3, 2, ,

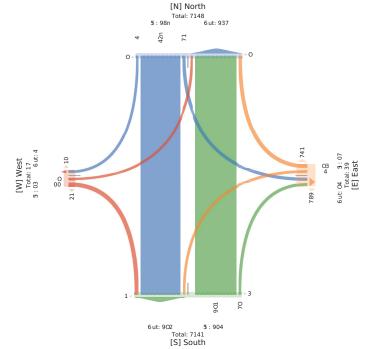
0M 0Ful In g t h (16 0M : A0M(: - 9FluP0Ful) 0s1

i Pd RooFo Ir d-lveo uBR MGChva wFr3) Fu9a30FRFoelub33k ova wFr0 CB mCuF3k ova wFr0 CB

d 1Gool uff (i FPMC9FD FBeo 4h 78A5. 6b3r CknecCB76Af. 8Aby83:yAfCb6. . 6

r FH	t Cle	,					Euce						TGsev						n Foe						
h clFvetCB	TCse	NG BR					n Foel	GB	R				t Clevi	NG BR					Euoe N	's BR					
SdDF	n	ı S	r	W	i KK	OFRL	n	ı S	r	W	i KK	0FRL	m	S	r	W	i KK	0 FRU	m	S	r	W	i KK	0 FRU	4Be
, 2, , :2A:2y 67220M		5b.	,	2	5bO	2	() 2	5	2	у	Oy	6	5y2	2	2	5y6	0	b	2	2	2	b	, у	. y/
675A0M		5CE	: 6	2	5OA	5		2	5	2	6	82		5y8	2	2	5b,	,	6	2	2	2	6	6b	. A
67. 20 M	6	5y6	6	2	5b,	5	5,	2	-	2	5A	6A		5yb	2	2	5b5	5	8	2	,	2	55		. b8
676A0M	- 2	5y,	6	2	5yO	,	6	2	5	2	A	CB	,	58y	2	2	588	2	5,	2	2	2	5,	58	. 8,
SCaul		Ob8	56	2	y28	6	, 1	1 2	0	2	. 5	, y5	5,	y, 6	2	2	y. O	- 8		2	,	2	. A	5, y	5A55
* i KKKOww	2fb*	8yf, *	, f2*	2*	:	- :	b2fO*	2*	58f6*	2*	:		5fO*	8bf6*	2*	2*	:		86f. *	2*	Afy*	2*	- :	:	
* SCaul	2f6*	6AfO*	2f8*	2*	6OB*	:	5fy*	2*	2f6*	2*	, f5*		2fb*	6yf8*	2*	2* €	bfy*	- :	, f, *	2*	2f5*	2*	, f. *	- :	
0) %	6 :	2f8. C	2f85y		2f865	- :	2fA, A	١:	2fA22	:	2fA58		2fyA2	2f828	:	- : :	2f85A	. :	2fy,,	:	- :	- : :	2fy, ,		2f8O
r dHveouBR MGcDvev#Fo	2	Q y	55	2	Cl6p	- :	, 5	2	0	2	, у		5,	Oy6	2	2	СbО		, С	2	2	2	,0		5. b
* r dNeouBR MGchev#o		8, fA*	ybfO*	2*	85f6*		b6f2*	2*	522*	2* 1	yf5*		522*	8. f5*	2*	2* 8	3. f, *		ybfb*	2*	2*	2* y	/6£.*		85fb*
) Fu9a	- 2	55	2	. 2	55	- :	2	. 2	2	2	2		2	5.	2	2	5.	- :	2	2	2	2	2		, (
*) Fu9a	2*	5fO*	2*	2*	5fO*	- :	2*	2*	2*	2*	2*		2*	5fb*	2*	2*	5fb*	- :	2*	2*	2*	2*	2*		5fO*
k ova v#Fo CB mCuR	. () 65		2	A2	- :	6	2	2	2	6		2	. y	2	2	. у	- :	у	2	-,	2	8		522
* kowawEoCBmCuR	522*	CI2*	, 5f6*	2*	yf5*	:	502*	2*	2*	2* 5	5, f8*		2*	Af5*	2*	2*	Af2*		, 5f, *	2*	522*	2* ,	Afy*	- :	CIO*
0FRFoelaiBo					- 1	6				:	:	, CA		- 1	- :	:	- 1	8	:	- :	- :	:	:	5, 2	
* 0 FRFoela Bo						522*						Byfb*						522*					. 0	86fA*	
	1					322						oyio.													
k overviPro CB d 1Cool uiP					:	2	_		- :	-	- :	C	:		-	÷	-	2	:	_		÷	-:	у	

UDFRFoelauBo uBR k ave wFFo CB d 1Cool util fr 7r Fpe8m7mdHve8S7Sv1s3W7W:Ss1B


4 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 07... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY O7... - TMC
Sat May 7, 20202

PM Peak (WKND) (1 PM : 3 PM) : - Oream Peak 1 Hov
ur AnaCCG(5 iii giCahn MHHdydreCJ I eaQV, PeneCMahC c IdydreCHh BHn, c IdydreCHh
AHTCRark)
ur MHCNewhC
nDI 93451., s HlatIHnl 13693. 79, :7368. 1551

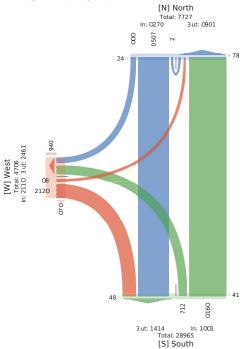
PvHQnen byl Alty H - ttaRa 400 AHhGenatIH Dv, Nepeah, - N, K2G 3J9, Au

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
The Mia 3/3, 2,
OFIL Lng th (62:A2 - M91:A2 PM)
- Il Clussis (Lit his ugd MoorcacIns3Hnuva3Pndnseriugs3BicacIns og Roud3BicacIns og
Crosswulk)
- Il Mownmings
- Il Mownmings
- Il Moynmings
- Il

5 of 6

ID: 4/6A/13Locueog: 8/5	нууу, э	эу / эк. л	027													
Lnt	Noreh					ToFeh					E nse					
Directiog	ToFehboF	gd				NorehboF	gd				SuseboFgd					
Wimn	R	W	U	- pp	Pnd*	W	L	U	- pp	Pnd*	R	L	U	- pp	Pnd*	Ige
, 2, , 92792y 62:22- M	, 6	,,6	2	, 8,	,	, y7	82	2	A67	2	14	2	2	14	81	1
66:22- M	7,	871	2	72.	1	777	628	2	174	8	6y8	,	2	6y1	4A	6
6, :22PM	87	87y	2	72,	6A	78A	62y	2	172	66	6.7	1	2	646	688	6.
6:22PM	74	884	2	72.	66	7A2	668	2	188	6	, 27		2	, 6A	676	6
, :22PM	78	841	2	772	A	718	62.	2	1y,	A	,,2	1	2	,,1	6. 1	6
A:22PM	77	766	2	711	,	7. A	66A	. 2	141	у	, 68	A	2	, 6y	617	6
8:22PM	11	764	2	7.7	6,	1,8	661	2	y82	y	6. A	y	2	642	67y	6
7:22PM	74	867	2	8y8	, 4	1, y	621	2	yAA	62	6.8	7	2	6.4	6, 2	6.
1:22PM	AA	, 68	6	, 8.	68	, 4A	8A	. 2	AA1	,	. 2	A	2	. A	87	
Woed	888	AyA	6	86. A	4,	8748	. 76	2	7887	87	6768	82	2	6778	662y	66
% - pprouch	6251%	. 438%	2%	9	9	. 858%	6751%	2%	9	9	4y98%	, 51%	2%	9	9	
% Woeul	852%	AAB%	2%	Ay38%	9	8656%	y51%	2%	8.5/%	9	6A57%	258%	2%	6.A54%	9	
Lit hes ugd Moeorcaclns	862	A8. 1	6	A 4y	9	8, A,	.,2	2	727,	9	68A	A6	2	68y,	9	62
% Lit hes ugd Moeorcaclns	4,54%	4.A5A9%	622%	4A5 %	9	4, 56%	4158%	2%	4,5%	9	4752%	. 752%	2%	485y%	9	4A
Hnuva	6	47	2	41	9	62,	7	2	62y	9	,	2	2	,	9	,
% Hnuva	25, %	, 57%	2%	, 54%	9	, 5, %	251%	2%	, 52%	9	256%	2%	2%	256%	9	65
Bicaclns og Roud	AA	67y	2	642	9	, 12	, 1	2	,.1	9	y8	1	2	. 2	9	
% Bicaclns og Roud	y38%	85 %	2%	857%	9	75y%	A36%	2%	75466	9	854%	6752%	2%	756%	9	75
Pndnseriugs	9	9	9	9	42	9	9		9	82	9	9	9	9	6272	
% Pndnseriugs	9	9	9		4y5 %	9	9	-	9	54%	9	9	9	9	4854%	
Bicaclns og Crosswulk	9	9	9	9	,	9	9	9	9	7	9	9	9	9	7y	
% Bicaclns og Crosswulk	9	9	9	9	, 5%	9	9	9	0	6636%	9	9	9	9	736%	


*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6 1 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941346, Location: 54.397772, -74.684504

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

\$556814 - COVID - BANN 51 & WILTON CALS - 1000...

TIEM May 32, 2,

MGFU al Lung 1h (6: gA492 1 M PA -92 1 M:

1) C) Dyssts gi those of F McceHav]LS3BLiRa3l LFLsetter S3w(vav)Ls cr kcuF3w(vav)Ls cr Cktssmu):

1) McRU Lres

16 - 47.69783i cvuder - 57.94yyy, 3By7.8b7527

i Id	(cHo					TcJeo					t Lse					
6 OH.veOcr	TcJ eof cJ r	F				(cHofcJi	F				Eusef cJrF					
SŒ L	k	S	W	1 pp	1 LFU	S	i	W	1 pp	1 LFU	k	i	W	1 pp	l IFU	De
, 2, , P27P2y AA-921 M	AA	A9A	2	A5,	5	A9A	95	2	A87	2	72	A	2	7A	, A	9
AA-571 M	Ay	A24	2	A, 8	2	A9b	, b	2	A88	A	52	2	2	52	99	9
A, -221 M	A5	A, 9	2	A9y	,	A7A	92	2	AbA	9	94	,	2	5A	9y	9
A, -A71 M	AA	А, у	2	A9b	у	AA4	, A	2	A52	2	59	2	2	59	, 5	9
Sceu)	79	542	2	759	A9	794	A49	2	87,	5	Ay,	9	2	Ay7	AA7	A9
* 1 ppHtuvo	4.b*	42., *	2*	P	P	b, .y*	Ay.9*	2*	P	F	4b.9*	Ay*	2*	P	P	
* Scei)	9.4*	97.b*	2*	94.8*	P	94.9*	b., *	2*	5y.8*	F	A, .8*	2., *	2*	A, .b*	P	
1 B%	2.yA4	2.4A,	P	2.4, 4	P	2.422	2.b9A	P	2.42b	F	2.b, 2	2.9y7	P	2.bA4	P	2.4
i Odoes ur F McecHrav)Ls	58	57y	2	729	P	54b	AAA	2	824	F	A85	9	2	A6y	P	A,
* i Odoes ur F McecHrav)Ls	b8.b*	49.9*	2*	4, .8*	P	4, .5*	4b., *	2*	49.5*	F	47.9*	A22*	2*	47.5*	P	49.5
BLuRa	2	Ay	2	Ay	P	Ay	,	2	A4	F	2	2	2	2	P	
* BLuRa	2*	9.7*	2*	9.A*	P	9., *	Ab*	2*	, .4*	F	2*	2*	2*	2*	P	, .8
w0vav)Ls cr k cuF	y	AB	2	, 9	P	, 5	2	2	, 5	F	b	2	2	b	P	
* w0vav)Ls cr k cuF	A9.,*	9.9*	2*	5.,*	P	5.7*	2*	2*	9.y*	F	5.y*	2*	2*	5.8*	P	5.2
l LFLseHurs	P	P	P	P	A,	P	P	P	P	5	P	P	P	P	A24	
* 1 LFLseHurs	P	P	P	P	4, .9*	P	P	P	P	A22*	P	P	P	P	45.b*	
w0/av)Ls cr CH:ssmu)n	P	P	P	P	A	P	P	P	P	2	P	P	P	P	8	
* w0vav)Ls cr CHrssmu)n	P	P	P	P	y.y*	P	P	P	P	2*	P	P	P	P	7., *	

^Ul LFLset•furs ur F w0vav)Ls cr CHssmu)n. i - i L08k - k 0doe3S- SoH3W- WPSJH

2 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Sat May 7, 2022
Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941345, Location: . 46997772, -746584. 04

[W] West Total: 657 L: 719 4 ut: 733

776 96n

[N] North Total: 7289 01: 956 4ut: 950

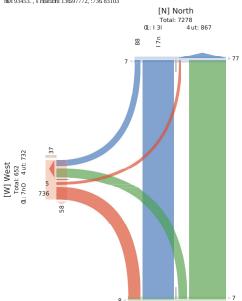
5n2 96

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue Mua y3, 2, ,
0M ORL In g th (16 OM : AOM (: - 9FbuPPORI)) Cs 1
1 Pd Boode In CHO BURK MCCChowRe3) Filea 30FRFoelaiBi3k oorwPro CB mCLR3k oorwPro CB
d ICool uil (
1 PMCGPFDFBo
41 78.65. Ab3r CoorcE76.46 Syyy, 3:yABON62A

Ottawa
01C9dRFR Na7d can Cp - eauI u
522 d CBoeFPRiecCB h 1
t FKFuB3- t 3g, G AJ83di

3 of 6

r FH	t Clev					TCsev					n Foe					Ì
h dPweCB	TGs evNGs I	3R				t ClevNGs1	R				EuoeNCs BR					1
SdDF	m	S	W	i KK	0 FRL	S	r	W	i KK	0 FRL	m	r	W	i KK	0 FRU	4Be
, 2, , :2A:2y 67220M	, 2	56y	2	5by	2	5. y	. 5	2	5bO	5	66	2	2	66	, у	- 3
675A0M	,.	5.,	2	5AA	5	5Ab	, 0	2	506	2	.0		2	65	A2	. (
67. 20M	52	5, 5	2	5. 5	8	5A5	. 5	2	5Q		A6	6	2	AO	. у	- 3
676A0M	5.	558	2	5.,	,	502	, b	2	, 2b		6y	2	2	6y	6.	. (
SCauP	bb	A58	2	AOA	5,	b, 6	55b	2	y62	у	5Q	у	2	582	5Ay	5A
* i KKOnw	55f. *	COfy*	2*	:		O6f. *	5Afy*	2*		:	8bf. *	. fy*	2*	:	:	
* SCarP	6f6*	. 6f. *	2*	. Ofb*		65f, *	yfy*	2*	60tO*		5, f5*	2fA*	2*	5, fA*	- :	
0) %	2fbA,	2f086	- :	2f00y		2fOb,	2f8, y	- 1	2f086		2f825	2f6. O	- 1	2fCbA	- 1	2f80
r dHveouBRMGcDvavlFo	b2	6OA	2	A6A		Ay A	556	2	bOB	:	5y,	y	2	5y8		565
* rdHveouBRMGcIwawBFo	82f8*	8. f6*	2*	8. f, *		8, f5*	8O£ *	2*	8. f5*		86f2*	522*	2*	86f, *	- 1	8. f. '
) Fu9a	2	5,	2	5,		55	5	2	5,		5	2	2	5	:	,
*) Fu9a	2*	, f. *	2*	, f5*		5fO*	2f8*	2*	5fb*		2fA*	2*	2*	2fA*		5fy
k overv#FoCBmCuR	b	,,	2	,0		.0	5	2	. 8	:	52	2	2	52		3
* kowawiFoCBmCuR	8f5*	6f, *	2*	6fO*		bf5*	2f8*	2*	Af. *		AtA*	2*	2*	At. *	- 1	Al5
0 FRFoekuBo	:		:		55			- :		y	:				56.	1
* 0FRFoelcuBo	- :	- :	- :	- :	85fy*	- :		- 1	- 1	522*	- :	- 1	- :	- 1	85f5*	
k ova v#Fo CB d 1Gool u#P	- 1	- 1	- 1	- 1	5		- 1	- 1	- 1	2	- 1	- 1	- 1	- 1	56	
* k ova v#Fo CBd 1Gool u#P		- 1	- 1		Of. *		- 1	- 1	- 1	2*		- 1	- 1	- 1	08*	


^UO FRFoelauBo uBR k aww.WFo CB d 1Cool uR fr 7r Fpe3m7mcHve3S7Sv1s3W7W.Ss1B

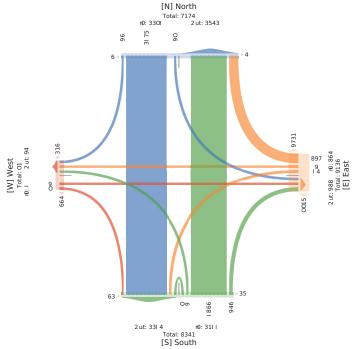
4 of 6 5 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5300014 - COVID - DAINN ST & WILLOW CRES - MA... - INVC SAI May 7, 2021 PM Peak (WKND) (1 PM : 3 PM) : - Orann Peak I Hov ur AndEC(6; iii) gitCahn MHHdydreC I ea(0), PeneCMahC c IdydreCHh BHin, c IdydreCHh AHTIKARI) ur MHDwehlC nDI 93453., s HatIHhI 136597772, :736 83103

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Sobool 4: CUTIL FORMUS J. Q., TIERMIN J. Q. TIERMIN


Lnt	North						Euse						ToFeh						S rise						
Dirncelog	ToFehb	oFgd					S risebo	Fgd					Nor ch b	Fgd					Eusebol	gd					
Wimn	R	W		U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	R	W	L	U	- pp	Pnd*	
, 2, , 92792y 62:22- M	6	, 71	2	2	, 7y	6	AA	2	6	2	AB	47		, A,	2	2	, 82	1	2	2	2	2	2	81	7A6
66:22- M	,	7, 6	,	2	7, 7	A	1,	2	,	2	18	, y7	68	72y	2	2	7,6	62	2	2	2	2	2	. A	6662
6, :22PM	,	7Ay		2	782	2	46	2		2	4.	87A	,,,	812	2	2	8.,	67	2		2		2	627	66, 2
6:22PM	,	76.	2	2	7, 2	6	48	2		2	4.	847	6A	8, y	2	2	882	68	2	6	2	2	6	41	6274
,:22PM	6	74,	6	2	748	2	47	2	8	2	44	76A	6,	728	2	2	761	6y	2	2	2	2	2	6AA	6, 24
A22PM	8	741	6	2	126	2	667	2	8	2	664	1, .	A,	8. y	2	,	7, 6		6	2	2	2	6	68y	6, 8,
8:22PM	,	7y8	2	2	7y1	A	6A6	6	6,	2	688	18,	AA	761	6	2	772	61	2	2	2	2	2	68,	6, y2
7:22PM	6	7Ay	6	2	7.A4	A	6, 2	2	,	2	6,,	у8.	, A	847	2	2	76.		2	2	2	2	2	67y	66y4
1:22PM	2	, 17	1	2	, y6	6	y.	2	6	2	y4	, 4y	6.	, , y	2	2	, 87	- 1	6	2	2	2	6	7A	741
Woed	67	8A41	6,	2	88, A	6,	. 64	6	Ay	2	. 7y	8681	6y7	A 77	6	,	82.AA	622	,	6	2	2	A	41,	4A61
% - pprouch	254%	449B%	254%	2%	9	9	4751%	256%	85466	2%	9	9	854%	4751%	2%	2%	9	9	115/% .	A454% :	296 2	2%	9	9	9
% Woed	25 %	8y5,%	256%	2% 8	3y57%	9	.5%	2%	258%	2%	45,%	9	654%	B63B%	2%	2%	BASA66	9	2%	2%	2% 2	2%	2%	9	9
Lit hes ugd Moeorcaclns	62	867.	7	2	86yA	9	yy2	2	Al	2	. 21	9	616	Al22	6	,	Ay18	9	,	2	2	2	,	9	. y87
% Lit hes ugd Moeorcaclus		4851%	865y%	2% 4	185496	9	4852%	2%	4y5406	2% 4	1852%	9	4, 52%	4.ASB% 6	522% 6	22%	1.A5A96	9	622%	2%	2% 2	2% 1	15/%	9	4.A54%
Hnuva	2	621	,	2	62.	9	1	2	2	2	1	9	6	622	2	2	626	9	2	2	2	2	2	9	, 67
% Hnuva	2%	, 38%	615y%	2%	, 38%	9	25/%	2%	2%	2%	25/%	9	251%	, 51%	2%	2%	, 57%	9	2%	2%	296 2	2%	2%	9	, 5496
Bicaclns og Roud	7	6A,	7	2	68,	9	8A	6	6	2	87	9	6A	677	2	2	61.	9	2	6	2	2	6	9	A71
% Bicaclns og Roud	AA5466	A52%	865y%	2%	A5,%	9	75/06	622%	, 5/%	2%	75466	9	y3B%	852%	2%	2%	85,%	9	2%	622%	296 2	2% A	A6A06	9	A5 %
Pndnseriugs	9	9	9	9	9	66	9	9	9	9	9	8627	9	9	9	9	9	622	9	9	9	9	9	4A	
			- 0	9	9.	65/%	9	9	9	9	9	445%	9	9	9	9	91	522%	9	9	9	9	94	\$y57%	9
% Pndnseriugs	9	9	9	9																					
	9	-	_	9	9	6	9	9	9	9	9	86	9	9	9	9	9	2	9	9	9	9	9	, 8	

*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnf@R: Rit h@W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC Sat May 7, 2022 Full Length (10:30 Ah-6:30 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941349, Location: 54.399503, -74.68617

778 829

4 ut: 502 01: 590 Total: 7992 [S] South

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TIMC
TUEMID 3/3, 2, 6,

MGFUA I LIM g. h. (6, 29A-92 1 M PA - 92 1 M:

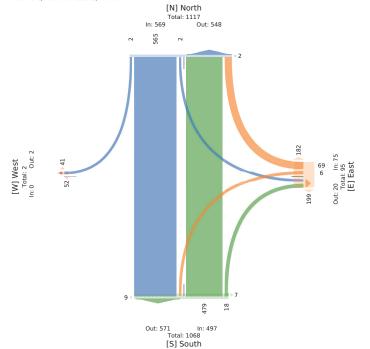
1) C)LOSLS g i flotes ur F Mcce-Hav)Ls3B LIRB3I LFLsetflur s3w0avyLs cr k cuF3w0avyLs cr

CHE-smuln:

1) McRU L tre

18 - 47.40743i cvudtr - 87:9448293By75 b. Ay

					A2:	fa- 2 Co	C0a	a cON L))ue6	VQ Veeumu Er 6 H3 343C1
			t Ls Juse		.r				
			_		гг				
٧	1 pp	1 LFU	k	S	i	W1	pp	l LFU	De
2	A9.	,	2	2	2	2	2	92	92,
2	A, y	7	2	2	2	2	2	Ab	, y2
2	A, 7	9	2	2	2	2	2	9A	, 4,
2	A24		2	2	2	2	2	A8	, yy
2	84y	A	2	2	2	2	2	49	AA8A


i Ld 6 OH.veOcr	(cHo	f cEr F					Juse t Lsef	-r-r					Tc Eeo	f cEr F						se efcE	- r				
			_	-							_				_	-			-			-			_
SŒ L	k	S	1	W		LIFU	k		î	W	1 pp	1 LFU	k	S	i	W		1 LFU	k	S			1 pp	1 LFU	
, 2, , P27P2y AA-921 M	A	A84	,	2	A7,	,	A8	2	2	2	AB	yb	9	A99	2	2	A9.	,	2	2	2	2	2	92	92,
AA871 M	2	A, b	2	2	A, b	2	A8	2	A	2	A7	y4	9	A, 8	2	2	A, y	7	2	2	2	2	2	Ab	, y2
A, -221 M	2	A82	2	2	A62	2	, 7	2	,	2	, у	47	A2	AA7	2	2	A, 7	9	2	2	2	2	2	9A	, 4,
A, -A71 M	A	ABb	2	2	A64	2	A	2	9	2	A4	A, 4	,	A2y	2	2	A24		2	2	2	2	2	A8	, yy
Scei)	,	7.7	,	2	7.4	,	. 4	2	-	2	y7	9bA	Ab	8y4	2	2	84y	A	2	2	2	2	2	49	AA8
* 1 ppHtuvo	25B*	4459*	25B*	2*	P	P	4, 52*	2*	b52*	2*	P	F	95 *	4. 98*	2*	2*	P	P	2*	2*	2*	2*	P	p	
* Scei)	25 *	8457*	25 *	2*	8454*	P	. 52*	2*	257*	2*	.5*	F	A5 *	8, 52*	2*	2*	895 *	P	2*	2*	2*	2*	2*	p	
1 B%	25722	2549b	25,72	P	251, .	P	25y2b	P	25/22	P	25yA,	F	25872	25497	F	P	25484	P	I	P	P	P	P	P	25477
i Odoes ur F McecHav)Ls	,	79,	2	2	798	P	. b	2		2	y8	F	Ab	88y	2	2	8.7	P	2	2	2	2	2	p	A2y9
* i Odoes ur F McecHav)Ls	A22*	485 *	2*	2*	495b*	P	4b5 *	2*	A22*	2* 4	4b5y*	F	A22*	4959*	2*	2*	495 *	P	2*	2*	2*	2*	P	P	4852*
BLuRa	2	A	,	2	Ab	P	2	2	2	2	2	F	2	Ay	2	2	Ay	P	2	2	2	2	2	P	9
* BLuRa	2*	, 5b*	A22*	2*	95 *	P	2*	2*	2*	2*	2*	F	2*	957*	2*	2*	9 3 8*	P	2*	2*	2*	2*	P	P	95A*
w0rav)Ls cr k cuF	2	Ay	2	2	Ay	P	A	. 2	2	2	A	F	2	A7	2	2	A7	P	2	2	2	2	2	p	99
* w0vav)Ls cr k cuF	2*	952*	2*	2*	952*	P	AB*	2*	2*	2*	A59*	F	2*	95A*	2*	2*	952*	P	2*	2*	2*	2*	P	P	, 54*
l LFLseHtur s	I	P	P	P	P	,	F	P	P	P	P	9y2	P	F	F	P	P	A	F	P	P	P	P	4A	
* l LFLseHurs	I	P	P	P	P.	A22*	F	P	P	P	P4	4y5A*	P	F	ŀ	P	P	A22*	F	P	P	P	P.	4y5b*	
w0vav)Ls cr CHtssmu)n	I	p p	P	P	P	2	F	P	P	P	P	AA	P	F	F	P	P	2	F	P	P	P	P	Ξ,	
* w0vav)Ls cr CHrssmu)n	I	P	P	P	P	2*	F	P	P	P	P	, 54*	P	F	F	P	P	2*	F	P	P	P	P	,5*	

U LFLseHiturs ur F wOvav)Ls cr CHtssmu)n5i - i LOBk - k Otloe3S-SoHE3W-WPSEHI

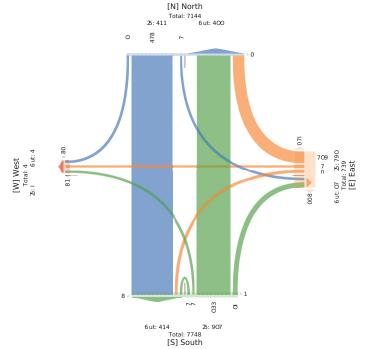
2 of 6 3 of 6 5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941349, Location: 54.399503, -74.68617

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5-35060 (4 * COVID - DAWN ST (20 WARLEN WAT - WAT - WAT ... TIME TURNMUN 3/2, 3/4 (M) OH Ing th (16:62 OM A - 62 OM (A9 1FH))) OF HIGH CSIP (A) (D) (Jurn Fir High Unk-Mase Bak)(FT) CFL (13) OF HIGH ST (18) THE AND THE AND

c Pv	tsRaB					Eure						TsieB						n Fi	re				
h HEReH R	TsieBN	ki Rw				n FreN	i Rw					t sRBN	ki Rw					Eur	eNsi l	Rw			
SH F	I	S	С	W	d KK OF	U I	S	С	W	d KK	0PwU	I	S	С	W	d KK	0 FwU	I	S	с	Wd KK	0PwL	7Re
, 2, , A25A2y 6:620M	,	y	2	2	8	2 65	2		2	6f	. 5f	f	. 6,	2	2	. 60	,	2	2	2	2 2	5-	6, 6
6:-50M		. 5y		2	. 58	2 6C	2		2	68	. y-	. y	.,,	2		2	2	2	2	2	2 2	, -	660
-:220M		.fO	2	2	.f8	. 6f	2	6	2	68	. y.	-			2	f	6	2	2	2	2 2	62	6, -
-:. 50M	2	5	2	2	5	, 6f		6	2	-2	f	. 6	. 6-	2	2	y	-	2	2	2	2 2	6y	66,
Sseu)	-	f.y	-	2	f,,	65	-	0	2	. 5-	f-y	-2	- 88	-	-	5	8	2	2	2	2 2	5	. 6. y
* d KKABukB	2lf*	88bj *	2b * 2	*	A	A8-b *	2lf *	5b; * 2		A	F	yb*	8, b, *	2bj *	2bj *	A	A A	2*	2*	2* 2	* 1	A /	. A
* Sseu)	216*	-fb0*	2b * 2	* -	yh *	A 12*	2b *	2bf* 2	. *	. by*	F	612*	6ylß*	2b *	2b* -	b *	A	2*	2*	2* 2	* 2*	. I	. A
0C%	21522	218. f	A	A.	2lB. 6	A. 2186-	A	2bffy	A.	218f -	F	21558	2lB	2b 52	2h 52	218, O) A	A	. A	. A	A A	A /	218f.
c HiBer uRwMses Hak)Fr	,	50-	2	2	5Of	A .,5	2	0	2	. 66	F	60	- 58		-	-88	P	2	2	2	2 2	. I	.,.0
* c H/Ber uRw Mses Bkak)Fr		8-by*	2* 2	* 8	i-b*	ACFb *	2*	. 22* 2	* C	fb*	Ā	8512*	8, 12*	. 22*	. 22* 1	B, b, *	A	2*	2* :	2* 2	* /		18, 15*
CFula	2	. 6	2	2	. 6	Α,	2	2	2	,	F	. 2	. 6	2	2	. 6	. A	2	2	2	2 2	. I	, 0
* CFula	2*	, b*	2* 2	*	, b *	A.b*	2*	2* 2	18	. l6*	F	. 2*	, lf *	2*	2*	, b*	A	2*	2* :	2* 2	* 1	A /	, b*
mHtak)FrsRIsuw	,	, 2		2	,6	A . C		2	2	. 8	F	,	, у	2	2	, 8	A	2	2	2	2 2	1	у.
* mHlak)FrsRIsuw	5212*	6b; *	. 22* 2	*	6by*	A., b*	. 22*	2* 2	. *	, l6*	F	512*	5b *	2*	2*	5b*	A	2*	2* :	2* 2	* I	A /	5b*
0 PwFreHttRr	A	. A	. A	Α	A	6 A	ı A	. A	Α	A	f-6	A	. A	L A	. A		8 A	A	L A	. A	A /	A . 60	
* 0PwFrdHttRr	A	. A	. A	Α	A. 22	* <i>I</i>	I A	. A	Α	A8	8b*	A	L A	. A	. A		1. 22*	A	. A	. A	A /	185b *	P
mHak)FrsRoBrrDu)l	A	L A	. A	Α	A	2 F	I A	. A	Α	A	-	A	. A	. A	. A		A 2	A	L A	. A	A /	A y	
* mHtak)FrsRoBrrDu)l	A	L A	. A	Α	A 2	* <i>F</i>	I A	. A	Α	A	2lif*	A	ı A	L A	. A	. A	A 2*	A	L A	. A	Α /	4 - JO*	P


Un FwFreHniBr uRwmHitak)FrsRoBrrDu)lbc:cFpe3I:IN/Be3S:SBFI3W:W/16iBR

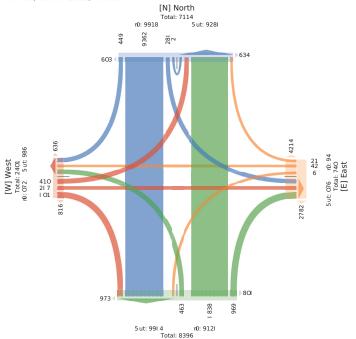
4 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST @ MARCHE WAY - MAY ... - TMC
Sat May 7, 2021
PM Peak (WKNID) (1:10 PM 3-:10 PM) 3Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on
Crosswalk)
All Movements
ID: 945149, Location: -4.199-01, 374.68657

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5-556814 - CUVILI - DANKA 3: e-TO-SEARCH 3: E-TO-SE


Lnt	North						Euse						ToFeh						S rise						
Dimeriog	ToFehbo	Fgd					S nsebo	Fgd					Norehb	oFgd					EuseboF	gd					
Wimn	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	Ige
, 2, , 92792y 62:22- M	61	, A6	66	2	, 7.	A4	2	2	,	2	,	62A	, 2	, 87	6,	2	, yy	A	, A	4	67	2	8y	16	7.8
66:22- M	, 1	8. y	A7	6	784	662	A	,	2	2	7	A6.	8A	8y4	,.	2	772	66A	86	68	A	2	4A	681	664y
6, :22PM	87	84,	, A	2	712	616	7	,	2	2	у	8yA	87	8yA	, 4	2	78y	68.	88	4	A,	2	.7	611	6644
6:22PM	, 2	8.2	, 6	2	7,6	627	6	6	2	2	,	78y	86	8y6	, у	2	7A4	67y	A7	6.	A2	2	. A	672	6687
,:22PM	, 6	772	A2	2	126	682	,	,	2	2	8	7, 4	71	84,	A	2	7.1	646	71	6y	Ay	2	662	, 6.	6A26
A22PM	, у	776	, 6	2	744	68A	A	A		2	у	748	74	8.7	82		7.8	, 26	84	, 6	A2		622	64,	6, 42
8:22PM	, A	7,,		2	71y	6yA	2			2	4	717	. 2	7, y	,7	2	1A,	, 88	76	61	A	2	627	,,A	6A6A
7:22PM	A6	726	, 6	2	77A	6A2	,	A		2	7	18.	y2	84,	AA		747	, 8.	76		A1	2	624		6, 1,
1:22PM	67	, Ay	4	2	, 16	у6	2	2	6	2	6	, y1	82	, 87	6.	2	A2A	66A	, 1	6,	66	2	84	. 1	168
Womi	,,8	8276	64A	6	8814	62y,	61	, 6		2	8,	827A	878	A424	, 72	2	816A	687A	Ay1	6A	, 1y	2	y. 6	68y2	4427
% - pprouch	752%				9																		9		
	/32%	1231%	85496	2%	9	9	A 56%	/252% (6654%	2%	9	9	45 %	. 85y%	738%	276	9	9	8.56% 6	iy5y% ≀	4 85, % .	2%	9	9	9
% Word	, 54% 1		654%		9 3736%	9			256%		_	9		. 85/% A457%			-	9	8. 56% 6 A6 %				-	9	9
% Woul Lit hes ugd Moeorcaclus	, 54% (, 61			2% 8	_	9			256%		_	9	83.%	A457%		2% 8	-	9				2%	-	9	4, . 1
% Woul	, 54% i	3254% A A6	654% 6. 7	2% 8 6	8, AA	9	25,%	25, % 2	256%	2%	238%	9	831% 8A2	A457%	, 57% , A	2% 8	8151% 8A8y	9	A5 %	638% 44	, 5/% , 1A	2%	y54% y28	9	4, . 1 4A5 %
% Word Lit hes ugd Moenreachts % Lit hes ugd	, 54% i	3254% A A6	654% 6. 7	2% 8 6	8, AA	9 9	25,% 6	25, % 2	256% 6 , 252%	2%	238%	9 9	831% 8A2	A457% A1y4	, 57% , A 475, %	2% 8	8151% 8A8y	9	A6 % A8,	638% 44	, 5/% , 1A	2%	y54% y28	9 9	
% Woul Lit hes ugd Moenreachs % Lit hes ugd Moenreachs	, 54% (, 61 4158% (3254% A A6 4851% 628	654% 6. 7 4754% ,	2% 8 6 522% 4	8, AA 185/%	9 9 9	25 % 6 154% 2	25, % 2	2%% 6 , 252% 2	2% 2 2% 2%	238%	9 9 9	851% 8A2 485y%	A457% ALy4 4856%	, 57% , A 475, %	2% E 2 2% 4 2	8151% 8A8y 185 %	9	A6 % A8,	658% 44 /65/% 2	, 5/% , 1A	2% 2 2% 4 2 2	y54% y28 4256% A	9 9 9	4A6 %
% Woul Lit hes ugd Moenreachs % Lit hes ugd Moenreachs Hnuva	, 54% (, 61 4158% (3254% A A6 4851% 628	654% 6. 7 4754% ,	2% 8 6 522% 4	3756% 8, AA 485y% 621	9 9 9 9	25 % 6 154% 2	25, % 2 2%,	256% 6 , 252% 2 2%	2% 2 2% 2%	258%	9 9 9 9 9 9	831% 8A2 485y%	A457% A1y4 4856% 621	, 57% , A 475, %	2% E 2 2% 4 2	8151% 8A8y 185,% 666	9	A6 % A8, 4652% y	658% 44 /65/% 2	, 5/% , 1A 1. 57% 6 258%	2% 2 2% 4 2 2	y54% y28 4256% A	9 9 9 9 9	4A5 %
% Word Lit hes ugd Moencaclus % Lit hes ugd Moencaclus Hnuva % Hnuva	, 54% (, 61 4158% (3254% A A6 4831% 628 , 31% 661	654% 6. 7 4754% ,	2% 8 6 522% 4 2 2% 2	3756% 8, AA 485y% 621 , 58%	9 9 9 9	25, % 6 154% 2 2%	25, % 2 2%, 457% 64	256% 6 , 252% 2 2% 8	2% 2 2% 2 2% 2 2%	298% , 85% , 85%	9 9 9 9 9 9	851% 8A2 485y% 7 656%	A457% A1y4 4856% 621 , 5y% 6, 8	, 57% , A 475 % 2 2%	2% £ 2 2% 4 2 2% 2	8151% 8A8y 885, % 666 , 58%	9	A6 % A8, 4652% y	638% 44 /65/% 2 2% A4	, 5/% , 1A 1, 57% 6 258% A	2% 2 2% 4 2 2% 2 2%	y54% y28 4256% A 258% y8	9 9 9 9 9 9	4A5 %
% Woul Lit hes ugd Moenreachs % Lit hes ugd Moenreachs Hruva % Hruva Bicachs og Roud	, 54% (, 61 4158% - 2 2%	3254% A A6 4831% 628 , 31% 661	654% 6. 7 4754% 6 , 652% 1 AB6%	2% 8 6 522% 4 2 2% 2	8756% 8, AA 185/% 621 , 38% 6A2 , 58%	9 9 9 9	25, % 6 15/4% 2 2% 67	25, % 2 2%, 457% 64	256% 6 , 252% 2 2% 8 , 252%	2% 2 2% 2 2% 2 2%	298% , 85 % , 85 % A	9 9 9 9 9 9 9	891% 8A2 485y% 7 656% 64	A457% ALy4 4836% 621 , 5y% 6, 8 A5, %	, 5% , A 475 % 2 2% 6, 85 %	2% £ 2 2% 4 2 2% 2	8151% 8A8y 885 % 666 , 38% 677 AB8%	9	A6 % A8, 4652% y , 257% A	638% 44 /65/% 2 2% A4	, 5/% , 1A 4. 57% ; 6 258% ; A	2% 2 2% 4 2 2% 2 2%	y58% y28 4256% A 258% y8 457%	9 9 9 9 9 9 9	4A5 % ,,, ,5 % A4y
% Woul Lit hes ugd Moenreachs % Lit hes ugd Moenreachs Hnuva % Hnruva Bicachs og Roud % Bicachs og Roud	, 54% (, 61 4158% (2 2% ASI%	3254% A A6 4851% - 628 , 51% 661 , 54%	654% 6. 7 4754% 6 , 652% 1 A66% 9	2% 8 6 522% 4 2 2% 2 2%	8750% 8, AA 485y% 621 , 38% 6A2 , 58%	9 9 9 9 9 9	25, % 6 154% 2 2% 67 4A5 %	25 % 2 2%, , 457% 64 4257%.	256% 6 , 252% 2 2% 8 , 252%	2% 2 2% 2 2% 2 2% 2	258% , 85 % , 85 % A 1257%	9 9 9 9 9 9	851% 8A2 485y% 7 636% 64 85 %	A457% ALy4 4836% - 621 , 5/% 6, 8 A5/%	,57% , A 475, % 2 2% 6, 85, %	2% 4 2 2% 4 2 2% 2 2%	8151% 8A8y 885,% 666 ,38% 677 A88%	9 9 9 9 9 9	A6 % A8, 4652% y 257% A . 57% ,	638% 44 /65/% 4 2 2% A4 . 5%6	, 5/% , 1A 1, 57% ; 6 258% ; A 656% ;	2% 4 2 2% 4 2 2% 2 2% 2 2%	y58% y28 4256% A 258% y8 457%	9 9 9	4A5 % ,,, ,5 % A4y
% Word Lit bes ugd Montreaches % Lit hes ugd Montreaches % Lit hes ugd Montreaches Hruwa % Hruwa % Hruwa Bicaches og Roud % Bicaches og Roud Prodrearings	, 54% i , 61 4158% i 2 2% . ASI%	3254% A A6 4851% 4 628 , 51% 661 , 54% 9	654% 6. 7 4754% 6 , 652% 1 A66% 9	2% 8 6 522% 4 2 2% 2 2% 9	8750% 8, AA 485y% 621 , 38% 6A2 , 58%	9 9 9 9 9 9 62, y	25, % 6 15/6% 2 2% 67 4/6, % 4	25 % 2 2%, 457% 64 4257%.	256% 6 , 252% 2 2% 8 , 252% 9	2% 2 2% 2 2% 2 2% 2 2%	258% , 85 % , 85 % A 1257%	9 9 9 9 9 9 8262 4.54%	851% 8A2 485/% 7 656% 64 85,%	A457% ALy4 4836% 621 , 5y% 6, 8 A5, % 9	, 57% , A 475, % 2 2% 6, 85, % 9	2% 2 2 2% 4 2 2% 2 2% 9	8151% 8A8y 885,% 666 ,38% 677 A88%	9 9 9 9 9 9	A6 % A8, 4652% y , 257% A . 57% ,	638% 44 /65/% 4 2 2% A4 . 5/% 9	, 5/% , 1A 1, 5/% ; 6 258% ; A 656% ; 9	2% 2 2% 4 2 2% 2 2% 2 2%	y58% y28 4256% A 258% y8 457%	9 9 9 9 688y	4A5 % ,,, ,5 % A4y
% Woul Lit hes ugd Moenreachs % Lit hes ugd Moenreachs Hnuva % Hnruva Bicachs og Roud % Bicachs og Roud	, 54% (, 61 4158% (2 2% ASI%	3254% A A6 4851% - 628 , 51% 661 , 54%	654% 6. 7 4754% 6 , 652% 1 AB6%	2% 8 6 522% 4 2 2% 2 2%	8756% 8, AA 185/% 621 , 38% 6A2 , 58%	9 9 9 9 9 9	25, % 6 154% 2 2% 67 4A5 %	25 % 2 2%, , 457% 64 4257%.	256% 6 , 252% 2 2% 8 , 252%	2% 2 2% 2 2% 2 2% 2	298% , 85 % , 85 % A	9 9 9 9 9 9	851% 8A2 485y% 7 636% 64 85 %	A457% ALy4 4836% 621 , 5y% 6, 8 A5, %	, 5% , A 475 % 2 2% 6, 85 %	2% 4 2 2% 4 2 2% 2 2%	8151% 8A8y 885 % 666 , 38% 677 AB8%	9 9 9 9 9 9	A6 % A8, 4652% y 257% A . 57% ,	638% 44 /65/% 4 2 2% A4 . 5%6	, 5/% , 1A 4. 57% ; 6 258% ; A	2% 4 2 2% 4 2 2% 2 2% 2 2%	y58% y28 4256% A 258% y8 457%	9 9 9	4A6 , 5 A

Pndnseriugs ugd Bicaclns og Crosswulk5L: LnfeBR: Rit heBW WhrF3U: U9WFrg

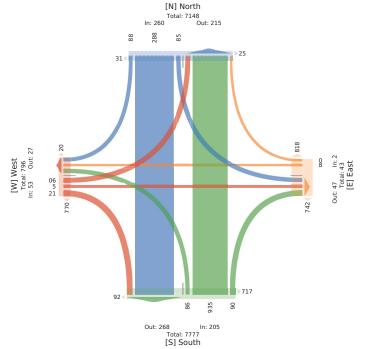
6 of 6 1 of 6 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

Sat May 7, 2022 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941363, Location: 54.399896, -74.686463

[S] South

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

3-30804 F - COVID - SANK S 1 @ FOLEWING DO AVE - M.... - 1 Mr.
Tue Mua y3, 2,
MGFBa 1 Lun g h (6 : gA-92 1 M P.A. - 92 1 M:
1) C)casts g bloos ur F Mccelhaylt.3BLuRa31 LF1settur s3w0av)ts cr k cuF3w0av)ts cr
Cld:smu)n:
1) McRul Lrs
B - 47/8093i cvudCr - 57.944b483By7.8b8789



i Id	(cléo						J use					ТсЕю						t Lse						Π
6 OH.veOcr	TcEm	cFrF					t Lsef c	Fr F				(client	cErE					J usef c	Fr F					
SQ L	k	S	i	W	1 pp	1 LFU		S .	i V	V 1 pc	llFt		S	i	W	1 pp	l LFU	k	S	i	W	1 pp	1 LFU	Dе
, 2, , P27P2y AA-921 M	5	A9b	ь	2	A72	. 7	A	2					A 2	ь	2	A52	. 4	A5	. 7	AA		92	7.A	9
AA-571 M	5	Ab	4	2	A5A	. 5	2	2	2	2 2	A29	v	AAV		2	A92	9b	ь	- 2	4	2	Ay	97	١.
A, -221 M	4	AAb		2	A, 4	55	2	2	2	2 2	. AA8	A7	A, 7	8	2	A58	95	Ą	5	4	2	,7	5y	9
A, -A71 M	7	A9b	A2	2	A79	, 8	,	,	2	2 5	44	4	A24	. 7	2	A, 9	57	AB	2	b	2	, 5	99	9
Sce)	-,,	7, ,	, 4	2	7y9	AA4	9	,	2 :	2 7	9by	59	584	, у	2	794	A58	72	- 4	9y	2	48	A88	A,
* 1 pplituvo	9.b*	4A.A*	7.A*	2*	P	F	82.2*	52.2*	2* 2*	- 1	P 1	b.2*	by.2*	7.2*	2*	P	P	7, .A*	4.5*	9b.7*	2*	P	F	
* Sceu)	Ab*	59.2*	, .5*	2* 5	iy., *	F	2., *	2.,*	2* 2*	2.5*	1	9.7*	9b.y*	, ., *	2* 5	55.5*	P	5.A*	2.y*	9.A*	2* !	y.4*	F	
1 B9	2.8AA	2.459	2.y, 7	P	2.495	F	P	P	P	P I	P 1	2.yAy	2.492	2.b55	P	2.4A8	P	2.b75	2.572	2.bAb	P 2	.y8b	F	2.4
i Oloes ur F McecHav)Ls	,,	54b	, b	2	75b	F	2	2	2	2 2		5,	59y	, у	2	728	P	94	- 4	98	2	b5	F	A
* i Odoes ur F																								
McecHav)Ls	A22*	47.5*	48.8*	2* 4	17.8*	F	2*	2* :	2* 2*	2*	3	4y.y*	49., *	A22*	2* 4	49.4*	P	yb.2*	A22*	4y.9*	2* b	y.7*	F	49.
BLuRa	2	A7	A	2	AB	F	2	2	2	2 2		A	. Ay	2	2	Ab	P	,	2	2	2	,	F	
* BluRa	2*	, .4*	9.5*	2*	, .b*	F	2*	2* :	2* 2*	2*	- 1	, .9*	9.8*	2*	2*	9.9*	P	5.2*	2*	2*	2* ,	.A*	F	9.
w@rav)Ls cr k cuF	2	4	2	2	4	F	9	,	2	2 7		2	A7	2	2	A7	P	4	. 2	A	. 2	A2	F	
* w@av)Ls cr kcuF	2*	Ay*	2*	2*	A8*	F	A22*	A22*	2* 2*	A22*	1	2*	9., *	2*	2*	, .b*	P	Ab.2*	2*	, .y*	2* A	2.5*	F	9.
l LFLsef@urs	P	P	P	P	P	AA5	P	P	P	P 1	P 9y4	F)]	P P	P	P	А9у	F	. P	P	P	P	ABA	
* l LFLsel@crs	P	P	P	P	P4	47.b*	P	P	P	P 1	P4y.4*	I)	P P	P	P.	49.b*	I	. P	P	P	P4	4y.2*	
w@av)Ls cr Clessmu)n	P	P	P	P	P	7	P	P	P	P I	P b	I	1	P P	P	P	4	I	. P	P	P	P	7	
* w0vav)Ls cr CHrssmu)n	P	P	P	P	P	5., *	P	P	P	P 1	P , .A*	F)]	P P	P	P	8., *	F	. P	P	P	P	9.2*	

Ul LFLsel@urs urF w0vav)Ls cr Clessmu)n. i - i LQBk - k Qdoe3S- SoHE3W-WISEH

2 of 6

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941353, Location: . 4699895, -74685453

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - COVID - BANKST @ HOLMWOOD AVE - M... - TMC
Tuckhun y3, 2, 7,
0 M ORal In gt h (16:A-0 M 9A:A-0 M(91 PP)uCDFul sid)
of Cracefe BidRecusk Mid jmantfe3s FuPa30Rredyuxe31 vnantfei w Diuk31 vnantfei w
r)) cock ufc(
oCM) PPF Nec
8h: 5-. 6b63Hi musl w: A-f655Gb39y-fbCb-b6

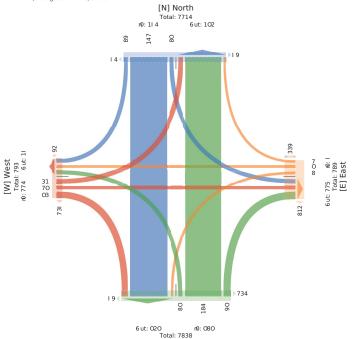
0) i Pvk Fk Na: r van i p 1 eau 4 u . 22 r i wceF@Levi wh) 3 t FkFuw 81 t 3g, G-J53r o

3 of 6

HFB	ti)eR						Euce						Ti deR						n Fce						
h v)Fnexi w	Ti deR	Ni dwk					n FoeNi	dvk					ti)dR∿	i dwk					EuceNi (łwk					
S√ F	D	S	F	W	o KK	0FkU	D	S	Н	W	o KK	0FkU	D	S	Н	W	o KK	0FkU	D	S	Н	W	o KK	0FkU	8ve
, 2, , 92-92y 6:A-0M	у	. 6-	. 2	. 2	,	b6		2	-	2	,	. y6	, 2	. 6A	. 0	2	. b,		. 5	у	A	2	62	A5	6
A220M	-		6	2	5	, C	2	A	. 2	2	A	. A	.0	.,6	у	2	. AO	b.	. 0	,	5	2	,5	-6	-
A 0M	b	. 6A	. t	2	. Ab	A6	2	,	2	2	,	0	, 6	. 6y	0	2	. bO	b-		6	. 6	2	6.		-
A620M	5	.,.	3	2	. 6y	- y	2	2		2				. 62	6	2	. AO	- A		A	5	2	, A	٠,	
SieuC	, у	- A	, E	2	-5A	. 5.	-	b	,	2	5	- Oy	yb	-, A	, b	2	b, b	, 6.	b6	. b	6-	2	A	, 25	-
* o KKJi umR	A6-+	5. f. *	AfA*	2*	9	9	f. *	bbfy*	, , f, *	2*	9	9	.,f.*	Offy*	A, *	2*	9	9	f6*	. Af2+	62fy+ :	2*	9	9	
* SieuC	, f2*	A2f6*	. f5*	2* .	AAE, +	9	2f. *	2fA*	2f. *	2*	2fy*	9	- fy+	65£2*	. f5*	2* A	bfb*	9	Afy*	. f, *	, fb+ :	2*	OF-+	9	
0s %	2fy-2	2fСбу	2fb- 2	9	2f56b	9	9	9	2f, - 2	9	2f, -2	9	2f526	2f5	2fO y	9	2f5A	9	2fCbO	2fb, -	2fby6	9 2	2fO65	9	2
HNBRec uwk Mi ei)mantFc	, у	-,-	, b	2	-bO	9	2	2	-	2	-	9	b-	A52	, A	2	- y5	9	-5	. 2	6-	2	. 2A	9	-
* HiBRc uvk Mi ei)nantEc		5- f, *	. 22*	2* !	5- fb*	9	2*	2*	-2f2*	2* .	. f. *	9	*40	56f-*	5, f6*	2+ 5	, s. +	9	56fy*	b, f. *	. 22*	2* 5	f, e	9	56
s FuPa	2	. b		. 2	. b	5	2	2	2	2	2	9	2		2	2	٠,	9	2	2	2	2	2	9	
* s FuPa	2*	6f2*	2*	2*	, fy+	9	2*	2*	2*	2*	2*	9	2*	, f6*	2*	2*	. f5*	9	2*	2*	2* :	2*	2*	9	,
I wantEciwDiuk	2	. 2	- 2	. 2	. 2	9		b	-	2	0	9			,	2	6-	9	A	b	2	2	. 2	9	
* I wan KFciw Diuk	2*	. fO*	2*	2*	. fy*	9	. 22*	. 22*	-2f2*	2* (005*	9	. A. *	Af, +	yfy*	2*	- fb*	9	bf6*	6yf-*	2*	2*	CIO ^b	9	A
0 FkFce)vowc	9			9	9	. C2	9	9	9	9	9	- OA	9	9	9	9	9	, , y	9	9	9	9	9	, 2b	Г
* OFkFce)vowc	9	9		9 9	9	5Af, +	9	9	9	9	9	556-+	9	9	9	9	95	5Of6+	9	9	9	9	95	Ob+	
I wantEc i wr)i cc4 uCl	9	9		9	9		9	9	9	9	9	6	9	9	9	9	9	A	9	9	9	9	9	6	Г
Dutoni(Turifician)	9	9		9 9	9	- 60°F	9	q	9	9	9	26-+	9	1 9		9	9	. fv+	9	q	9	9	9	. fA°	

UDFkFce)vuwc uwk I vnamCFc i wr)i cc4 uCf H: HFp8D: DvBReS: SR)d3W: W9Sd)w

4 of 6 5 of 6 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC


Sat May 7, 2021) (1:3- PM 03:3- PM) Ov relattPeak o uAl

CHB tilled, igntLade MutulByBH, o eary, Peceltlgodl, RgbyBHLud wuac, RgbyBHLud sluLmaß)

CHMurel edtl.

5D: 4-51. 1, i uBstgd: 3-614484., O-68.-.1

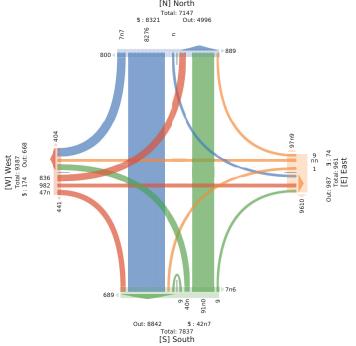
[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue Mun y3, 2,

OFIL Ingt dn (62-24 - M91:24 PM)

- II Clussre (Lit his ugd Mourcachrs3Hnuva3Pndrsøriugs3Bicachs og Roud3Bicachs og
Crosswalk)

- II Movranngs


ID: 476Aly3Locuriog: 87382A4, 639y75l. 64y8

Lnt	North						Euse						ToFeh						S rise						
Directiog	ToFehbo	Fgd					S nsebo	Fgd					North	oFgd					Eusebol	gd					
Wimn	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd*	R	W	L	U ·	- pp	Pnd+	Ige
, 2, , 92792y 62:22- M	, 2	6, 1	2	2	681	A7	2	2	6	2	6	68y	2	у6	, 2	2	46	82	62	8	6A	2	, у	6y	, 17
66:22- M	1A	A28	2	2	Aly	. 7	2	6	6	2	,	888	2	671	, 1	6	6. A	66,	61	62	86	2	1y	8A	164
6, :22PM	78	A11	6	2	8, 6	y.	2	67	6	2	61	824	2	648	A6	2	,,7	6A6	,.	66	77	2	48	A,	y71
6:22PM	78	A, 2	6	2	Ay7	. 6	2	67	2	2	67	Ay6	2	, 8A	A	2	,.6	67A	, 4	, 6	84	2	44	1,	yy2
,:22PM	y2	A 4	6	2	812	662	2	2	6	2	6	844	6	,,2	A6	2	, 7,	, 2A	Al	66	A4	2	. 1	y1	y44
A22PM	14	8A6	2	2	722	6, 1	2	2	2	2	2	844	2	, 7,	78	2	A21	, 8.	Al	,7	8y	2	62.	624	468
8:22PM	. y	824	6	2	84y	4.	6	,	A	2	1	88,	2	, 7.	AA	2	, 46	6y6	86	, 2	78	2	667	1.	424
7:22PM	. 1	816	2	2	78y	. A	2	7	2	2	7	876	2	,,1	88	2	, y2	, 8y	8.	,7	8A	2	661	уу	4A
1:22PM	8,	, 7,	2	2	, 48	AB	2	1	2	2	1	67.	2	6, 4	6y	2	681	у6	62	A	, у	2	82	A7	8. 1
Vócul	787	A27.	8	2	Al2y	yA2	6	88	у	2	7,	A6, 2	6	6y84	, 48	6	, 287	6Ay4	, 78	6A2	AI.	2	y7,	764	1871
% - pprouch	6756% .	85 %	256%	2%	9	9	654%	831%	5A57% :	2%	9	9	2%	. 757% (6838%	2%	9	9	AA5 %	Sy54%	B. 54% :	296	9	9	9
% Word	. 38%	ВуЖ%	256%	2% 7	7754%	9	2%	25/%	256%	2%	25 %	9	2%	, y56%	831%	2% /	465/%	9	A54%	, 52%	75/% :	2% 66	S1%	9	9
Lit hes ugd Moeorcaclns	7A2	, 44,	6	2	A7, A	9	2	2	2	2	2	9	2	6y27	, 4A	6	6444	9	, 8A	6	A78	2	74.	9	16, 2
% Lit hes ugd Moeorcaclns	4y5 %	4y5 %	, 752% :	2% 4	ly5y%	9	2%	2%	2%	2%	2%	9	2%	4y57% -	445y% (522% 4	ly5 %	9	475y%	25 %	415 % :	2% y4	57%	9	485 %
Hnuva	8	66	2	2	67	9	2	6	2	2	6	9	2		6	2	4	9	,	6	8	2	у	9	A,
% Hnava	25y%	238%	2%	2%	258%	9	2%	, 54%	2%	2%	654%	9	2%	257%	254%	2%	258%	9	25 %	25 %	636%	2% 25	54%	9	257%
Bicaclns og Roud	66	77	A	2	14	9	6	8A	у	2	76	9	6	Al	2	2	Ay	9	4	6, .	62	2	68y	9	A28
% Bicaclns og Roud	, 52%	65 %	y752%	2%	654%	9	622%	4y5y%	622%	2% 4	1. 56%	9	622%	, 56%	2%	2%	65 %	9	A57%	4.57%	, 5/% :	2% 64	57%	9	85y%
Pndnseriugs	9	9	9	9	9	7y4	9	9	9	9	9	6y8,	9	9	9	9	9	66y2	9	9	9	9	9	8yA	
% Pndnseriugs	9	9	9	9	9	y454%	9	9	9	9	9	7254%	9	9	9	9	9.	. 85 %	9	9	9	9	94	656%	9
Bicaclns og Crosswulk	9	9	9	9	9	676	9	9	9	9	9	61y.	9	9	9	9	9	, 24	9	9	9	9	9	81	

6 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC 5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Sat May 7, 2022
Full Length (10:30 Ah-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941367, Location: 54,503921, -74,681975 [N] North Total: 7147 5 : 8321 Out: 4996

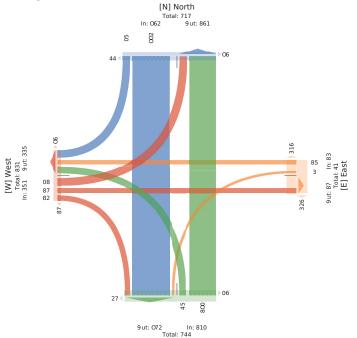
5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ HF... - TMC
TWEMM us 3,2 ...
MUFBus Llun g h (6: gA.-911 M PA911 M:
) GS Gilli glordr uc F MHHABBIGISR Linea3 LIFLI educi3 k Øb BIGI H: mHuF3k Øb BIGI H:
s Hill uf:
) GCMHM DICE
46 - 71.48593d HbadH: - 91.9287, ASBy1.5bA7y9

Ottawa
l√Hw0FLFfa-s0ea HONeeuIu
A22 s HcieL000e0Hc 6 v8
(LpLuc3N(3h, K 1073s)

1 of 6

dLo	(Her						Juie						THE	er					t Lie						
6 OALEACH:	THEer f	HECF					t Li	ef HEcF					(H	er f HEcl	7				Juief H	EcF					
SŒL	m	S	d	W) pp	l LFU	m	S	d	W) pp	l LFU	m	S	d	W) pp	l LFU	m	S	d	W) pp	l LFU	4ce
, 2, , 12112y A, -911 M	b	A22	2	2	A2b	Ay	2	7	A	2	A2	78	2	19	A2	2	59	8,	b	у	A5	2	8A	b	, A6
A-221 M	AB	y1	2	2	bb	7	2	9	2	2	9	A28	2	59	5	2	y2	82	у	5	Al	2	, b	7	A72
A-All M	Al	y7	2	2	79	, 8	2	,	2	2	,	72	2	5A	A,	2	y8	, 5	у	- ;	у	2	A5	Ab	Ab1
A-821 M	A9	b1	2	2	77	88	2	1	2	2	1	72	2	15	A,	2	5b	55	у	AA	. A9	2	8,	,7	, 29
SHuC	12	887	2	2	8b7	b,	2	, 2	А	2	, A	8y5	2	, 81	92	2	, y1	A19	, 7	, 5	1,	2	A2y	59	у7,
*) ppvHuBr	A, .7*	by.A*	2* 2	*	P	P	2* :	71., *	9.b*	2*	P	F	2*	b1.1* .	A9.1*	2*	P	P	, y.A*	, 9.8*	9b.5*	2*	P	P	P
* SHauC	5.8*	9, .b*	2* 2	* 9	7.A*	P	2*	, .1*	2.A*	2*	, .y*	F	2*	, 7.y*	1.A*	2* 8	9.y*	P	8.y*	8.8*	5.5*	2* 1	48.1*	P	P
l R%	2.bAy	2.b9,	P	P 2	2.b79	P	P	P	P	P	P	F	P	2.7, 1	2.b88	Р.	2.79b	P	2.725	2.122	2.bA8	P	2.b82	P	2.79,
d0oreiucFMHeHaBaBCLi	9y	8, 7	2	2	8y5	P	2	2	2	2	2	F	2	, 8,	92	2	, y,	P	,7	A	1,	2	b,	p	y82
* d0oreiucF MH#MBaBCii		7y.A*	2* 2	* 7	5.y*	P	2*	2*	2*	2*	2*	F	2*	7b.y*	A22*	2* 7	b.7*	Р	A22*	8.b*	A22*	2* 1	/5.5*	Р	7, ., *
RLuwa	,	A	. 2	2	8	P	2	2	2	2	2	F	2	A	2	2	A	P	2	A	. 2	2	A	P	1
* RLine	9.2*	2.8*	2* 2	*	2.b*	P	2*	2*	2*	2*	2*	F	2*	2.9*	2*	2*	2.9*	P	2*	8.b*	2*	2*	2.7*	p	2.5*
k OBaBCLi Ht mHaF	A	. 7	2	2	A2	P	2	, 2	A	2	, A	F	2	-,	2	2	,	P	2	, 9	2	2	, 9	p	1y
* k OBaBCLi H: mHuF	, .2*	,.y*	2* 2	*	, .5*	P	2*	A22*	A22*	2* 1	A22*	F	2*	2.7*	2*	2*	2.y*	P	2*	7, .8*	2*	2* ,	, .9*	p	y., *
l LFLie@ci	I	P F	P	P	P	yА	P	P	P	P	P	Ab,	P	P	P	P	P	A9A	P	P	P	P	P	5,	
* l LFLieduci	I	P	P	P	Pb	5.5*	P	P	P	P	P.	9b.9*	P	P	P	P	P	7A5*	P	P	P	P	P.	75.7*	P
k (BaBCLi Hr s vHiI uGi	I	P F	P	P	P	AA	P	P	P	P	P	A79	P	P	P	P	P	AB	P	P	P	P	P	,	
k 0BaBCLiHcs√Hillu0à	I	P F	P	P	P.F	8.9	P	P	P	P	P	1A5*	P	P	P	P	P	b.9*	P	P	P	P	P	8.A*	P
L					- 1		_						_												


U LFLievOuci ucFk (BaBCLi H:s vHiI uCi. d-d LOBm-mObreBS-SrvEBW-WPSEvc

2 of 6 3 of 6

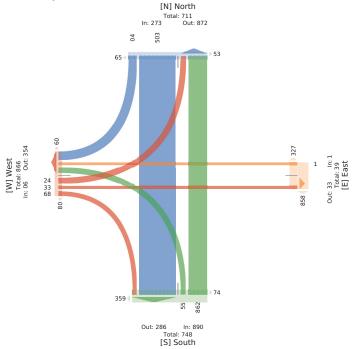
5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Sat May 7, QUEEN ELIZABEH DIWNT & FIF... - IMC Sat May 7, QUEEN (UKND) (12:3APM - 1:3APM) | I GS Gillet ([githmLand MrtrdthHelt, veaBy, Pedeltdaol, RillyHeltro wrad, RillyHeltro srd.Imask) | I CMr Hel ent. DC: 4A15. 7, gr Hitro: 3A605421, -7A6 81473

[S] South

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID	OUE	EEN E	LIZ	ΆB	ETH	DRV	ΝÓ	a FII	E	- TI	ИC										1				
TueMua y3, 2, ,	•																			- (1	11		
OM OFul In gt h (I	6-A2 (nm - c	- A	2 01	M(= 1	PE	ന്ന	Ful s	id	n.											(((n	TO	NA.	10
o CCr QueeFe IH\BRee u											Œc i	ωDii	ık31	l vna nt	ffic i w	,					1	/(·W	LVV	U
r)i cc4 uC(,			, , , , , ,			HLI THE			wc.				wer n					0)i F	kFk !				
o (CMi PF7 Fwe																							wceF00		
8h : 56. A9y3Hi muexi	w h6f	h2.A5.	. 3	-v6i	f9O 5	vh														t F	KFuw8	lt3	3g , G	6J53	3r c
HFB	t i)eR	,		,		-							an 1												_
							Euc						Ti d						n Fce						
h v)Fnesi w	Ti deR			-				αN dw		-				eRN dw		_			EuceN o		-				_
S∜ F	D	-		W		0FkU						0FkU	_	S		W			D	S		W	o KK		
, 2, , -26-2y 6:A20M	, 6			2	. A6	, , .	2		2		2	.,9	2	6,	. 6		9y	yO		A		2	, 9	, .	,
6:b60M	, A				. bO	, 2	2		2		2	9	2	6b	٠,	2	99	yO			. b	2	, у	٠,	,
9:220M	, b			2	. A6	. 6	2		2		2	. 22	2	66		2	9,	AA			٠,	2	. 9	. A	
9:. 60M	.0	. b.	2	2	. 65	. 5	2	9	2	2	9	60	2	yb	. 2	2	Cb	AO	у	,	. 6	2	, b	,,	
Si euC	52	b5.	2	2	6Q	у6	2	9	2	2	9	b22	2	, A6	bb	2	, y5	, , y	A,		62	2	5A	90	
* o KKji unR	. 6f6*	Cbf6*	2* .	2*	-	-	2*	. 22*	2*	2*	-	-	2*	Cbf, *	. 6fO*	2*	-	-	Abfb*	fO*	6AfO* :	2*	-	-	
* SieuC	5fb*	6. f, *	2* .	2* 9	92f9*	-	2*	2f9*	2*	2*	2f9*	-	2*	, bf6*	bf9*	2*	, 5f. *	-	AfA*	. f. *	6f, *	2*	5fy*	-	
0s %	2f529	2fO9A	-	-	2f52A	-	-	-	-	-	-	-	-	2fy5b	2fyAA	-	2fO42	-	2f6A9	-	2fOAA	- :	2fOy2	-	26
HNBRec uwk Mi ei)mantEc	06	bOy	2	2	6y,	-	2	2	2	2	2	-	2	, A6	bb	2	, y5	-	A2	2	62	2	œ	-	
* H\BRec unk																									
Miei)mannEc	5bfb*	55f, *	2*	2* 5	5Cf6*	-	2*		2*	2*	2*	-	2*	. 22*	. 22*	2*	. 22*	-	5AfO*	2*	. 22*	2* C	9f2*	-	5yf
s FuPa	,	2	2	2	,	-	2	2	2	2	2	-	2	2	2	2	2	-	2	2	2	2	2	-	
* s FuPa	, f, *	2*	2*	2*	2fA*	-	2*	2*	2*	2*	2*	-	2*	2*	2*	2*	2*	-	2*	2*	2*	2*	2*	-	2f,
I vnantEciwDiuk	A	. b	2	2	у	-	2	9	2	2	9	-	2	2	2	2	2	-	,		2	2	. A	-	
* I vnantEciwDiuk	ALA*	2fO*	2*	2*	. f, *	-	2*	. 22*	2*	2* .	22*	-	2*	2*	2*	2*	2*	-	9fA*	. 22*	2*	2* .	bf2*	-	, f
0FkFce)wwc	-	-	-	-	-	y2	-	-	-	-	-	, yA	-	-	-	-	-	, 2,	-	-	-	-	-	9A	
* OFkFce)vuvc	-	-	-	-	-	5AfA*	-	-	-	-	- 5	90£A*	-	-	-	-	- (Ж2*	-	-	-	-	- 5	5, f9*	
I wantFc i wr)i cc4 uC	-	-	-	-	-	6	-	-	-	-	-	., у	-	-	-	-	-	, 6	-	-	-	-	-	6	
* I wantEc i wr)i cc4 uC	-			-	-	9fv*	_		-			A fO*		-		-		. 12*			-			yfb*	


UDFkFce)vuwc uwk I vnamtFc i wr)i cc4 uCf H: HFpe3D: DvBRe3S: SR)d3W: W-Sd)w

4 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Sat May 7, 2021 (1:30 PM - 0:30 PM) - v relaHPeak o uAl
CHB HILLel, igmtLadc MutullByHel, o ear y, Peceltlgdl, RgbyHel.ud wuac, RgbyHel.ud sluUmalR)
CHMurel edtl.
9D: 415307, i uBatgud: . 16 03425, -71608547.

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

 5566814 - COVID - HANN 51 te SUNNTSIDLE AVE - III.

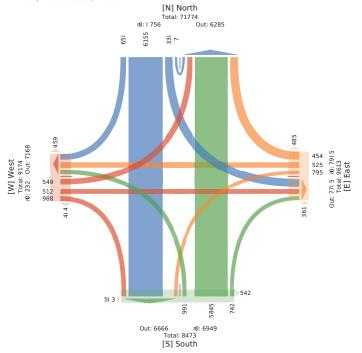
 Tieb Many 32, 2.

 OFIL Large th (62-72 - M91:72 PM)

 I Classes (tilt he sigd Moorraches3Hmuva3Pndnsariugs3Bicachs og Roud3Bicachs og Crossvulk)

 I I Movramges

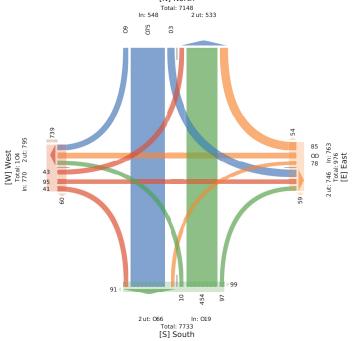
 ID: 476Al43Locusigs; 87548, 4639/73. A824


Lnt	North					Euse						ToFeh						S rise						
Diraceiog	ToFehbo	εFgd				S risebo	Fgd					Nor ch bo	oFgd					EuseboF	gd					
Wimn	R	W	L	U	- pp Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	R	W	L	U	- pp	Pnd+	Ige
, 2, , 92792y 62:22- M	,7	, 68	8A	2	,., 9	A	61	6A	2	1y	12	66	, A6	66	2	,7A	11	67	, 4	, 1	2	y2	y7	1
66:22- M	81	844	у6	2	161 9	4A	8.	,,	2	61A	622	,7	8.,	, 4	2	7A1	y4	8,	8.	AA	2	6, A	616	68.
6, :22PM	72	84y	. 7	2	1A, 9	44	7A	, 2	2	6y,	6, A	A2	874	,7	2	768	. A	82	A6	8A	2	668	6	68.
6:22PM	y2	846	y1	6	1A 9	62y	yA	6.	2	64.	6y.	-,,	88y	, 1	2	847	1y	88	A6	Ay	2	66,	6.7	68
,:22PM	7A	777	47	2	y2A 9	4,	77	-	2	677	, Al	64	8y.	A7	2	7A,	6, 7	A6	, 4	A4	2	44	, 6y	68.
A22PM	84	7y1	. 4	2	y68 9	4.	76	6,	2	616	, A4	,8	8	A7	2	78y	6, y	Ay	8.	78	2	6A4	, A4	67
8:22PM	88	7, 1	44	2	114 9	4y	86	6,	2	672	64.	, 2	76,	, 7	2	77y		AB	72	71	2	682	61y	67
7:22PM	- 11	87y	y,	2	747 9	. 2	A4	6A	2	6A,	, 62	64	7A	6.	2	7y7	y4	A2	,.	78	2	66,	, 27	68
1:22PM	A,	, 6.	A7	2	,.7 9	AA	6y	7	2	77	y4	- 4	, A	61	2	, 1A	, 6	67	67	A2	2	12	7,	1
Word	8A7	82.AA	117	6	76A8 9	yAy	A4A	6, A	2	6, 7A	68, A	6y4	A yA	,,2	2	В, у,	yA7	,	A24	Ay,	2	414	68. 4	661,
% - pprouch	. 57%	y. 51% (6A52%	2%	9 9	7.5%	A63B%	45 % 2	2%	9	9	85 %	425y%	736%	2%	9	9	, 45y% i	A654% .	A 38%	2%	9	9	
% Wearl	A5y%.	AB5y%	75y%	2% 8	385,% 9	154%	AB%	636% 2	!% €	25 %	9	65% .	AA5A66	654%	2% A	15y%	9	, 57%	, 5y%	A5,%	2%	. 54%	9	
Lit hes ugd Moeorcaclns	A 1	A 21	178	6	8.8y 9	у, ,	Α,	6, A	2	6, , y	9	6y7	A177	, 64	2	8284	9	, . A	, 4y	Al 1	2	481	9	662
% Lit hes ugd Momrcaclus		4838% -	4. 54% 6	522% 4	1838% 9	4.52%	4y5, % (522% 2	296.4	ly51%	9	4y5%	4838%	4457%	2% 41	35 %	9	4. 58% 4	4156%	4. 58%	2% 4	ly51%	9	475
				2	621 9	A	8	2	2	у	9	2	4y	6	2	4.	9	- ,	A	2	2	7	9	,
Hnuva	8,	1,																25/%			2%	257%	0	654
Hnava % Hnava			254%		,56% 9	258%	652%	2% 2	1%	251%	9	2%	, 57%	257%	2%,	5496	9	23/76	652%	2%				
*******			254%			258% 6,	652% y	2% 2		251% 64	9	2% 8	, 57% 6, 6	257% 2		6, 7	9	23y76 A	652%	2%	2	6.	9	A
% Hnuva	45y% y	657%	4	2% 2	,56% 9	-	у	2	2		9	8	,		2	6, 7	9	A		1	2	6.	9	A
% Hrava Bicaclns og Roud	45y% y	657% 617 836%	4	2% 2	,56% 9 6.6 9	6,	у	2 2% 2	2	64 657%	9 9 6A.	8	6, 6	2%	2	6, 7	9 9 y67	A	4	631%	2	6. 658%	9 68, 1	_
% Hnuva Bicaclns og Roud % Bicaclns og Roud	45/% y 651%	657% 617 836% 9	4 638%	2% 2 2%	,56% 9 6.6 9 A57% 9	6, 651%	y 65 %	2 2% 2 9	2	64 657% 9	9 9 6A . 4y57%	,5%	6, 6 A6%	2 2% 2 9	2 ,	6, 7 54% 9	9 9 y67 y5466	A 652%	, 54%	1 631%	2%	6. 65#%	9 9 68, 1 75 %	A
% Hrava Bicaclns og Roud % Bicaclns og Roud Pndrseriugs	45y% y 651%	657% 617 836% 9	4 638% 9	2% 2 2% 9	,56% 9 6.6 9 A57% 9	6, 651% 9	y 65 % 9	2 2% 2 9 9	2 196 9	64 657% 9	4y57%	,5% 9	6, 6 A66% 9	2 2% 2 9	2 , 9	6, 7 54% 9		A 652% 9	4 , 54% 9	1 63% 9 9	2 2% 9	6. 65#%		, 5

*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6 1 of 6 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Sat May 7, 2020 AM-6:30 PM Sat May 7, 2022 AM-6:30 PM All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk) All Movements ID: 941369, Location: 54.395291, -74.683509


5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
TueMus y3, 2, ,
MFFua I Inn g h (6: g4492 1 M PA, 42 1 M:
1) () Cjassla g tilosu rF McceHav)ls3BLuRa3I IFIseftlurs3w0av)ls cr kcuF3w0av)ls cr
CHssmip:
1)) McRU I re
18 - 4748843i cvud0r - 57.945, 443897.889524

i Id	(cHo					J use						Tc Eeo						t Ise						
6 (Havefer	TcEeof	cErF				t Lsef	Er F					(cHof	cErF					J usef c	Er F					
SŒ L	k	S	i	W	1 pp l IFU	k	S	i	W	1 pp	1 LFU	k	S	i	W	1 pp	l IFU	k	S	i	W	1 pp	LIFU	Dе
, 2, , P27P2y AA-921 M	A7	A55	A,	2	AyA I	,7	A7	5	2	55	, 9	у	A, 8	4	2	A5,	Ay	A2	4	4	2	, b	5A	9b
AA571 M	A9	AA,	, 8	2	A7A I	, 5	A2	5	2	9b	9A	5	AA7	b	2	A, y	A7	A9	A,	4	2	95	79	97
A, -221 M	A2	AA9	, 9	2	A58 I	,7	A4	8	2	72	97	4	AA4	у	2	A97	A7	A,	7	A5	2	9A	58	98
A, -A71 M	A7	Абу	A4	2	AbA I	-,,	AA	. 7	2	9b	9b	AA	A25	5	2	AA4	Ab	у	A2	b	2	,7	5A	98
Sceu)	79	7AB	b2	2	854 F	48	77	A4	2	Ay2	А, у	9A	585	, b	2	7, 9	87	5,	98	52	2	A4b	AbA	A58
* 1 ppHtuvo	b., *	y4.7*	A, .9*	2*	P F	78.7*	9, .5*	AA, *	2*	P	P	7.4*	bb.y*	7.5*	2*	P	P	97.8*	92.7*	99.4*	2*	P	I	
* Sceu)	9.8*	97.9*	7.7*	2* 5	5.7* I	8.8*	9.b*	A9*	2° i	AA8*	P	, .A*	9Ab*	A4*	2* 9	97.b*	P	, .4*	, .7*	, .y*	2*	b.A*	I	
1 B%	2.bb9	2.b47	2.y84	P	2.4AA I	2.482	2.y, 5	2.y4,	P	2.b72	P	2.8b,	2.4A4	2.yyb	P	2.4 <i>A</i> b	P	2.b2b	2.yy9	2.8y4	Ρ.	2.b85	I	2.47
i Otloes ur F McecHav)Ls	5y	542	b2	2	8Ay I	47	77	A4	2	A64	P	92	55A	, b	2	544	P	5,	99	9b	2	A49	I	A94
* i @loes ur F McecHav)Is		47.2*	A22*	2* 4	17.A* I	44.2*	A22*	A22*	2* 4	14.5*	P	48.b*	47.2*	A22*	2* 4	¥7.5*	P	A22*	4Ay*	47.2*	2* 4	17.b*	I	47.b
BLuRa	8	AA	2	2	Ay I	A	. 2	2	2	A	P	2	A7	2	2	A7	P	2	A	. 2	2	A	I	9
* BluRa	AA9*	, .A*	2*	2*	,.8* I	A2*	2*	2*	2*	2.8*	P	2*	9., *	2*	2*	, .4*	P	2*	, .b*	2*	2*	2.b*	I	, .9
w@rav)Ls cr k cuF	2	A7	2	2	A7 I	2	2	2	2	2	P	A	b	2	2	4	P	2	,	,	2	5	I	,
* w@rav)Es cr k cuF	2*	, 4*	2*	2*	,.9* I	2*	2*	2*	2*	2*	P	9., *	Ay*	2*	2*	Ay*	P	2*	7.8*	7.2*	2*	9.5*	E	A4*
l IFIsel@urs	F	P	P	P	P 2	F	P	P	P	P	Α,	P	P	P	P	P	7b	I	P P	P	P	P	ABy	
* 1 LFLsel@irs	F	P	P	P	P F	F	P	P	P	P.	48.A*	P	P	P	P	Pl	14., °	I	P	P	P	P4	1, .9*	
w0/av)Ls cr Cl#ssmu)n	F	P	P	P	P 2	F	P	P	P	P	7	P	P	P	P	P	у	I	P	P	P	P	A5	
* w0xav)Ls cr CHessmu)n	F	P	P	P	P F	F	P	P	P	P	9.4*	P	P	P	P	P.	42.b*	I	P	P	P	P	y.y*	

^Ul LFLsel•Burs urF w0vav)Ls cr CHessmu)n. i - i LQBk - k Qdoe3S- SoHE3W- WPSEH

2 of 6

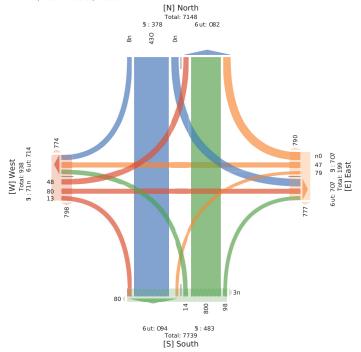
5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movemens
ID: 941359, Location: . 4699. 291, -746583. 09 [N] North Total: 7148 In: 548 2 ut: 533

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
TueMusy 32, 2, 5
0 M OR4 langt h (16 0M: A0M(: - 9FhiliP0Rul) Cs1
in Pd thorofor I drow utR MGChewRF3) Refs-30 PREceluBr3k one wife OB mCuR3k one wife OB
d XCot utl (
in PMC9FDR0
4n 785. 6b83r CreaxCEZ A5f68A 8. 3:y5fbC6A28

3 of 6

	_					-			_			_						_						_
r FH	t Clev					Euce						TCs ev						n Foe						
h dFvetCB	TG: evN	Cs BR				n FoeN	G:BR					t ClevN	Cs BR					EuceN:	s BR					
SdF	m	S	1	W	i KKOFR	m	S	r	W	i KK	0FRU	m	S	r	W	i KK	0FRU	m	S	r	W	i KK	0FRU	4Be
, 2, , :25:2y 67220M		. Ay	, .	2	. y8	,.	. 6	y	2	A.	A	,	. 6.	A	2	. 6y	65	. 2	.,	.,	2	6A	b,	68.
67. 50M		. 56		2	. Oy	, 8	. b		2	Ab	Ω	у	A	٠.,	2	. 66	A,		8	. 6	2	66	b,	688
67620M	. A	,8	, ,	2	. bA	, 5	8		2	65	5A	0	.,6	у	2	. 60	, .	0	. 5	. A	2	6y	bb	6y2
67A50 M		. Ay	, :	5 2	. OA	, 6	. 6	6	2	68	b6	у	.,2	,	2	. 68	, 8	0	,	. 5	2	65	AB	68)
SGmP	A8	5yb	O	3 2	y. A :	80	5.	٠,	2	. b.	, 68	, A	AOC	65	2	5Ay	. , y	6y	AO	5A	2	. 68	, 68	. 5b.
* i KKKinw	bfB*	Œfy*	., f5*	2*	: :	b2f8*	6. fy*	yf5*	2*	:	:	AfA*	OBf, *	bfA*	2*	:	- :	, bfb*	6A/5*	60lO* 2	*	:	:	
* SGmP	6f. *	6bfB*	5fy*	2* .	A5fy*	bf6*	6f6*	2fO*	2*	. 2f6*	:	. f5*	6. f6*	, f, * :	2* €	52+	- :	, fA*	6f. *	665* 2	* (JB*	:	
0) %	2fOy5	2fBA6	2f00	:	2f85y :	2fQ 8	2fOy5	2fA, 8	:	2f00b	- :	2fyCb	2f8. y	2fy, 8	- :	2fByb	- :	2fOy5	2fC22	2f822	: 2	£B, b	- :	2fBy5
r dilveouERMGcDvaviFo	AA	5A6	0	A 2	by.	85	A6	٠,	2	. 5b		,,	A5.A	65	2	5		65	Ay	5A	2	. 6b		. Ayı
rd-l/eouBR MGcChen-lFo		8.Af6	8AfA*	2* 1	BA/2*	8bf8*	8bf. *	. 22*	2*	8bf8*		8. fy*	86f2*	. 22*	2* 8	66£A*		8Ab+	8yf8*	. 22* 2	* 8y	/fOt		8ÆA*
) Fu9a	5	(١.	2	. A	2	2	2	2	2	:	2	.,	2	2	٠,	- :	2		2	2	-	- :	2
*) Fu9a	. 2f, *	. fA*	. f. *	2*	,£2*	2*	2*	2*	2*	2*	:	2*	, f5*	2*	2*	, f, *	- :	2*	, f. *	2* 2	* 2	2fy*	- :	. fy*
k coewFoCBmCuR	2	, 5		1 2	,8	6	,	2	2	5	- :	,	,,	2	2	, A	- :	,	2	2	2	,	- :	b
* kowwFoCBmCuR	2*	Af6*	A5*	2*	AL*	6f. *	6B*	2*	2*	6f. *	:	Of6*	A5*	2*	2*	A£A*	- :	5fA*	2*	2* 2	٠.	fΑ°	:	6fO*
0 FRFoelaiBo	:			: :	: 2	:	:	- :	:	:	, 6A	:	:	- :	:	:	., b	:	:	:	:	:	, 6.	
* 0FRFoelaiBo				: :		:	:		:		Byf8*			:	:	: 1	38f, *			:	:	: 8	bfy*	
k ova viFo CB d 1Cool uiP	:			: :	: 2	:	:	- :	:	:	5	:	:	- :	:	:		:	:	:	:	:	0	
* kowwFoCBd1GotuP	-	-					-		- 1	-	, f. *	-		-	- 1	-	2fO*	-	-		-	-	666*	


UDFRFoetaiBo uBR k ova wFFo CB d 1Cool uR f r 7r FpBm7mdHve3S7Sv1s3W7W:Ss1B

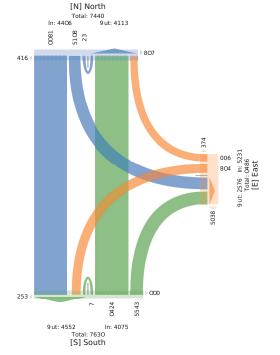
4 of 6 5 of 6 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Solodia - Cuvil - Davin ST (@ Sunin STIDE AVE - ... - I inic.

Sat May 7, 2021) (1 PM : 3 PM) : - Oram Peak I Hov
ur AndCe(Cs ii giCahn MHHdydreC I ea(), PeneCvlahC c IdydreCH BHin, c IdydreCH
AHT(Rark)
ur MHCwehlC
nDI 9451. 9, s HatIHril 34G93295, :746 81309

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Ottawa
Provided ba: Cies of Oeerwu
622 Cogsenllueiog Dr3
Nnpnug3ON3K, G 7J43C-


Lnt	Noreh					Euse					ToFeh					
Dirncelog	ToFebboF	gd				S nseboFg	d				NorehboF	gd				
Wimn	W	L	U	- pp	Pnd*	R	L	U	- pp	Pnd*	R	W	U	- pp	Pnd*	Ige
, 2, , 92792y 62:22- M	, 2A	72	6	, 78	74	67	A1	2	76	88	84	,,.	6	, y.	6A	
66:22- M	8, 4	46	6	7, 6	yA	17	.,	2	68y	6.1	44	876	6	776	8.	6, 6
6, :22PM	824	6A1	,	78y	627	1y		2	677	646	6A6	824	2	782	8,	6, 8
6:22PM	868	4y	,	76A	6, .	72	y4	2	6, 4	,,4	661	82A	2	764	11	661
, :22PM	87.	68A	A	128	616	1.	.,	2	672	, 1y	6, A	8, 8	2	78y	. 7	6A2
A22PM	888	681	A	74A	6.7	. 2	62A	2	6. A	A68	678	8A6	2	7.7	. 8	6A1
8:22PM	8A4	672	7	748	67.	4A	6,8	2	, 6y	872	6. A	888	,	1, 4	62.	688
7:22PM	A 1	6A	у	7A6	, 66	. 4	.7	2	6y8	17y	, 24	8A2	2	1A4	y1	6A8
1:22PM	6	. 1	7	, y4	18	, 4	77	2	. 8	, 8A	. 7	, 28	8	, 4A	A,	17
Week	AAy2	62Ay	, 4	88A1	6688	771	yA8	2	6, 42	, 7. 6	6684	A6, 8		87.6	778	62A2
% - pprouch	y152%	, AB%	25y%	9	9	8.A56%	7154%	2%	9	9	, 756%	y85y%	25,%	9	9	
% Wéesl	A, 5/%	6256%	254%	8A2%	9	798%	y36%	2%	6,57%	9	6636%	AA5, %	256%	8838%	9	
Lit hes ugd Moeorcaclns	A61y	626,	,.	8, 2y	9	764	1.2	2	6644	9	62A4	A6.4		8, A1	9	418
% Lit hes ugd Moeorcaclns	4852%	4y91%	4151%	485 %	9	4.A5A%	4, 51%	2%	4, 54%	9	4298%	4.866%	622%	4, 57%	9	4A579
Hnuva	47	62	2	627	9	,	7	2	у	9	,	622	2	62,	9	, 6
% Hnuva	,5%	652%	2%	, 98%	9	23B%	25y%	2%	257%	9	25, %	, 54%	2%	, 5, %	9	, 569
Bicaclns og Roud	62.	67	6	6, 8	9	A7	84	2	. 8	9	62.	6A7	2	, 8A	9	87
% Bicaclns og Roud	A5, %	698%	AB9%	,5%	9	154%	15y%	2%	157%	9	498%	A54%	2%	75466	9	8589
Pndnseriugs	9	9	9	9	66, y	9	9	9	9	, 764	9	9	9	9	768	
	9	9	9	9	4.57%	9	9	9	9	4y51%	9	9	9	9	4,5%	
% Pndnseriugs	9															
% Pndnseriugs Bicaclns og Crosswulk	9	9	9	9	6y	9	9	9	9	1,	9	9	9	9	82	

*Pndnseriugs ugd Bicaclns og Crosswulk5L: Lnfe3R: Rit he3W WhrF3U: U9WFrg

6 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Sat May 7, 2022
Full Length (10:30 Ah-6:30 PM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 941515, Location: 54.398765, -74.684893

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

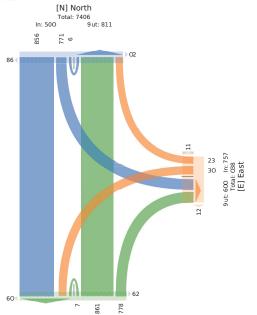
5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
TUPMus y3, 2, 6,
MGFus I Lun g h (6 : gA492 1 M PA -92 1 M:
1) C)Lusts g i floss ur F McceHav)Ls3B LuRa3I LFLsettlur s3w@av)Ls cr k cuF3w@av)Ls cr
Clt4smuh:
1) McRU Lre

B - 47.68.63i cvudtr - 87504, yb83By73b. 7. 49

1 of 6

	c vv					v					on m					
i I.d	(cHo					J use					Tc Eeo					
6 (Havelica	TcEeof cE	rF				t LsefcEr	F				(cHofcE					
SŒ L	S	i	W	1 pp	1 LFU	k	i	W	1 pp	1 LFU	k	S	W	1 pp	1 LFU	Dе
, 2, , P27P2y AA-921 M	A, 9	, b	A	A72	, 7	, A	Ay	2	9.	8b	, 9	AAb	2	A94	AA	9,
AA871 M	A27	, 7	2	A92	A2	A7	, b	2	8A	7b	,,	A2y	A	A92	Ay	9
A, -221 M	A24	, у	A	A9y	, A	A4	A4	2	9.	8,	8,	AA8	2	A7b	AA	9
A, -A71 M	AA7	8A	2	A7b	,,	A9	, A	2	98	7A	, у	4,	2	AA4	A2	9
Sceu)	87,	AA4	,	7y9	y.	b.	. 9	2	A7A	A47	AAB	8, 4	А	788	84	A, I
* 1 ppHtuvo	y. 54*	, 25 *	259*	P	P	8752*	7752*	2*	P	P	, A52*	y. 54*	25*	P	P	
* Scei)	975b*	498*	25 *	875 *	P	798*	b57*	2*	A454*	P	452*	995 *	25A*	8, 54*	P	
1 B9	25427	25y9.	25722	25492	P	25,4	25,b	P	25494	P	25b4b	254, 7	25,72	25 y2	P	254
i Otloes ur F McecHav)Ls	8, 9	AAb	,	78A	P	b9	y7	2	A9.	P	A29	82A	A	727	P	ΑΔ
* i Odoes ur F McecHav)Ls	495b*	4y57*	A22*	4898*	P	4, 5b*	42B*	2*	4AB*	P	425B*	4957*	A22*	4,5*	P	49%
BLuRa	A7	,	2	Ay	P	2	A	2	A	P	2	Ay	2	Ay	P	
* BLuRa	959*	A5y*	2*	952*	P	2*	A5 *	2*	25y*	P	2*	852*	2*	95A*	P	, 5
w0rav)Ls cr k cuF	A6	A	2	A7	P	7	у	2	A,	P	AA	AA	2	,,	P	
* w0vav)Ls cr k cuF	954*	25 *	2*	, 5b*	P	y98*	. 3B*	2*	y54*	P	45b*	, 5b*	2*	852*	P	954
l LFLseHtur s	P	P	P	P	yb	P	P	P	P	A 9	P	P	P	P	87	
* 1 LFLseHurs	P	P	P	P	4y38*	P	P	P	P	495 *	P	P	P	P	4A5 *	
w0vav)Ls cr CHrssmu)n	P	P	P	P	,	P	P	P	P	A,	P	P	P	P	8	
* w0vav)Ls cr CHrssmu)n	P	P	P	P	, 3b*	P	P	P	P	b5 *	P	P	P	P	.5*	

U LFLseHiturs ur F wOvav)Ls cr CHtssmu)n5i - i LOBk - k Otloe3S-SoHE3W-WPSEHI


2 of 6 3 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Sat May 7, 2022 Midday Peak (WKND) (11:30 AM - 12:30 PM) All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Crosswalk)
All Movements
ID: 941515, Location: 54.396785, -74.864693

9 ut: 502 In: 588 Total: 7434 [S] South

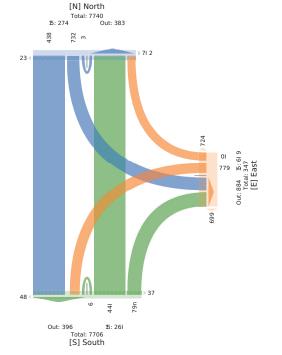
5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Tue Mua y3, 2, , 0M 0Ful In gt h (16:A 0M 9AA 0M (91 PF)uCOFul sid)

o CCr Ciccele II-MERec uwk Mi ei) mantfec3s FuPa30FkFce) uwc31 vmantfec i w Di uk31 vmantfec i w r)i cc4 uC(

o (CMi PF7 Fwec 8h:5-. A A3Hi muesi w. A-b65f yOA39y-bOf-f56

HFB	ti)eR					Euce					Ti deR					
h s)Fn s i w	Ti deRN d	wk				n FoeN dv	k				ti)eRNid	wk				
S∜ F	S	Н	W	o KK	0FkU	D	Н	W	o KK	0FkU	D	S	W	o KK	0FkU	8we
, 2, , 92-92y 6:A-0M	2	6-		. AO	C6	. f	, A	2	A,	. 22	Ay	.,2	2	. Oy	. f	6
A220M	.,5	A5	,	. f 2	6,	.0	66	2	A5	. 22	A	50		. 6f	, у	6Oy
A 0M	6	6,	,	. Ay	A	, у	60	2	06	.,.	Ay			. 06	, A	6y6
A620M	. 2.	A2	2	. A	6.	, 5	, A	2	-6	.,2	A6	. 25	2	,	,-	6AC
SieuC	A-6	0	-	QA	. y.	52	y	2	, 2y	AA	. yf	AA2	,	Q2	5A	. AA
* o KK)i unR	y6lf*	, - bA*	2lf*	9	9	A6b*	- Q+ *	2*	9	9	, f by*	y. 12*	2b6*	9	9	9
* SieuC	6. b4*	. 2lf*	2b6*	A, 160°	9	Oh *	fb*	2*	. AbA*	9	., bA*	62b*	2b*	A612*	9	9
0s %	2lff-	2byf.	2bQ -	2tf-6	9	2lf 2O	2lf 6.	9	2tf 66	9	215.5	21Б, f	2ъ 22	215, f	9	21500
HNBRec uwk Mi ei)mantEc	A, -	,	-	-f,	9	fO	6	2	. 55	9	f	A 6	,	-y6	9	. 6- A
* HyBRec uwk Mi ei)man@c	56lf*	5ybA*	. 22*	5Abf*	9	5-160*	5010°	2*	50b *	9	ffbf*	56b5*	. 22*	5, bA*	9	5Ab2*
s FuPa	. A		2		9		2	2		9	2	. 2	2	. 2	9	, С
* s FuPa	6b *	2bO*	2*	, bA*	9	. b *	2*	2*	2b*	9	2*	, b6*	2*	. liO*	9	. laf *
I vnantFc i wDi uk	. A	6	2	. у	9	6	A	2	у	9	, 2	. у	2	6y	9	Ω
* IvnantFciwDiuk	6b *	. l5*	2*	, lf *	9	6b6*	6bA*	2*	6bA*	9	h*	6b5*	2*	O12*	9	Ab *
0 FkFce)vavc	9	9	9	9	. y2	9	9	9	9	A, f	9	9	9	9	5.	
* 0FkFoe)sussc	9	9	9	9	55bA*	9	9	9	9	5yb *	9	9	9	9	5Off*	9
I vnantEc i wr)i cc4 uC	9	9	9	9		9	9	9	9	. 6	9	9	9	9	6	
* I wantFc i wr)i cc4 uC	9	9	9	9	2hO*	9	9	9	9	, l5*	9	9	9	9	6b; *	9


U) FkFce) vuwc uwk I vnam@c i wr) i cc4 u@bH: HFpe3D: DvBRe3S: SR)d3W: W9Sd)w

4 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY --- - TMC
Sat May 7, 2021 (1:3- PM 08:3- PM) Ov relatified ou vA
CHB MILLed, ighttack dwtull ByHel, o eary, Peccell gold, RgbyHel.ud wuac, RgbyHel.ud slutimatik)
CHMurel edt.

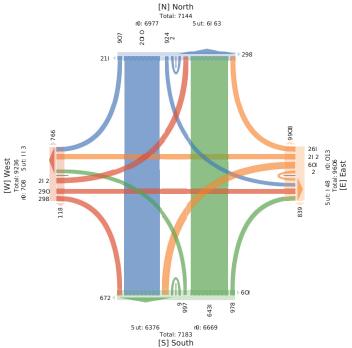
40: 4-5353, i uBstgud: 3-.146783, 07-.86-641

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

The IT My 3, The IT My 3, The IT MB 3. The IT MY 3, The IT MY 3, The IT MY 3, The IT MY 3, THE M

- ouHdnd . a: Cita ubf ttMRN
 122 CuestnllMiue I o3OnNnM3f O3p , K DG/3CP

DB 1 2 72 0 14% 14% 24% 29% 145% 0 ., BD 5 2 12D 1A2% ,40% 74% 2% A4%

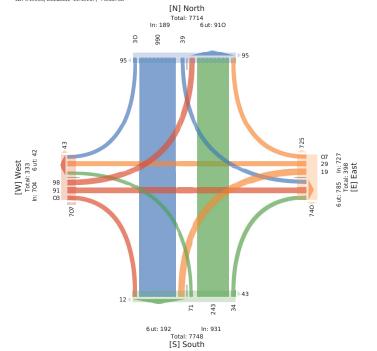

toiMes Med virarlns ue CoussRMiv4L: Lnbt3B: Bight3W WhoF3U: U9WFoe

6 of 6

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

Mon May 9, 2022 — 112:30 AM)
Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949153, Location: 45.40167, -75.68758

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC


| S50804 - COVID - BANKS | @ FIFTH AVE - MAY ... - IMC | Tue T My 3, 2, 7, nOT gr 0T hg (6F.MO)FM - u5: | AP AJJP| 162 dg Mr T uncaca/6,3 - PMa30FP J0:3\(4 \) 3Hscac\(4 \) ue vuM3Hscac\(4 \) ue | P:u)BM.h | 1 Alf u6RFe₀ | sk mJ yDh43Cuc\(4 \) sk ug vuM3Hscac\(4 \) ue vuM3Hscac\

CFi	f u:ad						GMo						Ju9ad						E F)o						
k s: Fcoue	Ju9ad.	u9er					E F)a ı	ı9er					f u:ad.	u9er					СМа и	9er					
SsRF	v	S	С	W	100	0F-U	v	S	С	W	100	0Fr U	v	S	C	W	100	0Fr U	v	S	С	W	100	0Fr U	veo
, 2, , g2ng2y nrii20T	4	D,	5	2	D44	4,	t	5	Dn	2	, у	85	t	DDS	t	2	D42	nD	I	D4	D4	2	42	t D	4, ,
T0r@nn	I	DI 2	n	2	Пу	12	t	5	D	2	42	54	t	Дy	I	2	D4y	44	8	D8	у	2	44	n2	4ni
nr#20T	5	DnI	5	2	D82	, D	DD	D4	П	2	45	t y	y	DD4	,	2	ŊІ	4n	5	D,	Di	2	41	n2	4t t
nnlin0T	5	ПD	I	2	Dh4	, n	5	D	, 2	2	H	IΨ,	8	Ŋ,	I	2	D44	, 8	D4	п	П	2	ID	n,	48
SudM	, 4	nn8	, n	2	t 2n	DDS	4D	In	t n	2	ПD	44,	, 5	15,	D	2	n, t	Πt	4,	nt	n2	2	D45	, D4	пп
* 1 OCruMdd	475°	y, 7D°	I 7D°	2*	g	. 8	, , 72*	4DB/*	It 7D*	2*	g	8	n74*	yDR*	42*	2*	g	8	, 47, *	127.*	4t 7 *	2*	g	g	
* SudM	DR *	4y7h*	D2+	2* I	, 7y*	8	,7,*	47,+	17+	2° 1	D272*	8	, 72*	4I 7, *	DID*	2* 4	874*	8	, 74*	I72*	47h*	2* !	уЂ*	g	
0- %	278Dy	27yD4	2785D	g.	2Ђу8	8	278n2	275126	27522	g	27544	8	275, D	27yD4	27tt8	g	27yE6	8	27h88	278n2	2758n	g 2	27845	g	27/4
Csi do) Mer T uou:cacAE)	, 4	n4D	, n	2	n8y	8	, 5	4t	t 4	2	Д8	8	, 4	In,	D	2	IyD	8	42	ID	15	2	DDy	g	D4E
* Csi do) Mer																									
T uur:cacÆ)	D22*	yn74*	D22*	2* y	m76*	8	y274*	5272*	yt 7y*	2* 1	y27D*	8	5, 7D*	y475*	D22*	2° y	474*	8	y4'5*	847, *	yt 2*	2* 50	٤7,*	g	y474*
- FMa	2	D4	2	2	D4	8	,	2	D	2	4	8	2	D,	2	2	D,	8	2	D	D	2	,	g	4.
* - FM6a	2*	, 74*	2*	2*	, 7D*	8	t7h*	2*	Dh+	2*	, 7D*	8	2*	, 7h*	2*	2*	, 74*	93	2*	D2+	, Z*	2* 1	DR+	8	, 7D*
HscacÆ) ue vuM	2	D4	2	2	D4	8	D	y	D	2	IID	8	n	DS	2	2	,4	8	,	DI	D	2	DB	g	t i
* HscacÆ) ue v uM	2*	, 74*	2*	2*	, 7D*	8	47, *	, 272*	Dh+	2*	875*	8	DB7y*	478°	2*	2*	171*	8	t 74*	, n72*	, 2*	2* D	74*	g	I 7h+
OFr F) asMe)	8	g	8	g	g	DD)	g	8	8	g	g	4, ,	g	8	8 8	g	g	II 4	8	8	8	g	g	, DD	
* 0FrF)asMt)	8	g	8	g	g	yI 7y*	g	8	g	g	g.	y872*	g	8	8 8	g	g.	y87y*	8	8	8	g	83	/y7D*	
HscacAF) ue P:u))BML	8	g	8	g	g	t	g	8	5 g	g	g	ID2	g	8	3 8	g	g	4	8	g	g	g	g	,	
* HscacAF) ue P:u))BMA	8	g	2	g		n7D*	8	5	. 8	g	8	472*						, 7D°			8			27/*	

Upr P; asMe) Mer HscacAP) ue P:u))BMa7CnCPb68v mv si d68Sn6d:93WnMg69:e

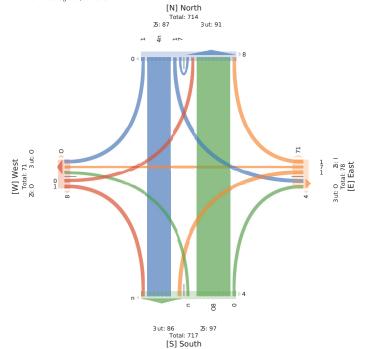
2 of 6

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5PM - 6 PM) - Overall Peak Hour
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949153, Location: 45.40167, -75.68758

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC
Tue May 3, 2, 0, 00
FM | eal.nMay 3, 0, 00 30F Mg 3 F Mt
Flh | (h6666 h 49564) MCCisi yi heCid eaoy2l e) e68shPs2r Ayi he6 CP c Ga) 2r Ayi he6 CP
(sCGFstalft
FlhMCsev ePIs
BWkksl3 IZ : C a JACPwnt 4n 3782g81 47581 5

3 of 6

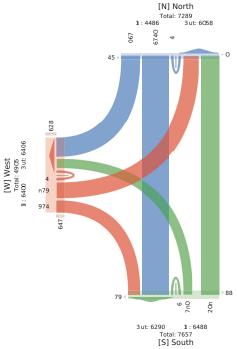

	_					_	_			_		_	-			_		_			_			_	
: e-	OCSB						J a6l						ECn 19						S e61						
R Alei IACP	ECu19	. CuP)					S e61 0	liP)					OGB.	CuP)					Ja6l Cul	P)					
TAv e	c	T	:	W	FNN	e) U	с	T	:	W	FNN I	e) U	с	T		W	FNN le)	U	c	T	:	W F	NN le)UI	æ1
0,00g Ig3, 30w, FM	3	D,	0	,	DD	m	0	3	0	,	I	30	3	nk	3	,	13	0	3	,	0	,	D	k	k
30 kJ F M	E	00	0	3	05	I	0	,	0	,	m	8	0	08	3	,	D)	I	D	,	3	,	m	m	7
TClair	m	1 I O	m	3	73	k	m	3	m	,	k	3k	D	87	0	,	53	8	m	,	D	,	8	3D	31
* FNNGai9	747*	5140*	747*	347*	g	8	m#rf	3348*	mar	,*	g	8	D8*	kD&*	04 *	. *	g	66	1848*,	* m0	14°,	*	g	g	
* TClah	04*	D04*	04*	, 47°	D547*	g	04 *	, 47*	04*	, * I	48*	8	34×	пБ4В*	34D*	. * 1	34D*	8	04*,	* 3	4e,	* mi	rf	g	
1 d %	, 4111	, 4m7	,4,,	40I,	, 4x87	8	, 4,,	, 40I,	,4,,	g,	4ni,	8	, 4DBI	, 41k8	,4,,	g	,4m,7	99	, 4DD	g , 4	408I	g, 4h	EDS	g	, 4m
: A916aP) MCKSi yi le6	m	nB	m	3	17	8	m	3	m	,	k	8	D	8,	0	,	81	99	m	,	D	,	8	g	3n
* : A916aP)																									
MCIGsi yi le6	3, , *	k, 4rf	3, , *	3,,* l	k345*	8	3, , *	3,,*	3,,*	, * 3	,,*	8	3,,*	k048*	3,,*	, * l	k047*	8	3,,*,	* 3,	.,* ,	* 3,,		gl	kD4 *
d eaoy		D	٠,	,	D	8	,	,	,	,	,	8	,	D	٠,	,	D	99	,	,	,	,	,	g	
* d eaoy	,*	145*	,*	,*	mk*	8	,*	,*	,*	,*	,*	8	, *	D4*	,*	. *	DB*	99	,*,	*	,*,	* ,		g	D5*
r Ayile6 CP c Ca)	,	0	,	,	0	8	,	,	,	,	,	8	,	D	٠,	,	D	99	,	,	,	,	,	g	
* r Alyihe6 CP c Ca)	,*	D5*	,*	,*	DID*	8	,*	,*	,*	,*	,*	8	, *	D4*	-,*	. *	D8*	00	,*,	*	,*,	٠,		g	D0*
l e) e6lsAsP6	g	. 8	g	g	g	k	g	8	g	g	g	3k	g	8		g	g	8	g	g	g	g	g	3D	
* le)e6lsAtP6	8	. 8	g	g	g3,	,*	g	8	g	g	g3	,,*	g	g		g	g3,,	٠	g	g	g	g	g3,,	ě	
r Alyi he6 CP (sC66HahL	8	. 8	g	g	g	,	g	8	g	g	g	,	g	g	g	g	g	,	g	g	g	g	g	,	
* r Ayi læ6 CP (sCl66HalfL	8	. 8	g	g	g	,*	g	8	g	g	g	. *	g	8	. 8	g	g ,	٠	g	g	g	g	g,	*	

U e) e6isAP6 aP) r Alyi le6 CP (sC66Hali.4: w. ebl2c wc A 9 l2TwT9su2WwWgTusP

5 of 6 4 of 6

5566814 - COVID - BANK ST @ FIFTH AVE - MAY ... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC


5506814 - COVID - QUEEN ELIZABETH DIKWY @ PKL... - TMC Tue T M y3, 2, OFIL Lnegth (6:A2 - T 91, -A2 P T) PIL Classes (Lights Md T uturarlns3c nMh3-ndnstaiMs3v irarlns ue BuM3v irarlns ue CusssRMo) PIL T uthk nets nh : y6y1D23LurMiue: 647621D639D47852AD5

						JuFth										
ing	Ouoth										E nst					
ionrtiue	J uFth. uF	ed				Ouoth. uF	ed				SMt. uFe	d				1
Alk n	В	W	U	PNN	- nd*	W	L	U	PNN	- nd*	В	L	U	PNN	- nd*	net
, 2, , 92492y 6:22- T	88	1y,	2	, 45	A	yD	A,	2	1, y	A	, 4	, D	2	4,	AD	6Aş
4:22- T	1D6	A4A	2	4A1	у	, , y	124	2	AA6	16	6y	44	2	126	8D	y8y
8:22- T	A2,	1, y	1	6A,	,	18A	y5	1	, 8,	, у	y5	5A	2	151	DS	5Dt
D22- T	116	18y	2	, 5A	4	165	8D	2	, 14	15	51	y4	,	1D5	4,	8DE
5:22- T	8y	18D	1	, AD	6	121	, 2	2	1, 1	2	, 6	8A	2	5D	6y	664
y:22- T	85	1, A	2	1y1	A	44	, у	2	56	D	A6	8D	2	121	4	ADE
12:22- T	DA	1, 5	2	, 21	2	6y	1D	2	88	4	142	, 11	2	A61	1y	8, 5
11:22- T	A1	4y	2	y2	2	, 1	D	2	, 5	1	8A	125	2	1DI	2	, 5y
								2	4		5	. 8	2	A6	2	4I
, 2, , 924912 1, :22P T	1,	8	2	15	2	6	1		-	,	3	, 0		- Au		
, 2, , 924912 1, :22P T WetM	1, y1A	1A, 8	,	,,61	, 8	58D	AD8	1	1, 66	Dy	4A,	DA4	,	1, 8y	A2D	
			271%		, 8	_	AD8 A27, %			Dy 9			, 27 %		A2D	6D46
With	y1A	1A, 8	,	,,61	, 8 9	58D		1	1, 66	Dy 9	4A,	DA4	,	1, 8y	A2D 9	6D46
WatM % P NYouMh	y1A 6270%	1A, 8 4y7, %	, 271%	,,61 9	, 8 9 9	58D 8y7D%	A27, %	1 271%	1, 66 9	Dy 9 9	4A, 617/%	DA4 4Dly%	, 27,%	1, 8y 9	A2D 9	6D46
WitM % P NNuMh % WitM	y1A 627D% 1y7,%	1A, 8 4y7, % , Dly%	, 271%	,,61 9 6D¶%	,8 9 9	58D 8y7D% 157, %	A27, % DB/%	1 271% 2%	1,66 9 ,87,%	Dy 9 9	4A, 617/% 117, %	DA4 4Dly% 1474%	, 27,% 2%	1, 8y 9 , 87D%	A2D 9 9	6D46
VátM % P NVaMh % VátM Lights Md T utuorarlns	y1A 6270% 1y7,% y12	1A, 8 4y7, % , Dly% 1A25	271% 2%	,,61 9 6DN% ,,,2	, 8 9 9 9 9	58D 8y7D% 157, % 562	A27, % DBy% AD8	1 271% 2% 1	1, 66 9 , 87, % 1, 1D	Dy 9 9 9 9	4A, 613/% 117, % 4, 1	D44 4Dly% 1474% D; 5	, 27,% 2% ,	1, 8y 9 , 870% 1, 41	A2D 9 9 9	6D46 9 9 6855 y578%
With % P NYouMh % With Lights Med T utnor ar Ins % Lights Med T utnor ar Ins	y1A 6270% 1y7 % y12 yy70%	1A, 8 4y7, % , Dly% 1A25	, 271% 2% , 122%	,,61 9 6DN% ,,,2 yy71%	2 ,8 9 9 9 9 9	58D 8y7D% 157, % 562	A27 % Dly% ADB 122%	1 271% 2% 1 122%	1, 66 9 , 87, % 1, 1D	Dy 9 9 9 9 9	4A, 617/% 117, % 4, 1 yDl/%	DA4 4Dly% 1474% D, 5 yy/2%	, 27,% 2% , 122%	1, 8y 9 , 87D% 1, 41 y578%	A2D 9 9 9 9 9	6D46 9 6855 y578%
VictN % P NNaMh % VictM Lights Med T utuer ar Ins % Lights Med T utuer ar Ins c nMis	y1A 6270% 1y7,% y12 yy70%	1A, 8 4y7, % , Dly% 1A25 y578%	, 271% 2% , 122% 2	,,61 9 6DN% ,,,2 yy7l% A	2 ,8 9 9 9 9 9 9	58D 8y7D% 157, % 562 y87/%	A27, % Dly% AD8 122% 2	1 271% 2% 1 122% 2	1, 66 9 , 87, % 1, 1D yD5%	Dy 9 9 9 9 9	4A, 613/% 117, % 4, 1 yDl/% 2	DM 4Dly% 1474% D, 5 yy72% 1	, 27 % 2% , 122% 2	1, 8y 9 , 870% 1, 41 y578%	A2D 9 9 9 9 9	6D46
VictM % P NVinMh % VictM % VictM Lights Med T uttur ar Ins % Lights Med T uttur ar Ins c nMil c nMil % c nMil	y1A 6270% 1y7,% y12 yy70%	1A, 8 4y7, % , D8/% 1A25 y578% ,	, 271% 2% , 122% 2 2%	,,61 9 6DN% ,,,2 yy71% A 271%	2 ,8 9 9 9 9 9 9	58D 8y7D% 157, % 562 y87y% ,	A27, % Dly% AD8 122% 2 2%	1 271% 2% 1 122% 2 2%	1, 66 9 , 87, % 1, 1D yD5% ,	Dy 9 9 9 9 9 9 9	4A, 613/% 117,% 4,1 yDl/% 2	DA4 4D8/% 1474% D, 5 yy/2% 1 271%	, 27, % 2% , 122% 2 2%	1, 8y 9 , 870% 1, 41 y578% 1 271%	A2D 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6D46 9 6855 y578% 8 271%
Virth % P NNahdh % P NNahdh Lights Md T utucr ar Ins % Lights Md T utucr ar Ins c nMi % Lights Md T ottor ar Ins y trans us	y1A 6270% 1y7 % y12 yy70% 1 271%	1A, 8 4y7, % , Dly% 1A25 y578% , 27, % 18	, 271% 2% , 122% 2 2% 2	,,61 9 6DR% ,,,2 yy71% A 271%	2 ,8 9 9 9 9 9 9 9 9	58D 8y7D% 157, % 562 y83/% , 27, %	A27 % Dly% AD8 122% 2 2% 2	1 271% 2% 1 122% 2 2%	1, 66 9 , 87, % 1, 1D yD5% , 27, % , 4	9 9 9 9 9 9	4A, 617/96 117/96 4, 1 yDl/96 2 296 11	D44 4Dly% 1474% D, 5 yy72% 1 271% 8	, 27, % 2% , 122% 2 2% 2	1, 8y 9 , 870% 1, 41 y578% 1 271%	A2D 9 9 9 9 9 9 9 9	6D46 9 6855 y578% 8 271%
Veinh % P Nhubdh % Veinh % Veinh Lights Md T tuttor ar Ins C nhhh triarles us Buh Virarles us Buh % virarles us Buh	y1A 627D% 1y7 % y12 yy7D% 1 271%	1A, 8 4y7 % , DB/% 1A25 y578% , 27 % 18 17 %	, 271% 2% , 122% 2 2% 2 2%	,,61 9 6DR% ,,,2 yy7l% A 27l% 15 275%	9 9 9 9 9 9 9	58D 8y7D% 157, % 562 y87y% , 27, % , 4 , 7y%	A27, % Dly% AD8 122% 2 2% 2 2% 2 2 3 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 271% 2% 1 122% 2 2% 2 2%	1, 66 9 , 87, % 1, 1D yD5% , 27, % , 4 , 72%	9 9 9 9 9	4A, 617/% 117/% 4,1 yDly% 2 2% 11 ,71%	DN4 4Dly% 1474% D, 5 yy/2% 1 271% 8 275%	, 27, % 2% , 122% 2 2% 2 2%	1, 8y 9 , 870% 1, 41 y578% 1 271% 1D	9 9 9 9 9 9	6D46 9 6855 957896 8 27196 82
Weith % P Nixiadin % veith Lights Med T utmorar ins % Lights Med T utmorar ins % Lights Med T utmorar ins c nMis % c nMis virar ins ue BuM % virar ins ue BuM - ndisstable	y1A 6270% 1y7 % y12 yy70% 1 271% ,	1A, 8 4y7, % , DB/% 1A25 y5/8% , 27, % 18 17, %	, 271% 2% , 122% 2 2% 2 2% 9	,,61 9 6DN% ,,,2 yy7% A 270% 15 275%	9 9 9 9 9 9 9	58D 8y7D% 157, % 562 y87y% , 27, % , 4 , 7y%	A27 % Dly% AD8 122% 2 2% 2 2% 9	1 271% 2% 1 122% 2 2% 2 2% 2 9	1, 66 9 , 87, % 1, 1D yD5% , 27, % , 4 , 72%	9 9 9 9 9 9	4A, 613/% 117, % 4, 1 yDl/% 2 2% 11 , 71%	DA4 4Dl/% 1474% D,5 yyZ% 1 271% 8 275%	, 27, % 2% , 122% 2 2% 2 2% 9	1, 8y 9 ,870% 1, 41 y578% 1 271% 1D 17/96	9 9 9 9 9 9 9	6D46 9 6855 y578% 8 271%

^{*-} ndnstoiMs Med virarlns ue CoussRMM/ZL: Lnbt3B: Bight3W WhoF3U: U9WFoe

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 949150, Location: 4. 640154, -5. 6780358

6 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
T ue T M y3, 2, ,
0T OPM IT M 29, 2, , ng nOT h (g n OT 6h: AF-M90PM 1 uP) 9C3MSh I dros MHT uu-vayEs31 FMu3OPHSecMeS3BdavEs ue RuMBBdavEs ue
C-ussvM 6
) 9T uARk Fes
th gyDrt 423i uvMdhegDhTLPt 4DBlHnT(82548

Otta	wa
0-uAdHFH. agCda ub t 22 CuesdF9N	: ccMvM
f FOFM:3: f 3N, p	

1 of 6

Fo	f u-a					GuPar					J Fsc					
I d-Fvahe	GuPar. uP	eH				fu-α·uPi	H				EMc uPel	I				
Sdk F	R	S	W) 00	0FHJ	S	i	W) 00	0FHL	R	i	W) 00	0 FHU	mec
, 2, , h2nh2y ng n0°	Г 5у	t 2y	2	t DB	,	(n	, n	2	y2	(t n	t,	2	,4	t 8	, (n
ng520°	Г Д	45	2	ttn	t	Ŋ	,,	2	(D	E	8	t n	2	,5	,,	, 2,
ngDn0′	Γ ((4D	2	t D2	n	ny	5t	2	y2	2	t 5	t 5	2	,(4	, n(
(g20°	Г у8	(2	2	t n8	2	Dn	5,	2	44	n	t(t 8	2	5D	, t	, ()
Suc	Mo , Dn	5t (2	n(t	8	, t t	tt2	2	5, t	t n	n,	n8	2	tt2	(8	yy,
*) 00·uM	r D574*	n(75*	2*	h	h	(n74*	5D/5*	2*	h	h	D475*	n, 74*	2*	h	h	1
* Suc	M9 , D74*	5t 7y*	2*	n(7(*	h	, t 75*	* 17.11	2*	5, 7D*	ŀ	n7,*	n78*	2*	tt7:*	h	1
01	% 27(, n	274t 5	h	27884	h	27444	278ny	h	278(4	ŀ	278t 4	278, D	h	278, 2	h	23y, (
i dor es M#HT ueu-vav9	s , Dn	52n	2	nn2	h	, 2t	tt2	2	St t	h	Dy	n(2	t 2n	h	y((
* idores MHT uou-vav9	s t 22*	y(7h*	2*	y872*	h	yn75*	t 22*	2*	y(7y*	h	yDr,*	y(7(*	2*	yn7h*	h	y47D*
1 FM	la 2	2	2	2	h	t	2	2	t	h	2	2	2	2	h	t
* 1 FM	a 2*	2*	2*	2*	h	27h*	2*	2*	275*	h	2*	2*	2*	2*	h	27.*
Bd/av9Fs ue Rul	H 2	t t	2	tt	h	y	2	2	y	h	5	,	2	n	h	, г
* Bd/av9Fs ue Ru)	H 2*	57h*	2*	, 72*	h	D/5*	2*	2*	, 78*	ŀ	n78*	57D*	2*	Dh*	h	, 7h*
0FHsedM	is h	h	h	h	8	h	h	h	h	t 5	h	h	h	h	n8	
* 0FHscdM	is h	h	h	h	t 22*	h	h	h	h	8(74*	h	h	h	h	8n75*	1
Bdvav9Fs ue C-usswN	l h	h	h	h	2	h	h	h	h		h	h	h	h	t 2	
* Bd/av9Fs ue C-usswN	l h	h	h	h	2*	h	h	h	h	t575*	h	h	h	h	t D21*	

UpFHFsc-dMs MtHBdvav9Fs ue C-usswM1 7i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

2 of 6 3 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

[W] West Total: 594 0:118 Out: 244

47 43 2n

Mon May 9, 2022 22 5-65PM) O65 PMy) r l eliumPeak AoCH su Luilei (gli trid ain Bhoodhg/Rei, Aeal y, PeBei dhani, why Rei on moaß, why Rei on Libii I alky su Mol eDenci :4-919630, go Radon-15.10631,)35.070837 [N] North Total: 728 Out: 396 a: 49I 354

 $\frac{8}{2}$ $\frac{1}{8}$

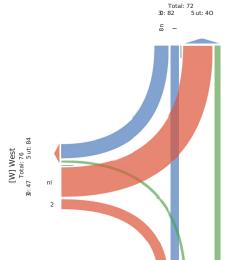
Out: 297 01: 231 Total: 976 [S] South

[N] North

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

55668 (4 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TIMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30F M g3 F Mt Filk [h8666 A 9056 P) MCCki yi leG2d eaoy2l e)e6k&PG2r Ayi le6 CP c Ca) 2r Ayi le6 CP (\$CF3HaH1 FilhMCbev ePI6 Brwknk31, 2: Cl a IACPwnDtn; 31 m2g DF8, 518

e-	OCs19					J Cu19					E e61					
RAei MCP	J Cu 19. Cu F	9				OG:19. G:1P)				Sa6L CuP)					
ΓAν e	С	T	W	FNN	l e) U	T	- 1	W	FNN	le)U	С	- 1	W	FNN	le)U	BP1
0,00g Dg3, 30w, FM	8	5	,	33	,	5	,	,	5	,	m	31	,	03	,	51
30 kBDF M	m	5	,	I	,	3	3	,	0	0	m	k	,	35	,	0
TClail	30	7	,	38	,	m	3	,	D	0	8	07	,	5m	,	Е
* FNNcai9	774*	5545*	,*	g	8	8, 4 *	0,4*	,*	g	g	054D*	174D*	,*	g	g	
* TClal	0348*	3, 4D ^a	,*	5347*	8	14*	348*	,*	848*	g	3m4 *	mD47*	,*	Dk47*	g	
149	, 45I D	, 40, ,	g	, 4m, k	8	, 4555	, 40D,	g	, 4n8I	g	, 40,	, 4580	g	, 4m, D	g	, 4m
: A916aP) MCICsi yi he6	30	7	,	38	8	m	3	,	D	g	8	07	,	5m	g	Ι
* : A916 aP) MCICsi yi he6	3, , *	3, , *	,*	3,,*	8	3,,*	3,,*	,*	3,,*	g	3, , *	3, , *	,*	3, , *	g	3, , '
d eaoy	,	,	,	,	8	,	,	,	,	g	,	,	,	,	g	
* d eaoy	,*	,*	,*	,*	8	,*	,*	,*	,*	g	,*	, *	,*	,*	g	, *
r Alyi he6 CP c Ca)	,	,	,	,	8	,	,	,	,	g	,	,	,	,	g	
* r Alyi he6 CP c Ca)	,*	,*	,*	,*	8	,*	,*	,*	,*	g	,*	,*	,*	,*	g	,*
l e) e6kAP6	g	g	g	g	,	g	g	g	g	0	g	g	g	g	,	
* 1 e) e6isArP6	g	g	g	g	8	g	g	g	g	3,,*	g	g	g	g	g	
r Alyi he6 CP (sC66HaliL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* r Alyi he6 CP (sC66Hahl.	g	g	g	g	8	g	g	g	g	,*	g	g	g	g	g	


Ul e) e6isAtP6 aP) r Ayi læ6 CP (sC66HahL4: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC

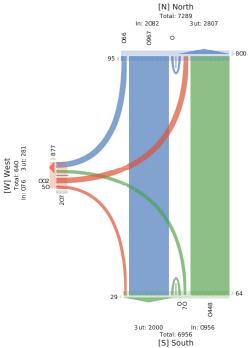
5566814 - COVID - QUEEN ELIZABETH DRWY @ PRI... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r,))v a-k:
A- Mt reBegi)
Rwni D 34, 21 t dai@gnOF3Q 34D28475 6, 146

5 ut: 87 30: 1 Total: 89 [S] South

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
T ue T M y3, 2, ,
OFIL Lnegth (6:A2 - T 91, :A2 P T)
PIL CIMENS (Lights Md T utuorarlns3c nMth3- ndnstdtMs3v irarlns ue BuM3v irarlns ue
CcussR Ma)
PIL T ufthk nets
nh : yDLA643Lur Mdue: 6D™yD8394D856148

5 of 6


*	Ough					LuFth					E nst				_	_
ing ionrtiue	JuFth, uF					Jurtn Ouath, uF					E nst SMt. uFee					1
	_															
Wk n	В	W	U	PNN	- nd*	W		U	PNN	- nd*	В	L	U	PNN	- nd*	
, 2, , 92D92y 6:22- T	D8	AAy	2	AyD	AD	AD4	11	2	A65	1A	6	68	2	122	y,	51/
D22- T	4A	6yy	2	D4,	DD	84D	15	2	8yA	, D	4	42	2	44	114	1A6,
8:22- T	65	IP1	2	D6y	66	64y	12	1	6y2	, A	11	65	2	Dy	y8	12y5
4:22- T	, D	6A2	1	6D8	1,	625	5	2	618	1,	A	14	2	, 2	88	5y,
5:22- T	15	AAA	2	ADI	18	A44	8	1	A56	12	A	12	2	1A	A5	465
y:22- T	, D	66,	1	685	D	A12	4	2	A14	1,	у		2	A1	Dy	518
12:22- T	4	, 8,	2	, 8y	2	14A	,	2	14D	,	A	D	2	5	1D	6D)
11:22- T		1, 1	2	1, A	2	5A	2	2	5A	2		6	2	8	4	, 1,
, 2, , 92D912 1, :22P T	1	, у	2	A2	2	1y	2	2	1y	2	2	1	2	1	,	132
With	, DD	, yD8		A 1A	, 16	, 551	8,		, y6D	y4	6,	, , A	2	, 8D	6y,	86, A
% P NNuMi	47/%	v. 72%	271%	9	9	v475%	. 71%	271%	9	9	1D/5%	567 %	2%	9	9	9
% Wath	672%	6872%	2%	D272%	9	667/%	172%	2%	6DR/%	9	274%	ATD%	2%	671%	9	9
Lights Med T utuorarlns	1y6	, 524	1	A22,	9	, 4, D	82		, 454	9	6,	, 24	2	, 6y	9	82A5
% Lights Med T utuorar Ins	4871%	yDf2%	D272%	yA76%	9	y678%	y875%	122%	y678%	9	122%	y, 75%	2%	y672%	9	y672%
c nMB	2	84	1	85	9	64	1	2	65	9	2	1	2	1	9	114
% c nMB	2%	, 78%	D272%	, 71%	9	178%	178%	2%	178%	9	2%	276%	2%	276%	9	175%
virarlıs ue BuM	81	5.	2	16A	9	12v	1	2	112	9	2	1D	2	1D	9	, 85
% virarlıs ue BuM	, A7/%	, 75%	2%	670%	9	A5%	178%	2%	A74%	9	2%	874%	2%	DF4%	9	67 %
- ndnstaiMs	9	9	9	9	1y8	9	9	9	9	5y	9	9	9	9	6AA	
% - ndnstaiMs	9	9	9	9	y178%	9	9	9	9	y175%	9	9	9	9	5572%	
virarlns ue CoussRMi	/ 9	9	9	9	15	9	9	9	9	5	9	9	9	9	Dy	
% v irarlns ue CoussRMs	/ 9	9	9	9	576%	9	9	9	9	57,%	9	9	9	9	1, 22%	
- ndnstriMs Mrd v irar lns	_	DAKE	y y 1	on n	1.01	TAR TO	T TION	T.								

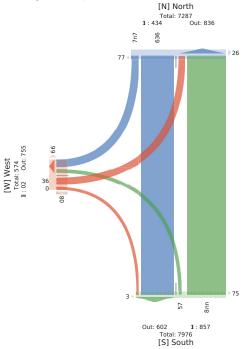
6 of 6 1 of 6

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

Mon May 9, 2022 — 112:30 AM)
Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95134., Location: 456957, -. 567841. 7

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

5360614-CUVID-DAINS ST @ ATLINER AVE - MAY...- I MC
TUE T M y3, 2,
OT OPM IT M 2y, 2, 9, ng 20T h (g 2 0T 6h: AF-M907M) 1 uP99C9MSFb i b fore S MHT uur-vayFs31 FMu30FHSe-dMs3BdrayFs ue RuMBBdrayFs ue
C-ussvM 6
9T uAFk Fec
rh gy (D n43i uvMdriegn(7 y (83h4 (28nD48)



Fo	f u-α					GuPar					J Fsc					
d-Fvothe	GuPar. uPe	H				fu-αr.uPe	H				EMsc uPel	H				
idk F	R	S	W) 00	0FHU	S	i	W) 00	0FHU	R	i	W) 00	0 FHU	mec
, 2, , h2(h2y ng 20T	, 4	D4,	2	Dyy	Dn	D58	(2	DyD	4	D	, (2	, 8	nt	nDi
ngn(0T	, у	D84	2	Dy8	, D	D4D	8	2	D44	8	t	, D	2	, n	ny	t ya
(g220T	DB	D: 4	2	D(t	y	D85	D	2	DBy	D	2	Dy	2	Dy	, у	t nl
T0)(g)	, у	I⊉y	2	D:5	D	D4(у	2	D5n	8	(, 2	2	,(t D	t na
Sud 4	D2D	(5(2	858	(8	422	, D	2	4, D	, 2	у	5(2	yn	D(,	D(21
*) COuMr	Dn74*	5(7/*	2*	h	h	y47D*	, 7y*	2*	h	h	y78*	y27h*	2*	h	h	
* SudM	874*	t y 22*	2*	n(74*	h	n878*	Dh*	2*	n572*	h	278*	(74*	2*	87.*	h	
01 %	2744(275(t	h	2Ђ(у	h	27y82	27(5t	h	27/8t	h	27h(2	23/n2	h	27552	h	23/, 2
idoros MeHT uou-vav9Fs	8,	((4	2	8Dy	h	88(, D	2	858	h	y	4y	2	55	h	Dt yt
* idores MeHT uou-vav9Fs	8Dh*	y(7*	2*	y27,*	h	y(22*	D22*	2*	y(7D*	h	D22*	y, 7y*	2*	yt 78*	h	у, Ъ*
1 FMa	2	D	2	D	h	4	2	2	4	h	2	2	2	2	h	, 2
* 1 FMa	2*	, 7,*	2*	Dly*	h	DØ*	2*	2*	Df2*	h	2*	2*	2*	2*	h	DX *
Bd/av9Fs ue RuMH	t y	D(2	(n	h	, 5	2	2	, 5	h	2	8	2	8	h	55
* Bdvav9Fs ue RuMH	t 578*	, 78*	2*	47y*	h	n72*	2*	2*	t 7y*	h	2*	47D*	2*	87h*	h	(7y*
0FHFsedMs	h	h	h	h	n5	h	h	h	h	Dy	h	h	h	h	DDS	
* 0FHFsc-dMs	h	h	h	h	5(74*	h	h	h	h	y(72*	h	h	h	h	4478*	
Bd/av9Fs ue C-usswMI	h	h	h	h	5	h	h	h	h	D	h	h	h	h	t n	
* Bdvav9Fs ue C-usswMJ	h	h	h	h	Dn7 *	h	h	h	h	(72*	h	h	h	h	,,7h*	

UpFHFsedMs MtHBdvav9Fs ue C-usswMl 7i gi Fb3RgRdbrc3SgSr-P3WgWhSP-e

2 of 6 3 of 6

5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-60PM) 060 PMv) r l elidu Peak AoCH
su Luiliei (git dd anB MoodByRei, Aeal y, PeBeidhani, wifsyRei on moaB, wifsyRei on
Libii I alw'
su Mol eDend
:4 - 9Cl653, goRadon-5C69CF,)3C/785137

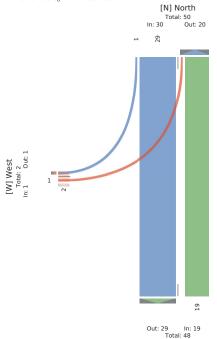
5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC
Tue May 3, 20, 00
F M | eat.n/day 3, 0, 00 30F M g 3 F Mt
Flik | la65667 A 495 aP) MCCki yi | he62d eaoy2l e) e6k&P62r Ayi he6 CP c Ca) 2r Ayi he6 CP
(sCGF4laftir
FlikMGev eP16
Rwkm8l DV2: Cl a JAZPWDnil kn82g4m85D848

Ottav	
lsCoAte).yw(AtyCbf	
3,, (CP6lelfa1AC	
OeNeaP2f O2p 0K m0	k2(F

: e-	OG:19					J Cu19					E e61					
RAei MOP	J Cu 19. Cu I	2)				OCs19. CuP)					Sa61 C	lıP)				
TAv e	с	T	W	FNN	le)U	T		W	FNN	le)U	С	- 1	W	FNN	le)U	BP1
0, 00g, mg8, 30w, FM	3	38	,	34	,	k	,	,	k	,	,	,	,	,	,	0
30 vikniF M	,	31	,	31	,	3,	,	,	3,	,	,	3	,	3	0	0
TClah	3	0k	,	I,	,	3k	,	,	3k	,	,	3	,	3	0	n
* FNNcai9	171*	k874*	,*	g	8	3,,*	,*	,*	g	8	,*	3, , *	,*	g	g	
* TClah	07, *	n57,*	,*	8, 7, *	g	157,*	,*	,*	I 57, *	g	,*	07 *	,*	07 *	g	
1 d %	, 70m,	, TH 5	g	, 7D08	8	, 7D4m	g	g	, 7D4m	8	g	, 70m,	g	, 70m,	g	, 7D4
: A916aP) MCKsi yi he6		08	,	04	g	34	,	,	34	g	,	3	,	3	g	D
* : A916aP) MCICsi yi he6	3,,*	5k74*	,*	k, 7, *	g	5k7h#	,*	,*	5k7h#	g	,*	3, , *	,*	3,,*	g	k, 7, *
d eaoy	,	0	,	0	g	0	,	,	0	g	,	,	,	,	g	
* d eaoy	,*	87k*	,*	874*	g	3, 7h#	,*	,*	3, 7h#	g	,*	,*	,*	,*	g	57,*
r Ayi le6 CP c Ca)	,	3	,	3	g	,	,	,	,	g	,	,	,	,	g	
* r Ayi le6 CP c Ca)	,*	17D*	,*	171*	g	,*	,*	,*	,*	g	,*	,*	,*	,*	g	07.*
1 e) e6isArP6	g	g	g	g	,	g	g	g	g	,	g	g	g	g	0	
* 1 e) e6kArP6	g	g	g	g	g	g	g	g	g	8	g	g	g	g	3,,*	
r Ayi le6 CP (sC66HaliL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* r Alyi he6 CP (sC66HahL	g	g	g	g	8	g	g	g	g	8	g	g	g	g	, *	

Ul e) e6isAaP6 aP) r Alyi he6 CP (sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6 5 of 6


5566814 - COVID - BANK ST @ AYLMER AVE - MAY... - TMC

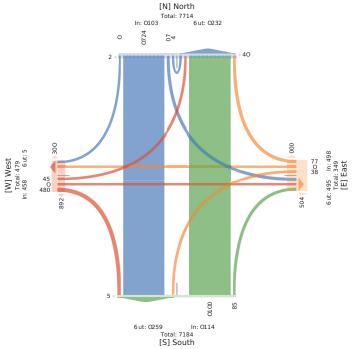
5566614 - CUVID - DANIN 31 G ATTERNATION - THE MAY 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A - 9 a))e (1 GL1) agh Mt it nlyde)20 ear y2Pehe)irtâg)2c dlyde) t g Ht ah2c dlyde) t g 9 rt) ly a*:
A - Mt r eB egi)

Rwrl DB47521 t daid gn7D41 D6265D617356

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

S566814 - C.OVID - BANK'S I @ ECHO DR - MAY U9,... - IMC
Tue T M y3, 2, 7 st, :A2 P T)
PII CIMSm (Lights Md T unorarlns3c nMia3-ndnstdMs3v irarlns ue BuM3v irarlns ue
CussRMw)
PII T uHik nets
ni : yDLA6y3LurMue: 6D4yD78y39D676AA6


Lng	Ouath						J Mt						EuPth						S nst						
I ionrtiue	EuFth.	uFed					S nst. u	Fed					Ouath.	ıFed					J Mt. uF	ed				- 1	
Wik n	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	net
, 2, , 92D92y 6:22- T	2	A7,	6	2	A75	1	7	2	A	2	11	8y	5	Ay8	2	2	62A	2	18	2	2	2	18	DA	
D22- T	2	8A6	1D	2	86y	2	A,	A	6	2	Ay	152	11	85,	2	2	88A	2	A5	1	6	2	61	1A,	152
5:22- T	1	DAy	1A	2	DDA	7	7	2	,	2	12	, A5	D	856	2	2	85y	1	6,	2	1	2	6A	1, 7	1.A8
8:22- T	2	DAI	12	2	D61	A	1,	2	A	2	1D		5	DAy	2	2	D6D	1	, 2	2	8	2	,8	127	11,
7:22- T	2	66y	D	1	6DD	D	A	2	1	2	6	у7	D	617	2	2	6, A	1	7	-,	1	2	11	5y	7 y
y:22- T	1	AD,	D	2	ADV	A	5	2	D	2	11	5D	5	A76	2	2	Ay2	2	y	2	1	2	12	DB	85
12:22- T	1	66A	6	2	667	,	7	2	6	2	1,	, y8	5	A6D	2	2	ADI	A	7	2	1	2	у	yА	7,
11:22- T	2	, y6	1	2	, yĐ	2	2	2	2	2	2	AD	2	18,	2	2	18,	2	D	2	1	2	5	1A	68
, 2, , 92D912 1, :22PT	2	58	2	2	58	2	2	2	,	2	,	16	1	D6	2	2	ID	2	2	2	2	2	2	y	1,
WatN	A	A6y1	D6	1	A7D;	-,,	88	А	, 6	2	126	1, 25	65	A7AD	2	2	A771	5	16D	A	15	2	156	55,	722
% P NNuMh	24%	y746%	140%	2%	9	9	8642%	, 4/%	, A41% :	2%	9	9	14 %	y747%:	2% 2	:%	9	9	7746%	147%	y47% :	2%	9	9	
% With	2%	5846%	248%	2%	6741%	9	142%	2%	244%	2%	149%	9	245%	584/% :	2% 2	% 6	5740%	9	147%	2%	24 % 2	2%	, 42%	9	
Lights Med T utuorarlns	2	A6y7	6,	1	AD61	9	6y	2	, 6	2	8A	9	, A	A51A	2	2	A6A6	9	1AD	2	8	2	16,	9	8A ₉
% Lights Med																									
T utucrarlns			8A8%			9	5A5%		122%			9	D242%						yA4.%		AF% :			9	y, 459
c nMb	2	86	1	2	8D	9	1	2	2		1	9	2		2	_	DB	9	2	2		2	2	9	1.6
% c nMb	2%	, 42%	147%	2%	14/%	9	144%	2%	2%	2%	142%	9	2%	140%	2% 2	:%	140%	9	2%	2%	2% 2	2%	2%	9	1489
v irarlıs ue Bu M	A		16	2		9	, 8	A	2	2	A2	9	, A	15D	2	2	177	9	12	A	y	2	,,	9	68
% virarlns ue Bu M	122%	D\$7%	, 645%	2%	54%	9	AD4%	122%	2%	2%,	747%	9	D242%	644%	2% 2	96	647%	9	54/% 1	22% I	Б4466 2	2% 1	A6%	9	D4/
- ndnstaiMs	9	9	9	9	9	, 2	9	9	9	9	9	11y,	9	9	9	9	9	5	9	9	9	9	9	56y	
	9	9	9	9	91	24/%	9	9	9	9	9	v747%	9	9	9	9	91	122%	9	9	9	9	91	v742%	
% - ndnstaiMs	9	9																							
% - ndnstaMes virarlns ue CoussRMw	9		-	9		,	9	9	9	9	9	16	9	9	9	9	9	2	9	9	9	9	9	1A	

^{*-}ndnstolMs Md v irarlns ue CoussRMw4L: Lnb3B: Bight3W WhoF3U: U9wFoe

6 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 951349, Location: 45.395679, -75.864334

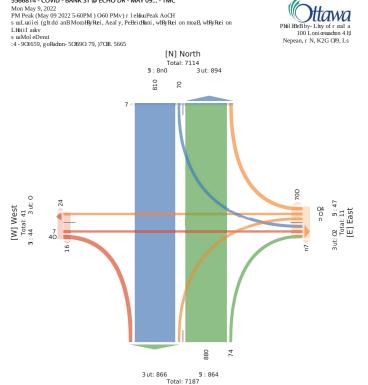
[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
T ue T M y3, 2, 2, 1, ng 20T h (g 2 0T 6h: AF-M90FM 1 uP9C-MSFB II for MHT uu-vav9331 FMa30HF8-cMs3Bdrav9Fs ue RuMBBdrav9Fs ue
C-usswM 6
9T uAFk Fes
nh gy(D ny3i uvMduegn(4 y(78y3lB(457nt t n

Ottawa
0-uAdHFH. agCda ub: cdMvM
D22 CuesdP99Mdue I -3
f FOFMe3: f 3N, p (Ky3C)

1 of 6


Fo	f u-c	r					GMc						JuPa						E Fsc					
d-Fvalue	JuPo	r. uP	eН				E Fsc i	iPe H					f u-α.	uPeH					GMc u	PeH				
Sdk F	R	5	i i	V) α	0FHJ	R	S	i	W) @	0FHL	R	5	i	W) 000	THU	R	S	i	W)	OFH	nec
, 2, , l2(l2y ng 20T	2	D8r	1 1	1 2	D88	D	(2	I	2	5	nn	E	Dy8	2	2	Dy7	2	y	2	2	2	у ,,	ty
ngn(0T	2	, 27	7	D 2	, 2y	- 2	t	2	,	2	(1((, 22	2	2	, 2(2	7	2	2	2	7 t I	D n,
(g20T	2	DV:	5 1	n 2	Dy2	2	172	,	I	2	D	tΕ	I	DyI) 2	2	Dyn	2	5	2	2	2	5 ,)	n2
(gD(0T	2	DΣ,		, 2	D7n	. 2	(2	,	2	8	(t	n	D7,	2	2	DF5	2	у	D	2	2 1	D2 D3	t 7
SudM	2	8(2	2 D	2 2	852	D	, t	,	5	2	t D	ĽБt	D	882	2	2	87t	2	t,	D	2	2 t	t IEI	D52
*) CO-uMr	2* y	748*	Dt *	2*	1	h h	8n4 *	54(*	Dy4r*	2*	h	1	D8*	y74*	2*	2*	h	h	y842*	t 42*	2* 2	2*	h	h
* SudM	2* ı	1548*	245*	2*	n84 *	h	D4ı*	24D*	24ı*	2*	Dly*	ŀ	247*	n84y*	2*	2* :	n748*	h	, 42*	24D*	2* 2	2* ,40	,	h
01%	h	24ynt	24ht '	7 1	24/(,	h	247D	ŀ	248(2	h	248y,	ŀ	24hD8	24/85	h	h	24y58	h	2475D	h	h	h 2475	D I	h 24y5
i dor cs MeHT ucu-vav9Fs	2	58,		B 2	58y	h	D	2	5	2	Dy	ŀ	(8DE	2	2	8,,	h	t D	2	2	2 t	D	h Dn(
*idoros MeH																								
T uai-vav9s	2* 7	7y45*	8242*	2*	7y4 *	h	(54*	2*	D22*	2* 5	D4 *	ŀ	t 74(*	yt 4D*	2*	2*	y, 4 *	h	y54y*	2*	2* 2	2* yt4y		h y24
1 FMa	2	П	7	2 2	DF	h	2	2	2	2	2	ŀ	2	D	2	2	D	h	2	2	2	2	2	h t
* 1 FMa	2*	, 4n*	2*	2*	, 4n*	h	2*	2*	2*	2*	2*	ŀ	2*	D8*	2*	2*	D8*	h	2*	2*	2* 2	2* 2		h Day
Bdvav9Fs ue RuMH	2	52	2 1	1 2	5t	h	172	,	2	2	Ŋ	ŀ	7	n2	2	2	n7	h	D	D	2	2	,	h D
* Bd/av9Fs ue RuMH	2*	742*	t 242*	2*	74 *	h	nt 4 *	D22*	2*	2* t	748*	ŀ	5D(*	(4*	2*	2*	54D*	h	14D*	D22*	2* 2	2* 54D	,	h 847
0FHsc-dMs	h		h	h l	1 1	n D	h	· I	1 1	h h	h	IБt	h		h h	h	h	2	h	h	h	h	h y	7
* 0FHFsodMs	h		h	h l	1 1	IE2*	h	· I	1 1	h h	h	D22*	h		h h	h	h	h	h	h	h	h	hy842*	
Bdvav9Fs ue C-usswM	h		h	h l	1 1	1 2	h	· I	1 1	n h	h	2	h		h h	h	h	2	h	h	h	h	h t	
* Bdvav9Fs ue C-usswMI	h		h	h l	1]	2*	h	1	. 1	n h	h	2*	- h		h h	h	h	h	h	h	h	h	h t42*	

UOFHFse-dMs MtHBd/av9Fs ue C-usswMl 4i gi Fb3RgRdbrdSgSr-P3WgWl6P-e

3 of 6 2 of 6

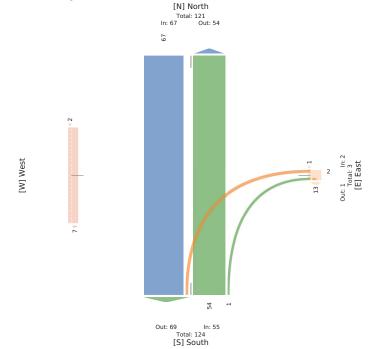
5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

[S] South

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

Sobola (4- CUVID - BANK ST @ ECHU DR - MAY 09... - TMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30 F M g3 F Mt Filk [h6666 A 905 a 9) MCCki yi h62d eaoy2l e) e6k&P62r Ayi h6 CP c Ca) 2r Ayi h6 CP (\$CFHAIAL Filh MCbev eP16 B wkmBl Ik2: CI a MCPwDml kn78k2ghm67DI I D

: e-	OG	:19						Ja6	1					EGr19						S e6	61					
RAsei IACP	EG	19. O	aP)					S et	61 C	ıP)				OG:19.	CuP)					J a6	L Cui	P)				
TAr e	С		T		W	FNN	l e) U	С	T	- 1	W	FNN	le)U	С	T	:	W	FNN	e) U	С	T	- 1	W	FNN	le)U	BP1
0, 00g mg3, 30w, FM	,		07	,	,	07	,	,	,	3	,	3	3	,	Im	,	,	Im	,	,	,	,	,	,	D	5
30v∂nF M	,		Ιk	,	,	Ik	,	,	,	3	,	3	31	3	3k	,	,	0,	,	,	,	,	,	,	m	
TClah	,		58	,	,	58	,	,	,	0	,	0	3D	3	mD	,	,	nm	٠,	,	,	٠,	,	٠,	k	30
* FNNcai9	, *	3,,	* ,	. *	*	g	g	,*	,*	3,,*	,*	g	8	347*	k740*	,*,	*	g	g	,*	,*	,*	,*	g	g	
* TClah	, *	nD4	* ,	. *	*	mD4 *	g	,*	,*	345*	,*	345*	g	, 47*	DI 4n#	,*,	*	DDD*	g	,*	,*	,*	,*	,*	g	
1 d %	8	, 40	88	g	g	, 4088	g	g	g	, 4n,	g	,4m,	g	, 40m	, 475	g	g	, 4 kI	g	g	g	g	g	g	g	, 40
: A916aP) MCICsi yi le6	,		50	,	,	50	g	,	,	0	,	0	8	3	n0	,	,	mi	g	,	,	,	,	,	g	3
* : A916aP) MCKsi yi he6	, *	k04	ŕ,	*	*	k04n#	g	,*	, *	3,,*	,*	3,,*	g	3,,*	k54*	۰,	*	k54D*	g	,*	,*	,*	,*	g	g	kD4
d eaoy	,		I	,	,	I	g	,	,	,	,	,	8	,	0	,	,	0	g	,	,	,	,	,	g	
* d eaoy	, *	D4	ŕ,	*	*	Dhr	g	,*	, *	, *	,*	,*	g	,*	I48*	۰,	*	I45*	g	,*	,*	,*	,*	g	g	D4
r Ayi he6 CP c Ca)	,		0	,	,	0	g	,	,	,	,	,	g	,	,	,	,	,	g	,	,	,	,	,	g	
* r Alyi he6 CP c Ca)	, *	14	۰,	*	*	14*	g	,*	, *	, *	,*	,*	g	,*	, *	۰,	*	,*	g	,*	,*	,*	,*	g	g	34
l e) e61sAaP6	8	5	g	g	g	g	,	g	8	. 8	. 8	g	3D	g	g	g	g	g	,	8		g	g	g	k	
* l e) e61s.4a.P6	8		g	g	g	g	g	g	g	. 8	g	g	3, ,*	g	g	g	g	g	g	g	g	g	g	g	3,,*	
r Alyi he6 CP (sC66HaliL	8	5	g	g	g	g	,	g	g	. 8	g	g	,	g	g	g	g	g	,	g	g	g	g	g	,	
* r Alyi he6 CP (sC66HaliL	8		g	g	g	g	g	g	g			g	.*	g	g	g	g	g	g	8		g	g	g	. *	


U e) e6kAP6 aP) r Avi le6 CP (sC66Halt4; w. ebl2c wc A912TwT9su2WwWeTusP

4 of 6

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC

5566814 - COVID - BANK ST @ ECHO DR - MAY 09... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A - 9-a)|e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r,))v a-k:
A - Mt reBegi)
Rwnt D847121 t dai@gnfD84 D 61 266D8. 7447

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
T ue T M y3, 2, ,
OFIL Lnegth (6:A2 - T 91, :A2 P T)
PIL CIMENS (Lights Md T utuorarlns3c nMth3- ndnstdMs3v irarlns ue BuM3v irarlns ue
Ccuss (Ms)
PIL T uffik nets
nh : yDIAD/3Lur Miue: 6DINy888, 398D54D62D

5 of 6

Lng	Ouath					JuFth					E nst					
Lionrtiue	J uFth. uF	ed				Ouath. uF	ed				SMt. uFe	d				
Wk n	В	W	U	PNN	- nd*	W	L	U	PNN	- nd*	В	L	U	P NN	- nd*	net
, 2, , 92D92y 6:22- T	, у	, 6,	2	, 81	2	A28	y,	2	Ayy	,	1, D	A	2	1, 4	61	8y
D22- T	DA	655	2	Diy	1	5A4	1Ay	2	888	,	, 52	D	2	, 5D	168	1D6
5:22- T	D6	A6,	1	Ay8	16	562	116	2	8D6	5	14y	4	2	1y8	15y	1A6
8:22- T	D8	A52	2	618	16	688	y,	2	DБу	1,	18D	8	1	14A	1AA	115
4:22- T	A2	A6,	2	A8,	A	A5,	5A	2	6, D	6	12A	6	2	128	8,	y2
y:22- T	,,	, 88	2	, yy	Г	A6D	65	2	Ay1	6	8y	6	2	4A	Dt	88
12:22- T	Dy	AD1	2	612	A6	A12	6A	2	ADA	1,	y4	,	2	122	111	45
11:22- T	, 1	, A4	2	, Dy	2	1D5	1D	2	181	A	D5	1	2	D8	16	64
, 2, , 92D912 1, :22P T	5	51	2	58	5	D6	A	1	D4	2	5	A	2	у	8	1/
WatN	AA1	, 58y	1	A211	88	A, 4y	528	1	A4y8	6D	12y1	AB	1	11, y	86D	42 <i>A</i>
% P NNouMh	1172%	4y72%	2%	9	9	4676%	1D5%	2%	9	9	y575%	A7466	271%	9	9	
% With	671%	AA7A%	2%	A87D%	9	627/%	875%	2%	647D%	9	1A5%	270%	2%	1672%	9	
Lights Med T utucrarlns	A, 1	, 646	1	, 425	9	A28y	Dy8	1	A588	9	12, D	, 8	1	12DA	9	8D
% Lights Med T utuorarlns	y872%	y, 78%	122%	yA7, %	9	yA5%	y475%	122%	y676%	9	y672%	8AZ2%	122%	yA7P06	9	yA749
c nMHs	1	8D	2	85	9	DA	A	2	D6	9	,	1	2	A	9	1.A
% c nMHa	274%	, 74%	2%	, 1D%	9	175%	27D%	2%	176%	9	27, %	, 78%	2%	27/196	9	1789
virarlıs ue Bu M	у	1, 2	2	1, y	9	1D8	8	2	156	9	56	у	2	8A	9	A5
% virarlns ue BuM	, 78%	67D%	2%	674%	9	674%	17, %	2%	67, %	9	DB/%	, 674%	2%	570%	9	6759
	9	9	9	9	88	9	9	9	9	61	9	9	9	9	8, 1	
- ndnstoiMs				0	122%	9	9	9	9	y171%	9	9	9	9	y574%	
- ndnstoiMs % - ndnstoiMs	9	9	9	9	12270											
	9	9	9	9	12270	9	9	9	9	6	9	9	9	9	, 6	

6 of 6 1 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

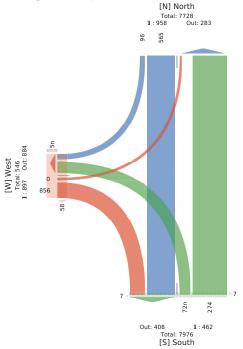
Mon May 9, 2022 — 112:30 AM)
MI Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95135., Location: 456997772, -7568. 5405

[N] North Total: 6338 In: 3011 Out: 3327 2679 331 39 [W] West Total: 2068 In: 1129 Out: 939 1091 360 ►23 22 1 607 3289 Out: 3771 In: 3897 Total: 7668

[S] South

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

5360614-CUVID-BAINS ST (@ WILLION CRES-MA...- IMC
TUE T M y3, 2, , ng 20T h (g 2 0T 6h: AF-M90RM 1 uP) 9C9MSFB i dore MHT uur-vayFs31 FMu30FHSe-dMs3BdavFs ue RuMBBdavFs ue
C-ussvM 6
) 9T uAFk Fec
rh gy (D (43) uvMdiegn (7 y888, 318 (54 (n2)



i Fo	f u-α					GuPar					J Fsc					
I d-Fvalue	GuPar. uPo	H				fu-αr.uPe	H				EMc uPeH					
Sdx F	R	S	W) 00	0FHU	S	i	W) 00	0 FHU	R	i	W) 00	OFHU	mec
, 2, , h2(h2y ng 20T	D)	DD	2	D)(2	D(,	n4	2	, 22	2	((D	2	(5	Dy	t4
ngn(0T	D8	D, y	2	Dn5	2	D((nn	2	Dyy	,	82	,	2	8,	,,	nl
(g20T	D	Dгу	2	Ι(,	2	D52	nt	2	, 2t	2	(5	2	2	(5	nD	n
(gD(0T	D5	D2t	2	IDy	2	D(2	t n	2	D4n	2	58	2	2	58	У	t
SudM	(4	n4n	2	(n,	2	5D8	DБу	2	845	,	, n4	t	2	,(D	уD	D(
*) COuMr	15.28*	4y7 *	2*	h	h	847(*	, DI(*	2*	h	h	y474*	DÇ*	2*	h	h	
* SudM	t 78*	t 278*	2*	t n7(*	h	t y7D*	D238*	2*	ny74*	h	D(78*	27,*	2*	D(3/*	h	
019	274, n	2748n	h	274y,	h	27/5(27482	h	27y55	h	2748D	27.8(h	2744t	h	27y
i doros MeHT uou-vav9Fs	(5	nn2	2	ny5	h	(55	D55	2	8t,	h	, t 2	t	2	, tt	h	Dn
* idores MeHT uou-vav9Fs	y575*	y27y*	2*	yD(*	h	yDB*	y47, *	2*	yt 7D*	h	y, 78*	D22*	2*	y, 74*	h	у, 7(
1 FMa	2	D4	2	D4	h	у	D	2	135	h	2	2	2	2	h	
* 1 FMa	2*	t 78*	2*	t 7 *	h	D#(*	275*	2*	DR*	h	2*	2*	2*	2*	h	D74
Bd/av9Fs ue RuMF	,	, 5	2	, 4	h	n,	,	2	nn	h	D4	2	2	D4	h	
* Bdvav9Fs ue RuMH	t 7h*	(7h*	2*	(7*	h	574*	Dr. *	2*	(75*	h	87.*	2*	2*	87, *	h	(78
0FHFsc-dMs	h	h	h	h	2	h	h	h	h	D	h	h	h	h	4(
* 0FHFsc-dMs	h	h	h	h	h	h	h	h	h	(272*	h	h	h	h	yt 7h*	
Bd/av9Fs ue C-usswMI	h	h	h	h	2	h	h	h	h	D	h	h	h	h	5	
* Bd/av9Fs ue C-usswMJ	h	h	h	h	h	h	h	h	h	(272*	h	h	h	h	575*	

UpFHFsedMs MtHBdvav9Fs ue C-usswMl 7i gi Fb3RgRdbrc3SgSr-P3WgWhSP-e

2 of 6

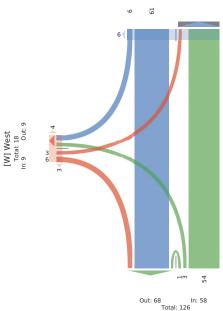
5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-60PM) 060 PMv) r l elidu Peak AoOH
su Luilei (glt dd anB MoodByRei, Aeal y, PeBeidhani, wifyRei on moaB, wifyRei on
Libii I alw'
s uMol eDend
:4 - 9Ol6OB, goRadon-5O697772,)7O830500

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC
Tue May 3, 20, 00
F M l eal.nt/day 3, 0, 00 30F M g 3 F Mt
F M l (Beffer A 495 aP) MCCki yi he@d eaoy2l e) e6b\dPQr Ayi he6 CP c Ca) 2r Ayi he6 CP
(SCRFilalli
F hiMCev ePI6
Rwkm8l ntD: CI a MCPw4n5l k88802g8n5Dn#, m

3 of 6

e-		OG:19					J Cu 19					E e61					
RAsei IACP		J Cu 19. Cu	iP)				OG:19. Gil	?)				Sa61 CuP)					
TAv e		С	T	W	FNN	le)U	T	:	W	FNN	l e) U	с	:	W	FNN	l e) U	BP1
	0, 00g ng3, 30w, FM	4	0I	,	08	,	Im	I	3	Ik	,	I	0	,	m	m	
	30v≩nF M	0	ID	,	4,	5	3k	,	,	3k	,	I	3	,	4	0	
	TClah	5	53	,	58	5	m4	I	3	mD	,	5	I	,	k	8	31
	* FNNcai9	k7,*	k37, *	, *	g	g	kI 73*	n90*	378*	g	8	5578*	1171*	,*	g	g	
	* TClah	47hf	4mhr*	, *	m, 7, *	g	4, 71*	070*	, 78*	4171*	8	47h#	0.00*	,*	578*	g	
	1 d %	, 718m	, 7I DD	g	, 74, 5	g	, 71 k,	, 70m;	, 70m,	, 718m	8	, 7h, ,	, 70m,	g	, 74I D	g	, 741
	: A916aP) MCICsi yi he6	5	пБ	,	50	g	nB	I	3	mm	8	5	3	,	8	g	30
* :	: A916aP) MCIGsi yi he6	3, , *	k37D*	, *	k07hf	g	k474*	3,,*	3,,*	k47D*	8	3,,*	11.11*	,*	887D*	g	k07m
	d eaoy	,	I	,	I	g	0	,	,	0	8	,	,	,	,	g	
	* d eaoy	, *	47k*	, *	47hf	g	I 78*	,*	,*	I 74*	8	,*	,*	,*	,*	g	178
	r Ayi he6 CP c Ca)	,	0	,	0	g	3	,	,	3	8	,	0	,	0	g	
	*rAlyihe6CPcCa)	, *	17/*	, *	17*	g	37k*	,*	,*	378*	8	,*	5578*	,*	0070*	g	I 78*
	l e) e61s4aP6	g	g	g	g	5	g	g	g	g	,	g	g	g	g	m	
	* le)e6kAP6	g	g	g	g	3, , *	g	g	g	g	8	g	g	g	g	8374*	
	r Alyi he6 CP (sC66HaliL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	0	
*	r Avi he6 CP (sC66HaliL	g	g	g	g	.*	g	g	g	g	9	g	g	g	g	0D5*	

Ul e) e6isAaP6 aP) r Alyi he6 CP (sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP


4 of 6 5 of 6

5566814 - COVID - BANK ST @ WILTON CRES - MA... - TMC

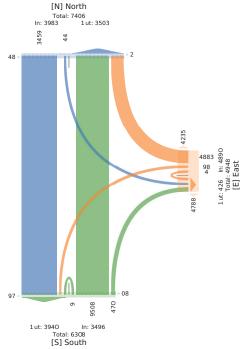
3, , 9 t g)ie--ai@g wn2 Nepeag2ON2K0G DJI 29 A

[N] North Total: 124 In: 67 Out: 57

[S] South

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

SSB0814 - CUVID - DAINS ST (@ MARCHE WAY - MAY... - TMC Tue T M y3, 2, OFIL Inegith (6:A2 - T91, -32 PT) PIL CIMENS (Lights Md T uturarlns3c nMh3-ndnstaiMs3v irarlns ue BuM3v irarlns ue CussRiMo) PIL T uthk nets nh : yDLAt13Lur Miue: 6D™yy62A39BD45418


Lng	Ough					I Mr					EuPth					
Ling Limrtine	EuPth uE					S nst. uFe					Ough, uF					
								-								
Wk n	W	L	U	P NN	- nd*	В	L	U	PNN	- nd*	В	W	U	PNN	- nd*	
, 2, , 92D92y 6:22- T	A26	A	2	A28	,	DD	1	2	D4	186	4	, A5	2	, 66	y	4
D22- T	D42	,	2	D4,	A	1,6	2	2	1, 6	6y8	1y	D21	2	D, 2	11	1,
4:22- T	686	1	2	68D	2	152	2	2	152	566	62	D21	2	D61	18	1
8:22- T	65,	D	2	658	1	, 2y	A	2	, 1,	441	Ay	616	2	6DA	1,	1
5:22- T	6A8	2	2	6AB	6	54	A	1	y2	A26	11	AA5	2	A6y	1A	
y:22- T	A15	2	2	A15	6	y4	D	2	121	1DA	16	A24	2	A, 2	6	
12:22- T	A81	2	2	AB1	2	1DD	D	2	142	515	, у	A56	1	616	8	
11:22- T	154	2	2	154	2	8,	,	2	86	44	12	, 1A	2	,,A	A	
, 2, , 92D9L2 1, :22P T	42	2	2	42	6	, 4	1	2	,8		4	ID	1	4,	1	
WitM	Aly,	11	2	A, 2A	15	122A	, 2	1	12, 6	ADAy	186	, yI2	,	A1, 4	88	8
% P NNuMh	yy78%	27/96	2%	9	9	y87/%	, 72%	271%	9	9	DF4%	y676%	271%	9	9	
% With	6A76%	271%	2%	6A74%	9	1A74%	274%	2%	1A7/%	9	, 76%	6271%	2%	6, 7D%	9	
Lights Med T utuorarlns	A2, y	4	2	A2AD	9	y5,	, 2	1	122A	9	182	, 844	1	, yAB	9	- 4
% Lights Med T utuorar Ins	y63/%	D67D%	2%	у6Ъ%	9	y83/%	122%	122%	y87/%	9	y878%	yA5%	D272%	y672%	9	уб
c nMa	8A	2	2	8A	9	6	2	2	6	9	2	DБ	2	D5	9	
% c nMHa	, 7/10%	2%	2%	, 7466	9	276%	2%	2%	276%	9	2%	, 72%	2%	17/9%	9	1
v irarlıs ue Bu M	y2	D	2	yD	9	18	2	2	18	9	6	1, 4	1	1.A1	9	
% virarlıs ue BuM	, 75%	6DID%	2%	AZ2%	9	178%	2%	2%	178%	9	, 7466	67/46%	D272%	67,%	9	F
- ndnstoiMs	9	9	9	9	14	9	9	9	9	AD, 2	9	9	9	9	88	
% - ndnstalMs	9	9	9	9	557/%	9	9	9	9	yy7D%	9	9	9	9	122%	
virarlns ue CoussRMw	9	9	9	9	,	9	9	9	9	1y	9	9	9	9	2	

*- ndnstoiMs Med virarIns ue CoussRNMv7L: Lnbt3B: Bight3W WhoF3U: U9WFoe

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 1, Location: 45699403, -756 8. 17

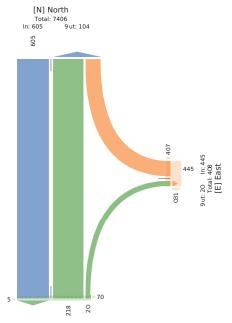
6 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC
T ue T M y3, 2, ,
0T OPM IT M 29, 2, , ng 20T h (g 2 0T 6h: AF-M90PM I uP) 9C9MShE I dros MHT uu-vayEs31 FMu30PHSecMes3Bdav4Fs ue RuMBBdvayFs ue
C-ussvM 6
) 9T uAFk Fes
th gyDtt n43i uvMdheg7Di yy72t 3h(Dh5n4(

Ottav	va
0-uAdFH. agCda ub: 0 422 CuesdF9Mdu	dMvM e I -3
f FOFMe3: f 3N, p DK	3C)

1 of 6

i Fo	f u-a					GMc					JuPar					
f d-Pvodue	J uPar . uP	eН				E Fsc uPe	H				f u-α. uPe	H				
Sdk F	S	i	W) 00	OFHL	R	i	W) 00	OFHU	R	S	W) 00	0FHJ	nec
, 2, , h2Dh2y ng 20T	472	2	2	472	2	D	2	2	D	, 4(4,	4, 2	2	4t,	,	t,
ng/D0T	444	2	2	444	2	Dy	2	2	Dy	, D4	4,	4t,	2	477	,	t 4
(@201	447	2	2	447	2	D	2	2	D	, D4	4,	4, t	2	4t D	5	t2
(g4D0T	4t 5	2	2	4t 5	2	D5	2	2	D5	4ny	42	427	2	447	4	t 4
Sud	9 12t	2	2	D2t	2	, , t	2	2	,,t	555	7n	7(y	2	ŊD	4t	4, I
*) 00-uM	422*	2*	2*	h	ŀ	422*	2*	2*	h	h	585*	y48 *	2*	h	h	
* Sud	728*	2*	2*	728 *	ŀ	4(85*	2*	2*	4(85*	h	*)81	t 58 *	2*	7, 82*	h	
01	% 285yn	h	h	28Буп	ŀ	28/Dt	h	h	28yDt	h	28yt 5	285y2	h	285y7	h	28y(
i dores MeHT uou-vav9F	754	2	2	754	ŀ	,,4	2	2	,,4	h	7D	7D2	2	7yD	h	44y
* idores MeHT uou-vav9E	yD8n*	2*	2*	yD@h*	ŀ	yy84*	2*	2*	yy8t*	h	y(85*	yt 8y*	2*	y78:*	h	yD#(
1 FM		2	2	42	ŀ	2	2	2	2	h	2	у	2	у	h	4
* 1 FM	, 82*	2*	2*	, 82*	ŀ	2*	2*	2*	2*	h	2*	48/*	2*	48(*	h	480
Bd/av9Fs ue RuN	H 4,	2	2	4,	ŀ	,	2	2	,	h	4	, 2	2	, 4	h	t
* Bd/av9Fs ue RuN	H , 87*	2*	2*	, 87*	ŀ	28/*	2*	2*	28y*	h	,8*	78 *	2*	782*	h	, 85°
0FHScdM	s h	h	h	h	2	h	h	h	h	55t	h	h	h	h	4t	
* 0FHSc-dM	s h	h	h	h	ŀ	h	h	h	h	yy87*	h	h	h	h	422*	
Bd/av9Fs ue C-usswM	h	h	h	h	2	h	h	h	h	D	h	h	h	h	2	
* Bdvav9Fs ue C-usswM	h	h	h	h	ŀ	h	h	h	h	28h*	h	h	h	h	2*	


UpFHFso-dMs MtHBdvav9Fs ue C-usswM1 8i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

3 of 6 2 of 6

5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Mon May 9, 202 202 5-60PM) 160 PMv) r l eHauPeak AoCH suLmilei (glif thd an BMoodByRei, Aeal y, PeBeidhani, whyRei on moaB, whyRei on Lhili lakv suMol eDendi :4-913653, goRadon-. 17699. 06,)OLT-8853O

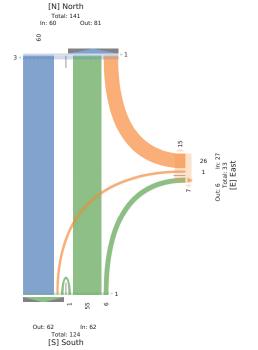
5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

Sobola (4- CUVID - BANK ST @ MARCHE WAY - MAY... - IMC Tue May 3, 20, 00 F M leaLnMay 3, 0, 00 30 F M g3 F Mt Filk [h8666 A 905 a) MCCki yi h82d eaoy2l e)e6k&P2r Ayi h86 CP c Ca) 2r Ayi h86 CP (\$CSCHABLE FilhMCbev eP16 BrwkmBl IB2: CI a MCPw4ml kk4, 12gmBCb188

: e-	OCs19					J a61					ECu19					
RAei MP	EQ:19. Q:	P)				S e61 CuP)				OCs19. Cul	P)				
TAv e	T		W	FNN	le)U	С	- :	W	FNN	le)U	С	T	W	FNN	l e) U	BP1
0,00g mg3, 30w, FM	H	,	,	H	3	35	,	,	35	31	4	18	3	40	3	kI
30v≩nF M	08	,	,	08	I	5	3	,	k	k	0	35	,	0,	,	nfΣ
TClah	D)	,	,	D)	4	0D	3	,	08	00	D	mn	3	D0	3	34k
* FNNcai9	3, , *	,*	,*	g	g	kDI *	I 78*	,*	g	g	k78*	5578*	37D*	g	g	
* TClah	4, 71*	,*	,*	4, 71*	g	3874*	, 78*	,*	3573*	g	47, *	I Dlk*	, 78*	437D*	g	
1 d %	, 74D8	g	g	, 74D8	g	, 7I DB	, 70m,	g	, 718m	g	, 718m	, 7I5D	g	, 715m	g	, 7433
: A916aP) MCICsi yi le6	nĐ	٠,	,	пD	g	0D	3	,	08	g	D	45	,	mi	g	318
* : A916aP) MCICsi yi he6	kI 71*	,*	,*	kI 71*	g	3,,*	3,,*	,*	3, , *	g	3,,*	587 *	,*	5873*	g	k37k*
d eaoy	I	,	,	I	g	,	,	,	,	g	,	I	,	I	g	I
* d eaoy	n7; *	,*	,*	nī; *	g	,*	,*	,*	,*	g	,*	n%t*	,*	475*	g	47,*
r Alyi he6 CP c Ca)	3	,	,	3	g	,	,	,	,	g	,	4	3	m	g	Г
* r Alyi he6 CP c Ca)	378*	,*	,*	378*	g	,*	,*	,*	,*	g	,*	87 *	3,,*	578*	g	47.*
l e) e6kAP6	8	g	g	g	4	g	g	g	g	00	g	g	g	g	3	
* 1 e) e6kArP6	g	g	g	g	3,,*	g	g	g	g	3,,*	g	g	g	g	3,,*	
r Alyi he6 CP (sC66HahL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* r Alyi he6 CP (sC66HaliL	8	g	g	g	,*	g	g	g	g	,*	g	g	g	g	,*	8

Ul e) e6isAtP6 aP) r Atyl he6 CP (sC66HahL7: w. ebt2c wc A9t2TwT9su2WwWgTusP

4 of 6


5566814 - COVID - BANK ST @ MARCHE WAY - MAY... - TMC

5566814 - COVID - BANK ST ⊚ MARCHE WAY - MAY... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9π.) y-a-k:
A- Mt reBegi)

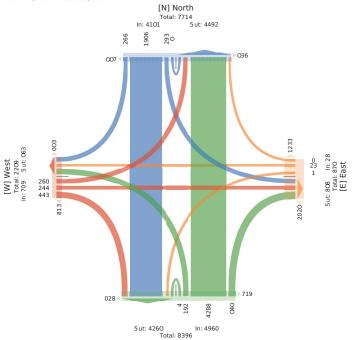
Rwnt D847321 t dai@gn6D4115, 4266D71736

9 ut: 605 In: 646 Total: 7043 [S] South

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

3500010 * COVID * FORMAT G * IT CONTROL OF THE IT OF THE IT MAY SO THE IT OF THE IT OF

- cuHdr 122 CuestnllMiue I c3OnNnM


Lng	Ouath						J Mt						EuPth						S rist						П
I ionrtiue	EuFth. t	ıFed					S rist. u	Fed					Ouath.	uFed					J Mit. uF	ed					
Wik n	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	met
, 2, , 92D92y 6:22- T	14	, 52	5	2	, yA	Dy	2	2	2	2	2	18A	AD	, Ав	A1	2	A26	82	A1	11	11	2	DA	DD	4
D22-T	AA	D6A	, 6	2	422	128	1	,	,	2	D	6y1	54	688	ID2	2	416	142	6A	, D	A6	2	12,	, 2,	1/
4:22- T	, 6	61y	A6	2	655	, AA	,	6		2	4	5AD	128	DΣy	6A	1	441	, D2	46	A,	A2		1, 4	, 4y	
5:22- T	A2	A4A	A1	2	6, 6	1Dy	1	2	2	2	1	444	111	65D	6D	2	4A1	, 22	85	Α,	A1	2	1D2	, 61	1
8:22- T		Ayy	, 1	A	66D	42	1	1	2	2	,	A62	AD	A5,	16	2	6, 1	11A	A1	у	12	2	D2	88	
y:22- T	, A	, yA	,8	2	A66	65	2	1	2	2	1	, A1	AA	A62		2	AyD	44	A1	12	14	2	DS	54	
12:22- T	AB	AA8	,4	2	62,	1DI	2	,	2	2	,	85D	, у	6, A	65	2	буу	, ID	A1	у	AВ	2	58	, у,	Г
11:22- T	11	15y	5	1	1y8	, у	2	2	2	2	2	5A	D	, Dy	, 6	2	, 88	, 6	у	D	,,,	2	A4	A1	П
, 2, , 92D9121, :22PT	,	DD	,	2	Dy	у	2	2	2	2	2	, 2	,	5A	D	,	8,	- ,	A	2	A	2	4	4	
VétM	1yy	, 8Dy	182	6	A, 6,	8DD	D	12	,	2	15	A416	6A6	A155	, 81	A	AByD	116D	AA2	1AA	1yD	2	4D8	1, 42	5
% P NNasMth	471% 8	887 %	D74%	271%	9	9	, y76%	D878%	1178%	2%	9	9	1171%	8174%	57,%	271%	9	9	D27, %,	, 27, % ,	y74% 2	2%	9	9	
% With	, 7D%	A474%	, 74%	271%	6170%	9	271%	271%	2%	2%	27,%	9	D74%	6275%	A74%	2% (5y7y%	9	67, %	175%	, 70% 2	2%	876%	9	
Lights Med Tutuorarlns	1y6	, 521	158	6	A255	9	2	2	2	2	2	9	612	A264	, 55	A	A5A4	9	A18	11A	1y1	2	4, ,	9	9 5
% Lights Med																									Т
T utuorar lns	y57D% y		y87y%	122%		9	2%	2%	2%		2%	9	y67D%	yDBy%∶	y874%:	122% 3		9	y476% l	8D2%	57/%	2% y	67D%	9	yΕ
c nMh	2	5D	2		5D	9	1	2		2	1	9	2	DD	1	2	D4	9	,	2	,	2	6	9	
% c nMHa	2%	, 74%	2%	2%	, 74%	9	, 272%	2%	2%	2%	DB/%	9	2%	175%	276%	2%	176%	9	274%	2%	172%	2%	274%	9) 1
virarlns ue Bu M	D	8A	,	2	y2	9	6	12	,	2	14	9	, 6	54	A	2	12A	9	12	, 2	,	2	A,	9	
% virarlns ue Bu M	, 7D%	, 3/%	171%	2%	, 78%	9	8272%	122%	122%	2% 3	671%	9	DD%	, 75%	171%	2%	, 74%	9	A72%	1D2%	172%	2%	67y%	9	9
- ndnstniMs	9	9	9	9	9	86A	9	9	9	9	9	AD88	9	9	9	9	9	11A2	9	9	9	9	9	1, 6,	Т
% - ndnstriMs	9	9	9	9	93	874%	9	9	9	9	9	yy 74%	9	9	9	9	9	y875%	9	9	9	9	9 y	r874%	Г
v irarlns ue CoussRMw	9	9	9	9	9	1,	9	9	9	9	9	, 4	9	9	9	9	9	1D	9	9	9	9	9	18	Т
% virarlns ue CoussRMs	9	9	9	1 9		175%	9	9		9		275%	9	9	9	9		1786	9	9		9		175%	_

6 of 6

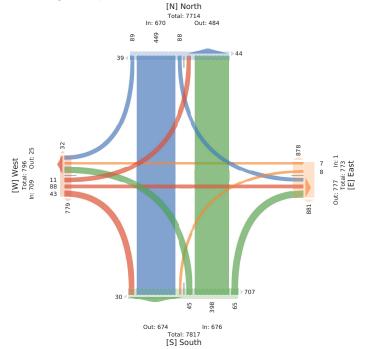
5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

Mon May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 4, Location: 4569979. , -856 7. 5. 3

[S] South

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

53000 I F - COVID - DAWN ST & HOLLWOOD AVE - M... - TINL.
TUE T M 3/S, 7, 2, 1, ngst 0T ht gu 0T (h6: FAM-0FM) 9 u1A
P -) -METCE i doto (Mc T uru AB HRC39 FM a30 FR FAM/C3V i Ha HFCue BuM 3V i Ha HFCue
) AVCR M (
P - T u: Fw FerC
lengyst D in 3s u Hallue gnt 7D yy8y 43 f6t 7884 4D


s Fd	f uAo						GME	r					Julro						E FG						
miAHiue	Julro.	ulec					ΕR	G. uleo	c				f uAo.	ulec					GME. u	lec					
SiwF	В	S	s	W	PCO	0FcU	В	S	s	W	PCO	0FcU	В	S	s	W	PCO	0FcU	В	S	s	W	PCO	0FcU	ler
, 2, , h2t h2y ngnt 0T	y	I nt	t	2	Ity	Dn	2	2	2	2	2	y5	14	I,n	, I	2	141	, 8	Ιy	n	8	2	п	, 5	D
t g220T	n	I Dy	- ;	2	Int	Iy	2	2	2	2	2	yt	In	I,t	Ιt	2	Itn	Db	у	,	8	2	Iy	n,	п
tglt0T	,	1,5	t	2	I Dh	, у	2	2	2	2	2	I 28	15	I Dn	у	2	142	t,	12	n	8	2	,,	t t	п
t gD20T	In	I n8	12	2	15,	.,,	2	I	,	2	D	ID	, 2	I 2y	Ι,	2	InI	, n	14	I,	у	2	IБ	nD	D
SurM	, у	tty	,,	2	412	I2n	2	I	,	2	D	nΩ	45	ny,	t 5	2	414	InI	t n	,,	DD	2	I 2y	145	ID
* POOAMB	n78*	yI 74*	D74*	2*	h	ŀ	2*	DDD°	4475*	2*	h	h	127y*	5y7y*	y7D*	2*	h	h	ny7 *	, 27, *	D27D*	2*	h	h	
* SurM	, 7, *	nI 78*	I 74*	2* t	nt 74*	ŀ	2*	27 *	27/*	2*	27, *	h	t 72*	D478*	n7D*	2* r	14Z*	h	n72*	174*	,7*	2*	87 *	h	
09 %	2718	23 ₁ t,	27tt2	h	278y2	ŀ	h	h	h h	n h	h	h	27ynI	27/2,	27445	h	27ynD	h	2Ъ,,	27.22	27/15	h:	275t 5	h	27yt
s idorCMc T uruAhHFC	, у	tIt	.,,	2	t 44	ŀ	2	2	2	2	2	h	4n	n45	t 4	2	t 85	h	t 2	18	П	2	yy	h	I,t
* s idorCMc T uruAthHPC		v 7+	1770	7+ •	, TR+		2*	2*	2*	78	2*	h	or 7 *	yn7y*	v87 *	70 .	a Te	1	v 710	81 TR+	yDīy*	70 1	778+	h	yDP4*
9 FMa				2	18	-	2			- 2	-,	h	2			2	y	- i	3, ~	2		2	n	- h	I
* 9 FMa		DE *	2*		DE2*	-	2*	2*	2*		2*	h	2*	178*	2*		17.*	ŀ	D5*	7*	47.*		DE+	h	, 70
v iHiHPCue BuM				2	. 4	- 1	2	- 1		- 2	_ D	h	- 1		I	2	. 2	h		n	2		4	h	,
* viHtHPCue BuM	2*	n75*	2*	2*	n7D°	ŀ	2*	I 22*	122*	2*	122*	h	n7 *	DD*	178*	2*	DE+	h	D2+	187 *	2*	2*	t 7 *	h	n7
0FcFGAM0	h	ŀ	h	h	h	12E	h	h	ı h	n h	h	nDI	ŀ	ı l	ı h	h	h	I Dn	h	h	h	h	h	I 4t	
* 0FcFGAM0	h	. I	h	h	h	yy72*	h	h	n h	n h	h	yy7.*	ŀ	ı i	ı h	h	h	yt 72*	h	h	h	h	hy	/878*	
viHsHFCue) AstCRM	h	. I	h	h	h	I	h	h	n h	n h	h	n	ŀ	ı i	ı h	h	h	5	h	h	h	h	h	,	
* viHiHFCue) AuCRM	h	. h	h	h	h	172*	h	ŀ	n h	n h	h	27/*	1	n h	ı h	h	h	t 72*	h	h	h	h	h	17.*	

UprcPGAM/CMc viHaHPCue) AuCR MI 7s gs Pb/3BgBidor3SgSoAl3WgWl61Ae

2 of 6

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-56PM) 6-56 PMC) v relaHPeak u o.A
CHB BilleL(i ght d.anc ModblByHel, u ear y, Peceldganl, RghyHelLon woac, RghyHelLon slolLmalRO
CHMOrel end.
D - 964135, i oBadgon-56.199793,)86.373631

5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC
Tue May 3, 20, 00
F M l eaLinday 3, 0, 00 30F M g 3 F Mt
Filk (la6566 A 305 aP) MCCki yi le62d eaoy2l e) e6k&P62r Ayi le6 CP c Ca) 2r Ayi le6 CP (SCG+Ialli
Filk MCeve P156
Rwkm8l D42: G a M2Pw4ml kk8kDg6mf2BDt1

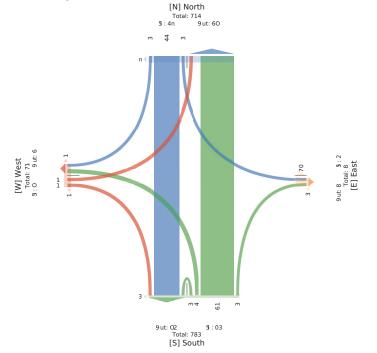
3 of 6

e-	OG:19						J a6	1				EQ:18						S e61					Т	_
RAei IAD	EG ₁ 19							51 Cu	P)				. CuP)					Ja61 C	ıP)					
TAy e	c		-	W	FNN	e)II		_		WF	NN 1 e)		Т		W	FNN	Le)II	c	T	-	w F	FNN 1 e)	шв	P1
0,00g mg, 30w, FM	(II	D	Ť.	_		,	. 3							0	÷	I		m	m	1
30vilnFM	,	04	0	,	0D	I	,	,		,	, 1	k ,	0k	٠,	3	I,	0	3	,	,	,	3	3	ı
TClair	() mr	ı 0	,	nk	k	,	,	,	,	, 0,		5I	n	1 0	80	0	I	,	I	,	D	D	34
* FNNaCai9	I 74*	kI 70*	I 74*	,*	g	g	,*	۰,	* ,	*	g	g 074*	8k7,*	D3*	074*	g	. 8	m;7*,	, * n	97*,	*	g	g	
* TClah	374*	1574*	374*	,* 4	4, 73*	g	,*	۰,	* ,	۰,	*	g 374*	4k万*	I74*	374*	nm%*	8	07*,	*	07,*,	* 47	B*	g	
1 d %	, 70m	, 74m	, 70m	g	, 74D,	g	g	g	g	g	g	g , 70m,	, 7405	, 70m	, 7m .	, 74, I	8	, 715m	g.	70m;	g, 7	Ι,,	g,	. 74
: A916aP) MCICsi yi he6	3	nB	0	,	mi	g	,	,	,	,	,	g (DБ	n	0	5D	· 8	I	,	I	,	D	g	3
* : A916aP) MCICsi yi he6	m 7 *	105*	3 *	* 1	1371#	a	*	*	*	*	g	a3 *	k378*	3 *	3 *	1:05*		3,,*,	*	3 *	* 3		ak	:07r
d eaoy		T		, .	I	0	_	, ,		_	ь	0	I	J, ,	σ, ,	I		J,, ,	_	,, ,	- 5,	,	o n	-
* d eaoy	.*			. *	mi3*	g	. *	. * ,	* .	*	g	g ,*	473*	*	,*	175*	8	,*,	*	,*,	*	,*	g	478
r Ayi le6 CP c Ca)	3	3	,	,	0	g	,	,	,	,	,	g ,	I	,	,	I	8	,	,	,	,	,	g	_
* r Ayihe6 CP c Ca)	m, 7, *	378*	,*	,*	I 74*	g	,*	۰,	* ,	*	g	g ,*	473*	,*	,*	I 75*	g	,*,	.*	,*,	*	,*	g	I 74
l e) e6kAP6		g g	g	g	g	k	g	g	g	g	g 0,		3 8	3 8			. 0	g	g	g	g	g	D	_
* le)e6kAeP6		g g	g	g	g3	,,*	g	g	g	g	g3,,*		3 8	3 8			3,,*	g	g	g	g	g3,,	*	
r Ayi le6 CP (sC66Hali.		g g	g	g	g	,	g	g	g	g	g ,		3 8	3 8			,	g	g	g	g	g	,	_
* r Ayi le6 CP (sC66HaliL		g g	g	g	g	. *	g	g	g	g	g ,*		3 8	3 8			. *	g	g	g	g	g,	*	_

U e) e6isAaP6 aP) r Alyi he6 CP (sC66HahL7: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6 5 of 6 5566814 - COVID - BANK ST @ HOLMWOOD AVE - M... - TMC

5566814 - CUVILD - DAWN 3. G. FLOCKING.


The May 3, 20, 00

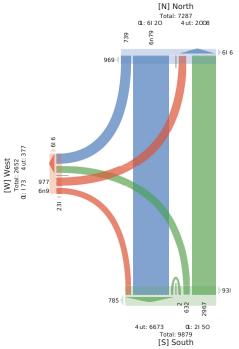
AM Peak (May 3, 0, 00 30AM 83 AM:
A – 9 a))e) (1 GL1) agh Mt it niyde)20 ear y2Pehe)infag)2c dlyde) t g Ht ah2c dlyde) t g
9 r1) y2 a*.

A – Mt reBegi)

Rwnf D84752l t daid gn5D4l 161 728t D767D74

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

SSOSA 14 - CUVID - QUEEN ELIZABETH DIKWY @ FIF... - TIMC Tue T M y3, 2, OFIL Lnegth (6:A2 - T 91, -A2 P T) PIL Classes (Lights Md T uturarlns3c nMh3-ndnstaMs3v irarlns ue BuM3v irarlns ue CussRMs) PIL T uthk nets nh : yDLA473Lur Miue: 6D82 Ay, 1355D8471y56


Lng	Ouath					JuFth					E nst				- 1	
I ionrtiue	J uFth. uFe	ed.				Ouath. uF	ed				SMt. uFed					
Wk n	В	W	U	PNN	- nd*	W	L	U	PNN	- nd*	В	L	U	PNN	- nd*	net
, 2, , 92D92y 6:22- T	A2	, A7	2	, 47	DA	y2	, 4	2	114	55	1D	, 2	2	AD	, 4	
D22- T	yA	D24	2	Dyy	11D	, 14	41	2	, 55	152	, 5	64	2	5A	5D	
4:22- T	1, 4	6, 5	2	DDA	117	1yy	D)	2	, Di	, 25	A7	D4	2	у6	y4	
5:22- T	117	, 15	2	AAD	11y	1y4	DA	2	, 6y	15A	64	56	2	1, 2	7y	
7:22- T	A6	, 1y	2	, DA	4y	164	14	2	14,	5D	1y	A2	2	6y	Di	
y:22- T	, 7	145	2	1yD	A7	121	, 1	2	1,,	D6	, 6	,7	2	Ŋ	,,	
12:22- T	AD	152	2	, 2D	D6	, A2	, у	2	, Dy	yD	, 4	D4	2	7,	4D	
11:22- T	7	71	2	7y	y	11y	12	1	1A2	1A	7	A,	2	62	A	
, 2, , 92D9121, :22PT	1	17	2	1y	2	, 5	A	2	A2	2	2	,	2	,	2	
VátN	65A	, 26A	2	, D14	DED	1A, 6	, 51	1	1Dy4	746	, 2A	A66	2	D65	6, 5	Г
% P NNouMth	1787%	718 %	2%	9	9	7AB2%	1582%	281%	9	9	A581%	4,8/%	2%	9	9	
% WitN	128 %	6A8y%	2%	D682%	9	, 786%	D87%	2%	A684%	9	686%	586%	2%	1185%	9	Г
Lights Med T utuorarlns	612	, 21y	2	, 6, y	9	1A2D	, 45	1	1D5A	9	1y7	AAy	2	DA5	9	
% Lights Med T utuorarlns	7485%	y787%	2%	y480%	9	y784%	y780%	122%	y784%	9	y580%	y78D%	2%	y78 %	9	3
c nMHs	6	D	2	у	9	1	,	2	A	9	1	6	2	D	9	
% c nMB	287%	28 %	2%	286%	9	281%	285%	2%	28,%	9	280%	18 %	2%	28/%	9	
v irarlıs ue Bu M	Dy	1y	2	57	9	17	,	2	, 2	9	6	1	2	D	9	
% v irarlns ue BuM	1,80%	28y%	2%	A61%	9	186%	285%	2%	18496	9	, 82%	284%	2%	28/%	9	
- ndnstoiMs	9	9	9	9	642	9	9	9	9	564	9	9	9	9	622	
% - ndnstoiMs	9	9	9	9	7282%	9	9	9	9	7484%	9	9	9	9	уАБ%	
	9	9	9	9	11D	9	9	9	9	117	9	9	9	9	, 5	-
virarlns ue CoussRMi																

- ndnstaiMs Med virarlns ue CaussRMw8L: Lnbt3B: Bight3W WhoF3U: U9WFae

6 of 6

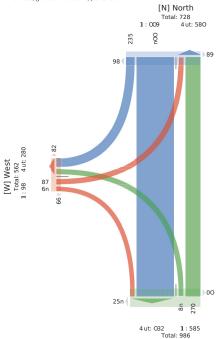
0-uAd-FH. agCda ub: ccMvM D22 Cuesd-99Mdue I -3 f FOFMs3: f 3N, p nKy3C)

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 6, Location: 457403921, -857 61984

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
T ue T M y3, 2, ,
OT OBN IT M 2y, 2, ,
OT OBN IT M 2y, 2, ,
OECMSET is for a MHT uu-vayEs31 FMa30HFsc-dMs3Bdav9Fs ue RuMBBdav9Fs ue
C-usswM 6
9 T uAPk Fec
th gynD (43i uvMdieg7n6721y, DB16n84Dy57

-		,														
	f u-α					GuPar					J Fsc					
	GuPar. uP	eH				fu-αr.uPo	·H				EMsc uPeF	Ŧ				
	R	S	W) 00	0FHL	S	i	W) 00	0FHU	R	i	W) 00	0 FHU	mec
, , h2nh2y ng 20T	t D	I224	2	Dгy	, 7	7D	D)	2	nt	74	y	D	2	,,	D,	, D7
ng/n0T	D5	Di 2	2	D75	7t	nn	DF	2	(у	nt	ID2	ĽΣ	2	, 2	,,	,t(
(g20T	Db	D7n	2	D(,	, у	n7	у	2	(t	72	ID	DБ	2	, 4	, 2	, nt
(gInOT	t 5	D4t	2	,,2	t(75	LT2	2	n5	(2	n	y	2	DF	, 2	, yD
SudM	D2,	n((2	((4	D,	Dy5	7n	2	, 7,	, 2D	t n	7y	2	47	57	yy7
*) 00-uMr	Dn8 *	4785*	2*	h	h	4D87*	D48(*	2*	h	h	7D6*	n48 *	2*	h	h	h
* SudM	D28 *	n(8y*	2*	(58 *	h	Dy84*	78h*	2*	, 78 *	h	t 8h*	78/*	2*	48h*	h	h
01%	28(4n	285(n	h	285nn	h	28142	28427	h	284(7	h	285yn	285, D	h	285n2	h	28174
MeHT uau-vav9Fs	57	nn5	2	(tD	h	Dy2	7n	2	, t n	h	tn	74	2	4t	h	y7y
MeHT uau-vav9Fs	5, 8h*	y487*	2*	y78h*	h	y(87*	D22*	2*	y58D*	h	D22*	y482*	2*	y481*	h	yn8n*
1 FMa	2	t	2	t	h	2	2	2	2	h	2	D	2	D	h	7
* 1 FMAa	2*	28n*	2*	287*	h	2*	2*	2*	2*	h	2*	, 82*	2*	D8 *	h	287*
Relay(Fe no DuMF	- 4	- (2	t7	h	5	2	2	5	h	2	2	2	2	b	7D


U0FHFsc-dMs MtHBdvav9Fs ue C-usswMl 8i gi Fb3RgRdbrc3SgSr-P3WgWh6P-e

2 of 6 3 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

Mon May 9, 202 202 25-60PM) 0-60 PMy) r l eliumPeak AoCH
su Luitiei (glir dia nB MoodByRei, Aeal y, PeBei dlani, wlfty Rei on moaß, wlfty Rei on
Llibii I alw
su Mol eDenci
:4 - 9516(3, g o Radon - . 57 06921,)8578198.

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

: e-	OG:19					J Cu 19					E e61					
RAei IACP	J Cu 19. CuP	9				OG:19. G:P)					Sa6L C	iıP)				
TAv e	с	T	W	FNN	le)U	T		W	FNN	le)U	С	- 1	W	FNN	le)U	BP1
0,00g,mg3,30w,FM	,	33	,	33	,	35	0	,	3k	,	,	,	,	,	,	I
30v≩nF M	3	5	,	4	,	3,	3	,	33	,	,	0	,	0	,	(
TClah	3	34	,	3k	,	05	I	,	I,	,	,	0	,	0	,	1
* FNNcai9	n a *	k785*	,*	g	g	k, 8, *	3,8*	,*	g	8	,*	3, , *	,*	g	g	
* TClah	08*	1 n8 *	,*	158*	g	m98k*	n 8 k*	,*	m#81*	g	,*	18c*	,*	18k*	g	
1 d %	, 80m,	, 87, k	g	, 8710	g	, 81 k5	, 8 5m	g	, 81 km	8	g	, 80m	g	, 80m,	g	, 87
: A916aP) MCICsi yi he6	3	34	,	3k	g	05	I	,	I,	g	,	0	,	0	g	1
* : A916aP) MCIGsi yi he6	3,,*	3, , *	,*	3,,*	g	3,,*	3, , *	, *	3,,*	g	,*	3,,*	,*	3,,*	g	3,,
d eaoy	,	,	,	,	g	,	,	,	,	8	,	,	,	,	g	
* d eaoy	,*	,*	,*	,*	g	,*	, *	,*	,*	g	,*	,*	,*	,*	g	,
r Ayi he6 CP c Ca)	,	,	,	,	g	,	,	,	,	8	,	,	,	,	g	
* r Alyi he6 CP c Ca)	,*	,*	,*	,*	g	,*	, *	,*	,*	g	,*	,*	,*	,*	g	,
l e) e6lsArP6	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* l e) e6isAtP6	g	g	g	g	g	g	g	g	g	g	g	g	g	g	g	
r Alyi he6 CP (sC66HahL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* r Ayi he6 CP (sC66HaliL	g	g	g	g	g	g	g	g	g	8	g	g	g	g	g	

Ul e) e6isAtP6 aP) r Ayi læ6 CP (sC66Hahl.8: w. ebi2c wc A 912TwT9su2WwMgTusP

4 of 6

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC

5566814 - COVID - QUEEN ELIZABETH DRWY @ FIF... - TMC
Tue May 3, 20, 00

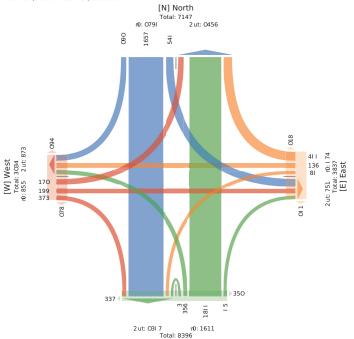
AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iriāg)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r.) y-a-k:
A- Mt reBegi)
Rwnt D847521 t dai@gm D6, 4l 03281D87531 1.

[S] South

[N] North Total: 48

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
T ue T M y3, 2,
OFIL Leegh (6:72 - T 91, :72 P T)
PIL CIMSen (Lights Md T utucrarlns3c nMit3 - ndrstdiMs3v irarlns ue BuM3v irarlns ue
CussRiMo)
PIL T UHK nets
ni : yDLAt13LurMue: 6DPy6, y1394D85:A62y

Lng	Ouath						J Mrt						EuFth						S rist						
I ionrtiue	EuFth. u	яFed					S nst. ui	Fed					Ouath. t	Fed					J Mt. uF	ed					
Wik n	В	W	L	U	PNN	nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	В	W	L	U	PNN	- nd+	met
, 2, , 92D92y 6:22- T	, A	, 41	81	2	ADD	9	45	, 6	A	2	12D	AB	5	, D6	12	2	, 4,	A1	12	, A	, D	2	DБ	4A	43
D22- T	86	D 5	12A	2	8yD	9	105	D4	14	2	, A,	1, A	14	684	1y	2	D2A	у6	, 8	IΣ	DD	2	1.A1	15A	1DE
8:22- T	DA	Ay,	54	2	DA,	9	1.AA	IΣ	у	2	1y,	1, 4	15	DΣ,	, у	2	D6y	62	A,	A,	D)	2	118	161	1.A5
4:22- T	AB	61D	42	2	D, 1	9	45	AD	16	2	1, 4	1.46	1,	A51	, D	2	615	A1	, у	,,	A6	2	5D	y5	11E
5:22- T	, 5	A84	66	2	6Ay	9	66	16	12	2	85	51	11	AA4	, 8	2	A46	, у	Al	AB	, D	2	y,	84	y4
y:22- T	A,	, 58	A5	2	ADB	9	61	, 2	D	2	88	AD	у	A2A	14	1	AA2	1D	1A	15	A4	2	85	DB	5,
12:22- T	A4	A46	, 5	2	6Ay	9	AD	1D	D	2	DD	1Ay	8	, Dy	16	2	, 4y	, 2	, A	12	A1	2	86	IΣ	5A
11:22- T	- ,,	, D4	, 1	2	A22	9	15	A	D	2	, 8	, 6	A	1.A5	8	2	164	2	D	5	11	2	,6	11	6y
, 2, , 92D912 1, :22P T	5	D4	8	2	41	9	A	1	2	2	6	4	2	64	A	2	ID2	2	,	1	A	2	8	,	1.4
VétNi	A2A	, y64	6DS	2	A425	9	D55	, 1y	85	2	54D	425	56	, 855	16y	1	, y, ,	, 82	141	, 22	, 4A	2	866	851	516
% P NNuMh	57, %	4y7D% 1	1, 75%	2%	9	9	847, % ,	D/2%	45%	2%	9	9	, 7/%)	7, 72%	DN%	2%	9	9	, 878% .	4171% (5, 76% 2	2%	9	9	
% WitM	A74% .	A87, %	DB%	2% €	DDW	9	47, %	, 74%	25%	2% 1	1274%	9	172%	AA2%	175%	2% A	EBy%	9	, 71%	, 70%	A76% 2	% 4	3/%	9	
Lights Med T utucrarIns	, 84	, 44,	6D6	2	A6yA	9	DSD	, 18	88	2	584	9	4y	, D, 2	168	1	, 468	9	182	1yA	, 8D	2	815	9	44,
% Lights Med																									
T utucrarlns	5571%	y671% y	yy71%	2% y	67,%	9	уу70% у	/578% y	471%	2% 3	yy71%	9	y672% y	/A5%	y572% 1	22% y	622%	9	yAB% y	/87D% <u></u>	471% 2	% y8	72%	9	y6759
c nMh	, D	ED2	1	2	48	9		2	2	2	,	9	2	DS	,	2	82	9	,	,	1	2	D	9	16
% c nMh	574%	174%	27,%	2%	, 72%	9	274%	2%	2% 2	2%	27,%	9	2%	, 7, %	174%	2%	, 71%	9	17, %	172%	276% 2	% 2	75%	9	1759
v irarlns ue BuM	11	1, D		2	1Ay	9	1	A	,	2	8	9	D	112	1	2	118	9	у	D	4	2	, 1	9	, 5
% virarlns ue BuM	AB%	67,%	274%	2%	A74%	9	27, %	176%	, 3/% :	2%	274%	9	872%	671%	274%	2%	672%	9	D996	, 7D%	, 78% 2	% A	7466	9	ADS
- ndnstaiMes	9	9	9	9	9	2	9	9	9	9	9	8y6	9	9	9	9	9	, 6,	9	9	9	9	9	8AA	
% - ndnstaiMs	9	9	9	9	9	9	9	9	9	9	93	52%	9	9	9	9	93	/A71%	9	9	9	9	9 y.	A72%	
	9	9	9	9	9	- 2	9	9	9	9	9	16	9	9	9	9	9	15	9	9	9	9	9	65	
virarlns ue CoussRMw	9																								

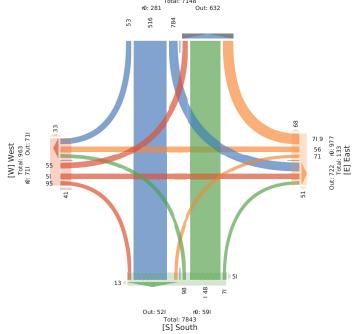

		In: 19	Out: 29
	н	18	
[W] West Total: 6 In: 2 Out: 4		Dut: 18	17
		Out: 18 Total: 4 [S] Sot	18 uth

6 of 6

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Mon May 9, 2022 — 112:30 AM)
MIC May 9, 2022 — 112:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 9513. 1, Location: 45694291, -. 56783409

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Tue T M y3, 2, ,
0T ORB IT M 2y, 2, , ngn 0T h tgt 0T (h6: FM4 0FM 9 u1A
P -) - MRTCLS idonCMc T unuAbiHR39 FMa 30FRRAMGW ibiHPCue BuM3v ibiHPCue
) AKRM (
P - T u: FWFRC
kngyt IDI 3s uMueget 12yn, y13bit 185Di2y


s Fd	f uAso					GME:						Julro						E FGr						
miÆHiue	Julro. u	:lec				E FG. t	lec.					f uAto.	u1ec					GME: u	1ec					
SiwF	В	S	s	W	PCO0FeU	В	S	s	W	PCO	0FcU	В	S	s	W	PCO	0FcU	В	S	s	W	PCO	0FcU	ler
, 2, , h2t h2y ngnt 0T	ID	In5	, у	2	Iy2 h	DD	Ι,	I	2	n8	Iy	D	ID	t	2	In2	, I	t	Ιt	Ιt	2	n	nD	nI I
t g220T	у	ID	, 5	2	14, h	nn	18	t	2	8t	nt	n	Ht	D	2	Ι,,	DD	у	12	5	2	, 4	t,	DS
tglt0T	, 2	ID	, 8	2	145 h	D,	In	D	2	ny	, t	I	HH	t	2	114		12	It	15	2	nD	D4	D54
t gD20T	18	I,I	, 8	2	IBD h	DD	Ιn	n	2	t I	, n	8	ID	4	2	Int	18	I	In	Ιn	2	, у	ny	D55
SurM	t 5	t DB	I 2y	2	42D h	In,	t 8	ID	2	,II	HD	In	ny2	, 2	2	t,n	y,	, t	t n	t t	2	I Da	I 5I	It4,
* POOA:Mib	57D° 4	487, *	I t 7 *	2*	h h	847D*	, 87. *	87, * 2	2*	h	h	, 74*	yDR *	D2+	2*	h	h	1574*	n27D*	nI 72*	2*	h	h	
* SurM	D24+ I	Dn7l *	87y+	2* r	m74+ h	y 2*	DB+	275* 2	2÷ 1	I Dîn+	h	27y+	DI 7, *	17D°	2* I	DID*	h	I.28+	Dh+	D£+	2*	57.*	h	
09%	274, t	27yI5	23/t t	h	27yDy h	27524	2754t	27822	h	27525	h	278t 2	27y, n	274I n	h.	27y2D	h	278Dy	275t 2	274yn	h 2	27522	h	27yt
s idorCMc T uruAhHPC	t D	nyD	I 28	2	8t, h	InI	t 8	I,	2	, 2y	h	ID	nt,	Iy	2	n5n	h	, D	t I	t D	2	1,4	h	In4
* s idorCMc T uruAlbHPC		y, 72+	y47 +	2* y	r, 74° h	yy7D°	122*	y, 70° 2	2* ;	yy7i +	h	y, 7y*	y, 7 *	yt 72*	2* y	, 7h+	h	y, 72*	yn7h+	y87h+	2* y	п Ђ +	h	yDB*
9 FMa	t	In	I	2	,2 h	I	2	2	2	I	h	2	12	I	2	H	h	2	2	I	2	I	h	Е
* 9 FMa	578*	, 7B*	27y+	2*	,75° h	274*	2*	2* 2	2*	27.*	h	2*	, 2*	t 72*	2*	,7*	h	2*	2*	122+	2* :	274*	h	,7*
v iHtHPCue BuMt	2	, у	,	2	II h	2	2	I	2	I	h	I	, 5	2	2	, у	h	,	D	I	2	8	h	8
* v iHtHPCue BuMt	2*	t 7h+	122+	2*	n7h+ h	2*	2*	474*	2*	27.*	h	47 *	t 74°	2*	2*	t 7. *	h	572*	t 78*	122+	2* :	n7 *	h	n7D°
0FcFGAMC	h	h	h	h	h 2	h	h	h	h	h	125	h	h	h	h	h	5n	h	ı h	h	h	h	188	
* 0FcFGAMtC	h	h	h	h	h h	h	h	h	h	h	yt 78*	h	h	h	h	h	/I 7D*	h	ı h	h	h	hy	/1740	
v iHhHFCue) ArCR M	h	h	h	h	h 2	h	h	h	h	h	t	h	h	h	h	h	5	h	ı h	h	h	h	Ιt	
* viHtHFCue) AuCCRM	h	h	h	h	h h	h	h	h	h	h	n7n+	h	h	h	h	h	574*	h	ı h	h	h	h	57D°	

UprcFGAMcCMcviHaHFCue) AuGRMl7sgsFbr3BgBidor3SgSoAl3WgWl61Ae

2 of 6

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC
Mon May 9, 2022
PM Peak (May 09 2022 5-56PM) 6-56 PMC) v rela⊞Peak u oA
CHB BilleL(i ght d.anc ModblByHel, u ear y, Peceldganl, RghyHelLon woac, RghyHelLon slollmalRO
CHMOrel end.
D - 964134, i oBadgon-56.195294,)36.781509 [N] North Total: 7148 r0: 281 Out: 632 516 23 784

[S] South

5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

Tue May 3, 20, 00

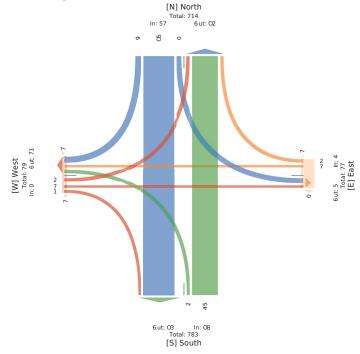
F M | eat.nYday 3, 0, 00 30F M g 3 F Mt
F hly (h6566 n A916 aP) MCCGs yi he62d eaoy2l e) e6kahP62r Ayi he6 CP c Gs) 2r Ayi he6 CP
(sCGF4lalit
F hlmGrev eP16

R wkm81 EB2: Cl a lAP-wim1 k40k32ghr851 4, k

l scoAe) . yw	tawa Ay Obf DaHa
3, , (CF	61elfa 1ACP Rs
OeNeaP2f O2	p 0K mCk2(F

3 of 6

			_																						
: e-	OGB						J a61						EC	h19					S e61						
RAei MP	ECu 19.	CuP)					S e61	CuP)					00	39. CuP)					J a61 C	iiP)					
TAv e	С	T	:	W	FNN	e) U	С	Т	1 :	W	FNN	le)U	С	T	:	W	FNN) U	С	T		W	FNN	l e) L	BP1
0,00g mg3, 30w, FM	0	01	3	,	80	g	I	3	٠,	,	4	3	,	. 10	3	,	H	,	3	,	,	,	3	3	8
30v∂nF M	8	I 4	m	١,	4m	g	,	,	,	,	,	8	,	. 3m	0	,	3D	,	3	3	I	,	m	3	8
TClah	5	пD	8	,	ĽΒ	g	I	3	,	,	4	D	,	4D	I	,	m	,	0	3	I	,	8	0	31
* FNNcai9	337 *	5, 71*	57h#	,*	g	g	Dn≅ *	0nF, *	,*,	*	g	8	, *	k47,*	87,*	.*	g	g	1171*	387D*	m, 7, *	, *	g	8	
* TClah	873*	41 7h#	478*	,* 1	nd70*	8	071*	, Ъ*	,*,	*	173*	8	, *	I nik*	* 10	, * 1	570*	g	37hf	, Ъ*	071*	, *	478*	8	
1 d %	, 7111	, 74, 4	, 7,,	g	, 7I SI	8	, 70m,	, 70m,	g	g	, 70m,	8		g,718D,	7 Dm	g	, 71 Dk	g	, 7m,	, 70m	, 70m	g	, 1, ,	8	, 745
: A916 aP) MCICsi yi le6	D	ni	8	,	88	g	I	3	٠,	,	4	8	,	4m	I	,	45	g	0	3	I	,	8	8	30
* : A916aP)																									
MCIGi yi le6		kI 7, *	3,,*	,* I	kI 7, *	g	3,,*	3,,*	,*,	*	3, , *	8	, *	kn⁄D* 3	3, , *	, * 1		g	3,,*	3,,*	3,,*	, *	3, , *	8	k47D*
d eaoy	3	0		,	I	g	,	,	,	,	,	8	,	. 0	,	,	0	g	,	,	,	,	,	8	-
* d eaoy	307h#	I 7h#	,*	,*	470*	g	,*	,*	,*,	.*	,*	g	,*	47 *	,*	.*	47 *	g	,*	,*	,*	, *	,*	8	15*
r Ayi he6 CP c Ca)	,	0	,	,	0	g	,	,	,	,	,	g	,		,	,	,	g	,	,	,	,	,	8	(
* r Alyihe6CPc Ca)	, *	I 7hf	,*	,*	0万*	g	, *	,*	,*,	*	,*	g	, *	, *	,*	. *	,*	g	, *	,*	,*	, *	,*	8	37h#
l e) e6lsAtP6	g	g	g	g	g	,	8		g g	g	g	D		g g	g	g	g	,	g	. 8	8 8	g	g	0	
* le)e6kAP6	g	g	g	g	g	g			g g	g	g	3,,*		g g	g	g	g	g	g	. 8	8 8	g	g3	,,*	
r Ayi le6 CP (sC66HaliL	g			g	g	,	8		g g	g	g	,		g g	g	g	g	,	g	. 8	8 8	g	g	,	
* r Alyi le6 CP (sC66HaliL	g	g		g	g	g			g g	g	g	,*		g g	g	g	g	g	g	. 8	8 8	g	g	, *	


Ul e) e6is/aP6 aP) r Alyi le6 CP (sC66HahL7: w. ebI2c wc A 912TwF9su2WwMgTusP

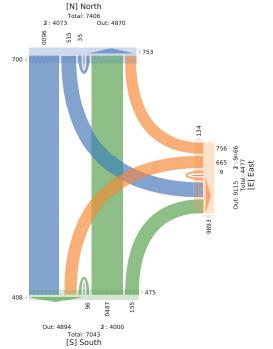
4 of 6 5 of 6 5566814 - COVID - BANK ST @ SUNNYSIDE AVE - ... - TMC

5566614 - CUVID - DANNEST & JOHNSON ...
THE MBy 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A – 9-a))e (I GLI) agh Mt it nlyde)20 ear y2Pehe)iriāg)2c dlyde) t g Ht ah2c dlyde) t g
9 r1) y0 - x4:
A – Mt r eB egi)
Rwrl DB47321 t daid gn5D415013287D6145, I

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

55068 14 - COVID - BANN ST @ EXPIBITION WAY -... - TMC
Tue TM y3, 2-T 91, :A2 PT)
PII Climse (Lights Md Tutuorarins3c nMh3-ndnstaiMs3v irarins ue BuM3v irarins ue
CaussRMo)
PII Tuthk nets
th: yDi6143Lur Miue: 6DBy8546395DR8DByA


Lng	Ouath					J Mt					EuFth					
Lionrtiue	EuFth. uF	ed				S nst. uFe	ed.				Ouoth. uF	ed				
Wk n	W	L	U	PNN	- nd*	В	L	U	PNN	- nd*	В	W	U	PNN	- nd*	net
, 2, , 92D92y 6:22- T	, 25	84	,	, yD	5,	Ay	41	2	122	1D5	y2	, 18	1	A2y	A4	
D22- T	611	14D	у	DBD	151	84	118	2	, 26	Ay6	184	61D	,	42A	y8	1.
4:22- T	Al D	1DD	1,	68,	, 55	81	81	2	14,	666	186	6, 6	4	416	168	1,
5:22- T	A, 8	1D8	12	6y4	, 4,	58	84	2	146	A48	1, 1	A4A	A	685	1Ay	1
8:22- T	, y4	1A5	A	6A4	44	42	5D	2	1AD	142	8A	, 8,	2	A4D	68	
y:22- T	,,D	y8	5	AA2	4,	41	52	2	1.A1	56	84	, 68	1	AAD	, 8	
12:22- T	, 41	125	11	Абу	A5,	15A	168	2	A, 1	,,A	у6	, 26	6	A2,	14,	1
11:22- T	1AA	4D	,	, 22	Α,	12A	11D	2	, 18	AA	62	116	2	1D6	, 5	
, 2, , 92D912 1, :22P T	61	18	A	4,	A	14	, D	1	6,	1D	1D	A8	2	DA	A	
WatN	,,15	y8y	Dy	A, 4D	1A15	4y5	55y	1	1655	1848	8yy	, A24	15	Α,,,	48y	5
% P NNouMh	457/9%	A274%	178%	9	9	657, %	D, 75%	271%	9	9	,57/9%	5174%	270%	9	9	
% With	,578%	1,76%	275%	6172%	9	878%	y78%	2%	1870%	9	117766	, y2%	27,%	627D%	9	
Lights Med T utuorarlns	, 251	y5D	Dy	Al2D	9	4y2	5A4	1	16, 5	9	88,	, 1y6	15	A2yA	9	. 5
% Lights Med T utuorarlns	yA76%	y874%	122%	yD/1%	9	yy72%	y67D%	122%	y474%	9	y871%	yD/1%	122%	y42%	9	yΙ
c nMHs	52	A	2	5A.	9	A	6	2	5	9	4	ID2	2	D4	9	
% c nMHs	A7, %	274%	2%	, 7,%	9	276%	270%	2%	270%	9	275%	, 7, %	2%	175%	9	1
virarlıs ue BuM	54	11	2	85	9	6	Ay	2	6A	9	11	4,	2	5A	9	
% virarlns ue Bu M	A76%	171%	2%	, 75%	9	274%	DI2%	2%	, 3/%	9	17,%	, 75%	2%	, 7/196	9	,
- ndnstaiMs	9	9	9	9	1, y8	9	9	9	9	18A1	9	9	9	9	454	
% - ndnstoiMs	9	9	9	9	y874%	9	9	9	9	y872%	9	9	9	9	y871%	
virarlns ue CoussRMi	9	9	9	9	1y	9	9	9	9	A5	9	9	9	9	1A	Г
						9			9	. 72%	9	9	9	9	17/96	

*- ndnstoiMs Med virarlns ue CoussRMM/ZL: Lnbt3B: Bight3W WhoF3U: U9WFoe

6 of 6

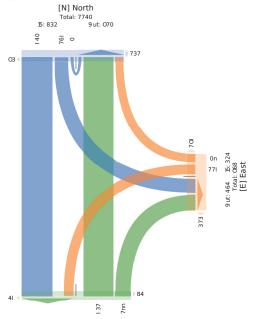
5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Mon May 9, 2022
Fuil Length (4:30 PM-12:30 AM)
All Classes (Lights and Motorcycles, Heavy, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 95141., Location: 456978. 4, -856 75793

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue T M y3, 2, ,
0T 0PM IT M 2y, 2, , ngt 0T ht grt 0T (h6: FAM-0PM 9 u1A
P -) - MCRC14 douCMe T unuAbHR39 FMa30FcRGAMG3v ibhHPCue BuM3v ibhHPCue
) AuCRM (
P -T u: PwFerC
lmgyt I n1 DBs ul-Miuegnt 47y85Dh3l6t 428t 8y7

0Aı: icFc . ag) ira ub6 mR? 122) ueGF-Miue mA
f FOFM(36 f 3N, p t Ky3) P

1 of 6

s Fd	f uAno					GM2					Ju1ro					
mi.AHiue	Julro. ul	ec				E FG. u1e	+c				f uAto. u1e	ec.				
SiwF	S	s	W	PCO	0FcU	В	S	W	PCO	0FcU	В	S	W	PCO	0FcU	ler
, 2, , h2t h2y ngnt 0T	117	ny	I	I DF	n2	,7	, у	2	t,	8y	t 7	I 2D	2	Ity	, D	75
t g/20T	I,I	, 8	2	Iny	7n	, n	7I	2	tt	8D	ny	I 2n	2	It7	, n	7t
tgt0T	8t	nI	,	I,8	n8	, 8	72	2	t 8	Hy	n,	I 2n	2	InD	ID	77
t g/20T	IIy	t D	t	182	t I	In	, n	2	78	5,	tt	I 25	2	ID,	7I	78
SurM	n78	I 5n	8	D) 2	I57	8y	Hn	2	, 27	7DD	I yy	n, I	2	D) 2	y5	Inn
* P COAuNHo	524D*	, 84*	I47*	h	h	n748*	t D4 *	2*	h	h	7,4*	D54y*	2*	h	h	
* SurM	724a*	1,4*	24D*	n742*	h	D4 *	54y*	2*	In4*	h	I 748*	, y4 *	2*	n742*	h	
09%	248y5	2455,	24h22	248D7	h	245yt	24y7I	h	248Dn	h	248yI	24yD;	h	24y78	h	24yn
s idorCMc T uruÆhHPC	7y2	I 57	8	t 5I	h	8y	I 25	2	IyD	h	I yD	7yn	2	t y2	h	I7t
* s idorCMec T uru/HhHPC	8y42*	yy4n*	I 22*	y, 4*	h	I 22*	y74y*	2*	yD4D*	h	y84 *	y74D*	2*	yt 4 *	h	yn42
9 FMa	Iy	2	2	Iy	h	2	I	2	I	h	2	12	2	12	h	7
* 9 FMa	n47*	2*	2*	74*	h	2*	24y*	2*	24*	h	2*	, 4n*	2*	14D*	h	, 4*
v iHiHPCue BuMt	, у	I	2	72	h	2	D	2	D	h	7	15	2	, 2	h	t
* v iHiHFCue BuMt	DD*	24D*	2*	n48*	h	2*	t 47*	2*	742*	h	14*	n42*	2*	74*	h	74y*
0FcFQAMC	h	h	h	h	ID	h	h	h	h	7t,	h	h	h	h	y,	
* OFCEGAMEC	h	h	h	h	yt 4n*	h	h	h	h	yD4*	h	h	h	h	yn48*	
v iHaHFCue) AuCRM	h	h	h	h	8	h	h	h	h	In	h	h	h	h	t	
* viHiHFCue) AcCRM	h	h	h	h	n4D*	h	h	h	h	748*	h	h	h	h	t4*	


UprcFGAMcCMc viHiHFCue) AuCRMI 4s gs Fbr3BgBidor3SgSoAl3WgWbS1Ae

2 of 6 3 of 6 5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Mon May 9, 2022
PM Peak (May 09 2022 5-56PM) 6-56 PMO) v relaillPeak u oA
CHB Hilled, igh d.anc ModollyHel, u eary, Peceldginl, RglyHel.on woac, RglyHel.on s loLimaliCO
CHMorel end.

D - 964541, i oBadgon- 563 97815,)86317679.

[S] South

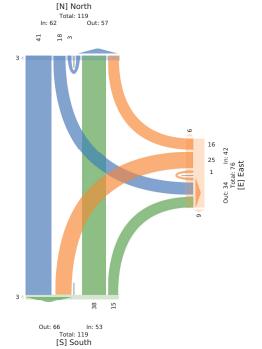
5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

Tue May 3, 20, 00 F M l eaL nMay 3, 0, 00 30F M g 3 F Mt

. m. caulinary 3., ov. oue m. g 5 P ml. Filh (h6666 fin A916 aP) MCCki yi he62d eaoy2l e) e6bAP62r Ayi he6 CP c Ca) 2r Ayi he6 CP (≤650+al4tr FhlmCnev eP16 BR√km8i 3D2: Cl a I√DPvl mFk85D1 2g6m4Dm8k7

: e-	UCSB					J apr					ECHB					
RAei MOP	ECu19. Cul	P)				S e61 CuP)				OG:19. Cul	?)				
TAv e	T	:	W	FNN	l e) U	c		W	FNN	le)U	с	T	W	FNN	le)U	BP1
0,00g,mg3,30w,FM	3D	3m	7	7I	3	8	30	3	03	m	5	0D	,	77	7	88
30vanFM	0m	7	,	08	0	8	37	,	03	3,	8	30	,	0,	,	Dk
TClah	13	38	7	D0	7	3D	0m	3	10	3m	3m	78	,	n7	7	3n5
* FNNiCai9	DD8*	0k4 *	I48*	g	8	7848*	nk4nf	04*	g	g	0847*	5345*	,*	g	g	8
* TClah	0D8*	334n#	34×*	7k4n*	8	3, 40*	3mk*	, 4D*	0D8*	g	k4D*	0I 40*	,*	7748*	g	8
1 d %	,4,,	, 47, ,	, 40m	, 4 D0	8	, 4n, ,	, 4 83	, 40m	, 4m,	g	, 4 Dk	, 47Dm	g	,4,0	g	,418
: A916 aP) MCKsi yi le6	75	38	7	nß	8	3m	0m	3	13	g	3I	7D	,	m,	g	3I k
* : A916aP) MCK3i yi le6	k, 40*	3,,*	3,,*	k74nf	g	k748*	3, , *	3,,*	k54D*	g	k747*	kI 45*	,*	ki 47*	g	kI 4k*
d eaoy	7	,	,	7	8	3	,	,	3	g	3	0	,	7	g	5
* d eaoy	547*	,*	,*	I 48*	g	DØ*	,*	,*	04*	g	D5*	m\$7*	,*	m 5 *	g	I 4nf
r Ayi le6 (P c Ca)	3	,	,	3	8	,	,	,	,	g	,	,	,	,	g	3
rAyile6CPcCa)	04	,*	,*	34D*	g	,*	,*	,*	,*	g	,*	,*	,*	,*	g	, 4D*
l e) e6kAP6	g	g	g	g	7	g	g	g	g	3m	g	g	g	g	7	
* le)e6kAP6	g	g	g	g	3,,*	g	g	g	g	3,,*	g	g	g	g	3,,*	8
r Alyi le6 CP (sC66HaliL	g	g	g	g	,	g	g	g	g	,	g	g	g	g	,	
* r Alyi he6 CP (sC66HaliL	g	g	g	g	,*	g	g	g	g	,*	g	g	g	g	,*	8

Ul e) e6isAtP6 aP) r Alyi læ6 CP (sC66HaltL4: w. ebi2c wc A 9i2TwT9su2WwMgTusP


4 of 6 5 of 6

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC

5566814 - COVID - BANK ST @ EXHIBITION WAY -... - TMC
Tue May 3, 20, 00

AM Peak (May 3, 0, 00 30AM 83 AM:
A-9-si)e) (1 GiJi agh Mr it rdyd-e)20 ear y2Pehe)iri3g)2c (dyd-e) t g Ht ah2c (dyd-e) t g
9 r.) y-a-k:
A- Mt reBegi)

Rwnt D843721 t dai(2 gm4D5 16174281D56D51.

Ottawa Transportation Services - Traffic Services

Turning Movement Count - Study Results
FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision **Full Study Diagram** O'CONNOR ST 11 1 ▓ 1835 1164 581 Total Heavy Vehicles 0 89 0 FIFTH AVE 1 4 0 + 4 891 20 5 0 1289 2 £ 113 111 t 1147 0 G **[+**] 131 + 400 J ብ 🕇 🗗 Cars **\$ %**↑ 1 0 0 Heavy Vehicles 180 296 190 198 4 *

Page 1 of 8 6 of 6

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision Device: Full Study Peak Hour Diagram O'CONNOR ST 28 **↓**↑ 1 22 13 Cars 22 FIFTH AVE 1 1 6 t 4 2 F **t** Peak Hour: 16:30 17:30 G ₽ 59 \Box A I L

%↑

*

Cars 32

Total

32 28

94

4

Transportation Services - Traffic Services

Turning Movement Count - Study Results FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Miovision Device: Full Study 15 Minute Increments O'CONNOR ST Time Period LT ST RT NOT LT ST RT S STR LT ST RT E LT ST RT 16:00 | 16:15 | 9 | 2 | 6 | 17 | 4 | 0 | 32 | 36 | 53 | 6 | 10 | 0 | 16 | 0 | 0 | 16:15 | 16:30 | 12 | 8 | 7 | 27 | 6 | 0 | 43 | 49 | 76 | 5 | 8 | 0 | 13 | 1 | 0
 17:45
 18:00
 10
 5
 7
 22
 4
 0
 25
 29
 51
 3
 2
 0
 5
 0
 0
 22

 18:00
 18:15
 7
 10
 9
 26
 9
 0
 20
 29
 55
 3
 9
 0
 12
 0
 2
 31

Note: U-Turns are included in Totals

June 16, 2023 Page 2 of 8 June 16, 2023 Page 4 of 8

Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Study Results

		FIF I II AVE	@ O CONNOR ST	
Survey Date:	Tuesday, July 26, 2022		WO No:	40492
Start Time:	16:00		Device:	Miovision
		Full Study	Cyclist Volume	
	O'CONNOR S	ST	FIFTH AVE	

		O'CONNOR ST			FIFTH AVE		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
16:00 16:15	3	6	9	7	4	11	20
16:15 16:30	4	5	9	6	8	14	23
16:30 16:45	4	9	13	3	8	11	24
16:45 17:00	3	11	14	7	8	15	29
17:00 17:15	4	8	12	7	7	14	26
17:15 17:30	1	9	10	5	15	20	30
17:30 17:45	5	14	19	1	4	5	24
17:45 18:00	0	8	8	0	5	5	13
18:00 18:15	9	9	18	5	4	9	27
18:15 18:30	2	3	5	4	6	10	15
18:30 18:45	1	5	6	10	5	15	21
18:45 19:00	4	12	16	4	4	8	24
19:00 19:15	4	4	8	5	3	8	16
19:15 19:30	3	5	8	7	0	7	15
19:30 19:45	4	7	- 11	1	3	4	15
19:45 20:00	5	3	8	4	7	11	19
20:00 20:15	5	5	10	4	7	11	21
20:15 20:30	6	3	9	3	7	10	19
20:30 20:45	3	4	7	0	4	4	11
20:45 21:00	4	4	8	1	4	5	13
21:00 21:15	3	0	3	1	2	3	6
21:15 21:30	5	2	7	2	0	2	9
21:30 21:45	1	1	2	3	0	3	5
21:45 22:00	3	2	5	1	3	4	9
22:00 22:15	4	7	11	6	4	10	21
22:15 22:30	1	0	1	0	5	5	6
22:30 22:45	0	0	0	1	3	4	4
22:45 23:00	0	1	1	0	0	0	1
23:00 23:15	1	1	2	1	1	2	4
23:15 23:30	5	0	5	1	0	1	6
23:30 23:45	1	1	2	0	0	0	2
23:45 00:00	0	4	4	2	2	4	8
Total	98	153	251	102	133	235	486

Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Study Results

40492

FIFTH AVE @ O'CONNOR ST Survey Date: Tuesday, July 26, 2022

Start Time: 16:00 Device: Miovision **Full Study Pedestrian Volume** O'CONNOR ST FIFTH AVE Time Period NB Approach SB Approach (E or W Crossing) (E or W Crossing) Grand Total Total 16:30 16:45 17:30 17:45 17:45 18:00 18:00 18:15 18:15 18:30 18:30 18:45 19:00 19:15 19:15 19:30 21:00 21:1 23:30 23:45 23:45 00:00

Turning Movement Count - Study Results

FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Device: Miovision

Full Study Heavy Vehicles

				0,00	ONNO	R ST		uii C	tua	y i ic	avy	VCI		FTH A	VE					
		N	orthbo	und		Sc	uthbou	ind			Е	astboui	nd		W	estbour	nd			
Time	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
16:00	16:15	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	-1	2	3	2
16:15	16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	17:00	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1	1
17:00	17:15	0	0	0	0	0	0	1	2	2	0	0	0	1	0	0	-1	1	2	2
17:15	17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	18:30	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	2	1
18:30	18:45	1	0	0	1	0	0	0	1	2	1	0	0	2	0	0	0	0	2	2
18:45	19:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	2	1
19:00	19:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:15	19:30	0	0	0	1	0	0	0	0	1	0	2	0	2	1	0	0	3	5	3
19:30	19:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19:45	20:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:00	20:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:15	20:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:30	20:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20:45	21:00	0	0	0	0	0	0	0	0	0	0	-1	0	3	0	2	0	3	6	3
21:00	21:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:15	21:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:30	21:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21:45	22:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	2	1
22:00	22:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22:15	22:30	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	2	1
22:30	22:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22:45	23:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:00	23:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:15	23:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:30	23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:45	00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total:	None	1	0	0	2	0	0	1	5	7	2	6	0	14	1	4	2	13	27	17

Transportation Services - Traffic Services

Turning Movement Count - Study Results FIFTH AVE @ O'CONNOR ST

Survey Date: Tuesday, July 26, 2022 WO No: 40492 Start Time: 16:00 Device: Miovision

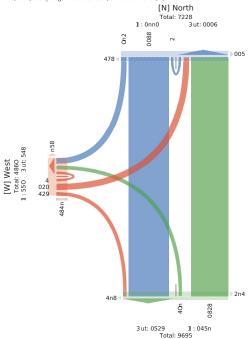
Full Study 15 Minute U-Turn Total O'CONNOR ST FIFTH AVE

	Time Pe	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	16:00	16:15	0	0	0	0	0
	16:15	16:30	0	0	0	0	0
	16:30	16:45	0	0	0	0	0
	16:45	17:00	0	0	0	0	0
	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
	17:45	18:00	0	0	0	0	0
	18:00	18:15	0	0	0	0	0
	18:15	18:30	0	0	0	0	0
	18:30	18:45	0	0	0	0	0
	18:45	19:00	0	0	0	0	0
	19:00	19:15	0	0	0	0	0
	19:15	19:30	0	0	0	0	0
	19:30	19:45	0	0	0	0	0
	19:45	20:00	0	0	0	0	0
	20:00	20:15	0	0	0	0	0
	20:15	20:30	0	0	0	0	0
	20:30	20:45	0	0	0	0	0
	20:45	21:00	0	0	0	0	0
	21:00	21:15	0	0	0	0	0
	21:15	21:30	0	0	0	0	0
	21:30	21:45	0	0	0	0	0
	21:45	22:00	0	0	0	0	0
	22:00	22:15	0	0	0	0	0
	22:15	22:30	0	0	0	0	0
	22:30	22:45	0	0	0	0	0
	22:45	23:00	0	0	0	0	0
	23:00	23:15	0	0	0	0	0
	23:15	23:30	0	0	0	0	0
- :	23:30	23:45	0	0	0	0	0
-	23:45	00:00	0	0	0	0	0
_	Tota	ıl	0	0	0	0	0

June 16, 2023 June 16, 2023 Page 7 of 8 Page 8 of 8

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC
The May3, 20F00
Th Lingshy (it AF - 9 133AF - 9 P)
ILCh Sigh (it oftely is st d 9 oyouar algi 2c gsH 2- gdgi yust 12v eur algi ot Bosd2v eur algi ot Cunii Rsh&P)
IL9 oftely gryi
nh A3FF0D842n oasyert A, 78 47521. 785D, 3. 52beg CodgA, F53, 3F:

gh eugayeot		Nouy(boly(fol	t d				boly(Nouy(folt	d				Egiy Ssiyfolto	1				
Mek g		B	W	U) pp	- gd*	W	u n	U) pp	- gd*	B	n	U) pp	- gd*	mv
E. B	0F0013F13. : AF- 9	35	347	F	033	T.	3. F	7	F	3.7	3:	:	30	F	37	, 5	:.
	: A7-9	3,	3D	F	34D	3:	3,5	0	F	3. D	30	- :	0F	F	0:	,.	:4
	c ol ulr Woys I.	: F	:.4	F	, F4	03	: 35	-	F	: 0:	07	5	: 0	F	: D	4:	
	. AFF- 9	3.	3D	F	0FF	3.	357	- :	F	35D	35	:	3.	F	3.	07	: E
	, As7-9	34	3124	F	0FD	3E	0F3	0	F	0F:	3,		3D	F	03	:7	,:
	, AF- 9	0,	3	F	0F3	34	3D	-	F	3D	3F	F	3,	F	3,	: F	, F
	, A7-9	-,	3	F	3D	00	3	3	F	3.7	07	,	34	F	0:	: 0	: E
	c ol ulr Woys I	5.	. 05	F	. 4:	. 5	. 0.	4	F	.::	57	3F	57	F	. 7	300	35F
	7AFF- 9	3D	34.	F	030	00	340	0	F	34.	34	D	07	F	::	:4	,:
	7 & 7-9	33	3D5	F	34.	07	3.3	7	F	3.5	3D		04	F	::	77	, F
	7AF-9	3:	3DD	F	0F3	П	3	7	F	300	3.	D	37	F	0:	:7	, F
	7A7-9	30	3. F	F	3D0	0:	3, .	5	F	37:	3D		03	F	0D	5.	:5
	c ol ulr Woys I	7,	.:D	F	. 40	. E	5D	3D	F	. F7	. 0	0.	4F	F	33.	345	353
	5AFF- 9	37	374	F	3. ,	:7	3, ,	3:	F	37.	3:	3F	37	F	07	, 3	:7
	5A97-9	3.	3,:	F	35F	: 4		- :	F	357	34	3	05	F	0.	47	:7
	5AF-9	3.	3, 3	F	377	50	37F	D	F	37D	05	D	07	F	::	DF	:,
	5A7-9	3:	373	F	35.	DS	33.	7	F	300	74	3F	0:	F	- ::	3:3	:3
	c ol ulr WovsL	74	74.	F	57:	000	7.:	04	F	5F0	33.	04	D4	F	33D	:70	3:.
	. AFF- 9	30	35F	F	3. 0	, 3	35:	4	F	3. 0	0.	04	3,	F	03	DF	:5
	. Ar- 9	37	357	F	3DF	: 4		7	F	3: 3	35		33	F	37	5,	:0
	. AF- 9	30	3, .	F	374	0F	334		F	30:	33	:	3D	F	03	0.	: F
	. A7-9	37	375	F	3.3	OI-	337	4	F	30.	33	3	3:	F	3,	:3	: F
	c ol ulr Woys L	7,	50D	F	5D0	3F.	70:	0.	F	77F	57	37	75	F	.3	0F.	3: F
	DAFF-9	4	330	F	303	3F	3F.	7	F	330	37	0	33	F	3:	34	0.
	D87-9	37	3: 3	F	3, 5		3F.		F	3F.	-		33	F	3D	0F	0,
	DAF- 9	30	30F	F	3: 0	00	3F0	5	F	3FD		3	33	F	30	:,	0.
	DA7-9	30	3F0	F	333	00	3FF	5	F	3FD	F	3	5	F	30	03	00
	c ol uir Wöys L	7	. 57	F	73F	:4	. 3:	3D	F	,:3	00	33	:4	F	7F	4,	44
	4AF-9	3F	4,	F	3F.	3	DD		F	43	UU	0	5	F	D D	0:	0F
	4AF-9 4A7-9	3F	4, D	F	D D	I		- :	F	43	3	7	D	F	3:	0:	34
	4AF-9	5	.7	F	DR DR	L		,	F	. D	3	:	D	F	33	37	34
	4AF-9	_	. /	F	54	3.		- 3	F	4D	30			F	33		3.
		: 00	: 34	F		3.	: 7,	30	F	:55	0,	3:	07	F	: D	5, 3: 3	3.
	c ol ulr Woys L				:,3								0/				
	3FÆF- 9 3FÆ7- 9	7	5F . 3	F	57 DF	07	. 0	5	F	. D	3D 0F	7	7	F F	5 3F	: 4: D	3, 31
	00.10. 0	7	43					- 1		45 5.	7	7		F	3F 33	13 05	31
	3FAF- 9			3	4.	,	5,	- :	F		_		5	F	33		03
	3FA.7-9	30	30.	F	3:4	4	: F0	3	F	: 37	- 1	0	,	F		00	.0
	c ol ulr Woys L	:3	:,4	3	: D8	77		3:	F		, 5	3,	34		::	707	
	33ÆF- 9	7	30F	F	307 DD	7	5F	,	F	5, 5D	0	0	7	F		0:	34
	33.As7-9			3		0	5D	F	F		- :	3		3	5	0.	35
	c ol ulr Woys I.	3F	0F0	3	03:		30D	,	F	3: 0	7		4	3	3:	7F	:7
	Woys L	:.0	, , FF	0	,,	5: 7	, FOF	3:.	F	, 37.	,,3	30D	, 0,	3	77:	3.5.	4, I
	%) ppuosa(. 82%	4080%	F%	1	1	458 %	:8%	P%	1	1	0:88%	. 58 %	F80%	1	1	
	% Woys L	: 84%	, 58 %	F%	7F8 %		, 08 %	38 %	P%	,:80%	1	38 %	, 87%	F%	780%	1	
	h(yi std9 oyouaralgi	: 7.	, 3: 3	0	,,4F	1	:.5D	3:7	F	: 4F:	1	30:	, 37	3	7:4	1	D4:
% ne	h(yi std9 oyouaralgi	4589%	4: 84%	3FF%	4,88%	- 1			P%	4: 84%	1	4588%	4.84%	3FF%	4.87%	1	4, 809
	c gsHr	,	3, .	F	373	- 1	3:7	0	F	3: .	1	F	0	F	0	1	04
	% c gsHr	38%	: 8 %	F%	: 80%	1	:8,%		P%	:8%	1	P%	F87%	F%	F8 %	1	: 88
	veralgi ot Bosd	33	300	F	3::	- 1	33.	F	F	33.	1	7		F	30	1	05
	% veralgi ot Bosd	: 87%	08D%	F%	08D%	1	084%		P%	080%	1	: 84%	38 %	F%	080%	1	080
	- gdgi yust i	1	1	1	1	53:	1	1	1	1	,:0	1	1	1	1	3., F	
		1	1	- 1	1	4587%	1	1	1	1	4D#P%	1	1	1	1	4D87%	
	% - gdgiyusti earalgi ot CupiiRsIw	1	1	1	1	00	1	1	1	1	41.017.0	1	1	1	1	41.0/70	


ngh	Nous(bol y(E giy					
I eugayeot	bol y(foltd					Nous(foltd					Ssiyf ol t d					
Wek g	В	W	U) pp	- gd*	W	n	U) pp	- gd*	В	n	U) pp	- gd*	mby

^{*-}gdgiyusti std venralgi ot CuoiiRslw8n AngQ92BABeh(y2WAW(ul 2UAU1Wiut

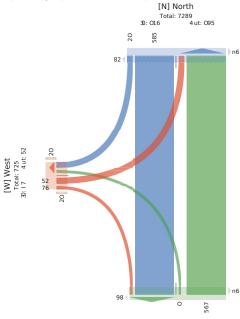
5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

5589/07 - BANN 51 & ALLEMEN AV. COLLING AV. COLLING AV. SERVICE STATES AV. COLLING AV. P. SI LEERBY 1: 3 u. A. P. SI LEERBY 1: 3 u. A. P. SI LEERBY 1: 10 LES bits 1: leet ft/3 sgd - o 75-ayr yfni 0c nsH 0Andni 2tsgi 0v tyr yfni og Bosdôv tyr yfni og Caoli RStave 1. Leo History 1: 10 Leo History 1: 1

[S] South

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

5589/07 - BANN ST WE ATLINER AVE - ULT 14 2022 - TMC The May 3, 2019 1. 16(36 LL : 6(36 LL A: M-mg/91) ngr. 1 P) u LL Ingr. In


dno	NPuyr					bP) yr					Eniy					
I enayePc	bP) yr f P) c	H				NPuyr f P)	:H				Sgiyf P) cH	I				
Wek n	R	W	U	Срр	l nH⁵	W	d	U	Срр	l nH*	R	d	U	Срр	l nH*	mry
0F00:3F:3, , (36l L	34	3D4	F	0FD	3E	0F3	0	F	0F8	3,	8	3D	F	03	86	, ;
, (8FI L	0,	3	F	0F3	34	3D,	8	F	3D	3F	F	3,	F	3,	8F	, 1
, (, 6l L		3	F	3D,	00	3.,	3	F	3.6	06	,	34	F	08	80	8
6(FFI L	3D	34,	F	030	00	340	0	F	34,	34	D	06	F	88	84	,;
WPyg9	5D	. 8.	F	DF6	D8	. 63	D	F	. 64	5D	36	. 5	F	43	385	35
% CppuPgar	DE %	4375%	F%	:	- 1	4D/4%	373%	F%	:	- 1	3576%	D876%	P%	:		
% WPyg9	, 73%	, , 76%	F%	, DI5%		, 67, %	F76%	F%	, 674%		F74%	, 75%	P%	676%		
11T	F7545	F74, 5	- :	F746F		F740D	F755.	- 1	F7404		F7, F5	F7 6F	:	F755.		F74
deoryi gcHL PyPuava9ni	58	54D	F	. 53		. F.	D	F	. 36		38	. 8	F	D5	:	36
% deor yi gcHL PyPuava9ni	4075%	4, 7 %	F%	4, 76%		4, 73%	3FF%	F%	4, 70%		D57 %	4573%	P%	4, 76%		4, 7,
1 ng-v	3	3.	F	3D	- 1	38	F	F	38	- 1	F	0	F	0		
% 1 ng- v	376%	078%	F%	070%		37 %	F%	F%	37 %		F%	075%	P%	070%		07F
Besva9ni Pc RPgH	,	00	F	05	- 1	83	F	F	83	- 1	0	3	F	8		
% Beava9ni Pc RPgH	674%	87F%	F%	870%		, 23%	F%	F%	, 73%		3878%	378%	P%	878%		875
l nHni yangci		:	- 1	- 1	. 5	:		- :	- 1	55	:		- :	- :	388	
% 1 nHni yuegci		:	- :	- 1	487D%	- :		:	- 1	4.73%			- :	- :	4. 7D%	
Beava9ni Pc s uPi i wg9t		:	- 1	- 1	6	:		- :	- 1	0	:		- :	- :	8	
% Beava9ni Pc suPiiwg9t			- 1		570%		- 1	- 1	- 1	074%			- 5	- 1	070%	

*1 nHni yungci gcHBeava9ni Pc s uPi i wg9.7d(dnOj2R(Reory2W(Wru)2U(U:W)uc

3 of 5

5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC

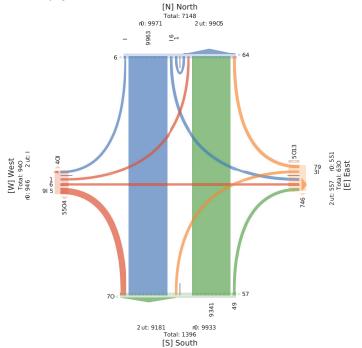
5589707 - BANK ST @ AYLMER AVE - OCT 14 2022 - TMC
Sat My7, 20PUFF
1 L leng l2(, 11 L : 1, 11 L 3: M/ean—leng 6 P) a
C -s anie in thor 7a ncHL P/Payvy-ei 06 en/w 01 eHei 7atnci 0Btyvy-ei Pc RPnH/DBtyvy-ei Pc
saPi iwn-g3
C—L PAek ec7
nb (, uuFQ 90d Pyn/Pc(214591, 0:814 D2, 8, 0bt/2 s PHe(2u., 2, u)

4 ut: 569 30: 56I Total: 7677 [S] South

5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC

5589707 - FANNA 19 ELTHU DK - UCT 14 2022 - IMC The May 3, 20F00 Til Ling by (1 of A F 9 193AF - 9 P ULCS tilg the dry (1 st d 9 oyana lagi 2c gsH 2- gdg) yast 12v ear algi ot Bosd2v ear algi ot Choil RShP ULS of the gr

4 of 5


1 of 4

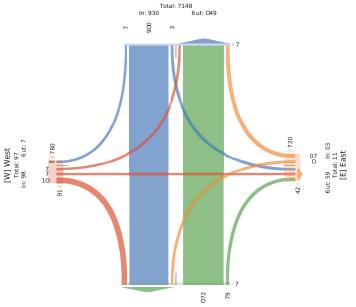
nli A3FF0D842noasy	ot A, 7	78 571	D4521	478 I)::,2	beg	Codg/	, F.	3: 3F:										Ngp	gst 21	VIIN.2	ZKUG	/J5.	2C)
ngh	Nou						Esiv					bol v(Sgiy	_					
eugayeot	bol y(f	ol t d					S giyf ol	t d				Nous fo	ol t d					Esiyf ol	t d					
¥kg	В	W	n	U) pp	- gd*	В	W	n U) pp	- gd*	В	W	n	U) pp	- gd*	В	W	n	U) pp	- gd*	my
0F0013F13, : AF- 9	F	35,	3	F	357	F	,	F	: F	4	3:	3	37.	F	F	374	F	34	F	F	F	34	70	:
: A7-9	3	3D4	0	F	35F	3		F	F F	٠.	3F		35F	F	F	35,	F	0F	F	F	F	0F	7.	
c ol uir Woys I	. 3	: IB	- :	F	: D7	3	D	F	: F	33	0:	7	14.5	F	F	: 73	F	:4	F	F	F	:4	3FD	4
, AFF- 9	F	3DD	0	F	35F	3	- :	F	3 F	,	00		34D	F	F	300	F	3.	F	F	F	3.	- ::	:
. Ai7-9	3	35.	F	F	357	F	D	F	: F	33	07	,	03.	F	F	00F	F	- 00	F	F	F	00	, D	
, AF- 9	F	0F7	0	F	0F4	F	-	F	: F	5	73		35,		F	35D	F	3.	F	F	F	3.	:,	
, A7-9	F	34	_	F	344	3	5	F	3 F	3F	7F	7	350		F	354	3	3.	F	F	F	3.	7:	
c ol uir Woys I	. 3	4. F	D	F	4.5	0	0	F	D F	:,	3, D	34	4DF		F	454	3	4F	F	F	F	4F	3. D	3.
7AFF-9	F	033	:	F	03,	F	D	F	3 F	-,	40		03:	-	F	034	F	3,	3	3	F	3		
7,87-9	F	3DB		F	3D	0	7	E	3 F		D	7	357		E	0FF	F	35	F	F	E	35	. F	
7AF-9	F	350	0	F	35.		3	F	FF	3	7:	-	3D		F	3DD	F	0:	F	F	F	0:	:5	
7A7-9	F	3. D		F	343	F	3	F	0 F	7	7.	,	37:		F	377	F	3.	F	F	F	3.	77	:
c ol uir Woys I	F	470	33	F	4.:	7	34	F	. F	03	0.5	37	4, 7		F	4. F	F	40	3	3	F	4,	35D	3.
						F		F		0.3	304	7			F				F		F	05	35D	
. AFF- 9	F	3, . 3: D	0	F	3, D	F	0	F	0 F		304	3	3, 5		F	37, 350	F	0D	F	3		05	50	:
. 267-9			3	_		,	F		3 F	3							F	00		F	F			:
. AF- 9	F	3: D	3	F	3: 5	3	- :	F	F F	:	: FF	3	343		F	340	F	35	3	F	F	0F	. 5	:
. д.7- 9	3	3: D	0	F	3, 3	4	F	F	0 F	0	: 0,	,	3: 4		F	3, 3	F	0.	F	3	F	04	. F	:
coluir Woys I	. 3	7. F		F	7.4	30	7	F	7 F	3F	50:	33	., D	-	F	. 75	F	57	3	0	F	5D	0.4	3:
4AF-9	F	37D	3	F	375	F	F	F	F F	F	OF:	3	34.		F	344	0	3D	F	F	F	3D	74	:
4/67-9	F	3. D	,	F	340	F	3	F	3 F	0	3, .	3	3:5		F	3, F	F	37	F		F	3D	7D	:
4AF-9	F	37F	3	:	37,	7	0	F	3 F	:	D	0	3:,	F	F	3:.	F	5	F	3	F	3F	: F	:
4A.7-9	F	374	:	F	3. F	3	0	F	0 F	,	70	3	30D	F	F	305	F	30	F	F	F	30	, 4	:
c ol uir Woys I	F	.::	5	:	.,7	-	7	F	, F	5	, D	7	744	F	F	7E0	0	7,	F	,	F	7D	350	30
DÆF- 9	F	33.	0	3	335	F	- :	F	F F	:	7.	3	334	F	F	33D	F	30	F	3	F	3:	34	0
D#87-9	F	3:,	- :	F	3:4	3	,	F	: F	4	05	0	33:	F	F	337	F	3,	F	F	F	3,	:3	0
DAF-9	3	30F	F	F	303	F	0	F	F F	0		F	330	F	F	330	F	5	F	F	F	5	1.	0
DA7-9	F	3F0	0	F	3F,	F	0	F	3 F	:	:5	3	3F.	F	F	3F4	F	D	F	F	F	D	: F	0
c ol uir Woys I	3	. 40	4	3	, IB	3	33	F	. F	37	3DD		D	F	F	, 70	F		F	3	F		33,	5
5AF-9	F	5.	0	F	5.	F	- :	F	F F	:	. F	3	5:	F	F	5.	F	33	F	F	F	33	0.	0
5/87-9	3	45	0	3	D	F	0	F	F F	0	4D	F	3F0	F	F	3F0	D	4	F	F	F	4	: 0	3
5AF-9	F	4D	3	0	DB	F	0	F	F F	0	:3	F	D4		F	D4	0	5	F	F	F	5	00	3
5A7-9	F	4F	0	F	40	F	3	F	F F	3	4F	F	5,		F	5,	D	0	F	F	F	0	4D	3.
c ol uir Woys I	. 3	: 03	4	-	::0	F	D	F	FF	D	035	3	: 4.		F	: 44	3D	05	F	F	F	05	37D	4
3FAFF-9	F	74	F	F	74	F	F	F	: F	:	3DF	0	40		F	4,	7.	03	F	F	F	03	, 7,	3.
3FAF- 9	F	43	F	3	40	F	F	F	0 F	0	- 3 - 3	3	57		F	5.	03	34	F	F	F	34	D	3
						P -	P	F		7							U.S							
3FAF- 9	F	50	F	3	5:	3	- :		0 F		5,	0			F	. D		4	F	F	F	4	: 4	3
3FA.7-9	F	30.	F	F	30.	F	F	F	F F	F	, D	F	44		F	44	F	4	F	3	F	D	: 3	α
c ol uIr Woys I	F	:,.	F	0	:,D	3	- :	F	4 F	3F	: 7:	7	: 3F		F	: 37	44	:4	F	3	F	: D	. FD	4
33AFF- 9	F	337	3	F	33.	F	3	F	F F	3	0:	3	. 7		F		3	5	F	F	F	5	03	3
33/67-9	F	D	F	F	D	F	F	F	F F	F	07	F	4,		F	4,	-	7	F	F	F	7	34	3.
c ol uir Woys I	F	35D	3	F	355	F	3	F	F F	3	, D	3	3:5	F	F	3, F	4	3,	F	F	F	3,	: D	- :1
Woys I	. 7	, , 0:	70	5	,,E5	0D	D)	F	:7 F	335	0.77	.,	,:.5	F	F	,,::	3F7	, 73	0	5	F	,.0	3D73	57
%) ppuosa(F88% :	5D67%	380%	F80%	1	1	4F8 % F	% O	58 % F%	1	1	38 % 5	5D8 %	F% F	%	1	1	548 %	FB %	385% 1	F%	1	1	
% Woys I	F83%,	. 87%	F87%	F83%,	480%	1	F85% F	% :	F8 % F%	38 %	1	F84%,	. 82%	F% F	%,	.8%	1	, 84%	F%	F88% I	-% ,	, 85%	1	
neh(yi st d 9 oyouaralgi	F	, 30,	, D	5	, 3DB	1	. 0	F	:: F	57	1	, 0	, 3F,	F	F	, 3, .	1		0	5	F	,74	1	DE
% neh(yi st d																			_					
9 oyouaralgi	F% :	5: 80%	508 % 3	3FP% :	5: 88%	1	4: 8D% F	% 5	8% F%	4580%	1	. 78 % 3	5: 85%	F% F	% 5	: 87%	1	5D65% 3	SFF%	3FP% I	F% 5	DE5%	1	5:8
c gsHr	F	3, .	F	F	3, .	1	F	F	3 F	3	1	F	3, 3	F	F	3, 3	1	3	F	F	F	3	1	0
% c gsHr	F%	:8%	F%	F%	:8%	1	F% F	%	085% F%	FBD%	1	F%	: 80%	P% F	%	: 80%	1	F80%	F%	P% I	F% I	F80%	1	:8
veralgi ot Bosd	7	37:	,	F	3. 0	1	00	F	3 F	0:	1	00	30,	F	F	3, .	1	٠,	F	F	F	,	1	:
% veralgi ot Bosd	3FF%	: 87%	484%	F%	:8%	1	0.80% F	%	085% F%	358 %	1	:,8%	080%	P% F	%	:8%	1	F85%	F%	P% I	F% 1	F85%	1	:8
- gdgi yast i	1	1	1	1	1	0.	1	1	1 1	1	0.7:	1	1	1	1	1	3F:	- 1	1	1	1	1	3DB.	
% - gdgi yust i	1	1	1	1		085%	1	1	1 1		5585%	1	1	1	1	_	DB%	1	1	1	1		DB%	
	-	1	1	1	1	00070	1	1	1 1	1	0	1	1	1	1	1	0	1	1	- 1	1	1	. 7	\vdash
verals of Cmil RsIv	1																							
veralgi ot CuniiRslw 6 veralgi ot CuniiRslw	1	1	- 1	- 1	- 1	488%	1	1	1 1	- 1	F88%	- 1	1	1	1	1	385%	1	1	1	1	- 1	385%	

5 of 5

5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC

5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC

5589/07 - BANK S1 (# ECHO DR - OCT 14 2022 - 1 MC Tre May 3, 2009 |
1 L Ingr h, G6 I L : 6(36 I L A: M-nug9l ngr 1 P)u
1 L Ingr h, G6 I L : 6(36 I L A: M-nug9l ngr 1 P)u
C9S- sgi ni Horry (g-HL P)Punva9ni 21 ng- v21 nithi yungci 2Banva9ni Pc RPgFPBanva9ni Pc
suPi vg9 A
C991. P- nk ncy
nk (3FF01B42d Pagg4c) (67856D152:467 D, 88, 2ben s Pth(, F. 383F8)



dno	NPug						Egiy						bP)yr						Sniy						
I enayePc	bP) y	fP)cH					S niyf P) cH					NPuyr f	P) cH					Egiyl P)	cH)					
Wek n	R	· W	/ d	U	Срр	l nH⁵	R	W	d	U	Cpp	l nH⁵	R	W	d	U	Cpp	l nH⁵	R	W	ď	U	Cpp	l nH*	may
0F00:3F:3, , (36l L	3	35,	F	F	356	F	D	F	8	F	33	06	,	03.	F	F	00F	F	00	F	F	F	00	, D	,,I
, (8Fl L	F	0F6	0	F	0F4	F		F	8	F	5	63	,	35,	F	F	35D	F	3.	F	F	F	3.	8,	, 8F
, (, 6l L	F	348	,	F	344	3	5	F	3	F	3F	6F	6	350	F	F	354	3	3.	F	F	F	3.	68	, FF
6(FFl L	F	033	8	F	03,	F	D	F	3	F	5	40	,	038	F	F	034	F	3,	3	3	F	3.		, 6.
WPygS	3	4D8	5	F	458	3	83	F	D	F	85	35D	34	D86	F	F	D80	3	. D	3	3	F	4F	345	348,
% CppuPgar	F28%	5D4%	373%	F%	:	- :	4576% 1	P% ()F76% I	7%	:	- 1	07F%	5DF%	F% I	F%	:	- :	5473%	37, %	37, %	F%	:	- :	
% WPygS	F28%	, 670%	F76%	F%.	, 674%	- :	370% 1	P%	F76% I	7%	070%	- 1	37F%	, 47F%	F% I	F%,	DIF%	- :	875%	F73%	F/3%	F%	, IF%	- :	
l1T	:	F7588	F7, 8D	:	F7588	- :	F7. 6.	:	F76D8	:	F744D	- 1	F7 DD	F758D	:	:	F75, 0	- :	F74.3	F706F	F706F	:	F74D,	- :	FZ585
deoryi gcHL PyPuava9ni	F	4, F	4	F	4, 4	- :	03	F	4	F	0D		33	4.5	F	F	4DF	- :	. 4	3	3	F	. 5	- :	3. 0,
% deor yi gcF L PyPuava9ni		5, 76%	4470%	F%:	5, 70%		. 474% 1	P% I	D476% I	7% 4	1370%		. , 74%	5, 7, % :	F% I	F% 5	870%		5D%%	3FF%	3FF%	F% 5	5DF %		5874%
1 ng-v	F	3E) F	F	3D	- :	F	F	F	F	F	- 1	F	36	F	F	36	- :	F	F	F	F	F	- :	88
% 1 ng- v	F%	0.78%	F%	F%	078%	- :	F% I	P%	P% I	7%	F%	- 1	F%	37D%	F% I	F%	370%	- :	F%	F%	F%	F%	P%	- :	375%
Beava9ni Pc RPgH	3	06	0	F	0D	- :	3F	F	3	F	33	- 1		83	F	F	84	- :	3	F	F	F	3	- :	44
% Besva9ni Pc RPgH	3FF%	870%	0070%	F%	876%	- :	8078% 1	P% :	3076% I	% (D0%	- 1	8678%	87D%	F% I	F%	, 7,%	- :	376%	F%	F%	F%	37 %	- :	, 7, %
l nHni yagci	:	:	- :	- :	- :	3	:	- :	- :	:	- :	35D	:	:	:	:	- :	F	- :	- :	:	- :	- :	3	
% 1 nHni yaegci	:					3FF%	:					3FP%						F%	- :					5074%	
Benva9ni Pc s uPi i wg9t	:	:	:	:		F	:	- 1	- :	:	:	F	:	:	:	:	:	3			:	:	:	38	
% Benva9ni Pc s uPiiwg9t				-		F%		-	-	-		P%			- :			3FF%						478%	

^{*}l nHniyungci gcHBeava9ni Pc s uPiiwg9.7d(dnG)2R(Reory2W(Wru)2U(U:W)uc

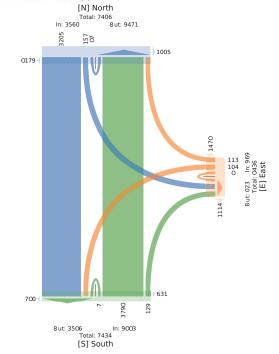
2 of 4

5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC 5589707 - BANK ST @ ECHO DR - OCT 14 2022 - TMC
Sat My7, 20PUFF
11. leng l2(, 111. : 1, 111. 3: M/ean-leng 6 P) a
C-s ani ein flotor 7a ncHL P/Payvy-ei 06 en/v01 eHei 7atnci 0Btyvy-ei Pc RPnHDBtyvy-ei Pc
saPi iwn-g3
C-L PAek ec7
nb (, uuFQ) 90d Pyn/Pc(2145. 1DB. 0:9148D25520bt/le s PHe(2u/8, 5, u.5) [N] North

6 ut: O23 In: O05 Total: 7137 [S] South

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC The May3, 20700 THL ng hy, 60 AT - 19 33 AF - 9 P) ILCEstigi findh (xi st d 9 oyour algi 2c gsH 2- gdgi yust i 2v mralgi ot Bosd2v mralgi ot Cunil Rs Ng) ILS9 otk; gr yi.

nh A3FF0D8: 2n oasyeot A, 4	47. 8D5.	, 21547.	D4D8:	2beg	CodgA	F. 353	F:						08.0.	t 2MN2		
ngh	Nou)(Esiy					bol y(
eugayeot	bol y(fol	t d				S giyf ol	t d				Nous fol	t d				
Nek g	W	n	U) pp	- gd*	В	n	U) pp	- gd*	В	W	U) pp	- gd*	
0F0013F13, : AF- 9	334	- 11	F	3, D	, 0	3:	0:	F	1.	, 4	08	8,	F	30:	3,	:
: A.4-9	88	: 4	3	3:4	0,	00	0.	F	, D	55	: 4	3F.	F	3, 3	38	
c ol uir Woys I	03,	. D	3	0D		:4	, 8	F	D,	300	٠,	0FF	F	0.,	- ::	-
, AFF- 9	334	: 4	F	34F		33	: 5	F	, D	D,	0D	8D	3	305	05	
, As4-9	335	,:	3	3.3	43	3D	03	F	:8	D4	: 5	3: 0	F	3.8	05	:
, AF- 9	33.	,:	3	3. F	.,	3.	0D	F	,,	8:	: D	33D	3	345	05	:
, A.4-9	3:0	- 11	4	35F	D	38	0,	F	,:	3, F	1,	33D	F	340	: 4	:
c ol uir Woys I	, DF	34,	5	.,3	0.3	.,	33F	F	35,	, F0	3: 5	,	0	. F4	33.	3,
4AFF- 9	348	33	0	350	3F4	3D	0:	F	, 3	335	0,	343	3	35.	,.	:
484-9	308	F	F	308	33D	F	F	F	F	34.	:	350	F	354	. F	:
4AF-9	3,:	F	F	3,:	3, 8	F	F	F	F	38F	F	358	F	358	,,	:
4A4-9	3:8	F	F	3:8	30.	F	3	F	3	0F0	F	3.0	F	3.0	. 8	:
c ol uir Woys I	45F	33	0	4D	, 8D	3D	0,	F	, 0	4	05	,	3	. 80	038	3:
. AFF- 9	3, D	F	F	3, D	0.,	F	F	3	3	00D	F	3. 5	F	3.5	4,	:
. A4-9	344	F	F	344	ODF	F	F	F	F	04F	F	350	F	350	4F	
. AF- 9	3: F	F	3	3:3	0.4	F	F	F	F	034	F	35:	F	35:		
.A4-9	3. 8	F	3	34F	. F.	F	F	F	F	OF.	F	3:.	F	3:.	4.	
c ol uir Woys I	4D0	F	0	4D	3034	F	F	3	3	D88	F	., D	F	., D	00.	30
5AFF- 9	34.	F	3	344	0	F	F	F	F	3: 5	F	3	F	3	, 3	-
5A4-9	344	F	F	344	0FF	F	F	F	F	D8	F	35F	F	35F	, F	
5AF-9	3, 0	F	F	3, 0	58	F	F	F	F	D.	F	3, 3	F	3, 3	; F	
5A4-9	300	F	F	300	36 4F	3	F	F	3	. 3	F	303	F	303	: F	
c ol uir Woys I	45:	F	3	45.	484	3	F	F	3	:53	F	48D	F	48D	3, 3	33
	-	F				3 F	F	F	3 F				F			
DÆF- 9	33, 300	F	F	33,	:5	F	F	F	F	, F 50	F	304	F	304 33F	, 3	
D84-9	_		0	30,	, 8						F	33F			, 4	
DA F- 9	8D	F	F	8D	53	F	F	F	F	D	F	333	F	333	04	(
DA 4- 9	8:	F	F	8:	1.	F	3	F	3	4.	F	D0	F	D0	04	3
c ol uir Woys I	, 05	F	0	, 08	38:	F	3	F	3	04,	F	, 0D	F	, 0D	3: .	1
8AFF- 9	8F	F	F	8F	. F	F	F	F	F	D8	F	30,	F	30,	, 3	
8A94-9	3FF	F	F	3FF	: D	F	F	F	F	30.	F	3F0	F	3F0	03	- (
8AF-9	85	F	3	8D	53	F	F	F	F	3FD	F	8.	F	8.	43	3
8A4-9	DB	F	F	DB	3, :	F	F	F	F	00F	F	D,	F	D)	4D	
c ol ulir Woys I	:. D	F	3	:.8	: 30	F	F	F	F	4, :	F	, F.	F	, F.	353	
3FÆF- 9	43	F	F	43	,,5	F	F	F	F	44.	F	DB	F	DB	: F4	3
3FA4-9	D0	F	F	120	8.	3	F	F	3	3.8	F	8F	F	8F	5F	3
3FAF-9	33D	3	F	338	. D		3	F	,	335	F	84	F	84	4.	(
3FA4-9	D8	8	F	8D	: 4	4F	33	F	. 3	8D	4	. D	F	5:	: 3	
c ol uir Woys I	:, F	3F	F	:4F	.,.	4,	30	F		8, F	4	::,	F	::8	,.0	
33AFF- 9	4,	1.	3	83	:3	08	:3	F	. F	, 5	3,	, 8	,	. 5	30	(
33A4-9	43	38	3	53	0.	00	0:	F	, 4	4D	35	, D	3		: 3	3
c ol uir Woys I	3F4	44	0	3.0	45	43	4,	F	3F4	3F4	:3	85	4	3::	,:	
Work	:.48	08D	3D	: 854	: D :	00:	04F	3	, 5,	,:F3	0	: D 3	D	. 33:	34, 5	D
%) ppuosa(8073%	574%	F74%	1		, 57F%	4075%	F70%	1	,	. 7 %	8: 7 %	F70%	, 55.	1	
% Woys I	,025%	: 74%	F70%	7%	1	07 %	078%	F%	474%	1	: 73%	,,78%	F25%	. DIF%	1	
neh(vi st d 9 oyouar algi	-	08:	3D	: 558	- 1	03.	0:5	3		- 1	044	:.00	D	: DD4	- 1	D
nen(yi st d 9 oyouar aigi % neh(yi st d 9 oyouar aigi	:,.D 8,70%	8DF %	3FF%	8473%	- 1	8.78%	8, 7D%	3FF%	, 4, 847D%	- 1	8. 7 %	8, 7 %	3FF%	8, 74%	- 1	8, 7
c gsHr	3, 0	OLE 70	3FF76	3,:	1	0. A070 F	0, AD%	SFF76	644.0%	1	0. 4.76	3:0	SFF76 F	3:4	1	
				: 7 %	- 1	F%			FZ %	- 1	373%		F%	: 7.%	- 1	: 7
% c gsHr	: 78%	F7 %	F%		- 1	F%	370% 3F	F%	F7 %	- 1	3.5%	: 7,%	F%		1	
veralgi ot Bosd	, 8	,	F	4:	- 1					- 1		DS		8:	- 1	
% veralgi ot Bosd	37 %	37.%	F%	37 %	1	: 73%	, Æ%	F%	: 7 %	1	07.%	07 %	F%	07 %	1	37
- gdgi yust i	1	1	1	1	: D03	1	1	1	1	, 0D0	1	1	1	1	3400	
% - gdgi yast i	1	1	1	1	887 %	1	1	1	1	887 %	1	1	1	1	8DE %	1
veralgi ot CuoiiRslw	- 1	1	- 1	- 1	00	1	1	1	1	38	1	1	1	1	04	


ngh Nou	u)(Esiy					bol y(
I eggayeot bol	y(foltd					S giyf ol t d					Noug(foltd					
Wik g	W	n	U) pp	- gd*	В	n	U) pp	- gd*	В	W	U) pp	- gd*	mby

% verralgi or CuoirRslw 1 1 1 1 1 FZ % 1 1

*- gdgi yusst i st d v ear algi ot CuoirRslw?n An g@2BABch(y2WAW(ul 2UAU IW ut

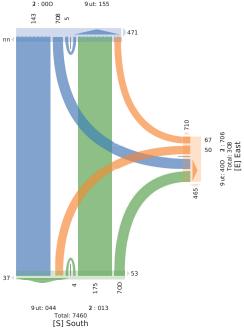
5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC

2 of 5 3 of 5

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC
The May3, 200100
11. Ing. h, G61 L. : 6, G61 L. A: M-nag991 ngr. 1 P) u
C99. Sgi hii filoroy ig cHL PyPurva9ni 21 ng-v21 nHi yangci 28 mva9ni Pe RPgH2B mva9ni Pe
suPi vog91 A
C991. P-n ki ncyi
nh (3FF0DB42d Paggd*c), 678815., 2:567. D6DB42b ng s PHn(, F. 353F4

dno	NPur					Egiy					bP) yr					
I enayePc	bP) yr f P)	cH				S niyf P) o	H				NPug f P)	cH				
Wek n	W	d	U	Срр	l nH*	R	d	U	Срр	l nH*	R	W	U	Срр	l nH*	ney
0F00:3F:3, , (361 L	335	, 4	3	3.3	63	3D	03	F	48	D6	45	340	F	3.8	05	4.8
, (4Fl L	33.	, 4	3	3. F	٠,	3.	0D	F	,,	84	4D	33D	3	365	05	4.3
, (, 61 L	340	44	6	35F	D4	38	0,	F	, 4	3, F	4,	33D	F	360	46	4.6
6(FFI L	368	33	0	350	3F6	3D	04	F	,3	335	0,	363	3	35.	, .	4D8
WPyg9	60,	34F	8	4	4F4	53	8.	F	3.5	, 46	344	638	0	. 6,	346	3, D;
% CppuPgar	587P%	387 %	37, %		:	, 076%	6576%	F%		:	0F74%	587, %	F74%	:		
% WPyg9	4674%	DID%	FZ %	,,75%	- 1	, 7D%	. 76%	P%	3374%		87F%	467F%	F3%	,,73%		
l1T	FÆBF	F756F	F7, 6F	F786F	- 1	F7843	F7D, D	- :	F78, 0		F7D 0	F7D; 0	F76FF	F7835	- 1	F78, 0
deor yi gcHL PyPusva9ni	, 86	308	8	. 44	- :	. 5	8,	F	3.3		30D	, 8,	0	. 0,		3, 3D
% deor yi gcHL PyPuava9ni	8, 76%	8870%	3FF%	8676%	- 1	8, 7, %	8578%	F%	8. 7, %		8.70%	8670%	3FF%	867,%		867 %
1 ng-v	35	F	F	35	- :	F	3	F	3		4	33	F	3,		40
% 1 ng- v	470%	F%	F%	07 %	- 1	F%	37F%	F%	FZ %		074%	073%	F%	073%		070%
Beava9ni Pc RPgH	30	3	F	34	- :	,	3	F	6		0	3,	F	3.		4,
% Beava9ni Pc RPgH	074%	F7D%	F%	07P%	- 1	67. %	37F%	F%	47P%		376%	075%	F%	07,%		074%
l nHni yugci	- :				4FF					, 40	:				306	
% 1 nHni yangci	:			- 1	887P%		- 1	- 1	- 1	8874%	:	- 1	- 1	- :	807 %	
Beava9ni Pc s uPiiwg9t	- :	- 1	- :	- 1	4	- 1	- 1	- :	- 1	4	- 1		- 1	- 1	3F	
% Beava9ni Pc s uPi i wg9t	:	- 1	- 1	- 1	377%	- 1	- 1	- 1	- 1	F/5%		- 1	- 1	- 1	57,%	:


^{*1} nHni yuegci gcHBeava9ni Pc s uPiiwg9t7d(dnG)2R(Reory2W(Wru)2U(U:W)uc

5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC

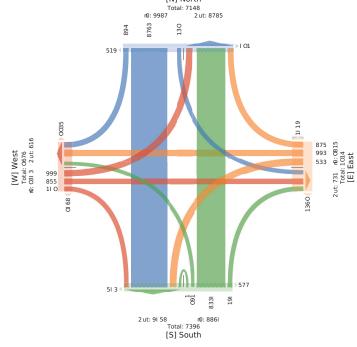
5589707 - BANK ST @ EXHIBITION WAY - OCT 14 ... - TMC
Sat My7, 20PtEF
11. leng l2(, 11 L : 1, 11 L 3: M/ean-leng 6 P) a
C-s - ani ein lidror 7a ncHL P?Payvy-ei06 en/w0l eHei 7anci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc
s aPi iwn-eg3
C-L PAek ec7
nb (, uuFD, 90d Pyn7Pc (214/5D 820: 14/8DLDS90bt7e s PHc (2u8, , , u9)

l uP-eHnHfv(s eyv POMygwg 3FFs Pciyn99gyePc I u2 Nnpngc2MN2K0G6J82sC

[N] North Total: 7404 2 : 000 9 ut: 155 143 28

4 of 5 5 of 5

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC
Tu-hhy3, 20F00
Til Ling hy (6 AF - 9 B3AF - 9 P)
Il Clisti gif (ndft/g) st df 9 oypurafigi 2c gsH 2- gdgj yust i 2v urrafigi ot Bosd2v urrafigi ot Curi IRsbP
Il 30 Hyk gs g
ih A3FF012BF2n ossyot A, 47, F3852 IS47BIS4ID. eg CodgA F8383P.


ngh	Oouj(Esiy						. ol y(S giy						
I ergayent	. ol y(b						S giybo						Oouj(bo						Esiybol						
Wek g	В	W		U) NN	- gd+	В	W		U) NN	- gd+	В	W	n	U) NN	- gd+	В	W		U) NN	- gd+	mby
0F0013F13, : AF- 9	8	3:8	3F	F	340	83	8	5	34	F	0Đ	5F	3	3FD	F	F	3FJ	: 4	5	34	3:	F	:4	J3	: 0,
: A.4-9	3:	308	4	F	3,,	: 5	8	D	3:	F	05	J:	0	3F8	3	F	3FJ	: D	J	D	35	F	:,	88	: 3,
c ol ufr Woys I.	3J	080	34	F	0J8	JD	30	34	0D	F	44	38:	:	03,	3	F	03D	5:	38	0:	: F	F	8J	345	8: D
, AFF- 9	3:	304	8	F	3,,	- ,:	4	30	3,	F	:3	DB	4	33,	8	F	304	, 3	3,	34	3:	F	,0	5,	:,0
, A4-9	5	3:5	,	F	3, D	, F	4	3,	38	F	:4	3FD	J	30J	- :	3	3, 0	0J	3F	35	33	F	: D	85	: 8:
, AF- 9	3,	3, 0	8	F	380	, D	33	3F	3J	F	, F	3: D	33	33F	- 1	F	30,	3D	33	3,	33	F	:8	D)	: 80
, A.4-9	J	34:		F	35F	- ,:	3,	3,	03	F	, Ј	3F8	5	303	,	F	3:0	- ::	30	30	33	F	:4	J,	: D8
c ol ufr Woys I.	,:	445	0,	F	80,	35,	:4	4F	5F	F	344	,:D	: 0	, 5,	38	3	40:	303	, 5	4D	, 8	F	343	: 3J	3, 4:
4ÆF- 9	34	345	D	F	3DF	: 5	5	33	03	F	:J	3F4	J	304	8	F	3, F	- , ,	5	33	03	F	:J	D)	:JD
4/84-9	38	3, 5	33	F	35,	, 0	3J	38	3F	F	, 4	3:5	3F	3F,	8	F	30F	- ::	D	34	34	F	: D	DD	: 55
4AF-9	3D	3, 0	,	F	38,	4,	30	0F	3J	F	43	3, F	3F	3F:	5	F	30F	40	J	34	3:	F	:5	3F4	: 50
4A,4-9	34	38:	J	F	3D6	:8	3,	00	03	F	45	38F	3:	55	,	F	J,	, F	4	33	34	F	:3	300	: 8J
c ol ulr Woys I.	8,	8FJ	: 0	F	5F4	38J	40	8J	53	F	3J0	4, 0	, 0	, FJ	0:	F	, 5,	38J	0J	40	8,	F	3, 4	:33	3438
8ÆF- 9	34	34D	D	F	3DB	, D	D	3J	00	F	, J	35D	38	333	8	F	3::	- ::	3:	03	0F	F	4,	3, 8	, 35
8/84÷9	3:	343	8	F	35F	80	3J	0:	3D	F	8F	0F3	5	IJ	8	F	330	, 5	J	3J	03	F	, Ј	3J5	: J3
8AF-9	30	34:	- :	F	38D	8:	33	3D	3,	F	,:	0, F	3:	33:	0	F	30D	, J	D	34	3,	F	:5	38J	: 58
8A,4-9	3J	383	5	F	3D6	48	33	3J	30	F	, 0	0J4	D	D8	4	F	J,	,:	33	35	3,	F	,0	383	: 84
c ol uir Woys I.	4J	80:	0,	F	5F8	00J	, J	5J	88	F	3J,	J3,	.,,	, F,	3J	F	, 85	350	, 3	50	8J	F	3D0	85:	34, J
5AF-9	38	3: D	D	F	380	04	3:	3D	0F	F	43	3J4	30	3F5	4	F	30,	:8	3,	3:	38	F	,:	308	: DF
5/84÷9	38	388	D	F	3JF	, F	0F	04	3,	F	4J	34J	30	3F5	4	F	30,	0J	5	38	3D	F	, 3	5D	, 3,
5AF-9	30	3:3	30	F	344	: F	0F	D	0,	F	40	335	30	DI	5	F	3FD	, 3	5	3F	3D	F	:4	DS	: 4F
5A.4-9	8	330	D	F	308	0:	33	35	03	F	, Ј	33J	4	J3	8	F	3F0	0J	38	30	3,	F	,0	4:	: 3J
c ol ufr Woys I.	4F	4, 5	:8	F	8::	33D	8,	8D	5J	F	033	4JF	, 3	:J,	0:	F	, 4D	3:4	,,	43	88	F	383	:,,	3, 8:
D#F-9	33	3FJ	0	F	300	08	D	3F	08	F	,,	88	5	J8	D	F	333	: 8	D	D	J	F	04	48	: F0
D#4-9	33	3F:	8	F	30F	04	33	D	0:	F	, 0	J:	5	85	5	F	DB	,:	5	3F	33	F	0D	85	053
DAF-9	4	333	4	F	303	8	38	3:	0F	F	, Ј	8D	8	D8	4	F	J0	0:	5	D	3,	F	0J	, 0	0J3
DA.4-9	4	D4	,	F	J,	0,	3:	33	J	F	::	3F0	3	55	:	F	DB	0:	J		5	F	0F	: D	00D
c ol uir Woys I.	:0	, FD	35	F	, 45	EB	, D	, 0	5D	F	38D	: 0J	03	: 03	0:	F	: 84	304	:3	: F	, 3	F	3F0	0F:	3FJ0
JÆF-9	3,	J4	,	F	33:	0D	5	3:	3:	F	::	JD	0	58	4	F	D	0,		3F	J	F	0:	4J	040
J A4-9	33	3F:	J	F	30:	0:	30	J	3F	F	:3	33,	4	4D	- :	3	85	:3			33	F	3J	8F	0, F
JAF-9	8	3F5	5	F	30F	0:	3F	33	33	F	:0	334	3,	88		F	D)	: F	8	J	30	F	05	:3	08:
J.A.4-9	0	J5	- :	F	3F0	:3	3F	3:	3F	F	::	3DB	J	50	8	F	EБ	:3	D	J	38	F	::	J0	044
c ol ulr Woys I.	- ::	, F0	0:	F	, 4D	3F4	:J	, 8	,,	F	30J	43:	: F	050	3D	3	: 03	338	00	: 0	, D	F	3F0	0, 0	3F3F
3FAFF- 9	8	5:		F	D0	55	3:	3J	D	F	, F	, D	8	8J	4	F	DF	D	,	4	35	F	80	0F4	00D
3FA4-9	30	5D	5	F	J5	: F	30	38	3F	F	: D	: 50	:	J:	8	F	3F0	5:	4	J	0,	F	: D	300	054
3FAF- 9	3D	J0	8	F	338	: F	04	0F	33	F	48	38J	8	5,	,	F	D)	:3	J	J	35	F	:4	8D	0J3
3FA4-9	5	D4	- 1	F	J4	34	0F	J	38	F	, 4	3F:	5	3FF	3	F	3FD	38	4	3F	34	F	: F	: F	05D
c oluất Wóys I.	,:	: 0D	3J	F	:JF	340	5F	8,	, 4	F	35J	330D	00	::8	38	F	: 5,	0FJ	0:	::	5:	F	30J	, 04	3F50
33ÆF- 9	:	58	5	F	DB	5	30		3F	F	08	84	0	JF	0	F	J,	3F	4	,	- :	F	30	00	03D
33Æ4-9	3	5Đ		F	D	- :	,	- :	J	F	38	- ::	J	J0	3	F	3F0	3D	- :	F	,	F	5	3,	0FD
c ol ulr Woys I.	,	34,	33	F	38J	3F	38	5	3J	F	, 0	JD	33	3D0	:	F	3J8	0D	D	,	5	F	3J	:8	, 08
Vóys I.	:,5	:DF	0F3	F	,,:D	33:8	: D4	,,F	4FF	F	3: 04	, 534	0,8	: FF8	3, 0	0	::J8	33, D	083	: 44		F	3F8F	05JD	3F03J
%) NNiosa(57D%	D575%	, 74% F	%	1	1	0J73%:	: 70% :	575% F	2%	1	- 1	570% I	DD4%	, 70%	F23%	1	1	0,78%:	: 74% ,	371% F	7%	1	- 1	1
% Woys I.	: 7,%	DB%	07P% F	%,	: 7,%	1	: 70%	, 7.%	, 7% F	%3	3: 7 P%	- 1	07%	JJ 7, %	37, %	P%:	: 70%	1	078%	: 74%	, 2 % F	% 3	F7, %	- 1	1
neh(yi st d 9 oyouar algi	::,	:8J0	3JD	F	, 00,	1	: DB	:J,	, J:	F	308D	- 1	0:,	05JF	3:4	0	: 383	1	04,	: 38	,:D	F	3FFD	- 1	J883
% neh(yistd																									
9 oyour algi			1024% F			1	JJ7F% I	DI 74%.	DB% F			- 1	J43% J		1473% 3			1	J57 % I		DB% F			- 1	J, 74%
c gsHr	0	3:8	- :	F	3, 3	1	3		,	F	D	- 1	- :	30D		F	3:4	1	3	0	- :	F	8	- 1	0JF
% c gsHr	F78%	: 74%	374% F		: 70%	1	F7. %	FЉ%	F7D% F		F78%	1	370%	, 7%	070%	P%	, 7P%	1		F78%	F75% F		F78%	1	070%
væralgi ot Bosd	33	80	F	F	5:	1		,:	- 1	F	, J	1	J	DD	- :	F	3FF	1	8	: 5	- :	F	,8	1	08D
% verralgi ot Bosd	: 70%	378%	P% F	%	378%	1	F7D%	J 7D%	F78% F	2%	: 75%	1	: 25%	07/96	073%	P%	071%	1	07 % 3	8F7 %	F/5% F	7%	, 2%	1	078%
- gdgi yast i	1	1	1	1	1	3300	1	1	1	1	1	, 530	1	1	1	1	1	33: J	1	1	1	1		055J	
% - gdgi yæst i	1	1	1	1	13	DID%	1	1	1	1	1 J	J71%	1	1	1	1	1.1	J70%	1	1	1	1		JZ %	1
verralgi ot CuoiiRshv	1	1	1	1	1	3,	1	1	1	1	1	- :	1	1	1	1	1	J	1	1	1	1	1	3J	
% verralgi ot CuoiiRslw	1	1	1	1	1	370%	1	1	1	1	1	FB%	1	1	1	1	1	FZD%	1	1	1	1	1	F75%	1
* - gdgi yust i st d v ea											J1W u														

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

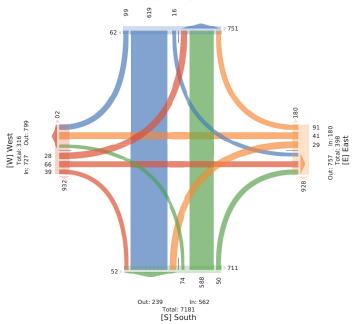
55897/07 - BANK ST @ HFTH AVE - OCT 14 2022 - IMC
Sat My7, 20F0F
ST LE ngh7 E 3 u A - 6, 3 u A - P
J LICEStini Leth(7 sgd - o7ooyryfniOc nsH OAndni 7asgiOv tyr yfni og BosdOv tyr yfni og
Caoi 18.8 kbP
J L- oHkk ng7
nt 3, uuFD u0e oys7og32942u, 5. 06 94D 9D08t7a Codn32u5, 5, u:

[N] North

1 of 4 2 of 4

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

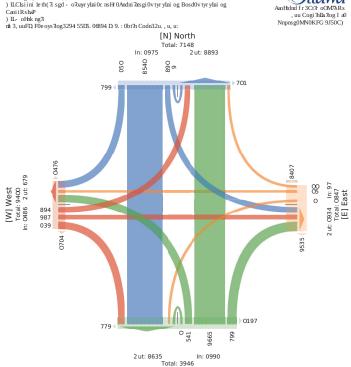
onr	O) ujc						Egdy						5) Gc						S ndy						
Denaye) H	5) Cycb)	Ωħ					S ndyb)	Οŧν					O) ujcb	(Hz)					Egdyb)	CHv					
Wenn	w	W	0	U	s NN	l nv+	w	W	0	U	s NN	l nv*	w	W	0	U	s NN	l m/+	w	W	0	U	s NN	l nv+	IHy
0F00:3F:3, (6(1L	3(3A	J	F	348	. A	3,	00	03	F	(8	3AF	3.	88	,	F	J,	, F	(33	3(F	. 3	300	. AJ
AGFFI L	3(3(4	4	F	343	,4	4	3J	00	F	, Ј	384	3A	333	A	F	3		3.	03	0F	F	(,	3, A	, 38
A63(1 L	3.	3(3	A	F	38F	A0	3J	0.	34	F	AF	0F3	8	IJ	A	F	330	, 8	J	3J	03	F	, J	3J8	. J3
AG FI L	30	3(.		F	3A4	A	33	34	3,	F	,.	0, F	3.	33.	0	F	304	, J	- 4	3(3,	F	. 8	3AJ	. 8A
Wjygl	((A0(0A	F	8FA	0FJ	(0	40	8(F	0FJ	88J	, J	, FF	34	F	, AB	3AJ	. (AA	8F	F	383	Α,	3((.
% s NNi) gac	874%	447(%	. 78% 1	F%	:	:	0, 71%	J 70%	.(7%	P%	- :	- :	3F7(%	4(7B%	. 71%	F%	:	- :	0F7(%	. 474%	F7%	F%	:	:	- :
% WJ yg1	.7(%,	F70%	378% 1	F%,	(7%	:	. 7.%	(7%	, 74%	P% 3	3.7(%	:	. 70%	0(74%	370%	F%.	F75%	- :	07. %	, 70%	, 7, %	F% 3	372%	:	:
1 P T	F3 FF	F3A	F7800	- :	FØ, A	- :	F7A4,	F748(F74(0	:	F74A,		F78(F	F744,	F7A48	- : :	F74J0	- :	F748.	F7844	F74	- : :	F7BJ0	- :	FJ.,
oercydgHvL)y)uaBalad	(,	(4F	0A	F	AAF	- :	(0	88	8(F	0F,		,4	. (J	3(F	, 00	- :	. (A	8F	F	3A4	- :	3, (,
% oercyd gHv L)y) uaBalad		J 074%	3FF% I	F% 1	1.7(%		3FF%.	J. 7J%	3FF%	P% 1	187496		J47F%	4J 74%	4. 7 % 1	P% J	F7 %		3FP%	J(7%	3FP%	P% J	470%	-	J. 7466
P ng9B	F	. A	F	F	. A	- :	F	F	F	F	F		F	. F	3	F	. 3	- :	F	F	F	F	F	- :	A6
% P ng9B	P%	(74%	F% I	F%	(23%	:	F%	P%	F%	P%	P%	- :	P%	87,%	(74%)	F%	A7P86	- :	P%	F%	F%	F%	P%	:	, 7.%
ResBaind) Hw) gv	3	J	F	F	3F	:	F	(F	F	(- :	3	33	0	F	3,	- :	F		F	F		:	. 0
% ResBaind) Hw) gv	374%	37,%	F% I	F%	37,%	:	F%	A33%	F%	P%	07, %	:	07F%	074%	3373%	F%	. IP%	- :	P%	,7%	F%	F%	374%	:	073%
l nyndyngiti	- 1	- :	- :	- :	- 1	0FA	- :	- 1	- 1	- 1	- :	88J	- :	- :	- 1	- 1	- 1	3A,	- :	- :	- :	- 1	- 1	A 3	
% l nvndyægHd	:	:	:	:	: 1	1474%	:	:	:	:	- 12	BFF%	:	- :	:	:	- ::	187P%	:	:	- :	:	: J	J7(%	:
RenBalnd) Hi u) ddk glt	:	:	:	:	- :		:	:	:	:	- :	F	:	- :	:	:	- :	(:	:	- :	:	:	-	
% RenBalnd) Hi u) ddk glt	:	:	- :	- :	- :	37, %	:	:	:	- :	- :	F%	:	- :	:	- 1	- :	. IP%	:	:	:	:	:	F7(%	- :


^{*1} nvndyugHtlgHv ReaBa Ind) Hi u) ddk git 7o 6o nfy2w6wer cy2W6WcuC2U6U: WCuH

5589707 - BANK ST @ FIFTH AVE - OCT 14 2022 - TMC

5589707 - BANK 7 & HFTH AVE - OCT 14 2022 - TMC
Sat My7, 20FUFF
I. I. leng ft [2 | I. 1 : 32 | I. 1 & M-confoil eng P | Ca
s 66 i Giddelth ort 7d Inft L) 7) ay ByGeDP en - B0l eved 7an HDR tyByGed | Hw) nv0R tyByGed | H
i a) dk nigA
s 66. L) - eme - HI
ID1, uuF9, u00) yn7) H12 (-2u, 350:5(-495(-90. T& i.) ve12u3, 3, u8

3 of 4 4 of 4


5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC
Tur Mry 3, 20F00
Till ang hy (£ AF - 9 193AF - 9 P)
Jil Clisti gi field y st d 9 opear a figi 2c gsH 2 - gdgj usst i 2v ear algi ot Bosd2v ear algi ot Canii Rsb.P)
Jil 9 oligk gi y
A AFFORD/2020nosyot A 47 881ES21. 4751545: 2bog CodgA F53F3F:

3FF Cot i ygllsyeot I u2Ngp

l uP-eHnHfv(s eyv POMyygwg 3FFs Pciyn99gyePc I u2 Nnpngc2MN2K0G 6J82s C

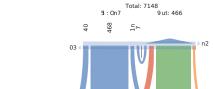
nh A3FF0D802noasy	ot A, 4	7 88I	26521.	475DE	45: 2	beyg (CodgA,	F53F	3F:							511	Cut	,,6.22	<i>y</i>		B./. 2.		-	JO2-C)	,
ngh	Nou(Esiy						bol y(Sgiy	_				\top	\neg
I eigayeot	bol y(fo	ol t d					Sgiyfo	l t d					Nous(f	ol t d					Esiyf ol	t d					
Wekg	В	W	n	U) pp	- gd+	В	W	n	U) pp	- gd+	В	W	n	U) pp	- gd+	В	W	n	U)	pp - 1	şl÷ my	,
0F0013F13, : AF-9	8	3:8		F	344	38	F	F	F	F	F	8F	30	3F4	8	F	305	,:	5	-,	D	F			880
: A4-9	38	308	5	F	34,	1.	3	F	F	F	3	33F	03	300	33	F	34,	, 4	38	0	-	F	0D	,8 :	::.
c ol ulr Woysl	0D	05D	3:	F	: F8	45	3	F	F	F	3	0FF	::	00.	0F	F	0DF	DD	04	5	34	F	,5	88 5	5:5
, ÆF- 9	-	308	4	F	3, 3	: 3	3	F	3	F	0	33F	3D	3F4	D	F	3: 3	40	3:	5	8	F	0Đ	:8:	F0
, A4-9	-	3,,	5	F	34.	: F	F	F	F	F	F	333	3,	3, ,	33	F	358	4:	38		3F	F	5	, D :	: 50
, AF- 9	0F	3::	4	F	34D	04	F	F	F	F	F	34F	00	3:,	35	F	3. 0	50	3D	4	34	F	D	4D :	5D
, A4-9	30	354	5	3	3D	- 1,	F	F	F	F	F	3.,	38	300	35	F	34.	, 4	35	-	30	F	4	5: :	. 5
c ol ulz Wóys l	, 5	4.3	00	3	5, F	30F	3	F	3	F	0	4,4	- :	4F4	43	F	508	030	55	04	,5	F 3	. ()FD 3,	, FD
4AFF- 9	34	3, .	3F	F	3.0	0,	3	F	F	F	3	3, F	03	3, F	33	F	3. 0	45	38	D	8	F	5		DB
4A4-9	34	33D	0F	F	34:	0:	F	0	F	F	0	3:.	,.	333	34	F	3.:	83	3F	30	30	F	,	DB :	50
4AF-9	-	30,	3.	F	3, D		F	F	F	F	F	383	:3	3F5	04	F	350	- :	8	3F	33	F	F	5D :	, F
4A.4-9	3.	33D	3D	F	34:	50	F	:	F	F	- :	0,8	, 0		05	F	3, 4	85	38	30	3F	F	, 3	BF. :	, 0
c ol uir Woys l	4,	4F.	54	F	505	3D	3	4	F	F	5	. 3.	3, 3	,:,		F	540	: 35	4.	, 0	, 0	F 3	3 :	30 3,	04
5ÆF-9	35	34:	3,	F	3D	58	3	- :	F	F	,	0,4	- 1.	300	0F	F	3.8	304	3:	3F	33	F	,	, 000	FF
5A4-9	03	3:0	3:	F	355	33,	F	F	F	F	F	1.1	:5	8.	03	F	34,	3, 0	38	30	,	F	4	3, F :	44
5AF-9	33	30:	3.	F	343	8F	F	F	F	F	F	05D	:5	33,	00	F	3.0	03:	3,	8	-,	F	D. (3. :	4F
5A4-9	0.	304	D	F	35F	8.	F	F	F	F	F	04,	::		04	F	3:4	3D6	35	-	-	F	F ()F. :	04
c ol ulr Wóysl	. 4	4::	40	F	55F	:.F	3	:	F	F	,	33, F	3, 0	, 3F	DD	F	5, F	555	50	: D	05	F 3	05	5D5 3,	: F
. ÆF- 9	8	3:,	3,	F	34.	D0	F	0	F	F	0	03,	04	330	35	F	34:	35F	00	5	3F	F	D 3	.F :	4F
. A4-9	03	3:3	3.	F	358	- ,:	F	F	F	F	F	3.,	4F	33:	05	F	3D8	30F	35	8	3F	F	4	38 :	8:
. AF- 9	34	3::	3,	F	350	0D	F	F	F	F	F	35F	- 11	85	34	F	3, ,	55	3D	3,	3:	F	.4	54 :	43
. A4-9	35	33,	3F	F	3, F	:5	F	F	F	F	F	3.:	0:	DD	35	F	30.	40	3F	-	34	F	0	55 0	088
c ol ulz Wóys l	53	430	44	F	50D	3D8	F	0	F	F	0	. 03	3:3	, F8	:	F	53:	: 8D	55	:5	, D	F 3	4F .	0F 3:	8:
DÆF-9	3D	3FF	30	F	3: F	- 1.	F	F	F	F	F	3F,	03	D8	35	F	305	- 1.	30	3:	D	F	::	.4 0	0DB
D\$4-9	5	3F5	D	F	30F	04	F	F	F	F	F	308	03	D)	3,	F	338	: F	30	30	8	F	:	40 0	0.0
DAF-9	3F	3F0	8	F	303	3D	F	3	F	F	3	3:0	0,	. F	30	F	3F5	: D	33	8	3,	F	,	45 0	050
DA4-9	-		3F	F	8,	3,	F	3	F	F	3	333	D	58	30	F	D8	:3	30	-,	30	F	0D	0. 0	030
c ol ulz Wóys l	, 3	: D4	:8	F	, 54	8,	F	0	F	F	0	,.5	,	: 30	4,	F	,,F	3:5	,.	: D	y.:	F 3	0D 3	BDF 3F	F: 4
8AFF- 9	38	D4	8	F	33:	:3	F	F	F	F	F	304	0F	. 0	3.	F	3F8	, 4	D	D	33	F	0.	, 8 0	0, 8
8/84-9	34		5	F	8,	- 12	F	F	F	F	F	353	0F	5F	38	F	88	4,	0,	3F	-	F	.3	, 8 0	D: ,
8AF-9	34	- ::	D	F	85	: 4	5	F	F	F	5	35.	35	5.	35	F	88		05	D	-	F	. 3	54 0	0, 0
8A.4-9	03	5.	D	F	85	: D	F	F	F	F	F	04,	38	4F	8	F	. D	40	3D		3F	F	4	83 0	0F8
c ol ulr Wóysl	. F	08D	:3	F	: 88	3, .	5	F	F	F	5	. F.	. 4	0, 8	53	F	: D4	384	. 5	- ::	:4	F 3	, (34, 8	B:,
3FAFF- 9	3:	, D	D	F	58	D	F	F	F	F	F	:.4	3F	5.	5	3	D)	3.3		0	34	F	0, :	.0 3	3
3FÆ4-9	34	5D	D	F	83	4D	F	F	F	F	F	0D0	3,	5:	34	F	80	8,	35	-	8	F	0 3	900 0	034
3FAF-9	30	D	5	F	3F4	, 8	F	:	F	F	- :	0F,	3,	. 8	38	F	330	43	00	4	33	F	D	5: 0	04D
3FA-4-9	0:	D,	D	F	334	5F	F	F	F	F	F	3: F	3:	D0	00	F	33.	3.	0F	4	D	F	::		054
c ol ulz Wóysl	5:	0D	: F	F	: DF	04,	F	- :	F	F	- 1	883	43	083	50	3	, F4	:::	54	38	- ,:	F 3	D	EDD 8	B34
33ÆF-9	D	.,	33	3	8,	3.	F	F	F	F	F	DF	0	. 4	30	F	DB	: D	8	F	35	F	04	:8 0	0FD
33A4-9	4	55		F	٠,	D	3	F	F	F	3	44	F	D	D	F	83	3.	8	F	5	F	34	:: 3	3DB
c ol ulz Wóys l	3:	3, F	3,	3	35D	04	3	F	F	F	3	3:4	0	34D	0F	F	3DF	44	3D	F	00	F	F	.0 :	DB
Wóysl	, 43	: 4F3	: 03	0	, 0. 4	3, : D	33	34	3	F	0.	45:0	. 00	0884	4F5	3	, 00,	0:88	, D0	0:.	: 0F	F 3F	8 01	288 84	454
%) ppuosa(3F74% I	0878%	. 74%	F%	1	- 1	, FZ % 4	4475%	7.% F	296	1	1	3. 73%	. F78%	307P%	F%	1	- 1	, 57, % 0	070%:	F7D% F	%	1	1	1
% Woysl	. 7 %:	575%	: 7,%	F%,	, 7%	- 1	F73%	F70%	P% F	296	FZ %	1	. 74%	: 37 %	47 %	F%,	, 70%	- 1	47F%	074%	: 7% P	% 3F7E	%	1	1
neh(vi st d 9 oyour algi	:	: 080	:3D	3	, F4,	- 1		3	F	F	-	1	. 0F	0D8,	, 83	3	, F05	- 1	0	005	: 3.	F 3F	34	1 8F	F88
% neh(vi st d																			-					_	\neg
9 oyouralgi			8873% 4			1		57 %	P% F			1	887 %					1	8. 78% 8				%	1847	
c gsHr	3	3, 3	3	F	3,:	- 1	F	F	F	F	F	1	F	3:,	8	F	3, :	- 1		3		F	_		08:
%cgsHr	F70%	, T%	FZ %	F%	: 7%	- 1	P%	F%	P% F		P%	1	P%	, 74%	37D%	F%	: 7,%	- 1	F75%		F78% P				3%
venralgi ot Bosd		5D	0	3	. D	- 1	D	3,	3	F	0:	1	0		5	F	44	- 1		3F	F	F	3.	1 3	3. :
% verralgi ot Bosd	375%	378%	F75% 4	FF%	370%	1	. 07. % 8	B: 7 % 3	BFP% F	% E	1470%	1	F7.%	375%	370%	F%	37 %	1	374%	, 70%	F% F	% 375	%	1 37	D%
- gdgi yast i	1	1	1	1	1	3, 08	1	1	1	1	1	453:	1	1	1	1	1	0:53	1	1	1	1	1 0.	8:	٦

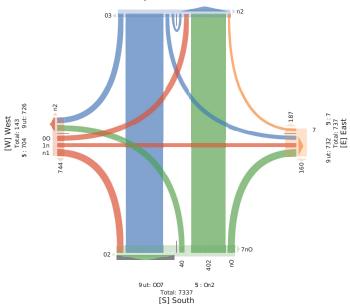
5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC

[S] South

1 of 4

5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC


5589707 - BANK 51' @ HOLMWOOD AVE - OCT 14 20... - TMC
The May 3, 200° BO |
1L lngs h, G6 | L : G(36 | L A: M-nag9l ng; 1 P) u
C98- ggì nì thượn gi chi L. PjPava 3ni 21 ng- v21 ni hi yang ci 2Bau va9ni Pc RPgFB Bau va9ni Pc
si Pli vgi 1 A
C99L P- nk nc y
nà (3FF01B02d PaggMeC), 64'881B52:: 64'056572b gn s Phú (, F53F3F7


dno	NPusr						Egiy						bP) yr						Sniy						
I enayePc	bP) yr f	P) cH					S niyf	P) cI	ł				NPuyr f	P) cH					Egiyf P)cH					
Wek n	R	W	d	U	Срр	l nH*	R	W	d	U	Срр	l nH°	R	W	d	U	Срр	l nH*	R	W	ď	U	Срр	lnH⁵	may
0F00:3F:3, , (36l L		3, ,	5	F	36.	7F	F	F	F	F	F	333	3,	3, ,	33	F	358	67	38		3F	F	75	, D	750
, (7Fl L	0F	377	6	F	36D	06	F	F	F	F	F	36F	00	37,	35	F	3.0	50	3D	6	36	F	7D	6D	75E
, (, 6l L	30	356	5	3	3D,	7,	F	F	F	F	F	3.,	38	300	35	F	36.	, 6	35		30	F	76	57	7. 5
6(FFl L	36	3, .	3F	F	3. 0	0,	3	F	F	F	3	3, F	03	3, F	33	F	3. 0	65	38	D	8	F	75	65	7D8
WPyg9	6,	6D8	0.	3	5. 3	337	3	F	F	F	3	6.6	. 5	6, F	6,	F	5. F	035	. 0	0.	, 5	F	3, 6	006	3, D
% СрриРуаг	D4F%	D 40%	, 47%	F48%	:	:	3FF%	F% I	F% I	%	:	- :	3347%	IF45%	D8%	F%	:	- :	, 84 %	3D45%	734 %	F%	:	:	
% WPyg9	745%	7845%	340%	F48%	, 648%	:	F48%	P% I	F% I	% F	F48%	- :	643%	7547%	745%	F%,	648%		, 42%	342%	748%	F%	840%	- :	:
11T	F4557	F4080	F4 00		F483D	:	F406F	:	:	: F	406F	- :	F415,	F4873	F400D	:	F48. 0	- :	F487,	F4 6F	F4 5.	- :	F4867	:	F48. 8
deor yi gcHL PyPuava9ni	60	657	05	F	5, 3	:	3	F	F	F	3	- :	. 5	600	60	F	56F		. F	07	, 5	F	378	- :	3, 73
% deor yi gcH L PyPusva9ni		8645%	8547%	P%	8646%		3FF%	P% !	P% I	% 3	FP%	:	3FF%	854 %	8547%	F% 8	3. 4P%		8. 40%	D640%	3FP%	F% 8	3648%		8540%
1 ng- v	3	36	F	F	35	:	F	F	F	F	F	- :	F	3,	3	F	36		3	3	F	F	0	:	77
% 1 ng- v	348%	046%	F%	P%	04 %	:	F%	F% I	F% I	%	P%	- :	F%	045%	348%	F%	040%	- :	34 %	74 %	F%	F%	34 %	:	040%
Benva9ni Pc RPgH	3	33	3	3	3,	:	F	F	F	F	F	- :	F	,	3	F	6		3	7	F	F	,	:	07
% Beava9ni Pc RPgH	348%	348%	74 %	3FP%	048%	:	F%	F% I	F% I	%	P%	- :	F%	F4 %	348%	F%	F4 %	- :	34 %	3348%	F%	F%	040%	:	346%
l nHni yargci		- :			- :	337	- :	- :	- 5	:	- :	6.3	:	:	- :	- :	:	03F	- :	- :	- :	- 1	- :	003	
% 1 nHni yuggci		- :	- :			3FF%	- 1	- :	- 1	:	- : 1	8847%	:	- :	- :	- :	- 1	8. 40%		- :	:	- 1	: 1	3D40%	- :
Benva9ni Pc s uPi i wg9.	:		:	:	:	F	:	- 1			- :	,	:	:	- :	- 1	:	5	:		:	- 1	- :	,	
% Benva9ni Pc s uPiiwg9t	-	-				P%			- 1		-	F4 %			-			040%			-	- 1		340%	

^{*}l nHni yugoci gcHBeava9ni Pc s uPi i wg9.4d(dnOj2R(Reory2W(Wru) 2U(U:W) uc

5589707 - BANK ST @ HOLMWOOD AVE - OCT 14 20... - TMC

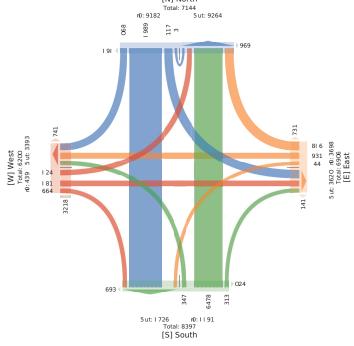
[N] North

3 of 4 4 of 4

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC The May 3, 20700 Th. Illag By (6 AF - 9 B3AF - 9 P) In.Clsi ig 6 indity st d 9 oyour algi 2c gsH 2- gslg yast 12v arralgi ot Bosd2v arralgi ot Cuiti RsbP

Cubit RsfwP) IL9 oHgk gt yi nh A3FF0T0: 2n o

nh A3FF0D0: 2n oasy	ot A, 4	78,0	83215	47 D	, F82	2beyg	CodgA	, F. 34	13F:											91	igst 2ii		1100	4502	
ngh	Nou _y (Esiy				_		bol y(Sgiy						
I egyynt	bol y(fo	d t d					S giyf ol	t d					Nous(fo	ol t d					Esi yf ol	t d					
Wekg	В	W	n	U) pp	- gd+	В	W	n	U)	pp	- gd+	В	W	n	U) pp	- gd+	В	W	n) pp	- gd+	my
0F0013F13, : AF-9	0:	3, 3	: 0	F	38.	38	, F	03	,	F	. 4	0.	D	3FD	D	F	30,	. 3	D	5	-	F	03	D0	, F.
: A.4-9	3.	3, F	1.	F	380	- ::	, D	3.	0	F		. F	5	3F:	,	F	33,	338		3:	D	F	05	3F8	: 88
c ol ulir Wóys l	:8	0DB	. D	F	: DD	40	DD	: 5		F 3	3: 3	D	34	033	30	F	0: D	3DF	3,	0F	3,	F	, D	383	DF4
, ÆF- 9	3D	3, 3	0,	F	3D	0.	43	3D	3	F	5F	0D	:	3FD	5	F	33D	: D	3F	0F	D	F	: D	4,	, F8
, A4-9	38	34.	0D	F	OF:	04	. F	30	F	F	50	05	,	303	- :	F	30D	0F	- :	33	30	F	0.	40	, 08
, AF-9	30	3,:	:3	F	3D	0.	, 8	3D	,	F	53	, F	5	338	D	F	3:,	0Đ		33	3.	F	::	48	, 0,
, A4-9	3.	3: D	:,	F	3DD	:5	:5	0:	,	F	٠,	05	3	30F	-	F	305	3D	30	04	3F	F	,5	:	, 0.
c ol ulir Wóys l	. 4	45D	335	F	5. F	33,	385	53	8	F (055	300	34	, . D	0,	F	4F5	3F,	:3	. 5	,.	F	3, ,	00D	3. 11
4ÆF-9	00	3.5	- 11	F	000	0F	, 3	04	0	F	. D	, D	8	3, D	- :	F	3. F	0,	3F	3.	30	F	: D	-,,	, III
4A4-9	0D	3, ,		F	0F4	0.	: F	3.	,	F	4F		33	303	3F	F	3, 0	0.	D	35	33	F	1.	55	,::
4AF-9	34	34.	:4	F	OF.	0,	- ,,	35	- :	F	٠,	4,		30F	5	F	3::	38		3D	3D	F	, 0	, D	,,,4
4A4-9	38	333	, 0	F	350	:5	00	3.	3	F	:8	48	8	3:3	33	F	343	3,	8	5	30	F	0D	DB	: 8F
coluir Woysl	Ŋ	45D	3,:	F	DF4	3F5	3:5	5,	3F	F (003	004	:4	40F	:3	F	4D	D	- ::	4D	4:	F	3, ,	04D	354.
. ÆF- 9	04	33D	0D	F	353	- 11	3D	3,	,	F	:.	, 8	3D	300	,	F	3,,	35	3F	08	5	F	,.	40	: 85
. A4-9	00	333	3D	F	343	, 3	3,	35	- :	F	:,	. 4	5	30.	D	F	3, 3	:0	D	0:	3D	F	,8	3: F	: 54
. AF- 9	35	33.	08	F	3.0	: 0	0:	0F		F	,4	33D	3:	3F:	30	F	30D	, 3	3:	3.	5	F	1.	D5	: 53
. A.4-9	: 3	88	04	F	344	, 3	0,	00	3	F	,5	D		88	5	F	33F	:8	5	3.	3F	F	11	8F	:,4
c ol ulr Wóys l	84		3FF	F	.:8	3, 5	58	5:	3F	F 3	3. 0	: 34	, 0	, 4F	:3	F	40:	308	: D	D	, 0	F	3.,	: 48	3, 11
5ÆF-9	: 3	300	0,	F	355		35	3D	4	F	, F	, 0		3:4	4	F	3, .	0:		35	33	F	:,	DB	: 85
5.84-9	0:	33D	04	3	3.5	0:	0:	3,	5	F		, 8	4	8:	5	F	3F4	3:	33	30	30	F	:4	. 4	: 43
5AF-9	04	335	08	F	353	3,	3D	3.		F	: D	- ,:	- :	ΠD	33	F	3F0	3F	- 4	8	30	F	0.	04	::5
5A4-9	03	33.	0F	F	345	3,	0:	33	0	F	:.	05	- :	D8	4	F	85	38		38	30	F	:5	:4	
c ol ulir Woys l	3FF	, 5:	8D	3	. 50	84	DB	48	3D	F 3	34D	3.3	35	, F4	0D	F	, 4F	. 4	0D	45	, 5	F	3:0	03,	3, 30
DÆF-9	3D	DS	35	F	300	34	38	30	3	F	: 0	03	4	DB	8	F	84	03	3F	3:	D	F	:3	03	
D\$4-9	3.	3F5	8	F	3: F	3.	38	D		F	: 0	0.	3	5.	5	F	D	3.	-	5		F	35	0.	0. :
DAF-9	33	DD	3,	F	33:	3D	3F	3F	- :	F	0:	, 0	5	DF		F	8:	3,	-	0	33	F	3.	:0	0, 4
DA4-9	34	53	38	F	3F4	35	8	D			00	08	4	DB	4	F	83	30	5		4	F	3.	: 4	
c ol ulir Woys l	4D	: 4:	48	F	, 5F		45	: D			BF8	33D	3D	: 3D	05	F	:.:	. 3	0,	0.	: F	F	DF	330	
8AF-9	30	.:	35	F	80	0:	3.	-			0-	38	3	53	4	F	55	3,	D	5	8	F	0.	00	
8A4-9	D	5:	30	F	8:	00	3,	5			0.	05	-	53	0	F	5.	3D	3F	30	8	F	:3	05	
8AF-9	4		33	F	DF	3,	33	-			03	05	Ė	4D		F		3.	3			F	3F	:3	
8A4-9	5	50		F	D0	34	30				03	:4	3	DF	5	F	IID	30	0		4	F	33	4F	
c ol ulir Woys l	:0	050	,:	F	:,5	5,	4:	00		F	DB	3FD	8	0DF	3D	F	: F5	. F	03	08	0.	F	5.	3: F	
3FÆF-9	3F	40	3F	F	50	: F	D				0F	3DB	0	.:	3	F		0:		5	5	F	0F	00D	
3FA4-9		DB	F	F	Dat	, 5	8	3.			:0	8D	-	. 0	5	F	50	38	D	5	34	F	: F	3:.	038
3FAF-9	D	8F	3	F	88	. 8	5			F	3:	. 4	3	4D	_	F	.:	3F	-	8	- :	F	3D	,:	38:
3FA4-9	3.	D4	D	F	3F8	35	4		-	F	34	38	3	44	D	F		5	D	4	8	F	00	0F	03E
c ol ulir Woys I	: D	: FD	38	F	:.4	3F:	08	- 11	35	F	DF	1.1	5	0: D	0F	F	0.4	48	0D	0D	- :.	F	8F	. 05	DFF
33ÆF-9	4	303	3F	F	3:.	4	4	- :	F	F	D	38	F	. 4		F	. 8	F	4	4	8	F	38	0:	030
33,64-9	33		33	F	DD		Ť.	4		F	30	34	Ħ	40		F	4D	8	5	0	D	F	35	03	
c ol uir Woysl		3D5	03	F	00.	33	33	D			0F		-	85	5		3F5	8	30	5	35	F	:.	-	: Di
Worl	405	:.5.	D	3	5F	5.5	5:0	. 3.			0.5	3430		08126	38D			54F	008	: 5.	: F8		83.	38.:	3F355
%) ppuosa(337 % 5			F%	,.ar	3. 3	405%:	: 7 %	578% P		1, 3	3-30	70% F		478% F		1		0473%	378%	:: 7D% F		03,	1	3333
%) ppussa(% Wosl			. 7%		478%	-	570%	. 23%	37P% P		_	- 1	37 % 0		4.8% F			- 1	07.%	: 25%	: 7P% F		37P%		+
neh(vi st d 9 oyouaralgi	DD.	: 058	. 4 70	3	4.070	-	530	. 30			000	- 1		0583	38D		34F	- 1	00.	3	08.		DDB	1	8. DE
% neh(vi st d	, 110	. 038		3	,,.,	_	330	, 30	OD	r 34	100	1	3. 3	0363	301)	г.	. 34F	- 1	00.	3	00,	г	шь		0.12
9 oyouaralgi	807 % 8	3. 7 % 8	8875% 3	3FF% 8	3. 78%	1	857 % 8	187P% I	387% P	% 8D	P%	1	3FF% 8	B: 7 % 3	BFP% F	% 8.	73%	1	8D5%	3. TP%	8473% F	7% 8.	Z %	1	8470%
c gsHr	:3	33D	3	F	34F	- 1		0	3	F	5	1	F	300	F	F	300	- 1	3	4		F	38	- 1	081
%cgsHr	478%		F3%	F%	: 70%	- 1	F74%	F74%	37P% P	% F7		1	F%	, 73%	F% F	% :	7 %	1	F7, %	37 %	, 70% F		073%	1	_
veralgi ot Bosd	D	55	3	F	D	- 1	3.	0		F	3D	1	F	5,	F	F	5,	1	0	3F	0	F	3,	- 1	
% venralgi ot Bosd	374%		F3%	F%	370%	- 1	070%	F74%	P% P	% 37	96	-1	F%	074%	F% F	% 0	070%	- 1	F78%	075%	FZ % F	P% 3	374%	-1	378%
- ødgi væst i	1	1	1.070	1	1	5.3	1	1	1.01	1	1	34F4	1.70	1	1.01	1	1	5:4	1 1	1	1	1		38:,	
		1	1	1		3. 3	1	1	1	1	_	3414	1	1	1	1	_	DF%	1	1	1	1		30., 3D4%	—
																									_
% - gdgi yæst i	1 1	1	1	- 1	1			- 1	- 1	1	- 1	5	- 1	- 1	- 1	1	- 1	34	- 1	- 1	- 1	1	- 1	08	1
	1			1		F7D%	1	1	1	1	_	5 F74%	1	1	1	1	_	34 07P%	1	1	1	1		08 374%	-


⁻gdgiyusstistd vearalgiot CuoiiRsIw‴n An gOj2BABeh(y2WAW(ul 2UAU1Wiut

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

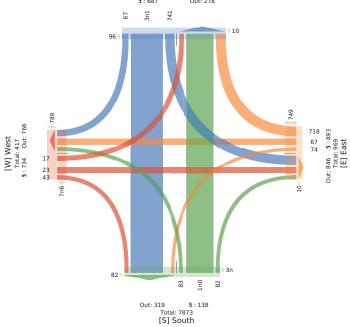
[N] North

2 of 4

1 of 4

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

5589707 - BANK 5T @ 5UNNYSIDE AVE - UL 1 14 2... - 1 mm.
Tie May3, 20070
1 L Ing In (61 L : 6(, 61 L & M-nag9ling 1 P) u
1 L Ing In (61 L : 6(, 61 L & M-nag9ling 1 P) u
598-\$ gin in Horry ge-HL PyParva9li 21 ng- v2l nihi yage(12Bava9ni Pc RPgt/2Bava9ni Pc st/Pi vg/3 A
5991. P. nik ncy
nik (3FP01042d Pagydre'(, 678, 0832:567 Di, F82bpn s PHr(, F. 363F4


ino	NPur						Egiy						bP) vr						Sniv						
l enavePc	bP) vr f	P) cH					S nivf I	ncH					NPur f	P) cH					Egiyf P)cH					
Wek n	R	W	d	U	Срр	l nH⁵	R	W	d	U	Срр	l nH°	R	W	/ d	U	Срр	l nH⁵	R	W	d	U	Срр	l nH²	nty
0F00:3F:3, , (, 6l L	3.	34D	4,	F	3DD	45	45	04	,	F	-,	05	3	30F	-	F	305	3D	30	06	3F	F	,5	. 4	, 0.
6(FFI L	00	3.5	44	F	000	0F	, 3	06	0	F	. D	, D	8	3, D	4	F	3. F	0,	3F	3.	30	F	4D		, DD
6(36l L	0D	3, ,	44	F	0F6	0.	4F	3.	,	F	6F		33	303	3F	F	3, 0	0.	D	35	33	F	4.	55	, 44
6(4Fl L	36	36.	46	F	OF.	0,	,,	35	4	F	٠,	6,		30F	5	F	344	38		3D	3D	F	, 0	, E	,,6
WPyg9	DB	. F6	346	F	D03	3F5	360	DB	34	F	0, .	384	05	6F8	0.	F	6.0	D5	4.	5.	63	F	3.4	040	3580
% CppuPgar	878%	5475%	3. 7 %	P%		- 1	. 370%	4078%	674%	P%	- :	- 1	, 7D% :	BF7. %	, 7%	F%	:	- :	0073%	,.7%	4374%	P%	- :	- 1	
% WPyg9	, 76%	447D%	576%	P%,	670%	- :	D16%	, 76%	F5%	P%:	3475%	- :	376%	ODF, %	375%	F% 4	137, %	:	07P%	, 70%	070%	P%	823%	- :	
l1T	F7500	F7834	F7B.,	- :	F7805	- :	F7D6D	FZBF	FZB4	- :	F7BF3	- :	FZ 3,	FZD.	FZ 6F	- :	F7D.	:	FZ6F	F7553	F7546	- :	FZEF	:	F7834
deor yi gcHL PyPuava9ni	5,	656	346	F	5D,	:	363	DF	30	F	0, 4	- :	05	, DF	0.	F	644	:	4.	5,	6F	F	3. F	:	350F
% deor yi gcH L PyPunva9ni		867F%	3FP%	P% I	3676%		8874%	8DID%	8074%	P% I	BDID%		3FF%	B, 74%	3FF%	P% 8	3, 70%		3FF%	857, %	8D#P%	P% I	BD70%		8. 75%
1 ng- v	,	34	F	F	35	- :	F	3	3	F	0	- :	F	3,	F	F	3,	:	F	F	F	F	F	:	44
% 1 ng- v	, 78%	073%	P%	P%	073%	:	F%	370%	575%	P%	FZD%	- :	F%	070%	F%	F%	076%	:	F%	P%	F%	P%	F%	:	370%
Beava9ni Pc RPgH	4	35	F	F	0F	- :	3	F	F	F	3	- :	F	36	F	F	36	- :	F	0	3	F	4		48
% Beava9ni Pc RPgH	475%	070%	P%	P%	07,%	- :	F/5%	F%	P%	P%	F7, %	- :	F%	078%	P%	F%	075%	- :	F%	07.%	07P%	P%	370%	- :	070%
l nHni yangci	:	- :	:	- :	:	3F5	:	- :	:	- :	:	38F	:	- :	- :	:	- :	D4	:	:	:	- :	:	00,	
% l nHni yugci	:	- :	:	- :	:	3FF%	:	- :	:	- :	- :	BDF, %	:	- :	- :	:	- :	867, %	:	:	:	- :	: 1	3. 7 %	:
Besva9ni Pc s uPiiwg9t	:	- :	:	- :	:	F	:	- :	:	- :	:	4	:	- :	- :	:	- :	,	:	:	:	- :	:	Е	
% Beava9ni Pc s uPi i wg9t	- :	- :	:	- 1	- :	P%	:	- :	:	- :	- :	37.%	:			- :	- :	, 7 %	- :	- :	- :	- :	- :	47,96	:

^{*1} nHni yuggci gcHBeava9ni Pc s uPiiwg9t 7d (dnQ92R (Reory2W (Wru) 2U (U:W) uc

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC

5589707 - BANK ST @ SUNNYSIDE AVE - OCT 14 2... - TMC
Sat My7, 20PtUF
11. leng 18(2111.: 1(2111.3: MAean-leng 6 P) a
C-s - attiel thior 7a crk1. P?Payvy-ei06 en4voll eHei7atnci0Btyvy-ei Pc RPnHDBtyvy-ei Pe s aPi ivn-g3
C-1. PAek ec7
nb (, uuFDF90d Pyn7Pc (214952F5, 0:. 148D92u50bt7e s PHc (208, 11, u.9)

[N] North Total: 7144 5 : 687 Out: 278

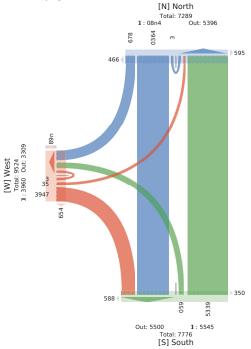
3 of 4 4 of 4

5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC

5369/07 - BANN 51 @ WILLION CRES - OCT 14 2022 - TIME TEMBY3, 2019 THE THE MEMORY OF T

	_				r de					h -1 -/					Marrie	
					Egiy Ssivfoltd				t d	boly(Nouv(fol:				t d	Nou(bolv(fol	ı gayeot
	- gd*) pp	U	n	B	- gd*) pp	U	n	W	- gd*) pp	U	W	B	gayan
:.F	- 80) PP	F	4	.3	- gu	3.3	F	:4	30.	- gu	3::	F	30:	3F	0F0013F13, : AF- 9
: 58	, 8	48	F	3	4D	F	38F	F	, 4	3.4	3	3: F	F	338	33	: A4-9
5:8	84	304	F		338	F	: 43	F	DF	053	0	0. :	F	0, 0	03	c ol ulir Wovs L
: D	,:	4,	F	F	4.	F	35.	F	,3	3:4		34.	F	3: 8	34	, AFF- 9
, OD	,8	.3	F	3	. F	F	008	F	. F	3.8	5	3: D	F	3: F	D	, A4-9
, 30	; F	5,	F	F	5,	F	380	F	,,	3. D	3	3, .	F	3: 0	3,	, AF- 9
, F4	, 8	4.	F	F	4.	F	38.	F	:,	3. F		344	F	3:4	0F	, A4-9
3. 08	353	0, 4	F	3	0, ,	F	583	F	358	. 30	34	48:	F	4:.	45	c ol ulr Woys I
, 54	4	5F	F	4	. 4	F	003	F	, 5	35,	F	3D	F	34.	: F	4AF-9
, 3:	. 3	50	F	F	50	F	0F0	F	00	3DF	3F	3:8	3	333	05	484-9
, F.	,,	5:	F	F	5:	4	3D8	F	3	3DD	4	3, ,	F	33D	0.	4AF-9
:,3	. 8	44	F	F	44	F	343	F	F	343	3:	3:4	F	333	0.	4A4-9
3.:4	0: F	05F	F	4	0.4	4	5. :	F	5F	. 8:	0D	. F0	3	, 8,	3F5	c ol ulr Woys I
:5,	.:	,3	F	3	, F	3	35.	F	F	35.	3D	348	F	3F8	4F	. AFF- 9
:, D	DD	::	F	F	- ::	30	350	F	F	350	,,	3,:	F	3F4	: D	. A4-9
:4.	30.	40	F	F	40	3D	353	F	0	3.8	50	3::	F	DF	4:	. AF- 9
: 05	30:	, D	F	F	, D	38	3: 0	F	3	3:3	Db	3, 5	F	8.	43	. A4-9
3. F4	. FF	35.	F	3	35:	4F	.,8	F	- 1	.,.	003	4D0	F	:8F	380	c ol ulr WowI
: 5D	D	,,	F	F	,,	0.	3DF	F	F	3DF	54	34.	F	33.	, F	5AFF- 9
:4.	. 3	40	F	F	40	3.	34F	F	F	34F	:4	34,	F	335	:5	5A4-9
: 05	03	,.	F	F	,.	8	3, F	F	F	3. F	0D	3, 3	F	3F8	:0	5AF-9
: F5	, 3	43	F	F	43	38	304	F	F	304	3,	3:3	F	3FF	:3	5A4-9
3: . D	OF.	38:	F	F	38:	5F	484	F	F	484	340	4DF	F	, , F	3, F	c ol ulr Woys I
050	38	0D	F	F	0D	D	30:	F	F	30:	D	303	F	D8	:0	DÆF-9
05.	: 0	,:	F	F	,:	0	33:	F	F	33:	D	33D	F	80	0.	D\$4-9
0.5	:3	, F	F	F	, F	4	33,	F	F	33,	3	33:	F	D4	0D	DAF-9
0FD	04	0D	F	F	0D	0	8.	F	F	8.	3	D	F		0F	DA4-9
3F03	3F5	3:8	F	F	3:8	35	,,.	F	F	,,.	3D	,:.	F	::F	3F.	c ol ulr Woys I
0:0	: 8	:3	F	F	:3	3F	3F.	F	F	3F.	35	84	F	50	0:	8AF-9
OF.	03	0	F	F	0	0	3F4	F	F	3F4	3.	88	F	DF	38	8.84-9
355	: F	F	F	F	F	08	D	F	F	D	00	83	F	55	3,	8AF-9
3D0	: D	3	F	F	3	43	83	F	F	83	43	8F	F	. D	00	8A4-9
585	30D	:,	F	F	1,	80	:DD	F	F	: DD	3F.	: 54	F	085	5D	c ol ulr Woys I
3:0	3D	,	F	F	,	: 4.	5F	F	F	5F	. FF	4D	F	, D	3F	3FAFF- 9
3D8	.,,	F	F	F	F	: D	3FF	F	F	3FF	3D	DB	F	. 5	3,	3FA4-9
0FF	1.	3	3	F	F	D	D0	F	F	D0	0:	335	F	85	0F	3FAF- 9
034	05	: D	F	F	: D		5D	F	F	5D		88	F	58	0F	3FA4-9
50D	08F	,:	3	F	, 0	, F4	::F	F	F	::F	,,5	: 44	F	083	٠,	c ol ulr Woys I
0FF	35	0D	F	F	0D	0	. 5	F	0	. 4	0	3F4	F	80	3:	33ÆF-9
35F	05	00	F	3	03	3	5,	F	D		30	5,	F	- 11	33	33.84-9
: 5F		4F	F	3	, 8	:	3, 3	F	3F	3:3	3,	358	F	344	0,	c ol ulir Wöys L
8, 80	3.53	305:	3	3,	304D	.,0	, , 4,	F	:,0	. 330	3FF3	: 8. 4	3	: 354	5D8	Worl
1	1	1	F73%	373%	8DID%	1	1	F%	575%	807.%	1	1	F%	DF73%	3878%	%) ppuosa(
	1	3: 73%	F%	F73%	3: 7F%	1	7F%	F%	: 74%	. 07 %	1	. F78%	F%	: 070%	D8%	% Worst
834:	1	30: 0	3	8	3000	1	. 0F.	F	: 08	: D54	1	: 535	3	08: 5	558	nehí vi st d 9 ovouar algi
8, 7, %	1	8. 7D%	3FF%	.,7.%	8573%	1	8, 7, %	P%	8. 70%	8, 70%	1	8: 75%	3FP%		8D/5%	% neh(vi st d 9 oyouar algi
0D5	1	5	F	3		1	3, F	F	0. 270	3: D	1	3, F	F	3:.		c gsHr
: 72%	1	F74%	F%	573%	F74%	1	: 73%	F%	FZ %	: 7,96	1	: 74%	F%	, 7.%	F74%	% c gsHr
040	1	:,	F		:F	1	33F	F	33	88	1	3FD	F	3F0		veralgi ot Bosd
07 %	1	075%	F%	0DE %	07,%	1	074%	F%	: 70%	07, %	1	075%	F%	: 70%	F7D%	% veralgi ot Bosd
70	3.,,	1	1	1	1	. , F	1	1	1	1	88D	1	1.0	1	1	- gdgi yust i
1	8DE %	1	1	1	1	8875%	1		1	1	8875%	1	1	1	1	% - gdgi yust i
	05	1	1					1	1	1	/9	1	1	1	1	veralgi ot CupiiRsIw

ngh	Nous(boly(Egiy						
I eugayeot	bol y(foltd					Nouy(foltd					Ssiyf ol t d						
Wek g	В	W	U) pp	- gd*	W	n	U) pp	- gd*	В	n	U) pp	- gd*	mty	
% verralgi ot CupiiRsIw	1	1	1	1	FZ %	1	1	1	1	F7. %	1	1	1	1	37.%	1	
	I eugayeot Wek g	Wik g B	I agayot bol y foltd Wek g B W	I agayot bol y f ol t d Wek g B W U	I egayot bol (foltd Wek g B W U) pp	I agayot bol y(folt d Wek g B W U) pp - gd*	Lagsyeot	Lagsyer	Lagsyert	Lagsynot	Lagayor	Lappyox	Lappyox		Lagypox	Lagguptor bolyfold Nongfold Sstyfold Note Nongfold Sstyfold Note Nongfold Note Nongfold Note No	Lagsport bolyfoltd Nougfoltd Satyfoltd Satyfoltd Wekg B W U) pp -gt* W n U) pp -gt* B n U) pp -gt* may

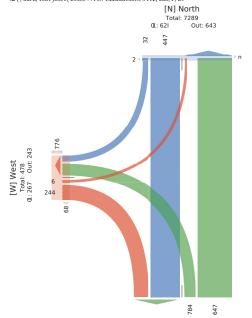

^{*-} gdgi yusst i st d v ear a Igi ot CuoiiRsIw7n An gOj2BABeh(y2WAW(ul 2UAU1Wiut

5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC
Tte May3, 20700
1L. 1 ngr. h, (361 L.: 6(361 L. A: M-nug9)1 ngr. 1 P) u
C995 sgi nii hidor yi gcHL. PyPuva9ni 21 ngr. v21 nihii yugci 2Bava9ni Pc RPgH2Bava9ni Pc
stPiivg94 A
C991. P nik ncji
n(3FF0DBSC4PavaPr/: 6:49855502-564 PC DS2bara PILLY P. 2022)

C99s 9giinihdeoryigcHLP suPiiwg9tA C99LP-nkncyi nh(3FF0D862dPagyePc(,64	,			, ,			RPgH	2Beav	va9ni Pc					hHf v(s	seyvP0 Pciyn99g	OMyygwg gyePcIu2 6J82sC
dno	NPuyr					bP) yr					E niy					
I eunayePc	bP) yr f P) c	:H				NPuyr f P) c	H				Sgiyf P) cF	ł				
Wek n	R	W	U	Cpp	l nH⁵	W	d	U	Срр	1 nH*	R	d	U	Cpp	l nH*	my
0F00:3F:3, , (36l L	D	37F	F	37D	5	3.8	. F	F	800	F	. F	3	F	. 3	, 8	, 0D
, (7Fl L	3,	370	F	3, .	3	3, D		F	380	F	5,	F	F	5,	7F	, 30
, (, 6l L	0F	376	F	366	7	3. F	7,	F	38,	F	6.	F	F	6.	, 8	, F6
6(FFI L	7F	36,	F	3D,	F	35,	, 5	F	003	F	. 6	6	F	5F	6.	, 56
Wygs	50	663	F	. 07	33	. 63	3D6	F	DF.	F	066	-	F	0.3	3D)	350F
% CppuPgar	334 %	DD4 %	F%	:		5548%	0048%	F%	:		8545%	047%	F%		- :	
% WPyg9	, 40%	704P%	F%	7.40%		7540%	3F4D%	F%	, D4 %		3, 40%	F47%	F%	3640%	- :	
111	F4 FF	F48F,	:	F4067	- 1	F48F8	F455.	- :	F48F7	- 1	F4DD	F47FF	- :	F48F8	:	F4D8,
deoryi gcHL PyPuava9ni	53	63D	F	6D8		. 3,	358	F	587		0, 7		F	0, 8	- :	3.73
% deoryi gcHL PyPuava9ni	8D4 %	8, 4F%	F%	8, 46%		8, 47%	8. 4D%	F%	8, 48%		8647%	3FF%	F%	864 %	- :	8, 40%
1 ng- v	3	35	F	3D		36	3	F	3.		0	F	F	0	- :	7.
% 1 ng- v	34 %	748%	F%	048%		047%	F46%	F%	348%		F4D%	F%	F%	F4D%	- :	048%
Beava9ni Pc RPgH	F	3.	F	3.		00	6	F	05		3F	F	F	3F	- :	67
% Beava9ni Pc RPgH	F%	048%	F%	04 %		74%	045%	F%	740%		748%	F%	F%	740%	:	748%
l nHni yuggci	- 1	- :	:		3F	:	- :	- :	- 1	F		:	- :	- 1	3DB	
% 1 nHni yuegci			- :	:	8F48%	:		- :	- 1	- 1		- 1	- :	- 1	8D4 %	
Beava9ni Pc s uPiiwg9t		- :	:		3	:	- :	- :	- 1	F		:	- :	- 1	7	
% Beava9ni Pc s uPiiwg9t		- 1	- 1	- 1	848%	- 1		- 1	- 1				- 1	- 1	34 %	

^{*}I nHii yuggci gcHBœva9hi Pc s uPi i wg9 4d(dn992R(Reory2W(Wru) 2U(U:W)uc

5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC
Sat My7, 20FuFF
Sli Llengh7, 13 u A- 6, 3 u A- P
) ILCSki ni beth 7 a ggl - ο λοφγ yfai 0c nsH 0Andni Zasgi 0v tyr yfai og Bosd0v tyr yfai og Caoi iRskb#
) IL- oHkh ng7
ni 3, uuFt) 90c oys λοg 3294 5... F06 948D92u90bt7i Codn32u8, F, u:


3 of 5 4 of 5

2 of 5

5589707 - BANK ST @ WILTON CRES - OCT 14 2022 - TMC

5589/07 - BANK S1 @ WILLON CRES - OLT 14 2022 - IMC
Sat My7, 20PUFF |
1. L leng l2(, 11 L : 1, 11 L 3: M/ean-l eng 6 P) a
C-s - ani ein hitor 7a ncHL P/Payvy-ei06 en/v0l eHei 7atnci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc
saPi iwneg3
C-L PAek ec7
nb (, uuFD) 10d Pyn/Pc(21945... FO: 19BDI 2u10bt/le s PHe(2u/8, F, u4

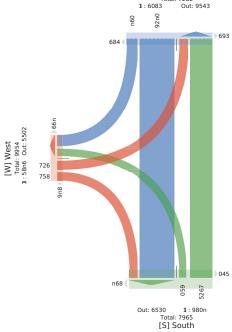
l aPAtHeHf v(s t7v POM7/nwn , uu s Pci 7e--n7tPc I a0 Nepenc0MN0KFG 1J50s C

5 of 5

n gh	Nous(bol y(E giy					
I eigayeot	boly(foltd					Nou(foltd					Ssiyf ol t d					
Wekg	В	W	U) pp	- gd*	W	n	U) pp	- gd*	В	n	U) pp	- gd*	mby
96 years also at Cynii Delius	1	- 1	1	- 1	TP %	1	- 1	- 1	- 1	D17896	1	- 1	- 1	- 1	- 7.96	1

[S] South

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
Tte-May3, 20F00
Til Ling fry (it AF-9 133AF-9 P)
ILChi jig fridrig is std 9 oyour algi 2c gsH 2- gdgj yust 12v eur algi ot Bosd2v eur algi ot
Lini iRshaP
ILG of the Standard of the Sta



gh		Nous(bol y(E giy					
eugayeot		bol y(fol t		U	-		Nou(folt					Ssiyf ol t d				-	
ak g	0F0013F13, : AF- 9	B 0D	W 34F	F) pp 35D	- gd*	W 44	n 30	U F) pp . 5	- gd*	B 5	n 8	U) pp 3.	- gd*	may 0.3
	: A4-9	38	34F 304	F	35D	05 0F	. F	30	F	. 5	0D	D D	3F	F	3. 3D	34	0.3
	c ol uir Woys L	.5	054	F	:00	,5	334	05	F	3.0	4.	34	38	F	:,	0,	, 80
	. AFF- 9	34	3. 0	F	355	3.	334	3F	F	3, 0	4. : F	5	38	F	0.	U,	0
	, A4-9	0,	3FD	F	3:0	38	. 0	35	F	58	: F	30	35	F	08	3D	0. F
	, AF- 9	0, 0D	3. D	F	38.	0.		33	F	54	. 4	5	34	F	00	0F	0, 1
	, A4-9	,:	34D	F	0F3	0.	4.	3D	F	5,	: 0	3F	35	F	05	0.	: F0
	c ol ulr Woys L	33F	48.	F	SF.	D5	0:4	4.	F	083	3:5	1.	. D	F	3F.	50	33F3
	4AFF-9	0:	3. F	F	3D		0.4	35	F	D		03	3F	F	:3	0,	085
	4A4-9	0.	354	F	OF,	38	45	3:	F	5F	, . . F	05	3:	F	, F	30	:3,
	4AF-9	0D	3:.	F	3.,	:3	5.	03	F	85	:5	08	00	F	43	3D	: 30
	4A4-9	:5	, F	F	55	05	:5	3.	F	4:	, 3	04	00	F	,5	05	355
	c ol uir Woys L	335	433	F	. 0D	303	0:.	.5	F	: F:	3D	3F0	.5	F	3.8	DB	33FF
	. AFF- 9	::	. F	F	8:	0:	4F	00	F	50	. 0	0:	00	F	, 4	::	03F
	. 84-9	: F	, 0	F	50	, 8	.8	5	F	4.	85	0:	38	F	.0	- :,	35F
	. AF- 9	00	, 4	F	. 5	:3	40	33	F		D8	3.	3D	F	:,	-,,	3
	. A4- 9	05	-,.	F	5:	1.	: D	0D	F		D	04	3F	F	:4	; D	35.
	c ol ulr Woys L	330	38:	F	: F4	3:8	3D8	. D	F	045	11,	DS	. 8	F	34.	343	53D
	5AFF- 9	,.	4,	F	3FF	3F	4F	0.	F	5.	. 0	0,	0:	F	,5	0.	00:
	5,84-9	:3	5F	F	3F3	30	,.	33	F	45	,.	0.	35	F	,:	34	0F3
	5AF-9	05	DB	F	33.		,:	D	F	43	. F	:5	04	F	.0		005
	5A4-9	08	5:	F	3F0	34	0D	38	F	,5	04	34	00	F	:5	8	3D
	c ol uir Woys L	3::	0D	F	, 35	,:	3.5		F	0:3	35:	3F0	Db	F	3D8	4,	D 5
	DFF-9	0.	. 3	F	D5	3,	:,	3:	F	,5	34	30	3:	F	04	4	348
	D%4-9	3.	45	F	5:	3:	08	5	F	1.	33	34	35	F	:0	3F	3.3
	DAF-9	3F	,:	F	4:	30	0.	33	F	:5	34	D	D	F	3.	3,	3F.
	DA 4- 9	D	4:	F	. 3	33	08		F	:4	0F	3F	4	F	34	:	333
	c ol uir Woys L	. F	03,	F	05,	4F	33D	:5	F	344	. 3	, 4	,:	F	DD	: 0	435
	8AFF- 9	3.	. F	F	5.	4	0:	33	F	:,	00	38	3,	F	- ::	3:	3.:
	8.84-9	35	. D	F	D4	3D	:5	3,	F	43	05	33	3F	F	03	3.	345
	8AF-9	0,	. D	F	80	D	.8	- 1	F	40	03	3:	34	F	0D	8	350
	8A4-9	0F	3F3	F	303	Г		00	F	84	34	3:	03	F	:,	38	04F
	c ol uir Wöys L	55	085	F	: 5,	:8	3D0	4F	F	0: 0	D4	4.	. F	F	33.	45	500
	3FÆF- 9	3D	.,	F	D0	OE:	48	30	F	53	D	33	0D	F	:8	43	380
	3FA\$4-9	34	. 5	F	D0	, F	D		F	8F	. 8	35	, 3	F	4D	. F	0: F
	3FAF-9	3,	43	F	.4	0F	DF	,	F	D	00	38	, 0	F	. 3	3.	03F
	3FA4-9	33	: D	F	, 8	30	. 8	4	F	5,	5	3.	0:	F	:8	0	3.0
	c ol uir Woys L	4D	00F	F	05D	3FF	08,	04	F	: 38	3D0	.:	3:,	F	385	308	58,
	33ÆF- 9	3F	, F	F	4F	- :	5F	3,	F	D,	,	,	33	F	34	,	3, 8
	33,84-9	3F	- ,,	F	4,	D	08	,	F	- ::	4	F	4	F	4	- :	80
	c ol ulir Wöys L	0F	D,	F	3F,	33	88	3D	F	335	8	,	3.	F	0F	5	0, 3
	WorkL	5:.	0.5.	F	:. FD	.:5	3.:4	. 30	F	0F. 5	3003	43F	4.:	F	3F5:	. F5	. 40D
	%) ppuosa(0374%		F%	1	1	5878%	0F73%	F%	1	1	, 574%	4074%	F%	1	1	1
	% Woys L	3370%	,37F%	F%	4070%	1	047P%	. 7.%	F%	: 37, %	1	570%	DE %	F%	3. 7 %	1	1
neh	(vi st d 9 oyouar algi	53F	0. F:	F	::3:	1	345F	, F5	F	3855	1	4F3	444	F	3F4.	1	.:,.
	(yi std 9 oyouaralgi	8. 75%		F%	8570%	1	8. 71%	8DID%	F%	8. 7 %	1	8D0%	8DF %	F%	8DF %	1	8570%
	c gsHr	:	40	F	44	1	44	:	F	4D	1	-	:	F	5	1	30F
	% cgsHr	F7 %	378%	F%	37 %	1	: 7, %	F75%	F%	070%	1	F7D%	F74%	F%	F75%	1	370%
	veralgi ot Bosd	03	38	F	, F	1	3F	0	F	30	1	4	4	F	3F	1	. 0
	% vearalgi ot Bosd	078%		F%	370%	1	F7. %	F74%	F%	F7 %	1	37F%	F78%	F%	F78%	1	F78%
	- gdgi yust i	1	1	1	1	4D	1	1	1	1	3300	1	1	1	1	4D4	
	% - gdgi yust i	1	1	1	1	8375%	1	1	1	1	8378%	1	1	1	1	8. 7 %	1
	eralgi ot CupiiRslw	1	1	1	1	4:	1	1	1	1	88	1	1	1	1	00	

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
Sat My7, 20FuFF
Sli Lenghīt, 1:3 u.A. 6, 3 u.A. P
) ILCStini le th(7 a sgd - o7bayr ylni 0c nsH 0Andni 7atsgi 0v tyr ylni og Bosd0v tyr ylni og
Caoi 1Rshav
) IL. OHN ng7
nh 3, uuFD, 0e oys 7og 329-42u: 5F, 06 9-48D, 5, 20b/th Codn32u6, , , , u:

[N] North Total: 7282 1: 6083 Out: 9543 92 n0 09u 693

3 of 5 2 of 5

⁻ gdgi yusst i st d v ear algi ot CuoiiRslw7n An gO¢BABeh(y2WAW(ul 2UAU1W ut

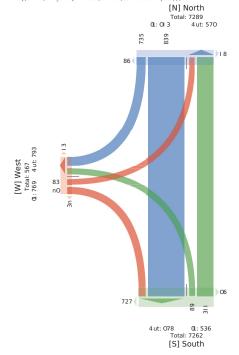
5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC

5369/07 - QUEEN ELIZABELH DRWY @ FIFTH AVE -... - TMC
TEC May 3, 2010 1. 6(, 61 L. 6, 61 L. A. Hrug99 ngr. 1 P) u

CSS-98 spin in Horry ig cHL PyPurva9ni21 ng-v21 nhi yugci2Bouva9ni Pc RPgH2Bouva9ni Pc stPii vg9 A

C991. P-nk ncyi
nh (3FP0D332d PagyePc), 67, F48032:567. D885, 2beyn s Pth(, F. 333F4

dno	NPuyr					bP) yr					E niy					
I enayePc	bP) yr f P)	cH				NPuyr f P)	cH				Sgiyf P) cl	H				
Wek n	R	W	7 U	Срр	l nH⁵	W	d	U	Срр	l nH*	R	d	U	Срр	l nH*	ney
0F00:3F:3, , (, 6l L	, 4	36D	F	0F3	0.	6.	3D	F	5,	40	3F	35	F	05	0.	4Ft
6(FFI L	04	3. F	F	3D4			35	F	D4	, , .	03	3F	F	43	0,	085
6(361 L	08	356	F	0F,	38	65	34	F	5F	. F	05	34	F	, F	30	43,
6(4Fl L	0D	34.	F	3.,	43	5.	03	F	85	45	08	00	F	63	3D	430
WPygs	304	. 08	F	560	30F	066	. 8	F	40,	356	DБ	. 0	F	3, 8	DF	3006
% CppuPgar	3. 7, %	D47 %	F%		:	5D5%	0374%	F%	:	:	6DE %	, 37. %	F%	:	- :	
% WPygs	3F7F%	6374%	F%	. 37 %	:	0F7D%	67.%	F%	0.7,%	:	573%	673%	F%	3070%	- :	
117	F/54.	FZD8,	:	F783D		F7D4.	F7D03	:	F7D40		F75, 3	F75F6	- 1	F7506	- 1	F7850
deor yi gcHL PyPuava9ni	3F8	. 34	F	500		0,5	. D	F	436		D	. 0	F	3, D	- 1	33D
% deor yi gcHL PyPuava9ni	DDE %	8576%	F%	8. 7P%	:	8.78%	8DF %	F%	8570%	:	8D/8%	3FF%	F%	8874%	- :	8. 759
1 ng-v	F	8	F	8		5	3	F	D		F	F	F	F	- :	35
% 1 ng- v	F%	37,%	F%	370%	:	075%	37, %	F%	076%	:	F%	F%	F%	F%	- :	37,9
Beava9ni Pc RPgH	3,	5	F	03		3	F	F	3		3	F	F	3	- :	04
% Beava9ni Pc RPgH	337,%	373%	F%	070%	:	F7, %	F%	F%	F74%	:	373%	F%	F%	F75%	- :	378%
l nHni yægci	- 1	- :	- :		3FE	:		- :		3. 4	- 1	:	- 1		56	
% 1 nHni yuegci			:	- 1	8F7P%	- 1		- :		8473%		:	- :		847D%	
Beava9ni Pc s uPi i wg9t	- 1	- :	- :		30	- 1		- :		30	- 1	:	- 1		6	
% Resva9ni Pc s iPi i wo9		-	-	-	3ETP%		-		-	7894			-	-	7196	


[%] Bawashi Pc s uPii wgsl : : : 3F7% : : : *

In Hhi yungci gcHBeuvaShi Pc s uPii wgsl 7d (dn G)2R (Reor y2W (W u) 2U (U:W) uc

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC

5589707 - QUEEN ELIZABETH DRWY @ FIFTH AVE -... - TMC
SAT M/7, 20PELT : 1(211L.3: MAean-leng 6 P) a
C -s antiet Intor 7a ncHL P?Payvy-e106 en&v01 ePti 7anci 0Btyvy-ei Pc RPnH0Btyvy-ei Pc
s aPti wn-eg3
C -L PAek ec7
nb (, uuFD), 0d Pyn7Pc(21-2u95F, 0:. 148Q. 5. 20bt 7e s PHc(2u8, , , u9

, uu s Pci 7e–n7tPc I a0 Nepenc0MN0KFG 1J50s C

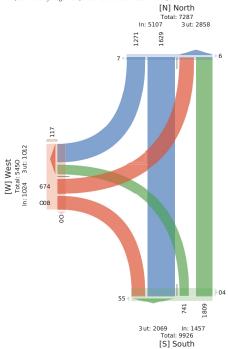
4 of 5 5 of 5

5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC
The May3, 20700
The May3, 20700
The May 3, 20700
The May 4, 2071
The May 6 AF - 9 B3AF - 9 P

) ILCEstigi 6 rich(yi st d 9 oyour algi 2c gsH 2- gdgj yust i 2v mralgi ot Bosd2v mralgi ot
Choil Rsb@
) ILS 9 right gi yi

A 30 EUDO/20 20 20 20 4 7 8 E24 2 W7/5/TE 4/D an Code A ESEASE-

		Noun					. ol v					T also					
ayeot		Noun(oly(folt)	a				Noun(folt	a				E giy Ssiyfolto					
g g		B	u W	U) pp	- gd*	W	n n	U) pp	- gd*	B	n	U) pp	- gd*	mv
	0F00BFB, : AF-9	:5	337	F	373	F	77	37	F	4F	- Bm	3:	30	F	07	3F	0
	: A7-9	:3	b5	F	304	F	70	03	F	4:		3b	3:	F	:0	3F	0
	c ol ulir Wöys I.	54	033	F	04D	F	3F4	:5	F	3, :	5	:0	07	F	74	0F	
	, AFF- 9	, 7	3: 7	F	3DF	F	05	3F	F	:5	5	0D	0:	F	73	5	0
	, 487-9	, F	D	F	30:		77	3b	F	4,	0	37	00	F	:4	b	0
	, AF- 9	; b	300	F	353	F	53	34	F	4D	3	00	3,	F	:5	D	0
	, A7-9	, b	30F	F	35b	F	57	0:	F	DD	D	3:	35	F	0b	D	0
	c ol ulir Woys I.	34:	, 5F	F	5::	- :	0F4	5b	F	045	34	4D	47	F	37:	:3	3E
	7AFF-9	57	335	F	3D8	F	5F	0F	F	DF		0F	3D	F	:D	3:	36
	7,87-9	D,	33b	F	OF:	F	70	:3	F	D	-	0D	:3	F	7b	J.	:
	7AF-9	7D	D5	F	3, ,	F	77	:3	F	D5	5	:5	0b	F	57	3:	
	7A7-9	/D	00	F	57	F	77 0h	0:	F	70	0	37	0,	F	: b	3: D	3
	c ol ulr Woys I	07F		F	7b:	F	3b5	3F7	F	:F3	37	bb	3F0	F	0F3		31
	5AFF- 9	57	0,	F	/b: Db	F	. 4		F	: F3	3/	0:	0,	F	, 4	,:	31
		7F			53		03	,,	F	53				F	55		3
	5/87-9		33	F		F		, F				:3	: 7			7	
	5AF- 9	: 4	03	F	7D	F	, 5	:,	F	DF	,	0:	07	F	, D		3
	5A.7-9	, F	: b	F	4b	- :	70	: 0	F	D,	3F	0F	34	F	:4	33	-
	c ol ulir Woys I.	3b0	b7	F	0D4		355	37F	F	: 35	3D	b4	3F3	F	3bD	: 0	1
	4AFF- 9	0b	70	F	D8	0	7:	0D	F	DB	4	3:	3D	F	:3	D	3
	4/87-9	44	, 0	F	33b	0	04	3b	F	,5	0	03	3b	F	, F	b	(
	4AF-9	53	5F	F	303	F	34	0F	F	:4	,	0D	:,	F	50	F	(
	4A.7-9	,,	,,	F	DD	F	37	33	F	05	0	00	:,	F	75	3	3
	c ol ulir Woys I.	033	3bD	F	, Fb	,	330	4D	F	3bF	37	D)	3F7	F	3Db	3D	4
	D#F- 9	07	, 4	F	40	F	3b	0	F	03	3	0F	04	F	, 4	F	3
	D\$7-9	1,	, 0	F	45	F	0:	3F	F	::	:	0:	30	F	:7	,	3
	DAF- 9	3:	٠.,	F	, 4	F	00	7	F	04	F	3D	3b	F	:4	5	3
	DA 7-9	00	: D	F	5F	0	33	3F	F	03	F	0:	00	F	,7	5	3
	c ol ulir Woys L	b,	353	F	077	0	47	04	F	3F0		D	DF	F	35,	35	- 7
	bÆF-9	: 0	,:	F	47	F	3,	30	F	05	0	: F	0,	F	7,	0	3
	bA\$7-9	: F	73	F	DB	F	00	4	F	0b	F	0b	: 0	F	53	- 1	3
	bAF-9	0b	70	F	DB.	3	00	D	F	: F	0	:7	:5	F	43	0	3
	bA.7-9	,:	5D	F	333	3	0,	37	F	: b	0	, D	4F	F	33D	5	(
	c ol ulr Woys I.	3:,	03,	F	:,D	0	D0	, 0	F	30,	5	3, 0	350	F	: F,	3:	4
	3FÆF- 9	0:	7F	F	4:	F	:3	37	F	, 5	35	73	: b	F	bF	3F	(
	3FA\$7-9	:5	70	F	DD	F	0D	b	F	:4	5	7b	5b	F	30D		- 1
	3FAF-9	07	,7	F	4F	F	05	33	F	:4	5	70	5F	F	330	-	(
	3FA.7-9	3,	, 3	F	77	F	3b	37	F	1.	F	- ::	, 4	F	DF	3	3
	c ol ulr Woys I.	bD	3DD	F	OD5	F	3F,	7F	F	37,	0D	3b7	037	F	, 3F	3b	1
	33ÆF- 9	35	0D	F	,,	F	35	0	F	3D	F	:5	40	F	3FD	3	3
	33A37-9	35	05	F	,0	F	b	0	F	33	F	0:	3b	F	,0	F	
	c ol ulir Wöys I.	: 0	7,	F	D5	F	07		F	0b	F	7b	b3	F	37F	3	(
	Worst	3073	3b0.	F	: 347	3,	3F4.	753	F	35: 7	3Fb	D4F	b75	F	3D05	3b:	55
		: b8 %	5F85%	F%	: 34/	٥,	5784%	:.8%	P%	35: /	SPU 1	. 485%	708 %	F%	31103	30:	30
	%) ppuosa(% WowL	3D89%	0b8F%	P%	. 480%	1	3580%	:,8% D87%	P%	0,85%	1	3: 88%		F%	0487%	- 1	
		3037	3DD4	F%	,	- 1		7F:	F%		- 1		3,8%	F%	34: 0	- 1	-
	eh(yi st d 9 oyouar algi	3037 b488%	3DD4 bD88%	F F%	: 3F0 b484%	- 1	3F: 3 b58F%	7F: Db84%	F F%	37:, b: 80%	1	DF7 b087%	b04 b48P%	F F%	34: 0 b. 8b%	- 1	5: b58
% n	eh(yi st d 9 oyouaralgi			P%	b484% 7:	- 1		74	F%	b: 80% Db	- 1			F%	b, 8b%	- 1	b58
	c gsHr	05	04			- 1	:0				- 1	75	04			- 1	
	% c gsHr	08%	38 %	P%	384%	1	: 81%	3F80%	P%	78,%	1	58 %	08D%	F%	, 87%	1	: 8
	veralgi ot Bosd	3F	3F	F	0F	1	33	3	F	30	1	b	0	F	33	1	
	% veralgi ot Bosd	F8D%	F87%	P%	F85%	- 1	38P%	F80%	P%	F84%	- 1	38F%	F80%	F%	F85%	1	F8
	- gdgi yust i	1	1	1	1	3,	1	1	1	1	4: 548F%	1	1	1	1	375 DF8D%	
	% - gdgi yust i	1	1	1	1	3FF%	1	1	1								

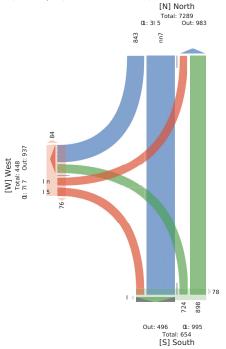

ngh	Nous(. ol y(E giy					
I eigayeot	. oly(foltd					Nous(foltd					Ssiyfoltd					
Wik g	В	W	U) pp	- gd*	W	n	U) pp	- gd*	В	n	U) pp	- gd*	mby
% vearalgi ot CupiiRsIw					1007					:: 8F%					3b80%	

^{*-} gdgi yusti std v earalgi ot CuoiiRslw8n An g0j2BABeh(y2WAW(ul 2UAU1Wlut

2 of 5

5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC

5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC
Tte-May3, 20700
1 L 1 ng 'h, (c l L : 6t, 6 l L A: M-mg9l ng 1 P) u
C99s 9ji ni hidor yi gcHL PyPuwa9ii 21 ng-v2l nithi yagci 2Bawa9ii Pc RPgt2Bawa9ii Pc st ti vigi A
C99L P-nik ncyi
ni (3FPDID42d Pagq4Pc(, 67, E34, 2:4678LE54D2. on s Pth(, F8Fb3F5



dno	NPusr					. P) yr					E ni y					
I enayePc	. P) yr f P) o	H				NPuyr f P) c	H				Sgiyf P) cH	I				
Wek n	R	W	U	Срр	l nH*	W	d	U	Срр	l nH⁵	R	d	U	Срр	l nH*	my
0F00:3F:3, , (, 6l L	, b	30F	F	38b	F	86	05	F	DD	D	35	38	F	0b	D	OI
6(FFI L	86	338	F	3DB	F	8F	0F	F	DF	5	0F	3D	F	5D	35	Ob
6(361 L	D	33b	F	0F5	F	60	53	F	DS	,	0D	53	F	6b	b	5,
6(5Fl L	6D	D8	F	3, ,	F	66	53	F	DB	8	58	0b	F	86	35	0b
WPyg5	068	,,3	F	8b4	F	050	3F6	F	554	03	b4	b,	F	3b3	, 5	300
% CppuPgar	5874%	8575%	F%	:		8DfD%	5370%	F%	:	- 1	6F7D%	, b70%	F%		- 1	
% WPygS	0F7b%	587P%	F%	6875%	- :	3Dfb%	DI8%	F%	0476%	- 1	47b%	474%	F%	3678%	- :	
111	F744,	F7b3b	:	F7D8F		F7Db6	F7D 4	:	F7b8F		F784,	F746D	:	F7456		FIX
deor yi gcHL PyPuava9ni	0, 4	, 50	F	84b	- 1	008	3F3	F	504	- 1	ь0	Db	F	3D8	- :	331
% deor yi gcHL PyPusva9ni	b876%	bDÆ%	F%	b47, %		b47, %	b870%	F%	b47F%		b, 7D%	b, 74%	F%	b, 70%		b87b
1 ng-v	4	0	F	b		5	,	F	4	- 1	6	6	F	3F	- 1	(
% 1 ng-v	074%	F76%	F%	375%		375%	57D%	F%	073%		670%	675%	F%	670%		0.23
Beava9ni Pc RPgH	0	4	F	b	- :	5	F	F	5	- 1	F	F	F	F	- :	3
% Bæva9ni Pc RPgH	F7D%	378%	F%	375%	- :	375%	F%	F%	F76%	- 1	F%	P%	F%	F%	- :	37F
l nHni yuegci	:	- 1	- 1	:	F	:	- 1	- :	:	03			- :		5b	
% 1 nHni yuegci	- 1		- 1		- :	- :		- 1	- :	3FF%		- 1	- :	- 1	bF74%	
Beava9ni Pc s uPi i wg9t	:	- 1	- 1	:	F	:	- 1	- :	:	F	1		- :		,	
% Beava9ni Pc s uPiiwg9t	- :	- 1	- 1	- :	- 1		- 1	- 1	- :	F%		- 1	- 1	- 1	b75%	

^{*}l nHni yungci gcHBeava9ni Pc s uPi i wg9t 7d (dn0j2R (Reory2W (Wru) 2U (U:W) uc

3 of 5 4 of 5

5589707 - QUEEN ELIZABETH DRWY @ PRINCESS PA... - TMC
Sat My7, 20FuFF
1 L 1 eng 12(211 L : 1(211 L 3: MAean-1 eng 6 P) a
C-s - ani ein lintor 7a ncHL PPRayoy-ei 06 enAv01 eHei 7anci 0Btyvy-ei Pc RPnHDBtyvy-ei Pc saPi iwneg3
C-L PAek ec7
nl (, uuFLP90d PynPc(21-2u, 920:914-Du. 9D081% s PHe(2u5ub, u.

APPENDIX B - INTERSECTION COLLISION DATA

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: AYLMER AVE @ BANK ST

Traffic Control: Traffic signal Total Collisions: 18

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped
2015-Jul-28, Tue,20:27	Clear	Rear end	Non-fatal injury	Dry	North	Slowing or stopping Bicycle	Other motor vehicle	0
					North	Going ahead Automobile, station wago	n Cyclist	
2015-Aug-24, Mon,13:28	Rain	Rear end	P.D. only	Wet	South	Slowing or stopping Automobile, station wago	n Other motor vehicle	0
					South	Stopped Automobile, station wago	n Other motor vehicle	
2016-Mar-17, Thu,18:15	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping Delivery van	Other motor vehicle	0
					North	Stopped Automobile, station wago	n Other motor vehicle	
					North	Stopped Pick-up truck	Other motor vehicle	
2016-Jun-12, Sun,11:35	Rain	SMV other	Non-fatal injury	Wet	East	Turning left Automobile, station wago	n Pedestrian	1
2016-Jul-06, Wed,13:32	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes Automobile, station wago	n Other motor vehicle	0
					South	Going ahead Automobile, station wago	n Other motor vehicle	
2016-Jul-18, Mon,17:37	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping Automobile, station wage	n Other motor vehicle	0
					North	Stopped Pick-up truck	Other motor vehicle	
2017-Jan-31, Tue,17:10	Clear	Rear end	P.D. only	Dry	South	Going ahead Automobile, station wago	n Other motor vehicle	0
					South	Slowing or stopping Automobile, station wago	n Other motor vehicle	
2017-Jul-01, Sat,22:34	Clear	Rear end	Non-fatal injury	Wet	South	Going ahead Automobile, station wago	n Other motor vehicle	0
					South	Stopped Automobile, station wago	n Other motor vehicle	
2017-Jul-08, Sat,18:29	Clear	SMV other	Non-fatal injury	Dry	North	Turning left School bus	Pedestrian	1
2017-Aug-01, Tue,17:39	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping Automobile, station wago	n Other motor vehicle	0
					South	Stopped Automobile, station wago	n Other motor vehicle	
2017-Aug-30, Wed,08:10	Clear	Rear end	P.D. only	Dry	East	Slowing or stopping Automobile, station wago	n Other motor vehicle	0
					East	Stopped Automobile, station wago	n Other motor vehicle	
2018-Dec-28, Fri,13:46	Rain	Angle	P.D. only	Wet	West	Turning left Unknown	Other motor vehicle	0
					North	Going ahead Delivery van	Other motor vehicle	

May 01, 2023 Page 1 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: AYLMER AVE @ BANK ST

Traffic Control: Traffic signal Total Collisions: 18

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jan-05, Sat,01:45	Clear	Sideswipe	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Mar-14, Thu,21:55	Clear	Turning movement	P.D. only	Wet	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Sep-20, Fri,08:45	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Dec-21, Sat,16:00	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Passenger van	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Oct-10, Sat,11:39	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2021-Mar-11, Thu,20:00	Rain	Sideswipe	P.D. only	Wet	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	

Location: BANK ST @ ECHO DR

Traffic Control: Stop sign Total Collisions: 9

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Jan-26, Mon,12:17	Clear	Rear end	P.D. only	Ice	West	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2015-May-06, Wed,11:23	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2015-Jul-09, Thu,20:45	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Aug-16, Tue,17:39	Rain	Angle	P.D. only	Wet	East	Turning right	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 2 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ ECHO DR

Traffic Control: Stop sign Total Collisions: 9

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Jan-24, Tue,09:05	Freezing Rain	Approaching	P.D. only	Ice	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Unknown	Passenger van	Other motor vehicle	
					East	Unknown	Automobile, station wagon	Other motor vehicle	
					East	Unknown	Pick-up truck	Other motor vehicle	
2017-Feb-22, Wed,14:35	Clear	Angle	P.D. only	Dry	East	Turning left	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2019-Feb-05, Tue,08:39	Rain	Sideswipe	P.D. only	Wet	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Municipal transit bus	Other motor vehicle	
2019-Jun-26, Wed,23:50	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Aug-20, Fri,14:15	Clear	Other	P.D. only	Dry	North	Reversing	Pick-up truck	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	

Location: BANK ST @ EXHIBITION WAY

Traffic Control: Traffic signal Total Collisions: 14

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Jan-08, Thu,12:14	Snow	Rear end	P.D. only	Packed snow	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Truck - closed	Other motor vehicle	
2015-Mar-14, Sat,23:43	Snow	Rear end	P.D. only	Loose snow	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Jul-17, Fri,23:22	Clear	Turning movement	P.D. only	Wet	North	Going ahead	Passenger van	Other motor vehicle	0
					North	Making "U" turn	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 3 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ EXHIBITION WAY

Traffic Control: Traffic signal Total Collisions: 14

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
2015-Oct-13, Tue,12:03	Fog, mist, smoke, dust	, Turning movement	Non-fatal injury	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2015-Nov-06, Fri,11:04	Rain	Rear end	P.D. only	Wet	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	
2016-Sep-03, Sat,21:58	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Cyclist	0
					North	Going ahead	Bicycle	Other motor vehicle	
2016-Nov-13, Sun,11:35	Clear	SMV other	Non-fatal injury	Dry	West	Turning left	Automobile, station wagon	Pedestrian	2
2016-Nov-24, Thu,06:52	Snow	Rear end	P.D. only	Loose snow	North	Turning right	Passenger van	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2017-Aug-12, Sat,11:20	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Mar-11, Sun,17:20	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2018-Nov-13, Tue,03:36	Snow	SMV other	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Curb	0
2018-Nov-20, Tue,21:00	Snow	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Dec-06, Thu,21:45	Clear	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Dec-08, Sun,13:30	Clear	Sideswipe	P.D. only	Dry	North	Unknown	Automobile, station wagon	Other motor vehicle	0
					North	Unknown	Automobile, station wagon	Other motor vehicle	

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

Date/Day/Time Environment Impact Type Classification Surface Veh. Dir Vehicle Manoeuver Vehicle type First Event No. Ped Cond'n

May 01, 2023 Page 4 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
015-Feb-06, Fri,17:49	Clear	Sideswipe	P.D. only	Slush	North	Going ahead	Delivery van	Other motor vehicle	0
					North	Stopped	Municipal transit bus	Other motor vehicle	
015-Mar-15, Sun,16:59	Clear	Angle	P.D. only	Dry	South	Going ahead	Passenger van	Other motor vehicle	0
					East	Going ahead	Passenger van	Other motor vehicle	
015-May-26, Tue,18:00	Clear	Angle	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
015-Sep-03, Thu,10:18	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
016-Mar-04, Fri,18:42	Clear	Sideswipe	P.D. only	Dry	North	Unknown	Automobile, station wagon	Other motor vehicle	0
					North	Unknown	Automobile, station wagon	Other motor vehicle	
016-Oct-06, Thu,18:44	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
016-Oct-19, Wed,16:29	Clear	Turning movement	P.D. only	Dry	West	Turning right	Unknown	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
016-Nov-25, Fri,19:26	Clear	Turning movement	P.D. only	Wet	North	Turning left	School bus	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
017-May-15, Mon,08:48	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
017-Jun-26, Mon,22:42	Rain	Rear end	P.D. only	Wet	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
017-Dec-16, Sat,16:52	Clear	SMV unattended vehicle	P.D. only	Wet	East	Turning left	Fire vehicle	Unattended vehicle	0

May 01, 2023 Page 5 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ FIFTH AVE

Traffic Control: Traffic signal Total Collisions: 23

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2018-Apr-26, Thu,07:12	Rain	Sideswipe	P.D. only	Wet	South	Changing lanes	Truck - closed	Other motor vehicle	0
					South	Stopped	Truck - tractor	Other motor vehicle	
2019-Mar-07, Thu,13:38	Clear	SMV other	Non-fatal injury	Dry	West	Turning left	Automobile, station wagon	Pedestrian	1
2019-Aug-16, Fri,23:17	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Oct-03, Thu,06:13	Clear	Turning movement	Non-fatal injury	Dry	North	Going ahead	Bicycle	Other motor vehicle	0
					South	Turning left	Automobile, station wagon	Cyclist	
2019-Oct-06, Sun,00:00	Rain	Angle	P.D. only	Wet	West	Turning right	Fire vehicle	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-21, Thu,18:18	Rain	Turning movement	Non-fatal injury	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Jan-04, Sat,17:15	Clear	Rear end	P.D. only	Wet	North	Stopped	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Feb-15, Sat,14:00	Clear	Rear end	P.D. only	Packed snow	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Aug-28, Fri,11:58	Clear	Sideswipe	P.D. only	Dry	North	Pulling away from shoulder or curb	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Nov-05, Thu,11:11	Clear	SMV other	Non-fatal injury	Dry	West	Turning left	Pick-up truck	Pedestrian	1
2021-Mar-17, Wed,13:56	Clear	Turning movement	Non-fatal injury	Dry	West	Turning left	Automobile, station wagon	Cyclist	0
					East	Going ahead	Bicycle	Other motor vehicle	
2021-Mar-17, Wed,14:58	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	

May 01, 2023 Page 6 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ HOLMWOOD AVE

Traffic Control: Traffic signal Total Collisions: 21

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2015-Jan-05, Mon,19:25	Clear	Rear end	Non-fatal injury	Slush	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2016-May-17, Tue,17:08	Clear	Rear end	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2016-May-25, Wed,08:51	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Jun-16, Thu,09:00	Clear	Sideswipe	P.D. only	Dry	South	Going ahead	Motorcycle	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Jul-07, Thu,14:06	Clear	Rear end	P.D. only	Dry	North	Going ahead	Unknown	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Aug-12, Fri,11:30	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2016-Nov-15, Tue,15:24	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2016-Dec-18, Sun,12:26	Clear	Approaching	Non-fatal injury	Loose snow	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Mar-17, Fri,12:17	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-May-10, Wed,20:45	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-22, Wed,09:23	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Cyclist	0
					South	Going ahead	Bicycle	Other motor vehicle	
2018-Oct-05, Fri,22:45	Clear	Sideswipe	P.D. only	Dry	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 7 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ HOLMWOOD AVE

Traffic Control: Traffic signal Total Collisions: 21

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Nov-21, Thu,13:56	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Truck - dump	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Dec-13, Fri,18:00	Rain	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Unknown	Other motor vehicle	
2019-Dec-28, Sat,11:42	Clear	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Jan-14, Tue,12:20	Clear	Rear end	P.D. only	Wet	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2020-Aug-15, Sat,20:23	Clear	Rear end	P.D. only	Dry	North	Unknown	Unknown	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Sep-04, Fri,11:00	Clear	Turning movement	P.D. only	Dry	South	Turning left	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Sep-04, Fri,17:40	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Jun-22, Tue,08:00	Clear	Other	P.D. only	Dry	West	Reversing	Truck - closed	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2021-Sep-20, Mon,11:35	Clear	Angle	P.D. only	Dry	East	Turning right	Unknown	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	

Location: BANK ST @ MARCHE WAY

Traffic Control: Stop sign Total Collisions: 2

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2018-Nov-25, Sun,06:25	Freezing Rain	SMV other	Non-fatal injury	Ice	West	Turning right	Automobile, station wagon	Pedestrian	1

May 01, 2023 Page 8 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ MARCHE WAY

Traffic Control: Stop sign Total Collisions: 2

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2021-Aug-30, Mon,17:06	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Jan-15, Thu,20:34	Clear	Sideswipe	P.D. only	Slush	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2015-Jan-22, Thu,10:28	Clear	Rear end	P.D. only	Ice	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Feb-11, Wed,22:08	Snow	Angle	P.D. only	Loose snow	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2015-Mar-18, Wed,16:25	Clear	Rear end	P.D. only	Dry	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2015-May-13, Wed,18:10	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Pick-up truck	Other motor vehicle	
2015-May-26, Tue,07:02	Clear	Sideswipe	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Cyclist	0
					East	Going ahead	Bicycle	Other motor vehicle	
2015-Jun-18, Thu,15:38	Clear	Sideswipe	P.D. only	Dry	North	Going ahead	Truck - tractor	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Jun-25, Thu,09:30	Clear	Rear end	P.D. only	Dry	South	Slowing or stoppin	g Motorcycle	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Jun-28, Sun,20:10	Rain	Rear end	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 9 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

								0.	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Sep-29, Tue,17:59	Rain	Turning movement	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2015-Sep-30, Wed,15:00	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Oct-15, Thu,12:42	Rain	Rear end	P.D. only	Wet	East	Going ahead	Pick-up truck	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Dec-29, Tue,15:30	Snow	Sideswipe	P.D. only	Loose snow	North	Unknown	Unknown	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2016-Jun-09, Thu,20:39	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Oct-08, Sat,21:31	Clear	Rear end	P.D. only	Dry	North	Going ahead	Unknown	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Nov-30, Wed,16:44	Rain	SMV other	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Pedestrian	1
2016-Dec-17, Sat,11:41	Clear	Rear end	P.D. only	Loose snow	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Jan-28, Sat,08:58	Rain	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Mar-14, Tue,12:42	Clear	Turning movement	P.D. only	Loose snow	North	Turning left	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
2017-May-20, Sat,17:53	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 10 of 16

Collision Details Report - Public Version

From: January 1, 2015 To: December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

								•	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Jun-25, Sun,09:30	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Aug-10, Thu,13:59	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Truck - tractor	Other motor vehicle	
2017-Sep-11, Mon,07:46	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Sep-25, Mon,21:17	Clear	Turning movement	Non-fatal injury	Dry	East	Turning left	Bicycle	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Cyclist	
2017-Nov-09, Thu,21:06	Rain	SMV other	Non-fatal injury	Wet	South	Turning left	Automobile, station wagon	Pedestrian	1
2018-Aug-01, Wed,16:36	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Sep-14, Fri,13:34	Clear	SMV other	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Pedestrian	1
2018-Oct-06, Sat,16:40	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Municipal transit bus	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Oct-31, Wed,15:51	Rain	Rear end	Non-fatal injury	Wet	South	Going ahead	Passenger van	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Feb-02, Sat,09:50	Snow	Rear end	P.D. only	Loose snow	South	Going ahead	Unknown	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	
2019-Apr-26, Fri,15:15	Rain	Sideswipe	P.D. only	Wet	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Sep-27, Fri,14:04	Clear	Sideswipe	P.D. only	Dry	South	Stopped	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 11 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ SUNNYSIDE AVE

Traffic Control: Traffic signal Total Collisions: 37

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2020-Aug-08, Sat,17:53	Clear	Sideswipe	P.D. only	Dry	South	Turning right	Municipal transit bus	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2021-Feb-15, Mon,08:29	Clear	Turning movement	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2021-May-11, Tue,10:51	Clear	Turning movement	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Turning left	Pick-up truck	Other motor vehicle	
2021-Aug-26, Thu,15:23	Clear	SMV other	Non-fatal injury	Dry	North	Going ahead	Motorcycle	Skidding/sliding	0
2021-Oct-02, Sat,01:00	Rain	Turning movement	P.D. only	Wet	South	Turning left	Pick-up truck	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2015-Jan-30, Fri,15:45	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2015-Apr-03, Fri,22:13	Rain	Turning movement	P.D. only	Wet	South	Turning right	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2015-Sep-25, Fri,12:22	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Cyclist	0
					South	Going ahead	Bicycle	Other motor vehicle	
2015-Oct-25, Sun,22:40	Clear	Turning movement	P.D. only	Dry	North	Turning left	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Feb-07, Sun,12:07	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Truck - closed	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 12 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Apr-01, Fri,18:31	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Municipal transit bus	Other motor vehicle	
2016-Apr-19, Tue,14:40	Clear	Rear end	P.D. only	Dry	North	Going ahead	Delivery van	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2016-May-28, Sat,14:38	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Jun-15, Wed,14:08	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Cyclist	0
					South	Going ahead	Bicycle	Other motor vehicle	
2016-Oct-01, Sat,13:19	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2016-Oct-11, Tue,10:30	Clear	Angle	Non-fatal injury	Dry	East	Turning right	Automobile, station wagon	Cyclist	0
					North	Going ahead	Bicycle	Other motor vehicle	
2016-Dec-12, Mon,14:20	Drifting Snow	Rear end	P.D. only	Packed snow	South	Going ahead	Municipal transit bus	Other motor vehicle	0
					South	Slowing or stopping	g Pick-up truck	Other motor vehicle	
2017-Jul-28, Fri,17:07	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Cyclist	0
					South	Going ahead	Bicycle	Other motor vehicle	
2017-Sep-24, Sun,13:23	Clear	Sideswipe	Non-fatal injury	Dry	North	Stopped	Automobile, station wagon	Cyclist	0
					North	Going ahead	Bicycle	Other motor vehicle	
2017-Dec-14, Thu,08:45	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2018-Jan-12, Fri,12:22	Rain	Sideswipe	P.D. only	Wet	North	Unknown	Automobile, station wagon	Other motor vehicle	0
					North	Unknown	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 13 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: BANK ST @ WILTON CRES

Traffic Control: Stop sign Total Collisions: 26

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Jun-19, Tue,13:49	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Cyclist	0
					South	Going ahead	Bicycle	Other motor vehicle	
2018-Oct-19, Fri,22:50	Clear	Rear end	Non-fatal injury	Wet	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Nov-15, Thu,17:00	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Dec-12, Wed,11:20	Clear	Rear end	P.D. only	Dry	East	Unknown	Unknown	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jun-01, Sat,15:40	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jun-23, Sun,22:45	Clear	Turning movement	P.D. only	Dry	North	Turning left	Unknown	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jul-14, Sun,10:45	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Dec-21, Sat,06:39	Clear	SMV other	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Curb	0
2020-Feb-21, Fri,15:23	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2021-Nov-27, Sat,19:59	Rain	Turning movement	Non-fatal injury	Wet	North	Turning left	Pick-up truck	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 14 of 16

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: FIFTH AVE @ QUEEN ELIZABETH DRWY

Traffic Control: Traffic signal Total Collisions: 10

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Pe
2016-Jan-12, Tue,15:10	Snow	Rear end	P.D. only	Dry	South	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					South	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
2016-Jan-13, Wed,08:30	Clear	Sideswipe	P.D. only	Loose snow	North	Unknown	Unknown	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Apr-15, Fri,18:32	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2016-Apr-23, Sat,19:45	Clear	Rear end	P.D. only	Dry	East	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Aug-20, Sat,17:15	Clear	SMV other	P.D. only	Dry	South	Turning left	Pick-up truck	Pole (sign, parking me	er) 0
2016-Oct-16, Sun,10:35	Rain	Turning movement	Non-fatal injury	Wet	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					South	Overtaking	Pick-up truck	Other motor vehicle	
2016-Dec-29, Thu,16:50	Snow	Rear end	Non-fatal injury	Slush	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stoppin	g Truck-other	Other motor vehicle	
2017-Jul-06, Thu,20:45	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stoppin	g Truck - closed	Other motor vehicle	
2017-Dec-15, Fri,18:19	Snow	Rear end	P.D. only	Loose snow	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Passenger van	Other motor vehicle	
2019-Jan-17, Thu,17:20	Clear	Rear end	P.D. only	Wet	South	Going ahead	Passenger van	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	

Location: PRINCESS PATRICIA WAY @ QUEEN ELIZABETH DRWY

Traffic Control: Stop sign Total Collisions: 8

Date/Day/Time	Environment	Impact Type	Classification	Surface	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped
				Cond'n				

May 01, 2023 Page 15 of 16

Transportation Services - Traffic Services

Collision Details Report - Public Version

From: January 1, 2015 **To:** December 31, 2021

Location: PRINCESS PATRICIA WAY @ QUEEN ELIZABETH DRWY

Traffic Control: Stop sign Total Collisions: 8

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-May-18, Wed,11:56	Clear	Rear end	P.D. only	Dry	North	Going ahead	Motorcycle	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-May-06, Sat,15:30	Rain	Approaching	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Jun-30, Fri,17:48	Clear	Rear end	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2018-Mar-19, Mon,23:36	Clear	Sideswipe	P.D. only	Dry	South	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Feb-15, Fri,18:12	Clear	Angle	P.D. only	Wet	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Mar-03, Sun,21:00	Clear	Angle	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2019-Apr-22, Mon,20:38	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Motorcycle	Other motor vehicle	
2019-Aug-24, Sat,17:05	Clear	Angle	Non-fatal injury	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

May 01, 2023 Page 16 of 16

APPENDIX C - MMLOS ANALYSIS DATA

	Momentum
Scenario	Exisiting / Future
Segment	Bank Street

Project	Lansdowne 2.0 - EC
Date	August 2024

SEGMENTS		Bank St	Section 1	Section 2A	Section 2B	Section 3	Section 4
SEGMENTS.		Dank 3t	5 Ave - Holmwood	(SB) Holmwood - Wilton	(NB) Holmwood - Wilton	Wilton - Aylmer	Aylmer - Sunnyside
	Sidewalk Width		≥ 2 m	≥ 2 m	≥ 2 m	≥ 2 m	1.8 m
_	Boulevard Width		0.5 - 2 m	< 0.5	> 2 m	0.5 - 2 m	0.5 - 2 m
iar	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000	> 3000	> 3000
Pedestrian	Operating Speed	С	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h
de	On-Street Parking	C	yes	no	no	no	yes
Pe	Exposure to Traffic PLoS		В	С	В	С	С
	Level of Service		В	С	В	С	С
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Curbside Bike Lane	Physically Separated	Mixed Traffic
	Number of Travel Lanes		4-5 lanes total	4-5 lanes total	2 ea. dir. (w median)		4-5 lanes total
	Operating Speed		>40 to <50 km/h	>40 to <50 km/h	≤ 50 km/h		>40 to <50 km/h
<u>e</u>	# of Lanes & Operating Speed LoS		E	E	С	-	E
Bicycle	Bike Lane (+ Parking Lane) Width	E			≥ 1.2 to <1.5 m		
	Bike Lane Width LoS		-	-	С	-	-
	Bike Lane Blockages				Frequent		
	Blockage LoS		-	-	С	-	-
	Level of Service		E	E	С	Α	E
芸	Facility Type		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
Transit	Friction or Ratio Transit:Posted Speed	F	Vt/Vp ≤ 0.4	Vt/Vp ≤ 0.4	Vt/Vp ≤ 0.4	Vt/Vp ≥ 0.8	Vt/Vp ≤ 0.4
Ĕ	Level of Service		F	F	F	D	F
	Truck Lane Width		≤ 3.2 m	> 3.7 m	≤ 3.2 m	≤ 3.5 m	≤ 3.5 m
*************************************	Travel Lanes per Direction	_	>1	>1	>1	1	>1
Truck	Level of Service	D	D	А	D	С	Α

Consultant	Momentum	
Scenario	Exisiting / Future	
Segment	Holmwood Avenue	

Project	Lansdowne 2.0 - EC
Date	August 2024

SEGMENTS		Holmwood Ave	Section 5A	Section 5B	
SECIVILIVIS		Homiwood Ave	Northside	Southside	
	Sidewalk Width		1.8 m	1.8 m	
_	Boulevard Width		< 0.5 m	< 0.5 m	
iar	Avg Daily Curb Lane Traffic Volume		≤ 3000	≤ 3000	
Pedestrian	Operating Speed	В	> 30 to 50 km/h	> 30 to 50 km/h	
de	On-Street Parking		no	yes	
Pe	Exposure to Traffic PLoS		В	В	
	Level of Service		В	В	
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic	
	Number of Travel Lanes		≤1 each direction	≤ 2 (no centreline)	
	Operating Speed		≤ 50 km/h	>40 to <50 km/h	
<u>e</u>	# of Lanes & Operating Speed LoS		Α	В	
Bicycle	Bike Lane (+ Parking Lane) Width	С	≥ 1.2 to <1.5 m		
	Bike Lane Width LoS		С	-	
	Bike Lane Blockages		Rare		
	Blockage LoS		Α	•	
	Level of Service		С	В	
第	Facility Type				
Transit	Friction or Ratio Transit:Posted Speed	_			
Ψ	Level of Service		-	-	
	Truck Lane Width				
z z	Travel Lanes per Direction				
Truck	Level of Service	-	-	-	

Consultant	Momentum	
Scenario	Exisiting / Future	
Segment	Queen Elizabeth Driveway (QED)	

Project	Lansdowne 2.0 - EC
Date	August 2024

			Section 6A	Section 6B	Section 7	Section 8
SEGMENTS		QED	Fifth Ave - Fourth Ave. (SB)	Fifth Ave - Fourth Ave. (NB)	Fifth Ave - Princess Patricia Way	South of Princess Patricia Way
	Sidewalk Width		no sidewalk	≥ 2 m	≥ 2 m	≥ 2 m
	Boulevard Width		n/a	0.5 - 2 m	> 2 m	> 2 m
an	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000	> 3000
Pedestrian	Operating Speed On-Street Parking	F	> 30 to 50 km/h no	> 30 to 50 km/h no	> 30 to 50 km/h no	> 30 to 50 km/h no
)ec	Exposure to Traffic PLoS		F	С	В	В
_	Level of Service		F	С	В	-
	Type of Cycling Facility		Physically Separated	Physically Separated	Physically Separated	Physically Separated
	Number of Travel Lanes					
	Operating Speed					
<u>e</u>	# of Lanes & Operating Speed LoS	Α	-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width					
	Bike Lane Width LoS		-	-	-	-
	Bike Lane Blockages					
	Blockage LoS		-	-	-	-
	Level of Service		Α	Α	Α	Α
芸	Facility Type					
Transit	Friction or Ratio Transit:Posted Speed	_				
Τr	Level of Service		-	-	-	-
	Truck Lane Width					
支	Travel Lanes per Direction					
Truck	Level of Service	-	-	-	-	-
Auto	Level of Service Not Applicable					

Consultant	Momentum
Scenario	Exisiting / Future
Segment	Fifth Avenue

	Lansdowne 2.0 - EC
Date	August 2024

SEGMENTS		Fifth Ave	Section 9A	Section 9B
SEGIVIENTS		Filtil Ave	Bank St - R. O'Connor St	R. O'Connor St - QED
	Sidewalk Width		1.5 m	1.5 m
Pedestrian	Boulevard Width		< 0.5 m	< 0.5 m
	Avg Daily Curb Lane Traffic Volume		≤ 3000	≤ 3000
str	Operating Speed	E	> 30 to 50 km/h	> 30 to 50 km/h
de	On-Street Parking		yes	yes
Pe	Exposure to Traffic PLoS		E	E
	Level of Service		E	E
	Type of Cycling Facility		Mixed Traffic	Curbside Bike Lane
	Number of Travel Lanes		≤ 2 (no centreline)	≤ 1 each direction
	Operating Speed		>40 to <50 km/h	≤ 50 km/h
<u>e</u>	# of Lanes & Operating Speed LoS		В	Α
Bicycle	Bike Lane (+ Parking Lane) Width	С		≥ 1.2 to <1.5 m
	Bike Lane Width LoS		-	С
	Bike Lane Blockages			Rare
	Blockage LoS		-	Α
	Level of Service		В	С
芸	Facility Type			
Transit	Friction or Ratio Transit:Posted Speed	_		
<u> </u>	Level of Service		-	-
	Truck Lane Width			
支	Travel Lanes per Direction			
Truck	Level of Service	-	-	-

Consultant	Momentum
Scenario	Exisiting / Future
Comments	O'Connor Street

Project	Lansdowne 2.0 - EC
Date	August 2024

SEGMENTS		R.O'Connor	Section 10A (West Side) Holmwood - Fifth Ave	Section 10A (East Side) Holmwood - Fifth Ave
	Sidewalk Width Boulevard Width		1.5 m < 0.5 m	1.5 m < 0.5 m
Pedestrian	Avg Daily Curb Lane Traffic Volume		≤ 3000	≤ 3000
	Operating Speed On-Street Parking	E	≤ 30 km/h no	> 30 to 50 km/h yes
	Exposure to Traffic PLoS		D	E
	Level of Service		D	E
	Type of Cycling Facility		Physically Separated	Mixed Traffic
	Number of Travel Lanes			≤ 2 (no centreline)
	Operating Speed			≤ 40 km/h
e e	# of Lanes & Operating Speed LoS		-	Α
Bicycle	Bike Lane (+ Parking Lane) Width	Α		
	Bike Lane Width LoS		-	-
	Bike Lane Blockages			
	Blockage LoS		-	•
	Level of Service		А	Α
Transit	Facility Type			
ans	Friction or Ratio Transit:Posted Speed			
Ĕ	Level of Service		-	-
	Truck Lane Width			
충	Travel Lanes per Direction			
Truck	Level of Service	-	-	-
Auto	Level of Service		Not Applicat	ole

APPENDIX D - TDM CHECKLIST

Transportation Demand Management Measures Overview Lansdowne 2.0 - Event Centre

The Transportation Demand Management (TDM) program implemented in 2014 to support special events at Lansdowne Park and TD Place has been largely effective in diverting automobile trips from traveling directly to Lansdowne for special events.

A key hallmark of the TDM program and a large contributor to its success for the Lansdowne Revitalization project is the provision of free transit service to all ticketed events at no cost to event goers. Maintaining and enhancing this provision will be critical in maintaining the success of the program as part of the Lansdowne 2.0 redevelopment project.

The initial TDM plan for the Lansdowne Revitalization identified varying levels of enhanced transit and shuttle services needed to support following event sizes:

- 7,000 10,000 attendees, representative of average and sold-out arena events.
- 13,000 attendees, representative of smaller stadium events with attendance levels ranging between 10,000 15,000.
- 18,000 25,000 attendees, representative of average and sold-out stadium events including CFL Ottawa Redblacks football games.
- 40,000 attendees, representative of jewel 'mega events'. These events are
 infrequent and require temporary expanded stadium seating capacity, and/or the
 concurrent use of venues at Lansdowne.

The above attendance level scenarios were developed based on the capacities of the Stadium at TD Place (assumed to be 25,000) and the Arena at TD Place (9,800).

As part of the Lansdowne 2.0 project, the existing 9,800 seat indoor TD Place Arena will be replaced with a new standalone 5,500 seat (6,500 spectator) multi-purpose event centre that will be the new home to the OHL's Ottawa 67's, the CEBL's Ottawa BlackJacks, PWHL Ottawa hockey, and other indoor ticketed events. This change will effectively cap indoor arena events to 6,500 attendees, down from the previous 9,800 maximum capacity level that was previously identified for sold-out arena events.

The current spectator capacity for the Stadium at TD Place is 24,000. Under Lansdowne 2.0 project, the existing north stadium stands will be reconstructed with a seated capacity of 11,200 spectators (12,100 total spectators), representing a decrease from the current

capacity of 14,028 spectators for the existing north stadium stands. This represents a total capacity of 22,000 spectators for the new stadium (2,000 less seats than what is provided today).

Based on the Lansdowne 2.0 Transportation Demand Management Strategy Report (June 30, 2023 – Stantec) event, varying levels of event sizes have been refined to reflect the new event centre and stadium capacities. Consistent with the original TDM Plan, events at Lansdowne are categorized as either Minor Events or Major Events.

Minor Events constitute events and programing at Lansdowne with total attendance levels of 10,000 or less, typically representative of indoor events or those that do not require the provision of substantial Park & Shuttle service (i.e. OC Transpo 450-Series service). Major Events are those with attendance levels of 10,000 or more and are typically outdoor stadium events that require enhanced transit service and the provision of Park & Shuttle service.

Lansdowne 2.0 Attendance Levels

The Lansdowne 2.0 concept was adjusted since the submission of the *Lansdowne 2.0 Transportation Demand Management Strategy Report* in 2023. This included the reduction of the proposed density from three residential towers with 1,200 units to two towers with 700 units. Other changes include the removal of a proposed 1,500 seat music hall from the podium level retail that is proposed to be attached to the new north stadium stands.

Attendance level thresholds were adjusted to reflect the new concept plan:

Minor Events

- 3,000 attendees or less, representative of smaller indoor events at the new Event Centre, and other public events held at Lansdowne.
- 3,000 6,500 attendees, representative of average and maximum sold-out indoor events at the new Event Centre.
- Between 6,500 and 10,000 attendees, representative of concurrent sold-out indoor events at the new Event Centre with other events occurring at Lansdowne such as the Ottawa's Farmer Market, BluesFest, or other outdoor festivals held on site.

Major Events

• 13,000 attendees, representative of events between 10,000 and 15,000 attendees including smaller stadium events.

- 18,000 22,000 attendees, representative of average and sold-out stadium events.
- 29,000 attendees, representative of concurrently held sold-out indoor events at the new Event Centre, and a sold-out event at the Stadium. It is noted that while the overlapping of two sold-out events is unlikely, this scenario is accounted for as
- 40,000 representing a large 'Mega Event' with expanded Stadium seating capacity, or concurrent large events.

Based on information received from the Ottawa Sports and Entertainment Group, smaller events with attendance levels of 5,000 attendees or less represent the majority of ticketed events at Lansdowne. For 2024, out of total 161 events expected at Lansdowne, approximately 128 events (79%) are planned to have attendance levels under 5,000 attendees.

Lansdowne 2.0 Modal Share Targets

The Lansdowne 2.0 Transportation Demand Management Strategy (Stantec – July 2023), provided revised modal share targets for Major Events and Minor Events for Lansdowne 2.0.

Table 1 summarized the modal share targets for Lansdowne 2.0, including those for the new Event Centre (Minor Events).

Table 2 documents the corresponding person trips forecasted for events at Lansdowne 2.0 under various event sizes. Consistent with the initial TDM plan, the auto mode which accounts for both on-site and on-street parking, is assumed to be maximized at 8,225 person trips based on a limited on-street parking supply of 2,175 spaces within the vicinity of Lansdowne, and 600 on-site parking spaces.

Table 1: Lansdowne 2.0 Modal Share Targets for Varying Attendance Levels

	Mega Event: Expanded Stadium Seating + Event Centre							
	Concurrent Sold-Out Stadium + Event Centre							
				Solo	I-Out Stadi	um Event		
Attendance Level	Average Stadium Event							
Attendance Level			Small Stadi	um Event				
	Event	Centre + L	P Events*					
	Eve	nt Centre						
	3,000	6,500	10,000	13,000	18,000	22,000	29,000	40,000
Transit / Park & Shuttle	10%	10%	10%	52%	52%	52%	54%	59%
Walking & Cycling	10%	10%	10%	11%	11%	11%	11%	13%
Drive & Park	75%	75%	75%	32%	32%	32%	28%	21%
Other**	5%	5%	5%	5%	5%	5%	7%	7%

Table 2: Lansdowne 2.0 Person Trips Per Mode for Varying Attendance Levels

	Mega Event: Expanded Stadium Seating + Event Centre							
	Concurrent Sold-Out Stadium + Event Centre							
				Sold	l-Out Stadi	um Event		
Attandanas Laval	Average Stadium Event							
Attendance Level			Small Stadi	um Event				
	Event Centre + LP Events							
	Event Centre							
	3,000	6,500	10,000	13,000	18,000	22,000	29,000	40,000
Transit / Park & Shuttle	300	650	1,000	6,760	9,360	11,440	15,555	23,775
Walking & Cycling	300	650	1,000	1,430	1,980	2,420	3,190	5,200
Drive & Park	2,250	4,875	7,500	4,160	5,760	7,040	8,225	8,225
Other**	150	325	500	650	900	1,100	2,030	2,800

^{*} LP Events – Lansdowne Park Events and Festivals

^{**} Other – represents other modes such as RideShare (Uber/Lyft), Taxis, Drop-offs, Private Shuttle buses

Special Events Transportation Services

Minor Events (Less than 15,000 attendees)

Free Transit Service:

The basic elements of the TDM Plan to accommodate Minor Events at Lansdowne do not change as part of the Lansdowne 2.0 project. A key hallmark of the service delivery is the continued provision of free transit to all ticketed events at Lansdowne, irrespective of event size, starting two hours prior to the start of events, and up to two hours after the end of events.

Depending on the anticipated attendance levels, enhancements on OC Transpo Routes 6 and 7 through additional trips are arranged by OC Transpo as needed to ensure adequate transit capacity is provided.

The cost of additional transit service enhancement is provided at no additional cost to event goers and is borne by OSEG.

Walking and Cycling:

Information promoting walking and cycling as a convenient way to travel to TD Place is featured throughout TD Place communications. Walking and cycling to Lansdowne is promoted through the use of the scenic multi-use pathway along the Rideau Canal and the use of the 285 bike rings provided on-site. Additional information on walking and cycling connections is provided on the City of Ottawa Lansdowne Park website.

On-Site Parking Management:

On-site parking at TD Place is available for use during special events. As on-site parking is limited and shared with other visitors to Lansdowne, event attendees are encouraged to pre-purchase on-site parking to reserve a space and to limit increased drive-up demand. This messaging is provided for minor events held at Lansdowne including concerts, events, Ottawa 67's, Atletico, BlackJacks, and PWHL games.

Alternative Off-Site Parking:

To limit drive-up parking at Lansdowne for minor events, OSEG is currently identifying nearby off-street parking near Lansdowne as an alternative to on-site parking, particularly for use during minor events when Park & Shuttle service is not provided.

Intercepting inbound auto travelers for Minor Events at alternative parking facilities that are typically underutilized on weekday evenings and weekends has the potential to reduce direct auto travel to Lansdowne. Alternative parking information is currently provided on

the TD Place website and provides information on nearby lots that are within a 20, 30, and 40-minute walk to Lansdowne. In addition, parking facilities with access to Routes 6 and 7 are identified for convenience to address First / Last Mile connectivity through free transit service on Bank Street for ticket holders.

OSEG is currently exploring options to aggregate the availability of off-site alternative parking, and the ability to pre-purchase or reserve alternative nearby off-street parking, through third party parking service providers.

Carleton U Shuttle:

For Ottawa 67's and PHWL Ottawa games, park & shuttle service is provided to ticket holders from Carleton University. Ticket holders can park at Carleton University starting 90 minutes before the start of Ottawa 67's and PHWL Ottawa games with services provided until 60 minutes post-games. The cost of parking and shuttle service is free to ticket holders and is borne by OSEG. Shuttle bus service is provided from Carleton University's P18 Parkade with service provided to Lansdowne provided through Sunnyside Avenue and Bank Street.

While the Carleton U shuttle is currently used to support Ottawa 67's and PHWL Ottawa events, it can also be used to supplement enhanced transit coverage for concurrent special events at Lansdowne with total on-site attendance levels exceeding the 10,000 threshold but less than 15,000 attendees where further transportation services are required to support major events.

Figure 1: Carleton U Shuttle

Major Events (More than 15,000 attendees)

No significant changes are anticipated to the provision of transportation services to support major events with attendance levels of 15,000 or more. Transportation services provided for outdoor stadium events will continue to be provided in their current format.

This includes the provision of free, direct parking and shuttle service from satellite locations that are operated by OC Transpo, the Société de Transport de l'Outaouais (STO), and OSEG.

Enhanced Transit / Park & Shuttle:

For major events with attendance levels between 15,000 – 22,000 (stadium events), enhanced transit service and 450-series shuttles provided by OC Transpo and the STO will continue to provide service on Bank Street.

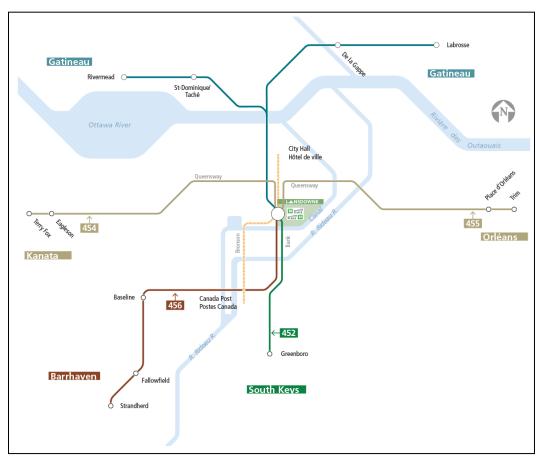


Figure 1: TD Place Park & Shuttle Network Map

source: OC Transpo

Under Lansdowne 2.0, the use of nearby satellite parking and shuttle service from City Hall and Canada Post is expected to continue to be provided by OSEG for major events with attendance levels of 15,000 or more.

TD Place Park & Shuttle service from Canada Post and City Hall provide service to the Shuttle Loop on the east side of Lansdowne and require access on Queen Elizabeth Driveway.

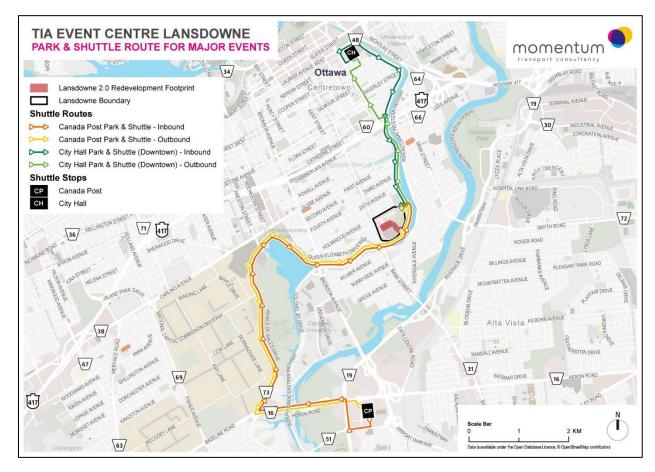


Figure 2: TD Place Park & Shuttle Routes Operated by OSEG for Major Events

Continued cooperation and coordination with key stakeholders including the City of Ottawa and the National Capital Commission (NCC) will be required to successfully deliver Major Events at Lansdowne. QED will continue to play a significant role in supporting multimodal access to Lansdowne. In addition to supporting active mode trip access through the multi-use pathway system, QED plays a critical role in supporting vehicular access to the site during Major Events for both residents and retail patrons. The access is also used as the primary drop-off area for RideShare service providers such as Uber and Lyft, as well as Park & Shuttle services from Canada Post and City Hall.

The timing of closures on QED should be coordinated closely by the NCC, the City of Ottawa, and OSEG for Major Events. While the majority of access to Lansdowne is facilitated on the 450-series service on Bank Street, the QED will primarily accommodate parking garage access during event Ingress and Egress time periods when access on Bank Street is fully restricted to vehicular traffic due to pedestrian demands.

Opportunities to streamline and adjust Park & Shuttle services from Canada Post and City Hall should continue to be explored and changes to services provided should be informed through consultations with key stakeholders including OC Transpo, City of Ottawa, and the NCC. This includes a period evaluation of the number of satellite parking facilities needed to match service demands.

Walking and Cycling:

Information promoting walking and cycling as a convenient way to travel to TD Place is featured throughout TD Place communications. Walking and cycling to Lansdowne is promoted through the use of the scenic multi-use pathway along the Rideau Canal and the use of the 285 bike rings provided on-site. Additional information on walking and cycling connections is provided on the City of Ottawa Lansdowne Park website.

For major events with attendance levels of 15,000 or more, additional bike parking is provided and promoted for free valet bike parking is provided near TD Place Gate 4 south of the Abderdeen Pavilion.

Figure 3: TD Place Bike & Park Valet Service for Major Events (2015)

On-Site Parking Management:

For major events at Lansdowne, primarily Ottawa Redblacks CFL Football games, no onsite parking is provided for purchase and drive-up is discouraged through regular messaging and trip planning information featured on-line. A limited number of parking passes are provided to club and suite ticket holders with access. Major event attendees are strongly encouraged to utilize the free Park & Shuttle service, cycling or walk to travel to Lansdowne for major events.

Alternative Off-Site Parking:

Similar to minor events, information on nearby off-street parking near Lansdowne is provided as an alternative to on-site parking.

Mega Events (Attendance Levels of 29,000 or more)

Mega Events scenarios are infrequent events representative of expanded capacity or concurrently running events with attendance levels that exceed typical sold-out events at the stadium. These scenarios require additional transportation services and traffic management measures.

Under the initial Lansdowne Revitalization Plan, Mega Events were identified to accommodate expanded seating stadium events with attendance levels reaching 40,000 including large concerts, or once-in-a-lifetime jewel events such as the CFL Grey Cup.

Under Lansdowne 2.0, the definition of Mega Events has been revised to include concurrent sold-out event centre and stadium events held at Lansdowne with a combined attendance level of 29.000.

Further enhancements to 450-series service will be required to support special events with attendance levels of 29,000 or more. It is anticipated that a total of 30 to 35 additional transit trips are required across the 450-series service to meet transit demands for 40,000 person mega events.

In addition to the provision of 450-series service and TD Place Park & Shuttle service from City Hall and Canada Post, additional off-site satellite Park & Shuttle service may be required to support demands, particularly for mega events at the 40,000 person attendance level. For a 40,000 attendance mega events, additional Park & Shuttle facilities should be secured at Vincent Massey Park and/or the EY Centre depending on the attendance level and level of service requirements.

For 40,000 attendance Mega Events, restricted access on QED may be required to support enhanced Park & Shuttle operations from satellite parking locations.

Sandy Hill City Hall TIA EVENT CENTRE LANSDOWNE COVENTRY ROAD 417 momentum Ottawa 64 Centretown 66/ 36 60/ 40 Lansdowne Boundary Shuttle Routes SMYTH ROAD 72 Outbound 71 417 Vincent Massey 69 111 16 Canada Post 19 417 16 73 24/ 31 32 **EY Centre** 2.25 13

Figure 4: TD Place Park & Shuttle Routes Operated by OSEG for Mega Events

Summary of Required Transportation Services by Varying Event Size

A summary of required transit, off-site parking, and shuttle services is provided in Table 3.

 Table 3: Lansdowne 2.0 Transportation Services Required for Varying Event Sizes

					Mega Ev	ent: Expanded St	adium Seating + Event Centre		
	Concurrent Sold-Out Stadium + Event Centre								
Event Size /	Sold-Out Stadium Event								
Classification			Average S	tadium Event					
			Small Stadium Event						
	Event Ce	entre + LP Events*							
	Event Centre								
Transportation Services	3,000	5,000	10,000	15,000	18,000	22,000	29,000		
Provided	- 5,000	10,000	- 15,000	- 18,000	- 22,000	- 29,000	40,000		
	Minor Events		Major Events			Mega Events			
Enhanced Transit Service	Not Required		Increased transit service on Bank Street Route (as required)			t Route 6 and Route	and Route 7		
Valet Bike Parking	Not Requ	ired			Free, Secure Valet	Bike Parking			
Doub 9 Obsettle	Med De su		As Required	Enhanced Transit 450-Series shuttle service from OC Transpo			from OC Transpo / STO		
Park & Shuttle	(Carleton U Shuttle) Satellite Park & Shuttle Service from City Hall and C			Hall and Canada Post					
Additional Park & Shuttle Service		Not Required Massey				Additional Service from Vincent Massey and/or EY Centre (As Required)			

Additional TDM Opportunities

The July 2023 TDM Strategy Report developed for Lansdowne 2.0 recognizes the challenges associated with Minor Events at Lansdowne, particularly on busy weekend periods with overlapping programming, and the challenges associated with traffic delays experienced by all road users on Bank Street. These challenges are especially pronounced when there are programming closures on QED to support community programming such as Winterlude, the Ottawa Race Weekend events, and the most recent closures of QED on weekends as part of a pilot project to support active modes on the scenic parkway. These closures result in a significant diversion of traffic onto Bank Street which increases delays and cut through traffic on local neighborhood streets. The report identified future opportunities to further enhance the TDM program for special events at Lansdowne.

Transit Priority Improvements

Opportunities to improve transit service along Bank Street for Routes 6 and 7 will be evaluated through the City of Ottawa's Active and Transit Operations study for Bank Street. Potential improvements, which may include transit signal priority measures and enhanced bus shelters, can improve transit service reliability and passenger comfort. These improvements to service reliability and passenger comfort on Bank Street will help to promote transit service to Lansdowne as a viable and attractive option for day-to-day travel, as well as for Minor Events.

Fare Free Zone Pilot

Opportunities to promote transit use, particularly on busy weekends, could potentially include exploring the feasibility of introducing a "Fare Free" zone on Bank Street to support local businesses, including Lansdowne, and reduce the reliance on auto travel.

This initiative can support programming at Lansdowne during busy weekend periods that include the Ottawa Farmer's Market or 613Flea, as well as merchants along Bank Street between downtown Ottawa and the Glebe. The "Fare Free" zone can be provided on Route 6 and/or 7 during certain hours and specific days of the week. For example, service delivery could potentially include providing "Fare Free" service on Route 7, between Carleton University and downtown Ottawa (Rideau Station), on Saturdays and Sundays between the hours of 9:00 AM and 3:00 PM.

The feasibility and challenges of providing "Fare Free" service on Bank Street will need to be studied and evaluated. This type of service should be considered as part of the traffic management strategy to support alternative modes of transportation and to reduce traffic impacts associated with events such as Winterlude, Ottawa Race Weekend, etc.

Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.1—Development Design) requires proponents of qualifying developments to use the City's **TDM-Supportive Development Design and Infrastructure Checklist** to assess the opportunity to implement design elements that are supportive of sustainable modes. The goal of this assessment is to ensure that the development provides safe and efficient access for all users, while creating an environment that encourages walking, cycling and transit use.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments
- TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

This **TDM-Supportive Development Design and Infrastructure Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multi-family or condominium only; subdivisions are exempt). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the design and infrastructure measures being proposed and provides additional detail on them.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- REQUIRED —The Official Plan or Zoning By-law provides related guidance that must be followed.
- BASIC —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- BETTER —The measure could maximize support for users of sustainable modes, and optimize development performance.

Glossary

This glossary defines and describes the following measures that are identified in the TDM-Supportive Development Design and Infrastructure Checklist:

Walking & cycling: Routes

- Building location & access points
- Facilities for walking & cycling
- Amenities for walking & cycling

Walking & cycling: End-of-trip facilities

- Bicycle parking
- Secure bicycle parking
- Shower & change facilities
- Bicycle repair station

Transit

- Walking routes to transit
- Customer amenities

Ridesharing

- Pick-up & drop-off facilities
- Carpool parking

Carsharing & bikesharing

- Carshare parking spaces
- Bikeshare station location

Parking

- Number of parking spaces
- Separate long-term & short-term parking areas

Other

On-site amenities to minimize off-site trips

In addition to specific references made in this glossary, readers should consult the City of Ottawa's design and planning guidelines for a variety of different land uses and contexts, available on the City's website at www.ottawa.ca. Readers may also find the following resources to be helpful:

- Promoting Sustainable Transportation through Site Design, Institute of Transportation
 Engineers, 2004 (www.cite7.org/wpdm-package/iterp-promoting-sustainable-transportation)
- Bicycle End-of-Trip Facilities: A Guide for Canadian Municipalities and Employers, Transport Canada, 2010 (www.fcm.ca/Documents/tools/GMF/Transport Canada/BikeEndofTrip EN.pdf)

► Walking & cycling: Routes

Building location & access points. Correctly positioning buildings and their entrances can help make walking convenient, comfortable and safe. Minimizing travel distances and maximizing visibility are key.

Facilities for walking & cycling. The Official Plan gives clear direction on the provision and design of walking and cycling facilities for both access and circulation. On larger, busier sites (e.g. multi-building campuses) the inclusion of sidewalks, pathways, marked crossings, stop signs and traffic calming features can create a safer and more supportive environment for active transportation.

Amenities for walking & cycling. Lighting, landscaping, benches and wayfinding can make walking and cycling safer and more secure, comfortable and accessible.

Walking & cycling: End-of-trip facilities

Bicycle parking. The Official Plan and Zoning By-law both address the need for adequate bicycle parking at developments. Weather protection and theft prevention are major concerns for commuters who spend hundreds or thousands of dollars on a quality bicycle. Bicycle racks should have a design that enables secure locking while preventing damage to wheels. They should be located within sight of busy areas such as main building entrances or staffed parking kiosks.

Secure bicycle parking. Ottawa's Zoning By-law requires a secure area for bicycles at office or residential developments having more than 50 bicycle parking spaces. Lockable outdoor bike cages or indoor storage rooms that limit access to registered users are ideal.

Shower & change facilities. Longer-distance cyclists, joggers and even pedestrians can need a place to shower and change at work; the lack of such facilities is a major barrier to active commuting. Lockers and drying racks provide a place to store gear away from workspaces, and showers and grooming stations allow commuters to make themselves presentable for the office.

Bicycle repair station. Cycling commuters can experience maintenance issues that make the homeward trip difficult or impossible. A small supply of tools (e.g. air pump, Allen keys, wrenches) and supplies (e.g. inner tube patches, chain lubricant) in the workplace can help.

► Transit

Customer amenities. Larger developments that feature an on-site transit stop can make transit use more attractive by providing shelters, lighting and benches. Even better, they could integrate the passenger waiting area into a building entrance.

Ridesharing

Pick-up & drop-off facilities. Having a safe place to load or unload passengers (for carpools as well as taxis and ride-hailing services) without obstructing pedestrians, cyclists or other vehicles can help make carpooling work.

Carpool parking. At destinations with large parking lots (or lots that regularly fill to capacity), signed priority carpool parking spaces can be an effective ridesharing incentive. Priority spaces are frequently abused by non-carpoolers, so a system to provide registered users with vehicle identification tags is recommended.

Carsharing & bikesharing

Carshare parking spaces. For developments where carsharing could be an attractive option for employees, visitors or residents, ensuring an attractive location for future carshare parking spaces can avoid challenges associated with future retrofits.

Bikeshare station location. For developments where bikesharing could be an attractive option for employees, visitor or residents, ensuring an attractive location for a future bikeshare station can avoid challenges associated with future retrofits.

Parking

Number of parking spaces. Parking capacity is an important variable in development design, as it can either support or subvert the mode share targets set during the transportation impact analysis (TIA). While the Zoning By-law establishes any minimum and/or maximum requirements for parking capacity, it also allows a reduction in any minimum to reflect the existence of on-site shower, change and locker rooms provided for cyclists.

Separate long-term & short-term parking areas. Because access to unused parking spaces can be a powerful incentive to drive, developments can better manage their parking supply and travel behaviours by separating long-term from short-term parking through the use of landscaping, gated controls or signs. Doing so makes it difficult for long-term parkers (e.g. commuters) to park in short-term areas (e.g. for visitors) as long as enforcement occurs; it also protects long-term parking capacity for its intended users.

Other

On-site amenities to minimize off-site trips. Developments that offer facilities to limit employees' need for a car during their commute (e.g. to drop off children at daycare) or during their workday (e.g. to hit the gym) can free employees to make the commuting decision that otherwise works best for them.

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend				
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed			
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users			
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance			

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	abla
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	abla
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\checkmark
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	₩
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	✓
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	abla
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	abla
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	abla
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	abla
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	✓

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\triangleleft
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	✓
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	₽
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	□ N/A
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	N/A
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	N/A

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	✓
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	N/A
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	□ _{N/A}
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	✓
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	N/A
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	□ N/A
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	To be confirmed as part of Phase 3 of Lansodnwe 2.0
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	To be confirmed as part of Phase 3 of Lansdowne 2.0

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	✓
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\checkmark
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	N/A
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	 ✓
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	abla

Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.3—Transportation Demand Management) requires proponents of qualifying developments to assess the context, need and opportunity for transportation demand management (TDM) measures at their development. The guidelines require that proponents complete the City's **TDM Measures Checklist**, at a minimum, to identify any TDM measures being proposed.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM Measures Checklist: Non-Residential Developments
- TDM Measures Checklist: Residential developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

The City's *TIA Guidelines* are designed so that *Module 3.1—Development-Generated Travel Demand*, *Module 4.1—Development Design*, and *Module 4.2—Parking* are complete before a proponent begins *Module 4.3—Transportation Demand Management*.

Within Module 4.3, *Element 4.3.1—Context for TDM* and *Element 4.3.2—Need and Opportunity* are intended to create an understanding of the need for any TDM measures, and of the results they are expected to achieve or support. Once those two elements are complete, proponents begin *Element 4.3.3—TDM Program* that requires proponents to identify proposed TDM measures using the **TDM Measures Checklist**, at a minimum. The *TIA Guidelines* note that the City may require additional analysis for large or complex development proposals, or those that represent a higher degree of performance risk; as well, proponents proposing TDM measures for a new development must also propose an implementation plan that addresses planning and coordination, funding and human resources, timelines for action, performance targets and monitoring requirements.

This **TDM Measures Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multifamily, condominium or subdivision). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the TDM measures being proposed and provides additional detail on them, including an implementation plan as required by the City's *TIA Guidelines*.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- BASIC —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- BETTER —The measure could maximize support for users of sustainable modes, and optimize development performance.
- —The measure is one of the most dependably effective tools to encourage the use of sustainable modes.

Glossary

This glossary defines and describes the following measures that are identified in the **TDM Measures Checklist**:

TDM program management

- Program coordinator
- Travel surveys

Parking

Priced parking

Walking & cycling

- Information on walking/cycling routes & destinations
- Bicycle skills training
- Valet bike parking

Transit

- Transit information
- Transit fare incentives
- Enhanced public transit service
- Private transit service

Ridesharing

- Ridematching service
- Carpool parking price incentives
- Vanpool service

Carsharing & bikesharing

- Bikeshare stations & memberships
- Carshare vehicles & memberships

TDM marketing & communications

- Multimodal travel information
- Personalized trip planning
- Promotions

Other incentives & amenities

- Emergency ride home
- Alternative work arrangements
- Local business travel options
- Commuter incentives
- On-site amenities

For further information on selecting and implementing TDM measures (particularly as they apply to non-residential developments, with a focus on workplaces), readers may find it helpful to consult Transport Canada's *Workplace Travel Plans: Guidance for Canadian Employers*, which can be downloaded in English and French from the ACT Canada website at

www.actcanada.com/resources/act-resources.

► TDM program management

While some TDM measures can be implemented with a minimum of effort through routine channels (e.g. parking or human resources), more complex measures or a larger development site may warrant assigning responsibility for TDM program coordination to a designated person either inside or outside the implementing organization. Similarly, some TDM measures are more effective if they are targeted or customized for specific audiences, and would benefit from the collection of related information.

Program coordinator. This person is charged with day-to-day TDM program development and implementation. Only in very large employers with thousands of workers is this likely to be a full-time, dedicated position. Usually, it is added to an existing role in parking, real estate, human resources or environmental management. In practice, this role may be called TDM coordinator, commute trip reduction coordinator or employee transportation coordinator. The City of Ottawa can identify external resources (e.g. non-profit organizations or consultants) that could provide these services.

Travel surveys. Travel surveys are most commonly conducted at workplaces, but can be helpful in other settings. They identify how and why people travel the way they do, and what barriers and opportunities exist for different behaviours. They usually capture the following information:

- Personal data including home address or postal code, destination, job type or function, employment status (full-time, part-time and/or teleworker), gender, age and hours of work
- Commute information including distance or time for the trip between home and work, usual methods of commuting, and reasons for choosing them
- Barriers and opportunities including why other commuting methods are unattractive, willingness to consider other options, and what improvements to other options could make them more attractive

► Parking

Priced parking. Charging for parking is typically among the most effective ways of getting drivers to consider other travel options. While drivers may not support parking fees, they can be more accepting if the revenues are used to improve other travel options (e.g. new showers and change rooms, improved bicycle parking or subsidized transit passes). At workplaces or daytime destinations, parking discounts (e.g. early bird specials, daily passes that cost significantly less than the equivalent hourly charge, monthly passes that cost significantly less than the equivalent daily charge) encourage long-term parking and discourage the use of other travel options. For residential uses, unbundling parking costs from dwelling purchase, lease or rental costs provides an incentive for residents to own fewer cars, and can reduce car use and the costs of parking provision.

► Walking & cycling

Active transportation options like cycling and walking are particularly attractive for short trips (typically up to 5 km and 2 km, respectively). Other supportive factors include an active, health-conscious audience, and development proximity to high-quality walking and cycling networks. Common challenges to active transportation include rain, darkness, snowy or icy conditions, personal safety concerns, the potential for bicycle theft, and a lack of shower and change facilities for those making longer trips.

Information on walking/cycling routes & destinations. Ottawa, Gatineau and the National Capital Commission all publish maps to help people identify the most convenient and comfortable walking or cycling routes.

Bicycle skills training. Potential cyclists can be intimidated by the need to ride on roads shared with motor vehicles. This barrier can be reduced or eliminated by offering cycling skills training to interested cyclists (e.g. CAN-BIKE certification courses).

Valet bike parking. For large events, temporary "valet parking" areas can be easily set up to maximize convenience and security for cyclists. Experienced local non-profit groups can help.

► Transit

Transit information. Difficulty in finding or understanding basic information on transit fares, routes and schedules can prevent people from trying transit. Employers can help by providing online links to OC Transpo and STO websites. Transit users also appreciate visible maps and schedules of transit routes that serve the site; even better, a screen that shows real-time transit arrival information is particularly useful at sites with many transit users and an adjacent transit stop or station.

Transit fare incentives. Free or subsidized transit fares are an attractive incentive for non-transit riders to try transit. Many non-users are unsure of how to pay a fare, and providing tickets or a preloaded PRESTO card (or, for special events, pre-arranging with OC Transpo that transit fares are included with event tickets) overcome that barrier.

Enhanced public transit service. OC Transpo may adjust transit routes, stop locations, service hours or frequencies for an agreed fee under contract, or at no cost where warranted by the potential ridership increase. Information provided by a survey of people who travel to a given development can support these decisions.

Private transit service. At remote suburban or rural workplaces, a poor transit connection to the nearest rapid transit station can be an obstacle for potential transit users, and an employer in this situation could initiate a private shuttle service to make transit use more feasible or attractive. Other circumstances where a shuttle makes sense include large special events, or a residential development for people with limited independent mobility who still require regular access to shops and services.

► Ridesharing

Ridesharing's potential is greatest in situations where transit ridership is low, where parking costs are high, and/or where large numbers of car commuters (e.g. employees or full-time students) live reasonably far from the workplace.

Ridematching service. Potential carpoolers in Ottawa are served by www.OttawaRideMatch.com, an online service to help people find carpool partners. Employers can arrange for a dedicated portal where their employees can search for potential carpool partners only among their colleagues, if they desire. Some very large employers may establish internal ridematching services, to maximize employee uptake and corporate control. Ridematching service providers typically include a waiver to relieve employers of liability when their employees start carpooling through a ridematching service. Ridesharing with co-workers also tends to eliminate security concerns.

Carpool parking price incentives. Discounted parking fees for carpools can be an extra incentive to rideshare.

Vanpool service. Vanpools operate in the Toronto and Vancouver metropolitan areas, where vans that carry up to about ten occupants are driven by one of the vanpool members. Vanpools tend to operate on a cost-recovery basis, and are most practical for long-distance commutes where transit is not an option. Current legislation in Ontario does not permit third-party (i.e. private or non-profit) vanpool services, but does permit employers to operate internal vanpools.

► Carsharing & bikesharing

Bikeshare station & memberships. VeloGO Bike Share and Right Bike both operate bikesharing services in Ottawa. Developments that would benefit from having a bikeshare station installed at or near their development may negotiate directly with either service provider.

Carshare vehicles & memberships. VRTUCAR and Zipcar both operate carsharing services in Ottawa, for use by the general public or by businesses as an alternative to corporate fleets. Carsharing services offer 24-hour access, self-serve reservation systems, itemized monthly billings, and outsourcing of all financing, insurance, maintenance and administrative responsibilities.

► TDM marketing & communications

Multimodal travel information. Aside from mode-specific information discussed elsewhere in this document, multimodal information that identifies and explains the full range of travel options available to people can be very influential—especially when provided at times and locations where individuals are actively choosing among those options. Examples include: employees when their employer is relocating, or when they are joining a new employer; students when they are starting a program at a new institution; visitors or customers travelling to an unfamiliar destination, or when faced with new options (e.g. shuttle services or parking restrictions); and residents when they purchase or occupy a residence that is new to them.

Personalized trip planning. As an extension to the simple provision of information, this technique (also known as *individualized marketing*) is effective in helping people make more sustainable travel choices. The approach involves identifying who is most likely to change their travel choices (notably relocating employees, students or residents) giving them customized information, training and incentives to support them in making that change. It may be conducted with assistance from an external service provider with the necessary skills, and delivered in a variety of settings including workplaces and homes.

Promotions. Special events and incentives can raise awareness and encourage individuals to examine and try new travel options.

- Special events can help attract attention, build participation and celebrate successes. Events that have been held in Ottawa include Earth Day (in April) Bike to Work Month (in May), Environment Week (early June), International Car Free Day (September 22), and Canadian Ridesharing Week (October). At workplaces or educational institutions, similarly effective internal events could include workshops, lunch-and-learns, inter-departmental challenges, pancake breakfasts, and so on.
- Incentives can encourage trial of sustainable modes, and might include loyalty rewards for duration or consistency of activity (e.g. 1,000 km commuted by bicycle), participation prizes (e.g. for completing a survey or joining a special event), or personal recognition that highlights individual accomplishments.

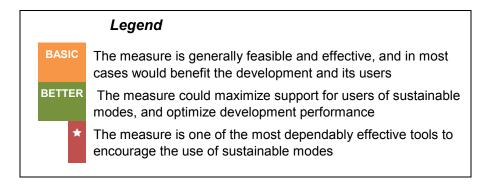
► Other incentives & amenities

Emergency ride home. This measure assures non-driving commuters that they will be able to get home quickly and conveniently in case of family emergency (or in some workplaces, in case of unexpected overtime, severe weather conditions, or the early departure of a carpool driver) by offering a chit or reimbursement for taxi, carshare or rental car usage. Limits on annual usage or cost per employee may be set, although across North America the actual rates of usage are typically very low.

Alternative work arrangements. A number of alternatives to the standard 9-to-5, Monday-to-Friday workweek can support sustainable commuting (and work-life balance) at workplaces:

- Flexible working hours allow transit commuters to take advantage of the fastest and most convenient transit services, and allow potential carpoolers to include people who work slightly different schedules in their search for carpool partners. They also allow active commuters to travel at least one direction in daylight, either in the morning or the afternoon, during the winter.
- Compressed workweeks allow employees to work their required hours over fewer days
 (e.g. five days in four, or ten days in nine), eliminating the need to commute on certain
 days. For employees, this can promote work-life balance and gives flexibility for
 appointments. For employers, this can permit extended service hours as well as reduced
 parking demands if employees stagger their days off.
- Telework is a normal part of many workplaces. It helps reduce commuting activity, and can lead to significant cost savings through workspace sharing. Telework initiatives involve many stakeholders, and may face as much resistance as support within an organization. Consultation, education and training are helpful.

Local business travel options. A common obstacle for people who might prefer to not drive to work is that their employer requires them to bring a car to work so they can make business trips during the day. Giving employees convenient alternatives to private cars for local business travel during the workday makes walking, cycling, transit or carpooling in someone else's car more practical.


- Walking and cycling—Active transportation can be a convenient and enjoyable way to make short business trips. They can also reduce employer expenses, although they may require extra travel time. Providing a fleet of shared bikes, or reimbursing cyclists for the kilometres they ride, are inexpensive ways to validate their choice.
- Public transit—Transit can be convenient and inexpensive compared to driving.
 OC Transpo's PRESTO cards are transferable among employees and automatically reloadable, making them the perfect tool for enabling transit use during the day.
- *Ridesharing*—When multiple employees attend the same off-site meeting or event, they can be reminded to carpool whenever possible.
- Taxis or ride-hailing—Taxis and ride-hailing can eliminate parking costs, save time and eliminate collision liability concerns. Taxi chits eliminate cash transactions and minimize paperwork.
 - Fleet vehicles or carsharing—Fleet vehicles can be cost-effective for high travel volumes, while carsharing is a great option for less frequent trips.
 - o *Interoffice shuttles*—Employers with multiple worksites in the region could use a shuttle service to move people as well as mail or supplies.
 - Videoconferencing—New technologies mean that staying in the office to hold meetings electronically is more viable, affordable and productive than ever.

Commuter incentives. Financial incentives can help create a level playing field and support commuting by sustainable modes. A "commuting allowance" given to all employees as a taxable benefit is one such incentive; employees who choose to drive could then be charged for parking, while other employees could use the allowance for transit fares or cycling equipment, or for spending or saving. (Note that in the United States this practice is known as "parking cash-out," and is popular because commuting allowances are not taxable up to a certain limit). Alternatively, a monthly commuting allowance for non-driving employees would give drivers an incentive to choose a different commuting mode. Another practical incentive for active commuters or transit users is to offer them discounted "rainy day" parking passes for a small number of days each month.

On-site amenities. Developments that offer services to limit employees' need for a car during their commute (e.g. to drop off clothing at the dry cleaners) or during their workday (e.g. to buy lunch) can free employees to make the commuting decision that otherwise works best for them.

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT		
	1.1	Program coordinator		
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	\square	Currently in place
	1.2	Travel surveys		
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress		Currently in place
	2.	WALKING AND CYCLING		
	2.1	Information on walking/cycling routes & destin	ations	S
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	\square	
	2.2	Bicycle skills training		
		Commuter travel		
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses		N/A
	2.3	Valet bike parking		
		Visitor travel		
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	\square	Current provided for Major Events

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	3.	TRANSIT		
	3.1	Transit information		
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	Ø	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	☑	
BETTER	3.1.3	Provide real-time arrival information display at entrances		N/A
	3.2	Transit fare incentives		
		Commuter travel		
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit		N/A
BETTER *	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees		N/A
		Visitor travel		
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	\square	
	3.3	Enhanced public transit service		
		Commuter travel		
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)		N/A
		Visitor travel		
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)		
	3.4	Private transit service		
		Commuter travel		
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)		
		Visitor travel	_	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)		

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	4.	RIDESHARING		
	4.1	Ridematching service		
		Commuter travel		
BASIC	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com		N/A
	4.2	Carpool parking price incentives		
		Commuter travel		
BETTER	4.2.1	Provide discounts on parking costs for registered carpools		N/A
	4.3	Vanpool service		
		Commuter travel		
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters		N/A
	5.	CARSHARING & BIKESHARING		
	5.1	Bikeshare stations & memberships		
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors		N/A
		Commuter travel		
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel		N/A
	5.2	Carshare vehicles & memberships		
		Commuter travel		
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants		N/A
BETTER	5.2.2	Provide employees with carshare memberships for local business travel		N/A
	6.	PARKING		
	6.1	Priced parking		
		Commuter travel		
BASIC 🖈	6.1.1	Charge for long-term parking (daily, weekly, monthly)	\square	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites		
		Visitor travel		
BETTER	6.1.3	Charge for short-term parking (hourly)	\Box	

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS		
	7.1	Multimodal travel information		
		Commuter travel		
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	\square	
		Visitor travel	:	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	\square	
	7.2	Personalized trip planning		
		Commuter travel		
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees		N/A
	7.3	Promotions		
		Commuter travel	,	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	□	
	8.	OTHER INCENTIVES & AMENITIES		
	8.1	Emergency ride home		
		Commuter travel	:	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters		N/A
	8.2	Alternative work arrangements		
		Commuter travel	:	
BASIC ★	8.2.1	Encourage flexible work hours		
BETTER	8.2.2	Encourage compressed workweeks		N/A
BETTER ★	8.2.3	Encourage telework		
	8.3	Local business travel options		
		Commuter travel		
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work		N/A
	8.4	Commuter incentives		
		Commuter travel	,	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance		N/A
	8.5	On-site amenities		
		Commuter travel		
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands		N/A

APPENDIX E - SYNCHRO SUMMARY SHEETS

Existing Conditions

Existing Scenario

Weekday AM Peak Hour

	→	4	†	-	1					
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3				
Lane Configurations	4		413		414					
Traffic Volume (vph)	21	16	521	11	366					
Future Volume (vph)	21	16	521	11	366					
Lane Group Flow (vph)	85	0	627	0	443					
Turn Type	NA	Perm	NA	Perm	NA					
Protected Phases	4		2		6	3				
Permitted Phases		2		6						
Detector Phase	4	2	2	6	6					
Switch Phase										
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0				
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0				
Lost Time Adjust (s)	0.0		0.0		0.0					
Total Lost Time (s)	5.6		5.2		5.2					
Lead/Lag	Lag					Lead				
Lead-Lag Optimize?										
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None				
Act Effct Green (s)	10.0		57.5		57.5					
Actuated g/C Ratio	0.13		0.77		0.77					
v/c Ratio	0.47		0.29		0.21					
Control Delay (s/veh)	37.6		1.0		3.1					
Queue Delay	0.0		0.0		0.0					
Total Delay (s/veh)	37.6		1.0		3.1					
LOS	D		Α		Α					
Approach Delay (s/veh)	37.6		1.0		3.1					
Approach LOS	D		A		A					
Queue Length 50th (m)	11.3		1.7		6.9					
Queue Length 95th (m)	22.6		4.5		13.2					
Internal Link Dist (m)	39.8		31.5		195.6					
Turn Bay Length (m)										
Base Capacity (vph)	298		2141		2154					
Starvation Cap Reductn	0		0		0					
Spillback Cap Reductn	0		0		0					
Storage Cap Reductn	0		0		0					
Reduced v/c Ratio	0.29		0.29		0.21					
Intersection Summary										
Cycle Length: 75										
Actuated Cycle Length: 75										
Offset: 28 (37%), Reference	ed to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gree	en				
Natural Cycle: 75										
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.47										
Intersection Signal Delay (s	s/veh): 4.5			li li	ntersectio	n LOS: A				
Intersection Capacity Utiliz	ation 51.4	%		10	CU Level	of Service A				
Analysis Period (min) 15										
Splits and Phases: 2: Ba	ınk & Holn	nwood								
. +								4		
₩ Ø2 (R)							3	4	Ø4	

Queues 08/01/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (yph)
Future Volume (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Turm Type
Protected Phases
Minimum Split (s)
Total Split (s)
Lost Time (s)
Aul-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lo
 4
 8
 2
 6

 260
 260
 260
 260
 490
 490
 490
 490

 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.36 0.18 0.21 43.5 0.58 0.32 43.5 0.58 0.38 21.9 22.9 15.9 0.0 0.0 0.0 21.9 22.9 15.9 3.7 0.0 3.7 8.5 8.5 C C 21.9 A 8.5 18.5 3.7 A 17.1 25.6 190.0 12.9 5.6 27.2 14.0 49.7 112.4 45.0 376 290 0 0 1594 0 0.36 0.18 0.21 0.38 0.32 Intersection Signal Delay (Sheh): 8.6 Intersection Capacity Utilization 53.5% ICU Level of Sanalysis Period (min) 15 Splits and Phases: 1: Bank & Fifth **∮** Ø2 (R) **1**, ø4

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

▶ Ø6 (R)

ynchro 12 Repor

₹ ø8

Queues 3: Bank & Exhibition	on							08/01/2
	•	•	†	-	ļ			
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø6	Ø7	
Lane Configurations	7	7	∱ ∱	7	44			
Traffic Volume (vph)	51	32	495	64	332			
Future Volume (vph)	51	32	495	64	332			
Lane Group Flow (vph)	57	36	661	71	369			
Turn Type	Perm	Perm		custom	NA			
Protected Phases			2	1	16	6	7	
Permitted Phases	8	8		6				
Detector Phase Switch Phase	8	8	2	1	16			
Minimum Initial (s)	10.0	10.0	10.0	1.0		10.0	4.0	
Minimum Split (s)	26.0	26.0	27.0	7.9		44.0	8.0	
Total Split (s)	26.0	26.0	32.0	12.0		32.0	5.0	
Total Split (%)	34.7%	34.7%	42.7%	16.0%		43%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0		3.0	2.0	
All-Red Time (s)	3.0	3.0	3.9	3.9		3.9	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.9	6.9				
Lead/Lag	0.0	0.0	0.0	Lead			Lag	
Lead-Lag Optimize?				Yes			Yes	
Recall Mode	None	None	C-Max	None		C-Max	None	
Act Effct Green (s)	10.3	10.3	42.7	47.8	56.1			
Actuated g/C Ratio	0.14	0.14	0.57	0.64	0.75			
v/c Ratio	0.29	0.20	0.41	0.17	0.16			
Control Delay (s/veh)	33.0	13.2	10.6	11.6	9.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	33.0	13.2	10.6	11.6	9.0			
LOS	С	В	В	В	Α			
Approach Delay (s/veh)	25.3		10.6		9.4			
Approach LOS	С		В		Α			
Queue Length 50th (m)	7.4	0.0	26.3	5.7	15.7			
Queue Length 95th (m)	17.2	7.4	40.3	12.2	22.9			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)		010	1000	40.0	0050			
Base Capacity (vph)	377	316	1623	427	2350			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	_	0.16			
Reduced v/c Ratio	0.15	0.11	0.41	0.17	0.16			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 25 (33%), Reference	ed to pha	se 2:NB I	and 6:S	BTL, Start	of Gree	n		
Natural Cycle: 90	and the stand							
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.41 Intersection Signal Delay (n/voh): 44	2		- La	tomosti-	on LOS: E)	
Intersection Signal Delay (Intersection Capacity Utiliz						of Service		
Analysis Period (min) 15	auUII JJ.J	70		10	O FEAGI	or on VIC	~ D	
, , ,	ank & Exhi	hition						
1	an OX EXIII	ordUII		I۷	Ø1		żΙ	>
Ø2 (R)				12.0	Ø1		^ 4	↓ Ø8
1				12.5		5	2	0.5
Ø6 (R)				1			- 1	

08/01/2024

Synchro 12 Report Page 5

	•	1	†	ļ		
Lane Group	EBL	NBL	NBT	SBT	Ø3	
Lane Configurations	**		414	∱ î₃		
Traffic Volume (vph)	58	14	690	509		
Future Volume (vph)	58	14	690	509		
Lane Group Flow (vph)	71	0	783	622		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	4		2	6	3	
Permitted Phases	4	2		6		
Detector Phase	4	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0	
Minimum Split (s)	20.0	55.0	55.0	55.0	5.0	
Total Split (s)	20.0	55.0	55.0	55.0	5.0	
Total Split (%)	25.0%	68.8%	68.8%	68.8%	6%	
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.5		5.2	5.2		
Lead/Lag	Lag				Lead	
Lead-Lag Optimize?						
Recall Mode	Ped	C-Max	C-Max	C-Max	Max	
Act Effct Green (s)	14.0		50.3	50.3		
Actuated g/C Ratio	0.18		0.63	0.63		
v/c Ratio	0.26		0.42	0.33		
Control Delay (s/veh)	29.5		3.6	7.2		
Queue Delay	0.0		0.0	0.0		
Total Delay (s/veh)	29.5		3.6	7.2		
LOS	С		Α	Α		
Approach Delay (s/veh)	29.5		3.6	7.2		
Approach LOS	С		Α	Α		
Queue Length 50th (m)	8.6		10.4	19.6		
Queue Length 95th (m)	19.9		m14.6	28.1		
Internal Link Dist (m)	76.7		28.1	10.1		
Turn Bay Length (m)						
Base Capacity (vph)	281		1848	1877		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.25		0.42	0.33		
Intersection Summary						
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 4 (5%), Referenced	to phase	2:NBTL a	and 6:SB	T, Start o	f Green	
Natural Cycle: 80						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.42						
Intersection Signal Delay (s	/veh): 6.4				ntersection LOS: A	
Laterage of the Orange to 1 http://	ation 51 3	%		10	CUI evel of Service	
Intersection Capacity Utiliza Analysis Period (min) 15	30011 31.3	,,,				BA

Splits and Phases: 6: Bank & Aylmer | x | プ _{Ø4} Ø2 (R) Ø6 (R)

Queues 7: Bank & Sunnyside 08/01/2024

Splits and Phases:	7: Bank & Sunnyside		
∮ Ø2 (R)		À .→ Ø4	↓ → ø1
38 s		5 s 26 s	11 s
▶ Ø6 (R)		* ₹ Ø8	
38 s		5 s 26 s	

	•	\rightarrow	1	•	1	1	-	†				
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7	
ane Configurations		- ↔		4		414		414				
raffic Volume (vph)	56	58	18	58	22	945	183	374				
uture Volume (vph)	56	58	18	58	22	945	183	374				
ane Group Flow (vph)	0	139	0	380	0	1088	0	666				
um Type	Perm	NA	Perm	NA	Perm		custom	NA			_	
rotected Phases		4		8		2	1	16	3	6	7	
ermitted Phases	4		8		2		6					
letector Phase	4	4	8	8	2	2	1	16				
witch Phase					47.0					40.0	4.0	
finimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0	
finimum Split (s)	26.0	26.0	26.0	26.0	38.0	38.0	11.0		5.0	49.0	5.0	
otal Split (s)	26.0	26.0	26.0	26.0	38.0	38.0	11.0		5.0	38.0	5.0	
otal Split (%)	32.5%	32.5%	32.5%	32.5%	47.5%	47.5%	13.8%		6%	48%	6%	
ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0	
II-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0	
ost Time Adjust (s)		0.0		0.0		0.0						
otal Lost Time (s)		5.6		5.6		6.0						
ead/Lag	Lag	Lag	Lag	Lag					Lead		Lead	
ead-Lag Optimize?			Yes	Yes	0.11					0.11	Yes	
tecall Mode	None	None 20.2	None	None	C-Max	C-Max 34.4	None	40.4	None	C-Max	None	
ct Effct Green (s)		0.25		20.2		0.43		42.4 0.53				
ctuated g/C Ratio		0.25		0.25		0.43		0.53				
/c Ratio		43.0		32.4		30.6		19.5				
Control Delay (s/veh)		0.0		0.0		0.0		0.0				
(ueue Delay fotal Delay (s/veh)		43.0		32.4		30.6		19.5				
OS		43.0 D		32.4 C		30.6 C		19.5 B				
pproach Delay (s/veh)		43.0		32.4		30.6		19.5				
pproach LOS		43.0 D		02.4 C		30.0		15.5 B				
Queue Length 50th (m)		18.1		23.2		80.4		29.9				
Queue Length 95th (m)		35.5		#68.0		#122.0		#48.4				
nternal Link Dist (m)		75.1		136.0		63.1		79.0				
urn Bay Length (m)		70.1		100.0		00.1		13.0				
ase Capacity (vph)		231		469		1265		990				
tarvation Cap Reductn		0		0		0		0				
pillback Cap Reductn		0		0		0		0				
torage Cap Reductn		0		0		0		0				
leduced v/c Ratio		0.60		0.81		0.86		0.67				
itersection Summary												
cycle Length: 80												
ctuated Cycle Length: 80												
Offset: 79 (99%), Reference	d to phas	se 2:NBT	L and 6:5	BTL, Sta	art of Gre	en						
latural Cycle: 95												
Control Type: Actuated-Coo	rdinated											
faximum v/c Ratio: 0.87												
ntersection Signal Delay (si	veh): 28.	4		_ li	ntersectio	n LOS: (
ntersection Capacity Utiliza				10	CU Level	of Service	e F					
nalysis Period (min) 15												
95th percentile volume e	exceeds o	apacity.	queue ma	ay be lon	ger.							
Queue shown is maximu												

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

9: Queen Elizabeth	n Drive	& Fift	h				08/01/
	۶	4	†	ļ			
ane Group	EBL	NBL	NBT	SBT	Ø4		
ane Configurations	**		41	1,			
Traffic Volume (vph)	46	23	217	280			
uture Volume (vph)	46	23	217	280			
ane Group Flow (vph)	70	0	267	363			
Turn Type	Prot	Perm	NA	NA			
Protected Phases	10		2	6	4		
Permitted Phases		2	_				
Detector Phase	10	2	2	6			
Switch Phase		-	_				
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	22.0	32.0	32.0	32.0	16.0		
Total Split (s)	22.0	32.0	32.0	32.0	16.0		
Total Split (%)	31.4%	45.7%	45.7%	45.7%	23%		
/ellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7		
ost Time Adjust (s)	0.0	0.0	0.0	0.0	2		
Total Lost Time (s)	5.7		6.8	6.8			
.ead/Lag	0.1		0.0	0.0			
ead-Lag Optimize?							
Recall Mode	Min	None	None	Max	None		
Act Effct Green (s)	10.0	140116	25.2	25.2	140116		
Actuated g/C Ratio	0.21		0.53	0.53			
r/c Ratio	0.21		0.32	0.33			
Control Delay (s/veh)	17.6		7.7	8.6			
Queue Delay	0.0		0.0	0.0			
Total Delay (s/veh)	17.6		7.7	8.6			
OS	17.0 B		Ι.Ι	0.0 A			
Approach Delay (s/veh)	17.6		7.7	8.6			
Approach Delay (s/ven)	17.6 B		7.7 A	8.6 A			
Queue Length 50th (m)	4.9		11.2	16.2			
Queue Length 95th (m)	12.9		21.9	30.5			
nternal Link Dist (m)	57.2		0.1	5.9			
	51.2		0.1	5.9			
Furn Bay Length (m) Base Capacity (vph)	535		841	873			
Starvation Cap Reductn	535		841	8/3			
	0		0	0			
Spillback Cap Reductn	0		0	0			
Storage Cap Reductn	0.13		0.32	0.42			

Reduced v/c Ratio	0.13	0.32	0.42	
Intersection Summary				
Cycle Length: 70				
Actuated Cycle Length: 4	17.7			
Natural Cycle: 70				
Control Type: Semi Act-l	Jncoord			
Maximum v/c Ratio: 0.42				
Intersection Signal Delay	(s/veh): 9.2		Intersection LOS: A	
Intersection Capacity Uti	lization 51.0%		ICU Level of Service A	
Analysis Period (min) 15				
Splits and Phases: 9:	Queen Elizabeth D	rive & Fifth		
↑ Ø2			☆ Ø4	→ ∞10
32 s			16 s	22 s
1				

HCM 7th AWSC 13: Paul Askin & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mvmt Flow
Number of Lanes

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cone
Service Time
How Lane Vol

Intersection Delay, s/veh 7.6 Intersection LOS A	Intersection			
Intersection LOS A	Intersection Delay, s/veh	7.6		
	Intersection LOS	A		

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		**	
Traffic Vol, veh/h	5	104	65	5	5	5
Future Vol, veh/h	5	104	65	5	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	116	72	6	6	6
Number of Lanes	0	1	1	0	1	0
A	FB		MD		SB	
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
	7.7		7.4		7.2	
HCM Control Delay, s/veh						

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	5%	0%	50%
Vol Thru, %	95%	93%	0%
Vol Right, %	0%	7%	50%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	109	70	10
LT Vol	5	0	5
Through Vol	104	65	0
RT Vol	0	5	5
Lane Flow Rate	121	78	11
Geometry Grp	1	1	1
Degree of Util (X)	0.135	0.086	0.013
Departure Headway (Hd)	4.021	4.001	4.074
Convergence, Y/N	Yes	Yes	Yes
Cap	893	894	866
Service Time	2.041	2.03	2.157
HCM Lane V/C Ratio	0.135	0.087	0.013
HCM Control Delay, s/veh	7.7	7.4	7.2
HCM Lane LOS	A	Α	Α
HCM 95th-tile Q	0.5	0.3	0

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

Synchro 12 Report Page 1

08/01/2024

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

EB 1

NBLn1 EBLn1 WBLn1

1 1 0.012 0.008 0.152 3.985 3.627 3.968 Yes Yes

7es 7es 7es 7es 890 985 908 2.045 1.656 1.972 0.012 0.008 0.152 7.1 6.7 7.7 A A A A 0 0 0 0.5

Synchro 12 Report Page 2

HCM 7th AWSC

14: Exhibition & Marche

08/01/2024

Intersection Delay, s/veh	7.9						
Intersection LOS	Α						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			4	Α.		
Traffic Vol, veh/h	2	5	65	55	69	40	
Future Vol, veh/h	2	5	65	55	69	40	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	2	6	72	61	77	44	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay, s/veh	6.9		8.1		7.8		
HCM LOS	A		Α		A		
HCM LOS	Α		Α		Α		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	63%	0%	54%
Vol Thru, %	0%	29%	46%
Vol Right, %	37%	71%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	109	7	120
LT Vol	69	0	65
Through Vol	0	2	55
RT Vol	40	5	0
Lane Flow Rate	121	8	133
Geometry Grp	1	1	1
Degree of Util (X)	0.137	0.008	0.158
Departure Headway (Hd)	4.086	3.822	4.262
Convergence, Y/N	Yes	Yes	Yes
Cap	866	920	835
Service Time	2.164	1.915	2.32
HCM Lane V/C Ratio	0.14	0.009	0.159
HCM Control Delay, s/veh	7.8	6.9	8.1
HCM Lane LOS	A	Α	Α
HCM 95th-tile ○	0.5	Λ	0.6

HCM 7th AWSC

37: O' Connor & Fifth

IIICISECTOLI												
Intersection Delay, s/veh	7.8											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	65	40	0	0	0	70	18	31	23	0	0	105
Future Vol, veh/h	65	40	0	0	0	70	18	31	23	0	0	105
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	72	44	0	0	0	78	20	34	26	0	0	117
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	1					1	1					1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	1					1	1					- 1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					- 1
HCM Control Delay, s/veh	8.4					7.3	7.8					7.4
HCM LOS	Α					Α	Α					Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	25%	62%	0%	0%	
Vol Thru, %	43%	38%	0%	0%	
Vol Right, %	32%	0%	100%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	72	105	70	105	
LT Vol	18	65	0	0	
Through Vol	31	40	0	0	
RT Vol	23	0	70	105	
Lane Flow Rate	80	117	78	117	
Geometry Grp	1	- 1	- 1	1	
Degree of Util (X)	0.096	0.148	0.084	0.125	
Departure Headway (Hd)	4.341	4.562	3.881	3.855	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	828	791	926	932	
Service Time	2.356	2.562	1.895	1.868	
HCM Lane V/C Ratio	0.097	0.148	0.084	0.126	
HCM Control Delay, s/veh	7.8	8.4	7.3	7.4	
HCM Lane LOS	A	A	A	Α	
HCM 95th-tile O	0.3	0.5	0.3	0.4	

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-1 Maneuver
Stage 1
Stage 2

Approach EB HCM Control Delay, s/42.55 HCM LOS B

- 6.275

0 506

Intersection						
Int Delay, s/veh	5.1					
Movement	FBI	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LUL	7		414	130	ODIN
Traffic Vol, veh/h	1	182	138	608	351	25
Future Vol. veh/h	1	182	138	608	351	25
Conflicting Peds, #/hr		0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Otop				- 100	
Storage Length		0		-		
Veh in Median Storag	ie.# 0			0	0	
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	1	202		676	390	28
		202	.00	010	000	20
	Minor2		Major1		Major2	
Conflicting Flow All	1226	582	596	0		0
Stage 1	582	-	-	-		-
Stage 2	644	-	-	-	-	-
Critical Hdwy	6.675	6.275	4.175	-	-	-
Critical Hdwy Stg 1	5.475	-	-	-	-	-
Critical Hdwy Stg 2	5.875	-	-	-	-	-
	3.54753	3.34752	2.2475	-		
Pot Cap-1 Maneuver	180	505	961	-		
Stage 1	550	-	-	-		-
Stage 2	479	-	-	-		-
Platoon blocked. %				-		-
Mov Cap-1 Maneuver	r 90	410	780	-		-
Mov Cap-2 Maneuver	90	-	-	-		-
Stage 1	339					
Stage 2	389				-	
Otage 2	303					
Approach	EB		NB		SB	
HCM Control Delay, s	/22.04		3.44		0	
HCM LOS	С					
Minor Lane/Major Mvi	mt	NBL	NRTI	EBLn1	SBT	SBR
	THE .	634	NDT1	410	301	JUIN -
Capacity (veh/h) HCM Lane V/C Ratio		0.197		0.493		
	· (· · · · · · ·	10.7		0.493	-	-
HCM Control Delay (s HCM Lane LOS	/ven)	10.7 B	1.8 A		-	-
HOW Lane LOS		В	A	C		
HCM 95th %tile Q(vel	44	0.7		2.7		

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

Synchro 12 Report Page 1

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

Synchro 12 Report Page 2

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	LDIN	NUL	4	1	ODIT
Traffic Vol. veh/h	19	23	63	241	269	68
Future Vol. veh/h	19	23	63	241	269	68
Conflicting Peds, #/hr	0	0	0.0	0	203	00
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	1166		1166	
Storage Length	0	None -	- 1	None -		None
Veh in Median Storage			- :	0	0	- 1
Grade. %	0		- 1	0	0	- :
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	90	90	90	90	0	90
Mymt Flow	21	26	_	268	299	76
MALL LIOM	21	26	70	200	299	76
Major/Minor M	1inor2	N	Major1	N.	Major2	
Conflicting Flow All	744	337	374	0	-	0
Stage 1	337					
Stage 2	408				-	
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4					
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2			
Pot Cap-1 Maneuver	385		1195			
Stage 1	728					
Stage 2	676					
Platoon blocked, %	010					
Mov Cap-1 Maneuver	358	710	1195	- :	- :	- :
Mov Cap-1 Maneuver	358	710	1100			
Stage 1	678	_	_	_	_	-
Stage 2	676		- 1		- 1	- 1
otaye 2	0/0	_	-	_		-
Approach	EB		NB		SB	
HCM Control Delay, s/v	13.09		1.7		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt .	NBL	NRTI	EBLn1	SBT	SBR
	is.	373	NOT	492	001	ODK
Capacity (veh/h)						
HCM Lane V/C Ratio	Control Control	0.059		0.095	-	
HCM Control Delay (s/	ven)		0			
HCM Lane LOS		0.2	Α	В	-	-
HCM 95th %tile Q(veh)				0.3		

10: Bank & Marche	110		, (11		****	
	10:	В	ank	&	March	е

08/01/2	02
---------	----

Intersection						
Int Delay, s/veh	0.4					
Movement	WBI	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	† D			^
Traffic Vol. veh/h	0	33	527	7	0	398
Future Vol. veh/h	0	33	527	7	0	398
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length		0				
Veh in Median Storage	e, # 0	-	0			0
Grade, %	0		0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mymt Flow	0	37	586	8	0	442
Matanbura	∕linor1		Antonia.		4-10	
	/INOFI	397	Major1 0	0	Najor2	-
Conflicting Flow All			0	0		
Stage 1	-	-	- 1	- 1	-	
Stage 2	-	7.2		- 1	-	- 1
Critical Hdwy		1.2	- 1			
Critical Hdwy Stg 1	-				-	-
Critical Hdwy Stg 2	-	-	-		-	
Follow-up Hdwy		3.45	-			
Pot Cap-1 Maneuver	0	567	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-		-	0	-
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver		507	-	-		-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1		-		-	-	-
Stage 2					-	
Approach	WB		NB		SB	
HCM Control Delay, s/	142 65		0		0	
HCM LOS	B					
110111 200						
Minor Lane/Major Mvm	nt	NBT		VBLn1	SBT	
Capacity (veh/h)			-	507	-	
HCM I ane V/C Ratio		-		0.072		
				12.6		
HCM Control Delay (s/	(veh)	-				
		- 1	- 3	B 0.2	-	

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
2 218
Pot Cap-1 Maneuver
1437
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-1 Maneuver
Stage 1
Stage 2
Stage 2

Approach EB HCM Control Delay, s/v0.89 HCM LOS

Intersection						
Int Delay, s/veh	1.3					
Movement	EBT	FRP	WBL	WRT	NBL	NBR
Lane Configurations	î,	LDI	WDL	4	NDL.	NDIX
Traffic Vol. veh/h	104	60	5	65	18	5
Future Vol. veh/h	104	60	5	65	18	5
Conflicting Peds, #/hr	104	100	100	00	100	100
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	Free		rree -		Stop -	None
		NOHE		None	0	None -
Storage Length				0	0	
Veh in Median Storage						-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	116	67	6	72	20	6
Major/Minor N	lajor1	- 1	Major2		Minor1	
Conflicting Flow All	0	0	282	0	432	349
Stage 1	-	-	202	-	249	343
Stage 2			- 1	- 1	183	- 1
Critical Hdwy	-	-	4.12	- 1	6.42	6.22
Critical Hdwy Stg 1			4.12		5.42	0.22
	-	-		-		
Critical Hdwy Stg 2	-		-		5.42	-
Follow-up Hdwy	-		2.218		3.518	
Pot Cap-1 Maneuver	-	-	1280		580	694
Stage 1	-				793	
Stage 2	-				848	
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver	-	-	1145		462	555
Mov Cap-2 Maneuver	-	-			462	-
Stage 1		-			709	-
Stage 2		-			755	-
Olago L					, 00	
Approach	EB		WB		NB	
HCM Control Delay, s/	v 0		0.58		12.93	
HCM LOS					В	
Maria Laura Maria a Maria		NDI - 4	EDT	FDD	MOL	MIDT
Minor Lane/Major Mvn	IE I	NBLn1	EBT	EBR		WBT
Capacity (veh/h)		479			129	
HCM Lane V/C Ratio		0.053			0.005	-
HCM Control Delay (s/	veh)	12.9			8.2	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)	0.2			0	-

Synchro 12 Report Page 5

08/01/2024

Existing Weekday AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 7:30 am 11/21/2017

Minor2 0 189 137 - 137 -

- 52 -- 6.42 6.22 - 5.42 -

- 5.42 -- 5.42 -- 3.518 3.318 - 800 911 - 889 -- 970 -

> 886 970

> > Synchro 12 Repor

Existing	Scena	rio

Weekday PM Peak Hour

1: Bank & Fifth									08/01/202
	•	\rightarrow	1	•	4	1	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		- 43→	- 19	ĥ		413		4Tb	
Traffic Volume (vph)	45	52	58	37	16	435	28	559	
Future Volume (vph)	45 0	52 158	58 64	37	16	435 534	28	559	
ane Group Flow (vph) Furn Type	Perm	NA	Perm	79 NA	Perm	NA	Perm	692 NA	
Protected Phases	Pellii	4	Pellii	NA 8	Pellii	NA 2	Pellii	1NA 6	
Permitted Phases	4		8	0	2		6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase			-	-	_	_	-	-	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
rellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
ost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
Lead/Lag									
Lead-Lag Optimize?	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	IVUITE	12.6	12.6	12.6	CHINAX	51.4	C-IVIAX	51.4	
Actuated g/C Ratio		0.17	0.17	0.17		0.69		0.69	
/c Ratio		0.65	0.39	0.17		0.03		0.36	
Control Delay (s/veh)		35.1	33.1	17.7		8.7		6.1	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		35.1	33.1	17.7		8.7		6.1	
_OS		D	С	В		Α		Α	
Approach Delay (s/veh)		35.1		24.6		8.7		6.1	
Approach LOS		D		С		Α		Α	
Queue Length 50th (m)		16.8	8.2	5.0		11.5		17.5	
Queue Length 95th (m)		31.7	17.3	14.4		43.2		34.0	
nternal Link Dist (m)		49.7	45.0	112.4		195.6		190.0	
Turn Bay Length (m)		375	45.0 265	419		1951		1939	
Base Capacity (vph) Starvation Cap Reductn		0	200	419		1951		1939	
Spillback Cap Reductin		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.42	0.24	0.19		0.27		0.36	
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 47 (63%), Reference	ed to phas	se 2:NBT	L and 6:5	BTL, Sta	art of Gre	en			
Natural Cycle: 75									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.65									
ntersection Signal Delay (s					ntersectio				
ntersection Capacity Utiliza	ation 65.8	%		l	CU Level	of Service	e C		
Analysis Period (min) 15									
Splits and Phases: 1: Ba	nk & Fifth								
6								† .	
Ø2 (R)								→ Ø4	
49 s							2	6 s	
L							- 14	_	
Ø6 (R)								T ØE	

Queues 6: Bank & Aylmer

2. Bank & Holmwood 0801/2024 3: Bank & Exhibition 0801/7

	→	•	†	/			
Lane Group	EBT	NBL	NBT	SBI	SBT	Ø3	
Lane Configurations	4	HUL	414	ODL	474	20	
Traffic Volume (vph)	17	25	481	27	536		
Future Volume (vph)	17	25	481	27	536		
Lane Group Flow (vph)	108	0	616	- 0	656		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4	1 61111	2	i cilli	6	3	
Permitted Phases	4	2		6	0	3	
Detector Phases	4	2	2	6	6		
Switch Phase	4	2	2	0	0		
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
	22.0	48.0	48.0	48.0	48.0	5.0	
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (s)	29.3%	48.0 64.0%	48.0 64.0%	48.0 64.0%	48.0 64.0%	5.0 7%	
Total Split (%)							
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0		0.0		0.0		
Total Lost Time (s)	5.6		5.2		5.2		
Lead/Lag	Lag					Lead	
Lead-Lag Optimize?							
Recall Mode	None	C-Max		C-Max		None	
Act Effct Green (s)	11.2		56.4		56.4		
Actuated g/C Ratio	0.15		0.75		0.75		
v/c Ratio	0.53		0.30		0.31		
Control Delay (s/veh)	38.3		4.7		4.7		
Queue Delay	0.0		0.0		0.0		
Total Delay (s/veh)	38.3		4.7		4.7		
LOS	D		Α		A		
Approach Delay (s/veh)	38.3		4.7		4.7		
Approach LOS	D		A		A		
Queue Length 50th (m)	14.3		13.6		24.4		
Queue Length 95th (m)	26.7		25.8		21.1		
Internal Link Dist (m)	39.8		31.5		195.6		
Turn Bay Length (m)	33.0		31.0		.00.0		
Base Capacity (vph)	295		2041		2112		
Starvation Cap Reductn	293		2041		0		
Spillback Cap Reductn	0		0		0		
Storage Cap Reductin	0		0		0		
Reduced v/c Ratio	0.37		0.30		0.31		
Reduced Wc Ratio	0.37		0.30		0.31		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:5	SBTL, Str	art of Gree	en	
Natural Cycle: 75	an in prior		0	,			
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.53	o.uatou						
Intersection Signal Delay (s	/voh)- 7.4				ntersectio	n I OS- A	
Intersection Capacity Utiliz						of Service F	R
mersection capacity Utiliz	auon 62.9	70			CO LEVEL	OI SELVICE D	D

intersection Capacity Offization 02.5%	ICO LEVEL OI GELVICE D
Analysis Period (min) 15	
Solits and Phases: 2: Bank & Holmwood	
Opina and i nases. 2. Dank & Holliwood	
⁴ Ø2 (R)	* € → Ø4
	5 s 22 s
48 s	55 225
▶ Ø6 (R)	

08/01/2024

† ļ 1 Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 10.0 30.0 30.0 30.0 1.0 22.0 63.0 63.0 63.0 5.0 22.0 63.0 63.0 63.0 5.0 22.0 63.0 63.0 63.0 5.0 24.4% 70.0% 70.0% 70.0% 6% 3.3 3.0 3.0 3.0 2.0 2.2 2.2 2.2 2.2 1.0 Lost Time Adjust (s)
Total Lost Time (s) 0.0 0.0 0.0 5.2 5.2 5.5 Lag Lead/Lag
Lead-Lag Optimize?
Recall Mode
Act Effct Green (s) Ped C-Max C-Max C-Max Max 14.0 60.3 60.3 Actuated g/C Ratio v/c Ratio 0.67 0.67 0.38 0.45 vici Ratio
Control Delay (siveh)
Queue Delay
Total Delay (siveh)
LOS
Approach Delay (siveh)
LOS
Approach Delay (siveh)
Approach LOS
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spilliack Cap Reductn
Reduced vic Ratio 6.3 7.6 0.0 0.0 6.3 7.6 31.1 6.3 7.6 31.1 A A 26.8 32.6 m32.6 43.7 28.1 10.1 1975 2006 0.38 0.45 0.29 Intersection Summary
Cycle Length: 90
Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green
Natural Cycle: 90
Control Type: Archated-Coordinated
Maximum vic Ratio: 0.45
Intersection Signal Delay (Sveh): 8.1
Intersection Capacity Unitzation 52:9%
ICU Level of
Analysis Period (min): 15
Intervence of Signal Delay (Sveh): 8.1
Intersection Capacity Unitzation 52:9%
ICU Level of
Nanysis Period (min): 15
Intervence of Signal Delay (Sveh): 8.1
Intersection Gapacity Unitzation 52:9%
ICU Level of
Nanysis Period (min): 15
Intervence of Signal Delay (Sveh): 8.1
Intervence of Signal Delay (Sv

Queues 3: Bank & Exhibition 08/01/2024 4 † 1 Lane Group Lane Configurations Traffic Volume (vph) 118 61 453 113 476 Lane Configurations (raffic Volume (vph) Future Volume (vph) Future Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Spitt (s) Total 118 61 453 118 61 453 131 68 644 Perm Perm NA 113 126 Perm 8 2 6.3 6.3 Lag Lag
 None
 None
 C-Max
 C-Max
 C-Max
 None
 None
 None
 None

 12.7
 12.7
 58.7
 58.7
 58.7
 0.73
 0.73
 0.73
 0.73
 0.73
 0.54 0.29 0.31 0.28 0.23 39.1 10.9 5.2 8.0 5.3 Queue Delay Total Delay (s/veh) 0.0 0.0 0.0 0.0 10.9 5.2 8.0 5.3 LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Spillback Cap Reducth
Storage Cap Reducth
Reduced vic Ratio 29.4 5.2 18.7 0.0 15.8 6.5 13.6 32.7 9.7 29.0 18.3 24.5 30.6 33.7 44.8 40.0 372 326 2110 452 2328 0.35 0.21 0.31 0.28 0.23 Intersection Summary
Cycle Length: 80
Actuated Cycle Length: 80
Offset 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Offset: 0 (0%), Referenced to phase 2:1 Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay (s/veh): 8.7 Intersection Capacity Utilization 60.0% Analysis Period (min) 15 Splits and Phases: 3: Bank & Exhibitio · 対 ↑ Ø2 (R) ▶ ø6 (R) * | * o8

	•	_	•	—	•	†	/	$\overline{\perp}$				
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7	
ane Configurations	EDL		WDL		NDL		ODL		103	100	וש	
Traffic Volume (vph)	50	♣ 78	16	♣ 80	14	413 409	200	₹1				
Future Volume (vph)	50	78	16	80	14	409	200	717				
ane Group Flow (vph)	0	175	0	374	0	492	200	1119				
	Perm	NA	Perm	NA	Perm		custom	NA NA				
Turn Type	Perm	NA 4	Perm	NA 8	Perm	NA 2	custom 1	1 6	0	^	-	
Protected Phases Permitted Phases	4	4	8	ŏ	2	2	6	16	3	6	- 1	
Permitted Phases Detector Phase	4	4	8	8	2	2	1	16				
Detector Phase Switch Phase	4	4	8	8	2	2	1	16				
		0.4	= 0			47.0				47.0		
Minimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0	
Minimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	60.0	5.0	
Total Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	43.0	5.0	
Total Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%		6%	48%	6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0	
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0	
ost Time Adjust (s)		0.0		0.0		0.0						
Total Lost Time (s)		5.6		5.6		6.0						
_ead/Lag	Lag	Lag	Lag	Lag					Lead		Lead	
_ead-Lag Optimize?			Yes	Yes							Yes	
Recall Mode	None	None	None	None	C-Max	C-Max	None		None	C-Max	None	
Act Effct Green (s)		24.4		24.4		37.0		48.2				
Actuated g/C Ratio		0.27		0.27		0.41		0.54				
//c Ratio		0.65		0.93		0.43		0.91				
Control Delay (s/veh)		42.2		53.1		20.2		22.5				
Queue Delay		0.0		0.0		0.0		0.0				
Total Delay (s/veh)		42.2		53.1		20.2		22.5				
_OS		D		D		С		С				
Approach Delay (s/veh)		42.2		53.1		20.2		22.5				
Approach LOS		D		D		С		C				
Queue Length 50th (m)		26.7		43.7		30.7		37.6				
Queue Length 95th (m)		#53.6		#98.3		43.9		#55.3				
nternal Link Dist (m)		75.1		136.0		63.1		79.0				
Turn Bay Length (m)												
Base Capacity (vph)		269		403		1146		1236				
Starvation Cap Reductn		0		0		0		0				
Spillback Cap Reductn		0		0		0		0				
Storage Cap Reductn		0		0		0		0				
Reduced v/c Ratio		0.65		0.93		0.43		0.91				
		0.00		0.00		3.40		0.01				
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 6 (7%), Referenced	to phase	2:NBTL a	and 6:SB	ΓL, Start	of Green							
Natural Cycle: 110												
Control Type: Actuated-Cor	ordinated											
Maximum v/c Ratio: 0.93												
ntersection Signal Delay (s	/veh): 28.	9		li li	ntersectio	on LOS: (0					
ntersection Capacity Utiliza	ation 92.7	%		I	CU Level	of Service	ce F					
Analysis Period (min) 15												
			queue ma									

08/01/2024

Existing Weekday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 9:50 am 01/13/2023

Synchro 12 Report Page 6

Lanes, Volumes, Timings 12: Exhibition & Paul Askin 08/01/2024

	۶	→	←	4	-	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1,		*/		
Traffic Volume (vph)	5	118	136	5	5	5	
Future Volume (vph)	5	118	136	5	5	5	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt			0.995		0.932		
Flt Protected		0.998			0.976		
Satd. Flow (prot)	0	1683	1678	0	1534	0	
Flt Permitted		0.998			0.976		
Satd. Flow (perm)	0	1683	1678	0	1534	0	
Link Speed (k/h)		30	30		30		
Link Distance (m)		61.9	92.7		69.2		
Travel Time (s)		7.4	11.1		8.3		
Confl. Peds. (#/hr)	100			100	100	100	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	6	131	151	6	6	6	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	137	157	0	12	0	
Enter Blocked Intersection	Yes	Yes	Yes	Yes	Yes	Yes	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)		0.0	0.0		3.2		
Link Offset(m)		0.0	0.0		0.0		
Crosswalk Width(m)		1.6	1.6		1.6		
Two way Left Turn Lane							
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	
Turning Speed (k/h)	24			14	24	14	
Sign Control		Stop	Stop		Stop		
Intersection Summary							
Area Type: O	ther						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 32.89	%		IC	CU Level	of Service	A
Analysis Period (min) 15							

Queues 9: Queen Elizabeth Drive & Fifth

08/01/2024

	•	1	†	Ţ					
Lane Group	EBL	NBL	NBT	SBT	Ø4				
Lane Configurations	W.		4	4					_
Traffic Volume (vph)	34	37	189	502					
Future Volume (vph)	34	37	189	502					
Lane Group Flow (vph)	75	0	251	628					
Turn Type	Prot	Perm	NA	NA					
Protected Phases	10		2	6	4				
Permitted Phases		2							
Detector Phase	10	2	2	6					
Switch Phase									
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0				
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0				
Total Split (s)	21.0	48.0	48.0	48.0	11.0				
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0				
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0					
Total Lost Time (s)	5.7		6.8	6.8					
Lead/Lag	0.1		0.0	0.0					
Lead-Lag Optimize?									
Recall Mode	Min	None	None	C-Max	None				
Act Effct Green (s)	10.7	140116	56.8	56.8	140116				
Actuated g/C Ratio	0.13		0.71	0.71					
v/c Ratio	0.37		0.24	0.53					
Control Delay (s/veh)	36.6		5.0	7.7					
Queue Delay	0.0		0.0	0.0					
Total Delay (s/veh)	36.6		5.0	7.7					
LOS	D.0		Α.	A					
Approach Delay (s/veh)	36.6		5.0	7.7					
Approach LOS	J0.0		J.0	Α.					
Queue Length 50th (m)	10.7		10.6	35.2					
Queue Length 95th (m)	22.0		21.5	66.0					
Internal Link Dist (m)	57.2		0.1	5.9					
Turn Bay Length (m)	31.2		0.1	0.5					
Base Capacity (vph)	293		1028	1178					
Starvation Cap Reductn	293		0	0					
Spillback Cap Reductin	0		0	0					
Storage Cap Reductn	0		0	0					
Reduced v/c Ratio	0.26		0.24	0.53					
Intersection Summary									
Cycle Length: 80									
Actuated Cycle Length: 80									
Offset: 0 (0%), Referenced	to nhace	6-SBT S	tart of Gr	oon					
Natural Cycle: 80	to pridate	0.051, 0	unt of Of	00					
Control Type: Actuated-Co	nrdinated								
Maximum v/c Ratio: 0.53	ordinated								
Intersection Signal Delay (s	-/uoh): 0.3			l.	ntersection I	UG- V			
Intersection Signal Delay (s Intersection Capacity Utiliza					Itersection L				
Analysis Period (min) 15	auun 02.0	/0		I	O FEARI OI	DEI VILLE D			
Splits and Phases: 9: Qu	jeen Eliza	hoth Driv	n g Eifth						
Splits and Phases: 9: Qu	Jeen Eliza	Detri Driv	e a rittin			ķ	J		-

Lanes, Volumes, Timings 13: Paul Askin & Marche

↓ Ø6 (R)

	→	•	•	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f a			4	N/	
Traffic Volume (vph)	3	5	5	5	5	5
Future Volume (vph)	3	5	5	5	5	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.910				0.932	
Flt Protected				0.976	0.976	
Satd. Flow (prot)	1535	0	0	1646	1534	0
Flt Permitted				0.976	0.976	
Satd. Flow (perm)	1535	0	0	1646	1534	0
Link Speed (k/h)	30			30	30	
Link Distance (m)	115.2			88.5	69.2	
Travel Time (s)	13.8			10.6	8.3	
Confl. Peds. (#/hr)		100	100		100	100
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	3	6	6	6	6	6
Shared Lane Traffic (%)						
Lane Group Flow (vph)	9	0	0	12	12	0
Enter Blocked Intersection	Yes	Yes	Yes	Yes	Yes	Yes
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.2	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14
Turning Speed (k/h)		14	24		24	14
Sign Control	Stop			Stop	Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 32.79	6		IC	CU Level	of Service
Analysis Period (min) 15						

Lanes, Volumes, Timings 37: O' Connor & Fifth

Lane Group

EBT EBR

0.968 1632 0.968

0.0 0.0 1.6

72 38 0 0 0 72 38 0 0 0 1800 1800 1800 1800 1800 1.00 1.00 1.00 1.00 1.00

100 100 1800 1.00 0.865

0 1459

ICU Level of Service A

1800

111 0 Yes Yes Right Left

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Geal Flow (vph)
Lane Util. Factor
Fit
Fit Protected
Satd. Flow (prot)
Fit Permitted
Satd. Flow (prot)
Link Spaced (kin)
Fit Satd. Flow (vph)
Link Office (m)
Fravel Time (s)
Lane Group Flow (vph)
Lane Group Flow

Turning Speed (k/h) Sign Control

HCM 7th TWSC

5: Bank & Echo

0.3

Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 28.4%
Analysis Period (min) 15

	\rightarrow	•	•	←	4	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			4	W		
Traffic Volume (vph)	3	5	136	5	5	118	
Future Volume (vph)	3	5	136	5	5	118	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt	0.910				0.871		
Fit Protected				0.954	0.998		
Satd. Flow (prot)	1535	0	0	1609	1466	0	
Flt Permitted				0.954	0.998		
Satd. Flow (perm)	1535	0	0	1609	1466	0	
Link Speed (k/h)	30			30	30		
Link Distance (m)	88.5			119.7	28.7		
Travel Time (s)	10.6			14.4	3.4		
Confl. Peds. (#/hr)		100	100		100	100	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	3	6	151	6	6	131	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	9	0	0	157	137	0	
Enter Blocked Intersection	Yes	Yes	Yes	Yes	Yes	Yes	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.2		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	1.6			1.6	1.6		
Two way Left Turn Lane							
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	
Turning Speed (k/h)		14	24		24	14	
Sign Control	Stop			Stop	Stop		
Intersection Summary							
)ther						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 35.39	%		10	CU Level	of Service A	

Existing Weekday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 9:50 am 01/13/2023

Existing Weekday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 9:50 am 01/13/2023

Synchro 12 Report Page 3

HCM 7th TWSC

08/01/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	10.7					
**						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		41₽	ĵ.	
Traffic Vol, veh/h	3	226	207	540	545	48
Future Vol, veh/h	3	226	207	540	545	48
Conflicting Peds, #/hr		0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-		-	-
Veh in Median Storag				0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	251	230	600	606	53
Major/Minor I	Minor2		Major1		Major2	
Conflicting Flow All	1570	810	837	0	11012	0
Stage 1	810	010	001	-	-	-
	760					
Stage 2 Critical Hdwy	6.63	6.23	4.13		-	- 1
	5.43		4.13			
Critical Hdwy Stg 1	5.43		-	-	-	
Critical Hdwy Stg 2			0.040	-	-	
Follow-up Hdwy		3.319		-	-	
Pot Cap-1 Maneuver	111	379	795	- 1	-	
Stage 1	436	-	-	-	-	
Stage 2	423				-	
Platoon blocked, %					-	
Mov Cap-1 Maneuver		308	645		-	
Mov Cap-2 Maneuver				-	-	-
Stage 1	203				-	
Stage 2	344	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s.			6.17		0.0	
HCM LOS	102.93 F		0.17		U	
HOW LOO						
		NBL	NBTI	EBLn1	SBT	SBR
Minor Lane/Major Mvr	III				-	-
Minor Lane/Major Mvr Capacity (veh/h)	TIL	538	-	308		
	ПЦ	538 0.356		308 0.817	- 1	
Capacity (veh/h)						-
Capacity (veh/h) HCM Lane V/C Ratio		0.356		0.817	-	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	/veh)	0.356 13.6	3.3	0.817 52.9	-	-

Lane Configurations		7		44	•	
Traffic Vol, veh/h	0	23	0	755	780	2
Future Vol, veh/h	0	23	0	755	780	2
Conflicting Peds, #/hr	0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0				-
Veh in Median Storage	e, # 0	-		0	0	
Grade, %	0			0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	26	0	839	867	2
minici ion				000	001	-
	1inor2		Major1		/lajor2	
Conflicting Flow All	-	954	-	0	-	0
Stage 1					-	
Stage 2	-	-	-	-	-	-
Critical Hdwy		6.23		-		
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2					-	
Follow-up Hdwy		3.319		-		
Pot Cap-1 Maneuver	0	313	0	-		
Stage 1	0	-	0	-		
Stage 2	0	-	0	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver		284				
Mov Cap-2 Maneuver		-		-		
Stage 1						
Stage 2						
Olago L						
Approach	EB		NB		SB	
HCM Control Delay, s/	v18.9		0		0	
HCM LOS	С					
Maria I and Malanda		NOTE	DI -4	ODT	000	
Minor Lane/Major Mvm	nt		BLn1	SBT	SBR	
Capacity (veh/h)		-	284	-	-	
HCM Lane V/C Ratio		-	0.09	-		
HCM Control Delay (s/	veh)	-	18.9	-		
HCM Lane LOS		-	С	-		
HCM 95th %tile Q(veh)	-	0.3	-		

Synchro 12 Report Page 4

08/01/2024

08/01/2024 4

0 1459 30 85.7 10.3 0.90 0.90 0 100

0.0

0.0 1.6

29 0 29 0 1800 1800 1.00 1.00

SBR

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Approach WB HCM Control Delay, s/12.85 HCM LOS B

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- M			र्स	Þ	
Traffic Vol, veh/h	51	54	45	249	480	66
Future Vol, veh/h	51	54	45	249	480	66
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0		-		-	-
Veh in Median Storage	e, # 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	57	60	50	277	533	73
	0,	00	- 00	_,,	-00	
	1inor2		//ajor1		Major2	
Conflicting Flow All	947	570	607	0	-	0
Stage 1	570	-		-		-
Stage 2	377	-		-		-
Critical Hdwy	6.4	6.2	4.1	-		-
Critical Hdwy Stg 1	5.4	-		-		-
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2			
Pot Cap-1 Maneuver	292	525	981			
Stage 1	570	020	301			
Stage 2	698	_	-		-	_
	030					- 1
Platoon blocked, %	075	505	004	-	-	-
Mov Cap-1 Maneuver	275	525	981	-		-
Mov Cap-2 Maneuver	275	-	-	-	-	-
Stage 1	535		-	-	-	
Stage 2	698	-	-	-	-	-
Approach	EB		NB		SB	
			1.36		0	
HCM Control Delay, s/			1.36		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		276		364		ODIT.
HCM Lane V/C Ratio		0.051		0.321		- 1
HCM Control Delay (s/	(dov	8.9	0	19.5	- 1	- 1
HCM Lane LOS	velij	8.9 A	A	19.5 C	- 1	
	١	0.2	А	1.4		-
HCM 95th %tile Q(veh)	0.2		1.4	-	

Existing Weekday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 9:50 am 01/13/2023

Synchro 12 Report Page 3

Existing Weekday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 9:50 am 01/13/2023

- 4.1

Synchro 12 Report Page 4

HCM 7th TWSC

11: Garage & Exhibition

08/01/2024

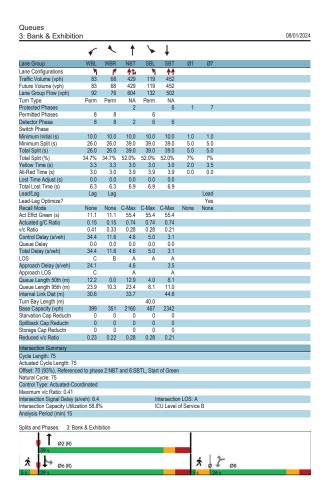
Intersection						
Int Delay, s/veh	1.8					
**						
Movement	EBT	EBR	WBL		NBL	NBR
Lane Configurations	ħ			4	- 14	
Traffic Vol, veh/h	118	122	5	136	43	5
Future Vol, veh/h	118	122	5	136	43	5
Conflicting Peds, #/hr	0	100	100	0	100	100
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-			0	
Veh in Median Storage,	# 0	-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	131	136	6	151	48	6
	,01				.0	- 3
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	367	0	561	399
Stage 1	-	-			299	
Stage 2	-	-	-	-	262	-
Critical Hdwy	-	-	4.12			6.22
Critical Hdwy Stg 1	-	-			5.42	
Critical Hdwy Stg 2	-				5.42	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-		1192		489	651
Stage 1	-	-			752	
Stage 2					782	
Platoon blocked, %						
Mov Cap-1 Maneuver	-		1066		389	520
Mov Cap-2 Maneuver					389	-
Stage 1					673	
Stage 2				- 1	695	
Otago 2					000	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.3		15.41	
HCM LOS					С	
Mines Lene Maies Mont		VBLn1	EBT	EDD	WBL	WBT
Minor Lane/Major Mvmt	- 1			EBR		
Capacity (veh/h)		399	-	-	64	
HCM Lane V/C Ratio		0.134	-		0.005	-
HCM Control Delay (s/v	eh)	15.4			8.4	0
HCM Lane LOS		С			Α	Α
HCM 95th %tile Q(veh)		0.5			0	-

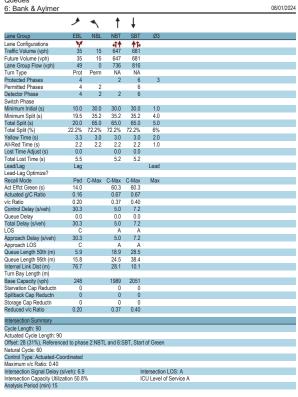
HCM 7th TWSC

17: Princess Patricia/Princess Patricia Way & Garage

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		*4*	
Traffic Vol. veh/h	5	56	23	88	49	5
Future Vol. veh/h	5	56	23	88	49	5
Conflicting Peds. #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	otop	None
Storage Length		NOHE	- 1	IVUILE	0	NONE
Veh in Median Storage	. #	0	0	- 1	0	- :
	e,# -	0	0		0	
Grade, %				-		
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	62	26	98	54	6
Major/Minor N	Major1	0.	Major2	1	Minor2	
Conflicting Flow All	123	0	najuiz	0	148	74
	123	-		-	74	14
Stage 1			-			
Stage 2	-	-			73	
Critical Hdwy	4.12	-		-		
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2		-			5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1464	-			844	987
Stage 1		-			948	-
Stage 2		-			950	
Platoon blocked, %		-				
Mov Cap-1 Maneuver	1464				841	987
Mov Cap-2 Maneuver						301
Stage 1	- :	- 1		- 1	945	- 1
Stage 2	-	-	-	-	950	-
Approach	EB		WB		SB	
HCM Control Delay, s	/vn 61		0		9.54	
HCM LOS	10.01		0		Α	
TIOM EOG					^	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		148				853
HCM Lane V/C Ratio		0.004				0.07
HCM Control Delay (s.	(veh)	7.5	0			9.5
HCM Lane LOS	, voli	A	A			A
HCM 95th %tile Q(veh		0				0.2

Existing Scenario


Saturday Peak Hour


	\rightarrow	1	†	-	↓			
ane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
ane Configurations	4		475		414			
Fraffic Volume (vph)	9	27	469	29	522			
uture Volume (vph)	9	27	469	29	522			
ane Group Flow (vph)	107	0	599	0	636			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4		2		6	3		
Permitted Phases		2		6				
Detector Phase	4	2	2	6	6			
Switch Phase								
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
rellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0		
ost Time Adjust (s)	0.0		0.0		0.0			
Total Lost Time (s)	5.6		5.2		5.2			
_ead/Lag	Lag					Lead		
_ead-Lag Optimize?								
Recall Mode	None	C-Max	C-Max	C-Max		None		
Act Effct Green (s)	11.3		56.4		56.4			
Actuated g/C Ratio	0.15		0.75		0.75			
//c Ratio	0.54		0.29		0.30			
Control Delay (s/veh)	38.5		3.1		5.5			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	38.5		3.1		5.5			
OS	D 38.5		A 3.1		A			
Approach Delay (s/veh)	38.5 D		3.1 A		5.5 A			
Approach LOS	14.2		3.2		24.0			
Queue Length 50th (m)	26.7		15.9		41.2			
Queue Length 95th (m) nternal Link Dist (m)	39.8		31.5		195.6			
Furn Bay Length (m)	33.0		31.3		155.0			
Base Capacity (vph)	291		2040		2106			
Starvation Cap Reductn	0		2040		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.37		0.29		0.30			
	0.01		0.20		0.00			
ntersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:S	BTL, Sta	art of Gree	n		
Natural Cycle: 75	edinate 4							
Control Type: Actuated-Coo	ordinated							
Maximum v/c Ratio: 0.54	(.ab), 7.0				ntersectio	-100.4		
ntersection Signal Delay (s						of Service B		
ntersection Capacity Utiliza	111011 02.9	/0		I	OU LEVEI	OI SELVICE B		
Analysis Period (min) 15								
Splits and Phases: 2: Ba	nk & Holn	nwood						
4							* 1 a	
							% € → Ø4	
Ø2 (R)							. ¢ . 904	

Queues 1: Bank & Fifth 08/01/2024 → ✓ ← ◀ Ť **↓** ↓ Lane Group EBL EBT WBL WBT 44 39 65 43 20 461 19 510 44 39 65 43 20 461 19 510 0 138 72 102 0 560 0 617 Perm NA Perm NA Perm NA Perm NA Lane Configurations Traffic Volume (vph) Lane Configurations (raffic Volume (vph) Future Volume (vph) Future Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Spitt (s) Total 4 8
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0</th
 None
 None
 None
 C-Max
 C-0.29 5.1 34.2 36.6 18.5 Queue Delay Total Delay (s/veh) 0.0 0.0 0.0 34.2 36.6 18.5 0.0 0.0 5.1 LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Spillback Cap Reducth
Reduced v/c Ratio 34.2 26.0 8.6 5.1 13.9 9.4 28.1 19.4 14.3 45.0 361 276 0.27 0.29 0.38 0.26 0.24 Intersection Summary
Cycle Length: 75 Actuated Cycle Length: 75
Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Offset: 47 (63%), Referenced to phase 2 Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.63 Intersection Signal Delay (s/veh): 11.6 Intersection Capacity Utilization 55.8% Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth **Ĵ**, ø₄ Ø2 (R)

₹ ø8

▶ Ø6 (R)

Intersection Capacity Utilization 50.8%	ICU Level of Service A	
Analysis Period (min) 15		
Splits and Phases: 6: Bank & Aylmer		
↑ Ø2 (R)	x J 04	
65 s	5 s 20 s	
Ø6 (R)		

Queues					
9: Queen Elizabeth Drive	& Fifth				08/01/2024
		_	 		

	۶	4	†	ļ						
Lane Group	EBL	NBL	NBT	SBT	Ø4					
Lane Configurations	*/		41	T _a						_
Traffic Volume (vph)	52	40	235	339						
Future Volume (vph)	52	40	235	339						
Lane Group Flow (vph)	90	0	305	433						
Turn Type	Prot	Perm	NA	NA						
Protected Phases	10	I GIIII	2	6	4					
Permitted Phases	10	2		U	7					
Detector Phase	10	2	2	6						
Switch Phase	10		2	0						
	10.0	4.0	4.0	4.0	4.0					
Minimum Initial (s)										
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0					
Total Split (s)	21.0	48.0	48.0	48.0	11.0					
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%					
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0					
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7					
Lost Time Adjust (s)	0.0		0.0	0.0						
Total Lost Time (s)	5.7		6.8	6.8						
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	Min	None	None	C-Max	None					
Act Effct Green (s)	11.1		56.4	56.4						
Actuated g/C Ratio	0.14		0.71	0.71						
v/c Ratio	0.42		0.29	0.37						
Control Delay (s/yeh)	37.3		5.4	6.1						
Queue Delay	0.0		0.0	0.0						
Total Delay (s/veh)	37.3		5.4	6.1						
LOS	D		A	A						
Approach Delay (s/veh)	37.3		5.4	6.1						
Approach LOS	D		A	A						
Queue Length 50th (m)	12.9		13.3	20.4						
Queue Length 95th (m)	25.2		27.5	40.5						
Internal Link Dist (m)	57.2		0.1	5.9						
	31.2		0.1	3.5						
Turn Bay Length (m)	297		1070	1168						
Base Capacity (vph)	297		10/0	1168						
Starvation Cap Reductn	0		0	0						
Spillback Cap Reductn										
Storage Cap Reductn	0		0	0						
Reduced v/c Ratio	0.30		0.29	0.37						
Intersection Summary										
Cycle Length: 80										-
Actuated Cycle Length: 80										
Offset: 0 (0%), Referenced	to phoce	e-cot c	tart of C	non						
Natural Cycle: 80	to pilase	U.SDI, S	tall UI GI	cell						
Natural Cycle: 80 Control Type: Actuated-Co	ordinate d									
	Detailing									
Maximum v/c Ratio: 0.42	4				to or of	100.4				
Intersection Signal Delay (s					ntersection					
Intersection Capacity Utiliza	ation 61.8	%		10	JU Level	of Service B				
Analysis Period (min) 15										
Splits and Phases: 9: Qu	een Eliza	beth Driv	e & Fifth							
4.4						Τ.		1 +		_
Ø2						1	Ø4	1	Ø10	
48 s						-	N-4	04	10 IO	

Ø6 (R)

	•	\rightarrow	1	•	1	Ť	-	Ţ				
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7	
ane Configurations		4		4		414		414				
raffic Volume (vph)	40	36	19	55	28	464	80	516				
uture Volume (vph)	40	36	19	55	28	464	80	516				
ane Group Flow (vph)	0	131	0	189	0	581	0	721				
Turn Type	Perm	NA	Perm	NA	Perm	NA	custom	NA				
Protected Phases		4		8		2	1	16	3	6	7	
Permitted Phases	4		8		2		6					
Detector Phase	4	4	8	8	2	2	1	16				
Switch Phase												
Minimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	54.0	54.0	11.0		5.0	54.0	5.0	
Total Split (s)	20.0	20.0	20.0	20.0	54.0	54.0	11.0		5.0	54.0	5.0	
Total Split (%)	22.2%	22.2%	22.2%	22.2%	60.0%	60.0%	12.2%		6%	60%	6%	
/ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0	
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0	
ost Time Adjust (s)		0.0		0.0	2.0	0.0			2.0			
Total Lost Time (s)		5.6		5.6		6.0						
_ead/Lag	Lag	Lag	Lag	Lag		0.0			Lead		Lead	
_ead-Lag Optimize?	Lug	Lug	Yes	Yes					Loud		Yes	
Recall Mode	None	None	None	None	C-Max	C-Max	None		None	C-Max	None	
Act Effct Green (s)	140116	18.0	140116	18.0	O-Wax	48.2	140116	54.6	HONG	O-WIGA	140116	
Actuated g/C Ratio		0.20		0.20		0.54		0.61				
//c Ratio		0.63		0.66		0.40		0.48				
Control Delay (s/veh)		46.7		33.4		13.2		6.3				
Queue Delay		0.0		0.0		0.0		0.0				
Total Delay (s/veh)		46.7		33.4		13.2		6.3				
OS		40.7 D		00.4 C		13.2 B		0.3 A				
Approach Delay (s/veh)		46.7		33.4		13.2		6.3				
Approach LOS		40.7 D		33.4 C		13.2 B		0.3 A				
Queue Length 50th (m)		20.4		19.7		28.9		15.8				
Queue Length 95th (m)		39.1		42.1		40.7		19.5				
nternal Link Dist (m)		75.1		136.0		63.1		79.0				
		75.1		130.0		03.1		79.0				
Furn Bay Length (m)		211		290		1451		1504				
Base Capacity (vph)		211		290		1451		1504				
Starvation Cap Reductn		0		0		0		0				
Spillback Cap Reductn		0		0		0		0				
Storage Cap Reductn Reduced v/c Ratio		0.62		0.65		0.40		0.48				
		0.62		0.05		0.40		0.48				
ntersection Summary												_
Cycle Length: 90												
Actuated Cycle Length: 90		- O NIDT	10.0	DTI OL								
Offset: 33 (37%), Reference	ced to pha:	se z:NB I	L and 6:5	BIL, Sta	art of Gre	en						
Natural Cycle: 90	and the state of											
Control Type: Actuated-Co	orginated											
Maximum v/c Ratio: 0.66		•				100						
ntersection Signal Delay (ntersection							
ntersection Capacity Utiliz	ation 69.9	%		Į.	CU Level	of Servi	be C					
Analysis Period (min) 15												
Splits and Phases: 7: Ba	ank & Sun	nyside										
4							× -	Ĵ.			1	_
Ø2 (R)	_							→ ø			* '	Ø:
D4 S							25 20	15			TTS	

▶ Ø6 (R)

12: Exhibition & Paul Askin

08/01	/202

* 5 Ø8

Intersection						
	7.7					
Intersection Delay, s/veh						
Intersection LOS	Α					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	£		W	
Traffic Vol. veh/h	5	116	83	5	5	5
Future Vol. veh/h	5	116	83	5	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	6	129	92	6	6	6
Number of Lanes	0	123	1	0	1	0
	-			U		0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	- 1		- 1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay, s/veh	7.8		7.5		7.3	
HCM LOS	A		A		Α	
HCM LOS	A		А		А	
	A	EDI1		ODIC	А	
Lane	A		WBLn1	SBLn1	A	
Lane Vol Left, %	A	4%	WBLn1	50%	A	
Lane Vol Left, % Vol Thru, %	A	4% 96%	WBLn1 0% 94%	50% 0%	A	
Lane Vol Left, % Vol Thru, % Vol Right, %	A	4% 96% 0%	WBLn1 0% 94% 6%	50% 0% 50%	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	Α	4% 96% 0% Stop	WBLn1 0% 94% 6% Stop	50% 0% 50% Stop	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	A	4% 96% 0% Stop 121	WBLn1 0% 94% 6% Stop 88	50% 0% 50% Stop 10	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	A	4% 96% 0% Stop 121 5	WBLn1 0% 94% 6% Stop 88 0	50% 0% 50% Stop 10	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	A	4% 96% 0% Stop 121	WBLn1 0% 94% 6% Stop 88 0 83	50% 0% 50% Stop 10	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	A	4% 96% 0% Stop 121 5 116	WBLn1 0% 94% 6% Stop 88 0	50% 0% 50% Stop 10	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	A	4% 96% 0% Stop 121 5 116	WBLn1 0% 94% 6% Stop 88 0 83	50% 0% 50% Stop 10 5	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	A	4% 96% 0% Stop 121 5 116	WBLn1 0% 94% 6% Stop 88 0 83 5	50% 0% 50% Stop 10 5 0	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp	A	4% 96% 0% Stop 121 5 116 0	WBLn1 0% 94% 6% Stop 88 0 83 5	50% 0% 50% Stop 10 5 0 5	A	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ulit (X)	A	4% 96% 0% Stop 121 5 116 0 134	WBLn1 0% 94% 6% Stop 88 0 83 5 98	50% 0% 50% Stop 10 5 0 5	A	
Lane Vol Left, % Vol Thut, % Vol Thut, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degreature Headway (Hd)	A	4% 96% 0% Stop 121 5 116 0 134 1	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109	50% 0% 50% Stop 10 5 0 5 11 1 0.013	A	
Lane Vol Left. % Vol Left. % Vol Right. % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grip Degrate Headway (Hd) Convergence, YN	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02 Yes	50% 50% 50% Stop 10 5 0 5 11 1 0.013 4.131	A	
Lane Vol Left, % Vol Thut, % Vol Thut, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degreature Headway (Hd)	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035 Yes	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02	50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.131 Yes	A	
Lane Vol Left. % Vol Left. % Vol Right. % Vol Right. % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grip Degree of bill Vol Cap Service Time	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035 Yes 889	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02 Yes 890	50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.131 Yes 851	A	
Lane Vol Left, % Vol Trut, % Vol Trut, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Row Rate Geometry Gip Degree of Util (X) Degree of Util (X) Convergence, YiN Cap Service Time HOM Lane VIC Ratio	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035 Yes 889 2.059 0.151	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02 Yes 890 2.052 0.11	50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.131 Yes 851 2.23 0.013	A	
Lane Vol Left. % Vol Left. % Vol Right. % Vol Right. % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time HCM Lane VIC Ratio HCM Contro Delay, sheh	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035 Yes 889 2.059 0.151 7.8	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02 Yes 890 2.052 0.111 7.5	50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.131 Yes 851 2.23 0.013 7.3	A	
Lane Vol Left, % Vol Trut, % Vol Trut, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Rivol Comergence (Vil) Convergence, Vin Cap Service Time HOM Lane ViC Ratio	A	4% 96% 0% Stop 121 5 116 0 134 1 0.151 4.035 Yes 889 2.059 0.151	WBLn1 0% 94% 6% Stop 88 0 83 5 98 1 0.109 4.02 Yes 890 2.052 0.11	50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.131 Yes 851 2.23 0.013	A	

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cone
Service Time
How Lane Vol

Intersection						
Intersection Delay, s/veh	7.3					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	*4*	
Traffic Vol. veh/h	15	5	5	70	5	5
Future Vol. veh/h	15	5	5	70	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	17	6	6	78	6	6
Number of Lanes	- 1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		FB		IND	
Opposing Approach	WB 1		1		0	
Opposing Lanes			NB		FB	
Conflicting Approach Left	0		NB 1		1	
Conflicting Lanes Left Conflicting Approach Right	NB		- 1		WB	
Conflicting Approach Right	NB 1		0		WB 1	
	7		7.4		7	
HCM Control Delay, s/veh HCM LOS	A		7.4 A		A	
HOM FOS	A		A		A	
Lane		NBLn1				
Vol Left, %		50%	0%	7%		
Vol Thru, %		0%	75%	93%		
Vol Right, %		50%	25%	0%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		10	20	75		
LT Vol		5	0	5		
Through Vol		0	15	70		
RT Vol		5	5	0		
		11	22	83		
Geometry Grp		1	1	1		
Lane Flow Rate Geometry Grp Degree of Util (X)			0.024	0.092		
Geometry Grp Degree of Util (X) Departure Headway (Hd)		1	0.024 3.866	0.092 3.984		
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		1 0.012 3.916 Yes	0.024 3.866 Yes	0.092 3.984 Yes		
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		1 0.012 3.916 Yes 909	0.024 3.866 Yes 927	0.092 3.984 Yes 903		
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		1 0.012 3.916 Yes 909 1.959	0.024 3.866 Yes 927 1.885	0.092 3.984 Yes 903 1.991		
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		1 0.012 3.916 Yes 909	0.024 3.866 Yes 927	0.092 3.984 Yes 903		
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		1 0.012 3.916 Yes 909 1.959	0.024 3.866 Yes 927 1.885	0.092 3.984 Yes 903 1.991 0.092 7.4		
Geometry Grp		1 0.012 3.916 Yes 909 1.959 0.012	0.024 3.866 Yes 927 1.885 0.024	0.092 3.984 Yes 903 1.991 0.092		

Existing Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:12 pm 05/18/2023

Synchro 12 Report Page 2

Existing Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:12 pm 05/18/2023

112

EB 1

NBLn1 EBLn1 WBLn1

 NBLn1
 EBLn1
 WBLn1

 83%
 0%
 94%

 0%
 75%
 6%

 17%
 25%
 0%

 Stop
 Stop
 Stop

 121
 20
 88

 101
 0
 83

 0
 15
 5

 20
 5
 0

 134
 22
 98

 1
 1
 1

134 22 98 1 1 1 0.157 0.026 0.119 4.21 4.2 4.378 Yes Yes Yes 843 858 810 2.283 2.2 2.456 0.159 0.026 0.121 8.1 7.3 8.1 A A A 0.6 0.1 0.4

Synchro 12 Report Page 3

HCM 7th AWSC

37: O' Connor & Fifth

08/01/2024

Intersection												
Intersection Delay, s/veh	8											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				7		4				ī
Traffic Vol. veh/h	39	46	0	0	0	90	56	38	35	0	0	10
Future Vol, veh/h	39	46	0	0	0	90	56	38	35	0	0	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	43	51	0	0	0	100	62	42	39	0	0	11:
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					SI
Opposing Approach	WB					EB	SB					NE
Opposing Lanes	- 1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	- 1					1	1					
Conflicting Approach Right	NB					SB	WB					El
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	8.4					7.5	8.4					7.5
HCM LOS	A					Α	Α					- 1
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		43%	46%	0%	0%							
Vol Thru, %		29%	54%	0%	0%							
Vol Right, %		27%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		129	85	90	101							
LT Vol		56	39	0	0							
Through Vol		38	46	0	0							
RT Vol		35	0	90	101							
Lane Flow Rate		143	94	100	112							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.175	0.123	0.111	0.122							
Departure Headway (Hd)		4.403	4.684	3.999	3.926							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		816	767	897	913							
Service Time		2.423	2.703	2.019	1.946							
HCM Lane V/C Ratio		0.175	0.123	0.111	0.123							
		8.4	8.4	7.5	7.5							
HCM Control Delay, s/veh		۸	۸	۸								
HCM Lane LOS HCM 95th-tile Q		A 0.6	A 0.4	0.4	0.4							

HCM 7th TWSC

4: Bank & Wilton

Internation						
Intersection Int Delay, s/veh	5.5					
iii Delay, S/VeII						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		41	f)	
Traffic Vol, veh/h	3	172	113	539	490	53
Future Vol, veh/h	3	172	113	539	490	53
Conflicting Peds, #/hr	r 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	ge, # 0			0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	3	191	126	599	544	59
	Minor2		Major1		//ajor2	
Conflicting Flow All	1302	752	781	0	-	0
Stage 1	752	-	-	-		-
Stage 2	551	-	-	-	-	
Critical Hdwy		6.245	4.145	-		
Critical Hdwy Stg 1	5.445	-	-	-	-	-
Critical Hdwy Stg 2	5.845	-		-		
	3.5285				-	-
Pot Cap-1 Maneuver		407	829	-		
Stage 1	462			-		
Stage 2	540					
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	r 83	331	673	-	-	
Mov Cap-2 Maneuve	r 83			-		
Stage 1	291				-	
Stage 2	438					
3						
Annenah	FB		NB		SB	
Approach						
HCM Control Delay, s			3.52		0	
HCM LOS	D					
Minor Lane/Major Mv	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		561		331		
HCM Lane V/C Ratio		0.187		0.578		
HCM Control Delay (11.6	1.8	29.8		
HCM Lane LOS	a volij	B.	Α.	23.0 D		
HCM 95th %tile Q(ve	h)	0.7		3.4		
I IOW 9301 WILLE Q(VE	11)	0.7		3.4		

Intersection Int Delay, s/veh Movement

Major/Minor Conflicting Flow All Stage 1

 Movement
 EBL
 BR
 NBL
 NBT
 SBT
 SBR

 Lane Configurations
 Y
 4
 1
 1

 Traffic Vol, vehin
 67
 54
 54
 204
 245
 124

 Future Vol, vehin
 67
 54
 54
 204
 245
 124

 Forthicing Peds, #hr
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 None
 None
 None
 Storage Length
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Minor2 Major1 688 341 410 341 - -

Approach EB HCM Control Delay, s/45.16 HCM LOS C

08/01/2024

Interception						
Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	4	
Traffic Vol, veh/h	- 1	31	0	641	654	0
Future Vol. veh/h	1	31	0	641	654	0
Conflicting Peds, #/h		0	0	041	0.04	86
	Stop	Stop	Free	Free	Free	Free
Sign Control RT Channelized	Stop	None	Free -		Free -	None
Storage Length	- " -	0	-	-	-	-
Veh in Median Stora		-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	- 1	34	0	712	727	0
Major/Minor	Minor		Anior4	_	Anior?	
Major/Minor	Minor2		//ajor1		Major2	-
Conflicting Flow All	1083	727	-	0	-	0
Stage 1	727	-	-		-	-
Stage 2	356	-		-	-	-
Critical Hdwy	6.645	6.245		-	-	-
Critical Hdwy Stg 1	5.445			-		-
Critical Hdwy Stg 2	5.845	-		-	-	-
Follow-up Hdwy	3.52853	3.3285				
Pot Cap-1 Maneuver	224	421	0	-		0
Stage 1	475	-	0		-	0
Stage 2	678		0	-		0
Platoon blocked, %						
Mov Cap-1 Maneuve	r 224	421				
Mov Cap-2 Maneuve		721				- 1
Stage 1	475					
	678		- 1			- 1
Stage 2	0/0				- 1	
Approach	EB		NB		SB	
HCM Control Delay,	s/\14.31		0		0	
HCM LOS	В					
Minor Lane/Major My	mt	NBTE	RI n1	SBT		
			421	-		
Capacity (veh/h)			0.082			
HCM Lane V/C Ratio						
HCM Control Delay (s/veh)	-	14.3	-		
HCM Lane LOS			B			

Existing Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:12 pm 05/18/2023

Synchro 12 Report Page 2

Existing Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:12 pm 05/18/2023

Synchro 12 Report Page 3

HCM 7th TWSC 10: Bank & Marche

08/01/2024

Intersection						
Int Delay, s/veh	0.8					
Movement	WDI	WBR	NBT	NBR	SBL	SBT
	WDL			NDIX	ODL	
Lane Configurations	^	7	† 13	40	^	44
Traffic Vol, veh/h Future Vol. veh/h	6	69 69	479 479	18 18	2	565 565
					0	000
Conflicting Peds, #/hr	0	0	0	100	Free	Free
Sign Control RT Channelized	Stop	Stop	Free	Free	Free -	
		None 0				
Storage Length	- # 0	-	-		-	- 0
Veh in Median Storage	e, # U		0	-	-	0
Grade, %	90	90	90	90	90	90
Peak Hour Factor	90	90		90		90
Heavy Vehicles, %	7		2		2	
Mvmt Flow	- /	77	532	20	2	628
Major/Minor N	Minor1		//ajor1	1	Major2	
Conflicting Flow All	961	376	0	0	652	0
Stage 1	642	-				
Stage 2	318					
Critical Hdwy	6.8	6.9			4.14	
Critical Hdwy Stg 1	5.8	-				
Critical Hdwy Stg 2	5.8					
Follow-up Hdwy	3.5	3.3			2.22	
Pot Cap-1 Maneuver	258	627			930	
Stage 1	491	-			-	
Stage 2	716					
Platoon blocked. %	7 10			- 1		
Mov Cap-1 Maneuver	230	561	- 1	- 1	832	- :
Mov Cap-1 Maneuver	230	301	- 1		032	- 1
Stage 1	439	- 1	- 1			- 1
Stage 1 Stage 2	714					
otage 2	114				-	-
Approach	WB		NB		SB	
HCM Control Delay, si	12.43		0		0.03	
HCM LOS	В					
Mines Lens Maios Mus		NDT	NBRV	UDI =1	SBL	SBT
Minor Lane/Major Mvn	III	NBT	INDIN			981
Capacity (veh/h)		-	-	561	832	-
HCM Lane V/C Ratio				0.137		
HCM Control Delay (s	/veh)	-	-	12.4	9.3	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh	1)	-		0.5	0	

HCM 7th TWSC

11: Garage & Exhibition

Intersection						
Int Delay, s/veh	2.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7	LUIT	1100	4	*/	HOIL
Traffic Vol. veh/h	116	117	5	83	68	5
Future Vol. veh/h	116	117	5	83	68	5
Conflicting Peds, #/hr	0	100	100	0	100	100
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	140110	-	None	-	None
Storage Length		-		-	0	-
Veh in Median Storage	,#0	-		0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	129	130	6	92	76	6
MVIIICI IOW	120	100	0	JŁ	10	0
Major/Minor N	lajor1	- N	Major2	1	Minor1	
Conflicting Flow All	0	0	359	0	497	394
Stage 1		-		-	294	-
Stage 2				-	203	-
Critical Hdwy		-	4.12		6.42	6.22
Critical Hdwy Stg 1					5.42	0.22
Critical Hdwy Stg 1	- 1				5.42	
			0.040	-	3.518	2 240
Follow-up Hdwy	-		2.218			
Pot Cap-1 Maneuver	-		1200	-	532	655
Stage 1		-	-	-	756	-
Stage 2		-	-	-	831	-
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver		-	1073	-	423	524
Mov Cap-2 Maneuver		-	-		423	
Stage 1					676	
Stage 2					739	
Staye 2					133	
Approach	EB		WB		NB	
HCM Control Delay, s/	v 0		0.48		15.34	
HCM LOS			0.10		C	
HOM LOO						
Minor Lane/Major Mvm	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		429	-	-	102	-
HCM Lane V/C Ratio		0.189			0.005	
HCM Control Delay (s/	(oh)	15.3		- 1	8.4	0
HCM Control Delay (s/ HCM Lane LOS	velij	15.3 C			8.4 A	A
			-	-		A
HCM 95th %tile Q(veh)	0.7	-		0	

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ħ		*4	
Traffic Vol. veh/h	5	30	72	106	91	5
Future Vol. veh/h	5	30	72	106	91	5
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1100	None	1100	None	Olop	None
Storage Length		-		140116	0	140116
Veh in Median Storag		0	0	- 1	0	- :
Grade. %	C, # "	0	0	- 1	0	- 1
Peak Hour Factor	90	90	90	90	90	90
	90	90	90	90	90	90
Heavy Vehicles, %	6	33	80	118	101	6
Mvmt Flow	р	33	80	118	101	р
Major/Minor I	Major1	- 1	//ajor2	- 1	Minor2	
Conflicting Flow All	198	0	-	0	183	139
Stage 1	-	-			139	-
Stage 2	-	-			44	-
Critical Hdwy	4.12	-			6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218				3.518	3.318
Pot Cap-1 Maneuver					806	909
Stage 1					888	-
Stage 2					978	
Platoon blocked. %		- 1	- 1	- 1	310	
Mov Cap-1 Maneuver	1275	- 1	-	- 1	803	909
					803	
Mov Cap-2 Maneuver						-
Stage 1	-	-		-	884	-
Stage 2	-	-	-	-	978	-
Approach	EB		WB		SB	
HCM Control Delay, s	/v1.09		0		10.13	
HCM LOS					В	
Maratan Matan		EDI	EDT	MOT	WDD	ODL -4
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	
Capacity (veh/h)		257	-			808
HCM Lane V/C Ratio		0.004		-		0.132
HCM Control Delay (s	/veh)	7.6	0			
HCM Lane LOS		Α	Α			В
HCM 95th %tile Q(veh	h)	0	-		-	0.5

Existing Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:12 pm 05/18/2023

Synchro 12 Report Page 6

Queues 1: Bank & Fifth 08/01/2024 / ļ Detector Phases Switch Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Initial (s) Minimum Spit (s) Total Spit (s) Total Spit (s) Total Spit (s) Total Spit (s) Switch Switch Spit (s) Total Lost Time (s) LeadLag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Actuated giC Ratio vic Ratio Control Delay (siveh) Coueue Delay Total Delay (siveh) LOS Approach LoS Queue Length Stit (m) Internal Link Dist (m) Internal Link Dist (m) Internal Link Dist (m) Internal Link Dist (m) Starvation Cap Reductin Storage Cap Reductin 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 4.0</th 0.0 0.0 0.0 5.5 5.5 5.5 0.0 5.5 None None None C-Max C-Max C-Max C-Max 14.0 14.0 50.0 50.0 0.67 49.7 112.4 45.0 338 297 431 1869 0 0.37 0.44 0.26 0.33 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 75 Offsei: 42 (65%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.65 Intersection Signal Delay (siveh): 12.9 Intersection Capacity Utilization 58.2% Intersection Capacity (Utilization 58.2% Intersection Capacity (Utilization 58.2% Intersection Capacity (Utilization 58.2%) Intersection Capacity (Utilizatio lits and Phases: 1: Bank & Fifth **∮** Ø2 (R) Ĵ, ø₄ **▼** ø8 ▶ Ø6 (R)

Existing Scenario

Sunday Peak Hour

Queues 2: Bank & Holmwo	nod							08/01/2024
E. Baint & Floring	→	←	4	†	/			
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	4			414		413		
Traffic Volume (vph)	17	0	31	494	22	519		
Future Volume (vph)	17	0	31	494	22	519		
Lane Group Flow (vph)	107	2	0	670	0	639		
Turn Type	NA		Perm	NA	Perm	NA		
Protected Phases	4			2		6	3	
Permitted Phases			2		6			
Detector Phase	4		2	2	6	6		
Switch Phase								
Minimum Initial (s)	4.4		10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	23.0		47.0	47.0	47.0	47.0	5.0	
Total Split (s)	23.0		47.0	47.0	47.0	47.0	5.0	
Total Split (%)	30.7%		62.7%	62.7%	62.7%	62.7%	7%	
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6		2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0			0.0		0.0		
Total Lost Time (s)	5.6			5.2		5.2		
Lead/Lag	Lag						Lead	
Lead-Lag Optimize?								
Recall Mode	None		C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	11.2	0.0		56.4		56.4		
Actuated g/C Ratio	0.15	0.00		0.75		0.75		
v/c Ratio	0.53	0.01		0.34		0.30		
Control Delay (s/veh)	38.2	0.0		7.2		8.2		
Queue Delay	0.0	0.0		0.0		0.0		
Total Delay (s/veh)	38.2	0.0		7.2		8.2		
LOS	D	Α		Α		Α		
Approach Delay (s/veh)	38.2			7.2		8.2		
Approach LOS	D			A		Α		
Queue Length 50th (m)	14.2	0.0		30.2		19.5		
Queue Length 95th (m)	26.7	0.0		49.5		44.3		
Internal Link Dist (m)	39.8	116.8		31.5		195.6		
Turn Bay Length (m)								
Base Capacity (vph)	313	143		1966		2124		
Starvation Cap Reductn	0	0		0		0		
Spillback Cap Reductn	0	0		0		0		
Storage Cap Reductn	0	0		0		0		
Reduced v/c Ratio	0.34	0.01		0.34		0.30		
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 16 (21%), Reference	ed to phas	e 2:NBT	L and 6:9	SBTL, Sta	art of Gre	en		
Natural Cycle: 75								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.53								
Intersection Signal Delay (s)				on LOS: A		
Intersection Capacity Utiliz	ation Err%			- 1	CU Level	of Service	e H	
Analysis Period (min) 15								
Splits and Phases: 2: Ba	ank & Holm	wood						
4							1	<u></u>
Ø2 (R)							5 5	φ Ø4
L.							3.5	203
Ø6 (R)							1	

Queues 3: Bank & Exhibition Queues 08/01/2024

	•	*	†	-	↓				
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø3	Ø6	Ø7	
Lane Configurations	Ť	7	∱ 1>	*	44				
Traffic Volume (vph)	120	63	397	170	423				
Future Volume (vph)	120	63	397	170	423				
Lane Group Flow (vph)	133	70	570	189	470				
Turn Type	Perm	Perm	NA	custom	NA				
Protected Phases			2	1	16	3	6	7	
Permitted Phases	8	8		6					
Detector Phase	8	8	2	1	16				
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	1.0		3.0	10.0	3.0	
Minimum Split (s)	26.0	26.0	27.0	7.9		5.0	27.0	5.0	
Total Split (s)	26.0	26.0	27.0	12.0		5.0	27.0	5.0	
Total Split (%)	34.7%	34.7%	36.0%	16.0%		7%	36%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0		2.0	3.0	2.0	
All-Red Time (s)	3.0	3.0	3.9	3.9		0.0	3.9	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0					
Total Lost Time (s)	6.3	6.3	6.9	6.9					
Lead/Lag				Lead		Lag			
Lead-Lag Optimize?				Yes		Yes			
Recall Mode	None	None	C-Max	None		None	C-Max	None	
Act Effct Green (s)	12.5	12.5	40.6	45.7	54.0				
Actuated g/C Ratio	0.17	0.17	0.54	0.61	0.72				
v/c Ratio	0.53	0.29	0.36	0.41	0.21				
Control Delay (s/veh)	35.8	10.2	11.3	12.4	5.1				
Queue Delav	0.0	0.0	0.0	0.0	0.0				
Total Delay (s/veh)	35.8	10.2	11.3	12.4	5.1				
LOS	D	В	В	В	A				
Approach Delay (s/veh)	27.0		11.3		7.1				
Approach LOS	С		В		A				
Queue Length 50th (m)	17.6	0.0	21.9	7.5	10.4				
Queue Length 95th (m)	31.2	9.4	37.9	26.0	23.4				
Internal Link Dist (m)	30.6		33.7		44.8				
Turn Bay Length (m)				40.0					
Base Capacity (vph)	399	347	1584	462	2283				
Starvation Cap Reductn	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.33	0.20	0.36	0.41	0.21				
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 0 (0%), Referenced	to phase	2:NBT ar	nd 6:SBT	L, Start of	Green				
Natural Cycle: 75									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.53									
Intersection Signal Delay (s	s/veh): 11.	6			tersectio				
Intersection Capacity Utiliza	ation 59.6	%		IC	CU Level	of Service	ce B		
Analysis Period (min) 15									

Splits and Phases: 3: Bank & Exhibition **▶** ø1 ▶ Ø6 (R)

Queues 7: Bank & Sunnyside 08/01/2024

•	\rightarrow	•	•	4	†	-	↓				
EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7	
	4		4		474		413				
41	32	15	49	18	448	113	482				
41	32	15	49	18	448	113	482				
0	114	0	185	0	530	0	751				
Perm	NA	Perm	NA	Perm			NA				
	4		8		2		16	3	6	7	
4											
4	4	8	8	2	2	1	16				
6.4		5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0	
25.0				43.0	43.0						
27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%		6%	48%	6%	
3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0	
2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0	
	0.0		0.0		0.0						
	5.6		5.6		6.0						
Lag	Lag	Lag	Lag					Lead		Lead	
		Yes	Yes							Yes	
None	None	None	None	C-Max	C-Max	None		None	C-Max	None	
	14.6		14.6		44.6						
	0.16										
	67.8		32.8		16.5						
	67.8		32.8		16.5		4.7				
							Α				
	19.1		16.5								
			35.5								
	75.1		136.0		63.1		79.0				
	0.57		0.56		0.37		0.49				
ed to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gre	en						
	41 41 41 0 Perm 4 4 4 25.0 25.0 27.3% 2.6 Lag	EBL EBT 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	EBL EBT WBL 44 41 32 15 41 32	BBL BET WBL WBT	BBL BBT WBL WBT NBL	Fig. Fig.	BBL BBT WBL WBT NBL NBT SBL	BBL BBT WBL WBT NBL NBT SBL SBT	BBL EBT WBL WBT NBL NBT SBL SBT Q3	BBL BBT WBL WBT NBL NBT SBL SBT 03 06	EBL EBT WBL WBT NBL NBT SBL SBT 03 06 07

Intersection Summary	
Cycle Length: 90	
Actuated Cycle Length: 90	
Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL,	Start of Green
Natural Cycle: 90	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.78	
Intersection Signal Delay (s/veh): 16.5	Intersection LOS: B
Intersection Capacity Utilization 72.1%	ICU Level of Service C
Analysis Period (min) 15	

Splits and Phases: 7: Bank & Sunnyside		
↑ Ø2 (R)	* → Ø4	▶ ø1
43 s	5 s 25 s	17 s
▶ ø _{6 (R)}	* ♥ Ø8	

6: Bank & Aylmer								08/01/202
	•	4	†	ļ				
Lane Group	EBL	NBL	NBT	SBT	Ø3			
Lane Configurations	¥		414	ħβ				
Traffic Volume (vph)	50	13	572	627				
Future Volume (vph)	50	13	572	627				
Lane Group Flow (vph)	76	0	650	753				
Turn Type	Prot	Perm	NA	NA				
Protected Phases	4		2	6	3			
Permitted Phases	4	2		6				
Detector Phase	4	2	2	6				
Switch Phase								
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0			
Minimum Split (s)	22.0	63.0	63.0	63.0	4.0			
Total Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%			
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0			
All-Red Time (s)	2.2	2.2	2.2	2.2	0.0			
Lost Time Adjust (s)	0.0		0.0	0.0				
Total Lost Time (s)	5.5		5.2	5.2				
Lead/Lag	Lag				Lead			
Lead-Lag Optimize?	9							
Recall Mode	None	C-Max	C-Max	C-Max	None			
Act Effct Green (s)	10.8		72.6	72.6				
Actuated g/C Ratio	0.12		0.81	0.81				
v/c Ratio	0.40		0.27	0.31				
Control Delay (s/veh)	35.7		2.4	3.4				
Queue Delay	0.0		0.0	0.0				
Total Delay (s/veh)	35.7		2.4	3.4				
LOS	D		A	A				
Approach Delay (s/veh)	35.7		2.4	3.4				
Approach LOS	D		Α	Α				
Queue Length 50th (m)	9.6		10.8	15.8				
Queue Length 95th (m)	21.9		14.3	26.2				
Internal Link Dist (m)	76.7		28.1	10.1				
Turn Bay Length (m)								
Base Capacity (vph)	281		2411	2463				
Starvation Cap Reductn	0		0	0				
Spillback Cap Reductn	0		0	0				
Storage Cap Reductn	0		0	0				
Reduced v/c Ratio	0.27		0.27	0.31				
Intersection Summary								
Cycle Length: 90								
Actuated Cycle Length: 90								
Offset: 87 (97%), Reference		2-NRT	l and 6-9	SRT Start	of Green			
Natural Cycle: 90	ou to pria	36 2.140 1	L and o.c	JDT, Otali	OI OIGGII			
Control Type: Actuated-Co	nordinated							
Maximum v/c Ratio: 0.40	rorumateu							
Intersection Signal Delay (chrah). A G			le le	ntersection	1 OS- A		
Intersection Capacity Utiliz						f Service A		
Analysis Period (min) 15	.00011 47.0	70		IC	JO LOVEI U	OUNDEA		
raidiyolo r oliba (IIIII) 10								

Splits and Phases: 6: Bank & Aylmer * J Ø4 **∮** Ø2 (R) J Ø6 (R)

08/01/2024

Queues

9: Queen Elizabeth Drive & Fifth

1

↑ ↓

Lane Group
Lane Configurations
Traffic Volume (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Turn Type
Protected Phases
Detector Phases
Minimum Initial (s)
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (s)
Total Split (s)
Lost Time (d)
Lost Time (s)
Lost Time (d)
L 10.0 4.0 4.0 4.0 4.0 22.0 42.0 42.0 42.0 9.7 22.0 42.0 42.0 48.0 11.0 27.2% 51.9% 51.9% 59.3% 14% 3.0 3.0 3.0 3.0 3.0 2.7 3.8 3.8 3.8 2.7 0.0 5.7 0.0 0.0 6.8 6.8 Lag Yes Min None 14.0 None C-Max None 54.5 54.5 0.67 0.67 0.29 0.04 vic Ratio

Vic Ratio

Control Delay

Oueue Delay

Total Delay

Total Delay

Total Delay

Selveh

LOS

Approach Delay (s/veh)

Approach LOS

Queue Length 50th (m)

Queue Length 95th (m)

Internal Link Dist (m)

Turn Bay Length (m)

Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Reduced vic Ratio 7.3 5.6 0.0 0.0 7.3 5.6 A A 12.4 1.8 27.9 5.7 0.1 5.9 306 804 1026 0.29 0.04 0.50

Intersection Signal Delay (sheh): 19.1
Intersection Capachy Utilization 38.3%
Analysis Period (min) 15 Intersection LOS: B ICU Level of Service A

HCM 7th AWSC 13: Paul Askin & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cone
Service Time
How Lane Vol

08/01/2024 12: Exhibition & Paul Askin

Intersection Delay, s/veh	7.9						
Intersection LOS	Α						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	LUL	4		WDIX	N/	ODIN	
		- 4	4				
Traffic Vol, veh/h	5	141	100	5	5	5	
Future Vol, veh/h	5	141	100	5	5	5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	6	157	111	6	6	6	
Number of Lanes	0	1	- 1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay, s/veh	8		7.7		7.4		
HCM LOS	Α		Α		Α		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	3%	0%	50%
Vol Thru, %	97%	95%	0%
Vol Right, %	0%	5%	50%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	146	105	10
LT Vol	5	0	5
Through Vol	141	100	0
RT Vol	0	5	5
Lane Flow Rate	162	117	11
Geometry Grp	- 1	1	1
Degree of Util (X)	0.182	0.131	0.013
Departure Headway (Hd)	4.048	4.046	4.328
Convergence, Y/N	Yes	Yes	Yes
Cap	886	883	832
Service Time	2.076	2.084	2.328
HCM Lane V/C Ratio	0.183	0.133	0.013
HCM Control Delay, s/veh	8	7.7	7.4
HCM Lane LOS	A	Α	Α
HCM 95th-tile Q	0.7	0.5	0

Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

Synchro 12 Report Page 1

Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

1

NBLn1 EBLn1 WBLn1

1 1 1 1 1 0.013 0.023 0.2 4.083 3.93 3.976 Yes Yes Yes

Yes Yes Yes 864 907 906 2.166 1.969 1.985 0.013 0.023 0.2 7.2 7.1 8 A A A 0 0.1 0.7

Synchro 12 Report Page 2

08/01/2024

HCM 7th AWSC

14: Exhibition & Marche 08/01/2024

Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	*44	
Traffic Vol, veh/h	14	5	54	3	122	24
Future Vol, veh/h	14	5	54	3	122	24
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	6	60	3	136	27
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		- 1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay, s/veh	7.3		7.9		8.2	
HCM LOS	Α		Α		Α	

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	84%	0%	95%
Vol Thru, %	0%	74%	5%
Vol Right, %	16%	26%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	146	19	57
LT Vol	122	0	54
Through Vol	0	14	3
RT Vol	24	5	0
Lane Flow Rate	162	21	63
Geometry Grp	1	- 1	1
Degree of Util (X)	0.187	0.025	0.078
Departure Headway (Hd)	4.148	4.216	4.425
Convergence, Y/N	Yes	Yes	Yes
Cap	860	854	798
Service Time	2.202	2.216	2.516
HCM Lane V/C Ratio	0.188	0.025	0.079
HCM Control Delay, s/veh	8.2	7.3	7.9
HCM Lane LOS	A	Α	Α

HCM 7th AWSC

37: O' Connor & Fifth

III(GI3GCIIOII												
Intersection Delay, s/veh	9.8											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				7		4				-i
Traffic Vol, veh/h	67	79	0	0	0	223	97	65	60	0	0	10
Future Vol, veh/h	67	79	0	0	0	223	97	65	60	0	0	101
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	- 2
Mvmt Flow	74	88	0	0	0	248	108	72	67	0	0	112
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					SE
Opposing Approach	WB					EB	SB					NE
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	EB					WE
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					EE
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	9.9					9.4	10.6					8.5
HCM LOS	Α					Α	В					F

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	44%	46%	0%	0%
Vol Thru, %	29%	54%	0%	0%
Vol Right, %	27%	0%	100%	100%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	222	146	223	101
LT Vol	97	67	0	0
Through Vol	65	79	0	0
RT Vol	60	0	223	101
Lane Flow Rate	247	162	248	112
Geometry Grp	- 1	- 1	- 1	1
Degree of Util (X)	0.339	0.234	0.304	0.144
Departure Headway (Hd)	4.943	5.183	4.417	4.619
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	720	685	805	765
Service Time	3.028	3.272	2.496	2.717
HCM Lane V/C Ratio	0.343	0.236	0.308	0.146
HCM Control Delay, s/veh	10.6	9.9	9.4	8.5
HCM Lane LOS	В	A	A	Α
HCM 95th-tile Q	1.5	0.9	1.3	0.5

HCM 7th TWSC 5: Bank & Echo

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Stage 1 782
Stage 2 337 Critical Holwy Stg 1 5.445
Critical Holwy Stg 1 5.445
Critical Holwy Stg 1 5.445
Critical Holwy Stg 2 5.845
Follow-up Holwy 3,52853,3285
Platoon blocked, %
Mov Caph Maneuver 176 356
Mov Caph Maneuver 176 Stage 2 630 Stage 2 630 -

Approach EB HCM Control Delay, s/17.83 HCM LOS C

| Movement | EBL | EBR | NBL | NBT | SBR | NBT |

4: Bank & Wilton

Intersection Int Delay, s/veh Movement						
	4.6					
Movement	4.6					
	EBL		NBL	NBT	SBT	SBR
Lane Configuration:	S	7		414	Ti	
Traffic Vol, veh/h	5	149	105	527	473	59
Future Vol, veh/h	5	149	105	527	473	59
Conflicting Peds, #/	hr 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0		-	-	-
Veh in Median Stor	age, # 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	6	166	117	586	526	66
Major/Minor	Minor2		Major1		Maior2	
Conflicting Flow All	1262	736	769	0	11012	0
Stage 1	736	730	709	-		U
Stage 2	526	- 1	- 1		- 0	
Critical Hdwv		6.245		- 1	- 1	- 1
Critical Hdwy Stg 1	5.445	0.243	4.140	- 1	- 0	- 1
Critical Hdwy Stg 2		- 1				
Follow-up Hdwy	3.5285		2 2205	- 1	- 1	- 1
Pot Cap-1 Maneuve		416	838			
Stage 1	470	410	000	- 1	- 1	- 1
Stage 2	556	- 1	- 1	_		- :
Platoon blocked. %	330				- 0	- 1
Mov Cap-1 Maneuv	er 91	337	680			-
Mov Cap-1 Maneuv		331	000			
	er 91 303	- 1	-	-	-	-
Stage 1	303 451					
Stage 2	451	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay	, s/25.53		3.28		0	
HCM LOS	D					
	l. mak	NBL	NDT	EBLn1	SBT	SBR
Miner Lens (Maior A	IVIIIL	569	IVDI		ODI	ODK
Minor Lane/Major M			-	337	-	
Capacity (veh/h)						
Capacity (veh/h) HCM Lane V/C Rat		0.172		0.491	-	
Capacity (veh/h) HCM Lane V/C Rat HCM Control Delay		0.172 11.4	1.7	25.5	-	-
Capacity (veh/h) HCM Lane V/C Rat	(s/veh)	0.172				

Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

Synchro 12 Report Page 1

08/01/2024

Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

Synchro 12 Report Page 2

08/01/2024

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

Intersection						
Int Delay, s/veh	5.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	COIL	DL	4	13	ODIT
Traffic Vol. veh/h	84	132	69	125	65	57
Future Vol. veh/h	84	132	69	125	65	57
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Otop	None	1100		1100	None
Storage Length	0	IVUITE -		None		IVUILE
Veh in Median Storage		- 1	- :	0	0	- 1
Grade. %	0			0	0	- 1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	93	147	77	139	72	63
WIVIIILLIOW	93	147	- 11	139	12	03
	Minor2		//ajor1		Major2	
Conflicting Flow All	396	104	136	0	-	0
Stage 1	104	-	-	-	-	-
Stage 2	292	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1		-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4			-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	613	956	1461	-	-	-
Stage 1	925		-		-	-
Stage 2	762	-			-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	578	956	1461	-	-	-
Mov Cap-2 Maneuver	578	-	-	-	-	
Stage 1	873					
Stage 2	762				-	
Approach	EB		NB		SB	
HCM Control Delay, si			2.7		0	
HCM LOS	N 1.88		2.1		U	
I IOW LOG	ь					
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		640	-	762	-	-
HCM Lane V/C Ratio		0.052	-	0.315	-	-
HCM Control Delay (s.	/veh)	7.6	0	11.9	-	
HCM Lane LOS		Α	Α	В	-	
HCM 95th %tile Q(veh	1)	0.2	-	1.4	-	-
Tam and all ton	,	J.2				

HCM 7th TWSC 10: Bank & Marche

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ 1>			44
Traffic Vol, veh/h	7	156	452	19	0	578
Future Vol, veh/h	7	156	452	19	0	578
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0		0		-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	8	173	502	21	0	642
Material Const.	Proceed		Antonia.		4-10	
	/linor1		Major1		//ajor2	
Conflicting Flow All	934	362	0	0	-	-
Stage 1	613	-		-	-	
Stage 2	321	-	-	-	-	-
Critical Hdwy	6.8	6.9	-		-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8		-		-	-
Follow-up Hdwy	3.5	3.3	-	-	-	-
Pot Cap-1 Maneuver	268	641		-	0	-
Stage 1	509	-	-	-	0	-
Stage 2	714	-		-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	240	573		-		-
Mov Cap-2 Maneuver	240	-		-		-
Stage 1	455	-		-		-
Stage 2	714					
	1410				0.0	
Approach	WB		NB		SB	
HCM Control Delay, s/			0		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NRR	VBLn1	SBT	
Capacity (veh/h)	iit.	NOT	INDIN	573	001	
HCM Lane V/C Ratio				0.302	- 1	
	L L X	-			-	
HCM Control Delay (s	rven)	-	-	14	-	
HCM Lane LOS		-	-	В	-	
HCM 95th %tile Q(veh	1)			1.3	-	

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
2 218
Pot Cap-1 Maneuver
1443
Stage 1
Stage 1
Stage 1
Stage 1
Stage 2
Flation blocked, %
Mov Cap-1 Maneuver
Stage 1
Stage 2
Stage 2

Approach EB HCM Control Delay, s/v0.68 HCM LOS

08/01/2024

Intersection						
Int Delay, s/veh	3.2					
**						
	EBT	EBR	WBL		NBL	NBR
Lane Configurations	Þ			4	, A	
Traffic Vol, veh/h	141	145	5	100	83	5
Future Vol, veh/h	141	145	5	100	83	5
Conflicting Peds, #/hr	0	100	100	0	100	100
Sign Control I	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	157	161	6	111	92	6
minut ion	101				02	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	418	0	559	437
Stage 1	-	-			337	
Stage 2	-	-	-	-	222	-
Critical Hdwy	-	-	4.12		6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2		-			5.42	
Follow-up Hdwy		-	2.218		3.518	3.318
Pot Cap-1 Maneuver			1141		490	619
Stage 1	-	-			723	-
Stage 2					815	
Platoon blocked, %	-					
Mov Cap-1 Maneuver			1020		389	495
Mov Cap-1 Maneuver			1020		389	430
Stage 1					646	
Stage 2			- 1		724	- 1
Stage 2		_			124	-
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.41		17.12	
HCM LOS					С	
		unu (COT	500	14/01	LLIDT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		394			86	
HCM Lane V/C Ratio		0.248	-	-	0.005	-
HCM Control Delay (s/vi	eh)	17.1			8.5	0
HCM Lane LOS		С	-	-	Α	Α
HCM 95th %tile Q(veh)		1			0	

Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

Synchro 12 Report Page 5 Existing Sunday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:28 pm 07/15/2024

- 67 -- 6.42 6.22 - 5.42 -

- 5.42 -- 5.42 -- 3.518 3.318 - 825 957 - 925 -- 956 -

ynchro 12 Repor

Existing Scenario

Minor Event Ingress

	۶	→	•	←	•	†	\	1	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		4	*	1,		413		413	
Fraffic Volume (vph)	50	56	65	45	16	482	25	557	
uture Volume (vph)	50	56	65	45	16	482	25	557	
ane Group Flow (vph)	0	154	72	84	0	585	0	673	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)		0.0 5.5	0.0	0.0		0.0 5.5		0.0 5.5	
Total Lost Time (s) Lead/Lag		5.5	5.5	5.5		5.5		5.5	
Lead/Lag Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	INUITE	13.1	13.1	13.1	CHINAX	50.9	U-INIAX	50.9	
Actuated g/C Ratio		0.17	0.17	0.17		0.68		0.68	
//c Ratio		0.17	0.17	0.17		0.30		0.35	
Control Delay (s/veh)		36.9	33.3	19.0		10.0		6.3	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		36.9	33.3	19.0		10.0		6.3	
LOS		D	С	В		В		A	
Approach Delay (s/veh)		36.9		25.6		10.0		6.3	
Approach LOS		D		С		В		Α	
Queue Length 50th (m)		17.7	9.2	6.1		17.3		17.4	
Queue Length 95th (m)		32.3	18.8	15.6		49.8		33.6	
Internal Link Dist (m)		49.7		112.4		195.6		190.0	
Turn Bay Length (m)			45.0						
Base Capacity (vph)		361	270	423		1931		1925	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.43	0.27	0.20		0.30		0.35	
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 47 (63%), Reference	ed to phas	se 2:NBT	L and 6:5	BTL, Sta	art of Gre	en			
Natural Cycle: 75									
Control Type: Actuated-Cor	ordinated								
Maximum v/c Ratio: 0.65	(l.) (2	^				- 100			
ntersection Signal Delay (s					ntersection				
ntersection Capacity Utiliza	100 D 1.9	70			CU Level	or Service	æ B		
Analysis Period (min) 15									
Splits and Phases: 1: Ba	nk & Fifth								
4								Ĵ.	
Ø2 (R)								→ Ø	4
49 s							2	6 s	
▶ Ø6 (R)							- 1∢	T OF	

∮ Ø2 (R)

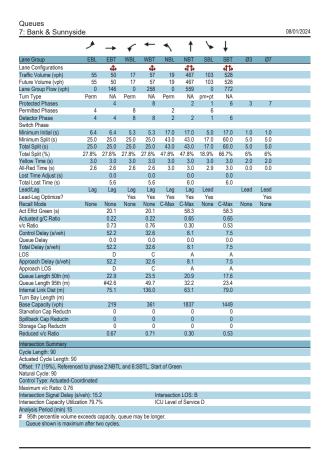
▶ Ø6 (R)

olits and Phases: 6: Bank & Aylmer

∮ Ø2 (R)

Ø6 (R)

Queues Queues 3: Bank & Exhibition 08/01/2024


	→	4	†	-	Ţ		
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	4		476		474		
Traffic Volume (vph)	25	50	488	24	543		
Future Volume (vph)	25	50	488	24	543		
Lane Group Flow (vph)	114	0	682	0	667		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4		2		6	3	
Permitted Phases	- 7	2		6	0		
Detector Phase	4	2	2	6	6		
Switch Phase		-	-		•		
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0	2.2	0.0	2.2	0.0	0.0	
Total Lost Time (s)	5.6		5.2		5.2		
Lead/Lag	Lag		J.2		J.2	Lead	
Lead-Lag Optimize?	Lay					Leau	
Recall Mode	None	C Mau	C-Max	C Mau	C-Max	None	
Act Effct Green (s)	11.4	CHIVIAX	56.3	U-INIAX	56.3	NOUS	
Actuated g/C Ratio	0.15		0.75		0.75		
v/c Ratio	0.13		0.73		0.73		
Control Delay (s/veh)	38.1		2.9		4.8		
	0.0		0.0		0.0		
Queue Delay Total Delay (s/veh)	38.1		2.9		4.8		
LOS	30.1 D		2.9 A		4.0 A		
Approach Delay (s/veh)	38.1		2.9		4.8		
Approach LOS	30.1		2.9 A		4.0 A		
Queue Length 50th (m)	15.1		6.3		25.1		
	27.8		13.9		20.1		
Queue Length 95th (m)	39.8		31.5		195.6		
Internal Link Dist (m)	39.0		31.5		195.0		
Turn Bay Length (m)	303		1858		2108		
Base Capacity (vph)			1858		2108		
Starvation Cap Reductn	0		0		0		
Spillback Cap Reductn	0		0		0		
Storage Cap Reductn Reduced v/c Ratio	0.38		0.37		0.32		
	0.30		0.31		0.02		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gree	en	
Natural Cycle: 75							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.54							
Intersection Signal Delay (s					ntersectio		
Intersection Capacity Utiliza	ation 66.2	%		l	CU Level	of Service C	
Analysis Period (min) 15							

χ _φ → _{Ø4}

ネ **ノ** ∞4

Queues 6: Bank & Aylmer 08/01/2024 **†** 1 Ţ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase Detector Phase Switch Phase Minimum Initial (s) 10.0 30.0 30.0 30.0 1.0 22.0 63.0 63.0 63.0 5.0 Minimum Split (s) Total Split (s) 22.0 63.0 63.0 63.0 5.0 24.4% 70.0% 70.0% 70.0% 6% Total Split (%) Yellow Time (s)
All-Red Time (s) 3.3 3.0 2.2 2.2 3.0 3.0 2.0 2.2 2.2 1.0 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 0.0 5.2 5.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Lag Ped C-Max C-Max C-Max Max 14.0 60.3 60.3 Actuated g/C Ratio v/c Ratio v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay I ength (m) 5.4 6.4 5.4 6.4 A A 24.9 19.8 23.6 28.0 28.1 10.1 Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn 1987 Storage Cap Reductn Reduced v/c Ratio 0.30 0.39 0.32 Intersection Summary Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Actuated Cycle Length: 90
Actuated Cycle Length: 90
Control Type: Actuated Coordinated
Maximum vic Ratio: 0.39
Intersection Signal Delay (siveh): 7.6
Intersection Signal Delay (siveh): 7.6
Intersection Capacity Utilization 53.9%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

4 † 1 Lane Group Lane Configurations Traffic Volume (vph) Lane Configurations
Traffic Volume (yph)
Future Volume (yph)
Future Volume (yph)
Future Volume (yph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Spilit (s)
Total Lost Time (s)
LeadiLag
LeadiLag
LeadiLag
LeadiLag
LeadiLag (c)
LeadiLag (d)
LeadiLag (d) 131 Prot 2 10.0 10.0 10.0 10.0 10.0 1.0 260 26.0 39.0 44.0 44.0 5.0 26.0 26.0 39.0 44.0 44.0 5.0 34.7% 34.7% 52.0% 58.7% 58.7% 7% 3.3 3.3 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.9 3.9 3.9 0.0 3.0 3.0 3.9 3.9 3.9 0.0 0.0 0.0 0.0 0.0 0.0 6.3 6.9 Lag Lag Yes | Leg | Lag | Lead | Le Queue Delay Total Delay (s/veh) 0.0 0.0 0.0 0.0 0.0 35.1 10.5 4.9 7.4 3.1 LOS
Approach Delay (s/weh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Storage Cap Reductn
Reduced v/c Ratio 24.7 4.9 17.4 0.0 14.0 5.3 30.8 11.2 26.6 10.5 40.0 429 366 2044 0.31 0.26 0.33 0.41 0.20 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Offset () (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Offset: U (0%), Referenced to phase 2:1
Matural Cycle: 75
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.50
Intersection Signal Delay (s/veh): 7.6
Intersection Capacity Utilization 62.8%
Analysis Period (min) 15 Splits and Phases: 3: Bank & Exhibitio * & * Ø8 ▶ **(R)**

08/01/2024

Existing (2022) Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:45 pm 05:05/98@hro 12 Report Page 6

HCM 7th AWSC 12: Exhibition & Paul Askin 08/01/2024

8.4					
Α					
EBL	EBT	WBT	WBR	SBL	SBR
	4	4		*4*	
5	222	117	5	5	5
5	222	117	5	5	5
0.90	0.90	0.90	0.90	0.90	0.90
2	2	2	2	2	2
6	247	130	6	6	6
0	1	1	0	1	0
EB		WB		SB	
WB		EB			
1		1		0	
SB				WB	
1		0		- 1	
		SB		EB	
0		1		- 1	
8.7		7.9		7.6	
Α		Α		Α	
	EBLn1	WBLn1	SBLn1		
	2%	0%	50%		
	98%	96%	0%		
	0%	4%	50%		
	Stop	Stop	Stop		
	227	122	10		
	5	0	5		
	222	117	0		
	0	5	5		
		136	11		
	1.	- 1	1		
	0.284	0.155	0.014		
	4.059	4.117	4.56		
	Yes	Yes	Yes		
	883	865	790		
	2.096	2.175	2.56		
	0.285	0.157	0.014		
	0.200				
	8.7	7.9	7.6		
	A EBL 5 5 0.90 2 6 0 EB WB 1 SB 1 0 8.7	EBL EBT 4 4 5 222 5 222 5 222 6 247 0 1 EB 1 SB 1 0 8.7 A EBLn1 2% 98% Stop 227 5 222 0 0227 5 222 0 02552 1 0.284 4.059 Yes 883	EBL BT WBT 4	BEL BET WBT WBR	BEBL BET WBT WBR SBL

Queues

9: Queen Elizabeth Drive & Fifth 08/01/2024

	•	4	†	ļ				
Lane Group	EBL	NBL	NBT	SBT	Ø4			
ane Configurations	W		4	4				
Traffic Volume (vph)	51	51	215	519				
uture Volume (vph)	51	51	215	519				
ane Group Flow (vph)	97	0	296	670				
urn Type	Prot	Perm	NA	NA				
Protected Phases	10		2	6	4			
Permitted Phases		2						
Detector Phase	10	2	2	6				
witch Phase								
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0			
finimum Split (s)	21.0	48.0	48.0	48.0	11.0			
otal Split (s)	21.0	48.0	48.0	48.0	11.0			
otal Split (%)	26.3%	60.0%	60.0%	60.0%	14%			
ellow Time (s)	3.0	3.0	3.0	3.0	3.0			
II-Red Time (s)	2.7	3.8	3.8	3.8	2.7			
ost Time Adjust (s)	0.0	0.0	0.0	0.0				
otal Lost Time (s)	5.7		6.8	6.8				
.ead/Lag	0.1		0.0	0.0				
ead-Lag Optimize?								
tecall Mode	Min	None	None	Max	None			
ct Effct Green (s)	10.7	110110	41.2	41.2	110110			
ctuated g/C Ratio	0.17		0.64	0.64				
/c Ratio	0.38		0.34	0.63				
Control Delay (s/veh)	28.6		6.8	10.7				
Queue Delay	0.0		0.0	0.0				
otal Delay (s/veh)	28.6		6.8	10.7				
OS (Siveri)	20.0		Α.	B				
pproach Delay (s/veh)	28.6		6.8	10.7				
pproach LOS	20.0		Α.	В				
Queue Length 50th (m)	10.4		13.2	39.4				
Queue Length 95th (m)	22.4		27.9	78.2				
nternal Link Dist (m)	57.2		0.1	5.9				
urn Bay Length (m)	01.2		0.1	0.0				
ase Capacity (vph)	367		878	1058				
tarvation Cap Reductn	0		0.0	0				
pillback Cap Reductn	0		0	0				
torage Cap Reductn	0		0	0				
teduced v/c Ratio	0.26		0.34	0.63				
ntersection Summary	0.20		0.04	0.00				
Cycle Length: 80								
ctuated Cycle Length: 64.	4							
latural Cycle: 80	7							
Control Type: Actuated-Uni	ooordinate	nd.						
Maximum v/c Ratio: 0.63	LOUIDINA	5u						
ntersection Signal Delay (s	/voh)- 11	2		le.	tersection LOS: B			
					CU Level of Service			
ntersection Capacity Utiliza Analysis Period (min) 15	duun /3.6	70		IC	O Level of Service	e D		
, , ,								
Splits and Phases: 9: Qu	een Eliza	beth Driv	e & Fifth				1 4	

↑ _{Ø2}	☆ Ø4	J Ø10
48 s	11 s	21 s
↓ ø6		
48 s		

HCM 7th AWSC 13: Paul Askin & Marche

Intersection						
Intersection Delay, s/veh	7.2					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	W	
Traffic Vol. veh/h	16	5	5	48	5	5
Future Vol. veh/h	16	5	5	48	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	18	6	6	53	6	6
Number of Lanes	1	0	0	1	1	0
Approach	FB		WB		NB	
Opposing Approach	WB		FB		ND	
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Approach Left	0		NB 1		1	
Conflicting Approach Right	NB				WB	
Conflicting Approach Right	1		0		1	
HCM Control Delay, s/veh	7		7.3		7	
HCM LOS	A		7.3 A		A	
TIOM LOO					А	
		NIBI 4	EDI (IIIDI (
Lane		NBLn1	EBLn1			
Vol Left, %		50%	0%	9%		
Vol Thru, %		0%				
			76%	91%		
		50%	24%	0%		
Sign Control		50% Stop	24% Stop	0% Stop		
Sign Control Traffic Vol by Lane		50% Stop 10	24% Stop 21	0% Stop 53		
Sign Control Traffic Vol by Lane LT Vol		50% Stop 10 5	24% Stop 21 0	0% Stop 53 5		
Sign Control Traffic Vol by Lane LT Vol Through Vol		50% Stop 10 5	24% Stop 21 0 16	0% Stop 53 5 48		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		50% Stop 10 5 0	24% Stop 21 0 16	0% Stop 53 5 48		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		50% Stop 10 5 0 5	24% Stop 21 0 16 5 23	0% Stop 53 5 48 0 59		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		50% Stop 10 5 0 5 11	24% Stop 21 0 16 5 23	0% Stop 53 5 48 0 59		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		50% Stop 10 5 0 5 11 1 0.012	24% Stop 21 0 16 5 23 1 0.025	0% Stop 53 5 48 0 59 1		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		50% Stop 10 5 0 5 11 1 0.012 3.876	24% Stop 21 0 16 5 23 1 0.025 3.854	0% Stop 53 5 48 0 59 1 0.065 3.99		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes 921	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes 931	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes 902		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes 921 1.908	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes 931 1.869	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes 902 1.997		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane VIC/ Ratio		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes 921 1.908 0.012	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes 931 1.869 0.025	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes 902 1.997 0.065		
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degree of Util (X) Convergence, Y/N Cane Home ViC Ratio HoM Lane Flow Rate HoM Lane Row Rate Resembly Grp Degree of Util (X) Degree of		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes 921 1.908 0.012 7	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes 931 1.869 0.025 7	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes 902 1.997 0.065 7.3		
Vol Rüght, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTT Vol Lane Flow Rate Geometry Grip Degree of Util Vol Departure Headway (Hd) Convergence, YIN Cap Service Time WC Ratio HCM Cantrol Delay, siveh HCM Lane LOS HCM Sigh-Hie O		50% Stop 10 5 0 5 11 1 0.012 3.876 Yes 921 1.908 0.012	24% Stop 21 0 16 5 23 1 0.025 3.854 Yes 931 1.869 0.025	0% Stop 53 5 48 0 59 1 0.065 3.99 Yes 902 1.997 0.065		

HCM 7th AWSC 37: O' Connor & Fifth

08/01/2024

ersection						
section Delay, s/veh	9.4					
section LOS	A					
000011 200	,,					
ment	EBT	EBR	WBL	WBT	NBL	NBR
Configurations	1>			4	107	
ffic Vol. veh/h	16	5	117	44	211	16
fure Vol. veh/h	16	5	117	44	211	16
eak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
eavy Vehicles, %	2	2	2	2	2	2
Nymt Flow	18	6	130	49	234	18
lumber of Lanes	1	0	0	1	1	0
	EB		WB		NB	
proach	WB		EB		NR	
pposing Approach pposing Lanes	WD 1		1		0	
onflicting Approach Left	- 1		NB		EB	
Conflicting Approach Left	0		NB 1		1 1	
Conflicting Lanes Lett	NB		- 1		WB	
	NB 1		0		WB	
Conflicting Lanes Right					1	
HCM Control Delay, s/veh	7.8		9.2		9.7	
ICM LOS	Α		Α		Α	
Lane	1		EBLn1 \			
Vol Left, %		93%	0%	73%		
Vol Thru, %		0%	76%	27%		
Vol Right, %		7%	24%	0%		
Sign Control		Stop	Stop	Stop		
Fraffic Vol by Lane		227	21	161		
.T Vol		211	0	117		
Through Vol		0	16	44		
RT Vol		16	5	0		
ane Flow Rate		252	23	179		
Seometry Grp		1	1	1		
Degree of Util (X)		0.32	0.03	0.234		
Departure Headway (Hd)		4.57	4.62	4.719		
Convergence, Y/N		Yes	Yes	Yes		
Cap		789	775	762		
Service Time				2.741		
HCM Lane V/C Ratio		0.319	0.03	0.235		
HCM Control Delay, s/veh		9.7	7.8	9.2		
HCM Lane LOS		Α	Α	Α		

08/01/2024

Existing (2022) Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:45 pm 05/05/89/88/hro 12 Report Page 3

Existing (2022) Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:45 pm 05/05/8988/hro 12 Report Page 4

HCM 7th TWSC 4: Bank & Wilton

08/01/2024

Intersection						
Int Delay, s/veh	10.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		414	Þ	
Traffic Vol, veh/h	5	260	139	638	466	53
Future Vol, veh/h	5	260	139	638	466	53
Conflicting Peds, #/hr	r 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	ge, # 0			0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	6	289	154	709	518	59
	Minor2		//ajor1		Major2	_
Conflicting Flow All	1389	725	755	0	-	0
Stage 1	725	-	-	-		
Stage 2	663	-		-	-	
Critical Hdwy		6.245	4.145	-		-
Critical Hdwy Stg 1	5.445	-		-	-	-
Critical Hdwy Stg 2	5.845	-		-	-	-
Follow-up Hdwy	3.52853		2.2285	-	-	-
Pot Cap-1 Maneuver	144	422	848	-		
Stage 1	476	-	-	-	-	-
Stage 2	473	-		-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	r 68	342	688	-		
Mov Cap-2 Maneuver	r 68	-		-		
Stage 1	278			-		
Stage 2	384					
Approach	EB		NB		SB	
HCM Control Delay, s			3.98		0	
HCM LOS	F					
Minor Lane/Major Mv	mt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		553	NDT	342	301	ODIN .
		0.224		0.844		
HCM Cantrol Dalay (52.7		
HCM Control Delay (s	s/ven)	11.7	2.3			
HCM Lane LOS	LV	В	Α	F		
HCM 95th %tile Q(ve	n)	0.9	-	7.6	-	

HCM	7th	TWSC
5. Ra	nk 8	Echo

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	†	
Traffic Vol, veh/h	4	36	0	762	734	0
Future Vol, veh/h	4	36	0	762	734	0
Conflicting Peds, #/hr	0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	e, # 0			0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3		3	3
Mvmt Flow	4	40	0	847	816	0
Major/Minor I	Minor2		Major1		//ajor2	
Conflicting Flow All	1239	816	viajui i		riajuiz	0
Stage 1	816	010	- 1	-	- 1	-
Stage 1	423		- 1	- 1		- 1
Critical Hdwy		6 245	- 1	- 1	- 1	- 1
	5.445	0.243	- 1		- 1	- 1
Critical Hdwy Stg 1	5.845	- 1		- 1		-
Critical Hdwy Stg 2				-		-
	3.52853		-	-	-	-
Pot Cap-1 Maneuver		374	0	-	-	0
Stage 1	432	-	0	-	-	0
Stage 2	627	-	0	-	-	0
Platoon blocked, %	470	0714		-	-	
Mov Cap-1 Maneuver		374	-	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	432		-		-	
Stage 2	627	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	C		U		U	
TIOM LOO						
Minor Lane/Major Mvr	nt		BLn1	SBT		
Capacity (veh/h)		-	374			
HCM Lane V/C Ratio			0.107	-		
HCM Control Delay (s	/veh)	-	15.8			
HCM Lane LOS		-	С			
HCM 95th %tile Q(vel	۱)	-	0.4	-		

Intersection Int Delay, siveh Movement Lane Configurations Traffic Vol. weith Lane Configurations Traffic Vol. weith Future Vol., veith Conflicting Peds, sift Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow MajoriMinor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Paton blocked, % Mov Cap-2 Maneuve Stage 1 Platon blocked, % Mov Cap-2 Maneuve Stage 1 Stage 2 Platon blocked, % Mov Cap-2 Maneuve Stage 1 Stage 2	hr	3.4 EBL 58 58 0 Stop 0 0 0 0 64 Stop 479 6.4	52 52 0 Stop None	NBL 110 110 0 Free 90 0 122 Major1 623 - 4.1	NBT 211 211 0 Free None - 0 0 0 234	SBT 316 316 0 Free 0 0 0 0 0 351 Major2	245 245 0 Free None - - - 90 0 272
Int Delay, s/veh Movement Lane Configurations Traffic Vol, vehh Conflicting Peds, #h Storage Length Veh in Median Storage Length Why Telow MajorMinor Conflicting Flow All Stage 1 Stage 1 Critical Hdwy Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Mov Cap-1 Maneuve Stage 1 Stage 2 Mov Cap-1 Maneuve Stage 1 Maneuve Stage 1 Maneuve Mov Cap-1 Maneuve Stage 1 Maneuve Stage 1 Maneuve Mov Cap-1 Maneuve Stage 1 Maneuve Mov Cap-1 Maneuve Mov Cap-1 Maneuve Mov Cap-2 Maneuve Mov	hr	58 58 0 Stop - 0 0 0 64 Store 966 487 479	52 52 0 Stop None - - 90 0 58	110 110 0 Free - - - 90 0 122 Major1 623	211 211 0 Free None 0 0 0 90 0 234	316 316 0 Free - 0 0 90 0 351	245 245 0 Free None - - - 90 0 272
Movement Lane Configurations Traffic Vol, vehh Future Vol, vehh Future Vol, vehh Future Vol, vehn Future Vol, vehn Future Vol, vehn Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow MajoriMinor Conflicting Flow All Stage 1 Stage 1 Critical Höwy Critical Höwy Critical Höwy Stg 2 Follow-up How Stage 1 Stage 2 Platono blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Wov Cap-2 Maneuve Stage 1 Maneuve Mov Cap-2 Maneuve Stage 1 Maneuve Mov Cap-2 Maneuve Stage 1 Maneuve Mov Cap-2 Maneuve Stage 1 Maneuve Stage 1 Maneuve Mov Cap-1 Maneuve Stage 1 Maneuve Maneu	hr	58 58 0 Stop - 0 0 0 64 Store 966 487 479	52 52 0 Stop None - - 90 0 58	110 110 0 Free - - - 90 0 122 Major1 623	211 211 0 Free None 0 0 0 90 0 234	316 316 0 Free - 0 0 90 0 351	245 245 0 Free None - - - 90 0 272
Lane Configurations Traffic Vol. veh/h Future Vol. veh/h Future Vol. veh/h Future Vol. veh/h Future Vol. veh/h Conflicting Peds, #h Sign Control RT Channelized Storage Lengin Veh in Median Storag Feak Hour Factor Feak Hour Fact	hr	58 58 0 Stop 0 0 0 0 0 0 64 Stop 1 0 0 4 7 90 64 487 479	52 52 0 Stop None - - 90 0 58	110 110 0 Free - - - 90 0 122 Major1 623	211 211 0 Free None 0 0 0 90 0 234	316 316 0 Free - 0 0 90 0 351	245 245 0 Free None - - - 90 0 272
Traffic Vol, ewhh Conflicting Peds, #h Sign Control RT Channelized RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow MajorMinor Conflicting Flow All Stage 1 Stage 1 Critical Hdwy Critical Hdwy Critical Hdwy Control Stage 1 Stage 1 Stage 1 Stage 1 Major Minor Conflicting Flow All Stage 1 Stage 1 Major Minor Mi	hr	58 58 0 Stop - 0 0 90 64 Sinor2 966 487 479	52 0 Stop None - - 90 0 58	110 0 Free - - 90 0 122 Major1	211 211 0 Free None 0 0 0 90 0 234	316 316 0 Free 0 0 90 0 351	245 0 Free None - - - 90 0 272
Future Vol, vehn Conflicting Peds, #h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Preak Hour Factor Heavy Vehicles, % Momit Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Conflicting Flow All Stage 1 Critical Hdwy Stage 1 Stage 2 Pollow-up Hdwy Stage 1 Stage 2 Pollow-up Hdwy Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Wov Cap-2 Maneuve Stage 1 Maneuve Stage 1 Maneuve Mov Cap-1 Maneuve Stage 1 Maneuve Maneuv	age	58 0 Stop 0 , # 0 0 90 0 64 linor2 966 487 479	52 0 Stop None - - 90 0 58	110 0 Free - - 90 0 122 Major1	211 0 Free None 0 0 0 90 0 234	316 0 Free 0 0 0 90 0 351	245 0 Free None - - - 90 0 272
Conflicting Peds, #th Sign Control RT Channelized RT Channelized Storage Length Verb in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow MajorMinor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Midwo Cap-1 Maneuve Mov Cap-1 Maneuve Mov Cap-1 Maneuve Mov Cap-1 Maneuve Mov Cap-1 Maneuve Stage 1 Stage 2 Stage 3 St	age	0 Stop 0,#0 0 90 0 64 linor2 966 487 479	0 Stop None - - 90 0 58	0 Free - - 90 0 122 Major1 623	0 Free None - 0 0 90 0 234	0 Free - 0 0 90 0 351 Major2	0 Free None - - - 90 0 272
Sign Control RT Channelized Storage Length Veh in Median Stora Grade, Weh in Median Stora MajoriMinor Conflicting Flow All Stage 1 Stage 2 Critical Hidwy Conflicting Flow All Stage 1 Stage 2 Pollow-up Howy Stage 1 Stage 2 Platoon blocked, Weh Wor Cap-1 Maneuve Mov Cap-2 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Stage 3 S	age	Stop 0 ,# 0 0 90 0 64 linor2 966 487 479	Stop None - - 90 0 58	Free 90 0 122 Major1 623	Free None - 0 0 0 90 0 234	Free - 0 0 0 90 0 351 Major2	Free None 90 0 272
RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mwmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Stage 1 Stage 2 Mov Cap-1 Maneuve Mov Cap-1 Maneuve Mov Cap-1 Maneuve Stage 1		90 0 64 64 64 64 64 64 7	None - - 90 0 58 M	90 0 122 Major1 623	None 0 0 0 90 0 234	0 0 90 0 351 Major2	None - - 90 0 272
Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Montribour Major/Minor Conflicting Flow All Stage 1 Stage 1 Critical Heavy Critical Heavy Stage 1 Stage 2 Critical Heavy Stage 1 Stage 2 Pat		0 , # 0 0 90 0 64 linor2 966 487 479	90 0 58 M	90 0 122 Major1 623	0 0 90 0 234	0 0 90 0 351 Major2	90 0 272
Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mem Flow MajoriMinor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Platon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		,# 0 90 0 64 linor2 966 487 479	90 0 58 M	90 0 122 Major1 623	0 0 90 0 234	0 90 0 351 Major2	90 0 272
Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mem Flow MajoriMinor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Platon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		0 90 0 64 linor2 966 487 479	90 0 58 M 487	90 0 122 Major1 623	0 90 0 234	0 90 0 351 Major2	90 0 272
Grade, % Peak Hour Factor Fleavy Vehicles, % Mymt Flow MajoriMinor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Stage 2 Stage 2 Stage 2 Stage 2 Pateon blocked, % Mov Cap-1 Maneuw Mov Cap-2 Maneuw Mov Cap-2 Maneuw Mov Cap-2 Maneuw Mov Cap-2 Maneuw Stage 1 Stage 2 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 2 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 3 Stage 4 Stage 3 Stage 3 Stage 3 Stage 4 Stage		0 90 0 64 linor2 966 487 479	90 0 58 N 487	90 0 122 Major1 623	90 0 234 0 -	90 0 351 Major2	90 0 272
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Platon blocked, % Mov Cap-1 Maneuve Stage 2 Platon blocked, %	M	0 64 linor2 966 487 479	0 58 M 487	0 122 Major1 623	0 234 0 0	0 351 Major2	0 272
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 2 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Platon blocked, % Mov Cap-1 Maneuve Stage 2 Platon blocked, %	M	966 487 479	0 58 M 487	0 122 Major1 623	234 0 -	351 Major2	272
Mwnt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuve Stage 1 Stage 1 Stage 2	M	966 487 479	58 487	122 Major1 623	234 0 -	351 Major2	272
Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuve Stage 1 Stage 2 Patoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2	M	966 487 479	487 -	Major1 623 -	0 -	Major2	
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Stage 1	M	966 487 479	487	623	0 -	-	0 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Stage 1	M	966 487 479	487	623	0 -	-	0
Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		487 479					0
Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Stage 1		479	-		-		-
Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1						-	
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuvei Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		6.4	6.2	4.1			-
Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1						-	-
Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1		5.4	-		-		-
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1		5.4					
Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		3.5	3.3	2.2	-		
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1	or	285	584	968			
Stage 2 Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1	21	622	- 004	300			
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		627			_	-	_
Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1		021					- 1
Mov Cap-2 Maneuve Stage 1		040	504	000	-	-	-
Stage 1		243	584	968			-
	er	243			-		-
Stage 2		531	-	-	-	-	-
		627	-		-		-
Approach		EB		NB		SB	
	- 11			3.17		0	
HCM Control Delay,	, S/1			3.17		U	
HCM LOS		С					
Minor Lane/Major M	him	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)			617		336		ODIT.
HCM Lane V/C Ratio	ıvill		0.126		0.364		- 1
HCM Control Delay		(oh)	9.3	0	21.7	- 1	- :
HCM Lane LOS	io		9.3 A	A	21.7 C	- 1	- 1
HCM 95th %tile Q(vi	io			А	1.6	- 1	
HOW SOUL WILL U	io (s/		0.4	-	1.0		

Existing (2022) Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:45 pm 05:05:8988hro 12 Report Page 3

HCM 7th TWSC 11: Garage & Exhibition

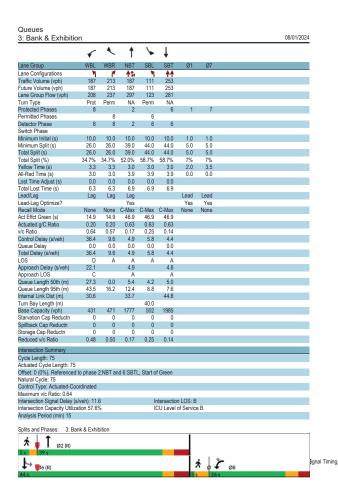
08/01/2024

Intersection						
Int Delay, s/veh	3.3					
**		EDD	MD	MDT	MD	NDD
	EBT	ERK	WBL		NBL	NBR
Lane Configurations	222	120	-	4	14	5
Traffic Vol, veh/h Future Vol. veh/h	222	129	5 5	117	87 87	5
	0	100	100	117	100	100
Conflicting Peds, #/hr Sign Control	Free	Free	Free	Free	Stop	
RT Channelized	rree -			None	Stop	Stop
		None		None	0	None -
Storage Length Veh in Median Storage,	# 0		- 1	0	0	- 1
Grade. %	# 0			0	0	- :
Peak Hour Factor	90	90	90	90	90	90
	2	2	2	2	2	2
Heavy Vehicles, %						
Mvmt Flow	247	143	6	130	97	6
Major/Minor Ma	ajor1	- 1	Major2	- 1	Minor1	
Conflicting Flow All	0	0	490	0	659	518
Stage 1	-	-	-	-	418	-
Stage 2					241	
Critical Hdwy	-		4.12		6.42	6.22
Critical Hdwy Stg 1					5.42	
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy			2.218		3.518	3.318
Pot Cap-1 Maneuver			1073		428	557
Stage 1					664	
Stage 2					799	
Platoon blocked, %				-		
Mov Cap-1 Maneuver	-		960		340	446
Mov Cap-2 Maneuver	-				340	
Stage 1	-				594	
Stage 2					710	
Olugo E					7.10	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.36		19.79	
HCM LOS					С	
Minor Lane/Major Mymt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		345		-	74	
		0.297	- 1		0.006	- 1
HCM Lane V/C Ratio						0
HCM Control Delay (s/v	ah)	10.8				
HCM Control Delay (s/v	eh)	19.8 C			8.8 A	
	eh)	19.8 C	- :		8.8 A	A

Intersection						
Int Delay, s/veh	0.6					
		WDD	ND=	NDD	OD	007
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħ₽			^
Traffic Vol, veh/h	0	53	501	19	2	560
Future Vol, veh/h	0	53	501	19	2	560
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None		None
Storage Length		0		-		
Veh in Median Storage		-	0	-		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	0	59	557	21	2	622
Major/Minor N	Minor1		Anior1	1.	Anior?	
		389	Major1		Major2	0
Conflicting Flow All	-		0	0	678	-
Stage 1					-	
Stage 2	-	-	-	-		-
Critical Hdwy		6.9		-	4.14	
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2			-	-		
Follow-up Hdwy		3.3	-		2.22	
Pot Cap-1 Maneuver	0	615	-	-	910	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver		550	-		814	
Mov Cap-2 Maneuver		-	-		-	-
Stage 1			-			
Stage 2		-	-	-	-	-
A b	MID		ND		00	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.03	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-		550	814	
HCM Lane V/C Ratio				0.107		
HCM Control Delay (s.	(voh)			12.3	9.4	
HCM Lane LOS	, + 611)			12.3 R	3.4 A	

Existing (2022) Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:45 pm 05/05/89@80ro 12 Report Page 4

HCM 7th TWSC 17: Princess Patricia/Princess Patricia Way & Garage


Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		W	
Traffic Vol. veh/h	5	27	156	199	83	5
Future Vol. veh/h	5	27	156	199	83	5
Conflicting Peds, #/hr		-0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None			-	None
Storage Length		-			0	-
Veh in Median Storage	e.# -	0	0		0	
Grade. %		0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	6	30	173	221	92	6
MIVITET TOW	U	00	110	221	JZ	0
	Major1		Major2		Minor2	
Conflicting Flow All	394	0	-	0	325	284
Stage 1		-			284	
Stage 2	-	-	-	-	41	-
Critical Hdwy	4.12	-		-	0.12	6.22
Critical Hdwy Stg 1		-	-	-	5.42	-
Critical Hdwy Stg 2		-		-	5.42	
Follow-up Hdwy	2.218	-		-	3.518	
Pot Cap-1 Maneuver	1164	-		-	669	755
Stage 1	-	-		-	764	-
Stage 2	-	-		-	981	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1164	-		-	666	755
Mov Cap-2 Maneuver			-		666	
Stage 1					761	
Stage 2					981	
Approach	FB		WB		SB	
HCM Control Delay, s	/u1 27		0		11.29	
HCM LOS	W 1.21		0		11.23 B	
110111 200						
Minor Lane/Major Mvn	mt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		281		-		670
HCM Lane V/C Ratio		0.005	-	-		0.146
HCM Control Delay (s.	s/veh)	8.1	0	-		11.3
HCM Lane LOS		A	A	-	-	В
HCM 95th %tile Q(veh	h)	0		-		0.5

Existing Scenario

Minor Event Egress

	\rightarrow	1	†	-	ļ				
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3			
Lane Configurations	4		413		414				
Traffic Volume (vph)	7	52	445	22	325				
uture Volume (vph)	7	52	445	22	325				
ane Group Flow (vph)	84	0	579	0	424				
Turn Type	NA.	Perm	NA	Perm	NA.				
Protected Phases	4		2		6	3			
Permitted Phases		2	-	6	•	•			
Detector Phase	4	2	2	6	6				
Switch Phase			-		•				
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0			
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0			
Fotal Split (s)	22.0	48.0	48.0	48.0	48.0	5.0			
Fotal Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%			
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0			
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0			
Lost Time Adjust (s)	0.0	2.2	0.0	2.2	0.0	0.0			
Fotal Lost Time (s)	5.6		5.2		5.2				
Lead/Lag	Lag		J.Z		J.Z	Lead			
_ead-Lag Optimize?	Ldy					Leau			
Recall Mode	None	C-May	C-May	C-Max	C-May	None			
Act Effct Green (s)	9.9	CHINAX	57.5	O-Max	57.5	NUNE			
Actuated q/C Ratio	0.13		0.77		0.77				
/c Ratio	0.13		0.77		0.77				
	37.7		3.7		4.4				
Control Delay (s/veh)	0.0		0.0		0.0				
Queue Delay	37.7		3.7		4.4				
Total Delay (s/veh)	37.7 D								
OS	37.7		A 3.7		A 4.4				
Approach Delay (s/veh)	3/./ D								
Approach LOS			A		A				
Queue Length 50th (m)	11.2		8.8		12.4				
Queue Length 95th (m)	22.3		22.1		24.4				
Internal Link Dist (m)	39.8		31.5		195.6				
Turn Bay Length (m)	000		0000		0.100				
Base Capacity (vph)	296		2029		2106				
Starvation Cap Reductn	0		0		0				
Spillback Cap Reductn	0		0		0				
Storage Cap Reductn	0		0		0				
Reduced v/c Ratio	0.28		0.29		0.20				
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 74 (99%), Reference	ed to phas	e 2:NBT	L and 6:5	SBTL, Sta	art of Gree	en			
Natural Cycle: 75									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.47									
ntersection Signal Delay (s/veh): 6.6			li li	ntersectio	n LOS: A			
ntersection Capacity Utiliz	ation 57.2	%		10	CU Level	of Service B			
Analysis Period (min) 15									
Splits and Phases: 2: Ba	ank & Holm	nwood							
4. ↑							1 2	†	
Ø2 (R)							1	2 → Ø4	
48 c							5 c	22 c	
1							1		
Ø6 (R)							1		
₩ (K)									

Queues 1: Bank & Fifth 08/01/2024 → ✓ ← ◀ Ť **↓** ↓ Lane Group 41 9 47 24 16 457 20 41 9 47 24 16 457 20 0 84 52 61 0 538 0 Perm NA Perm NA Perm NA Perm Lane Configurations Traffic Volume (vph) Lane Configurations (raffic Volume (yph) Future Volume (yph) Future Volume (yph) Future Volume (yph) Lane Group Flow (yph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Spitt (s) Total 4 8
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0</th
 None
 None
 None
 C-Max
 C-0.51 0.34 0.30 31.9 34.4 19.5 0.20 3.6 6.0 Queue Delay Total Delay (s/veh) 0.0 0.0 0.0 31.9 34.4 19.5 0.0 6.0 0.0 LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Spillback Cap Reducth
Storage Cap Reducth
Reduced vic Ratio 31.9 26.4 6.0 3.6 7.5 6.9 18.8 15.5 45.0 330 341 0.25 0.15 0.15 0.24 0.20 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 75
Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Offset: 47 (63%), Reterenced to phase Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.51 Intersection Signal Delay (s/veh): 9.0 Intersection Capacity Utilization 51.9% Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ĵ, ø4 **∮** Ø2 (R) ▶ Ø6 (R) **▼** ø8 ignal Timing, I

Queues

Lane Group

Lane Configurations
Traffic Volume (yph)
Future Volume (yph)
Future Volume (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Detector Phases
Minimum Initial (s)
Minimum Spitt (s)
Total Spitt (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lead Lag Optimize?
Recall Mode
Act Effet Green (s)
Activated gif Ratio
vic Ratio
vic Ratio
Control Delay (s/veh)

Queue Delay Total Delay (s/veh)

HCM 7th AWSC 12: Exhibition & Paul Askin

ignal Timing, N

08/01/2024

**** Ţ

Lead Lead
Yes
Max None None

0.82

0.24

4

12 12 12 12 12 12

Perr

8

64 64 53 53 53 170 170 50 170 250 250 250 250 250 430 430 170 600 250 250 250 250 430 430 170 600 278% 278% 278% 278% 47.8% 47.8% 18.9% 66.7% 30 30 30 30 30 30 30 30 30 30 26 26 26 26 26 30 30 2.9 30

 Lag
 Lead

 None
 None
 None
 None
 Max
 Max
 None

 10.1
 9.5
 65.1
 1
 1

0.12

0.33

20.8

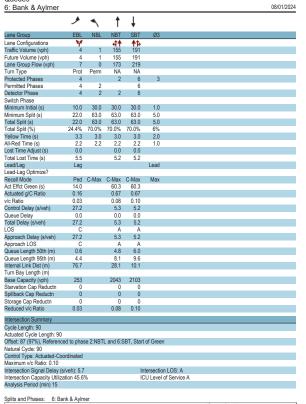
0.0

0.82

3.2

EBT WBL

4


0.13

0.48

44.4

0.0 44.4

Pern

Total Delay (S/VeII)	44.4	20.0	3.2	3.5		
LOS	D	С	A	A		
Approach Delay (s/veh)	44.4	20.8	3.2	3.5		
Approach LOS	D	С	A	A		
Queue Length 50th (m)	9.3	2.8	5.4	11.3		
Queue Length 95th (m)	19.1	11.9	11.0	21.2		
Internal Link Dist (m)	75.1	136.0	63.1	79.0		
Turn Bay Length (m)						
Base Capacity (vph)	241	304	2387	2225		
Starvation Cap Reductn	0	0	0	0		
Spillback Cap Reductn	0	0	0	0		
Storage Cap Reductn	0	0	0	0		
Reduced v/c Ratio	0.25	0.18	0.12	0.24		
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 79						
Natural Cycle: 90						
Control Type: Actuated-Uncoordi	nated					
Maximum v/c Ratio: 0.48						
Intersection Signal Delay (s/veh):			ection LOS: A			
Intersection Capacity Utilization 6	0.6%	ICU Le	evel of Service B			
Analysis Period (min) 15						
0-Pt I Dt 7- DI 0 0						
Splits and Phases: 7: Bank & S	sunnysiae					
→ Ø1 →	Ø2			x →	Ø4	
17 s 43 s				5 s 25 s		
L.				* 4		

	ၨ	4	†	Ţ			
Lane Group	EBL	NBL	NBT	SBT	Ø4		
Lane Configurations	W		4	ħ			
Traffic Volume (vph)	64	31	264	152			
Future Volume (vph)	64	31	264	152			
Lane Group Flow (vph)	102	0	327	206			
Turn Type	Prot	Perm	NA	NA			
Protected Phases	10		2	6	4		
Permitted Phases		2					
Detector Phase	10	2	2	6			
Switch Phase				-			
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0		
Total Split (s)	21.0	48.0	48.0	48.0	11.0		
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7		
Lost Time Adjust (s)	0.0	2.0	0.0	0.0			
Total Lost Time (s)	5.7		6.8	6.8			
Lead/Lag			2.0				
Lead-Lag Optimize?							
Recall Mode	Min	None	None	Max	None		
Act Effct Green (s)	10.8		41.2	41.2			
Actuated g/C Ratio	0.17		0.64	0.64			
v/c Ratio	0.39		0.32	0.20			
Control Delay (s/veh)	28.7		6.5	5.6			
Queue Delay	0.0		0.0	0.0			
Total Delay (s/veh)	28.7		6.5	5.6			
LOS	C		A	Α.			
Approach Delay (s/veh)	28.7		6.5	5.6			
Approach LOS	C		A	A			
Queue Length 50th (m)	11.0		14.3	8.2			
Queue Length 95th (m)	23.4		29.4	18.0			
Internal Link Dist (m)	57.2		0.1	5.9			
Turn Bay Length (m)							
Base Capacity (vph)	370		1030	1051			
Starvation Cap Reductn	0		0	0			
Spillback Cap Reductn	0		0	0			
Storage Cap Reductn	0		0	0			
Reduced v/c Ratio	0.28		0.32	0.20			
	0.20		0.02	0.20			
Intersection Summary							
Cycle Length: 80	_						
Actuated Cycle Length: 64.5	5						
Natural Cycle: 80							
Control Type: Actuated-Unc	coordinate	ed					
Maximum v/c Ratio: 0.39							
Intersection Signal Delay (s					tersection LOS:		
Intersection Capacity Utiliza	ation 51.5	%		IC	CU Level of Servi	ice A	

Intersection Delay, s/veh	9.1						
Intersection LOS	Α						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	£		, Al		
Traffic Vol, veh/h	5	190	275	5	5	5	
Future Vol, veh/h	5	190	275	5	5	5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	6	211	306	6	6	6	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	- 1		- 1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		- 1		1		
HCM Control Delay, s/veh	8.7		9.4		7.9		
HCM LOS	Α		Α		Α		
Lane		EBLn1	WBLn1	SBLn1			
Vol Left, %		3%	0%	50%			
Vol Thru, %		97%	98%	0%			
Vol Thru, % Vol Right, %		97% 0%	98% 2%				
Vol Right, %				0%			
		0%	2%	0% 50%			
Vol Right, % Sign Control		0% Stop	2% Stop	0% 50% Stop			
Vol Right, % Sign Control Traffic Vol by Lane		0% Stop 195	2% Stop 280	0% 50% Stop 10			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% Stop 195 5	2% Stop 280 0	0% 50% Stop 10			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% Stop 195 5 190	2% Stop 280 0 275	0% 50% Stop 10 5			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% Stop 195 5 190	2% Stop 280 0 275 5	0% 50% Stop 10 5 0			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate		0% Stop 195 5 190 0 217	2% Stop 280 0 275 5 311	0% 50% Stop 10 5 0 5 11 1 0.015			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% Stop 195 5 190 0 217	2% Stop 280 0 275 5 311	0% 50% Stop 10 5 0 5			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% Stop 195 5 190 0 217 1 0.252	2% Stop 280 0 275 5 311 1 0.355	0% 50% Stop 10 5 0 5 11 1 0.015			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% Stop 195 5 190 0 217 1 0.252 4.191	2% Stop 280 0 275 5 311 1 0.355 4.105	0% 50% Stop 10 5 0 5 11 1 0.015 4.857			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		0% Stop 195 5 190 0 217 1 0.252 4.191 Yes	2% Stop 280 0 275 5 311 1 0.355 4.105 Yes	0% 50% Stop 10 5 0 5 11 1 0.015 4.857 Yes			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		0% Stop 195 5 190 0 217 1 0.252 4.191 Yes 847	2% Stop 280 0 275 5 311 1 0.355 4.105 Yes 868	0% 50% Stop 10 5 0 5 11 1 0.015 4.857 Yes 741			
Vol Right, % Sign Centrol Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Departure Headway (Hd) Convergence, Y/N Gap Service Time HOM Lane ViC Ratio		0% Stop 195 5 190 0 217 1 0.252 4.191 Yes 847 2.267	2% Stop 280 0 275 5 311 1 0.355 4.105 Yes 868 2.164	0% 50% Stop 10 5 0 5 11 1 0.015 4.857 Yes 741 2.857			
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Traffic Vol By Lane LT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time		0% Stop 195 5 190 0 217 1 0.252 4.191 Yes 847 2.267 0.256	2% Stop 280 0 275 5 311 1 0.355 4.105 Yes 868 2.164 0.358	0% 50% Stop 10 5 0 5 11 1 0.015 4.857 Yes 741 2.857 0.015			

HCM 7th AWSC 14: Exhibition & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Desarture Headway (Hd)
Coner gence, Yn
Coner gence, Yn
Coner Control
Delay, Sveh
HCM Lane VC Ratio
HCM Lane SOS
HCM Sigh-Bile Q

08/01/2024

Intersection						
Intersection Delay, s/veh	7.8					
Intersection LOS	A					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LUIT	******	4	**	HUIT
Traffic Vol. veh/h	24	5	5	144	5	5
Future Vol. veh/h	24	5	5	144	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	27	6	6	160	6	6
Number of Lanes	1	0	0	1	1	0
Access			MD		ND	
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		1	
Conflicting Approach Right	NB 1		0		WB 1	
Conflicting Lanes Right	7.2		7.9		7.2	
HCM Control Delay, s/veh HCM LOS	7.2 A		7.9 A		1.2 A	
HUM LUS	A		A		A	
Lane		NBLn1	EBLn1			
Vol Left, %		50%	0%	3%		
Vol Left, % Vol Thru, %		50% 0%	0% 83%	3% 97%		
Vol Left, % Vol Thru, % Vol Right, %		50% 0% 50%	0% 83% 17%	3% 97% 0%		
Vol Left, % Vol Thru, % Vol Right, % Sign Control		50% 0% 50% Stop	0% 83% 17% Stop	3% 97% 0% Stop		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		50% 0% 50% Stop 10	0% 83% 17% Stop 29	3% 97% 0% Stop 149		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		50% 0% 50% Stop 10 5	0% 83% 17% Stop 29	3% 97% 0% Stop 149 5		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		50% 0% 50% Stop 10 5	0% 83% 17% Stop 29 0 24	3% 97% 0% Stop 149 5		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		50% 0% 50% Stop 10 5 0	0% 83% 17% Stop 29 0 24 5	3% 97% 0% Stop 149 5 144		
Vol Left, % Vol Trun, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		50% 0% 50% Stop 10 5 0 5	0% 83% 17% Stop 29 0 24 5	3% 97% 0% Stop 149 5 144 0		
Vol Left, % Vol Trun, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		50% 0% 50% Stop 10 5 0 5	0% 83% 17% Stop 29 0 24 5 32	3% 97% 0% Stop 149 5 144 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Gsp Degree of Vitil (X)		50% 0% 50% Stop 10 5 0 5 11 1 0.013	0% 83% 17% Stop 29 0 24 5 32 1 0.036	3% 97% 0% Stop 149 5 144 0 166 1		
Vol Left, % Vol Trun, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.074	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985		
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes		
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, ViN Cap		50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes 866	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes 898	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes 904		
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time		50% 0% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes 866 2.157	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes 898 2.009	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes 904 1.997		
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HoML Lane V/C Ratio		50% 50% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes 866 2.157 0.013	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes 898 2.009 0.036	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes 904 1.997 0.184		
Vol Left, % Vol Right, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Traffic Vol by Lane Lane Flow Rate Geometry Grp Degree of Uil (X) Departure Headway (Hd) Convergence, YN Gap Service Time HCM Lane IVC Ratio HCM Control Delay, s'veh		50% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes 866 2.157 0.013 7.2	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes 898 2.009 0.036 7.2	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes 904 1.997 0.184 7.9		
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HoML Lane V/C Ratio		50% 50% 50% Stop 10 5 0 5 11 1 0.013 4.074 Yes 866 2.157 0.013	0% 83% 17% Stop 29 0 24 5 32 1 0.036 3.973 Yes 898 2.009 0.036	3% 97% 0% Stop 149 5 144 0 166 1 0.183 3.985 Yes 904 1.997 0.184		

Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/28/26/Eris/92/8-6/94/6/gnal Timing, N Page 2

Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/39/25/finid2/6 @Mr/Signal Timing, N Page 3

143

EB 1

NBLn1 EBLn1 WBLn1

 NBLn1
 EBLn1
 WBLn1

 66%
 0%
 94%

 0%
 83%
 6%

 34%
 17%
 0%

 Stop
 Stop
 Stop

 195
 29
 78

 129
 0
 73

 0
 24
 5

 66
 5
 0

 217
 32
 87

 1
 1
 1

217 32 87 1 1 1 0.245 0.04 0.112 4.069 4.415 4.641

4.05 4.415 4.641 Yes Yes Yes 869 815 777 2.157 2.418 2.643 0.25 0.039 0.112 8.5 7.6 8.2 A A A 1 0.1 0.4

HCM 7th AWSC

37: O' Connor & Fifth 08/01/2024

Intersection Delay, s/veh	7.3											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4				7		4				
Traffic Vol, veh/h	10	43	0	0	0	64	10	10	49	0	0	9
Future Vol, veh/h	10	43	0	0	0	64	10	10	49	0	0	9
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	11	48	0	0	0	71	11	11	54	0	0	10
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	- 1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					E
Conflicting Lanes Right	1					1	1					
HCM Control Delay, s/veh	7.7					7.1	7.3					7.
HCM LOS	Α					Α	Α					1
Lane		NBLn1	EBLn1		SBLn1							
Vol Left, %		14%	19%	0%	0%							
Vol Thru, %		14%	81%	0%	0%							
Vol Right, %		71%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		69	53	64	94							
			10	0	0							
LT Vol		10										
Through Vol		10	43	0	0							
Through Vol RT Vol		10 49	43	0 64	94							
Through Vol RT Vol Lane Flow Rate		10 49 77	43 0 59	0 64 71	0 94 104							
Through Vol RT Vol Lane Flow Rate Geometry Grp		10 49 77 1	43 0 59	0 64 71 1	0 94 104 1							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		10 49 77 1 0.082	43 0 59 1 0.071	0 64 71 1 0.073	0 94 104 1 0.105							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		10 49 77 1 0.082 3.841	43 0 59 1 0.071 4.34	0 64 71 1 0.073 3.691	0 94 104 1 0.105 3.616							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		10 49 77 1 0.082 3.841 Yes	43 0 59 1 0.071 4.34 Yes	0 64 71 1 0.073 3.691 Yes	0 94 104 1 0.105 3.616 Yes							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		10 49 77 1 0.082 3.841 Yes 922	43 0 59 1 0.071 4.34 Yes 819	0 64 71 1 0.073 3.691 Yes 959	0 94 104 1 0.105 3.616 Yes 979							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		10 49 77 1 0.082 3.841 Yes 922 1.909	43 0 59 1 0.071 4.34 Yes 819 2.4	0 64 71 1 0.073 3.691 Yes 959 1.758	0 94 104 1 0.105 3.616 Yes 979 1.685							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10 49 77 1 0.082 3.841 Yes 922 1.909 0.084	43 0 59 1 0.071 4.34 Yes 819 2.4 0.072	0 64 71 1 0.073 3.691 Yes 959 1.758 0.074	0 94 104 1 0.105 3.616 Yes 979 1.685 0.106							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10 49 77 1 0.082 3.841 Yes 922 1.909 0.084 7.3	43 0 59 1 0.071 4.34 Yes 819 2.4 0.072 7.7	0 64 71 1 0.073 3.691 Yes 959 1.758 0.074 7.1	0 94 104 1 0.105 3.616 Yes 979 1.685 0.106 7.1							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10 49 77 1 0.082 3.841 Yes 922 1.909 0.084	43 0 59 1 0.071 4.34 Yes 819 2.4 0.072	0 64 71 1 0.073 3.691 Yes 959 1.758 0.074	0 94 104 1 0.105 3.616 Yes 979 1.685 0.106							

HCM 7th TWSC

4: Bank & Wilton 08/01/2024

Interception						
Intersection Int Delay, s/veh	3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		41	_ î»	
Traffic Vol, veh/h	2	108	46	276	389	65
Future Vol, veh/h	2	108	46	276	389	65
Conflicting Peds, #/hr	r 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	ge, # 0			0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	2	120	51	307	432	72
	_	.20	0.	201	.02	
	Minor2		Major1		/lajor2	
Conflicting Flow All	902	646	682	0	-	0
Stage 1	646				-	
Stage 2	256					
Critical Hdwy	6.645	6.245	4.145		-	
Critical Hdwy Stg 1	5.445	-		-	-	-
Critical Hdwy Stg 2	5.845					
	3.52853	3.32852	2.2285			
Pot Cap-1 Maneuver		468	903		-	
Stage 1	518					
Stage 2	762					
Platoon blocked. %						
Mov Cap-1 Maneuve	r 177	380	733			
Mov Cap-2 Maneuve		-				
Stage 1	388	-	-		-	-
Stage 2	618					
orage 2	010					
Approach	EB		NB		SB	
HCM Control Delay, s	s/18.79		1.97		0	
HCM LOS	С					
March and Malach		NDI	NOT	EDI -4	ODT	000
Minor Lane/Major Mv	rmt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		514		380	-	
HCM Lane V/C Ratio		0.07		0.316	-	-
HCM Control Delay (s	s/veh)	10.3	0.6	18.8	-	-
	a von					
HCM Lane LOS HCM 95th %tile Q(ve		0.2	Α	C 1.3	-	-

Intersection Int Delay, s/veh Movement

Major/Minor
Conflicting Flow All
Stage 1

Minor2 Major1 NI 255 168 202 168 - -

Approach EB HCM Control Delay, s/16.07 HCM LOS C

08/01/2024

Intersection						
Int Delay, s/veh	0.2					
	EDI	EDD	NDI	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		ď		44	↑	
Traffic Vol, veh/h	2	- 11	0	353	321	0
Future Vol, veh/h	2	11	0	353	321	0
Conflicting Peds, #/hr		0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-		-	-
Veh in Median Storag	e,# 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	2	12	0	392	357	0
mirint Flow		12	U	332	001	U
Major/Minor I	Minor2		Major1	N	Major2	
Conflicting Flow All	553	357	-	0	-	0
Stage 1	357	-				
Stage 2	196					
Critical Hdwv	6.645		- 1		- 1	- 1
	5.445	0.245		-	- 1	- :
Critical Hdwy Stg 1					-	
Critical Hdwy Stg 2	5.845	-			-	
	3.52853		-	-	-	-
Pot Cap-1 Maneuver	476	684	0		-	0
Stage 1	705	-	0	-	-	0
Stage 2	816	-	0		-	0
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	476	684				
Mov Cap-2 Maneuver		-				
Stage 1	705					
Stage 2	816	- 1	- 1	- 1		
Staye 2	010	-			-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0		0.0	
HCM LOS	WU.30		U		U	
HUM LUS	В					
Minor Lane/Major Myr	mt	NBTE	EBLn1	SBT		
Capacity (veh/h)			684			
HCM Lane V/C Ratio			0.018	- 1		
	A Is N					
HCM Control Delay (s	ven)	-	10.4			
HCM Lane LOS			В			
HCM 95th %tile Q(veh	h)		0.1	-		

Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/2922lEimid2ligh	₽}\u00e4 nSignal Timing, N
Pe	age 3

Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/2022 Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/20

HCM 7th TWSC 10: Bank & Marche 08/01/2024

Internation						
Intersection	0.4					
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħβ			^
Traffic Vol, veh/h	5	144	409	29	0	356
Future Vol, veh/h	5	144	409	29	0	356
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	6	160	454	32	0	396
Major/Minor N	/linor1		//ajor1		Major2	
Conflicting Flow All	768	343	0	0	11012	
Stage 1	571	040	-	-	- 1	- 1
Stage 2	198	- 0	- 1			
Critical Hdwy	6.8	6.9				
Critical Hdwy Stg 1	5.8	0.0				
Critical Hdwy Stg 2	5.8					
Follow-up Hdwy	3.5	3.3				
Pot Cap-1 Maneuver	342	658			0	
Stage 1	534	- 000			0	
Stage 2	822				0	
Platoon blocked. %	ULL		- 1		0	
Mov Cap-1 Maneuver	306	589				
Mov Cap-1 Maneuver	306	303				
Stage 1	478	- :				
Stage 2	822	- 1	- 1	- 1		
Olugo Z	ULL					
	1110		LID		00	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBR	VBLn1	SBT	
Capacity (veh/h)			-	589		
HCM Lane V/C Ratio				0.272		
HCM Control Delay (s	(veh)			13.4		
HCM Lane LOS				В		
HCM 95th %tile Q(veh	٨			1.1		
TION JOHN JOHN WIVE	7			1.1		

HCM 7th TWSC	
--------------	--

11: Garage & Exhibition

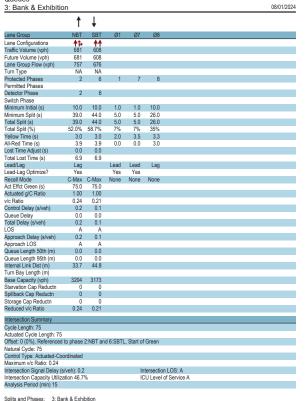
Intersection						
Int Delay, s/veh	5.2					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			- 4	- 14	
Traffic Vol, veh/h	190	- 1	0	280	120	5
Future Vol, veh/h	190	1	0	280	120	5
Conflicting Peds, #/hr	0	100	100	0	100	100
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	211	1	0	311	133	6
mvmc row				011	100	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	312	0	723	412
Stage 1	-				312	
Stage 2					411	
Critical Hdwy	-		4.12		6.42	6.22
Critical Hdwy Stg 1					5.42	-
Critical Hdwy Stg 2	-				5.42	
Follow-up Hdwy			2.218		3.518	
Pot Cap-1 Maneuver	Ė		1248		393	640
Stage 1		- 1	1240	- 1	742	040
					669	
Stage 2		-	-	-	669	-
Platoon blocked, %	-	-		-	011	= 40
Mov Cap-1 Maneuver		-	1116		314	512
Mov Cap-2 Maneuver	-	-	-	-	314	-
Stage 1	-	-	-	-	664	-
Stage 2	-	-	-	-	598	-
Approach	FB		WB		NB	
HCM Control Delay, s/v	0		0		24.68	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		319	-	-	1116	
HCM Lane V/C Ratio		0.435		- 1	1110	- 1
	ale)	24.7	- 1	- 1	0	- 1
HCM Control Delay (s/v	en)	24.7 C				
HCM Lane LOS			-	-	A	-
HCM 95th %tile Q(veh)		2.1		-	0	-

08/01/2024

Intersection						
Int Delay, s/veh	9.3					
Movement	EBL	EBT		WBR	SBL	SBR
Lane Configurations		4	Þ		- M	
Traffic Vol, veh/h	- 1	70	73	5	347	5
Future Vol, veh/h	1	70	73	5	347	5
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag		0	0	-	0	
Grade, %	-	0	0		0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	- 1	78	81	6	386	6
Major/Minor I	Major1		//ajor2		Minor2	
Conflicting Flow All	87	0	<u> </u>	0	164	84
Stage 1					84	
Stage 2	-	-			80	-
Critical Hdwy	4.12				6.42	6.22
Critical Hdwy Stg 1	-				5.42	-
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218				3.518	3.318
Pot Cap-1 Maneuver	1509				827	975
Stage 1		-			939	-
Stage 2					943	
Platoon blocked. %					0.10	
Mov Cap-1 Maneuver	1509				826	975
Mov Cap-2 Maneuver						0.0
Stage 1					939	
Stage 2					943	
Olage 2					340	
A b	FB		MA		SB	
Approach			WB			
HCM Control Delay, s	s/v 0.1		0		13.18	
HCM LOS					В	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		25				828
HCM Lane V/C Ratio		0.001				0.472
HCM Control Delay (s	s/veh)	7.4	0			
HCM Lane LOS		A	A			B
HCM 95th %tile Q(veh	h)	0	-			2.6
10111 00111 70tille Q(461	,	0				2.0

Existing (2022) Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:46 pm 05/05/28/26/Ein/dis/g8/46-5ignal Timing, fit
Page 6

Queues 1: Bank & Fifth


	•	\rightarrow	•	←	1	1	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4	*	T _a		413		413	
Traffic Volume (vph)	60	53	71	61	23	453	31	599	
Future Volume (vph)	60	53	71	61	23	453	31	599	
Lane Group Flow (vph)	0	166	79	126	0	569	0	764	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
Act Effct Green (s)		13.5	13.5	13.5		46.4		46.4	
Actuated g/C Ratio		0.19	0.19	0.19		0.65		0.65	
v/c Ratio		0.67	0.42	0.40		0.32		0.42	
Control Delay (s/veh)		35.8	30.3	17.4		6.5		7.4	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		35.8	30.3	17.4		6.5		7.4	
LOS		D	С	В		Α		Α	
Approach Delay (s/veh)		35.8		22.4		6.5		7.4	
Approach LOS		D		С		Α		Α	
Queue Length 50th (m)		16.9	8.8	7.6		14.0		20.5	
Queue Length 95th (m)		34.5	19.8	20.3		28.7		41.4	
Internal Link Dist (m)		49.7		112.4		195.6		190.0	
Turn Bay Length (m)			45.0						
Base Capacity (vph)		366	289	454		1791		1803	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.45	0.27	0.28		0.32		0.42	
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 71									
Natural Cycle: 75									
Control Type: Actuated-Un	coordinate	ed							
Maximum v/c Ratio: 0.67									
Intersection Signal Delay (s	s/veh): 11.	6		- 1	ntersectio	n LOS: E	3		
Intersection Capacity Utiliz				1	CU Level	of Service	e C		
Analysis Period (min) 15									

Existing Scenario

Major Event Ingress

	\rightarrow	1	1	1	↓			
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
Lane Configurations	4.		476		474			
Traffic Volume (vph)	37	67	479	53	554			
Future Volume (vph)	37	67	479	53	554			
Lane Group Flow (vph)	150	0	737	0	729			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4		2		6	3		
Permitted Phases		2		6				
Detector Phase	4	2	2	6	6			
Switch Phase								
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0		
Lost Time Adjust (s)	0.0		0.0		0.0			
Total Lost Time (s)	5.6		5.2		5.2			
Lead/Lag	Lag					Lead		
Lead-Lag Optimize?	- 9							
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None		
Act Effct Green (s)	13.2	-	51.0	-	51.0			
Actuated g/C Ratio	0.18		0.68		0.68			
v/c Ratio	0.61		0.48		0.42			
Control Delay (s/veh)	38.5		7.1		6.7			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	38.5		7.1		6.7			
LOS	D		A		Α			
Approach Delay (s/veh)	38.5		7.1		6.7			
Approach LOS	D		A		Α			
Queue Length 50th (m)	19.8		19.7		19.7			
Queue Length 95th (m)	34.1		38.8		37.4			
Internal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)								
Base Capacity (vph)	314		1547		1739			
Starvation Cap Reductn	0		0		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.48		0.48		0.42			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 74 (99%), Reference	ad to abou	no 2-NIDT	l and 6-0	DTI CH	ort of Gran	ın.		
Uffset: 74 (99%), Reference Natural Cycle: 75	ou to prias	SE Z.IND I	L and 63	DIL, SE	ar or Gree	211		
Control Type: Actuated-Coo	ndinated							
Maximum v/c Ratio: 0.61	Julianea							
	/wah)- 0 0			li li	ntersectio	n I OC+ A		
Intersection Signal Delay (s Intersection Capacity Utiliza						of Service C		
	au011 / Z.U	/0		l l	OU LEVEI	UI SEI VICE C		
Analysis Period (min) 15								
Splits and Phases: 2: Bar	nk & Holn	nwood						
. 4						1	· 土。	

↓ Ø6 (R)

Analysis Period (min) 15		
Splits and Phases: 3: Bank & Exhibition		
र्फ़		
5 s 39 s	4	
▶ 0 6 (R)	* o 7 08	Signal Timing, I

	•	→	•	•	4	†	-	Į.			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø7	
Lane Configurations		4		4		413		413			
Traffic Volume (vph)	51	76	13	81	26	509	135	605			
Future Volume (vph)	51	76	13	81	26	509	135	605			
Lane Group Flow (vph)	0	181	0	273	0	625	0	912			
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA			
Protected Phases		4		8		2	1	6	3	7	
Permitted Phases	4		8		2		6				
Detector Phase	4	4	8	8	2	2	- 1	6			
Switch Phase											
Minimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0	17.0	1.0	1.0	
Minimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%	66.7%	6%	6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9	3.0	0.0	0.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0			
Total Lost Time (s)		5.6		5.6		6.0		6.0			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead		Lead	Lead	
Lead-Lag Optimize?		- 0	Yes	Yes	Yes	Yes	Yes			Yes	
Recall Mode	None	None	None	None	Max	Max	None	Max	None	None	
Act Effct Green (s)		18.7		18.7		54.0		54.0			
Actuated q/C Ratio		0.22		0.22		0.64		0.64			
v/c Ratio		0.84		0.82		0.36		0.68			
Control Delay (s/yeh)		64.5		43.7		7.8		12.8			
Queue Delay		0.0		0.0		0.0		0.0			
Total Delay (s/veh)		64.5		43.7		7.8		12.8			
LOS		Е		D		Α		В			
Approach Delay (s/veh)		64.5		43.7		7.8		12.8			
Approach LOS		Е		D		A		В			
Queue Length 50th (m)		28.0		29.6		22.2		43.8			
Queue Length 95th (m)		#62.2		#69.7		31.4		64.8			
Internal Link Dist (m)		75.1		136.0		63.1		79.0			
Turn Bay Length (m)											
Base Capacity (vph)		224		340		1743		1339			
Starvation Cap Reductn		0		0		0		0			
Spillback Cap Reductn		0		0		0		0			
Storage Cap Reductn		0		0		0		0			
Reduced v/c Ratio		0.81		0.80		0.36		0.68			
Intersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 84.	.3										
Natural Cycle: 90											
Control Type: Actuated-Un	coordinate	d									
Maximum v/c Ratio: 0.84											
Intersection Signal Delay (s	s/veh); 20.	2		- In	ntersectio	n LOS: 0	2				
Intersection Capacity Utiliz					CU Level						
Analysis Period (min) 15											
# 95th percentile volume	exceeds c	anacity	allelle m	av ho lon	nor						

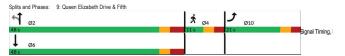
\$ → Ø4
5 s 25 s

* 5 Ø8

Signal Timing, I

Splits and Phases: 7: Bank & Sunnyside

↑ Ø2


↓ Ø1

▶ Ø6

	۶	4	†	ļ					
Lane Group	EBL	NBL	NBT	SBT	Ø3				
Lane Configurations	*4*		414	↑ ↑					
Traffic Volume (vph)	88	13	714	745					
Future Volume (vph)	88	13	714	745					
Lane Group Flow (vph)	125	0	807	882					
Turn Type	Prot	Perm	NA	NA					
Protected Phases	4		2	6	3				
Permitted Phases	4	2		6					
Detector Phase	4	2	2	6					
Switch Phase									
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0				
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0				
Total Split (s)	22.0	63.0	63.0	63.0	5.0				
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%				
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0				
Lost Time Adjust (s)	0.0		0.0	0.0					
Total Lost Time (s)	5.5		5.2	5.2					
Lead/Lag	Lag				Lead				
Lead-Lag Optimize?									
Recall Mode	Ped	C-Max	C-Max	C-Max	Max				
Act Effct Green (s)	14.6	- max	59.7	59.7					
Actuated g/C Ratio	0.16		0.66	0.66					
v/c Ratio	0.50		0.41	0.43					
Control Delay (s/veh)	38.1		7.8	7.9					
Queue Delay	0.0		0.0	0.0					
Total Delay (s/veh)	38.1		7.8	7.9					
LOS	D		A	A					
Approach Delay (s/veh)	38.1		7.8	7.9					
Approach LOS	D		A	A					
Queue Length 50th (m)	17.9		29.1	31.8					
Queue Length 95th (m)	33.9		43.3	47.0					
Internal Link Dist (m)	76.7		28.1	10.1					
Turn Bay Length (m)									
Base Capacity (vph)	282		1985	2047					
Starvation Cap Reductn	0		0	0					
Spillback Cap Reductn	0		0	0					
Storage Cap Reductn	0		0	0					
Reduced v/c Ratio	0.44		0.41	0.43					
Internation Cummany									
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90	ad to abo	no 2-NIPT	l and 6-6	ODT Ctool	of Croop				
Offset: 87 (97%), Reference	ou to pha:	SE Z.IND I	L and 63	obi, olan	UI GIEEII				
Natural Cycle: 90 Control Type: Actuated-Cor	ordinate d								
Control Type: Actuated-Coo Maximum v/c Ratio: 0.50	urumated								
	د ۲ باطمیار			- 1	ntersection LOS: A				
Intersection Signal Delay (s									
Intersection Capacity Utiliza	ation 51.2	76		IC	CU Level of Service A				
Analysis Period (min) 15									
Splits and Phases: 6: Bar	nk & Ayln	ner							
⇔ †						Ŕ	1		
Ø2 (R)						7.	_	Ø4	

Splits and Phases:	6: Bank & Aylmer				_
Ø2 (R)		农	1	Ø4	
63 s		5 s	22 s		1
↓ Ø6 (R)					Signal Timing,
63 s]

	•	1	1	Ţ		
Lane Group	EBL	NBL	NBT	SBT	Ø4	
Lane Configurations	₩		41	1,		_
Traffic Volume (vph)	62	69	255	629		
Future Volume (vph)	62	69	255	629		
Lane Group Flow (vph)	166	0	360	836		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	10		2	6	4	
Permitted Phases		2				
Detector Phase	10	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.7	10.8	10.8	31.8	9.7	
Total Split (s)	21.0	48.0	48.0	48.0	11.0	
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7	
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.7		6.8	6.8		
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	Min	None	None	Max	None	
Act Effct Green (s)	12.4		41.3	41.3		
Actuated g/C Ratio	0.19		0.62	0.62		
v/c Ratio	0.58		0.56	0.81		
Control Delay (s/veh)	33.3		11.9	18.9		
Queue Delay	0.0		0.0	0.0		
Total Delay (s/veh)	33.3		11.9	18.9		
LOS	С		В	В		
Approach Delay (s/veh)	33.3		11.9	18.9		
Approach LOS	С		В	В		
Queue Length 50th (m)	18.8		21.9	67.5		
Queue Length 95th (m)	35.6		49.3	#156.5		
Internal Link Dist (m)	57.2		0.1	5.9		
Turn Bay Length (m)						
Base Capacity (vph)	352		646	1027		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.47		0.56	0.81		
Intersection Summary						į
Cycle Length: 80						
Actuated Cycle Length: 66.	2					
Natural Cycle: 65						
Control Type: Actuated-Un	coordinate	ed				
Maximum v/c Ratio: 0.81						
Intersection Signal Delay (s	s/veh): 18.	8		Ir	ntersection LOS: B	
Intersection Capacity Utiliza					CU Level of Service E	
Analysis Period (min) 15						

HCM 7th AWSC 13: Paul Askin & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
RT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cone
Service Time
How Lane Vol Ratio
How Control Delay, siveh
HCML Lane VOS
HCML Sigh-Bile Q

08/01/2024

12: Exhibition & Paul Askin

08/01/2024

Intersection						
Intersection Delay, s/veh Intersection LOS	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		*4*	
Traffic Vol. veh/h	0	0	0	0	0	0
Future Vol. veh/h	0	0	0	0	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	0	0	0	0	0
Number of Lanes	0	1	1	0	1	0
Approach		FB	WB		SB	
Opposing Approach		WB	FB		30	
Opposing Lanes		1	1		0	
Conflicting Approach Left		SB			WB	
Conflicting Lanes Left		1	0		1	
Conflicting Approach Right		-	SB		EB	
Conflicting Lanes Right		0	1		1	
HCM Control Delay, s/veh		0	0		0	
HCM LOS		-	-		-	
TIOWI EUG						
		CDI -4	11101 4	001 4		
Lane						
			WBLn1	SBLn1		
		0%	0%	0%		
Vol Thru, %		0% 100%	0% 100%	0% 100%		
Vol Thru, % Vol Right, %		0% 100% 0%	0% 100% 0%	0% 100% 0%		
Vol Thru, % Vol Right, % Sign Control		0% 100% 0% Stop	0% 100% 0% Stop	0% 100% 0% Stop		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		0% 100% 0% Stop 0	0% 100% 0% Stop 0	0% 100% 0% Stop 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% 100% 0% Stop 0	0% 100% 0% Stop 0	0% 100% 0% Stop 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% 100% 0% Stop 0 0 0	0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		0% 100% 0% Stop 0 0 0	0% 100% 0% Stop 0 0 0	0% 100% 0% Stop 0 0 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% 100% 0% Stop 0 0 0 0 1 0	0% 100% 0% Stop 0 0 0 0 0 0 3.934	0% 100% 0% Stop 0 0 0 0 0 0 3.934		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Crp Degree of Uil (X) Departure Headway (Hd) Convergence, Y/N Cap		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degrate Headway (Hd) Convergence, Y/N Cap Service Time		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Gap Service Time HOM Lane ViO; Ratio		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 1 1 0 3.934 Yes 0 1.934		
Vol Thru. % Vol Right, % Sign Control Traffic Vol by Lane LTT Vol Through Vol RT Vol Lane Flow Rate Geometry Gr Degree of Util (X) Convergence, I/Y Cap Service Time HCM Lane ViC Ratio HCM Control Delay, siveh		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934 0	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934 0	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934 0 6.9		
Vol Left, % Vol Tihtu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Departure Headway (Hd) Convergence, YN Cap Service Time HCM Lane VIC Ratio HCM Control Delay, siveh HCM Lane LOS HCM 95th-lile O		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 1 1 0 3.934 Yes 0 1.934		

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05:05:3983/Exist2/@pht/Signal Timing, 1 Page 1

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/9989/Enis/2ng Transportation Impact Assessment 12:47 pm 05/05/998/Enis/2ng Transportatio

HCM 7th AWSC

08/01/2024 14: Exhibition & Marche

Intersection							
Intersection Delay, s/veh	0						
Intersection LOS	-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	13			4	74		
Traffic Vol, veh/h	0	0	0	Ö	0	0	
Future Vol, veh/h	0	0	0	0	0	0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	0	0	0	
Number of Lanes	1	0	0	1	1	0	
Approach	EB			WB	NB		
Opposing Approach	WB			EB			
Opposing Lanes	1			1	0		
Conflicting Approach Left				NB	EB		
Conflicting Lanes Left	0			1	1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1			0	1		
HCM Control Delay, s/veh	0			0	0		
HCM LOS	-			-	-		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	0%	0%	0%
Vol Thru, %	100%	100%	100%
Vol Right, %	0%	0%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	0	0	0
LT Vol	0	0	0
Through Vol	0	0	0
RT Vol	0	0	0
Lane Flow Rate	0	0	0
Geometry Grp	1	1	1
Degree of Util (X)	0	0	0
Departure Headway (Hd)	3.934	3.934	3.934
Convergence, Y/N	Yes	Yes	Yes
Cap	0	0	0
Service Time	1.934	1.934	1.934
HCM Lane V/C Ratio	0	0	0
HCM Control Delay, s/veh	6.9	6.9	6.9
HCM Lane LOS	N	N	N
HCM 95th-tile O	0	۸	0

HCM 7th AWSC

37: O' Connor & Fifth

0.90 0.90 0.90 0.90 0.90 0.90 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0

NBLn1 EBLn1 WBLn1 0% 0% 0% 100% 100% 100% 0% 0% 0% Stop Stop Stop

0 0 0 0 0 3.934 3.934 Yes Yes O 0 0 0 0 1.934 1.934 1.934 1.934 0 0 0 6.9 6.9 6.9 N N N N

ΕB

Intersection												
Intersection Delay, s/veh	9.3											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	66	56	0	0	0	192	57	58	93	0	0	127
Future Vol, veh/h	66	56	0	0	0	192	57	58	93	0	0	127
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	62	0	0	0	213	63	64	103	0	0	141
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					SE
Opposing Approach	WB					EB	SB					NE
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	EB					WE
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					EE
Conflicting Lanes Right	1					1	1					
HCM Control Delay, s/veh	9.5					9	9.8					8.5
HCM LOS	A					Α	A					F

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	27%	54%	0%	0%	
Vol Thru, %	28%	46%	0%	0%	
Vol Right, %	45%	0%	100%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	208	122	192	127	
LT Vol	57	66	0	0	
Through Vol	58	56	0	0	
RT Vol	93	0	192	127	
Lane Flow Rate	231	136	213	141	
Geometry Grp	1	- 1	- 1	1	
Degree of Util (X)	0.301	0.194	0.259	0.174	
Departure Headway (Hd)	4.693	5.147	4.369	4.433	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	760	691	815	802	
Service Time	2.76	3.221	2.434	2.506	
HCM Lane V/C Ratio	0.304	0.197	0.261	0.176	
HCM Control Delay, s/veh	9.8	9.5	9	8.5	
HCM Lane LOS	A	A	A	A	
LICM OF the FILE O	4.0	0.7		0.0	

HCM 7th TWSC 5: Bank & Echo

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-1 Maneuver
Stage 1
Stage 2

Approach EB HCM Control Delay, s/47.76 HCM LOS C

- 6.245

08/01/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	14.4					
Movement	FBI	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	EBK.	NDL	414	7	SDIN
Traffic Vol. veh/h	0	266	104	702	518	103
Future Vol. veh/h	0	266	104	702	518	103
Conflicting Peds, #/hr	0	200	178	702	518	103
	Stop	Stop	Free	Free	Free	Free
Sign Control RT Channelized		None	Free			None
	-				-	
Storage Length	- 4 0	0	-	-	-	-
Veh in Median Storage		-		0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	296	116	780	576	114
Major/Minor M	1inor2		Major1	. A.	Major2	
Conflicting Flow All	-	811	868	0	najuiz	0
		811	808	-	-	0
Stage 1	-				-	
Stage 2	-			-	-	-
Critical Hdwy	-	6.245	4.145		-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-			-	-	-
Follow-up Hdwy		3.3285		-	-	-
Pot Cap-1 Maneuver	0	377	769	-	-	
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-		-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		306	624		-	
Mov Cap-2 Maneuver		-			-	
Stage 1						
Stage 2						
2.002						
Approach	EB		NB		SB	
HCM Control Delay, s/v			3.48		0	
HCM LOS	F					
Minor Lane/Major Mvm		NBL	NDT	EBLn1	SBT	SBR
	IL.					
Capacity (veh/h)		465	-	306	-	
HCM Lane V/C Ratio		0.185		0.967	-	
HCM Control Delay (s/	veh)	12.1	2.2	81.3	-	-
HCM Lane LOS		В	Α	F	-	-
HCM 95th %tile Q(veh))	0.7		9.9	-	

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/9989/Enis/2ng Transportation Impact Assessment 12:47 pm 05/05/998/Enis/2ng Transportatio

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05:05/9989/Enis/26798/MrSignal Timing, 1 Page 1

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

latera etter						
Intersection	0.7					
Int Delay, s/veh	8.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, A			4	ĵ,	
Traffic Vol, veh/h	94	97	105	232	441	256
Future Vol, veh/h	94	97	105	232	441	256
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage			-	0	0	-
Grade, %	0	-	-	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	104	108	117	258	490	284
Major/Minor N	/linor2	Λ.	//ajor1	0.	Major2	
Conflicting Flow All	1123	632	774	0	11012	0
Stage 1	632	002	114	U	-	U
Stage 2	491		- 1	- :	- 1	- 1
Critical Hdwy	6.4	6.2	4.1	-	-	-
					- 1	
Critical Hdwy Stg 1 Critical Hdwy Stg 2	5.4			-	-	
	3.5	3.3	2.2			
Follow-up Hdwy	229	3.3 484	850	-	-	-
Pot Cap-1 Maneuver						
Stage 1	533	-	-		-	-
Stage 2	619	-		-	-	
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	193	484	850	-	-	-
Mov Cap-2 Maneuver	193	-	-	-	-	-
Stage 1	448	-		-		
Stage 2	619	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, si			3.09		0	
HCM LOS	F		0.00		U	
110111 200						
		NID!	LIDE		007	000
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		561	-	278	-	
HCM Lane V/C Ratio		0.137		0.765	-	-
HCM Control Delay (s.	(veh)	9.9	0	50.3	-	-
HCM Lane LOS		Α	A	F	-	-
HCM 95th %tile Q(veh)	0.5		5.7	-	-

HCM 7th TWSC

10: Bank & Marche

08/0	1/202

08/01/2024

Intersection						
Int Delay, s/veh	0					
Movement	WRI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WBK 7	↑ ↑	NDIX	ODL	^
Traffic Vol, veh/h	0			0	٥	608
Future Vol. veh/h	0	0	681 681	0	0	608
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	-	0			-	-
Veh in Median Storage		-	0		-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	0	0	757	0	0	676
Major/Minor A	1inor1		Aninet		Craint	
			Major1		//ajor2	
Conflicting Flow All	-		0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.9			-	
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-		-		-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	539			0	
Stage 1	0				0	
Stage 2	0				0	
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		482				
Mov Cap-2 Maneuver						
Stage 1						
Stage 2	- 1			- 1		
Glago Z						
Approach	WB		NB		SB	
HCM Control Delay, s/	v 0		0		0	
HCM LOS	Α					
A Constitute of Marine Marine		NOT	NBRV	VDI -4	SBT	
Minor Lane/Major Mvm	nt .	NBT				
Capacity (veh/h)					-	
HCM Lane V/C Ratio		-	-	-	-	
HCM Control Delay (s/	veh)	-	-	0	-	
HCM Lane LOS		-	-	Α	-	
HCM 95th %tile Q(veh)				-	

08/01/2024

Intersection						
Int Delay, s/veh	0					
	_	EDE	14 P	IAID=	LID.	HDC
	EBT	EBR	WBL		NBL	NBR
Lane Configurations	Þ			र्स	, A	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	100	100	0	100	100
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage,				0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor Ma	ajor1	1	//ajor2		Minor1	
Conflicting Flow All	0	0	101	0	202	201
Stage 1	-	-	101	-	101	201
Stage 2		-			101	
Critical Hdwy	- :	_	4.12			
Critical Hdwy Stg 1	- 1	- 1	4.12	- 1	5.42	0.22
Critical Hdwy Stg 1	- :	_	- 1		5.42	
Follow-up Hdwy		- 1	2.218		3.518	
		_				840
Pot Cap-1 Maneuver	-	-	1491	-	786 923	
Stage 1	-		-	-		-
Stage 2	-	-		-	923	-
Platoon blocked, %	-	-				
Mov Cap-1 Maneuver	-	-	1333	-	629	671
Mov Cap-2 Maneuver	-				629	
Stage 1	-	-			825	-
Stage 2	-	-			825	-
Approach	EB		WB		NB	
HCM Control Delay, s/v			0		0	
HCM LOS	0		U		A	
110111 200					- '	
Minor Lane/Major Mvmt	- 1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-	-	1333	
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s/v	eh)	0			0	
HCM Lane LOS		Α			Α	
HCM 95th %tile Q(veh)		-	-	-	0	

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/9989/Euistargethat Signal Timing, 1 Page 5

Existing Scenario

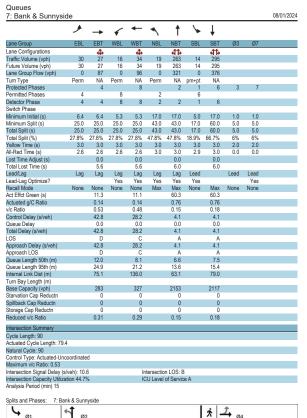
Major Event Egress

Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length		-	-	-	0	
Veh in Median Storag	e,# -	0	0		0	
Grade, %		0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	1	0	-	0	1	1
Stage 1	-	-		-	1	-
Stage 2	- 1		- 1	- 0	0	
Critical Hdwy	4.12	- 1	- 1	- 1	6.42	6.22
Critical Hdwy Stg 1	4.12	- 1	- 1		5.42	0.22
	- 1	_			5.42	-
Critical Hdwy Stg 2	2.218		-		3.518	2 240
Follow-up Hdwy		-	-	-		
Pot Cap-1 Maneuver	1622	-	-		1022	1083
Stage 1	-	-	-	-	1022	-
Stage 2		-			-	
Platoon blocked, %	1000	-	-	-	1000	4000
Mov Cap-1 Maneuver			-			1083
Mov Cap-2 Maneuver			-		1022	
Stage 1		-	-		1022	
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		0	
HCM LOS	av U		U		A	
HOM EUG					А	
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1622	-		-	
HCM Lane V/C Ratio		-	-		-	-
HCM Control Delay (s	/veh)	0				0
HCM Lane LOS	,	A	-		-	A

Existing (2022) Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/29/88/fcisis2frge/blm/Signal Timing,
Page 6

	۶	-	•	←	4	†	-	ļ.	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		4	*	ĵ,		413		413	
Fraffic Volume (vph)	74	32	39	68	21	308	19	340	
uture Volume (vph)	74	32	39	68	21	308	19	340	
ane Group Flow (vph)	0	147	43	143	0	392	0	441	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8	-	2		6	-	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase			-	-	_	_	-	-	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
ost Time Adjust (s)	2.0	0.0	0.0	0.0	2.0	0.0	2.0	0.0	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
_ead/Lag		0.0	0.0	0.0		0.0		0.0	
_ead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
Act Effct Green (s)	INUITE	13.1	12.9	12.9	IVIAX	48.0	IVIAA	48.0	
Actuated g/C Ratio		0.19	0.19	0.19		0.70		0.70	
//c Ratio		0.19	0.19	0.19		0.70		0.70	
Control Delay (s/veh)		36.0	24.7	19.3		5.6		5.6	
		0.0	0.0	0.0		0.0		0.0	
Queue Delay Fotal Delay (s/veh)		36.0	24.7	19.3		5.6		5.6	
OS		30.U	24.7 C	19.3 B		3.0 A		5.0 A	
		36.0	U	20.5		5.6		5.6	
Approach Delay (s/veh) Approach LOS		36.0 D		20.5 C		0.c A		0.0 A	
				9.3		8.7		9.8	
Queue Length 50th (m)		15.3	4.6						
Queue Length 95th (m)		31.8	12.1	23.1		18.9		21.1	
nternal Link Dist (m)		49.7	45.0	112.4		195.6		190.0	
Turn Bay Length (m)		245	45.0	400		4045		4051	
Base Capacity (vph)		345	320	469		1945		1954	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.43	0.13	0.30		0.20		0.23	
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 68.	.4								
Natural Cycle: 75									
Control Type: Actuated-Un	coordinate	ed							
Maximum v/c Ratio: 0.65									
ntersection Signal Delay (s	s/veh): 11	8		li	ntersection	n LOS: E	3		
ntersection Capacity Utiliza					CU Level				

Queues 2: Bank & Holmwood Queues 3: Bank & Exhibition 08/01/2024


	\rightarrow	1	†	-	ļ		
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	44		414		414		
Traffic Volume (vph)	21	49	259	30	270		
Future Volume (vph)	21	49	259	30	270		
Lane Group Flow (vph)	143	0	405	0	401		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4		2		6	3	
Permitted Phases		2	_	6	-	-	
Detector Phase	4	2	2	6	6		
Switch Phase		_	_	-	-		
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
	0.0	2.2	0.0	2.2	0.0	0.0	
Lost Time Adjust (s)	5.6		5.2		5.2		
Total Lost Time (s)			5.2		5.2	Lead	
Lead/Lag	Lag					read	
Lead-Lag Optimize?	Mari	0.11-	0.14-	0.14-	0.11.	Maria	
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	13.1		51.1		51.1		
Actuated g/C Ratio	0.17		0.68		0.68		
v/c Ratio	0.61		0.25		0.23		
Control Delay (s/veh)	38.7		5.0		4.8		
Queue Delay	0.0		0.0		0.0		
Total Delay (s/veh)	38.7		5.0		4.8		
LOS	D		Α		A		
Approach Delay (s/veh)	38.7		5.0		4.8		
Approach LOS	D		Α		A		
Queue Length 50th (m)	18.9		8.4		8.0		
Queue Length 95th (m)	32.8		17.4		16.6		
Internal Link Dist (m)	39.8		31.5		195.6		
Turn Bay Length (m)							
Base Capacity (vph)	304		1645		1778		
Starvation Cap Reductn	0		0		0		
Spillback Cap Reductn	0		0		0		
Storage Cap Reductn	0		0		0		
Reduced v/c Ratio	0.47		0.25		0.23		
ntersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 74 (99%), Reference	ad to nha	ea 2-NPT	I and 6-9	RTI C+	art of Grad	an	
Natural Cycle: 75	ou to pild:	30 Z.IND I	L anu 0.0	DIL, SE	art UI GIEE	211	
Natural Cycle: 75 Control Type: Actuated-Coc	erdinate d						
Control Type: Actuated-Coo Maximum v/c Ratio: 0.61	numated						
		٥				- I 00 D	
Intersection Signal Delay (s					ntersectio		
Intersection Capacity Utiliza	ition 59.2	%		Į.	CU Level	of Service B	
Analysis Period (min) 15							

Splits and Phases: 2: Bank & Holmwood	
→ Ø2 (R)	☆ ¢ → Ø4
48 s	5 s 22 s
₽ Ø6 (R)	lignal Timing, I

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase	18 18 18 37 Prot	16 16	NBT ♣↑ 323	SBT	Ø3		
Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase	18 18 37 Prot	16	4 ↑ 323				
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase	18 18 37 Prot	16	323				
Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase	18 37 Prot	16		288			
Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase	Prot	.0	323	288			
Turn Type Protected Phases Permitted Phases Detector Phase			377	344			
Protected Phases Permitted Phases Detector Phase		Perm	NA	NA			
Permitted Phases Detector Phase		1 01111	2	6	3		
	4	2	_	6	-		
	4	2	2	6			
	-			,			
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0		
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0		
Total Split (s)	22.0	63.0	63.0	63.0	5.0		
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%		
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0		
Lost Time Adjust (s)	0.0	2.2	0.0	0.0	1.0		
Total Lost Time (s)	5.5		5.2	5.2			
Lead/Lag	Lag		0.2	0.2	Lead		
Lead-Lag Optimize?	Lug				Louis		
Recall Mode	Ped	C-May	C-Max	C-Max	Max		
Act Effct Green (s)	14.0	J-IVIOX	60.3	60.3	ax		
Actuated g/C Ratio	0.16		0.67	0.67			
v/c Ratio	0.10		0.19	0.07			
Control Delay (s/veh)	23.5		5.9	5.5			
Queue Delay	0.0		0.0	0.0			
Total Delay (s/veh)	23.5		5.9	5.5			
LOS	23.5 C		5.9 A	5.5 A			
Approach Delay (s/veh)	23.5		5.9	5.5			
Approach LOS	23.5 C		5.9 A	5.5 A			
Queue Length 50th (m)	3.0		11.3	9.6			
Queue Length 50th (m) Queue Length 95th (m)	11.4		16.6	14.4			
Internal Link Dist (m)	76.7		28.1	10.1			
Turn Bay Length (m)	/0./		20.1	10.1			
Base Capacity (vph)	261		1971	2055			
Starvation Cap Reductn	201		19/1	2055			
	0		0	0			
Spillback Cap Reductn	0		0	0			
Storage Cap Reductn Reduced v/c Ratio	0.14		0.19	0.17			
	0.14		0.19	0.17			
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 87 (97%), Reference	ed to phas	se 2:NBT	L and 6:	SBT, Start	of Green		
Natural Cycle: 90							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.19							
Intersection Signal Delay (s.					itersection LOS: A		
Intersection Capacity Utiliza	tion 45.6	%		IC	CU Level of Service A		
Analysis Period (min) 15							
Splits and Phases: 6: Bar	nk & Aylm						

↓ ø_{6 (R)}

Bank & Exhibition	on					08/01/202
	†	ļ				
Lane Group	NBT	SBT	Ø1	Ø7	Ø8	
Lane Configurations	↑ ↑	44				
Traffic Volume (vph)	350	333				
Future Volume (vph)	350	333				
Lane Group Flow (vph)	389	370				
Turn Type	NA	NA				
Protected Phases	2	6	1	7	8	
Permitted Phases						
Detector Phase	2	6				
Switch Phase						
Minimum Initial (s)	10.0	10.0	1.0	1.0	10.0	
Minimum Split (s)	39.0	44.0	5.0	5.0	26.0	
Total Split (s)	39.0	44.0	5.0	5.0	26.0	
Total Split (%)	52.0%	58.7%	7%	7%	35%	
Yellow Time (s)	3.0	3.0	2.0	3.5	3.3	
All-Red Time (s)	3.9	3.9	0.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0				
Total Lost Time (s)	6.9	6.9	Lond	Land	Lon	
Lead/Lag	Lag		Lead	Lead Yes	Lag	
Lead-Lag Optimize? Recall Mode	Yes C-Max	C-Max	Yes	Yes None	Mana	
	75.0	75.0	None	None	None	
Act Effct Green (s) Actuated g/C Ratio	1.00	1.00				
v/c Ratio	0.12	0.12				
Control Delay (s/veh)	0.12	0.12				
Queue Delay	0.0	0.0				
Total Delay (s/veh)	0.0	0.0				
LOS	Α.	A				
Approach Delay (s/veh)	0.1	0.1				
Approach LOS	Α.	A				
Queue Length 50th (m)	0.0	0.0				
Queue Length 95th (m)	0.0	0.0				
Internal Link Dist (m)	33.7	44.8				
Turn Bay Length (m)						
Base Capacity (vph)	3204	3173				
Starvation Cap Reductn	0	0				
Spillback Cap Reductn	0	0				
Storage Cap Reductn	0	0				
Reduced v/c Ratio	0.12	0.12				
Internation Comme						
Intersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 75		2-MDT as	4 6.CDTI	Ctort of	Groon	
Offset: 0 (0%), Referenced	i to buase	Z.ND I BI	u 0.3611	_, Start 01	GIEEH	
Natural Cycle: 75	andia ataul					
Control Type: Actuated-Co Maximum v/c Ratio: 0.12	orumateu					
Intersection Signal Delay (chrob): 0.1			le.	ntersection	100.4
						of Service A
Intersection Capacity Utiliz Analysis Period (min) 15	.auUII 43.5	/0		IC	O LEVEL (OF SELVICE V
	ank & Exhi	bition				1
オ T Ø2 (R)						_
5 s 39 s						
▶ № (R)						* \$ \$ Ø8
44.6						5 24 2

Queues 9: Queen Elizabeth Drive & Fifth HCM 7th AWSC 12: Exhibition & Paul Askin 08/01/2024

	۶	1	†	ļ		
Lane Group	EBL	NBL	NBT	SBT	Ø4	
Lane Configurations	N/		4	f)		
Traffic Volume (vph)	132	42	298	283		
Future Volume (vph)	132	42	298	283		
Lane Group Flow (vph)	214	0	378	388		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	10		2	6	4	
Permitted Phases		2				
Detector Phase	10	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.7	10.8	10.8	31.8	9.7	
Total Split (s)	21.0	48.0	48.0	48.0	11.0	
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7	
Lost Time Adjust (s)	0.0	5.0	0.0	0.0	4.1	
Total Lost Time (s)	5.7		6.8	6.8		
Lead/Lag	J.1		0.0	0.0		
Lead-Lag Optimize?						
Recall Mode	Min	None	None	Max	None	
Act Effct Green (s)	13.6	None	41.2	41.2	None	
Actuated g/C Ratio	0.20		0.61	0.61		
v/c Ratio	0.20		0.40	0.39		
	36.7		8.6	8.4		
Control Delay (s/veh)						
Queue Delay	0.0		0.0	0.0		
Total Delay (s/veh) LOS	36.7 D		8.6	8.4 A		
			A			
Approach Delay (s/veh)	36.7		8.6	8.4		
Approach LOS	D		A	A		
Queue Length 50th (m)	25.0		22.7	23.2		
Queue Length 95th (m)	#45.8		39.1	39.1		
Internal Link Dist (m)	57.2		0.1	5.9		
Turn Bay Length (m)						
Base Capacity (vph)	355		946	1005		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.60		0.40	0.39		
Intersection Summary						
Cycle Length: 80						
Actuated Cycle Length: 67.	.3					
Natural Cycle: 65						
Control Type: Actuated-Un	coordinate	ed				
Maximum v/c Ratio: 0.68						
Intersection Signal Delay (s	s/veh): 14.	6		Ir	ntersection LOS: B	
Intersection Capacity Utiliz					CU Level of Service (3
Analysis Period (min) 15		-				
# 95th percentile volume						

Splits and Phases:	9: Queen Elizabeth Drive & Fifth			
↑ ø₂		☆ ø₄	7 Ø10	
48 5		112	215	ignal Timing,
J Ø6				pgrist rinning,

HCM 7th AWSC 13: Paul Askin & Marche 08/01/2024

Intersection							
Intersection Delay, s/veh	0						
Intersection LOS	-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			4	7/		
Traffic Vol. veh/h	0	0	0	0	0	0	
Future Vol. veh/h	0	0	0	0	0	0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	0	0	0	0	0	
Number of Lanes	1	0	0	1	1	0	
Approach	EB			WB	NB		
Opposing Approach	WB			EB			
Opposing Lanes	1			1	0		
Conflicting Approach Left				NB.	FB		
Conflicting Lanes Left	0			1	1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1			0	1		
HCM Control Delay, s/veh	0			0	0		
HCM LOS	-			-	-		
Lane		NBLn1	EBLn1	WBLn1			
Lane Vol Left. %		NBLn1 0%	EBLn1 0%	WBLn1 0%			
Vol Left, % Vol Thru, %		0%	0%	0%			
Vol Left, %		0% 100%	0% 100%	0% 100%			
Vol Left, % Vol Thru, % Vol Right, % Sign Control		0% 100% 0%	0% 100% 0%	0% 100% 0%			
Vol Left, % Vol Thru, % Vol Right, %		0% 100% 0% Stop	0% 100% 0% Stop	0% 100% 0% Stop			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		0% 100% 0% Stop 0	0% 100% 0% Stop 0	0% 100% 0% Stop 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% 100% 0% Stop 0	0% 100% 0% Stop 0	0% 100% 0% Stop 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0	0% 100% 0% Stop 0 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Crp		0% 100% 0% Stop 0 0 0	0% 100% 0% Stop 0 0 0	0% 100% 0% Stop 0 0 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0	0% 100% 0% Stop 0 0 0 0			
Vol Left, % Vol Tinu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% 100% 0% Stop 0 0 0 0 0 0 3.934	0% 100% 0% Stop 0 0 0 0 1 0 3.934	0% 100% 0% Stop 0 0 0 0 0 0 3.934			
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 1 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 3.934 Yes			
Vol Left. % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degreature Headway (Hd) Convergence, V/N Cap		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 1 0 3.934 Yes	0% 100% 0% Stop 0 0 0 0 0 0 0 0 3.934 Yes			
Vol Left. % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Departure Headway (Hd) Convergence, YN Cap Service Time HGM Lane VIC Ratio		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 1 1 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 0 1 1 0 3.934 Yes 0 1.934			
Vol Left, % Vol Thru, % Vol Thru, % Vol Rippt, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time		0% 100% 0% Stop 0 0 0 0 0 1 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934	0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0			
Vol Left, % Vol Thru, % Vol Rippt, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Degrature Headway (Hd) Convergence, Young Cap Service Time HGM Lane VIC Ratio		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934 0	0% 100% 0% Stop 0 0 0 0 1 1 0 3.934 Yes 0 1.934 0 6.9	0% 100% 0% Stop 0 0 0 0 0 1 0 3.934 Yes 0 1.934			
Vol Left. % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ulit (X) Degrature Headway (Hd) Convergence, YN Cap Service Time Head Control Delay, siveh HCM Lane IVC Ratio		0% 100% 0% Stop 0 0 0 0 0 3.934 Yes 0 1.934 0 6.9	0% 100% 0% Stop 0 0 0 0 1 3.934 Yes 0 1.934 0 6.9	0% 100% 0% Stop 0 0 0 0 0 1 0 3.934 Yes 0 1.934 0 6.9			

Intersection						
Intersection Delay, s/veh	0					
Intersection LOS	-					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ĵ.		14	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Number of Lanes	0	1	1	0	1	0
Approach		EB	WB		SB	
Opposing Approach		WB	EB			
Opposing Lanes		- 1	- 1		0	
Conflicting Approach Left		SB			WB	
Conflicting Lanes Left		- 1	0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right		0	- 1		1	
HCM Control Delay, s/veh		0	0		0	
HCM LOS			-			
Lane		EBLn1	WBLn1	SBLn1		
Vol Left, %		0%	0%	0%		
Vol Thru, %		100%	100%	100%		
Vol Right. %		0%	0%	0%		

Lane	EBLn1	WBLn1	SBLn1	1
Vol Left, %	0%	0%	0%	6
Vol Thru, %	100%	100%	100%	6
Vol Right, %	0%	0%	0%	6
Sign Control	Stop	Stop	Stop	р
Traffic Vol by Lane	0	0	0	ð
LT Vol	0	0	0	0
Through Vol	0	0	0	ð
RT Vol	0	0	0	ð
Lane Flow Rate	0	0	0	O
Geometry Grp	1	- 1	- 1	1
Degree of Util (X)	0	0	0	J
Departure Headway (Hd)	3.934	3.934	3.934	4
Convergence, Y/N	Yes	Yes	Yes	s
Cap	0	0	0	ð
Service Time	1.934	1.934	1.934	4
HCM Lane V/C Ratio	0	0	0	O
HCM Control Delay, s/veh	6.9	6.9	6.9	Э
HCM Lane LOS	N	N	N	1
HCM 95th-tile Q	0	0	0	ð

Existing (2022) Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/29/2a/Eridting 6946/5ignal Timing, N Page 1

HCM 7th AWSC 14: Exhibition & Marche 08/01/2024

Intersection										
Intersection Delay, s/veh	0						_			
Intersection LOS	-									
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	4î			4	14					
Traffic Vol, veh/h	0	0	0	0	0	0				
Future Vol, veh/h	0	0	0	0	0	0				
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90				
Heavy Vehicles, %	2	2	2	2	2	2				
Mvmt Flow	0	0	0	0	0	0				
Number of Lanes	1	0	0	1	1	0				
Approach	EB			WB	NB					
Opposing Approach	WB			EB						
Opposing Lanes	1			1	0					
Conflicting Approach Left				NB	EB					
Conflicting Lanes Left	0			1	1					
Conflicting Approach Right	NB				WB					
Conflicting Lanes Right	1			0	1					
HCM Control Delay, s/veh	0			0	0					
HCM LOS	-			-	-					
Lane		NBLn1	EBLn1	WBLn1						
Vol Left %		0%	0%	0%						

Lane	NBLn1	EBLn1	WBLn1	
Vol Left, %	0%	0%	0%	-
Vol Thru, %	100%	100%	100%	
Vol Right, %	0%	0%	0%	
Sign Control	Stop	Stop	Stop)
Traffic Vol by Lane	0	0	0)
LT Vol	0	0	0	
Through Vol	0	0	0	
RT Vol	0	0	0)
Lane Flow Rate	0	0	0)
Geometry Grp	1	- 1	- 1	
Degree of Util (X)	0	0	0)
Departure Headway (Hd)	3.934	3.934	3.934	
Convergence, Y/N	Yes	Yes	Yes	ŝ
Cap	0	0	0	
Service Time	1.934	1.934	1.934	ļ
HCM Lane V/C Ratio	0	0	0	
HCM Control Delay, s/veh	6.9	6.9	6.9	ð
HCM Lane LOS	N	N	N	ı
HCM 95th-tile Q	0	0	0)

HCM 7th TWSC 4: Bank & Wilton

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-1 Maneuver
Stage 1
Stage 2

Approach EB HCM Control Delay, s/43.19 HCM LOS B

- 6.245 4.145

0 549 1001

08/01/2024 37: O' Connor & Fifth

Intersection												
Intersection Delay, s/veh	10											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	24	51	0	0	0	109	114	97	141	0	0	53
Future Vol, veh/h	24	51	0	0	0	109	114	97	141	0	0	53
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	57	0	0	0	121	127	108	157	0	0	59
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	1					1	1					1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	1					1	1					1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					1
HCM Control Delay, s/veh	8.9					8.3	11.1					7.6
HCM LOS	A					Α	В					A

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	32%	32%	0%	0%
Vol Thru, %	28%	68%	0%	0%
Vol Right, %	40%	0%	100%	100%
Sign Control	Stop	Stop		Stop
Traffic Vol by Lane	352	75	109	53
LT Vol	114	24	0	0
Through Vol	97	51	0	0
RT Vol	141	0	109	53
Lane Flow Rate	391	83	121	59
Geometry Grp	1	- 1	1	- 1
Degree of Util (X)	0.468	0.119	0.15	0.07
Departure Headway (Hd)	4.307	5.145	4.444	4.249
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	837	694	803	839
Service Time	2.34	3.196	2.491	2.296
HCM Lane V/C Ratio	0.467	0.12	0.151	0.07
HCM Control Delay, s/veh	11.1	8.9	8.3	7.6
HCM Lane LOS	В	Α	Α	A
HCM 95th-tile Q	2.5	0.4	0.5	0.2

Existing (2022) Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/20/22/Einid/20-8 EMAS ignal Timing, N Page 4

Existing (2022) Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/39/24/finid/big @Mrs/Signal Timing, N Page 1

HCM 7th TWSC

5: Bank & Echo 08/01/2024

Intersection						
Int Delay, s/veh	0.5					
IIIL Delay, S/Ven	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	1	
Traffic Vol, veh/h	0	32	0		290	0
Future Vol, veh/h	0	32	0	350	290	0
Conflicting Peds, #/hr	0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Otop	None		None	- 100	None
Storage Length		0		- TONG		-
Veh in Median Storage		-	- 1	0	0	- :
Grade. %	0				0	
Peak Hour Factor	90	90	90		90	90
Heavy Vehicles, %	3	3	3		3	3
Mymt Flow	0	36	0		322	0
MVMt Flow	U	36	U	389	322	U
Major/Minor N	/linor2		//ajor1	1	Major2	
Conflicting Flow All		322	-		-	0
Stage 1						
Stage 2						
Critical Hdwy		6.245				
Critical Hdwy Stg 1		0.240				
Critical Hdwy Stg 2		_	-	_		_
	٠,	3.3285	- 1			-
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	0	715	0		-	0
Stage 1	0	-	0	-	-	0
Stage 2	0	-	0	-		0
Platoon blocked, %				-		
Mov Cap-1 Maneuver		715		-		-
Mov Cap-2 Maneuver		-		-		-
Stage 1	-	-				-
Stage 2		-		-		-
J						
Approach	EB		NB		SB	
HCM Control Delay, s/			0		0	
HCM LOS	В					
Minor Lane/Major Mvm	n#	NDT	BLn1	SBT		
	II.			_		
Capacity (veh/h)		-	715	-		
HCM Lane V/C Ratio			0.05			
HCM Control Delay (s/	(veh)	-	10.3			
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh))	-	0.2	-		

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

19					
FRI	FRR	NRI	NRT	SRT	SBR
	LUIK	DL			ODIN
	210	50			127
					127
					0
					Free
					None
					None -
					- 1
					90
					90
264	233	56	121	239	141
linor2	N	Major1	N.	/lajor2	
542	309	380	0	-	0
309			-		
232	-		-		
6.4	6.2	4.1	-		
5.4	-		-		
5.4	-				
		22			
		1100		-	
011	-				
490	725	1100			
		1130			- 1
		-	-		
011	_	-	_		
EB				SB	
v39.4		2.57		0	
Е					
nt.	MRI	NRTI	FRI n1	SRT	SBR
	566	IND I	573	ODI	ODIT.
	0.047		0.868		
		-			
(oh)	0.0	0			
veh)	8.2	0	39.4	-	-
veh)	8.2 A 0.1	0 A	39.4 E 9.7	- 1	- 1
	238 238 238 238 238 238 238 238 238 238	EBL EBR 238 210 238 210 0 0 0 0 0 Stop Stop - None 0 1,# 0 90 90 0 0 264 233 264 233 265 44 6.2 6.4 6.	EBL EBR NBL 238 210 50 238 210 50 0 0 0 0 Stop Stop Free - Nones - 0	EBL EBR NBL NBT 238 210 50 109 238 210 50 109 0 0 0 0 0 Stop Stop Free Free 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBR NBL NBT SBT 238 210 50 109 215 238 210 50 109 215 238 210 50 109 215 238 210 50 109 215 0 0 0 0 0 0 Stop Stop Free Free Free - None - None - O O O O O O O O O O O O O O O O O O

08/01/2024

HCM 7th TWSC 11: Garage & Exhibition

 Movement
 EDT
 EBR
 WBL
 WBL
 NBR

 Lane Configurations
 1
 4
 1
 1
 4
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 None
 None</t

Minor1 0 202 201 - 101 -

825 825

- 4.12 - 6.42 6.22 - - 5.42

Intersection Int Delay, s/veh Movement

Major/Minor Conflicting Flow All Stage 1

Stage 1
Stage 2
Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platon blocked, %
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach EB
HCM Control Delay, s/v 0
HCM LOS

08/01/2024

Internation						
Intersection	^					
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ΦÞ			44
Traffic Vol, veh/h	0	0	350	0	0	333
Future Vol, veh/h	0	0	350	0	0	333
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length		0		-		
Veh in Median Storage	e. # 0	-	0	-		0
Grade, %	0		0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	0	0	389	0	0	370
mmil ion		·	000			0,0
	Minor1		//ajor1		Major2	
Conflicting Flow All		294	0	0		
Stage 1		-		-		
Stage 2		-	-	-	-	
Critical Hdwy		6.9		-		
Critical Hdwy Stg 1	-	-	-	-	-	
Critical Hdwy Stg 2						
Follow-up Hdwy	-	3.3		-	-	
Pot Cap-1 Maneuver	0	708		-	0	
Stage 1	0	-		-	0	
Stage 2	0				0	
Platoon blocked. %	-					
Mov Cap-1 Maneuver		633				
Mov Cap-2 Maneuver		- 000				
Stage 1						
Stage 2	- 1		- 1			
Stage 2		_	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, si	/v 0		0		0	
HCM LOS	A					
Minor Lane/Major Mvn	nt	NBT	NBR	VBLn1	SBT	
Capacity (veh/h)		-		-	-	
HCM Lane V/C Ratio		-	-	-	-	
HCM Control Delay (s.	/veh)	-		0	-	
HCM Lane LOS		-		A		
HCM 95th %tile Q(veh	1)	-			-	

Existing (2022) Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05/05/28/26/Epi46:ignal Timing, N Page 4

Existing (2022) Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:47 pm 05:05/33/24/finid2/g @Mrs. Page 5

HCM 7th TWSC

17: Princess Patricia/Princess Patricia Way & Garage

08/01/2024

08/01/2024

Intersection						
Int Delay, s/veh	0					
iiii Delay, S/VeII	U					
Movement	EBL	EBT		WBR		SBR
Lane Configurations		4	ĵ,		N/	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	
Grade, %	-	0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Material Const.	Antonia.		4-10		41	
	//ajor1		Major2		Minor2	
Conflicting Flow All	1	0	-	0	1	1
Stage 1	-	-	-		1	-
Stage 2		-	-	-		
Critical Hdwy	4.12	-	-			6.22
Critical Hdwy Stg 1	-					
Critical Hdwy Stg 2					5.42	
	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver		-	-	-		1083
Stage 1	-	-	-	-	1022	-
Stage 2	-	-				-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1622	-		-		1083
Mov Cap-2 Maneuver	-	-	-		1022	-
Stage 1	-	-	-		1022	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
			0		0	
HCM Control Delay, s/ HCM LOS	v U		U		A	
HOW LUS					A	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1622	-	-	-	-
HCM Lane V/C Ratio		-				
HCM Control Delay (s/	(veh)	0				0
HCM Lane LOS	,	A				A
HCM 95th %tile Q(veh)	0				

2028 Interim Conditions

Weekday AM Peak Hour

	→	4	†	-	ļ			
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
Lane Configurations	4		413		414			
Fraffic Volume (vph)	22	16	542	- 11	376			
uture Volume (vph)	22	16	542	11	376			
ane Group Flow (vph)	88	0	651	0	456			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4		2		6	3		
Permitted Phases		2		6				
Detector Phase	4	2	2	6	6			
Switch Phase								
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0 2.2	2.0		
All-Red Time (s)	2.6	2.2	0.0	2.2	0.0	0.0		
Lost Time Adjust (s)	5.6		5.2		5.2			
Total Lost Time (s) Lead/Lag	5.6 Lag		5.2		5.2	Lead		
Lead-Lag Optimize?	Lag					read		
Recall Mode	None	C May	C-Max	C May	C May	None		
Act Effct Green (s)	10.1	C*IVIAX	57.4	U-INIAX	57.4	NOTIC		
Actuated g/C Ratio	0.13		0.77		0.77			
v/c Ratio	0.48		0.30		0.71			
Control Delay (s/veh)	37.8		2.2		3.1			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	37.8		2.2		3.1			
LOS	D		Α		Α			
Approach Delay (s/veh)	37.8		2.2		3.1			
Approach LOS	D		Α		A			
Queue Length 50th (m)	11.7		1.7		7.2			
Queue Length 95th (m)	23.3		4.4		13.6			
Internal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)								
Base Capacity (vph)	298		2138		2147			
Starvation Cap Reductn	0		0		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.30		0.30		0.21			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 28 (37%), Reference	ed to phas	se 2:NBT	L and 6:9	SBTL, Sta	art of Gree	en		
Natural Cycle: 75								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.48								
Intersection Signal Delay (s					ntersectio			
Intersection Capacity Utiliz	ation 52.2	%		I	CU Level	of Service A		
Analysis Period (min) 15								
Splits and Phases: 2: Ba	ınk & Holn	nwood						
6							à 1.	
Ø2 (R)							\$ € → Ø4	

07/31/2024 1: Bank & Fifth † Lane Group Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turm Type
Protected Phases
Minimum Spitt (s)
Total Spit
 4
 8
 2
 6

 260
 260
 260
 260
 490
 490
 490
 490

 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.37 0.20 0.21 43.5 0.58 0.33 43.5 0.58 0.40 22.2 23.1 15.9 0.0 0.0 0.0 22.2 23.1 15.9 8.6 3.5 0.0 8.6 C 22.2 A 8.6 13.5 6.1 28.4 14.8 49.7 112.4 45.0 376 287 0 0 0.37 0.20 0.21 0.33 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset: 33 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.40
Intersection Signal Delay (siveh): 8.6
Intersection Capacity Utilization 54.7%
Intersection Capacity Utilization 54.7%
CU Level of S
Analysis Period (min) 15

2028 Weekday Interim AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 11:59 pm 05/15/2023 Bashinehro 12 Report Page 1

1, ø4

Splits and Phases: 1: Bank & Fifth

▶ Ø6 (R)

	•	4	†	-	1			
ane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
ane Configurations	*	7	♠ ₽	*	44			_
Fraffic Volume (vph)	49	30	514	56	349			
uture Volume (vph)	49	30	514	56	349			
ane Group Flow (vph)	54	33	674	62	388			
Turn Type	Prot	Perm	NA	pm+pt	NA			
Protected Phases	8		2	5	6	1	7	
Permitted Phases		8		6				
Detector Phase	8	8	2	5	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	1.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	27.0	12.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	27.0	12.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	36.0%	16.0%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
_ead/Lag	Lag	Lag	Lag			Lead	Lead	
_ead-Lag Optimize?			Yes			Yes	Yes	
Recall Mode	None	None	C-Max	None	C-Max	None	None	
Act Effct Green (s)	10.2	10.2	49.0	54.8	56.2			
Actuated g/C Ratio	0.14	0.14	0.65	0.73	0.75			
//c Ratio	0.26	0.19	0.36	0.13	0.16			
Control Delay (s/veh)	32.4	13.5	9.1	8.1	6.6			
Queue Delay	0.0 32.4	0.0	0.0 9.1	0.0 8.1	0.0 6.6			
Total Delay (s/veh)								
LOS Approach Delay (s/veh)	25.2	В	9.1	A	6.8			
Approach LOS	25.2 C		9.1 A		0.0 A			
	7.0	0.0	27.3	4.4	15.5			
Queue Length 50th (m) Queue Length 95th (m)	16.5	7.1	40.8	10.5	23.7			
nternal Link Dist (m)	30.6	7.1	33.7	10.5	44.8			
Furn Bay Length (m)	30.0		55.7	40.0	77.0			
Base Capacity (vph)	405	314	1867	488	2355			
Starvation Cap Reductn	403	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.13	0.11	0.36	0.13	0.16			
ntersection Summary			-					
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 25 (33%), Reference	ed to nhas	e 2·NRT	and 6:SF	RTI Star	t of Green			
Natural Cycle: 75	ou to pride	O L.MDT	una 0.01	ore, otal	. 0. 01661			
Control Type: Actuated-Cor	ordinated							
Maximum v/c Ratio: 0.36								
ntersection Signal Delay (s	/veh): 9.4			- In	ntersectio	n LOS: A		
ntersection Capacity Utiliza					CU Level		вВ	
Analysis Period (min) 15								
Splits and Phases: 3: Ba	nk & Exhi	hition						
Spills and Priases. 5. ba	IIK OX EXIII	DIUUII		1		Т		 _
					Ø5			

	ᄼ	4	†	ļ		
Lane Group	EBL	NBL	NBT	SBT	Ø3	
ane Configurations	*/*		414	† 124		
Fraffic Volume (vph)	64	15	711	529		
uture Volume (vph)	64	15	711	529		
Lane Group Flow (vph)	81	0	807	648		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	4		2	6	3	
Permitted Phases	4	2		6		
Detector Phase	4	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0	
Minimum Split (s)	20.0	55.0	55.0	55.0	5.0	
Total Split (s)	20.0	55.0	55.0	55.0	5.0	
Total Split (%)	25.0%	68.8%	68.8%	68.8%	6%	
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.5		5.2	5.2		
Lead/Lag	Lag				Lead	
Lead-Lag Optimize?						
Recall Mode	Ped	C-Max	C-Max		Max	
Act Effct Green (s)	14.0		50.3	50.3		
Actuated g/C Ratio	0.18		0.63	0.63		
v/c Ratio	0.30		0.44	0.35		
Control Delay (s/veh)	29.6		3.5	7.4		
Queue Delay	0.0		0.0	0.0		
Total Delay (s/veh)	29.6		3.5	7.4		
LOS	C		A	A		
Approach Delay (s/veh)	29.6		3.5	7.4		
Approach LOS	С		A	A		
Queue Length 50th (m)	9.7		13.6	20.7		
Queue Length 95th (m)	21.8		m15.2	29.5		
Internal Link Dist (m)	76.7		28.1	10.1		
Turn Bay Length (m)	04.		101	1000		
Base Capacity (vph)	280		1844	1875		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.29		0.44	0.35		
Intersection Summary					_	
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 4 (5%), Referenced	to phase	2:NBTL a	and 6:SB	T, Start of	Green	
Natural Cycle: 80	, , ,					
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.44						
Intersection Signal Delay (s	s/veh): 6.5			Ir	itersection LO	S: A
Intersection Capacity Utiliz					CU Level of Se	
Analysis Period (min) 15						

Splits and Phases:	6: Bank & Aylmer			
∮ Ø2 (R)		京	1	Ø4
55 s		5 s	20 s	
Ø6 (R)	_			

Lane Configurations Traffic Volume (ph) 47 Trufure Volume (ph) 47 Trufure Volume (ph) 47 Trufure Volume (ph) 48 Trufure Volume (ph) 49 Trufure Volume (ph) 49 Trufure Volume (ph) 49 Trufure Volume (ph) 49 Trufure Volume (ph) 40 Tr	BL NBT 27 225 225 20 280 PM NA 2 2 2 20 32.0 32.0 32.0 30.0 3.8 3.8 3.8 0.0 6.8	SBT 293 293 379 NA 6 32.0 32.0 45.7% 3.0 3.8 0.0 6.8	4 16.0 16.0 23% 3.0 2.7		
ane Configurations I Traffic Volume (ph) 47 I Traffic Volume (ph) 48 I Traffic Volume (ph) 49 I Traffic Volume (ph) 40 I	27 225 27 225 0 280 arm NA 2 2 2 2 20 32.0 32.0 2.0 32.0 3.0 3.0 3.3 3.8 3.8 0.0 6.8	293 293 379 NA 6 32.0 32.0 45.7% 3.0 3.8 0.0 6.8	4 16.0 16.0 23% 3.0		
Iraffilic Volume (uph)	27 225 27 225 225 0 280 280 20 32.0 32.0 2.0 32.0 32.0 7% 45.7% 3.0 3.0 6.8	293 293 379 NA 6 32.0 32.0 45.7% 3.0 3.8 0.0 6.8	16.0 16.0 23% 3.0		
uture Volume (vph) 47 ame Group Flow (vph) 82 um Type Prot Pe Vernited Phases 10 Vermitted Phases 10 Vermitted Phases 10 Infilmium Spitt (s) 22 0 3 otal Spitt (s) 22 0 3 otal Spitt (s) 31.4% 4 clubor Time (s) 2.7 3 otal Time (s) 2.7 2 ost Time Aguat (s) 0.0 0 otal List Stime (s) 2.7 7 each Lag Optimize? 2 2 cuteinted gifc Ratio 0.23 2 control Delay (siveh) 2.3 2 otal Delay (siveh) 2.3 2 Usue Length Stht (m) 8.7 2 usue Length Stht (m) 8.7 </td <td>27 225 0 280 280 NA 2 2 2 2.0 32.0 32.0 32.0 32.0 33.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.</td> <td>293 379 NA 6 32.0 32.0 45.7% 3.0 0.0 6.8</td> <td>16.0 16.0 23% 3.0</td> <td></td> <td></td>	27 225 0 280 280 NA 2 2 2 2.0 32.0 32.0 32.0 32.0 33.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.	293 379 NA 6 32.0 32.0 45.7% 3.0 0.0 6.8	16.0 16.0 23% 3.0		
ane Group Flow (vph) 82 um Type Prot Petrolected Phases Prot Policicist Phases Infinitum Spirt (s) 22.0 3 otal Spirt (s) 22.0 3 otal Spirt (s) 31.4% 45. ellow Time (s) 2.7 ost Time Adjust (s) 0.0 otal Lost Time (s) 2.7 ost Time Adjust (s) 0.0 otal Lost Time (s) 5.7 ead/Lag primer? ut Effet Green (s) 16.3 cutated g/C Ratio 0.23 of Ratio 0.23 of Ratio 0.23 of Ratio 0.23 otal Delay (siveh) 23.8 Dueue Delay (siveh) 23.8 Dueue Delay (siveh) 23.8 Deue Length Sth (m) 8.7 ueue Length Sth (m) 8.7 ueue Length Sth (m) 57.2 ure Baylond (m) 8.7 ure Bayl	0 280 mm NA 2 2 2 2.0 32.0 32.0 2.0 32.0 32.0 3.0 3.0 3.0 6.8 25.2 0.36	379 NA 6 32.0 32.0 45.7% 3.0 3.8 0.0 6.8	16.0 16.0 23% 3.0		
um Type Prot Per Protected Phases 100 Protected Phases 100 Premitted	erm NA 2 2 2 2 0 32.0 32.0 7% 45.7% 3.0 3.8 3.8 0.0 6.8 25.2 0.36	NA 6 32.0 32.0 45.7% 3.0 3.8 0.0 6.8	16.0 16.0 23% 3.0		
Trotacked Phases	2 2 2.0 32.0 2.0 32.0 7% 45.7% 3.0 3.0 3.8 3.8 0.0 6.8	32.0 32.0 45.7% 3.0 3.8 0.0 6.8	16.0 16.0 23% 3.0		
Immitted Phases Immitted	2 2.0 32.0 2.0 32.0 7% 45.7% 3.0 3.0 3.8 3.8 0.0 6.8	32.0 32.0 45.7% 3.0 3.8 0.0 6.8	16.0 16.0 23% 3.0		
Infinium Split (s)	2.0 32.0 2.0 32.0 7% 45.7% 3.0 3.0 3.8 3.8 0.0 6.8	32.0 45.7% 3.0 3.8 0.0 6.8	16.0 23% 3.0		
rotal Spiti (s)	2.0 32.0 7% 45.7% 3.0 3.0 3.8 3.8 0.0 6.8 25.2 0.36	32.0 45.7% 3.0 3.8 0.0 6.8	16.0 23% 3.0		
ricals Spirit (%) (clast Lost Time (s) (cost Time (s) (cost Lost Lost Circle (s) (cost Lost Lost Lost Circle (s) (cost Lost Lost Lost Circle (s) (cost Lost Lost Lost Lost Lost Lost Lost L	7% 45.7% 3.0 3.0 3.8 3.8 0.0 6.8 25.2 0.36	45.7% 3.0 3.8 0.0 6.8	23% 3.0		
Variety Vari	3.0 3.0 3.8 3.8 0.0 6.8 25.2 0.36	3.0 3.8 0.0 6.8	3.0		
\(\text{with East Time (s)} \) ost Time A(glust (s) 0.0 obtail Lost Time (s) east Jag polimize? ot Effet Green (s) 16.3 obtail Lost Time (s) east-lag optimize? ot Effet Green (s) 16.3 obtail Carbon (s)	3.8 3.8 0.0 6.8 25.2 0.36	3.8 0.0 6.8			
ost Time Adjust (s) otal Lost Time (s) solat Lost Caren (s) solat Lost (s) solat Los	0.0 6.8 25.2 0.36	0.0	2.7		
Cofal Lost Time (s)	25.2 0.36	6.8			
aead lag Optimize? Act Effet Green (s) Act Effet	25.2 0.36				
ead-Lag Optimize? ut Effet Green (s) 16.3 utchted gl'c Ratio 0.23 ic Ratio 0.25 ic Ratio 0.2	0.36	25.2			
Act Effet Green (s) 16.3 uctualed g/C Retio 0.23 (c Retio 0.23 (c Retio 0.23 Uceus Delay Control Delay (s/veh) 2.3.8 Useus Delay 0.0 colal Delay (s/veh) 2.3.8 0.5 0.5 C upproach LOS C upproach LOS C useus Length 55th (m) 8.7 Useus Length 55th (m) 19.2 Useus Length 55th (m) 19.2 Useus Length 55th (m) 57.2 Useus Length (m) 19.2 Useus Length (m) 19.3 Useus Cap Reducth 0.3 Useus Cap Reducth	0.36	25.2			
cichated g/C Ratio 0 23 (c Ratio 0 23 control Delay (s/veh) 23.8 Jueue Delay (s/veh) 23.8 Jueue Delay (s/veh) 23.8 OS C Good Delay (s/veh) 23.8 OS C C Good Control Delay (s/veh) 23.8 OS C C C C C C C C C C C C C C C C C C	0.36	25.2			
Ic Ratio 0.23 Jordan (Section 1) 0.23 Jordan (Section 2) 0.0 Jordan (Delay (siveh) 2.38 Jordan (Delay (siveh) 3.70 Jordan (Delay (siveh) 3.70 Jordan (Delay (siveh) 3.70 Jordan (Delay (siveh) 3.70 Jordan (Delay (Section 2) 3.70 Jordan					
control Delay (s/veh) 23.8 Usue Delay 0.0 otal Delay (s/veh) 23.8 OS C OS C OS C OS C Supproach Delay (s/veh) 23.8 Osport of the Control of the	0.50	0.36			
Jueue Delay Jueue Delay Cotal Delay (s/veh) OS OS OS OS OS OS OS OS Cuperoach LOS Cueue Length 55th (m) ST Leue Length Cotal Standard (m) Stase Capacity (vph) Self Capacity (vph) Self Capacity (m) Leue Length Cotal Cutuated Cycle Length: 70 Cutuated Cycle Length: 70 Steet Olyse Length: 70 Leue Length: 70 Leue Cycle Length: 70 Steet Olyse Length: 70 Steet Olyse Length: 70	0.00	0.64			
otal Delay (siveh) 23.8 C C S C S C S C S C S C S C S C S C S	21.3	24.5			
OS C Approach Delay (s/veh) 23.8 Approach LOS C C Debue Length 50th (m) 8.7 Aboue Length 50th (m) 19.2 Aboue Length 50th (m) 19.2 Aboue Length 50th (m) 57.2 Aboue Length (m) 57.2 Aboue Length (m) 57.2 Aboue Length (m) 361 Aboue Length (m)	0.0	0.0			
approach Delay (s/veh) 23.8 proproach LOS Leueu Length 50th (m) 8.7 Leueu Length 50th (m) 19.2 Leueu Length 50th (m) 19.2 urn Bay Length (m) 19.2 urn Bay Length (m) 361 star-vation Cap Reducth 0 pilliback Cap Reducth 0 lororage Cap Reducth 0 lororage Cap Reducth 0 lororage Cap Reducth 0 cotorage Cap Reducth 0 lororage C	21.3	24.5			
\(\text{\constraint}\) (\text{\constraint}\)	С	С			
\(\text{\congress} \) (\text{\congress} \) (21.3	24.5			
\(\text{Lieue Length 50th (m)} \) \(\text{Lieue Length 95th (m)} \) \(\text{19.2} \) \(\text{Lieue Length 95th (m)} \) \(\text{19.2} \) \(\text{Lieue Length (m)} \) \(\text{19.2} \) \(\text{Lieue Length (m)} \) \(\text{361} \) \(\text{Lieue Length (m)} \) \(\text{361} \) \(\text{Lieue Length (m)} \) \(\text{10} \) \(\text{Lieue Length (m)} \) \(\tex	C	С			
Dueue Length 95th (m) 19.2 (mr Bay Length (m) 57.2 (mr Bay Length (m) 57.2 (mr Bay Length (m) 19.3 (mr	27.9	40.3			
Internal Link Dist (m) 57.2	48.5	67.2			
rum Bay Length (m) sase Capacity (vph) 361 Starvation Cap Reducth 0 Starvation Cap Reducth 0 Storage Cap Reducth 0 Ceduced vic Ratio 0.23 netrasection Summary Syde Length: 70 Stotuted Cycle Length: 70 Steet 10 (%), Referenced to phase 6:S8	0.1	5.9			
Jase Capacity (viph) 361 Asravation Cap Reductin 0 Distribution Capacity 0 Distributio					
Starvation Cap Reductn 0 spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced vic Ratio 0.23 Intersection Summary Sycle Length: 70 Offset: 0 (0%), Referenced to phase 6:SB	562	595			
ipiliback Cap Reductn 0 torage Cap Reductn 0 torage Cap Reductn 0 23 intersection Summary Cycle Length: 70 iffset: 0 (0%), Referenced to phase 6:SB	0	0			
torage Cap Reductn 0 teduced v/c Ratio 0.23 tersection Summary cycle Length: 70 offset: 0 (0%), Referenced to phase 6:SB	0	0			
Reduced v/c Ratio 0.23 Intersection Summary Zycle Length: 70 Intersection Summary Cycle Length: 70 Cycle Length: 70	0	0			
ntersection Summary 2ycle Length: 70 uctuated Cycle Length: 70 Offset: 0 (0%), Referenced to phase 6:SB	0.50	0.64			
ctuated Cycle Length: 70 ctuated Cycle Length: 70 offset: 0 (0%), Referenced to phase 6:SB	2.00				
ctuated Cycle Length: 70 offset: 0 (0%), Referenced to phase 6:SB					
Offset: 0 (0%), Referenced to phase 6:SB					
	T, Start of G	reen			
latural Cycle: 70					
Control Type: Pretimed					
Maximum v/c Ratio: 0.64					
ntersection Signal Delay (s/veh): 23.2			itersection LOS: C		
ntersection Capacity Utilization 55.1%		IC	CU Level of Service B		
nalysis Period (min) 15					
Solits and Phases: 9: Queen Elizabeth					
pins and mases. 9. Queen Elizabeth	Drivo & Eifth		i	 •	

07/31/2024 7: Bank & Sunnyside **>** \$ † Lane Group Lane Cortigurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Future Volume (vph)
Turn Type
Protected Phases
Permitted Phases
Permitted Phases
Minimum Spitt (s)
Total Spitt (s)
Total Spitt (s)
Yellow Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lost Time (s)
LeadiLag 58 60 19 58 60 19 0 144 0 Perm NA Perm
 4
 8
 2
 6

 260
 260
 260
 26
 38.0
 38.0
 11.0
 49.0

 260
 26
 26
 26
 38.0
 38.0
 11.0
 49.0

 325%
 325%
 325%
 47.5%
 47.5%
 13.8%
 61.3%

 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0 6.0 lotal Lost Time (s)
Lead/Lag
Lead-Lag Optimize?
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS Lag Lag Yes Lag Yes 0.54 1.14dl 16.2 0.26 0.40 49.6 38.8 43.1 0.0 49.6 0.0 43.1 0.0 16.2 38.8 Total Delay (siveh)
LOS
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Queue Length 50th (m)
Turn Bay Length (m)
Turn Bay Length (m)
Starvation Cap Reducth
Spillback Cap Reducth
Storage Cap Reducth
Reduced vic Ratio 49.6 16.2 38.8 43.1 19.9 #47.3 28.0 #80.4 20.8 30.9 79.0 84.9 #128.8 75.1 136.0 201 439 1170 0.72 0.89 0.96 0.72 Reduced vic Ratio 0.72 0.89 0 intersection Summary Cycle Length: 80 Actuated Cycle Length: 80 Actuated Cycle Length: 80 Offset: 10 (13%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 90 Control Type: Pretimed Maximum vic Ratio: 0.96 Intersection Signal Delay (siveh): 34.9 Intersection Signal Updated Signal Delay (siveh): 34.9 Intersection Signal Updated Signal Signal Updated Signal Signal Updated Signal Signal Updated Signal Signal Signal Updated Signal Signal Signal Updated Signal Splits and Phases: 7: Bank & Sunnyside À 2 → Ø4

* 5 Ø8 ▶ Ø6 (R) ■

HCM 7th AWSC 12: Exhibition & Paul Askin

07/31/2024

Intersection						
Intersection Delay, s/veh	7.9					
Intersection LOS	A					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	T _a		344	
Traffic Vol. veh/h	5	153	83	5	5	5
Future Vol, veh/h	5	153	83	5	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	170	92	6	6	6
Number of Lanes	0	- 1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay, s/veh	8.1		7.6		7.4	
HCM LOS	Α		A		Α	
Lane		EBLn1	WBLn1	SBLn1		
Vol Left, %		3%	0%	50%		
Vol Thru, %		97%	94%	0%		
Vol Right, %		0%	6%	50%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		158	88	10		
LT Vol		5	0	5		
Through Vol		153	83	0		
RT Vol		0	5	5		
Lane Flow Rate		176	98	11		
Geometry Grp		- 1	1	- 1		
Degree of Util (X)		0.197	0.11	0.013		
Departure Headway (Hd)		4.033	4.05	4.318		
Convergence, Y/N		Yes	Yes	Yes		
Cap		890	881	834		
		2.058	881 2.091	2.318		
Cap Service Time		2.058 0.198	2.091 0.111	2.318		
Сар		2.058 0.198 8.1	2.091 0.111 7.6	2.318 0.013 7.4		
Cap Service Time HCM Lane V/C Ratio		2.058 0.198	2.091 0.111	2.318		

Ø6 (R)

HCM 7th AWSC 14: Exhibition & Marche

07/31/2024

Intersection						
Intersection Delay, s/veh	7.6					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7>			4	**	
Traffic Vol, veh/h	2	5	5	123	5	5
Future Vol, veh/h	2	5	5	123	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	6	6	137	6	6
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay, s/veh	6.7		7.7		7.1	
HCM LOS	Α		Α		Α	

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	50%	0%	4%
Vol Thru, %	0%	29%	96%
Vol Right, %	50%	71%	0%
Sign Control	Stop	Stop	
Traffic Vol by Lane	10	7	128
LT Vol	5	0	5
Through Vol	0	2	123
RT Vol	5	5	0
Lane Flow Rate	11	8	142
Geometry Grp	- 1	1	1
Degree of Util (X)	0.012	0.008	0.157
Departure Headway (Hd)	3.993	3.63	3.967
Convergence, Y/N	Yes	Yes	
Сар	888	984	909
Service Time	2.055	1.66	1.972
HCM Lane V/C Ratio	0.012	0.008	0.156
HCM Control Delay, s/veh	7.1	6.7	7.7
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	0	0	0.6

2028 Weekday Interim AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 11:59 pm 05/15/2023 Bas**8/inch**ro 12 Report Page 2

HCM 7th AWSC 37: O' Connor Street & Fifth Avenue

rsection Delay, s/veh rsection LOS

07/31/2024

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	67	41	0	0	0	72	19	32	24	0	0	108
Future Vol, veh/h	67	41	0	0	0	72	19	32	24	0	0	108
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	74	46	0	0	0	80	21	36	27	0	0	120
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	- 1					1	1					1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	- 1					1	1					1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	- 1					1	1					1
HCM Control Delay, s/veh	8.4					7.3	7.9					7.5
HCM LOS	Α					Α	A					A
Lane		NBLn1		WBLn1	SBLn1							
Vol Left, %		25%	62%	0%	0%							
Vol Thru, %		43%	38%	0%	0%							
Vol Right, %		32%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		75	108	72	108							
LT Vol		19	67	0	0							
Through Vol		32	41	0	0							
RT Vol		24	0	72	108							
Lane Flow Rate		83	120	80	120							
Geometry Grp		- 1	1	1	- 1							
Degree of Util (X)		0.101	0.153	0.087	0.129							
Departure Headway (Hd)		4.358	4.583	3.9	3.872							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		824	787	920	928							
Service Time		2.376	2.583	1.917	1.888							
HCM Lane V/C Ratio		0.101	0.152	0.087	0.129							
HCM Control Delay, s/veh		7.9	8.4	7.3	7.5							
HCM Lane LOS		Α	Α	Α	Α							
		0.3	0.5	0.3	0.4							

Intersection						
Intersection Delay, s/veh	8.3					
Intersection LOS	Α.					
	COT	500	LAUDI	LA IDE	NIBI	HOD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	í,			ની	N/	
Traffic Vol, veh/h	2	5	67	57	87	87
Future Vol, veh/h	2	5	67	57	87	87
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	6	74	63	97	97
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB.		EB	
Conflicting Lanes Left	0		1		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay, s/veh	7.1		8.4		8.2	
HCM LOS	A		Α.		A	
	^				А	
l ann		NDI =4	EDI at	WDI at		
Lane		NBLn1		WBLn1		
Vol Left, %		50%	0%	54%		
Vol Thru, %		0%	29%	46%		
Vol Right, %		50%	71%	0%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		174	7	124		
LT Vol		87	0	67		
Through Vol		0	2	57		
RT Vol		87	5	0		
Lane Flow Rate		193	8	138		
Geometry Grp		- 1	- 1	1		
Degree of Util (X)		0.214	0.009	0.168		
Departure Headway (Hd)		3.985	4.08	4.388		
		0.500				
Convergence, Y/N		Yes	Yes	Yes		
				Yes 807		
Convergence, Y/N		Yes	Yes			
Convergence, Y/N Cap		Yes 885	Yes 882	807		
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		Yes 885 2.078	Yes 882 2.08	807 2.473		
Convergence, Y/N Cap Service Time		Yes 885 2.078 0.218	Yes 882 2.08 0.009	807 2.473 0.171		

2028 Weekday Interim AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 11:59 pm 05/15/2023 Basiljinehro 12 Report Page 3

HCM 7th TWSC 4: Bank & Wilton

Intersection						
Int Delay, s/veh	5.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		414	1>	
Traffic Vol. veh/h	- 1	188	142	630	369	26
Future Vol. veh/h	- 1	188	142	630	369	26
Conflicting Peds, #/hr	0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length		0				
Veh in Median Storag	e.# 0	-		0	0	-
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	- 1	209	158	700	410	29
Major/Minor I	Minor2		Major1	, A	//ajor2	
Conflicting Flow All	1268	602	617	0	najuiz	0
Stage 1	602	002	017	-		-
Stage 2	666					
Critical Hdwy		6.275		- :	- 1	- 1
Critical Hdwy Stg 1	5.475	0.210	4.110			
Critical Hdwy Stg 2	5.875	- 1			- 1	- 1
		3.34752	2/175	- 1		
Pot Cap-1 Maneuver	169	491	944		- 1	
Stage 1	538	701	544			
Stage 2	467					
Platoon blocked. %	401					
Mov Cap-1 Maneuver	83	399	766			
Mov Cap-2 Maneuver		-				
Stage 1	325					
Stage 2	379					
Olugo L	0.0					
Approach	EB		NB		SB	
HCM Control Delay, s			3.58		0	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		617	-	399	-	-
HCM Lane V/C Ratio		0.206		0.524		-
HCM Control Delay (s	/veh)	10.9	1.9	23.5		
HCM Lane LOS		В	Α	С	-	-
	-1	0.8		2.9		
HCM 95th %tile Q(veh	1)					

Intersection Int Delay, s/veh

Major/Minor
Conflicting Flow All
Stage 1

Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1

Stage 1 Stage 2

Approach EB HCM Control Delay, s/s/2.85 HCM LOS B

- 6.275 -3.3475 0 489

HCM 7th TWSC

17: Princess Patricia/Princess Patricia Way & Garage

Intersection						
Intersection Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, A.			4	1	
Traffic Vol, veh/h	25	25	70	248	277	85
Future Vol, veh/h	25	25	70	248	277	85
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free
RT Channelized	- :	None	-	None	-	None
Storage Length	0	-	-			-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	28	28	78	276	308	94
Major/Minor N	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	786	355	402	0	-	0
Stage 1	355	-			-	
Stage 2	431	-			-	-
Critical Hdwy	6.4	6.2	4.1	-		-
Critical Hdwy Stg 1	5.4	-		-		-
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2	-		-
Pot Cap-1 Maneuver	364	693	1167			
Stage 1	714		-		-	-
Stage 2	660					
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	335	693	1167	-		-
Mov Cap-2 Maneuver	335					
Stage 1	658	-				-
Stage 2	660	-		-		-
A b			ND		00	
Approach	EB		NB		SB	
HCM Control Delay, s/			1.83		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		396		452		
HCM Lane V/C Ratio		0.067		0.123		
HCM Control Delay (s)	veh)	8.3	0	14.1		
HCM Lane LOS	/	A	A	В		
HCM 95th %tile Q(veh)	0.2	-	0.4	-	
	,					

2028 Weekday Interim AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 11:59 pm 05/15/2023 Bas**8/inc**hro 12 Report Page 2

2028 Weekday Interim AM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 11:59 pm 05/15/2023 Ba**Skyinch**ro 12 Report Page 3

HCM 7th TWSC

07/31/2024 10: Bank & Marche

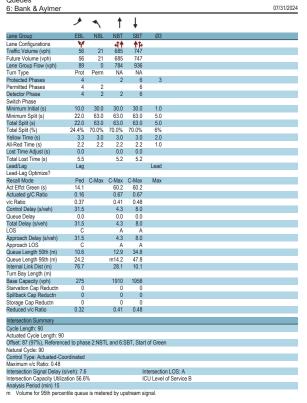
latera etter						
Intersection	0.4					
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	Φß			44
Traffic Vol, veh/h	0	34	548	7	0	409
Future Vol, veh/h	0	34	548	7	0	409
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	0	38	609	8	0	454
Major/Minor N	Minor1		Najor1		Major2	
Conflicting Flow All	VIIIIOI I	408	0 najor i	0	viajoi2	-
	-	408	U	U	-	-
Stage 1	-	-	-		-	-
Stage 2	-	7.2				
Critical Hdwy	-		-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-		-	-	-	
Follow-up Hdwy		3.45				
Pot Cap-1 Maneuver	0	557	-		0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		498				
Mov Cap-2 Maneuver	-	-	-		-	
Stage 1	-	-	-		-	
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, si			0		0	
HCM LOS	W2.02		0		0	
Minor Lane/Major Mvn	nt	NBT	NBR	VBLn1	SBT	
Capacity (veh/h)		-	-	498	-	
HCM Lane V/C Ratio		-	-	0.076	-	
HCM Control Delay (s.	/veh)			12.8		
HCM Lane LOS				В		
HCM 95th %tile Q(veh	1)	-	-	0.2	-	

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		¥	
Traffic Vol. veh/h	51	38	120	35	8	10
Future Vol, veh/h	51	38	120	35	8	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None	-	None
Storage Length				-	0	
Veh in Median Storage	e,# -	0	0		0	
Grade, %		0	0		0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	57	42	133	39	9	- 11
Major/Mines A	Injust		Canina		din av	
	Major1 172	0	Major2	0	Minor2	153
Conflicting Flow All			-	-	308	
Stage 1	-	-	-	-	153	-
Stage 2	4.12	-	-	-	156 6.42	6.22
Critical Hdwy				-		
Critical Hdwy Stg 1		-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-			
	1405	-	-	-	684	893
Stage 1	-	-	-	-	875	-
Stage 2					873	
Platoon blocked, %						
Mov Cap-1 Maneuver			-		656	893
Mov Cap-2 Maneuver		-	-	-	656	-
Stage 1	-		-	-	839	-
Stage 2					873	
Approach	EB		WB		SB	
HCM Control Delay, s			0		9.8	
HCM LOS	V 7.7		U		Α.	
110111 200						
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1031	-		-	769
HCM Lane V/C Ratio		0.04	-	-		0.026
HCM Control Delay (s	(veh)	7.7	0		-	9.8
HCM Lane LOS		Α	Α		-	Α
HCM 95th %tile Q(veh	1)	0.1	-		-	0.1

Weekday PM Peak Hour

	-	4	†	1	1					
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3				
Lane Configurations	4		413		413					
Traffic Volume (vph)	18	26	500	28	545					
Future Volume (vph)	18	26	500	28	545					
Lane Group Flow (vph)	112	0	641	0	668					
Turn Type	NA	Perm	NA	Perm	NA					
Protected Phases	4	1 01111	2		6	3				
Permitted Phases		2		6	-	-				
Detector Phase	4	2	2	6	6					
Switch Phase										
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0				
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0				
Lost Time Adjust (s)	0.0		0.0		0.0					
Total Lost Time (s)	5.6		5.2		5.2					
Lead/Lag	Lag					Lead				
Lead-Lag Optimize?										
Recall Mode	None	C-Max	C-Max	C-Max		None				
Act Effct Green (s)	11.6		56.0		56.0					
Actuated g/C Ratio	0.15		0.75		0.75					
v/c Ratio	0.55		0.33		0.33					
Control Delay (s/veh)	38.8		1.9		3.4					
Queue Delay	0.0		0.0		0.0					
Total Delay (s/veh)	38.8		1.9		3.4					
LOS	D		A		A					
Approach Delay (s/veh)	38.8		1.9		3.4					
Approach LOS	D		A		A					
Queue Length 50th (m)	14.8		4.0		6.3					
Queue Length 95th (m)	27.6		9.1		14.3					
Internal Link Dist (m)	39.8		31.5		195.6					
Turn Bay Length (m)										
Base Capacity (vph)	287		1970		2033					
Starvation Cap Reductn	0		0		0					
Spillback Cap Reductn	0		0		0					
Storage Cap Reductn	0		0		0					
Reduced v/c Ratio	0.39		0.33		0.33					
Intersection Summary										
Cycle Length: 75										
Actuated Cycle Length: 75										
Offset: 74 (99%), Reference		se 2:NRT	I and 6:9	SBTL Sta	art of Gree	en				
Natural Cycle: 75	- Lo to pride	2		, 010						
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.55										
Intersection Signal Delay (s/veh): 5.5			li li	ntersectio	n LOS: A				
Intersection Capacity Utiliz						of Service C				
Analysis Period (min) 15						2. 20. 1100 0				
, , , ,	ank & Holn									
Splits and Phases: 2: Ba	ank & Holn	1W000					1	1 4		
4							1	Ĵ.		
Ø2 (R)							1"	¢ 🕶	Ø4	
48 s							5 s	22 s		
4							1			
♦ Ø6 (R)							1			
48 s										

Queues 07/31/2024 1: Bank & Fifth † Lane Group Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turm Type
Protected Phases
Minimum Spitt (s)
Total Spit 46 54 63 38 16 443 29 46 54 67 0 81 0 554 0 Perm NA Perm NA Perm NA Perm
 4
 8
 2
 6


 260
 260
 260
 260
 490
 490
 490
 490

 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.44 0.26 0.20 22.5 24.4 14.1 0.0 0.0 0.0 22.5 24.4 14.1 43.5 0.58 0.44 43.5 0.58 0.35 13.9 0.0 13.9 9.8 C 22.5 A 9.8 13.9 15.1 7.7 31.7 17.9 26.1 37.5 190.0 49.7 112.4 49.7 45.0 372 274 0 0 0.44 0.26 0.20 0.44 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.44
Intersection Signal Delay (siveh): 13.4
Intersection Capacity Utilization 67.1%
Intersection Capacity Utilization 67.1%
CU Level of S
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1**, ø4 ▶ Ø6 (R)

2028 Weekday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Exi**siyng-RM Styfieb** titring, 2028 Bac Page 1

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph)	WBL		1	1	ļ				
Traffic Volume (vph)	WDL	WBR	NBT	SBL	SBT	Ø1	Ø7		
	*	7	Αta	*	44				
Turbura Maluman (umb)	114	56	469	97	498				
	114	56	469	97	498				
Lane Group Flow (vph)	127	62	645	108	553				
Turn Type	Prot	Perm	NA	Perm	NA				
Protected Phases	8		2		6	1	7		
Permitted Phases		8		6					
Detector Phase	8	8	2	6	6				
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0		
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0		
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0		
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%		
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5		
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9				
Lead/Lag	Lag	Lag	Lag			Lead	Lead		
Lead-Lag Optimize?			Yes			Yes	Yes		
Recall Mode	None	None	C-Max	C-Max	C-Max	None	None		
Act Effct Green (s)	12.2	12.2	54.2	54.2	54.2				
Actuated g/C Ratio	0.16	0.16	0.72	0.72	0.72				
v/c Ratio	0.51	0.27	0.32	0.25	0.24				
Control Delay (s/veh)	35.4	10.6	5.5	4.7	3.1				
Queue Delay	0.0	0.0	0.0	0.0	0.0				
Total Delay (s/veh)	35.4	10.6	5.5	4.7	3.1				
LOS	D	В	A	A	A				
Approach Delay (s/veh)	27.3		5.5		3.4				
Approach LOS	С		Α		Α				
Queue Length 50th (m)	16.8	0.0	15.8	3.1	8.2				
Queue Length 95th (m)	30.2	9.0	29.0	5.8	10.2				
Internal Link Dist (m)	30.6		33.7		44.8				
Turn Bay Length (m)				40.0					
Base Capacity (vph)	405	335	2031	430	2271				
Starvation Cap Reductn	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.31	0.19	0.32	0.25	0.24				
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 0 (0%), Referenced	to phase	2:NBT ar	d 6:SBT	L, Start o	f Green				
Natural Cycle: 75									
Control Type: Actuated-Cor	ordinated								
Maximum v/c Ratio: 0.51									
Intersection Signal Delay (s					ntersectio				
Intersection Capacity Utiliza	ation 59.7	%		I	CU Level	of Servic	e B		
Analysis Period (min) 15									
Splits and Phases: 3: Ba	nk & Exhi	hition							
	IIK & EAIII	DIBOTT				П			
🛪 🕴 T Ø2 (R)									
5 s 39 s									
▶ 1 6 (R)							À .	<i>ک</i> مہ	

07/31/2024

Splits and Phases: 6: Bank & Aylmer			
★ Ø2 (R)		→ Ø4	
63.5	5 s	22 s	ning, 2028 Bac
↓ ø6 (R)			(mg, 2020 Bao

Ø6 (R)

	ၨ	4	†	ļ				
Lane Group	EBL	NBL	NBT	SBT	Ø4			
Lane Configurations	W		41	ħ				
Traffic Volume (vph)	35	45	198	527				
Future Volume (vph)	35	45	198	527				
Lane Group Flow (vph)	98	0	270	658				
Turn Type	Prot	Perm	NA	NA				
Protected Phases	10	1 01111	2	6	4			
Permitted Phases	10	2	-	Ū				
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0			
Total Split (s)	21.0	48.0	48.0	48.0	11.0			
Fotal Split (%)	26.3%	60.0%	60.0%	60.0%	14%			
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0			
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0				
Total Lost Time (s)	5.7		6.8	6.8				
Lead/Lag	0.7		0.0	0.0				
Lead-Lag Optimize?								
Act Effct Green (s)	15.3		41.2	41.2				
Actuated g/C Ratio	0.19		0.52	0.52				
v/c Ratio	0.34		0.44	0.77				
Control Delay (s/veh)	31.8		15.0	23.2				
Queue Delay	0.0		0.0	0.0				
Total Delay (s/veh)	31.8		15.0	23.2				
LOS	C		B	C				
Approach Delay (s/veh)	31.8		15.0	23.2				
Approach LOS	C		В	C				
Queue Length 50th (m)	13.0		24.2	75.5				
Queue Length 95th (m)	26.3		42.6	119.7				
Internal Link Dist (m)	57.2		0.1	5.9				
Turn Bay Length (m)								
Base Capacity (vph)	290		614	855				
Starvation Cap Reductn	0		0	0				
Spillback Cap Reductn	0		0	0				
Storage Cap Reductn	0		0	0				
Reduced v/c Ratio	0.34		0.44	0.77				
ntersection Summary								
Cycle Length: 80								
Actuated Cycle Length: 80								
Offset: 0 (0%), Referenced	to phase	6:SBT, S	tart of Gr	een				
Natural Cycle: 80								
Control Type: Pretimed								
Maximum v/c Ratio: 0.77								
ntersection Signal Delay (tersection LO			
ntersection Capacity Utiliz	ation 70.6	%		IC	U Level of Se	rvice C		
Analysis Period (min) 15								
Splits and Phases: 9: Qu	Jeen Eliza	beth Driv	e & Fifth					
4 4			- 21.001			1.	 +	
92						X 0	,	

7: Bank & Sunnysi	de										07/31/2024
	۶	→	•	—	4	†	-	ļ			
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø7	
ane Configurations		₽		4		र्सी		414			
raffic Volume (vph)	52	80	16	82	14	424	206	744			
uture Volume (vph)	52	80	16	82	14	424	206	744			
ane Group Flow (vph)	0	180	0	383	0	510	0	1159			
urn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA			
rotected Phases		4		8		2	1	6	3	7	
ermitted Phases	4		8		2		6				
finimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
otal Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
otal Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%	66.7%	6%	6%	
ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
III-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9	3.0	0.0	0.0	
ost Time Adjust (s)		0.0		0.0		0.0		0.0			
otal Lost Time (s)		5.6		5.6		6.0		6.0			
ead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	0.0	Lead	Lead	
ead-Lag Optimize?	Lug	Lug	Yes	Yes	Yes	Yes	Yes		Loud	Yes	
ct Effct Green (s)		19.4	. 00	19.4	.00	37.0	. 00	54.0			
ctuated g/C Ratio		0.22		0.22		0.41		0.60			
/c Ratio		1.15		1.10		0.45		0.00			
Control Delay (s/veh)		154.9		104.0		20.4		20.6			
lueue Delay		0.0		0.0		0.0		0.0			
otal Delay (s/veh)		154.9		104.0		20.4		20.6			
OS		134.5 F		104.0		20.4 C		20.0 C			
pproach Delay (s/veh)		154.9		104.0		20.4		20.6			
pproach LOS		104.9 F		104.0 F		20.4 C		20.6 C			
		~37.1		~57.3		32.2		22.6			
ueue Length 50th (m)		~37.1 #76.3		~57.3 #111.2		45.7		#99.6			
ueue Length 95th (m)						63.1					
ternal Link Dist (m)		75.1		136.0		63.1		79.0			
urn Bay Length (m)		156		347		1144		1278			
ase Capacity (vph)											
tarvation Cap Reductn		0		0		0		0			
pillback Cap Reductn				0		0		0			
torage Cap Reductn		0		0		0		0			
educed v/c Ratio		1.15		1.10		0.45		0.91			
tersection Summary											
ycle Length: 90											
ctuated Cycle Length: 90											
Iffset: 23 (26%), Reference	ed to phas	se 2:NBT	L and 6:	SBTL, Sta	art of Gre	en					
atural Cycle: 90											
ontrol Type: Pretimed laximum v/c Ratio: 1.15											
tersection Signal Delay (s	s/veh): 45.	7		li	ntersectio	on LOS: [)				
ntersection Capacity Utiliz	ation 95.4	%		- 1	CU Level	of Service	e F				
nalysis Period (min) 15											
Volume exceeds capac	itv. aueue	is theore	etically in	finite.							
Queue shown is maxim											
95th percentile volume				av be lon	ger.						
Queue shown is maxim				,	J						
plits and Phases: 7: Ba	ınk & Sunr	nvside									
1.	<u> </u>	., 5.00					1	<u>.</u>	Ť		
→ _{Ø1}) ø	2 (R)						ж <u>-</u>			
17 s	43 s							5 s 2	5 s		
▶ Ø6 (R) ■								*	₹ øs		
0 s								5 s 2	5 s		

HCM 7th AWSC 12: Exhibition & Paul Askin

Intersection							
Intersection Delay, s/veh	8.5						
Intersection LOS	Α						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	Fa		, Al		
Traffic Vol, veh/h	5	210	174	5	5	5	
Future Vol, veh/h	5	210	174	5	5	5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	6	233	193	6	6	6	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay, s/veh	8.7		8.4		7.7		
HCM LOS	Α		Α		Α		

Lane EBLn1	WBLn1	NBLn1 :	SBLn1
Vol Left, % 2%	0%	0%	50%
Vol Thru, % 98%	97%	97%	0%
Vol Right, % 0%			50%
Sign Control Stop	Stop	Stop	Stop
Traffic Vol by Lane 215	179	179	10
LT Vol 5			5
Through Vol 210	174	174	0
RT Vol 0	5	5	5
Lane Flow Rate 239	199	199	11
Geometry Grp 1	- 1	1	1
Degree of Util (X) 0.273	0.227	0.227	0.014
Departure Headway (Hd) 4.107	4.114	4.114	4.667
Convergence, Y/N Yes	Yes	Yes	Yes
Cap 870	865	865	772
Service Time 2.157	2.174	2.174	2.667
HCM Lane V/C Ratio 0.275	0.23	0.23	0.014
HCM Control Delay, s/veh 8.7	8.4	8.4	7.7
HCM Lane LOS A	. A	Α	A
HCM 95th-tile Q 1.1	0.9	0.9	0

Intersection Delay, s/veh 6.9

HCM 7th AWSC 14:

HCM 7th AWSC 13: Paul Askin & Marche 07/31/2024

14: Exhibition &	Marche							07/31/2024
Intersection								
Intersection Delay, s/ve	h 8.7							
Intersection LOS	A							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		

Intersection LOS	A						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	W.		
Traffic Vol, veh/h	3	5	5	5	5	5	
Future Vol, veh/h	3	5	5	5	5	5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	3	6	6	6	6	6	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		- 1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay, s/veh	6.6		7.1		6.8		
HCM LOC	۸		Λ		Λ		

MOVERNERIL	EDI	EDI	WDL	WDI	INDL	NDL	
Lane Configurations	- 1>			4	34		
Traffic Vol, veh/h	3	5	140	5	39	210	
Future Vol, veh/h	3	5	140	5	39	210	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	3	6	156	6	43	233	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay, s/veh	7.4		9		8.5		
HCM LOS	Α		A		Α		

Lane N	BLn1	EBLn1	WBLn1
Vol Left, %	50%	0%	50%
Vol Thru, %	0%	38%	50%
Vol Right, %	50%	63%	0%
	Stop	Stop	Stop
Traffic Vol by Lane	10	8	10
LT Vol	5	0	5
Through Vol	0	3	5
RT Vol	5	5	0
Lane Flow Rate	11	9	11
Geometry Grp	- 1	1	1
	0.012	0.009	0.013
Departure Headway (Hd)	3.769	3.587	4.06
Convergence, Y/N	Yes	Yes	Yes
Сар	953	1002	886
Service Time	1.777	1.593	2.065
HCM Lane V/C Ratio (0.012	0.009	0.012
HCM Control Delay, s/veh	6.8	6.6	7.1
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	0	0	0

l ann	NIDI1	EDI -1	M/DL =4
Lane		EBLn1	
Vol Left, %	16%	0%	97%
Vol Thru, %	0%	38%	3%
Vol Right, %	84%	63%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	249	8	145
LT Vol	39	0	140
Through Vol	0	3	5
RT Vol	210	5	0
Lane Flow Rate	277	9	161
Geometry Grp	1	- 1	- 1
Degree of Util (X)	0.298	0.011	0.212
Departure Headway (Hd)	3.88	4.322	4.727
Convergence, Y/N	Yes	Yes	Yes
Cap	930	828	764
Service Time	1.892	2.347	2.727
HCM Lane V/C Ratio	0.298	0.011	0.211
HCM Control Delay, s/veh	8.5	7.4	9
HCM Lane LOS	A	A	A
HCM 95th-tile Q	1.3	0	0.8

2028 Weekday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 ExitalyupRM SayRebTething, 2028 Bac Page 2

2028 Weekday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Existing this Signaphinting, 2028 Bac Page 3

HCM 7th AWSC 37: O' Connor & Fifth 07/31/2024

H	CM	7tl	'n.	TW:	SC
4.	Ra	nk	ጲ	\/\/i	lton

Intersection												
Intersection Delay, s/veh	8											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	74	39	0	0	0	103	40	27	30	0	0	93
Future Vol, veh/h	74	39	0	0	0	103	40	27	30	0	0	93
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	82	43	0	0	0	114	44	30	33	0	0	103
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	- 1					1	1					- 1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	1					1	1					- 1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					1
HCM Control Delay, s/veh	8.6					7.5	8.2					7.5
HCM LOS	Α					Α	Α					A
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		41%		0%								
		41/0	65%		0%							
Vol Thru, %		28%	35%	0%	0% 0%							
Vol Right, %			35% 0%	0% 100%	0% 100%							
		28%	35%	0%	0%							
Vol Right, %		28% 31% Stop 97	35% 0% Stop 113	0% 100% Stop 103	0% 100% Stop 93							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol		28% 31% Stop 97 40	35% 0% Stop 113 74	0% 100% Stop 103	0% 100% Stop 93 0							
Vol Right, % Sign Control Traffic Vol by Lane		28% 31% Stop 97 40 27	35% 0% Stop 113	0% 100% Stop 103 0	0% 100% Stop 93 0							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		28% 31% Stop 97 40 27 30	35% 0% Stop 113 74 39 0	0% 100% Stop 103 0 0	0% 100% Stop 93 0 0							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		28% 31% Stop 97 40 27 30 108	35% 0% Stop 113 74 39 0 126	0% 100% Stop 103 0 0 103 114	0% 100% Stop 93 0 0 93 103							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		28% 31% Stop 97 40 27 30	35% 0% Stop 113 74 39 0	0% 100% Stop 103 0 0	0% 100% Stop 93 0 0							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		28% 31% Stop 97 40 27 30 108 1	35% 0% Stop 113 74 39 0 126 1	0% 100% Stop 103 0 0 103 114 1 0.125	0% 100% Stop 93 0 0 93 103 1							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		28% 31% Stop 97 40 27 30 108	35% 0% Stop 113 74 39 0 126 1 0.162 4.641	0% 100% Stop 103 0 0 103 114	0% 100% Stop 93 0 0 93 103 1 0.115 3.991							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes	35% 0% Stop 113 74 39 0 126 1	0% 100% Stop 103 0 0 103 114 1 0.125	0% 100% Stop 93 0 0 93 103 1 0.115 3.991 Yes							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes 803	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes 773	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes 910	0% 100% Stop 93 0 0 93 103 1 0.115 3.991 Yes 899							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes	0% 100% Stop 93 0 0 93 103 1 0.115 3.991 Yes							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes 803	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes 773	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes 910	0% 100% Stop 93 0 0 93 103 1 0.115 3.991 Yes 899							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane RT Vol Lane RT Vol Lane RT Vol Degree of Uli (X) Degree of Uli (X) Degree of Uli (X) Cap Service Time HGM Lane ViC Ratio HGM Cantrol Delay, sheh		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes 803 2.491 0.134 8.2	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes 773 2.663 0.163 8.6	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes 910 1.963 0.125 7.5	0% 100% Stop 93 0 0 93 103 1 1.0.115 3.991 Yes 899 2.01 0.115 7.5							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of bill (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HGM Lane V/C Ratio		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes 803 2.491 0.134 8.2 A	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes 773 2.663 0.163 8.6 A	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes 910 1.963 0.125	0% 100% Stop 93 0 0 93 103 1 0.115 3.991 Yes 899 2.01 0.115							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane RT Vol Lane RT Vol Lane RT Vol Degree of Uli (X) Degree of Uli (X) Degree of Uli (X) Cap Service Time HGM Lane ViC Ratio HGM Cantrol Delay, sheh		28% 31% Stop 97 40 27 30 108 1 0.134 4.471 Yes 803 2.491 0.134 8.2	35% 0% Stop 113 74 39 0 126 1 0.162 4.641 Yes 773 2.663 0.163 8.6	0% 100% Stop 103 0 0 103 114 1 0.125 3.942 Yes 910 1.963 0.125 7.5	0% 100% Stop 93 0 0 93 103 1 1.0.115 3.991 Yes 899 2.01 0.115 7.5							

Intersection						
Int Delay, s/veh	12.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		413	1	
Traffic Vol. veh/h	3	233	213	558	570	49
Future Vol. veh/h	3	233	213	558	570	49
Conflicting Peds, #/hr		0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	1100	None
Storage Length		0		140116		140116
Veh in Median Storag	e # 0	-		0	0	
Grade, %	0, 11 0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	3	259	237	620	633	54
MIVIIIL FIOW	3	209	231	020	000	34
Major/Minor I	Minor2	- 1	Major1	N	//ajor2	
Conflicting Flow All	1622	839	866	0		0
Stage 1	839			-		-
Stage 2	783			-		-
Critical Hdwy	6.675	6.275	4.175	-		-
Critical Hdwy Stg 1	5.475			-		-
Critical Hdwy Stg 2	5.875			-		-
	3.54753		2/75			
Pot Cap-1 Maneuver	100	359	760			
Stage 1	417	-				
Stage 2	406					
Platoon blocked, %	400				- 1	
Mov Cap-1 Maneuver	36	291	617	- :	- 1	- 1
Mov Cap-1 Maneuver		231	017	- 1	- 1	- 1
			-	-	-	-
Stage 1	181	-				
Stage 2	329	-	-		-	-
Approach	EB		NB		SB	
HCM Control Delay, s	766 86		6.73		0	
HCM LOS	F		0.10			
HOM LOO	-					
Minor Lane/Major Mvr	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		510	-	291	-	-
HCM Lane V/C Ratio		0.384		0.888		-
HCM Control Delay (s	s/veh)	14.4	3.8	66.9	-	
HCM Lane LOS	-	В	Α	F	-	
HCM 95th %tile Q(vel	h)	1.8		8	-	
	,					

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	74			4	4	
Traffic Vol. veh/h	63	59	56	257	495	97
Future Vol, veh/h	63	59	56	257	495	97
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0					
Veh in Median Storag	e.# 0	-		0	0	
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	70	66	62	286	550	108
MVIIICTIOW	10	00	02	200	550	100
Major/Minor I	Minor2		Major1		/lajor2	
Conflicting Flow All	1014	604	658	0	-	0
Stage 1	604	-		-		-
Stage 2	410	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-		-
Critical Hdwy Stg 1	5.4	-		-		-
Critical Hdwy Stg 2	5.4	-	-	-		-
Follow-up Hdwy	3.5	3.3	2.2	-		-
Pot Cap-1 Maneuver	267	502	940			
Stage 1	550		-	-		-
Stage 2	674					
Platoon blocked, %	0, 1					
Mov Cap-1 Maneuver	246	502	940			
Mov Cap-2 Maneuver	246	- 502	340			
Stage 1	506					
Stage 2	674		- 1	- 1	- 1	- 1
Stage 2	0/4		-	_	-	_
Approach	EB		NB		SB	
HCM Control Delay, s	/23.65		1.63		0	
HCM LOS	С					
	Ŭ					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		322	-	326	-	-
HCM Lane V/C Ratio		0.066		0.415		
HCM Control Delay (s	/veh)	9.1	0	23.7		
HCM Lane LOS		Α	Α	С	-	-
HCM 95th %tile Q(veh	1)	0.2	-	2	-	-

Intersection
Int Delay, s/veh Major/Minor Conflicting Flow All Stage 1 Stage 1
Stage 2
Critical Holwy Stg 1
Critical Holwy Stg 1
Critical Holwy Stg 2
Follow-up Holwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1 - 6.275 -3.3475 0 293 Stage 1 Stage 2 Approach EB HCM Control Delay, s/v 20 HCM LOS C | Minor Lane | Major Munt | NBT EBLn | SBT | SBR | Capacity (vehly) | 267 | - - | HCM Lane V/C Ratio | 0.1 | - - | HCM Lontrol Delay (s/veh) | - 20 | - - | HCM Lontrol Delay (s/veh) | - 20 | - | | CM Lane LOS | C | C | - | | CM Lane LOS | CM | S5th %tile Q(veh) | - 0.3 | - - | |

2028 Weekday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Exitalyng/MM 35/Reptitining, 2028 Bac Page 2

2028 Weekday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Existing: RNd Stigflep-tithning, 2028 Bac Page 3

HCM 7th TWSC

07/31/2024 10: Bank & Marche

latara attar						
Intersection Int Delay, s/veh	0.9					
**						
Movement	WBL		NBT	NBR	SBL	SBT
Lane Configurations		7	ΦÞ			^
Traffic Vol, veh/h	5	74	542	7	- 1	597
Future Vol, veh/h	5	74	542	7	1	597
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	
Storage Length	-	0				
Veh in Median Storag		-	0		-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	6	82	602	8	- 1	663
Major/Minor 1	Minor1		//ajor1	- 1	Major2	
Conflicting Flow All	1040	405	0	0	710	0
Stage 1	706				-	
Stage 2	334					
Critical Hdwy	6.8	7.2		-	4.1	
Critical Hdwy Stg 1	5.8					
Critical Hdwy Stg 2	5.8			-		
Follow-up Hdwy	3.5	3.45			2.2	
Pot Cap-1 Maneuver	229	560			899	
Stage 1	456	-			-	
Stage 2	703					
Platoon blocked. %	700	-			-	
Mov Cap-1 Maneuver	205	501	-	- 1	803	
	205	301		- 1	003	- 1
Mov Cap-2 Maneuver	408	-		-	-	
Stage 1	702	-		-	- 1	- 1
Stage 2	702	-				
Approach	WB		NB		SB	
HCM Control Delay, s	/13.59		0		0.02	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)				501	803	
HCM Lane V/C Ratio		- 1		0.164		- 1
HCM Control Delay (s	(voh)	- 1	- 1	13.6	9.5	- 1
HCM Lane LOS	(VC:1)	- 1	- 1	13.0 B	9.5 A	- 1
	-1			0.6	0	- 1
HCM 95th %tile Q(veh	1)	-		0.0	U	-

HCM 7th TWSC

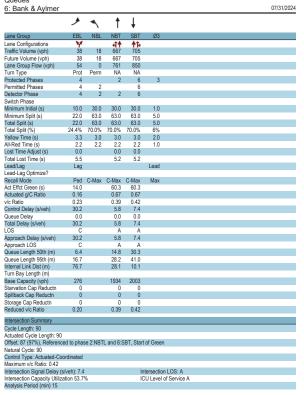
17: Princess Patricia/Princess Patricia Way & Garage

Intersection						
Int Delay, s/veh	4.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	1	TTDIT.	**	ODIT
Traffic Vol. veh/h	94	58	24	129	65	39
Future Vol. veh/h	94	58	24	129	65	39
Conflicting Peds. #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1100	None	- 100		- Ctop	None
Storage Length		140116		140116	0	140116
Veh in Median Storag		0	0		0	
Grade. %	c, # ·	0	0	- 1	0	- 1
Peak Hour Factor	90	90	90	90	90	90
						90
Heavy Vehicles, %	2	2	2	2	2	
Mvmt Flow	104	64	27	143	72	43
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	170	0	nujoiz.	0	372	98
Stage 1	170			-	98	-
Stage 2	- 1		- 1	- 1	273	- 1
Critical Hdwy	4.12	- 1	-			6.22
					5.42	
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2					5.42	-
Follow-up Hdwy	2.218		-		3.518	
Pot Cap-1 Maneuver					629	958
Stage 1	-	-	-	-	926	-
Stage 2		-			773	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	1407	-			581	958
Mov Cap-2 Maneuver		-			581	-
Stage 1		-			854	-
Stage 2		-			773	-
A b	FB		WB		SB	
Approach						
HCM Control Delay, s	/v 4.8		0		11.36	
HCM LOS					В	
Minor Lane/Major Mvi	nt	FBI	EBT	WBT	WBR:	SRI n1
	III.	1113	LD1	WDI	TIDIO	681
Capacity (veh/h)						
HCM Lane V/C Ratio		0.074	-			0.17
HCM Control Delay (s	/ven)	7.8	0			11.4
HCM Lane LOS		Α	A			В
HCM 95th %tile Q(vel	1)	0.2		-	-	0.6

Saturday Peak Hour

	\rightarrow	4	1	-	Ţ						
ane Group	EBT	NBL	NBT	SBL	SBT	Ø3					
ane Configurations	4		413		413						_
Fraffic Volume (vph)	9	28	483	30	533						
uture Volume (vph)	9	28	483	30	533						
ane Group Flow (vph)	110	0	617	0	651						
Furn Type	NA	Perm	NA	Perm	NA						
Protected Phases	4		2		6	3					
Permitted Phases		2		6							
Detector Phase	4	2	2	6	6						
Switch Phase											
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0					
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0					
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0					
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%					
rellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0					
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0					
ost Time Adjust (s)	0.0		0.0		0.0						
Total Lost Time (s)	5.6		5.2		5.2						
_ead/Lag	Lag					Lead					
_ead-Lag Optimize?											
Recall Mode	None	C-Max	C-Max	C-Max		None					
Act Effct Green (s)	11.6		56.1		56.1						
Actuated g/C Ratio	0.15		0.75		0.75						
//c Ratio	0.55		0.31		0.32						
Control Delay (s/veh)	38.8		2.3		3.9						
Queue Delay	0.0		0.0		0.0						
Total Delay (s/veh)	38.8		2.3		3.9						
_OS	D		Α		Α						
Approach Delay (s/veh)	38.8		2.3		3.9						
Approach LOS	D		Α		Α						
Queue Length 50th (m)	14.6		3.8		6.9						
Queue Length 95th (m)	27.2		9.0		22.0						
nternal Link Dist (m)	39.8		31.5		195.6						
Furn Bay Length (m)	284		4000		0004						
Base Capacity (vph) Starvation Cap Reductn	284		1968		2031						
	0		0		0						
Spillback Cap Reductn Storage Cap Reductn	0		0		0						
Reduced v/c Ratio	0.39		0.31		0.32						
	0.39		0.31		0.32						
ntersection Summary											
Cycle Length: 75 Actuated Cycle Length: 75											
Offset: 74 (99%), Reference	d to phas	se 2:NBT	I and 6:9	SBTL Sta	art of Gree	en					
Natural Cycle: 75	a to pria	JO 2D 1	L dild o.c	, D. I. E., O.		011					
Control Type: Actuated-Coor	rdinated										
Maximum v/c Ratio: 0.55											
ntersection Signal Delay (s/	veh): 6.0	1		li li	ntersectio	n LOS: A					
ntersection Capacity Utilizat						of Service B					
Analysis Period (min) 15											
Splits and Phases: 2: Ban	k & Holn	nwood									
opiilo ailu Filases. 2. Dali							汶	1			
4											
Ø2 (R)							N.	¢-	Ø4		
4							5 s	22 s	Ø4		
4							5 s	22 s	Ø4	_	

Queues 07/31/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turm Type
Protected Phases
Minimum Spitt (s)
Total Spit 45 40 72 44 21 466 20 45 40 72 44 21 466 20 0 141 80 105 0 578 0 Perm NA Perm NA Perm NA Perm
 4
 8
 2
 6


 260
 260
 260
 260
 490
 490
 490
 490

 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.39 0.28 0.25 20.6 24.7 13.2 0.0 0.0 0.0 20.6 24.7 13.2 43.5 0.58 0.38 43.5 0.58 0.36 12.9 0.0 12.9 9.2 C 20.6 A 9.2 12.9 12.1 8.9 27.0 19.9 49.7 112.4 45.0 363 287 0 0 1624 0.39 0.28 0.25 0.38 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.39
Intersection Signal Delay (siveh): 12.7
Intersection Capacity Utilization 56.9%
CU Level of S
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1**, ø4 ▶ Ø6 (R) T Ø8

2028 Saturday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05:04/2023 Existings/No SigNaipCitrining, 2028 Baci Page 1

Lane Corigurations		1	•	†	-	ļ			
Traffic Volume (uph) 75 59 4444 104 474 Lane Group Flow (uph) 75 59 4444 104 474 Lane Group Flow (uph) 83 66 603 116 527 Tum Type Prot Perm NA Perm NA Perm NA Protected Phases 8 2 6 6 1 7 Permitted Phases 8 8 2 6 6 6 Detector Phase 8 8 2 6 6 6 Switch Phase 8 8 2 6 6 6 Switch Phase 9 Minimum Right (s) 10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 1.	ane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
Traffic Volume (uph) 75 59 4444 104 474 Lane Group Flow (uph) 75 59 4444 104 474 Lane Group Flow (uph) 83 66 603 116 527 Tum Type Prot Perm NA Perm NA Perm NA Protected Phases 8 2 6 6 1 7 Permitted Phases 8 8 2 6 6 6 Detector Phase 8 8 2 6 6 6 Switch Phase 8 8 2 6 6 6 Switch Phase 9 Minimum Right (s) 10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 1.	ane Configurations	*	7	≜ ℃	*	44			
Lame Grup Flow (vph) 83 66 603 116 527 Tum Type Prot Prom NA Perm NA Perm Protected Phases 8 2 6 6 1 7 Permitted Phases 8 6 6 Detector Phase 8 8 2 6 6 6 Switch Phase 9 Minimum Right (s) 10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 Minimum Spitt (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 38.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 26.0 39.0 44.0 44.0 5.0 5.0 10.0 Minimum Spitt (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 10.0 Minimum Spitt (s) 3.0 3.0 3.0 5.0 5.0 10.0 Minimum Spitt (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	raffic Volume (vph)								
Turn Type Prote Perm NA Perm NA Perm Protected Phases 8 2 6 1 7 Permitted Phases 8 8 2 6 6 1 7 Permitted Phases 8 8 2 6 6 6 Permitted Phases 8 8 2 6 6 6 Permitted Phases 8 8 2 6 6 7 Permitted Phases 8 8 2 6 6 7 Permitted Phases 9 8 8 2 6 6 7 Permitted Phases 9	uture Volume (vph)	75		444	104	474			
Protected Phases 8 2 6 6 1 7 Premitted Phases 8 8 2 6 6 6 Detector Phase 8 8 2 6 6 6 Whiting the protection of the pro			66	603	116	527			
Permitted Phases 8 8 6 6 Delector Phase 8 8 2 6 6 Switch Phase 8 8 2 2 6 6 6 Whithman Initials (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	urn Type	Prot	Perm	NA	Perm	NA			
Delector Phase 8	rotected Phases	8		2		6	1	7	
Switch Phase Minimum Initials (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	ermitted Phases				6				
Minimum Initial (s)	letector Phase	8	8	2	6	6			
Minimum Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 Total Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 Total Split (s) 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 26.0 39.0 44.0 44.0 5.0 5.0 5.0 Total Split (s) 26.0 26.0 39.0 34.0 30.0 30.0 30.0 30.0 30.0 30.0 30	witch Phase								
Total Spift (s)	finimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Trotel Spilin (%)	finimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Yellow Time (s)	otal Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
All-Red Time (s)									
Lost Time Adjust (s)	ellow Time (s)				3.0				
Table Lost Time (s) 6.3 6.3 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	II-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lead Lag Lag Lag Lag Lead L	ost Time Adjust (s)								
Lead-Lag Optimize? Ves Recall Mode None None C-Max C-Max C-Max C-Max Act Effict Green (s) 10.8 10.8 55.6 55.6 55.6 Act Effict Green (s) 10.8 10.8 55.6 55.6 55.6 Act Effict Green (s) 10.8 10.8 10.8 55.6 55.6 Act Effict Green (s) 10.8 10.8 10.8 55.6 55.6 Act Effict Green (s) 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8		6.3	6.3	6.9	6.9	6.9			
Lead-Lag Optimize? None None C-Max C-Max C-Max None None None C-Max C-Max C-Max None None None None None None None None	ead/Lag	Lag	Lag	Lag			Lead	Lead	
Act Effet Green (s) 10.8 10.8 55.6 55.6 55.6 Achualed (pf Ratio 0.14 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.7	ead-Lag Optimize?			Yes			Yes	Yes	
Actuated QiC Ratio 0.14 0.14 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.7	tecall Mode	None	None	C-Max	C-Max	C-Max	None	None	
v/c Ratio 0.37 0.31 0.29 0.25 0.23 Control Delay (skveh) 33.9 1.20 4.6 4.1 2.7 Oueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 LOS C B A A A Approach Delay (skveh) 24.2 4.6 3.30 A Approach LOS C A A A Cueue Length SOth (m) 10.9 0.0 13.3 2.7 6.2 Loveue Length SSTh (m) 22.2 9.7 23.3 5.5 9.5 Internal Link Dist (m) 30.8 3.37 44.8 44.8 Turn Bay Length (m) 40.0 388 2932 455 2330 Starvation Cap Reductin 0 0 0 0 0 0 Splitleack (Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ct Effct Green (s)	10.8	10.8	55.6	55.6	55.6			
Control Delay (siveh) 33.9 12.0 4.6 4.1 2.7 Queue Delay 0 0 0 0 0 0 0 0 Total Delay (siveh) 33.9 12.0 4.8 4.1 2.7 LOS C B A A A A A A A A Deproach Delay (siveh) 24.2 4.6 3.0 A A Queue Length Stbtt (m) 10.9 0 13.3 2.7 6.2 Queue Length Stbtt (m) 22.2 9.7 23.3 5.5 9.5 Turn Bay Length (m) 40.0 33.7 44.8 Turn Bay Length (m) 40.0 Starvation Cap Reductin 50.3 38.2 092 4.56 2.30 Starvation Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ctuated g/C Ratio	0.14	0.14	0.74	0.74	0.74			
Oueue Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/c Ratio	0.37	0.31	0.29	0.25	0.23			
Total Delay (sheh) 33.9 12.0 4.6 4.1 2.7 LOS C B A A A A Approach Delay (sheh) 24.2 4.6 3.0 Approach LOS C A A A A Approach Delay (sheh) 10.9 0.0 13.3 2.7 6.2 Queue Length Stht (m) 10.9 0.0 13.3 2.7 6.2 Queue Length Stht (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.5 33.7 44.8 Turn Bay Length (m) 40.5 33.8 2092 4.56 2.30 Starvation Cap Reductin 0 0 0 0 0 Starvation Cap Reductin 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 0 0 Strarge Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control Delay (s/veh)	33.9	12.0	4.6	4.1	2.7			
LOS C B A A A A A A A A A A A A A A A A A A	Queue Delay	0.0	0.0	0.0	0.0	0.0			
Approach Delay (siveh) 24.2 4.6 3.0 Approach LOS C A A A Queue Length 50th (m) 10.9 0.0 13.3 2.7 6.2 Queue Length 50th (m) 22.2 9.7 23.3 5.5 9.5 Internal Link Dist (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.0 33.7 44.8 Turn Bay Length (m) 40.5 338 20.92 456 23.0 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Intersection Summary Cycle Length (75 Actuated Cycle Length (75 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Valural Cycle : 75 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Sum Intersection Sum Intersection LOS: A	otal Delay (s/veh)	33.9	12.0	4.6	4.1	2.7			
Approach LOS	OS	С	В	A	A	A			
Queue Length 50th (m) 10.9 0.0 13.3 2.7 6.2 Queue Length 95th (m) 22.9 2.33 5.5 9.5 Internal Link Dst (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.0 40.0 Base Capacity (viph) 405 338 2092 456 2330 Starvation Cap Reductin 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 Storage Cap Reductin 0 0 0 0 0 Reduced vic Ratio 0 20 2.9 2.5 0.23 Intersection Summary Cycle Length: 75 5 Offset: 0 (9%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection ItoN: A Intersection ItoN: A Intersection LOS: A	pproach Delay (s/veh)	24.2		4.6		3.0			
Queue Length 95th (m) 22 2 9.7 23 3 5.5 9.5 Turn Bay Length (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.0 33.8 2092 45.6 233.0 Starvaction Cap Reductin 0 0 0 0 Spitilizatik Cap Reductin 0 0 0 0 Skrage Cap Reductin 0 0 0 0 Reduced Vic Ratio 0 0 0 0 Reduced Vic Ratio 0 0 0 0 Intersection Summany Cycle Length: 75 Offset: 0 (0%). Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 75 Corried Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5:9 Intersection LOS: A		С		Α		A			
Internal Link Dist (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.0 Turn Bay Length (m) 40.0 Starvation Cap Reducth 0 0 0 0 0 Starvation Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Queue Length 50th (m)	10.9	0.0	13.3	2.7	6.2			
Internal Link Dist (m) 30.6 33.7 44.8 Turn Bay Length (m) 40.0 Base Capacity (vph) 40.5 33.8 2092 45.6 23.30 Starvation Cap Reductin 0 0 0 0 0 0 Storage Capacity (vph) 40.5 33.8 2092 45.6 23.30 Storage Capacity (vph) 40.5 33.8 20.92 45.6 23.30 Storage Capacity (vph) 40.5 30.8 20.92 45.6 23.30 Storage Capacity Capacit	Queue Length 95th (m)	22.2	9.7	23.3	5.5	9.5			
Base Capacity (vph)		30.6		33.7		44.8			
Stanvation Cap Reducth	urn Bay Length (m)				40.0				
Spillback Cap Reducth	lase Capacity (vph)	405	338	2092	456	2330			
Strage Cap Reductr	tarvation Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	pillback Cap Reductn	0	0	0	0	0			
Intersection Summary Cycle Length: 75 Chitest: 0 (19%), Referenced to phase 2 NBT and 6:SBTL, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection Signal Delay (s/veh): 5.9 Intersection Signal Delay (s/veh): 5.9	torage Cap Reductn								
Cycle Length: 75 Achusted Cycle Length: 75 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Vatural Cycle: 75 Control Type: Achusted-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection Signal Delay (s/veh): 5.9	teduced v/c Ratio	0.20	0.20	0.29	0.25	0.23			
Cycle Length: 75 Achusted Cycle Length: 75 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Vatural Cycle: 75 Control Type: Achusted-Coordinated Maximum vic Redic: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection Signal Delay (s/veh): 5.9	storeaction Summary								
Achusted Cycle Length: 75 Offist: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Vatural Cycle: 75 Control Type: Achusted-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection LOS: A									
Offiset. 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Netural Cycle: 7:5 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Debay (s/veh): 5.9 Intersection Signal Debay (s/veh): 5.9									
Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection LOS: A		to nhaco	2-NRT a	nd 6-SPT	I Start o	f Green			
Control Type: Actuated-Coordinated Maximum vic Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection LOS: A		to priase	L.ND I dl	10 U.OD I	L, Otarl U	ii Oleeil			
Maximum v/c Ratio: 0.37 Intersection Signal Delay (s/veh): 5.9 Intersection LOS: A		rdinated							
Intersection Signal Delay (s/veh): 5.9 Intersection LOS: A		- Giriate'u							
		(voh) - F O			- In	ntarcantin	n I OS: A		
Intersection Capacity Utilization 58.5% ICU Level of Service B	ntersection Capacity Utiliza								
Analysis Period (min) 15		11011 30.3	/0		,	CO Level	UI SEI VIC	6.0	
	, , ,								
Splits and Phases: 3: Bank & Exhibition	. 4	nk & Exhi	bition				- 1		

Queues

	≯	→	•	←	4	†	-	ļ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø7	
Lane Configurations		4		4		414		414			
Traffic Volume (vph)	41	♣ 37	20	57	29	481	82	537			
Future Volume (vph)	41	37	20	57	29	481	82	537			
Lane Group Flow (vph)	0	135	0	195	0	602	0	749			
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA			
Protected Phases		4		8		2	1	6	3	7	
Permitted Phases	4		8		2		6				
Minimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%	66.7%	6%	6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0 0.0	2.9	3.0	0.0	0.0	
Lost Time Adjust (s) Total Lost Time (s)		5.6		5.6		6.0		6.0			
	Lan		Lan		Lan		Lead	0.0	Lead	Lead	
Lead/Lag Lead-Lag Optimize?	Lag	Lag	Lag Yes	Lag Yes	Lag Yes	Lag Yes	Yes		Leau	Yes	
Act Effct Green (s)		19.4	168	19.4	res	37.0	162	54.0		168	
Act Effet Green (s) Actuated g/C Ratio		0.22		0.22		0.41		0.60			
v/c Ratio		0.59		0.63		0.41		0.53			
Control Delay (s/veh)		43.8		31.3		22.1		4.6			
Queue Delay		0.0		0.0		0.0		0.0			
Total Delay (s/veh)		43.8		31.3		22.1		4.6			
LOS		D		С		C		A			
Approach Delay (s/veh)		43.8		31.3		22.1		4.6			
Approach LOS		D		С		С		Α			
Queue Length 50th (m)		21.1		20.0		39.8		7.7			
Queue Length 95th (m)		#40.4		42.9		55.8		9.7			
Internal Link Dist (m)		75.1		136.0		63.1		79.0			
Turn Bay Length (m)											
Base Capacity (vph)		228		308		1103		1425			
Starvation Cap Reductn		0		0		0		0			
Spillback Cap Reductn		0		0		0		0			
Storage Cap Reductn		0		0		0		0			
Reduced v/c Ratio		0.59		0.63		0.55		0.53			
Intersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 23 (26%), Reference	ed to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gre	en					
Natural Cycle: 90											
Control Type: Pretimed											
Maximum v/c Ratio: 0.63											
Intersection Signal Delay (s.						n LOS: E					
Intersection Capacity Utiliza	ition /1.0	%		l l	CU Level	of Service	e C				
Analysis Period (min) 15 # 95th percentile volume 6		annaih.									
Queue shown is maximu				ay be lon	ger.						
Queue snown is maximu	ım arter tv	vo cycles									
Splits and Phases: 7: Bar	nk & Sunr	nyside									
L .	4						- 1	•	Ĵ.		
Ø1	1 ø:	2 (R)						☆ -	→ ø4		
1/5 4	J \$							5 s 2	5 8		
Ø6 (R) ■							ı	*	T Ø8		
₩ Ø6 (K)								55 7	⇒ Ø8	_	omo onjimoro
TOLO OUTUN WAY INTO MICE IN T	00111100	- Harrowa	mio mio	попорог		7 CH O L 7 10 0 0	ournoin.	miles by	00/0 1180	no minoming	Page 5

Splits and Phases: 6: Bank & Ayimer		
₩ Ø2 (R)	オ チ _{Ø4}	
63 s	5 s 22 s	
↓ Ø6 (R)	hing	g, 2028 Back
63 s		

	•	•	†	Ţ					
Lane Group	EBL	NBL	NBT	SBT	Ø4				
ane Configurations	W	NDL	4	13BT	10 4				
Fraffic Volume (vph)	54	52	248	358					
uture Volume (vph)	54	52	248	358					
ane Group Flow (vph)	113	0	334	456					
	Prot	Perm	NA	NA					
Furn Type Protected Phases	10	Pellii	2	6	4				
Permitted Phases	10	2	2	0	4				
	21.0	48.0	48.0	48.0	11.0				
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0				
Total Split (s)	26.3%			60.0%	14%				
Total Split (%)	26.3%	60.0%	60.0%	3.0	3.0				
Yellow Time (s)	2.7	3.0	3.0	3.0					
All-Red Time (s)		3.8			2.7				
Lost Time Adjust (s)	0.0		0.0	0.0					
Total Lost Time (s)	5.7		6.8	6.8					
Lead/Lag									
Lead-Lag Optimize?									
Act Effct Green (s)	15.3		41.2	41.2					
Actuated g/C Ratio	0.19		0.52	0.52					
v/c Ratio	0.38		0.45	0.53					
Control Delay (s/veh)	32.7		14.6	15.9					
Queue Delay	0.0		0.0	0.0					
Total Delay (s/veh)	32.7		14.6	15.9					
LOS	С		В	В					
Approach Delay (s/veh)	32.7		14.6	15.9					
Approach LOS	C		В	В					
Queue Length 50th (m)	15.1		30.0	43.6					
Queue Length 95th (m)	29.7		49.9	69.1					
Internal Link Dist (m)	57.2		0.1	5.9					
Turn Bay Length (m)									
Base Capacity (vph)	294		748	853					
Starvation Cap Reductn	0		0	0					
Spillback Cap Reductn	0		0	0					
Storage Cap Reductn	0		0	0					
Reduced v/c Ratio	0.38		0.45	0.53					
Intersection Summary									
Cycle Length: 80									
Actuated Cycle Length: 80									
Offset: 0 (0%), Referenced	to phase	6:SBT, S	tart of Gr	een					
Natural Cycle: 80									
Control Type: Pretimed									
Maximum v/c Ratio: 0.53									
Intersection Signal Delay (s					tersection LOS: B				
Intersection Capacity Utiliz	ation 64.4	%		IC	U Level of Service	С			
Analysis Period (min) 15									
Splits and Phases: 9: Qu	ıeen Eliza	beth Driv	e & Fifth						
. A			- 21.001		- 1		1 +		
92						× Ø4	1	Ø10	
48 s					1	1 s	21 s	1010	
1					-		213		

												_
Intersection												
Intersection Delay, s/veh	8											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations		4				7		4				
Traffic Vol. veh/h	40	48	0	0	0	93	58	39	36	0	0	10
Future Vol. veh/h	40	48	0	0	0	93	58	39	36	0	0	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	0.0
Mymt Flow	44	53	0	0	0	103	64	43	40	0	0	- 11
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					FB	SB					N
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	FB					W
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	1					1	1					
HCM Control Delay, s/veh	8.4					7.6	8.4					7
HCM LOS	Α					Α	Α					
		NDI - 4	EDI -4	MDI -4	ODI -4							
Lane Vol Left. %		NBLn1	EBLn1	WBLn1	SBLn1							
			45% 55%	0%	0 70							
Vol Thru, %		29% 27%	55%	100%	0% 100%							
Vol Right, %			Stop		Stop							
Sign Control		Stop 133	Stop	Stop 93	5top 104							
Traffic Vol by Lane LT Vol		133	40	93	104							
		39	40	0	0							
Through Vol												
RT Vol Lane Flow Rate		36 148	98	93 103	104 116							
Geometry Gro		148	98	103	116							
		0.182	0.128	0.115	0.127							
Degree of Util (X) Departure Headway (Hd)		4 425	4.704	4.022	3.949							
Convergence, Y/N		4.425 Yes	4.704 Yes	4.UZZ Yes	3.949 Yes							
		811	763	891	908							
Cap Service Time		2 446	2.729	2.047	1.97							
Service Time HCM Lane V/C Ratio		0.182	0.128	0.116	0.128							
		0.182	0.128	7.6	7.5							
HCM Control Delay, s/veh HCM Lane LOS		8.4 A	8.4 A	7.b	7.5 A							
HCM Lane LOS HCM 95th-tile O		0.7	0.4	0.4	0.4							

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mvmt Flow
Number of Lanes

HCM 7th AWSC 13: Paul Askin & Marche

07/31/2024

12: Exhibition & Paul Askin

| WBR | SBL | SBR | | SBR | SB

Intersection						
Intersection Delay, s/veh	7.3					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ર્ન	N/	
Traffic Vol, veh/h	15	5	5	72	5	5
Future Vol, veh/h	15	5	5	72	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	6	6	80	6	6
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB		140	
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay, s/veh	7		7.4		7	
HCM LOS	A		7. 4		A	
HOM LOG	А		А		А	

Opposing Approach	WB	EB				
Opposing Lanes	1	1		0		
Conflicting Approach Left	SB			WB		
Conflicting Lanes Left	1	0		1		
Conflicting Approach Right		SB		EB		
Conflicting Lanes Right	0	1		1		
HCM Control Delay, s/veh	8.6	8.1		7.6		
HCM LOS	A	Α		Α		
Lane	EBLn1	WBLn1	SBLn1			
Vol Left. %	2%	0%	50%			
Vol Thru, %	98%	96%	0%			
Vol Right, %	0%	4%	50%			
Sign Control	Stop	Stop	Stop			
Traffic Vol by Lane	210	142	10			
LT Vol	5	0	5			
Through Vol	205	137	0			
RT Vol	0	5	5			
Lane Flow Rate	233	158	11			
Geometry Grp	1	1	1			
Degree of Util (X)	0.264	0.18	0.014			
Departure Headway (Hd)	4.076	4.106	4.568			
Convergence, Y/N	Yes	Yes	Yes			
Сар	877	868	788			
Service Time	2.117	2.162	2.568			
HCM Lane V/C Ratio	0.266	0.182	0.014			
HCM Control Delay, s/veh	8.6	8.1	7.6			
HCM Lane LOS	A	Α	Α			
HCM 95th-tile Q	1.1	0.7	0			

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	50%	0%	6%
Vol Thru, %	0%	75%	94%
Vol Right, %	50%	25%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	10	20	77
LT Vol	5	0	5
Through Vol	0	15	72
RT Vol	5	5	0
Lane Flow Rate	11	22	86
Geometry Grp	1	- 1	1
Degree of Util (X)	0.012	0.024	0.095
Departure Headway (Hd)	3.92	3.867	3.983
Convergence, Y/N	Yes	Yes	Yes
Cap	908	926	903
Service Time	1.965	1.887	1.991
HCM Lane V/C Ratio	0.012	0.024	0.095
HCM Control Delay, s/veh	7	7	7.4
HCM Lane LOS	A	A	A
HCM 95th_tile O	0	0.1	0.3

2028 Saturday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05i04/2023 Existing: Specific Scheid Transportation Impact Assessment 12:06 pm 05i04/2023 Existing: Page 2

HCM 7th AWSC

14: Exhibition & Marche 07/31/2024

HCM 7th TWSC

4: Bank & Wilton

07/31/2024

Intersection Delay of the							
Intersection Delay, s/veh	9						
Intersection LOS	A						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	*/*		
Traffic Vol. veh/h	15	5	86	5	155	106	
Future Vol. veh/h	15	5	86	5	155	106	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	17	6	96	6	172	118	
Number of Lanes	1	0	0	1	1	0	
Approach	FB		WB		NB		
Opposing Approach	WB		EB		.10		
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB.		FB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay, s/veh	7.7		8.6		9.2		
HCM LOS	Α		Α		Α		
lane		NRI n1	FRI n1	WRI n1			
Lane		NBLn1	EBLn1				
Vol Left, %		59%	0%	95%			
Vol Left, % Vol Thru, %		59% 0%	0% 75%	95% 5%			
Vol Left, % Vol Thru, % Vol Right, %		59% 0% 41%	0% 75% 25%	95% 5% 0%			
Vol Left, % Vol Thru, % Vol Right, % Sign Control		59% 0% 41% Stop	0% 75% 25% Stop	95% 5% 0% Stop			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		59% 0% 41% Stop 261	0% 75% 25% Stop 20	95% 5% 0% Stop 91			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		59% 0% 41% Stop	0% 75% 25% Stop 20 0	95% 5% 0% Stop 91 86			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		59% 0% 41% Stop 261 155 0	0% 75% 25% Stop 20 0 15	95% 5% 0% Stop 91 86 5			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		59% 0% 41% Stop 261 155 0	0% 75% 25% Stop 20 0 15	95% 5% 0% Stop 91 86 5			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		59% 0% 41% Stop 261 155 0	0% 75% 25% Stop 20 0 15	95% 5% 0% Stop 91 86 5			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		59% 0% 41% Stop 261 155 0 106 290	0% 75% 25% Stop 20 0 15 5 22	95% 5% 0% Stop 91 86 5 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		59% 0% 41% Stop 261 155 0 106 290 1	0% 75% 25% Stop 20 0 15 5 22 1	95% 5% 0% Stop 91 86 5 0 101 1			
Vol Left, % Vol Trun, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79			
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79 Yes			
Vol Left, % Vol Thru, % Vol Tight, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, V/N Cap		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes 876	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes 788	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79			
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane ET Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79 Yes 750			
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, YN Cap Service Time HOM Lane ViC Ratio		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes 876 2.125	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes 788 2.569	95% 5% 0% Stop 91 86 5 0 101 1 1 0.135 4.79 Yes 750 2.807			
Vol Left, % Vol Thru, % Vol Thru, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uil (X) Departure Headway (Hd) Convergence, Way Cap Service Time HCM Lane I/C Ratio HCM Control Delay, s/veh		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes 876 2.125 0.331	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes 788 2.569 0.028	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79 Yes 750 2.807 0.135			
Vol Left, % Vol Thru, % Vol Tight, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, V/N Cap		59% 0% 41% Stop 261 155 0 106 290 1 0.332 4.125 Yes 876 2.125 0.331 9.2	0% 75% 25% Stop 20 0 15 5 22 1 0.028 4.549 Yes 2.569 0.028 7.7	95% 5% 0% Stop 91 86 5 0 101 1 0.135 4.79 Yes 750 2.807 0.135 8.6			

Intersection						
Int Delay, s/veh	6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		414	1,	
Traffic Vol. veh/h	3	177	116	557	513	55
Future Vol. veh/h	3	177	116	557	513	55
Conflicting Peds, #/hr	0		178	0	0.0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	- 100	
Storage Length		0		140116		140116
Veh in Median Storage		-		0	0	
Grade. %	0,#			0	0	- 1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
	3	197	129			61
Mvmt Flow	3	197	129	619	570	01
Major/Minor N	Minor2	- 1	Major1	N.	/lajor2	
Conflicting Flow All	1346	779	809	0	-	0
Stage 1	779	-		-		- 1
Stage 2	567					
Critical Hdwy		6.275	4 175			
Critical Hdwy Stg 1	5.475	0.2.10				
Critical Hdwy Stg 2	5.875					
		3.34752	2/75	_		_
Pot Cap-1 Maneuver	151	389	798	- 1	- 1	- 1
	445	309	790			
Stage 1	525	- 1	- 1	-	-	-
Stage 2	525					-
Platoon blocked, %		010	0.10		- 1	-
Mov Cap-1 Maneuver		316	648			-
Mov Cap-2 Maneuver	76	-	-	-	-	-
Stage 1	274			-	-	-
Stage 2	426			-		-
Approach	EB		NB		SB	
HCM Control Delay, si			3.73		0.0	
HCM LOS	D.Con		3.13		U	
HCM LUS	U					
Minor Lane/Major Mvn	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		537		316	-	
HCM Lane V/C Ratio		0.199		0.623		
HCM Control Delay (s.	(veh)	11.9	2			
HCM Lane LOS		B	Ā	D		
HCM 95th %tile Q(veh	1	0.7	-	3.9		
HOW South Male Q Ven	'/	0.7		0.0		

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*4*			4	1	
Traffic Vol. veh/h	85	61	65	210	252	155
Future Vol. veh/h	85	61	65	210	252	155
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0					
Veh in Median Storage	. # 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	94	68	72	233	280	172
Matan B. Carro	r 0		Anto-A		1-1-0	
	linor2		Major1		Major2	_
Conflicting Flow All	744	366	452	0	-	0
Stage 1	366	-			- 1	
Stage 2	378	-	-			
Critical Hdwy	6.4	6.2	4.1	-		
Critical Hdwy Stg 1	5.4					
Critical Hdwy Stg 2	5.4			-		
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	385	684	1119	-		
Stage 1	706			-		
Stage 2	697			-		
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	356	684	1119	-		
Mov Cap-2 Maneuver	356	-	-	-	-	-
Stage 1	654			-		
Stage 2	697	-	-	-	-	-
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s/			1.99		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		425		446		
HCM Lane V/C Ratio		0.065		0.364		
HCM Control Delay (s/	veh)	8.4	0	17.6		
HCM Lane LOS		A	A	C		
HCM 95th %tile Q(veh)	0.2	-	1.6		
	,					

| Intersection | Int

2028 Saturday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Exis**Syng:Rio SigNa;Rio Sig**

2028 Saturday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 12:06 pm 05/04/2023 Exis**Syng:RNd \$2;RaipTürn**ing, 2028 Back Page 3

HCM 7th TWSC

10: Bank & Marche 07/31/2024

latara allar						
Intersection	0.0					
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħβ			44
Traffic Vol, veh/h	6	71	494	19	2	577
Future Vol, veh/h	6	71	494	19	2	577
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	e, # 0		0			0
Grade, %	0		0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mymt Flow	7	79	549	21	2	641
					_	
	linor1		Major1		Major2	_
Conflicting Flow All	984	385	0	0	670	0
Stage 1	659	-		-		
Stage 2	325	-		-		
Critical Hdwy	6.8	7.2		-	4.1	
Critical Hdwy Stg 1	5.8	-		-	-	-
Critical Hdwy Stg 2	5.8	-		-		
Follow-up Hdwy	3.5	3.45	-	-	2.2	-
Pot Cap-1 Maneuver	249	578		-	930	
Stage 1	482	-		-		
Stage 2	711	-		-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	222	517			831	
Mov Cap-2 Maneuver	222	-				
Stage 1	431	- :	- 1	- 1		- 1
Stage 2	708	- 0				
Staye 2	100	-				
Approach	WB		NB		SB	
HCM Control Delay, s/	13.22		0		0.03	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NRP	VBLn1	SBL	SBT
Capacity (veh/h)		IND I	NDIW	517	831	301
				0.153		- 1
HCM Lane V/C Ratio	(day)	-				
HCM Lane V/C Ratio HCM Control Delay (s/	veh)	-	-	13.2	9.3	
HCM Lane V/C Ratio						:

HCM 7th TWSC

16: Princess Patricia/Princess Patricia Way & Garage

Intersection						
Int Delay, s/veh	6.2					
	501	FOT	III DE	HIDD	001	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ»		¥	
Traffic Vol, veh/h	91	31	74	146	123	72
Future Vol, veh/h	91	31	74	146	123	72
Conflicting Peds, #/hr	. 0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length		-	-		0	-
Veh in Median Storag	e,# -	0	0		0	-
Grade, %	-	0	0		0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	101	34	82	162	137	80
MVIIICT IOW	101	07	02	102	101	00
	Major1	- N	Major2		Minor2	
Conflicting Flow All	244	0	-	0	400	163
Stage 1	-	-			163	-
Stage 2	-	-		-	237	-
Critical Hdwy	4.12	-			6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218				3.518	2 2 1 0
Pot Cap-1 Maneuver		- 1	- 1		606	881
Stage 1	1022		- 1	- 1	866	001
Stage 2	-	-	-	-	803	-
Platoon blocked, %			-			
Mov Cap-1 Maneuver					559	881
Mov Cap-2 Maneuver	-	-	-			-
Stage 1	-	-			798	-
Stage 2	-	-	-		803	-
A b	FB		WB		00	
Approach					SB	
HCM Control Delay, s	v 5.93		0		13.36	
HCM LOS					В	
Minor Lane/Major Mvi	mt	FBI	EBT	WRT	WBR:	SRI n1
Capacity (veh/h)		1296	-		-	
HCM Lane V/C Ratio		0.076	- 1	- 1		0.335
	1	7.9	0	- 1		
HCM Control Delay (s	s/veh)				-	
HCM Lane LOS		Α	Α	-	-	
HCM 95th %tile Q(vel	h)	0.2	-			1.5

Sunday Peak Hour

	-	-	4	†	-	↓			
ane Group	EBT	WBT	NBL	NBT	SBL	SBT	Ø3		
ane Configurations	4			476		414			
raffic Volume (vph)	17	0	32	504	22	522			
uture Volume (vph)	17	0	32	504	22	522			
ane Group Flow (vph)	109	2	0	685	0	643			
Turn Type	NA	_	Perm	NA	Perm	NA			
Protected Phases	4			2		6	3		
Permitted Phases			2	-	6	•	•		
Detector Phase	4		2	2	6	6			
Switch Phase			-	-					
Minimum Initial (s)	4.4		10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	23.0		47.0	47.0	47.0	47.0	5.0		
Fotal Split (s)	23.0		47.0	47.0	47.0	47.0	5.0		
Fotal Split (%)	30.7%		62.7%	62.7%	62.7%	62.7%	7%		
Yellow Time (s)	3.0		3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6		2.2	2.2	2.2	2.2	0.0		
Lost Time Adjust (s)	0.0		2.2	0.0	2.2	0.0	0.0		
Fotal Lost Time (s)	5.6			5.2		5.2			
ead/Lag	Lag			J.Z		J.Z	Lead		
.ead-Lag Optimize?	Lay						Lead		
Recall Mode	None		C-May	C-May	C-Max	C-May	None		
Act Effct Green (s)	11.5	0.0	C-IVIAX	56.1	C-Max	56.1	None		
Actuated g/C Ratio	0.15	0.00		0.75		0.75			
/c Ratio	0.15	0.00		0.75		0.75			
	38.5	0.01		2.4		9.3			
Control Delay (s/veh)	0.0	0.0		0.0		0.0			
Queue Delay Fotal Delay (s/veh)	38.5	0.0		2.4		9.3			
OS	30.5 D	Ο.0		2.4 A		9.3 A			
Approach Delay (s/veh)	38.5	А		2.4		9.3			
Approach LOS	30.5 D			2.4 A		9.3 A			
Oueue Length 50th (m)	14.4	0.0		4.9		28.3			
Queue Length 95th (m)	26.9	0.0		11.1		44.5			
	39.8	116.8		31.5		195.6			
nternal Link Dist (m)	39.0	110.0		31.5		195.0			
Turn Bay Length (m)	304	143		1895		2052			
Base Capacity (vph)	304	143		1895		2052			
Starvation Cap Reductn		0							
Spillback Cap Reductn	0			0		0			
Storage Cap Reductn		0				0			
educed v/c Ratio	0.36	0.01		0.36		0.31			
ntersection Summary									
ycle Length: 75									
ctuated Cycle Length: 75									
Offset: 16 (21%), Reference		e 2:NBT	L and 6:5	SBTL, Sta	art of Gre	en			
latural Cycle: 75	- 10 p.100			, 500					
ontrol Type: Actuated-Co	ordinated								
laximum v/c Ratio: 0.55									
ntersection Signal Delay (s/veh): 8.2			li li	ntersection	on LOS: A			
tersection Capacity Utiliz						of Service			
nalysis Period (min) 15					- 3 20761	2. OO. FIG			
, , , ,									
Splits and Phases: 2: Ba	ank & Holm	wood						1 *	
4							Ŕ	Ĵ.	
Ø2 (R)							1	φ → Ø4	
47 s							5 s	23 s	
							ı		
Ø6 (R)							1		
7 0									

Queues 07/31/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turm Type
Protected Phases
Minimum Spitt (s)
Total Spit Perm
 4
 8
 2
 6

 260
 260
 260
 260
 490
 490
 490
 490

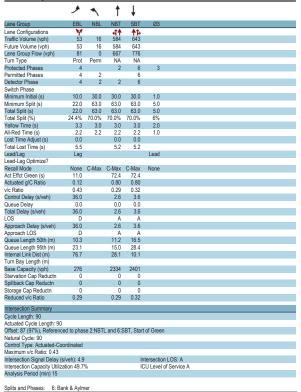
 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.38 0.48 0.27 43.5 0.58 0.38 43.5 0.58 0.36 22.6 29.3 16.6 0.0 0.0 0.0 22.6 29.3 16.6 10.4 0.0 10.4 9.0 C C A 9.0 23.6 10.4 A 21.1 30.9 190.0 12.4 16.6 8.1 26.8 33.0 20.2 49.7 45.0 341 294 0 0 1594 0.38 0.48 0.27 0.38 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset 42 (65%, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.48
Intersection Signal Delay (siveh): 13.0
Intersection Capacity Utilization 58.2%
Analysis Period (min) 15

CU Level of S
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1**, ø4

2028 Sunday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:14 pm 07/15/2024 Existing PMthStyfie Rispining, 2028 Backgr Page 1

T Ø8

▶ Ø6 (R)


	•	4	†	\	 				
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø3	Ø6	Ø7	
Lane Configurations	*	7	♠ ₽	*	44				
Traffic Volume (vph)	109	51	407	151	440				
Future Volume (vph)	109	51	407	151	440				
Lane Group Flow (vph)	121	57	559	168	489				
Turn Type	Perm	Perm	NA	custom	NA				
Protected Phases			2	1	16	3	6	7	
Permitted Phases	8	8		6					
Detector Phase	8	8	2	1	16				
Switch Phase									
Minimum Initial (s)	4.0	4.0	10.0	4.0		1.0	5.1	3.0	
Minimum Split (s)	26.0	26.0	27.0	12.0		5.0	27.0	5.0	
Total Split (s)	26.0	26.0	27.0	12.0		5.0	27.0	5.0	
Total Split (%)	34.7%	34.7%	36.0%	16.0%		7%	36%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0		2.0	3.0	2.0	
All-Red Time (s)	3.0	3.0	3.9	3.9		0.0	3.9	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0					
Total Lost Time (s)	6.3	6.3	6.9	6.9					
Lead/Lag				Lead		Lag			
Lead-Lag Optimize?				Yes		Yes			
Recall Mode	None	None	C-Max	None		None	C-Max	None	
Act Effct Green (s)	11.7	11.7	40.7	45.8	54.1				
Actuated g/C Ratio	0.16	0.16	0.54	0.61	0.72				
v/c Ratio	0.55	0.27	0.36	0.38	0.22				
Control Delay (s/veh)	37.9	11.0	11.5	8.4	4.2				
Queue Delay	0.0 37.9	0.0	0.0	0.0 8.4	0.0				
Total Delay (s/veh) LOS	37.9 D	11.0 B	11.5 B		4.2 A				
Approach Delay (s/veh)	29.3	В	11.5	A	5.3				
Approach LOS	29.3 C		11.5 B		5.5 A				
Queue Lenath 50th (m)	16.0	0.0	22.0	5.5	8.3				
Queue Length 95th (m)	28.9	8.5	38.1	11.1	12.3				
Internal Link Dist (m)	30.6	0.5	33.7	11.1	44.8				
Turn Bay Length (m)	30.0		55.1	40.0	44.0				
Base Capacity (vph)	371	317	1532	445	2266				
Starvation Cap Reductn	0	0.7	0	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.33	0.18	0.36	0.38	0.22				
ntersection Summary Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 15 (20%), Reference	ad to nhac	2 2-NRT	and 6-SI	RTI Start	of Green	,			
Natural Cycle: 75	ou to pride	56 Z.IND I	and o.o.	JIL, Otali	OI OIGGI				
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.55	2.3								
ntersection Signal Delay (s	s/veh): 10:	8		In	tersectio	n LOS: F	3		
ntersection Capacity Utiliza					CU Level				
Analysis Period (min) 15									
Splits and Phases: 3: Ba	ınk & Exhil	hition							
غ I 🕇				11	Ø1		<u> </u>		
5 g7 Ø2 (R)				12 s	Ø1	5	N 03		
L.								* ~	
Ø6 (R)								€ Ø8	

Ø2 (R)

43 s

↓ Ø6 (R)

07/31/2024

41	
Ø2 (R)	
63 s 22 s	
↓ Ø6 (R)	ckgr
63 s	

9: Queen Elizabeth Drive & Fifth Section	Queues						
Section Sect	9: Queen Elizabet	h Drive	& Fift	h			07/31/202
Lane Configurations Y		۶	1	†	ļ		
Traffic Volume (uph)	Lane Group	EBL	NBL	NBT	SBT	Ø3	
Future Volume (uph)	Lane Configurations	**		41	ħ		
Lane Group Flow (viph) 182 0 260 53 Turn Type Perm NA NA NA Protected Phases 4 2 6 6 3 Detector Phases 4 2 2 6 6 Detector Phases 4 2 2 7 6 Minimum Initial (s) 10.0 4.0 4.0 4.0 4.0 Minimum Initial (s) 10.0 4.0 4.0 4.0 4.0 Minimum Initial (s) 22.0 42.0 42.0 42.0 9.7 Total Split (s) 22.0 42.0 42.0 42.0 9.7 Total Split (s) 22.3% 56.0% 56.0% 56.0% 15% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Al-Red Time (s) 2.7 3.8 3.8 3.8 2.7 Load Lag Optimize? Yes Recall Mode Min Max Max None Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 3.8 Act Effic Green (s) 12.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	Traffic Volume (vph)	12	215	19	22		
Turn Type Perm Perm NA NA Protected Phases 2 2 6 3 Permitted Phases 4 2 2 Sattor Phase 4 2 2 6 Sattor Phase 7 7 7 7 Sattor Phase 7 7 7 Sattor Phase 7 7 7 7 7 7 Sattor Phase 7 7 7 7 7 7 7 Sattor Phase 7 7 7 7 7 7 7 7 Sattor Phase 7 7 7 7 7 7 7 7 7	Future Volume (vph)	12	215	19			
Protected Phases 4 2 2 6 3 Detector Phase 4 2 2 6 6 Switch Phase 4 2 2 6 6 Minimum Initial (p) 10.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Lane Group Flow (vph)	182	0	260	53		
Permitted Phases 4 2 2 6 Switch Phase 4 2 2 6 Switch Phase 4 2 2 6 Switch Phase 4 4 2 2 2 6 Switch Phase 4 4 2 4 0 4.0 4.0 Minimum Spit (s) 22.0 42.0 42.0 42.0 9.7 Total Spit (s) 22.0 42.0 42.0 11.0 Total Spit (s) 23.0 56.0% 56.0% 56.0% 56.0% 15% Yellow Time (s) 2.7 3.8 3.8 3.8 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.7 6.8 6.8 Lead-Lag Optimize? Yes Recall Mode Alin Max Max Max None Act Effct Green (s) 12.7 35.3 35.3 Act Leifd Leif Switch (s) 12.7 35.3 35.3 Act Leifd Leif Switch (s) 12.7 35.3 35.3 Act Leifd Green (s)	Turn Type	Perm	Perm				
Detector Phase 4				2	6	3	
Switch Phase Minimum Initial (g) 10.0 4.0 4.0 4.0 4.0 4.0 Minimum Spit (a) 22.0 42.0 42.0 42.0 9.7 Total Spit (b) 22.0 42.0 42.0 42.0 11.0 Total Spit (b) 22.3 56.0% 56.0% 56.0% 15% Fellow Time (s) 2.7 3.8 3.8 3.8 3.7 Lost Time (s) 2.7 3.8 3.8 3.8 3.8 2.7 Lost Time Adjust (b) 0.0 0.0 0.0 Total Lost Time (s) 5.7 6.8 6.8 Lead-Lag Optimize? Yes Recall Mode Alim Max Max Max None Act Leff (Green (s) 12.7 35.3 35.3 35.3 Actuated gO Ratio 0.21 0.58 0.58 Vor Ratio 0.99 0.38 0.06 Control Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A A Approach Delay (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELAY (sveh) 29.9 9.3 6.4 LOS C B A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A A APPROACH DELay (sveh) 29.9 9.3 6.4 LOS C B A A A A A A A A A A A A A A A A A B A A A A A B A B A B A B A B A B A B A B A B A B A							
Minimum Initial (s)	Detector Phase	4	2	2	6		
Minimum Spitt (s) 22.0 42.0 42.0 42.0 9.7 Total Spitt (s) 22.0 42.0 42.0 42.0 11.0 Total Spitt (s) 22.3 56.0% 56.0% 56.0% 15% Yestlow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 Alf-Red Time (s) 2.7 3.8 3.8 3.8 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.7 6.8 6.8 Lead-tlag (c) 12.7 3.8 3.8 3.8 2.7 Lead-tlag Lead Lead-Lead-Lead-Lead-Lead-Lead-Lead-Lead-	Switch Phase						
Total Split (s)	Minimum Initial (s)						
Total Spiti (%) 29.3% 56.0% 56.0% 56.0% 15% Yellow Time (s) 30 30 30 30 30 30 30 Al-Red Time (s) 2.7 3.8 3.8 3.8 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.	Minimum Split (s)						
Yellow Time (s)	Total Split (s)						
All-Red Time (s)	Total Split (%)						
Lost Time Adjust (s)							
Total Lost Time (s) 5.7 6.8 6.8 Lead Lag Lead-Lag Optimize? Yes Yes Yes Recall Mode Min Rote Man Rote Min Rote	All-Red Time (s)	2.7	3.8	3.8	3.8	2.7	
Lead Lead Log Dimize?	Lost Time Adjust (s)	0.0		0.0	0.0		
Lead-Lag Optimize? Yes	Total Lost Time (s)	5.7		6.8	6.8		
Recal Minde Min Max Max None Act Liff Green (s) 1.7 35.3 35.3 Actuated (gic Ratio 0.21 0.58 0.58 Vic Ratio 0.99 0.38 0.06 Control Delay (siveh) 29.9 9.3 6.4 Queue Delay 9.3 6.4 4 LOS A A 4 Approach Delay (siveh) 29.9 9.3 6.4 Approach Delay (siveh) 39.9 8.4 4 Approach Delay (siveh) 30.1 30.5 6.8 Internation (simple properties) 30.5 6.8 Internation (simple properties) 30.5 6.8 Int	Lead/Lag	Lag				Lead	
Act Effict Green (s) 12.7 35.3 35.3 AcALabed (g) CRatio 0.21 0.58 0.58 0.58 vic Ratio 0.21 0.58 0.58 0.58 vic Ratio 0.59 0.38 0.06 Control Delay (siveh) 29.9 0.38 0.4 Course Delay (siveh) 29.9 9.3 0.4 Course Delay (siveh) 29.9 0.3 0.4 Course Delay (siveh) 29.0 0.3 0.8 Course Delay (siveh) 39.6 0.0 Course Delay (siveh) 39.6 0.0 Course Delay (siveh) 39.0 Course Delay (siveh	Lead-Lag Optimize?	Yes				Yes	
Actuated (gl C Ratio 0 21 0 58 0 58 viv Ratio 0 59 0 38 0 56 Control Delay (siveh) 29 9 0 3 6.4 Cueuo Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Recall Mode		Max	Max	Max	None	
vic Ratio 0.59 0.38 0.06 Control Delay (s/wh) 29.9 9.3 6.4 Coeue Delay 0.0 0.0 0.0 Total Delay (s/wh) 29.9 9.3 6.4 LOS C A A Approach Delay (s/web) 29.9 9.3 6.4 Approach Delay (s/web) 29.9 9.3 6.4 Approach Delay (s/web) 29.9 9.3 6.4 Approach Delay (s/web) 18.3 13.4 2.2 Queue Length 50th (m) 18.3 13.4 2.2 Queue Length 95th (m) 57.2 0.1 5.9 Turn Bay Length (m) Base Capacity (vph) 36 682 905 Starvation Cap Reduct 0 0 0 0 Spitiback Cap Reduct 0 0 0 0 Spitiback Cap Reduct 0 0 0 0 Vycle Length: 75 Actualed Cycle Length: 60.5 Natural Cycle Length: 60.5 Natural Cycle Length: 60.5 <	Act Effct Green (s)	12.7		35.3	35.3		
Control Delay (siveh) 299 9.3 6.4 Cueve Delay 0.0 0.0 0.0 Total Delay (siveh) 29.9 9.3 6.4 LOS A A A A A A A A A A A A A A A A A A A	Actuated g/C Ratio	0.21		0.58	0.58		
Queue Delay 0.0 0.0 0.0 0.0 1.	v/c Ratio			0.38			
Total Dlay (siveh) 29.9 9.3 6.4 LOS C A A Approach Delay (siveh) 29.9 9.3 6.4 CAPproach Delay (siveh) 29.9 9.3 6.4 CAPproach Dolay (siveh) 29.9 9.3 6.4 CAPPROACH COS C A A COURLE Length 50th (m) 18.3 13.4 2.2 COURLE Length 50th (m) 57.2 0.1 5.9 Turn Bay Length (m) 57.2 0.1 5.9 Turn Bay Length (m) 59.5 Starvation Cap Reductn 0 0 0 0 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control Delay (s/veh)	29.9		9.3	6.4		
LOS A A A Approach Delay (s/veh) 29.9 9.3 6.4 Approach LOS C A A A A A Approach LOS C A A A A Approach LOS C A A A A A Queue Length 50th (m) 83.1 13.4 2.2 Queue Length 50th (m) 51.5 30.5 6.8 Internal Link Dist (m) 57.2 0.1 5.9 Turn Bay Length (m) 866 692 909 Starvation Cap Reductn 0 0 0 0 Storayo Cap Reductn 0 0 0 Storayo Cap Reductn 0 0 Storayo Cap Reductn 0 Storayo Cap Reduct	Queue Delay						
Approach Delay (siveh) 29.9 9.3 6.4 Approach LOS C A A Queue Length 50th (m) 18.3 13.4 2.2 Queue Length 50th (m) 51.3 0.5 6.8 Internal Link Dist (m) 57.2 0.1 5.9 Turn Bay Length (m) 596 692 Starvation Cap Reductn Starvation Cap Reductn O 0 0 Starvation Cap Reductn O 0 0 Storage Cap Reductn O 0 0 Storage Cap Reductn O 0 0 Intersection Summany Oyde Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum vic Ratio: D.59 Intersection LOS: B Intersection LOS: B	Total Delay (s/veh)	29.9		9.3	6.4		
Approach LOS C A A Queue Length 50th (m) 18.3 13.4 2.2 Queue Length 50th (m) 55.1 30.5 6.8 Internal Link Dist (m) 85.1 30.5 6.8 Internal Link Dist (m) 85.2 0.1 5.9 Tum Bay Length (m) 8ase Capacity (vph) 396 692 909 Stanvation Cap Reductn 0 0 0 Spiliback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced vic Ratio 0.46 0.38 0.06 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum vic Ratio: 0.59 Intersection LOS: B Intersection LOS: B	LOS	С		Α	A		
Queue Length 50th (m) 18.3 13.4 2.2 Queue Length 59th (m) 5.1 30.5 6.8 Internal Link Dist (m) 57.2 0.1 5.9 Tum Bay Length (m) 396 692 999 Starvation Cap Reducth 0 0 0 Spitiblack Cap Reducth 0 0 0 Storage Cap Reducth 0 0 0 Reduced vice Ratio 0.46 0.38 0.08 Intersection Summany Cycle Length: 75 Actuard Cycle Length: 60.5 Natural Cycle: 75 Octorfor Type: Semi Act-Uncoord Maximum Vic Ratio: 0.59 Intersection LOS: 8	Approach Delay (s/veh)						
Queue Length 95th (m) 35.1 30.5 6.8 Internal Link Dist (m) 57.2 0.1 5.9 Turn Bay Length (m) 86 692 909 Starvation Cap Reductin 0 0 0 Spillback Cap Reductin 0 0 0 Storage Cap Reductin 0 0 0 Reduced vic Ratio 0.46 0.38 0.06 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 78 Control Type: Serial Act-Uncoord Maximum vic Ratio: 0.59 Intersection Summary Intersection Sum Debug (siveh): 16.6 Intersection LOS: B	Approach LOS			Α			
Internal Link Dist (m) 57.2 0.1 5.9	Queue Length 50th (m)						
Turn Bay Length (m) Base Capacity (vph) 396 692 909 Starvation Cap Reductin 0 0 0 Spillback Cap Reductin 0 0 0 Spillback Cap Reductin 0 0 0 Storage Cap Reductin 0 0 0 Reduced vic Ratio 0.46 0.38 0.06 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 6.05 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum vic Ratio: 0.59 Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Queue Length 95th (m)						
Base Capacity (vph) 396 692 909 Starvation Cap Reducth 0 0 0 0 Spillback Cap Reducth 0 0 0 0 Sourage Cap Reducth 0 0 0 0 Storage Cap Reducth 0 0 0 0 Reduced vice Ratio 0,46 0,38 0,06 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum vic Ratio: 0.59 Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Internal Link Dist (m)	57.2		0.1	5.9		
Starvation Cap Reducts	Turn Bay Length (m)						
Spitback Cap Reductin 0 0 0 0 Storage Cap Reductin 0 0 0 0 Storage Cap Reductin 0 0 0 0 Reduced vir Ratio 0.46 0.38 0.06 Intersection Summary Cycle Length: 75 Actualed Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum Vic Ratio: 0.59 Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Base Capacity (vph)						
Storage Cap Reduct	Starvation Cap Reductn						
Reduced v/c Ratio 0.46 0.38 0.06 Intersection Summary Cycle Length: 75 Aduated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.59 Intersection Signal Delay (s/veh): 16.6 Intersection LOS: B							
Intersection Summary Cycle Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum (vic Ratio: 0.59) Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Storage Cap Reductn						
Cycle Length: 75 Actuated Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum (vic Ratio: 0.59) Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Reduced v/c Ratio	0.46		0.38	0.06		
Actusted Cycle Length: 60.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum Vic Ratio: 0.39 Mintersection Signal Delay (siveh): 16.6 Intersection LOS: B	Intersection Summary						
Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum vR Ratio: 0.59 Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Cycle Length: 75						
Control Type: Semi Act-Lincoord Maximum vio Ratio: 0.59 Intersection Signal Delay (siveh): 16.6 Intersection LOS: B	Actuated Cycle Length: 60	.5					
Maximum v/c Ratio: 0.59 Intersection Signal Delay (s/veh): 16.6 Intersection LOS: B	Natural Cycle: 75						
Intersection Signal Delay (s/veh): 16.6 Intersection LOS: B	Control Type: Semi Act-Ur	ncoord					
	Intersection Signal Delay (s/veh): 16.	6		Ir	ntersection	on LOS: B
					10	CU Level	I of Service A

Intersection Capacity Utilization 41.3%	ICU Level of Service A	
Analysis Period (min) 15		
Splits and Phases: 9: Queen Elizabeth Drive & Fifth		
₼	i	
1 Ø2	A Ø3 Ø4	
42 s	11 s 22 s	
1 1		
↓ Ø6	1	, 2028 Backgr
42 s		

	•	\rightarrow	•	←	1	†	-	ļ			
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7
ane Configurations		4		4		414		414			
raffic Volume (vph)	42	33	15	50	18	460	115	497			
uture Volume (vph)	42	33	15	50	18	460	115	497			
ane Group Flow (vph)	0	117	0	190	0	543	0	771			
urn Type	Perm	NA	Perm	NA	Perm		custom	NA			
Protected Phases		4		8		2	1	16	3	6	7
Permitted Phases	4		8		2		6				
Detector Phase	4	4	8	8	2	2	1	16			
Witch Phase											
finimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0
finimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	43.0	5.0
otal Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	43.0	5.0
otal Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%		6%	48%	6%
ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0
II-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0
ost Time Adjust (s)		0.0		0.0		0.0					
otal Lost Time (s)		5.6		5.6		6.0					
.ead/Lag	Lag	Lag	Lag	Lag					Lead		Lead
ead-Lag Optimize?			Yes	Yes							Yes
Recall Mode	None	None	None	None	C-Max	C-Max	None		None	C-Max	None
ct Effct Green (s)		15.2		15.2		44.0		57.4			
Actuated g/C Ratio		0.17		0.17		0.49		0.64			
/c Ratio		0.77		0.71		0.39		0.51			
Control Delay (s/veh)		65.0		34.0		17.0		5.2			
Queue Delay		0.0		0.0		0.0		0.0			
otal Delay (s/veh)		65.0		34.0		17.0		5.2			
.0S		Е		С		В		Α			
Approach Delay (s/veh)		65.0		34.0		17.0		5.2			
Approach LOS		E		C		30.4		A			
Queue Length 50th (m)		19.5		17.5				9.1			
Queue Length 95th (m)		34.8		36.5		48.7		11.8			
nternal Link Dist (m)		75.1		136.0		63.1		79.0			
urn Bay Length (m)		004		205		4200		4500			
Base Capacity (vph)		201		325		1399		1520			
Starvation Cap Reductn		0		0		0		0			
Spillback Cap Reductn Storage Cap Reductn		0		0		0		0			
Reduced v/c Ratio		0.58		0.58		0.39		0.51			
ntersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 23 (26%), Reference	ed to pha:	se 2:NBT	L and 6:5	BTL, Sta	art of Gre	en					
latural Cycle: 90											
Control Type: Actuated-Co	ordinated										
Maximum v/c Ratio: 0.77											
ntersection Signal Delay (s	s/veh): 16.	.8			ntersection	n LOS: E	3				
ntersection Capacity Utiliza					CU Level						
Analysis Period (min) 15											
Splits and Phases: 7: Ba	ınk & Sunı	nyside									
. +					1 . 1	4				11	

x → Ø4

* 7 Ø8

▶ ø1

2028 Backgr

12: Exhibition & Pau	ıl Askı	ın						07
Intersection							 	
Intersection Delay, s/veh	8.8							
Intersection LOS	Δ.0							
intersection LOS	^							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	Ta		N/			
Traffic Vol, veh/h	5	250	164	5	5	5		
Future Vol, veh/h	5	250	164	5	5	5		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	6	278	182	6	6	6		
Number of Lanes	0	1	1	0	1	0		
Approach	EB		WB		SB			
Opposing Approach	WB		EB					
Opposing Lanes	1		1		0			
Conflicting Approach Left	SB				WB			
Conflicting Lanes Left	1		0		1			
Conflicting Approach Right			SB		EB			
Conflicting Lanes Right	0		1		1			
HCM Control Delay, s/veh	9.1		8.4		7.8			
HCM LOS	Α		Α		Α			
		EBLn1	MDI - 4	SBI n1				
Lane								
/ol Left, %		2%	0%	50%				
/ol Thru, %		98%	97%	0%				
Vol Right, %		0%	3%	50%				
Sign Control		Stop	Stop	Stop				
Traffic Vol by Lane		255	169	10				
_T Vol		5	0	5				
Through Vol		250	164	0				
RT Vol		0	5	5				
Lane Flow Rate		283	188	11				
Geometry Grp		1						
Degree of Util (X)		0.322	0.216	0.015				
Departure Headway (Hd)		4.097	4.147	4.736				
Convergence, Y/N		Yes	Yes	Yes				
Cap		873	856	760				
Service Time		2.149	2.216	2.736				
HCM Lane V/C Ratio		0.324	0.22	0.014				
HCM Control Delay, s/veh		9.1	8.4	7.8				
HCM Lane LOS		Α	Α	A				

HCM 7th AWSC 14: Exhibition & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Approach

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Conergence, Vn
Conergence

WB 1

EB 1

NBLn1 EBLn1 WBLn1

NBLn1 EBLn1 WBLn1
59% 0% 95%
0% 74% 55%
41% 26% 0%
Stop Stop Stop
318 19 59
188 0 56
0 144 3
130 5 0
353 21 66
1 1 1

130 5 0 353 21 66 1 1 0 0.388 0.027 0.09 3956 4.627 4.917 Yes Yes Yes 897 778 733 2.034 2.63 2.918 0.394 0.027 0.09 9.6 7.8 8.4 A 1.9 0.1 0.3

07/31/2024

Intersection						
Intersection Delay, s/veh	7.9					
Intersection LOS	A					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			લ	¥	
Traffic Vol, veh/h	14	5	5	163	5	5
Future Vol. veh/h	14	5	5	163	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	6	6	181	6	6
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	- 1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	- 1		0		- 1	
HCM Control Delay, s/veh	7.1		8		7.2	
HCM LOS	Α		Α		Α	
Lane		NBLn1	EBLn1	WBLn1		
		50%	0%	3%		
		50% 0%	0% 74%	3% 97%		
Vol Thru, % Vol Right, %						
Vol Thru, % Vol Right, % Sign Control		0%	74% 26% Stop	97% 0% Stop		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		0% 50% Stop 10	74% 26% Stop 19	97% 0% Stop 168		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% 50% Stop 10	74% 26% Stop 19	97% 0% Stop 168 5		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% 50% Stop 10 5	74% 26% Stop 19 0	97% 0% Stop 168 5 163		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% 50% Stop 10 5 0	74% 26% Stop 19 0 14 5	97% 0% Stop 168 5 163		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% 50% Stop 10 5 0 5	74% 26% Stop 19 0 14 5	97% 0% Stop 168 5 163 0		
Vol Thru, % Vol Right, % Sire Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% 50% Stop 10 5 0 5	74% 26% Stop 19 0 14 5 21	97% 0% Stop 168 5 163 0 187		
Vol Thru, % Vol Right, % Sire Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% 50% Stop 10 5 0 5	74% 26% Stop 19 0 14 5	97% 0% Stop 168 5 163 0		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% 50% Stop 10 5 0 5	74% 26% Stop 19 0 14 5 21	97% 0% Stop 168 5 163 0 187		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% 50% Stop 10 5 0 5 11 1 0.013 4.093 Yes	74% 26% Stop 19 0 14 5 21 1 0.023 3.934 Yes	97% 0% Stop 168 5 163 0 187 1 0.206 3.976 Yes		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% 50% Stop 10 5 0 5 11 1 0.013 4.093	74% 26% Stop 19 0 14 5 21 1 0.023 3.934	97% 0% Stop 168 5 163 0 187 1 0.206 3.976		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uil (X) Departure Headway (Hd) Convergence, Y/N Cap		0% 50% Stop 10 5 0 5 11 1 0.013 4.093 Yes	74% 26% Stop 19 0 14 5 21 1 0.023 3.934 Yes	97% 0% Stop 168 5 163 0 187 1 0.206 3.976 Yes		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LTT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN Gap Service Time		0% 50% Stop 10 5 0 5 11 1 0.013 4.093 Yes 862	74% 26% Stop 19 0 14 5 21 1 0.023 3.934 Yes 906	97% 0% Stop 168 5 163 0 187 1 0.206 3.976 Yes 905		
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ual (X) Departure Headway (Hd) Convergence, YN Cap Service Time Vol Cap Service Time Vol Cap Service Time		0% 50% Stop 10 5 0 5 11 1 0.013 4.093 Yes 862 2.177	74% 26% Stop 19 0 14 5 21 1 0.023 3.934 Yes 906 1.974	97% 0% Stop 168 5 163 0 187 1 0.206 3.976 Yes 905 1.985		
Vol Left, % Vol Tinu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane I/O: Ratio		0% 50% Stop 10 5 0 5 11 1 0.013 4.093 Yes 862 2.177 0.013	74% 26% Stop 19 0 14 5 21 1 0.023 3.934 Yes 906 1.974 0.023	97% 0% Stop 168 5 163 0 187 1 0.206 3.976 Yes 905 1.985 0.207		

2028 Sunday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:14 pm 07/15/2024 Existing)/PMnSig/ta/Füspinftg, 2028 Backgr Plage 2

2028 Sunday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:14 pm 07/15/2024 Existing/PM:http://defb.pinting. 2028 Backgr

188 130 3 188 130 0.90 0.90 0.90 2 2 2 2 3 209 144

HCM 7th AWSC

07/31/2024 37: O' Connor & Fifth

Intersection Delay, s/veh	9.9											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4				7		4				
Traffic Vol, veh/h	68	81	0	0	0	227	99	66	61	0	0	10
Future Vol, veh/h	68	81	0	0	0	227	99	66	61	0	0	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	76	90	0	0	0	252	110	73	68	0	0	11
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	- 1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	1					- 1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	1					1	1					
HCM Control Delay, s/veh	10					9.6	10.7					8
HCM LOS	A					Α	В					
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left. %		4.40/	100/	00/								
VOI LETT, %		44%	46%	0%	0%							
Vol Thru, %		29%	46% 54%	0%	0%							
Vol Thru, %		29%	54%	0%	0%							
Vol Thru, % Vol Right, %		29% 27%	54% 0%	0% 100%	0% 100%							
Vol Thru, % Vol Right, % Sign Control		29% 27% Stop	54% 0% Stop	0% 100% Stop	0% 100% Stop							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		29% 27% Stop 226	54% 0% Stop 149	0% 100% Stop 227	0% 100% Stop 103							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		29% 27% Stop 226 99	54% 0% Stop 149 68	0% 100% Stop 227 0	0% 100% Stop 103 0							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		29% 27% Stop 226 99 66	54% 0% Stop 149 68 81	0% 100% Stop 227 0	0% 100% Stop 103 0							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		29% 27% Stop 226 99 66 61	54% 0% Stop 149 68 81	0% 100% Stop 227 0 0 227	0% 100% Stop 103 0 0							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		29% 27% Stop 226 99 66 61 251	54% 0% Stop 149 68 81 0	0% 100% Stop 227 0 0 227 252	0% 100% Stop 103 0 0 103 114							
Vol Thru, % Vol Right, % Sire Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		29% 27% Stop 226 99 66 61 251	54% 0% Stop 149 68 81 0 166	0% 100% Stop 227 0 0 227 252 1	0% 100% Stop 103 0 0 103 114							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		29% 27% Stop 226 99 66 61 251 1 0.346	54% 0% Stop 149 68 81 0 166 1	0% 100% Stop 227 0 0 227 252 1 0.311	0% 100% Stop 103 0 0 103 114 1 0.151							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		29% 27% Stop 226 99 66 61 251 1 0.346 4.967 Yes 716	54% 0% Stop 149 68 81 0 166 1 0.24 5.209	0% 100% Stop 227 0 0 227 252 1 0.311 4.442	0% 100% Stop 103 0 0 103 114 1 0.151 4.751 Yes 760							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		29% 27% Stop 226 99 66 61 251 1 0.346 4.967 Yes	54% 0% Stop 149 68 81 0 166 1 0.24 5.209 Yes	0% 100% Stop 227 0 0 227 252 1 0.311 4.442 Yes	0% 100% Stop 103 0 0 103 114 1 0.151 4.751 Yes							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uil (X) Departure Headway (Hd) Convergence, Y/N Cap		29% 27% Stop 226 99 66 61 251 1 0.346 4.967 Yes 716	54% 0% Stop 149 68 81 0 166 1 0.24 5.209 Yes 680	0% 100% Stop 227 0 0 227 252 1 0.311 4.442 Yes 800	0% 100% Stop 103 0 0 103 114 1 0.151 4.751 Yes 760							
Vol Thru. % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degree of Util (X) Convergence, Y/N Cap Service Time HCML Lane ViC Ratio		29% 27% Stop 226 99 66 61 251 1 0.346 4.967 Yes 716 3.06	54% 0% Stop 149 68 81 0 166 1 0.24 5.209 Yes 680 3.307	0% 100% Stop 227 0 0 227 252 1 0.311 4.442 Yes 800 2.53	0% 100% Stop 103 0 0 103 114 1 0.151 4.751 Yes 760 2.751							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LTT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YM Cap Service Time		29% 27% Stop 226 99 66 61 251 1 0.346 4.967 Yes 716 3.06 0.351	54% 0% Stop 149 68 81 0 166 1 0.24 5.209 Yes 680 3.307 0.244	0% 100% Stop 227 0 0 227 252 1 0.311 4.442 Yes 800 2.53 0.315	0% 100% Stop 103 0 0 103 114 1 0.151 Yes 760 2.751 0.15							

HCM 7th TWSC

07/31/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EDL		INDL		1	NGO
Lane Configurations Traffic Vol. veh/h	5	152	107	41	491	60
				540 540		
Future Vol, veh/h	5	152	107		491	60
Conflicting Peds, #/hr		0	178	0	_ 0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length		0	-	-	-	-
Veh in Median Storag	je, # 0	-	-	0	0	-
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	6	169	119	600	546	67
	Minor2		Major1		1ajor2	
Conflicting Flow All	1295	757	790	0	-	0
Stage 1	757				-	
Stage 2	538				-	
Critical Hdwy	6.675	6.275	4.175	-		
Critical Hdwy Stg 1	5.475					
Critical Hdwy Stg 2	5.875					
	3.5475		2/75			
Pot Cap-1 Maneuver		400	812			
Stage 1	455	400	012			- 1
			-			
Stage 2	544		-		-	
Platoon blocked, %					-	
Mov Cap-1 Maneuve		325	659		-	
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	290	-		-	-	
Stage 2	441				-	
Anaroosh	FB		ND		CD	
Approach			NB		SB	
HCM Control Delay, s			3.44		0	
HCM LOS	D					
Minor Lane/Major Mv	mt	NBL	NBTE	FRI n1	SBT	SBR
		549	NDT.	325	001	ODIT
Capacity (veh/h)						
HCM Lane V/C Ratio		0.18	-	0.52	-	-
HCM Control Delay (s/ven)	11.7	1.8	27.5	-	
HCM Lane LOS		В	Α	D	-	-
HCM 95th %tile Q(ve	h)	0.7		2.8	-	

Intersection Int Delay, s/veh

Major/Minor
Conflicting Flow All
Stage 1

Approach EB HCM Control Delay, s/13.34 HCM LOS B

Movement EBL EBR NBL NBT SBT SI
Lane Configurations Y 4 1

 Movement
 EBL
 BR
 NBL
 NBT
 SBT
 SBR

 Lare Configurations
 Y
 4
 ↑
 ↑

 Traffic Vol, vehin
 108
 441
 82
 128
 66
 92

 Future Vol, vehin
 108
 141
 82
 128
 66
 92

 Fouritiding Peds, #hr
 0
 0
 0
 0
 0
 0
 0
 0

 Sign Control
 Sbp
 Stop
 Free Free
 Free
 Free
 Free
 Free
 None

 Storage Length
 0
 0
 None

 Grade, %
 0
 0
 0
 0
 0
 0
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Minor2 Major1 Major2

All 449 124 176 0 124 - - -

07/31/2024

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	4	
Traffic Vol. veh/h	2	69	0	621	647	- 1
Future Vol. veh/h	2	69	0	621	647	1
Conflicting Peds, #/h	r 0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0				
Veh in Median Stora	ae.# 0			0	0	
Grade, %	0			0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	2	77	0	690	719	1
	_					
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1150	805	-	0	-	0
Stage 1	805				-	
Stage 2	345			-		-
Critical Hdwy	6.675	6.275		-		-
Critical Hdwy Stg 1	5.475			-	-	-
Critical Hdwy Stg 2	5.875			-		-
Follow-up Hdwy	3.54753	3.3475	-	-	-	-
Pot Cap-1 Maneuver		375	0	-	-	-
Stage 1	432	-	0	-	-	-
Stage 2	682		0		-	
Platoon blocked, %				-	-	
Mov Cap-1 Maneuve	r 166	341			-	
Mov Cap-2 Maneuve				-	-	
Stage 1	393					
Stage 2	620					
A b			ND		00	
Approach	EB		NB		SB	
HCM Control Delay,			0		0	
HCM LOS	С					
Minor Lane/Major My	mt	NRTI	EBLn1	SBT	SBR	
Capacity (veh/h)			341		-	
HCM Lane V/C Ratio			0.225			
HCM Control Delay (18.6			
HCM Lane LOS	orvoll)		C			
HCM 95th %tile Q(ve	ıh)	- 1	0.8	-		
HOW SOUT WILL UN	111)		0.0			

2028 Sunday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:14 pm 07/15/2024 Existing)/PMnSig/ta/Füspinftg, 2028 Backgr Plage 2

2028 Sunday Interim PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:14 pm 07/15/2024 Existing Phth Styfe Fatigraphy, 2028 Backgr Page 3

HCM 7th TWSC

07/31/2024 10: Bank & Marche

Intersection						
Int Delay, s/veh	2					
iiii Delay, Siveii						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħβ			44
Traffic Vol, veh/h	7	159	461	19	0	582
Future Vol, veh/h	7	159	461	19	0	582
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0		0		-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	8	177	512	21	0	647
Major/Minor N	/linor1		//ajor1		Major2	
Conflicting Flow All	946	367	0	0	viajuiz	-
Stage 1	623	301	-	U	-	-
Stage 2	323	- 1	- 1	- 1		- 1
	6.8	7.2			-	-
Critical Hdwy				-		
Critical Hdwy Stg 1	5.8	-	-	-	-	
Critical Hdwy Stg 2	5.8			-		
Follow-up Hdwy	3.5	3.45		-		
Pot Cap-1 Maneuver	263	594		-	0	
Stage 1	503		-		0	-
Stage 2	712	-		-	0	
Platoon blocked, %				-		
Mov Cap-1 Maneuver	236	531	-	-	-	
Mov Cap-2 Maneuver	236				-	
Stage 1	450	-		-	-	-
Stage 2	712		-		-	-
Annenah	WB		NB		SB	
Approach			0		0	
HCM Control Delay, si HCM LOS	VI5.11		U		U	
HUM LUS	U					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		-	-	531	-	
HCM Lane V/C Ratio				0.332		
HCM Control Delay (s	(veh)					
HCM Lane LOS				C		
HCM 95th %tile Q(veh	٨		- 1	1.4		
HOW Sout Wille Q(Ver	7	-		1.4		

HCM 7th TWSC		

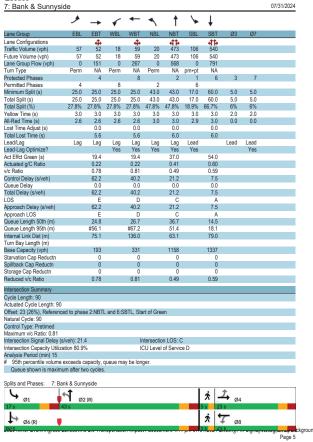
17: Princess Patricia/Princess Patricia Way & Garage 07/31/2024

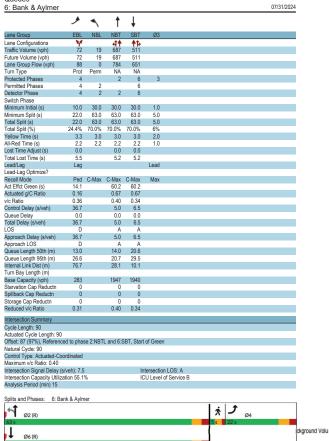
Intersection Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #// Sign Control RT Channelized Storage Length		EBT	uer			
Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length	EBL	EBT				
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length	S	EBT	11100			
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length	S		WBT	WBR	SBL	SBR
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length		4	1		*/*	
Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length	110	51	54	121	198	67
Conflicting Peds, #/I Sign Control RT Channelized Storage Length	110	51	54	121	198	67
Sign Control RT Channelized Storage Length		0	0	0	190	0/
RT Channelized Storage Length	nr u Free			Free	Stop	Stop
Storage Length		Free	Free			
		None	-		-	None
	-	-			0	
Veh in Median Store		0	0		0	
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	122	57	60	134	220	74
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	194	0	-	0	428	127
Stage 1		-	-	-	127	-
Stage 2	-	-		-	301	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2		-		-	5.42	-
Follow-up Hdwy	2.218		-	-	3.518	3.318
Pot Cap-1 Maneuve	er 1379	-			583	923
Stage 1				-	899	-
Stage 2					751	
Platoon blocked, %					731	
Mov Cap-1 Maneuv	1270	- 1	- 1		530	923
						923
Mov Cap-2 Maneuv			-	-		
Stage 1	-	-	-	-	816	
Stage 2	-	-	-	-	751	-
Approach	FB		WB		SB	
HCM Control Delay.			0		16.87	
HCM LOS	, 8/45.5/		U		10.07	
HUM LUS					U	
Minor Lane/Major M	lvmt	EBL	EBT	WBT	WBRS	SBLn1
Capacity (veh/h)		1230		-	-	594
	in	0.089				0.496
		7.9	0			
HCM Lane V/C Rati						10.9
HCM Lane V/C Rati HCM Control Delay	(s/veh)		Α.			_
HCM Lane V/C Rati	. ,	A 0.3	A	-	-	2.7

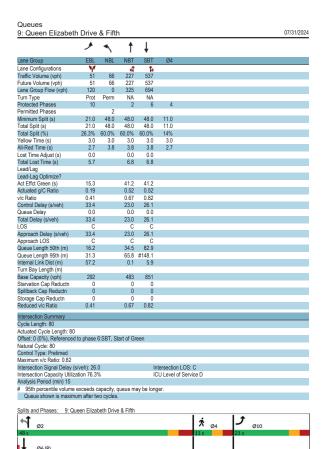
Minor Event Ingress

	\rightarrow	1	†	1	↓					
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3				
Lane Configurations	43-		413-		414					
Fraffic Volume (vph)	26	52	490	24	544					
uture Volume (vph)	26	52	490	24	544					
ane Group Flow (vph)	117	0	686	0	669					
Turn Type	NA	Perm	NA	Perm	NA					
Protected Phases	4		2		6	3				
Permitted Phases		2		6						
Detector Phase	4	2	2	6	6					
Switch Phase										
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0				
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%				
rellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0				
ost Time Adjust (s)	0.0		0.0		0.0					
Total Lost Time (s)	5.6		5.2		5.2					
ead/Lag	Lag					Lead				
ead-Lag Optimize?										
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None				
ct Effct Green (s)	11.7		56.0		56.0					
ctuated g/C Ratio	0.16		0.75		0.75					
/c Ratio	0.56		0.38		0.33					
Control Delay (s/veh)	38.5		3.0		3.6					
Queue Delay	0.0		0.0		0.0					
Total Delay (s/veh)	38.5		3.0		3.6					
.OS	D		Α		Α					
Approach Delay (s/veh)	38.5		3.0		3.6					
Approach LOS	D		A		A					
Queue Length 50th (m)	15.5		6.0		6.3					
Queue Length 95th (m)	28.3		13.0		9.7					
nternal Link Dist (m)	39.8		31.5		195.6					
Turn Bay Length (m)										
Base Capacity (vph)	296		1787		2036					
Starvation Cap Reductn	0		0		0					
Spillback Cap Reductn	0		0		0					
Storage Cap Reductn	0		0		0					
teduced v/c Ratio	0.40		0.38		0.33					
ntersection Summary										
cycle Length: 75										
octuated Cycle Length: 75										
Offset: 74 (99%), Reference		2-NRT	l and 6.0	SRTI Sto	ert of Gree	an				
Natural Cycle: 75	ou to pila	36 2.110 1	L dilu o.	DIL, OR	art or Orec	211				
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.56										
ntersection Signal Delay (s	s/veh): 6.1			- In	ntersectio	n I OS: A				
ntersection Capacity Utiliz						of Service C				
nalysis Period (min) 15										
	ank & Holn	nwood								
ppins and midses. Z: Ba	нка поп	IWUUU					Ι.	1 4		
→ Ø2 (R)							1	1	Ø4	
49 c					_		5.0	22.0	194	
105							300	225		
Ø6 (R)							1			
48 e							4			

Queues 07/31/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Lane Group Flow (vph)
Turm Type
Protected Phases
Minimum Spitt (s)
Total Spit
 4
 8
 2
 6


 260
 260
 260
 260
 490
 490
 490
 490


 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.45 0.30 0.28 43.5 0.58 0.41 43.5 0.58 0.37 24.4 25.1 12.7 0.0 0.0 0.0 24.4 25.1 12.7 13.5 0.0 13.5 9.5 0.0 C 24.4 A 9.5 17.8 13.5 A 24.3 35.1 190.0 16.0 9.1 32.8 20.5 49.7 112.4 45.0 356 277 0 0 0.45 0.30 0.28 0.37 0.41 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.45
Intersection Signal Delay (siveh): 13.5
Intersection Capacity Utilization 62.8%
Analysis Period (min) 15


CU Level of S
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1**, ø4 ▶ Ø6 (R) T Ø8

2028 Minor Event Ingress Lansdowne 2.0 Transportation Impact Assessment 4:41 pm 07/31/2024 Existing PM Sign®yfiching/12/R26;blackground Volu Page 1

	1	•	†	1	ļ			
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
Lane Configurations	*	7	∱ ∱	*	44			
Traffic Volume (vph)	104	72	425	145	423			
Future Volume (vph)	104	72	425	145	423			
Lane Group Flow (vph)	116	80	656	161	470			
Turn Type	Prot	Perm	NA	Perm	NA			
Protected Phases	8		2		6	1	7	
Permitted Phases		8		6				
Detector Phase	8	8	2	6	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
Lead/Lag	Lag	Lag	Lag			Lead	Lead	
Lead-Lag Optimize?			Yes			Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	11.8	11.8	54.6	54.6	54.6			
Actuated g/C Ratio	0.16	0.16	0.73	0.73	0.73			
v/c Ratio	0.48	0.33	0.33	0.38	0.21			
Control Delay (s/veh)	35.1	10.9	5.0	6.5	3.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	35.1	10.9	5.0	6.5	3.0			
LOS	D	В	Α	Α	Α			
Approach Delay (s/veh)	25.2		5.0		3.9			
Approach LOS	С		A		A			
Queue Length 50th (m)	15.4	0.0	14.2	4.6	6.4			
Queue Length 95th (m)	28.2	10.3	27.1	8.1	8.7			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	405	348	1972	429	2287			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.29	0.23	0.33	0.38	0.21			
ntersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced	to phase	2:NBT ar	nd 6:SBT	L, Start o	f Green			
Natural Cycle: 75								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.48								
Intersection Signal Delay (ntersectio			
Intersection Capacity Utiliz Analysis Period (min) 15	ation 61.1	%			CU Level	of Servic	e B	
Alialysis Pellou (Illill) 15								
Splits and Phases: 3: Ba	ınk & Exhi	bition						
						-		

HCM 7th AWSC 12: Exhibition & Paul Askin 07/31/2024 Intersection
Intersection Delay, s/veh
Intersection LOS Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor
 4
 5
 7

 5
 323
 185
 5
 5
 5

 5
 323
 185
 5
 5
 5
 5

 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 Heavy Vehicles, % Mvmt Flow Number of Lanes 2 2 6 359 206 Approach Opposing Approach Opposing Lanes Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS 0 SB Lane Vol Left, % EBLn1 WBLn1 SBLn1 0% 50% 97% 0% 3% 50% Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane Stop Stop Stop 328 190 10 LT Vol Through Vol RT Vol 5 0 323 185 Lane Flow Rate 364 Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N 0.416 0.247 0.015 4.114 4.209 4.957 Yes Yes Yes Cap Service Time 867 840 726 2.174 2.297 2.957 Service Time
HCM Lane V/C Ratio
HCM Control Delay, s/v
HCM Lane LOS
HCM 95th-tile Q 0.42 0.251 0.015 10.1 8.7 8 B A A 2.1 1 0

HCM 7th AWSC 14: Exhibition & Marche

Intersection Delay, s/veh Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Opposing Aproach
Opposing Lanes
Conflicting Approach Left
Conflicting Aproach Left
Conflicting Aproach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Traffic Vol by Lane
LT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cone
Service Time
How Lane Vol

16 5 121 16 5 121 0.90 0.90 0.90 2 2 2 2 18 6 134 1 0 0

EB 1

NBLn1 EBLn1 WBLn1

NBLnt EBLnt WBLnt
72% 0% 73%
0% 76% 27%
28% 24% 0%
5top Stop Stop
392 21 166
282 0 121
0 16 45
110 5 5 0
436 23 184
1 1 1
0.599 0.033 0.263
4,451 5.07 5.132
Ves Yes Yes Yes

Yes Yes Yes 810 702 697 2.482 3.132 3.18 0.538 0.033 0.264 12.6 8.3 10 B A A 3.3 0.1 1.1

45 282 110 45 282 110 0.90 0.90 0.90 2 2 2 50 313 122 1 1 0

12.6

07/31/2024 13: Paul Askin & Marche

Intersection						
Intersection Delay, s/veh	7.2					
Intersection LOS	A					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	**	
Traffic Vol, veh/h	16	5	5	49	5	5
Future Vol, veh/h	16	5	5	49	5	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	6	6	54	6	6
Number of Lanes	1	0	0	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	- 1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		- 1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay, s/veh	7		7.3		7	
HCM LOS	Α		Α		Α	

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	50%	0%	9%
Vol Thru, %	0%	76%	91%
Vol Right, %	50%	24%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	10	21	54
LT Vol	5	0	5
Through Vol	0	16	49
RT Vol	5	5	0
Lane Flow Rate	11	23	60
Geometry Grp	1	- 1	1
Degree of Util (X)	0.012	0.025	0.067
Departure Headway (Hd)	3.878	3.855	3.99
Convergence, Y/N	Yes	Yes	Yes
Cap	920	930	902
Service Time	1.912	1.871	1.997
HCM Lane V/C Ratio	0.012	0.025	0.067
HCM Control Delay, s/veh	7	7	7.3
HCM Lane LOS	A	Α	Α
HCM 95th-tile Q	0	0.1	0.2

2028 Minor Event Ingress Lansdowne 2.0 Transportation Impact Assessment 4.41 pm 07/31/2024 Existing PM Sign®yfitehingt 2828bBackground Volu Page 2

2028 Minor Event Ingress Lansdowne 2.0 Transportation Impact Assessment 4.41 pm 07/31/2024 Existing PM Sigr@yitching/12628-blackground Volu Page 3

HCM 7th AWSC

37: O' Connor & Fifth 07/31/2024

Intersection												
Intersection Delay, s/veh	8.3											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	LUL	4	LUIT	WIDE	WDI	7	NDL	4	NDIX	ODL	001	OD
Traffic Vol. veh/h	61	51	0	0	0	139	61	42	37	0	0	8
Future Vol. veh/h	61	51	0	0	0	139	61	42	37	0	0	8
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	0.0
Mymt Flow	68	57	0	0	0	154	68	47	41	0	0	9
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	- 1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	- 1					1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	8.7					7.9	8.7					7.
HCM LOS	Α					Α	Α					
Lane		NBLn1	EBLn1		SBLn1							
Vol Left, %		44%	54%	0%	0%							
Vol Thru, %		30%	46%	0%	0%							
Vol Right, %		26%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		140	112	139	82							
LT Vol		61	61	0	0							
Through Vol		42	51	0	0							
RT Vol		37	0	139	82							
Lane Flow Rate		156	124	154	91							
Geometry Grp		1	1	1	1							
					0.105							
Degree of Util (X)		0.198	0.165	0.173								
Degree of Util (X) Departure Headway (Hd)		4.579	4.762	4.043	4.137							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		4.579 Yes	4.762 Yes	4.043 Yes	4.137 Yes							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		4.579 Yes 782	4.762 Yes 753	4.043 Yes 887	4.137 Yes 865							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		4.579 Yes 782 2.611	4.762 Yes 753 2.794	4.043 Yes 887 2.072	4.137 Yes 865 2.172							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		4.579 Yes 782 2.611 0.199	4.762 Yes 753 2.794 0.165	4.043 Yes 887 2.072 0.174	4.137 Yes 865 2.172 0.105							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay, s/veh		4.579 Yes 782 2.611 0.199 8.7	4.762 Yes 753 2.794 0.165 8.7	4.043 Yes 887 2.072 0.174 7.9	4.137 Yes 865 2.172 0.105 7.7							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		4.579 Yes 782 2.611 0.199	4.762 Yes 753 2.794 0.165	4.043 Yes 887 2.072 0.174	4.137 Yes 865 2.172 0.105							

HCM 7th TWSC

4: Bank & Wilton 07/31/2024

Intersection						
Int Delay, s/veh	12.7					
	EDI	EDD	NIDI	NOT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		41	ĵ.	
Traffic Vol, veh/h	5	268	143	649	477	55
Future Vol, veh/h	5	268	143	649	477	55
Conflicting Peds, #/hr	0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
Storage Length		0		-	-	
Veh in Median Storage	e, # 0			0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	6	298	159	721	530	61
	-					-
	Minor2		Major1	- N	/lajor2	
Conflicting Flow All	1417	739	769	0	-	0
Stage 1	739			-	-	
Stage 2	678	-		-	-	-
Critical Hdwy	6.675	6.275	4.175	-		
Critical Hdwy Stg 1	5.475			-		
Critical Hdwy Stg 2	5.875					
		3.34752	2475			
Pot Cap-1 Maneuver	136	410	827			
Stage 1	465	-	OL.	-		
Stage 2	460					
Platoon blocked. %	400				- 1	- 1
Mov Cap-1 Maneuver	63	333	671			
Mov Cap-2 Maneuver	63	-	-	-	-	-
Stage 1	265	-		-	-	-
Stage 2	373	-	-	-	-	-
Approach	FB		NB		SB	
HCM Control Delay, s			4.2		0	
HCM LOS	F		4.2		U	
TIGM EGG	-					
Minor Lane/Major Mvn	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		537		333		
HCM Lane V/C Ratio		0.237		0.894		
HCM Control Delay (s.	/veh)	12	2.5	62.1		
HCM Lane LOS		В	A	F		-
HCM 95th %tile Q(veh	1	0.9		8.6		
HOW SOUL WILL CHANGE	1)	0.9		0.0		

Intersection Int Delay, s/veh

 Major/Minor
 Minor2

 Conflicting Flow All
 1268
 837

 Stage 1
 837

Stage 1 837
Stage 2 432
Critical Hdwy
6675 6275
Critical Hdwy Stg 1 5475
Critical Hdwy Stg 1 5475
Critical Hdwy Stg 2 5875
Follow-up Hdwy 3 3,547533475
Pet Cap-1 Maneuver 169 360
Mov Cap-1 Maneuver 169 360
Mov Cap-1 Maneuver 169 360
Mov Cap-2 Maneuver 169 360
Mov Cap-2 Maneuver 169 4
Stage 1 477
Stage 2 616 -

Approach EB HCM Control Delay, s/s/6.29 HCM LOS C

Internation						
Intersection	4.8					
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- Y			4	1	
Traffic Vol, veh/h	79	59	120	217	326	275
Future Vol, veh/h	79	59	120	217	326	275
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0	-		-		-
Veh in Median Storag	e.# 0	-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	88	66	133	241	362	306
MVIIIL FIOW	00	00	100	241	302	300
Major/Minor I	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	1023	515	668	0	-	0
Stage 1	515	-		-		-
Stage 2	508	-		-		-
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	0.2				
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2	- 1		- 1
				_	-	_
Pot Cap-1 Maneuver	263	564	932	-		-
Stage 1	604				-	-
Stage 2	608	-	-	-		-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	220	564	932	-		-
Mov Cap-2 Maneuver	220	-	-		-	-
Stage 1	504					
Stage 2	608					
2.290 2	200					
Approach	EB		NB		SB	
HCM Control Delay, s	/29.29		3.39		0	
HCM LOS	D					
Minor Lane/Major Mvr	nt	NBI	NRTI	EBLn1	SBT	SBR
		641	IND I I	298	001	ODIN
Capacity (veh/h)					-	
HCM Lane V/C Ratio		0.143		0.515	-	-
HCM Control Delay (s	rven)	9.5	0	29.3	-	
HCM Lane LOS		Α	Α	D	-	
HCM 95th %tile Q(veh	1)	0.5		2.8	-	
OW 93III WILLE Q(VEF	1)	0.0		2.6		

2028 Minor Event Ingress Lansdowne 2.0 Transportation Impact Assessment 4:41 pm 07/31/2024 Existing PM Sign®yfiching/1266bBackground Volu Page 2

2028 Minor Event Ingress Lansdowne 2.0 Transportation Impact Assessment 4.41 pm 07/31/2024 Existing PM Sigr@yitching/12628-blackground Volu Page 3

HCM 7th TWSC

07/31/2024 10: Bank & Marche

Intersection						
Int Delay, s/veh	0.6					
Movement	WRI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	***DL	7	† 13	TUDIT	ODL	44
Traffic Vol. veh/h	0	53	508	19	2	559
Future Vol. veh/h	0	53	508	19	2	559
Conflicting Peds, #/hr	0	0	0	100	0	0.09
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	otop -	None	1166	None	1166	
Storage Length		0		None		IVUILE
Veh in Median Storage		-	0	- 1	- :	0
Grade. %	0		0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mymt Flow	0	59	564	21	2	621
WIVIIILLIOW	U	59	J04	21		υZI
	1inor1		//ajor1		Major2	
Conflicting Flow All	-	393	0	0	686	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	7.2	-	-	4.1	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-		-	-		-
Follow-up Hdwy	-	3.45	-	-	2.2	-
Pot Cap-1 Maneuver	0	571	-	-	917	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-			-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	510			820	
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-					
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
			0		0.03	
HCM Control Delay, s/ HCM LOS	W2.97		U		0.03	
I IOW LUO	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	510	820	-
HCM Lane V/C Ratio		-	-	0.115	0.003	-
HCM Control Delay (s/	veh)		-	13	9.4	-
HCM Lane LOS				В	Α	
HCM 95th %tile Q(veh)			0.4	0	

HCM 7th TWSC

17: Princess Patricia/Princess Patricia Way & Garage

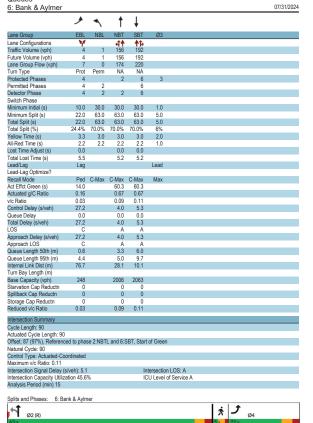
Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	T _a		¥	
Traffic Vol. veh/h	99	28	161	245	113	33
Future Vol, veh/h	99	28	161	245	113	33
Conflicting Peds. #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length					0	
Veh in Median Storag	e.# -	0	0		0	-
Grade, %		0	0		0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	110	31	179	272	126	37
minint ion	110	01	110		120	0,
	Major1		Major2		Minor2	
Conflicting Flow All	451	0	-	0	566	315
Stage 1					315	
Stage 2	-	-	-	-	251	-
Critical Hdwy	4.12		-			
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2		-			5.42	-
Follow-up Hdwy	2.218	-			3.518	
Pot Cap-1 Maneuver	1109	-			485	725
Stage 1		-			740	-
Stage 2					791	
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver					436	725
Mov Cap-2 Maneuver	-	-	-		436	-
Stage 1					665	
Stage 2		-	-		791	-
Approach	FB		WB		SB	
HCM Control Delay, s			0		16.29	
HCM LOS	//0./1		U		10.29 C	
HOM LOS					U	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1090	-			480
HCM Lane V/C Ratio		0.099				0.338
HCM Control Delay (s	/veh)	8.6	0			16.3
HCM Lane LOS	,	Α	A			С
HCM 95th %tile Q(veh	1)	0.3				1.5
	,					

Minor Event Egress

	→	1	<u>†</u>	\	Ţ					
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3				
Lane Configurations	4		413		414					
Traffic Volume (vph)	7	54	439	22	321					
uture Volume (vph)	7	54	439	22	321					
ane Group Flow (vph)	86	0	575	0	421					
Turn Type	NA	Perm	NA	Perm	NA					
Protected Phases	4		2		6	3				
Permitted Phases		2		6						
Detector Phase	4	2	2	6	6					
Switch Phase										
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0				
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0				
Lost Time Adjust (s)	0.0		0.0		0.0					
Total Lost Time (s)	5.6		5.2		5.2					
Lead/Lag	Lag					Lead				
Lead-Lag Optimize?										
Recall Mode	None	C-Max	C-Max	C-Max		None				
Act Effct Green (s)	10.2		57.3		57.3					
Actuated g/C Ratio	0.14		0.76		0.76					
v/c Ratio	0.48 38.1		0.29		0.21					
Control Delay (s/veh)	38.1		3.8		0.0					
Queue Delay	38.1		3.8		2.6					
Total Delay (s/veh) LOS	38.1 D									
Approach Delay (s/veh)	38.1		A 3.8		A 26					
Approach LOS	J0.1		3.0 A		2.0 A					
Queue Length 50th (m)	11.4		8.8		3.5					
Queue Length 95th (m)	22.9		22.0		7.0					
Internal Link Dist (m)	39.8		31.5		195.6					
Turn Bay Length (m)	00.0		01.0		100.0					
Base Capacity (vph)	287		1963		2036					
Starvation Cap Reductn	0		0		0					
Spillback Cap Reductn	0		0		0					
Storage Cap Reductn	0		0		0					
Reduced v/c Ratio	0.30		0.29		0.21					
Intersection Summary										
Cycle Length: 75										
Actuated Cycle Length: 75										
Offset: 74 (99%), Reference		se 2:NBT	1 and 6:5	SBTL Sta	art of Gree	en				
Natural Cycle: 75				,,						
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.48										
Intersection Signal Delay (s/veh): 6.1			li li	ntersectio	n LOS: A				
Intersection Capacity Utiliz				le le	CU Level	of Service B				
Analysis Period (min) 15										
Splits and Phases: 2: Ba	ank & Holn	nwood								
△ ↑							ن ا	1 1		
Ø2 (R)							1	¢-	Ø4	
48 s							5 s	22 s		
L.							1			
Ø6 (R)							ì			
40 -							•			

Queues 07/31/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (vph)
Traffic Volume (vph)
Tuture Volume (vph)
Lane Group Flow (vph)
Tum Type
Protected Phases
Minimum Spift (s)
Total Spif 15 NBL NB1 SBL 15 16 441 21 25 16 441 21 25 16 441 21 64 0 520 0 NA Perm NA Perm
 4
 8
 2
 6

 260
 260
 260
 260
 490
 490
 490
 490


 260
 260
 260
 260
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 <t 20.5 20.5 20.5 0.27 0.27 0.27 0.25 0.22 0.16 43.5 0.58 0.27 17.5 23.6 12.7 0.0 0.0 0.0 17.5 23.6 12.7 11.4 0.0 11.4 8.2 8.2 в С 17.5 A 8.2 11.4 A 14.1 21.5 190.0 7.0 16.6 49.7 112.4 45.0 338 289 0 0 1595 0.25 0.22 0.16 0.31 0.27 Intersection Summary
Cycle Length: 75
Actuated Cycle Length: 75
Actuated Cycle Length: 75
Contiset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.31
Intersection Signal Delay (siveh): 11.4
Intersection Capacity Utilization 53.0%
ICU Level of S
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1**, ø4 ▶ Ø6 (R) T Ø8

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign®yTiching; 12/186/Bet.kground Volume Page 1

ane Group ane Configurations rarfife Volume (vph) ruture Volume (vph) ane Group Flow (vph) ruture Volume (vph) run Type rortected Phases pletctor Phases Minimum Initial (s) filnimum Split (s)	168 168 187 Prot 8	194 194 216 Perm	NBT 191 191 191 301	SBL 111	SBT	Ø1	02	
Traffic Volume (vph) uture Volume (vph) ane Group Flow (vph) furn Type rotected Phases Permitted Phases Detector Phase witch Phase dininum Initial (s) dinimum Initial (s)	168 168 187 Prot 8	194 194 216	191 191		44		Ø7	
Traffic Volume (vph) uture Volume (vph) ane Group Flow (vph) furn Type rotected Phases Permitted Phases Detector Phase witch Phase dininum Initial (s) dinimum Initial (s)	168 168 187 Prot 8	194 194 216	191 191					
Future Volume (vph) ane Group Flow (vph) Tum Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s)	168 187 Prot 8	194 216	191		261			
ane Group Flow (vph) furn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s)	187 Prot 8	216		111	261			
Furn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s)	8	Perm		123	290			
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s)	8		NA	Perm	NA			
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s)			2	1 01111	6	1	7	
Switch Phase Minimum Initial (s) Minimum Split (s)		8	-	6	•			
Switch Phase Minimum Initial (s) Minimum Split (s)	8	8	2	6	6			
Minimum Initial (s) Minimum Split (s)		·	-		•			
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
fellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	3.0	
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
.ead/Lag	Lag	Lag	Lag	0.5	0.5	Lead	Lead	
.ead-Lag Optimize?	Lag	Lug	Yes			Yes	Yes	
Recall Mode	None	None		C-Max	C-Max	None	None	
Act Effct Green (s)	14.5	14.5	47.3	47.3	47.3	HUHE	NOTE	
Actuated g/C Ratio	0.19	0.19	0.63	0.63	0.63			
/c Ratio	0.13	0.15	0.03	0.03	0.03			
Control Delay (s/veh)	36.7	9.8	4.8	5.8	4.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	36.7	9.8	4.8	5.8	4.1			
OS	30.7 D	3.0 A	4.0 A	J.6	4.1 A			
Approach Delay (s/veh)	22.3	^	4.8	^	4.6			
Approach LOS	22.3 C		4.0 A		4.0 A			
Queue Length 50th (m)	24.6	0.0	5.5	4.0	4.8			
Queue Length 95th (m)	40.2	15.5	12.5	8.7	7.7			
nternal Link Dist (m)	30.6	15.5	33.7	0./	44.8			
	30.0		33.1	40.0	44.0			
Furn Bay Length (m)	405	448	1706	480	1980			
Base Capacity (vph)	405	440	0	400	1900			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn								
Reduced v/c Ratio	0.46	0.48	0.18	0.26	0.15			
ntersection Summary								
Cycle Length: 75 Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced Natural Cycle: 75		2:NBT ar	nd 6:SBT	L, Start o	f Green			
Control Type: Actuated-Coo	ordinated							
Maximum v/c Ratio: 0.63								
ntersection Signal Delay (s					ntersectio			
ntersection Capacity Utiliza	ation 57.6	%		10	CU Level	of Service	e B	
Analysis Period (min) 15								
Splits and Phases: 3: Bar	nk & Exhi	bition						
★ ↑ ↑ Ø2 (R)								

1

Ø6 (R)

Ť **>** Lane Group 12 12 12 12 Lane Configurations Traffic Volume (vph) Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Future Volume (vph)
Future Vpe
Frotected Phases
Permitted Phases
Minimum Split (s)
Fotal Lost Time (s)
Fotal Lost Tim 239 239 285 NA 62 NA Per
 4
 8
 2
 6

 250
 250
 250
 250
 430
 430
 17.0
 60.0

 250
 250
 250
 250
 430
 430
 17.0
 60.0

 27.8%
 27.8%
 27.8%
 47.8%
 47.8%
 18.9%
 66.7%

 30
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0</t 6.0 Lead/Lag
Lead-Lag Optimize?
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh) Lead Lead Lag Lag Lag Yes Lag 0.22 0.22 0.41 0.60 32.8 16.3 17.8 7.1 Queue Delay Total Delay (s/veh) 32.8 17.8 16.3 Approach Delay (s/veh) 32.8 7.1 16.3 17.8 Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m) B 2.7 9.0 14.3 25.1 63.1 136.0 79.0 Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reduct
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio 240 1189 1664 0.26 0.20 0.24 0.33 Cycle Length: 90
Actuated Cycle Length: 90
Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.33 Intersection Signal Delay (s/veh): 12.5 Intersection Capacity Utilization 60.8% Analysis Period (min) 15 Splits and Phases: 7: Bank & Sunnyside ✓ øı * 3 04 Ø2 (R) ▶ Ø6 (R) * T Ø8

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign&yTiching) 2028pBack

Queues 9: Queen Elizabeth Drive & Fifth

ases: 9: Queen Elizabeth Drive & Fifth

↑ ø2

Ø6 (R)

ၨ 1 **†** Ţ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Turn Type
Protected Phases
Minimum Split (s)
Total Split (s)
Total Split (%) 51 51 0 Perm 21.0 48.0 48.0 48.0 11.0 21.0 48.0 48.0 48.0 11.0 26.3% 60.0% 60.0% 60.0% 14% 3.0 3.0 3.0 3.0 3.0 2.7 3.8 3.8 3.8 2.7 Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) 5.7 6.8 6.8 Lead/Lag Lead-Lag Optimize? Act Effct Green (s) Actuated g/C Ratio 0.19 0.52 0.52 0.45 0.25 v/c Rati Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS 14.6 11.8 0.0 0.0 31.8 31.8 14.6 11.8 LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Can Beductn 31.8 14.6 11.8 32.6 16.7 53.2 28.9 0.1 5.9 13.7 Storage Cap Reductn Reduced v/c Ratio 0 0 0.45 0.25 Actuated Cycle Length: 80
Offset: 0 (0%), Referenced to phase 6:SBT, Start of Green Natural Cycle: 80 Control Type: Pretimed Maximum v/c Ratio: 0.45 Maximum v/c Ratio: u.45 Intersection Signal Delay (s/veh): 16.3 Intersection Capacity Utilization 53.4% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service A

07/31/2024

HCM 7th AWSC 12: Exhibition & Paul Askin 07/31/2024 Intersection
Intersection Delay, s/veh
Intersection LOS Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor 5 196 371 5 5 5 5 196 371 5 5 5 0.90 0.90 0.90 0.90 0.90 0.90 Heavy Vehicles, % Mvmt Flow Number of Lanes 2 2 2 6 218 412 Approach Opposing Approach Opposing Lanes Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS 10.9 Lane Vol Left, % BLn1 WBLn1 SBLn1 0% 99% 1% Vol Thru, % Vol Right, % Sign Control
Traffic Vol by Lane
LT Vol
Through Vol
RT Vol Stop Stop Stop 376 5 196 Lane Flow Rate 418 Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N 0.271 0.477 0.016 4.371 4.112 5.095 Yes Yes Yes Cap Service Time Service Time
HCM Lane V/C Ratio
HCM Control Delay, s/v
HCM Lane LOS
HCM 95th-tile Q 0.27 0.483 0.016 9 10.9 8.2 A B A 1.1 2.6 0

Ì

Ø10

济 Ø4

HCM 7th AWSC 14: Exhibition & Marche

ntersection						
	7.8					
ntersection Delay, s/veh ntersection LOS						
itersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1,	EDR	VVDL	WDI 1	INDL	NDK
Traffic Vol. veh/h	25	5	5	148	T	5
Future Vol. veh/h	25	5	5	148	5	5
Peak Hour Factor	0.90		0.90	0.90	0.90	0.90
Heavy Vehicles. %			0.90			
Heavy Vehicles, % Mvmt Flow	2	2		2	2	2
	28	6	6	164	6	6
lumber of Lanes		0	0	1		0
pproach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		- 1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		- 1		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		- 1	
HCM Control Delay, s/veh	7.2		7.9		7.2	
HCM LOS	A		A		A	
Lane		NBLn1 E	BLn1 \	WBLn1		
Vol Left, %		50%	0%	3%		
Vol Thru. %			83%	97%		
Vol Right, %			17%	0%		
Sign Control			Stop	Stop		
Traffic Vol by Lane		10	30	153		
LT Vol		5	0	5		
Through Vol		0	25	148		
RT Vol		5	5	0		
Lane Flow Rate		11	33	170		
Geometry Grp		1	1	1/0		
Degree of Util (X)			0.037	0.188		
				3.985		
Departure Headway (Hd)		4.084 Yes	3.98 Yes			
Convergence, Y/N		Yes 864	Yes 897	Yes 903		
Cap						
Service Time				1.997		
HCM Lane V/C Ratio		0.013 (0.188		
HCM Control Delay, s/veh		7.2	7.2	7.9		
HCM Lane LOS		Α	Α	Α		
HCM 95th-tile Q		0	0.1	0.7		

07/31/2024

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign®y\(\text{Tiching1}\) 2\(\text{Tiching1}\) 2\(\text{Tiching1}\) Pdet deckground Volur Page 2

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign®yfirthing/20%Existed Volume Page 3

HCM 7th AWSC 37: O' Connor & Fifth 07/31/2024

Intersection												
Intersection Delay, s/veh	7.3											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				7		4				7
Traffic Vol. veh/h	10	44	0	0	0	66	10	10	49	0	0	97
Future Vol, veh/h	10	44	0	0	0	66	10	10	49	0	0	97
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	49	0	0	0	73	11	11	54	0	0	108
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	1					1	1					- 1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	1					1	1					- 1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					- 1
HCM Control Delay, s/veh	7.7					7.1	7.3					7.1
HCM LOS	A					Α	Α					Α
Lane		NBLn1		WBLn1	SBLn1							
Vol Left, %		14%	19%	0%	0%							
Vol Left, % Vol Thru, %		14% 14%	19% 81%	0% 0%	0% 0%							
Vol Left, % Vol Thru, % Vol Right, %		14% 14% 71%	19% 81% 0%	0% 0% 100%	0% 0% 100%							
Vol Left, % Vol Thru, % Vol Right, % Sign Control		14% 14% 71% Stop	19% 81% 0% Stop	0% 0% 100% Stop	0% 0% 100% Stop							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		14% 14% 71% Stop 69	19% 81% 0% Stop 54	0% 0% 100% Stop 66	0% 0% 100% Stop 97							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		14% 14% 71% Stop 69 10	19% 81% 0% Stop 54 10	0% 0% 100% Stop 66 0	0% 0% 100% Stop 97 0							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		14% 14% 71% Stop 69 10	19% 81% 0% Stop 54 10 44	0% 0% 100% Stop 66 0	0% 0% 100% Stop 97 0							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		14% 14% 71% Stop 69 10 10 49	19% 81% 0% Stop 54 10 44	0% 0% 100% Stop 66 0 0	0% 0% 100% Stop 97 0 0							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		14% 14% 71% Stop 69 10 10 49 77	19% 81% 0% Stop 54 10 44 0	0% 0% 100% Stop 66 0 0 66 73	0% 0% 100% Stop 97 0 0 97							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		14% 14% 71% Stop 69 10 10 49 77	19% 81% 0% Stop 54 10 44 0 60	0% 0% 100% Stop 66 0 0 66 73	0% 0% 100% Stop 97 0 0 97 108							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		14% 14% 71% Stop 69 10 10 49 77 1	19% 81% 0% Stop 54 10 44 0 60 1	0% 0% 100% Stop 66 0 0 66 73 1	0% 0% 100% Stop 97 0 0 97 108 1							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		14% 71% Stop 69 10 10 49 77 1 0.082 3.85	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes							
Vol Left, % Vol Thru, % Vol Right, % Vol Right, % Sign Control Traffic Vol by Jane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, V/N Cap		14% 14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes 920	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes 957	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes							
Vol Left, % Vol Right, % Vol Right, % Sign Conitrol Traffic Vol by Lane Lif Vol Trough Vol Rif Vol Enroy Vol Brit Vol Degree of Uli (X) Degreture Headway (Hd) Convergence, Y/N Cap Service Time		14% 14% 71% Stop 69 10 49 77 1 0.082 3.85 Yes 920 1.917	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818 2.407	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes 957 1.765	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes 978 1.69							
Vol Left, % Vol Thru, % Vol Tript, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HOM Lane VIC Ratio		14% 14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes 920 1.917	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818 2.407 0.073	0% 0% 100% Stop 66 0 0 66 73 1 1 0.075 3.697 Yes 957 1.765 0.076	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes 978 1.69 0.11							
Vol Left. % Vol Right. % Vol Right. % Sign Control Traffic Vol Dane Lif Vol Trrough Vol Rif Vol Rif Vol Degree of Uli (X) Degree of Uli (X		14% 14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes 920 1.917 0.084 7.3	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818 2.407 0.073 7.7	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes 957 1.765 0.076 7.1	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes 978 1.69 0.11 7.1							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Treffic Vol by Lane LT Vol Treffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate Geometry Grip Degree of Ulii (X) Departure Headway (Hd) Convergence, YN Cap Service Time HOM Lane IVC Ratio HOM Lontrol Delay, siveh HOM Lane LOV Sob		14% 14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes 920 1.917 0.084 7.3 A	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818 2.407 0.073 7.7	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes 957 1.765 0.076 7.1	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes 978 1.69 0.11 7.1							
Vol Left. % Vol Right. % Vol Right. % Sign Control Traffic Vol Dane Lif Vol Trrough Vol Rif Vol Rif Vol Degree of Uli (X) Degree of Uli (X		14% 14% 71% Stop 69 10 10 49 77 1 0.082 3.85 Yes 920 1.917 0.084 7.3	19% 81% 0% Stop 54 10 44 0 60 1 0.072 4.347 Yes 818 2.407 0.073 7.7	0% 0% 100% Stop 66 0 0 66 73 1 0.075 3.697 Yes 957 1.765 0.076 7.1	0% 0% 100% Stop 97 0 0 97 108 1 0.108 3.622 Yes 978 1.69 0.11 7.1							

HCM 7th TWSC 4: Bank & Wilton

Intersection						
Int Delay, s/veh	3.2					
**	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		414	13	
Traffic Vol, veh/h	2	111	47	280	395	67
Future Vol, veh/h	2	111	47	280	395	67
Conflicting Peds, #/hi	r 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length		0			-	
Veh in Median Storag	qe, # 0	-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	2	123	52	311	439	74
	_	.20	- 02		.00	
	Minor2		Major1		/lajor2	
Conflicting Flow All	914	654	691	0	-	0
Stage 1	654	-	-	-	-	-
Stage 2	260	-	-	-	-	-
Critical Hdwy		6.275	4.175		-	-
Critical Hdwy Stg 1	5.475	-	-	-	-	-
Critical Hdwy Stg 2	5.875	-	-	-	-	-
Follow-up Hdwy	3.5475			-	-	-
Pot Cap-1 Maneuver	283	459	885			
Stage 1	509	-	-	-	-	-
Stage 2	753				-	
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 171	373	718	-	-	
Mov Cap-2 Maneuve	r 171	-	-		-	-
Stage 1	380					
Stage 2	611					
3						
Approach	EB		NB		SB	
			2.03		0	
HCM Control Delay,						
HCM Control Delay, HCM LOS	S/W9.37 C					
HCM LOS	С	NRI	NRTI	FRI n1	SRT	SRP
HCM LOS Minor Lane/Major Mv	С	NBL 617		EBLn1	SBT	SBR
HCM LOS Minor Lane/Major Mv Capacity (veh/h)	rmt	517	-	373	-	-
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio	C vmt	517 0.073	- 1	373 0.331	-	- :
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (C vmt	517 0.073 10.4	0.6	373 0.331 19.4	- 1	- 1
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio	rmt s/veh)	517 0.073	- 1	373 0.331	-	- :

Internation						
Intersection	11.8					
Int Delay, s/veh	11.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	74			4	1	
Traffic Vol, veh/h	279	175	17	45	125	61
Future Vol, veh/h	279	175	17	45	125	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0	-		-		-
Veh in Median Storage	# 0	-		0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	310	194	19	50	139	68
minut ion	0.0	101	10	- 00	100	00
Matan Maria	·		4-14		1-1-0	
	linor2		Major1		Major2	
Conflicting Flow All	261	173	207	0	-	0
Stage 1	173		-	-		
Stage 2	88	-		-		-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-		-		-
Follow-up Hdwy	3.5	3.3	2.2	-		-
Pot Cap-1 Maneuver	733	876	1377	-		-
Stage 1	862	-		-		-
Stage 2	941	-				-
Platoon blocked, %						
Mov Cap-1 Maneuver	722	876	1377			
Mov Cap-2 Maneuver	722	010	10//			
Stage 1	850	- 1				
Stage 2	941	- 1	- 1	- 1	- 1	- 1
Stage 2	941	_	-	_	-	_
Approach	EB		NB		SB	
HCM Control Delay, s/s	17.89		2.1		0	
HCM LOS	С					
Mines Lene/Meier More		NBL	NDT	EBLn1	SBT	SBR
Minor Lane/Major Mvm	ı				ODI	
		494 0.014	-	775	-	
Capacity (veh/h)				0.651	-	-
HCM Lane V/C Ratio						
HCM Lane V/C Ratio HCM Control Delay (s/	veh)	7.7	0	17.9	-	-
HCM Lane V/C Ratio				17.9 C 4.9	- 1	

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	4	
Traffic Vol, veh/h	2	11	0	360	325	0
Future Vol, veh/h	2	- 11	0	360	325	0
Conflicting Peds, #/hr	r 0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length		0	-		-	-
Veh in Median Storag	ge, # 0	-		0	0	-
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	2	12	0	400	361	0
Major/Minor	Minor2	h	//ajor1	0.	Major2	
Conflicting Flow All	561	361	najor i	0	najoiz	0
Stage 1	361	301	- :	-		-
Stage 2	200			-		
Critical Hdwy		6.275	- :	- :	- 1	- :
Critical Hdwy Stg 1	5.475	0.213	- 1	- 1		- 1
Critical Hdwy Stg 2	5.875					
	3.5475		- 1	- 1		- 1
Pot Cap-1 Maneuver		675	0			0
Stage 1	696	0/0	0			0
Stage 2	807		0			0
Platoon blocked. %	007					·
Mov Cap-1 Maneuve	r 467	675				
Mov Cap-2 Maneuve		0/0				- 1
Stage 1	696					
Stage 2	807					
Olago L	007					
Approach	EB		NB		SB	
HCM Control Delay, :			0		0	
HCM LOS	В					
Minor Lane/Major Mv	mt	NBTE	Bl n1	SBT		
Capacity (veh/h)			675			
HCM Lane V/C Ratio			0.018			
HCM Control Delay (10.4			
HCM Lane LOS	or vorry		B			
HCM 95th %tile Q(ve	h)		0.1			

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign®yTiching? 2016;Batckground Volum Page 2

2028 Minor Event Egress Lansdowne 2.0 Transportation Impact Assessment 4:57 pm 07/31/2024 Existing PM Sign®yFachrary 2006;Batckground Volum Plage 3

HCM 7th TWSC 10: Bank & Marche

07/31/2024

Internation						
Intersection Int Delay, s/veh	2.2					
		MOS	NE	NE	0.01	0.00
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ΦÞ	00		44
Traffic Vol, veh/h	5	144	396	29	0	373
Future Vol, veh/h	5	144	396	29	0	373
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-			None
Storage Length	-	0				
Veh in Median Storage		-	0			0
Grade, %	0	-	0	-		0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	6	160	440	32	0	414
Major/Minor N	/linor1	N	//ajor1	N	Major2	
Conflicting Flow All	763	336	0	0	-	-
Stage 1	556					
Stage 2	207					
Critical Hdwy	6.8	7.2				
Critical Hdwy Stg 1	5.8					
Critical Hdwy Stg 2	5.8					
Follow-up Hdwy	3.5	3.45				
Pot Cap-1 Maneuver	345	623	- 1		0	
	544	023	- 1		0	- 1
Stage 1		-	-	-		
Stage 2	813			-	0	
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	308	557	-	-	-	-
Mov Cap-2 Maneuver	308	-	-	-	-	-
Stage 1	486		-		-	
Stage 2	813	-	-		-	-
Approach	WB		NB		SB	
HCM Control Delay, s/			0		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NRR	VBLn1	SBT	
				557	301	
Capacity (veh/h)		-				
HCM Lane V/C Ratio	L L V	-		0.287	-	
HCM Control Delay (s/	ven)	- 1				
HCM Lane LOS		-		В	-	
HCM 95th %tile Q(veh				1.2		

HCM 7th TWSC 17: Princess Patricia/Princess Patricia Way & Garage

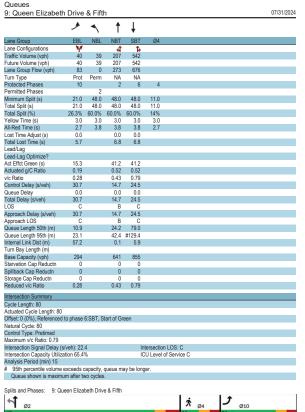
Intersection						
Int Delay, s/veh	11.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	1	11011	**	ODIT
Traffic Vol. veh/h	2	72	75	5	395	43
Future Vol. veh/h	2	72	75	5	395	43
Conflicting Peds. #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1100	None	- 100		- Ctop	None
Storage Length		-			0	-
Veh in Median Storag		0	0		0	
Grade %	ι, π -	0	0		0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	2	80	83	6	439	48
MVMt Flow		80	83	р	439	48
Major/Minor I	Major1	N	Major2	- 1	Minor2	
Conflicting Flow All	89	0	-	0	171	86
Stage 1	-	-		-	86	-
Stage 2				-	84	-
Critical Hdwy	4.12					6.22
Critical Hdwy Stg 1					5.42	0.22
Critical Hdwy Stg 2					5.42	- 1
Follow-up Hdwy	2.218				3.518	
Pot Cap-1 Maneuver			-		820	973
					937	913
Stage 1	-	-	-	-		
Stage 2			-		939	
Platoon blocked, %			-			
Mov Cap-1 Maneuver		-	-	-	818	973
Mov Cap-2 Maneuver		-		-		-
Stage 1	-	-		-	936	-
Stage 2	-	-	-	-	939	-
Approach	FB		WB		SB	
			0		15.26	
HCM Control Delay, s	V 0.2		0			
HCM LOS					С	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		49		-		831
HCM Lane V/C Ratio		0.001				0.585
HCM Control Delay (s	(hoh)	7.4	0	- 1	- 1	
HCM Lane LOS	aven)	7.4 A	A			C
HCM 95th %tile Q(vel	L)	0	^	-		3.9
HOW 9501 WILL UNVE	11)	U				3.9

2033 Full Buildout Conditions

Weekday PM Peak Hour Future Volumes

	-	4	1	-	Ţ			
ane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
ane Configurations	4		413		414			
Fraffic Volume (vph)	18	26	524	34	596			
uture Volume (vph)	18	26	524	34	596			
ane Group Flow (vph)	114	0	675	0	732			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4	1 01111	2	1 01111	6	3		
Permitted Phases		2	_	6	-	-		
Detector Phase	4	2	2	6	6			
Switch Phase		_	_		Ū			
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Fotal Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
rellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0		
ost Time Adjust (s)	0.0		0.0		0.0			
Total Lost Time (s)	5.6		5.2		5.2			
ead/Lag	Lag		0.2		0.2	Lead		
.ead-Lag Optimize?	Lug					2000		
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None		
act Effct Green (s)	11.7	J mux	55.9	Jimah	55.9	.10110		
actuated g/C Ratio	0.16		0.75		0.75			
/c Ratio	0.56		0.35		0.37			
Control Delay (s/veh)	38.8		2.1		3.4			
Queue Delay	0.0		0.0		0.0			
otal Delay (s/veh)	38.8		2.1		3.4			
.OS	D		A		A			
Approach Delay (s/veh)	38.8		2.1		3.4			
Approach LOS	D		A		A			
Queue Length 50th (m)	15.1		4.6		6.4			
Queue Length 95th (m)	27.8		10.4		16.1			
nternal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)	00.0		01.0		100.0			
Base Capacity (vph)	288		1950		2001			
Starvation Cap Reductn	0		0		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.40		0.35		0.37			
	00		0.00		0.01			
ntersection Summary								
Cycle Length: 75 actuated Cycle Length: 75								
	ad to a base	- O NIDT		DTI OL				
Offset: 74 (99%), Reference	ed to phas	Se 2:NB I	L and 6:8	BIL, Sta	art of Gree	en		
Natural Cycle: 75 Control Type: Actuated-Coo	ordinate d							
	Delininated							
Maximum v/c Ratio: 0.56	(.ab), E 5				alamant'-	n LOS: A		
ntersection Signal Delay (s								
ntersection Capacity Utiliza	ation 68.1	76		l l	LU Level	of Service C		
Analysis Period (min) 15								
Splits and Phases: 2: Ba	nk & Holm	nwood						
. •	23						2 7	
							★ _	
Ø2 (R)							$ \mathcal{K} \underset{\emptyset}{\longleftarrow} \emptyset$	4

	ၨ	→	•	←	4	†	-	ļ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		4	*	4		474		479	
raffic Volume (vph)	48	55	61	39	17	476	30	626	
uture Volume (vph)	48	55	61	39	17	476	30	626	
ane Group Flow (vph)	0	167	68	87	0	584	0	771	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
otal Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
otal Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
'ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
III-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
ost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
otal Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
ead/Lag									
ead-Lag Optimize?									
Act Effct Green (s)		20.5	20.5	20.5		43.5		43.5	
Actuated g/C Ratio		0.27	0.27	0.27		0.58		0.58	
/c Ratio		0.45	0.25	0.21		0.37		0.48	
Control Delay (s/veh)		22.8	24.3	13.7		15.1		10.3	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
otal Delay (s/veh)		22.8	24.3	13.7		15.1		10.3	
.OS		С	С	В		В		В	
Approach Delay (s/veh)		22.8		18.3		15.1		10.3	
Approach LOS		С		В		В		В	
Queue Length 50th (m)		15.6	7.5	4.6		28.5		29.8	
Queue Length 95th (m)		32.7	17.5	14.7		53.9		42.4	
nternal Link Dist (m)		49.7		112.4		195.6		190.0	
urn Bay Length (m)			45.0						
Base Capacity (vph)		371	272	409		1598		1592	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
leduced v/c Ratio		0.45	0.25	0.21		0.37		0.48	
ntersection Summary									
ycle Length: 75									
ctuated Cycle Length: 75									
Offset: 47 (63%), Reference	ed to phas	se 2:NBT	1 and 6:5	SBTL Sta	art of Gree	en			
latural Cycle: 75	and prior			, 0					
Control Type: Pretimed									
Maximum v/c Ratio: 0.48									
ntersection Signal Delay (s/veh): 14.	0		- In	ntersectio	n LOS: E	}		
ntersection Capacity Utiliz				-	CU Level	of Service	e C		
Analysis Period (min) 15									
, , , ,	ınk & Fifth								
ppilio allu Pilases. 1: Ba	IIIK & FIRT						- 1	†	
2							- 1-	4	
Ø2 (R)								→ Ø4	


2033 Weekday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:20 pm 07/31/2023/Endsting 2PReptinal Timing, 2023

	•	•	1	/	Ţ			
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
Lane Configurations	*	7	Φħ	*	44			
Traffic Volume (vph)	139	71	488	141	511			
Future Volume (vph)	139	71	488	141	511			
Lane Group Flow (vph)	154	79	714	157	568			
Turn Type	Prot	Perm	NA	Perm	NA			
Protected Phases	8		2		6	1	7	
Permitted Phases		8		6				
Detector Phase	8	8	2	6	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lost Time Adjust (s)	0.0 6.3	0.0 6.3	0.0	0.0	0.0			
Total Lost Time (s)			6.9	6.9	6.9	Lead	Lead	
Lead/Lag	Lag	Lag	Lag Yes			Yes	Yes	
Lead-Lag Optimize? Recall Mode	None	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	13.2	13.2	48.6	48.6	48.6	None	None	
Actuated g/C Ratio	0.18	0.18	0.65	0.65	0.65			
v/c Ratio	0.10	0.10	0.40	0.43	0.03			
Control Delay (s/veh)	36.1	9.7	6.8	8.0	3.9			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	36.1	9.7	6.8	8.0	3.9			
LOS	D	Α	A	A	Α			
Approach Delay (s/veh)	27.1		6.8		4.8			
Approach LOS	С		A		Α			
Queue Length 50th (m)	20.3	0.0	18.6	4.5	8.4			
Queue Length 95th (m)	34.7	9.7	34.8	9.5	11.4			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	405	347	1790	365	2035			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.38	0.23	0.40	0.43	0.28			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced	to phase	2:NBT ar	nd 6:SBT	L, Start o	f Green			
Natural Cycle: 75								
Control Type: Actuated-Coo	ordinated							
Maximum v/c Ratio: 0.57								
Intersection Signal Delay (s					ntersectio			
Intersection Capacity Utiliza	tion 62.1	%		l l	CU Level	of Servic	е В	
Analysis Period (min) 15								
Splits and Phases: 3: Bar	nk & Exhi	hition						
à ⊥ ↑	IK & EXIII	DILIOIT				- [
7 Ø2 (R)								

07/31/2024

Splits and Phases: 6: Bank & Aylmer メ プ Ø4 Ø2 (R) a Timing, 2028 Ø6 (R)

Ø6 (R)

7: Bank & Sunnyside 4 Ť **** EBT Lane Group Lane Configurations Traffic Volume (vph) Traffic Volume (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Permitted Phases
Permitted Phases
Permitted Phases
(Spit (s)
Total Spit (%)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag
 4
 8
 2
 6

 250
 250
 250
 250
 430
 430
 17.0
 60.0

 250
 250
 250
 250
 430
 430
 17.0
 60.0

 278%
 27.8%
 27.8%
 47.8%
 47.8%
 48.9%
 66.7%

 30
 30
 30
 30
 30
 30
 30
 30

 26
 2.6
 2.6
 2.6
 3.0
 3.0
 2.9
 30

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 6.0 Lead/Lag
Lead-Lag Optimize?
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh) Lead Lead Lag Lag Yes Lag Yes 0.22 1.23 0.22 0.41 0.60 0.95 184.2 116.2 21.0 27.0 Queue Delay Total Delay (s/veh) 184.2 116.2 21.0 27.0 LOS Approach Delay (s/veh) 184.2 116.2 27.0 21.0 Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m) ~39.6 ~61.9 50.2 63.1 75.1 136.0 79.0 Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio 149 347 1143 1262 1.23 1.14 0.48 0.95 Intersection Summary
Cycle Length: 90 Cycle Length: 90
Offset: 23 (26%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 100
Control Type: Pretimed Maximum v/c Ratio: 1.23 Intersection Signal Delay (s/veh): 53.0 Intersection Signal Delay (siveh): 53.0 Inter Intersection Capacity Utilization 68.% ICU I Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. 4 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 7: Bank & Sunnyside **↓** ø1 À → Ø4 Ø2 (R)

HCM 7th AWSC

a Timing, 2021

▶ Ø6 (R)

37: O' Connor & Fifth 07/31/2024

* 7 Ø8

Intersection												
Intersection Delay, s/veh	8											
Intersection LOS	A											
III(elsection EOS	^											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4				7		44				
Traffic Vol, veh/h	76	40	0	0	0	106	45	27	34	0	0	9
Future Vol, veh/h	76	40	0	0	0	106	45	27	34	0	0	9
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	84	44	0	0	0	118	50	30	38	0	0	10
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	1					1	1					
HCM Control Delay, s/veh	8.6					7.6	8.3					7.
HCM LOS	Α					Α	Α					
Lane		NBLn1	EBLn1	WRI n1	SBLn1							
Vol Left. %		42%	66%	0%	0%							
Vol Thru, %		25%	34%	0%	0%							
Vol Right, %		32%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		106	116	106	95							
LT Vol		45	76	0	0							
Through Vol		27	40	0	0							
RT Vol		34	0	106	95							
I ane Flow Rate		118	129	118	106							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.147	0.167	0.13	0.118							
Departure Headway (Hd)		4.487	4.675	3.976	4.02							
Convergence, Y/N		Yes	Yes	Yes	Yes							
		800	768	902	892							
Can				1.999	2.042							
		2.509										
Service Time		0.148	2.699									
Service Time HCM Lane V/C Ratio		0.148	0.168	0.131	0.119							
Cap Service Time HCM Lane V/C Ratio HCM Control Delay, s/veh HCM Lane LOS				0.131								

Intersection Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Stage 1
Stage 2
Critical Howy
Critical Howy Stg 1
Critical Howy Stg 2
Follow-up Howy
Pot Cep-1 Maneuver
Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach EB HCM Control Delay, s/20.88 HCM LOS C

- 6.275 -3.3475 0 279 0

07/31/2024

Intersection						
Int Delay, s/yeh	15.1					
, ,						
Movement	EBL		NBL	NBT	SBT	SBR
Lane Configurations		7		4₽	₽	
Traffic Vol, veh/h	3	239	219	600	598	51
Future Vol, veh/h	3	239	219	600	598	51
Conflicting Peds, #/hi	r 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0			-	-
Veh in Median Storag	qe,# 0			0	0	-
Grade, %	0			0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	3	266	243	667	664	57
	-					
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1691	871	899	0	-	0
Stage 1	871				-	
Stage 2	820			-	-	-
Critical Hdwy	6.675	6.275	4.175	-		-
Critical Hdwy Stg 1	5.475			-	-	-
Critical Hdwy Stg 2	5.875			-		-
Follow-up Hdwy	3.5475	3.3475	2.2475		-	
Pot Cap-1 Maneuver	91	344	738		-	-
Stage 1	402				-	-
Stage 2	388				-	
Platoon blocked. %						
Mov Cap-1 Maneuve	r 30	279	599			
Mov Cap-2 Maneuve		213	- 555			
Stage 1	164					_
Stage 2	315	- 1	- 1	- 1		- 1
Stage 2	313					
Approach	EB		NB		SB	
HCM Control Delay,	s/62.08		7.21		0	
HCM LOS	F					
Minor Lane/Major Mv	mt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		488		279		-
HCM Lane V/C Ratio		0.406		0.951		-
HCM Control Delay (s/veh)	15.1	4.3			-
HCM Lane LOS		С	Α	F	-	-
HCM 95th %tile Q(ve	h)	2		9.2		-

2033 Weekday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:20	pm 07/31/2028yEndsting2PRle@igntal Timing, 2020
	Page 1

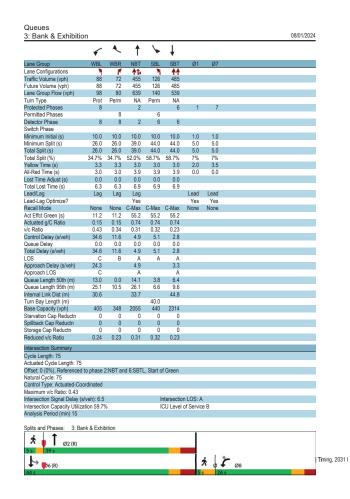
2033 Weekday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:20 pm 07/31/2029/Existing/#R69(gatal Timing, 2021 Plage 2

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 07/31/2024

lateres etter						
Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	î,	
Traffic Vol. veh/h	62	65	59	263	507	82
Future Vol. veh/h	62	65	59	263	507	82
Conflicting Peds, #/hr		0.0	0	0	0	02
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Clop	None		None	- 100	
Storage Length	0	140116		140110		140116
Veh in Median Storag		- 1		0	0	- 1
Grade. %	0,# 0		- 1	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	69	72	66	292	563	91
INIVITIT FIOW	69	12	00	292	503	91
Major/Minor I	Minor2	N	//ajor1	- 1	Major2	
Conflicting Flow All	1032	609	654	0	-	0
Stage 1	609		-			
Stage 2	423					
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	0.2				
Critical Hdwy Stg 2	5.4	-				
Follow-up Hdwy	3.5	3.3	2.2			
Pot Cap-1 Maneuver	260	499	942	- :		- :
Stage 1	547	400	342	- 1		- 1
Stage 1	665					
Stage 2 Platoon blocked, %	005		-		-	
	238	400	0.40		-	-
Mov Cap-1 Maneuver		499	942		-	
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	501		-		-	
Stage 2	665	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			1.67		0	
HCM LOS	C		1.07		U	
HOW EOG	U					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		330	-	325	-	-
HCM Lane V/C Ratio		0.07	-	0.434	-	
HCM Control Delay (s	/veh)	9.1	0			
HCM Lane LOS	- /	Α	Α	C		
HCM 95th %tile Q(veh	1)	0.2	-	2.1		
00011 70010 00(401	7	0.2		2.1		

HC	M 7th	١T٧	VSC
10.	Rank	2. 1	March

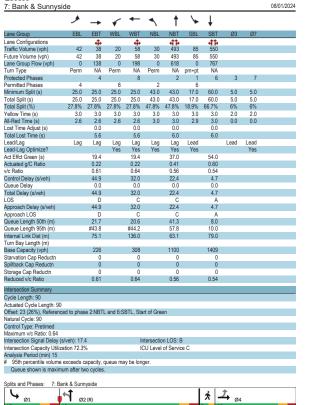

Intersection						
Int Delay, s/veh	1					
Movement	W/DI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL			NDIX	ODL	
Traffic Vol. veh/h	5	7	†	9	- 1	↑↑ 650
		84	566			
Future Vol, veh/h	5	84	566	9	1	650
Conflicting Peds, #/hr		0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	-	0	-			
Veh in Median Storag		-	0			0
Grade, %	0	-	0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	6	93	629	10	1	722
Major/Minor	Minor1	3.	//ajor1		Major2	
Conflicting Flow All	1097	419	0	0	739	0
			-	U		-
Stage 1	734		-		-	-
Stage 2	363	-	-	-	-	-
Critical Hdwy	6.8	7.2	-		4.1	
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8		-			-
Follow-up Hdwy	3.5	3.45	-	-	2.2	-
Pot Cap-1 Maneuver	211	548			877	-
Stage 1	441	-	-	-	-	-
Stage 2	680		-			
Platoon blocked, %			-			
Mov Cap-1 Maneuver	188	490	-		784	
Mov Cap-2 Maneuver	188		-	-		-
Stage 1	394					
Stage 2	679					
Ab	MIC		NP		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.01	
HCM LOS	В					
		NIDT	NIDDA	VBLn1	SBL	SBT
Minor Lane/Major My	mt .					001
Minor Lane/Major Mv	nt	NBT			784	
Capacity (veh/h)	nt	-	-	490	784	-
Capacity (veh/h) HCM Lane V/C Ratio		- :	-	490 0.191	0.001	- 1
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		- 1	- 1	490 0.191 14.1	0.001 9.6	
Capacity (veh/h) HCM Lane V/C Ratio	/veh)	- :	-	490 0.191	0.001	

Saturday Peak Hour Background Volumes

	-	4	†	-	Ţ			
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
Lane Configurations	4		414		414			
Traffic Volume (vph)	10	29	497	31	559			
Future Volume (vph)	10	29	497	31	559			
Lane Group Flow (vph)	113	0	634	0	681			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	1NA 4	Pellii	2	Pellii	1NA 6	3		
	4	_	2	_	b	3		
Permitted Phases		2		6				
Detector Phase	4	2	2	6	6			
Switch Phase								
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0		
Lost Time Adjust (s)	0.0		0.0		0.0			
Total Lost Time (s)	5.6		5.2		5.2			
Lead/Lag	Lag		J.2		J.2	Lead		
	Ldg					Leau		
Lead-Lag Optimize?	Nor	CMe	C Ma	C Ma	CMe	None		
Recall Mode	None	C-Max	C-Max	C-Max		None		
Act Effct Green (s)	11.7		55.9		55.9			
Actuated g/C Ratio	0.16		0.75		0.75			
v/c Ratio	0.56		0.32		0.34			
Control Delay (s/veh)	38.9		2.3		5.9			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	38.9		2.3		5.9			
LOS	D		A		Α			
Approach Delay (s/veh)	38.9		2.3		5.9			
Approach LOS	D		Α.		Α.			
Queue Length 50th (m)	14.9		4.1		27.2			
Queue Length 95th (m)	27.7		9.7		46.1			
	39.8				195.6			
Internal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)	00-		100		0000			
Base Capacity (vph)	285		1958		2023			
Starvation Cap Reductn	0		0		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.40		0.32		0.34			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:S	SBTL, Sta	art of Gree	en		
Natural Cycle: 75								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.56								
Intersection Signal Delay (s	s/veh): 6.9			- I	ntersectio	n LOS: A		
Intersection Capacity Utiliz						of Service C		
Analysis Period (min) 15						2. 20.1.00 0		
, , ,								
Splits and Phases: 2: Ba	nk & Holn	nwood						
							2 T	
4								
Ø2 (R)							x € → Ø4	

Queues 1: Bank & Fifth 08/01/2024 † **↓** ↓ Lane Group 46 41 69 45 21 489 20 46 41 77 108 0 593 0 Perm NA Perm NA Perm NA Perm Lane Configurations Traffic Volume (vph) Lane Configurations
Traffic Volume (yph)
Future Volume (yph)
Future Volume (yph)
Future Volume (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Permitted Phases
Permitted Phases
Permitted Phases
Minimum Spiti (s)
Total Lost Time (s)
LeadLag
Lead-Lag Optimize?
Recall Mode
Act Effic Green (s)
Actuated g/C Retio
v/c Retio
Control Delay (s/veh)
Queue Delay

"Tatal Spiniar (s/veh) 0 145 Perm NA Pe 4 4 8 2.5 2.5 2.5 0.0 0.0 0.0 5.5 5.5 5.5 None None None C-Max C-M 0.34 35.0 37.0 18.0 Queue Delay Total Delay (s/veh) 0.0 0.0 35.0 37.0 0.0 0.0 LOS
Approach Delay (s/veh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Sase Capacity (vph)
Starvation Cap Reducth
Spillback Cap Reducth
Storage Cap Reducth
Reduced vic Ratio 35.0 25.9 9.8 5.9 14.8 10.0 29.3 20.2 45.0 354 269 0 0 0.41 0.29 0.26 0.34 Intersection Summary Cycle Length: 75 Actuated Cycle Length: 75
Offset: 47 (63%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Offset: 47 (63%), Referenced to phase: Natural Cycle: 75
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.65
Intersection Signal Delay (s/veh): 12.4
Intersection Capacity Utilization 57.9%
Analysis Period (min) 15 Splits and Phases: 1: Bank & Fifth Ĵ, ø4 **1** Ø2 (R) ▶ Ø6 (R) **₹** ø8 Timing, 2031 I

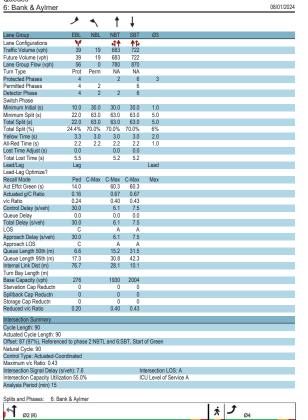

Ø6 (R)

↑ Ø2

Ø6 (R)

▶ ø6(R)

Tming, 2031 f



* T Ø8

Timing, 2031 I

08/01/2024

119

Queues 9: Queen Elizabeth Drive & Fifth 08/01/2024

	•	1	1	↓			
Lane Group	EBL	NBL	NBT	SBT	Ø4		
Lane Configurations	W		41	ħ			
Traffic Volume (vph)	55	42	248	358			
Future Volume (vph)	55	42	248	358			
Lane Group Flow (vph)	95	0	323	457			
Turn Type	Prot	Perm	NA	NA			
Protected Phases	10		2	6	4		
Permitted Phases	10	2	_	Ū			
Detector Phase	10	2	2	6			
Switch Phase	10	_	_	Ū			
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	21.0	48.0	48.0	48.0	11.0		
Total Split (s)	21.0	48.0	48.0	48.0	11.0		
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7		
Lost Time Adjust (s)	0.0	3.0	0.0	0.0	4.1		
Total Lost Time (s)	5.7		6.8	6.8			
Lead/Lag	5.7		0.0	0.0			
Lead-Lag Optimize? Recall Mode	Min	None	Mana	C-Max	None		
		None			None		
Act Effct Green (s)	11.3		56.2	56.2			
Actuated g/C Ratio	0.14		0.70	0.70			
v/c Ratio			0.30				
Control Delay (s/veh)	37.5		5.7	6.3			
Queue Delay	0.0		0.0	0.0			
Total Delay (s/veh)	37.5		5.7	6.3			
LOS	D		A	A			
Approach Delay (s/veh)	37.5		5.7	6.3			
Approach LOS	D		Α	Α			
Queue Length 50th (m)	13.6		14.5	22.3			
Queue Length 95th (m)	26.1		29.9	44.1			
Internal Link Dist (m)	57.2		0.1	5.9			
Turn Bay Length (m)							
Base Capacity (vph)	297		1060	1165			
Starvation Cap Reductn	0		0	0			
Spillback Cap Reductn	0		0	0			
Storage Cap Reductn	0		0	0			
Reduced v/c Ratio	0.32		0.30	0.39			
Intersection Summary							
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 0 (0%), Referenced	to phase	6:SBT, S	tart of Gr	reen			
Natural Cycle: 80							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.43							
Intersection Signal Delay (s	s/veh): 9.5			Ir	ntersection LOS: A		
Intersection Capacity Utiliz					CU Level of Service B		
Analysis Period (min) 15							
Splits and Phases: 9: Qu	ueen Eliza	beth Driv	e & Fifth				

☆ Ø4

Ø10

Tming, 2031 F

HCM 7th AWSC 37: O' Connor & Fifth Intersection
Intersection Delay, s/veh
Intersection LOS Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes 2 2 2 0 106 67 Approach Opposing Approach Opposing Lanes Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS Lane Vol Left, % NBLn1 EBLn1 WBLn1 SBLn1 44% 46% 29% 54% 27% 0% Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane
 Stop
 Stop
 Stop
 Stop

 137
 90
 95
 107
 LT Vol Through Vol 60 41 0 0 40 49 0 0 RT Vol Lane Flow Rate 37 0 95 107 152 100 106 119 Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N
Cap
Service Time 152 100 106 119 1 1 1 1 0.188 0.131 0.119 0.131 4.442 4.726 4.044 3.966 Yes Yes Yes Yes 808 759 887 904 2.464 2.753 2.069 1.99 Service Time
HCM Lane V/C Ratio
HCM Control Delay, s/v
HCM Lane LOS
HCM 95th-tile Q
 2.404
 2.753
 2.009
 1.99

 0.188
 0.132
 0.12
 0.132

 8.5
 8.5
 7.6
 7.6

 A
 A
 A
 A

 0.7
 0.4
 0.4
 0.5

Intersection Int Delay, s/veh

| Int Delay, siveh | 0.4 | | Movement | EBL | EBR | NBL | NBT | SBT | SBR | NBT | NBT | SBT | SBR | NBT | NBT | SBT | SBR | NBT | NB

Approach EB HCM Control Delay, s/45.19 HCM LOS C

08/01/2024

Intersection						
Int Delay, s/veh	6.4					
**						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		4₽	7>	
Traffic Vol, veh/h	3	182	119	571	526	56
Future Vol, veh/h	3	182	119	571	526	56
Conflicting Peds, #/hr	. 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0		-		-
Veh in Median Storag	e,# 0	-		0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	3	202	132	634	584	62
	-					
	Minor2		Major1		Major2	
Conflicting Flow All	1375	794	825	0	-	0
Stage 1	794		-			
Stage 2	582	-	-	-	-	-
Critical Hdwy	6.675	6.275	4.175	-	-	-
Critical Hdwy Stg 1	5.475	-		-		-
Critical Hdwy Stg 2	5.875	-		-		-
Follow-up Hdwy	3.54753	3.34752	2.2475	-		-
Pot Cap-1 Maneuver	145	381	788	-		-
Stage 1	438	-		-		-
Stage 2	516					
Platoon blocked. %	0.0					
Mov Cap-1 Maneuver	71	309	639			
Mov Cap-2 Maneuver		- 000	- 000			- 1
Stage 1	266					
Stage 2	419	- 1		- :	- 1	- 1
Stage 2	419	_	-	_	-	_
Approach	EB		NB		SB	
HCM Control Delay, s	3/86.13		3.86		0	
HCM LOS	Е					
		LIBI	NIDT		007	000
Minor Lane/Major Mvi	mt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		527	-	309	-	
HCM Lane V/C Ratio		0.207		0.653	-	-
HCM Control Delay (s	s/veh)	12.1	2.1	36.1	-	-
HCM Lane LOS		В	Α	Е	-	-
HCM 95th %tile Q(vel	h)	0.8	-	4.3	-	-

2033 Saturday Background PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:52 pm 05/12/2023 Syststing RBIRBspact Timing, 2031 I Page 1

2033 Saturday Background PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:52 pm 05/12/2023 Syristing RBITSignal Timing, 2031 I Page 2

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

Intersection						
Int Delay, s/veh	3.2					
		EDE	NE	LIBE	005	005
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	À	-	85	4	4	10:
Traffic Vol, veh/h	71	57	57	216	259	131
Future Vol, veh/h	71	57	57	216	259	131
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	79	63	63	240	288	146
Major/Minor N	finor2		//ajor1	N	Major2	
Conflicting Flow All	727	361	433	0	najoiz	0
Stage 1	361	- 001	700	-		-
Stage 2	367	- 0		- 1	- 1	- 0
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	0.2	4.1		- 1	- 1
Critical Hdwy Stg 2	5.4	- 1		_	-	_
	3.5	3.3	2.2	- 1		- 1
Follow-up Hdwy	394	689	1137	-	-	-
Pot Cap-1 Maneuver	710	689				
Stage 1		-	-		-	-
Stage 2	705			-		-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	368	689	1137		-	
Mov Cap-2 Maneuver	368	-	-		-	-
Stage 1	664	-	-		-	-
Stage 2	705		-		-	
Approach	FB		NB		SB	
HCM Control Delay, s/			1.74		0	
	Wb.13		1./4		U	
HCM LOS	C					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		376	-	465	-	-
HCM Lane V/C Ratio		0.056		0.306		
HCM Control Delay (s/	veh)	8.4	0	16.1		
HCM Lane LOS	,	A	A	С	-	-
HCM 95th %tile Q(veh)	0.2	-	1.3		
Journ all all	/	3.2		1.0		

HCM	7th	TΜ	/SC
10. B	ank	2. N	Aarche

08/0	1/202
U8/U	1/202

Intersection						
Int Delay, s/veh	0.9					
IIIL Delay, S/VeII						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħβ			44
Traffic Vol, veh/h	6	73	508	19	2	605
Future Vol, veh/h	6	73	508	19	2	605
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	e,# 0	-	0	-		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mymt Flow	7	81	564	21	2	672
Matanbura	Burnet		Antonia.		11-10	
	Minor1		Major1		Major2	_
Conflicting Flow All	1016	393	0	0	686	0
Stage 1	675		-	-		-
Stage 2	341	-	-			
Critical Hdwy	6.8	7.2	-		4.1	
Critical Hdwy Stg 1	5.8	-	-	-		-
Critical Hdwy Stg 2	5.8					
Follow-up Hdwy	3.5	3.45			2.2	
Pot Cap-1 Maneuver	238	571			917	
Stage 1	473	-				
Stage 2	698	-				
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	212	510	-	-	820	-
Mov Cap-2 Maneuver	212		-	-	-	-
Stage 1	423		-			-
Stage 2	696					
J+ -						
Ab	MID		ND		00	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.03	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)			-	510	820	-
HCM Lane V/C Ratio		- 1		0.159		
HCM Control Delay (s	/uph)	- 1		13.4	9.4	- 1
HCM Lane LOS	14011)			13.4 B	9.4 A	- 1
HCM 95th %tile Q(veh	1			0.6	0	-
now your wille Q(ver	1)		-	0.0	U	-

2033 Scenario

Saturday Peak Hour Future Volumes

Queues

	-	4	†	-	1					
Lane Group	EBT	NBL.	NBT	SBL	SBT	Ø3				
Lane Configurations	4	HUL	414	ODL	473	20				
Traffic Volume (vph)	10	29	522	37	584					
Future Volume (vph)	10	29	522	37	584					
Lane Group Flow (vph)	113	0	670	0	716					
Turn Type	NA	Perm	NA	Perm	NA					
Protected Phases	4	reiiii	2	reiiii	6	3				
Permitted Phases	4	2		6	U	J				
Detector Phases		2	2	6	6					
Switch Phase	4	2	2	b	р					
	4.4	40.0	40.0	4.0	4.0	4.0				
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0 5.0				
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0					
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0				
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%				
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0				
Lost Time Adjust (s)	0.0		0.0		0.0					
Total Lost Time (s)	5.6		5.2		5.2					
Lead/Lag	Lag					Lead				
Lead-Lag Optimize?										
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None				
Act Effct Green (s)	11.7		55.9		55.9					
Actuated g/C Ratio	0.16		0.75		0.75					
v/c Ratio	0.16		0.73		0.76					
Control Delay (s/veh)	38.9		2.3		3.9					
Queue Delay	0.0		0.0		0.0					
Total Delay (s/veh)	38.9		2.3		3.9					
LOS	30.9 D									
			A		A 3.9					
Approach Delay (s/veh)	38.9		2.3							
Approach LOS	D		Α		Α					
Queue Length 50th (m)	14.9		4.8		6.8					
Queue Length 95th (m)	27.7		11.2		28.4					
Internal Link Dist (m)	39.8		31.5		195.6					
Turn Bay Length (m)										
Base Capacity (vph)	285		1946		1991					
Starvation Cap Reductn	0		0		0					
Spillback Cap Reductn	0		0		0					
Storage Cap Reductn	0		0		0					
Reduced v/c Ratio	0.40		0.34		0.36					
	20									
Intersection Summary										
Cycle Length: 75										
Actuated Cycle Length: 75										
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:5	SBTL, Sta	art of Gree	en				
Natural Cycle: 75										
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 0.56										
Intersection Signal Delay (s/veh): 5.8			li	ntersectio	n LOS: A				
Intersection Capacity Utiliz				le	CU Level	of Service C				
Analysis Period (min) 15										
Splits and Phases: 2: Ba	ank & Holn	nwood								
△ ↑							نه ا	1		
							3	e →	Ø4	
Ø2 (R)										
Ø2 (R)							5.5	22 s		
Ø2 (R)							5 s	22 s		
Ø2 (R) 48 s Ø6 (R)						•	5 s	22 s		•

Queues 07/31/2024 1: Bank & Fifth † **>** \$ Lane Group Lane Configurations
Traffic Volume (vph)
Traffic Volume (vph)
Turb Volume (vph)
Total Spitt (s)
Total Delay (sveh)
Courue Delay
Total Delay (sveh)
Courue Delay
Total Delay (sveh)
Courue Length Spitt (s)
Turb Bay Length (m)
Base Capacity (vph)
Stavarion Cap Reducth
Spittlack Cap Reducth
Reduced vic Ratio 46 41 69 45 21 513 20 46 41 69 45 21 513 20 0 145 77 114 0 620 0 Perm NA Perm NA Perm NA Perm
 4
 8
 2
 6

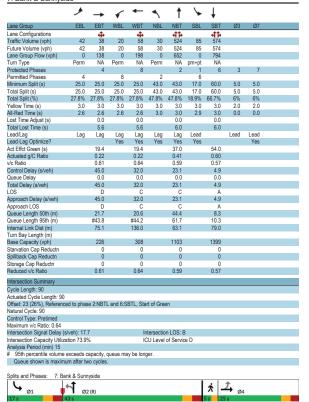
 26.0
 26.0
 26.0
 26.0
 49.0
 49.0
 49.0
 49.0

 26.0
 26.0
 26.0
 26.0
 49.0
 49.0
 49.0
 49.0

 34.7%
 34.7%
 34.7%
 65.3%
 65.3%
 65.3%
 65.3%

 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 20.5 20.5 20.5 0.27 0.27 0.27 0.40 0.27 0.27 43.5 0.58 0.43 43.5 0.58 0.39 0.40 0.27 0.27 20.9 24.6 12.8 0.0 0.0 0.0 20.9 24.6 12.8 14.3 0.0 14.3 9.6 0.0 9.6 C C 20.9 9.6 17.5 14.3 12.6 8.5 28.0 19.2 49.7 112.4 45.0 362 285 0 0 1631 0.40 0.27 0.27 0.39 0.43 Intersection Signal Delay (Siveh): 13.3 Intersection Capacity Utilization 58.8% ICU Level of Sanalysis Period (min) 15 Splits and Phases: 1: Bank & Fifth **∮** Ø2 (R) **1** Ø4 ▶ Ø6 (R)

2033 Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:40 pm 07/31/2024 Existing PM Signatir@itaf@g8685 Background \
Page 1


	•	4	†	-	Į.			
ane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
ane Configurations		7	∱ β	ř	44			
Traffic Volume (vph)	112	84	463	150	485			
uture Volume (vph)	112	84	463	150	485			
ane Group Flow (vph)	124	93	674	167	539			
Turn Type	Prot	Perm	NA	Perm	NA			
Protected Phases	8		2		6	1	7	
Permitted Phases		8		6				
Detector Phase	8	8	2	6	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
/ellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
.ead/Lag	Lag	Lag	Lag			Lead	Lead	
.ead-Lag Optimize?			Yes			Yes	Yes	
Recall Mode	None	None	C-Max			None	None	
Act Effct Green (s)	12.1	12.1	54.3	54.3	54.3			
Actuated g/C Ratio	0.16	0.16	0.72	0.72	0.72			
/c Ratio	0.50	0.36	0.34	0.40	0.24			
Control Delay (s/veh)	35.3	10.6	5.4	7.0	3.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	35.3	10.6	5.4	7.0	3.1			
.OS	D	В	Α	A	Α			
Approach Delay (s/veh)	24.7		5.4		4.0			
Approach LOS	С		Α		Α			
Queue Length 50th (m)	16.4	0.0	16.0	4.8	8.0			
Queue Length 95th (m)	29.7	11.0	29.8	9.9	9.9			
nternal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	405	358	1996	421	2275			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.31	0.26	0.34	0.40	0.24			
ntersection Summary								
cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced		2:NBT ar	nd 6:SBT	L. Start o	f Green			
Natural Cycle: 75				,				
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.50								
ntersection Signal Delay (s/veh): 7.4			, li	ntersectio	n LOS: A		
ntersection Capacity Utiliz					CU Level			
Analysis Period (min) 15								
Splits and Phases: 3: Ba	nk & Exhi	bition						
à 1								
ℜ						- 1		
5 s 39 s								
L .						7	2 1	<u>-</u>
▶ •6 (R)						- 13	*	Ø8
A 1.4						_	Т.	

Splits and Phases: 6: Bank & Aylmer

1 Ø2 (R) Ø6 (R)

Ø6 (R)

↓ ø₁	Ø2 (R)	Ŕ	1 ∅4	
17 s	43 s	5 s	25 s	0
▶ Ø6 (R)	•	京	T Ø8	
◆ * Ø6 (R)	•	55	. ♦ Ø8	

	۶	1	1	ţ		
Lane Group	EBL	NBL	NBT	SBT	Ø3	
Lane Configurations	N/		414	↑ ₽		
Traffic Volume (vph)	39	19	715	747		
Future Volume (vph)	39	19	715	747		
Lane Group Flow (vph)	56	0	815	898		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	4		2	6	3	
Permitted Phases	4	2		6		
Detector Phase	4	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0	
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0	
Total Split (s)	22.0	63.0	63.0	63.0	5.0	
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%	
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.5		5.2	5.2		
Lead/Lag	Lag		0.2	J.2	Lead	
Lead-Lag Optimize?	Lag				Load	
Recall Mode	Ped	C May	C-Max	C-Max	Max	
Act Effct Green (s)	14.0	CHIVIAX	60.3	60.3	Max	
Actuated g/C Ratio	0.16		0.67	0.67		
v/c Ratio	0.16		0.67	0.67		
Control Delay (s/veh)	30.0		6.6	7.7		
	0.0		0.0	0.0		
Queue Delay	30.0		6.6	7.7		
Total Delay (s/veh) LOS	30.0 C		0.0 A	7.7 A		
	30.0		6.6	7.7		
Approach Delay (s/veh)	30.0		0.0 A	7.7 A		
Approach LOS						
Queue Length 50th (m)	6.6		16.0	32.9		
Queue Length 95th (m)	17.3		35.6	44.2		
Internal Link Dist (m)	76.7		28.1	10.1		
Turn Bay Length (m)	OF T		100-	0000		
Base Capacity (vph)	276		1930	2008		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.20		0.42	0.45		
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 87 (97%), Reference	ed to phas	se 2:NBT	L and 6:9	SBT, Start	of Green	
Natural Cycle: 90						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.45						
Intersection Signal Delay (s	s/veh): 7.9			Ir	tersection LOS: A	
Intersection Capacity Utiliz				IC	CU Level of Service B	
Analysis Period (min) 15						

Queues

* J Ø4

Lead-Lag Optimize? Act End Green (s) 15.3 41.2 41.2 Act Lend Green (s) 15.3 41.2 41.3 Control Delay (siveh) 31.9 14.4 16.3 Control Delay (siveh) 31.9 14.4 16.3 COS 8 8 8 COS 8 8 8 COS 8 8 8 COS 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		۶	4	†	Ţ				
Lane Configurations Traffic Volume (yph) 62 42 259 371 Future Volume (yph) 63 30 335 471 Future Volume (yph) 64 48 48 471 Future Volume (yph) 65 48 48 471 Future Volume (yph) 66 48 48 48 48 48 48 48 48 48 48 48 48 48	e Group	FRI	NRI.	NRT	SRT	014			
Traffic Volume (uph) 62 42 259 371 Lane Group Flow (uph) 62 42 259 371 Lane Group Flow (uph) 103 0 335 471 Luna (uph) 62 42 259 371 Lane Group Flow (uph) 103 0 335 471 Luna (uph) 62 42 259 371 Lane Group Flow (uph) 103 0 335 471 Luna (uph) 103 0 32 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8									
Future Volume (vph) 62 42 259 371 Laura Group Flow (vph) 103 0 335 471 Turn Type Prot Perm NA NA Protected Phases 10 2 6 4 Permited Phases 10 2 6 4 Permited Phases 10 1 2 6 4 Permited Phases 10 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1			12						
Lame Group Flow (vph) 103 0 335 471 Tun Type Prot Perm NA NA PA Protected Phases 10 2 6 4 Protected Phases 10 2 7 Protected Phases 10 110 Total Spit (s) 21.0 48.0 48.0 48.0 11.0 Total Spit (s) 26.3% 60.0% 60.0% 60.0% 14% Fellow Time (s) 27 3.8 38 38 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Spit (s) 5.7 6.8 6.8 Fellow Time (s) 2.7 3.8 38 38 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.7 6.8 6.8 Fellow Time (s) 5.8 6.8 Fellow Time (s) 5.8 Fellow Time (
Turn Type Prot Perm NA NA Protected Phases 10 2 6 4 Permitted Phases 10 2 6 4 6 4 Permitted Phases 2 7 Permitted Phases 2 7 Permitted Phases 2 7 Permitted Phases 2 7 Permitted Phase 2 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9									
Protected Phases 10 2 6 4 Premitted Phases 2 Minimum Split (s) 21.0 48.0 48.0 48.0 11.0 Total Split (s) 21.0 48.0 48.0 48.0 11.0 Total Split (s) 21.0 48.0 48.0 48.0 11.0 Total Split (s) 22.3 60.0% 60.0% 60.0% 14% Valvo Time (s) 3.0 30 30 30 30 30 Mil-Red Time (s) 2.7 3.8 38 38 38 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 Lost Time Adjust (s) 0.0 0.0 0.0 Lost Time Adjust (s) 5.7 6.8 68 Lost Time (s) 2.7 6.8 68 Lost Time (s) 3.7 6.8 68 Lost Time (s) 3.1 41.2 41.2 Value Lost Time (s) 4.7 6.8 68 Lost Time (s) 4.7 68.1 68 Lost Time (s) 5.7 6.8 68 Lost Time (s) 6.9 68 Lost Time (s) 6.9 68									
Permitted Phases 2 Value			1 61111			4			
Minimum Split (s)			2	_	Ū				
Trotal Spiri (s) 21.0 48.0 48.0 48.0 11.0 Total Spiri (s) 26.3% 60.0% 60.0% 60.0% 14% (s) 26.3% 60.0% 60.0% 60.0% 14% (s) 26.3% 60.0% 60.0% 14% (s) 26.3% 60.0% 60.0% 14% (s) 27.3 8.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3		21.0		48.0	48.0	11.0			
Trotal Spirit (%)									
Vallow Time (s)									
All-Red Time (s) 27 3.8 3.8 3.8 27									
Lost Time Aglust (s) 0.0 0.0 0.0 Lost Time Aglust (s) 5.7 6.8 6.8 Lead Lag Optimize? Lead Lag Optimize Lag Opt									
Total Lost Time (s) 5.7 6.8 6.8 Lead-Lag Optimize? Lead-Lag Optimize? Act End Green (s) 15.3 41.2 41.2 Act End Green (s) 15.3 0.43 0.55 Control Delay (siveh) 31.9 14.4 16.3 Control Delay (siveh) 31.9 14.4 16.3 COS B B B COS B B B B COS B B B B B B B B B B B B B B B B B B B			0.0						
Lead Lag Optimize? Act Effict Green (s) 15.3									
Lead-Lag Optimize? Act End Green (s) 15.3 41.2 41.2 Act Lend Green (s) 15.3 41.2 41.3 Control Delay (siveh) 31.9 14.4 16.3 Control Delay (siveh) 31.9 14.4 16.3 COS 8 8 8 COS 8 8 8 COS 8 8 8 COS 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0.1		0.0	0.0				
Act Effect Green (s) 15.3 41.2 41.2 Actual deg (Relatio 1.0 19 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52									
Achusted QiC Ratio 0.19 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52		15.3		41.2	412				
\(\text{Vic Ratio} \) 0.35 \ 0.43 \ 0.55 \\ \text{Dartario Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{Durue Delay} \) 0.0 \ 0.0 \ 0.0 \\ \text{Dota Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{DOS} \) C \(C \) B \\ B \\ \text{Approach Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{Dos Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{Delay Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{Delay Delay (siveh)} \) 31.9 \ 14.4 \ 16.3 \\ \text{Delay Delay (siveh)} \) 31.9 \ 29.5 \ 45.6 \\ \text{Deueue Length S0th (m)} \) 13.7 \ 29.9 \ 45.6 \\ \text{Deueue Length S0th (m)} \) 77.2 \ 0.1 \ 5.9 \\ \text{Turn Bay Length (m)} \\ \text{38ac Casachy (vin)} \) 288 \\ 77.1 \\ \text{38ac Casachy (vin)} \\ \text{28ac Delay (siveh)} \) 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \ 0 \\ \text{Spilback Cap Reductn} \ 0 \\ 0 \\ \text{Spilback Cap Reductn} \ 0 \\ 0 \\ \text{Spilback Cap Reductn} \ 0 \\ 0 \\ \text{Spilback Cap Reductn} \\ \text{O \text{O \text{Spilback Cap Reductn}} \\ \text{O \text{Spilback Cap Reductn}} \\ \text{O \text{Spilback Cap Reductn} \\ \text{O \text{Spilback Cap Reductn}} \\ \text{O \text{Spilback Cap Reductn}} \\ \text{O \text{O \text{Spilback Cap Reductn}} \\ O \text{Spilback Cap Re									
Control Delay (siveh) 31.9 14.4 16.3 Queue Delay (veh) 31.9 14.4 16.3 LOS C B B Approach Delay (siveh) 31.9 14.4 16.3 LOS C B B Approach Delay (siveh) 31.9 14.4 16.3 Approach Delay (siveh) 31.9 14.4 16.3 Control Delay (siveh) 27.5 19.9 19.9 Control Delay (siveh) 27.5 19.9 19.9 Control Delay (siveh) 27.5 19.9 19.9 Control Delay (siveh) 29.8 77.1 85.3 Control Delay (siveh) 29.8 77.1 85.3 Control Delay (siveh) 29.8 77.1 85.3 Control Delay (siveh) 29.8 29.9 19.9 Control Delay (siveh) 29.8 29.9 19.9 Control Delay (siveh) 29.9 29.9 29.9 Control Delay (siveh) 29.9 29.9 29.9 29.9 Control Delay (siveh) 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.									
Duese Delay									
Total Delay (siveh) 31.9 14.4 16.3 LOS C B B Approach Delay (siveh) 31.9 14.4 16.3 Approach LOS C B B Approach LOS B Intersection LOS B Intersection Signal Delay (siveh): 17.3 Intersection LOS B Intersection LOS Signal C B Approach LOS C B Intersection									
LOS C B B B Approach Delay (s/veh) 3.1.9 14.4 16.3 Approach LOS C B B B Approach LOS C B B B B B B B B B B B B B B B B B B									
Approach Delay (siveh) 31.9 14.4 16.3 Approach Delay (siveh) 31.9 29.9 45.6 Duese Length 50th (m) 13.7 29.9 45.6 Duese Length 50th (m) 27.5 49.4 72.1 Immeral Link Disk (m) 57.2 0.1 5.9 Imm Bay Length (m) 57.2 0.1 5.9 Imm Bay Length (m) 59.2 0.1 5.9 Imm Bay Length (m) 59.2 0.1 5.9 Imm Bay Length (m) 59.2 0.1 5.9 Imm Base Capacity (prth) 298 77.1 85.3 Slarvation Cap Reductn 0 0 0 0 Slorage Cap Reductn 0 0 0 0 Immeration Summary Syste Length : 80 Intersection Summary Immeration Cap Reductn 0 0 0 0 Immeration Summary Immeration Cap Reductn 0 0 0 0 Immeration Summary Immeration Cap Reductn 0 0 0 0 0 Immeration Summary Immeration Capacity Length : 80 Intersection Signal Delay (siveh): 17.3 Intersection Signal Delay (siveh): 17.									
Approach LOS									
Duese Langth 50th (m) 13.7 29.9 45.6 Queue Langth 50th (m) 27.2 49.4 72.1 Innternal Link Dist (m) 57.2 0.1 5.9 Turn Bey Length (m) 57.2 0.1 5.9 Starvation Cap Reduct 0 0 0 Starvation Cap Reduct 0 0 0 Storage Cap Reduct 0 0 0 Storage Cap Reduct 0 0 0 Total Storage Cap Reduct 0 0 0 Vicy Length 80 0 0.55 0.43 0.55 Intersection Summary Cycle Length: 80 0 0 0 Offset 1 (0%), Reference of phase 6:SBT, Start of Green Natural Cycle: 80 0 0 Waxmuru Vic Ratio: 0.55 10 1 1 1 Maxmuru Vic Ratio: 0.05 10 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Queue Length 95th (m) 27.5 49.4 72.1 Internal Link Dist (m) 57.2 0.1 5.9 Turn Bay Length (m) 288 77.1 85.3 Slavareton Cap Reductn 0 0 0 Spilliback Cap Reductn 0 0 0 Skrage Cap Reductn 0 0 0 Reduced vic Ratio 0.35 0.43 0.55 Intersection Summary Oycle Length: 80 Actuated Cycle Length: 80 O.0 Actuated Cycle Length: 80 O.0 Control Type: Pretimed Maximum v/c Ratio: 0.55 Intersection Signal Delay (siveh): 17.3 Intersection LOS: B Intersection LOS: B Intersection LOS: B Intersection Capacity Ultization 65.3% ICU Level of Service C									
Internal Lufk Dist (m) 57.2 0.1 5.9 Internal Lufk Dist (m) 57.2 0.1 5.9 Base Capacity (viph) 298 77.1 85.3 Salvation Cap Reducth 0 0 0 0 Storage Cap Reducth 0 0 0 0 Intersection Summary Cycle Length: 80 Actuated Cycle Length: 80 Actuated Cycle Length: 80 Contriot Tipse: Pretimed Capacity Capaci									
Turn Bay Length (m) Base Capacity (vph) 298 771 853 Base Capacity (vph) 298 771 853 Base Capacity (vph) 0 0 0 Spilliback Cap Reductn 0 0 0 0 Spilliback Cap Reductn 0 0 0 0 Reduced vic Ratio 0.35 0.43 0.55 Intersection Summary Cycle Length: 80 Actuated Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Pretimed Maximum vic Ratio: 0.55 Intersection Signal Delay (siveh): 17.3 Intersection LOS: B Inte									
Base Canachy (vph) 298 771 853 Starvation Cap Reducth 0 0 0 0 Spillback Cap Reducth 0 0 0 0 Spillback Cap Reducth 0 0 0 0 Storage Cap Reducth 0 0 0 0 Storage Cap Reducth 0 0 5 0 0 0 Storage Cap Reducth 0 0 5 0 0 0 Storage Cap Reducth 0 0 5 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		U1.2		0.1	0.0				
Starvation Cap Reductin		200		771	952				
Spillback Cap Reducin									
Storage Cap Reduch									
Reduced wic Ratio									
Intersection Summary Cycle Length: 80 Actuated Cycle Length: 80 Olfset: 0 (0%), Referenced to phase 6:SBT, Start of Green Natural Cycle: 80 Control Type: Pretimed Maximum vic Ratio: 0.55 Intersection Signal Delay (s/veh): 17.3 Intersection Signal Delay (s/veh): 17.3 Intersection Capacity Ultization 65.3% ICU Level of Service C									
Cycle Length: 80 Lictuated Cycle Length: 80 State of Oyle Length: 80 State of Oyle Se State of Oyle: 80 Control Type: Pretimed Maximum vic Ratio: 0.55 Intersection Signal Delay (siveh): 17.3 Intersection Signal Delay (siveh): 63.3% ICU Level of Service C		3.00		0.70	0.00				
Achusted Cycle Length: 80 Noticet: 0 (1/4), Referenced to phase 6:SBT, Start of Green Natural Cycle: 0 Control Type: Pretimed Naximum vic Ratio: 0.55 Intersection Signal Delay (siveh): 17.3 Intersection Signal Delay (siveh): 17.3 Intersection Capacity Utilization 65:3% ICU Level of Service C									
Offiset 0 (0%), Referenced to phase 6:SBT, Start of Green Natural Cycle: 80 Control Type: Pretimed Maximum vic Retio: 0.55 Intersection Signal Delay (s'veh): 17.3 Intersection Capacity Utilization 65.3% ICU Level of Service C									
Natural Cycle: 80 Control Type: Pretimed Maximum vic Ratio: 0.55 intersection Signal Delay (siveh): 17.3 intersection Signal Delay (siveh): 3% ICU Level of Service C									
Control Type: Pretimed Maximum Vic Ratio: 0.55 Intersection Signal Delay (s/veh): 17.3 Intersection LOS: B Intersection Capacity Utilization 65.3% ICU Level of Service C		phase 6	6:SBT, S	tart of Gr	een				
Maximum v/c Ratio: 0.55 Intersection Signal Delay (s/veh): 17.3 Intersection LOS: B Intersection Capacity Utilization 65.3% ICU Level of Service C									
Intersection Signal Delay (s/veh): 17.3 Intersection LOS: B Intersection Capacity Utilization 65.3% ICU Level of Service C									
Intersection Capacity Utilization 65.3% ICU Level of Service C									
Analysis Period (min) 15		n 65.3%	%		IC	U Level of Ser	vice C		
	dysis Period (min) 15								
Splits and Phases: 9: Queen Elizabeth Drive & Fifth	its and Phases: 9: Quee	n Elizab	beth Driv	e & Fifth					
	1						ا أ	1 1	

HCM 7th AWSC 11: O' Connor & Fifth 07/31/2024 Intersection Delay, s/veh Intersection LOS Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes 2 2 2 0 106 73 119 Approach Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh
HCM LOS Vol Left, % Vol Thru, % Vol Right, % NBLn1 EBLn1 WBLn1 SBLn1 44% 46% 0% 0% 27% 54% 0% 0% 29% 0% 100% 100% Sign Control
Traffic Vol by Lane
LT Vol
Through Vol
 Stop
 Stop
 Stop
 Stop

 149
 90
 95
 107
 66 41 0 0 40 49 0 0 RT Vol Lane Flow Rate 43 0 95 107 166 100 106 119 Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N
Cap
Service Time 166 100 106 119 1 1 1 1 0.204 0.132 0.12 0.132 4.433 4.758 4.076 3.983 Yes Yes Yes Yes 810 754 879 900 2.459 2.787 2.103 2.009 Service Time
HCM Lane V/C Ratio
HCM Control Delay, s/veh
HCM Lane LOS
HCM 95th-tile Q 0.205 0.133 0.121 0.132 8.6 8.5 7.7 7.6 A A A A A 0.8 0.5 0.4 0.5

HCM 7th TWSC 5: Bank & Echo

Intersection Int Delay, s/veh

| Stage 1 | 803 | Stage 2 | 394 | Chitical Hdwy 6 | 6.875 6.275 | Chitical Hdwy Stg 1 | 5.475 | Chitical Hdwy Stg 1 | 5.475 | Chitical Hdwy Stg 2 | 5.875 | Chitical Hdwy Stg 2 | 5.875 | Stage 1 | 433 | 0 | Stage 2 | 643 | 0 | Platoon blocked, % Mov Cap'l Maneuver 188 | 376 | Mov Cap'l Maneuver 188 | 376 | Mov Cap'l Maneuver 188 | Stage 2 | 643 | Stage 2 | Stage 2

Approach EB HCM Control Delay, s/15.59 HCM LOS C

07/31/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	6.7					
	EDI	EDD	NDI	NDT	ODT	000
Movement	EBL		NBL	NBT	SBT	SBR
Lane Configurations		7		41	4	=0
Traffic Vol, veh/h	3	182	119	602	550	56
Future Vol, veh/h	3	182	119	602	550	56
Conflicting Peds, #/hr		0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-		-	-
Veh in Median Storag			-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	3	202	132	669	611	62
	Minor2		Major1		Major2	
Conflicting Flow All	1419	820	851	0	-	0
Stage 1	820					
Stage 2	599	-			-	-
Critical Hdwy	6.675	6.275	4.175		-	
Critical Hdwy Stg 1	5.475					
Critical Hdwy Stg 2	5.875					
	3.54753	3.34752	2.2475			
Pot Cap-1 Maneuver	136	368	769			
Stage 1	425	-	100			
Stage 2	506					
Platoon blocked, %	300					
Mov Cap-1 Maneuver	r 66	299	624			
Mov Cap-1 Maneuver		299	024	- :	- 1	- 1
					-	-
Stage 1	255	-			-	
Stage 2	410	-	-	-	-	-
Approach	FB		NB		SB	
			3.95		0	
HCM Control Delay, s HCM LOS	7/89.01 F		5.95		U	
HOM FOS	E					
Minor Lane/Major Mv	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		508		299		
HCM Lane V/C Ratio		0.212		0.677	- 1	- 0
HCM Control Delay (s	s(woh)	12.3	2.3	39	- 1	- 1
HCM Lane LOS	a verij	12.3 B	2.3 A	39 F	- 1	- 1
HCM 95th %tile Q(ve	h)	0.8	А	4.6		
HOM SOUL WILL QIVE	11)	0.0		4.0		

2033 Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:40 pm 07/31/2024 Existing PM Signativitizing-8086 Background \(^1\) Page 2

2033 Saturday PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:40 pm 07/31/2024 Existing PM Sigmahr\u00fcrig\u00e9\u00e9888 Background \u00e9 Page 1

HCM 7th TWSC

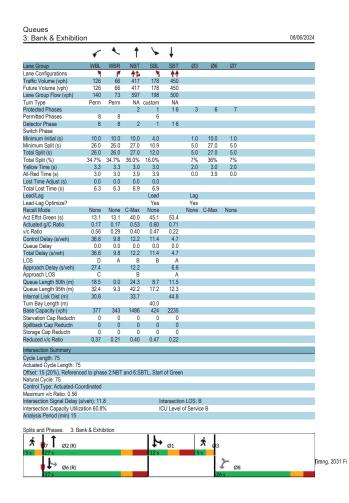
8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 07/31/2024

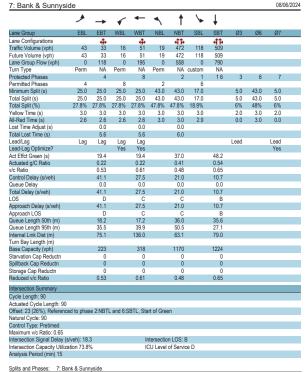
Intersection						
Int Delay, s/veh	3.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1	
Traffic Vol, veh/h	81	68	70	216	259	144
Future Vol, veh/h	81	68	70	216	259	144
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None				
Storage Length	0	-		-		-
Veh in Median Storage	# 0			0	0	
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	90	76	78	240	288	160
	50	10	70	240	200	100
	finor2		//ajor1		Major2	
Conflicting Flow All	763	368	448	0	-	0
Stage 1	368	-	-		-	-
Stage 2	396	-	-		-	-
Critical Hdwy	6.4	6.2	4.1		-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-		-	-
Follow-up Hdwy	3.5	3.3	2.2		-	
Pot Cap-1 Maneuver	375	682	1123	-	-	-
Stage 1	705	-	-	-	-	-
Stage 2	685	-	-		-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	345	682	1123		-	-
Mov Cap-2 Maneuver	345		-		-	-
Stage 1	648	-	-		-	-
Stage 2	685				-	
Approach	EB		NB		SB	
Approach						
HCM Control Delay, s/			2.07		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		441	-	446	-	-
HCM Lane V/C Ratio		0.069		0.372		
HCM Control Delay (s/	veh)	8.4	0	17.8		
HCM Lane LOS		A	A	C		
HCM 95th %tile Q(veh)	0.2	-	1.7		

HCI	M 7th	1 TW	/SC
10.	Rank	/ R. N	Aarche

07/31/2024

07/31/2024


Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDR		NOR	ODL	
Traffic Vol. veh/h	6	85	↑↑ 527	20	2	↑ ↑ 629
Future Vol. veh/h	6	85	527	20	2	629
Conflicting Peds. #/hr		85 0	527	100	0	029
	Stop				Free	Free
Sign Control		Stop	Free	Free		
RT Channelized	-	None	-	None		None
Storage Length	- " -	0	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	7	94	586	22	2	699
Major/Minor I	Minor1	h	Major1		Major2	
Conflicting Flow All	1051	404	0	0	708	0
Stage 1	697	404	U	-	700	-
	354				- 1	- 1
Stage 2		7.0	-			
Critical Hdwy	6.8	7.2	-	-	4.1	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-			-
Follow-up Hdwy	3.5	3.45	-		2.2	
Pot Cap-1 Maneuver	226	561	-	-	900	
Stage 1	461	-	-	-	-	-
Stage 2	687		-			-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	201	502			805	
Mov Cap-2 Maneuver	201		-	-	-	-
Stage 1	412					
Stage 2	685					
230 2	200					
A	MIP		NE		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.03	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBT	NBRV	VRI n1	SBL	SBT
Capacity (veh/h)			- TOTA	502	805	001
		-	-			
HCM Lane V/C Ratio	L Is V	-	-	0.188		
HCM Lane V/C Ratio HCM Control Delay (s	/veh)		-	13.8	9.5	-
HCM Lane V/C Ratio			i			


2033 Scenario

Sunday Peak Hour
Background Volumes

	\rightarrow	1	1	-	Į.			
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
Lane Configurations	43-		413		414			
Traffic Volume (vph)	18	32	519	23	551			
Future Volume (vph)	18	32	519	23	551			
Lane Group Flow (vph)	111	0	704	0	678			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4		2		6	3		
Permitted Phases		2		6	-	-		
Detector Phase	4	2	2	6	6			
Switch Phase		_	_	-	-			
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	23.0	47.0	47.0	47.0	47.0	5.0		
Total Split (s)	23.0	47.0	47.0	47.0	47.0	5.0		
Total Split (%)	30.7%	62.7%	62.7%	62.7%	62.7%	7%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0		
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0		
Lost Time Adjust (s)	0.0		0.0		0.0	0.0		
Total Lost Time (s)	5.6		5.2		5.2			
Lead/Lag	Lag		0.2		0.2	Lead		
Lead-Lag Optimize?	Lug					2000		
Recall Mode	None	C-May	C-Max	C-Max	C-May	None		
Act Effct Green (s)	11.6	O-IVIAX	56.1	O-IVIDA	56.1	IVOIIG		
Actuated g/C Ratio	0.15		0.75		0.75			
v/c Ratio	0.15		0.73		0.73			
Control Delay (s/veh)	38.6		2.4		8.9			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	38.6		2.4		8.9			
LOS	D.0		Α.4		Α.			
Approach Delay (s/veh)	38.6		2.4		8.9			
Approach LOS	30.0 D		2.4 A		0.5 A			
Queue Length 50th (m)	14.7		5.3		24.5			
Queue Length 95th (m)	27.3		12.1		48.9			
Internal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)	39.0		31.5		195.0			
Base Capacity (vph)	304		1890		2043			
Starvation Cap Reductn	0		0		2043			
	0		0		0			
Spillback Cap Reductn Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.37		_		0.33			
Reduced V/C Ratio	0.37		0.37		0.33			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 16 (21%), Reference	ed to phas	se 2:NBT	L and 6:5	SBTL, Sta	art of Gree	n		
Natural Cycle: 75								
Control Type: Actuated-Coo	ordinated							
Maximum v/c Ratio: 0.55								
Intersection Signal Delay (s	/veh): 8.1			Ir	ntersectio	n LOS: A		
Intersection Capacity Utiliza				10	CU Level	of Service	C	
Analysis Period (min) 15								
Splits and Phases: 2: Bar	nk & Holn	nwood						
4							* 1 m	
Ø2 (R)							$N \phi \longrightarrow \emptyset 4$	
47 c							5 s 23 s	

: Bank & Fifth									08/06/202
	۶	→	•	←	4	†	>		
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		♣ 38	, F	4		र्सी		र्सी	
raffic Volume (vph)	54	38	123	67	16	491	23	516	
uture Volume (vph)	54	38	123	67	16	491	23	516	
ane Group Flow (vph)	0	131	137	117	0	594	0	646	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
rotected Phases		4		8		2		6	
ermitted Phases	4		8		2		6		
etector Phase	4	4	8	8	2	2	6	6	
witch Phase									
finimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
finimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
otal Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
otal Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
II-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
ost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
otal Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
ead/Lag		2.0	2.0			2.0			
ead-Lag Optimize?									
tecall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
ct Effct Green (s)		14.5	14.5	14.5		49.5		49.5	
ctuated g/C Ratio		0.19	0.19	0.19		0.66		0.66	
/c Ratio		0.55	0.67	0.38		0.32		0.36	
Control Delay (s/veh)		30.6	43.3	20.4		7.3		6.9	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
otal Delay (s/veh)		30.6	43.3	20.4		7.3		6.9	
OS		C	D	C		A		A	
pproach Delay (s/veh)		30.6		32.7		7.3		6.9	
pproach LOS		C		C		7.5 A		Α.	
Queue Length 50th (m)		14.2	18.0	9.6		28.2		17.9	
Queue Length 95th (m)		27.4	32.3	20.9		50.0		33.6	
nternal Link Dist (m)		49.7	02.0	112.4		195.6		190.0	
urn Bay Length (m)		10.7	45.0			100.0		100.0	
ase Capacity (vph)		332	288	423		1845		1810	
tarvation Cap Reductn		0	0	0		0		0	
pillback Cap Reductn		0	0	0		0		0	
torage Cap Reductn		0	0	0		0		0	
teduced v/c Ratio		0.39	0.48	0.28		0.32		0.36	
		0.00	00	0.20		0.02		0.00	
ntersection Summary									
cycle Length: 75 actuated Cycle Length: 75 Offset: 42 (56%), Reference latural Cycle: 75	ed to phas	e 2:NBTI	L and 6:S	BTL, Sta	art of Gre	en			
Control Type: Actuated-Co faximum v/c Ratio: 0.67	ordinated								
ntersection Signal Delay (s	s/veh): 13.)		li li	ntersection	on LOS: E	3		
ntersection Capacity Utiliza						of Servi			
nalysis Period (min) 15									
plits and Phases: 1: Ba	ınk & Fifth						-	†	
Ø2 (R)								→ Ø4	
49 s							2	6 s	
L							- 14	7 00	
Ø6 (R)								€ Ø8	

2033 Sunday Background PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:15 pm 07/15/2024 Expetidgr@N23gprainTiming, 2031 Fi Page 5

* 1 04

* T Ø8

▶ ø1

08/06/2024 6: Bank & Aylmer 4 **↑** ↓ Lane Group Lane Configurations Traffic Volume (vph) 598 598 598 683 NA Traffic Volume (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Tunn 1 yee
Protected Phases
Permitted Phases
Permitted Phases
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (s)
Total Split (s)
Lotal Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lost Time (s)
Lost Time (s)
Lost Time (s)
LeadLag 54 17 54 17 0 Perm 2 2 10.0 30.0 30.0 30.0 1.0 22.0 63.0 63.0 63.0 5.0 22.0 63.0 63.0 63.0 5.0 24.4% 70.0% 70.0% 70.0% 6% 3.3 3.0 3.0 3.0 2.0 22 22 22 22 22 22 Total Lost Time (s)
Lead/Lag
Lead-Lag Optimize?
Recall Mode
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay (s/veh) 5.5 Lag None C-Max C-Max C-Max None 11.1 72.4 72.4 0.12 0.80 0.80 0.43 2.7 3.7 35.9 Queue Delay Total Delay (s/veh) 0.0 35.9 0.0 0.0 2.7 3.7 LOS
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Sase Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced vic Ratio 35.9 2.7 3.7 A A 11.5 17.1 2328 2400 0.29 0.33 0.30 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90
Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green Offset: 87 (97%), Neterenced to phase Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum w/c Ratio: 0.43 Intersection Signal Delay (s/veh): 4.9 Intersection Capacity Utilization 50.9% Analysis Period (min) 15 Splits and Phases: 6: Bank & Aylmer **∮** Ø2 (R) * J 04

Ø6 (R)

	•	4	•	1		
		7	Ť	*		
Lane Group	EBL	NBL	NBT	SBT	Ø3	
Lane Configurations	**		ની	Ta		
Traffic Volume (vph)	13	207	13	12		
Future Volume (vph)	13	207	13	12		
Lane Group Flow (vph)	162	0	244	42		
Turn Type	Perm	Perm	NA	NA		
Protected Phases			2	6	3	
Permitted Phases	4	2				
Detector Phase	4	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	22.0	42.0	42.0	42.0	8.0	
Total Split (s)	22.0	42.0	42.0	42.0	11.0	
Total Split (%)	29.3%	56.0%	56.0%	56.0%	15%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0 0.7	
All-Red Time (s)	2.7	3.8	3.8	0.0	0.7	
Lost Time Adjust (s)	5.7		6.8	6.8		
Total Lost Time (s) Lead/Lag	5.7 Lag		0.8	0.8	Lead	
Lead-Lag Optimize?	Yes				Yes	
Recall Mode	Yes Min	None	None	Max	None	
Act Effct Green (s)	12.3	HUH	35.2	35.2	MOLIC	
Actuated g/C Ratio	0.21		0.59	0.59		
v/c Ratio	0.54		0.35	0.05		
Control Delay (s/veh)	28.4		8.8	6.2		
Queue Delay	0.0		0.0	0.2		
Total Delay (s/veh)	28.4		8.8	6.2		
LOS	20.4 C		Α.	Α.		
Approach Delay (s/veh)	28.4		8.8	6.2		
Approach LOS	20.4 C		Α.	Α.		
Queue Length 50th (m)	16.0		11.8	1.7		
Queue Length 95th (m)	31.4		28.3	5.7		
Internal Link Dist (m)	57.2		0.1	5.9		
Turn Bay Length (m)	31.2		0.1	0.0		
Base Capacity (vph)	400		701	897		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.41		0.35	0.05		
Intersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 60						
Natural Cycle: 75						
Control Type: Actuated-Und	condinate	ad				
Maximum v/c Ratio: 0.54	Jordinat	u				
Intersection Signal Delay (s	/veh): 15	6		Ir	tersection	LOS-B
Intersection Capacity Utiliza						f Service A
Analysis Period (min) 15		,,,		IC	C LOVEI U	· COITIOG A

Splits and Phases: 9: Queen Elizabeth Drive & Fifth ₩ ø2 **⅓** ø3 1 Fiming, 2031 Ft HCM 7th AWSC

Service Time
HCM Lane V/C Ratio
HCM Control Delay, s/veh
HCM Lane LOS
HCM 95th-tile Q

Ø2 (R)

▶ Ø6 (R)

ming, 2031 Fι

08/01/2024

37: O' Connor & Fif	tn										08/0	11/202
Intersection												
Intersection Delay, s/veh	10											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4				7		4				
Traffic Vol, veh/h	70	83	0	0	0	233	101	67	62	0	0	10
Future Vol, veh/h	70	83	0	0	0	233	101	67	62	0	0	10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	78	92	0	0	0	259	112	74	69	0	0	11
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	- 1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	- 1					1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	10.2					9.7	10.9					8
HCM LOS	В					Α	В					
Lane		NBLn1		WBLn1	SBLn1							
Vol Left, %		44%	46%	0%	0%							
Vol Thru, %		29%	54%	0%	0%							
Vol Right, %		27%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		230	153	233	106							
LT Vol		101	70	0	0							
Through Vol		67	83	0	0							
RT Vol		62	0	233	106							
Lane Flow Rate		256	170	259	118							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.355	0.253	0.322	0.157							
Departure Headway (Hd)		5.113	5.349	4.573	4.799							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		708	675	792	750							
Service Time		3.113	3.349	2.573	2.809							

 3.113
 3.349
 2.573
 2.809

 0.362
 0.252
 0.327
 0.157

 10.9
 10.2
 9.7
 8.7

 B
 B
 A
 A

 1.6
 1
 1.4
 0.6

HCM 7th TWSC 5: Bank & Echo

Intersection Int Delay, s/veh

 Major/Minor
 Minor2
 I

 Conflicting Flow All
 1177
 823

 Stage 1
 823

Stage 1 823
Stage 2 334
Chitical Halwy 61 1 5.475
Chitical Halwy 51 1 5.475
Chitical Halwy 51 1 5.475
Chitical Halwy 51 2 5.875
Follow-up Halwy 35 2 5.875
Stage 1 324
Stage 2 675
Platoon blocked, %
Mov Cap-1 Maneuver 160
Stage 1 335
Stage 2 613
Stage 2 613

Approach EB HCM Control Delay, s/49.13 HCM LOS C

08/01/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	5.1					
Movement	FBI	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	EDK	INDL			אמט
	-		440	41	F02	62
Traffic Vol, veh/h	5	156 156	110	553 553	503	62
Future Vol, veh/h			110			
Conflicting Peds, #/hr	0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storag		-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	6	173	122	614	559	69
Major/Minor I	Minor2	-	Major1	, A	lajor2	
Conflicting Flow All	1323	771	806	0	-	0
	771	//1	806	-	-	-
Stage 1	552					
Stage 2		- 075		-	-	-
Critical Hdwy		6.275	4.1/5		-	-
Critical Hdwy Stg 1	5.475	-	-		-	
Critical Hdwy Stg 2	5.875	-	-	-	-	
		3.34752			-	
Pot Cap-1 Maneuver	156	393	801		-	-
Stage 1	448	-	-	-	-	-
Stage 2	535		-	-	-	
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver		319	650	-	-	
Mov Cap-2 Maneuver	80	-	-	-	-	-
Stage 1	281		-		-	
Stage 2	434			-		-
Approach	EB		NB		SB	
HCM Control Delay, s			3.56		0	
HCM LOS	128.91 D		3.50		U	
HUM LUS	U					
Minor Lane/Major Myr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		539		319	-	
HCM Lane V/C Ratio		0.188		0.544		
HCM Control Delay (s	/veh)	11.8	1.9	29		
HCM Lane LOS	,	В	Α.	D		
HCM 95th %tile Q(veh	1)	0.7	-	3.1	-	
70010 0(101	7	2.1		3.1		

2033 Sunday Background PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:15 pm 07/15/2024 ESijeticity PM29apairli ming, 2031 Fr Page 2

2033 Sunday Background PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 2:15 pm 07/15/2024 Eilipidigy N239pairTiming, 2031 Ft Page 1

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 08/01/2024

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIT	1102	4	13	ODIT
Traffic Vol, veh/h	88	138	72	131	68	60
Future Vol. veh/h	88	138	72	131	68	60
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	- 0	None	- 1	None	- 1	None
				0	0	
Veh in Median Storage						
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	98	153	80	146	76	67
Major/Minor N	finor2	Α.	Major1		Major2	
Conflicting Flow All	414	109	142	0	-	0
	109		142	-	-	
Stage 1		-				
Stage 2	306		-		-	-
Critical Hdwy	6.4	6.2	4.1	-		
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-		-		-
Follow-up Hdwy	3.5	3.3	2.2	-		
Pot Cap-1 Maneuver	598	950	1453	-		-
Stage 1	921	-	-	-	-	-
Stage 2	752	-		-		-
Platoon blocked, %				-		
Mov Cap-1 Maneuver	562	950	1453			
Mov Cap-2 Maneuver	562					
Stage 1	865					
Stage 2	752					
Staye 2	132		-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s/	12.21		2.7		0	
HCM LOS	В					
March and Male		NIDI	NIDT	-01	007	000
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		638	-	749	-	-
HCM Lane V/C Ratio		0.055	-	0.335	-	-
HCM Control Delay (s/	veh)	7.6	0	12.2	-	
HCM Lane LOS		Α	Α	В		
HCM 95th %tile Q(veh)	0.2		1.5		

HCM 7th TWSC

10: Bank & Marche

08/01/2024

08/01/2024

Intersection						
Int Delay, s/veh	2.1					
Movement	WRI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1100	7	† D	HUIT	ODL	^
Traffic Vol, veh/h	7	163	475	20	0	613
Future Vol. veh/h	7	163	475	20	0	613
Conflicting Peds, #/hr	0	163	4/5	100	0	013
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None				
	-		-	None		
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	8	181	528	22	0	681
Major/Minor N	Minor1	3.	Major1	ħ.	/ajor2	
	979	375	viajori 0	0		
Conflicting Flow All			-	-	-	-
Stage 1	639		-	-	-	-
Stage 2	341	-				
Critical Hdwy	6.8	7.2	-	-	-	-
Critical Hdwy Stg 1	5.8	-		-		-
Critical Hdwy Stg 2	5.8	-	-	-		-
Follow-up Hdwy	3.5	3.45	-	-	-	-
Pot Cap-1 Maneuver	251	587	-	-	0	-
Stage 1	493		-		0	-
Stage 2	698				0	
Platoon blocked, %						
Mov Cap-1 Maneuver	224	525				
Mov Cap-2 Maneuver	224	323				
Stage 1	441	- 1	-			
	698		-			
Stage 2	098	-	-			-
Approach	WB		NB		SB	
HCM Control Delay, s/	15.44		0		0	
HCM LOS	С					
	ŭ					
A.F. a. a. L. a. a. (M. d. l. a. M. d. a.		NDT	NDD	VDI -4	ODT	
Minor Lane/Major Mvn	nt	NBT	NBRV		SBT	
Capacity (veh/h)			-	525	-	
HCM Lane V/C Ratio		-	-	0.345	-	
HCM Control Delay (sa	/veh)			15.4	-	
HCM Lane LOS				С		
HCM 95th %tile Q(veh	1)			1.5		

2033 Scenario

Sunday Peak Hour Future Volumes

	_	•	†	1	Ţ		
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	4	HUL	413	ODL	474	20	
Traffic Volume (vph)	18	32	543	30	576		
Future Volume (vph)	18	32	543	30	576		
Lane Group Flow (vph)	111	0	737	0	713		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4	1 61111	2	I GIIII	6	3	
Permitted Phases		2	_	6		•	
Detector Phase	4	2	2	6	6		
Switch Phase		_	-				
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	23.0	47.0	47.0	47.0	47.0	5.0	
Total Split (s)	23.0	47.0	47.0	47.0	47.0	5.0	
Total Split (%)	30.7%	62.7%	62.7%	62.7%	62.7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0		0.0		0.0		
Total Lost Time (s)	5.6		5.2		5.2		
Lead/Lag	Lag					Lead	
Lead-Lag Optimize?							
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	11.6		56.1		56.1		
Actuated g/C Ratio	0.15		0.75		0.75		
v/c Ratio	0.55		0.39		0.35		
Control Delay (s/veh)	38.6		2.4		10.2		
Queue Delay	0.0		0.0		0.0		
Total Delay (s/veh)	38.6		2.4		10.2		
LOS	D		Α		В		
Approach Delay (s/veh)	38.6		2.4		10.2		
Approach LOS	D		A		В		
Queue Length 50th (m)	14.7		6.1		34.1		
Queue Length 95th (m)	27.3		13.4		53.0		
Internal Link Dist (m)	39.8		31.5		195.6		
Turn Bay Length (m)							
Base Capacity (vph)	304		1883		2010		
Starvation Cap Reductn	0		0		0		
Spillback Cap Reductn	0		0		0		
Storage Cap Reductn	0		0		0		
Reduced v/c Ratio	0.37		0.39		0.35		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 16 (21%), Reference	ed to phas	se 2:NBT	1 and 6:5	SBTL Sta	art of Gree	en	
Natural Cycle: 75	and to prior		0 0.0	, 0			
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.55							
Intersection Signal Delay ((veh): 8.5			- In	ntersectio	n LOS: A	
Intersection Capacity Utiliz						of Service C	
Analysis Period (min) 15							
	nk & Holm	boowe					
opino dilu Filases. ∠. Da	III. OX I IUIII	wuuu				- 1	
							x → 04
Ø2 (R)							X 0 → Ø4

Queues 1: Bank & Fifth 08/06/2024 **>** \$ † Lane Group Lane Cortigurations
Traffic Volume (vph)
Future Volume (vph)
Future Volume (vph)
Future Volume (vph)
Turn Type
Protected Phases
Permitted Phases
Minimum Split (s)
Total Split (s)
Total Split (s)
Yellow Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lost Time (s)
Lead Lag 67 16 67 16 124 0 NA Perm 516 23 516 23 621 0 NA Perm
 4
 8
 2
 6

 26.0
 26.0
 26.0
 26.0
 49.0
 49.0
 49.0
 49.0

 26.0
 26.0
 26.0
 26.0
 49.0
 49.0
 49.0
 49.0

 34.7%
 34.7%
 34.7%
 65.3%
 65.3%
 65.3%
 65.3%

 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 3.0
 Total Lost Time (s)
Lead Lag
Act Effet Green (s)
Act Leffet Green (s)
Act Leffet Green (s)
Actuated gir Ratio
vic Ratio
Total Delay (siveh)
LOS
Approach LOS
Cueue Length 50th (m)
Cueue Length 50th (m)
Cueue Length 50th (m)
Los Base Capacity (vph)
Starvation Cap Reducth
Strape Cap Reducth
Storage Cap Reductn
Sto 43.5 0.58 0.43 20.5 20.5 20.5 0.27 0.27 0.27 0.39 0.47 0.29 22.9 29.0 16.4 0.0 0.0 0.0 22.9 29.0 16.4 9.6 0.0 10.0 10.0 9.6 C C 22.9 A 9.6 23.0 10.0 12.7 16.1 27.3 32.2 24.8 36.0 190.0 49.7 112.4 45.0 339 293 0 0 1625 1596 0 0.39 0.47 0.29 0.43 Intersection Summary
Cycle Length: 75 Cycle Length: 75
Offset: 42 (56%), Referenced to phase 2 NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Pretimed
Maximum vic Ratio: 0.47
Intersection Signal Delay (sivet): 12.8
Intersection Signal Delay (sivet): 12.8
Intersection (signal) Utilization 60.8%
ICU Level of 3
Analysis Period (min): 15 Splits and Phases: 1: Bank & Fifth Ø2 (R) **1** Ø4 ▶ ø_{6 (R)}

2033 Sunday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:53 pm 07/31/2024 Systaffing PM/RSigoal Timing, 2028 Page 1


	•	•	†	-	ļ				
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø3	Ø6	Ø7	
Lane Configurations	*	7	ŧβ	*	44				
Traffic Volume (vph)	150	73	428	203	450				
Future Volume (vph)	150	73	428	203	450				
Lane Group Flow (vph)	167	81	635	226	500				
Turn Type	Perm	Perm	NA	custom	NA				
Protected Phases			2	1	1.6	3	6	7	
Permitted Phases	8	8	_	6		-	-		
Detector Phase	8	8	2	1	16				
Switch Phase	0	U			10				
Minimum Initial (s)	4.0	4.0	10.0	4.0		1.0	5.1	3.0	
Minimum Split (s)	26.0	26.0	27.0	12.0		5.0	27.0	5.0	
Total Split (s)	26.0	26.0	27.0	12.0		5.0	27.0	5.0	
Total Split (%)	34.7%	34.7%	36.0%	16.0%		7%	36%	7%	
	34.7%	34.7%	30.0%	3.0		2.0	30%	2.0	
Yellow Time (s)	3.0	3.0	3.0	3.0		0.0	3.0	0.0	
All-Red Time (s)						0.0	3.9	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0					
Total Lost Time (s)	6.3	6.3	6.9	6.9		1			
Lead/Lag				Lead		Lag			
Lead-Lag Optimize?				Yes		Yes			
Recall Mode	None	None	C-Max	None		None	C-Max	None	
Act Effct Green (s)	14.0	14.0	35.8	40.9	47.8				
Actuated g/C Ratio	0.19	0.19	0.48	0.55	0.64				
v/c Ratio	0.63	0.31	0.48	0.61	0.25				
Control Delay (s/veh)	38.2	9.4	14.3	17.3	4.6				
Queue Delay	0.0	0.0	0.0	0.0	0.0				
Total Delay (s/veh)	38.2	9.4	14.3	17.3	4.6				
LOS	D	Α	В	В	Α				
Approach Delay (s/veh)	28.8		14.3		8.6				
Approach LOS	С		В		Α				
Queue Length 50th (m)	22.0	0.0	27.2	6.6	7.6				
Queue Length 95th (m)	36.7	9.6	47.5	#25.1	12.7				
Internal Link Dist (m)	30.6		33.7		44.8				
Turn Bay Length (m)				40.0					
Base Capacity (vph)	371	334	1325	372	2002				
Starvation Cap Reductn	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.45	0.24	0.48	0.61	0.25				
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 15 (20%), Reference		se 2:NBT	and 6:SI	BTL, Start	of Green	1			
Natural Cycle: 75 Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.63	orumateu								
	chuch). 44	n		- In	tersectio	n I ne. r)		
Intersection Signal Delay (
Intersection Capacity Utiliz	ation 61.1	%		IC	U Level	or Service	e B		
Analysis Period (min) 15									

7 D Ø2 (R)

▶ Ø6 (R)

Ŕ

08/06/2024

2033 Sunday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:53 pm 07/31/2024 Syntamor PMRsigod/ Triming, 2028

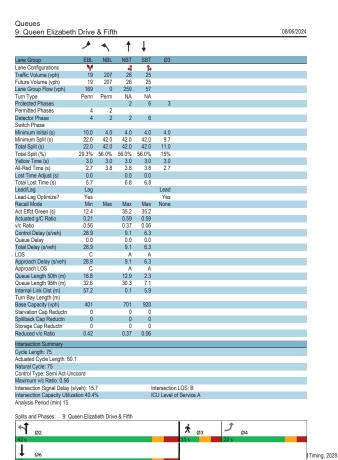
	۶	→	•	←	4	†	-	ļ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø6	Ø7
Lane Configurations		4		4		413		413			
Traffic Volume (vph)	43	33	16	51	19	504	118	534			
Future Volume (vph)	43	33	16	51	19	504	118	534			
Lane Group Flow (vph)	0	118	0	195	0	594	0	817			
Turn Type	Perm	NA	Perm	NA	Perm	NA	custom	NA			
Protected Phases		4		8		2	1	16	3	6	7
Permitted Phases	4		8		2		6				
Detector Phase	4	4	8	8	2	2	1	16			
Switch Phase			-	-	_	_					
Minimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0		1.0	17.0	1.0
Minimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	43.0	5.0
Total Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0		5.0	43.0	5.0
Total Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%		6%	48%	6%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		2.0	3.0	2.0
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9		0.0	3.0	0.0
Lost Time Adjust (s)	2.0	0.0	2.0	0.0	3.0	0.0	2.5		0.0	3.0	0.0
Total Lost Time (s)		5.6		5.6		6.0					
Lead/Lag	Lag	Lag	Lag	Lag		0.0			Lead		Lead
	Lag	Lag	Yes	Yes					read		Yes
Lead-Lag Optimize?	Mana	None	None	None	C-Max	C-Max	None		Maria	C-Max	
Recall Mode	None		None		C-Max		None	57.4	None	C-Max	None
Act Effct Green (s)		15.5		15.5		43.5		57.1			
Actuated g/C Ratio		0.17		0.17		0.48		0.63			
v/c Ratio		0.77		0.72				0.55			
Control Delay (s/veh)		64.9		34.8		17.7		5.8			
Queue Delay		0.0		0.0		0.0		0.0			
Total Delay (s/veh)		64.9		34.8		17.7		5.8			
LOS		Е		С		В		A			
Approach Delay (s/veh)		64.9		34.8		17.7		5.8			
Approach LOS		Е		С		В		Α			
Queue Length 50th (m)		19.7		18.4		34.8		9.6			
Queue Length 95th (m)		34.8		37.5		54.1		12.4			
Internal Link Dist (m)		75.1		136.0		63.1		79.0			
Turn Bay Length (m)											
Base Capacity (vph)		200		325		1381		1491			
Starvation Cap Reductn		0		0		0		0			
Spillback Cap Reductn		0		0		0		0			
Storage Cap Reductn		0		0		0		0			
Reduced v/c Ratio		0.59		0.60		0.43		0.55			
Intersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 23 (26%), Reference	ad to nho	2-NPT	I and 6.0	RTI C+	art of Gro	on					
Natural Cycle: 90	ou to prid:	30 Z.IND I	L anu 0.0	JUIL, SE	ant UI UI UI U	011					
Control Type: Actuated-Co	ordinated										
Maximum v/c Ratio: 0.77	ordinated										
	(voh): 17	2			ntersectio	n I Oc. r					
Intersection Signal Delay (
Intersection Capacity Utiliz	аиОП /4.5	70		- 1	CU Level	or Service	æυ				
Analysis Period (min) 15											
Splits and Phases: 7: Ba	ınk & Sunı	nyside									
Ø2 (R)					1 1	J.	254			I	Ø1

* 7 08

▶ Ø6 (R)

Timing, 2028

Queues 08/06/2024 6: Bank & Aylmer 4 **↑** ↓ Lane Group Lane Configurations
Traffic Volume (yph)
Future Volume (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Detector Phases
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Lead-Lag Optimize (s)
Lead-Lag Optimize?
Recall Mode
Act Effet Green (s)
Actuated gic Relio
vic Ratio
Control Delay (s/veh) 54 17 630 54 17 630 83 0 719 Prot Perm NA 683 2 10.0 30.0 30.0 30.0 1.0 22.0 63.0 63.0 63.0 5.0 22.0 63.0 63.0 63.0 5.0 24.4% 70.0% 70.0% 70.0% 6% 3.3 3.0 3.0 3.0 2.0 22 22 22 22 22 1.0 5.5 Lag None C-Max C-Max C-Max None 11.1 72.4 72.4 0.12 0.80 0.80 0.43 35.9 0.31 0.34 3.0 3.7 Queue Delay Total Delay (s/veh) 0.0 0.0 3.0 3.7 LOS
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Stavation Cap Reducth
Spillback Cap Reducth
Storage Cap Reducth
Reduced vic Ratio 35.9 3.0 3.7 12.5 18.0 20.4 30.8 28.1 10.1 2329 2406 0.30 0.31 0.34 Intersection Summary
Cycle Length: 90 Actuated Cycle Length: 90 Offset: 87 (97%), Referenced to phase 2:NBTL and 6:SBT, Start of Green Offset: 87 (97%), Referenced to phase Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay (s/veh): 5.1 Intersection Capacity Utilization 51.8% Analysis Period (min) 15


京 J Ø4

Timing, 2028

Splits and Phases: 6: Bank & Aylmer

∮ Ø2 (R)

Ø6 (R)

HCM 7th TWSC 07/31/2024 4: Bank & Wilton

Approach EB
HCM Control Delay, s/80.79
HCM LOS D

Intersection												
Intersection Delay, s/veh	10.3											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				7		4				7
Traffic Vol, veh/h	70	83	0	0	0	233	108	67	69	0	0	106
Future Vol, veh/h	70	83	0	0	0	233	108	67	69	0	0	106
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	78	92	0	0	0	259	120	74	77	0	0	118
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SB
Opposing Approach	WB					EB	SB					NB
Opposing Lanes	- 1					1	1					1
Conflicting Approach Left	SB					NB	EB					WB
Conflicting Lanes Left	- 1					- 1	- 1					1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					1
HCM Control Delay, s/veh	10.3					9.9	11.3					8.8
HCM LOS	В					Α	В					Α
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		44%	46%	0%	0%							
Vol Thru, %		27%	54%	0%	0%							
Vol Right, %		28%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		244	153	233	106							
LT Vol		108	70	0	0							
Through Vol		67	83	0	0							
RT Vol		69	0	233	106							
Lane Flow Rate		271	170	259	118							
Geometry Grp		- 1	- 1	1	1							
Degree of Util (X)		0.385	0.255	0.332	0.158							
Departure Headway (Hd)		5.116	5.392	4.621	4.835							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		705	666	779	741							
Service Time		3.129	3.424	2.637	2.868							
		3.129 0.384	3.424 0.255	2.637 0.332	0.159							
Service Time		0.384	0.255	0.332 9.9	0.159 8.8							
Service Time HCM Lane V/C Ratio		0.384	0.255	0.332	0.159							

07/31/2024

2033 Sunday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:53 pm 07/31/2024 Sysisfing P2N-Sigoal Timing, 2028 Page 1

2033 Sunday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:53 pm 07/31/2024 System Page 1 Timing, 2028 Page 1

HCM 7th TWSC

07/31/2024 5: Bank & Echo

Interception						
Intersection Int Delay, s/veh	1					
IIIL Delay, S/VeII	- 1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	•	
Traffic Vol, veh/h	2	71	0	669	687	1
Future Vol, veh/h	2	71	0	669	687	- 1
Conflicting Peds, #/h	r 0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	-	0	-	-	-	
Veh in Median Storag	ge,# 0	-		0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	2	79	0	743	763	1
Major/Minor	Minor2	, and	//ajor1		Major2	
Conflicting Flow All	1222	850	- najui i	0	najuiz	0
Stage 1	850	000	-	U	-	-
Stage 2	372	- 1		- 1	- 1	
	6.675		-		-	-
Critical Hdwy Critical Hdwy Stg 1	5.475	0.275				
Critical Hdwy Stg 1	5.875	_	-		-	-
		20475				
Follow-up Hdwy Pot Cap-1 Maneuver	3.54753	3.3475	- 0			-
	411	354	0			- 1
Stage 1					-	
Stage 2	661		0		-	-
Platoon blocked, %	r 150	321			-	-
Mov Cap-1 Maneuve					-	
Mov Cap-2 Maneuve		-	-		-	-
Stage 1	374	-	-		-	-
Stage 2	601	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay,	s/v19.8		0		0	
HCM LOS	C					
	ŭ					
		NOTE		007	000	
Minor Lane/Major My	mt	NBT		SBT	SBR	
Capacity (veh/h)		-	321	-	-	
HCM Lane V/C Ratio			0.245		-	
HCM Control Delay (s/veh)		19.8		-	
HCM Lane LOS		-	С	-	-	
HCM 95th %tile Q(ve	h)	-	0.9		-	

HCM 7th TWSC

8: Queen Elizabeth Driveway /Queen Elizabeth Driveway & Princess Patricia Way 07/31/2024

Intersection						
Int Delay, s/veh	6.5					
IIIL Delay, S/VeII	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- 74			4	î,	
Traffic Vol, veh/h	101	151	86	131	68	73
Future Vol, veh/h	101	151	86	131	68	73
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0	-		-		-
Veh in Median Storage	e.# 0	-		0	0	-
Grade %	0	-		0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	112	168	96	146	76	81
in thick from		100	- 00	110	- 10	0.
	Minor2		Major1		Major2	
Conflicting Flow All	453	116	157	0		0
Stage 1	116	-		-		-
Stage 2	337	-	-	-		-
Critical Hdwy	6.4	6.2	4.1	-		-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-		-		-
Follow-up Hdwy	3.5	3.3	2.2	-		-
Pot Cap-1 Maneuver	569	942	1436	-		-
Stage 1	914	-		-		-
Stage 2	728					
Platoon blocked. %	120					
Mov Cap-1 Maneuver	527	942	1436			
Mov Cap-2 Maneuver	527	0.12	. 100			
Stage 1	848					
Stage 2	728	- 1	- 1	- 1	- 1	- 1
Stage 2	728		-	-		-
Approach	EB		NB		SB	
HCM Control Delay, s/	13.22		3.05		0	
HCM LOS	В					
Minor Lane/Major Mvm	-4	NBL	NDT	EBLn1	SBT	SBR
	Ц					_
Capacity (veh/h)		713	-	716	-	
HCM Lane V/C Ratio		0.067		0.391		
HCM Control Delay (s/	veh)	7.7			-	
HCM Lane LOS		Α	A	В		
HCM 95th %tile Q(veh	.)	0.2	-	1.9		-

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	∱ }			^
Traffic Vol, veh/h	7	181	489	23	0	638
Future Vol, veh/h	7	181	489	23	0	638
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0			-	
Veh in Median Storage		-	0		-	0
Grade, %	0		0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	15	6	0	0	5
Mvmt Flow	8	201	543	26	0	709
Major/Minor N	Minor1		//ajor1	N	Major2	
Conflicting Flow All	1011	384	0	0	-	-
Stage 1	656	-	-			
Stage 2	354					
Critical Hdwy	6.8	7.2				
Critical Hdwy Stg 1	5.8					
Critical Hdwy Stg 2	5.8					
Follow-up Hdwy	3.5	3.45				
Pot Cap-1 Maneuver	239	578			0	
Stage 1	483	-			0	
Stage 2	687				0	
Platoon blocked. %	201					
Mov Cap-1 Maneuver	214	517				
Mov Cap-2 Maneuver	214	-				
Stage 1	432					
Stage 2	687	- 1		- 1		- 1
Olago Z	301					
Approach	WB		NB		SB	
HCM Control Delay, sa			0		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBT	NRRV	VBLn1	SBT	
Capacity (veh/h)		1101	INDIN	517	001	
HCM Lane V/C Ratio		- 1		0.389		
HCM Control Delay (s.	(woh)	- 1		16.3		
HCM Lane LOS	14011)	- 1	- 1	10.3	- 1	
HCM 95th %tile Q(veh	١,	- :		1.8	- 1	
FIGHT SOUT WILL Q(VEH	1			1.0	-	

2033 Sunday Full Build-Out PM Peak Hour Lansdowne 2.0 Transportation Impact Assessment 5:53 pm 07/31/2024 **Episting PM/Regord** Timing, 2028 Page 4

•

	•	→	•	—	4	†	-	↓		
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT		
ane Configurations		4	*	T _a		413		413		_
Traffic Volume (vph)	53	59	69	48	17	516	26	605		
Future Volume (vph)	53	59	69	48	17	516	26	605		
Lane Group Flow (vph)	0	163	77	125	0	625	0	728		
Furn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA		
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6			
Detector Phase	4	4	8	8	2	2	6	6		
Switch Phase										
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0		
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0		
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5		
Lost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5		
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max			
Act Effct Green (s)		13.7	13.7	13.7		50.3		50.3		
Actuated g/C Ratio		0.18	0.18	0.18		0.67		0.67		
v/c Ratio		0.67	0.44	0.40		0.33		0.38		
Control Delay (s/veh)		37.5	33.2	15.9		11.1		6.9		
Queue Delay		0.0	0.0	0.0		0.0		0.0		
Total Delay (s/veh)		37.5	33.2	15.9		11.1		6.9		
LOS		D	С	В		В		A		
Approach Delay (s/veh)		37.5		22.5		11.1		6.9		
Approach LOS		D		С		В		A		
Queue Length 50th (m)		18.9	9.8	6.4		21.2		20.1		
Queue Length 95th (m)		33.9	19.6	18.1		56.1		38.3		
Internal Link Dist (m)		49.7		112.4		195.6		190.0		
Turn Bay Length (m)			45.0							
Base Capacity (vph)		355	265	427		1902		1900		
Starvation Cap Reductn		0	0	0		0		0		
Spillback Cap Reductn		0	0	0		0		0		
Storage Cap Reductn		0	0	0		0		0		
Reduced v/c Ratio		0.46	0.29	0.29		0.33		0.38		
ntersection Summary										
Cycle Length: 75										
Actuated Cycle Length: 75										
Offset: 47 (63%), Reference	ed to phas	se 2:NBT	1 and 6:5	SBTL Sta	art of Gre	en				
Natural Cycle: 75	to p. loc			, 500						
Control Type: Actuated-Coo	ordinated									
Maximum v/c Ratio: 0.67										
Intersection Signal Delay (s	/veh): 13.	1		- In	ntersection	on LOS: E	3			
ntersection Capacity Utiliza						of Service				
Analysis Period (min) 15				·			-			
Splits and Phases: 1: Bar	nk & Fifth									
4 ↑							- 1	†		1
							1-	→ Ø4		
Ø12 (R)										
Ø2 (R)			_				2	6 c		1
Ø2 (R)							2	6 s	_	rc

2033 Scenario

Minor Event Ingress

	\rightarrow	1	1	-	Ţ				
ane Group	EBT	NBL	NBT	SBL	SBT	Ø3			
ane Configurations	4		476		474				
Traffic Volume (vph)	26	53	522	30	586				
Future Volume (vph)	26	53	522	30	586				
ane Group Flow (vph)	119	0	730	0	723				
Turn Type	NA	Perm	NA	Perm	NA				
Protected Phases	4		2		6	3			
Permitted Phases		2		6					
Detector Phase	4	2	2	6	6				
Switch Phase									
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0			
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0			
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0			
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%			
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0			
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0			
Lost Time Adjust (s)	0.0		0.0		0.0				
Total Lost Time (s)	5.6		5.2		5.2				
Lead/Lag	Lag					Lead			
Lead-Lag Optimize?									
Recall Mode	None	C-Max		C-Max		None			
Act Effct Green (s)	11.6		56.0		56.0				
Actuated g/C Ratio	0.15		0.75		0.75				
//c Ratio	0.55		0.40		0.35				
Control Delay (s/veh)	38.2		3.0		4.9				
Queue Delay	0.0 38.2		0.0		0.0 4.9				
Total Delay (s/veh)	38.2 D		3.0 A						
LOS	38.2		3.0		A 4.9				
Approach Delay (s/veh) Approach LOS	38.2 D		3.U A		4.9 A				
Queue Length 50th (m)	15.8		7.1		25.0				
Queue Length 95th (m)	28.8		15.2		9.3				
Internal Link Dist (m)	39.8		31.5		195.6				
Turn Bay Length (m)	33.0		31.3		155.0				
Base Capacity (vph)	304		1830		2073				
Starvation Cap Reductn	0		0.00		0				
Spillback Cap Reductn	0		0		0				
Storage Cap Reductn	0		0		0				
Reduced v/c Ratio	0.39		0.40		0.35				
	2.50								
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75		0.115		DE C					
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gree	en			
Natural Cycle: 75	and the stant								
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.55	aluable C.F				-t	*100. A			
Intersection Signal Delay (ntersectio				
Intersection Capacity Utiliz	ation 69.3	70		l l	UU Level	of Service C			
Analysis Period (min) 15									
Splits and Phases: 2: Ba	ank & Holn	wood							
4							x 1		
Ø2 (R)		_					Λ ¢	Ø4	
48 s							5 s 22 s		
D 21.00									
Ø6 (R)							ı		
48 S									

Queues Queues

	•		†	-	Ţ			
lana Canna	WBL	WBR	NBT	SBL	SBT	Ø1	0.7	
Lane Group Lane Configurations	WBL					וש	Ø7	
Traffic Volume (vph)	132	93	↑ ↑	187	↑↑ 434			
Future Volume (vph)	132	93	440	187	434			
Lane Group Flow (vph)	132	103	719	208	482			
Turn Type	Prot	Perm	NA NA	Perm	NA NA			
Protected Phases	8	reiiii	2	reiiii	6	- 1	7	
Permitted Phases	0	8	2	6	0	- 1	- 1	
Detector Phase	8	8	2	6	6			
Switch Phase	0	0	2	U	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
Lead/Lag	Lag	Lag	Lag	0.9	0.9	Lead	Lead	
Lead-Lag Optimize?	Lay	Lay	Yes			Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	12.6	12.6	49.2	49.2	49.2	NOUS	None	
Actuated g/C Ratio	0.17	0.17	0.66	0.66	0.66			
v/c Ratio	0.17	0.17	0.39	0.54	0.00			
Control Delay (s/veh)	35.5	10.1	5.8	12.3	3.6			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	35.5	10.1	5.8	12.3	3.6			
LOS	D	B	A	B	Α.			
Approach Delay (s/veh)	25.0		5.8		6.2			
Approach LOS	C		A		A			
Queue Length 50th (m)	19.4	0.0	16.0	6.0	7.2			
Queue Length 95th (m)	33.6	11.3	30.4	19.0	9.4			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	429	371	1855	387	2083			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.34	0.28	0.39	0.54	0.23			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced	to phase	2:NBT ar	nd 6:SBT	L, Start o	f Green			
Natural Cycle: 80								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.54								
Intersection Signal Delay (s	/veh): 8.9			li	ntersectio	n LOS: A		
Intersection Capacity Utiliza				10	CU Level	of Servic	e C	
Analysis Period (min) 15								
Splits and Phases: 3: Ba	nk & Exhi	hition						
Spills and Phases: 3: Ba	IIK & EXIII	บแบท						

Splits and Phases: 3: Bank & Exhibition		
* ↓ ↑ Ø2 (R)		
5 s 39 s		
▶ □ 6 (R)	* . F Ø8	round Scaled L
44 s	5 s 26 s	

	•	-	•	←	4	†	-	Į.			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø3	Ø7	
Lane Configurations		4		44		413		413			
Traffic Volume (vph)	58	53	18	60	20	505	109	565			
Future Volume (vph)	58	53	18	60	20	505	109	565			
Lane Group Flow (vph)	0	153	0	273	0	603	0	825			
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA			
Protected Phases		4		8		2	1	6	3	7	
Permitted Phases	4		8		2		6				
Detector Phase	4	4	8	8	2	2	1	6			
Switch Phase											
Minimum Initial (s)	6.4	6.4	5.3	5.3	17.0	17.0	5.0	17.0	1.0	1.0	
Minimum Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (s)	25.0	25.0	25.0	25.0	43.0	43.0	17.0	60.0	5.0	5.0	
Total Split (%)	27.8%	27.8%	27.8%	27.8%	47.8%	47.8%	18.9%	66.7%	6%	6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	2.6	2.6	2.6	2.6	3.0	3.0	2.9	3.0	0.0	0.0	
Lost Time Adjust (s)	2.0	0.0	2.0	0.0	0.0	0.0	2.0	0.0	0.0	3.0	
Total Lost Time (s)		5.6		5.6		6.0		6.0			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	0.0	Lead	Lead	
Lead-Lag Optimize?	Lug	Lug	Yes	Yes	Yes	Yes	Yes		Loud	Yes	
Recall Mode	None	None	None	None		C-Max	None	C-Max	None	None	
Act Effct Green (s)	140116	21.5	140116	21.5	O-IIIdx	56.9	HONG	56.9	140116	140116	
Actuated g/C Ratio		0.24		0.24		0.63		0.63			
v/c Ratio		0.24		0.76		0.03		0.59			
Control Delay (s/veh)		48.8		33.3		8.9		8.6			
Queue Delay		0.0		0.0		0.0		0.0			
Total Delay (s/veh)		48.8		33.3		8.9		8.6			
LOS		40.0 D		33.3 C		0.5 A		Α.			
Approach Delay (s/veh)		48.8		33.3		8.9		8.6			
Approach LOS		40.0 D		33.3 C		0.5 A		0.0 A			
Queue Length 50th (m)		23.1		25.3		25.3		19.3			
Queue Length 95th (m)		#47.4		#59.8		35.2		24.3			
Internal Link Dist (m)		75.1		136.0		63.1		79.0			
		75.1		130.0		03.1		79.0			
Turn Bay Length (m) Base Capacity (vph)		228		369		1786		1392			
Starvation Cap Reductn		0		0		0		0			
		0		0		0		0			
Spillback Cap Reductn		0		0		0		0			
Storage Cap Reductn Reduced v/c Ratio		0.67		0.74		0.34		0.59			
		0.07		0.74		0.34		0.59			
Intersection Summary											
Cycle Length: 90											
Actuated Cycle Length: 90											
Offset: 17 (19%), Reference Natural Cycle: 90	ed to phas	se 2:NBT	L and 6:S	SBTL, Sta	art of Gre	en					
Control Type: Actuated-Coo	ordinated										
Maximum v/c Ratio: 0.76	or ulliated										
	(voh): 15	6			ntersectio	n I OC. I)				
Intersection Signal Delay (s					ntersection CU Level						
Intersection Capacity Utiliza	1UU∏ ŏ∠.4'	70		- 1	CU Level	or Service	æE				
Analysis Period (min) 15											

	ၨ	4	†	ļ				
Lane Group	EBL	NBL	NBT	SBT	Ø3			
Lane Configurations	**		414	↑ ↑				
Traffic Volume (vph)	74	19	725	535				
Future Volume (vph)	74	19	725	535				
Lane Group Flow (vph)	90	0	827	680				
Turn Type	Prot	Perm	NA	NA				
Protected Phases	4		2	6	3			
Permitted Phases	4	2		6	-			
Detector Phase	4	2	2	6				
Switch Phase								
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0			
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%			
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0			
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0			
Lost Time Adjust (s)	0.0	2.2	0.0	0.0	1.0			
Total Lost Time (s)	5.5		5.2	5.2				
Lead/Lag			5.2	5.2	Lead			
Lead/Lag Lead-Lag Optimize?	Lag				LEaU			
Recall Mode	Ped	CMe	CMe	C Mar	Max			
	14.1	C-Max	C-Max 60.2	C-Max 60.2	IVIdX			
Act Effct Green (s)								
Actuated g/C Ratio	0.16		0.67	0.67				
v/c Ratio	0.36		0.42	0.34				
Control Delay (s/veh)	36.7		5.5	6.6				
Queue Delay	0.0		0.0	0.0				
Total Delay (s/veh)	36.7		5.5	6.6				
LOS	D		A	A				
Approach Delay (s/veh)	36.7		5.5	6.6				
Approach LOS	D		A	A				
Queue Length 50th (m)	13.3		26.6	21.7				
Queue Length 95th (m)	27.1		26.2	31.0				
Internal Link Dist (m)	76.7		28.1	10.1				
Turn Bay Length (m)								
Base Capacity (vph)	289		1983	1978				
Starvation Cap Reductn	0		0	0				
Spillback Cap Reductn	0		0	0				
Storage Cap Reductn	0		0	0				
Reduced v/c Ratio	0.31		0.42	0.34				
stangation Commons								
Intersection Summary								
Cycle Length: 90								
Actuated Cycle Length: 90	and the set	··ONET	1 101	ODT OF				
Offset: 87 (97%), Referenc	ed to pha	se 2:NBT	L and 6:8	obl, Start	or Green			
Natural Cycle: 90								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.42								
Intersection Signal Delay (s					ntersection LOS: A			
Intersection Capacity Utiliza	ation 56.1	%		IC	CU Level of Service B			
Analysis Period (min) 15								
Splits and Phases: 6: Ba	nk & Ayln	ner						
4						انا	†	
Ø2 (R)						1	Ø4	
63 s						5 s	22 s	
								h

Lane Group

Lane Configurations
Traffic Volume (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Lane Group Flow (vph)
Turn Type
Protected Phases
Detector Phases
Detector Phase
Minimum Initial (s)
Minimum Spit (s)
Total Lost Time (s)
Lead-Lag Optime (s)
Aul-Red Time (s)
Lead-Lag Optimic
Aut Erfc Green (s)
Actuated glC Ratio
vic Ratio
Control Delay (sveh)
Queue Delay
Total Delay (sveh)
LOS

LOS
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Storage Cap Reduct
Storage Cap Reduct

Intersection Summary
Cycle Length: 80
Actuated Cycle Length: 64.6
Natural Cycle: 80

9: Queen Elizabeth Drive & Fifth

↑ ↓

2

 Min
 None
 None
 Max
 None

 10.9
 41.2
 41.2
 41.2

 0.17
 0.64
 0.64
 0.64

 0.40
 0.37
 0.67
 29.0

 7.2
 11.7
 11.7

0.0 0.0 7.2 11.7

7.2 11.7 14.5 43.0 31.3 88.0 0.1 5.9

868 1055

0.37 0.67

2 6

10

0.0 29.0

29.0

366

0.28

08/01/2024

HCM 7th AWSC 37: O' Connor Street & Fifth Avenue

Intersection Delay, s/veh Intersection LOS

08/01/2024

Lane Configurations		4				7		4				7
Traffic Vol, veh/h	62	53	0	0	0	143	65	43	41	0	0	85
Future Vol, veh/h	62	53	0	0	0	143	65	43	41	0	0	85
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	69	59	0	0	0	159	72	48	46	0	0	94
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	1
Approach	EB					WB	NB					SE
Opposing Approach	WB					EB	SB					NE
Opposing Lanes	1					1	1					1
Conflicting Approach Left	SB					NB	EB					WE
Conflicting Lanes Left	1					1	1					- 1
Conflicting Approach Right	NB					SB	WB					EB
Conflicting Lanes Right	1					1	1					1
HCM Control Delay, s/veh	8.8					8	8.9					7.7
HCM LOS	A					Α	Α					P

Lane	NBLn1	EDI -1	WBLn1	CDI -1
Vol Left, %	44%	54%	0%	0%
Vol Thru, %	29%	46%	0%	0%
Vol Right, %	28%	0%	100%	100%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	149	115	143	85
LT Vol	65	62	0	0
Through Vol	43	53	0	0
RT Vol	41	0	143	85
Lane Flow Rate	166	128	159	94
Geometry Grp	- 1	- 1	- 1	- 1
Degree of Util (X)	0.211	0.17	0.18	0.109
Departure Headway (Hd)	4.598	4.799	4.079	4.171
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	780	746	879	857
Service Time	2.631	2.833	2.11	2.208
HCM Lane V/C Ratio	0.213	0.172	0.181	0.11
HCM Control Delay, s/veh	8.9	8.8	8	7.7
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.8	0.6	0.7	0.4

_2031 Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:36 pm 05/17/2023 TotaS@neintDidy Beapting-ound Scaled L Page 1

Natural Cycle: 80			
Control Type: Actuated-Uncoordinated			
Maximum v/c Ratio: 0.67			
Intersection Signal Delay (s/veh): 12.0	Intersection LOS: B		
Intersection Capacity Utilization 76.5%	ICU Level of Service D		
Analysis Period (min) 15			
Splits and Phases: 9: Queen Elizabeth Drive & Fifth	ஜ் ∞4	J Ø10	
Splits and Phases: 9: Queen Elizabeth Drive & Fifth Ø2 48 s	☆ Ø4	⊅ _{Ø10}	

HCM 7th TWSC

08/01/2024 4: Bank & Wilton

Intersection						
Int Delay, s/veh	14.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		41₽	Ĥ	
Traffic Vol, veh/h	5	275	147	686	500	56
Future Vol, veh/h	5	275	147	686	500	56
Conflicting Peds, #/h		0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Stora	ge,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	6	306	163	762	556	62
Material	M		Antonia.		4-10	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1472	765	796	0	-	0
Stage 1	765	-		-		
Stage 2	708	-	-		-	
Critical Hdwy		6.245	4.145	-		
Critical Hdwy Stg 1	5.445			-		
Critical Hdwy Stg 2	5.845			-		
Follow-up Hdwy	3.52853			-	-	
Pot Cap-1 Maneuver		400	818	-		
Stage 1	456			-	-	
Stage 2	448			-		
Platoon blocked, %				-		
Mov Cap-1 Maneuve	r 58	325	664	-		
Mov Cap-2 Maneuve				-		
Stage 1	255					
Stage 2	364					
Otago 2	304					
Approach	EB		NB		SB	
HCM Control Delay,	s/72.41		4.34		0	
HCM LOS	F					
Minor Lane/Major My	mt	NBI	MDT	EBLn1	SBT	SBR
	nnt	524		325		
Capacity (veh/h)			-		-	-
HCM Lane V/C Ratio		0.246			-	-
HCM Control Delay (s/veh)	12.2	2.7		-	
HCM Lane LOS		В	Α	F	-	-
HCM 95th %tile Q(ve	eh)	- 1	-	9.6		

HCM 7th TWSC

5: Bank & Echo 08/01/2024

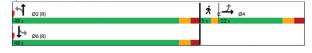
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	†	
Traffic Vol, veh/h	4	38	0	817	783	0
Future Vol. veh/h	4	38	0	817	783	0
Conflicting Peds, #/hr	0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	e,# 0	-		0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	4	42	0	908	870	0
Major/Minor	Minor2	h	Major1	Λ.	/ajor2	
Conflicting Flow All	1324	870	viajui i	0	najuiz	0
Stage 1	870	- 070	- 1	-		-
Stage 2	454		- 1	- 1	- 1	- 1
Critical Hdwv	6.645				-	
Critical Hdwy Stg 1	5.445	0.243	- 1	- 1	- 1	- 1
Critical Hdwy Stg 1	5.845			- 1	- 1	- 1
	3.52853	2205			- 1	
Pot Cap-1 Maneuver	158	348	0	- 1	- 1	0
Stage 1	407	340	0		- 1	0
Stage 2	605	- :	0	- 1	- 1	0
Platoon blocked. %	000		U		- 1	U
Mov Cap-1 Maneuver	158	348				
Mov Cap-1 Maneuver		340		- 1		- 1
	407	- 1	- 1		-	
Stage 1				-		-
Stage 2	605		-	-	-	-
			NB		SB	
Approach	EB				0	
			0			
HCM Control Delay, s			0		U	
	/16.77		0		U	
HCM Control Delay, s HCM LOS	/16.77 C	NOTE		ODT	U	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvi	/16.77 C		EBLn1	SBT	U	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvi Capacity (veh/h)	/16.77 C	-	EBLn1 348	-	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio	/16.77 C	- :	348 0.121	1	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	/16.77 C	- 1	348 0.121 16.8		0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio	/46.77 C mt	- :	348 0.121	1	0	

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EDL.	EDR	INDL	4	3B1	SDR
	66	60	122	223	334	257
Traffic Vol, veh/h Future Vol. veh/h	66	60	122	223	334	257
	00	00	122	223	334	257
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-		-	None
Storage Length	0	-	-		-	
Veh in Median Storag				0	0	-
Grade, %	0	-	-		0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	73	67	136	248	371	286
	0					
	Minor2		//ajor1		Major2	
Conflicting Flow All	1033	514	657	0	-	0
Stage 1	514	-		-		-
Stage 2	519	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-		-
Critical Hdwy Stg 1	5.4	-		-		-
Critical Hdwy Stg 2	5.4	-			-	-
Follow-up Hdwy	3.5	3.3	2.2		-	-
Pot Cap-1 Maneuver	260	565	940			
Stage 1	605	-	-	-		-
Stage 2	601					
Platoon blocked. %	001	-				- 1
	216	565	940	-	- 1	_
Mov Cap-1 Maneuver				-		-
Mov Cap-2 Maneuver		-	-		-	-
Stage 1	504	-		-		-
Stage 2	601	-	-	-		-
Approach	FB		NB		SB	
			3.35		0	
HCM Control Delay, s			3.35		U	
HCM LOS	D					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		637		306	-	ODIT
HCM Lane V/C Ratio		0.144		0.457	- 1	- 1
	L LV	9.5	0	26.3	- 1	- 1
HCM Control Delay (s	ven)					
HCM Lane LOS		A	Α	D	-	-
HCM 95th %tile Q(veh	1)	0.5	-	2.3		-

____2031 Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:36 pm 05/17/2023 TotaSpreintiDitly Beptatround Scaled L Page 3

2033 Scenario

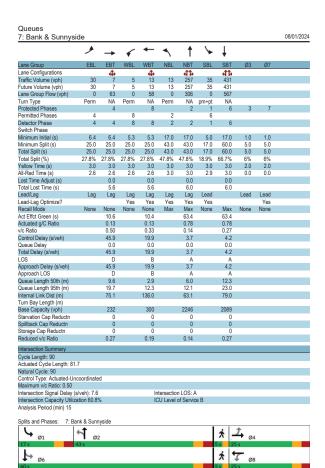
Minor Event Egress


Intersection						
Int Delay, s/veh	0.7					
Movement	WBL		NBT	NBR	SBL	SBT
Lane Configurations		7	ħβ			^
Traffic Vol, veh/h	0	61	533	20	2	604
Future Vol, veh/h	0	61	533	20	2	604
Conflicting Peds, #/hr	0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0			0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mvmt Flow	0	68	592	22	2	671
Major/Minor N	Minor1	,	Major1		Major2	
Conflicting Flow All	-	407	0	0	714	0
	- 1	407	-	U	/14	-
Stage 1						
Stage 2	-	6.9	-			-
Critical Hdwy					4.14	
Critical Hdwy Stg 1	-	-				
Critical Hdwy Stg 2	-					-
Follow-up Hdwy	-	3.3			2.22	
Pot Cap-1 Maneuver	0	599			882	-
Stage 1	0					-
Stage 2	0					-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver		536			788	-
Mov Cap-2 Maneuver	-		-			-
Stage 1						-
Stage 2						-
Approach	WB		NB		SB	
			0		0.03	
HCM Control Delay, s/ HCM LOS	W2.69		U		0.03	
HCIVI LUS	D					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)				536	788	
HCM Lane V/C Ratio				0.127	0.003	
HCM Control Delay (si	veh)			12.7	9.6	
HCM Lane LOS				B	A	
HCM 95th %tile Q(veh)			0.4	0	-

_2031 Minor Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:36 pm 05/11/2023 Tota**SpreintDity Beptigr**ound Scaled L Page 4

	ၨ	-	1	←	4	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	LUL	4	*	<u> </u>	HUL	414	ODL	472	
Fraffic Volume (vph)	43	10	50	25	17	471	21	371	
uture Volume (vph)	43	10	50	25	17	471	21	371	
ane Group Flow (vph)	0	88	56	66	0	555	0	459	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 01111	4		8	1 01111	2	1 01111	6	
Permitted Phases	4		8	-	2		6	-	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
_ost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
_ead/Lag									
_ead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		9.5	9.5	9.5		57.8		57.8	
Actuated g/C Ratio		0.13	0.13	0.13		0.77		0.77	
//c Ratio		0.52	0.36	0.32		0.25		0.21	
Control Delay (s/veh)		32.2	35.0	19.2		6.4		3.7	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		32.2	35.0	19.2		6.4		3.7	
_OS		С	С	В		Α		Α	
Approach Delay (s/veh)		32.2		26.4		6.4		3.7	
Approach LOS		С		С		Α		Α	
Queue Length 50th (m)		7.9	7.4	3.6		14.0		8.4	
Queue Length 95th (m)		19.6	16.3	13.1		37.3		17.2	
nternal Link Dist (m)		49.7		112.4		195.6		190.0	
Turn Bay Length (m)			45.0						
Base Capacity (vph)		330	335	403		2237		2163	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.27	0.17	0.16		0.25		0.21	
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 47 (63%), Referenced	d to phas	se 2:NBT	L and 6:9	SBTL. Sta	art of Gre	en			
Natural Cycle: 75									
Control Type: Actuated-Coor	rdinated								
Maximum v/c Ratio: 0.52									
ntersection Signal Delay (s/	veh): 9.2			1	ntersection	on LOS: A	4		
ntersection Capacity Utilizat				- 1	CU Level	of Service	e A		
Analysis Period (min) 15									
Splits and Phases: 1: Ban	k & Fifth								
_							ı	Ť	
(20.40)							- 1-	→ Ø4	1
Ø2 (R)									

Queues Queues


	\rightarrow	4	†	-	ļ		
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	4		414		414		
Traffic Volume (vph)	7	55	458	25	349		
Future Volume (vph)	7	55	458	25	349		
Lane Group Flow (vph)	88	0	600	0	457		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4		2		6	3	
Permitted Phases		2		6			
Detector Phase	4	2	2	6	6		
Switch Phase							
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0		0.0		0.0		
Total Lost Time (s)	5.6		5.2		5.2		
Lead/Lag	Lag					Lead	
Lead-Lag Optimize?	5						
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	10.2	O Milak	57.3	O Mux	57.3	110110	
Actuated g/C Ratio	0.14		0.76		0.76		
v/c Ratio	0.48		0.30		0.22		
Control Delay (s/veh)	37.9		3.8		4.6		
Queue Delay	0.0		0.0		0.0		
Total Delay (s/veh)	37.9		3.8		4.6		
LOS	D		A		Α.		
Approach Delay (s/veh)	37.9		3.8		4.6		
Approach LOS	D.5		Α.		4.0 A		
Queue Length 50th (m)	11.7		9.4		14.1		
Queue Length 95th (m)	23.3		23.1		26.8		
Internal Link Dist (m)	39.8		31.5		195.6		
Turn Bay Length (m)	33.0		31.3		133.0		
Base Capacity (vph)	295		1999		2082		
Starvation Cap Reductn	295		1999		2002		
	0		0		0		
Spillback Cap Reductn Storage Cap Reductn	0		0		0		
Reduced v/c Ratio	0.30		0.30		0.22		
	0.30		0.30		0.22		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 74 (99%), Reference	d to phas	se 2:NBT	L and 6:8	SBTL, Sta	art of Gree	en	
Natural Cycle: 75							
Control Type: Actuated-Coo	rdinated						
Maximum v/c Ratio: 0.48							
Intersection Signal Delay (s/	veh): 6.8				ntersectio		
Intersection Capacity Utilizat	tion 58.1	%		- 1	CU Level	of Service B	
Analysis Period (min) 15							

	•	4	†	Ţ				
Lane Group	EBL	NBL	NBT	SBT	Ø3			
Lane Configurations	*/		414	† 15				
Traffic Volume (vph)	4	- 1	172	200				
Future Volume (vph)	4	1	172	200				
Lane Group Flow (vph)	7	0	192	229				
Turn Type	Prot	Perm	NA	NA				
Protected Phases	4		2	6	3			
Permitted Phases	4	2	_	6	-			
Detector Phase	4	2	2	6				
Switch Phase		-	_					
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0			
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%			
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0			
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0			
Lost Time Adjust (s)	0.0	2.2	0.0	0.0	1.0			
Total Lost Time (s)	5.5		5.2	5.2				
Lead/Lag	Lag		J.2	J.2	Lead			
Lead-Lag Optimize?	Lay				Loau			
Recall Mode	Ped	C May	C-Max	C May	Max			
Act Effct Green (s)	14.0	CHIVIAX	60.3	60.3	Max			
Actuated g/C Ratio	0.16		0.67	0.67				
v/c Ratio	0.10		0.07	0.07				
Control Delay (s/veh)	27.2		5.4	5.3				
Queue Delay	0.0		0.0	0.0				
Total Delay (s/veh)	27.2		5.4	5.3				
LOS	21.2 C		J.4	J.5				
Approach Delay (s/veh)	27.2		5.4	5.3				
Approach LOS	21.2 C		J.4 A	J.5				
	0.6		5.4	6.3				
Queue Length 50th (m)	4.4		8.8	10.0				
Queue Length 95th (m)	76.7		28.1	10.0				
Internal Link Dist (m)	76.7		28.1	10.1				
Turn Bay Length (m)	253		2044	2105				
Base Capacity (vph)	253		2044					
Starvation Cap Reductn	0		0	0				
Spillback Cap Reductn	0		0	0				
Storage Cap Reductn	0.03		0.09	0.11				
Reduced v/c Ratio	0.03		0.09	0.11				
Intersection Summary								
Cycle Length: 90								
Actuated Cycle Length: 90								
Offset: 87 (97%), Reference	ed to phas	se 2:NBT	L and 6:8	SBT, Start	of Green			
Natural Cycle: 90								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.11								
Intersection Signal Delay (s	s/veh): 5.7			Ir	tersection LOS: A			
Intersection Capacity Utiliz	ation 45.6	%		IC	CU Level of Service A	1		
Analysis Period (min) 15								
Colite and Dhases: 6: De	nk & Aut-	or						
Splits and Phases: 6: Ba	nk & Ayln	leí*				- 1	. 🔺	
							メノ	

Ø6 (R)

3: Bank & Exhibitio	n							08/01/2024
O. Dariit & Extribitio	-	_	_					
	•	_	†	-	ţ			
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
Lane Configurations	×	7	∱ ĵø	ř	44			
Traffic Volume (vph)	195	217	198	123	267			
Future Volume (vph)	195	217	198	123	267			
Lane Group Flow (vph)	217	241	321	137	297			
Turn Type	Prot	Perm	NA	Perm	NA			
Protected Phases	8		2		6	1	7	
Permitted Phases		8		6				
Detector Phase	8	8	2	6	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
Lead/Lag	Lag	Lag	Lag			Lead	Lead	
Lead-Lag Optimize?			Yes			Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	15.2	15.2	46.6	46.6	46.6			
Actuated g/C Ratio	0.20	0.20	0.62	0.62	0.62			
v/c Ratio	0.66	0.58	0.18	0.28	0.15			
Control Delay (s/veh)	36.6	9.4	5.0	6.3	4.4			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	36.6	9.4	5.0	6.3	4.4			
LOS	D	Α	A	A	Α			
Approach Delay (s/veh)	22.3		5.0		5.0			
Approach LOS	С		Α		Α			
Queue Length 50th (m)	28.5	0.0	5.9	4.5	5.1			
Queue Length 95th (m)	45.0	16.1	13.3	10.0	8.1			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	433	475	1757	490	1971			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.50	0.51	0.18	0.28	0.15			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced	to nhase :	NRT ar	nd 6:SBT	Start n	f Green			
Natural Cycle: 75	to pridate a	L.INDT GI	iu 0.0D1	L, Otalt o	Oleen			
Control Type: Actuated-Coo	ordinated							
Maximum v/c Ratio: 0.66	Julianou							
Intersection Signal Delay (s	/uph): 11 i	5		li li	ntersectio	n I OS: B		
Intersection Capacity Utiliza					CU Level			
Analysis Period (min) 15	10011 07.07				OO LEVE	OI OGIVIC	0.0	
Splits and Phases: 3: Bar	nk & Exhib	oition						
★ ↑ ↑ Ø2 (R)						- 1		
5 s 39 s							1	
▶ 1 6 (R)							*	~ ∞8
44 s						5	s 2	6 s

Lane Group

Lane Configurations
Traffic Volume (yph)
Traffic Volume (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Detector Phases
Detector Phases
Detector Phases
Minimum Initial (s)
Minimum Split (s)
Total Lost Time (s)
Lead-Lag Optimum (s)
Lead-Lag Optimum (s)
Act Effic Green (s)
Act Effic Green (s)
Act Lated glC Ratio
vic Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS

LOS
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Storage Cap Reduct
Storage Cap Reductn
Reduced vio Ratio

Intersection Summary
Cycle Length: 80
Actuated Cycle Length: 64.6
Natural Cycle: 80

₼ Ø2

J Ø6

Natural Cycle: 80 Control Type: Actuated-Uncoordinated Maximum vic Ratio: 0.41 Intersection Signal Delay (s/veh): 10.0 Intersection Capacity Utilization 52.6% Analysis Period (min) 15

Splits and Phases: 9: Queen Elizabeth Drive & Fifth

↑ ↓

2

 Min
 None
 None
 Max
 None

 10.9
 41.2
 41.2
 41.2

 0.17
 0.64
 0.64
 0.64

 0.41
 0.33
 0.21
 29.0
 5.7
 5.7

0.0 0.0 6.7 5.7

A A 6.7 5.7

1023 1049

0.33 0.21

10

0.0 29.0

29.0

370

0.29

HCM 7th AWSC

08/01/2024

37: O' Connor Street & Fifth Avenue 08/01/2024

SBT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB
0 0	9
0 0	9
0 0	9
0	9
0	9
0 0 0	9
	0.9
2 2	
0 (11
0	
	S
	N
	W
	Е
	7.
	0 0

2033 Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023

Synchro 12 Report Page 1

HCM 7th TWSC

4: Bank & Wilton 08/01/2024

Intersection LOS: A ICU Level of Service A

⅓ Ø4

⊅ ø10

Interes etter						
Intersection	3.2					
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		414	1	
Traffic Vol, veh/h	2	114	49	299	408	69
Future Vol, veh/h	2	114	49	299	408	69
Conflicting Peds, #/hr	. 0	0	178	0	0	107
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length		0	-	-	-	-
Veh in Median Storag	je,# 0	-		0	0	
Grade, %	0	-		0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	2	127	54	332	453	77
Maladella	LE0		Andread.		4-10	
	Minor2		//ajor1		Major2	
Conflicting Flow All	945	670	708	0	-	0
Stage 1	670		-		-	
Stage 2	275	-	-	-	-	-
Critical Hdwy		6.245	4.145	-		
Critical Hdwy Stg 1	5.445	-		-		
Critical Hdwy Stg 2	5.845	-		-		
	3.52850			-		
Pot Cap-1 Maneuver		454	883	-		
Stage 1	505	-		-		
Stage 2	745	-		-		
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	165	368	717			
Mov Cap-2 Maneuver	165	-	-	-	-	-
Stage 1	376					
Stage 2	604	-		-		
Accessed			ND		OD	
Approach	EB		NB		SB	
HCM Control Delay, s			2.03		0	
HCM LOS	С					
Minor Lane/Major Mvi	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		507	-	368	-	-
HCM Lane V/C Ratio		0.076		0.344		
HCM Control Delay (s	s/veh)	10.4	0.7	19.8		
HCM Lane LOS		В.	Α.	C		
				0		
	h)	0.2		1.5		
HCM 95th %tile Q(vel	h)	0.2		1.5	-	-

HCM 7th TWSC

5: Bank & Echo 08/01/2024

IIIICISCUIUII						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	4	
Traffic Vol. veh/h	2	12	0	381	336	0
Future Vol. veh/h	2	12	0	381	336	0
Conflicting Peds, #/hr		0	0	0	0	86
Sign Control	Stop	Stop	Free	Free		Free
RT Channelized	Otop	None	1100	None	1100	None
Storage Length		0		IVUITE -	- 1	IVUITE -
Veh in Median Storag		-	- 1	0	0	- 1
Grade. %	je, # 0 0			0	0	- 1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
	2					
Mvmt Flow	2	13	0	423	373	0
Major/Minor	Minor2	N	/lajor1		/lajor2	
Conflicting Flow All	585	373		0		0
Stage 1	373	-		-		-
Stage 2	212					
Critical Hdwv	6.645					
Critical Hdwy Stg 1	5.445	0.240				
Critical Hdwy Stg 2	5.845					
	3.52853					
Pot Cap-1 Maneuver		669	0	- :	- :	0
Stage 1	693	003	0	- 0	- 1	0
Stage 2	801		0			0
Platoon blocked. %	001		U		- 1	U
Mov Cap-1 Maneuver	r 455	669		- 1	- 1	
Mov Cap-1 Maneuve						
		-	-	-	-	-
Stage 1	693	-	-	-	-	
Stage 2	801		-			
Approach	EB		NB		SB	
HCM Control Delay,	/dn 49		0		0	
HCM LOS	В.		0		U	
TIOW EOO						
Minor Lane/Major Mv	mt	NBTE	BLn1	SBT		
Capacity (veh/h)		-	669	-		
HCM Lane V/C Ratio		-	0.02	-		
HCM Control Delay (s	s/veh)	-	10.5	-		
HCM Lane LOS	,		В			
HCM 95th %tile Q(ve	h)		0.1			

Approach WB HCM Control Delay, s/13.64 HCM LOS B

Intersection						
Int Delay, s/veh	10.9					
**	EDI	500	NIDI	LIDT	OPT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, A			4	7>	
Traffic Vol, veh/h	255	170	24	46	128	68
Future Vol, veh/h	255	170	24	46	128	68
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-		-	-
Veh in Median Storag	e,# 0			0	0	
Grade, %	0		-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	283	189	27	51	142	76
	200	.00		01		
	Minor2		Major1		Major2	
Conflicting Flow All	284	180	218	0	-	0
Stage 1	180			-		
Stage 2	104	-	-		-	-
Critical Hdwy	6.4	6.2	4.1	-	-	
Critical Hdwy Stg 1	5.4			-		
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2	-		
Pot Cap-1 Maneuver	710	868	1364			
Stage 1	856	- 000	.004			
Stage 2	925	- :	- :	- 1	- 1	- :
Platoon blocked. %	323			- 1		
Mov Cap-1 Maneuver	696	868	1364		- 1	-
						-
Mov Cap-2 Maneuver	696	-	-	-	-	-
Stage 1	839		-	-	-	
Stage 2	925	-	-		-	-
			NB		SB	
Approach	ED					
Approach	EB		0.04			
HCM Control Delay, s	/17.36		2.64		0	
			2.64		0	
HCM Control Delay, s	/17.36		2.64		0	
HCM Control Delay, s HCM LOS	/17.36 C	NBL		EBLn1	SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr	/17.36 C		NBT	EBLn1	SBT	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h)	/17.36 C	617	NBT	756	SBT -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	/17.36 C	617 0.02	NBT	756 0.625	SBT	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	/17.36 C	617 0.02 7.7	NBT	756 0.625 17.4	SBT	- 1
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	/47.36 C	617 0.02	NBT	756 0.625 17.4	SBT	-

2033 Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023

Synchro 12 Repo Page 2033 Minor Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023 Sync

Synchro 12 Report Page 4

2033 Scenario

Major Event Ingress

1: Bank & Fifth									08/06/20
	•	\rightarrow	•	←	1	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4	*	1 2		414		479	
Traffic Volume (vph)	63	56	75	64	24	491	33	655	
uture Volume (vph)	63	56	75	64	24	491	33	655	
Lane Group Flow (vph)	0	174	83	139	0	615	0	833	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase			-	-	_	_	-	-	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	34.7%	34.7%	34.7%	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
	2.5	0.0	0.0	0.0	2.5	0.0	2.5	0.0	
Lost Time Adjust (s)		5.5	5.5	5.5		5.5		5.5	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
_ead/Lag									
_ead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
Act Effct Green (s)		13.8	13.8	13.8		45.6		45.6	
Actuated g/C Ratio		0.20	0.20	0.20		0.65		0.65	
//c Ratio		0.69	0.43	0.42		0.35		0.47	
Control Delay (s/veh)		36.5	30.7	17.5		6.9		8.0	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		36.5	30.7	17.5		6.9		8.0	
_OS		D	С	В		Α		A	
Approach Delay (s/veh)		36.5		22.4		6.9		8.0	
Approach LOS		D		С		Α		A	
Queue Length 50th (m)		18.0	9.3	8.2		16.0		24.1	
Queue Length 95th (m)		36.3	20.8	21.8		31.6		46.8	
nternal Link Dist (m)		49.7		112.4		195.6		190.0	
Turn Bay Length (m)			45.0						
Base Capacity (vph)		366	286	457		1770		1780	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.48	0.29	0.30		0.35		0.47	
Intersection Summary									
Cycle Length: 75 Actuated Cycle Length: 70.	5								
	.u								
Natural Cycle: 75	a a a salia c t -								
Control Type: Actuated-Un	cuordinate	ru .							
Maximum v/c Ratio: 0.69									
ntersection Signal Delay (ntersection				
Intersection Capacity Utiliz	ation 89.8°	%		- 1	CU Level	of Service	e E		
Analysis Period (min) 15									
Splits and Phases: 1: Ba	ınk & Fifth								
opino alla i liagog. I. De	um or i iitii								

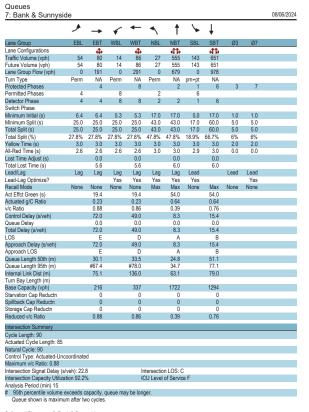
Queues 3: Bank & Exhibition Queues 2: Bank & Holmwood 08/06/2024 08/06/2024

	→	4	†	-	ţ		
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3	
Lane Configurations	4		414		414		
Traffic Volume (vph)	39	71	518	59	605		
Future Volume (vph)	39	71	518	59	605		
Lane Group Flow (vph)	157	0	793	0	796		
Turn Type	NA	Perm	NA	Perm	NA		
Protected Phases	4		2		6	3	
Permitted Phases		2		6			
Detector Phase	4	2	2	6	6		
Switch Phase							
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0	
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0	
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	2.0	
All-Red Time (s)	2.6	2.2	2.2	2.2	2.2	0.0	
Lost Time Adjust (s)	0.0		0.0		0.0		
Total Lost Time (s)	5.6		5.2		5.2		
Lead/Lag	Lag					Lead	
Lead-Lag Optimize?							
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	13.5		50.7		50.7		
Actuated g/C Ratio	0.18		0.68		0.68		
v/c Ratio	0.62		0.52		0.47		
Control Delay (s/veh)	38.5		4.2		7.5		
Queue Delay	0.0		0.0		0.0		
Total Delay (s/veh)	38.5		4.2		7.5		
LOS	D		Α		A		
Approach Delay (s/veh)	38.5		4.2		7.5		
Approach LOS	D		A		A		
Queue Length 50th (m)	20.7		1.6		23.1		
Queue Length 95th (m)	35.3		47.6		43.7		
Internal Link Dist (m)	39.8		31.5		195.6		
Turn Bay Length (m)							
Base Capacity (vph)	316		1512		1695		
Starvation Cap Reductn	0		0		0		
Spillback Cap Reductn	0		0		0		
Storage Cap Reductn	0		0		0		
Reduced v/c Ratio	0.50		0.52		0.47		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 74 (99%), Reference	ed to phas	se 2:NBT	L and 6:9	SBTL. Sta	art of Gree	en	
Natural Cycle: 75				,			
	ordinated						
Control Type: Actuated-Coo							
Maximum v/c Ratio: 0.62	/veh): 8.8			- 1	ntersectio	n LOS: A	
						n LOS: A of Service [D

Splits and Phases: 2: Bank & Holmwood		_
∮ Ø2 (R)	À € → Ø4	
48 s	5 s 22 s	
► Ø6 (R)		und Scaled Up
48 s		_

	•	4	†	1				
Lane Group	EBL	NBL	NBT	SBT	Ø3			
Lane Configurations	₩	HUL	414	† \$	20			
Traffic Volume (vph)	93	14	772	799				
Future Volume (vph)	93	14	772	799				
Lane Group Flow (vph)	131	0	874	946				
Turn Type	Prot	Perm	NA	NA				
Protected Phases	4	Pellii	2	1NA 6	3			
Permitted Phases	4	2		6	J			
Detector Phase	4	2	2	6				
Switch Phase	4			0				
	10.0	30.0	30.0	30.0	1.0			
Minimum Initial (s)								
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0			
Total Split (s)	24.4%	70.0%	70.0%	70.0%	6%			
Total Split (%)	24.4%	70.0%	70.0%	70.0%	2.0			
Yellow Time (s)	2.2	2.2	2.2	2.2	1.0			
All-Red Time (s)		2.2			1.0			
Lost Time Adjust (s)	0.0		0.0	0.0				
Total Lost Time (s)	5.5		5.2	5.2	Lord			
Lead/Lag	Lag				Lead			
Lead-Lag Optimize?		0.11	0.11					
Recall Mode	Ped	C-Max		C-Max	Max			
Act Effct Green (s)	14.6		59.7	59.7				
Actuated g/C Ratio	0.16		0.66	0.66				
v/c Ratio	0.52		0.44	0.46				
Control Delay (s/veh)	38.8		8.2	8.2				
Queue Delay	0.0		0.0	0.0				
Total Delay (s/veh)	38.8		8.2	8.2				
LOS	D		Α	Α				
Approach Delay (s/veh)	38.8		8.2	8.2				
Approach LOS	D		Α	Α				
Queue Length 50th (m)	19.0		32.6	35.3				
Queue Length 95th (m)	35.4		48.3	51.7				
Internal Link Dist (m)	76.7		28.1	10.1				
Turn Bay Length (m)								
Base Capacity (vph)	283		1973	2044				
Starvation Cap Reductn	0		0	0				
Spillback Cap Reductn	0		0	0				
Storage Cap Reductn	0		0	0				
Reduced v/c Ratio	0.46		0.44	0.46				
Intersection Summary								
Cycle Length: 90								
Actuated Cycle Length: 90								
Offset: 87 (97%), Reference	ed to phase	se 2:NRT	I and 6:9	SBT. Start	of Green			
Natural Cycle: 90	to pride	2		, o.a.	2. 2.0011			
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.52	2.3							
Intersection Signal Delay (s/veh): 10	3		In	tersection LOS: B			
Intersection Capacity Utiliz					CU Level of Service A			
Analysis Period (min) 15	uuUII JJ.0	/0		IC	O LEVEL OF SELVICE A			
ranagolo i onou (mill) 10								
Splits and Phases: 6: Ba	ınk & Aylm	ner						
← †						1.	†	
Ø2 (R)						201	Ø4	

Ø6 (R)


	•	•	†	-	Ţ			
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7	
Lane Configurations	*	7	ŧβ	*	44			
Traffic Volume (vph)	61	44	655	66	595			
Future Volume (vph)	61	44	655	66	595			
Lane Group Flow (vph)	68	49	819	73	661			
Turn Type	Prot	Perm	NA	Perm	NA			
Protected Phases	8		2		6	1	7	
Permitted Phases	-	8	_	6	-			
Detector Phase	8	8	2	6	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0	
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5	
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9			
Lead/Lag	Lag	Lag	Lag	0.0	0.0	Lead	Lead	
Lead-Lag Optimize?		9	Yes			Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	10.3	10.3	56.1	56.1	56.1	140110	140110	
Actuated g/C Ratio	0.14	0.14	0.75	0.75	0.75			
v/c Ratio	0.30	0.25	0.36	0.18	0.28			
Control Delay (s/veh)	32.9	12.6	4.9	4.8	3.7			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay (s/veh)	32.9	12.6	4.9	4.8	3.7			
LOS	С	В	A	A	Α			
Approach Delay (s/veh)	24.4		4.9		3.8			
Approach LOS	C		A		A			
Queue Length 50th (m)	8.8	0.0	20.6	2.8	13.8			
Queue Length 95th (m)	19.4	8.6	31.8	m6.1	18.1			
Internal Link Dist (m)	30.6		33.7		44.8			
Turn Bay Length (m)				40.0				
Base Capacity (vph)	429	331	2284	406	2373			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.16	0.15	0.36	0.18	0.28			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75								
Offset: 0 (0%), Referenced		2:NBT as	nd 6:SRT	I. Start o	f Green			
Natural Cycle: 75	o priudo	ai	0.051	_,	5.00.1			
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.36	ron anniattou							
Intersection Signal Delay (s/veh): 5.9				ntersectio	n LOS: A		
Intersection Capacity Utiliz					CU Level			
Analysis Period (min) 15					22 F046I	J. 061410		
m Volume for 95th perce	ntile queu	e is mete	red by up	stream s	ignal.			
0-11								
1 .	ank & Exhi	DIGON				- 1		
. •								

* & * Ø8

bund Scaled Ur

* ↑ ↑ Ø2 (R)

▶ **(R)**

Lane Group

Lane Configurations
Traffic Volume (yph)
Traffic Volume (yph)
Lane Group Flow (yph)
Lane Group Flow (yph)
Turn Type
Protected Phases
Detector Phases
Detector Phases
Detector Phases
Minimum Initial (s)
Minimum Split (s)
Total Lost Time (s)
Lead-Lag Optimum (s)
Lead-Lag Optimum (s)
Act Effic Green (s)
Act Effic Green (s)
Act Lated glC Ratio
vic Ratio
Control Delay (s/veh)
Queue Delay
Total Delay (s/veh)
LOS

LOS
Approach Delay (siveh)
Approach Delay (siveh)
Approach LOS
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Storage Cap Reduct
Reduced vic Ratio

Intersection Summary
Cycle Length: 80
Actuated Cycle Length: 67.3
Natural Cycle: 90

9: Queen Elizabeth Drive & Fifth

↑ ↓

2

10.0 4.0 4.0 4.0 4.0 20.7 10.8 10.8 31.8 9.7 21.0 48.0 48.0 11.0 26.3% 60.0% 60.0% 60.0% 14% 30 30 30 30 3.0 3.0 2.7 3.8 3.8 3.8 2.7 0.0 0 00 00 5.7 6.8 6.8

Min None None Max None 13.6 41.2 41.2 0.20 0.61 0.61

0.69 0.87 17.9 23.7

0.0 0.0 17.9 23.7

17.9 23.7 8 C 30.1 85.7 #70.0 #169.4 0.1 5.9

554 1010

0.69 0.87

2 6

Y 4 1 97 73 272 662 97 73 272 662 210 0 383 880 Prot Perm NA NA

10

0.20

0.0 36.9

36.9

349

0.60

Natural Cyde: 90
Control Type: Achusted-Uncoordinated
Maximum vic Ratio: 0.87
Intersection Signal Delay (Sveh): 24.1
Intersection Capacity Ultilization 92.2%
ICU L
Analysis Period (min) 15
9 95h percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 9: Queen Elizabeth Drive & Fifth

08/06/2024

HCM 7th AWSC 37: O' Connor Street & Fifth Avenue

08/01/2024

01: 0 00::::0: 0::00			01100									_
Intersection												
Intersection Delay, s/veh	9.5											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ની				7		4				7
Traffic Vol, veh/h	70	59	0	0	0	203	61	61	97	0	0	134
Future Vol, veh/h	70	59	0	0	0	203	61	61	97	0	0	134
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	- 2
Mvmt Flow	78	66	0	0	0	226	68	68	108	0	0	149
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					SE
Opposing Approach	WB					EB	SB					NE
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	EB					WE
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					EE
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	9.7					9.2	10.1					8.6
HCM LOS	Α					Α	В					F
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		28%	54%	0%	0%							
Vol Thru, %		28%	46%	0%	0%							
Vol Right %		44%	0%	100%	100%							

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	28%	54%	0%	0%
Vol Thru, %	28%	46%	0%	0%
Vol Right, %	44%	0%	100%	100%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	219	129	203	134
LT Vol	61	70	0	0
Through Vol	61	59	0	0
RT Vol	97	0	203	134
Lane Flow Rate	243	143	226	149
Geometry Grp	1	- 1	- 1	1
Degree of Util (X)	0.322	0.208	0.278	0.186
Departure Headway (Hd)	4.761	5.22	4.436	4.508
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	747	681	801	786
Service Time	2.839	3.308	2.513	2.594
HCM Lane V/C Ratio	0.325	0.21	0.282	0.19
HCM Control Delay, s/veh	10.1	9.7	9.2	8.6
HCM Lane LOS	В	A	A	Α
HCM 95th-tile Q	1.4	0.8	1.1	0.7

2033 Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023 Total Syechi@algtHeipighound Scaled Up Page 1

HCM 7th TWSC

₩ Ø2

J Ø6

08/01/2024 4: Bank & Wilton

Intersection LOS: C ICU Level of Service F

⅓ ∅4

ر هام

Interception								
Intersection Int Delay, s/veh	20.5							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		7		41	f)			
Traffic Vol, veh/h	5	281	110	759	559	109		
Future Vol, veh/h	5	281	110	759	559	109		
Conflicting Peds, #/h		0	178	0	0	107		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None		None	-	None		
Storage Length	-	0	-			-		
Veh in Median Stora			-	0	0	-		
Grade, %	0			0	0			
Peak Hour Factor	90	90	90	90	90	90		
Heavy Vehicles, %	3	3	3	3	3	3		
Mvmt Flow	6	312	122	843	621	121		
Major/Mines	Minor		Majard	_	Anian^			
Major/Minor	Minor2		Major1		Major2			
Conflicting Flow All	1526	860	920	0	-	0		
Stage 1	860	-	-	-	-	-		
Stage 2	666	-	-	-	-	-		
Critical Hdwy		6.245			-	-		
Critical Hdwy Stg 1	5.445	-	-	-	-	-		
Critical Hdwy Stg 2	5.845				-			
Follow-up Hdwy	3.52853				-	-		
Pot Cap-1 Maneuver		353	734		-	-		
Stage 1	411	-	-		-	-		
Stage 2	471				-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuve	r 57	~ 286	596			-		
Mov Cap-2 Maneuve	r 57		-			-		
Stage 1	244							
Stage 2	382							
	===		NID		0.0			
Approach	EB		NB		SB			
HCM Control Delay,			3.88		0			
HCM LOS	F							
Minor Lane/Major My	/mt	NBL	NRTI	EBLn1	SBT	SBR		
	rint.	456	NDT I	286	301	SBIX		
Capacity (veh/h)				1.09				
HCM Lane V/C Ratio		0.205	-	1.09	-			
HCM Control Delay (s/veh)	12.6	2.6		-	-		
HCM Lane LOS		В	Α	F	-			
HCM 95th %tile Q(ve	en)	0.8	-	12.6	-	-		
Notes								
~: Volume exceeds of	anacity	\$- F	ام بردام	ceeds	300e	4: Co		mputation Not Defined
. Volume exceeds (rapacity	Q. L	Jelay e	voccus	0005	+. 00	4	iiputation ivot Delineu

110111 / 111 1 1100	
5: Bank & Echo	

08/01/2024

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	EDR	NDL	↑ ↑	OD ↑	Jugo
Traffic Vol. veh/h	-		^		811	0
	1	76 76	0	846		0
Future Vol, veh/h	1		0	846	811	
Conflicting Peds, #/hr		0	0	0	0	86
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None		None
Storage Length	-	0	-	-		-
Veh in Median Storag	ge,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	- 1	84	0	940	901	0
minici ion		0.		0.10	001	
	Minor2		Major1		Major2	
Conflicting Flow All	1371	901	-	0		0
Stage 1	901	-	-	-		-
Stage 2	470	-	-	-		-
Critical Hdwy	6.645	6.245	-	-		-
Critical Hdwy Stg 1	5.445		-	-	-	-
Critical Hdwy Stg 2	5.845	-				
	3.5285	3 3285				
Pot Cap-1 Maneuver		334	0			0
Stage 1	393	- 004	0			0
Stage 2	594	- :	0		- :	0
Platoon blocked, %	594		U		- 1	U
Mov Cap-1 Maneuver	r 148	334		- 1	- 1	
						-
Mov Cap-2 Maneuver		-	-			
Stage 1	393	-	-	-		
Stage 2	594	-	-	-		-
Approach	EB		NB		SB	
			0		0.0	
HCM Control Delay, s			U		U	
HCM LOS	С					
Minor Lane/Major Mv	mt	NBTE	BLn1	SBT		
Capacity (veh/h)		-	334	-		
			0.253			
HCM Lana V//C Patio			19.4	- :		
HCM Lane V/C Ratio	(doub					
HCM Control Delay (s	s/veh)					
		- 1	19.4 C	- 1		

Intersection						
Int Delay, s/veh	14					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*y*	LDIN	NDL	4	1	SDIN
Traffic Vol. veh/h	102	105	117	245	466	268
Future Vol. veh/h	102	105	117	245	466	268
Conflicting Peds, #/hr	0	0	0	245	400	200
	Stop		Free	Free	Free	-
Sign Control RT Channelized	Stop	Stop		None	Free -	Free
	0	None			- 1	None
Storage Length			-	-		-
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	113	117	130	272	518	298
Major/Minor I	Minor2		//ajor1	N.	Major2	
Conflicting Flow All	1199	667	816	0	-	0
Stage 1	667	007	010	-		-
	532					
Stage 2	6.4	6.2	4.1	-	-	-
Critical Hdwy				-		-
Critical Hdwy Stg 1	5.4	-	-	-	-	
Critical Hdwy Stg 2	5.4			-		-
Follow-up Hdwy	3.5	3.3	2.2		-	
Pot Cap-1 Maneuver	207	463	821		-	-
Stage 1	514	-	-	-		-
Stage 2	593	-		-		-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	168	463	821	-		-
Mov Cap-2 Maneuver	168	-	-	-	-	-
Stage 1	418	-		-		-
Stage 2	593	-		-		-
030 =						
Approach	EB		NB		SB	
HCM Control Delay, s	/62.39		3.3		0	
HCM LOS	F					
Minor Lone Major Mar	nd.	NBL	MDTI	EBLn1	SBT	SBR
Minor Lane/Major Mvr	ш					
Capacity (veh/h)		582	-	248	-	-
HCM Lane V/C Ratio		0.158		0.926	-	
HCM Control Delay (s	/veh)	10.2	0	82.4	-	-
HCM Lane LOS		В	Α	F	-	-
HCM 95th %tile Q(veh	1)	0.6	-	8.2	-	

2033 Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023	Total Syeoth@at/288etaground Scaled Up
	Page 3

2033 Scenario

Major Event Egress

Intersection						
	0.4					
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ħ₽			44
Traffic Vol, veh/h	0	8	698	- 1	0	662
Future Vol, veh/h	0	8	698	- 1	0	662
Conflicting Peds, #/hr	. 0	0	0	100	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-		-	None
Storage Length		0	-	-		-
Veh in Median Storag	je,# 0	-	0			0
Grade, %	0		0			0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	2	2
Mymt Flow	0	9	776	1	0	736
	Minor1		Major1		∕ajor2	
Conflicting Flow All	-	488	0	0		-
Stage 1	-	-		-		
Stage 2	-	-		-		
Critical Hdwy	-	6.9		-		
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-		-		
Follow-up Hdwy		3.3				
Pot Cap-1 Maneuver	0	531			0	
Stage 1	0	-	-		0	-
Stage 2	0		-		0	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	r -	475				
Mov Cap-2 Maneuver						
Stage 1						
Stage 2						
Olago Z						
Approach	WB		NB		SB	
HCM Control Delay, s	3/12.73		0		0	
HCM LOS	В					
Minor Lano/Major Mu	mt	NBT	NIDDA	VBLn1	SBT	
Minor Lane/Major Mv	IIIL	INBI	NBR			
Capacity (veh/h)			-	475		
HCM Lane V/C Ratio		-		0.019	-	
HCM Control Delay (s	s/veh)	-	-	12.7	-	
HCM Lane LOS				В	-	

2033 Major Event Ingress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1:38 pm 05/17/2023 Total Syeah@alg@elegground Scaled Up Page 4

	•	-	•	—	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		43-	*	1,		413		475	
Traffic Volume (vph)	78	34	41	72	22	333	20	373	
Future Volume (vph)	78	34	41	72	22	333	20	373	
Lane Group Flow (vph)	0	155	46	209	0	422	0	480	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (s)	26.0	26.0	26.0	26.0	49.0	49.0	49.0	49.0	
Total Split (%)	34.7%	34.7%	34.7%	34.7%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)		0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.5	5.5	5.5		5.5		5.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
Act Effct Green (s)		14.2	14.2	14.2		44.4		44.4	
Actuated g/C Ratio		0.20	0.20	0.20		0.64		0.64	
v/c Ratio		0.76	0.21	0.58		0.24		0.27	
Control Delay (s/veh)		46.5	24.3	18.9		6.4		6.5	
Queue Delay		0.0	0.0	0.0		0.0		0.0	
Total Delay (s/veh)		46.5	24.3	18.9		6.4		6.5	
LOS		D	С	В		A		A	
Approach Delay (s/veh)		46.5		19.9		6.4		6.5	
Approach LOS		D		В		A		A	
Queue Length 50th (m)		16.8	4.9	11.3		10.4		12.0	
Queue Length 95th (m)		35.7	12.7	29.6		20.5		23.3	
Internal Link Dist (m)		49.7		112.4		195.6		190.0	
Turn Bay Length (m)			45.0						
Base Capacity (vph)		287	312	474		1765		1776	
Starvation Cap Reductn		0	0	0		0		0	
Spillback Cap Reductn		0	0	0		0		0	
Storage Cap Reductn		0	0	0		0		0	
Reduced v/c Ratio		0.54	0.15	0.44		0.24		0.27	
ntersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 69	.6								
Natural Cycle: 75									
Control Type: Actuated-Un	coordinate	ed							
Maximum v/c Ratio: 0.76		_							
Intersection Signal Delay (s/veh): 13	8		l:	ntersectio	n I OS: F	3		
Intersection Capacity Utiliz					CU Level				

Queues 3: Bank & Exhibition Queues 2: Bank & Holmwood 08/06/2024 08/06/2024

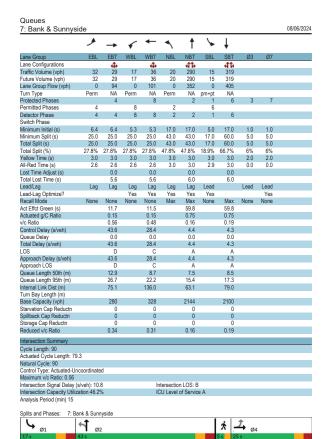
	-	1	†	-	Ţ			
Lane Group	EBT	NBL	NBT	SBL	SBT	Ø3		
Lane Configurations	4		414		414			
Traffic Volume (vph)	22	52	281	33	297			
Future Volume (vph)	22	52	281	33	297			
Lane Group Flow (vph)	151	0	437	0	438			
Turn Type	NA	Perm	NA	Perm	NA			
Protected Phases	4		2		6	3		
Permitted Phases		2	_	6	-	-		
Detector Phase	4	2	2	6	6			
Switch Phase		_	_	-	-			
Minimum Initial (s)	4.4	10.0	10.0	4.0	4.0	1.0		
Minimum Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (s)	22.0	48.0	48.0	48.0	48.0	5.0		
Total Split (%)	29.3%	64.0%	64.0%	64.0%	64.0%	7%		
	29.3%	3.0	3.0	3.0	3.0	2.0		
Yellow Time (s)		2.2	2.2	2.2	2.2	0.0		
All-Red Time (s)	2.6	2.2		2.2		0.0		
Lost Time Adjust (s)	0.0		0.0		0.0			
Total Lost Time (s)	5.6		5.2		5.2			
Lead/Lag	Lag					Lead		
Lead-Lag Optimize?								
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	None		
Act Effct Green (s)	13.5		50.7		50.7			
Actuated g/C Ratio	0.18		0.68		0.68			
v/c Ratio	0.62		0.27		0.25			
Control Delay (s/veh)	38.9		3.6		5.2			
Queue Delay	0.0		0.0		0.0			
Total Delay (s/veh)	38.9		3.6		5.2			
LOS	D		A		A			
Approach Delay (s/veh)	38.9		3.6		5.2			
Approach LOS	D		Α		A			
Queue Length 50th (m)	19.9		9.5		9.3			
Queue Length 95th (m)	34.2		20.1		19.1			
Internal Link Dist (m)	39.8		31.5		195.6			
Turn Bay Length (m)			20					
Base Capacity (vph)	306		1620		1755			
Starvation Cap Reductn	0		0.020		0			
Spillback Cap Reductn	0		0		0			
Storage Cap Reductn	0		0		0			
Reduced v/c Ratio	0.49		0.27		0.25			
	0.43		0.21		0.20			
Intersection Summary								
Cycle Length: 75								
Actuated Cycle Length: 75		. O NET	1 101	DTI C				
Offset: 74 (99%), Reference	ed to pha	se 2:NBT	L and 6:8	BIL, Sta	art of Gree	en		
Natural Cycle: 75								
Control Type: Actuated-Co Maximum v/c Ratio: 0.62	ordinated							
Intersection Signal Delay (s	s/veh): 9.5	i		li li	ntersectio	n LOS: A		
Intersection Capacity Utiliz						of Service E	3	
Analysis Period (min) 15								
, , ,								
Splits and Phases: 2: Ba	nk & Holr	nwood						
△ ↑							1 . 1 +	

Splits and Phases: 2: Bank & Holmwood		
↑ Ø2 (R)	À ¢ → Ø4	
48 s	5 s 22 s	
▶ Ø6 (R)		urd Scaled Up
48 s		

	•	•	†	Ţ					
Lane Group	EBL	NBL	NBT	SBT	Ø3				
Lane Configurations	¥/	INDL	414	↑ ₽	100				_
Traffic Volume (vph)	19	17	353	312					
	19	17	353	312					
Future Volume (vph)	39	0	411	373					
Lane Group Flow (vph)									
Turn Type	Prot	Perm	NA	NA 6					
Protected Phases	4		2		3				
Permitted Phases	4	2		6					
Detector Phase	4	2	2	6					
Switch Phase									
Minimum Initial (s)	10.0	30.0	30.0	30.0	1.0				
Minimum Split (s)	22.0	63.0	63.0	63.0	5.0				
Total Split (s)	22.0	63.0	63.0	63.0	5.0				
Total Split (%)	24.4%	70.0%	70.0%	70.0%	6%				
Yellow Time (s)	3.3	3.0	3.0	3.0	2.0				
All-Red Time (s)	2.2	2.2	2.2	2.2	1.0				
Lost Time Adjust (s)	0.0		0.0	0.0					
Total Lost Time (s)	5.5		5.2	5.2					
Lead/Lag	Lag				Lead				
Lead-Lag Optimize?	-19								
Recall Mode	Ped	C-Max	C-Max	C-Max	Max				
Act Effct Green (s)	14.0	J	60.3	60.3					
Actuated g/C Ratio	0.16		0.67	0.67					
v/c Ratio	0.10		0.07	0.07					
Control Delay (s/veh)	23.5		6.0	5.6					
Queue Delay (siveri)	0.0		0.0	0.0					
	23.5		6.0	5.6					
Total Delay (s/veh)									
LOS	C 23.5		6.0	A 5.6					
Approach Delay (s/veh)									
Approach LOS	С		A	Α					
Queue Length 50th (m)	3.2		12.5	10.6					
Queue Length 95th (m)	11.9		18.2	15.7					
Internal Link Dist (m)	76.7		28.1	10.1					
Turn Bay Length (m)									
Base Capacity (vph)	262		1971	2055					
Starvation Cap Reductn	0		0	0					
Spillback Cap Reductn	0		0	0					
Storage Cap Reductn	0		0	0					
Reduced v/c Ratio	0.15		0.21	0.18					
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
		co 2-NIPT	L and G	ODT Ctool	of Groon				
Offset: 87 (97%), Reference	eu to phas	SE Z.IVB I	L driu 63	odi, otan	UI GIEEN				
Natural Cycle: 90	andianted.								
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.21									
Intersection Signal Delay (tersection LOS: A				
ntersection Capacity Utiliz	ation 45.6	%		IC	U Level of Service A				
Analysis Period (min) 15									
Splits and Phases: 6: Ba	nk & Avln	ner							
▲ ↑	🗷 , 19111					1 2	1 +		_
Ø2 (R)						1 13		714	

J Ø6 (R)

	•	•	†	-	Į.		
Lane Group	WBL	WBR	NBT	SBL	SBT	Ø1	Ø7
Lane Configurations		7	∱ ₽	7	44		
Traffic Volume (vph)	9	8	370	13	351		
Future Volume (vph)	9	8	370	13	351		
Lane Group Flow (vph)	10	9	423	14	390		
Turn Type	Prot	Perm	NA	Perm	NA		
Protected Phases	8		2		6	1	7
Permitted Phases		8		6			
Detector Phase	8	8	2	6	6		
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	1.0	1.0
Minimum Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0
Total Split (s)	26.0	26.0	39.0	44.0	44.0	5.0	5.0
Total Split (%)	34.7%	34.7%	52.0%	58.7%	58.7%	7%	7%
Yellow Time (s)	3.3	3.3	3.0	3.0	3.0	2.0	3.5
All-Red Time (s)	3.0	3.0	3.9	3.9	3.9	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.3	6.3	6.9	6.9	6.9		
Lead/Lag	Lag	Lag	Lag			Lead	Lead
Lead-Lag Optimize?			Yes			Yes	Yes
Recall Mode	None	None	C-Max		C-Max	None	None
Act Effct Green (s)	10.0	10.0	65.7	65.7	65.7		
Actuated g/C Ratio	0.13	0.13	0.88	0.88	0.88		
v/c Ratio	0.05	0.06	0.15	0.02	0.14		
Control Delay (s/veh)	29.0	17.5	2.4	2.6	1.8		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay (s/veh)	29.0	17.5	2.4	2.6	1.8		
LOS	С	В	Α	A	Α		
Approach Delay (s/veh)	23.6		2.4		1.8		
Approach LOS	С		Α		Α		
Queue Length 50th (m)	1.3	0.0	0.0	0.0	0.0		
Queue Length 95th (m)	5.3	3.9	13.7	m1.5	10.1		
Internal Link Dist (m)	30.6		33.7		44.8		
Turn Bay Length (m)				40.0			
Base Capacity (vph)	429	302	2773	644	2780		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.02	0.03	0.15	0.02	0.14		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Offset: 0 (0%), Referenced	to phace	2·NRT or	nd 6-SRT	Start o	f Green		
Natural Cycle: 75	to pridate	2.1101 01	IU 0.0D1	L, Otali C	ii Oleeli		
Control Type: Actuated-Cor	ordinated						
Maximum v/c Ratio: 0.15	or dinated						
Intersection Signal Delay (s	/uoh)- 2 6				ntersectio	n I OC: A	
Intersection Signal Delay (s Intersection Capacity Utiliza					ntersectio CU Level		
	auUII 43.5	/0		- 1	OU LEVE	OI ORIVIO	t A
Analysis Period (min) 15 m Volume for 95th percer	atile aus		and but		innel		
	ntile queue	e is meter	red by up	stream s	ignal.		


* & * Ø8

urd Scaled Up

Splits and Phases: 3: Bank & Exhibition * ↑ ↑ Ø2 (R)

▶ • 6 (R)

↓ Ø6

* 7 Ø8

Queues 9: Queen Elizabeth Drive & Fifth HCM 7th AWSC 08/06/2024

	•	1	†	ţ		
Lane Group	EBL	NBL	NBT	SBT	Ø4	
Lane Configurations	· Y		4	f)		
Traffic Volume (vph)	143	44	306	298		
Future Volume (vph)	143	44	306	298		
Lane Group Flow (vph)	229	0	389	410		
Turn Type	Prot	Perm	NA	NA		
Protected Phases	10		2	6	4	
Permitted Phases		2				
Detector Phase	10	2	2	6		
Switch Phase						
Minimum Initial (s)	10.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.7	10.8	10.8	31.8	9.7	
Total Split (s)	21.0	48.0	48.0	48.0	11.0	
Total Split (%)	26.3%	60.0%	60.0%	60.0%	14%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.7	3.8	3.8	3.8	2.7	
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.7		6.8	6.8		
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	Min	None	None	Max	None	
Act Effct Green (s)	13.9		41.2	41.2		
Actuated g/C Ratio	0.21		0.61	0.61		
v/c Ratio	0.72		0.41	0.41		
Control Delay (s/veh)	39.0		8.9	8.7		
Queue Delay	0.0		0.0	0.0		
Total Delay (s/veh)	39.0		8.9	8.7		
LOS	D		A	A		
Approach Delay (s/veh)	39.0		8.9	8.7		
Approach LOS	D		A	A		
Queue Length 50th (m)	27.0		24.0	25.2		
Queue Length 95th (m)	#53.5		40.7	42.0		
Internal Link Dist (m)	57.2		0.1	5.9		
Turn Bay Length (m)	01.2		0.1	0.0		
Base Capacity (vph)	353		938	1001		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.65		0.41	0.41		
Intersection Summary						
Cycle Length: 80						
Actuated Cycle Length: 67.	6					
Natural Cycle: 65	.0					
Control Type: Actuated-Un	coordinate	d				
Maximum v/c Ratio: 0.72	worumate	u				
Maximum v/c Ratio: 0.72 Intersection Signal Delay (s	c(voh): 15	5			ntersection LOS: B	
Intersection Capacity Utiliz	аиоп ву.2	//0		10	CU Level of Service (,
Analysis Period (min) 15						
# 95th percentile volume	exceeds of	apacity,	queue ma	ay be lon	ger.	

Splits and Phases:	9: Queen Elizabeth Drive & Fifth			
↑ Ø2		ஜ் ∅4	→ Ø10	
48 s		11 s	21 s	und Scaled Up
J ø6				Julia Coalda Op

HCM 7th TWSC

4: Bank & Wilton	08/01/2024
	001041000

Intersection Int Delay, siveh Movement Lane Configurations Traffic Vol, veh'n Future Vol, veh'n Future Vol, veh'n Future Vol, veh'n RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mwitt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1	Stop -		90 3 0 Major1	NBT 374 374 0 Free None 0 0 90 3 416	\$BTT \$\\\\$304 \\304 \\000 0 \\000 \0	70 70 107 Free None - - 90 3 78
Movement Lane Configurations Traffic Vol, vehh Future Vol, vehh Future Vol, vehn Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Forade, % Peak Hour Factor Heavy Vehicles, % Mwmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	EBL 0 0 0 Stop	5 5 0 Stop None 0 90 3 6	0 0 178 Free - - - 90 3 0 Major1	374 374 0 Free None 0 0 90 3 416	304 304 0 Free 0 0 90 3 338	70 70 107 Free None - - 90 3 78
Lane Configurations Traffic Vol, veith Toture Vol, veith Conflicting Peds, #Int Storage Length Veit in Median Storag Storage Length Veit in Median Storag Grade, % Peak Hour Factor Heavy Veincles, % Mymt Floor Conflicting Flow All Stage 1 Stage 1 Stage 1 Critical Hdwy	0 0 0 Stop - - 0 90 3 0	5 5 0 Stop None 0 90 3 6	0 0 178 Free - - - 90 3 0 Major1	374 374 0 Free None 0 0 90 3 416	304 304 0 Free 0 0 90 3 338	70 70 107 Free None - - 90 3 78
Lane Configurations Traffic Vol, veh'n Traffic Vol, veh'n Conflicting Peds, #Ini Storage Length Veh in Median Storag Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mwmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 1 Stage 1 Critical Hdwy	0 0 0 Stop - - 0 90 3 0	5 5 0 Stop None 0 90 3 6	0 0 178 Free - - - 90 3 0 Major1	374 374 0 Free None 0 0 90 3 416	304 304 0 Free 0 0 90 3 338	70 70 107 Free None - - 90 3 78
Traffic Vol. veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	0 0 Stop - - e, # 0 90 3 0	5 5 5 0 0 Stop None 0 90 3 6 6	0 178 Free - - 90 3 0 Major1 594	374 374 0 Free None 0 0 90 3 416	304 304 0 Free 0 0 90 3 338	70 107 Free None - - - 90 3 78
Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mwmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	0 0 Stop - - e, # 0 90 3 0	5 0 Stop None 0 - - 90 3 6	0 178 Free - - 90 3 0 Major1 594	374 0 Free None 0 0 90 3 416	304 0 Free - 0 0 90 3 338	70 107 Free None - - - 90 3 78
Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	0 Stop 	0 Stop None 0 - - 90 3 6	178 Free 90 3 0 Major1 594	0 Free None 0 0 0 90 3 416	0 Free - 0 0 90 3 338	107 Free None - - - 90 3 78
Sign Control RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	Stop	Stop None 0 - - 90 3 6	Free 90 3 0 0 Major1 594 -	Free None 0 0 90 3 416	Free - 0 0 90 3 338	Free None 90 3 78
RT Channelized Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	90 90 3 0 Minor2	None 0 - 90 3 6	90 3 0 Major1	None 0 0 90 3 416	0 0 90 3 338 Major2	None - - - 90 3 78
Storage Length Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	90 90 3 0 Minor2	90 3 6	90 3 0 Major1	0 0 90 3 416	0 0 90 3 338 Major2	90 3 78
Veh in Median Storag Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	90 90 3 0 Minor2	90 3 6	90 3 0 Major1 594	0 90 3 416	0 90 3 338 Major2	90 3 78
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	0 90 3 0 Minor2	90 3 6	90 3 0 Major1 594	0 90 3 416	0 90 3 338 Major2	90 3 78
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	90 3 0 Minor2	90 3 6 555	90 3 0 Major1 594	90 3 416	90 3 338 Major2	90 3 78
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	3 0 Minor2 -	3 6 555	3 0 Major1 594	3 416 M	3 338 Major2	3 78
Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	Minor2	555	0 Major1 594	416 N	338 Major2	78
Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	Minor2	555	Major1 594	0	Major2	0
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	-	555 -	594	0		-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	-	555 -	594	0		-
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy	-	555 -	594	0		-
Stage 1 Stage 2 Critical Hdwy		-	-	-		-
Stage 2 Critical Hdwy						
Critical Hdwy						- 1
		6.245				- 1
		0.243	4.140	- 1	- 1	- 1
Critical Hdwy Stg 2			-	-	-	_
				-		-
Follow-up Hdwy		3.32852			-	-
Pot Cap-1 Maneuver	0	528	975		-	-
Stage 1	0	-	-		-	-
Stage 2	0	-			-	-
Platoon blocked, %					-	-
Mov Cap-1 Maneuve		429	791			-
Mov Cap-2 Maneuve	-	-	-		-	-
Stage 1						
Stage 2	-	-	-	-	-	-
A			NO		0.0	
Approach	EB		NB		SB	
HCM Control Delay, :			0		0	
HCM LOS	В					
Minor Lane/Major Mv	mt	NBI	NRTI	EBLn1	SBT	SBR
Capacity (veh/h)		791	NDT I	429	301	ODIN .
HCM I ane V/C Ratio		791		0.013		
	4 1-3				-	-
HCM Control Delay (ven)	0	-		-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(ve	h)	0		0	-	-

Intersection												
Intersection Delay, s/veh	10.2											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4				7		4				
Traffic Vol, veh/h	25	54	0	0	0	115	116	102	143	0	0	5
Future Vol., veh/h	25	54	0	0	0	115	116	102	143	0	0	5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	28	60	0	0	0	128	129	113	159	0	0	6
Number of Lanes	0	1	0	0	0	1	0	1	0	0	0	
Approach	EB					WB	NB					S
Opposing Approach	WB					EB	SB					N
Opposing Lanes	1					1	1					
Conflicting Approach Left	SB					NB	EB					W
Conflicting Lanes Left	1					1	1					
Conflicting Approach Right	NB					SB	WB					Е
Conflicting Lanes Right	- 1					1	1					
HCM Control Delay, s/veh	9					8.4	11.4					7.
HCM LOS	Α					Α	В					
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left. %		32%	32%	0%	0%							
Vol Thru, %		28%	68%	0%	0%							
Vol Right, %		40%	0%	100%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		361	79	115	56							
I T Vol		116	25	0	0							
Through Vol		102	54	0	0							
RT Vol		143	0	115	56							
Lane Flow Rate		401	88	128	62							
Geometry Grp		1	- 1	- 1	1							
Degree of Util (X)		0.484	0.127	0.159	0.074							
Departure Headway (Hd)		4.342	5.19	4.488	4.294							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		826	688	795	829							
Service Time		2.379	3.244	2.538	2.348							
HCM Lane V/C Ratio		0.485	0.128	0.161	0.075							
HCM Control Delay, s/veh HCM Lane LOS		11.4 B	9 A	8.4 A	7.7 A							

2033 Major Event Egress Peak Hour Lansdowne 2.0 Transportation Impact Assessment 1.38 pm 05/17/2023 Total Eyearhita/£Riegartund Scaled Up Page 1

HCM 7th TWSC 5: Bank & Echo

08/01/2024

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		44	†	
Traffic Vol, veh/h	0	34	0	358	314	0
Future Vol. veh/h	0	34	0	358	314	0
Conflicting Peds, #/hr	0	0	0	0	0	86
Sign Control	Stop	Stop	Free	Free		Free
RT Channelized		None			-	None
Storage Length		0		-		-
Veh in Median Storage		-		0	0	
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	0	38	0	398	349	0
WVIIIL FIOW	U	30	U	390	349	U
Major/Minor N	Minor2	l l	Major1		Aajor2	
Conflicting Flow All	-	349	-	0	-	0
Stage 1		-		-		
Stage 2			-			-
Critical Hdwv		6 245				
Critical Hdwy Stg 1		0.2.10				
Critical Hdwy Stg 2						
Follow-up Hdwy		3.3285				
Pot Cap-1 Maneuver	0	691	0	- :	- :	0
Stage 1	0	091	0	- 1	- 1	0
	0		0	_		0
Stage 2 Platoon blocked, %	U	-	U			U
		004			-	
Mov Cap-1 Maneuver	-	691	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-		-		
Stage 2		-		-		
Approach	FB		NB		SB	
HCM Control Delay, s/			0		0.0	
HCM LOS	WU.51		U		U	
HUIVI LUS	D					
Minor Lane/Major Mvm	nt	NBTE	EBLn1	SBT		
Capacity (veh/h)		-	691	-		
HCM Lane V/C Ratio			0.055			
HCM Control Delay (s/	veh)		10.5			
HCM Lane LOS	1011		B			
HCM 95th %tile Q(veh)	١		0.2			
Tom Jour Julie Wiveli	1		J.2			

Intersection
Int Delay, s/veh

Major/Minor Conflicting Flow All Stage 1

Approach WB HCM Control Delay, s/v11.2 HCM LOS B

| Stage 1 | Stage 2 | Critical Hony Stg 1 | Critical Hony Stg 1 | Critical Hony Stg 1 | Critical Hony Stg 2 | Follow-up 1-bbry | 3.3 | Pollow-up 1-bbry | 3.3 | Pollow-up 1-bbry | 0.555 | Stage 1 | 0.556 | Platono blocked, % | Mov Cap-1 Maneuver | 5.85 | Mov Cap-2 Maneuver | 5.85 | Mov Cap-2 Maneuver | 5.85 | Stage 2 | 5.85

intersection Int Delay, siveh Movement Lane Configurations Traffic Vol, wehh Future Vol, wehh Future Vol, wehn Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Mwmt Flow MajorMinor Conflicting Flow All Stage 1 Stage 1 Stage 2	Stop 0 ge, # 0 0 90 0 269	214 214 0 Stop None - - 90 0 238	57 57 0 Free - - - 90 0	- 0	0 0 0 90	SBR 134 134 0 Free None
Int Delay, siveh Movement Lane Configurations Traffic Vol, vehin Future Vol, vehin Future Vol, vehin Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Momit Flow Major/Minor Conflicting Flow All Stage 1	EBL 242 242 242 7 0 Stop - 0 0 90 0 269	214 214 0 Stop None - - - 90 0	57 57 0 Free - - - 90 0	115 115 0 Free None - 0 0 90	227 227 0 Free - 0 0 90	134 134 0 Free None
Lane Configurations Traffic Vol, vehih Conflicting Peds, #/h Sign Control RT Channelized Stop Length Vorage Length	242 242 242 r 0 Stop - 0 ge, # 0 0 90 0 269	214 214 0 Stop None - - - 90 0	57 57 0 Free - - - 90 0	115 115 0 Free None - 0 0 90	227 227 0 Free - 0 0 90	134 134 0 Free None
Lane Configurations Traffic Vol, veh/h Traffic Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Sign Control RT Channelized For American Confliction For American Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor Conflicting Flow All Stage 1	242 242 242 r 0 Stop - 0 ge, # 0 0 90 0 269	214 214 0 Stop None - - - 90 0	57 57 0 Free - - - 90 0	115 115 0 Free None - 0 0 90	227 227 0 Free - 0 0 90	134 134 0 Free None
Traffic Vol, veh/h Future Vol, veh/h Future Vol, veh/h Future Vol, veh/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor Conflicting Flow All Stage 1	242 242 7 0 Stop 0 0ge, # 0 0 90 0 269	214 0 Stop None - - - 90 0	57 0 Free - - - 90 0	115 115 0 Free None 0 0 0	227 227 0 Free - 0 0 0 90	134 0 Free None
Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % M/mt Flow Major/Minor Conflicting Flow All Stage 1	242 r 0 Stop 	214 0 Stop None - - - 90 0	57 0 Free - - - 90 0	115 0 Free None - 0 0 0 90	227 0 Free - 0 0 0 90	134 0 Free None
Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor Conflicting Flow All Stage 1	stop - 0 ge, # 0 90 0 269	O Stop None - - - 90 0	0 Free - - - - 90 0	0 Free None 0 0 0 90	0 Free - - 0 0 0 90	0 Free None
Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	Stop 0 ge,# 0 0 90 0 269	Stop None - - - 90 0	Free 90 0	Free None 0 0 0 90	Free - 0 0 0 90 0	Free None
RŤ Channelized Storage Length Votage Length In Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	0 ge,# 0 0 90 0 269	None - - - 90 0	90	None 0 0 0 90	0 0 0 90	None - -
Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	0 ge, # 0 0 90 0 269	90	- - 90 0	0 0 90	0 0 90	-
Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	ge, # 0 0 90 0 269 Minor2	90 0	90	0 0 90 0	0 0 90 0	- :
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	0 90 0 269 Minor2	90 0	90 0	90	90 0	-
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	90 0 269 Minor2	90 0	90	90	90	
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	0 269 Minor2	0	0	0	0	90
Mymt Flow Major/Minor Conflicting Flow All Stage 1	269 Minor2					
Major/Minor Conflicting Flow All Stage 1	Minor2	238	63	128		0
Conflicting Flow All Stage 1					252	149
Conflicting Flow All Stage 1						
Conflicting Flow All Stage 1		1	Major1	N	Major2	
Stage 1	581	327	401	0	-	0
	327	027	101	-		-
	254			-		
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	0.2	4.1	-	-	-
	5.4	- 1		- 1	- 1	-
Critical Hdwy Stg 2			2.2			
Follow-up Hdwy	3.5	3.3			-	-
Pot Cap-1 Maneuver		719	1168		-	-
Stage 1	735	-	-	-	-	-
Stage 2	793	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 451	719	1168	-	-	-
Mov Cap-2 Maneuve	r 451	-		-	-	-
Stage 1	693				-	-
Stage 2	793					
Olago L	700					
			N.ID			
Approach	EB		NB		SB	
HCM Control Delay,			2.74		0	
HCM LOS	E					
Minor Lane/Major My	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		597		547		
HCM Lane V/C Ratio		0.054		0.927		
LICINI Lane V/C Nauc			0	50	- 1	
LICAL Control Dolovi			U			
		8.3				
HCM Control Delay (HCM Lane LOS HCM 95th %tile Q(ve	s/veh)	8.3 A 0.2	A	11.5	- 1	- 1