#### City Of Ottawa

# Lansdowne Park Event Centre - Ottawa, ON

Stormwater Management Report

Confidential







## Lansdowne Park Event Centre - Ottawa, ON

# Stormwater Management Report

City Of Ottawa

Confidential

Project No.: CA0033920.1056

Date:

WSP Suite 300 2811 Queensview Drive Ottawa, ON, Canada, K2B 8K2

T: +1 613 829-2800 F: +1 613 829-8299

wsp.com

## Revision History

#### **FIRST ISSUE**

| August 9, 2024      | Site Plan Control  |                    |  |  |
|---------------------|--------------------|--------------------|--|--|
| Prepared by         | Reviewed by        | Approved by        |  |  |
| Fiona Allen, P.Eng. | lain Smith, P.Eng. | lain Smith, P.Eng. |  |  |
| REVISION 1          | REVISION 1         |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |
| REVISION 2          |                    |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |
| FINAL               |                    |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |
|                     |                    |                    |  |  |

## Signatures

Senior Project Engineer, Water Resources

#### Prepared by

| Triona alla                                                | 08.09.2024                                                                            |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Fiona Allen, P.Eng. Project Engineer, Water Resources      | Date                                                                                  |
| Approved <sup>1</sup> by (must be reviewed for technical a | Couracy prior to approval)  RESSIONAL  I.S.Smith  100225119  2024-08-09  NCE OF ONTER |
| lain Smith, P.Eng.                                         | Date                                                                                  |

WSP prepared this report solely for the use of the intended recipient, City Of Ottawa, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

Lansdowne Park Event Centre - Ottawa, ON Project No. CA0033920.1056

City Of Ottawa

<sup>&</sup>lt;sup>1</sup> Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

## Contributors

#### Client

City of Ottawa

**WSP** 

Project Engineer Fiona Allen, P.Eng.

Senior Project Engineer lain Smith, P.Eng.



# TABLE OF CONTENTS

| 1   | INTRODUCTION                      | 1 |
|-----|-----------------------------------|---|
| 1.1 | Scope                             | 1 |
| 1.2 | Site Location                     | 1 |
| 1.3 | Design Criteria                   | 1 |
| 2   | EXISTING CONDITIONS               | 2 |
| 2.1 | General                           | 2 |
| 2.2 | Rainfall Information              | 2 |
| 2.3 | Modelling Methodology             | 2 |
| 2.4 | Existing Conditions Model Results | 4 |
| 3   | POST DEVELOPMENT CONDITIONS       | 5 |
| 3.1 | General                           | 5 |
| 3.2 | Minor System                      | 5 |
| 3.3 | Major System                      | 5 |
| 3.4 | Quantity Control                  | 5 |
| 3.5 | Quality Control                   | 6 |
| 4   | CONCLUSIONS                       | 8 |



#### **Tables**

Table 2.1: Existing Condition Storage Results .....4
Table 2.2: Existing Condition Peak Flows ........4
Table 3.1: Proposed Condition Storage Results ...6
Table 3.2: Proposed Condition Peak Flows ........6

#### **Appendices**

- A City NCC Comments
- **B** Existing Conditions
- B-1 Stantec 2012 Existing Drainage Plan
- B-2 As Built Drawings
- B-3 Stantec 2012 Existing Storm Sewer Design Sheet
- B-4 Stantec 2012 Storm Drainage Schematic
- B-5 PCSWMM Output
- **C** Proposed Conditions
- C-1 Storm Sewer Design Sheet
- C-2 PCSWMM Output
- C-3 ADS Treatment Train Sizing

## 1 INTRODUCTION

## 1.1 Scope

Following the Zoning By-Law Amendment submission in September 2023, the Lansdowne Park redevelopment project (Lansdowne 2.0) entered the Site Plan Control Application stage. WSP was again retained by the City of Ottawa to provide servicing, grading and stormwater management design services for the phase 1 (Event Centre) development of the project for Site Plan Control Application.

#### 1.2 Site Location

The Lansdowne site is home to many commercial, residential, and leisure facilities. This includes TD place Stadium, Aberdeen Pavilion, Horticultural Building, mixed-use retail/office/residential, and a subsurface parking lot. The overall site is approximately 15.4 ha, and borders Bank Street to the west, Holmwood Ave to the north, and Queen Elizabeth Drive to the south and east.

## 1.3 Design Criteria

The existing stormwater management system is outlined in the Stormwater Management Design Report for Lansdowne Urban Park, February 2012, by Stantec Consulting Ltd. The design criteria for the proposed development will follow the same criteria outlined in the Stantec 2012.

- Peak flow rate of 616 L/s to O'Connor Street sewer for all events from the 2-year to the 100-year return period
- Stormwater shall be treated to MOE "enhanced" standard (80% TSS removal)
- The "first flush" (i.e. 10mm event) shall be directed to the O'Connor Street sewer for the entire site drainage area.
- Outflow to O'Connor Street Sewer will be restricted if the downstream system surcharges and will be cut off when the receiving sewer HGL is higher than the onsite HGL.
- Minor system shall be design for a 5-year level of service with minimal surface ponding.
- Major system shall provide a 100-year level of service while minimizing outflow to the canal.

## 2 EXISTING CONDITIONS

#### 2.1 General

The existing conditions on the Lansdowne site are as designed in the Stantec Stormwater Management Design Report – Lansdowne Urban Park (2012). The primary site stormwater outlet is to the storm sewer on O'Connor Street, which discharges to a combined sewer at the intersection with Fifth Street. During large storm events (i.e. greater than the 5-year return period) runoff is directed to the Rideau Canal through an overflow pipe.

Based on the 2012 Stantec report and Survey runoff from O'Connor Street flows south to a sag in the road next to Syliva Holden Park.

#### 2.2 Rainfall Information

The stormwater management system consists of two subsurface storage tanks, surface storage on the Great Lawn, outlet controls, and quality control structures. The two underground storage tanks provide 600 m<sup>3</sup> in Basin 1 and 2200 m<sup>3</sup> in Basin 2, with 700 m<sup>3</sup> provided in pipe storage (total of 3500 m<sup>3</sup> subsurface storage). A minimum storage volume of 3000 m<sup>3</sup> is also provided on the surface of the Great Lawn.

A schematic of the existing stormwater management strategy is included in Appendix B.

A PCSWMM model was created to represent the existing conditions on the site based on the documentation provided in the Stantec 2012 report and the As-Built servicing drawings, included in Appendix B.

## 2.3 Modelling Methodology

A PCSWMM model of existing conditions was created as a baseline with which to compare the proposed design.

- Catchment Areas: Catchment areas were delineated based on the Stantec catchment area plan (C03). Sub-catchment imperviousness was determined by creating a land use shapefile and using the PCSWMM spatial weighting tool. Subcatchment parameters are included in Appendix B.
- Storm Sewers: Storm sewers were modelled as conduits with their size and inverts based on the as-built servicing drawing. A roughness coefficient of 0.013 and average loss coefficient of 0.2 was used.

- Weirs: Weirs were used to direct runoff along the major flow route when storm sewer capacity is exceeded. Weirs are also used within the underground storm chamber inlet/outlet structures.
- Orifices: An orifice was modelled at the quantity control structure with a discharge coefficient of 0.62. Orifices were also used in the model to represent the 450 mm backflow preventers within the underground storage chamber inlet/outlet structures.
- Storage: Underground storage chambers were modelled using storage nodes with storage curves based on their storage area. The Great Lawn was modelled as a storage node with storage defined as the average area available for storage. Roof storage was also modelled based on the documentation in the DSEL FSR report (2012).
- Ditches: Ditches shown in the Stantec grading plan were modelled as conduits.
   Ditches were connected to storm sewers with a catch basin and discharge curve as per MTO design chart 4.19.
- Rainfall: The 3-hour Chicago storm using the IDF parameters from the Ottawa Sewer Design Guidelines was used in the analysis.
- Tailwater Conditions: Tailwater conditions at O'Connor Street were set as a timeseries with a peak at the 5-year peak HGL of 65.2 m. The timeseries was calibrated to produce similar results to those shown in the Stantec report. This tailwater condition will be revised as more information becomes available.

The results of the existing conditions PCSWMM model are not expected to exactly match those of the Stantec 2012 report due to the following:

- Data regarding tailwater condition In the Stantec analysis, they were provided with the City of Ottawa Infoworks model for the Holmwood and O'Connor sewer system so were able to incorporate a dynamic tailwater condition at the site outlet. The PCSWMM model can be refined as more information becomes available.
- Infoworks Model Stantec modelling for the existing site was completed in Infoworks. WSP has requested this model to review catchment parameters and model setup. Without the model or detailed documentation, differences in modelling parameters and methodology are inevitable leading to variations in model results.
- 3. SWMM Engines Developments in stormwater management modelling software engines have been made since 2012, which affects the ability to replicate results.

The focus of this analysis is on the comparison between storage and outflows in the existing conditions PCSWMM model versus the proposed conditions PCSWMM model.

The design intent is to match the outflows from the existing conditions PCSWMM model. PCSWMM modelling output is included in Appendix B.

## 2.4 Existing Conditions Model Results

The existing conditions PCSWMM model was run for the 5-year and the 100-year events. Storage volumes for Basin 1, Basin 2, and the Great Lawn are shown in Table 2.1, and peak flows at the outfalls in Table 2.2.

**Table 2.1: Existing Condition Storage Results** 

|            | 5-year           |              | 100-year         |              |
|------------|------------------|--------------|------------------|--------------|
|            | Peak Volume (m³) | Peak HGL (m) | Peak Volume (m³) | Peak HGL (m) |
| Basin 1    | 630              | 64.47        | 632              | 64.67        |
| Basin 2    | 2236             | 64.47        | 2238             | 64.65        |
| Great Lawn | 215              | 64.43        | 2040             | 64.65        |

Table 2.2: Existing Condition Peak Flows

| Outlet Location | 5-year Peak Flow<br>(m³/s) | 100-year Peak Flow<br>(m³/s) |
|-----------------|----------------------------|------------------------------|
| O'Connor Sewer  | 0.524                      | 0.590                        |
| Rideau Canal    | 0.0                        | 0.131                        |

## 3 POST DEVELOPMENT CONDITIONS

#### 3.1 General

Under proposed conditions the majority of the site land use remains as it is under existing conditions, except for the new event centre. The new event centre requires some rerouting of storm sewers and encroaches on the surface storage previously provided in the Great Lawn. The proposed design involves routing storm sewers south of the new event centre and installing subsurface storage beneath the Great Lawn to account for the additional storage required from the change in land use and elimination of storage available on the surface.

## 3.2 Minor System

The subject site will be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of the Ottawa Design Guidelines. The minor system has been designed to convey the 5-year storm without ponding on the surface. Storm sewer design sheets are included in Appendix C.

## 3.3 Major System

The major system will remain similar to how it is in existing conditions. The site is graded toward to Great Lawn where catch basins around the perimeter will intercept overland runoff and direct it to the underground storm chamber under the Great Lawn. Emergency overland flow is directed toward the Rideau Canal during extreme events exceeding the 100-year design storm. There is no pipe outlet to the Rideau Canal.

## 3.4 Quantity Control

Additional storage is required to account for the addition of the new event centre and the removal of surface storage on the Great Lawn. The proposed storm system was modelled in PCSWMM according to the same methodology presented in Section 2.3. Sub-catchment areas and parameters were modified based on the proposed development. The new event centre will have a green roof, however with the steep slopes and limited infiltration, a conservative runoff coefficient of 0.8 (86% impervious in PCSWMM model) was used. The size of the new underground storage chamber (Basin

3) was modelled iteratively to determine the required area and volume to match the existing conditions PCSWMM model results.

The new underground storage chamber beneath the Great Lawn will have a volume of 4261 m³. Replacing the surface storage with underground storage will improve the useability of the Great Lawn for recreation and events as the ground surface will no longer be used to pond runoff. Overland flow directed to the Great Lawn will be captured by catch basins around the perimeter, and the lawn will be graded to avoid ponding. In events greater than the 100-year storm flow will be directed overland to the Rideau Canal.

Storage volumes and peak HGL during the 5-year and 100-year events for Basin 1, Basin 2, and the new Basin 3 are shown in Table 3.1. Peak flows are shown in Table 3.2.

**Table 3.1: Proposed Condition Storage Results** 

|                        | 5-year           |              | 100-year         |              |
|------------------------|------------------|--------------|------------------|--------------|
|                        | Peak Volume (m³) | Peak HGL (m) | Peak Volume (m³) | Peak HGL (m) |
| Basin 1                | 530              | 63.91        | 631              | 64.57        |
| Basin 2                | 1518             | 63.80        | 2238             | 64.58        |
| Great Lawn/<br>Basin 3 | 2278             | 63.80        | 3865             | 64.58        |

**Table 3.2: Proposed Condition Peak Flows** 

| Outlet Location          | 5-year Peak Flow<br>(m³/s) | 100-year Peak Flow<br>(m³/s) |
|--------------------------|----------------------------|------------------------------|
| O'Connor Sewer           | 0.372                      | 0.602                        |
| Overland to Rideau Canal | 0.0                        | 0.0                          |

### 3.5 Quality Control

As noted in Section 1.3, the water quality criteria requires the long-term removal of 80% TSS on an annual loading basis. To achieve the required water quality requirement a treatment train approach is proposed.

Runoff directed to the proposed underground storage will be treated by an OGS and the Isolator® Row Plus provided in the chamber system.

An Isolator® Row Plus shall be proposed at each storm inlet to provide water quality control with easy access for maintenance. The Isolator® Row Plus is the first row of StormTech chambers covered in a non-woven geotextile fabric with a single layer of proprietary woven fabric at the bottom that serves as a filter strip, providing surface area for infiltration and runoff reduction with enhanced suspended solids and pollutant removal. The open-bottom chambers allow stormwater to flow out of the chambers, while sediment is captured in the Isolator® Row Plus.

The Isolator® Row Plus is designed to capture the "first flush" and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole not only provides access to the Isolator® Row Plus but includes a flow splitter such that stormwater flow rates or volumes that exceed the capacity of the Isolator® Row Plus bypass through a manifold to the other chambers. This creates a differential between the Isolator® Row Plus and the manifold, thus allowing for settlement time in the Isolator® Row Plus. After Stormwater flows through the Isolator® Row Plus and into the rest of the StormTech chamber system, it is passed at a controlled rate through an outlet manifold and outlet control structure.

The Isolator Row® Plus was verified by Environmental Technology Verification (ETV) in July 2020, with an average 82% removal efficiency of Total Suspended Solids (TSS). Refer to Appendix C for ETV verification statement.

The net annual removal efficiency of the proposed OGS and Isolator Row® Plus is provided in Appendix C.

## 4 CONCLUSIONS

The Ottawa Sport and Entertainment Group in collaboration with the City of Ottawa are proposed to demolish the existing Civic Arena and North Stands. The proposed Lansdowne 2.0 will include a new 5,500 seat Event Centre, a new 11,200 to 12,000 seat spectator North Stadium Stands and the addition of rental and owned residential units with approx. 1199 units, and associated subsurface parking, as well as the significant landscaping east of the new Event Centre.

#### Water Quantity

The site will be required by the City to limit the discharge of stormwater to the existing conditions peak flow rate, with stormwater up to the post-development 100yr storm stored on-site. Preliminary estimates of the runoff rates lead to an approximate maximum site discharge rate of 602 L/s, with additional required storage of approximately 4261 m<sup>3</sup>.

#### **Water Quality**

A treatment train comprised of an OGS and isolator row are proposed to in order to ensure 80% TSS removal for the site.

# **APPENDIX**

A

City NCC Comments



File Number: D01-01-23-0009

D02-02-23-0047

August 3, 2023

Patricia Warren
Fotenn Planning + Design
Via email: warren@fotenn.com

Subject: Official Plan and Zoning By-law Amendment Application – 945 &

1015 Bank Street - Formal Review Comments

Please find below the consolidated comments from the formal review of the above noted applications.

#### 1. Planning

#### Comments:

- 1.1. Generally, the proposal is in keeping with the Official Plan adopted by Council.
- 1.2. The Policy team is supportive of the proposed OPA, but requested that a minor change be made.

"Rather than stating that the Special District policies supersede the Greenspace designation, it would be more appropriate to simply list in the area-specific policy the desired permitted uses on lands designated as Greenspace within the Special District (i.e., an event centre with a green roof etc.).

The preamble in Section 6.6 – Special Districts of the Official Plan states: "[...] They are distinct areas that transcend the role and function of Hubs, Corridors and Neighbourhoods, and warrant unique planning approaches." Notably, Greenspaces are not included in this list as they are intended to maintain their original function within the Special Districts.

It would be more appropriate to expand what is permitted rather than risk setting a precedent that allows for OPAs to effectively eliminate the greenspace function in other Special Districts."

1.3. Please see the draft OPA and ZBA details attached for review and comment.

#### 2. Engineering

Comments:

<u>Functional Servicing & Stormwater Management Study, prepared by WSP, May 25, 2023</u>

2.1. General



Section 1.3 of the report states "the minutes for the Pre-Application Consultation Meeting for this Zoning By Law Amendment is provided for reference in Appendix A". Meeting minutes could not be found in appendix A please revise.

#### 2.2. Storm

PCSWMM models are under review by City of Ottawa staff, comments will be provided upon receipt.

The underground storm water storage tank (approx. 4100m3) proposed within the great lawn as part of the study requires technical foundation design based off a geotechnical investigation of the subsurface profile. Please coordinate with the geotechnical engineering consultant Parsons to ensure that the geotechnical study considers this aspect of the design and speak to this in the report.

#### 2.3. Sanitary

Provide detailed calculations used to determine the existing sanitary flows, and the anticipated sanitary flows.

#### 2.4. Water

Table 2-2 Water Demand and Boundary Conditions Existing Conditions does not match the required fire flow or water demand calculations in Appendix A please clarify and revise.

Provide boundary condition email correspondence with the City of Ottawa in the Appendix of the study.

Please modify section 2.3 (Domestic Supply and pressure) to reference technical bulletin ISD-2010-0

Geotechnical Investigation Proposed Lansdowne Rink and Towers, prepared by Paterson Group, June 28, 2023, Report: PG5792-1

2.5. The project consists of significant underground storm water storage tank (approx. 4100m3) proposed within the great lawn as part of the functional servicing and storm water management study prepared by WSP. Please confirm and coordinate with WSP's consulting team to ensure that the geotechnical study considers this aspect of the design and speaks to this in the report. The geotechnical investigation should speak to the foundation of the storage tank and determine if additional investigation of the subsurface within the great lawn is required for this proposed structure. For more information, please consult the study prepared by WSP.

Roadway Traffic Noise Feasibility Assessment, prepared by Gradient Wind Engineering Inc., June 16, 2023, Report: 23-053-Traffic noise feasibility.

2.6. During 10. Bank street is divided Arterial not undivided in front of the project, so traffic volume count should be 35,000 instead of 30,000, please clarify. In addition, Queen Elizabeth Drive roadway classification is not listed within the city of Ottawa official plan and Transportation master plan please provide source of Queen Elizabeth Drive roadway classification.



- 2.7. In section 4.2.3 of the assessment, it is unclear if the listed parameters used for the noise prediction calculations were imputed for the STAMSON model, the Predictor-Lima model, or both. Please clarify in the body of the report.
- 2.8. The noise feasibility assessment is required to be modeled using the City of Ottawa approved STAMSON modeling program. Additionally, the STAMSON results shown in the report have shown consistently higher results therefore it is possible the STAMSON model is more conservative. Please provide significant justification for the use of the Predictor-Lima software over the approved STAMSON software.
- 2.9. Have noise impacts from the stadium been factored into the assessment for the predicted noise levels of the outdoor living areas?
- 2.10.Additional information is required for the analysis of the proposed event center. Quantify the predicted noise levels, and to what extent will the proposed 'room within a room' design mitigate the anticipated noise. Similarly, quantifiable information and assessment of the noise generated from pedestrians congregating at the event center is required to be investigated. What are the potential sound levels generated by the congregating pedestrians, will this impact the residential units as well as the outdoor amenity areas of the proposed towers?
- 2.11. The STAMSON calculations for receptor 3 and receptor 4 use different barrier heights, please clarify.
- 2.12. The STAMSON calculations for receptor 3 use a receiver source distance of 80m where receptor 4 uses a receiver source distance of 76m. Based on figure-3 it appears that receptor 3 is closer to the noise source please clarify.
- 2.13.As per the noise feasibility assessment the following construction is proposed for the event center east of the proposed towers "the floor could be isolated, jack up slab, the interior walls would be built of double row studs with the first row of studs built on top of the isolation slab. The second row of studs would be on the surrounding structure. A suspended ceiling would be hung using isolation hangers". Please confirm and coordinate with the geotechnical consultant, Parsons Group, that this type of construction is feasible within the geotechnical constraints of the site. Please speak to this within the assessment.

#### Phase I & Phase II Environmental Site Assessment

2.14.It has been confirmed with City staff that a Phase I & Phase II environmental site assessment is not required for the Zoning By-law Amendment or The Official Plan Amendment. A phase I and phase II environmental site assessment will be required for the subsequent Site Plan Control application.

## <u>Pedestrian Level Wind Study, prepared by Gradient Wind Engineering Inc., June 15, 2023</u>

2.15.It has been confirmed with City staff that the pedestrian level wind study is under review by the urban design.



#### 3. Corporate Real Estate Office

#### Comments:

- 3.1. A new Phase One Environmental Site Assessment (ESA) will be required at the time of Site Plan. Should the Phase One identify any Areas of Potential Environmental Concern, a Phase Two ESA will also be required.
- 3.2. A Record of Site Condition (RSC) will have to be filed with the Ministry of Environment, Conservation and Parks in order to permit the more sensitive residential land use in the area currently occupied by the north side stands and arena structure. This can also be addressed with conditions at the time of Site Plan Approval.

#### 4. Transportation

Comments are forthcoming.

#### 5. Urban Design

Comments:

#### Clarification questions and additional information requested:

- 5.1. The zoning schedule permits 38m heights and has a notch close to the Aberdeen Pavilion (Please see the Appendix 1, image 1- area circled in red color). The podium of Tower 3 appears to extend the permitted 38m beyond the zoning line. Does the 'tail' of the proposed building fall within the area with a 6m height max (see Appendix 1, image 2– blue line is estimated as the location of the zoning line). Please provide a drawing that overlays the zoning lines with the proposed building footprint to provide clarity.
- 5.2. During games or festival times, it is essential to have a well-thought-out plan to handle the crowd effectively, including crowd interface with vehicular circulation and parking. Please clarify:
  - 5.2.1. What are the assumptions regarding pedestrian volumes?
  - 5.2.2. What calculations were used to determine volumes for the commercial areas, when there are events and / or multiple events on site, during different seasons etc.?
  - 5.2.3. Were the edges of the public realm determined by pedestrian volumes or by the limits of easements and building footprints?

#### 5.3. Please clarify:

- 5.3.1. Which vehicles can drive down to the Exhibition Way as far as the Aberdeen Pavilion.
- 5.3.2. Is there residential drop-off / delivery all the way to Tower 3?
- 5.3.3. Are there alternate locations for the servicing / loading function?
- 5.4. What is the current amount of useable park / great lawn space and what is the size of the park in the proposed concept? Additional dimensioned plans and



- section drawings of the berm and grade transition from parkland to Event Centre should be provided.
- 5.5. The Design Brief TOR noted the need to provide both streetscape cross-sections and a conceptual landscape plan. Neither requirement has been met. These drawings are required to evaluate how the public spaces around Aberdeen, Tower 3, and Event Centre, in particular, will work. The drawings should focus on the proposed public realm and indicate, at minimum:
  - 5.5.1. The locations for pedestrian and vehicular movement.
  - 5.5.2. The size and location of pedestrian gathering points and plazas.
  - 5.5.3. The area available for outdoor staging (current versus proposed).
  - 5.5.4. The room available for tree planting.
  - 5.5.5. the space available for street furniture.
- 5.6. Streetscape cross-sections and a conceptual landscape plan are required with the second UDRP submission.
- 5.7. Updated wind and shadow studies are required with the second UDRP submission, based on any proposed revisions.

#### **Building Massing and Public Spaces:**

- 5.8. As noted in previous comments and by the UDRP, tower floorplates shall adhere to the City's High-Rise Building Design Guidelines. Therefore, the floorplates, including balconies, cannot exceed 750m2.
- 5.9. For towers up to 30-storeys, the minimum separation distance between towers is 23m. For towers over 30-storeys, the minimum separation distance is 25m. Greater tower separations should be provided when tower floorplates exceed 750m<sup>2</sup>.
- 5.10.The wind and shadow studies provided show negative impacts on the public realm. Specifically, the shadow study shows that Exhibition Way and the Aberdeen Pavilion are in shadow for large amounts of the day. The wind study shows that Exhibition Way and the plaza spaces around the Pavilion were comfortable for sitting, but with new development these comfortable areas will be reduced. The approach to massing and tower placement should re-considered to minimize the impacts of shadowing and wind on the public realm.
- 5.11. Tower 3 takes away from the experience of the Aberdeen Pavilion; it shifts views and emphasis away from the Pavilion and blocks certain views of the Pavilion. Additionally, it creates significant shadow and wind impacts on the public realm. Urban Design's position is that Tower 3, and the associated podium, should be eliminated (Please see attached Appendix 1, image 3,4 and 5) and the redevelopment of this site should, at maximum, include only two towers.
- 5.12.Urban Design believes that there should be no building where the Tower 3 podium / base is shown. The space should remain open, at grade, public space in order to: (1) enhance the experience of the Aberdeen Pavilion as seen from the south



side stands, (2) allow for enlarged gathering spaces around the Pavilion and entrance to the Event Center (see Public Space comments below) which will be particularly important when there are events / concurrent events, (3) create more opportunities for tree planting and seating areas, and (4) Provide additional public realm on-site.

- 5.13.The attached Appendix 1, images 3,4 and 5 shows the positive impacts on the open space and Aberdeen Pavilion with the removal of the tower 3 and its podium. The removal of this podium and tower also creates clear sight lines from north to south, creating a stronger visual connection between the Event Centre and the existing Lansdowne commercial/mixed use development and associated public realm. This space should remain free and clear of any buildings, including if a three-tower solution be pursued,
- 5.14. Should a three-tower scenario be pursued, the towers are to have a maximum 750m2 floor plate (including balconies) with appropriate separations indicated above, and be located above the north side stands. The attached Appendix 2 illustrates a few conceptual three-tower options.
- 5.15.In a three-tower scenario towers should be of different heights generally. Taller building / higher density should be positioned closest to Bank Street, while the lower can be placed closer to the Aberdeen Pavilion to better integrate with the historical context of the site (see attached Appendix 2).
- 5.16.In a two-tower scenario, which is preferred, a twin-tower design may be appropriate. Appendix 3 compares the shadow impacts of the 3-tower scenario and a 2 -tower scenario.
- 5.17. As currently shown, the Event Centre interrupts the open space and the current slope from the lawn to roof appears to be too steep. Event Centre must be sunk further into the landscape and that the roof must be green and accessible, in order to create a continuous lawn as an extension of the public realm.
- 5.18.It appears as though there will be significant vehicular circulation on the west end of Exhibition Way. There will also be significant pedestrian circulation. The truck entrance to underground parking in front of the Aberdeen Pavilion will also cross a significant pedestrian space. Alternative solutions should be considered to address the potential conflicts where pedestrians and vehicles cross paths.

#### Key Recommendations:

- 5.19. The Urban Design recommends a zoning envelope for this site be produced by way of a schedule for the final proposed podium and tower(s). In the absence of a zoning schedule, the RFO / RFP process to follow should include the following requirements for the redevelopment:
  - 5.19.1. A maximum tower floor plate, including balconies, of 750m2.
  - 5.19.2. A minimum separation distance of 23m between towers up to 30-storeys and 25m between towers above 30-storeys.
  - 5.19.3. No building where Podium / Tower 3 is currently proposed.



- 5.19.4. Towers to be of different heights (unless in Tower 2 scenario the twintower may be appropriate)
- 5.19.5. Direction regarding podium design and height
- 5.19.6. An Event Center with a publicly accessible, green roof that functions as a useable extension of the public open space.
- 5.19.7. The maximum footprint of the Event Centre

#### 6. Urban Design Review Panel

#### **Key Recommendations**:

- 6.1. The Panel recommends designing the site both for event days and the everyday experience of locals.
- 6.2. The Panel recommends the focus of this next phase of development should be to ensure established qualities are not compromised by the new development.
  - 6.2.1. The Panel recommends year-round success of the pedestrian realm must be achieved and enhanced.
  - 6.2.2. The Panel recommends the pedestrian accessibility of the site needs to be maintained for events such as the Farmer's Market and future large gatherings around the proposed event space.
- 6.3. The Panel supports opening up Exhibition Way to further pedestrian activity.
- 6.4. The Panel has concerns with the proposed event centre being too high in the landscape.
  - 6.4.1. The Panel strongly recommends lowering the event centre further into the ground and providing pedestrian access to the rooftop greenspace as a continuation of the park lawn.
    - 6.4.1.1.Consider the overall pedestrian accessibility to the event space, and the potential for large gatherings.
- 6.5. The Panel strongly recommends the towers follow the City's guidelines of a 750-sq.m. floorplate.
  - 6.5.1. The Panel recommends further investigating a single-tower or two-tower concept to allow for the 750-sq.m floorplates to be achieved.
  - 6.5.2. The Panel suggests doing so will improve the porosity of the site and maintain north-south views across Lansdowne Park, while minimizing wind and shadow impacts on the public realm.
- 6.6. The Panel has concerns with the orientation and location of Tower 'C' and its tight condition with the Aberdeen Pavilion.
  - 6.6.1. Consider forgoing a three-tower approach.
- 6.7. The Panel recommends that the future design of the podium consider using masonry to best relate to the Bank Street frontage and neighbourhood character.



#### Site Design & Public Realm:

- 6.8. The Panel appreciates and understands all the challenges with funding and the complexity of adding users, servicing, access, and new stands, etc.
- 6.9. The Panel suggests locating the truck entrance in front of the Aberdeen Pavilion is problematic and would create a lot of challenges.
  - 6.9.1. Consider consolidating servicing to avoid conflicts.
  - 6.9.2. Consider locating the servicing between the podium and the bleachers, preferably with access from west side closer to Bank Street to mitigate trucks driving further into the site.
- 6.10. The Panel appreciates the existing amenities of Lansdowne and how it has maintained amenities that are multi-generational, with a good balance of commercial uses and public spaces/events. Consider reinforcing this aspect of the site.
- 6.11.The Panel appreciates that the site could support additional density to help animate Lansdowne Park. However, the Panel has concerns with Lansdowne Park's ability to provide space that is pedestrian friendly and pedestrian focused, which are central to Lansdowne Park's success—and transformative for Ottawa.
  - 6.11.1. The Panel recommends that this unique characteristic of Lansdowne as a pedestrian space and as a city outdoor public amenity must be protected and enhanced. Any diminishment of that would be a concern.
- 6.12. The Panel has concerns with the lack of porosity north-south.
  - 6.12.1. Consider increasing the porosity between the buildings in the north-south direction.
- 6.13. The Panel has concerns with the relationship between Tower 'C' and Aberdeen Pavilion.
  - 6.13.1. The Panel has concerns with how Tower 'C' seems to significantly obstruct the Aberdeen Pavilion and the event centre.
  - 6.13.2. The Panel suggests that Tower 'C' obstructs the connectivity and accessibility of the site and negatively affects the north-south access in front of Aberdeen Pavilion.
- 6.14. The Panel has questions and concerns with the location and orientation of Tower 'C'
  - 6.14.1. Consider re-orientation to align with the street grid.
- 6.15. The Panel appreciates that the views from the Rideau Canal have been maintained. However, Tower 'C' shifts the views away from the heritage of Aberdeen Pavilion and is much too prominent in the view planes.
  - 6.15.1. The Panel recommends enhancing the entrance to the event centre and protecting the views of Aberdeen Pavilion by removing Tower 'C'.



- 6.16. The Panel recommends at a minimum to incorporate a 23-meter separation between Tower 'C' and the Aberdeen Pavilion.
- 6.17. The Panel has concerns with the proposal's large impact on the pedestrian realm, and outdoor eating and patio spaces.
  - 6.17.1. The Panel recommends a single tower and podium approach that minimizes the wind and shadowing effects of the tower on the pedestrian realm.
- 6.18. The Panel appreciates that there are various elements of the proposal that are being connected through the site by the promenade behind the stands and the ceremonial stairway, however these may not be the priority to preserve in the grand scheme.
- 6.19. The Panel recommends any redevelopment of Lansdowne ensures that it remains a great destination in the city for Ottawans and visitors.

#### Sustainability:

6.20. The Panel strongly recommends and emphasizes that it is an important task to adhere to the sustainability standards and urban design guidelines that the City has implemented or is planning on implementing.

#### Sustainability:

- 6.21. The Panel strongly recommends and emphasizes that it is an important task to adhere to the sustainability standards and urban design guidelines that the City has implemented or is planning on implementing.
- 6.22. The Panel appreciates the aspirations and objectives of the project and the rejuvenation of the stands and site.
  - 6.22.1. The Panel understands the economic model of the project and the neutral cost aspect.
- 6.23. The Panel strongly recommends adhering to the City's high-rise design guidelines for this City-led project.
  - 6.23.1. The Panel strongly recommends that the guideline's 750-sq.m. floorplate should be followed.
    - 6.23.1.1. Views from the entrance off Queen Elizabeth Driveway (11), from the Bank Street bridge (13), and from Sunnyside/Bristol (7) are all significantly improved with a smaller floorplate design.
  - 6.23.2. The Panel strongly recommends the massing be adjusted with slender towers that meet the 750-sq.m. floorplates and separation distances of the guidelines. Doing so would result in much better views of Lansdowne from afar, and reduce the shadow and wind impacts on the pedestrian realm.
- 6.24. The Panel recommends that more slender towers and protecting important sky views will greatly improve the proposal.



- 6.25. The Panel recommends staggering the heights of the towers with the goal of making the high-rise portion seem less like a barrier.
- 6.26. The Panel recommends designing the project with a brick and stone material palette to help create a cohesive sense of a precinct and to strengthen the character of the area.
  - 6.26.1. The Panel recommends the final product pick up on the prominent use of brick as a character element of Bank Street.
  - 6.26.2. The Panel appreciates the articulation of the podium, however, recommends the materiality should be more tactile and more residential in nature rather than having a glazed commercial appearance.
  - 6.26.3. The Panel recommends the final product should be a residential brick and stone palette, especially on the podium, to enhance the character of Bank.
- 6.27. The Panel has concerns with the event centre in terms of how it blocks and interrupts the pedestrian experience of the site.
  - 6.27.1. The Panel encourages the applicant to consider alternate sectional studies and provide further analysis to better inform the end result.
  - 6.27.2. The Panel strongly recommends lowering the event centre into the ground and seamlessly connecting the park with its roof to create a park space for public enjoyment, despite additional cost.
- 6.28. The Panel encourages the applicant to consider alternate sectional studies and provide further analysis to better inform the end result.
  - 6.28.1. Consider other amenities instead to highlight the 'highline' effects. Residential units facing the bleachers should not be an option.
- 6.29. The Panel appreciates the decision to setback the podium and open up space on the south side of Exhibition Way.
- 6.30.The Panel recommends further developing the ceremonial stairway. Consideration needs to be given to accessibility standards.
- 6.31.The Panel recommends pursuing a two-tower approach instead of the three-tower proposal.

#### 7. Heritage

#### Comments:

#### 7.1. Heritage Context and Background

#### Existing Context

The Lansdowne Park is the site of the former Central Canada Exhibition Association fairground (1888 – 2009). It is bounded by Bank Street to the west, Holmwood Avenue to the north, and the Queen Elizabeth Driveway (QED) and



the Rideau Canal, National Historic Site of Canada, Canadian Heritage River and UNESCO World Heritage Site to the east and south.

The site contains the Aberdeen Pavilion and Horticulture Building, both of which are designated under Part IV of the Ontario Heritage Act. The Aberdeen Pavilion - a structural steel and pressed metal late-Victorian exhibition hall – was designed by architect Moses C. Edey and constructed in 1898. It is designated a National Historic Site and is also designated by the City of Ottawa under Section 29 of the Ontario Heritage Act (Bylaw No. 22-84). The Prairie-style two-storey brick Horticulture Building opened in 1914 and its design is attributed to architects Francis C. Sullivan (1882-1929) and Allan Keefer (1883-1952).

#### Permissions, Applications and Review

Part of the site, including the Aberdeen Pavilion and Horticulture Building, are subject to a 2012 Heritage Conservation Easement Agreement between the City of Ottawa and the Ontario Heritage Trust, which includes protected view corridors, and delineated framing and setting lands. Permission will be required from the Ontario Heritage Trust for any construction within the Easement.

The Site is subject to the 1993 Parks Canada and City of Ottawa Cost-Share Agreement and accompanying (1990) Aberdeen Pavilion Conservation Report that identifies the importance of maintaining clear vistas at each of the four entries to the Pavilion.

In accordance with Section 33 (1) of the Ontario Heritage Act, a heritage permit is not required as the proposed alterations will not impact the heritage attributes of the Aberdeen Pavilion and Horticulture building as set out in the designating bylaw. This document has been prepared by Heritage Planning staff at the City of Ottawa as the formal comments on the Official Plan and Zoning By-law Amendments for Lansdowne Park.

Section 4.5.2.1 of the City's Official Plan states that when reviewing development applications properties on, or adjacent to a designated property, the City will ensure that the proposal is compatible by respecting and conserving the cultural heritage value and attributes of the heritage property as defined by the associated designation bylaw and having regard for the Standards and Guidelines for the Conservation of Historic Places in Canada. This will be accomplished through the adaptation of the mitigative measures in the HIA and through the consideration and implementation of Heritage Staff's comments.

#### 7.2. Heritage Impact Assessment:

Heritage Staff generally concur with the findings, recommendations, and conclusions in the HIA provided by ERA Architects Inc. dated June 29,2023. Some of the key impacts identified include:

- The visibility of the proposed towers beyond the silhouette of the Aberdeen Pavilion from the east having some visual impact
- Impact to the dynamic views of the site from the Rideau Canal and adjacent landscapes



- The shadow impact on existing built heritage resources
- The proposed new event centre and extended berm will encroach into the framing lands and Great Lawn south of the Aberdeen Pavilion.

#### The report concludes that:

The proposed development generally conserves the cultural heritage value of the Site, while allowing for its revitalization. New construction is sited to the southwest portion of the Site, where high-density contemporary structures are currently located. The existing built heritage resources will be retained and rehabilitated as part of ongoing City-initiated programs. Other existing land uses and the spatial organization of the Site will remain unchanged. The proposed development has been designed and situated to minimize impact on the protected HCEA and Parks Canada Cost-Share Agreement views, the setting and framing lands, the Aberdeen Pavilion, and the Horticulture Building. Though protecting the silhouette of the Aberdeen Pavilion is not an express objective of the HCEA, the proposed towers will be visible beyond the silhouette of the Aberdeen Pavilion, creating some visual impact

#### Mitigative Measures

The mitigative measures identified in the HIA should be implemented and used as guiding principles through the next stages of planning and design for the project. These measure include;

- Design the new retail podium to enhance views to and experience of the Aberdeen Pavilion;
- Enhance the public realm surrounding the new retail podium along Exhibition Way and design for year-round usability;
- Consider the form, massing and materiality of the high-rise towers to complement the new backdrop setting of the Aberdeen Pavilion;
- Consider the high-rise tower shape, placement and articulation to minimize shadow impact; and
- Design the new event centre and berm to minimize visual impact on the south elevation of the Aberdeen Pavilion, while enhancing the Great Lawn open space.
- The commemoration and interpretation of Frank Clair Stadium and Ottawa Civic Centre

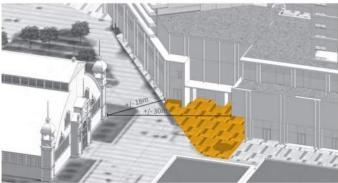
#### Conservation Design Parameters

Similarly, the HIA has detailed Conservation Design Parameters, which are intended to establish a set of conservation objectives and design guidelines for the following areas: Exhibition Way, Event Centre and Southeastern Edge and Tower Design. The Conservation Design Parameters (CDPs) should be implemented to help guide the overall design and maintain the cultural heritage value of the site.



Heritage staff recommend the implementation of the Conservation Design Parameters be included as part of the framework for the RFP of the air rights.

#### 7.3. Additional Heritage Issues / Concerns


#### Aberdeen Pavillion and the East Tower

Heritage staff have concerns with the proposed eastern tower on the site and its potential impact on the Aberdeen Pavilion. The revitalization of Lansdowne Park offers an opportunity to further highlight the Aberdeen Pavilion as the heart of Lansdowne, efforts should be made to highlight this landmark building and improve the existing condition between the Aberdeen Pavilion and the new building.

The proposed east tower is adjacent to the Aberdeen Pavilion. The HIA identifies that the proposed development will have an adverse impact on the visual prominence of the Aberdeen Pavilion from certain vantage points within and adjacent to the Site. The 2022 Council-approved (in principle) Lansdowne 2.0 Concept Plan tower heights and massing create a shadow impact on the Aberdeen Pavilion by obscuring heritage features from late morning to early afternoon during the fall and winter months. Character-defining attributes including the central cupola and clerestory windows are cast in new shadow during the September and December test dates. Potential at-grade impacts may include pedestrian and vehicular congestion as well as potential impact during construction. The measures identified in in the HIA will help mitigate these impacts and should be implemented.

Heritage Staff suggest that alternative option(s) be considered, such as reducing the floor plate and/or height of the eastern tower and/or removing the tower. Further to the appendices provided with comments from the Public Realm and Urban Design Branch, heritage staff encourage the elimination of the third tower or if three towers are to be considered, moving the tower west towards Bank Street so that all three towers are oriented towards Exhibition Way. As shown in these documents, this will mitigate the negative shadow impacts of the current proposal.





**Event Centre** 



The proposed event centre and relocated berm to the east of the TD Place Stadium will encroach in the framing lands as identified within the Ontario Heritage Trust Easement.





Heritage staff support the Conservation Design Parameter in the HIA that states that: The location and design of the event centre should be further refined to minimize visual impact on the south elevation of the Aberdeen Pavilion, while allowing for continued public use of the Great Lawn.

Any alterations to the property within the boundaries of this easement area requires consultation with and approval from the Ontario Heritage Trust.

#### Public Realm

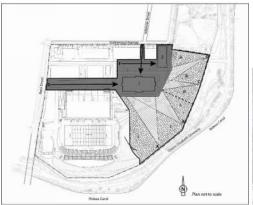
The open space surrounding the Aberdeen Pavilion contributes to the legibility and prominence of the building. Recommendations to improve the public realm should be explored in coordination with the Council-approved Guiding Principles for the Transformation of Lansdowne and the City of Ottawa's Strategic Investment Plan for the Urban Park and Public Realm.

Heritage Staff encourage the removal of the proposed parking entrance closest to the Aberdeen Pavilion. If required, it should be limited to use as service access.

#### 7.4. Zoning Specific Recommendations – Heritage

Heritage staff recommend that the following be considered through the proposed Zoning By-Law Amendment and Official Plan Amendment.

- 7.4.1. Reduce potential impacts on the Aberdeen Pavilion
  - For the towers, locate the taller height closer to Bank Street and reduce the height and/or building floor plate of the east tower
- 7.4.2. Protection and enhancement of views of Aberdeen Pavilion
  - Establish an increased setback along the southern portion of Exhibition Way to increase the visibility of the Aberdeen pavilion and ensure both spires of the pavilion are visible from Bank Street.
- 7.4.3. Define and relate the podium height to the Aberdeen Pavilion
  - Limit the height of the podium along Exhibition Way to provide a 3-4 storey streetwall height to ensure compatibility with the Aberdeen Pavilion and the original stadium/grandstand.




#### 7.4.4. Provide a maximum height of the event centre

 Limit the height of the event centre to ensure that the dynamic view of the upper portions of the Aberdeen Pavillion, as defined in the OHT easement, are maintained

## 7.4.5. Public Realm enhancements to conserve and highlight the Aberdeen Pavilion

 Ensure that the zoning considers the role of open space surrounding the pavilion to maintain its prominence and maintain the established protected views





#### 7.5. Additional Plans and Studies for Site Plan

The following additional plans and studies should be required at site plan:

- HIA Addendum: to look at the more detailed design, including architectural detailing.
- Heritage Interpretation Plan
- Documentation and Salvage Plan for Frank Clair Stadium.
- Heritage Protection Plan for the site which includes:
  - o Pre-construction building condition survey and documentation;
  - Vibration and crack monitoring;
  - Implementation of physical protection for the designated buildings;
  - Management of construction dust, debris etc.; and
  - Post-construction building condition survey and documentation.

Heritage Planning Staff can assist in the creation and establishment of the terms of reference for these studies and plans.

#### 8. Ontario Heritage Trust

Comments:



#### 8.1. Building Heights

Towers of the height proposed in the ZBA would impose a negative impact on nearby cultural heritage, by:

- Altering the background of protected views of the Aberdeen Pavilion;
- Placing the Pavilion, Park, and adjacent portions of the Canal in shadow;
- Introducing an abrupt transition of building scale, particularly with respect to proposed Tower 3.

The OHT offers this summary assessment while recognizing that the proposed tower locations are not contained within the boundaries of the provincial easement.

#### 8.2. Event Centre

OHT staff have seen conceptual depictions of the proposed Event Centre pass through several iterations. Previously we have indicated that the heritage impact, though negative, appeared manageable.

The iteration contained in these applications, while understood to be still conceptual, appears to have grown significantly in scale (both the building scale and hardscaping). Its impact would be more considerable than that of previous iterations:

- All iterations of the proposed Event Centre would negatively impact protected views of the Aberdeen Pavilion. The iteration associated with this application appears to have grown in height, and therefore in visual impact;
- All iterations would involve construction within identified zones of archaeological potential;
- This iteration shows hardscape extending further into the Park, and in general, a potentially significant reduction of green space within the easement boundaries;
- The current iteration, unlike previous ones, would appear also to disrupt current community uses of this green space. OHT staff have requested that community uses be integrated.

Recognizing again the conceptual state of progress, the design associated with these applications raises new concerns about impact. The OHT looks forward to continuing discussions with the City.

#### 9. Ottawa Public Health

#### Comments:

9.1. We note that the provision of 1200 bicycle parking spaces exceeds the current Zoning By-law requirements, however, given that many units will be occupied by more than one person, would recommend increasing this. Unsecure bike parking



would be a significant disincentive to using cycling as a primary mode. This would support OP policies 2.2.4, and 4.1 that seek to incentivize active transportation and make cycling the healthy and easy choice.

9.2. Could there be integration of the High Performance Development Standards (HPDS) in this application, given this is on City lands?

#### 10. Climate Change and Resiliency

#### Comments:

- 10.1. While the HPDS has not come into effect, given that this is a City-owned site, it would be appropriate to push this development to apply the HPDS to the fullest extent possible as a showcase example of a City-led project that advances sustainable and resilient design. In my quick review of the Planning Rationale, I see that:
  - The project will seek a "high level of sustainable design" as part of the future Site Plan Control application, including:
    - alternative energy and energy-efficient measures, including electric and solar energy sources
    - alternatives to fuel-dependent vehicles
  - The proposed concept will aim for LEED Silver certification and will follow the City's Corporate Green Building Policy
  - Consideration of a green roof for the event centre.

Here is the link to the Tier 1 and Tier 2 of the HPDS: <u>High Performance</u> Development Standards (HPDS) | City of Ottawa

#### 11. Accessibility Committee

#### Comments:

- 11.1. The UDRP package only includes the word accessibility once. Given the scope and application of this work, it should be more explicit in the vision and design objectives.
- 11.2.Overall, the site should include many accessible rest areas in both active and green spaces.

#### 11.3.Renderings:

- 11.3.1. Should include people with various disabilities. This shows the disability community that they are considered and included in our work.
- 11.3.2. Ensure TWSIs are not shown as being obstructed. This is something that should be a strong consideration as the Lansdowne space is reimagined. As constructed, they are not serving their intended purpose.
- 11.3.3. Ensure a clear pedestrian path of travel (unobstructed by bikes, A-frames, patios, etc.)- the City requires 2 m which won't be demonstrated accurately in a rendering, however, it can demonstrate a clear path



- 11.3.4. Patios are required to be delineated. This should be shown in renderings.
- 11.4. How many of the 739 parking spaces will be accessible?
- 11.5. How many visitor parking spaces will be accessible?
- 11.6. Are the ceremonial stairs a primary entrance to the buildings or do they serve a strictly decorative purpose?
- 11.7. Lansdowne has a designated "on-street" accessible parking space above ground will more of these be included?

#### 12. Rideau Valley Conservation Authority

#### Comments:

12.1. The RVCA has reviewed the above noted Official Plan and Zoning By-law Amendment application for the Lansdowne 2.0 project to permit building heights up to 40 storeys and facilitate a new stand-alone Event Centre at the east end of TD Place stadium and have no objections.

#### 13. National Capital Commission

Comments are forthcoming.

#### 14. Parks Canada

Comments are forthcoming.

#### 15. Enbridge Gas

#### Comments:

- 15.1. Enbridge Gas does not object to the proposed application(s) however, we reserve the right to amend or remove development conditions.
- 15.2. The applicant will contact Enbridge Gas Customer Service at 1-877-362-7434 prior to any site construction activities to determine if existing piping facilities need to be relocated or abandoned.

#### 16. Telecon

#### Comments:

16.1. EXTREME CAUTION! TELUS HAS CABLE IN FOREIGN UTILITY'S LEASED DUCTS AND VAULTS, close to the proposed route. Please call for locates.

#### 17. Ottawa Catholic School Board

#### Comments:

17.1. The Ottawa Catholic School Board has no objection to the proposed zoning amendments and the site plan control proposal for the property located at 945, 1015 Bank Street. However, since new residential developments have an impact on enrolment, transportation routes and attendance boundaries, we would like to



be notified of all decisions pertaining to this application, including notice of public meetings, street name dedications and approval status.

#### 18. Ottawa Catholic School Board

#### Comments:

18.1.The Planning staff has reviewed the above-noted Official Plan & Zoning By-Law Amendment application. It is understood that the proposed development will have the North stadium stands removed and reconstructed as a standalone structure, which will be the new event centre for Lansdown Park. The proposed development also includes three high-rise residential towers with a maximum height of 40 storeys to be established and will have up to 1,200 residential units.

It is our understanding that the City seeks to amend Area-Specific Policy of the Lansdown Special District designation through an Official Plan Amendment to clarify the City's Official Plan with the following amendments:

- Confirm that the Lansdowne Special District policies supersede the Greenspace and Mainstreet
- Corridor functional designations that are shown on Schedule B2 of the Official Plan.
- Allow for a maximum building height of 40 storeys on the site.
- Allow for a portion of the existing greenspace on the site to be repurposed for a new event centre.

The Zoning By-Law application seeks to rezone a portion of the subject site to permit the new event centre, as well as increase the maximum permitted building height to allow for the proposed 40 storeys and a maximum proposed height of 15.05 meters for the event centre.

Please be advised that our response to your request for comments regarding the proposed development is as follows:

The Ottawa-Carleton District School Board (OCDSB) has no concerns against the proposed Official Plan & Zoning By-Law Amendment. The city is seeking to increase intensification within the urban boundary, and the OCDSB recognizes that new dwellings will generate new students to our local schools.

We would also like to note that the owner be required to inform prospective purchasers that school accommodation pressures exist in the Ottawa-Carleton District School Board schools designated to serve this development which are

#### 19. Councillor and Community issues

#### Comments:

19.1.Please see summary of community comments (Document 2) attached for review and comment. A public meeting was held on July 13, 2023, with approximately 150 people in attendance.



- 19.2.At this time, planning staff have not received formal comments from Councillor Menard.
- 19.3. Staff received approximately 175 public comments during the comment period. Approximately 60 percent of respondent was opposed to the development while 40 percent are either in support or indifferent.

Please review the following comments and provide a response for each theme.

#### **Building height**

- Increase of up to 40 storeys from current limit of 20 storeys is selfish and dangerous
- General opposition to Zoning By-law amendment to increase height
- Tall buildings are an eye sore
- The request to increase the maximum height restriction from 38 metres to 127 is excessive and over three times the existing height.
- These heights are out of place for the neighbourhood and the surrounding heritage buildings
- No building should be taller vs. what is there today
- A set of mid-rise residential buildings, with a more fitting aesthetic for the area, would be much more appealing to Glebe residents

#### Transition to Adjacent Low-rise neighbourhood

- The high-rises are out of place in comparison to the rest of the Glebe
- Completely out of scale with the charm of the surrounding neighbourhood.
- The Glebe has always had an old-world (aka low-rise) feel. This changes the landscape of this beautiful old community,
- This is an iconic Ottawa site, and to propose 40 story towers, which are so shockingly out of proportion with the surrounding cityscape and the site is outrageous.
- The imposing presence of these buildings not only clashes with the surrounding Glebe aesthetic, it also invades the sight lines of Glebe residents, shoppers, and seasonal event goers

#### Wind impact

- The towers will cause a wind tunnel that will make walking on Marché very unbearable in winter months.
- The wind study as presented, lacks significant information for an assessment to be made as to its validity and appropriateness in the



current context. If anything, it may underestimate the wind climate problems which could occur were this development to be built.

#### **Shadow impact**

- The 3 residential towers proposed will be too tall and will provide too much shade on the Aberdeen Pavilion and the existing structures at Lansdowne
- Three high-rise towers will overwhelm the site especially at 40 stories. They will block the sun and cast long shadows. They will destroy the character of the surrounding area.
- The towers will create large shadows and wind tunnels that will cause the very popular patios on Marché Way to lose most of their sunlight.
- 40 stories will shade so much it will reduce quality of life and enjoyment in the whole area.
- Not only will much of the Lansdowne site be covered by shadow, but also neighboring streets in the Glebe as far as 1st Ave, the canal and streets in Old Ottawa South (across the canal!)
- The angled tower next to the Aberdeen Pavilion is particularly egregious and should be eliminated entirely as it over-shadows the Pavilion
- Eliminating all the sunlight for businesses on exhibition way would be a travesty.

#### Traffic

- The congestion and confusion in the neighbourhood when events are on now (and even when they aren't) will only be exacerbated by the existence of so many new residential units and the additional events.
- Traffic needs to be addressed to public, and discussions need to be had early on for solving traffic related issues
- Please do whatever is possible to deter more vehicular traffic. It's already a disaster in this regard for anyone living nearby or trying to get to/from that area

#### Active Transportation (Bicycle and Pedestrian connectivity/safety)

- The active transportation along Bank Street and the Queen Elizabeth Driveway needs to be improved.
- The addition of up to 1200 new units will clog up Bank Street and the nearby neighbourhoods and reduce the ability for pedestrians and cyclists to enjoy the canal and Lansdowne itself.
- Need to widen the Bank Street sidewalks and create properly separated bike lanes



Increase the transit service to and from the park on Bank Street with a
dedicated lane. Get bike lanes on Bank Street and create new and safe
bicycling infrastructure to and through the site

#### **Transit**

- Insufficient transit options for the site, the busses are insufficient and will only get worse upon development
- How will all of the new residents and visitors get to and from the site.
- Transit for all the events at Lansdowne does not work, building this without implementing better busses or the O-Train will not work

#### **Parking**

- 739 parking spaces for 1200 units will be woefully insufficient and 400 cars will try to park in surrounding streets
- unless there is a spot per unit, there will be a spillover to the local neighbourhood
- That a number of dedicated disabled parking spots be implemented in this area would be welcomed.
- Adding 739 vehicles to this space seems designed to create traffic chaos on the site and affected roads.

#### **Density**

- Increased density makes sense if there is increased greenspace
- Clearly, the city center is already overcrowded and adding the traffic density expected from thousands of new residents will further degrade the residential environment
- The density of this project will have a negative impact on traffic, transportation, servicing, and greenspace

#### Loss of Greenspace

- Loss of greenspace will negatively affect the residents on Holmwood Ave
- Replacing the arena and moving it to the green space park is a terrible and costly idea. The lawn is well used and enjoyed by many, and will be needed even more to serve the local population if it increases with the towers
- It is obviously a bad idea to add 1200+ yard-free occupants to the site and eliminate greenspace.
- Lansdowne already has very little green space. None of the green space should be lost, especially to build an arena that is not needed. With this loss of green space, Lansdowne will not have enough green



- space to hold music festivals. Also, Lansdowne will be even more of a concrete jungle.
- The plan for 35, 40 and 46 storey towers removes whatever pretext remains for calling Landsdowne a park.
- Make the green roof on the new arena accessible to the public. Doing so would help to offset much of the usable greenspace being lost by relocating the arena.
- The overall design of the project should enhance the site with green space and fit in with some aspect of historical respect for the look of the canal site
- Lansdowne is a park and should be kept as such. Should not be developed on and should be enjoyed by all residents of the city.
- Please save all the green area possible in the inner city lest it become a wasteland.

#### **Housing**

- The plan is trying to fit in more residential units than are appropriate for the space
- 40-story condominium buildings at Landsdowne will generate very good property tax revenue for the City but does nothing to address the affordable housing shortage. If you were making affordable or public housing this would be acceptable, but it is not.
- We need more affordable housing, and this project will not be, why aren't we seeing proposals for 5-10 storey buildings lining streets instead?
- If housing is to be added to Lansdowne Park, it should be rent-to-income only. I don't feel like subsidizing rich people's access to pricey condos overlooking the sports fields. I can't afford to buy at Lansdowne. Many people cannot.
- These towers would be better used with 2 and 3 bedroom units Ottawa already has enough bachelor and one bedroom towers, we
  need to be thinking of more affordable options for families.

#### Land Use

- People WANT a park -- not an event space, not an arena, but a PARK.
   A place for leisure, walking, meeting friends
- The proposed three towers would render this end of the Glebe almost unlivable
- This is not a "partnership" (public, private) but handover of public, precious land to satisfy and expand commercial interests.



- Should not be building 40 storey towers in what is supposed to be a park
- Plant some trees, preserve what little green space is left, build peoplefriendly sized buildings with affordable housing
- Why aren't we redeveloping the St Laurent shopping centre into high density and putting the stadium there? It's right on the transit way and the freeway

#### <u>Heritage</u>

- The towers are also in no way in respect to the beauty and heritage of the UNESCO Rideau Canal and the two heritage buildings on site; the Aberdeen Pavillon and the Horticulture Building. Imagine the city of Rome allowing towers such as proposed to be built beside the Colosseum or beside the Pantheon. We need to honor and respect our heritage buildings and not pollute them with 40 story condo buildings.
- This project will fundamentally change the area by overshadowing the historic Aberdeen Pavilion

#### <u>Sustainability</u>

- There is waste in destroying the recently built podium.
- Force the developers to use only green technologies to lower Lansdowne's carbon footprint. How about increasing rooftop green space use by planting garden beds and vertical gardens?
- Concrete and steel consumption contribute greatly to carbon emissions. It would be irresponsible to dispose of what's already been built, only to replace it with more concrete and steel.
- putting an arena where some of the limited current green space exists seems contrary to all city policies and guidance for greater green space, and inconsistent with fighting climate change.

#### Noise

- The increased noise, commotion will absolutely kill The Glebe.
- Please revise to lower density and noise

#### General Inquiries and comments:

- What failed in financial model of 1.0, and how is that being addressed/prevented in 2.0
- The time to complete this large project of this size would be years.
   Trying to keep the businesses already in place here running during extensive construction will be very difficult



- Saddling the tax payers of Ottawa for years with billions of dollars of debt to finance the proposal and to line the pockets of OSEG members is criminal.
- Where will the kids go to school? Where will they go to the Doctor/Dentist?
- Lack of public consultation

#### **Positive Comments:**

- Full support of application in their current state
- This looks great. I was expecting more of the green space to be used so that more people could live in this desirable neighborhood, but there's not much to object with on the modest proposal
- Density and building heights are good, and keeping the arena within Lansdowne is key to the continued success of the area
- I am in full support of densification. This is essential to improving affordability in the city and reducing our environmental impact.
- I think the towers add good density to an attractive site, and bring a critical mass of residents to increase the vibrancy of Lansdowne.
- I LOVE the proposal for Lansdowne 2.0!! We NEED housing. We NEED a football stadium. We NEED a hockey arena for 67s. PLEASE build this as presented. The 3 towers are in the PERFECT PLACE!!! BUILD THIS PLEASE!!! Thank you.
- Review the financials but as for the development as proposed please approve.
- As a homeowner in the Glebe, I'm trilled to hear that the Glebe will be further densified by this development, as it rightly should be. These new towers will provide valuable housing to this supply-constrained market, will provide many people the opportunity to live in one of the best parts of Ottawa, and will bring tons of business to the local businesses.
- I support the project for 945 and 1015 bank St and I think there should be even more apartments.
- I'm a resident of Centretown, frequenting the Glebe/Lansdowne, and I am 100% in favour of this application moving forward. As someone who has lived inner-city in various cities across Canada, I have witnessed first-hand the good that density like this whether it be market-rate homes for ownership or rental and/or social/affordable homes does for a community. In my view, intensification makes areas vibrant it supports businesses, creates walkable areas, helps cut down on our environmental impact, and fosters a sense of community.



• I am in support. This project will make Ottawa a more competitive city for events and will provide more apartments for people to live in.

Should there be any other questions, please do not hesitate to contact me.

Sincerely,

Krishon Walker

cc. Sean Moore, Director, Lansdowne Park Redevelopment Project

Simon Deiaco, Senior Planner

Abdul Mottalib, Infrastructure Project Manager Mike Giampa, Transportation Project Manager

#### **National Capital Commission Comments**

Thank you for circulating the National Capital Commission (NCC) on applications for Official Plan Amendment and Zoning By-law Amendment for 945 and 1015 Bank Street (D01-01-23-0009 / D02-02-23-0047), "Lansdowne 2.0". The Lansdowne 2.0 initiative presents an opportunity to think boldly about Lansdowne, QED, and broader Capital-building and City-building perspectives. We present the below comments (paired with an attached Appendix in response to the 'Lessons Learned' report) in a spirit of openminded discussion and collaboration on this exciting initiative.

#### Context

- The current process leading to the redevelopment of Lansdowne began in 2007 as the City sought to replace the existing south-side stands and revitalize the site with new development.
- Lansdowne is bounded to the east and south by the NCC-owned Queen Elizabeth Drive (QED) and Capital Urban Greenspace beside the Rideau Canal.
- The Rideau Canal is owned and managed by Parks Canada, and is a UNESCO World Heritage Site.
- The NCC has been a collaborative stakeholder in the redevelopment of Lansdowne, including approving improvements to pedestrian connectivity from the Rideau Canal Capital Pathway, participating in the Lansdowne Transportation Monitoring and Operations Committee (LTMOC), and permitting by agreement the use of QED for park-and-ride shuttles for major events.

#### **Proposed Development**

- The proposal comprises:
  - three high-rise residential towers with up to 1,200 new dwelling units and
     739 new parking spaces;
  - replacing the current 3,809 square metres of retail space attached to the arena/stadium complex along Exhibition Way with 9,290 square metres of new mixed-use retail space in the podium of the new residential towers;
  - replacing the north-side stadium stands;
  - o a new 1,500-person music hall; and
  - o a new 5,500 seat multipurpose event centre.

#### Comments

#### 1. Queen Elizabeth Drive

- a. The NCC shares the City's goal of re-imagining Queen Elizabeth Driveway to reduce the road's importance as a commuter route in favour of active mobility and the public realm. The QED is a capital parkway designed for its experiential quality, and not intended as a principal commuting transportation route.
- b. The NCC's guiding principles for Queen Elizabeth Driveway emphasize sustainable and active modes of mobility over private motor vehicle use of the roadway, consistent with the overall vision for NCC parkways as scenic connections between major national areas of significance while providing opportunities for recreational purposes.

QED is a federal parkway under the jurisdiction of the NCC. Since 1970 the NCC has hosted bike days, including periodic full closures of Colonel By Drive. Since 2020 the NCC has expanded this program to other parkways so they are periodically reserved for active use and not for use by vehicles and QED is seasonally reserved for active use from May to October on varying days.

We remain concerned that the TIA analysis does not reflect the reality of regular periods when QED is not available for private vehicle use. We provided feedback on the draft TIA and requested that it evaluate a range of scenarios – different levels of intensity of events at Lansdowne with different formats of QED use. There is a wide range of options and level of impact, wherein QED could be reserved for active use, or opened to shuttles at events of certain sizes. Similarly, the impacts of each option vary by the size of events at Lansdowne: the 1,500-person music venue, the 5,500-seat event venue, events at the Aberdeen Pavilion, and the stadium itself – as each venue is added to a concurrent peak demand, the ways that QED could be used vary.

The TIA and associated studies did not evaluate these more nuanced options to inform the conversation about QED access, instead relying on "our assumption is that the QED will, generally, remain as a viable secondary vehicular access point to Lansdowne". The response provided in the Lessons Learned states that "If the assumptions are not valid, then the integrity of the Lansdowne 2.0 program (and likely current Lansdowne operations) would be severely compromised from a transportation perspective." This generalization lacks nuance – there are levels of intensity of activity at Lansdowne wherein QED access is more critical than others.

Lacking a study of those different levels of intensity and QED access as was requested leaves the applications relying on broad assumptions.

**Note:** The NCC is currently reviewing its Parkway Policy which will provide direction for future use and evolution of QED. We look forward to working with the City to support sustainable mobility while protecting QED's unique capital vocation.

c. The transportation challenges of Lansdowne will not be solved by prioritizing access by personal vehicles. Where access to Lansdowne is needed for major events, Queen Elizabeth Drive has proven successful at efficiently moving large numbers of people through the shuttle program. Improving access to Lansdowne must prioritize increasing capacity and mobility through making transit and other sustainable modes the preferred choice.

These modes will be the preferred choice not only by requiring the attendees of ticketed events to pay for their transit by providing a transit fare with every ticket, but also on a day-to-day basis making access to Lansdowne by transit and other sustainable modes competitively preferable to personal vehicles in cost, time, and convenience. Keeping QED open to personal vehicles at all times undermines this effort.

#### 2. Capital Urban Greenspace

- a. The Strategic Investment Plan for the Urban Park and Public Realm identifies potential projects on adjacent NCC-owned lands:
  - a. Redesigned entrance to Lansdowne at Queen Elizabeth Driveway to better accommodate cyclists and pedestrians with the possibility of a signalized crosswalk.
  - b. Forestry and floral plantings along QED
  - c. Additional signage of speed limit along QED
  - d. A new pedestrian crossing of QED at the site's southeast edge
  - e. A two-way accessible link from Colonel By Drive to Bank via Echo Street

**Note:** We are supportive of improvements to active transportation connectivity and enhancements to animation of the QED corridor, when they are in keeping with its heritage and cultural significance. A <u>Federal</u>

<u>Land Use Design and Transaction Approval (FLUDTA)</u> will be required for any work that is proposed on federal land.

#### 3. Transportation

- a. It is essential that the transportation plans associated with Lansdowne 2.0 adequately explore the necessary bold sustainable transportation initiatives, projects and investments and site access improvements to reach the City's and the NCC's objectives. Whether identifying issues through the Transportation Impact Assessment for Lansdowne or proposing new projects for the Transportation Master Plan, these processes must work in tandem to improve mobility and access to this important destination.
- b. As noted, the NCC is currently reviewing its Parkway Policy. This initiative, combined with Lansdowne 2.0, presents the opportunity to discuss bold exploratory ideas such as, but not limited to:
  - Piloting conversion of QED & Colonel By Drive to one-way streets while reducing the number of lanes to provide more space for active use;
  - ii. Realigning a portion QED to provide a dedicated access to Lansdowne; and/or
  - iii. Exploring limiting access to QED to major event shuttles, emergency vehicles, and active modes on an ongoing basis by design.
- c. As discussed in Item 1 above, it needs to be understood how Lansdowne 2.0 and the surrounding transportation network will function under a day-today scenario (no medium, major or mega events occurring) with QED closed for active use programming. If it is hypothesized that any long-term, frequent closure of QED will negatively impact the viability of events at Lansdowne, it needs to be understood at what point, in terms of event size programming, does this negative situation occur.
- d. To support a viable Lansdowne at all times, TDM activities must strive for a transit mode share that strives beyond the targets set for Lansdowne 1.0; applying the status quo is not a target.
  - i. It is important to plan for a transit mode share greater than 10% and an auto mode share lower than 75%, even for events below 10,000 persons in attendance. The smaller events with attendance levels of 5,000 or less occur more frequently at Lansdowne. Of the 161 events

- expected in 2024 at Lansdowne, approximately 128 (79%) will be under 5,000.
- ii. The Official Plan calls for by 2046, the majority of trips in the city will be made by sustainable transportation. Planning for a 10% transit modal share for 79% of events at Lansdowne will not achieve this objective.
- iii. There is inconsistency in the modal share targets. Table 2 indicates a Transit & Shuttle target of 50-55% for Minor Events. Table 4 indicates a target of 10%.
- iv. The TIA remains based on forecasted trip generation rates and modal splits. We believe back-casting to identify what actions (built form, TDM, parking supply, transit service, pricing) are needed to reach a desired future scenario is more likely to achieve transportation goals.
- v. The growth of automotive mode share should be considered constrained by existing and anticipated conditions on the network including active-use programs on QED.
- vi. The TDM report assumes 8,225 person trips as the cap on automotive mode share based on an existing on-street parking supply of 2,175 spaces and on-site of 600 spaces. This appears to presume on-street spaces are available for Lansdowne users despite numerous competing demands for on-street spaces.
- vii. Providing capacity to Lansdowne needs to be addressed through high-capacity transportation modes such as shuttles and transit; reliance on the private vehicle will not address the capacity needed.
- e. Identifying alternative off-site parking locations is a good approach to intercepting and diverting traffic from Bank. However, consideration should be given to providing shuttle service for locations located further away (i.e. 30-40 minute walk from Lansdowne). For some event goers, the walk may be longer than their drive to the off-site parking location. Park & ride locations that see low usage on evening and weekends present such an opportunity.
- f. The inclusion of the concept of a "Fare Free" zone on Bank Street such as is employed in downtown Calgary can support local businesses, including Lansdowne, and reduce the reliance on auto travel while supportive the evolution of Bank Street into a 24/7 transit priority corridor. This is a positive idea that merits serious consideration.

- g. To incentivize the use of transit and support a lasting change in commuting behaviour, consideration should be given to providing a preloaded PRESTO card with a 6-month or 1 year transit pass to new residents. A similar type of incentive should be developed for businesses and offered to their employees.
- h. In addition to the continuance of bicycle workshops (recommended in the report for the spring), it is recommended that a second workshop be introduced in the fall to provide information on winter cycling. Currently, the multi-use pathways along QED and Colonel By Drive, as well as the cycling facilities on O'Connor St. and Fifth Ave. (QED to O'Connor) are winter maintained routes. Lansdowne 2.0 should take advantage of its proximity to these year-round cycling facilities.

Although the City is only beginning discussion on a City-wide, City-led bike share program, could a Lansdowne specific bike share program be implemented that would serve the residents of both the new and existing towers? Potentially this program could be managed by the TMA.

- i. During the planning process for Lansdowne 1.0, City Staff were directed to retain two qualified transit and transportation planning professionals from outside Ottawa to undertake an independent peer review of the Lansdowne Transportation Impact and Assessment Study and TDM Plan. We suggest a similar peer review be required to provide an independent third-party opinion.
- j. The Lansdowne 2.0 proposal includes 739 additional parking spaces for 1,200 new dwelling units, while the zoning by-law requires a minimum rate of 0.5 spaces per dwelling unit. There is no rationale provided for why parking in excess of the minimum is proposed to be provide. Indeed there is no analysis of why a lower rate than the minimum was not considered. Each parking space constructed is a sunk cost into vehicular use that will be paid for by the future residents and users of the site, and by residents surrounding the site through additional traffic generation.
- k. The <u>Capital Pathways Strategic Plan</u> is the NCC's principal guiding document for the Capital Pathway network. Based on the thresholds set by the Plan, the Rideau Canal West pathway adjacent to QED exceeds its peak capacity and does not provide the level of high-quality comfortable experience intended for users, nor does the existing pathway width support

ongoing growth of active transportation users. More room for active transportation users is required, especially given ongoing intensification in the inner urban area such as that proposed by Lansdowne 2.0.

#### 4. Civil

a. We understand the existing stormwater management system for Lansdowne includes subsurface storage, surface storage, conveyance sewers, quality control structures and outlet controls. Lansdowne's stormwater management (SWM) discharges to the O'Connor Street combined sewer, and the Rideau Canal sewer functions as a relief sewer, but only once the underground storage system is full and major storm drainage flows enter the Great Lawn (i.e. for events greater than the 5-year event).

SWM runoff to the Rideau Canal is a pressing concern – it not only carries nutrients and sediment that can impact the aquatic ecosystem, but also salt that impacts the ability of the Canal to freeze and be used for skating. Ongoing NCC research in collaboration with Carleton University also identifies warm winter meltwater as exacerbating challenges of establishing and maintaining the Canal's frozen surface for winter skating. It is important that any development brings net improvements to the SWM approach and further avoids directing runoff to the Rideau Canal.

It appears that the proposed Major Event Centre will impact the existing Great Lawn, Berm, and associated SWM storage area. The proposed Major Event Centre is also located on top of the existing Rideau Canal SWM outlet pipe.

We request the City through future detailed design ensure no increase in runoff volume to the Rideau Canal, and evaluate opportunities to reduce or eliminate existing runoff.

### Appendix A: Lessons Learned Report Response

In May 2023 the NCC was invited to submit comments on 'Lessons Learned' from experiences of transportation effects of Lansdowne 1.0 (2014-2020). The Lessons Learned document prepared by OSEG (June 2023) contains input from members of the community, the NCC, City Traffic Services, and the Glebe BIA. In preparing the Lessons Learned document, OSEG on behalf of the City, elected to only provide responses to the comments of the NCC. The below comments are further responses.

NCC Comment (May 2023): The location of the principal parking garage access at the
east end of the site adjacent to the QED forces an unfortunate choice between the
impacts to the QED and the vehicular ingress across the quasi- pedestrianized core
of Lansdowne.

**OSEG Response:** Based on parking garage data, as well as updated turning movement count data. The QED access functions as an important secondary access point to the site, as intended, and accommodates approximately 35% of vehicular access to Lansdowne. The Bank Street garage ramp functions as the primary access point during regular non-event days. It is noted that the QED access plays a vital role in balancing transportation demands and access arrangements, including during major events when vehicular access from Bank Street is restricted to safely accommodate pedestrian and transit passenger demands from the 450- series shuttle service.

NCC Response (July 2023): Vehicular ingress across the quasi-pedestrianized core of Lansdowne is an acknowledged challenge. Despite being designed as a 'shared street', post-development Princess Patricia Way internal to Lansdowne was restricted to pedestrians only, and vehicle traffic was routed through the site via Marché Way. The May 2022 'Lansdowne Partnership Sustainability Plan and Implementation Report' contains extensive discussion of the challenges of the design of Aberdeen Square and the internal streets of Lansdowne, and recommends investment to 'improve on-site safety for all users and reduce conflict between transportation modes.' The location of the parking garage access at the east end of the site adjacent to the QED forces an unfortunate choice between the impacts to the QED and the vehicular ingress across the quasi- pedestrianized core of Lansdowne.

- NCC Comment (May 2023): Assumptions of unfettered access to the federal
  parkways from major transportation demand generators, such as was the case for
  Lansdowne 1.0, led to under-planning for other modes of travel and dissatisfaction
  when access is not available.
  - a) NCC staff flagged this issue in 2011. Quote May 2011 NCC staff comments to the City regarding the then-draft *Transit Service and Shuttle Services and Off-Site Parking Plan Technical Report*, which discussed whether to focus shuttles on QED or Bank, and which heavily favored QED: "[The report] must be written in neutral language without prejudice, and cannot be seen to be 'prejudging'

outcomes in advance of the findings and conclusions of the pilot project. The outcomes cannot be predicted, and it is unfair to present opinions on one option as the sure success, and the other as a failure. As was mentioned, the City and OSEG have to make the Bank Street shuttle route work, as the QED will not be available for shuttles for all Lansdowne events. So why not make the best effort, devise the best plan, put the best foot forward for the Bank Street option?" [emphasis added].

**OSEG Response:** One of the key achievements of the TDM program since its implementation in 2014 is the gradual reduction of Park & Shuttle buses operating on QED during major events. As of 2022, the number of Park & Shuttle buses operating on QED has been reduced to an average of 30 - 60 inbound bus trips per major event. This is significantly lower than the original number of bus trips estimated in the 2011 TDM Plan, which is upwards of 100 buses per hour on QED (upwards of +200 bus trips for inbound service). Currently, the majority of Park & Shuttle customers are utilizing the 450-series shuttles with service provided on Bank Street.

This achievement is consistent with the ideal long-term objective outlined in the **City of Ottawa – NCC Letter of Intent for Special Event Shuttle Service Pilot Project**, which envisioned a reduction in the number of shuttle buses operating on QED over time.

It is noted that under a future scenario where no shuttle services are operating on QED, the parkway continues to play a crucial role in supporting a balanced, safe and efficient access program to Lansdowne, particularly during major events.

During major events, vehicular access to Lansdowne is temporarily restricted on Bank Street to safely accommodate the large number of transit passengers, pedestrians and cyclists accessing Lansdowne from Bank Street. During these temporary closures, vehicular access to the underground garage and TNC drop- offs (i.e. Uber and Lyft) is accommodated at the QED access. Under a full QED closure scenario during major events, the expected traffic impacts would be extremely severe and the viability of running events safely with minimal impact to the community would be severely compromised.

NCC Response (July 2023): The reduction in shuttles on QED is an accomplishment in line with the Letter of Intent for the Pilot Project. This does not diminish that the NCC has been consistent in the feedback (as quoted above) that 'the QED will not be available for shuttles for all Lansdowne events' and that development of the site cannot rely on the assumption of unfettered vehicular access.

The NCC provided feedback during the preparation of the TIA, requesting that it model certain scenarios to understand the transportation impacts of different forms of QED access amidst different levels of intensity of Lansdowne programming. No such modeling took place, leaving the analysis of the true impacts of the Lansdowne 2.0 proposal under-informed. The NCC similarly provided detailed comments on the TIA's analysis of MMLOS, transit capacity, and exemptions, among other elements,

but received no response.

The NCC has not determined to close QED during major events but rather has continued to collaborate with the City and OSEG to ensure major events function well. However, we note our 2011 comment that "[The report] must be written in neutral language without prejudice" and that comments such as "the expected traffic impacts would be extremely severe" without the benefit of the requested analysis of such a scenario are premature.

b) NCC Comment (May 2023): The NCC reiterated that it "will continue (and retains full rights) to close the parkways at its own discretion for its own requirements and third party events" in a June 2015 letter to OSEG and the City of Ottawa.

**OSEG Response:** It is acknowledged that QED is a federal parkway under the jurisdiction of the NCC. It is recognized that the NCC closes QED to vehicular traffic for the staging of Capital events, which historically averages between 15 to 20 days annually. These closures, which occur from time to time as we understand, are successfully coordinated in a collaborative fashion between the NCC, City of Ottawa and OSEG for events such as Winterlude and the Ottawa Race Weekend. OSEG has indicated, for example, that closures that occur in the morning of events, where QED is returned to full operations two hours before events, generally work well.

NCC Response (July 2023): Major Events (i.e. Ottawa RedBlacks games at the stadium) only constitute 10 to 12 events per year. We continue to coordinate with the City and OSEG to facilitate their successful operation. To suggest that QED should be available to vehicles over the course of the year due to events that occur 10 to 12 times would drastically prioritize vehicular access for a limited number of peak demand events.

c) NCC Comment (May 2023): This mirrors our earlier comment that Lansdowne 2.0's studies cannot rely on the assumption that QED will be available upon demand.

**OSEG Response:** It is acknowledged that QED is a federal parkway under the jurisdiction of the NCC Irrespective of Lansdowne 2.0, QED is an integral part of the city's transportation network and plays a crucial role in supporting a balanced, safe and efficient access program to Lansdowne, particularly during major events. As previously stated, our assumption is that the QED will, generally, remain as a viable secondary vehicular access point to Lansdowne. If the assumptions is not valid, then the integrity of the Lansdowne 2.0 program (and likely current Lansdowne operations) would be severely compromised from a transportation perspective.

NCC Response (July 2023): As previously stated, the NCC provided feedback during the preparation of the TIA, requesting that it model certain scenarios to understand the transportation impacts of different forms of QED access amidst different levels of intensity of Lansdowne programming. No such modeling took place. The assumption

of ongoing QED access was refuted by the NCC in 2011 and consistently since then. Such access is not a binary question of no restrictions or complete closures – there are forms of QED access for different modes, and levels of intensity of programming at Lansdowne. To state that 'the integrity of the Lansdowne 2.0 program (and likely current Lansdowne operations) would be severely compromised from a transportation perspective' is over-broad and lacks nuance or qualification.

- 3. **NCC Comment (May 2023):** Transportation Demand Management has not been consistently supported.
  - a) As the Office of the Auditor General: Audit of the Management of the Lansdowne Contract report noted that while OSEG employed a TDM coordinator from 2014 to 2017, despite being required to do so by the site plan agreement "effective January 1, 2017, OSEG no longer has a dedicated TDM Coordinator, thereby increasing the risk that the effectiveness of the TDM program may be negatively impacted."
  - b) The 12 November 2020 Lansdowne Annual Report to Finance and Economic Development Committee noted that OSEG did not have a dedicated TDM Coordinator.
  - c) The 2021-2022 Lansdowne Annual Report makes no mention of whether this gap has been filled.

OSEG Response: Administering the TDM program on-site remains a key component to the success of the TDM program at Lansdowne through the planning and delivery of the various event services and supplementary programming, and support for workplaces and residents at Lansdowne. Currently, the coordination of the TDM program at Lansdowne is administered through a full team that is comprised of individuals within OSEG. This includes the VP, Guest Relations and Operation, and the Director of Safety, Security and Guest Services, who oversee the TDM program and are responsible for the annual TDM reports, in addition to various OSEG staff within Guest Relations and Marketing.

NCC Response (July 2023): The 2011 Transportation Demand Management Plan identified the role of a dedicated, on-site TDM Coordinator as key to achieving target modal shares, particularly related to special events. While mode share targets have been met for many events, new TDM initiatives have lagged with the lack of a dedicated TDM coordinator whose responsibilities are not divided with other matters; car sharing is no longer provided, and recommendations related to carpool preferential parking spaces were not implemented. If Lansdowne is to intensify in its residential development and frequency of events, further efforts of TDM will be required.

4. NCC Comment (May 2023): In the first months and years following the opening of

Lansdowne's first revitalization, transit was heavily and proactively emphasized as the best way to reach Lansdowne, in marketing material and in direct communications to sports fans. It is our observation that there has been a decline in such promotion in recent years.

**OSEG Response:** The inclusion of free transit for all ticketed events at Lansdowne continues to be provided on the TD Place website, as well as through e-mail communications with all event ticketholders. Information is also shared on social media periodically. By example, the inclusion of free transit and enhanced park and shuttle service information is shared on "Know Before You Go" videos that are broadcasted at the start of each season.

5. NCC Comment (May 2023): Lack of clarity on the threshold for enhanced, free, and discounted transit service outside of major event days at the stadium has led to Lansdowne not achieving as high a transit modal share as would be the case if it were commonly known that attending any event at Lansdowne entitled an attendee to ride transit for free.

**OSEG Response:** One of the hallmarks of the TDM program for events at Lansdowne is the inclusion of free transit for all ticketed events at Lansdowne with all costs for enhanced public transportation and shuttles paid for by OSEG. This is provided for all events, irrespective of the size of the event. Promotion of free transit service is shared on the TD Place website and shared on social media and promotional materials. The current messaging on the TD Place website for events and concerts states:

- a) The April 2022 "Lansdowne Partnership Sustainability Plan and Implementation Report" dismissed any consideration of free transit to Lansdowne, writing "Before an assessment of free transit can be undertaken, an identified funding mechanism is needed."
- b) The report stated that" The concept of free transit, and its implications, was considered by Transportation Committee as a Motion ACS2021-OCC-TRC-0032 on December 1, 2021." The December 2021 response to the motion was regarding free transit being studied through the TMP, not regarding Lansdowne and its redevelopment.
- c) The entire premise of Lansdowne 2.0 is funding a major civic project (the replacement of the north stands and the new Event Centre) through the sale of air rights, property tax uplift, and ticket surcharge revenues. The Lansdowne 2.0 analysis should identify the range of costs of providing discount or free transit and the funding mechanisms available to provide this (e.g. further sale of air rights, property tax uplift, and ticket surcharge revenues).

**OSEG Response:** As stated earlier, ticketholders to all events at Lansdowne currently have access to free transit and shuttle service for events. The incremental costs of enhancing transit service and providing free transit is paid for by OSEG.

NCC Response (July 2023): Ticketholders are not provided with free transit, they purchase their transit ride with their ticket cost. The 2012 Site Plan Agreement requires OSEG to include "the cost of enhanced transportation services such as transit, off-site parking and shuttle services and the cost to provide secure temporary on-site bicycle parking corrals in the ticket price" [emphasis added].

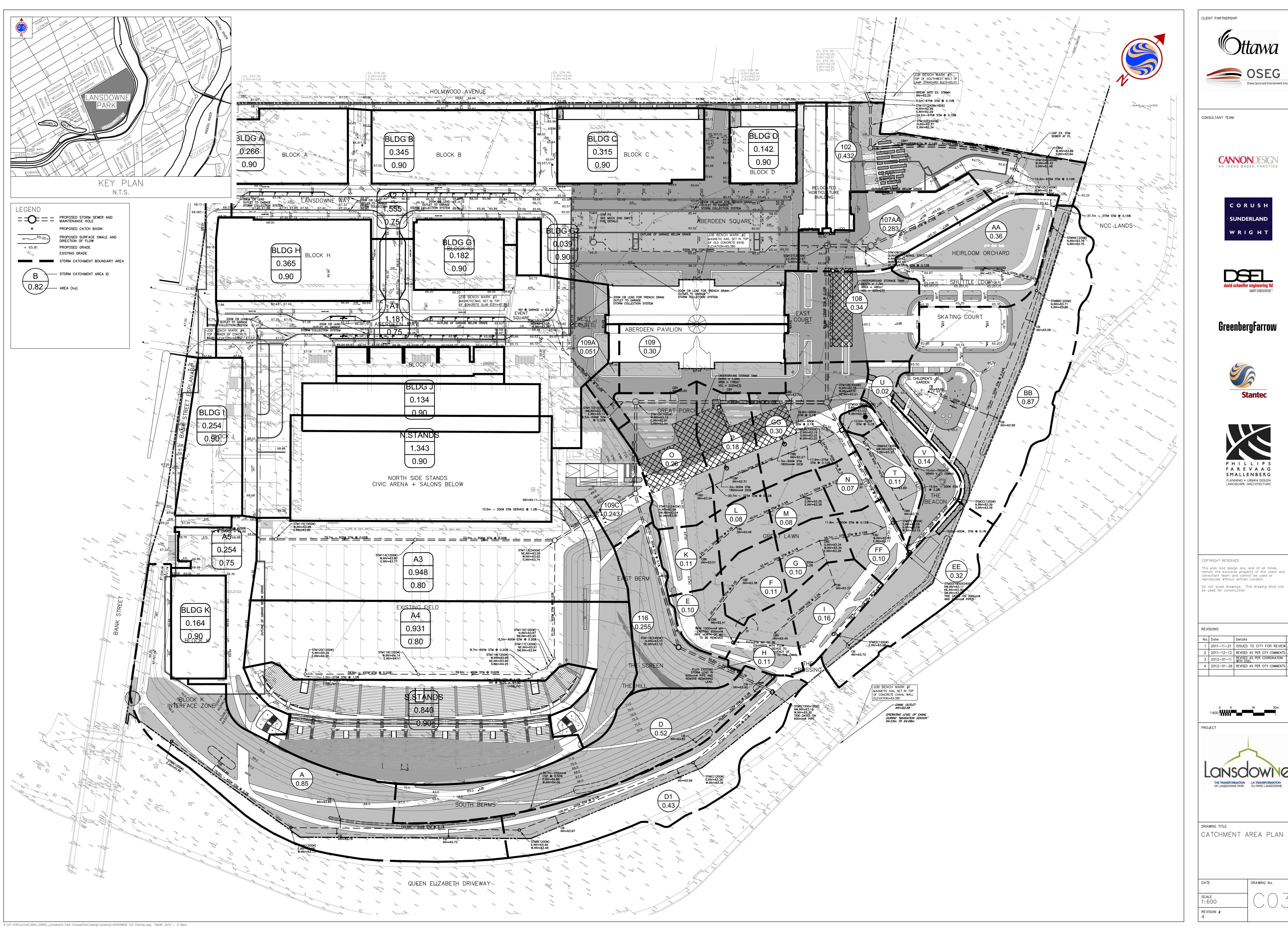
Despite the continued comment that ticketholders to all events have access to transit, the transit modal share target for Lansdowne 2.0 for minor events (less than 10,000 attendees) is only 10%. This modal share target is low and it appears additional efforts are required to increase transit ridership to minor events and reduce reliance on the private auto (target modal share is 75%).

The analysis of the TIA shows the existing TLOS along Bank at Lansdowne at F. Requiring ticketholders to purchase a transit fare with their ticket may assist with events, but everyday conditions outside of major event days demonstrate the need for improved transit at all times.

6. **NCC Comment (May 2023):** The event size increments for TDM measures is large, which may suggest that implementing more discrete TDM measures commensurate with the size of a wider variety of events should be analyzed

**OSEG Response:** The TDM program in place at Lansdowne has been a successful in meetings its goals. Much experience has been gained by City of Ottawa Traffic Services, OC Transpo, and OSEG on a complex program that changes due to factors such as day of the week, time of day, and time of year.

The management of these factors within the revised attendance levels: less than 5,000, 5,000 to 15,000, 15,000 to 25,000, 25,000 to 40,000, and over 40,000 have proven to be effective. Also, as stated previously, the size of average events at TD Place has proven smaller than initially anticipated. OSEG expects 78% of events held this year to be below 5,000.


NCC Response (July 2023): It is good to see the TDM Report identify updated thresholds of minor and major events, and the growth of public and non-ticketed events that may occur concurrently with other events.

## **APPENDIX**

B

**Existing Conditions** 

# B-1 Stantec 2012 Existing Drainage Plan

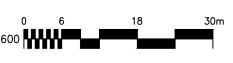


CLIENT PARTNERSHIP

CONSULTANT TEAM







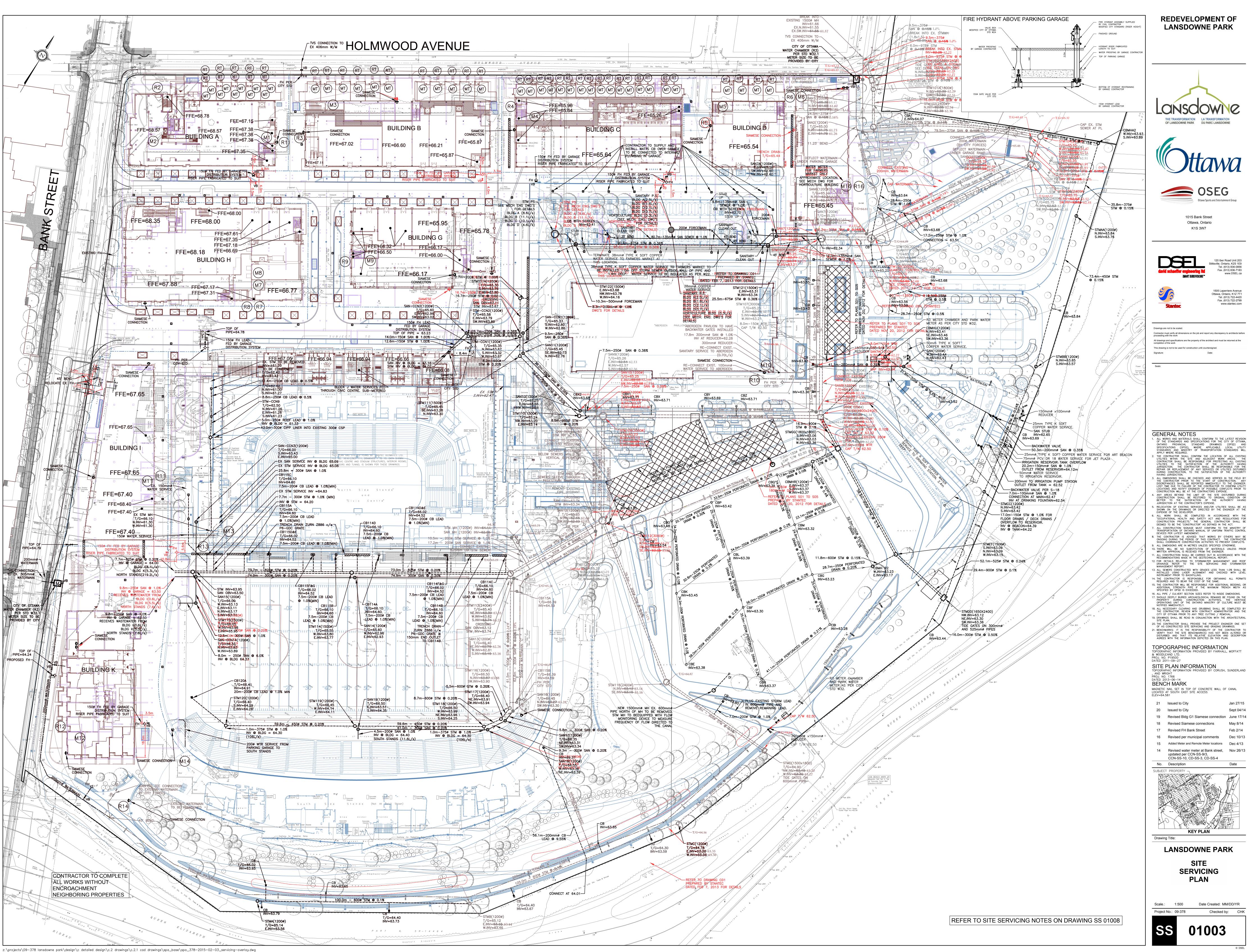





COPYRIGHT RESERVED This plan and design are, and at all times remain the exclusive property of the client and consultant team and cannot be used or reproduced without written consent.

No. Date Details 1 2011-11-21 ISSUED TO CITY FOR REVIEW JVG 2 2011-12-12 REVISED AS PER CITY COMMENTS JVG 3 2012-01-11 REVISED AS PER COORDINATION JVG 4 2012-01-26 REVISED AS PER CITY COMMENTS JVG






DRAWING TITLE CATCHMENT AREA PLAN

1:600

DRAWING No.

# **B-2** As Built Drawings



REDEVELOPMENT OF LANSDOWNE PARK







1015 Bank Street

Ottawa, Ontario K1S 3W7





Tel. (613) 722-4420

Fax. (613) 722-2799

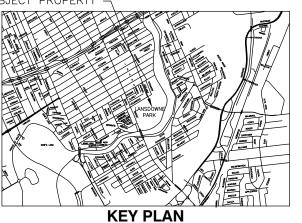


Contractor must verify all dimensions on the job and report any discrepancy to architects before

All drawings and specifications are the property of the architect and must be returned at the completion of the work This drawing is not to be used for construction until countersigned.

GENERAL NOTES ALL WORKS AND MATERIALS SHALL CONFORM TO THE LATEST REVISION OF THE STANDARDS AND SPECIFICATIONS FOR THE CITY OF OTTAWA ONTARIO PROVINCIAL STANDARD DRAWINGS (OPSD) AND SPECIFICATIONS (OPSS), WHERE APPLICABLE. LOCAL UTILITY STANDARDS AND MINISTRY OF TRANSPORTATION STANDARDS WILL APPLY WHERE REQUIRED. APPLY WHERE REQUIRED.

2. THE CONTRACTOR SHALL CONFIRM THE LOCATION OF ALL EXISTING UTILITIES WITHIN THE SITE AND ADJACENT WORK AREAS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING UTILITIES TO THE SATISFACTION OF THE AUTHORITY HAVING JURISDICTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REPAIR OR REPLACEMENT OF ANY SERVICES OR UTILITIES DISTURBED DURING CONSTRUCTION, TO THE SATISFACTION OF THE AUTHORITY HAVING JURISDICTION. 3. ALL DIMENSIONS SHALL BE CHECKED AND VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO THE START OF CONSTRUCTION. ANY DISCREPANCIES SHALL BE REPORTED IMMEDIATELY TO THE ENGINEER. LOST TIME DUE TO FAILURE OF THE CONTRACTOR TO CONFIRM UTILITY LOCATIONS AND NOTIFY ENGINEER OF POSSIBLE CONFLICTS PRIOR TO CONSTRUCTION WILL BE AT THE CONTRACTORS EXPENSE. ANY AREAS BEYOND THE LIMIT OF THE SITE DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO ORIGINAL CONDITION OR BETTER TO THE SATISFACTION OF THE AUTHORITY HAVING JURISDICTION AT THE CONTRACTOR'S EXPENSE. RELOCATION OF EXISTING SERVICES AND/OR UTILITIES SHALL BE AS SHOWN ON THE DRAWINGS OR DIRECTED BY THE ENGINEER AT THE EXPENSE OF THE DEVELOPER. . ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THI CONSTRUCTION PROJECTS.' THE GENERAL CONTRACTOR SHALL BE DEEMED TO BE THE 'CONSTRUCTOR' AS DEFINED IN THE ACT. ALL CONSTRUCTION SIGNAGE MUST CONFORM TO THE MINISTRY OF TRANSPORTATION OF ONTARIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES PER LATEST AMENDMENT. THE CONTRACTOR IS ADVISED THAT WORKS BY OTHERS MAY BE ONGOING DURING THE PERIOD OF THIS CONTRACT. THE CONTRACTOR SHALL COORDINATE CONSTRUCTION ACTIVITIES TO PREVENT CONFLICTS. . ALL DIMENSIONS ARE IN METRES UNLESS SPECIFIED OTHERWISE. 10. THERE WILL BE NO SUBSTITUTION OF MATERIALS UNLESS PRIOR WRITTEN APPROVAL IS RECEIVED FROM THE ENGINEER. 11. ALL CONSTRUCTION SHALL BE CARRIED OUT IN ACCORDANCE WITH THE RECOMMENDATIONS MADE IN THE GEOTECHNICAL REPORT. 12. FOR DETAILS RELATING TO STORMWATER MANAGEMENT AND ROOF DRAINAGE REFER TO THE SITE SERVICING AND STORMWATER MANAGEMENT REPORT. 13. ALL SEWERS CONSTRUCTED WITH GRADES LESS THAN 1.0% SHALL BE INSTALLED USING LASER ALIGNMENT AND CHECKED WITH LEVEL INSTRUMENT PRIOR TO BACKFILLING. 14. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL PERMIT: REQUIRED AND TO BEAR THE COST OF THE SAME. 15. THE CONTRACTOR WILL BE RESPONSIBLE FOR ADDITIONAL BEDDING, OI ADDITIONAL STRENGTH PIPE IF THE MAXIMUM TRENCH WIDTH AS SPECIFIED BY OPSD IS EXCEEDED. 16. ALL PIPE / CULVERT SECTION SIZES REFER TO INSIDE DIMENSIONS. 10. ALE FIFE / COLVENT SECTION SIZES KELLEN TO INSIDE DIMENSIONS.


17. SHOULD DEEPLY BURIED ARCHAEOLOGICAL REMAINS BE FOUND ON THE PROPERTY DURING CONSTRUCTION ACTIVITIES, THE HERITAGE OPERATIONS UNIT OF THE ONTARIO MINISTRY OF CULTURE MUST BE NOTIFIED IMMEDIATELY. 18. ALL NECESSARY CLEARING AND GRUBBING SHALL BE COMPLETED BY THE CONTRACTOR. REVIEW WITH CONTRACT ADMINISTRATOR AND THE CITY OF OTTAWA PRIOR TO ANY TREE CUTTING / REMOVAL. 19. DRAWINGS SHALL BE READ IN CONJUNCTION WITH THE ARCHITECTURAL SITE PLAN. 20. THE CONTRACTOR SHALL PROVIDE THE PROJECT ENGINEER ONE SET OF AS CONSTRUCTED SITE SERVICING AND GRADING DRAWINGS. 21. BENCHMARKS: IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO

TOPOGRAPHIC INFORMATION TOPOGRAPHIC INFORMATION PROVIDED BY FAIRHALL, MOFFATT

PROJ. NO. P19500 DATED 2011-09-27 SITE PLAN INFORMATION , AND WRIGHT DATED 2013-06-14 **BENCH MARK** 

21 Issued to City Sept 04/14 20 Issued to City 19 Revised Bldg G1 Siamese connection June 17/14 18 Revised Siamese connections

17 Revised FH Bank Street 16 Revised per municipal comments 15 Added Meter and Remote Meter locations Dec 4/13 14 Revised water meter at Bank street, Nov 26/13 updated per CCN-SS-9r3, CCN-SS-10. CD-SS-3. CD-SS-4



Drawing Title:

LANSDOWNE PARK **SERVICING** 

**PLAN** 

Scale.: 1:500 Date Created: MM/DD/YR

Checked by: CHK



## **B-3** Stantec 2012 Existing Storm Sewer **Design Sheet**

Page 17

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O.80                                                                                                                                                                                     | (min) (-)  .5 1.2 0.8  .5 1.2 0.8  .6 0.1 0.7  .6 0.1 0.7  .9 1.0 0.8  .9 1.0 0.8  .9 1.0 0.8  .2 2.4 0.6  .2 2.4 0.5  .2 1.4 0.4  .5 1.0 0.2  .5 1.6 0.2                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cus   Cus | 1.20 641 1.20 641 1.00 863 0.69 194 0.90 572 1.09 1232                                                                                                                                   | .5 1.2 0.8<br>.5 1.2 0.8<br>.6 0.1 0.7<br>.6 0.1 0.7<br>.6 1.1 0.7<br>.9 1.0 0.8<br>.9 1.0 0.8<br>.9 1.0 0.8<br>.5 0.8 0.8<br>.2 2.4 0.5<br>.2 2.4 0.5<br>.2 1.4 0.2<br>.5 1.0 0.2 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80 127<br>0.80 127<br>0.97 274<br>0.97 274<br>0.97 274<br>1.20 641<br>1.20 641<br>1.00 863<br>0.69 194<br>0.69 194<br>0.69 194<br>0.90 572<br>0.90 572<br>1.09 1232                    | .5 1.2 0.8<br>.5 1.2 0.8<br>.6 0.1 0.7<br>.6 0.1 0.7<br>.6 1.1 0.7<br>.9 1.0 0.8<br>.9 1.0 0.8<br>.9 1.0 0.8<br>.5 0.8 0.8<br>.2 2.4 0.5<br>.2 2.4 0.5<br>.2 1.4 0.2<br>.5 1.0 0.2 |
| 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80 127 0.97 274 0.97 274 0.97 274 1.20 641 1.20 641 1.20 641 1.00 863 0.69 194 0.69 194 0.69 194 0.90 572 0.90 572                                                                     | .5 1.2 0.8 .6 0.1 0.7 .6 0.1 0.7 .6 1.1 0.7 .9 1.0 0.8 .9 1.0 0.8 .5 0.8 0.8 .2 2.4 0.3 .2 2.4 0.5 .2 1.4 0.2 .5 1.0 0.2                                                           |
| 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97     274       0.97     274       0.97     274       1.20     641       1.20     641       1.00     863       0.69     194       0.69     194       0.90     572       1.09     1232 | .6 0.1 0.7<br>.6 0.1 0.7<br>.6 1.1 0.7<br>.9 1.0 0.8<br>.9 1.0 0.8<br>.5 0.8 0.8<br>.2 2.4 0.5<br>.2 2.4 0.5<br>.2 1.4 0.2<br>.5 1.0 0.2                                           |
| 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97     274       0.97     274       1.20     641       1.20     641       1.00     863       0.69     194       0.69     194       0.69     194       0.90     572       1.09     1232 | .6 0.1 0.7 .6 1.1 0.7 .9 1.0 0.8 .9 1.0 0.8 .5 0.8 0.8 .2 2.4 0.3 .2 2.4 0.5 .2 1.4 0.4 .5 1.0 0.2                                                                                 |
| 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 641 1.20 641 1.20 641 1.00 863  0.69 194 0.69 194 0.69 194 0.90 572 0.90 572 1.09 1232                                                                                              | .6 1.1 0.7 .9 1.0 0.8 .9 1.0 0.8 .5 0.8 0.8 .2 2.4 0.5 .2 2.4 0.5 .5 1.0 0.2 .5 1.6 0.2                                                                                            |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 641 1.20 641 1.00 863 0.69 194 0.69 194 0.69 194 0.90 572 0.90 572                                                                                                                  | .9 1.0 0.8<br>.9 1.0 0.8<br>.5 0.8 0.8<br>.2 2.4 0.5<br>.2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                       |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 641  1.00 863  0.69 194  0.69 194  0.69 194  0.90 572  1.09 1232                                                                                                                    | .5 0.8 0.8  .2 2.4 0.3  .2 2.4 0.5  .2 1.4 0.2  .5 1.0 0.2                                                                                                                         |
| 114 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.20 641  1.00 863  0.69 194  0.69 194  0.69 194  0.90 572  1.09 1232                                                                                                                    | .5 0.8 0.8  .2 2.4 0.3  .2 2.4 0.5  .2 1.4 0.2  .5 1.0 0.2                                                                                                                         |
| 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 641  1.00 863  0.69 194  0.69 194  0.69 194  0.90 572  1.09 1232                                                                                                                    | .5 0.8 0.8  .2 2.4 0.3  .2 2.4 0.5  .2 1.4 0.2  .5 1.0 0.2                                                                                                                         |
| 113   112   444.6   0.00   1.71   23.8   62.9   298.4   743.0   1050   0.10   47.8   0.866   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263   0.263  | 1.00 863  0.69 194  0.69 194  0.69 194  0.90 572  0.90 572  1.09 1232                                                                                                                    | .5 0.8 0.8  .2 2.4 0.5  .2 2.4 0.5  .2 1.4 0.4  .5 1.0 0.2  .5 1.6 0.2                                                                                                             |
| 113 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69 194<br>0.69 194<br>0.69 194<br>0.90 572<br>0.90 572                                                                                                                                 | .2 2.4 0.3<br>.2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                 |
| A B O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69 194<br>0.69 194<br>0.69 194<br>0.90 572<br>0.90 572                                                                                                                                 | .2 2.4 0.3<br>.2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                 |
| A B O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69 194<br>0.69 194<br>0.69 194<br>0.90 572<br>0.90 572                                                                                                                                 | .2 2.4 0.3<br>.2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                 |
| A B C O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.69     194       0.69     194       0.90     572       0.90     572       1.09     1232                                                                                                | .2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                               |
| B C D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69     194       0.69     194       0.90     572       0.90     572       1.09     1232                                                                                                | .2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                               |
| B C D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69     194       0.69     194       0.90     572       0.90     572       1.09     1232                                                                                                | .2 2.4 0.5<br>.2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                               |
| C D 0 0.0 0.0 0.0 0.46 19.9 70.6 89.2 89.2 600 0.10 57.0 0.283 0.150 D D1 0.0 0.0 0.520 0.35 0.18 0.64 21.2 67.6 119.7 119.7 900 0.10 55.8 0.636 0.225 D1 112 0.0 0.0 0.340 0.35 0.12 0.76 22.3 65.6 137.8 137.8 900 0.10 85.0 0.636 0.225 23.8 23.8 23.8 23.8 23.8 23.8 24.6 61.6 421.4 866.0 1200 0.10 46.8 1.131 0.300 25.0 110 110 H,G1,G2,J 23.1 23.1 A1 1.181 0.75 0.89 0.89 20.0 70.3 172.8 196.0 600 0.20 39.6 0.283 0.150 20.8 110 109 108 467.8 467.8 0.00 3.35 25.3 60.5 562.3 1030.0 1350 0.10 99.8 1.431 0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.69     194       0.90     572       0.90     572       1.09     1232                                                                                                                   | .2 1.4 0.4<br>.5 1.0 0.2<br>.5 1.6 0.2                                                                                                                                             |
| D D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.90     572       0.90     572       1.09     1232                                                                                                                                      | .5 1.0 0.2<br>.5 1.6 0.2                                                                                                                                                           |
| D1 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90     572       1.09     1232                                                                                                                                                         | .5 1.6 0.2                                                                                                                                                                         |
| 112 109 444.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.09 1232                                                                                                                                                                                |                                                                                                                                                                                    |
| 112 109 444.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | .9 0.7 0.7                                                                                                                                                                         |
| 111 110 H, G1, G2, J 23.1 23.1 A1 1.181 0.75 0.89 0.89 20.0 70.3 172.8 196.0 600 0.20 39.6 0.283 0.150 110 109 23.1 23.1 A1 0.00 0.89 20.0 20.8 109 108 467.8 0.00 3.35 25.3 60.5 562.3 1030.0 1350 0.10 99.8 1.431 0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | .9 0.7 0.7                                                                                                                                                                         |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                                    |
| 111 110 H, G1, G2, J 23.1 23.1 A1 1.181 0.75 0.89 0.89 20.0 70.3 172.8 196.0 600 0.20 39.6 0.283 0.150 110 109 23.1 23.1 A1 0.00 0.89 20.7 68.8 169.3 192.4 600 0.20 8.5 0.283 0.150 20.8 109 108 467.8 0.00 3.35 25.3 60.5 562.3 1030.0 1350 0.10 99.8 1.431 0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97 274                                                                                                                                                                                 |                                                                                                                                                                                    |
| 110     109     23.1     0.00     0.89     20.7     68.8     169.3     192.4     600     0.20     8.5     0.283     0.150       109     108     467.8     0.00     3.35     25.3     60.5     562.3     1030.0     1350     0.10     99.8     1.431     0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97 274                                                                                                                                                                                 |                                                                                                                                                                                    |
| 110     109     23.1     0.00     0.89     20.7     68.8     169.3     192.4     600     0.20     8.5     0.283     0.150       109     108     467.8     0.00     3.35     25.3     60.5     562.3     1030.0     1350     0.10     99.8     1.431     0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | .6 0.7 0.7                                                                                                                                                                         |
| 109     108     467.8     0.00     3.35     25.3     60.5     562.3     1030.0     1350     0.10     99.8     1.431     0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97 274                                                                                                                                                                                 |                                                                                                                                                                                    |
| 109     108     467.8     0.00     3.35     25.3     60.5     562.3     1030.0     1350     0.10     99.8     1.431     0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.18 1687                                                                                                                                                                                | .8 1.4 0.6                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
| CB1A         AA         0.0         0.430         0.60         0.26         0.26         15.0         83.6         59.9         59.9         375         0.15         114.0         0.110         0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.61 67                                                                                                                                                                                  |                                                                                                                                                                                    |
| AA         BB         0.0         0.360         0.35         0.13         0.38         18.1         74.7         79.7         79.7         450         0.12         35.0         0.159         0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62 98                                                                                                                                                                                  |                                                                                                                                                                                    |
| BB CC 0.0 0.0 0.870 0.35 0.30 0.69 19.0 72.5 138.6 138.6 525 0.24 120.0 0.216 0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97 210                                                                                                                                                                                 |                                                                                                                                                                                    |
| CC         DD         0.0         0.0         0.00         0.69         21.1         68.0         130.0         130.0         525         0.24         38.0         0.216         0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.97 210                                                                                                                                                                                 | .7 0.7 0.6                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
| EE         DD         0.0         0.320         0.35         0.11         0.11         15.0         83.6         26.0         26.0         300         0.40         59.0         0.071         0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87 61                                                                                                                                                                                  | .2 1.1 0.4                                                                                                                                                                         |
| 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00 570                                                                                                                                                                                 | 5 00 00                                                                                                                                                                            |
| DD FF 0.0 0.0 0.80 21.7 66.7 148.2 148.2 900 0.10 31.0 0.636 0.225 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90 572                                                                                                                                                                                 | .5 0.6 0.2                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
| H G 0.0 0.270 0.35 0.09 0.09 <b>15.0</b> 83.6 21.9 21.9 300 0.20 66.0 0.071 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61 43                                                                                                                                                                                  | .2 1.8 0.5                                                                                                                                                                         |
| G J 0.0 0.310 0.35 0.09 0.09 73.0 83.6 21.9 21.9 300 0.20 66.0 0.071 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.61 43                                                                                                                                                                                  |                                                                                                                                                                                    |
| J FF 0.0 0.100 0.35 0.11 0.20 10.6 76.2 44.1 44.1 373 0.15 30.0 0.110 0.034 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.84 237                                                                                                                                                                                 |                                                                                                                                                                                    |
| 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.51                                                                                                                                                                                     | 0.2                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
| FF GG 0.0 0.0 1.04 <b>22.3</b> 65.6 189.1 189.1 900 0.10 57.0 0.636 0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.90 572                                                                                                                                                                                 | .5 1.1 0.3                                                                                                                                                                         |
| 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,2                                                                                                                                                                                      |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                    |
| K M 0.0 0.270 0.35 0.09 0.09 <b>15.0</b> 83.6 21.9 21.9 300 0.20 65.0 0.071 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61 43                                                                                                                                                                                  | .2 1.8 0.5                                                                                                                                                                         |
| M R 0.0 0.070 0.35 0.02 0.12 16.8 78.2 25.9 25.9 300 0.20 47.0 0.071 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.61 43                                                                                                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0.                                                                                                                                                                                     |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0.1                                                                                                                                                                                    |                                                                                                                                                                                    |

|         |             |                   |       |                               |       |      |           |         |                |         |        |           |      |       |        | S                      | Sewer Data |          |        |             |          |
|---------|-------------|-------------------|-------|-------------------------------|-------|------|-----------|---------|----------------|---------|--------|-----------|------|-------|--------|------------------------|------------|----------|--------|-------------|----------|
| Up      | Down BLDG   | ID Q <sub>B</sub> | BLDG  | Q <sub>BLDG TOT</sub> AREA ID | Area  | С    | Indiv AxC | Acc AxC | T <sub>C</sub> | ı       | Q      | $Q_{TOT}$ | DIA  | Slope | Length | A <sub>hydraulic</sub> | R          | Velocity | Qcap   | Time Flow C | ر Q full |
|         |             | (L                | ./s)  | (L/s)                         | (ha)  | (-)  |           |         | (min)          | (mm/hr) | (L/s)  | (L/s)     | (mm) | (%)   | (m)    | (m <sup>2</sup> )      | (m)        | (m/s)    | (L/s)  | (min)       | (-)      |
| 0       | Р           |                   |       | 0.0                           | 0.280 | 0.60 | 0.17      | 0.17    | 15.0           | 83.6    | 39.0   | 39.0      | 375  | 0.12  | 21.0   | 0.110                  | 0.094      | 0.55     | 60.7   | 0.6         | 0.64     |
| Р       | Q           |                   |       | 0.0                           | 0.180 | 0.60 | 0.11      | 0.28    | 15.6           | 81.6    | 62.5   | 62.5      | 375  | 0.10  | 34.0   | 0.110                  | 0.094      | 0.50     | 55.4   | 1.1         | 1.13     |
| Q       | R           |                   |       | 0.0                           | 0.300 | 0.60 | 0.18      | 0.46    | 16.8           | 78.3    | 99.1   | 99.1      | 375  | 0.12  | 18.0   | 0.110                  | 0.094      | 0.55     | 60.7   | 0.5         | 1.63     |
| R       | GG          |                   |       | 0.0                           |       |      | 0.00      | 0.58    | 17.3           | 76.8    | 122.6  | 122.6     | 600  | 0.10  | 13.0   | 0.283                  | 0.150      | 0.69     | 194.2  | 0.3         | 0.63     |
|         |             |                   |       |                               |       |      |           |         | 17.6           |         |        |           |      |       |        |                        |            |          |        |             |          |
| S       | U           |                   |       | 0.0                           | 0.130 | 0.60 | 0.08      | 0.08    | 15.0           | 83.6    | 18.1   | 18.1      | 450  | 0.20  | 30.0   | 0.159                  | 0.113      | 0.80     | 127.5  | 0.6         | 0.14     |
| U       | GG          |                   |       | 0.0                           | 0.140 | 0.60 |           | 0.16    | 15.6           | 81.6    | 36.7   | 36.7      | 525  | 0.10  | 17.0   | 0.216                  | 0.131      | 0.63     | 136.0  |             | 0.27     |
|         |             |                   |       |                               |       |      |           |         | 16.1           |         |        |           |      |       |        |                        |            |          |        |             |          |
| GG      | 108         |                   |       | 0.0                           |       |      | 0.00      | 1.78    | 17.6           | 75.9    | 374.5  | 374.5     | 900  | 0.10  | 22.0   | 0.636                  | 0.225      | 0.90     | 572.5  | 0.4         | 0.65     |
|         |             |                   |       |                               |       |      |           |         | 18.0           |         |        |           |      |       |        |                        |            |          |        |             |          |
| 108     | 107         |                   |       | 0.0                           | 0.340 | 0.60 | 0.20      | 5.33    | 26.7           | 58.3    | 863.2  | 863.2     | 1350 | 0.10  | 81.4   | 1.431                  | 0.338      | 1.18     | 1687.8 | 1.2         | 0.51     |
| 107     | 106 A, B, C | D                 | 34.4  | 502.2 A2                      | 1.555 | 0.75 |           | 6.49    | 27.8           | 56.7    | 1023.0 | 1525.1    | 1350 | 0.10  | 20.7   | 1.431                  | 0.338      | 1.18     | 1687.8 |             | 0.90     |
|         | , , , , ,   |                   |       |                               |       |      |           |         | 28.1           |         |        |           |      |       |        |                        | 0.000      |          |        |             |          |
| ONTROLL | ED FLOW     |                   |       |                               |       |      |           |         |                |         |        |           |      |       |        |                        |            |          |        |             |          |
| 106     | 105         |                   | 616.0 | 616.0                         |       |      | 0.00      | 0.00    | 27.8           | 56.7    | 0.0    | 616.0     | 975  | 0.10  | 80.2   | 0.747                  | 0.244      | 0.95     | 708.7  | 1.4         | 0.87     |
| 105     | 104         |                   |       | 616.0                         |       |      | 0.00      | 0.00    | 29.2           | 54.9    | 0.0    | 616.0     | 975  | 0.10  | 12.1   | 0.747                  | 0.244      | 0.95     | 708.7  | 0.2         | 0.87     |
| 104     | 103         |                   |       | 616.0                         |       |      | 0.00      | 0.00    | 29.5           | 54.6    | 0.0    | 616.0     | 975  | 0.10  | 19.2   | 0.747                  | 0.244      | 0.95     | 708.7  |             | 0.87     |
| 103     | 102         |                   |       | 616.0                         |       |      | 0.00      | 0.00    | 29.8           | 54.2    | 0.0    | 616.0     | 975  | 0.10  | 54.2   | 0.747                  | 0.244      | 0.95     | 708.7  | 1.0         | 0.87     |
| 102     | 101         |                   |       | 616.0                         |       |      | 0.00      | 0.00    | 30.7           | 53.0    | 0.0    | 616.0     | 975  | 0.10  | 24.2   | 0.747                  | 0.244      | 0.95     | 708.7  | 0.4         | 0.87     |
| 101     | EX          |                   |       | 616.0                         |       |      | 0.00      | 0.00    | 31.2           | 52.5    | 0.0    | 616.0     | 975  | 0.10  | 5.8    | 0.747                  | 0.244      | 0.95     | 708.7  | 0.1         | 0.87     |
|         |             |                   |       |                               |       |      |           |         | 31.3           |         |        |           |      |       |        |                        |            |          |        |             |          |

## B-4 Stantec 2012 Storm Drainage **Schematic**

Stantec

Stantec

1505 Laperriere Avenue Ottawa ON Canada K1Z 7T1 Legend

Tel. (613) 722-4420 Fax. (613) 722-2799

www.stantec.com

Notes

City of Ottawa

LANSDOWNE PARK

COMPETITION

Figure No.

Client/Project

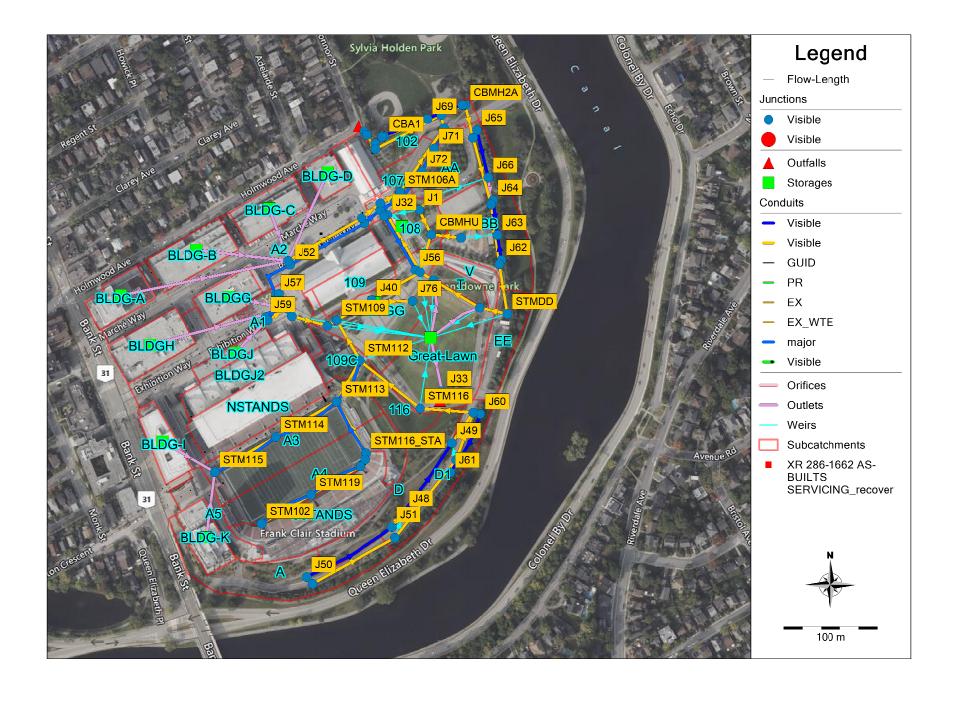

1.0

PLATE 1 STORM DRAINAGE SCHEMATIC

# B-5 PCSWMM Output

PCSWMM Catchment Parameters – Existing Conditions

|         |       | Taramotoro | LAISTING CONTUITIONS | -<br>I    | 1           |
|---------|-------|------------|----------------------|-----------|-------------|
|         | Area  |            |                      | - (-()    |             |
| Name    | (ha)  | Width (m)  | Flow Length (m)      | Slope (%) | Imperv. (%) |
| 102     | 0.444 | 44.4       | 100.14               | 0.5       | 64.2        |
| 107AA   | 0.270 | 176.7      | 15.28                | 0.5       | 86.3        |
| 108     | 0.344 | 162.7      | 21.16                | 0.5       | 68.5        |
| 109     | 0.288 | 88.9       | 32.42                | 0.5       | 87.5        |
| 109C    | 0.254 | 52.3       | 48.58                | 0.5       | 66.5        |
| 116     | 0.212 | 66.8       | 31.67                | 10        | 13.9        |
| Α       | 0.733 | 37.9       | 193.25               | 0.5       | 43.3        |
| A1      | 1.028 | 236.0      | 43.57                | 0.5       | 98.5        |
| A2      | 1.578 | 358.2      | 44.06                | 0.5       | 97.9        |
| А3      | 0.931 | 263.1      | 35.38                | 0.5       | 90.3        |
| A4      | 0.832 | 227.3      | 36.59                | 2         | 84.6        |
| A5      | 0.246 | 30.9       | 79.59                | 0.5       | 99.9        |
| AA      | 0.370 | 72.8       | 50.84                | 0.5       | 54.4        |
| ВВ      | 0.891 | 50.5       | 176.24               | 0.5       | 41.1        |
| BLDG-A  | 0.254 | 254.2      | 10.00                | 0.5       | 100.0       |
| BLDG-B  | 0.363 | 362.6      | 10.00                | 0.5       | 100.0       |
| BLDG-C  | 0.299 | 299.3      | 10.00                | 0.5       | 100.0       |
| BLDG-D  | 0.138 | 138.0      | 10.00                | 0.5       | 100.0       |
| BLDGG   | 0.243 | 242.9      | 10.00                | 0.5       | 100.0       |
| BLDGH   | 0.371 | 370.9      | 10.00                | 0.5       | 100.0       |
| BLDG-I  | 0.226 | 225.6      | 10.00                | 0.5       | 100.0       |
| BLDGJ   | 0.137 | 137.1      | 10.00                | 0.5       | 100.0       |
| BLDGJ2  | 0.389 | 388.5      | 10.00                | 0.5       | 100.0       |
| BLDG-K  | 0.247 | 247.3      | 10.00                | 0.5       | 100.0       |
| D       | 0.584 | 56.5       | 103.36               | 0.5       | 30.0        |
| D1      | 0.479 | 271.3      | 17.65                | 0.5       | 32.5        |
| EE      | 0.347 | 38.6       | 89.83                | 0.5       | 15.3        |
| Great-  |       |            |                      |           |             |
| Lawn    | 1.013 | 164.4      | 61.62                | 0.5       | 26.5        |
| NSTANDS | 0.756 | 97.2       | 77.76                | 2         | 100.0       |
| OPGG    | 0.813 | 147.5      | 55.14                | 0.5       | 59.6        |
| SSTANDS | 0.799 | 165.3      | 48.34                | 10        | 100.0       |
| Т       | 0.131 | 75.9       | 17.24                | 0.5       | 27.8        |
| V       | 0.158 | 167.8      | 9.40                 | 0.5       | 96.6        |



```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)
```

WARNING 03: negative offset ignored for Link C1 WARNING 03: negative offset ignored for Link C18\_1 WARNING 03: negative offset ignored for Link C18\_2 WARNING 03: negative offset ignored for Link C27\_2 WARNING 03: negative offset ignored for Link C42 WARNING 03: negative offset ignored for Link C43 WARNING 03: negative offset ignored for Link C44 MARNING 03: negative offset ignored for Link C44
WARNING 04: minimum elevation drop used for Conduit C46
WARNING 04: minimum elevation drop used for Conduit C64
WARNING 03: negative offset ignored for Link C27 1
WARNING 03: negative offset ignored for Link C27 1
WARNING 03: negative offset ignored for Link OR1
WARNING 03: negative offset ignored for Link OR2
WARNING 10: crest elevation raised to downstream invert for regulator Link W41
WARNING 10: crest elevation raised to downstream invert for regulator Link W42
WARNING 10: crest elevation raised to downstream invert for regulator Link W42
WARNING 02: maximum depth increased for Node CBAI
WARNING 02: maximum depth increased for Node CBMIU
WARNING 02: maximum depth increased for Node CBMIU
WARNING 02: maximum depth increased for Node J1
WARNING 02: maximum depth increased for Node J1
WARNING 02: maximum depth increased for Node J32

WARNING 02: maximum depth increased for Node J32 WARNING 02: maximum depth increased for Node J37 WARNING 02: maximum depth increased for Node J76 WARNING 02: maximum depth increased for Node STM102 WARNING 02: maximum depth increased for Node STM102 WARNING 02: maximum depth increased for Node STM105 WARNING 02: maximum depth increased for Node STM105A WARNING 02: maximum depth increased for Node STM107 WARNING 02: maximum depth increased for Node STM108 WARNING 02: maximum depth increased for Node STM109 WARNING 02: maximum depth increased for Node STM110 WARNING 02: maximum depth increased for Node STM111
WARNING 02: maximum depth increased for Node STM111A
WARNING 02: maximum depth increased for Node STM112 WARNING 02: maximum depth increased for Node STM112
WARNING 02: maximum depth increased for Node STM113
WARNING 02: maximum depth increased for Node STM114
WARNING 02: maximum depth increased for Node STM116
WARNING 02: maximum depth increased for Node STM116
WARNING 02: maximum depth increased for Node STM116
WARNING 02: maximum depth increased for Node STM118
WARNING 02: maximum depth increased for Node STM118
WARNING 02: maximum depth increased for Node STM119
WARNING 02: maximum depth increased for Node STM1121
WARNING 02: maximum depth increased for Node STM121
WARNING 02: maximum depth increased for Node STM122
WARNING 02: maximum depth increased for Node STM12

WARNING 02: maximum depth increased for Node SIMA WARNING 02: maximum depth increased for Node SIMA WARNING 02: maximum depth increased for Node SIMAB WARNING 02: maximum depth increased for Node SIMB WARNING 02: maximum depth increased for Node STMC WARNING 02: maximum depth increased for Node STMC WARNING 02: maximum depth increased for Node STMCC WARNING 02: maximum depth increased for Node STM-CCNI WARNING 02: maximum depth increased for Node STM-CCNI WARNING 02: maximum depth increased for Node STM-CCNI

0.25

52.31

66.54

0.5000 100yr\_3hr\_Chicago

109C STM112 116 STM116 A J50 0.21 66.78 13.91 10.0000 100yr\_3hr\_Chicago 0.73 37.91 43.28 0.5000 100yr\_3hr\_Chicago 236.01 A1 J58 1.03 98.55 0.5000 100yr\_3hr\_Chicago 358.18 A2 J52 1.58 97.91 0.5000 100yr\_3hr\_Chicago A3 0.93 263.12 90.26 0.5000 100yr 3hr Chicago STM114 84.59 2.0000 100yr\_3hr\_Chicago A4 STM119 0.83 227.29 0.25 30.92 99.94 0.5000 100yr\_3hr\_Chicago A5 STM115 0.37 72.80 54.39 0.5000 100yr 3hr Chicago AA J37 0.89 50.53 41.05 0.5000 100yr 3hr Chicago BB J63 J63
BLDG-A
S-BLDG-B
BLDG-B
S-BLDG-C
S-BLDG-C
BLDG-D
S-BLDG-D
BLDGG
S-BLDG-G
BLDGG
S-BLDG-G
BLDGH
S-BLDG-H 0.25 254.20 100.00 0.5000 100yr\_3hr\_Chicago 0.36 362.60 100.00 0.5000 100yr\_3hr\_Chicago 0.30 299.30 100.00 0.5000 100yr\_3hr\_Chicago 0.14 138.00 100.00 0.5000 100yr\_3hr\_Chicago 0.24 242.90 100.00 0.5000 100yr\_3hr\_Chicago 0.37 370.90 100.00 0.5000 100yr\_3hr\_Chicago 0.23 225.60 100.00 0.5000 100yr\_3hr\_Chicago BLDG-I S-BLDG-I BLDGJ S-BLDG-J 0.14 137.10 100.00 0.5000 100yr\_3hr\_Chicago BLDGJ2 0.39 388.50 100.00 0.5000 100yr 3hr Chicago STM-CCN2 0.25 247.30 99.99 0.5000 100yr 3hr Chicago S-BLDG-K 0.58 56.48 30.02 0.5000 100yr\_3hr\_Chicago J48 0.48 271.32 D1 32.46 0.5000 100yr\_3hr\_Chicago J61 38.57 0.35 15.30 0.5000 100yr\_3hr\_Chicago STMDD Great-Lawn STMFF 0.5000 100yr\_3hr\_Chicago 1.01 164.38 26.54 NSTANDS STM113 97.25 0.76 100.00 2.0000 100yr 3hr Chicago 0.81 147.51 59.59 0.5000 100yr\_3hr\_Chicago OPGG STMGG SSTANDS STM119 0.80 165.31 99.95 10.0000 100yr\_3hr\_Chicago 0.13 75.86 27.76 0.5000 100yr\_3hr\_Chicago STMGG 0.16 167.82 96.59 0.5000 100yr\_3hr\_Chicago

WARNING 02: maximum depth increased for Node STMD WARNING 02: maximum depth increased for Node STMDD WARNING 02: maximum depth increased for Node STMFF WARNING 02: maximum depth increased for Node STMGG

Element Count

Number of rain gages 18
Number of subcatchments 33
Number of nodes 89
Number of links 13
Number of pollutants 0 Number of land uses ......

\*\*\*\*\*\* Raingage Summary

Recording Name Data Source Type Interval Oloyr\_3hr\_Chicago 100yr\_3hr\_Chicago INTENSITY 10 min.
100yr\_3hr\_Chicago\_Climate\_Change 100yr\_3hr\_Chicago\_Increase\_20percent INTENSITY
) min.

min. 100yr\_6hr\_Chicago 100yr\_6hr\_Chicago INTENSITY 10 min. 100yr\_6hr\_Chicago\_Climate\_Change 100yr\_6hr\_Chicago\_Increase\_20percent INTENSITY min. THTENSITY INTENSITY
INTENSITY
INTENSITY 10
INTENSITY 10
INTENSITY 10
INTENSITY 10
INTENSITY 10 10 min 10 min. 25mm 4hr\_Chicago 25yr\_3hr\_Chicago 25yr\_6hr\_Chicago 2yr\_3hr\_Chicago 2yr\_6hr\_Chicago 50yr\_3hr\_Chicago 50yr\_3hr\_Chicago 5yr\_3hr\_Chicago 5yr\_6hr\_Chicago 25yr\_3hr\_Chicago 25yr\_6hr\_Chicago INTENSITY 10 min. 10 min. INTENSITY 2yr\_6hr\_Chicago 2yr\_6hr\_Chicago 50yr\_3hr\_Chicago 50yr\_6hr\_Chicago 5yr\_5hr\_Chicago 10 min. 10 min. 10 min. INTENSITY INTENSITY INTENSITY INTENSITY 10 min. 10 min. INTENSITY

INTENSITY

10 min

\*\*\*\*\*\* Subcatchment Summary

5yr\_6hr\_Chicago

Area Width %Imperv %Slope Rain Gage 102 CBMH2A 64.22 0.5000 100yr\_3hr\_Chicago 0.44 44.37 CBMH2A 107AA STM106A 108 BASIN1 0.27 176.73 86.34 0.5000 100yr\_3hr\_Chicago 0.34 162.73 68.53 0.5000 100yr\_3hr\_Chicago 0.29 88.92 87.48 0.5000 100yr\_3hr\_Chicago

\*\*\*\*\*\*

|         |                      |       |                      | Ponded |  |
|---------|----------------------|-------|----------------------|--------|--|
| Name    | Type                 |       |                      | Area   |  |
| CBA1    | JUNCTION             | 64.07 | 1.93                 | 0.0    |  |
| CBMH2A  | JUNCTION             | 63.89 | 2.31                 | 0.0    |  |
| CBMHU   | JUNCTION             | 63.36 | 2.31                 | 0.0    |  |
| J1      | JUNCTION             | 63.56 | 2 79                 | 0.0    |  |
| J19     | JUNCTION             | 63.62 | 2.08                 | 720.0  |  |
| J32     | JUNCTION             | 62.76 | 2.08                 | 0.0    |  |
| J33     | JUNCTION             | 63.09 | 3.00                 | 0.0    |  |
| J37     | JUNCTION             | 63.68 | 2.42                 | 466.0  |  |
| J40     | JUNCTION             | 62.91 | 3.00<br>2.42<br>2.21 | 0.0    |  |
| J48     | JUNCTION             | 64.69 | 3.00                 | 0.0    |  |
| J49     | JUNCTION             | 64.40 | 3.00                 | 0.0    |  |
| J50     | JUNCTION             | 65.08 | 3.00                 | 0.0    |  |
| J51     | JUNCTION             | 65.35 | 3.00                 | 0.0    |  |
| J52     | JUNCTION             | 65.31 | 3.00                 | 0.0    |  |
| J53     | JUNCTION             | 65.25 | 3.00                 |        |  |
| J54     | JUNCTION             | 65.25 | 3.00                 | 0.0    |  |
| J55     | JUNCTION             | 65.20 | 3.00                 | 0.0    |  |
| J56     | JUNCTION             | 64.95 | 3.00                 | 0.0    |  |
| J57     | JUNCTION             | 65.30 | 3.00                 | 0.0    |  |
| J58     | JUNCTION             | 65.35 | 3.00                 | 0.0    |  |
| J59     | JUNCTION             | 65.58 | 3.00                 | 0.0    |  |
| J60     | JUNCTION             | 64.65 | 3.00                 | 0.0    |  |
| J61     | JUNCTION             | 64.30 | 3.00                 |        |  |
| J62     | JUNCTION             | 64.70 | 3.00                 | 0.0    |  |
| J63     | JUNCTION             | 64.50 | 3.00<br>3.00<br>3.00 | 0.0    |  |
| J64     | JUNCTION             | 64.65 | 3.00                 | 0.0    |  |
| J65     | JUNCTION             | 65.10 | 3.00                 | 0.0    |  |
| J66     | JUNCTION             | 64.50 | 3.00                 | 0.0    |  |
| J67     | JUNCTION             | 65.17 | 3.00                 | 0.0    |  |
| J68     | JUNCTION             | 65.00 | 3.00                 | 0.0    |  |
| J69     | JUNCTION<br>JUNCTION | 65.43 | 3.00                 | 0.0    |  |
| J70     | JUNCTION             | 65.20 | 3.00                 | 0.0    |  |
| J71     | JUNCTION<br>JUNCTION | 65.70 | 3.00                 | 0.0    |  |
| J72     | JUNCTION             | 65.30 | 3.00                 | 0.0    |  |
| J73     | JUNCTION             | 64.93 | 3.00                 | 0.0    |  |
| J74     | JUNCTION             | 65.01 | 3.00                 | 0.0    |  |
| J75     | JUNCTION             | 65.89 | 3.00                 | 0.0    |  |
| J76     | JUNCTION             | 62.95 | 2.45                 | 0.0    |  |
| STM101  | JUNCTION             | 62.25 | 2.88                 | 0.0    |  |
| STM101A | JUNCTION             | 62.29 | 2.88                 | 0.0    |  |
| STM102  | JUNCTION             | 64.26 | 3.14                 | 0.0    |  |
| STM102A | JUNCTION             | 62.35 | 3.65<br>2.88         | 0.0    |  |
| STM104  | JUNCTION             | 62.49 | 2.88                 | 0.0    |  |
| STM105  | JUNCTION             | 62.53 | 4.36                 | 0.0    |  |
| STM106A | JUNCTION             | 62.64 | 3.29                 | 1000.0 |  |
| STM106B | JUNCTION             | 62.64 | 3.29                 | 1000.0 |  |
| STM107  | JUNCTION             | 62.72 | 3.53                 | 0.0    |  |
| STM108  | JUNCTION             | 62.00 | 3.95                 |        |  |
| STM109  | JUNCTION             | 62.91 | 3.32                 |        |  |
| STM110  | JUNCTION             | 63.14 | 3.10                 | 0.0    |  |
| STM111  | JUNCTION             | 63.28 | 3.17                 | 0.0    |  |

| STM111A                    | JUNCTION           | 63.76    | 2.54    | 0.0    |   |   | C15             |        | STM-CCN1   |
|----------------------------|--------------------|----------|---------|--------|---|---|-----------------|--------|------------|
| STM112                     | JUNCTION           | 62.99    | 3.13    | 0.0    |   |   | 0.2126          | 0.0130 |            |
| STM113                     | JUNCTION           | 63.59    | 3.83    | 0.0    |   |   | C16             |        | STM111     |
| STM114                     | JUNCTION           | 63.77    | 2.78    | 0.0    |   |   | 0.2785          |        |            |
| STM115                     | JUNCTION           | 63.95    | 3.10    | 0.0    |   |   | C17             |        | STM110     |
| STM116                     | JUNCTION           | 63.14    | 2.73    | 0.0    |   |   | 0.1770<br>C18   |        | STMDD      |
| TM116_STA                  | JUNCTION           | 63.87    |         | 0.0    |   |   | 0.0992          |        | STMDD      |
| TM117                      | JUNCTION           | 63.91    | 3.51    | 0.0    |   |   |                 | 0.0130 | OFF141 0 0 |
| TM118                      | JUNCTION           | 63.96    | 3.51    | 0.0    |   |   | C18_1<br>0.1271 | 0.0130 | STM109     |
| TM119                      | JUNCTION           | 64.11    | 3.00    | 0.0    |   |   | C18 2           |        | J40        |
| STM121                     | JUNCTION           | 63.31    | 2.94    | 0.0    |   |   | 0.1265          |        | 040        |
| STM122                     | JUNCTION           | 63.68    | 2.63    | 0.0    |   |   | C19             | 0.0130 | STMFF      |
| STMA                       | JUNCTION           | 63.56    | 2.58    | 0.0    |   |   | 0.0526          | 0.0130 | 011111     |
| TMAA                       | JUNCTION           | 63.76    | 2.64    | 0.0    |   |   | C2              | 0.0150 | STM102     |
| TMB                        | JUNCTION           | 63.44    | 2.58    | 0.0    |   |   | 0.1975          | 0.0130 | 0111101    |
| TMBB                       | JUNCTION           | 63.57    | 2.83    | 0.0    |   |   | C20             |        | STMGG      |
| TMC                        | JUNCTION           | 63.35    | 2.21    | 0.0    |   |   | 6.1921          | 0.0130 |            |
| TMCC                       | JUNCTION           | 63.42    | 2.78    | 0.0    |   | 1 | C21             |        | STMCC      |
| TM-CCN1                    | JUNCTION           | 63.32    | 3.03    | 0.0    |   | 1 | 0.2247          | 0.0130 |            |
| TM-CCN2                    | JUNCTION           | 63.79    | 2.79    | 0.0    |   | 1 | C21 1           |        | STM108     |
| STMD                       | JUNCTION           | 63.18    |         | 0.0    |   | 1 | 0.0599          | 0.0130 |            |
| STMDD                      | JUNCTION           | 63.12    |         | 0.0    |   | 1 | C21 2           |        | J32        |
| STMFF                      | JUNCTION           | 63.09    | 2.82    | 0.0    |   |   | 0.0565          | 0.0130 |            |
| STMGG                      | JUNCTION           | 63.03    | 2.85    | 0.0    |   |   | C22             |        | J19        |
| Canal Outlet               | OUTFALL            |          | 1.02    | 0.0    |   |   | 0.5029          | 0.0130 |            |
| J28                        | OUTFALL            |          | 0.97    | 0.0    |   |   | C23             |        | CBMHU      |
| BASIN1                     | STORAGE            | 62.81    |         | 0.0    |   |   | 0.5054          | 0.0130 |            |
| BASIN2                     | STORAGE            | 62.95    |         | 0.0    |   |   | C24             |        | STM122     |
| BASINZ<br>Great-Lawn-Stora |                    |          | 0.50    | 0.0    |   |   | 0.3752          | 0.0130 |            |
| S-BLDG-A                   | STORAGE<br>STORAGE | 100.00   |         | 0.0    |   |   | C25             |        | STM121     |
| S-BLDG-A<br>S-BLDG-B       | STORAGE            | 100.00   | 0.15    | 0.0    |   |   | 0.3937          |        |            |
| S-BLDG-B<br>S-BLDG-C       | STORAGE            |          | 0.15    | 0.0    |   |   | C26             |        | STM107     |
| S-BLDG-C<br>S-BLDG-D       | STORAGE            |          | 0.15    | 0.0    |   |   | 0.1703          |        |            |
|                            | STORAGE            | 100.00   | 0.15    | 0.0    |   |   | C27             |        | STMBB      |
| S-BLDG-G                   |                    |          |         |        |   |   | 0.2347          |        |            |
| S-BLDG-H                   | STORAGE            | 100.00   |         | 0.0    |   |   | C27_2           |        | STM106B    |
| S-BLDG-I                   | STORAGE            |          | 0.15    |        |   |   | 0.1093          | 0.0130 |            |
| S-BLDG-J                   | STORAGE            | 100.00   |         |        |   |   | C28             |        | STM105     |
| S-BLDG-K                   | STORAGE            | 100.00   | 0.15    | 0.0    |   |   | 0.0711          | 0.0130 |            |
|                            |                    |          |         |        |   |   | C29             |        | STM104     |
|                            |                    |          |         |        |   |   | 0.1394          |        |            |
| ******                     |                    |          |         |        |   |   | C3              | 0.0120 | STM119     |
| ink Summary                |                    |          |         |        |   |   | 0.1976          | 0.0130 |            |
| *******                    |                    |          |         |        |   |   | C30             |        | STM102A    |
|                            | From Node          | To Node  | Type    | Length | 8 |   | 0.1125<br>C31   | 0.0130 | STM101A    |
| ope Roughness              |                    |          |         |        |   |   | 0.4383          | 0.0120 | SIMIUIA    |
|                            |                    |          |         |        |   |   | 0.4383<br>C32   | 0.0130 | STM101     |
|                            |                    |          |         |        |   |   | 0.3695          | 0.0120 | SIMIUI     |
| 1                          | STM115             | STM114   | CONDUIT | 75.0   |   |   | C33             | 0.0130 | J37        |
| 2001 0.0130                |                    |          |         |        |   |   |                 | 0.0130 | 0.5 /      |
| 10                         | STMC               | STMD     | CONDUIT | 53.4   |   |   | C34             | 0.0130 | .71        |
| 0.0130                     |                    |          |         |        |   |   | 0.5178          |        | 01         |
| 11                         | STMD               | STM116   | CONDUIT | 56.4   |   |   | C35             | 0.0130 | STMA       |
| 709 0.0130                 |                    |          |         |        |   |   | 0.0999          |        | SIM        |
| 12                         | STM116             | STM112   | CONDUIT | 81.9   |   |   | C36             | 0.0150 | STMB       |
|                            |                    |          |         |        |   |   | 0.0761          | 0.0130 | SIMD       |
|                            | STM-CCN2           | STM-CCN1 | CONDUIT | 24.3   |   |   | C37             | 0.0150 | J33        |
| 1588 0.0130<br>C13         |                    |          |         |        |   |   | 0.8418          | 0.0130 | 033        |
|                            | STM111A            | STM-CCN1 | CONDUIT | 17.9   |   |   |                 |        |            |

| C38           |        | STMAA      | STMBB      | CONDUIT  | 73.4    |
|---------------|--------|------------|------------|----------|---------|
| 0.1498<br>C39 | 0.0130 | CBMH2A     | STMAA      | CONDUIT  | 35.7    |
| 0.1400        | 0.0130 |            |            | 00112011 |         |
| C4<br>0.2278  | 0.0130 | STM118     | STM117     | CONDUIT  | 8.8     |
| C40           | 0.0150 | CBA1       | CBMH2A     | CONDUIT  | 92.3    |
| 0.1517<br>C41 | 0.0130 | J48        | J49        | CONDUIT  | 88.2    |
| 0.3287        | 0.0350 | J48        | 349        | CONDUIT  | 88.2    |
| C42<br>1.7782 | 0.0130 | J49        | STMD       | CONDUIT  | 39.4    |
| C43           | 0.0130 | J50        | J51        | CONDUIT  | 105.0 - |
| 0.2570        | 0.0350 |            |            |          |         |
| C44<br>3.0571 | 0.0240 | J51        | J48        | CONDUIT  | 21.6    |
| C45           |        | J52        | J53        | CONDUIT  | 90.8    |
| 0.0661<br>C46 | 0.0130 | J53        | J54        | CONDUIT  | 22.0    |
| 0.0014        | 0.0130 |            |            |          |         |
| C47<br>0.6525 | 0.0130 | J54        | J55        | CONDUIT  | 7.7     |
| C48           |        | J55        | J56        | CONDUIT  | 65.7    |
| 0.3804<br>C49 | 0.0130 | J59        | J58        | CONDUIT  | 18.0    |
| 1.2770        | 0.0130 |            |            |          |         |
| C5<br>0.1504  | 0.0130 | STM117     | STM116_STA | CONDUIT  | 6.7     |
| C50           |        | J58        | J57        | CONDUIT  | 14.2    |
| 0.3521<br>C51 | 0.0130 | J57        | J52        | CONDUIT  | 47.6 -  |
| 0.0210        | 0.0130 |            |            |          |         |
| C52<br>0.4980 | 0.0350 | J60        | J61        | CONDUIT  | 70.3    |
| C53           |        | J62        | J63        | CONDUIT  | 26.8    |
| 0.7450<br>C54 | 0.0350 | J64        | J63        | CONDUIT  | 37.1    |
| 0.4039        | 0.0350 |            |            |          |         |
| C55<br>1.1643 | 0.0350 | J65        | J66        | CONDUIT  | 51.5    |
| C56           |        | J67        | J68        | CONDUIT  | 10.1    |
| 1.6809<br>C57 | 0.0350 | J69        | J68        | CONDUIT  | 52.1    |
| 0.8247        | 0.0350 |            |            |          |         |
| C58<br>0.5794 | 0.0350 | J69        | J70        | CONDUIT  | 39.7    |
| C59           |        | J71        | J72        | CONDUIT  | 27.8    |
| 1.4378<br>C6  | 0.0130 | STM116 STA | STM113     | CONDUIT  | 63.3    |
| 0.2053        | 0.0130 | -          |            |          |         |
| C60<br>1.0892 | 0.0130 | J72        | J73        | CONDUIT  | 34.0    |
| C61           |        | J74        | J73        | CONDUIT  | 9.6     |
| 0.8371<br>C62 | 0.0130 | J54        | J74        | CONDUIT  | 17.9    |
| 1.3420        | 0.0130 |            |            |          |         |
| C63<br>0.8607 | 0.0130 | J75        | J71        | CONDUIT  | 22.1    |
| C64           |        | BASIN2     | J76        | CONDUIT  | 3.0     |
| 0.0102        | 0.0130 |            |            |          |         |

| C7             |        | STM114     | STM113           | CONDUIT |
|----------------|--------|------------|------------------|---------|
| 0.2004<br>C8   | 0.0130 | STM113     | STM112           | CONDUIT |
| 0.0999         | 0.0130 | STM113     | STMIIZ           | CONDUIT |
| C9             |        | STM112     | STM109           | CONDUIT |
|                | 0.0130 |            |                  |         |
| W24            |        | STM115     | STM114           | CONDUIT |
| 0.6623         |        |            |                  |         |
| W25            |        | STM114     | STM113           | CONDUIT |
| 0.1974<br>W26  | 0.0130 | STM113     | STM112           | CONDUIT |
| 0.5495         | 0.0100 | SIMILIS    | SIMILE           | CONDUIT |
| W27            |        | STM102     | STM119           | CONDUIT |
| 0.4727         | 0.0130 |            |                  |         |
| W28            |        | STM119     | STM118           | CONDUIT |
| 3.5105         |        |            |                  |         |
| W29<br>25.4307 |        | STM118     | STM117           | CONDUIT |
| W30            |        | STM117     | STM116 STA       | CONDUIT |
|                | 0.0130 | 0111111    |                  | COMPOLI |
| W31            |        | STM116 STA | STM113           | CONDUIT |
| 0.1417         | 0.0100 | _          |                  |         |
| C27_1          |        | STM106A    | STM106B          | ORIFICE |
| OR1            |        | BASIN2     | J40              | ORIFICE |
| OR2            |        | BASIN1     | J32              | ORIFICE |
| OL16           |        | STM102A    | J68              | WEIR    |
| W10            |        | STMB       | J48              | WEIR    |
| W11            |        | STMC       | J49              | WEIR    |
| W12            |        | STMA       | J50              | WEIR    |
| W13            |        | STM111     | Great-Lawn-Stora | de METR |
| W14            |        | STMD       | J60              | WEIR    |
| W15            |        | STMDD      | Great-Lawn-Stora |         |
|                |        |            |                  |         |
| W16            |        | STM122     | J52              | WEIR    |
| W17            |        | STM121     | J53              | WEIR    |
| W18            |        | STM107     | J54              | WEIR    |
| W19            |        | J32        | J55              | WEIR    |
| W2             |        | J40        | BASIN2           | WEIR    |
| W20            |        | STM108     | J56              | WEIR    |
| W21            |        | STM-CCN2   | J59              | WEIR    |
| W22            |        | STM-CCN1   | J58              | WEIR    |
| W23            |        | STM111A    | J57              | WEIR    |
| W3             |        | J32        | BASIN1           | WEIR    |
| W32            |        | STM110     | Great-Lawn-Stora |         |
| W32<br>W33     |        | STMAA      | J65              | WEIR    |
| W34            |        |            |                  |         |
|                |        | STMBB      | J64              | WEIR    |
| W35            |        | STMCC      | J62              | WEIR    |
| W36            |        | J1         | J55              | WEIR    |
| W37            |        | CBMHU      | J56              | WEIR    |
| W38            |        | CBA1       | J68              | WEIR    |
| W39            |        | CBMH2A     | J70              | WEIR    |
| W4             |        | J19        | J63              | WEIR    |
| W40            |        | STM109     | Great-Lawn-Stora |         |
| W41            |        | STM106A    | J73              | WEIR    |
| W42            |        | STM105     | J75              | WEIR    |
| W43            |        | STM106B    | J73              | WEIR    |
| W44            |        | J76        | Great-Lawn-Stora | ge WEIR |
| W45            |        | J37        | J66              | WEIR    |
| W5             |        |            | Great-Lawn-Stora | ge WEIR |
|                |        |            |                  | J.      |
|                |        |            |                  |         |

CONDUIT

9.4

39.5

11.3

30.2

43.3

59.3

57.0

60.8

16.7

53.4

70.1

31.8

41.5

90.6

25.4 23.5 63.9 82.3 14.1 78.9

60.7

17.8

4.6 8.1

20.0

100.1

105.1

10.7

74.9
50.1
49.2
75.5
76.0
51.0
61.3
61.3
10.4
8.3
63.5

| W6   | STMFF             | Great-Lawn-Storag | ge WEIR |
|------|-------------------|-------------------|---------|
| W7   | STMGG             | Great-Lawn-Storag | ge WEIR |
| W8   | STM108            | Great-Lawn-Storag | ge WEIR |
| W9   | STM112            | Great-Lawn-Storag | ge WEIR |
| OL1  | J61               | STMC              | OUTLET  |
| OL10 | S-BLDG-H          | STM-CCN1          | OUTLET  |
| OL11 | S-BLDG-G          | STM-CCN1          | OUTLET  |
| OL12 | S-BLDG-I          | STM115            | OUTLET  |
| OL13 | S-BLDG-K          | STM115            | OUTLET  |
| OL14 | Great-Lawn-Storag | ge STMGG          | OUTLET  |
| OL15 | Great-Lawn-Storag | ge STMFF          | OUTLET  |
| OL17 | S-BLDG-J          | STM-CCN2          | OUTLET  |
| OL2  | J63               | STMCC             | OUTLET  |
| OL3  | J66               | STMBB             | OUTLET  |
| OL4  | J68               | CBA1              | OUTLET  |
| OL5  | J70               | CBMH2A            | OUTLET  |
| OL6  | S-BLDG-A          | STM122            | OUTLET  |
| OL7  | S-BLDG-B          | STM122            | OUTLET  |
| OL8  | S-BLDG-C          | STM122            | OUTLET  |
| OL9  | S-BLDG-D          | STM122            | OUTLET  |
| W1   | Great-Lawn-Storag | je J33            | OUTLET  |
|      |                   |                   |         |

### \*\*\*\*\*\*

| С | r | 0 | s | s |   | S | е | С | t | i | 0 | n |   | S | u | m | m | a | r |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |  |

|                 |           | Full  | Full | Hyd. | Max.  | No. of  |  |
|-----------------|-----------|-------|------|------|-------|---------|--|
| Full            |           |       |      |      |       |         |  |
| Conduit<br>Flow | Shape     | Depth | Area | Rad. | Width | Barrels |  |
|                 |           |       |      |      |       |         |  |
|                 |           |       |      |      |       |         |  |
| C1              | CIRCULAR  | 0.82  | 0.53 | 0.21 | 0.82  | 1       |  |
| 0.64            |           |       |      |      |       |         |  |
| C10             | CIRCULAR  | 0.60  | 0.28 | 0.15 | 0.60  | 1       |  |
| 0.19            | 077077737 | 0.00  | 0.64 | 0.00 | 0.00  | 1       |  |
| C11<br>0.48     | CIRCULAR  | 0.90  | 0.64 | 0.23 | 0.90  | 1       |  |
| C12             | CIRCULAR  | 0.90  | 0.64 | 0.23 | 0.90  | 1       |  |
| 0.72            |           |       |      |      |       |         |  |
| C13             | CIRCULAR  | 0.25  | 0.05 | 0.06 | 0.25  | 1       |  |
| 0.04            |           |       |      |      |       |         |  |
| C14             | CIRCULAR  | 0.25  | 0.05 | 0.06 | 0.25  | 1       |  |
| 0.04<br>C15     | CIRCULAR  | 0.60  | 0.28 | 0.15 | 0.60  | 1       |  |
| 0.28            | CIRCULAR  | 0.00  | 0.20 | 0.13 | 0.00  | 1       |  |
| C16             | CIRCULAR  | 0.60  | 0.28 | 0.15 | 0.60  | 1       |  |
| 0.32            |           |       |      |      |       |         |  |
| C17             | CIRCULAR  | 0.60  | 0.28 | 0.15 | 0.60  | 1       |  |
| 0.26            |           |       |      |      |       |         |  |
| C18<br>0.57     | CIRCULAR  | 0.90  | 0.64 | 0.23 | 0.90  | 1       |  |
| C18 1           | CIRCULAR  | 1.35  | 1.43 | 0.34 | 1.35  | 1       |  |
| 1.90            |           |       |      |      |       | _       |  |
| C18_2           | CIRCULAR  | 1.35  | 1.43 | 0.34 | 1.35  | 1       |  |
| 1.90            |           |       |      |      |       |         |  |
| C19             | CIRCULAR  | 0.90  | 0.64 | 0.23 | 0.90  | 1       |  |
| 0.42            |           |       |      |      |       |         |  |

| C2                  | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
|---------------------|-------------|------|------|------|------|---|
| 0.13<br>C20         | CIRCULAR    | 0.90 | 0.64 | 0.23 | 0.90 | 1 |
| 4.51<br>C21         | CIRCULAR    | 0.50 | 0.22 | 0.13 | 0.53 | 1 |
| 0.20                | CIRCULAR    | 0.53 | 0.22 | 0.13 | 0.53 | 1 |
| C21_1<br>1.31       | CIRCULAR    | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
|                     | CIRCULAR    | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
|                     | CIRCULAR    | 0.20 | 0.03 | 0.05 | 0.20 | 1 |
|                     | CIRCULAR    | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
|                     | CIRCULAR    | 0.68 | 0.36 | 0.17 | 0.68 | 1 |
| C25<br>0.53         | CIRCULAR    | 0.68 | 0.36 | 0.17 | 0.68 | 1 |
|                     | CIRCULAR    | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
| C27<br>0.21         | CIRCULAR    | 0.53 | 0.22 | 0.13 | 0.53 | 1 |
|                     | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C28<br>0.60         | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
|                     | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C3<br>0.13          | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
|                     | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C31<br>1.48         | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C32<br>1.36         | CIRCULAR    | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C33<br>0.04         | CIRCULAR    | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
| C34                 | CIRCULAR    | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
| 0.04<br>C35<br>0.19 | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C36<br>0.17         | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C37<br>0.56         | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C38<br>0.11         | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
|                     | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 |
| C4                  | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
|                     | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 |
|                     | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
|                     | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 |
| 0.13<br>C43         | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
| 3.87                |             |      |      |      |      |   |

| C44                   | CIRCULAR    | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
|-----------------------|-------------|------|------|------|------|---|
| 0.06<br>C45           | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 13.63<br>C46          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 1.98<br>C47           | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 42.85<br>C48          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 32.71<br>C49          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 59.94<br>C5           | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| 0.24<br>C50           | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 31.48<br>C51          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 7.69<br>C52           | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
| 5.39<br>C53           | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
| 6.59<br>C54           | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
| 4.85<br>C55           | TRAPEZOIDAL | 1.00 | 4.00 | 0.55 | 7.00 | 1 |
| 8.24<br>C56           | TRAPEZOIDAL | 1.00 | 3.00 | 0.47 | 6.00 | 1 |
| 6.76<br>C57           | TRAPEZOIDAL | 1.00 | 3.00 | 0.47 | 6.00 | 1 |
| 4.74<br>C58           | TRAPEZOIDAL | 1.00 | 3.00 | 0.47 | 6.00 | 1 |
| 3.97<br>C59           | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 63.60<br>C6           | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| 0.28<br>C60           | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 55.36<br>C61          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| 48.53<br>C62<br>61.44 | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| C63<br>49.21          | RECT_OPEN   | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| C64<br>0.18           | CIRCULAR    | 0.90 | 0.64 | 0.23 | 0.90 | 1 |
| C7<br>0.64            | CIRCULAR    | 0.82 | 0.53 | 0.21 | 0.82 | 1 |
| C8<br>0.86            | CIRCULAR    | 1.05 | 0.87 | 0.26 | 1.05 | 1 |
| C9<br>1.24            | CIRCULAR    | 1.20 | 1.13 | 0.30 | 1.20 | 1 |
| W24<br>24.85          | RECT_OPEN   | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| W25                   | RECT_OPEN   | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| 10.44<br>W26<br>22.63 | RECT_OPEN   | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| 22.63<br>W27<br>16.15 | RECT_OPEN   | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
|                       |             |      |      |      |      |   |

| W28<br>57.20  | RECT_OPEN | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
|---------------|-----------|------|------|------|------|---|
| W29           | RECT_OPEN | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| 118.43<br>W30 | RECT_OPEN | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| 11.53<br>W31  | RECT OPEN | 1.00 | 4.00 | 0.67 | 4.00 | 1 |
| 11.49         | _         |      |      |      |      |   |

### \*\*\*\*\*\*\*\*\*\*\*\* Shape Summary \*\*\*\*\*\*\*\*\*\*

| Area:     | -      |        |        |        |      |
|-----------|--------|--------|--------|--------|------|
|           | 0.0040 | 0.0122 | 0.0237 | 0.0378 | 0.05 |
|           | 0.0723 | 0.0915 | 0.1116 | 0.1323 | 0.15 |
|           | 0.1753 | 0.1974 | 0.2200 | 0.2429 | 0.26 |
|           | 0.2892 | 0.3125 | 0.3357 | 0.3589 | 0.38 |
|           | 0.4053 | 0.4285 | 0.4517 | 0.4749 | 0.49 |
|           | 0.5213 | 0.5445 | 0.5677 | 0.5910 | 0.61 |
|           | 0.6374 | 0.6606 | 0.6838 | 0.7070 | 0.73 |
|           | 0.7534 | 0.7766 | 0.7998 | 0.8230 | 0.84 |
|           | 0.8695 | 0.8927 | 0.9159 | 0.9381 | 0.95 |
|           | 0.9725 | 0.9845 | 0.9931 | 0.9983 | 1.00 |
| Hrad:     |        |        |        |        |      |
|           | 0.0326 | 0.0620 | 0.0927 | 0.1255 | 0.15 |
|           | 0.1941 | 0.2345 | 0.2757 | 0.3174 | 0.35 |
|           | 0.4018 | 0.4435 | 0.4860 | 0.5280 | 0.57 |
|           | 0.6191 | 0.6650 | 0.7103 | 0.7551 | 0.79 |
|           | 0.8433 | 0.8866 | 0.9295 | 0.9719 | 1.01 |
|           | 1.0552 | 1.0963 | 1.1369 | 1.1770 | 1.21 |
|           | 1.2560 | 1.2949 | 1.3334 | 1.3715 | 1.40 |
|           | 1.4465 | 1.4834 | 1.5199 | 1.5561 | 1.59 |
|           | 1.6273 | 1.6624 | 1.6971 | 1.5863 | 1.45 |
|           | 1.3366 | 1.2373 | 1.1497 | 1.0712 | 1.00 |
| Width:    |        |        |        |        |      |
|           | 0.2699 | 0.4300 | 0.5564 | 0.6554 | 0.74 |
|           | 0.8096 | 0.8484 | 0.8791 | 0.9048 | 0.92 |
|           | 0.9452 | 0.9640 | 0.9791 | 0.9940 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00 |
|           | 1.0000 | 1.0000 | 1.0000 | 0.8889 | 0.74 |
|           | 0.5926 | 0.4444 | 0.2963 | 0.1481 | 0.00 |
| Shape 0.5 | 10_2   |        |        |        |      |
| Area:     |        |        |        |        |      |
|           | 0.0007 | 0.0029 | 0.0063 | 0.0108 | 0.01 |
|           | 0.0230 | 0.0306 | 0.0392 | 0.0487 | 0.05 |
|           | 0.0705 | 0.0827 | 0.0958 | 0.1097 | 0.12 |
|           | 0.1399 | 0.1562 | 0.1733 | 0.1911 | 0.20 |
|           | 0.2288 | 0.2488 | 0.2694 | 0.2908 | 0.31 |
|           | 0.3355 | 0.3589 | 0.3829 | 0.4075 | 0.43 |

|           | 0.4589 | 0.4855 | 0.5128 | 0.5408 | 0.5694 |  |           | 0.6902 | 0.7107 | 0.7313 | 0.7519 | 0.7724 |
|-----------|--------|--------|--------|--------|--------|--|-----------|--------|--------|--------|--------|--------|
|           | 0.5987 | 0.6287 | 0.6593 | 0.6906 | 0.7225 |  |           | 0.7930 | 0.8135 | 0.8341 | 0.8547 | 0.8752 |
|           | 0.7551 | 0.7884 | 0.8223 | 0.8570 | 0.7223 |  |           | 0.8958 | 0.9153 | 0.0341 | 0.9538 | 0.0732 |
|           | 0.9284 |        | 0.0223 |        |        |  |           | 0.9923 |        |        | 0.9338 | 0.0000 |
| Hrad:     | 0.9284 | 0.9598 | 0.9822 | 0.9956 | 1.0000 |  |           | 0.9923 | 0.8333 | 0.5556 | 0.2778 | 0.0000 |
| Hrad:     | 0 0070 | 0.0761 | 0 1167 | 0.1577 | 0.1971 |  | Shape 1.0 | 20 1   |        |        |        |        |
|           | 0.0372 |        | 0.1167 |        | 0.1971 |  | Area:     | 30_1   |        |        |        |        |
|           | 0.2365 | 0.2767 | 0.3160 | 0.3545 |        |  | nied:     | 0.0011 | 0.0036 | 0.0070 | 0.0115 | 0.0170 |
|           | 0.4324 | 0.4727 | 0.5123 | 0.5513 | 0.5899 |  |           | 0.0011 | 0.0036 | 0.0070 | 0.0115 | 0.0170 |
|           | 0.6298 | 0.6707 | 0.7109 | 0.7506 | 0.7899 |  |           |        |        |        |        |        |
|           | 0.8288 | 0.8684 | 0.9079 | 0.9473 | 0.9872 |  |           | 0.1137 | 0.1363 | 0.1590 | 0.1817 | 0.2045 |
|           | 1.0266 | 1.0657 | 1.1045 | 1.1430 | 1.1812 |  |           | 0.2272 | 0.2499 | 0.2727 | 0.2954 | 0.3181 |
|           | 1.2191 | 1.2568 | 1.2943 | 1.3316 | 1.3687 |  |           | 0.3409 | 0.3636 | 0.3863 | 0.4090 | 0.4318 |
|           | 1.4056 | 1.4423 | 1.4789 | 1.5153 | 1.5517 |  |           | 0.4545 | 0.4772 | 0.5000 | 0.5227 | 0.5454 |
|           | 1.5879 | 1.6237 | 1.6580 | 1.6923 | 1.7266 |  |           | 0.5681 | 0.5909 | 0.6136 | 0.6363 | 0.6591 |
|           | 1.7432 | 1.4768 | 1.2801 | 1.1258 | 1.0000 |  |           | 0.6818 | 0.7045 | 0.7272 | 0.7500 | 0.7727 |
| Width:    |        |        |        |        |        |  |           | 0.7954 | 0.8182 | 0.8409 | 0.8636 | 0.8864 |
|           | 0.0402 | 0.0771 | 0.1097 | 0.1387 | 0.1678 |  |           | 0.9091 | 0.9318 | 0.9545 | 0.9773 | 1.0000 |
|           | 0.1958 | 0.2219 | 0.2480 | 0.2741 | 0.3002 |  | Hrad:     |        |        |        |        |        |
|           | 0.3244 | 0.3474 | 0.3704 | 0.3935 | 0.4165 |  |           | 0.0314 | 0.0635 | 0.0926 | 0.1201 | 0.1455 |
|           | 0.4380 | 0.4582 | 0.4785 | 0.4987 | 0.5189 |  |           | 0.1620 | 0.1324 | 0.1419 | 0.1823 | 0.2297 |
|           | 0.5392 | 0.5585 | 0.5776 | 0.5964 | 0.6146 |  |           | 0.2745 | 0.3125 | 0.3616 | 0.4100 | 0.4577 |
|           | 0.6327 | 0.6509 | 0.6691 | 0.6872 | 0.7054 |  |           | 0.5046 | 0.5507 | 0.5962 | 0.6410 | 0.6850 |
|           | 0.7235 | 0.7417 | 0.7599 | 0.7780 | 0.7962 |  |           | 0.7284 | 0.7712 | 0.8133 | 0.8548 | 0.8957 |
|           | 0.7235 | 0.7417 | 0.7599 | 0.8688 | 0.7962 |  |           | 0.9360 | 0.9758 | 1.0149 | 1.0535 | 1.0916 |
|           |        |        |        |        |        |  |           | 1.1291 | 1.1661 | 1.2026 | 1.2386 | 1.2741 |
|           | 0.9051 | 0.9235 | 0.9428 | 0.9622 | 0.9816 |  |           | 1.3091 |        | 1.2026 |        | 1.4445 |
|           | 0.9876 | 0.7397 | 0.4917 | 0.2445 | 0.0000 |  |           |        | 1.3436 |        | 1.4113 |        |
|           |        |        |        |        |        |  |           | 1.4773 | 1.5096 | 1.5415 | 1.5730 | 1.6041 |
| Shape 0.5 | 10_3   |        |        |        |        |  |           | 1.6348 | 1.6651 | 1.6950 | 1.7246 | 1.0000 |
| Area:     |        |        |        |        |        |  | Width:    |        |        |        |        |        |
|           | 0.0005 | 0.0019 | 0.0043 | 0.0076 | 0.0119 |  |           | 0.0832 | 0.1290 | 0.1738 | 0.2192 | 0.2684 |
|           | 0.0170 | 0.0230 | 0.0299 | 0.0377 | 0.0464 |  |           | 0.3361 | 0.6079 | 0.8354 | 0.9071 | 0.9283 |
|           | 0.0559 | 0.0663 | 0.0776 | 0.0897 | 0.1027 |  |           | 0.9547 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.1165 | 0.1312 | 0.1467 | 0.1631 | 0.1804 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.1985 | 0.2175 | 0.2373 | 0.2580 | 0.2795 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.3018 | 0.3250 | 0.3489 | 0.3736 | 0.3991 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.4254 | 0.4525 | 0.4804 | 0.5091 | 0.5386 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.5689 | 0.6000 | 0.6319 | 0.6645 | 0.6980 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.7323 | 0.7673 | 0.8031 | 0.8396 | 0.8769 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.9149 | 0.9516 | 0.9785 | 0.9946 | 1.0000 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Hrad:     | 0.51.5 | 0.3510 | 0.5705 | 0.55.0 | 1.0000 |  |           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 0.0376 | 0.0752 | 0.1127 | 0.1518 | 0.1901 |  | Shape 1.0 | 30 2   |        |        |        |        |
|           | 0.2280 | 0.2657 | 0.3033 | 0.3414 | 0.3798 |  | Area:     | _      |        |        |        |        |
|           | 0.4180 | 0.4559 | 0.4937 | 0.5313 | 0.5689 |  |           | 0.0006 | 0.0025 | 0.0059 | 0.0111 | 0.0174 |
|           | 0.6063 | 0.4333 | 0.6811 | 0.7183 | 0.7556 |  |           | 0.0246 | 0.0324 | 0.0407 | 0.0495 | 0.0589 |
|           | 0.7928 | 0.8300 | 0.8671 | 0.9042 | 0.9429 |  |           | 0.0687 | 0.0791 | 0.0900 | 0.1014 | 0.1133 |
|           | 0.7928 | 1.0207 | 1.0593 | 1.0978 | 1.1362 |  |           | 0.1257 | 0.1388 | 0.1524 | 0.1667 | 0.1133 |
|           | 1.1744 | 1.0207 | 1.0593 | 1.2884 | 1.1362 |  |           | 0.1237 | 0.2142 | 0.2318 | 0.2503 | 0.2694 |
|           | 1.3639 |        | 1.4392 |        |        |  |           | 0.2893 | 0.3100 | 0.3313 | 0.3532 | 0.3758 |
|           |        | 1.4016 |        | 1.4767 | 1.5142 |  |           | 0.3991 | 0.4229 | 0.4473 | 0.4723 | 0.4978 |
|           | 1.5516 | 1.5904 | 1.6294 | 1.6682 | 1.7069 |  |           |        |        |        |        |        |
|           | 1.7455 | 1.5679 | 1.3259 | 1.1446 | 1.0000 |  |           | 0.5241 | 0.5510 | 0.5787 | 0.6077 | 0.6381 |
| Width:    |        |        |        |        |        |  |           | 0.6695 | 0.7019 | 0.7354 | 0.7699 | 0.8055 |
|           | 0.0248 | 0.0496 | 0.0744 | 0.0976 | 0.1208 |  |           | 0.8421 | 0.8797 | 0.9185 | 0.9586 | 1.0000 |
|           | 0.1440 | 0.1672 | 0.1904 | 0.2131 | 0.2352 |  | Hrad:     |        |        |        |        |        |
|           | 0.2574 | 0.2796 | 0.3018 | 0.3240 | 0.3462 |  |           | 0.0439 | 0.0784 | 0.1169 | 0.1600 | 0.2149 |
|           | 0.3684 | 0.3905 | 0.4127 | 0.4349 | 0.4571 |  |           | 0.2771 | 0.3374 | 0.3949 | 0.4523 | 0.5075 |
|           | 0.4793 | 0.5015 | 0.5236 | 0.5458 | 0.5668 |  |           | 0.5611 | 0.6132 | 0.6640 | 0.7137 | 0.7620 |
|           | 0.5874 | 0.6079 | 0.6285 | 0.6490 | 0.6696 |  |           | 0.8054 | 0.8484 | 0.8912 | 0.9337 | 0.9723 |
|           |        |        |        |        |        |  |           |        |        |        |        |        |
|           |        |        |        |        |        |  |           |        |        |        |        |        |
|           |        |        |        |        |        |  |           |        |        |        |        |        |
|           |        |        |        |        |        |  |           |        |        |        |        |        |

|                    | 0.9801 | 1.0115 | 1.0497 | 1.0882 | 1.1268 |
|--------------------|--------|--------|--------|--------|--------|
|                    | 1.1656 | 1.2075 | 1.2511 | 1.2946 | 1.3380 |
|                    | 1.3842 | 1.4302 | 1.4758 | 1.5212 | 1.5663 |
|                    | 1.6056 | 1.6451 | 1.6692 | 1.6678 | 1.6891 |
|                    | 1.7156 | 1.7430 | 1.7713 | 1.8004 | 1.8302 |
|                    | 1.8607 | 1.8918 | 1.9130 | 1.9355 | 1.0000 |
| Width:             |        |        |        |        |        |
|                    | 0.0272 | 0.0632 | 0.1025 | 0.1394 | 0.1631 |
|                    | 0.1778 | 0.1913 | 0.2046 | 0.2167 | 0.2288 |
|                    | 0.2408 | 0.2529 | 0.2650 | 0.2771 | 0.2894 |
|                    | 0.3036 | 0.3178 | 0.3320 | 0.3462 | 0.3619 |
|                    | 0.3912 | 0.4118 | 0.4296 | 0.4473 | 0.4651 |
|                    | 0.4829 | 0.4993 | 0.5148 | 0.5304 | 0.5458 |
|                    | 0.5598 | 0.5739 | 0.5879 | 0.6020 | 0.6160 |
|                    | 0.6325 | 0.6491 | 0.6724 | 0.7082 | 0.7349 |
|                    | 0.7597 | 0.7846 | 0.8094 | 0.8343 | 0.8591 |
|                    | 0.8840 | 0.9088 | 0.9392 | 0.9696 | 1.0000 |
|                    | 220 2  |        |        |        |        |
| Shape 1.0<br>Area: | J3U_3  |        |        |        |        |
|                    | 0.0028 | 0.0081 | 0.0149 | 0.0226 | 0.0310 |
|                    | 0.0401 | 0.0498 | 0.0600 | 0.0709 | 0.0824 |
|                    | 0.0943 | 0.1068 | 0.1199 | 0.1335 | 0.1476 |
|                    | 0.1624 | 0.1777 | 0.1937 | 0.2102 | 0.2274 |
|                    | 0.2451 | 0.2634 | 0.2823 | 0.3018 | 0.3219 |
|                    | 0.3425 | 0.3637 | 0.3855 | 0.4079 | 0.4308 |
|                    | 0.4543 | 0.4784 | 0.5030 | 0.5282 | 0.5540 |
|                    | 0.5804 | 0.6073 | 0.6348 | 0.6628 | 0.6913 |
|                    | 0.7203 | 0.7496 | 0.7794 | 0.8096 | 0.8402 |
|                    | 0.8711 | 0.9025 | 0.9343 | 0.9668 | 1.0000 |
| Hrad:              |        |        |        |        |        |
|                    | 0.0451 | 0.0901 | 0.1398 | 0.1923 | 0.2412 |
|                    | 0.2899 | 0.3377 | 0.3838 | 0.4285 | 0.4737 |
|                    | 0.5176 | 0.5606 | 0.6026 | 0.6435 | 0.6817 |
|                    | 0.7195 | 0.7569 | 0.7939 | 0.8306 | 0.8670 |
|                    | 0.9031 | 0.9390 | 0.9747 | 1.0109 | 1.0473 |
|                    | 1.0834 | 1.1193 | 1.1550 | 1.1906 | 1.2260 |
|                    | 1.2612 | 1.2964 | 1.3313 | 1.3662 | 1.4010 |
|                    | 1.4356 | 1.4702 | 1.5050 | 1.5431 | 1.5809 |
|                    | 1.6213 | 1.6633 | 1.7049 | 1.7462 | 1.7871 |
|                    | 1.8279 | 1.8683 | 1.8978 | 1.9230 | 1.0000 |
| Width:             | 0.1283 | 0.1844 | 0.2182 | 0.2395 | 0.2610 |
|                    | 0.1203 | 0.2978 | 0.2152 | 0.3330 | 0.2010 |
|                    | 0.3651 | 0.3811 | 0.3133 | 0.4134 | 0.4311 |
|                    | 0.4488 | 0.4666 | 0.4843 | 0.5020 | 0.4311 |
|                    | 0.5374 | 0.5552 | 0.5729 | 0.5020 | 0.6071 |
|                    | 0.5374 | 0.5552 | 0.5729 | 0.5901 | 0.6071 |
|                    | 0.7092 | 0.7262 | 0.0382 | 0.7603 | 0.0922 |
|                    | 0.7092 | 0.7262 | 0.7432 | 0.7603 | 0.7773 |
|                    | 0.7343 | 0.8821 | 0.8939 | 0.9057 | 0.0374 |
|                    | 0.9292 | 0.9410 | 0.9589 | 0.9794 | 1.0000 |
|                    |        |        |        |        |        |
| Shape 117          | 70_1   |        |        |        |        |
| Area:              | 0.0010 | 0.0075 | 0.010= | 0 0015 | 0.000: |
|                    | 0.0018 | 0.0072 | 0.0137 | 0.0215 | 0.0304 |
|                    | 0.0401 | 0.0506 | 0.0624 | 0.0759 | 0.0914 |
|                    |        |        |        |        |        |

|           | 0.1075 | 0.1242 | 0.1414 | 0.1591 | 0.1773 |
|-----------|--------|--------|--------|--------|--------|
|           | 0.1960 | 0.2153 | 0.2350 | 0.2553 | 0.2761 |
|           | 0.2975 | 0.3193 | 0.3417 | 0.3646 | 0.3881 |
|           | 0.4121 | 0.4366 | 0.4616 | 0.4882 | 0.5202 |
|           | 0.5669 | 0.6113 | 0.6533 | 0.6929 | 0.7301 |
|           | 0.7649 | 0.7973 | 0.8273 | 0.8548 | 0.8800 |
|           | 0.9028 | 0.9232 | 0.9412 | 0.9568 | 0.9700 |
|           | 0.9808 | 0.9892 | 0.9952 | 0.9988 | 1.0000 |
| Hrad:     | 0.5000 | 0.3032 | 0.3332 | 0.5500 | 1.0000 |
|           | 0.0375 | 0.1240 | 0.1851 | 0.2523 | 0.3182 |
|           | 0.3831 | 0.4393 | 0.4740 | 0.4912 | 0.5519 |
|           | 0.6223 | 0.6900 | 0.7553 | 0.8185 | 0.8798 |
|           | 0.9393 | 0.0900 | 1.0539 | 1.1093 | 1.1635 |
|           | 1.2166 | 1.2688 | 1.3201 | 1.3700 | 1.4193 |
|           | 1.4680 | 1.5160 | 1.5558 | 1.5322 | 0.9940 |
|           | 1.4680 | 1.0707 | 1.0984 | 1.1200 | 1.1364 |
|           |        |        |        | 1.1200 |        |
|           | 1.1479 | 1.1552 | 1.1587 |        | 1.1554 |
|           |        | 1.1407 | 1.1297 | 1.1165 | 1.1013 |
|           | 1.0842 | 1.0654 | 1.0450 | 1.0232 | 1.0000 |
| Width:    | 0.1024 | 0.1194 | 0.1520 | 0.1734 | 0.1922 |
|           |        |        |        |        |        |
|           | 0.2082 | 0.2276 | 0.2610 | 0.3080 | 0.3282 |
|           | 0.3390 | 0.3498 | 0.3606 | 0.3713 | 0.3821 |
|           | 0.3929 | 0.4037 | 0.4144 | 0.4252 | 0.4360 |
|           | 0.4468 | 0.4575 | 0.4684 | 0.4795 | 0.4906 |
|           | 0.5017 | 0.5128 | 0.5273 | 0.5728 | 0.9926 |
|           | 0.9429 | 0.8933 | 0.8437 | 0.7940 | 0.7444 |
|           | 0.6948 | 0.6452 | 0.5955 | 0.5459 | 0.4963 |
|           | 0.4467 | 0.3970 | 0.3474 | 0.2978 | 0.2481 |
|           | 0.1985 | 0.1489 | 0.0993 | 0.0496 | 0.0000 |
| Shape 117 | 70.2   |        |        |        |        |
| Area:     | , u_2  |        |        |        |        |
|           | 0.0005 | 0.0018 | 0.0041 | 0.0074 | 0.0117 |
|           | 0.0169 | 0.0230 | 0.0298 | 0.0374 | 0.0459 |
|           | 0.0551 | 0.0652 | 0.0762 | 0.0879 | 0.1005 |
|           | 0.1144 | 0.1311 | 0.1544 | 0.1817 | 0.2092 |
|           | 0.2367 | 0.2642 | 0.2917 | 0.3192 | 0.3467 |
|           | 0.3742 | 0.4017 | 0.4292 | 0.4567 | 0.4842 |
|           | 0.5117 | 0.5393 | 0.5668 | 0.5943 | 0.6218 |
|           | 0.6493 | 0.6768 | 0.7043 | 0.7318 | 0.7593 |
|           | 0.7868 | 0.8143 | 0.8418 | 0.8693 | 0.8968 |
|           | 0.9244 | 0.9519 | 0.9780 | 0.9945 | 1.0000 |
| Hrad:     | 0.52   | 0.5525 | 0.5700 | 0.5515 | 1.0000 |
| mrau.     | 0.0316 | 0.0626 | 0.0953 | 0.1241 | 0.1548 |
|           | 0.1901 | 0.2251 | 0.2588 | 0.2916 | 0.3223 |
|           | 0.3530 | 0.2231 | 0.4152 | 0.4465 | 0.4776 |
|           | 0.4832 | 0.4225 | 0.4104 | 0.4516 | 0.5088 |
|           | 0.5636 | 0.4223 | 0.6665 | 0.7149 | 0.7614 |
|           | 0.8061 | 0.8492 | 0.8907 | 0.7149 | 0.7614 |
|           | 1.0065 | 1.0424 | 1.0772 | 1.1108 | 1.1433 |
|           |        |        |        |        |        |
|           | 1.1747 | 1.2052 | 1.2347 | 1.2633 | 1.2911 |
|           |        |        |        |        |        |
|           | 1.4415 | 1.4642 | 1.3515 | 1.1540 | 1.0000 |
| Width:    | 0.000  | 0.0076 | 0.0000 | 0.1376 | 0 1750 |
|           | 0.0333 | 0.0679 | 0.0983 | 0.1370 | 0.1758 |
|           | 0.2064 | 0.2344 | 0.2623 | 0.2904 | 0.3214 |
|           |        |        |        |        |        |

|           | 0.3523 | 0.3833 | 0.4129 | 0.4424 | 0.4718 |
|-----------|--------|--------|--------|--------|--------|
|           | 0.5431 | 0.7533 | 0.9431 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 0.8000 | 0.4000 | 0.0000 |
| Shape 296 | 51     |        |        |        |        |
| Area:     |        |        |        |        |        |
|           | 0.0057 | 0.0121 | 0.0191 | 0.0264 | 0.0341 |
|           | 0.0422 | 0.0506 | 0.0593 | 0.0684 | 0.0778 |
|           | 0.0876 | 0.0978 | 0.1082 | 0.1257 | 0.1448 |
|           | 0.1647 | 0.1849 | 0.2052 | 0.2257 | 0.2463 |
|           | 0.2672 | 0.2881 | 0.3093 | 0.3306 | 0.3521 |
|           | 0.3741 | 0.4001 | 0.4262 | 0.4523 | 0.4784 |
|           | 0.5045 | 0.5305 | 0.5566 | 0.5827 | 0.6088 |
|           | 0.6349 | 0.6609 | 0.6870 | 0.7131 | 0.7392 |
|           | 0.7653 | 0.7914 | 0.8174 | 0.8435 | 0.8696 |
|           | 0.8957 | 0.9218 | 0.9478 | 0.9739 | 1.0000 |
| Hrad:     | 0.0500 | 0.1132 | 0.1636 | 0.2129 | 0.2593 |
|           | 0.0599 | 0.1132 | 0.1636 | 0.2129 | 0.4598 |
|           | 0.3031 | 0.3448 | 0.3846 | 0.4229 | 0.4398 |
|           | 0.4956 | 0.5303 | 0.5641 | 0.4010 | 0.4344 |
|           | 0.7189 | 0.7633 | 0.8069 | 0.8496 | 0.8908 |
|           | 0.8013 | 0.7633 | 0.8930 | 0.9374 | 0.9808 |
|           | 1.0233 | 1.0649 | 1.1057 | 1.1456 | 1.1847 |
|           | 1.2230 | 1.2605 | 1.2973 | 1.3334 | 1.3688 |
|           | 1.4035 | 1.4375 | 1.4709 | 1.5037 | 1.5359 |
|           | 1.5674 | 1.5984 | 1.6289 | 1.6588 | 1.0000 |
| Width:    | 1.5074 | 1.5504 | 1.0203 | 1.0500 | 1.0000 |
|           | 0.2320 | 0.2558 | 0.2754 | 0.2887 | 0.3020 |
|           | 0.3153 | 0.3286 | 0.3419 | 0.3552 | 0.3685 |
|           | 0.3818 | 0.3951 | 0.4084 | 0.7054 | 0.7522 |
|           | 0.7696 | 0.7759 | 0.7822 | 0.7886 | 0.7949 |
|           | 0.8012 | 0.8075 | 0.8138 | 0.8201 | 0.8274 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|           | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Shape 323 | 35     |        |        |        |        |
| Area:     |        |        |        |        |        |
|           | 0.0097 | 0.0196 | 0.0299 | 0.0405 | 0.0513 |
|           | 0.0625 | 0.0740 | 0.0857 | 0.0978 | 0.1101 |
|           | 0.1228 | 0.1357 | 0.1490 | 0.1625 | 0.1764 |
|           | 0.1905 | 0.2141 | 0.2379 | 0.2617 | 0.2855 |
|           | 0.3094 | 0.3332 | 0.3570 | 0.3808 | 0.4046 |
|           | 0.4284 | 0.4523 | 0.4761 | 0.4999 | 0.5237 |
|           | 0.5475 | 0.5713 | 0.5951 | 0.6190 | 0.6428 |
|           | 0.6666 | 0.6904 | 0.7142 | 0.7380 | 0.7618 |
|           | 0.7857 | 0.8095 | 0.8333 | 0.8571 | 0.8809 |
|           | 0.9047 | 0.9286 | 0.9524 | 0.9762 | 1.0000 |
| Hrad:     |        |        |        |        |        |
|           |        |        |        |        |        |

| *******                                 | Volume         | Depth    |
|-----------------------------------------|----------------|----------|
| Runoff Quantity Continuity              | hectare-m      | mm       |
| ******                                  |                |          |
| Total Precipitation                     | 1.159          | 71.677   |
| Evaporation Loss                        | 0.000          | 0.000    |
| Infiltration Loss                       | 0.225          | 13.897   |
| Surface Runoff                          | 0.923          | 57.120   |
| Final Storage                           | 0.019          | 1.165    |
| Continuity Error (%)                    | -0.705         |          |
|                                         |                |          |
| ******                                  | Volume         | Volume   |
| Flow Routing Continuity                 | hectare-m      | 10^6 ltr |
| ********************                    | nectare-m      | 10 6 101 |
| Dry Weather Inflow                      | 0.000          | 0.000    |
| Wet Weather Inflow                      | 0.000          | 9.234    |
| Groundwater Inflow                      | 0.923          | 0.000    |
| RDII Inflow                             | 0.000          | 0.000    |
| External Inflow                         | 0.000          | 0.000    |
|                                         |                |          |
| External Outflow                        | 0.720          | 7.204    |
| Flooding Loss                           | 0.000          | 0.000    |
| Evaporation Loss                        | 0.000          | 0.000    |
| Exfiltration Loss Initial Stored Volume | 0.000          | 0.000    |
|                                         |                |          |
| Final Stored Volume                     | 0.141<br>6.779 | 1.411    |
| Continuity Error (%)                    | 6.779          |          |
|                                         |                |          |
| *******                                 |                |          |
| Highest Continuity Errors               |                |          |
| *******                                 |                |          |
| Node J40 (6.39%)                        |                |          |
| Node BASIN2 (2.87%)                     |                |          |
| Node J60 (2.28%)                        |                |          |
| Node STM119 (1.44%)                     |                |          |
| Node J50 (1.38%)                        |                |          |
|                                         |                |          |
| *******                                 |                |          |
| Time-Step Critical Elements             |                |          |
| *******                                 |                |          |
| Link C64 (6.56%)                        |                |          |
|                                         |                |          |
|                                         |                |          |
| *******                                 |                |          |
| Highest Flow Instability Inde           |                |          |
| ******************                      | ***            |          |
| Link C27_1 (60)                         |                |          |
| Link OR1 (53)                           |                |          |
| Link C31 (35)                           |                |          |
| Link C28 (34)                           |                |          |
| Link OR2 (34)                           |                |          |
|                                         |                |          |
| ******                                  |                |          |

Routing Time Step Summary

|        | 0.0581 | 0.1132 | 0.1656 | 0.2157 | 0.2636 |
|--------|--------|--------|--------|--------|--------|
|        | 0.3097 | 0.3541 | 0.3970 | 0.4385 | 0.4788 |
|        | 0.5179 | 0.5560 | 0.5931 | 0.6294 | 0.6648 |
|        | 0.6995 | 0.4904 | 0.5388 | 0.5861 | 0.6324 |
|        | 0.6776 | 0.7219 | 0.7652 | 0.8076 | 0.8492 |
|        | 0.8898 | 0.9296 | 0.9687 | 1.0069 | 1.0444 |
|        | 1.0811 | 1.1171 | 1.1525 | 1.1871 | 1.2211 |
|        | 1.2545 | 1.2872 | 1.3193 | 1.3509 | 1.3819 |
|        | 1.4123 | 1.4422 | 1.4715 | 1.5003 | 1.5287 |
|        | 1.5565 | 1.5839 | 1.6108 | 1.6373 | 1.0000 |
| Width: |        |        |        |        |        |
|        | 0.4124 | 0.4250 | 0.4375 | 0.4500 | 0.4625 |
|        | 0.4750 | 0.4875 | 0.5000 | 0.5125 | 0.5250 |
|        | 0.5375 | 0.5500 | 0.5625 | 0.5750 | 0.5876 |
|        | 0.6001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        |        |        |        |        |        |

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units ... CMS

Process Models:
Rainfall/kunoff ... YES
RDII ... NO
Snowmelt ... NO
Groundwater ... NO
Flow Routing ... YES
Ponding Allowed ... YES
Water Quality ... NO
Infiltration Method ... WINNAVE
Surcharge Method ... EXTRAN
Starting Date ... 07/23/2009 00:01:00
Ending Date ... 07/23/2009 00:01:00
Antecedent Dry Days ... 0.
Report Time Step ... 00:05:00
Wet Time Step ... 00:05:00
Routing firm Step ... 1.00 sec
Variable Time Step ... YES
Maximum Trials ... 20
Number of Threads ... 2
Head Tolerance ... 0.001500 m

Minimum Time Step : 0.50 sec
Average Time Step : 0.98 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : -0.00
Average Iterations per Step : 6.11
Percent Not Converging : 17.95
Time Step Frequencies : 1.000 - 0.871 sec : 94.92 %
0.871 - 0.758 sec : 1.61 %
0.758 - 0.660 sec : 1.42 %
0.660 - 0.574 sec : 0.97 %
0.574 - 0.500 sec : 1.09 %

| lors.     | Total  | Total   |      |       | Total | Total | Imperv |
|-----------|--------|---------|------|-------|-------|-------|--------|
| erv       | TOTAL  |         |      |       | Evap  | Infil | Runoff |
| Runoff    | Runoff | Runoff  |      |       |       |       |        |
| Subcato   |        |         |      | mm    | mm    | mm    | mm     |
| nm<br>    |        | )^6 ltr |      |       |       |       |        |
| 102       |        |         |      | 0.00  | 0.00  | 20.12 | 45 43  |
|           | 51 20  | 0.23    |      |       | 0.00  | 20.12 | 40.45  |
| 107AA     |        |         | . 68 |       | 0.00  | 5.97  | 60.78  |
| 1.19      | 64.97  | 0.18    |      |       |       |       |        |
| 108       |        | 71      | . 68 | 0.00  | 0.00  | 14.03 | 48.26  |
| 3.93      | 57.20  | 0.20    | 0.15 | 0.798 |       |       |        |
| 109       |        |         | . 68 |       | 0.00  | 5.52  | 61.79  |
| .68       | 65.47  | 0.19    | 0.14 | 0.913 |       |       |        |
| 109C      |        |         | . 68 |       | 0.00  | 18.19 | 47.02  |
|           | 53.22  | 0.14    |      |       |       |       |        |
| 116       |        |         | . 68 |       | 0.00  | 39.92 | 9.77   |
| 32.87     | 32.87  |         | 0.07 |       |       |       |        |
| A<br>5.26 | 25 26  | 0.26    | 68   |       | 0.00  | 36.15 | 30.61  |
| A1        | 33.20  |         |      | 0.492 | 0.00  | 0.63  |        |
|           | 70 17  | 0.72    |      |       | 0.00  | 0.65  | 05.05  |
| A2        | /0.1/  |         | 68   |       | 0.00  | 0.91  | 69.24  |
|           | 69.91  |         | 0.78 |       | 0.00  | 0.51  | 03.24  |
| A3        |        |         | . 68 |       | 0.00  | 4.28  | 63.78  |
| 2.89      | 66.67  | 0.62    | 0.45 | 0.930 |       |       |        |
| A4        |        | 71      | .68  | 0.00  | 0.00  | 6.76  | 59.59  |
| 1.64      | 64.23  | 0.53    | 0.40 | 0.896 |       |       |        |
| A5        |        |         | . 68 |       | 0.00  | 0.03  | 70.69  |
| .02       | 70.71  |         |      |       |       |       |        |
| AA        |        |         | .68  |       | 0.00  | 23.96 | 38.42  |
|           | 47.51  | 0.18    |      |       |       |       |        |
| BB        |        |         |      | 0.00  | 0.00  | 36.89 | 29.04  |
|           | 34.55  |         | 0.08 |       |       |       |        |
| BLDG-A    |        |         | 68   |       | 0.00  | 0.00  | 70.32  |
| 0.00      | 10.32  | 0.18    | 0.13 | 0.981 |       |       |        |

| BLDG-B  |       |      |                      | 0.00 | 0.00  | 70.32 |
|---------|-------|------|----------------------|------|-------|-------|
|         |       |      | 0.18 0.981           |      |       |       |
| BLDG-C  |       | 71.6 | 8 0.00<br>0.15 0.981 | 0.00 | 0.00  | 70.32 |
|         |       |      |                      |      |       |       |
| BLDG-D  |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.10 | 0.07 0.981           |      |       |       |
| BLDGG   |       |      | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.17 | 0.12 0.981           |      |       |       |
| BLDGH   |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.26 | 0.18 0.981           |      |       |       |
| BLDG-I  |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.16 | 0.11 0.981           |      |       |       |
| BLDGJ   |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.10 | 0.07 0.981           |      |       |       |
| BLDGJ2  |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.32 |
| 0.00    | 70.32 | 0.27 | 0.19 0.981           |      |       |       |
| BLDG-K  |       | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.31 |
| 0.00    | 70.32 | 0.17 | 0.12 0.981           |      |       |       |
| D       |       | 71.6 | 8 0.00               | 0.00 | 39.90 | 21.21 |
| 31.67   | 31.67 | 0.18 | 0.06 0.442           |      |       |       |
| D1      |       | 71.6 | 8 0.00               | 0.00 | 32.49 | 22.80 |
| 28.00   | 39.40 | 0.19 | 0.14 0.550           |      |       |       |
| EE      |       | 71.6 | 8 0.00               | 0.00 | 46.41 | 10.77 |
| 25.25   | 25.25 | 0.09 | 0.03 0.352           |      |       |       |
| Great-  | Lawn  | 71.6 | 8 0.00               | 0.00 | 39.27 | 18.70 |
| 32.37   | 32.37 | 0.33 | 0.13 0.452           |      |       |       |
| NSTAND: | S     | 71.6 | 8 0.00               | 0.00 | 0.00  | 70.70 |
| 0.00    | 70.70 | 0.53 | 0.37 0.986           |      |       |       |
| OPGG    |       | 71.6 | 8 0.00               | 0.00 | 18.99 | 42.11 |
| 10.17   | 52.28 | 0.43 | 0.29 0.729           |      |       |       |
| SSTAND  | S     | 71.6 | 8 0.00               | 0.00 | 0.02  | 70.30 |
| 0.02    | 70.32 | 0.56 | 0.40 0.981           |      |       |       |
| T       |       | 71.6 | 8 0.00               | 0.00 | 32.90 | 19.50 |
| 19.45   | 38.95 | 0.05 | 0.04 0.543           |      |       |       |
| V       |       |      | 8 0.00               | 0.00 | 1.48  | 67.90 |
| 1.13    | 69.03 |      | 0.08 0.963           |      |       |       |
|         |       |      |                      |      |       |       |

| Node   | Type     | Depth<br>Meters | Depth | HGL<br>Meters | Occu<br>days | rrence<br>hr:min |      |
|--------|----------|-----------------|-------|---------------|--------------|------------------|------|
| CBA1   | JUNCTION | 0.15            |       | 64.89         |              | 01:13            | 0.80 |
| CBMH2A | JUNCTION | 0.21            | 0.99  | 64.88         | 0            | 01:14            | 0.96 |
| CBMHU  | JUNCTION | 0.41            | 1.77  | 65.13         | 0            | 01:13            | 1.75 |
| J1     | JUNCTION | 0.32            | 1.62  | 65.18         | 0            | 01:12            | 1.60 |
| J19    | JUNCTION | 0.29            | 1.15  | 64.77         | 0            | 01:13            | 1.15 |
| J32    | JUNCTION | 0.98            | 1.91  | 64.66         | 0            | 01:29            | 1.90 |
| J33    | JUNCTION | 0.99            | 1.44  | 64.53         | 0            | 00:00            | 1.00 |
| J37    | JUNCTION | 0.28            | 1.53  | 65.21         | 0            | 01:11            | 1.53 |
| J40    | JUNCTION | 0.84            | 1.89  | 64.79         | 0            | 01:21            | 1.76 |
| J48    | JUNCTION | 0.01            | 0.12  | 64.81         | 0            | 01:20            | 0.12 |
| J49    | JUNCTION | 0.06            | 0.34  | 64.74         | 0            | 01:27            | 0.33 |
| J50    | JUNCTION | 0.06            | 0.17  | 65.25         | 0            | 01:25            | 0.17 |

| STM-CCN1           | JUNCTION | 0.44 | 1.45 | 64.77  | 0 | 01:21 | 1.36 |
|--------------------|----------|------|------|--------|---|-------|------|
| STM-CCN2           | JUNCTION | 0.25 | 1.90 | 65.69  | 0 | 01:10 | 1.90 |
| STMD               | JUNCTION | 0.57 | 1.56 | 64.74  | 0 | 01:26 | 1.53 |
| STMDD              | JUNCTION | 0.63 | 1.56 | 64.68  | 0 | 01:29 | 1.55 |
| STMFF              | JUNCTION | 0.66 | 1.58 | 64.67  | 0 | 01:29 | 1.58 |
| STMGG              | JUNCTION | 0.72 | 1.64 | 64.67  | 0 | 01:29 | 1.63 |
| Canal_Outlet       | OUTFALL  | 1.50 | 1.50 | 64.08  | 0 | 00:00 | 1.50 |
| J28                | OUTFALL  | 1.60 | 2.98 | 65.20  | 0 | 03:00 | 2.98 |
| BASIN1             | STORAGE  | 0.92 | 1.86 | 64.67  | 0 | 01:29 | 1.86 |
| BASIN2             | STORAGE  | 0.79 | 1.83 | 64.78  | 0 | 01:21 | 1.70 |
| Great-Lawn-Storage | STORAGE  | 0.06 | 0.25 | 64.65  | 0 | 03:15 | 0.25 |
| S-BLDG-A           | STORAGE  | 0.01 | 0.07 | 100.07 | 0 | 01:52 | 0.07 |
| S-BLDG-B           | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:54 | 0.08 |
| S-BLDG-C           | STORAGE  | 0.01 | 0.07 | 100.07 | 0 | 01:52 | 0.07 |
| S-BLDG-D           | STORAGE  | 0.01 | 0.08 | 100.08 | 0 | 01:53 | 0.08 |
| S-BLDG-G           | STORAGE  | 0.02 | 0.09 | 100.09 | 0 | 02:11 | 0.09 |
| S-BLDG-H           | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:54 | 0.08 |
| S-BLDG-I           | STORAGE  | 0.01 | 0.07 | 100.07 | 0 | 01:50 | 0.07 |
| S-BLDG-J           | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:54 | 0.08 |
| S-BLDG-K           | STORAGE  | 0.03 | 0.10 | 100.10 | 0 | 02:20 | 0.10 |
|                    |          |      |      |        |   |       |      |

| Total          | Flow    |                                         | Maximum | Maximum |             | Lateral  |      |
|----------------|---------|-----------------------------------------|---------|---------|-------------|----------|------|
|                |         |                                         | Lateral | Total   | Time of Max | Inflow   |      |
| Intlow         | Balance |                                         | Inflow  | Inflow  | Occurrence  | . Volume |      |
| Volume<br>Node | Error   | Timo                                    | CMC     | CMC     | dave brimin | 10^6 ltr | 1006 |
|                | Percent | • • • • • • • • • • • • • • • • • • • • |         |         | -           |          |      |
|                |         |                                         |         |         |             |          |      |
| CBA1           | 0.430   | JUNCTION                                | 0.000   | 0.029   | 0 01:10     | 0        |      |
| CBMH22         | A       | JUNCTION                                | 0.113   | 0.113   | 0 01:10     | 0.227    |      |
| 0.241<br>CBMHU | 0.542   | JUNCTION                                | 0.000   | 0.122   | 0 01:09     | 0        |      |
| 0.226<br>J1    | 0.027   | JUNCTION                                | 0.000   | 0 069   | 0 01:06     | . 0      |      |
| 0.133          | -0.072  |                                         |         |         |             |          |      |
| J19<br>0.0429  | -0.007  | JUNCTION                                | 0.000   | 0.034   | 0 01:13     | 0        |      |
| J32            | 0.358   | JUNCTION                                | 0.000   | 1.797   | 0 01:08     | 0        |      |
| J33            | 0.336   | JUNCTION                                | 0.000   | 0.444   | 0 00:00     | 0        |      |
| 1.67           | 0.096   | JUNCTION                                | 0 102   | 0 102   | 0 01-10     | 0.176    |      |
| 0.176          | 0.141   |                                         |         |         |             |          |      |
| J40<br>7.95    | 6.831   | JUNCTION                                | 0.000   | 3.420   | 0 01:11     | . 0      |      |
| J48            |         | JUNCTION                                | 0.059   | 0.059   | 0 01:20     | 0.185    |      |
| 0.185          | -0.972  |                                         |         |         |             |          |      |

| J51                | JUNCTION             | 0.00 | 0.00 | 65.35          | 0 | 00:00          | 0.00 |
|--------------------|----------------------|------|------|----------------|---|----------------|------|
| J52<br>J53         | JUNCTION<br>JUNCTION | 0.01 | 0.18 | 65.49<br>65.37 | 0 | 01:10<br>01:10 | 0.18 |
| J54                | JUNCTION             | 0.01 | 0.12 | 65.30          | 0 | 01:10          | 0.12 |
| J55                | JUNCTION             | 0.00 | 0.06 | 65.26          | 0 | 01:10          | 0.05 |
| J56                | JUNCTION             | 0.01 | 0.23 | 65.18          | 0 | 01:13          | 0.22 |
| J57                | JUNCTION             | 0.01 | 0.19 | 65.49          | 0 | 01:10          | 0.19 |
| J58                | JUNCTION             | 0.00 | 0.15 | 65.50          | 0 | 01:10          | 0.15 |
| J59                | JUNCTION             | 0.00 | 0.02 | 65.60          | 0 | 01:10          | 0.02 |
| J60                | JUNCTION             | 0.00 | 0.09 | 64.74          | 0 | 01:27          | 0.08 |
| J61                | JUNCTION             | 0.08 | 0.44 | 64.74          | 0 | 01:28          | 0.43 |
| J62                | JUNCTION             | 0.00 | 0.02 | 64.72          | 0 | 01:30          | 0.02 |
| J63                | JUNCTION             | 0.03 | 0.22 | 64.72          | 0 | 01:31          | 0.22 |
| J64                | JUNCTION             | 0.00 | 0.07 | 64.72          | 0 | 01:30          | 0.07 |
| J65                | JUNCTION             | 0.00 | 0.00 | 65.10          | 0 | 00:00          | 0.00 |
| J66                | JUNCTION             | 0.03 | 0.23 | 64.73          | 0 | 01:32          | 0.22 |
| J67                | JUNCTION             | 0.00 | 0.00 | 65.17          | 0 | 00:00          | 0.00 |
| J68                | JUNCTION             | 0.00 | 0.00 | 65.00          | 0 | 00:00          | 0.00 |
| J69                | JUNCTION             | 0.00 | 0.00 | 65.43          | 0 | 00:00          | 0.00 |
| J70                | JUNCTION             | 0.00 | 0.00 | 65.20          | 0 | 00:00          | 0.00 |
| J71                | JUNCTION             | 0.00 | 0.00 | 65.70          | 0 | 00:00          | 0.00 |
| J72                | JUNCTION             | 0.00 | 0.00 | 65.30          | 0 | 00:00          | 0.00 |
| J73                | JUNCTION             | 0.01 | 0.26 | 65.19          | 0 | 01:12          | 0.25 |
| J74                | JUNCTION             | 0.00 | 0.18 | 65.19          | 0 | 01:12          | 0.17 |
| J75                | JUNCTION             | 0.00 | 0.00 | 65.89          | 0 | 00:00          | 0.00 |
| J76                | JUNCTION             | 0.79 | 1.79 | 64.74          | 0 | 01:21          | 1.70 |
| STM101             | JUNCTION             | 1.42 | 2.42 | 64.67          | 0 | 03:06          | 2.40 |
| STM101A            | JUNCTION             | 1.38 | 2.39 | 64.68          | 0 | 03:09          | 2.38 |
| STM102             | JUNCTION             | 0.12 | 1.99 | 66.25          | 0 | 01:04          | 1.94 |
| STM102A            | JUNCTION             | 1.32 | 2.30 | 64.65          | 0 | 03:06          | 2.30 |
| STM104             | JUNCTION             | 1.19 | 2.20 | 64.69          | 0 | 02:49          | 2.18 |
| STM105             | JUNCTION             | 1.15 | 2.12 | 64.65          | 0 | 03:09          | 2.12 |
| STM106A<br>STM106B | JUNCTION             | 1.09 | 2.02 | 64.66          | 0 | 01:29<br>03:12 | 2.02 |
| STM106B<br>STM107  | JUNCTION<br>JUNCTION | 1.05 | 1.95 | 64.66<br>64.67 | 0 | 03:12          | 1.94 |
| STM107<br>STM108   | JUNCTION             | 1.72 | 2.67 | 64.67          | 0 | 01:29          | 2.66 |
| STM109             | JUNCTION             | 0.84 | 1.79 | 64.70          | 0 | 01:29          | 1.76 |
| STM1109            | JUNCTION             | 0.61 | 1.60 | 64.74          | 0 | 01:24          | 1.53 |
| STM111             | JUNCTION             | 0.48 | 1.45 | 64.73          | 0 | 01:21          | 1.40 |
| STM111A            | JUNCTION             | 0.26 | 1.65 | 65.41          | 0 | 01:10          | 1.64 |
| STM112             | JUNCTION             | 0.76 | 1.71 | 64.70          | 0 | 01:24          | 1.69 |
| STM113             | JUNCTION             | 0.31 | 1.13 | 64.72          | 0 | 01:24          | 1.09 |
| STM114             | JUNCTION             | 0.25 | 1.04 | 64.81          | 0 | 01:23          | 0.92 |
| STM115             | JUNCTION             | 0.19 | 0.88 | 64.83          | 0 | 01:23          | 0.73 |
| STM116             | JUNCTION             | 0.61 | 1.60 | 64.74          | 0 | 01:24          | 1.55 |
| STM116 STA         | JUNCTION             | 0.22 | 1.26 | 65.13          | 0 | 01:12          | 1.17 |
| STM117             | JUNCTION             | 0.21 | 1.31 | 65.22          | 0 | 01:12          | 1.22 |
| STM118             | JUNCTION             | 0.20 | 1.36 | 65.32          | 0 | 01:12          | 1.26 |
| STM119             | JUNCTION             | 0.16 | 2.05 | 66.16          | 0 | 01:09          | 2.05 |
| STM121             | JUNCTION             | 0.45 | 1.45 | 64.76          | 0 | 01:23          | 1.36 |
| STM122             | JUNCTION             | 0.27 | 1.32 | 65.00          | 0 | 01:11          | 0.99 |
| STMA               | JUNCTION             | 0.31 | 1.21 | 64.77          | 0 | 01:29          | 1.21 |
| STMAA              | JUNCTION             | 0.24 | 1.01 | 64.77          | 0 | 01:14          | 0.99 |
| STMB               | JUNCTION             | 0.35 | 1.32 | 64.76          | 0 | 01:25          | 1.31 |
| STMBB              | JUNCTION             | 0.31 | 1.16 | 64.73          | 0 | 01:31          | 1.15 |
| STMC               | JUNCTION             | 0.41 | 1.39 | 64.74          | 0 | 01:27          | 1.38 |
| STMCC              | JUNCTION             | 0.36 | 1.30 | 64.72          | 0 | 01:31          | 1.30 |
|                    |                      |      |      |                |   |                |      |

| J49<br>0.198   | 0.757     | JUNCTION | 0.000 | 0.148 | 0 | 01:25 | 0     |
|----------------|-----------|----------|-------|-------|---|-------|-------|
| J50            |           | JUNCTION | 0.066 | 0.066 | 0 | 01:25 | 0.258 |
| 0.258<br>J51   | 1.403     | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| 0<br>J52       | 0.000 ltr | JUNCTION | 0.776 | 1.109 | 0 | 01:10 | 1.1   |
| 1.46           | -0.001    |          |       |       |   |       |       |
| J53<br>1.23    | 0.001     | JUNCTION | 0.000 | 0.964 | 0 | 01:10 | 0     |
| J54<br>1.05    | -0.006    | JUNCTION | 0.000 | 0.883 | 0 | 01:10 | 0     |
| J55            |           | JUNCTION | 0.000 | 0.347 | 0 | 01:11 | 0     |
| 0.418<br>J56   | -0.007    | JUNCTION | 0.000 | 0.321 | 0 | 01:11 | 0     |
| 0.383<br>J57   | 0.000     | JUNCTION | 0.000 | 0.470 | 0 | 01:10 | 0     |
| 0.647          | 0.001     |          |       |       |   |       |       |
| J58<br>0.75    | -0.002    | JUNCTION | 0.506 | 0.576 | 0 | 01:10 | 0.722 |
| J59<br>0.0284  | 0.010     | JUNCTION | 0.000 | 0.070 | 0 | 01:10 | 0     |
| J60            |           | JUNCTION | 0.000 | 0.063 | 0 | 01:25 | 0     |
| 0.00672<br>J61 |           | JUNCTION | 0.143 | 0.252 | 0 | 01:24 | 0.189 |
| 0.3<br>J62     | -0.057    | JUNCTION | 0.000 | 0.004 | 0 | 01:30 | 0     |
| 0.00047        | 1.368     |          | 0.082 |       |   |       | 0.308 |
| J63<br>0.402   | -0.229    | JUNCTION |       | 0.119 | 0 | 02:47 |       |
| J64<br>0.00203 | 1.208     | JUNCTION | 0.000 | 0.012 | 0 | 01:25 | 0     |
| J65            | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| J66            |           | JUNCTION | 0.000 | 0.143 | 0 | 01:11 | 0     |
| 0.11<br>J67    | -1.038    | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| 0<br>J68       | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| 0              | 0.000 ltr |          |       |       |   |       |       |
| J69<br>0       | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| J70<br>0       | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| J71<br>0       | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| J72            |           | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| 0<br>J73       | 0.000 ltr | JUNCTION | 0.000 | 0.501 | 0 | 01:11 | 0     |
| 0.607<br>J74   | 0.000     | JUNCTION | 0.000 | 0.514 | 0 | 01:10 | 0     |
| 0.607          | 0.004     |          |       |       |   |       |       |
| J75<br>0       | 0.000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0     |
| J76<br>1.94    | 0.425     | JUNCTION | 0.000 | 0.734 | 0 | 01:21 | 0     |
| STM10          | 1         | JUNCTION | 0.000 | 0.725 | 0 | 01:11 | 0     |
| 5.54<br>STM10  |           | JUNCTION | 0.000 | 0.723 | 0 | 01:11 | 0     |
| 5.55           | 0.159     |          |       |       |   |       |       |

| STM102<br>0.0188 | 0.175  | JUNCTION | 0.000 | 0.059 | 0 | 01:04 | 0      |
|------------------|--------|----------|-------|-------|---|-------|--------|
| STM102A<br>5.59  | 0.645  | JUNCTION | 0.000 | 0.647 | 0 | 01:11 | 0      |
| STM104<br>5.62   | 0.599  | JUNCTION | 0.000 | 0.647 | 0 | 01:11 | 0      |
| STM105<br>5.66   | 0.533  | JUNCTION | 0.000 | 0.593 | 0 | 01:11 | 0      |
| STM106A          |        | JUNCTION | 0.131 | 0.659 | 0 | 01:10 | 0.175  |
| 5.73<br>STM106B  | 0.595  | JUNCTION | 0.000 | 0.627 | 0 | 01:10 | 0      |
| 5.75<br>STM107   | 0.318  | JUNCTION | 0.000 | 0.698 | 0 | 01:08 | 0      |
| 6.28<br>STM108   | 0.196  | JUNCTION | 0.000 | 1.546 | 0 | 01:11 | 0      |
| 7.38<br>STM109   | 0.611  | JUNCTION | 0.138 | 2.113 | 0 | 01:10 | 0.189  |
| 4.91<br>STM110   | 0.376  | JUNCTION | 0.000 | 0.380 | 0 | 01:06 | 0      |
| 1.17<br>STM111   | 0.106  | JUNCTION | 0.000 | 0.382 | 0 | 01:06 | 0      |
| 1.17<br>STM111A  | 0.160  | JUNCTION | 0.000 | 0.141 | 0 | 01:05 | 0      |
| 0.293<br>STM112  | 0.193  | JUNCTION | 0.086 | 1.657 | 0 | 01:10 | 0.135  |
| 3.7<br>STM113    | 0.123  | JUNCTION | 0.374 | 1.400 | 0 | 01:10 | 0.535  |
| 2.75<br>STM114   | 0.419  | JUNCTION | 0.451 | 0.549 | 0 | 01:09 | 0.621  |
| 1.14<br>STM115   | 0.036  | JUNCTION | 0.119 | 0.229 | 0 | 01:22 | 0.174  |
| 0.513<br>STM116  | -0.146 | JUNCTION | 0.072 | 0.346 | 0 | 01:03 | 0.0695 |
| 0.957<br>STM116_ |        | JUNCTION | 0.000 | 0.552 | 0 | 01:13 | 0      |
| 1.09<br>STM117   | 0.355  | JUNCTION | 0.000 | 0.563 | 0 | 01:11 | 0      |
| 1.09<br>STM118   | -0.047 | JUNCTION | 0.000 | 0.801 | 0 | 01:09 | 0      |
| 1.09<br>STM119   | -0.376 | JUNCTION | 0.796 | 0.813 | 0 | 01:09 | 1.1    |
| 1.12<br>STM121   | 1.465  | JUNCTION | 0.000 | 0.431 | 0 | 01:11 | 0      |
| 1.15<br>STM122   | 0.064  | JUNCTION | 0.000 | 0.297 | 0 | 01:10 | 0      |
| 0.968<br>STMA    | 0.108  | JUNCTION | 0.000 | 0.155 | 0 | 01:06 | 0      |
| 0.276<br>STMAA   | 0.079  | JUNCTION | 0.000 | 0.095 | 0 | 01:14 | 0      |
| 0.229<br>STMB    | -0.026 | JUNCTION | 0.000 | 0.223 | 0 | 01:05 | 0      |
| 0.339<br>STMBB   | -0.119 | JUNCTION | 0.000 | 0.241 | 0 | 01:14 | 0      |
| 0.344<br>STMC    | -0.061 | JUNCTION | 0.000 | 0.296 | 0 | 01:38 | 0      |
| 0.752<br>STMCC   | 0.239  | JUNCTION | 0.000 | 0.261 | 0 | 01:16 | 0      |
| 0.692<br>STM-CCN | 0.194  | JUNCTION | 0.000 | 0.384 | 0 | 01:06 | 0      |
| 1.17             | -0.051 |          |       |       |   |       |        |

\*\*\*\*\*\*

No nodes were flooded.

|                   |            | Average | Avg  | Evap | Exfil | Maximum | Max  | Time |
|-------------------|------------|---------|------|------|-------|---------|------|------|
| of Max            | Maximum    |         |      |      |       |         |      |      |
|                   |            | Volume  | Pent | Pont | Pont  | Volume  | Pont |      |
|                   | Outflow    |         |      | _    | _     |         |      |      |
| Storage hr:min    |            | 1000 m3 | Full | Loss | Loss  | 1000 m3 | Full | days |
|                   |            |         |      |      |       |         |      |      |
|                   |            |         |      |      |       |         |      |      |
| BASIN1            |            | 0.380   | 60   | 0    | 0     | 0.632   | 99   | 0    |
| 01:29             | 0.433      |         |      |      |       |         |      |      |
| BASIN2            | 0.724      | 1.216   | 54   | 0    | 0     | 2.240   | 100  | 0    |
| 01:21             | wn-Storage | 0.401   | 1.0  | 0    | 0     | 2.040   | 50   | 0    |
| 03:15             |            | 0.491   | 12   | U    | U     | 2.040   | 30   | U    |
| S-BLDG-A          |            | 0.017   | 4    | 0    | 0     | 0.121   | 24   | 0    |
| 01:52             | 0.009      |         |      |      |       |         |      |      |
| S-BLDG-B          |            | 0.028   | 4    | 0    | 0     | 0.176   | 27   | 0    |
| 01:54             |            |         |      |      |       |         |      |      |
| S-BLDG-C          | 0.011      | 0.021   | 3    | 0    | 0     | 0.142   | 24   | 0    |
| 01:52<br>S-BLDG-D |            | 0.010   | 4    | 0    | 0     | 0.066   | 25   | 0    |
| 01:53             |            | 0.010   | -    | U    | U     | 0.000   | 23   | U    |
| S-BLDG-G          |            | 0.024   | 7    | 0    | 0     | 0.125   | 38   | 0    |
| 02:11             | 0.006      |         |      |      |       |         |      |      |
| S-BLDG-H          |            | 0.027   | 4    | 0    | 0     | 0.179   | 27   | 0    |
| 01:54             |            |         |      |      |       |         |      |      |
| S-BLDG-I          |            | 0.015   | 3    | 0    | 0     | 0.106   | 23   | 0    |
| 01:50<br>S-BLDG-J |            | 0.010   | 4    | 0    | 0     | 0.066   | 26   | 0    |
| 01:54             |            | 0.010   | -    | U    | U     | 0.000   | 20   | U    |
| S-BLDG-K          |            | 0.028   | 9    | 0    | 0     | 0.130   | 42   | 0    |
| 02:20             |            |         | -    | -    | -     |         |      | -    |
|                   |            |         |      |      |       |         |      |      |

Outfall Loading Summary

|              | Flow  | Avg   | Max   | Total    |
|--------------|-------|-------|-------|----------|
|              | Freq  | Flow  | Flow  | Volume   |
| Outfall Node | Pont  | CMS   | CMS   | 10^6 ltr |
|              |       |       |       |          |
| Canal_Outlet | 25.26 | 0.075 | 0.444 | 1.671    |
| J28          | 74.97 | 0.092 | 0.725 | 5.536    |
|              |       |       |       |          |
| System       | 50.12 | 0.167 | 0.725 | 7.207    |

0.193 0.197 0 01:10 0.273 JUNCTION STM-CCN2 0.37 0.467 SIM-UNX 0.467 STMD 0.827 0.458 STMDD 0.753 0.388 STMFF 2.36 0.381 STMGG 3.63 0.208 Canal\_Outlet 1.67 0.000 J28 5.54 0.000 BASINI 2.59 -0.024 BASINI 2.59 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0 01:16 JUNCTION 0.000 0.283 JUNCTION 0.027 0.290 0 01:16 0.0875 OUTFALL 0.000 0.725 0 01:11 STORAGE 0.151 1.921 0 01:08 0.197 BASIN1 2.59 -0.024 BASIN2 4.02 2.954 STORAGE 0.000 3.418 0 01:11 Great-Lawn-Storage 3.62 -0.350 STORAGE 0.000 0.845 0 01:29 0 3.62 -0.350 S-BLDG-A
0.179 0.005
S-BLDG-B
0.255 S-BLDG-C
0.21 0.005
S-BLDG-C
0.097 0.005
S-BLDG-G
0.171 0.005
S-BLDG-H
0.261 0.005
S-BLDG-H
0.261 0.005
S-BLDG-I
0.159 0.005
S-BLDG-J
0.0964 0.005
S-BLDG-J
0.0964 0.005 S-BLDG-A 0.179 STORAGE 0.126 0 01:10 0.179 0.126 0.255 STORAGE 0.180 0.180 0 01:10 0.21 STORAGE 0.148 0.148 0 01:10 0.097 STORAGE 0 01:10 0.068 0.068 STORAGE 0.120 0 01:10 0.171 0.120 STORAGE 0.184 0.184 0 01:10 0.261 STORAGE 0.112 0 01:10 0.159 0.112 STORAGE 0.068 0.068 0 01:10 0.0964 0.174

Surcharging occurs when water rises above the top of the highest conduit.

|         |          |            | Max. Height | Min. Depth |  |  |  |  |  |
|---------|----------|------------|-------------|------------|--|--|--|--|--|
|         |          | Hours      | Above Crown | Below Rim  |  |  |  |  |  |
| Node    | Type     | Surcharged | Meters      | Meters     |  |  |  |  |  |
|         |          |            |             |            |  |  |  |  |  |
| J33     | JUNCTION | 24.00      | 0.844       | 1.556      |  |  |  |  |  |
| J40     | JUNCTION | 6.35       | 0.445       | 0.317      |  |  |  |  |  |
| STM101  | JUNCTION | 23.08      | 1.430       | 0.455      |  |  |  |  |  |
| STM101A | JUNCTION | 23.06      | 1.378       | 0.447      |  |  |  |  |  |
| STM104  | JUNCTION | 7.02       | 1.192       | 0.683      |  |  |  |  |  |
|         |          |            |             |            |  |  |  |  |  |

\*\*\*\*\*\*

Node Flooding Summary

|                |                                                     | Maximum | Time | of Max  | Maximum                                                                                                              | Max/ | Max/  |
|----------------|-----------------------------------------------------|---------|------|---------|----------------------------------------------------------------------------------------------------------------------|------|-------|
|                |                                                     | Flow    | Occu | irrence | Maximum<br> Veloc                                                                                                    | Full | Full  |
| Link           | Type                                                | CMS     | days | hr:min  | m/sec                                                                                                                | Flow | Depth |
| C1             | CONDUIT                                             | 0.183   | 0    | 01:22   | 0.37<br>0.80<br>0.46<br>0.55<br>2.95<br>2.76                                                                         | 0.28 | 1.00  |
| C10            | CONDITT                                             | 0.227   | 0    | 01:16   | 0.80                                                                                                                 | 1 21 | 1 00  |
| C11            | CONDUIT                                             | 0.227   | 0    | 01.16   | 0.00                                                                                                                 | 0.61 | 1 00  |
| 012            | CONDUIT                                             | 0.347   | 0    | 01:16   | 0.55                                                                                                                 | 0.48 | 1.00  |
| C13            | CONDITT                                             | 0.145   | 0    | 01.03   | 2 95                                                                                                                 | 3 47 | 1 00  |
| C14            | CONDUIT                                             | 0.135   | 0    | 01:05   | 2.76                                                                                                                 | 3.21 | 1.00  |
| C15            | CONDUIT                                             | 0.382   | 0    | 01:06   | 1.35<br>1.34<br>1.33<br>0.46<br>1.50                                                                                 | 1.35 | 1.00  |
| C16            | CONDUIT                                             | 0.380   | 0    | 01:06   | 1.34                                                                                                                 | 1.17 | 1.00  |
| C17            | CONDUIT                                             | 0.376   | 0    | 01:06   | 1.33                                                                                                                 | 1.46 | 1.00  |
| C18            | CONDUIT                                             | 0.291   | 0    | 01:15   | 0.46                                                                                                                 | 0.51 | 1.00  |
| C18 1          | CONDUIT                                             | 2.094   | 0    | 01:10   | 1.50                                                                                                                 | 1.10 | 1.00  |
| C18 2          | CONDITT                                             | 1 550   | 0    | 01 - 11 | 1 08                                                                                                                 | 0.82 | 1 00  |
| C19            | CONDUIT                                             | 0.455   | 0    | 01:11   | 0.72                                                                                                                 | 1 10 | 1 00  |
| 22             | CONDUIT                                             | 0.155   | 0    | 01.10   | 0.72                                                                                                                 | 0.47 | 1 00  |
| C20            | CONDUIT                                             | 0.654   | 0    | 01.04   | 1 03                                                                                                                 | 0.47 | 1 00  |
| 001            | CONDUIT                                             | 0.051   | 0    | 01.16   | 1.08<br>0.72<br>0.37<br>1.03                                                                                         | 1 20 | 1 00  |
| 021 1          | CONDUIT                                             | 1 007   | 0    | 01.10   | 0.77                                                                                                                 | 0.03 | 1.00  |
| C21_1<br>C21_1 | CONDUIT                                             | 0.607   | 0    | 01.00   | 0.77                                                                                                                 | 0.05 | 1.00  |
| C21_2          | CONDUIT                                             | 0.007   | 0    | 01.00   | 1 00                                                                                                                 | 1 47 | 1.00  |
| C23            | CONDUIT                                             | 0.034   | 0    | 01.13   | 1 73                                                                                                                 | 2 01 | 1.00  |
| 224            | CONDUIT                                             | 0.000   | 0    | 01.03   | 0.00                                                                                                                 | 0.60 | 1.00  |
| 225            | CONDUIT                                             | 0.552   | 0    | 01:11   | 1 52                                                                                                                 | 1 04 | 1.00  |
| 226            | CONDUIT                                             | 0.545   | 0    | 00.11   | 0.73                                                                                                                 | 0.26 | 1.00  |
| 227            | CONDUIT                                             | 0.377   | 0    | 00:01   | 0.73                                                                                                                 | 0.20 | 1.00  |
| 27 2           | CONDUIT                                             | 0.133   | 0    | 01:10   | 0.72                                                                                                                 | 0.74 | 1.00  |
| 228            | CONDUIT                                             | 0.593   | 0    | 01:11   | 0.01                                                                                                                 | 1 00 | 1.00  |
| 229            | CONDUIT                                             | 0.647   | 0    | 01:11   | 0.07                                                                                                                 | 0.77 | 1.00  |
| 23             | CONDUIT                                             | 0.647   | 0    | 01:11   | 0.07                                                                                                                 | 2.66 | 1.00  |
| 230            | CONDUIT                                             | 0.404   | 0    | 01:04   | 2.93                                                                                                                 | 0.00 | 1.00  |
| C31            | CONDUIT                                             | 0.723   | 0    | 01:11   | 0.97                                                                                                                 | 0.96 | 1.00  |
| 232            | CONDUIT                                             | 0.725   | 0    | 01:11   | 0.97                                                                                                                 | 0.49 | 1.00  |
| 233            | CONDUIT                                             | 0.725   | U    | 01:11   | 0.97                                                                                                                 | 0.53 | 1.00  |
| 234            | CONDUIT                                             | 0.069   | 0    | 01:00   | 1.41                                                                                                                 | 1.74 | 1.00  |
| 235            | CONDUIT                                             | 0.057   | 0    | 01:07   | 0.71                                                                                                                 | 0.00 | 1.00  |
| 236            | CONDUIT                                             | 0.133   | 0    | 01:06   | 1.22<br>0.77<br>0.70<br>1.09<br>1.73<br>0.98<br>1.53<br>0.72<br>0.81<br>0.87<br>2.93<br>0.97<br>0.97<br>0.97<br>0.97 | 1.00 | 1.00  |
|                | CONDUIT                                             | 0.223   | 0    | 01:05   | 0.89                                                                                                                 | 1.32 | 1.00  |
| C37            | CONDUIT                                             | 0.444   | 0    | 00:00   | 2.00                                                                                                                 | 0.79 | 1.00  |
| C38            | CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT | 0.096   | 0    | 01:14   | 0.89<br>2.00<br>0.61<br>0.92<br>1.99                                                                                 | 0.87 | 1.00  |
| C39            | CONDUIT                                             | 0.095   | 0    | 01:14   | 0.92                                                                                                                 | 1.44 | 1.00  |
| C4             | CONDUIT                                             | 0.563   | 0    | 01:11   | 1.99                                                                                                                 | 1.92 | 1.00  |
| C40            | CONDUIT                                             | 0.029   | 0    | 01:10   | 0.27                                                                                                                 | 0.42 | 1.00  |
| C41            | CONDUIT                                             | 0.058   | 0    | 01:20   | 0.33                                                                                                                 | 0.01 | 0.23  |
| C42            | CONDUIT                                             | 0.060   | 0    | 01:20   | 1.02                                                                                                                 | 0.47 | 1.00  |
| C43            | CONDUIT                                             | 0.000   | 0    | 00:00   | 0.00                                                                                                                 | 0.00 | 0.08  |
| C44            | CONDUIT                                             | 0.000   | 0    | 00:00   | 0.00                                                                                                                 | 0.00 | 0.25  |
| C45            | CONDUIT                                             | 0.964   | 0    | 01:10   | 0.27<br>0.33<br>1.02<br>0.00<br>0.00<br>0.80<br>1.26<br>0.79                                                         | 0.07 | 0.15  |
| C46            | CONDUIT                                             | 0.883   | 0    | 01:10   | 1.26                                                                                                                 | 0.45 | 0.09  |
| C47            | CONDUIT                                             | 0.347   | 0    | 01:11   | 0.79                                                                                                                 | 0.01 | 0.05  |

| C48          | CONDUIT | 0.321 | 0 | 01:11 | 0.35 | 0.01 | 0.14 |
|--------------|---------|-------|---|-------|------|------|------|
| C49          | CONDUIT | 0.069 | 0 | 01:10 | 0.11 | 0.00 | 0.08 |
| C5           | CONDUIT | 0.552 | 0 | 01:13 | 1.95 | 2.32 | 1.00 |
| C50          | CONDUIT | 0.470 | 0 | 01:10 | 0.35 | 0.01 | 0.17 |
| C51          | CONDUIT | 0.343 | 0 | 01:10 | 0.23 | 0.04 | 0.19 |
| C52          | CONDUIT | 0.063 | 0 | 01:25 | 0.17 | 0.01 | 0.26 |
| C53          | CONDUIT | 0.003 | 0 | 01:30 | 0.02 | 0.00 | 0.12 |
| C54          | CONDUIT | 0.004 | 0 | 01:30 | 0.02 | 0.00 | 0.12 |
| C55          | CONDUIT | 0.012 | 0 | 00:00 | 0.00 | 0.00 | 0.13 |
| C56          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.12 |
|              |         |       |   |       |      |      |      |
| C57          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| C58          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| C59          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| C6           | CONDUIT | 0.558 | 0 | 01:13 | 1.97 | 2.01 | 1.00 |
| C60          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.13 |
| C61          | CONDUIT | 0.501 | 0 | 01:11 | 0.35 | 0.01 | 0.22 |
| C62          | CONDUIT | 0.514 | 0 | 01:10 | 0.83 | 0.01 | 0.12 |
| C63          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| C64          | CONDUIT | 0.734 | 0 | 01:21 | 1.15 | 4.02 | 1.00 |
| C7           | CONDUIT | 0.535 | 0 | 01:10 | 1.04 | 0.83 | 1.00 |
| C8           | CONDUIT | 1.377 | 0 | 01:10 | 2.01 | 1.59 | 1.00 |
| C9           | CONDUIT | 1.615 | 0 | 01:10 | 1.43 | 1.30 | 1.00 |
| W24          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W25          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W26          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W27          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.02 |
| W28          | CONDUIT | 0.443 | 0 | 01:09 | 0.24 | 0.01 | 0.52 |
| W29          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.50 |
| W30          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W31          | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W31<br>C27 1 | ORIFICE | 0.000 | 0 | 08:00 | 0.00 | 0.00 | 1.00 |
| OR1          | ORIFICE | 0.160 | 0 | 09:11 |      |      | 1.00 |
|              |         |       |   |       |      |      |      |
| OR2          | ORIFICE | 0.054 | 0 | 09:01 |      |      | 1.00 |
| OL16         | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W10          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W11          | WEIR    | 0.063 | 0 | 01:25 |      |      | 0.18 |
| W12          | WEIR    | 0.066 | 0 | 01:25 |      |      | 0.11 |
| W13          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W14          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W15          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W16          | WEIR    | 0.138 | 0 | 01:10 |      |      | 0.18 |
| W17          | WEIR    | 0.080 | 0 | 01:10 |      |      | 0.12 |
| W18          | WEIR    | 0.022 | 0 | 01:10 |      |      | 0.05 |
| W19          | WEIR    | 0.025 | 0 | 01:11 |      |      | 0.06 |
| W2           | WEIR    | 3.418 | 0 | 01:11 |      |      | 1.00 |
| W20          | WEIR    | 0.197 | 0 | 01:13 |      |      | 0.23 |
| W21          | WEIR    | 0.070 | 0 | 01:10 |      |      | 0.11 |
| W22          | WEIR    | 0.102 | 0 | 01:10 |      |      | 0.15 |
| W23          | WEIR    | 0.141 | 0 | 01:05 |      |      | 0.19 |
| W3           | WEIR    | 1.777 | 0 | 01:08 |      |      | 1.00 |
| W32          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W33          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W34          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W35          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W36          | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W36<br>W37   | WEIR    | 0.000 | 0 | 01:13 |      |      | 0.18 |
| W37<br>W38   | WEIR    |       | 0 | 00:00 |      |      | 0.00 |
| WOO          | WEIK    | 0.000 | U | 00:00 |      |      | 0.00 |
|              |         |       |   |       |      |      |      |

| W39   | WEIR  | 0.000 | 0 | 00:00 |
|-------|-------|-------|---|-------|
| W4    | WEIR  | 0.034 | 0 | 01:13 |
| W40   | WEIR  | 0.000 | 0 | 00:00 |
| W41   | WEIR  | 0.245 | 0 | 01:12 |
| W42   | WEIR  | 0.000 | 0 | 00:00 |
| W43   | WEIR  | 0.245 | 0 | 01:12 |
| W 4 4 | WEIR  | 0.743 | 0 | 01:21 |
| W45   | WEIR  | 0.069 | 0 | 01:11 |
| W5    | WEIR  | 0.000 | 0 | 00:00 |
| W6    | WEIR  | 0.000 | 0 | 00:00 |
| W7    | WEIR  | 0.000 | 0 | 00:00 |
| W8    | WEIR  | 0.000 | 0 | 00:00 |
| W9    | WEIR  | 0.000 | 0 | 00:00 |
| OL1   | DUMMY | 0.200 | 0 | 01:24 |
| OL10  | DUMMY | 0.012 | 0 | 01:06 |
| OL11  | DUMMY | 0.006 | 0 | 01:04 |
| OL12  | DUMMY | 0.008 | 0 | 01:07 |
| OL13  | DUMMY | 0.005 | 0 | 01:03 |
| OL14  | DUMMY | 0.188 | 0 | 01:29 |
| OL15  | DUMMY | 0.189 | 0 | 01:29 |
| OL17  | DUMMY | 0.004 | 0 | 01:06 |
| OL2   | DUMMY | 0.169 | 0 | 01:31 |
| OL3   | DUMMY | 0.147 | 0 | 01:15 |
| OL4   | DUMMY | 0.000 | 0 | 00:00 |
| OL5   | DUMMY | 0.000 | 0 | 00:00 |
| OL6   | DUMMY | 0.009 | 0 | 01:07 |
| OL7   | DUMMY | 0.011 | 0 | 01:06 |
| OL8   | DUMMY | 0.011 | 0 | 01:07 |
| OL9   | DUMMY | 0.005 | 0 | 01:06 |
| Wl    | DUMMY | 0.481 | 0 | 00:00 |
|       |       |       |   |       |

0.00 0.07 0.00 0.26 0.00 0.26 0.34 0.11 0.00 0.00 0.00

|                 | Adjusted |      |      | Fract | ion of | Time | in Flo | w Clas | s    |
|-----------------|----------|------|------|-------|--------|------|--------|--------|------|
|                 |          |      |      |       |        |      |        |        |      |
|                 | /Actual  |      | Up   | Down  | Sub    | Sup  | Up     | Down   | Norm |
| Inlet           |          | _    | _    | _     |        |      |        |        |      |
| Conduit<br>Ctrl | Length   | Dry  | Dry  | Dry   | Crit   | Crit | Crit   | Crit   | Ltd  |
|                 |          |      |      |       |        |      |        |        |      |
|                 |          |      |      |       |        |      |        |        |      |
| C1              | 1.00     | 0.01 | 0.00 | 0.00  | 0.33   | 0.00 | 0.00   | 0.65   | 0.03 |
| 0.00            |          |      |      |       |        |      |        |        |      |
| C10             | 1.00     | 0.01 | 0.00 | 0.00  | 0.96   | 0.00 | 0.00   | 0.02   | 0.00 |
| 0.00            |          |      |      |       |        |      |        |        |      |
| C11             | 1.00     | 0.02 | 0.00 | 0.00  | 0.98   | 0.00 | 0.00   | 0.00   | 0.00 |
| 0.00            |          |      |      |       |        |      |        |        |      |
| C12             | 1.00     | 0.02 | 0.00 | 0.00  | 0.98   | 0.00 | 0.00   | 0.00   | 0.01 |
| 0.00            |          |      |      |       |        |      |        |        |      |
| C13             | 1.00     | 0.01 | 0.00 | 0.00  | 0.33   | 0.00 | 0.00   | 0.65   | 0.01 |
| 0.00            |          |      |      |       |        |      |        |        |      |
| C14<br>0.00     | 1.00     | U.02 | 0.00 | 0.00  | 0.33   | U.00 | 0.00   | U.65   | 0.01 |
| 0.00            |          |      |      |       |        |      |        |        |      |

| C15           | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
|---------------|------|------|------|------|------|------|------|------|------|
| 0.00<br>C16   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| 0.00<br>C17   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| 0.00<br>C18   | 1.00 | 0.00 | 0.02 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C18 1 | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C18 2 | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00          |      |      |      |      |      |      |      |      |      |
| C19<br>0.00   | 1.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.03 | 0.00 |
| C2<br>0.00    | 1.00 | 0.02 | 0.01 | 0.00 | 0.31 | 0.00 | 0.00 | 0.67 | 0.01 |
| C20<br>0.00   | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 |
| C21<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.58 |
| C21_1<br>0.00 | 1.00 | 0.02 | 0.01 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| C21_2         | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C22   | 1.00 | 0.04 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.58 | 0.63 |
| 0.00<br>C23   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| 0.00<br>C24   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.64 |
| 0.00<br>C25   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| 0.00<br>C26   | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00          |      |      |      |      |      |      |      |      |      |
| C27<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.28 |
| C27_2<br>0.00 | 1.00 | 0.01 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C28<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C29<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C3            | 1.00 | 0.01 | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.67 | 0.03 |
| 0.00<br>C30   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00<br>C31   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00<br>C32   | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C33   | 1.00 | 0.01 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.64 | 0.01 |
| 0.00<br>C34   | 1.00 | 0.02 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.58 | 0.08 |
| 0.00          |      |      |      |      |      |      |      |      |      |
| 0.00          | 1.00 | 0.04 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.58 | 0.03 |
| C36<br>0.00   | 1.00 | 0.02 | 0.43 | 0.00 | 0.55 | 0.00 | 0.00 | 0.00 | 0.59 |
| C37<br>0.00   | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |

| C38         | 1.00 | 0.02 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.65 | 0.01 |
|-------------|------|------|------|------|------|------|------|------|------|
| C39         | 1.00 | 0.01 | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.68 | 0.01 |
| 0.00<br>C4  | 1.00 | 0.01 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.68 | 0.00 |
| 0.00<br>C40 | 1.00 | 0.02 | 0.02 | 0.00 | 0.30 | 0.00 | 0.00 | 0.65 | 0.02 |
| 0.00<br>C41 | 1.00 | 0.04 | 0.34 | 0.00 | 0.62 | 0.00 | 0.00 | 0.00 | 0.95 |
| 0.00<br>C42 | 1.00 | 0.04 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.63 | 0.06 |
| 0.00<br>C43 | 1.00 | 0.04 | 0.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C44 | 1.00 | 0.38 | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C45 | 1.00 | 0.01 | 0.02 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.93 |
| 0.00<br>C46 | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.01 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C47 | 1.00 | 0.46 | 0.12 | 0.00 | 0.40 | 0.01 | 0.00 | 0.00 | 0.39 |
| 0.00<br>C48 | 1.00 | 0.04 | 0.44 | 0.00 | 0.51 | 0.00 | 0.00 | 0.00 | 0.92 |
| 0.00<br>C49 | 1.00 | 0.15 | 0.83 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.96 |
| 0.00<br>C5  | 1.00 | 0.02 | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.67 | 0.00 |
| 0.00<br>C50 | 1.00 | 0.01 | 0.14 | 0.00 | 0.85 | 0.00 | 0.00 | 0.00 | 0.95 |
| 0.00<br>C51 | 1.00 | 0.01 | 0.02 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.84 |
| 0.00<br>C52 | 1.00 | 0.45 | 0.05 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.26 |
| 0.00<br>C53 | 1.00 | 0.72 | 0.16 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.93 |
| 0.00<br>C54 | 1.00 | 0.72 | 0.02 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | 0.25 |
| 0.00<br>C55 | 1.00 | 0.73 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C56 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C57 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C58 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C59 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C6  | 1.00 | 0.02 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.66 | 0.01 |
| 0.00<br>C60 | 1.00 | 0.08 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C61 | 1.00 | 0.07 | 0.32 | 0.00 | 0.61 | 0.00 | 0.00 | 0.00 | 0.84 |
| 0.00<br>C62 | 1.00 | 0.36 | 0.22 | 0.00 | 0.32 | 0.10 | 0.00 | 0.00 | 0.41 |
| 0.00<br>C63 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C64 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |

| C7<br>0.00          | 1.00 | 0.01 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.59 | 0.02 |
|---------------------|------|------|------|------|------|------|------|------|------|
| C8<br>0.00          | 1.00 | 0.01 | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 | 0.64 | 0.00 |
| C9                  | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>W24<br>0.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| W25                 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>W26         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>W27         | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|                     | 1.00 | 0.01 | 0.98 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.96 |
| 0.00<br>W29         | 1.00 | 0.02 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>W30         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>W31         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00                |      |      |      |      |      |      |      |      |      |

|       | Both Ends | Upstream | Dnstream | Normal Flow | Capacity<br>Limited |
|-------|-----------|----------|----------|-------------|---------------------|
| C1    |           |          |          | 0.01        |                     |
| C10   | 7.29      | 7.29     | 7.41     | 0.08        | 0.11                |
| C11   | 7.00      | 7.00     | 7.10     | 0.01        | 0.02                |
| C12   | 7.10      | 7.10     | 7.39     | 0.01        | 0.01                |
| C13   | 7.14      | 7.18     | 7.38     | 0.48        | 0.35                |
| C14   | 7.20      | 7.21     | 7.38     | 0.44        | 0.41                |
| C15   | 7.38      | 7.38     | 7.42     | 0.17        | 0.20                |
| C16   | 7.47      | 7.47     | 7.70     | 0.14        | 0.16                |
| C17   | 7.76      | 7.76     | 7.80     | 0.19        | 0.23                |
| C18   | 7.12      | 7.12     | 7.19     | 0.01        | 0.01                |
| C18_1 | 6.52      | 6.52     | 6.62     | 0.03        | 0.07                |
| C18_2 | 6.62      | 6.62     | 6.73     | 0.01        | 0.01                |
| C19   | 7.19      | 7.19     | 7.25     | 0.11        | 0.16                |
| C2    | 0.62      | 0.62     | 5.56     | 0.01        | 0.01                |
| C20   | 7.32      | 7.32     | 23.39    | 0.01        | 0.01                |
| C21   | 7.29      | 7.29     | 7.57     | 0.15        | 0.16                |
| C21_1 | 6.79      | 6.79     | 6.86     | 0.01        | 0.01                |
| C21_2 | 6.86      | 6.86     | 6.88     | 0.01        | 0.02                |
| C22   | 7.58      | 7.58     | 7.92     | 0.19        | 0.01                |
| C23   | 8.05      | 8.05     | 9.72     | 0.38        | 0.38                |
| C24   | 6.39      | 6.39     | 7.10     | 0.01        | 0.01                |
| C25   |           | 7.17     |          |             | 0.02                |
| C26   | 6.95      | 6.95     | 7.05     | 0.01        | 0.01                |
| C27   | 6.94      | 6.94     | 7.29     | 0.01        | 0.01                |
| C27_2 | 6.94      | 6.94     | 7.00     | 0.01        | 0.01                |
|       |           |          |          |             |                     |

| C28 | 7.01  | 7.02  | 7.02  | 0.01 | 1.52 |
|-----|-------|-------|-------|------|------|
| C29 | 7.37  | 7.37  | 23.05 | 0.01 | 0.01 |
| C3  | 6.18  | 6.24  | 6.54  | 0.53 | 0.37 |
| C30 | 23.06 | 23.06 | 23.06 | 0.01 | 0.62 |
| C31 | 23.08 | 23.08 | 23.08 | 0.01 | 1.20 |
| C32 | 23.08 | 23.08 | 24.00 | 0.01 | 0.01 |
| C33 | 7.36  | 7.36  | 7.55  | 0.16 | 0.24 |
| C34 | 7.61  | 7.61  | 7.92  | 0.08 | 0.09 |
| C35 | 6.84  | 6.84  | 7.04  | 0.01 | 0.01 |
| C36 | 7.08  | 7.08  | 7.27  | 0.05 | 0.01 |
| C37 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 |
| C38 | 6.70  | 6.70  | 6.93  | 0.01 | 0.01 |
| C39 | 6.65  | 6.65  | 6.69  | 0.21 | 0.21 |
| C4  | 6.16  | 6.16  | 6.29  | 0.30 | 0.28 |
| C40 | 6.43  | 6.43  | 6.61  | 0.01 | 0.01 |
| C42 | 0.18  | 0.18  | 7.19  | 0.01 | 0.01 |
| C5  | 6.39  | 6.39  | 6.41  | 0.32 | 0.30 |
| C6  | 6.46  | 6.47  | 6.62  | 0.28 | 0.27 |
| C64 | 7.35  | 7.35  | 7.35  | 0.48 | 3.30 |
| C7  | 4.80  | 4.80  | 6.36  | 0.01 | 0.01 |
| C8  | 1.52  | 1.52  | 5.03  | 0.22 | 0.01 |
| C9  | 6.74  | 6.74  | 6.85  | 0.17 | 0.19 |
| W28 | 0.01  | 0.01  | 22.86 | 0.01 | 0.01 |

Analysis begun on: Thu Aug 8 19:48:32 2024 Analysis ended on: Thu Aug 8 19:48:39 2024 Total elapsed time: 00:00:07

## **APPENDIX**

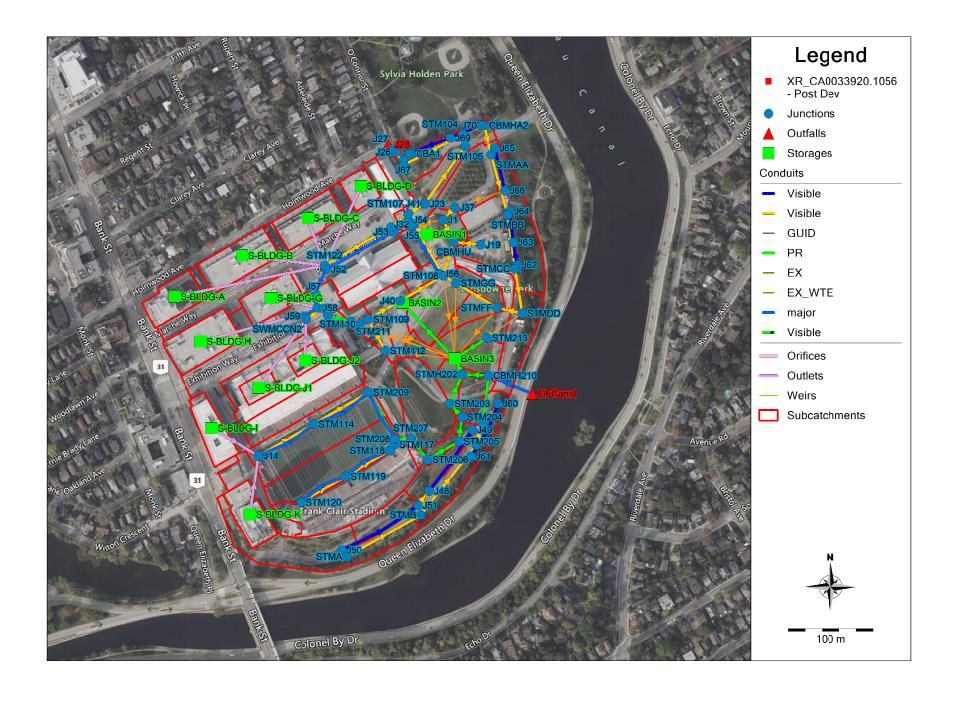
C

**Proposed Conditions** 

# C-1 Storm Sewer Design Sheet

STORM SEWER DESIGN SHEET LANSDOWNE 2.0 REDEVELOPMENT CITY OF OTTAWA Project: CA0033920.1056 Date: August, 2024




| Date. August, 2024                   |                                         | LOCATION                     |                             |                                                  |                  | AREA (Ha | a)          |            |                |                             |          |       |                |                | RATIONAL         | DESIGN FLOW |                 |                  |            |                  |                   |                                  |                                                 | PROPSOED SE         | VER DATA    |                                                                               |
|--------------------------------------|-----------------------------------------|------------------------------|-----------------------------|--------------------------------------------------|------------------|----------|-------------|------------|----------------|-----------------------------|----------|-------|----------------|----------------|------------------|-------------|-----------------|------------------|------------|------------------|-------------------|----------------------------------|-------------------------------------------------|---------------------|-------------|-------------------------------------------------------------------------------|
| BLDG FLOW                            | AREA ID                                 | FROM                         | то                          | C=                                               | C= (             | C= C     | <del></del> | C=         |                |                             | NLET TO  |       | i (2)          | i (5)          | i (100)          | BLDG        | 2yr PEAK 5yr Pi |                  |            |                  | MODIFIED          |                                  | SIZE SLOPE LE                                   | NGTH CAPAC          | TY VELOCITY | TIME AVAIL CAP (2yr)                                                          |
| DEDOT EON                            | ANEAID                                  | T NOM                        | 10                          | 0.20                                             | 0.35 0           | 0.75 0.8 | .80 0.90    | 1.00       | 2.78AC         | 2.78 AC (                   | min) (m  | in)   | (mm/hr)        | (mm/hr)        | (mm/hr)          | FLOW (L/s)  | FLOW (L/s) FLOW | (L/s) FLOW (L/s) | FLOW (L/s) | FLOW (L/s)       | DESIGN FLOW (L/s) | PIPE                             | (mm) (%)                                        | (m) (l/s)           | (m/s)       | IN PIPE (L/s) (%)                                                             |
|                                      |                                         |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      |                                         |                              |                             | 1                                                |                  |          |             | Т          |                |                             | Т        |       | Lansde         | owne 2.0       |                  | l l         |                 |                  | T          | l                |                   | ı                                |                                                 |                     |             |                                                                               |
| +106 l/s                             | S. STANDS                               | Ex. STM 120                  | Ex. STM 119                 |                                                  |                  |          |             |            |                | 0.000 2                     |          |       | 52.03          | 70.25          | 119.95           |             | 0.0             |                  |            | 0.00             | 106.00            |                                  | 450.0 0.20 5                                    |                     |             | 1.24 21.63 16.95%                                                             |
| +106 l/s                             |                                         | Ex. STM 119 Ex. STM 118      | Ex. STM 118 Ex. STM 117     | -                                                |                  |          |             |            |                | 0.000 2<br>0.000 2          |          |       | 50.12<br>48.36 | 67.64<br>65.24 | 115.46<br>111.33 |             | 0.0             |                  |            | 0.00             | 106.00<br>212.00  |                                  | 450.0     0.20     5       600.0     0.20     8 |                     |             | 1.24     21.63     16.95%       0.15     62.87     22.87%                     |
|                                      |                                         |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      |                                         | Ex. STM 117                  | STMH 208                    | 1                                                |                  |          |             |            | 0.000          | 0.000 2                     | 2.63 22  | .68   | 48.16          | 64.97          | 110.85           |             | 0.0             | 00               |            | 0.00             | 212.00            | CONC                             | 600.0 0.20                                      | 3.00 274.8          | 0.97        | 0.05 62.87 22.87%                                                             |
| . 222 C 1/a                          | A3, A4, A5, BLDG I, K,<br>N STANDS      | Fix CTM 44E                  | F., CTM 444                 | 1.118                                            |                  |          | 0.399       |            | 4.000          | 1.000                       | 0.00     | 00    | 50.00          | 70.05          | 110.05           |             | 442             | 00               |            | 442.00           | 240.40            | CONC                             | 005.0 0.00 7                                    | 22.70               | 1.00        | 4.00 200.40 40.000/                                                           |
| +232.6 l/s                           | IN STANDS                               | Ex. STM 115  Ex. STM 114     | Ex. STM 114<br>STMH 209     | 1.116                                            |                  |          | 0.399       |            | 1.620<br>0.000 | 1.620 2<br>1.620 2          |          |       | 52.03<br>50.44 | 70.25<br>68.08 | 119.95<br>116.22 |             | 113.<br>110.    |                  |            | 113.80<br>110.29 | 346.40<br>342.89  |                                  | 825.0 0.20 7<br>825.0 0.20 7                    |                     |             | 1.02     296.19     46.09%       1.03     299.71     46.64%                   |
|                                      | Half of NEC Area                        | STMH 209                     | STMH 208                    | 0.000                                            |                  |          | 0.486       |            | 1 215          | 2.835 2                     | 2 06 22  | 27    | 48.94          | 66.04          | 112.69           |             | 187.            | 10               |            | 187.19           | 419.79            | CONC                             | 900.0 0.10 6                                    | 5.64 572.0          | 5 0.90      | 1.22 153.26 26.74%                                                            |
|                                      | Trail of NEO Area                       | 31WI1 209                    | 311/11/200                  | 0.000                                            |                  |          | 0.460       |            | 1.213          | 2.033 2                     | .2.00 23 | .21   | 40.94          | 00.04          | 112.09           |             | 167.            | .19              |            | 107.19           | 419.79            | CONC                             | 900.0 0.10 0                                    | 3.04 373.0          | 0.90        | 1.22 133.20 20.74%                                                            |
| $Q_{\text{bldg Tot}} = 444.6$ I/s    |                                         | STMH 208                     | STMH 207                    |                                                  |                  |          |             |            | 0.000          | 2.835 2                     | 22 22    | .58   | 47.30          | 63.80          | 108.84           |             | 180.            | 05               |            | 180.85           | 625.45            | CONC                             | 1050.0 0.10 1                                   | 8.55 864.4          | 1.00        | 0.31 238.95 27.64%                                                            |
| 1/5                                  |                                         | STWIN 206                    | 51WH 207                    | 1                                                |                  |          |             |            | 0.000          | 2.835 2                     | 3.21 23  | .56   | 47.30          | 03.80          | 106.64           |             | 180.            | .85              |            | 160.65           | 625.45            | CONC                             | 1050.0 0.10 1                                   | 8.55 864.4          | 1.00        | 0.31 238.95 27.64%                                                            |
|                                      |                                         | STMH 207                     | STMH 206                    |                                                  |                  |          |             |            | 0.000          | 2.835 2                     | 3.58 23  | .97   | 46.90          | 63.26          | 107.91           |             | 179.            | .31              |            | 179.31           | 623.91            | CONC                             | 1050.0 0.10 2                                   | 3.14 864.4          | 1.00        | 0.39 240.49 27.82%                                                            |
|                                      | A6                                      | STMH 206                     | STMH 205                    | 0.048                                            |                  |          | 0.025       |            | 0.089          | 2.924 2                     | 3.97 24  | .61   | 46.41          | 62.59          | 106.77           |             | 183.            | .01              |            | 183.01           | 627.61            | CONC                             | 1050.0 0.10 3                                   | 8.05 864.4          | 1.00        | 0.64 236.79 27.39%                                                            |
|                                      |                                         | STMH 205                     | STMH 204                    | +                                                |                  |          |             |            | 0.000          | 2.924 2                     | 4 61 25  | 10    | 45.64          | 61.53          | 104.94           |             | 179.            | 92               |            | 179.92           | 624.52            | CONC                             | 1050.0 0.10 2                                   | 9 50 864 4          | 1.00        | 0.49 239.89 27.75%                                                            |
|                                      |                                         |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      | Half of NEC Area                        | STMH 204                     | STMH 203                    | 0.000                                            |                  |          | 0.486       |            | 1.215          | 4.139 2                     | 25.10 25 | .55   | 45.05          | 60.74          | 103.58           |             | 251.            | .38              |            | 251.38           | 695.98            | CONC                             | 1050.0 0.10 2                                   | 7.14 864.4          | 1.00        | 0.45 168.43 19.48%                                                            |
|                                      | Great Lawn 5                            | STMH 203                     | CBMH 202                    | 0.089                                            |                  |          | 0.026       |            | 0.115          | 4.253 2                     | 5.55 26  | .25   | 44.53          | 60.03          | 102.36           |             | 255.            | .31              |            | 255.31           | 699.91            | CONC                             | 1050.0 0.10 4                                   | 1.65 864.4          | 1.00        | 0.70 164.49 19.03%                                                            |
|                                      | Great Lawn 6, A, D, D1,                 |                              |                             | 1                                                |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      | D2                                      | Ex. STMD                     | CBMH 210                    | 1.237                                            |                  |          | 0.542       |            | 2.044          | 2.044 2                     | 0.00 20  | .83   | 52.03          | 70.25          | 119.95           |             | 143.            | .58              |            | 143.58           |                   | CONC                             | 600.0 0.10 3                                    | 4.40 194.3          | 0.69        | 0.83 50.78 26.13%                                                             |
|                                      | Great Lawn 4                            | CBMH 210                     | CBMH 202                    | 0.160                                            |                  |          | 0.024       |            | 0.149          | 2.193 2                     | 0.83 21  | .37   | 50.73          | 68.47          | 116.88           |             | 150.            | .15              |            | 150.15           |                   | CONC                             | 600.0 0.10 2                                    | 2.20 194.3          | 6 0.69      | 0.54 44.22 22.75%                                                             |
|                                      |                                         |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
| $Q_{\text{bldg Tot}} = 444.6$ I/s    |                                         | CBMH 202                     | CHAMBER / Ex. Chamber       |                                                  |                  |          |             |            | 0.000          | 6.446 2                     | 6.25 26  | .25   | 43.75          | 58.97          | 100.54           |             | 380.            | .15              |            | 380.15           | 824.75            |                                  | REF                                             | ER TO STORM         | TECH DESIGI | N                                                                             |
|                                      |                                         |                              |                             |                                                  |                  |          |             |            | 0.000          |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      | OPGG5, Great Lawn 3                     | CHAMBER / Ex. Chamber        | Ex. 1350 PIPE               | 0.228                                            |                  |          | 0.131       |            | 0.455          | 6.901 2                     | 6.25 26  | .25   | 43.75          | 58.97          | 100.54           |             | 406.            | .95              |            | 406.95           | 851.55            |                                  | REF                                             | ER TO STORM         | TECH DESIGI | N                                                                             |
|                                      | A4 DLDCC LLC L I4                       |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
| +23.1 l/s                            | A1, BLDGS H, G, J, J1,<br>J2            | Ex. STM-CCN1                 | NEW STMH 212                | 0.019                                            |                  |          | 0.938       |            | 2.357          | 2.357 2                     | 0.00 20  | .21   | 52.03          | 70.25          | 119.95           |             | 165.            | .61              |            | 165.61           | 188.71            | CONC                             | 600.0 0.20 1                                    | 2.03 274.8          | 0.97        | 0.21 86.16 31.35%                                                             |
|                                      |                                         | NEW STMH 212<br>NEW STMH 211 | NEW STMH 211<br>Ex. STM 110 |                                                  |                  |          |             |            | 0.000          |                             |          |       | 51.70<br>50.90 | 69.80<br>68.71 | 119.18<br>117.29 |             | 164.<br>161.    |                  |            | 164.55<br>161.97 | 187.65<br>185.07  | CONC<br>CONC                     | 600.0 0.20 3<br>600.0 0.20 1                    |                     |             | 0.51         87.22         31.73%           0.19         89.80         32.67% |
|                                      | OPGG1, OPGG4                            | Ex. STM 110                  | Ex. STM 109                 | 0.015                                            |                  |          | 0.160       |            | 0.409          |                             |          |       | 50.61          | 68.31          | 116.62           |             | 188.            |                  |            | 188.97           | 212.07            |                                  | 600.0 0.20 1                                    |                     |             | 0.20 62.81 22.85%                                                             |
| $Q_{\text{bldg Tot}} = 467.7$ I/s    | OPGG2                                   | Ex. STM 109                  | Ex. STM 108                 | 0.020                                            |                  |          | 0.251       |            | 0.630          | 10.306 2                    | 06.25    | 40    | 43.75          | 58.97          | 100.54           |             | 607.            | 77               |            | 607.77           | 1075.47           | CONC                             | 1350.0 0.13 9                                   | 9. <i>80</i> 1926.3 | 7 1.34      | 1.24 850.90 44.17%                                                            |
| 1/3                                  |                                         |                              |                             | 0.020                                            |                  |          | 0.251       |            |                |                             |          |       | 43.75          | 56.97          | 100.54           |             | 607.            | .77              |            | 607.77           | 1075.47           | CONC                             | 7350.0 0.73 9                                   | 9.80 1926.3         | 1.34        | 1.24 850.90 44.17%                                                            |
|                                      | 102, AA, BB, EE                         | Ex. STMDD                    | Ex. STMFF                   | 1.410                                            |                  |          | 0.594       |            | 2.270          | 2.270 2                     | 1.70 22  | .27   | 49.45          | 66.73          | 113.88           |             | 151.            | .48              |            | 151.48           |                   | CONC                             | 900.0 0.10 3                                    | 1.00 573.0          | 0.90        | 0.57 421.57 73.57%                                                            |
|                                      | Great Lawn 1 & 2, T1,                   |                              |                             |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      | T2, V1, V2                              | Ex. STMFF                    | Ex. STMGG                   | 0.508                                            |                  |          | 0.295       |            | 1.021          | 3.291 2                     | 2.27 23  | .33   | 48.64          | 65.62          | 111.98           |             | 215.            | .95              |            | 215.95           |                   | CONC                             | 900.0 0.10 5                                    | 7.00 573.0          | 0.90        | 1.06 357.10 62.32%                                                            |
|                                      |                                         | Ex. STMGG                    | Ex. STM 108                 |                                                  |                  |          |             |            | 0.000          | 3.291 2                     | 3.33 23  | .74   | 47.23          | 63.70          | 108.67           |             | 209.            | .61              |            | 209.61           |                   | CONC                             | 900.0 0.10 2                                    | 2.00 573.0          | 0.90        | 0.41 363.43 63.42%                                                            |
| $Q_{\text{bldg Tot}} = 467.7$        |                                         |                              |                             | <del>                                     </del> |                  |          |             |            |                |                             |          | -+    |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
| I/s                                  | OPGG3, 108                              | Ex. STM 108                  | Ex. STM 107                 | 0.167                                            |                  |          | 0.316       |            | 0.883          | 14.480 2                    | 7.49 28  | .64   | 42.45          | 57.20          | 97.49            |             | 828.            | .21              |            | 828.21           | 1295.91           | CONC                             | 1350.0 0.10 8                                   | 1.40 1689.5         | 4 1.18      | 1.15 393.63 23.30%                                                            |
| +34.4 l/s, Qbldg                     |                                         |                              |                             | +                                                |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
|                                      | A2, BLDGS A, B, C, D                    | Ex. STM 107                  | Ex. STM 106                 | 0.032                                            |                  |          | 1.555       |            | 3.908          | 18.388 2                    | 8.64 28  | .93   | 41.31          | 55.65          | 94.82            |             | 1023            | 3.27             |            | 1023.27          | 1525.37           | CONC                             | 1350.0 0.10 2                                   | 0.70 1689.5         | 4 1.18      | 0.29 164.17 9.72%                                                             |
|                                      |                                         | Ex. STM 106                  | Ex. STM 105                 | <del>                                     </del> |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 616.00           |                   | CONC                             | 975.0 0.10 8                                    | 0.20 709.4          | 0.95        | 1.41 93.40 13.17%                                                             |
|                                      |                                         | Ex. STM 105                  | Ex. STM 104                 |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 616.00           |                   | CONC                             | 975.0 0.10 1                                    | 2.10 709.4          | 0.95        | 0.21 93.40 13.17%                                                             |
| Cont                                 | trolled Flow                            | Ex. STM 104<br>Ex. STM 103   | Ex. STM 103<br>Ex. STM 102  |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 616.00<br>616.00 |                   | CONC                             | 975.0     0.10     1       975.0     0.10     5 | <i>4.20</i> 709.4   |             | 0.34     93.40     13.17%       0.95     93.40     13.17%                     |
|                                      |                                         | Ex. STM 102                  | Ex. STM 101                 |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 616.00           |                   | CONC                             | 975.0 0.10 2                                    | <i>4.20</i> 709.4   | 0.95        | 0.42 93.40 13.17%                                                             |
|                                      |                                         | Ex. STM 101                  | Ex. STM MH (O'Connnor)      |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 616.00           |                   | CONC                             | 975.0 0.10                                      | 5.80 709.4          | 0.95        | 0.10 93.40 13.17%                                                             |
| <b>Definition:</b> Q=2.78CiA, where: | <u></u>                                 |                              |                             | Notes:                                           | gs coefficient ( | (n) -    | 0.012       | imo of Cor | ncontrotio-    | n in the Swale              | ,        | •     |                |                | Designed:        |             | Z.A.            | No.              |            |                  |                   | evision<br>omission No. 1        |                                                 |                     |             | <b>Date</b><br>2023-05-25                                                     |
| Q = Peak Flow in L                   | itres per Second (L/s)                  |                              |                             | i . iviannin                                     | ys coembient (   | (11) = ( |             |            |                | = 3.258 [(1.1 -             |          | ^.33] |                |                |                  |             |                 | 2.               |            |                  |                   | omission No. 1<br>omission No. 2 |                                                 |                     |             | 2023-09-22                                                                    |
| A = Area in Hectare                  | es (Ha)<br>y in millimeters per hour (n | nm/hr)                       |                             |                                                  |                  |          | W           | Vhere: Lon | ngest Water    | rcourse Length<br>Runoff Co |          |       | pervious       |                | Checked:         |             | D.B.Y.          | 3.               |            |                  | City Sub          | omission No. 3                   | 3                                               |                     |             | 2024-08-07                                                                    |
| i = 732.951/(TC                      | +6.199)^0.810                           | •                            | 2 Year                      |                                                  |                  |          |             |            | No.            | L (m)                       |          |       | hei viong      |                |                  |             |                 |                  |            |                  |                   |                                  |                                                 |                     |             |                                                                               |
| `                                    | C+6.014)^0.816<br>C+6.014)^0.820        |                              | 5 Year<br>100 Year          |                                                  |                  |          |             |            |                |                             | #D       | V/0!  |                |                | Dwg. Referen     | ce:         | F2              |                  | File       | Reference:       |                   |                                  | Date:                                           |                     |             | Sheet No:                                                                     |
| 1 - 17 33.000/(10                    |                                         |                              | .55 1541                    |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | 0002045.0622     |                   |                                  | 2023-09-22                                      |                     |             | 1 of 1                                                                        |
| <del></del>                          | <del></del>                             | <del></del>                  | <del></del>                 |                                                  |                  |          |             |            |                |                             |          |       |                |                |                  |             |                 |                  |            | <del></del>      |                   |                                  |                                                 |                     |             |                                                                               |

## C-2 PCSWMM Output

PCSWMM Catchment Parameters –Proposed Conditions

|              |           |           | Flow Length | Slope | Imperv. |
|--------------|-----------|-----------|-------------|-------|---------|
| Name         | Area (ha) | Width (m) | (m)         | (%)   | (%)     |
| 102          | 0.444     | 44.4      | 100.14      | 0.5   | 64.2    |
| 107AA        | 0.270     | 176.7     | 15.28       | 0.5   | 86.3    |
| 108          | 0.344     | 162.7     | 21.16       | 0.5   | 68.5    |
| 109          | 0.198     | 88.9      | 22.24       | 0.5   | 87.5    |
| Α            | 0.733     | 43.0      | 170.37      | 0.5   | 47.4    |
| A1           | 0.957     | 234.9     | 40.75       | 0.5   | 98.5    |
| A2           | 1.578     | 358.2     | 44.06       | 0.5   | 97.9    |
| A3           | 0.770     | 217.1     | 35.45       | 0.5   | 100.0   |
| A4           | 0.623     | 170.2     | 36.59       | 2     | 100.0   |
| A5           | 0.246     | 30.9      | 79.59       | 0.5   | 99.9    |
| A6           | 0.073     | 14.9      | 49.23       | 0.5   | 44.0    |
| AA           | 0.370     | 72.8      | 50.84       | 0.5   | 54.4    |
| BB           | 0.891     | 50.5      | 176.24      | 0.5   | 41.1    |
| BLDG-A       | 0.254     | 254.2     | 10.00       | 0.5   | 100.0   |
| BLDG-B       | 0.363     | 362.6     | 10.00       | 0.5   | 100.0   |
| BLDG-C       | 0.299     | 299.3     | 10.00       | 0.5   | 100.0   |
| BLDG-D       | 0.138     | 138.0     | 10.00       | 0.5   | 100.0   |
| BLDGG        | 0.243     | 242.9     | 10.00       | 0.5   | 100.0   |
| BLDGH        | 0.371     | 370.9     | 10.00       | 0.5   | 100.0   |
| BLDG-I       | 0.226     | 225.6     | 10.00       | 0.5   | 100.0   |
| BLDG-J       | 0.604     | 604.4     | 10.00       | 0.5   | 100.0   |
| BLDG-J1      | 0.104     | 103.9     | 10.00       | 0.5   | 100.0   |
| BLDG-J2      | 0.089     | 89.2      | 10.00       | 0.5   | 100.0   |
| BLDG-K       | 0.247     | 247.3     | 10.00       | 0.5   | 100.0   |
| D            | 0.189     | 38.7      | 48.90       | 0.5   | 27.1    |
| D_2          | 0.210     | 38.7      | 54.30       | 0.5   | 19.1    |
| D1           | 0.495     | 271.3     | 18.25       | 0.5   | 15.2    |
| EE           | 0.353     | 38.6      | 91.52       | 0.5   | 15.3    |
| Great-Lawn_1 | 0.370     | 75.0      | 49.33       | 0.5   | 17.0    |
| Great-Lawn_2 | 0.150     | 46.0      | 32.61       | 0.5   | 15.0    |
| Great-Lawn_3 | 0.250     | 41.0      | 61.05       | 0.5   | 9.0     |
| Great-Lawn_4 | 0.184     | 49.7      | 37.08       | 0.5   | 13.0    |
| Great-Lawn_5 | 0.115     | 45.5      | 25.20       | 0.5   | 23.0    |
| Great-Lawn_6 | 0.152     | 40.0      | 38.05       | 0.5   | 18.0    |
| Great-Lawn_9 | 0.000     | 135.1     | 0.00        | 0.5   | 19.0    |
| NEC1         | 0.486     | 247.7     | 19.62       | 10    | 99.0    |
| NEC2         | 0.486     | 247.7     | 19.62       | 10    | 99.0    |
| NSTANDS      | 0.472     | 62.2      | 75.86       | 2     | 100.0   |
| OPGG 1       | 0.090     | 42.8      | 20.94       | 0.5   | 83.0    |
| OPGG 2       | 0.273     | 83.0      | 32.86       | 0.5   | 93.0    |

| 1       | i     | l     | İ     |     | l l   |
|---------|-------|-------|-------|-----|-------|
| OPGG_3  | 0.139 | 67.0  | 20.70 | 0.5 | 84.0  |
| OPGG_4  | 0.085 | 47.0  | 18.00 | 0.5 | 99.0  |
| OPGG5   | 0.109 | 42.0  | 25.95 | 0.5 | 99.0  |
| SSTANDS | 0.786 | 162.6 | 48.34 | 10  | 100.0 |
| Т       | 0.131 | 75.9  | 17.24 | 0.5 | 27.8  |
| V_1     | 0.061 | 167.8 | 3.62  | 0.5 | 96.6  |
| V_2     | 0.097 | 167.8 | 5.77  | 0.5 | 96.6  |



#### EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link OR1
WARNING 03: negative offset ignored for Link OR2
WARNING 02: maximum depth increased for Node CBA1
WARNING 02: maximum depth increased for Node CBMH210
WARNING 02: maximum depth increased for Node CBMH22
WARNING 02: maximum depth increased for Node J14
WARNING 02: maximum depth increased for Node J14
WARNING 02: maximum depth increased for Node J14
WARNING 02: maximum depth increased for Node J32
WARNING 02: maximum depth increased for Node J32
WARNING 02: maximum depth increased for Node J37
WARNING 02: maximum depth increased for Node STM107
WARNING 02: maximum depth increased for Node STM108
WARNING 02: maximum depth increased for Node STM108
WARNING 02: maximum depth increased for Node STM109
WARNING 02: maximum depth increased for Node STM1110
WARNING 02: maximum depth increased for Node STM1112
WARNING 02: maximum depth increased for Node STM1114
WARNING 02: maximum depth increased for Node STM1119
WARNING 02: maximum depth increased for Node STM1119
WARNING 02: maximum depth increased for Node STM1120
WARNING 02: maximum depth increased for Node STM1120
WARNING 02: maximum depth increased for Node STM1120
WARNING 02: maximum depth increased for Node STM120
WARNING 02: maximum depth increased for Node STM120
WARNING 02: maximum depth increased for Node STM208
WARNING 02: maximum depth increased

Element Count

#### 

 Name
 Data Source
 Type
 Interval

 100yr\_3hr\_Chicago
 100yr\_3hr\_Chicago
 INTENSITY
 10 min.

| BLDG-D<br>S-BLDG-D      | 0.14 | 138.00 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
|-------------------------|------|--------|--------|---------|-------------------|
| BLDGG<br>S-BLDG-G       | 0.24 | 242.90 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
| BLDGH                   | 0.37 | 370.90 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
| S-BLDG-H<br>BLDG-I      | 0.23 | 225.60 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
| S-BLDG-I<br>BLDG-J      | 0.60 | 604.40 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
| SWMCCN1<br>BLDG-J1      | 0.10 | 103.90 | 100.00 | 0.5000  | 100yr_3hr_Chicago |
| S-BLDG-J1<br>BLDG-J2    | 0.09 | 89.20  | 100.00 | 0.5000  | 100yr 3hr Chicago |
| S-BLDG-J2<br>BLDG-K     | 0.25 | 247.30 | 99.99  | 0.5000  | 100yr 3hr Chicago |
| S-BLDG-K                | 0.19 | 38.69  | 27.10  |         | 100yr 3hr Chicago |
| J48                     |      |        |        |         |                   |
| D_2<br>J48              | 0.21 | 38.69  | 19.10  | 0.5000  | 100yr_3hr_Chicago |
| D1<br>J61               | 0.50 | 271.32 | 15.20  | 0.5000  | 100yr_3hr_Chicago |
| EE<br>STMDD             | 0.35 | 38.57  | 15.30  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_1<br>STMFF   | 0.37 | 75.00  | 17.00  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_2<br>STMFF   | 0.15 | 46.00  | 15.00  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_3<br>STM213  | 0.25 | 41.00  | 9.00   | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_4<br>CBMH210 | 0.18 | 49.70  | 13.00  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_5<br>STM203  | 0.11 | 45.48  | 23.00  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_6<br>CBMH210 | 0.15 | 40.00  | 18.00  | 0.5000  | 100yr_3hr_Chicago |
| Great-Lawn_9<br>BASIN3  | 0.00 | 135.11 | 19.00  | 0.5000  | 100yr_3hr_Chicago |
| NEC1<br>STM209          | 0.49 | 247.73 | 99.00  | 10.0000 | 100yr_3hr_Chicago |
| NEC2                    | 0.49 | 247.73 | 99.00  | 10.0000 | 100yr_3hr_Chicago |
| STM204<br>NSTANDS       | 0.47 | 62.16  | 99.98  | 2.0000  | 100yr_3hr_Chicago |
| STM209<br>OPGG_1        | 0.09 | 42.80  | 83.00  | 0.5000  | 100yr_3hr_Chicago |
| STM110<br>OPGG_2        | 0.27 | 83.00  | 93.00  | 0.5000  | 100yr_3hr_Chicago |
| STM109<br>OPGG 3        | 0.14 | 67.00  | 84.00  | 0.5000  | 100yr 3hr Chicago |
| J56<br>OPGG 4           | 0.08 | 47.00  | 99.00  |         | 100yr 3hr Chicago |
| STM112                  |      |        |        |         |                   |
| OPGG5<br>BASIN3         | 0.11 | 42.00  | 99.00  | 0.5000  | 100yr_3hr_Chicago |
| SSTANDS<br>STM119       | 0.79 | 162.57 | 99.99  | 10.0000 | 100yr_3hr_Chicago |
| T<br>STMGG              | 0.13 | 75.86  | 27.76  | 0.5000  | 100yr_3hr_Chicago |
| V_1<br>STMGG            | 0.06 | 167.82 | 96.59  | 0.5000  | 100yr_3hr_Chicago |
| 011100                  |      |        |        |         |                   |

| 100yr_3hr_Chicago_C<br>10 min.       | _                            |           |            | _         |                    |
|--------------------------------------|------------------------------|-----------|------------|-----------|--------------------|
| 100yr_6hr_Chicago                    |                              |           |            | INTENSITY |                    |
| 100yr_6hr_Chicago_C                  | limate_Change                | 100yr_6hr | _Chicago_I | ncrease_2 | Opercent INTENSITY |
| 10 min.                              |                              |           |            |           |                    |
| 100yr-SCS_12hr_Type                  |                              |           |            | INTENSI:  |                    |
| 100yr-SCS_24hr_Type                  |                              |           | _II        | INTENSI:  |                    |
| 10yr_3hr_Chicago                     |                              |           |            | INTENSITY |                    |
| 10yr_6hr_Chicago                     | 10yr_6hr_Chi                 |           |            | INTENSITY |                    |
| 25mm_3hr_Chicago                     | 25mm_3hr_Chi                 |           |            |           |                    |
| 25mm_4hr_Chicago                     | 25mm_4hr_Chi                 |           |            | INTENSITY |                    |
| 25yr_3hr_Chicago                     | 25yr_3hr_Chi                 |           |            | INTENSITY |                    |
| 25yr_6hr_Chicago<br>2yr 3hr Chicago  | 25yr_6hr_Chi<br>2yr 3hr Chic |           |            | INTENSITY |                    |
| 2yr_3nr_Chicago<br>2yr 6hr Chicago   | 2yr_3nr_Cnic<br>2yr 6hr Chic |           |            | INTENSITY |                    |
|                                      |                              |           |            | INTENSITY |                    |
| 50yr_3hr_Chicago<br>50yr 6hr Chicago | 50yr_3hr_Chi<br>50yr 6hr Chi |           |            | INTENSITY |                    |
| 5yr 3hr Chicago                      | 5vr 3hr Chic                 |           |            | INTENSITY |                    |
| 5yr_Shr_Chicago<br>5yr 6hr Chicago   | 5yr 6hr Chic                 |           |            | INTENSITY |                    |
| Jyr_onr_chreago                      | Jy1_oni_cnic                 | ago       |            | INIENSIII | IO MIII.           |
|                                      |                              |           |            |           |                    |
| ******                               | *                            |           |            |           |                    |
| Subcatchment Summar                  | v                            |           |            |           |                    |
| ***********                          | *                            |           |            |           |                    |
| Name                                 | Area                         | Width     | %Imperv    | %Slope    | Rain Gage          |
| Outlet                               |                              |           |            |           |                    |
|                                      |                              |           |            |           |                    |
|                                      |                              |           |            |           |                    |
| 102                                  | 0.44                         | 44.37     | 64.22      | 0.5000    | 100yr_3hr_Chicago  |
| J67                                  |                              |           |            |           |                    |
| 107AA<br>J23                         | 0.27                         | 176.73    | 86.34      | 0.5000    | 100yr_3hr_Chicago  |
| 108                                  | 0.34                         | 162.73    | 68.53      | 0.5000    | 100yr 3hr Chicago  |
| BASIN1                               | 0.34                         | 102.73    | 60.33      | 0.5000    | 10071-3HI-CHICAGO  |
| 109                                  | 0.20                         | 88.92     | 87.49      | 0.5000    | 100yr 3hr Chicago  |
| STM109                               | 0.20                         | 00.52     | 07.43      | 0.5000    | TOOYI_SHI_CHICAG   |
| A                                    | 0.73                         | 43.00     | 47.40      | 0.5000    | 100yr 3hr Chicago  |
| J50                                  |                              |           |            |           | 1                  |
| A1                                   | 0.96                         | 234.86    | 98.54      | 0.5000    | 100yr 3hr Chicago  |
| J59                                  |                              |           |            |           |                    |
| A2                                   | 1.58                         | 358.18    | 97.91      | 0.5000    | 100yr 3hr Chicago  |
| J52                                  |                              |           |            |           |                    |
| A3                                   | 0.77                         | 217.10    | 100.00     | 0.5000    | 100yr_3hr_Chicag   |
| STM114                               |                              |           |            |           |                    |
| A4                                   | 0.62                         | 170.22    | 100.00     | 2.0000    | 100yr_3hr_Chicago  |
| STM119                               |                              |           |            |           |                    |
| A5                                   | 0.25                         | 30.92     | 99.94      | 0.5000    | 100yr_3hr_Chicago  |
| J14                                  | 0.6-                         | 14.0-     | 44.00      | 0 5000    | 100 21 01          |
| A6                                   | 0.07                         | 14.87     | 44.00      | U.5000    | 100yr_3hr_Chicago  |
| STM206                               | 0.37                         | 70 00     | E4 20      | 0 5000    | 100 25 05'         |
| AA                                   | 0.37                         | 72.80     | 54.39      | 0.5000    | 100yr_3hr_Chicago  |
| J37<br>BB                            | 0.89                         | 50.53     | 41.05      | 0 5000    | 100 25 05'         |
| ВВ<br>J64                            | 0.89                         | 50.53     | 41.05      | 0.5000    | 100yr_3hr_Chicago  |
| BLDG-A                               | 0.25                         | 254.20    | 100.00     | 0.5000    | 100yr 3hr Chicago  |
| S-BLDG-A                             | 0.25                         | 204.20    | 100.00     | 0.5000    | rooli-sur_curcago  |
| BLDG-B                               | 0.36                         | 362.60    | 100.00     | 0.5000    | 100vr 3hr Chicago  |
| S-BLDG-B                             | 0.36                         | 302.00    | 100.00     | 0.5000    | rooli-sur-curcado  |
| DIDG C                               | 0.30                         |           |            |           | 100 25 05          |

V\_2 0.10 167.82 96.59 0.5000 100yr\_3hr\_Chicago

0.30 299.30 100.00 0.5000 100yr\_3hr\_Chicago

\*\*\*\*\*\*\*\*\*\*\*

Node Summar

BLDG-C

| Name    | Type                                | Elev.          | Depth                | Ponded<br>Area | Inflow |
|---------|-------------------------------------|----------------|----------------------|----------------|--------|
|         |                                     |                |                      |                |        |
| CBA1    | JUNCTION                            | 64.07          | 1.93<br>2.80<br>2.31 | 0.0            |        |
| CBMH210 | JUNCTION                            | 63.18          | 2.80                 | 0.0            |        |
| CBMHA2  | JUNCTION JUNCTION JUNCTION JUNCTION | 63.89          | 2.31                 | 0.0            |        |
| CBMHU   | JUNCTION                            | 63.36<br>63.56 | 2.64                 | 0.0            |        |
| J1      | JUNCTION                            | 63.56          |                      |                |        |
| J14     | JUNCTION                            | 63.95          | 3.10                 | 0.0            |        |
| J19     | JUNCTION                            | 63.62          | 2.08                 | 720.0          |        |
| J23     | JUNCTION                            | 62.59          | 2.30                 |                |        |
| J26     | JUNCTION                            | 62.29          | 2.84                 | 0.0            |        |
| J27     | JUNCTION                            | 62.25          | 2.88                 | 0.0            |        |
| J32     | JUNCTION                            | 62.76          | 3.44                 | 0.0            |        |
| J37     | JUNCTION                            | 63.68          | 2.42                 | 466.0          |        |
| J40     | JUNCTION                            | 62.85          | 2.26                 | 0.0            |        |
| J41     | JUNCTION                            | 62.59          | 2.30                 | 1000.0         |        |
| J48     | JUNCTION                            | 64.69          | 3.00                 |                |        |
| J49     | JUNCTION                            | 63.82          | 3.58                 |                |        |
| J50     | JUNCTION                            | 65.08          | 3.58                 | 0.0            |        |
| J51     | JUNCTION                            | 64 88          | 3 47                 |                |        |
| J52     | JUNCTION                            | 65.31          | 3.00                 |                |        |
| J53     | JUNCTION                            | 65.25          | 3.00                 |                |        |
| J54     | JUNCTION                            |                |                      |                |        |
| J55     | JUNCTION                            | 65.20          | 3.00                 |                |        |
| J56     |                                     |                |                      |                |        |
| J57     | JUNCTION<br>JUNCTION                | 64.90<br>65.30 | 3.00                 |                |        |
| J58     | JUNCTION                            |                |                      |                |        |
| J59     | JUNCTION                            | 65.35<br>65.58 | 3.00                 |                |        |
| J60     | JUNCTION                            | 64.65          | 3.00                 |                |        |
| J61     | JUNCTION                            |                |                      |                |        |
|         | JUNCTION                            |                | 3.00                 |                |        |
| J62     |                                     | 64.70          | 3.00                 |                |        |
| J63     | JUNCTION<br>JUNCTION                | 64.50<br>64.65 | 3.00                 |                |        |
| J64     |                                     |                |                      |                |        |
| J65     | JUNCTION                            | 65.10          | 3.00                 |                |        |
| J66     | JUNCTION                            | 64.50          | 3.00                 |                |        |
| J67     | JUNCTION                            | 65.17          | 3.00                 | 0.0            |        |
| J68     | JUNCTION                            |                | 3.00                 |                |        |
| J69     | JUNCTION                            | 65.43          | 3.00                 | 0.0            |        |
| J70     | JUNCTION                            | 65.20          | 3.00                 |                |        |
| STM102  | JUNCTION                            | 62.34          | 2.32                 | 0.0            |        |
| STM104  | JUNCTION                            | 62.47          | 2.90                 |                |        |
| STM105  | JUNCTION                            | 62.52          |                      |                |        |
| STM107  | JUNCTION                            | 62.72          | 3.53                 | 0.0            |        |
| STM108  | JUNCTION                            | 62.00          |                      |                |        |
| STM109  | JUNCTION                            | 02.30          | 3.27                 | 0.0            |        |
| STM110  | JUNCTION                            | 63.10<br>63.76 | 3.14                 | 0.0            |        |
| STM111A | JUNCTION<br>JUNCTION<br>JUNCTION    | 63.76          | 1.54                 | 0.0            |        |
| STM112  | JUNCTION                            | 63.03          | 3.16                 | 0.0            |        |
| STM114  | JUNCTION                            | 63.77          | 3 00                 | 0.0            |        |

| .2001 0.0130<br>C10<br>.3731 0.0100    | STMH202              | BASIN3         | CONDUIT | 2.7    |  |
|----------------------------------------|----------------------|----------------|---------|--------|--|
| C1                                     | J14                  | STM114         | CONDUIT | 75.0   |  |
|                                        |                      |                |         |        |  |
| lope Roughness                         |                      |                |         |        |  |
| ************************************** | From Nodo            | To Node        | Time    | Longth |  |
| Link Summary                           |                      |                |         |        |  |
| ******                                 |                      |                |         |        |  |
|                                        |                      |                |         |        |  |
| S-BLDG-K                               | STORAGE              | 100.00         | 0.15    | 0.0    |  |
| S-BLDG-J2                              | STORAGE              | 100.00         | 0.15    | 0.0    |  |
| S-BLDG-J1                              | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-I                               | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-H                               | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-G                               | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-D                               | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-C                               | STORAGE              | 100.00         | 0.15    | 0.0    |  |
| S-BLDG-B                               | STORAGE              | 100.00         |         | 0.0    |  |
| S-BLDG-A                               | STORAGE              | 100.00         | 0.15    | 0.0    |  |
| BASIN3                                 | STORAGE              | 62.83          | 2 06    | 0.0    |  |
| BASIN2                                 | STORAGE              | 62.95          | 2.19    | 0.0    |  |
| BASIN1                                 | STORAGE              | 64.50<br>62.81 | 2.39    | 0.0    |  |
| OFCanal                                | OUTFALL              |                |         | 0.0    |  |
| J28                                    | OUTFALL              | 62.22          |         | 0.0    |  |
| SWMCCN2                                | JUNCTION             | 63.79          | 2.03    | 0.0    |  |
| SWMCCN1                                | JUNCTION             |                |         | 0.0    |  |
| STMH202                                | JUNCTION             |                |         | 0.0    |  |
| STMGG                                  | JUNCTION             |                |         | 0.0    |  |
| STMFF                                  | JUNCTION             | 63.09          | 2.82    | 0.0    |  |
| STMDD                                  | JUNCTION             |                |         | 0.0    |  |
| STMD                                   | JUNCTION             |                |         | 0.0    |  |
| STMCC                                  | JUNCTION             |                |         | 0.0    |  |
| STMC                                   | JUNCTION             |                |         | 0.0    |  |
| STMB                                   | JUNCTION             | 63.44          | 1.83    | 0.0    |  |
| STMB                                   | JUNCTION             |                |         | 0.0    |  |
| STMAA                                  | JUNCTION             |                |         | 0.0    |  |
| STM213<br>STMA                         | JUNCTION             |                |         | 0.0    |  |
| STM212<br>STM213                       | JUNCTION             | 63.29          | 1.95    | 0.0    |  |
| STM211<br>STM212                       | JUNCTION             |                |         | 0.0    |  |
| STM2U9<br>STM211                       | JUNCTION             |                |         | 0.0    |  |
| STM2U8<br>STM2U9                       | JUNCTION             | 63.44<br>63.58 |         | 0.0    |  |
| STM207<br>STM208                       | JUNCTION             |                |         | 0.0    |  |
| STM206<br>STM207                       | JUNCTION             |                | 5.36    | 0.0    |  |
| STM205<br>STM206                       | JUNCTION<br>JUNCTION |                |         | 0.0    |  |
| STM204                                 | JUNCTION             |                |         | 0.0    |  |
| STM203                                 | JUNCTION             |                |         | 0.0    |  |
| STM122                                 | JUNCTION             | 63.68          |         | 0.0    |  |
| STM121                                 | JUNCTION             |                |         | 0.0    |  |
| STM120                                 | JUNCTION             |                |         | 0.0    |  |
| STM119                                 | JUNCTION             | 64.11          |         | 0.0    |  |
| STM118                                 | JUNCTION             |                |         | 0.0    |  |
|                                        |                      |                |         |        |  |

| C10_1<br>0.0954 | 0.0130 | STMC    | STMD    | CONDUIT | 25.1 |
|-----------------|--------|---------|---------|---------|------|
| C11<br>0.1017   | 0.0130 | STMD    | CBMH210 | CONDUIT | 34.4 |
| C12             |        | CBMH210 | OFCanal | CONDUIT | 55.8 |
| 0.8604<br>C13   | 0.0100 | SWMCCN2 | SWMCCN1 | CONDUIT | 23.0 |
| 0.5217<br>C14   | 0.0130 | STM111A | SWMCCN1 | CONDUIT | 17.9 |
| 0.5037<br>C15   | 0.0130 | SWMCCN1 | STM212  | CONDUIT | 8.2  |
| 0.2439<br>C16   | 0.0130 | STM212  | STM211  | CONDUIT | 30.0 |
| 0.1667<br>C17   | 0.0130 | STM110  | STM109  | CONDUIT | 11.3 |
| 0.1770          | 0.0130 |         |         |         |      |
| C18<br>0.0992   | 0.0130 | STMDD   | STMFF   | CONDUIT | 30.2 |
| C18_1<br>0.2542 | 0.0130 | STM109  | J40     | CONDUIT | 43.3 |
| C18_2<br>0.0337 | 0.0130 | J40     | STM108  | CONDUIT | 59.3 |
| C19<br>0.0526   | 0.0130 | STMFF   | STMGG   | CONDUIT | 57.0 |
| C2<br>0.1975    | 0.0130 | STM120  | STM119  | CONDUIT | 60.8 |
| C20<br>6.1921   | 0.0130 | STMGG   | STM108  | CONDUIT | 16.7 |
| C21             | 0.0130 | STMCC   | STMDD   | CONDUIT | 53.4 |
| 0.2247<br>C21_1 |        | STM108  | J32     | CONDUIT | 70.1 |
| 0.0599<br>C21_2 | 0.0130 | J32     | STM107  | CONDUIT | 14.2 |
| 0.0565<br>C22   | 0.0130 | J19     | СВМНИ   | CONDUIT | 31.8 |
| 0.5029<br>C23   | 0.0130 | CBMHU   | STM108  | CONDUIT | 41.5 |
| 0.5054<br>C24   | 0.0130 | STM122  | STM121  | CONDUIT | 90.6 |
| 0.3752<br>C25   | 0.0130 | STM121  | STM107  | CONDUIT | 25.4 |
| 0.3937          | 0.0130 |         |         |         |      |
| C26<br>0.1932   | 0.0130 | STM107  | J23     | CONDUIT | 20.7 |
| C27<br>0.2347   | 0.0130 | STMBB   | STMCC   | CONDUIT | 63.9 |
| C27_2<br>0.0873 | 0.0130 | J41     | STM105  | CONDUIT | 80.2 |
| C28<br>0.0990   | 0.0130 | STM105  | STM104  | CONDUIT | 10.1 |
| C29<br>0.1394   | 0.0130 | STM104  | STM102  | CONDUIT | 78.9 |
| C3<br>0.1976    | 0.0130 | STM119  | STM118  | CONDUIT | 60.7 |
| C30<br>0.1125   | 0.0130 | STM102  | J26     | CONDUIT | 17.8 |
| C31             |        | J26     | J27     | CONDUIT | 4.6  |
| 0.4383<br>C32   | 0.0130 | J27     | J28     | CONDUIT | 8.1  |
| 0.3695          | 0.0130 |         |         |         |      |
|                 |        |         |         |         |      |
|                 |        |         |         |         |      |

| C33           |        | J37    | J1     | CONDUIT | 19.3   |
|---------------|--------|--------|--------|---------|--------|
| 0.4663<br>C34 | 0.0130 | J1     | CBMHU  | CONDUIT | 28.7   |
| 0.5227<br>C35 | 0.0130 | STMA   | STMB   | CONDUIT | 100.1  |
| 0.0999        | 0.0130 | STMA   | SIMB   | CONDUIT | 100.1  |
| C36<br>0.0761 | 0.0130 | STMB   | STMC   | CONDUIT | 105.1  |
| C37           |        | J52    | J57    | CONDUIT | 35.4   |
| 0.0565<br>C38 | 0.0130 | STMAA  | STMBB  | CONDUIT | 73.4   |
| 0.1498<br>C39 | 0.0130 |        |        |         | 35.8   |
| 0.1397        | 0.0130 | CBMHA2 | STMAA  | CONDUIT | 35.8   |
| C4<br>0.2278  | 0.0130 | STM118 | STM117 | CONDUIT | 8.8    |
| C40           |        | CBA1   | CBMHA2 | CONDUIT | 92.0   |
| 0.1522<br>C41 | 0.0130 | J48    | J49    | CONDUIT | 88.2   |
| 0.3287<br>C43 | 0.0350 | J50    | J51    | CONDUIT | 105.0  |
| 0.1904        | 0.0350 |        |        |         |        |
| C44<br>0.8797 | 0.0240 | J51    | J48    | CONDUIT | 21.6   |
| C45<br>0.0661 | 0.0130 | J52    | J53    | CONDUIT | 90.8   |
| C46           |        | J53    | J54    | CONDUIT | 22.0 - |
| 0.0455<br>C47 | 0.0130 | J54    | J55    | CONDUIT | 7.7    |
| 0.6525<br>C48 | 0.0130 | J55    | J56    | CONDUIT | 65.7   |
| 0.3804        | 0.0130 |        |        |         |        |
| C49<br>1.2770 | 0.0130 | J59    | J58    | CONDUIT | 18.0   |
| C5<br>0.1504  | 0.0130 | STM117 | STM208 | CONDUIT | 6.7    |
| C50           |        | J58    | J57    | CONDUIT | 14.2   |
| 0.3521<br>C51 | 0.0130 | STM213 | BASIN3 | CONDUIT | 3.1    |
| 0.9741<br>C52 | 0.0130 | J60    | J61    | CONDUIT | 70.3   |
| 0.4980        | 0.0350 |        |        |         |        |
| C53<br>0.7450 | 0.0350 | J62    | J63    | CONDUIT | 26.8   |
| C54<br>0.4039 | 0.0350 | J64    | J63    | CONDUIT | 37.1   |
| C55           |        | J65    | J66    | CONDUIT | 51.5   |
| 1.1643<br>C56 | 0.0350 | J67    | J68    | CONDUIT | 10.1   |
| 1.6809<br>C57 | 0.0350 | J69    | J68    | CONDUIT | 52.1   |
| 0.8247        | 0.0350 |        |        |         |        |
| C58<br>0.5794 | 0.0350 | J69    | J70    | CONDUIT | 39.7   |
| C59<br>0.0823 | 0.0130 | STM207 | STM206 | CONDUIT | 24.3   |
| C6            |        | STM209 | STM208 | CONDUIT | 65.6   |
| 0.0914<br>C60 | 0.0130 | STM206 | STM205 | CONDUIT | 36.1   |
| 0.1109        | 0.0130 |        |        |         |        |
|               |        |        |        |         |        |

| C61            |        | STM205        | STM204  | CONDUIT | 29. |
|----------------|--------|---------------|---------|---------|-----|
| 0.1016<br>C62  | 0.0130 | STM204        | STM203  | CONDUIT | 27. |
| 0.1105<br>C63  | 0.0130 | STM203        | STMH202 | CONDUIT | 41. |
| 0.0962<br>C64  | 0.0130 | STM112        | STM109  | CONDUIT | 44. |
| 0.1136         | 0.0130 |               |         |         |     |
| C65<br>0.2091  | 0.0130 | STM211        | STM110  | CONDUIT | 11. |
| C7<br>0.2004   | 0.0130 | STM114        | STM209  | CONDUIT | 74. |
| C8<br>0.1084   | 0.0130 | STM208        | STM207  | CONDUIT | 18. |
| C9<br>0.1349   |        | CBMH210       | STMH202 | CONDUIT | 22. |
| W24            | 0.0130 | J14           | STM114  | CONDUIT | 75. |
| 0.3709<br>W25  | 0.0100 | STM114        | STM209  | CONDUIT | 76. |
| 0.8556<br>W27  | 0.0100 | STM120        | STM119  | CONDUIT | 61. |
|                | 0.0100 | STM119        | STM118  | CONDUIT | 61. |
| 4.0665         | 0.0100 |               |         |         |     |
| W29<br>25.4307 | 0.0100 | STM118        | STM117  | CONDUIT | 10. |
| W30<br>0.2411  | 0.0100 | STM117        | STM208  | CONDUIT | 8.  |
| W31<br>0.1417  | 0.0100 | STM208        | STM209  | CONDUIT | 63. |
| W4<br>0.6562   |        | BASIN3        | BASIN2  | CONDUIT | 7.  |
| C27 1          | 0.0130 | J23           | J41     | ORIFICE |     |
| OR1            |        | BASIN2        | J40     | ORIFICE |     |
| OR2            |        | BASIN1        | J32     | ORIFICE |     |
|                |        |               |         |         |     |
| W1             |        | BASIN1        | J32     | WEIR    |     |
| W10            |        | STMB          | J48     | WEIR    |     |
| W11            |        | STMC          | J49     | WEIR    |     |
| W12            |        | STMA          | J50     | WEIR    |     |
| W13            |        | STM212        | BASIN3  | WEIR    |     |
| W14            |        | STMD          | J60     | WEIR    |     |
| W15            |        | STMDD         | BASIN3  | WEIR    |     |
| W16            |        | J52           | STM122  | WEIR    |     |
| W17            |        | STM121        | J53     | WEIR    |     |
| W18            |        | STM107        | J54     | WEIR    |     |
| W19            |        | J32           | J55     | WEIR    |     |
| W2             |        | J40           | BASIN2  | WEIR    |     |
| W20            |        | STM108        | J56     | WEIR    |     |
| W21            |        | J59           | SWMCCN2 | WEIR    |     |
| W22            |        | J58           | SWMCCN1 | WEIR    |     |
| W23            |        | J57           | STM111A | WEIR    |     |
| W26            |        | STM112        | BASIN3  | WEIR    |     |
| W20<br>W3      |        | J32           | BASIN1  | WEIR    |     |
| W3<br>W32      |        | 332<br>STM110 |         | WEIR    |     |
|                |        |               | BASIN3  |         |     |
| W33            |        | STMAA         | J65     | WEIR    |     |
| W34            |        | J64           | STMBB   | WEIR    |     |
| W35            |        | STMCC         | J62     | WEIR    |     |
| W36            |        | J1            | J55     | WEIR    |     |
|                |        |               |         |         |     |
|                |        |               |         |         |     |

| W37  | CBMHU     | J56     | WEIR   |
|------|-----------|---------|--------|
| W38  | CBA1      | J68     | WEIR   |
| W39  | CBMHA2    | J70     | WEIR   |
| W40  | STM109    | BASIN3  | WEIR   |
| W5   | J19       | J63     | WEIR   |
| W6   | STMFF     | BASIN3  | WEIR   |
| W7   | STMGG     | BASIN3  | WEIR   |
| W8   | STM108    | BASIN3  | WEIR   |
| W9   | J37       | J66     | WEIR   |
| C42  | J49       | STMD    | OUTLET |
| OL1  | J61       | STMC    | OUTLET |
| OL10 | S-BLDG-H  | SWMCCN1 | OUTLET |
| OL11 | S-BLDG-G  | SWMCCN1 | OUTLET |
| OL12 | S-BLDG-I  | J14     | OUTLET |
| OL13 | S-BLDG-K  | J14     | OUTLET |
| OL14 | S-BLDG-J1 | SWMCCN2 | OUTLET |
| OL15 | S-BLDG-J2 | SWMCCN2 | OUTLET |
| OL2  | J63       | STMCC   | OUTLET |
| OL3  | J66       | STMBB   | OUTLET |
| OL4  | J68       | CBA1    | OUTLET |
| OL5  | J70       | CBMHA2  | OUTLET |
| OL6  | S-BLDG-A  | STM122  | OUTLET |
| OL7  | S-BLDG-B  | STM122  | OUTLET |
| OL8  | S-BLDG-C  | STM122  | OUTLET |
| OL9  | S-BLDG-D  | STM122  | OUTLET |
|      |           |         |        |

|                               |      |      |      |      | No. of |  |
|-------------------------------|------|------|------|------|--------|--|
| Full<br>Conduit Shape<br>Flow | -    |      |      |      |        |  |
|                               |      |      |      |      |        |  |
| C1 CIRCULAR<br>0.64           | 0.82 | 0.53 | 0.21 | 0.82 | 1      |  |
| C10 CIRCULAR<br>2.17          | 1.05 | 0.87 | 0.26 | 1.05 | 1      |  |
| C10_1 CIRCULAR<br>0.19        | 0.60 | 0.28 | 0.15 | 0.60 | 1      |  |
| C11 CIRCULAR<br>0.20          | 0.60 | 0.28 | 0.15 | 0.60 | 1      |  |
| C12 RECT_OPEN<br>4.46         | 1.00 | 1.00 | 0.33 | 1.00 | 1      |  |
| C13 CIRCULAR                  | 0.25 | 0.05 | 0.06 | 0.25 | 1      |  |
| C14 CIRCULAR<br>0.04          | 0.25 | 0.05 | 0.06 | 0.25 | 1      |  |
| C15 CIRCULAR<br>0.30          | 0.60 | 0.28 | 0.15 | 0.60 | 1      |  |
| C16 CIRCULAR<br>0.25          | 0.60 | 0.28 | 0.15 | 0.60 | 1      |  |
| C17 CIRCULAR<br>0.26          | 0.60 | 0.28 | 0.15 | 0.60 | 1      |  |
| C18 CIRCULAR<br>0.57          | 0.90 | 0.64 | 0.23 | 0.90 | 1      |  |

| C41<br>4.38  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
|--------------|-------------|------|-------|------|-------|---|
| C43<br>3.33  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
| C44          | CIRCULAR    | 0.25 | 0.05  | 0.06 | 0.25  | 1 |
| 0.03<br>C45  | RECT_OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| 13.63<br>C46 | RECT OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| 11.32<br>C47 | RECT OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| 42.85<br>C48 | RECT OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| 32.71<br>C49 | RECT OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| 59.94<br>C5  | CIRCULAR    | 0.60 | 0.28  | 0.15 | 0.60  | 1 |
| 0.24         |             |      |       |      |       |   |
| C50<br>31.48 | RECT_OPEN   | 1.00 | 8.00  | 0.80 | 8.00  | 1 |
| C51<br>0.06  | CIRCULAR    | 0.25 | 0.05  | 0.06 | 0.25  | 1 |
| C52<br>5.39  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
| C53<br>6.59  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
| C54<br>4.85  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
| C55<br>8.24  | TRAPEZOIDAL | 1.00 | 4.00  | 0.55 | 7.00  | 1 |
| C56<br>6.76  | TRAPEZOIDAL | 1.00 | 3.00  | 0.47 | 6.00  | 1 |
| C57          | TRAPEZOIDAL | 1.00 | 3.00  | 0.47 | 6.00  | 1 |
| 4.74<br>C58  | TRAPEZOIDAL | 1.00 | 3.00  | 0.47 | 6.00  | 1 |
| 3.97<br>C59  | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| 0.78<br>C6   | CIRCULAR    | 0.90 | 0.64  | 0.23 | 0.90  | 1 |
| 0.55<br>C60  | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| 0.91<br>C61  | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| 0.87<br>C62  | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| 0.91<br>C63  | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| 0.85<br>C64  |             | 1.20 |       | 0.30 | 1.20  | 1 |
| 1.31         | CIRCULAR    |      | 1.13  |      |       |   |
| C65<br>1.10  | CIRCULAR    | 1.00 | 0.79  | 0.25 | 1.00  | 1 |
| C7<br>0.64   | CIRCULAR    | 0.82 | 0.53  | 0.21 | 0.82  | 1 |
| C8<br>0.90   | CIRCULAR    | 1.05 | 0.87  | 0.26 | 1.05  | 1 |
| C9<br>0.23   | CIRCULAR    | 0.60 | 0.28  | 0.15 | 0.60  | 1 |
| W24<br>78.01 | RECT_OPEN   | 1.00 | 14.00 | 0.87 | 14.00 | 1 |
|              |             |      |       |      |       |   |

| C18_1<br>2.69 | CIRCULAR  | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
|---------------|-----------|------|------|------|------|---|
| C18_2<br>0.98 | CIRCULAR  | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
| C19<br>0.42   | CIRCULAR  | 0.90 | 0.64 | 0.23 | 0.90 | 1 |
| C2<br>0.13    | CIRCULAR  | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
| C20<br>4.51   | CIRCULAR  | 0.90 | 0.64 | 0.23 | 0.90 | 1 |
| C21<br>0.20   | CIRCULAR  | 0.53 | 0.22 | 0.13 | 0.53 | 1 |
| C21_1<br>1.31 | CIRCULAR  | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
| C21_2<br>1.27 | CIRCULAR  | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
| C22<br>0.02   | CIRCULAR  | 0.20 | 0.03 | 0.05 | 0.20 | 1 |
| C23<br>0.04   | CIRCULAR  | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
| C24<br>0.51   | CIRCULAR  | 0.68 | 0.36 | 0.17 | 0.68 | 1 |
| C25<br>0.53   | CIRCULAR  | 0.68 | 0.36 | 0.17 | 0.68 | 1 |
| C26<br>2.35   | CIRCULAR  | 1.35 | 1.43 | 0.34 | 1.35 | 1 |
| C27<br>0.21   | CIRCULAR  | 0.53 | 0.22 | 0.13 | 0.53 | 1 |
| C27_2<br>0.66 | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C28<br>0.71   | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C29<br>0.84   | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C3<br>0.13    | CIRCULAR  | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
| C30<br>0.75   | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C31<br>1.48   | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C32<br>1.36   | CIRCULAR  | 0.97 | 0.75 | 0.24 | 0.97 | 1 |
| C33           | CIRCULAR  | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
| C34<br>0.04   | CIRCULAR  | 0.25 | 0.05 | 0.06 | 0.25 | 1 |
| C35<br>0.19   | CIRCULAR  | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C36<br>0.17   | CIRCULAR  | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C37<br>12.61  | RECT_OPEN | 1.00 | 8.00 | 0.80 | 8.00 | 1 |
| C38<br>0.11   | CIRCULAR  | 0.45 | 0.16 | 0.11 | 0.45 | 1 |
| C39<br>0.07   | CIRCULAR  | 0.38 | 0.11 | 0.09 | 0.38 | 1 |
| C4<br>0.29    | CIRCULAR  | 0.60 | 0.28 | 0.15 | 0.60 | 1 |
| C40<br>0.07   | CIRCULAR  | 0.38 | 0.11 | 0.09 | 0.38 | 1 |
| 0.07          |           |      |      |      |      |   |

| W25    | RECT_OPEN | 1.00 | 14.00 | 0.87 | 14.00 | 1 |
|--------|-----------|------|-------|------|-------|---|
| 118.49 |           |      |       |      |       |   |
| W27    | RECT_OPEN | 1.00 | 4.00  | 0.67 | 4.00  | 1 |
| 59.01  |           |      |       |      |       |   |
| W28    | RECT_OPEN | 1.00 | 4.00  | 0.67 | 4.00  | 1 |
| 61.57  |           |      |       |      |       |   |
| W29    | RECT_OPEN | 1.00 | 4.00  | 0.67 | 4.00  | 1 |
| 153.96 |           |      |       |      |       |   |
| W30    | RECT_OPEN | 1.00 | 4.00  | 0.67 | 4.00  | 1 |
| 14.99  |           |      |       |      |       |   |
| W31    | RECT_OPEN | 1.00 | 9.00  | 0.82 | 9.00  | 1 |
| 29.65  |           |      |       |      |       |   |
| W4     | CIRCULAR  | 0.90 | 0.64  | 0.23 | 0.90  | 1 |
| 1.47   |           |      |       |      |       |   |
|        |           |      |       |      |       |   |
|        |           |      |       |      |       |   |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*
Shape Summary

| ******   | ****   |        |        |        |        |
|----------|--------|--------|--------|--------|--------|
| Shape 0. | 510 1  |        |        |        |        |
| Area:    |        |        |        |        |        |
|          | 0.0040 | 0.0122 | 0.0237 | 0.0378 | 0.0541 |
|          | 0.0723 | 0.0915 | 0.1116 | 0.1323 | 0.1535 |
|          | 0.1753 | 0.1974 | 0.2200 | 0.2429 | 0.2660 |
|          | 0.2892 | 0.3125 | 0.3357 | 0.3589 | 0.3821 |
|          | 0.4053 | 0.4285 | 0.4517 | 0.4749 | 0.4981 |
|          | 0.5213 | 0.5445 | 0.5677 | 0.5910 | 0.6142 |
|          | 0.6374 | 0.6606 | 0.6838 | 0.7070 | 0.7302 |
|          | 0.7534 | 0.7766 | 0.7998 | 0.8230 | 0.8462 |
|          | 0.8695 | 0.8927 | 0.9159 | 0.9381 | 0.9570 |
|          | 0.9725 | 0.9845 | 0.9931 | 0.9983 | 1.0000 |
| Hrad:    |        |        |        |        |        |
|          | 0.0326 | 0.0620 | 0.0927 | 0.1255 | 0.1571 |
|          | 0.1941 | 0.2345 | 0.2757 | 0.3174 | 0.3595 |
|          | 0.4018 | 0.4435 | 0.4860 | 0.5280 | 0.5727 |
|          | 0.6191 | 0.6650 | 0.7103 | 0.7551 | 0.7994 |
|          | 0.8433 | 0.8866 | 0.9295 | 0.9719 | 1.0138 |
|          | 1.0552 | 1.0963 | 1.1369 | 1.1770 | 1.2167 |
|          | 1.4465 | 1.4834 | 1.5199 | 1.5561 | 1.5919 |
|          | 1.6273 | 1.4634 | 1.6971 | 1.5863 | 1.4511 |
|          | 1.3366 | 1.2373 | 1.1497 | 1.0712 | 1.0000 |
| Width:   | 1.5500 | 1.23/3 |        | 2.0722 | 1.0000 |
|          | 0.2699 | 0.4300 | 0.5564 | 0.6554 | 0.7492 |
|          | 0.8096 | 0.8484 | 0.8791 | 0.9048 | 0.9265 |
|          | 0.9452 | 0.9640 | 0.9791 | 0.9940 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|          | 1.0000 | 1.0000 | 1.0000 | 0.8889 | 0.7407 |
|          | 0.5926 | 0.4444 | 0.2963 | 0.1481 | 0.0000 |
| Shape 0. | 510 2  |        |        |        |        |
| Area:    |        |        |        |        |        |
|          | 0.0007 | 0.0029 | 0.0063 | 0.0108 | 0.0164 |
|          |        |        |        |        |        |
|          |        |        |        |        |        |

|            | 0.0230  | 0.0306 | 0.0392 | 0.0487 | 0.0591 |   |             | 0.1440 | 0.1672 | 0.1904 | 0.2131 | 0.2352 |
|------------|---------|--------|--------|--------|--------|---|-------------|--------|--------|--------|--------|--------|
|            | 0.0705  | 0.0827 | 0.0958 | 0.1097 | 0.1244 |   |             | 0.2574 | 0.2796 | 0.3018 | 0.3240 | 0.3462 |
|            | 0.1399  | 0.1562 | 0.1733 | 0.1911 | 0.2096 |   |             | 0.3684 | 0.3905 | 0.4127 | 0.4349 | 0.4571 |
|            | 0.2288  | 0.2488 | 0.2694 | 0.2908 | 0.3128 |   |             | 0.4793 | 0.5015 | 0.5236 | 0.5458 | 0.5668 |
|            | 0.3355  | 0.3589 | 0.3829 | 0.4075 | 0.4329 |   |             | 0.5874 | 0.6079 | 0.6285 | 0.6490 | 0.6696 |
|            | 0.4589  | 0.4855 | 0.5128 | 0.5408 | 0.5694 |   |             | 0.6902 | 0.7107 | 0.7313 | 0.7519 | 0.7724 |
|            | 0.5987  | 0.6287 | 0.6593 | 0.6906 | 0.7225 |   |             | 0.7930 | 0.8135 | 0.8341 | 0.8547 | 0.8752 |
|            | 0.7551  | 0.7884 | 0.8223 | 0.8570 | 0.8923 |   |             | 0.8958 | 0.9153 | 0.9345 | 0.9538 | 0.9730 |
|            | 0.9284  | 0.9598 | 0.9822 | 0.9956 | 1.0000 |   |             | 0.9923 | 0.8333 | 0.5556 | 0.2778 | 0.0000 |
| Hrad:      |         |        |        |        |        |   |             |        |        |        |        |        |
|            | 0.0372  | 0.0761 | 0.1167 | 0.1577 | 0.1971 |   | Shape 1.030 | 0 1    |        |        |        |        |
|            | 0.2365  | 0.2767 | 0.3160 | 0.3545 | 0.3926 |   | Area:       | _      |        |        |        |        |
|            | 0.4324  | 0.4727 | 0.5123 | 0.5513 | 0.5899 |   |             | 0.0011 | 0.0036 | 0.0070 | 0.0115 | 0.0170 |
|            | 0.6298  | 0.6707 | 0.7109 | 0.7506 | 0.7899 |   |             | 0.0237 | 0.0348 | 0.0512 | 0.0715 | 0.0924 |
|            | 0.8288  | 0.8684 | 0.9079 | 0.9473 | 0.9872 |   |             | 0.1137 | 0.1363 | 0.1590 | 0.1817 | 0.2045 |
|            | 1.0266  | 1.0657 | 1.1045 | 1.1430 | 1.1812 |   |             | 0.2272 | 0.2499 | 0.2727 | 0.2954 | 0.3181 |
|            | 1.2191  | 1.2568 | 1.2943 | 1.3316 | 1.3687 |   |             | 0.3409 | 0.3636 | 0.3863 | 0.4090 | 0.4318 |
|            | 1.4056  | 1.4423 | 1.4789 | 1.5153 | 1.5517 |   |             | 0.4545 | 0.4772 | 0.5000 | 0.5227 | 0.5454 |
|            | 1.5879  | 1.6237 | 1.6580 | 1.6923 | 1.7266 |   |             | 0.5681 | 0.5909 | 0.6136 | 0.6363 | 0.6591 |
|            | 1.7432  | 1.4768 | 1.2801 | 1.1258 | 1.0000 |   |             | 0.6818 | 0.7045 | 0.7272 | 0.7500 | 0.7727 |
| Width:     | 1.7.102 | 1.1700 | 1.2001 | 1.1250 | 1.0000 |   |             | 0.7954 | 0.8182 | 0.8409 | 0.8636 | 0.8864 |
| madem.     | 0.0402  | 0.0771 | 0.1097 | 0.1387 | 0.1678 |   |             | 0.9091 | 0.9318 | 0.9545 | 0.9773 | 1.0000 |
|            | 0.1958  | 0.2219 | 0.2480 | 0.2741 | 0.3002 |   | Hrad:       |        |        |        |        |        |
|            | 0.3244  | 0.3474 | 0.3704 | 0.3935 | 0.4165 |   |             | 0.0314 | 0.0635 | 0.0926 | 0.1201 | 0.1455 |
|            | 0.4380  | 0.4582 | 0.4785 | 0.4987 | 0.5189 |   |             | 0.1620 | 0.1324 | 0.1419 | 0.1823 | 0.2297 |
|            | 0.5392  | 0.5585 | 0.5776 | 0.5964 | 0.6146 |   |             | 0.2745 | 0.3125 | 0.3616 | 0.4100 | 0.4577 |
|            | 0.6327  | 0.6509 | 0.6691 | 0.6872 | 0.7054 |   |             | 0.5046 | 0.5507 | 0.5962 | 0.6410 | 0.6850 |
|            | 0.7235  | 0.7417 | 0.7599 | 0.7780 | 0.7962 |   |             | 0.7284 | 0.7712 | 0.8133 | 0.8548 | 0.8957 |
|            | 0.8143  | 0.8325 | 0.8506 | 0.8688 | 0.8870 |   |             | 0.9360 | 0.9758 | 1.0149 | 1.0535 | 1.0916 |
|            | 0.9051  | 0.9235 | 0.9428 | 0.9622 | 0.9816 |   |             | 1.1291 | 1.1661 | 1.2026 | 1.2386 | 1.2741 |
|            | 0.9876  | 0.7397 | 0.4917 | 0.2445 | 0.0000 |   |             | 1.3091 | 1.3436 | 1.3777 | 1.4113 | 1.4445 |
|            | 0.5070  | 0.7557 | 0.1527 | 0.2    | 0.0000 |   |             | 1.4773 | 1.5096 | 1.5415 | 1.5730 | 1.6041 |
| Shape 0.51 | 0 3     |        |        |        |        |   |             | 1.6348 | 1.6651 | 1.6950 | 1.7246 | 1.0000 |
| Area:      |         |        |        |        |        |   | Width:      |        |        |        |        |        |
|            | 0.0005  | 0.0019 | 0.0043 | 0.0076 | 0.0119 |   |             | 0.0832 | 0.1290 | 0.1738 | 0.2192 | 0.2684 |
|            | 0.0170  | 0.0230 | 0.0299 | 0.0377 | 0.0464 |   |             | 0.3361 | 0.6079 | 0.8354 | 0.9071 | 0.9283 |
|            | 0.0559  | 0.0663 | 0.0776 | 0.0897 | 0.1027 |   |             | 0.9547 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.1165  | 0.1312 | 0.1467 | 0.1631 | 0.1804 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.1985  | 0.2175 | 0.2373 | 0.2580 | 0.2795 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.3018  | 0.3250 | 0.3489 | 0.3736 | 0.3991 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.4254  | 0.4525 | 0.4804 | 0.5091 | 0.5386 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.5689  | 0.6000 | 0.6319 | 0.6645 | 0.6980 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.7323  | 0.7673 | 0.8031 | 0.8396 | 0.8769 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 0.9149  | 0.9516 | 0.9785 | 0.9946 | 1.0000 |   |             | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Hrad:      |         |        |        |        |        |   |             |        |        |        |        |        |
|            | 0.0376  | 0.0752 | 0.1127 | 0.1518 | 0.1901 |   | Shape 1.030 | 0_2    |        |        |        |        |
|            | 0.2280  | 0.2657 | 0.3033 | 0.3414 | 0.3798 | 1 | Area:       |        |        |        |        |        |
|            | 0.4180  | 0.4559 | 0.4937 | 0.5313 | 0.5689 |   |             | 0.0006 | 0.0025 | 0.0059 | 0.0111 | 0.0174 |
|            | 0.6063  | 0.6437 | 0.6811 | 0.7183 | 0.7556 |   |             | 0.0246 | 0.0324 | 0.0407 | 0.0495 | 0.0589 |
|            | 0.7928  | 0.8300 | 0.8671 | 0.9042 | 0.9429 |   |             | 0.0687 | 0.0791 | 0.0900 | 0.1014 | 0.1133 |
|            | 0.9819  | 1.0207 | 1.0593 | 1.0978 | 1.1362 | 1 |             | 0.1257 | 0.1388 | 0.1524 | 0.1667 | 0.1815 |
|            | 1.1744  | 1.2125 | 1.2505 | 1.2884 | 1.3262 |   |             | 0.1973 | 0.2142 | 0.2318 | 0.2503 | 0.2694 |
|            | 1.3639  | 1.4016 | 1.4392 | 1.4767 | 1.5142 | 1 |             | 0.2893 | 0.3100 | 0.3313 | 0.3532 | 0.3758 |
|            | 1.5516  | 1.5904 | 1.6294 | 1.6682 | 1.7069 |   |             | 0.3991 | 0.4229 | 0.4473 | 0.4723 | 0.4978 |
|            | 1.7455  | 1.5679 | 1.3259 | 1.1446 | 1.0000 | 1 |             | 0.5241 | 0.5510 | 0.5787 | 0.6077 | 0.6381 |
| Width:     |         |        |        |        |        |   |             | 0.6695 | 0.7019 | 0.7354 | 0.7699 | 0.8055 |
|            | 0.0248  | 0.0496 | 0.0744 | 0.0976 | 0.1208 |   |             | 0.8421 | 0.8797 | 0.9185 | 0.9586 | 1.0000 |
|            |         |        |        |        |        |   |             |        |        |        |        |        |
|            |         |        |        |        |        |   |             |        |        |        |        |        |
|            |         |        |        |        |        |   |             |        |        |        |        |        |
|            |         |        |        |        |        | 1 |             |        |        |        |        |        |

| Hrad:     | 0.0439 | 0.0784 | 0.1169 | 0.1600 | 0.2149 |
|-----------|--------|--------|--------|--------|--------|
|           |        |        |        |        |        |
|           | 0.2771 | 0.3374 | 0.3949 | 0.4523 | 0.5075 |
|           | 0.5611 | 0.6132 | 0.6640 | 0.7137 | 0.7620 |
|           | 0.8054 | 0.8484 | 0.8912 | 0.9337 | 0.9723 |
|           | 0.9801 | 1.0115 | 1.0497 | 1.0882 | 1.1268 |
|           | 1.1656 | 1.2075 | 1.2511 | 1.2946 | 1.3380 |
|           | 1.3842 | 1.4302 | 1.4758 | 1.5212 | 1.5663 |
|           | 1.6056 | 1.6451 | 1.6692 | 1.6678 | 1.6891 |
|           | 1.7156 | 1.7430 | 1.7713 | 1.8004 | 1.8302 |
|           | 1.8607 | 1.8918 | 1.9130 | 1.9355 | 1.0000 |
| Width:    |        |        |        |        |        |
|           | 0.0272 | 0.0632 | 0.1025 | 0.1394 | 0.1631 |
|           | 0.1778 | 0.1913 | 0.2046 | 0.2167 | 0.2288 |
|           | 0.2408 | 0.2529 | 0.2650 | 0.2771 | 0.2894 |
|           | 0.3036 | 0.3178 | 0.3320 | 0.3462 | 0.3619 |
|           | 0.3912 | 0.4118 | 0.4296 | 0.4473 | 0.4651 |
|           | 0.4829 | 0.4993 | 0.5148 | 0.5304 | 0.5458 |
|           | 0.5598 | 0.5739 | 0.5879 | 0.6020 | 0.6160 |
|           | 0.6325 | 0.6491 | 0.6724 | 0.7082 | 0.7349 |
|           | 0.7597 | 0.7846 | 0.8094 | 0.8343 | 0.8591 |
|           | 0.8840 | 0.9088 | 0.9392 | 0.9696 | 1.0000 |
| Shape 1.0 | 20.2   |        |        |        |        |
| Area:     | 30_3   |        |        |        |        |
|           | 0.0028 | 0.0081 | 0.0149 | 0.0226 | 0.0310 |
|           | 0.0401 | 0.0498 | 0.0600 | 0.0709 | 0.0824 |
|           | 0.0943 | 0.1068 | 0.1199 | 0.1335 | 0.1476 |
|           | 0.1624 | 0.1777 | 0.1937 | 0.2102 | 0.2274 |
|           | 0.2451 | 0.2634 | 0.2823 | 0.3018 | 0.3219 |
|           | 0.3425 | 0.3637 | 0.3855 | 0.4079 | 0.4308 |
|           | 0.4543 | 0.4784 | 0.5030 | 0.5282 | 0.5540 |
|           | 0.5804 | 0.6073 | 0.6348 | 0.6628 | 0.6913 |
|           | 0.7203 | 0.7496 | 0.7794 | 0.8096 | 0.8402 |
|           | 0.8711 | 0.9025 | 0.9343 | 0.9668 | 1.0000 |
| Hrad:     | 0.0711 | 0.9023 | 0.5545 | 0.5000 | 1.0000 |
|           | 0.0451 | 0.0901 | 0.1398 | 0.1923 | 0.2412 |
|           | 0.2899 | 0.3377 | 0.3838 | 0.4285 | 0.4737 |
|           | 0.5176 | 0.5606 | 0.6026 | 0.6435 | 0.6817 |
|           | 0.7195 | 0.7569 | 0.7939 | 0.8306 | 0.8670 |
|           | 0.7193 | 0.7369 | 0.7939 | 1.0109 | 1.0473 |
|           | 1.0834 | 1.1193 | 1.1550 | 1.1906 | 1.2260 |
|           | 1.0834 | 1.1193 | 1.3313 | 1.1906 | 1.4010 |
|           | 1.4356 | 1.4702 | 1.5050 | 1.5431 | 1.5809 |
|           | 1.4356 | 1.4702 | 1.7049 | 1.7462 | 1.7871 |
|           | 1.6213 | 1.8683 | 1.7049 | 1.7462 | 1.0000 |
| Width:    | 1.02/5 | 1.0005 | 1.0570 | 1.9250 | 1.0000 |
|           | 0.1283 | 0.1844 | 0.2182 | 0.2395 | 0.2610 |
|           | 0.2801 | 0.2978 | 0.3155 | 0.3330 | 0.3490 |
|           | 0.3651 | 0.3811 | 0.3971 | 0.4134 | 0.4311 |
|           | 0.4488 | 0.4666 | 0.4843 | 0.5020 | 0.5197 |
|           | 0.5374 | 0.5552 | 0.5729 | 0.5901 | 0.6071 |
|           | 0.6242 | 0.6412 | 0.6582 | 0.6752 | 0.6922 |
|           | 0.7092 | 0.7262 | 0.7432 | 0.7603 | 0.7773 |
|           | 0.7943 | 0.8113 | 0.8281 | 0.8427 | 0.8574 |
|           | 0.8703 | 0.8821 | 0.8939 | 0.9057 | 0.9174 |
|           | 0.9292 | 0.9410 | 0.9589 | 0.9794 | 1.0000 |
|           |        |        |        |        |        |

| Area:     | _      |        |        |                  |     |
|-----------|--------|--------|--------|------------------|-----|
|           | 0.0018 | 0.0072 | 0.0137 | 0.0215           | 0.0 |
|           | 0.0401 | 0.0506 | 0.0624 | 0.0759           | 0.0 |
|           | 0.1075 | 0.1242 | 0.1414 | 0.1591           | 0.1 |
|           | 0.1960 | 0.2153 | 0.2350 | 0.2553           | 0.2 |
|           | 0.2975 | 0.3193 | 0.3417 | 0.3646           | 0.3 |
|           | 0.4121 | 0.4366 | 0.4616 | 0.4882           | 0.5 |
|           | 0.5669 | 0.6113 | 0.6533 | 0.6929           | 0.7 |
|           | 0.7649 | 0.7973 | 0.8273 | 0.8548           | 0.8 |
|           | 0.9028 | 0.9232 | 0.9412 | 0.9568           | 0.9 |
| Hrad:     | 0.9808 | 0.9892 | 0.9952 | 0.9988           | 1.0 |
| niau:     | 0.0375 | 0.1240 | 0.1851 | 0.2523           | 0.3 |
|           | 0.3831 | 0.4393 | 0.4740 | 0.4912           | 0.5 |
|           | 0.6223 | 0.6900 | 0.7553 | 0.8185           | 0.8 |
|           | 0.9393 | 0.9973 | 1.0539 | 1.1093           | 1.1 |
|           | 1.2166 | 1.2688 | 1.3201 | 1.3700           | 1.4 |
|           | 1.4680 | 1.5160 | 1.5558 | 1.5322           | 0.9 |
|           | 1.0362 | 1.0707 | 1.0984 | 1.1200           | 1.1 |
|           | 1.1479 | 1.1552 | 1.1587 | 1.1586           | 1.1 |
|           | 1.1494 | 1.1407 | 1.1297 | 1.1165           | 1.1 |
|           | 1.0842 | 1.0654 | 1.0450 | 1.0232           | 1.0 |
| Width:    |        |        |        |                  |     |
|           | 0.1024 | 0.1194 | 0.1520 | 0.1734           | 0.1 |
|           | 0.2082 | 0.2276 | 0.2610 | 0.3080           | 0.3 |
|           | 0.3390 | 0.3498 | 0.3606 | 0.3713<br>0.4252 | 0.3 |
|           | 0.4468 | 0.4575 | 0.4684 | 0.4795           | 0.4 |
|           | 0.5017 | 0.5128 | 0.5273 | 0.5728           | 0.9 |
|           | 0.9429 | 0.8933 | 0.8437 | 0.7940           | 0.7 |
|           | 0.6948 | 0.6452 | 0.5955 | 0.5459           | 0.4 |
|           | 0.4467 | 0.3970 | 0.3474 | 0.2978           | 0.2 |
|           | 0.1985 | 0.1489 | 0.0993 | 0.0496           | 0.0 |
| Shape 117 | 0_2    |        |        |                  |     |
| Area:     | 0 0005 | 0.0010 | 0.0041 | 0.0074           | 0.0 |
|           | 0.0005 | 0.0018 | 0.0041 | 0.0074           | 0.0 |
|           | 0.0551 | 0.0230 | 0.0298 | 0.0374           | 0.1 |
|           | 0.1144 | 0.0632 | 0.0762 | 0.1817           | 0.1 |
|           | 0.2367 | 0.2642 | 0.2917 | 0.3192           | 0.2 |
|           | 0.3742 | 0.4017 | 0.4292 | 0.4567           | 0.4 |
|           | 0.5117 | 0.5393 | 0.5668 | 0.5943           | 0.6 |
|           | 0.6493 | 0.6768 | 0.7043 | 0.7318           | 0.7 |
|           | 0.7868 | 0.8143 | 0.8418 | 0.8693           | 0.8 |
|           | 0.9244 | 0.9519 | 0.9780 | 0.9945           | 1.0 |
| Hrad:     |        |        |        |                  |     |
|           | 0.0316 | 0.0626 | 0.0953 | 0.1241           | 0.1 |
|           | 0.1901 | 0.2251 | 0.2588 | 0.2916           | 0.3 |
|           | 0.3530 | 0.3837 | 0.4152 | 0.4465           | 0.4 |
|           | 0.4832 | 0.4225 | 0.4104 | 0.4516           | 0.5 |
|           | 0.5636 | 0.6161 | 0.6665 | 0.7149           | 0.7 |
|           | 0.8061 | 0.8492 | 0.8907 | 0.9307           | 0.9 |
|           | 1.0065 | 1.0424 | 1.0772 | 1.1108           | 1.1 |
|           | 1.1747 | 1.2052 | 1.2347 | 1.2633           | 1.2 |

|            | 1.3180                     | 1.3441 | 1.3695 | 1.3942 | 1.4182 |
|------------|----------------------------|--------|--------|--------|--------|
|            | 1.4415                     | 1.4642 | 1.3515 | 1.1540 | 1.0000 |
| Width:     |                            |        |        |        |        |
|            | 0.0333                     | 0.0679 | 0.0983 | 0.1370 | 0.1758 |
|            | 0.2064                     | 0.2344 | 0.2623 | 0.2904 | 0.321  |
|            | 0.3523                     | 0.3833 | 0.4129 | 0.4424 | 0.4718 |
|            | 0.5431                     | 0.7533 | 0.9431 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 0.8000 | 0.4000 | 0.0000 |
| Shape 2961 |                            |        |        |        |        |
| Area:      |                            |        |        |        |        |
|            | 0.0057                     | 0.0121 | 0.0191 | 0.0264 | 0.034  |
|            | 0.0422                     | 0.0506 | 0.0593 | 0.0684 | 0.0778 |
|            | 0.0876                     | 0.0978 | 0.1082 | 0.1257 | 0.1448 |
|            | 0.1647                     | 0.1849 | 0.2052 | 0.2257 | 0.246  |
|            | 0.2672                     | 0.2881 | 0.3093 | 0.3306 | 0.352  |
|            | 0.3741                     | 0.4001 | 0.4262 | 0.4523 | 0.4784 |
|            | 0.5045                     | 0.5305 | 0.5566 | 0.5827 | 0.6088 |
|            | 0.6349                     | 0.6609 | 0.6870 | 0.7131 | 0.7392 |
|            | 0.7653                     | 0.7914 | 0.8174 | 0.8435 | 0.869  |
|            | 0.8957                     | 0.9218 | 0.9478 | 0.9739 | 1.0000 |
| Hrad:      |                            |        |        |        |        |
|            | 0.0599                     | 0.1132 | 0.1636 | 0.2129 | 0.259  |
|            | 0.3031                     | 0.3448 | 0.3846 | 0.4229 | 0.4598 |
|            | 0.4956                     | 0.5303 | 0.5641 | 0.4010 | 0.434  |
|            | 0.4810                     | 0.5308 | 0.5795 | 0.6270 | 0.673  |
|            | 0.7189                     | 0.7633 | 0.8069 | 0.8496 | 0.8908 |
|            | 0.8013                     | 0.8477 | 0.8930 | 0.9374 | 0.9808 |
|            | 1.0233                     | 1.0649 | 1.1057 | 1.1456 | 1.184  |
|            | 1.2230                     | 1.2605 | 1.2973 | 1.3334 | 1.3688 |
|            | 1.4035                     | 1.4375 | 1.4709 | 1.5037 | 1.5359 |
| Width:     | 1.5674                     | 1.5984 | 1.6289 | 1.6588 | 1.0000 |
| WIGGH:     | 0.2320                     | 0.2558 | 0.2754 | 0.2887 | 0.3020 |
|            | 0.3153                     | 0.3286 | 0.3419 | 0.3552 | 0.3685 |
|            | 0.3133                     | 0.3250 | 0.4084 | 0.7054 | 0.7522 |
|            | 0.7696                     | 0.7759 | 0.7822 | 0.7886 | 0.7949 |
|            | 0.8012                     | 0.8075 | 0.8138 | 0.8201 | 0.827  |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|            | 1.0000                     | 1.0000 | 1.0000 | 1.0000 | 1.000  |
| Shape 3235 |                            |        |        |        |        |
| Area:      |                            |        |        |        |        |
|            | 0.0097                     | 0.0196 | 0.0299 | 0.0405 | 0.051  |
|            | 0.0625                     | 0.0740 | 0.0857 | 0.0978 | 0.110  |
|            | 0.1228                     | 0.1357 | 0.1490 | 0.1625 | 0.176  |
|            |                            |        |        |        |        |
|            | 0.1905                     | 0.2141 | 0.2379 | 0.2617 | 0.285  |
|            | 0.1905<br>0.3094<br>0.4284 | 0.2141 | 0.3570 | 0.3808 | 0.404  |

 Variable Time Step
 YES

 Maximum Trials
 20

 Number of Threads
 2

 Head Tolerance
 0.001500 m

| *******                    | Volume    | Depth    |
|----------------------------|-----------|----------|
| Runoff Quantity Continuity | hectare-m | mm       |
| *******                    |           |          |
| Total Precipitation        | 1.155     | 71.677   |
| Evaporation Loss           | 0.000     | 0.000    |
| Infiltration Loss          | 0.198     | 12.297   |
| Surface Runoff             | 0.945     | 58.612   |
| Final Storage              | 0.019     | 1.208    |
| Continuity Error (%)       | -0.613    |          |
|                            |           |          |
|                            |           |          |
| *******                    | Volume    | Volume   |
| Flow Routing Continuity    | hectare-m | 10^6 ltr |
| *******                    |           |          |
| Dry Weather Inflow         | 0.000     | 0.000    |
| Wet Weather Inflow         | 0.945     | 9.446    |
| Groundwater Inflow         | 0.000     | 0.000    |
| RDII Inflow                | 0.000     | 0.000    |
| External Inflow            | 0.000     | 0.000    |
| External Outflow           | 0.601     | 6.014    |
| Flooding Loss              | 0.134     | 1.342    |
| Evaporation Loss           | 0.000     | 0.000    |
| Exfiltration Loss          | 0.000     | 0.000    |
| Initial Stored Volume      | 0.000     | 0.003    |
| Final Stored Volume        | 0.258     | 2.576    |
| Continuity Error (%)       | -5.113    |          |
|                            |           |          |

Highest Continuity Errors Node BASIN1 (8.43%) Node J40 (-3.42%) Node BASIN2 (-1.96%) Node CBA1 (1.45%) Node J48 (1.40%)

\*\*\*\*\*\*\*\* Time-Step Critical Elements Link C10 (21.63%)

\*\*\*\*\*\*\* Highest Flow Instability Indexes Link C27\_1 (85) Link C51 (35) Link C31 (30) Link C28 (30)

|        | 0.5475 | 0.5713 | 0.5951 | 0.6190 | 0.6428 |
|--------|--------|--------|--------|--------|--------|
|        | 0.6666 | 0.6904 | 0.7142 | 0.7380 | 0.7618 |
|        | 0.7857 | 0.8095 | 0.8333 | 0.8571 | 0.8809 |
|        | 0.9047 | 0.9286 | 0.9524 | 0.9762 | 1.0000 |
| Hrad:  |        |        |        |        |        |
|        | 0.0581 | 0.1132 | 0.1656 | 0.2157 | 0.2636 |
|        | 0.3097 | 0.3541 | 0.3970 | 0.4385 | 0.4788 |
|        | 0.5179 | 0.5560 | 0.5931 | 0.6294 | 0.6648 |
|        | 0.6995 | 0.4904 | 0.5388 | 0.5861 | 0.6324 |
|        | 0.6776 | 0.7219 | 0.7652 | 0.8076 | 0.8492 |
|        | 0.8898 | 0.9296 | 0.9687 | 1.0069 | 1.0444 |
|        | 1.0811 | 1.1171 | 1.1525 | 1.1871 | 1.2211 |
|        | 1.2545 | 1.2872 | 1.3193 | 1.3509 | 1.3819 |
|        | 1.4123 | 1.4422 | 1.4715 | 1.5003 | 1.5287 |
|        | 1.5565 | 1.5839 | 1.6108 | 1.6373 | 1.0000 |
| Width: |        |        |        |        |        |
|        | 0.4124 | 0.4250 | 0.4375 | 0.4500 | 0.4625 |
|        | 0.4750 | 0.4875 | 0.5000 | 0.5125 | 0.5250 |
|        | 0.5375 | 0.5500 | 0.5625 | 0.5750 | 0.5876 |
|        | 0.6001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
|        | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

\*\*\*\*\* Analysis Options 

Link C10 (28)

Routing Time Step Summary

Minimum Time Step

Average Time Step

Maximum Time Step

Maximum Time Step

Percent in Steady State

Average Iterations per Step:

Percent Not Converging

Time Step Prequencies:

1.000 - 0.871 sec

0.871 - 0.758 sec

0.758 - 0.660 sec

0.574 - 0.500 sec

: \*\*\*\*\*\* 0.42 sec 0.93 sec 1.00 sec -0.00 4.07 3.75 81.13 % 4.18 % 2.74 % 1.98 % 9.97 %

\*\*\*\*\*\*\* Subcatchment Runoff Summary

|         |        |      |      |       | Total | Total | Imperv |
|---------|--------|------|------|-------|-------|-------|--------|
| Perv    | Total  |      |      |       |       |       |        |
|         |        |      |      |       |       | Infil | Runoff |
|         | Runoff |      |      |       |       |       |        |
| Subcate |        |      |      | mm    | mm    | mm    | mm     |
|         | mm 10  |      |      |       |       |       |        |
| 102     |        |      |      | 0.00  | 0.00  | 20.12 | 45 43  |
|         | 51.20  |      |      |       | 0.00  | 20.12 |        |
| 107AA   |        |      |      | 0.00  | 0.00  | 5.97  | 60.78  |
|         | 64.97  |      |      |       | 0.00  | 0.07  | 00.70  |
| 108     |        |      |      | 0.00  | 0.00  | 14.03 | 48.26  |
| 8.93    | 57.20  |      | 0.15 |       |       |       |        |
| 109     |        |      | 1.68 |       | 0.00  | 5.49  | 61.69  |
| 3.77    | 65.46  | 0.13 | 0.10 | 0.913 |       |       |        |
| A       |        | 71   | 1.68 | 0.00  | 0.00  | 32.96 | 33.53  |
| 38.44   | 38.44  | 0.28 | 0.08 | 0.536 |       |       |        |
| A1      |        | 71   | 1.68 | 0.00  | 0.00  | 0.63  | 69.68  |
| 0.48    | 70.15  | 0.67 | 0.47 | 0.979 |       |       |        |
| A2      |        | 71   | 1.68 | 0.00  | 0.00  | 0.91  | 69.24  |
| 0.67    | 69.91  | 1.10 | 0.78 | 0.975 |       |       |        |
| A3      |        | 71   | 1.68 | 0.00  | 0.00  | 0.00  | 70.69  |
| 0.00    | 70.69  | 0.54 | 0.38 | 0.986 |       |       |        |
| A4      |        | 71   | 1.68 | 0.00  | 0.00  | 0.00  | 70.50  |
| 0.00    | 70.50  | 0.44 | 0.31 | 0.984 |       |       |        |
| A5      |        | 71   | 1.68 | 0.00  | 0.00  | 0.03  | 70.69  |
| 0.02    | 70.71  | 0.17 | 0.12 | 0.987 |       |       |        |
| A6      |        | 71   | 1.68 | 0.00  | 0.00  | 26.71 | 31.04  |
| 13.66   | 44.70  | 0.03 | 0.02 | 0.624 |       |       |        |
| AA      |        | 7.1  | 1.68 | 0.00  | 0.00  | 23.96 | 38.42  |
| 28.30   | 47.51  | 0.18 | 0.10 | 0.663 |       |       |        |
| BB      |        | 71   | 1.68 | 0.00  | 0.00  | 36.89 | 29.04  |

| BLDG-A           | 70.32          | 71.68<br>0.18 0.13 | 0.00          | 0.00 | 0.00  | 70.32 |
|------------------|----------------|--------------------|---------------|------|-------|-------|
| BLDG-B           | 70.32          | 71.68<br>0.25 0.18 | 0.00          | 0.00 | 0.00  | 70.32 |
| BLDG-C           |                | 71.68              | 0.00          | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDG-D   | 70.32          | 0.21 0.15<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDGG    | 70.32          | 0.10 0.07<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDGH    | 70.32          | 0.17 0.12<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDG-I   | 70.32          | 0.26 0.18<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDG-J   | 70.32          | 0.16 0.11<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDG-J1  | 70.32          | 0.43 0.30<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00<br>BLDG-J2  | 70.32          | 0.07 0.05<br>71.68 | 0.981         | 0.00 | 0.00  | 70.32 |
| 0.00             | 70.32          | 0.06 0.04          | 0.981         |      |       |       |
| BLDG-K<br>0.00   | 70.32          | 71.68<br>0.17 0.12 | 0.00          | 0.00 | 0.00  | 70.31 |
| D<br>33.49       | 33.49          | 71.68<br>0.06 0.03 | 0.00          | 0.00 | 38.21 | 19.08 |
| D_2<br>29.48     | 29.48          | 71.68<br>0.06 0.02 | 0.00          | 0.00 | 42.24 | 13.43 |
| D1<br>26.82      | 32.16          | 71.68<br>0.16 0.11 | 0.00          | 0.00 | 39.91 | 10.67 |
| EE<br>25.15      | 25.15          | 71.68<br>0.09 0.03 | 0.00<br>0.351 | 0.00 | 46.51 | 10.77 |
| Great-L          | awn_1<br>30.82 | 71.68<br>0.11 0.06 | 0.00          | 0.00 | 40.86 | 11.95 |
| Great-L          |                | 71.68<br>0.04 0.02 | 0.00          | 0.00 | 42.23 | 10.53 |
| Great-L          |                | 71.68<br>0.06 0.02 | 0.00          | 0.00 | 47.25 | 6.32  |
| Great-L<br>28.38 |                | 71.68<br>0.05 0.02 | 0.00          | 0.00 | 43.48 | 9.13  |
| Great-L<br>33.64 |                | 71.68<br>0.04 0.02 | 0.00          | 0.00 | 38.28 | 16.15 |
| Great-L          | awn_6          | 71.68              | 0.469         | 0.00 | 41.45 | 12.64 |
| 30.36<br>NEC1    | 30.36          | 0.05 0.02<br>71.68 | 0.424         | 0.00 | 0.43  | 69.49 |
| 0.33<br>NEC2     | 69.82          | 0.34 0.24<br>71.68 | 0.974         | 0.00 | 0.43  | 69.49 |
| 0.33<br>NSTANDS  | 69.82          | 0.34 0.24<br>71.68 | 0.974         | 0.00 | 0.01  | 70.69 |
| 0.01<br>OPGG_1   | 70.69          | 0.33 0.23<br>71.68 | 0.986         | 0.00 | 7.48  | 58.50 |
| 5.04<br>OPGG 2   | 63.54          | 0.06 0.04<br>71.68 | 0.886         | 0.00 | 3.06  | 65.71 |
| 2.14<br>OPGG 3   | 67.84          | 0.19 0.13<br>71.68 | 0.946         | 0.00 | 7.03  | 59.20 |
| 4.77<br>OPGG 4   | 63.97          | 0.09 0.07<br>71.68 | 0.892         | 0.00 | 0.43  | 69.78 |
| 0.33<br>OPGG5    | 70.12          | 0.06 0.04<br>71.68 | 0.978         | 0.00 | 0.73  | 69.90 |
| 69.93<br>SSTANDS | 69.93          | 0.08 0.05<br>71.68 | 0.976         | 0.00 | 0.00  | 70.33 |
| 0.00             | 70.33          | 0.55 0.39          | 0.981         | 0.00 | 0.00  | .0.55 |

| T<br>19.45  | 38.95 | 71.68<br>0.05 0.04 | 0.00 | 32.90 | 19.50 |
|-------------|-------|--------------------|------|-------|-------|
| V_1<br>1.12 | 68.92 | 71.68<br>0.04 0.03 | 0.00 | 1.48  | 67.79 |
| V_2<br>1.13 | 68.95 | 71.68<br>0.07 0.05 | 0.00 | 1.48  | 67.82 |

|        |          | Average<br>Depth |        |       |      |        | Reported<br>Max Depth |
|--------|----------|------------------|--------|-------|------|--------|-----------------------|
| ode    | Type     | Meters           | Meters |       | days | hr:min | Meters                |
| BA1    | JUNCTION |                  |        | 64.97 | 0    | 01:16  | 0.87                  |
| BMH210 | JUNCTION |                  |        |       | 0    | 04:09  | 1.5                   |
| BMHA2  | JUNCTION | 0.20             |        | 64.75 |      | 01:15  | 0.8                   |
| BMHU   | JUNCTION | 0.45             | 1.94   |       |      | 01:13  | 1.92                  |
| 1      | JUNCTION | 0.35             |        | 65.27 | 0    | 01:11  | 1.70                  |
| 14     | JUNCTION | 0.18             |        |       | 0    | 01:10  | 0.8                   |
| 19     | JUNCTION |                  |        | 64.78 | 0    | 01:13  | 1.1                   |
| 23     | JUNCTION | 1.15             |        | 64.89 |      | 03:15  | 2.19                  |
| 26     | JUNCTION | 1.37             |        |       |      | 03:31  | 2.40                  |
| 27     | JUNCTION | 1.40             | 2.43   |       |      | 03:35  | 2.42                  |
| 32     | JUNCTION | 0.98             |        |       |      | 04:24  | 1.93                  |
| 37     | JUNCTION |                  |        |       |      | 01:10  | 1.5                   |
| 40     | JUNCTION |                  |        |       |      | 03:23  | 1.84                  |
| 41     | JUNCTION | 1.09             |        |       | 0    | 03:18  | 2.1                   |
| 48     | JUNCTION |                  |        |       |      | 01:28  | 0.18                  |
| 49     | JUNCTION | 0.53             | 0.88   | 64.70 | 0    | 04:18  | 0.88                  |
| 50     | JUNCTION | 0.01             | 0.13   |       |      | 01:21  | 0.1                   |
| 51     | JUNCTION |                  | 0.28   |       | 0    | 01:39  | 0.28                  |
| 52     | JUNCTION | 0.01             |        | 65.48 | 0    | 01:10  | 0.1                   |
| 53     | JUNCTION | 0.01             |        | 65.39 | 0    | 01:10  | 0.1                   |
| 54     | JUNCTION | 0.00             | 0.10   | 65.35 | 0    | 01:12  | 0.0                   |
| 55     | JUNCTION | 0.00             | 0.13   | 65.33 | 0    | 01:12  | 0.1                   |
| 56     | JUNCTION | 0.07             | 0.43   | 65.33 | 0    | 01:13  | 0.4                   |
| 57     | JUNCTION | 0.01             | 0.18   | 65.48 | 0    | 01:10  | 0.18                  |
| 58     | JUNCTION | 0.00             | 0.13   |       | 0    | 01:10  | 0.13                  |
| 59     | JUNCTION | 0.00             | 0.05   | 65.63 | 0    | 01:10  | 0.05                  |
| 60     | JUNCTION | 0.01             | 0.04   | 64.69 | 0    | 04:20  | 0.04                  |
| 61     | JUNCTION |                  |        |       |      | 04:18  | 0.39                  |
| 62     | JUNCTION | 0.00             | 0.00   | 64.70 | 0    | 00:00  | 0.00                  |
| 63     | JUNCTION | 0.04             | 0.19   | 64.69 | 0    | 04:47  | 0.19                  |
| 64     | JUNCTION | 0.02             | 0.14   | 64.79 | 0    | 01:21  | 0.14                  |
| 65     | JUNCTION | 0.00             | 0.00   | 65.10 | 0    | 00:00  | 0.00                  |
| 66     | JUNCTION | 0.03             | 0.19   | 64.69 | 0    | 04:34  | 0.19                  |
| 67     | JUNCTION | 0.02             | 0.22   | 65.39 | 0    | 01:10  | 0.22                  |
| 68     | JUNCTION | 0.01             | 0.10   | 65.10 | 0    | 01:10  | 0.10                  |
| 69     | JUNCTION | 0.00             | 0.00   | 65.43 | 0    | 00:00  | 0.0                   |
| 70     | JUNCTION | 0.00             | 0.00   | 65.20 | 0    | 00:00  | 0.0                   |
| TM102  | JUNCTION | 1.32             |        |       | 0    | 03:06  | 2.32                  |
| TM104  | JUNCTION | 1.20             | 2.23   | 64.70 | 0    | 03:32  | 2.22                  |
| TM105  | JUNCTION | 1.15             |        |       | 0    | 03:34  | 2.1                   |

| STM107    | JUNCTION | 1.02 | 1.97 | 64.69  | 0 | 04:24 | 1.97 |
|-----------|----------|------|------|--------|---|-------|------|
| STM108    | JUNCTION | 1.73 | 2.69 | 64.69  | 0 | 04:23 | 2.69 |
| STM109    | JUNCTION | 0.79 | 1.73 | 64.69  | 0 | 04:26 | 1.73 |
| STM110    | JUNCTION | 0.66 | 1.60 | 64.70  | 0 | 04:18 | 1.59 |
| STM111A   | JUNCTION | 0.25 | 1.54 | 65.30  | 0 | 01:05 | 1.54 |
| STM112    | JUNCTION | 0.72 | 1.67 | 64.70  | 0 | 03:31 | 1.66 |
| STM114    | JUNCTION | 0.24 | 0.99 | 64.76  | 0 | 01:10 | 0.98 |
| STM117    | JUNCTION | 0.20 | 0.78 | 64.69  | 0 | 04:23 | 0.78 |
| STM118    | JUNCTION | 0.18 | 0.73 | 64.69  | 0 | 04:22 | 0.73 |
| STM119    | JUNCTION | 0.18 | 1.77 | 65.88  | 0 | 01:13 | 1.69 |
| STM120    | JUNCTION | 0.12 | 1.62 | 65.88  | 0 | 01:12 | 1.54 |
| STM121    | JUNCTION | 0.45 | 1.38 | 64.69  | 0 | 04:26 | 1.38 |
| STM122    | JUNCTION | 0.26 | 1.03 | 64.71  | 0 | 03:26 | 1.02 |
| STM203    | JUNCTION | 0.59 | 1.52 | 64.71  | 0 | 04:09 | 1.51 |
| STM204    | JUNCTION | 0.54 | 1.48 | 64.72  | 0 | 05:16 | 1.46 |
| STM205    | JUNCTION | 0.50 | 1.42 | 64.71  | 0 | 04:01 | 1.41 |
| STM206    | JUNCTION | 0.44 | 1.35 | 64.70  | 0 | 03:33 | 1.35 |
| STM207    | JUNCTION | 0.40 | 1.31 | 64.71  | 0 | 05:15 | 1.30 |
| STM208    | JUNCTION | 0.38 | 1.25 | 64.69  | 0 | 04:23 | 1.25 |
| STM209    | JUNCTION | 0.32 | 1.11 | 64.69  | 0 | 04:28 | 1.11 |
| STM211    | JUNCTION | 0.54 | 1.49 | 64.71  | 0 | 03:27 | 1.48 |
| STM212    | JUNCTION | 0.48 | 1.40 | 64.69  | 0 | 03:30 | 1.40 |
| STM213    | JUNCTION | 0.66 | 1.62 | 64.71  | 0 | 03:35 | 1.61 |
| STMA      | JUNCTION | 0.30 | 1.14 | 64.70  | 0 | 04:18 | 1.13 |
| STMAA     | JUNCTION | 0.24 | 0.93 | 64.69  | 0 | 04:26 | 0.93 |
| STMB      | JUNCTION | 0.36 | 1.26 | 64.70  | 0 | 04:17 | 1.25 |
| STMBB     | JUNCTION | 0.31 | 1.12 | 64.69  | 0 | 04:33 | 1.12 |
| STMC      | JUNCTION | 0.42 | 1.35 | 64.70  | 0 | 04:00 | 1.35 |
| STMCC     | JUNCTION | 0.37 | 1.27 | 64.69  | 0 | 04:24 | 1.27 |
| STMD      | JUNCTION | 0.53 | 1.46 | 64.70  | 0 | 05:15 | 1.45 |
| STMDD     | JUNCTION | 0.64 | 1.57 | 64.69  | 0 | 04:11 | 1.57 |
| STMFF     | JUNCTION | 0.66 | 1.60 | 64.69  | 0 | 04:04 | 1.60 |
| STMGG     | JUNCTION | 0.72 | 1.66 | 64.69  | 0 | 04:03 | 1.66 |
| STMH202   | JUNCTION | 0.70 | 1.66 | 64.72  | 0 | 03:33 | 1.64 |
| SWMCCN1   | JUNCTION | 0.46 | 1.40 | 64.72  | 0 | 03:30 | 1.38 |
| SWMCCN2   | JUNCTION | 0.23 | 0.91 | 64.70  | 0 | 03:30 | 0.90 |
| J28       | OUTFALL  | 1.60 | 2.98 | 65.20  | 0 | 03:00 | 2.98 |
| OFCanal   | OUTFALL  | 0.00 | 0.00 | 64.50  | 0 | 00:00 | 0.00 |
| BASIN1    | STORAGE  | 0.92 | 1.88 | 64.69  | 0 | 04:32 | 1.88 |
| BASIN2    | STORAGE  | 0.79 | 1.75 | 64.70  | 0 | 04:23 | 1.74 |
| BASIN3    | STORAGE  | 0.91 | 1.86 | 64.69  | 0 | 04:23 | 1.86 |
| S-BLDG-A  | STORAGE  | 0.02 | 0.07 | 100.07 | 0 | 01:52 | 0.07 |
| S-BLDG-B  | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:54 | 0.08 |
| S-BLDG-C  | STORAGE  | 0.02 | 0.07 | 100.07 | 0 | 01:52 | 0.07 |
| S-BLDG-D  | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:53 | 0.08 |
| S-BLDG-G  | STORAGE  | 0.03 | 0.09 | 100.09 | 0 | 02:11 | 0.09 |
| S-BLDG-H  | STORAGE  | 0.02 | 0.08 | 100.08 | 0 | 01:54 | 0.08 |
| S-BLDG-I  | STORAGE  | 0.01 | 0.07 | 100.07 | 0 | 01:50 | 0.07 |
| S-BLDG-J1 | STORAGE  | 0.01 | 0.11 | 100.11 | 0 | 01:30 | 0.11 |
| S-BLDG-J2 | STORAGE  | 0.01 | 0.11 | 100.11 | 0 | 01:31 | 0.11 |
| S-BLDG-K  | STORAGE  | 0.03 | 0.10 | 100.10 | 0 | 02:20 | 0.10 |
|           |          |      |      |        |   |       |      |

| **** | *****  | *****   |
|------|--------|---------|
| Node | Inflow | Summary |
| **** | ****** | ******  |

| Total               | Flow    |          |         | Maximum |      |        | Lateral  |      |
|---------------------|---------|----------|---------|---------|------|--------|----------|------|
| Inflow              | Balance |          | Lateral | Total   | Time | of Max | Inflow   |      |
| Volume              | Error   |          | Inflow  | Inflow  | 0ccu | rrence | Volume   |      |
| Node<br>ltr P       |         | Type     | CMS     | CMS     | days | hr:min | 10^6 ltr | 10^6 |
|                     |         |          |         |         |      |        |          |      |
| CBA1<br>0.229       | 1.471   | JUNCTION | 0.000   | 0.112   | 0    | 01:10  | 0        |      |
| CBMH210             |         | JUNCTION | 0.046   | 0.263   | 0    | 01:17  | 0.0985   |      |
| 0.72<br>CBMHA2      |         | JUNCTION | 0.000   | 0.101   | 0    | 01:10  | 0        |      |
| CBMHU               | -0.447  | JUNCTION | 0.000   | 0.160   | 0    | 01:12  | 0        |      |
| 0.335<br>J1         | 0.058   | JUNCTION | 0.000   | 0.058   | 0    | 01:05  | 0        |      |
| 0.109<br>J14        |         | JUNCTION | 0.119   | 0.132   | 0    | 01:10  | 0.174    |      |
| 0.507<br>J19        | -0.090  | JUNCTION | 0.000   | 0.041   | 0    | 01:13  | 0        |      |
| 0.0525<br>J23       | -0.000  | JUNCTION | 0.131   | 0.587   | 0    | 08:00  | 0.175    |      |
| 7.64<br>J26         | 0.388   | JUNCTION | 0.000   | 0.596   | 0    | 08:00  | 0        |      |
| 6.04<br>J27<br>6.02 | 0.133   | JUNCTION | 0.000   | 0.601   | 0    | 08:01  | 0        |      |
| J32<br>8.73         | -1.024  | JUNCTION | 0.000   | 1.351   | 0    | 01:10  | 0        |      |
| J37                 |         | JUNCTION | 0.102   | 0.109   | 0    | 01:10  | 0.176    |      |
| 0.184<br>J40        | 0.190   | JUNCTION | 0.000   | 1.798   | 0    | 01:14  | 0        |      |
| 9.26<br>J41         | -3.310  | JUNCTION | 0.000   | 0.588   | 0    | 08:01  | 0        |      |
| 7.49<br>J48         | 0.337   | JUNCTION | 0.053   | 0.077   | 0    | 01:24  | 0.125    |      |
| 0.32<br>J49         | 1.416   | JUNCTION | 0.000   | 0.205   | 0    | 03:01  | 0        |      |
| 0.363<br>J50        | -0.251  | JUNCTION | 0.081   | 0.081   | 0    | 01:20  | 0.282    |      |
| 0.282<br>J51        | -0.486  | JUNCTION | 0.000   | 0.047   | 0    | 01:21  | 0        |      |
| 0.196<br>J52        | 0.766   | JUNCTION | 0.776   | 0.986   | 0    | 01:10  | 1.1      |      |
| 1.37<br>J53         | 0.000   | JUNCTION | 0.000   | 0.849   | 0    | 01:10  | 0        |      |
| 1.16<br>J54         | 0.002   | JUNCTION | 0.000   | 0.745   | 0    | 01:11  | 0        |      |
| 0.935<br>J55        | 0.000   | JUNCTION | 0.000   | 0.691   | 0    | 01:11  | 0        |      |
| 0.872<br>J56        | -0.002  | JUNCTION | 0.066   | 0.676   | 0    | 01:08  | 0.0887   |      |
| 0.878<br>J57        | 0.000   | JUNCTION | 0.000   | 0.358   | 0    | 01:10  | 0        |      |
| 0.545               | 0.002   |          |         |         |      |        |          |      |

| J58<br>0.639     | 0.000    | JUNCTION | 0.000 | 0.451 | 0 | 01:10 | 0      |
|------------------|----------|----------|-------|-------|---|-------|--------|
| J59<br>0.671     | -0.005   | JUNCTION | 0.472 | 0.472 | 0 | 01:10 | 0.671  |
| J60<br>0.00731   | 1.117    | JUNCTION | 0.000 | 0.006 | 0 | 03:15 | 0      |
| J61<br>0.218     | 0.879    | JUNCTION | 0.113 | 0.188 | 0 | 03:31 | 0.159  |
| J62              |          | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0      |
| J63              | .000 ltr | JUNCTION | 0.000 | 0.144 | 0 | 03:27 | 0      |
| 0.401<br>J64     | 0.346    | JUNCTION | 0.082 | 0.082 | 0 | 01:20 | 0.308  |
| 0.31<br>J65      | -0.050   | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0      |
| 0 0<br>J66       | .000 ltr | JUNCTION | 0.000 | 0.151 | 0 | 03:50 | 0      |
| 0.115<br>J67     | 0.804    | JUNCTION | 0.113 | 0.113 | 0 | 01:10 | 0.227  |
| 0.227<br>J68     | 0.000    | JUNCTION | 0.000 | 0.113 | 0 | 01:10 | 0      |
| 0.227<br>J69     | -0.002   | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0      |
|                  | .000 ltr | JUNCTION | 0.000 | 0.000 | 0 | 00:00 | 0      |
|                  | .000 ltr | JUNCTION | 0.000 | 0.594 | 0 | 08:00 | 0      |
| 7.4              | 0.484    |          |       |       |   |       |        |
| STM104<br>7.43   | 0.430    | JUNCTION | 0.000 | 0.595 | 0 | 08:00 | 0      |
| STM105<br>7.46   | 0.378    | JUNCTION | 0.000 | 0.589 | 0 | 08:00 | 0      |
| STM107<br>8.26   | 0.125    | JUNCTION | 0.000 | 0.585 | 0 | 08:00 | 0      |
| STM108<br>9.08   | 0.446    | JUNCTION | 0.000 | 1.389 | 0 | 01:14 | 0      |
| STM109<br>1.84   | 0.814    | JUNCTION | 0.229 | 0.868 | 0 | 01:09 | 0.314  |
| STM110<br>1.45   | 0.091    | JUNCTION | 0.043 | 0.598 | 0 | 01:09 | 0.0569 |
| STM111A<br>0.28  | 0.234    | JUNCTION | 0.000 | 0.143 | 0 | 01:10 | 0      |
| STM112<br>0.0843 | 8.290    | JUNCTION | 0.042 | 0.076 | 0 | 01:04 | 0.0593 |
| STM114<br>1.05   | -0.017   | JUNCTION | 0.381 | 0.504 | 0 | 01:10 | 0.544  |
| STM117           | -0.017   | JUNCTION | 0.000 | 0.476 | 0 | 01:14 | 0      |
| STM118           | -0.167   | JUNCTION | 0.000 | 0.413 | 0 | 01:13 | 0      |
| STM119           |          | JUNCTION | 0.699 | 0.699 | 0 | 01:10 | 0.992  |
| 1.02<br>STM120   | 0.816    | JUNCTION | 0.000 | 0.021 | 0 | 01:02 | 0      |
| 0.0162<br>STM121 | 0.105    | JUNCTION | 0.000 | 0.296 | 0 | 01:14 | 0      |
| 1.17<br>STM122   | 0.083    | JUNCTION | 0.000 | 0.165 | 0 | 01:10 | 0      |
| 0.952<br>STM203  | 0.089    | JUNCTION | 0.023 | 1.512 | 0 | 01:10 | 0.0386 |
| 3.14             | 0.347    |          |       |       |   |       |        |

| S-BLDG-D<br>0.097   | 0.005 | STORAGE | 0.068 | 0.068 | 0 | 01:10 | 0.097  |
|---------------------|-------|---------|-------|-------|---|-------|--------|
| S-BLDG-G            |       | STORAGE | 0.120 | 0.120 | 0 | 01:10 | 0.171  |
| 0.171<br>S-BLDG-H   | 0.004 | STORAGE | 0.184 | 0.184 | 0 | 01:10 | 0.261  |
| 0.261<br>S-BLDG-T   | 0.005 | STORAGE | 0.112 | 0.112 | 0 | 01:10 | 0.159  |
| 0.159               | 0.005 | STORAGE | 0.112 | 0.112 | 0 | 01.10 | 0.133  |
| S-BLDG-J1<br>0.0731 | 0.006 | STORAGE | 0.052 | 0.052 | 0 | 01:10 | 0.0731 |
| S-BLDG-J2           |       | STORAGE | 0.044 | 0.044 | 0 | 01:10 | 0.0627 |
| 0.0627<br>S-BLDG-K  | 0.006 | STORAGE | 0.123 | 0.123 | 0 | 01:10 | 0.174  |
| 0.174               | 0.004 |         |       |       |   |       |        |

Surcharging occurs when water rises above the top of the highest conduit.

| Node    | Type     |       | Max. Height<br>Above Crown<br>Meters | Below Rin |
|---------|----------|-------|--------------------------------------|-----------|
| J23     | JUNCTION | 6.79  | 0.860                                | 0.000     |
| J26     | JUNCTION | 23.01 | 1.386                                | 0.43      |
| J27     | JUNCTION | 23.02 | 1.436                                | 0.44      |
| J40     | JUNCTION | 5.18  | 0.353                                | 0.40      |
| J41     | JUNCTION | 6.92  | 1.297                                | 0.00      |
| STM102  | JUNCTION | 22.99 | 1.305                                | 0.000     |
| STM104  | JUNCTION | 7.07  | 1.219                                | 0.66      |
| STM105  | JUNCTION | 6.94  | 1.177                                | 0.86      |
| STM111A | JUNCTION | 0.16  | 0.540                                | 0.000     |
| STM122  | JUNCTION | 2.58  | 0.033                                | 0.59      |
| STM203  | JUNCTION | 5.53  | 0.451                                | 3.54      |
| STM204  | JUNCTION | 5.35  | 0.407                                | 6.78      |
| STM205  | JUNCTION | 5.16  | 0.355                                | 3.33      |
| STM206  | JUNCTION | 4.88  | 0.274                                | 4.00      |
| STM207  | JUNCTION | 4.72  | 0.244                                | 4.11      |
| STM211  | JUNCTION | 5.65  | 0.487                                | 0.74      |
| STM213  | JUNCTION | 22.77 | 1.370                                | 0.33      |
| STMH202 | JUNCTION | 5.76  | 0.516                                | 0.67      |
| SWMCCN1 | JUNCTION | 5.43  | 0.397                                | 0.63      |

Flooding refers to all water that overflows a node, whether it ponds or not.

|      |         |         |             | Total    | Maximum |
|------|---------|---------|-------------|----------|---------|
|      |         | Maximum | Time of Max | Flood    | Ponded  |
|      | Hours   | Rate    | Occurrence  | Volume   | Depth   |
| Node | Flooded | CMS     | days hr:min | 10^6 ltr | Meters  |

| STM204<br>3.1 -0.145    | JUNCTION | 0.241 | 1.489 | 0 | 01:10 | 0.339  |
|-------------------------|----------|-------|-------|---|-------|--------|
| STM205                  | JUNCTION | 0.000 | 1.284 | 0 | 01:11 | 0      |
| 2.75 -0.225<br>STM206   | JUNCTION | 0.021 | 1.282 | 0 | 01:11 | 0.0327 |
| 2.75 -0.097<br>STM207   | JUNCTION | 0.000 | 1.262 | 0 | 01:11 | 0      |
| 2.71 -0.079<br>STM208   | JUNCTION | 0.000 | 1.259 | 0 | 01:11 | 0      |
| 2.76 -0.332<br>STM209   | JUNCTION | 0.474 | 0.959 | 0 | 01:10 | 0.673  |
| 1.72 0.257<br>STM211    | JUNCTION | 0.000 | 0.556 | 0 | 01:09 | 0      |
| 1.39 -0.085<br>STM212   | JUNCTION | 0.000 | 0.556 | 0 | 01:10 | 0      |
| 1.39 0.184<br>STM213    | JUNCTION | 0.022 | 0.022 | 0 | 01:20 | 0.0614 |
| 0.0632 0.318            |          |       |       | 0 |       |        |
| STMA<br>0.0972 0.238    | JUNCTION | 0.000 | 0.054 | 0 | 01:10 | 0      |
| STMAA<br>0.23 0.307     | JUNCTION | 0.000 | 0.092 |   | 01:12 | 0      |
| STMB<br>0.138 0.085     | JUNCTION | 0.000 | 0.081 | 0 | 01:09 | 0      |
| STMBB<br>0.358 -0.743   | JUNCTION | 0.000 | 0.193 | 0 | 01:12 | 0      |
| STMC<br>0.399 -0.584    | JUNCTION | 0.000 | 0.221 | 0 | 03:31 | 0      |
| STMCC<br>0.741 -0.102   | JUNCTION | 0.000 | 0.296 | 0 | 01:16 | 0      |
| STMD<br>0.68 0.077      | JUNCTION | 0.000 | 0.221 | 0 | 07:13 | 0      |
| STMDD<br>0.809 0.365    | JUNCTION | 0.028 | 0.326 | 0 | 01:16 | 0.0888 |
| STMFF<br>1.04 0.880     | JUNCTION | 0.129 | 0.406 | 0 | 01:16 | 0.225  |
| STMGG<br>1.13 0.633     | JUNCTION | 0.069 | 0.467 | 0 | 01:14 | 0.0928 |
| STMH202                 | JUNCTION | 0.000 | 1.608 | 0 | 01:11 | 0      |
| 3.82 -0.158<br>SWMCCN1  | JUNCTION | 0.300 | 0.556 | 0 | 01:10 | 0.425  |
| 1.39 -0.054<br>SWMCCN2  | JUNCTION | 0.000 | 0.032 | 0 | 01:10 | 0      |
| 0.169 0.132<br>J28      | OUTFALL  | 0.000 | 0.599 | 0 | 08:00 | 0      |
| 6.01 0.000<br>OFCanal   | OUTFALL  | 0.000 | 0.000 | 0 | 00:00 | 0      |
| 0 0.000 ltr<br>BASIN1   | STORAGE  | 0.151 | 1.493 | 0 | 01:10 | 0.197  |
| 1.41 9.204<br>BASIN2    | STORAGE  | 0.000 | 2.132 | 0 | 01:14 | 0      |
| 7.03 -1.920<br>BASIN3   | STORAGE  | 0.054 | 1.680 | 0 | 01:11 | 0.0762 |
| 5 0.167<br>S-BLDG-A     | STORAGE  | 0.126 | 0.126 | 0 | 01:10 | 0.179  |
| 0.179 0.005<br>S-BLDG-B | STORAGE  | 0.180 | 0.180 | 0 | 01:10 | 0.255  |
| 0.255 0.005<br>S-BLDG-C | STORAGE  | 0.148 | 0.148 | 0 | 01:10 | 0.21   |
| 0.21 0.005              | DIOANGE  | 0.140 | 0.140 |   | 01.10 | 0.21   |
|                         |          |       |       |   |       |        |

| J23     | 0.01 | 0.001 | 0 | 03:15 | 0.000 | 0.000 |
|---------|------|-------|---|-------|-------|-------|
| STM102  | 3.65 | 0.120 | 0 | 04:26 | 1.334 | 0.000 |
| STM111A | 0.11 | 0.027 | 0 | 01:10 | 0.007 | 0.000 |

Storage Volume Summary

|                                                  | Average | Avg  | Evap | Exfil | Maximum | Max  | Time |
|--------------------------------------------------|---------|------|------|-------|---------|------|------|
| of Max Maximum                                   |         | Pont | Pont | Pont  | Volume  | Pont |      |
| Occurrence Outflow<br>Storage Unit<br>hr:min CMS | 1000 m3 |      |      |       |         |      | -    |
|                                                  |         |      |      |       |         |      |      |
| BASIN1<br>04:32 0.596                            | 0.391   | 61   | 0    | 0     | 0.632   | 99   | 0    |
| BASIN2<br>04:23 0.884                            | 1.249   | 56   | 0    | 0     | 2.239   | 100  | 0    |
| BASIN3<br>04:23 0.497                            | 2.005   | 47   | 0    | 0     | 4.014   | 94   | 0    |
| S-BLDG-A<br>01:52 0.009                          | 0.020   | 4    | 0    | 0     | 0.121   | 24   | 0    |
| S-BLDG-B<br>01:54 0.011                          | 0.031   | 5    | 0    | 0     | 0.176   | 27   | 0    |
| S-BLDG-C<br>01:52 0.011                          | 0.023   | 4    | 0    | 0     | 0.142   | 24   | 0    |
| S-BLDG-D<br>01:53 0.005                          | 0.011   | 4    | 0    | 0     | 0.066   | 25   | 0    |
| S-BLDG-G<br>02:11 0.006                          | 0.027   | 8    | 0    | 0     | 0.125   | 38   | 0    |
| S-BLDG-H<br>01:54 0.012                          | 0.031   | 5    | 0    | 0     | 0.179   | 27   | 0    |
| S-BLDG-I<br>01:50 0.008                          | 0.017   | 4    | 0    | 0     | 0.106   | 23   | 0    |
| S-BLDG-J1<br>01:30 0.008                         | 0.004   | 5    | 0    | 0     | 0.040   | 52   | 0    |
| S-BLDG-J2<br>01:31 0.006                         | 0.004   | 6    | 0    | 0     | 0.036   | 53   | 0    |
| S-BLDG-K<br>02:20 0.005                          | 0.030   | 10   | 0    | 0     | 0.130   | 42   | 0    |

|              | Flow  | Avg   | Max   | Total    |
|--------------|-------|-------|-------|----------|
|              | Freq  | Flow  | Flow  | Volume   |
| Outfall Node | Pont  | CMS   | CMS   | 10^6 ltr |
|              |       |       |       |          |
| J28          | 31.03 | 0.264 | 0.599 | 6.014    |
| OFCanal      | 0.00  | 0.000 | 0.000 | 0.000    |

System 15.51 0.264 0.599 6.014

|                                  |         |       |      |        | Maximum<br> Veloc                            |      |       |
|----------------------------------|---------|-------|------|--------|----------------------------------------------|------|-------|
| Link                             | Type    | CMS   | days | hr:min | m/sec                                        | Flow | Depth |
| 0.1                              | CONDULT | 0.136 | 0    | 01:11  | 0.40                                         | 0.21 | 1.00  |
| C10                              | CONDUIT | 1.608 | 0    | 01:11  | 2.60                                         | 0.74 | 1.00  |
| C10_1                            | CONDUIT | 0.161 | 0    | 01:17  | 0.69                                         | 0.85 | 1.00  |
| C11                              | CONDUIT | 0.219 | 0    | 01:17  | 0.83                                         | 1.12 | 1.00  |
| C1<br>C10<br>C10_1<br>C11<br>C12 | CONDUIT | 0.000 | 0    | 00:00  | 2.60<br>0.69<br>0.83<br>0.00                 | 0.00 | 0.00  |
| C13                              | CONDUIT | 0.034 | 0    | 01:10  | 0.84                                         | 0.79 | 1.00  |
| C14                              | CONDUIT | 0.128 | 0    | 01:11  | 2.60                                         | 3.02 | 1.00  |
| C15                              | CONDUIT |       | 0    | 01:10  |                                              |      |       |
| C16                              | CONDUIT | 0.556 | 0    | 01:09  | 1.97                                         | 2.22 | 1.00  |
| C17                              | CONDUIT | 0.598 | 0    | 01:09  | 2.11                                         | 2.31 | 1.00  |
| C18                              | CONDUIT | 0.333 | 0    | 01:16  | 0.52<br>0.71                                 | 0.58 | 1.00  |
| C18_1                            |         | 0.869 | 0    | 01:09  | 0.71                                         | 0.32 | 1.00  |
| C18_2                            | CONDUIT | 1.381 | 0    | 01:13  | 0.97                                         | 1.41 | 1.00  |
| C19                              | CONDUIT |       |      |        |                                              |      |       |
| C2                               | CONDUIT | 0.021 | 0    | 01:02  | 0.16                                         | 0.17 | 1.00  |
| C20                              |         |       | 0    | 01:14  | 0.76                                         |      |       |
| C21                              | CONDUIT |       | 0    | 01:16  | 1.38                                         |      |       |
| C21_1                            | CONDUIT | 0.847 | 0    | 01:09  | 0.63                                         | 0.65 | 1.00  |
| C21_2                            | CONDUIT | 0.575 | 0    | 08:04  | 0.68                                         | 0.45 | 1.00  |
| C22                              | CONDUIT | 0.041 | 0    | 01:13  | 1.31                                         | 1.77 | 1.00  |
| C23                              |         | 0.102 | 0    | 01:11  | 2.08                                         | 2.42 | 1.00  |
| C24                              | CONDUIT |       | 0    | 01:14  | 0.92<br>1.07                                 | 0.42 | 1.00  |
| C25                              | CONDUIT |       |      |        | 1.07                                         | 0.68 |       |
| C26                              | CONDUIT |       |      | 08:00  |                                              |      |       |
| C27<br>C27 2                     |         |       | 0    | 01:12  | 0.85                                         | 0.88 | 1.00  |
|                                  | CONDUIT | 0.589 | U    | 08:00  | 0.80                                         | 0.89 | 1.00  |
| C28                              | CONDUIT | 0.595 | 0    | 08:00  | 0.80                                         | 0.84 | 1.00  |
| C29<br>C3                        | CONDUIT | 0.594 | 0    | 08:00  | 0.80                                         | 0.71 | 1.00  |
| C30                              | CONDUIT | 0.413 | U    | 01:13  | 2.60                                         | 3.26 | 1.00  |
| C31                              | CONDUIT | 0.596 | 0    | 08:00  | 0.80                                         | 0.79 | 1.00  |
| C31                              | CONDUIT | 0.601 | 0    | 08:01  | 0.80<br>0.80<br>0.80<br>2.60<br>0.80<br>0.80 | 0.40 | 1.00  |
| C32                              | CONDUIT | 0.599 | 0    | 08:00  | 0.80                                         | 0.44 | 1.00  |
| C33                              | CONDUIT | 0.058 | 0    | 01:05  | 1.18                                         | 0.06 | 1.00  |
| C35                              | CONDUIT | 0.041 | 0    | 01:28  | 0.34                                         | 0.22 | 1.00  |
| C36                              | CONDUIT | 0.043 | 0    | 01:10  | 0.54                                         | 0.22 | 1.00  |
| C37                              | CONDUIT | 0.001 | 0    | 01:09  | 0.58<br>0.17<br>0.69<br>0.95                 | 0.40 | 0.17  |
| C38                              | CONDUIT | 0.222 | 0    | 01:11  | 0.17                                         | 0.02 | 1.00  |
| C39                              | CONDUIT | 0.003 | 0    | 01.20  | 0.05                                         | 1 40 | 1.00  |
| C4                               | CONDUIT | 0.032 | 0    | 01.14  | 1 02                                         | 1.40 | 1.00  |
| C40                              | CONDUIT | 0.4/6 | 0    | 01:14  | 1.82                                         | 1.03 | 1.00  |
| C41                              | CONDUIT | 0.101 | 0    | 01.10  | 0.51                                         | 0.02 | 0.16  |
| C43                              | CONDUIT | 0.073 | 0    | 01.23  | 0.41                                         | 0.02 | 0.10  |
| C44                              | CONDUIT |       | 0    | 01:38  | 0.20                                         | 1.27 | 0.20  |
| C45                              |         |       |      |        | 0.68                                         |      |       |
|                                  |         | 2.013 | Ü    |        | 3.00                                         |      |       |

| C46   | CONDUIT | 0.745 | 0 | 01:11 | 0.77 | 0.07 | 0.12 |
|-------|---------|-------|---|-------|------|------|------|
| C47   | CONDUIT | 0.691 | 0 | 01:11 | 1.03 | 0.02 | 0.11 |
| C48   | CONDUIT | 0.611 | 0 | 01:08 | 0.40 | 0.02 | 0.26 |
| C49   | CONDUIT | 0.451 | 0 | 01:10 | 0.64 | 0.01 | 0.09 |
| C5    | CONDUIT | 0.490 | 0 | 01:14 | 1.97 | 2.06 | 1.00 |
| C50   | CONDUIT | 0.358 | 0 | 01:10 | 0.28 | 0.01 | 0.16 |
| C51   | CONDUIT | 0.022 | 0 | 01:14 | 0.86 | 0.38 | 1.00 |
| C52   | CONDUIT | 0.006 | 0 | 03:15 | 0.02 | 0.00 | 0.22 |
|       |         |       |   |       |      |      |      |
| C53   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.10 |
| C54   | CONDUIT | 0.081 | 0 | 01:21 | 0.42 | 0.02 | 0.14 |
| C55   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.10 |
| C56   | CONDUIT | 0.113 | 0 | 01:10 | 1.50 | 0.02 | 0.16 |
| C57   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.05 |
| C58   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| C59   | CONDUIT | 1.264 | 0 | 01:11 | 1.51 | 1.61 | 1.00 |
| C6    | CONDUIT | 0.946 | 0 | 01:10 | 1.49 | 1.73 | 1.00 |
|       |         |       |   |       |      |      |      |
| C60   | CONDUIT | 1.284 | 0 | 01:11 | 1.56 | 1.41 | 1.00 |
| C61   | CONDUIT | 1.287 | 0 | 01:11 | 1.61 | 1.48 | 1.00 |
| C62   | CONDUIT | 1.489 | 0 | 01:10 | 1.93 | 1.64 | 1.00 |
| C63   | CONDUIT | 1.513 | 0 | 01:11 | 2.20 | 1.79 | 1.00 |
| C64   | CONDUIT | 0.046 | 0 | 01:09 | 0.12 | 0.03 | 1.00 |
| C65   | CONDUIT | 0.556 | 0 | 01:09 | 1.04 | 0.51 | 1.00 |
| C7    | CONDUIT | 0.496 | 0 | 01:10 | 0.93 | 0.77 | 1.00 |
| C8    | CONDUIT | 1.262 | 0 | 01:11 | 1.48 | 1.40 | 1.00 |
| C9    | CONDUIT | 0.265 | 0 | 01:17 | 0.99 | 1.18 | 1.00 |
|       |         |       |   |       |      |      |      |
| W24   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W25   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W27   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.50 |
| W28   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.37 |
| W29   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.39 |
| W30   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W31   | CONDUIT | 0.000 | 0 | 00:00 | 0.00 | 0.00 | 0.00 |
| W4    | CONDUIT | 0.497 | 0 | 07:51 | 1.80 | 0.34 | 1.00 |
| C27 1 | ORIFICE | 0.588 | 0 | 08:01 |      |      | 1.00 |
| OR1   | ORIFICE | 0.200 | 0 | 09:43 |      |      | 1.00 |
| OR2   | ORIFICE | 0.200 | 0 | 01:13 |      |      | 1.00 |
|       |         |       |   |       |      |      |      |
| W1    | WEIR    | 0.561 | 0 | 01:14 |      |      | 1.00 |
| W10   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| Wll   | WEIR    | 0.027 | 0 | 04:18 |      |      | 0.14 |
| W12   | WEIR    | 0.033 | 0 | 01:21 |      |      | 0.07 |
| W13   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W14   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W15   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W16   | WEIR    | 0.129 | 0 | 01:10 |      |      | 0.17 |
| W17   | WEIR    | 0.101 | 0 | 01:10 |      |      | 0.14 |
| W18   | WEIR    | 0.101 | 0 | 01:10 |      |      | 0.14 |
|       |         |       |   |       |      |      |      |
| W19   | WEIR    | 0.090 | 0 | 01:12 |      |      | 0.13 |
| W2    | WEIR    | 1.792 | 0 | 01:14 |      |      | 1.00 |
| W20   | WEIR    | 0.427 | 0 | 01:13 |      |      | 0.38 |
| W21   | WEIR    | 0.020 | 0 | 01:10 |      |      | 0.05 |
| W22   | WEIR    | 0.091 | 0 | 01:10 |      |      | 0.13 |
| W23   | WEIR    | 0.143 | 0 | 01:10 |      |      | 0.18 |
| W26   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W3    | WEIR    | 1.342 | 0 | 01:10 |      |      | 1.00 |
| W32   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
|       |         |       |   |       |      |      |      |
| W33   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
| W34   | WEIR    | 0.000 | 0 | 00:00 |      |      | 0.00 |
|       |         |       |   |       |      |      |      |

| W35  | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
|------|-------|-------|---|-------|------|
| W36  | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W37  | WEIR  | 0.160 | 0 | 01:12 | 0.33 |
| W38  | WEIR  | 0.055 | 0 | 01:10 | 0.10 |
| W39  | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W40  | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W5   | WEIR  | 0.041 | 0 | 01:13 | 0.08 |
| W6   | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W7   | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W8   | WEIR  | 0.000 | 0 | 00:00 | 0.00 |
| W9   | WEIR  | 0.109 | 0 | 01:10 | 0.15 |
| C42  | DUMMY | 0.199 | 0 | 07:13 |      |
| OL1  | DUMMY | 0.200 | 0 | 03:31 |      |
| OL10 | DUMMY | 0.012 | 0 | 01:06 |      |
| OL11 | DUMMY | 0.006 | 0 | 01:04 |      |
| OL12 | DUMMY | 0.008 | 0 | 01:07 |      |
| OL13 | DUMMY | 0.005 | 0 | 01:03 |      |
| OL14 | DUMMY | 0.008 | 0 | 01:12 |      |
| OL15 | DUMMY | 0.006 | 0 | 01:12 |      |
| OL2  | DUMMY | 0.146 | 0 | 03:35 |      |
| OL3  | DUMMY | 0.151 | 0 | 03:50 |      |
| OL4  | DUMMY | 0.057 | 0 | 01:10 |      |
| OL5  | DUMMY | 0.000 | 0 | 00:00 |      |
| OL6  | DUMMY | 0.009 | 0 | 01:07 |      |
| OL7  | DUMMY | 0.011 | 0 | 01:06 |      |
| OL8  | DUMMY | 0.011 | 0 | 01:07 |      |
| OL9  | DUMMY | 0.005 | 0 | 01:06 |      |
|      |       |       |   |       |      |

|         | Adjusted |      |      | Fract | ion of | Time | in Flo | w Clas | s    |
|---------|----------|------|------|-------|--------|------|--------|--------|------|
|         |          |      |      |       |        |      |        |        |      |
|         | /Actual  |      | Up   | Down  | Sub    | Sup  | Up     | Down   | Norm |
| Inlet   |          |      |      |       |        |      |        |        |      |
| Conduit | Length   | Dry  | Dry  | Dry   | Crit   | Crit | Crit   | Crit   | Ltd  |
| Ctrl    |          |      |      |       |        |      |        |        |      |
|         |          |      |      |       |        |      |        |        |      |
| C1      | 1.00     | 0.01 | 0.00 | 0.00  | 0.40   | 0.00 | 0.00   | 0.59   | 0.05 |
| 0.00    |          |      |      |       |        |      |        |        |      |
| C10     | 1.00     | 0.01 | 0.00 | 0.00  | 0.93   | 0.00 | 0.00   | 0.05   | 0.00 |
| 0.00    |          |      |      |       |        |      |        |        |      |
| C10_1   | 1.00     | 0.01 | 0.00 | 0.00  | 0.96   | 0.00 | 0.00   | 0.03   | 0.00 |
| 0.00    | 1.00     | 0.01 | 0.00 | 0 00  | 0 07   | 0 00 | 0.00   | 0 00   | 0.00 |
| 0.00    | 1.00     | 0.01 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.02   | 0.00 |
| C12     | 1.00     | 1.00 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.00   | 0.00 |
| 0.00    |          |      |      |       |        |      |        |        |      |
| C13     | 1.00     | 0.01 | 0.00 | 0.00  | 0.38   | 0.00 | 0.00   | 0.61   | 0.01 |
| 0.00    |          |      |      |       |        |      |        |        |      |
| C14     | 1.00     | 0.02 | 0.00 | 0.00  | 0.38   | 0.00 | 0.00   | 0.60   | 0.01 |
| 0.00    |          |      |      |       |        |      |        |        |      |
| C15     | 1.00     | 0.01 | 0.00 | 0.00  | U.98   | 0.00 | 0.00   | 0.01   | 0.00 |

| C16<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.03 | 0.00 |
|---------------|------|------|------|------|------|------|------|------|------|
| C17<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| C18<br>0.00   | 1.00 | 0.01 | 0.01 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| C18_1<br>0.00 | 1.00 | 0.01 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 |
| C18_2<br>0.00 | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.00 |
| C19<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| C2<br>0.00    | 1.00 | 0.02 | 0.01 | 0.00 | 0.36 | 0.00 | 0.00 | 0.61 | 0.68 |
| C20<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.02 |
| C21<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.52 |
| C21_1<br>0.00 | 1.00 | 0.02 | 0.01 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| C21_2<br>0.00 | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| C22<br>0.00   | 1.00 | 0.04 | 0.00 | 0.00 | 0.44 | 0.00 | 0.00 | 0.51 | 0.61 |
| C23<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| C24<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.62 |
| C25<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.03 | 0.00 |
| C26<br>0.00   | 1.00 | 0.01 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C27<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.29 |
| C27_2<br>0.00 | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C28<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C29<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 |
| C3<br>0.00    | 1.00 | 0.01 | 0.00 | 0.00 | 0.31 | 0.00 | 0.00 | 0.68 | 0.02 |
| C30<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 |
| C31<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 |
| C32<br>0.00   | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C33           | 1.00 | 0.01 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.60 | 0.01 |
| C34<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.48 | 0.16 |
| C35<br>0.00   | 1.00 | 0.05 | 0.00 | 0.00 | 0.49 | 0.00 | 0.00 | 0.46 | 0.05 |
| C36<br>0.00   | 1.00 | 0.02 | 0.33 | 0.00 | 0.65 | 0.00 | 0.00 | 0.00 | 0.50 |
| C37<br>0.00   | 1.00 | 0.02 | 0.84 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.86 |
| C38<br>0.00   | 1.00 | 0.02 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.60 | 0.01 |
| 0.00          |      |      |      |      |      |      |      |      |      |

| C39<br>0.00 | 1.00 | 0.02 | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 | 0.63 | 0.01 |
|-------------|------|------|------|------|------|------|------|------|------|
| C4<br>0.00  | 1.00 | 0.02 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.66 | 0.00 |
| C40         | 1.00 | 0.02 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.64 | 0.03 |
| 0.00<br>C41 | 1.00 | 0.04 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.77 | 0.20 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C43<br>0.00 | 1.00 | 0.04 | 0.08 | 0.00 | 0.87 | 0.00 | 0.00 | 0.00 | 0.95 |
| C44<br>0.11 | 1.00 | 0.04 | 0.00 | 0.00 | 0.93 | 0.03 | 0.00 | 0.00 | 0.00 |
| C45         | 1.00 | 0.01 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.94 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C46<br>0.00 | 1.00 | 0.02 | 0.82 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 |
| C47         | 1.00 | 0.74 | 0.09 | 0.00 | 0.14 | 0.03 | 0.00 | 0.00 | 0.94 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C48<br>0.00 | 1.00 | 0.18 | 0.57 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.96 |
| C49         | 1.00 | 0.03 | 0.25 | 0.00 | 0.69 | 0.03 | 0.00 | 0.00 | 0.77 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C5<br>0.00  | 1.00 | 0.02 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.68 | 0.00 |
| C50         | 1.00 | 0.02 | 0.03 | 0.00 | 0.95 | 0.00 | 0.00 | 0.00 | 0.95 |
| 0.00<br>C51 | 1 00 | 0.04 | 0.00 | 0 00 | 0.95 | 0 00 | 0 00 | 0.01 | 0 00 |
| 0.00        | 1.00 | 0.04 | 0.00 | 0.00 | 0.95 | 0.00 | 0.00 | 0.01 | 0.00 |
| C52         | 1.00 | 0.16 | 0.15 | 0.00 | 0.70 | 0.00 | 0.00 | 0.00 | 0.04 |
| 0.00<br>C53 | 1.00 | 0.66 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C54<br>0.00 | 1.00 | 0.40 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 | 0.06 |
| C55         | 1.00 | 0.77 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C56<br>0.00 | 1.00 | 0.01 | 0.00 | 0.00 | 0.44 | 0.55 | 0.00 | 0.00 | 0.00 |
| C57         | 1.00 | 0.56 | 0.44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00<br>C58 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C59         | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.46 |
| 0.00<br>C6  | 1.00 | 0.01 | 0.00 | 0.00 | 0.48 | 0.00 | 0.00 | 0.51 | 0.02 |
| 0.00        | 1.00 | 0.01 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.51 | 0.02 |
| C60         | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00<br>C61 | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        | 1.00 | 0.01 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 |
| C62         | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00<br>C63 | 1.00 | 0.01 | 0.00 | 0.00 | 0.93 | 0.00 | 0.00 | 0.06 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C64<br>0.00 | 1.00 | 0.01 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 |
| C65         | 1.00 | 0.02 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.02 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| C7<br>0.00  | 1.00 | 0.01 | 0.00 | 0.00 | 0.46 | 0.00 | 0.00 | 0.53 | 0.06 |
|             |      |      |      |      |      |      |      |      |      |

| C3  | 4.53  | 4.87  | 5.03  | 0.64 | 0.18 |
|-----|-------|-------|-------|------|------|
| C30 | 23.00 | 23.00 | 23.01 | 0.01 | 0.22 |
| C31 | 23.02 | 23.02 | 23.02 | 0.01 | 0.36 |
| C32 | 23.03 | 23.03 | 24.00 | 0.01 | 0.01 |
| C33 | 7.54  | 7.54  | 7.80  | 0.05 | 0.07 |
| C34 | 7.88  | 7.88  | 8.24  | 0.01 | 0.01 |
| C35 | 5.97  | 5.97  | 6.50  | 0.01 | 0.01 |
| C36 | 6.60  | 6.60  | 6.97  | 0.01 | 0.01 |
| C38 | 6.03  | 6.03  | 6.68  | 0.01 | 0.01 |
| C39 | 5.87  | 5.87  | 6.01  | 0.36 | 0.34 |
| C4  | 4.34  | 4.34  | 4.43  | 0.30 | 0.01 |
| C40 | 5.13  | 5.13  | 5.66  | 0.31 | 0.28 |
| C44 | 0.01  | 0.51  | 0.01  | 0.70 | 0.01 |
| C5  | 4.57  | 4.57  | 4.61  | 0.40 | 0.01 |
| C51 | 22.77 | 22.77 | 22.79 | 0.01 | 0.01 |
| C59 | 4.80  | 4.80  | 4.88  | 0.24 | 0.07 |
| C6  | 4.75  | 4.80  | 4.98  | 0.19 | 0.06 |
| C60 | 5.01  | 5.01  | 5.16  | 0.19 | 0.01 |
| C61 | 5.24  | 5.24  | 5.35  | 0.20 | 0.02 |
| C62 | 5.43  | 5.43  | 5.53  | 0.23 | 0.03 |
| C63 | 5.61  | 5.61  | 5.76  | 0.27 | 0.01 |
| C64 | 5.62  | 5.62  | 5.84  | 0.01 | 0.01 |
| C65 | 5.65  | 5.65  | 5.73  | 0.01 | 0.02 |
| C7  | 4.26  | 4.26  | 4.95  | 0.01 | 0.01 |
| C8  | 4.65  | 4.65  | 4.72  | 0.19 | 0.01 |
| C9  | 7.99  | 8.00  | 8.22  | 0.12 | 0.03 |
| W4  | 6.99  | 6.99  | 7.21  | 0.01 | 0.01 |
|     |       |       |       |      |      |

Analysis begun on: Thu Aug 8 20:17:42 2024 Analysis ended on: Thu Aug 8 20:17:49 2024 Total elapsed time: 00:00:07

| C8          | 1.00 | 0.01 | 0.00 | 0.00 | 0.54 | 0.00 | 0.00 | 0.44 | 0.01 |
|-------------|------|------|------|------|------|------|------|------|------|
| 0.00        | 1 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| C9<br>0.00  | 1.00 | 0.02 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.01 | 0.00 |
| W24         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| W25<br>0.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|             |      |      |      |      |      |      |      |      |      |
| W27<br>0.00 | 1.00 | 0.01 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| W28         | 1.00 | 0.02 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| W29         | 1.00 | 0.02 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| W30         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| W31         | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |
| W4          | 1.00 | 0.04 | 0.00 | 0.00 | 0.94 | 0.00 | 0.00 | 0.01 | 0.00 |
| 0.00        |      |      |      |      |      |      |      |      |      |

| Conduit | Both Ends | Upstream | Dnstream | Hours<br>Above Full<br>Normal Flow | Capacity<br>Limited |
|---------|-----------|----------|----------|------------------------------------|---------------------|
| C1      |           |          |          | 0.01                               |                     |
| C10     | 6.22      | 6.22     | 6.27     | 0.01                               | 0.23                |
| C10_1   | 7.02      |          |          |                                    | 0.01                |
| C11     | 7.57      |          |          | 0.10                               | 0.02                |
| C13     | 7.04      | 7.04     | 7.58     | 0.01                               | 0.01                |
| C14     | 7.32      | 7.35     | 7.58     | 0.41                               | 0.38                |
| C15     | 7.57      | 7.58     | 7.63     | 0.19                               | 0.24                |
| C16     | 7.65      | 7.66     | 7.79     | 0.22                               | 0.20                |
| C17     | 8.05      | 8.05     | 8.09     | 0.23                               | 0.29                |
| C18     | 7.01      | 7.01     | 7.30     | 0.01                               | 0.01                |
| C18_1   | 5.33      | 5.33     | 5.73     | 0.01                               | 0.01                |
| C18 2   | 5.73      | 5.73     | 5.84     | 0.15                               | 0.02                |
| C19     | 7.30      | 7.30     | 7.39     | 0.01                               | 0.08                |
| C2      | 0.44      | 0.44     | 4.72     | 0.01                               | 0.01                |
| C20     | 7.49      | 7.49     | 23.38    | 0.01                               | 0.01                |
| C21     | 7.45      | 7.45     | 7.80     | 0.29                               | 0.31                |
| C21 1   | 6.01      | 6.01     | 6.29     | 0.01                               | 0.01                |
| C21 2   | 6.29      | 6.29     | 6.34     | 0.01                               | 0.02                |
| C22     | 7.84      | 7.84     | 8.24     | 0.35                               | 0.01                |
| C23     | 8.36      | 8.36     | 11.68    | 0.67                               | 0.67                |
| C24     | 5.15      | 5.15     | 6.94     | 0.01                               | 0.01                |
| C25     | 7.28      | 7.28     | 7.60     | 0.01                               | 0.01                |
| C26     | 6.53      | 6.53     | 6.79     | 0.01                               | 0.08                |
| C27     | 6.71      | 6.71     | 7.45     | 0.01                               | 0.01                |
| C27 2   | 6.92      | 6.92     | 6.94     | 0.01                               | 0.07                |
| C28     | 7.07      | 7.11     | 7.07     |                                    | 1.87                |
| C29     | 7.48      | 7.48     | 22.99    | 0.01                               | 0.01                |

## C-3 ADS Treatment Train Sizing



### **ADS Treatment Train Sizing**

**Project Name:** Lansdowne 2.0

**WSP Consulting Engineer:** 

Sizing Completed By:

Ottawa, Ontario

Location:

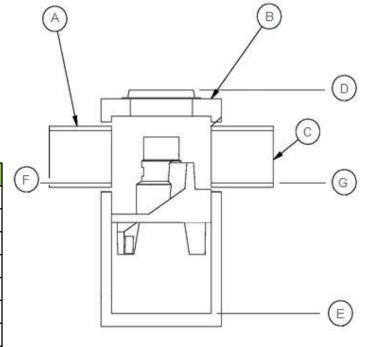
Haider Nasrullah **Email:** haider.nasrullah@adspipe.com

| Summary of Results             |       |  |  |  |  |  |
|--------------------------------|-------|--|--|--|--|--|
| Isolator Row PLUS TSS Removal: | 80.1% |  |  |  |  |  |
| FD-8HC TSS Removal:            | 29.0% |  |  |  |  |  |
| Combined TSS Removal:          | 85.5% |  |  |  |  |  |
| Total Volume Treated:          | >90%  |  |  |  |  |  |

| Individual OGS Results |             |                |  |  |  |  |  |
|------------------------|-------------|----------------|--|--|--|--|--|
| Model                  | TSS Removal | Volume Treated |  |  |  |  |  |
| FD-4HC                 | 23.0%       | >90%           |  |  |  |  |  |
| FD-5HC                 | 25.0%       | >90%           |  |  |  |  |  |
| FD-6HC                 | 27.0%       | >90%           |  |  |  |  |  |
| FD-8HC                 | 29.0%       | >90%           |  |  |  |  |  |
| FD-10HC                | 31.0%       | >90%           |  |  |  |  |  |

| Overall System Capacities           |           |  |  |  |
|-------------------------------------|-----------|--|--|--|
| Total Sediment Storage Capacity:    | 12.37 m³  |  |  |  |
| Oil Storage Capacity:               | 4,239 L   |  |  |  |
| Max. OGS Pipe Diameter:             | 1,200 mm  |  |  |  |
| Peak OGS Flow Capacity:             | 1,415 L/s |  |  |  |
| Peak Stormtech Inlet Flow Capacity: | 311 L/s   |  |  |  |
| Peak IR PLUS Water Quality Flow:    | 323.8 L/s |  |  |  |

| OGS Specifications            |          |  |  |  |  |
|-------------------------------|----------|--|--|--|--|
| Inlet Pipe Diameter (A):      | 450 mm   |  |  |  |  |
| Unit Diameter (B):            | 2,400 mm |  |  |  |  |
| Outlet Pipe Diameter (C):     | 450 mm   |  |  |  |  |
| Rim Elevation (D):            | 100.00 m |  |  |  |  |
| Bottom of Sump Elevation (E): | #N/A     |  |  |  |  |
| Inlet Pipe Elevation (F):     | 98.00 m  |  |  |  |  |
| Outlet Pipe Elevation (G):    | 98.00 m  |  |  |  |  |


| Site Details                |             |  |  |
|-----------------------------|-------------|--|--|
| Site Area (ha):             | 6.94        |  |  |
| Rational C:                 | 0.61        |  |  |
| Particle Size Distribution: | ETV         |  |  |
| Rainfall Station:           | Ottawa, ONT |  |  |

Notes: OGS results based on ETV PSD and results from ETV testing protocols.

| Stormtech Details                    |         |  |  |  |  |
|--------------------------------------|---------|--|--|--|--|
| Chamber Model:                       | MC-7200 |  |  |  |  |
| No. Chambers in Isolator Row PLUS:   | 25      |  |  |  |  |
| Volume Treated by Isolator Row PLUS: | 98.6%   |  |  |  |  |

Notes: Refer to Stormtech drawings for full IR+ configuration.

Isolator Row PLUS must include Flared End Ramp (FLAMP) for proper performance.



#### Notes:

Isolator Row PLUS removal efficiency based on verified ETV test report. For dimensions and configuration of Isolator Row PLUS, please see Stormtech drawing package.



Project Name: Lansdowne 2.0

Consulting Engineer: WSP

Location: Ottawa, Ontario

#### **Net Annual Removal Efficiency Summary**

| Rainfall Intensity |          |                                     | Efficiency             | Combined           | Combined Weighted  |
|--------------------|----------|-------------------------------------|------------------------|--------------------|--------------------|
|                    | Rainfall | FD-8HC                              | IR PLUS <sup>(2)</sup> | Removal Efficiency | Removal Efficiency |
| mm/hr              | %        | %                                   | %                      | %                  | %                  |
| 0.50               | 0.1%     | 60.0%                               | 81.2%                  | 92.5%              | 0.1%               |
| 1.00               | 14.1%    | 55.0%                               | 81.2%                  | 91.5%              | 12.9%              |
| 1.50               | 14.2%    | 52.1%                               | 81.2%                  | 91.0%              | 12.9%              |
| 2.00               | 14.1%    | 50.0%                               | 81.2%                  | 90.6%              | 12.8%              |
| 2.50               | 4.2%     | 48.4%                               | 81.2%                  | 90.3%              | 3.8%               |
| 3.00               | 1.5%     | 47.1%                               | 81.2%                  | 90.1%              | 1.3%               |
| 3.50               | 8.5%     | 46.0%                               | 81.2%                  | 89.8%              | 7.7%               |
| 4.00               | 5.4%     | 0.0%                                | 81.2%                  | 81.2%              | 4.4%               |
| 4.50               | 1.2%     | 0.0%                                | 81.2%                  | 81.2%              | 0.9%               |
| 5.00               | 5.5%     | 0.0%                                | 81.2%                  | 81.2%              | 4.5%               |
| 6.00               | 4.3%     | 0.0%                                | 81.2%                  | 81.2%              | 3.5%               |
| 7.00               | 4.5%     | 0.0%                                | 81.2%                  | 81.2%              | 3.7%               |
| 8.00               | 3.1%     | 0.0%                                | 81.2%                  | 81.2%              | 2.5%               |
| 9.00               | 2.3%     | 0.0%                                | 81.2%                  | 81.2%              | 1.9%               |
| 10.00              | 2.6%     | 0.0%                                | 81.2%                  | 81.2%              | 2.1%               |
| 20.00              | 9.2%     | 0.0%                                | 81.2%                  | 81.2%              | 7.5%               |
| 30.00              | 2.6%     | 0.0%                                | 74.5%                  | 74.5%              | 2.0%               |
| 40.00              | 1.2%     | 0.0%                                | 55.9%                  | 55.9%              | 0.7%               |
| 50.00              | 0.5%     | 0.0%                                | 44.7%                  | 44.7%              | 0.2%               |
| 100.00             | 0.7%     | 0.0%                                | 22.4%                  | 22.4%              | 0.2%               |
| 150.00             | 0.1%     | 0.0%                                | 14.9%                  | 14.9%              | 0.0%               |
| 200.00             | 0.0%     | 0.0%                                | 11.2%                  | 11.2%              | 0.0%               |
|                    |          | Total Net Annual Removal Efficiency |                        |                    | 85.5%              |
|                    |          | Total Runoff Volume Treated         |                        |                    | >90%               |

#### Notes:

- (1) Rainfall Data: 1960:2007, HLY03, Ottawa, ONT, 6105976 & 6105978.
- (2) IR PLUS removal based on ETV PSD and ETV protocols.
- (3) Rainfall adjusted to 5 min peak intensity based on hourly average.
- (4) Combined removal efficiencies calculated based on NCDENR Stormwater BMP Manual, Section 3.9.4, where Total Removal Efficiency = 1st BMP Efficiency + 2nd BMP Efficiency (1st BMP Efficiency x 2nd BMP Efficiency)