

Phase Two Environmental Site Assessment Update

1280 Trim Road Ottawa, Ontario

Prepared for:

Trim Works Developments Ltd. 110 Place d'Orleans Drive Ottawa, Ontario K1C 2L9

LRL File No.: 230202

January 12, 2024

EXECUTIVE SUMMARY

Trim Works Developments Ltd. retained LRL Engineering (LRL) to complete a Phase Two Environmental Site Assessment (ESA) for the property located 1280 Trim Road, Ottawa, Ontario (herein referred to as the Site). The Site location is presented in **Figure 1**. The legal description of the Site is Part 30, Concession 10S, Part 3 to 6, Cumberland, Ottawa, and the property PIN is 50R6444.

In 2020, a Phase II ESA was completed on the Site as due diligence in the context of a potential property transaction. The Phase II ESA report was completed following the Canadian Standards Association Z769-00. As this report is intended to the support an application with the City of Ottawa for the re-development of the Site by Trim Works Development Ltd, the assessment is required to confirm with Ontario Regulation 153/04, as amended, Phase Two ESA standards and reporting requirements. According to O. Reg. 153/04 as amended, a Phase Two Environmental Site Assessment is considered reliable for a period of 24 months. The previously prepared report was finalized in July 2020, which exceeds 24-month period. This Phase Two ESA has been prepared as an update to the previous report, in addition to further confirming the soil and groundwater conditions across the Site with respect to identified areas of potential environmental concern as outlined in the Phase One Environmental Site Assessment completed to support this re-development opportunity (Phase One ESA, January 2024).

Given that the proposed redevelopment of the Site will be from commercial to commercial, completion of the Phase Two ESA to meet O. Reg 153/04 (as amended) for the purposes of an Ontario Ministry of the Environment, Parks and Conservations (MECP) Record of Site Condition (RSC) is not required. But rather, as discussed above, to satisfy the requirements set forth by the City of Ottawa.

Executive Summary				
	The Site is rectangular shape with a total area of approximately 6,430 m2 (1.59 acres) with the PIN # 50R6444.			
	The Site is located at the municipal address of 128 Trim Road, in Ottawa, Ontario.			
Phase Two Property (the Site)	The property is currently in commercial land use as a storage facility for a commercial general contractor in addition to a 'chip-truck' operating at the southeastern portion of the Site. Commercial/Industrial operations have occupied the Site since at least the mid-1970's (1976) based on the available information collected in the corresponding Phase One ESA (January 2024).			
	It is anticipated that the Site is to be redeveloped for multi-tenant commercial use.			
Phase Two Investigations	Ontario Regulation (O. Reg.) 153/04 (as amended).			
	The entire Phase Two Property was situated in an area of marine offshore deposits including clay, silty clay and silt, commonly calcareous and fossiliferous; local overlain by thin sand.			
Geologic Conditions	Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade.			
	Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part.			

The following is the executive summary of the Phase Two Environmental Site Assessment done by LRL Engineering:

Hydrogeological Conditions	Subsurface soil conditions in the area investigated on the Site generally consist of a granular crushed stone over sand fill material to depths between 0.2 and 0.7 m below grade, followed by silty clay to depth between 1.8 and 4.8 m below grade.	
	The water table is located between 0.72 and 1.34 meters below ground surface (bgs). The groundwater flows towards the north direction.	
Applicable Site Condition Standard	Ministry of the Environment, Conservation and Parks (MECP) "Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition" (Table 2 Standards) for coarse-grained soils in an Industrial/Commercial/Community (ICC) property use.	
	As this report is not intended for an RSC submission, a formal letter to the City of Ottawa requesting permission to use the MECP Table 2 ICC Standards, in accordance to O. Reg 153/04 as amended, is not required.	
	Select soil samples submitted for analysis exceeded the appliable site condition standards for vanadium. These samples included TP3-SS2; BH20-2-9; BH20-4-20; BH20-5-26; BH20-6-31; BH20-9-42; and BH20-11-50.	
	No additional soil exceedances were encountered, however PHC parameters were detected in select underlying soils with notable olfactory evidence of PHC impacts. These locations included the borehole advanced within the building on Site.	
Soil and Groundwater Quality Data	The groundwater at the Phase Two Property was sampled at MW20-2; MW20-3; and MW20-5 in January 2020; and MW20-2; MW20-3; MW20-5; MW20-10 and MW23-3 in December 2023.	
	Groundwater samples collected were generally analyzed for PHCs Fractions F1 through F4; VOCs, PAHs, PCBs, OC Pesticides, Metals and Inorganics.	
	A single metal exceedance was reported in the groundwater samples collected. Vanadium exceeded the Table 2 site condition standards in MW20-3. Various PAH parameters were also reported above the Table 2 site condition standards in the groundwater collected from MW20-2; MW20-3; MW20-5 and MW23-3.	

	The soil and groundwater on parts of the Phase Two Property did not meet the MECP Table 2 Standards ICC in potable groundwater condition.
	Vanadium was reported in select samples with concentrations above the Table 2 site condition standards. According to the Canadian Council of Ministers of the Environment (CCME) fact sheet, vanadium present in soils can be related to industrial activities but could also be related naturally geological formations with the highest concentrations found in shale and clays. During the intrusive investigation, a stratum of clay being at least $0.6 - 4.2$ m thick was encountered across the Site. The CCME fact sheet also indicates that concentrations of naturally occurring vanadium across Canada typically increases in depth. The values encountered at the Site ranged between 80.1 and 109 µg/g, within the representative clay samples, generally within the range that could be a result of naturally occurring deposits. The groundwater exceedance for vanadium encountered may also be contributed to naturally occurring deposits found in the underlying clay.
Conclusions	The levels encountered in this assessment are below those of CCME and are not likely a result of the fill material on the Site, or current/former Site and neighboring land activities, but rather naturally occurring in the subsurface deposits.
	No additional soil exceedances were encountered.
	The PAH exceedances in the groundwater monitoring wells across the Site are likely the result of the former Site activities including the parking of heavy equipment and vehicles in the early 1990's or associated with the fill encountered across the Site. These PEC identified are assumed to contribute to the elevated PAH concentrations based on the location to which they were encountered, and the groundwater flow direction. It would be anticipated that if the PAH concentrations were associated with the gasoline service station to the north, the AST in the building on-Site; or the former commercial printing operations, the highest concentrations would be anticipated to be found along the northern property extents in MW20-3 and MW20-5. However, the highest PAH concentrations were noted in MW20-2, located in the parking & circulation area to the south of the building, and in MW23-3, located at the southwestern portion of the building.
	It is recommended that if any soil is to be excavated as part of the proposed Site re-development, and the material is to be disposed of off-Site, that additional laboratory analysis be carried out on that material for vanadium to confirm if it is suitable for disposal as "clean-fill". Otherwise, the material should be disposed of at a licensed landfill facility or soil accepting facility (assuming it meets the site-specific applicable requirements). However, the soil may be used for onsite soil management.
Recommendations	However, as mentioned with respect to the Vanadium concentrations, soils across the Site may not be acceptable for re- use as "clean-fill" at an off-Site locations, and should be confirmed against the receiving properties applicable site conditions standard prior to re-development activities commencing.
	PHC parameters were detected in select underlying soils with notable olfactory evidence of PHC impacts at the time of the 2020 borehole advancement within the building on Site. Although no exceedances were encountered in the corresponding soil samples,

	nor were detections encountered in the groundwater samples collected.
	The source of the PAH impacted groundwater is inferred to be from the previous Site activities. Groundwater encountered during re- development should be considered 'contaminated' and handled accordingly during construction and dewatering. The risk to future occupants of the Site is considered low as it is understood that municipal water supply sources will service the Site, limiting the risk to expose of PAH in the overburden groundwater.
Limitations	Results of this Phase Two ESA should not be considered a warranty that the subject property is free from any and all contaminants from former and current practices, other than those noted in this report, nor that all compliance issues have been addressed.

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Current and Proposed Land Uses	3
	1.4	Applicable Site Condition Standard	3
2	BA	CKGROUND INFORMATION	5
	2.1	Physical Setting	5
	2.2	Past Investigations	5
	2.2.	1 Phase One Environmental Site Assessment, January 2024	5
3	SCO	OPE OF INVESTIGATION	8
	3.1	Overview of Site Investigation	8
	3.2	Media Investigation	9
	3.2.	1 Soil Investigation	9
	3.2.	2 Groundwater Investigation	11
	3.3	Phase One Site Conceptual Model	13
	3.3.	1 Physical Settings	18
	3.3.	2 Water Bodies and Areas of Natural Significance	18
	3.4	Deviations from Sampling and Analysis Plan	19
	3.5	Impediments	19
4	INV	ESTIGATION METHOD	19
	4.1	General	19
	4.1.	1 Name of the Contractor	20
	4.1.	2 Description of the Equipment Used	20
	4	.1.2.1 Boreholes	20
	4	.1.2.2 Test Pits	20
	4.1.	•	
	4.1.	4 The Frequency of Sample Collection	21
	4.2	Soil Sampling	21
	4.2.	1 Description of Equipment Used for Soil Collection	21
	4.2.	2 Geological Descriptions of Soil Samples	21
	4.3	Field Screening Measurements	23

	4.3.	1	PID Screening	23
	4.3.	2	Chemicals Detected and Associated Detection Limits	24
	4.3.	3	Precision of the Measurements	24
	4.3.	4	Procedure for Checking Calibration of Equipment	24
	4.4	Gro	undwater: Monitoring Well Installation	24
	4.4.	1	Name of the Contractor	24
	4.4.	2	Description of the Equipment	25
	4.4.	3	Measures to Minimize Potential Cross-Contamination	25
	4.4.	4	Frequency of Sample Collection during Drilling	26
	4.4.	5	Monitoring Well Development	26
	4.5	Gro	undwater: Field Measurements of Water Quality Parameters	26
	4.6	Gro	undwater: Sampling	27
	4.7	Sed	liment: Sampling	27
	4.8	Ana	Ilytical Testing	27
	4.9	Res	idue Management Procedures	28
	4.9.	1	Soil Cuttings – Drilling	28
	4.9.	2	Water from Well Development and Purging	28
	4.10	Elev	vation Surveying	28
	4.11	Qua	ality Assurance and Quality Control Measures	28
	4.1 <i>°</i>	1.1	Laboratory Supplied Sample Containers and Shipment Procedures	29
	4.1 <i>°</i>	1.2	Description of Field Quality Control Measures	30
	4.1 <i>°</i>	1.3	Deviations from the Quality Assurance and Quality Control Program	32
5	RE	VIEW	AND EVALUATION	32
	5.1	Geo	blogy	32
	5.1.	1	Geological Conditions Encountered	32
	5.1.	2	Elevations Geodetic Benchmark	32
	5.1.	3	Aquifer & Aquitard Properties	32
	5.1.	4	Rationale for the Choice of Aquifer	32
	5.1.	5	Confirmatory Soil and Groundwater Monitoring Well Design and Rationale	33
	5.2	Gro	undwater Elevations	35
	5.2.	1	Discussion and Rationale for Location and Screen Intervals	35
	5.2.	2	Interphase Probe	35
	5.2.	3	Product Thickness	35

5.3	}	Groundwater: Hydraulic Gradient	35
Ę	5.3.1	Horizontal Hydraulic Gradient	35
Ę	5.3.2	2 Vertical Hydraulic Gradient	35
5.4	Ļ	Fine-Medium Soil Texture	36
Ę	5.4.1	Rationale for the Use of Fine – Medium Soil Texture	36
Ę	5.4.2	2 Results of the Grain Size Analysis for Fine – Medium Soil Texture	36
	5.4.3 Anal	Rationale for the Number of Samples Collected and Analysed for Grain Size ysis 36	•
5.5	5	Soil: Field Screening	36
5.6	;	Soil Quality	36
Ę	5.6.1	Location, Depth of Sampling	36
Ę	5.6.2	2 Analytical Results to SCS	38
Ę	5.6.3	Contaminants of Concern (COC)	38
٦	The	contaminants of concern identified in the soil on the property are as follows:	38
Ę	5.6.4	Chemical and Biological Transformations	38
Ę	5.6.5	Source of Contaminant Mass Contributing to the Groundwater	38
5.7	,	Ground Water Quality	39
Ę	5.7.1	Location and Sample Depth	39
Ę	5.7.2	2 Documentation of Field Filtering	41
Ę	5.7.3	Analytical Results to SCS	41
Ę	5.7.4	Contaminants of Concern (COC)	41
Ę	5.7.5	Chemical and Biological Transformation	41
Ę	5.7.6	Soil Serves as Source of Contamination to Groundwater	41
Ę	5.7.7	Presence of LNAPLs or DNAPLs	42
5.8	}	Sediment Quality	42
5.9)	Quality Assurance and Quality Control Results	42
5.1	0	Phase Two Conceptual Site Model	42
5.1	1	Phase Two Conceptual Site Model	43
6 (CON	ICLUSIONS	46
7 I	_IMI	TATIONS AND USE OF REPORT	47
8 F	REF	ERENCES	49

FIGURES

(In order following text)

Figure 1 Site Location

Figure 2 Site Plan

Figure 3 Location of Phase Two Property PCAs & APECs

Figure 4 PCAs within 250 m of the Site

Figure 5 Borehole and Monitoring Well Location

Figure 6 Groundwater Elevations & Groundwater Contours

Figure 7 PHC & VOC Exceedances in Groundwater

Figure 8 Metals Exceedances in Groundwater

Figure 9 PAH Exceedances in Groundwater

Figure 10 Pesticides Exceedances in Groundwater

Figure 11 PCBs Exceedances in Groundwater

Figure 12 PHC & VOC Exceedances in Soil

Figure 13 Inorganic Exceedances in Soil

Figure 14 PAH Exceedances in Soil

Figure 15 Metals Exceedances in Soil

Figure 16 Pesticides Exceedances in Soil

Figure 17 PCBs Exceedances in Soil

Phase Two Environmental Site Assessment 1280 Trim Road Ottawa, Ontario

TABLES

(In order following Figures)

Table 1 Summary of Groundsurface ad Groundwater Elevations (December 18, 2023)

Table 2 Summary of Soil VOC and PHC Analysis

Table 3 Summary of Soil Semi Volatile Analysis

 Table 4 Summary of Soil Metals Analysis

 Table 5 Summary of Soil Pesticides and PCB Analysis

Table 6 Summary of Groundwater PHC and VOC Analysis

Table 7 Summary of Groundwater Metals Analysis

Table 8 Summary of Groundwater PAH Analysis

Table 9 Summary of Groundwater Pesticides & PCBs Analysis

APPENDICES

(In order following Tables)

Appendix A Borehole Logs / Test Pit Logs

Appendix B Certificates of Laboratory Analysis

1 INTRODUCTION

Trim Works Developments Ltd. retained LRL Engineering (LRL) to complete a Phase Two Environmental Site Assessment (ESA) for the property located 1280 Trim Road, Ottawa, Ontario (herein referred to as the Site). The Site location is presented in **Figure 1**. The legal description of the Site is Part 30, Concession 10S, Part 3 to 6, Cumberland, Ottawa, and the property PIN is 50R6444.

In 2020, a Phase II ESA was completed on the Site as due diligence in the context of a potential property transaction. The Phase II ESA report was completed following the Canadian Standards Association Z769-00. As this report is intended to the support an application with the City of Ottawa for the re-development of the Site by Trim Works Development Ltd, the assessment is required to confirm with Ontario Regulation 153/04, as amended, Phase Two ESA standards and reporting requirements. According to O. Reg. 153/04 as amended, a Phase Two Environmental Site Assessment is considered reliable for a period of 24 months. The previously prepared report was finalized in July 2020, which exceeds 24-month period. This Phase Two ESA has been prepared as an update to the previous report, in addition to further confirming the soil and groundwater conditions across the Site with respect to identified areas of potential environmental concern as outlined in the Phase One Environmental Site Assessment completed to support this re-development opportunity (Phase One ESA, January 2024).

Given that the proposed redevelopment of the Site will be from commercial to commercial, completion of the Phase Two ESA to meet O. Reg 153/04 (as amended) for the purposes of an Ontario Ministry of the Environment, Parks and Conservations (MECP) Record of Site Condition (RSC) is not required. But rather, as discussed above, to satisfy the requirements set forth by the City of Ottawa.

1.1 Site Description

The Site is located at the municipal address of 1280 Trim Road, Ottawa, Ontario. The property is situated in a commercial/light industrial area along Trim Road. The Site was developed since at least the mid 1920's (1926) with agricultural lands. These activities continued until approximately the mid to late 1950's (at least 1955). The Site has been developed with the existing features since at least the mid-1970's (1976). The property is bounded by Trim Road to the east followed by agricultural fields, a retail gasoline service station to the north, children's recreational facility and cosmetic clinic to the south, a Place of Worship with recreational grassed area followed by industrial warehouse to the west. The Site Plan is presented in **Figure 2**.

A summary of the Site description is provided in Table 1 – Section 1.1

Table 1 – Section 1.1: Summary of Site Description

Parameters	Information	
Location/ Address	1280 Trim Road, in Ottawa, Ontario	
	Figure 1: Site Location Plan	
Property Identification Numbers	PIN#: 50R6444	
(PINs)		
Legal Description	Part 30, Concession 10S, Part 3 to 6, Cumberland, Ottawa.	
Shape	Rectangular shape and is between approximately 64 m wide	
	(fronting Trim Road) by approximately 100 m deep, for a total	
	area of approximately 6,430 m ² (1.59 acres).	
Access to the Phase Two Property	The Phase Two Property can be accessed from Trim Road	
	along the eastern perimeter of the Site.	
Occupancy	Commercial use: The property is currently in commercial land	
	use as a storage facility for a commercial general contractor in	
	addition to a 'chip-truck' operating at the southeastern portion of	
	the Site.	
Current Land Use	Commercial use.	
	Commercial/Industrial operations have occupied the Site since	
	at least the mid-1970's (1976) based on the available	
	information collected in the corresponding Phase One ESA ¹	
	(January 2024).	
Proposed Future Land Use	Multi-tenant commercial (retail)	

1.2 **Property Ownership**

The Qualified Person from LRL was retained by the Client to carry out this Phase Two ESA. The Site ownership information is presented in **Table 2 – Section 1.2**.

Company	Contact	
Phase Two Property Owner	Trim Works Developments Limited	
Phase Two Property Contact	Brent Harden brent@hardenrealties.com	

¹ Phase One Environmental Site Assessment, 1280 Trim Road, Ottawa, Ontario, prepared for Trim Works Developments Ltd., by LRL Engineering, January 2024.

1.3 Current and Proposed Land Uses

Current and recent (2020) property use of the Site is commercial/light industrial. The building located across the northern portion of the Site is presently used as a supplies and equipment storage facility for a general contractor, and a chip truck occupies the southeastern extent of the property. At the time of the 2020 initial Phase II ESA investigation, the Site included a martial arts recreational fitness facility (Elite Martial Arts), and the southwestern portion of the Site was occupied by a landscape / snow removal contractor. It is understood that current set zoning requirements (IL H) permit for light industrial use.

It is understood that Trim Works Developments Limited is proposing to re-develop to include three (3) single-storey structures, with space for multi-tenant commercial businesses and restaurants. The existing building is proposed to be removed to support the re-development.

1.4 Applicable Site Condition Standard

The results of the soil and groundwater chemical analysis were evaluated using the Standards prescribed in the Ministry of the Environment, Conservation and Parks (MECP) Table 2 Industrial/Commercial/Community (ICC) Standards for course-grained soils in a potable groundwater condition.

The Site is currently occupied and used for commercial purposes, and the anticipated use will remain commercial.

The Site was assessed using the standards contained in MECP Table 2 of the above referenced standards. The use of the Table 2 Standards is considered suitable by LRL based on the considerations listed in the following **Table 3 – Section 1.4**. As this report is not intended for an RSC submission, a formal letter to the City of Ottawa requesting permission to use the MECP Table 2 ICC Standards, in accordance to O. Reg 153/04 as amended, is not required.

Table 3 – Section 1.4: Phase Two Property Conditions

Parameters	Information	
Proposed Land Use	Commercial – multi-tenant	
Potable or Non-	Potable Groundwater	
Potable Ground Water		
Proximity to Surface Water	Based on available mapping resources, the nearest water body is approximately 680 m east of the Site (Cardinal Creek).	
Areas of Natural	There are no Areas of Natural Scientific Interest (ANSI) in the study area,	
Significance	nor environmentally sensitive areas that encroach within 30 m of the Phase Two Property.	
Nature and Depth of Bedrock Strata	Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade. Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part.	
Direction of Groundwater Flow	According to <i>The Atlas of Canada – Toporama</i> , the overall regional groundwater flow direction is inferred to follow local topography to the north-northwest towards the Ottawa River, although it is found that the nearest water body is approximately 680 m east of the Site (Cardinal Creek). For the purposes of this report, the groundwater flow direction across the Site will be inferred as north, following the topography of the area.	
Grain Size Analysis	Although the underlying soils uncovered across this Site are generally clayey which is a fine-textured material, with respect to provincial guidelines and corresponding site condition standards, the coarse textured soil will be applied for the purpose of this report as a stringent approach since no grain-size analysis were completed as part of this assessment.	
PH of Soil	Soil pH was between 6.5 and 8.0, based on analytical results outlined in greater detail in further sections of this report.	

Based on the Site conditions described in **Table 3 – Section 1.4**, the applicable criteria to be used in this Phase Two ESA is Ontario Regulation 153/04 "Table 2: Full Depth Generic Site Condition Standards in a non-potable Ground Water Condition" for Residential Parkland Institutional (Table 2 ICC Standards) as per the MECP document titled "Soil, Ground Water and Sediment Standards for Use under Part XV. 1 of the Environmental Protection Act", dated April 15, 2011, as amended.

2 BACKGROUND INFORMATION

2.1 Physical Setting

The topography of the Site and neighbouring lands is generally flat. The subject Site and the neighbouring lands have a common topographic elevation of approximately 60 m above mean sea level (amsl) according to The Atlas of Canada - Toporama. More specifically, the Site has a slight slope to the north, towards the Ottawa River.

A review of topographic maps from Natural Resource Canada indicates that topography of the area slopes north. The Ottawa River is identified to be approximately 1.1 km north of the Site.

Surficial geology consists of marine offshore deposits including clay, silty clay and silt, commonly calcareous and fossiliferous; local overlain by thin sand. Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part.

According to the Radon Potential Map of Ontario obtained from the website of Canada Radon, the Phase Two Study Area is in the Relative Radon Hazard Zone 3 – Guarded.

There are no areas of natural significance encroaching within 30 m of the Site.

2.2 Past Investigations

2.2.1 Phase One Environmental Site Assessment, January 2024

A Phase One Site Assessment was completed by LRL Engineering, in January 2024, in support of the proposed redevelopment of the Site. This report should be read in conjunction with the corresponding Phase One Environmental Site Assessment².

Trim Works Developments Ltd. has retained LRL Engineering (LRL) to complete a Phase One Environmental Site Assessment on the property located at 1280 Trim Road in Ottawa, Ontario. The assessment was conducted to identify potential environmental concerns or liabilities related to the past and present operations conducted on the property and the adjacent lands. A historical records review of the Site was conducted, as well as contact with relevant regulatory agencies, a walk-through Site inspection of the property and interviews with those knowledgeable of the Site. The assessment was conducted in the context of property development, in support of a Site Plan Application package to the City of Ottawa for the development of an industrial warehouse facility. The assessment was completed as per Canadian Standards Association (CSA) Standards. Should a Record of Site Condition (RSC) be required, the due diligence report will need to be revised to meet the Requirements of O. Reg. 153/04 as amended.

The Site is located within a generally commercial/light industrial area of Ottawa, approximately 165 m north of the Trim Road and Old Montreal Road intersection. The property is currently in commercial land use as a storage facility for a commercial general contractor in addition to a 'chip-truck' operating at the southeastern portion of the Site. Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade. According to The Atlas of Canada – Toporama, the overall regional groundwater flow direction is inferred to follow local topography to the north-northwest towards the Ottawa River (1.1 km north of the Site), however, the nearest water body is approximately 680 m east of the Site (Cardinal Creek). Based on the results of the Phase Two ESA, completed in conjunction with this assessment, the groundwater flow direction across the Site, based on groundwater elevations measured in the monitoring wells, is found to be

² Phase One Environmental Site Assessment, 1280 Trim Road, Ottawa, Ontario, prepared for Trim Works Developments Ltd., by LRL Engineering, dated January 2024.

towards the north. For the purposes of this report, the groundwater flow direction across the Site will be inferred as north, following the topography of the area.

The property has a rectangular shape and is between approximately 64 m wide (fronting Trim Road) by approximately 100 m deep, for a total area of approximately 6,430 m2 (1.59 acres). The general topography of the Site is flat, however the general topography of the area slopes north. For the purpose of this report, Trim Road will be inferred as being orientated in a north-south direction.

Based on available geological data reviewed as part of this assessment, and the confirmed potable groundwater conditions, the area can be considered to be Table 2 Full Depth Generic Site Condition Standards in a Potable Groundwater Condition.

The Site was developed since at least the mid 1920's (1926) with agricultural lands. These activities continued until approximately the mid to late 1950's (at least 1955). The Site has been developed with the existing features since at least the mid-1970's (1976). Parking and/or storage of suspected automobiles and equipment was observed in the early 1990's on the Site.

Based on the results of the Phase One Environmental Site Assessment the following areas of potential environmental concern were identified:

O. Reg 153/04 Schedule D PCA	Location of PCA	Description and Source Information	Contribution to an APEC
PCA 30: Importation of Fill Materials of Unknown Quality	On-Site	In the 2002 aerial image, and observed at the time of this Site reconnaissance, a mound of soil is present at the approximate central portion of the western extent of the Site. The source of the material is un-known. Based on the findings of the previous Phase Two ESA, completed on the Site (January 2024), the subsurface soil conditions in the area investigated generally consisted of a granular crushed stone over sand fill material to depths between 0.2 and 0.7 m below grade.	The PCA is located on the Site and is therefore automatically considered to contribute to an on-site APEC.
PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	A heating oil AST was encountered in the building. More specifically on the ground floor of the building, along the southcentral extent.	The PCA is located on the Site and is therefore automatically considered to contribute to an on-Site APEC.
PCA 31: Ink Manufacturing, Processing and Bulk Storage	On-Site	From at least 2006/07 through to 2012, the Site included a Commercial Printing operation (Imprimerie Orleans Printers).	The PCA is located on the Site and is therefore automatically considered to contribute to an on-Site APEC.
PCA Other: Known Impacted Soil Conditions	On-Site	In 2020, a Phase II ESA was completed on the Site (updated January 2024) which revealed the presence of possible PHC impacts, in excess of the applicable provincial standards, under the slab of the building on Site and soil impacted with vanadium, although it is possible that vanadium encountered is naturally occurring.	The PCA is located on the Site and is therefore automatically considered to contribute to an on-Site APEC.
PCA 40: Pesticides (including Herbicides, Fungicides and Anti-	On-Site	At the time of the 2020 Phase II ESA intrusive investigation activities, the southwestern portion of the Site	The PCA is located on the Site and is therefore automatically considered to contribute to an

O. Reg 153/04 Schedule D PCA	Location of PCA	Description and Source Information	Contribution to an APEC
Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications		operated as a landscaping/snow removal company, which is suspected to have been a handler of pesticides.	on-Site APEC, and more specifically the southwestern portion of the property.
PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Adjacent Land to the North of the Site – 1270 Trim Road (down- gradient)	The adjacent property to the north of the Site is operated as a gasoline service station, with records of existing and historical underground petroleum storage tanks.	Although the property is considered down-gradient to the Site with respect to the groundwater flow direction, based on the vicinity of the property, it is considered a PCA, with the APEC is anticipated to be across the northern portion of the Site.
PCA 34: Metal Fabrication	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard (up- gradient)	Patrician Diamonds Inc. (established in 1994); Diamond Intl Exploration Inc., (established in 1994); and Galahad Metals Inc. (established in 2000) were reported to have operated at this property. These facilities are listed as an Other Support Activities for Mining, and Diamond Mining facility and are likely involved the handling or production of metal and metal products, it is suspected that potential contaminates of concern related to these operations may include metals, and petroleum-based products.	The PCA is located up-gradient from the Site with respect to the groundwater flow direction, therefore represents an APEC across the Site.
PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard (up- gradient)	Seven (7) records within the Pesticides Registry were retrieved for Servicemaster Lawncare Ottawa., located at 3791 St-Joseph Boulevard.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.
PCA 31: Ink Manufacturing, Processing and Bulk Storage	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard (up- gradient)	Graphic Centre Caspari was found to be in operation since at least 2000, and was registered as a generator of photo processing wastes from 1994 to 2001.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.
PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard (up- gradient)	Records of various construction companies were reported on this property, with operation from between at least 2001 through 2012. Construction companies may store, or handle petroleum-based oils or lubricants associated with equipment they use.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.
PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard	Kars Graphics, is listed as an Industrial Machinery, Equipment and Supplies, Wholesale facility, in operation from at least 2001 through 2005.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.

O. Reg 153/04 Schedule D PCA	Location of PCA	Description and Source Information	Contribution to an APEC
PCA Other: Hardware Wholesale Distributors	Approximately 155 m south of the Site – 3809 St-Joseph Boulevard (up- gradient)	A wholesale trade agents and brokers, hardware wholesale-distributors, all other wholesaler-distributors, Other Home Furnishings Wholesaler- Distributors, and Service Establishment Machinery, Equipment and Supplies Wholesaler-Distributors.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.
PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Approximately 155 m south of the Site – 3809 St-Joseph Boulevard (up- gradient)	Records of various construction companies were reported on this property, with operation from between at least 2001 through 2012. Construction companies may store, or handle petroleum-based oils or lubricants associated with equipment they use.	The PCA is located south of the Site, up-gradient with respect to the groundwater flow direction, therefore represents an APEC across the Site.

Based on the findings of the Phase One ESA, it is recommended that a Phase Two ESA be conducted on the Site to confirm the presence/absence of impacts in the areas of potential environmental concern identified.

3 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

In 2020, a Phase II ESA was completed on the Site as due diligence in the context of a potential property transaction. The Phase II ESA report was completed following the Canadian Standards Association Z769-00. As this report is intended to the support an application with the City of Ottawa for the re-development of the Site by Trim Works Development Ltd, the assessment is required to confirm with Ontario Regulation 153/04, as amended, Phase Two ESA standards and reporting requirements. According to O. Reg. 153/04 as amended, a Phase Two Environmental Site Assessment is considered reliable for a period of 24 months. The previously prepared report was finalized in July 2020, which exceeds 24-month period. This Phase Two ESA has been prepared as an update to the previous report, in addition to further confirming the soil and groundwater conditions across the Site with respect to identified areas of potential environmental concern as outlined in the Phase One Environmental Site Assessment completed to support this re-development opportunity (Phase One ESA, January 2024).

As discussed above in Section 2.2, based on details retrieved through the Phase One ESA (January 2024), it was revealed that Areas of Potential Environmental Concern (APECs), not previously addressed at the time of the 2020 Phase II ESA, were encountered.

LRL's Phase Two ESA Update, as discussed herein, included the analysis of field investigations carried out between December 18th and 20th, 2023 in addition to a summary of the previous works completed in January 2020. The investigation was initiated to assess the quality of the soil and groundwater of the Phase Two Property in relation to the APECs identified by the Phase One Conceptual Site Model, represented in this report as **Figure 3**.

The scope of the investigation included:

- Preparation of a Health and Safety Plan.
- Advancement of a total of three (3) test pits to a maximum depth of 3.0 m bgs.
- Install one (1) temporary monitoring piezometer in a single test pit to intercept the water table.

- Collect groundwater elevation measurements using an interphase probe for the potential measurements of free phase product either floating on the water table or the base of any water column.
- Collect samples from four (4) existing groundwater monitoring wells located at various representative locations across the Site, and the newly installed temporary piezometer.
- Sample collection was carried out in accordance with the detailed sampling and analysis plan.
- Field observations were made in accordance with LRL's Standard of Operation (SOP).
- Samples collected were submitted and analyzed by Paracel Laboratories Ltd. (Ottawa, Ontario) testing laboratory companies to the MECP Table 2 ICC Standards for fine-textured soil.

3.2 Media Investigation

The Phase Two ESA was designed to investigate the potential for impact to soil and groundwater media on, in and beneath the Phase Two Property. It was intended to be an update to the previously prepared Phase II ESA, dated July 2020 and that involved on-Site intrusive investigation activities completed in January 2020. The sampling of sediment was not performed, as there were no surface bodies of water on the Site during the Phase Two investigation.

3.2.1 Soil Investigation

The field work associated with the Phase Two ESA was completed between January 6th and 9th, 2020, and December 18th and 20th, 2023. The APECs identified and investigated as part this Phase Two ESA include the following:

- APEC A: Presence of Fill Materials of Unknown Quality across the Site. There is a high risk of environmental impacts across the Site. Contaminants of Concern include PAHs, VOCs, PHCs and Metals.
- APEC B: Impacts of Gasoline and Associated Products Storage in Fixed Tanks on Site. There is a high risk of environmental impacts across the general northern portion of the Site, in the vicinity of the existing heating oil AST, which is located on the ground floor of the building, along the southcentral extent. Contaminants of Concern include VOCs and PHCs.
- APEC C: Impacts Associated with former Ink Manufacturing, Processing and Bulk Storage which operated on Site. There is a high risk of environmental impacts to the Site as a result of the former commercial printing facility which operated from between 2006/07 through 2012 on the subject property. Contaminants of Concern include PHCs and Metals.
- APEC D: Known PHC and Metal Impacted Soil across the Site. In 2020, a Phase II ESA was completed on the Site (updated January 2024) which revealed the presence of possible PHC impacts, in excess of the applicable provincial standards, under the slab of the building on Site and soil impacted with vanadium, although it is possible that vanadium encountered is naturally occurring. Contaminants of Concern include PHCs and Metals.
- APEC E: Impacts related to Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications on the Site. Due to the past operations o the Site, which included a lanscaping company, there is a high risk of environmental impacts across the southwestern portion of the Site for pesticides impacts. Contaminants of Concern include OP pesticides.
- APEC F: Impacts from parking and/or storage of suspected automobiles and equipment across the Site in at least the early 1990's presents a high risk of environmental impacts across the Site. Contaminants of Concern include VOCs, PHCs and Metals.

- APEC G: Impact from Gasoline and Associated Products Storage in Fixed Tanks. There is a medium to high risk of environmental impacts across the northern portion of the Site as a result of the existing retail fuel dispensing operations on the property located immediately north of the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- APEC H: Impact from Metal Fabrication. There is a low to medium risk of environmental impacts to the Site from the former Other Support Activities for Mining, and Diamond Mining facility located to the south of the Site. Contaminants of Concern include VOCs, PHCs, and Metals.
- APEC I: Impacts from Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications. There is a low to medium risk of environmental impacts across the Site as a result of the previously operated Service Lawncare Ottawa facility to the south of the Site. Contaminants of Concern include OP pesticides.
- APEC J: Impacts from Ink Manufacturing, Processing and Bulk Storage. There is a low to medium risk of environmental impacts across the Site as a result of the previously operated Graphic Centre Caspari facility to the south of the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- APEC K: Impacts from Gasoline and Associated Products Storage in Fixed Tanks. There is a low to medium risk of environmental impacts across the Site as a result of the various construction companies which operated to the south of the Site. Contaminants of Concern include PAHs, VOCs and PHCs.
- APEC L: Impacts from the Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems. Kars Graphics operated as an Industrial Machinery, Equipment and Supplies, Wholesale facility to the south of the Site, which presents a low to medium risk of environmental impacts across the Site.
- APEC M: Impacts from Hardware Wholesale Distributors activities. There is a low to medium
 risk of environmental impacts across the Site as a result of the previously operated A wholesale
 trade agents and brokers, hardware wholesale-distributors, all other wholesaler-distributors,
 Other Home Furnishings Wholesaler-Distributors, and Service Establishment Machinery,
 Equipment and Supplies Wholesaler-Distributors facility to the south of the Site. Contaminants
 of Concern include VOCs, PHCs and Metals.
- APEC N: Impacts from Gasoline and Associated Products Storage in Fixed Tanks. There is a low to medium risk of environmental impacts across the Site as a result of the various construction companies which operated to the to the south of the Site. Contaminants of Concern include VOCs, PHCs and Metals.

The intrusive investigation activities associated with the Phase Two ESA included the following:

- Review all available information provided concerning the Site. Conduct a Site visit to determine existing conditions;
- Advance thirteen (13) boreholes at strategic locations based on potential areas of environmental concern, to allow for soil sampling;
- Advance three (3) test pits along the southwestern portion of the Site, in the area of the former lawn care contractor storage yard;
- Complete four (4) of the boreholes as monitoring wells, and install one (1) temporary piezometer in a test pit, to assess hydrogeological conditions and facilitate groundwater sampling;
- Submit representative soil (if applicable) and groundwater samples to an accredited laboratory for analysis of suspected parameters of concern; and

• Interpret results in relation to current provincial guidelines to determine subsurface soil and groundwater quality.

Nine (9) of the thirteen boreholes were advanced to depths between 1.8 and 4.8 m below ground surface (bgs) using a CME 55 truck-mounted drill rig, equipped with 203 mm diameter hollow stem augers. The drilling contractor was George Downing Estate Drilling Ltd. (Hawkesbury, Ontario) and worked under LRL field staff supervision. Soil samples were collected at 0.60 m intervals using a split spoon sampler of 0.60 m in length.

Four (4) of the boreholes, including each of the three (3) within the existing building, and one (1) at the northwestern portion of the Site, was advanced using manual techniques to depths of approximately 1.8 m below grade, or the floor slab. The manual drilling contractor was George Downing Estate Drilling Ltd. (Hawkesbury, Ontario) and the equipment used was a "jack-hammer" equipped with a 51 mm diameter split spoon sampler, 0.6 m in length. Soil samples were collected at 0.60 m intervals.

Between each spoon, the sampling equipment was thoroughly cleaned. Soil cuttings were stored in a secure and appropriate drum at various locations across the Site awaiting off-Site disposal at an approved facility by a licenced contractor, which is to be coordinated by the client.

At the time of the initial investigation activities in January 2020, the southwestern extent of the property was un-accessible and locked gate limiting access. This portion of the property was occupied by a landscaping/snow removal contractor. LRL returned to the Site on December 18th, 2023, to investigate this portion of the Site, as the previous limitations have been since removed. Test pits were advanced across the southwestern extent of the Site, to investigate the APEC associated with the previous landscape contractor activities at this portion of the Site. The test pits were advanced using a backhoe, operated by a contractor (Guy Courchesne Excavation Ltd.) retained by LRL, on December 18th, 2023, to a depth of 3.0 m below grade. Samples were collected in 0.6 m intervals using grab sample techniques from the backhoe bucket.

Parameters of concern included Volatile Organic Compounds (VOC), Petroleum Hydrocarbon Compounds (PHC) Fraction 1 (F1, C6 – C10), Fraction 2 (F2, >C11 – C16), Fraction 3 (F3, >C16 – C34), Fraction 4 (F4, >C34), Organophosphates (OP) Pesticides, General Inorganics, PCBs and O. Reg. 153/04 Metals.

Representative soil samples from each split sampler, or grab samples directly from the backhoe bucket, were collected and transferred immediately into sealed laboratory supplied glass jars and polyethylene freezer bags. Samples were examined for soil type, colour, staining/discolouration and odours. Samples were logged, labelled and stored onsite in a cooler chilled with ice to prevent evaporation of potential combustible soil vapours (CSV). Soil samples stored in bags were screened for CSV presence using a Mini Rae .000 Photoionization Detector (PID).

3.2.2 Groundwater Investigation

Four (4) boreholes, advanced in January 2020, were completed as monitoring wells: BH20-2 through BH20-5 (herein referred to as MW20-2 through MW20-5). Monitoring wells were constructed within 203 mm diameter boreholes with a 32 mm slotted PVC piezometer placed bisecting the groundwater table. The top of the screen was extended to the ground surface using a solid riser pipe. Annular space around the slotted portion of the piezometer was backfilled with pre-washed and graded silica sand up to 300 mm above the top of the screen. A bentonite seal of at least 0.3 m was placed above the sand pack. Remaining back fill in boreholes consisted of soil cuttings and/or additional sand. Monitoring wells were finished at the surface with a flush-mount aluminum casing/stick-up steel casing.

Furthermore, an additional monitoring well (identified as MW20-10 based on its proximity to the previously advanced BH20-10) was observed within the building, in the generally vicinity of the furnace room and corresponding AST. The details relating to the well construction are not known, however the

well was measured to extent to a depth of 2.9 m below the top of slap. This monitoring well was included in the assessment outlined herein based on its location with respect to identified APECs.

A temporary piezometer was installed within the open test pit (TP3) advanced. The installation included a 51 mm slotted PVC piezometer, being 1.5 m in length, placed at the bottom of the excavation. The top of the screen was extended to the ground surface using a solid riser pipe. Annular space around the slotted portion of the piezometer was backfilled with soil cuttings up to 300 mm above the top of the screen. A Sono-tube was then placed over the riser, from the extent of the cutting placed over the screen to approximately ground surface. The Sono-tube was 203 mm in diameter, and the annular space was filled with bentonite chips to form a bentonite seal of at least 1.2 m. the remainder of the test pit was backfilled with the soil removed during test pitting. The riser extended above groundsurface with another extension of solid PVC piping. A lockable J-plug was added to the top of the riser. As this is a temporary installation, and its location is in an area of the site restricted from vehicle traffic, no protective casing was applied around the piezometer.

The groundwater investigation was designed to intercept the groundwater table located approximately between 0.7 – 1.3 m below grade.

- Development of each well, prior to sampling by the removal (purge) of at least three (3) times the volume of water contained in each well;
- Determination of the presence of non-aqueous phase liquid-free product and the static groundwater elevation at each well;
- A Sampling of groundwater using a foot valve, waterra tubing and eco-bailer;
- One (1) duplicate sample was collected for QA/QC analysis; at least one (1) for each ten (10) parameters measured in the field;
- Groundwater samples were placed in laboratory-prepared and pre-labelled jars and placed in ice-filled cooler boxes for storage and transportation to the analytical laboratory, along with a Chain of Custody Form;
- Retention of a copy of the Chain of Custody Form once samples were submitted for analysis;
- Ensured the temperature of the samples submitted was below 10°C; and
- Chemical analysis of the groundwater samples for contaminants of concern associated with specific APEC(s) identified by the Phase One ESA. Specifically, groundwater samples were submitted for analysis of PHCs, VOCs, PAHs, PCBs, OC pesticides, metals, and metal forming hydrides and PCBs.

3.3 Phase One Site Conceptual Model

The PCAs on the Phase One Property and within Phase One Study Area identified through records review, interview, and Site reconnaissance are summarized in **Table 4 – Section 3.3** and incudes the actual groundwater flow direction as measured on-Site during the investigation, as presented in **Figure 4**.

No.	O. Reg 153/04 Schedule D PCA	Appr. Direction from Phase One Property	Source Information	Remarks	APEC	Rationale
1	PCA 30 : Importation of Fill Materials of Unknown Quality	On-Site	Previous Site intrusive investigation, Aerial Imagery, Site Reconnaissance	a mound of soil is present at the approximate central portion of the western extent of the Site. Based on the findings of the previous Phase II ESA, subsurface soil conditions in the area investigated generally consisted of a granular crushed stone over sand fill material to depths between 0.2 and 0.7 m below grade.	Across entirety of the Site	Potential impact to soil and groundwater
2	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Site Reconnaissance	A heating oil AST was encountered in the building. More specifically on the ground floor of the building, along the southcentral extent.	South- central extent of the interior main floor of building	Potential impact on soil and groundwater
3	PCA 31: Ink Manufacturing, Processing and Bulk Storage	On-Site	City Directories, Ecolog ERIS Report	From at least 2006/07 through to 2012, the Site included a Commercial Printing operation (Imprimerie Orleans Printers).	Across entirety of Site.	Potential impact on soil and groundwater
4	PCA Other: Parking and/or storage of suspected automobiles and equipment	On-Site	Aerial Imagery	Identified across the Site in the early 1990's.	Across entirety of Site.	Potential impact on soil and groundwater
5	PCA Other: Known Impacted Soil Conditions	On-Site	January 2020 intrusive investigation associated with the Phase II ESA	The presence of possible PHC impacts, in excess of the applicable provincial standards, under the slab of the building on Site and soil impacted with vanadium, although it is possible that vanadium encountered is naturally occurring.	North- central portion of the Site	Potential impact on soil and groundwater

Table 4 – Section 3.3: Phase One CSM – PCAS

No.	O. Reg 153/04 Schedule D PCA	Appr. Direction from Phase One Property	Source Information	Remarks	APEC	Rationale
8	PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	January 2020 Phase II ESA intrusive investigation activities	At the time of the 2020 Phase II ESA intrusive investigation activities, the southwestern portion of the Site operated as a landscaping/snow removal company, which is suspected to have been a handler of pesticides.	South- western portion of the Site	Potential impact on soil and groundwater
9	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Adjacent Land to the North of the Site – 1270 Trim Road (down- gradient)	City Directories, Aerial Imagery, Ecolog ERIS Report and Site Reconnaissance	The adjacent property to the north of the Site is operated as a gasoline service station, with records of existing and historical underground petroleum storage tanks.	North portion of the Site	Considered down- gradient to the Site, however based on the vicinity of the property, represents a PEC. Potential impact on soil and groundwater
10	PCA 34: Metal Fabrication	Approximately 75 m south of the Site – 3791 St- Joseph Boulevard (up- gradient)	Ecolog ERIS Report	Patrician Diamonds Inc. (established in 1994); Diamond Intl Exploration Inc., (established in 1994); and Galahad Metals Inc. (established in 2000) were reported to have operated at this property.	Entirety of the Site.	Up-gradient of Site. Potential impact on soil and groundwater
11	PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard (up- gradient)	Ecolog ERIS	Seven (7) records within the Pesticides Registry were retrieved for Servicemaster Lawncare Ottawa at this address.	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater
12	PCA 31: Ink Manufacturing, Processing and Bulk Storage	Approximately 75 m south of the Site – 3791 St- Joseph Boulevard (up- gradient)	Ecolog ERIS	Graphic Centre Caspari was found to be in operation since at least 2000, and was registered as a generator of photo processing wastes from 1994 to 2001.	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater
13	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Approximately 75 m south of the Site – 3791 St- Joseph Boulevard (up- gradient)	Ecolog ERIS	Records of various construction companies were reported on this property. Construction companies may store, or handle petroleum-based oils or lubricants	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater

No.	O. Reg 153/04 Schedule D PCA	Appr. Direction from Phase One Property	Source Information	Remarks	APEC	Rationale
				associated with equipment they use.		
14	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Approximately 75 m south of the Site – 3791 St- Joseph Boulevard	Ecolog ERIS	Kars Graphics, is listed as an Industrial Machinery, Equipment and Supplies, Wholesale facility, in operation from at least 2001 through 2005.	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater
15	PCA Other: Hardware Wholesale Distributors	Approximately 155 m south of the Site – 3809 St- Joseph Boulevard (up- gradient	Ecolog ERIS	A wholesale trade agents and brokers, hardware wholesale- distributors, all other wholesaler- distributors, Other Home Furnishings Wholesaler- Distributors, and Service Establishment Machinery, Equipment and Supplies Wholesaler- Distributors.	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater
16	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	Approximately 155 m south of the Site – 3809 St- Joseph Boulevard (up- gradient)	Ecolog ERIS	Records of various construction companies were reported on this property. Construction companies may store, or handle petroleum-based oils or lubricants associated with equipment they use.	Entirety of the Site	Up-gradient of Site. Potential impact on soil and groundwater

The potentially contaminating activities identified above have been evaluated by a qualified person to determine whether an area of potential environmental concern will transpose on the Phase One Property as a result of their presence within the Phase One Property or Phase One Study Area. The rationale for the exclusion of one or more PCAs may be the result of, but not limited to, the direction of site location in conjunction with proposed groundwater flow direction, distance from the site, results from previous environmental reports, etc.

The Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA are summarized in **Table 5 – Section 3.3** as follows:

APEC	Location	Comments	Contaminants of Potential Concern	Media Potentially Impacted
APEC A Presence of Fill Materials of Unknown Quality	On-Site	In the 2002 aerial image, and observed at the time of this Site reconnaissance, a mound of soil is present at the approximate central portion of the western extent of the Site. The source of the material is un- known. Based on the findings of the previous	PAHs, VOCs, PHCs, Metals, General Inorganics	Soil and groundwater
		Phase Two ESA, completed on the Site (January 2024), the subsurface soil conditions in the area investigated generally consisted of a granular crushed stone over sand fill material to depths between 0.2 and 0.7 m below grade.		
APEC B Impacts of Gasoline and Associated Products Storage in Fixed Tanks	On-Site	A heating oil AST was encountered in the building. More specifically on the ground floor of the building, along the southcentral extent.	VOCs, PHCs	Soil and Groundwater
APEC C Impacts Associated with former Ink Manufacturing, Processing and Bulk Storage	On-Site	From at least 2006/07 through to 2012, the Site included a Commercial Printing operation (Imprimerie Orleans Printers).	VOCs, PHCs	Soil and Groundwater
APEC D Known Impacted Soil Conditions	On-Site	In 2020, a Phase II ESA was completed on the Site (updated January 2024) which revealed the presence of possible PHC impacts, in excess of the applicable provincial standards, under the slab of the building on Site and soil impacted with vanadium, although it is possible that vanadium encountered is naturally occurring.	PHCs, Metals	Soil and Groundwater
APEC E Impacts from former PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	At the time of the 2020 Phase II ESA intrusive investigation activities, the southwestern portion of the Site operated as a landscaping/snow removal company, which is suspected to have been a handler of pesticides.	OP Pesticides	Soil and Groundwater
APEC F Impacts from parking and/or storage of suspected	On-Site	Identified across the Site in the early 1990's, based on aerial imagery reviewed	VOCs, PHCs, Metals	Soil and Groundwater

APEC G	Northern	The adjacent property to the north of	VOCs, PHCs,	Soil and
Impacts of Gasoline and Associated Products Storage in Fixed Tanks	portion of the Site	the Site, 1270 Trim Road, is operated as a gasoline service station, with records of existing and historical underground petroleum storage tanks.	Metals	Groundwater
APEC H	Across the	Patrician Diamonds Inc. (established	VOCs, PHCs,	Soil and
Impact from Metal Fabrication	entirety of the Site	in 1994); Diamond Intl Exploration Inc., (established in 1994); and Galahad Metals Inc. (established in 2000), at 3791 St-Joseph Boulevard, were reported to have operated at this property. These facilities are listed as an Other Support Activities for Mining, and Diamond Mining facility and are likely involved the handling or production of metal and metal products, it is suspected that potential contaminates of concern related to these operations may include metals, and petroleum-based products.	Metals	Groundwater
APEC I Impacts from Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications.	Across the entirety of the Site	Service Lawncare Ottawa, located at 3791 St-Joseph Boulevard, was listed in the Pesticides Registry.	OP Pesticides	Soil and Groundwater
APEC J	Across the	Graphic Centre Caspari, at 3791 St-	VOCs, PHCs,	Soil and
Impacts from Ink Manufacturing, Processing and Bulk Storage	entirety of the Site	Joseph Boulevard, was found to be in operation since at least 2000, and was registered as a generator of photo processing wastes from 1994 to 2001.	Metals	Groundwater
APEC K	Across the	Records of various construction	PAHs, VOCs, PHCs,	Soil and
Impacts from Gasoline and Associated Products Storage in Fixed Tanks	entirety of the Site	companies were reported at 3791 St- Joseph Boulevard, with operation from between at least 2001 through 2012. Construction companies may store, or handle petroleum-based oils or lubricants associated with equipment they use.	PCBs	Groundwater
APEC L	Across the	Kars Graphics, is listed as an	VOCs, PHCs, PAHs	Soil and Groundwater
Impacts from the Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	entirety of the Site	Industrial Machinery, Equipment and Supplies, Wholesale facility, at 3791 St-Joseph Boulevard, in operation from at least 2001 through 2005		Groundwater

APEC M Impacts from Hardware Wholesale Distributors activities	Across the entirety of the Site	A wholesale trade agents and brokers, hardware wholesale- distributors, all other wholesaler- distributors, Other Home Furnishings Wholesaler-Distributors, and Service Establishment Machinery, Equipment and Supplies Wholesaler-Distributors at 3809 St-Joseph Boulevard	Metals, VOCs, PHCs, PCBs	Soil and Groundwater
APEC N Impacts from Gasoline and Associated Products Storage in Fixed Tanks.	Across the entirety of the Site	Records of various construction companies were reported at 3809 St- Joseph Boulevard, with operation from between at least 2001 through 2012. Construction companies may store, or handle petroleum-based oils or lubricants associated with equipment they use.	VOCs, PHCs, Metals	Soil and Groundwater

Notes: PEC – Potential Environmental Concern PHC – Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

VOC - Volatile Organic Compounds

1 - Area of Potential Environmental Concern (APEC) means the area on, in, or under a Phase One Property where one or more contaminants are potentially present, as determined through the Phase One ESA, including through:

(a) Identification of past or present uses on, in, or under the Phase One Property, and

(b) Identification of potentially contaminating activity.

2 - Potentially Contaminating Activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One Study Area

3 - When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011,

4 - When submitting a record of site condition for filing, a copy of this table must be attached.

3.3.1 **Physical Settings**

The topography of the Site and neighbouring lands is generally flat. The subject Site and the neighbouring lands have a common topographic elevation of approximately 60 m above mean sea level (amsl) according to The Atlas of Canada - Toporama. More specifically, the Site has a slight slope to the north, towards the Ottawa River.

A review of topographic maps from Natural Resource Canada indicates that topography of the area slopes north. The Ottawa River is identified to be approximately 1.1 km north of the Site.

Surficial geology consists of marine offshore deposits including clay, silty clay and silt, commonly calcareous and fossiliferous; local overlain by thin sand. Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part

According to the Radon Potential Map of Ontario obtained from the website of Canada Radon, the Phase Two Study Area is located in the Relative Radon Hazard Zone 3 – Guarded.

3.3.2 Water Bodies and Areas of Natural Significance

There are no Areas of Natural Significance within the Phase Two Study Area. No water body is identified within 30 m of the Site.

3.4 Deviations from Sampling and Analysis Plan

LRL did not deviate from the SOPs and forms outlined above with one (1) exception. The previously installed monitoring well MW20-4, located at the southeastern portion of the Site, was concealed by the existing chip-truck operations. MW20-4 could not be located and is sought to be set beneath the existing chip stuck structure; therefore, it could not be sampled as part of this Phase Two ESA Update in December 2023.

The location of the boreholes and monitoring wells in relation to the PCAs and APECs are presented in **Figure 3** and **Figure 4**. Available monitoring wells were used to assess the groundwater flow direction and the groundwater quality at each screened interval.

The collection of groundwater samples was performed within 24 hours of purging as is required under the Ontario Regulation (O. Reg.) 153/04 (as amended).

No deviations occurred from the initial Sampling and Analysis Plan, with the exception of the exclusion of MW20-4 as previously discussed.

3.5 Impediments

MW20-4, located at the southeastern portion of the Site was concealed by the existing on-Site chip truck and corresponding storage trailer. LRL made a reasonable effort to retrieve the well, however according to the instrumentation used, and measurements from known reference points, it was found that the structures conceal the well, therefore it could not be sampled as part of this Phase Two ESA update.

4 INVESTIGATION METHOD

4.1 General

The Phase Two ESA Update involved various field activities to investigate the quality of the soil and groundwater and was comprised of the following components.

- Retaining public and private utility locator companies;
- Retaining a contractor for the advancement of the test pits;
- Supervision and documentation of test pit advancement and temporary piezometer installation field activities;
- Soil characterization and logging;
- Soil sample collection for chemical analysis;
- Well development;
- Determining the presence of any non-aqueous phase free product and water elevation monitoring; and
- Groundwater sample collection for chemical analysis.

Prior to conducting subsurface activities on the Site, LRL contacted various private utility marking contractors in the Ottawa region, who were retained to obtain both private and public locates on behalf of LRL.

Nine (9) of the thirteen boreholes were advanced to depths between 1.8 and 4.8 m bgs on January 6th and 7th, 2020, using a CME 55 truck-mounted drill rig, equipped with 203 mm diameter hollow stem augers. The drilling contractor was George Downing Estate Drilling Ltd. (Hawkesbury, Ontario) and worked under LRL field staff supervision. Soil samples were collected at 0.60 m intervals using a split spoon sampler of 0.60 m in length.

Four (4) of the boreholes, including each of the three (3) within the existing building, and one (1) at the northwestern portion of the Site, was advanced using manual techniques to depths of approximately 1.8 m below grade, or the floor slab. The manual drilling contractor was George Downing Estate Drilling Ltd. (Hawkesbury, Ontario) and the equipment used was a "jack-hammer" equipped with a 51 mm diameter split spoon sampler, 0.6 m in length. Soil samples were collected at 0.60 m intervals.

Between each spoon, the sampling equipment was thoroughly cleaned. Soil cuttings were stored in a secure and appropriate drum at various locations across the Site awaiting off-Site disposal at an approved facility by a licenced contractor, which is to be coordinated by the client.

At the time of the initial investigation activities in January 2020, the southwestern extent of the property was un-accessible and locked gate limiting access. This portion of the property was occupied by a landscaping/snow removal contractor. LRL returned to the Site on December 18th, 2023, to investigate portion of the Site, as the previous limitations this have been since removed. Three (3) test pits were advanced across the southwestern extent of the Site, to investigate the APEC associated with the previous landscape contractor activities at this portion of the Site. The test pits were advanced using a backhoe, operated by a contractor (Guy Courchesne Excavation Ltd.) retained by LRL, on December 18th, 2023, to a depth of 3.0 m below grade. Samples were collected in 0.6 m intervals using grab sample techniques from the backhoe bucket.

These borehole and test locations are those presented in **Figure 5** across the Site.

4.1.1 Name of the Contractor

George Downing Estate Drilling (Hawkesbury, Ontario) are licensed environmental drillers and were commissioned to drill 13 boreholes and install the four (4) monitoring wells. These included those in the building, and those which were advanced using manual techniques.

The three (3) test pits were advanced by a local and competent excavation contractor, Guy Courchesne Excavation Ltd. (Cumberland, Ontario).

4.1.2 Description of the Equipment Used

4.1.2.1 Boreholes

Nine (9) of the 13 boreholes were advanced using a CME 55 truck-mounted drill rig, equipped with 203 mm diameter hollow stem augers. Four (4) of the boreholes, including each of the three (3) within the existing building, and one (1) at the northwestern portion of the Site, was advanced using manual techniques including a "jack-hammer" equipped with a 51 mm diameter split spoon sampler.

Four (4) boreholes were completed as monitoring wells: BH20-2 through BH20-5 (herein referred to as MW20-2 through MW20-5). Monitoring wells were constructed within 203 mm diameter boreholes with a 32 mm slotted PVC piezometer placed bisecting the groundwater table. The top of the screen was extended to the ground surface using a solid riser pipe. Annular space around the slotted portion of the piezometer was backfilled with pre-washed and graded silica sand up to 300 mm above the top of the screen. A bentonite seal of at least 0.3 m was placed above the sand pack. Remaining back fill in boreholes consisted of soil cuttings and/or additional sand. Monitoring wells were finished at the surface with a flush-mount aluminum casing/stick-up steel casing.

4.1.2.2 Test Pits

Three (3) test pits were advanced across the southwestern extent of the Site using a backhoe, operated by a contractor (Guy Courchesne Excavation Ltd.).

4.1.3 Description of Measures taken to Minimize Cross-Contamination

Sampling tools used to retrieve soil samples from the split spoon sampler were cleaned immediately following the collection of a sample. The dedicated gloves were changed after each sample to prevent cross-contamination. The used gloves were placed in garbage bags and removed from the Site at the end of the drilling program.

4.1.4 The Frequency of Sample Collection

Sampling intervals for the boreholes were continuously taken with a 0.6 m in length split spoon sampler from the ground surface to at most 4.8 m bgs. Samples were collected from the backhoes advanced also in 0.6 m intervals using grab sample techniques from the backhoe bucket.

4.2 Soil Sampling

4.2.1 Description of Equipment Used for Soil Collection

The soil is removed from the split spoon/or grabbed from the backhoe bucket, and placed pre-labelled, laboratory prepared jars and methanol-filled vials and in clear plastic bags marked as BH20-XX-Y/TP23-XX-SS1 from 0.0 m to 0.6 m, or from each visually distinct material encountered; and so forth for each sample interval, or soil conditions encountered.

Following field screening with a photo ionization detector, samples were placed in appropriate laboratory-supplied, pre-labelled bottles and methanol-filled vials (for VOCs and PHC F1 analysis) and placed directly into ice-filled coolers for storage and transportation to Paracel Laboratories.

Exploratory Location			Depth Range	
BH/MW	Туре	Geological Description	(m bgs)	Soil Sample
	Fill	Silty sand with clay and gravel, brown, loose.	0.0 - 0.61	1/2
BH20-1		Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Moist to saturated at 1.2 m bgs,		
	Clay	stiff.	0.61 – 1.83	3/4/5
	Fill	Sand and gravel underlain by sand, brown, moist, loose.	0.0 – 0.61	6/7
BH20-2	Clay	Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Very stiff to very soft with depth. Thin black seams running vertically between 0.6 and 1.2 m bgs.	0.61 – 4.88	8 / 9 / 10 / 11 / 12 / 13 / 14
	Unspecified in Drilling Log		0.0 - 0.61	
BH20-3	Clay	Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Moist to saturated at 1.8 m bgs. Stiff to soft with depth. Some seams of oxidation visible between 1.8 and 2.4 m bgs, and dark grey seam at 0.7 m bgs.	1.8 - 4.9	SS4, SS5, SS6, SS7, SS8
BH20-4				
	Fill	Sand and gravel, brown, loose	0.0 – 0.61	19

4.2.2 Geological Descriptions of Soil Samples

				1
		Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Moist, saturated at 1.8 m bgs. Stiff becoming firm to soft with		
		depth. Oxidation visible between 1.3 m		
	Clay	bgs.	0.61 – 3.05	20 / 21 / 22 / 23
		Loam, presence of organic material (i.e. vegetation, roots),		
	Topsoil	brown, dry, loose.	0.0 - 0.1	24 / 25
BH20-5	Clay	Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish- brown. Moist to saturated at 1.8 m bgs. Stiff to soft with depth.	0.1 – 3.05	26 / 27 / 28 / 29
	Topsoil	Loam, presence of organic material (i.e. vegetation, roots), brown, dry, loose.	0.0 - 0.61	30
	Unspecified in			
BH20-6	Drilling Logs		0.61 – 1.22	
	Class	Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown.	1.00 0.44	24 / 22
	Clay	Moist, stiff. Loam, presence of organic	1.22 – 2.44	31/32
	Topsoil	material, brown, dry, loose	0.0 - 0.61	33
BH20-7		Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown.		
	Clay	Moist, stiff.	0.61 – 1.83	34 / 35
BH20-8	Fill	Silty sand with gravel, brown, loose	0.0 - 0.61	36
	Clay	Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Moist, stiff.	0.61 – 2.44	37 / 38 / 39
		Silty sand with clay and gravel,	0.01 - 2.44	
BH20-9	Fill	brown, loose Silty, becoming less silty with depth. Colour altering between grey, grey-brown and reddish brown. Moist to saturated at 1.8 m, stiff	0.0 - 0.61	40
	Clay	to soft in depth.	0.61 – 3.05	41 / 42 / 43 / 44
	Concrete Slab		0.0 – 0.01	
BH20-10	Fill	Crushed stone underlain by sand, brown, moist, loose	0.01 – 0.76	45 / 46
	Clay	Silty, colour altering between grey, grey-brown and reddish- brown, moist, firm.	0.76 – 1.83	47 / 48
BH20-11	Concrete Slab		0.0 – 0.01	

		Crushed stone underlain by sand, brown, moist, loose.		
	Fill	Presence of black organic material.	0.01 - 0.61	49
	Clay	Silty, grey, moist, stiff.	0.61 – 1.83	50 / 51
	Concrete Slab		0.0 - 0.01	
BH20-12		Crushed stone underlain by sand, brown, moist, loose. Presence of black organic		
	Fill	material.	0.01 - 0.64	49
		Silty, colour altering between grey, grey-brown and reddish- brown, moist, firm.		
	Clay	PHC odour detected throughout.	0.64 – 1.83	50 / 51
	Fill	Medium-grained sand, brown, moist, loose.	0.0 – 1.22	55 / 56
BH20-13	Clay	Silty, grey-brown, moist, stiff.	1.22 – 1.40	57
	Loam	Dark brown, soft, moist. Presence of organic material (i.e. vegetation, roots).	1.40 – 1.50	58
	Clay	Silty, dark grey, moist, stiff.	1.50 – 1.83	59
TP23-1	Clay	Grey, moist becoming saturated at 0.6 m bgs.	0.0 - 3.0	SS1 / SS2 / SS3 / SS4 / SS5
	Sand	Traces of organic material (plant roots), brown, dry to moist at 0.6 m bgs.	0.0 1.2	SS1 / SS2
TP23-2	Gund	Grey, traces of organics (plant	0.0 1.2	0017002
	Clay	roots) between 0.6 and 1.2 m bgs.	1.2 - 3.0	SS3 / SS4 / SS5
TP23-3	Sand	Traces of organic material (plant roots), brown, dry to moist at 0.6 m bgs.	0.0 – 1.2	SS1 / SS2
11 20-0	Clay	Grey, saturated.	1.2 - 3.0	SS3 / SS4 / SS5

4.3 Field Screening Measurements

Field screening of the soil involved the use of a PID to measure headspace concentrations of VOCs (as Isobutylene) in conjunction with visual and olfactory observations. This combination of field screening tools was used to determine the "worst-case" sample of the site and the selection of the samples for submission of VOC and PHC analysis.

4.3.1 PID Screening

Soil samples collected were screened for vapours using the MiniRae 3000 PID. The MiniRae 3000 PID was calibrated prior to use. Screening of VOC headspace concentrations were performed in accordance with LRL's SOP for Field Measurement of Soil Screening Parameters.

VOC measurements were taken by collecting soil samples into dedicated plastic sampling bags and inserting into the bag while maintaining a tight seal around the probe. The measurements that represent the highest value detected within the first 30 seconds of the field screening and measurements were documented into the field notes. Soil samples with the highest combustible vapours detected were then submitted for laboratory analysis, as discussed below.

4.3.2 Chemicals Detected and Associated Detection Limits

The monitoring program was performed using the MiniRae 3000 PID gas meter equipped with a low range PID sensor and configured to detect VOCs calibrated to isobutylene (IBL). The MiniRae 3000 PID provides detection limit ranges between 0.1 – 10000 ppm for VOCs.

4.3.3 Precision of the Measurements

Throughout the sampling event, the MiniRae 3000 gas meter was calibrated to zero in the fresh air to ensure the precision of the CSV measurements.

4.3.4 Procedure for Checking Calibration of Equipment

The MiniRae 3000 PID was calibrated by LRL staff with isobutylene calibration gas prior to use.

The calibration of the MiniRae 3000 PID is verified by operating the unit in a fresh air environment and ensuring zero readings for all parameters measured.

4.4 Groundwater: Monitoring Well Installation

Four (4) boreholes, advanced in January 2020, were completed as monitoring wells: BH20-2 through BH20-5 (herein referred to as MW20-2 through MW20-5). Monitoring wells were constructed within 203 mm diameter boreholes with a 32 mm slotted PVC piezometer placed bisecting the groundwater table. The top of the screen was extended to the ground surface using a solid riser pipe. Annular space around the slotted portion of the piezometer was backfilled with pre-washed and graded silica sand up to 300 mm above the top of the screen. A bentonite seal of at least 0.3 m was placed above the sand pack. Remaining backfill in boreholes consisted of soil cuttings and/or additional sand. Monitoring wells were finished at the surface with a flush-mount aluminum casing/stick-up steel casing.

Furthermore, an additional monitoring well (identified as MW20-10 based on its proximity to the previously advanced BH20-10) was observed within the building, in the generally vicinity of the furnace room and corresponding AST. The details relating to the well construction are not known, however the well was measured to extent to a depth of 2.9 m below the top of slap. This monitoring well was included in the assessment outlined herein based on its location with respect to identified APECs.

A temporary piezometer was installed within the open test pit (TP3) advanced. The installation included a 51 mm slotted PVC piezometer, being 1.5 m in length, placed at the bottom of the excavation. The top of the screen was extended to the ground surface using a solid riser pipe. Annular space around the slotted portion of the piezometer was backfilled with soil cuttings up to 300 mm above the top of the screen. A Sono-tube was then placed over the riser, from the extent of the cutting placed over the screen to approximately ground surface. The Sono-tube was 203 mm in diameter, and the annular space was filled with bentonite chips to form a bentonite seal of at least 1.2 m. the remainder of the test pit was backfilled with the soil removed during test pitting. The riser extended above groundsurface with another extension of solid PVC piping. A lockable J-plug was added to the top of the riser. As this is a temporary installation, and it's location is in an area of the site restricted from vehicle traffic, no protective casing was applied around the piezometer.

The locations of the monitoring wells are presented in Figure 5.

4.4.1 Name of the Contractor

George Downing Estate Drilling Ltd. was commissioned to drill the 13 boreholes and install the four (4) groundwater monitoring wells.

The details related o the installation of the uncovered monitoring well within the building is unknown, including the contractor which constructed it.

LRL retained the services of Guy Courchesne Excavation Ltd. to advance the test pits along the southwestern portion of the Site. LRL installed the temporary piezometer, as mentioned above.

4.4.2 Description of the Equipment

Nine (9) of the 13 boreholes were advanced using a CME 55 truck-mounted drill rig, equipped with 203 mm diameter hollow stem augers. Four (4) of the boreholes, including each of the three (3) within the existing building, and one (1) at the northwestern portion of the Site, was advanced using manual techniques including a "jack-hammer" equipped with a 51 mm diameter split spoon sampler.

The monitoring wells were constructed using the following materials:

- Dedicated polyvinyl chloride (PVC) individually wrapped riser pipes and screens;
- 32 mm (1.25 inches) diameter Schedule 40 PVC pipe capped at the top;
- 32 mm (1.25 inches) diameter Schedule 40 No. 10-slot PVC screen with a screen length of 1.5 m and capped at the base with a PVC slip cap;
- Sand pack to approximately 0.3 m above the top of the well screen;
- Bentonite seal to at least 0.3 m above the sand pack;
- A J-Plug was added to the top of each solid stem riser; and,
- Flush mounts were installed to cover the monitoring wells installed.

Three (3) test pits were advanced across the southwestern extent of the Site using a backhoe, operated by a contractor (Guy Courchesne Excavation Ltd.). The temporary piezometer was installed within the open test pit (TP3) advanced and included the following materials:

- Dedicated polyvinyl chloride (PVC) individually wrapped riser pipes and screens;
- 51 mm (2 inches) diameter Schedule 40 PVC pipe capped at the top;
- 51 mm (2 inches) diameter Schedule 40 No. 10-slot PVC screen with a screen length of 1.5 m and capped at the base with a PVC slip cap;
- Annular space around the slotted portion of the piezometer was backfilled with soil cuttings up to 0.3 m above the top of the screen;
- A 0.2 m diameter sono-tube placed over the riser, from the extent of the cutting placed over the screen to approximately ground surface;
- The sono-tube annular space was filled with bentonite chips to form a bentonite seal of at least 1.2 m bgs;
- A lockable J-plug was added to the top of the riser; and
- As this is a temporary installation, and it's location is in an area of the site restricted from vehicle traffic, no protective casing was applied around the piezometer.

4.4.3 Measures to Minimize Potential Cross-Contamination

There are dedicated Schedule 40 PVC pipes and screens encased in a plastic sleeve that is removed prior to installation. Once the monitoring wells were installed. Sterile dedicated tubing was placed in each monitoring for well development.

A dedicated sampling device consisting of a sampling tube and pump attached was used to collect groundwater samples. The groundwater was placed directly in the pre-labelled laboratory-supplied sample jars and vials and was tightly sealed and placed directly into a cooler for delivery to the laboratory. Sterile butyl nitrile gloves were changed for each well to ensure no cross-contamination during the sampling program.

Groundwater samples were placed directly into pre-labelled, laboratory-prepared sample containers and placed directly into a cooler.

4.4.4 Frequency of Sample Collection during Drilling

Groundwater samples were not collected during borehole drilling or monitoring well/piezometer installation, but rather at least 24 hours following construction.

4.4.5 Monitoring Well Development

Prior to well development, the groundwater elevation at each monitoring well was established using a Solinst Oil/Water interface probe. The interface probe was used to assess the monitoring well for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs). If a free product were present, the thickness of the free product would be measured and recorded, and the actual groundwater surface was corrected accordingly. The interface probe was thoroughly washed with de-ionized water and dried with a clean cloth prior to use at a subsequent well.

Subsequent to the groundwater elevation survey, each well was developed by the removal of at least three (3) times the volume of water (if possible) using a dedicated foot valve and waterra tubing. The purged groundwater removed was collected in dedicated five (5) gallon pails (23 litres) to inspect the removed water for visible identifiers or sheen. The amount of water removed from each well was recorded and is summarized in **Table 7 – Section 4.5.5** as follows.

Monitoring Well	Groundwater Level (m bgs)	Depth of water column (m)	Required Purge Volume (L)	Date of Development/Purging	The volume of Fluid Removed from Well (L)
MW20-2	3.04	1.53	10.0	January 9 th , 2020	14
	0.77	4.14	12.5	December 18 th , 2023	13
MW20-3	2.15	0.70	5.0	January 9 th , 2020	8
	1.34	1.74	10.4	December 18 th , 2023	11
MW20-4			Dry (Janu	ary 9 th , 2020	
		Cou	ld not retrieve (December 18 th , 2023)	
MW20-5	1.00	1.99	12.0	January 9 th , 2020	17
	1.21	1.68	10.1	December 18 th , 2023	11
MW20-10	0.59	2.34	3.6	December 18 th , 2023	4
MW23-3	0.72	2.92	17.5	December 18 th , 2023	18

Table 7 – Section 4.5.5: Monitoring Well Development

4.5 Groundwater: Field Measurements of Water Quality Parameters

During both the January 2020 and December 2023 groundwater sampling, the wells were purged/developed using dedicated foot valves and waterra tubing. Samples for VOCs were collected using a dedicated Eco-bailer, and the remaining containers for the additional analysis were filled using the waterra tubing with foot valve.

During the initial development of the monitoring wells installed by LRL in January 2020, field parameters, including conductivity, temperature, pH, and total dissolved solids (TDS) were collected to confirm the steady-state water quality. Generally, after each well volume removed, or once the well was recorded as 'dry', field measurements were collected from a dedicated volume (approximately 250 mL) of the well water, and using a Hanna Instruments HI98129 pH/EC/TDS pen.

Table 8 – Section 4.6 below summarizes select steady-state water quality parameters measured at each well, prior to the collection of groundwater samples.

Date	Location	Temp. °C	TDS (ppm)	Electrical Conductivity (mS/cm)	рН
January 9, 2020	MW20-2	4.5	1163	2318	8.35
January 9, 2020	MW20-3	6.9	759	1509	7.57
January 9, 2020	MW20-5	3.9	707	1409	7.73

Table 8 – Section 4.6: Instrument Readings at Steady-State Conditions

Following each use and prior to the commencement of the subsequent groundwater sample, the Hanna Instrument probe was flushed with de-ionized water and dried thoroughly.

4.6 Groundwater: Sampling

Groundwater samples were collected on January 9th, 2020, following the field measurements of the water quality parameters, in addition to on December 20th, 2023, in accordance with LRL's SOP for Groundwater Sampling.

Groundwater samples were collected from the well as soon as there was sufficient groundwater in the well for sample collection.

The jars and vials were prepared in advance by the laboratory. The pre-labelled jars were filled in the field sealed when full, packaged in bubble wrap and placed into an ice-filled cool box to maintain temperatures below 10 °C for storage and transportation. The chain of custody form was completed in the field, placed in a protective wrap, and placed into the cooler box for delivery to the laboratory. A copy of the Chain of Custody was retained and is attached to the report in **Appendix B**.

MW20-4, located at the southeastern portion of the Site, was intended to be included in the sampling program. However, due to the chip-truck structure being set over the well location at the time of the December 18th through 20th, 2023 sampling event, the existing monitoring well could not be located at the time this assessment was completed. This well was reported as dry at the time of the initial sampling event on January 9th, 2020.

4.7 Sediment: Sampling

The Phase Two Property did not contain a body of water as defined under Ontario Regulation 153/04 (as amended); therefore, sediment was not present in the investigation area and no sediment sampling was conducted.

4.8 Analytical Testing

The soil and groundwater samples were submitted to Paracel Laboratories Ltd. (Ottawa, Ontario), analytical laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA). The analyses were performed in compliance with the MECP Laboratory Services Branch, "Protocol for Analytical Methods Used in the Assessment of Properties under Past XV.1 of the Environmental Protection Act of the Environmental Protection Act, July 1, 2011".

One (1) field duplicate sample was collected for every ten (10) groundwater samples, for QA/QC purposes. The duplicate(s) were labelled generally as those of the actual parent sample location and noted in the field documentations. The location and identity were not provided to the laboratory.

The required RDLs for all parameters were met and there are no RDLs that exceed the applicable site condition standard.

4.9 Residue Management Procedures

4.9.1 Soil Cuttings – Drilling

Soil cuttings from the January 2020 drilling event were stored in a secure and appropriate drum at various locations across the Site awaiting off-Site disposal at an approved facility by a licenced contractor, which is to be coordinated by the client.

4.9.2 Water from Well Development and Purging

Water generated from the well development and the purging of the wells was collected and stored on-Site for future disposal. The groundwater encountered at the Site did not exhibit any visual or olfactory evidence of chemical impact, sheen, or NAPLs.

4.10 Elevation Surveying

An elevation survey was carried out using a Spectra Precision, LL300 N Self-Leveling Laser Level. The results of the elevation survey are summarized on the borehole /test pit logs included in **Appendix A**, in addition to **Table 1** included as an attachment to this report, in the subsequent **Tables Appendix**.

4.11 Quality Assurance and Quality Control Measures

For Quality Assurance and Quality Control Measures (QA/QC), one (1) groundwater sample was collected as a duplicate sample for every ten (10) sample parameters collected in the field.

The analysis of QA/QC for groundwater were within appropriate range of analytical results with the duplicates taken in the field.

The relative percent difference (RPD) values were calculated and determined that all the parameters measured against their respective duplicate versus the actual samples were met, with one (1) marginal variance. Zinc values between the parent sample and the duplicate sample varied by 22%. The acceptable range is 20%. This variance is considered marginal, and all remaining metals parameters are within the RPD range. Therefore, the results are considered reliable.

4.11.1 Laboratory Supplied Sample Containers and Shipment Procedures

Table 9 – Section 4.12.1 below provides a detailed description of the sample containers, preservation, labelling, handling, and custody for the samples submitted.

Parameter	Sample	Preservative	Handling & Custody Samples			
	Container					
Soil Samples			·			
Metals, PHCs (F2-	Amber	None	Soil samples were collected from the split-spoon sampled by hand; using grab sample techniques or with the use of a			
F4), PAHs, PCB, General Inorganics.	glass		clean steel trowel and transferred to a zip lock bag for field screening.			
	Teflon lined		Samples taken for laboratory analysis were placed in pre-			
	lids		-prepared and labelled laboratory-supplied sample			
VOCs, PHC (F1)	Vial	Methanol	containers, observing the laboratory requirements for specific sample volumes according to the testing required.			
			The soil samples collected for laboratory analysis were immediately placed into ice-filled cool boxes for storage and transportation to the laboratory. On arrival, all samples were removed from the ice-filled cool box and immediately refrigerated pending final chemical analysis sample selection. Selected samples for laboratory analysis were placed in ice-filled cool boxes and dispatched to the accredited chemical laboratory under Chain of Custody procedures.			
Groundwater Sampl	les					
PHCs (F2-F4).	Amber Glass Bottle	Hydrochloric Acid (HCL)	Groundwater samples were collected using dedicated HDPE waterra tubing fitted with a foot valve, and eco-bailer.			
			Groundwater samples and dispensed directly into the appropriate pre-labelled, laboratory-supplied			
Cyanide, ICP Metals	High-Density Polyethylene (HDPE)	Nitric Acid (HNO3)	groundwater sample containers. The collected groundwater samples were immediately placed into ice- filled cool boxes for storage and transportation to the laboratory. On arrival at the laboratory, all samples were			
Cyanide	HDPE	Sodium Hydroxide (NaOH)	removed from the ice-filled cool box and immediately refrigerated pending final chemical analysis sample selection.			
Mercury	Amber Glass Bottle	HNO3	Selected samples for laboratory analyses were placed in			
CrVi	Amber Glass Bottle	HNO3	ice-filled cool boxes and dispatched to the accruct chemical laboratory under Chain of Custody procedu			
VOCs, PHC (F1)	Vials	NaHSO4				
PCB/Pesticides-(OCP)		None]			
surrogate, PCBs,	Bottle					
semi- volatiles						

Table 9 – Section.12.1: Sampling Parameters and Containers

Soil samples were collected using dedicated prepared 250 ml jars, syringes, and vials provided by Paracel Laboratories Ltd. Soil samples that required VOC analysis involved placing approximately 5 g of soil into dedicated methanol- filled vials. This method was used to ensure no loss of VOCs during transportation. The vials were placed in the cooler containing the trip blank for VOC analysis. The cooler was placed in ice to ensure the temperature of the samples.

4.12.1 Description of Equipment Cleaning Procedures

The majority of the boreholes were drilled utilizing solid stem augers due to the presence of rocky till and boulders that were not penetrable with hollow stem augers.

Split spoon core samples of soil were obtained during the drilling was collected via a 0.60 m in length split-spoon sampler. The split-spoon samplers were washed and scrubbed with Alconox mixed in water and rinsed between each use to prevent cross-contamination on re-use. The rinse water was placed into the drums for later offsite disposal. Samples collected from the test pits advanced were collected directly from the backhoe bucket.

Soil samples were collected from the split-spoon sampler or from the backhoe bucket, by hand (using dedicated nitrile gloves that were disposed of after each sample), to mitigate cross-contamination. If necessary, soil samples contained in the split-spoon sampler were removed with the aid of a stainless-steel trowel. Subsequent to soil sample collection, each split-spoon sampler and any other hand-tool used for sample collection were immediately cleaned in accordance with LRL's SOP, as follows:

- Scrubbed with a wire brush in an Alconox solution (a powdered precision cleaner, that is biodegradable and has interfering-residue free and corrosion-inhibiting properties);
- Rinsed with distilled or de-ionized water;
- Horiba instrument was flushed clean with de-ionized water; and,
- All fluids captured for offsite disposal in 205 L drums.

The soil samples were placed directly into pre-labelled jars specific to the chemical analysis desired. The location of each sampling point is recorded, and the pre-labelled jars were placed in coolers and packed with ice. The remaining sample after classification were placed in a large zip lock bag for further field screening by means of PID for vapour headspace measurements.

4.11.2 Description of Field Quality Control Measures

Soil samples including duplicates were placed into laboratory-provided bottles and vials that were clearly labelled with the sample location, date, and chemical analysis to be conducted on each sample jar. The same labelling was applied to the chain of custody forms. Dedicated nitrile gloves were used for each sample collected in the field and disposed of immediately after use.

VOC samples were collected in methanol vials filled by the laboratory and an exact amount of VOC impacted soil was added to the vials by means of a syringe that captures 5 ml of soil to be added to the vials. The vial caps are tightly sealed and placed directly in a bubble cap package and placed upright into a cooler packed with ice. Sample screening by means of a PID, olfactory clues, discoloration, soil characteristics, and texture were used to determine which samples were to be submitted for further analysis.

Samples for analysis of metals parameters were placed into amber-coloured jars prepared by the laboratory sealed with a Teflon-lined cap. The jars were filled to the brim and capped tightly to minimize the vapour headspace in the jar. These jars were placed in bubble wrap containers and placed into a cooler packed with ice. The selection of the samples for analysis was based on the field screening method outlined in LRL's SOPs.

Groundwater samples, including duplicates, were placed into laboratory prepared (with appropriate preservatives) and supplied bottles and vials. The vials and jars were filled to the brim to minimize VOC loss.

The following packaging and transportation procedures were followed:

- Correctly labelled samples were packed in ice-filled cool boxes to maintain temperatures below 10°C during sample collection and transportation from the Phase Two Property to the laboratory and the chemical testing to Paracel Laboratories Inc.; and
- A copy of the chain of custody form was maintained.

4.11.3 Deviations from the Quality Assurance and Quality Control Program

There were no deviations from the Quality Assurance and Quality Control Program.

5 REVIEW AND EVALUATION

5.1 Geology

Surficial geology consists of marine offshore deposits including clay, silty clay and silt, commonly calcareous and fossiliferous; local overlain by thin sand.

Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part.

Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade.

5.1.1 Geological Conditions Encountered

13 boreholes and three (3) test pits were advanced across the Site. The soils encountered consisted mainly of granular crushed stone and sand fill over clay.

No sheen or evidence of Light Non-Aqueous (LNAPL) and Dense Non Aqueous Phase Liquid (DNAPL) as free product was observed in any of the monitoring wells or temporary piezometers. Olfactory evidence of hydrocarbon odours were detected select soils encountered in BH20-12, advanced within the building in the vicinity of the existing heating oil storage tank. Olfactory evidence, indicative of petroleum hydrocarbon impacts, were encountered in BH20-12 from depths between 0.6 and 1.8 m below grade. No free phase petroleum hydrocarbons, or dark staining were encountered in any remaining soil samples collected.

The groundwater monitoring wells were positioned to identify potential groundwater impacts associated with the PCAs and APECs identified on the Site. Groundwater contours and inferred groundwater flow direction are presented in **Figure 6**. Based on the elevation encountered, the groundwater flow direction in the overburden across the Site is towards the north.

5.1.2 Elevations Geodetic Benchmark

A laser level was used to determine the arbitrary elevations for each borehole and monitoring well. Should these elevations, including groundwater levels, be used in support of development planning, a formal geodetic survey should be completed, and these values be incorporated accordingly.

5.1.3 Aquifer & Aquitard Properties

The soil stratigraphy indicated that the overburden was primarily comprised of fine-grained clay. The monitoring wells were installed to a depth between 3.0 m and 4.5 m bgs and exhibited a static water level of 1.01 m bgs on average.

5.1.4 Rationale for the Choice of Aquifer

There is only one (1) aquifer onsite and only one (1) aquifer was investigated as it lies directly below the Site. Since none of the COC were encountered based on the onsite PCAs and APECs in the aquifer that was above the SCS, further vertical delineation of the aquifer was not warranted. If any of the COC had been encountered above the SCS, then deeper monitoring wells would have been required. The following exceedances were encountered at the Site.

5.1.5 Confirmatory Soil and Groundwater Monitoring Well Design and Rationale

Table 10 – Section 5.1.5: Confirmatory Soil and Groundwater Monitoring Well Design and Rationale

Monitoring	Area of	Location of	Potentially	Location of	Contaminants	Media
Well/ Borehole	Potential Environmental Concern ¹	Area of Potential Environmental Concern on Phase Two Property	Contaminating Activity ²	PCA (on-site or off-site)	of Potential Concern ³	Potentially Impacted (Groundwater, soil, and/or sediment)
BH20-1; MW20- 2; MW20-3; MW20-4; MW20-5; BH20- 6, BH20-7; BH20-8; BH20- 9; TP23-1; TP23-2; and TP23-3	APEC A		PCA 30: Presence of Fill Materials of Unknown Quality	On Site	PAHs, VOCs, PHCs, Metals, General Inorganics	
MW20-2; BH20-10; BH20-11; BH20-12; MW20-10	APEC B	On-Site, ground floor of the building, along the southcentral extent	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks.	On-Site	VOCs, PHCs, PAHs	Soil and Groundwater
MW20-2; MW20-3; MW20-5; BH20-10; BH20-11; BH20-12; MW20-10	APEC C	building located across the northern	PCA 31: Ink Manufacturing, Processing and Bulk Storage	On-Site	VOCs, PHCs	Soil and Groundwater
MW20-10 TP23-1; TP23- 2; TP23-3	APEC D	- ,	PCA Other: Known Impacted Soil Conditions	On-Site	PHCs	Soil and Groundwater
TP23-1; TP23- 2; TP23-3; MW23-3; MW20-2; MW20-2; MW20-3; MW20-5	APEC E	southwestern portion of the Site	PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site	OP Pesticides	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3	APEC F	On-Site	PCA Other: Parking and/or storage of suspected automobiles and equipment	On-Site	VOCs, PHCs, Metals	Soil and Groundwater
MW20-3; MW20-5; BH20-10	APEC G	northern extent of the		Adjacent property to the north - 1270 Trim Road	PHCs, VOCs, Metals	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and	APEC H	On-Site, across entirety of the Phase Two Property	PCA 34: Metal Fabrication	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard	PHCs, VOCs, Metals.	Soil and Groundwater

TP23-3						
TP23-1; TP23- 2; TP23-3; MW23-3; MW20-2; MW20-2; and MW20-5	APEC I	Two Property	PCA 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard	OP Pesticides	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3	APEC J	entirety of the Phase	PCA 31: Ink Manufacturing, Processing and Bulk Storage	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard	VOCs, PHCs, Metals	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3	APEC K		PCA 28: Gasoline and Associated Products Storage in Fixed Tanks		PAHs, VOCs, PHCs, PCBs	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3	APEC L	entirety of the Phase Two Property	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Approximately 75 m south of the Site – 3791 St-Joseph Boulevard	VOCs, PHCs, PAHs	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3	APEC M		PCA Other: Hardware Wholesale Distributors activities	Approximately 155 m south of the Site – 3809 St-Joseph Boulevard	Metals, VOCs, PHCs, PCBs	Soil and Groundwater
BH20-1; MW20-2; MW20-3; MW20-4; MW20-5; BH20-6, BH20- 7; BH20-8; BH20-9; TP23- 1; TP23-2; and TP23-3		On-Site, across entirety of the Phase Two Property	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks.	Approximately 155 m south of the Site – 3809 St-Joseph Boulevard	VOCs, PHCs, Metals	Soil and Groundwater

5.2 Groundwater Elevations

The direction of groundwater flow has been determined to be mainly in a northerly direction. **Figure 6** shows the groundwater flow direction based on the most recent (December 2023) data collected at the time of this assessment.

5.2.1 Discussion and Rationale for Location and Screen Intervals

The wells were placed generally so that the triangulation of the groundwater elevations could be conducted to determine the groundwater flow direction. The between 1.5 and 3.0 m screen was used to straddle the groundwater table for the interception of LNAPLs and the potential of free phase and dissolved fractions of DNAPLs, as well as providing sufficient area for placement of a proper bentonite seal.

5.2.2 Interphase Probe

No LNAPLs or DNAPLs were detected with the interphase Probe during the measuring of water levels before and after well development. All monitoring wells were purged/developed via waterra tube and foot valve.

5.2.3 Product Thickness

No free product was encountered.

5.3 Groundwater: Hydraulic Gradient

5.3.1 Horizontal Hydraulic Gradient

Hydraulic gradients were as follows:

Parameter	Hydraulic	Remarks				
	Gradient (m/m)					
Maximum	0.62	Between MW20-3 and MW23-3				
Minimum	0.05	Between MW20-2 and MW23-3				
Average	0.335					

Table 11 – Section 5.3.1: Hydraulic Gradient

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was not established for the subject Site at the time of this assessment.

If the shallow aquifer or Aquitard is found to be contaminated, then deeper wells will be required to delineate the groundwater at deeper depth in case there is more than one (1) aquifer or aquitard onsite. Vertical delineation is mandatory under O. Reg 153/04 if the shallow aquifer is found to be contaminated. Hence a vertical gradient must be determined when deeper monitoring wells are installed onsite.

5.4 Fine-Medium Soil Texture

Under Ontario Regulation 153/04 (as amended). "coarse-textured soil" is soil that contains more than 50 percent by pass of particles that are 75 micrometers (um) or larger in mean diameter. The more stringent coarse-grained soil analysis was applied to this Site.

5.4.1 Rationale for the Use of Fine – Medium Soil Texture

Not applicable.

5.4.2 Results of the Grain Size Analysis for Fine – Medium Soil Texture

Not applicable

5.4.3 Rationale for the Number of Samples Collected and Analysed for Grain Size Analysis

Not applicable

5.5 Soil: Field Screening

The samples were examined in the field for lithology as well as for aesthetic evidence of impacts (i.e., debris, staining, and odours). In addition, headspace readings were recorded using a photo-ionization detector (PID) calibrated to hexane (HEX) and isobutylene (IBL). This combination of field screening tools was used to determine the "worst-case" sample(s) collected from the subject Site.

5.6 Soil Quality

The Phase One ESA Conceptual Site Model identified the following Contaminants of Concern in the soil in relation to the PCAs and 14 APECs that may affect the Phase Two Property.

- Polycyclic Aromatic Hydrocarbons (PAHs);
- Metals;
- General Inorganics;
- Polychlorinated Biphenyl (PCB);
- OC Pesticides
- Volatile Organic Compounds (VOC); and
- Petroleum Hydrocarbons F1 through F4.

Between January 6th, 2020, and December 18th, 2023, a total of twenty-four (24) samples including four (4) duplicate samples, were submitted to evaluate the level of potential chemical impact on the soils beneath the Site. All soil samples met the MECP Table 2 Standards ICC for coarse-grained soils in potable groundwater conditions.

5.6.1 Location, Depth of Sampling

The following table describes the location and depth of the specific samples submitted for chemical laboratory analysis, and the results of the analyses in comparison to MECP Table 2 ICC.

			Ch			Chemical Analysis					Standard Exceedance
Borehole ID	Sample ID	Depth (m bgs)	(m Sampled		VOCs/F1	PAHs	PCBs	General Inorganic	Metals	Pesticides	(Table 2 ICC for coarse soils)
TP1	SS1	0.0 – 0.6	December 18 th , 2023	~	~	Y					No Exceedances
	SS2	0.6 – 1.2	December 18 th , 2023					~	~	~	No Exceedances
	SS4	1.8 – 2.4	December 18 th , 2023				V				No Exceedances
TP2	SS1	0.0 - 0.6	December 18 th , 2023					~	\checkmark		No Exceedances
	SS2	0.6 – 1.2	December 18 th , 2023							~	No Exceedances
	SS5	2.4 – 3.0	December 18 th , 2023	~	~	~					No Exceedances
TP3	SS1	0.0 - 0.6	December 18 th , 2023							~	No Exceedances
	SS2	0.6 – 1.2	December 18 th , 2023				~	~	~		Metals
	SS3	1.2 – 1.8	December 18 th , 2023	Ý	~	~					No Exceedances
BH20-1	1	0.0 - 0.6	January 6 th , 2020		~				\checkmark		No Exceedances
BH20-2	9	1.2 – 1.8	January 6 th , 2020	~	~				\checkmark		Metals
BH20-3	15	0.6 – 1.2	January 6 th , 2020	~	~				~		No Exceedances
BH20-4	20	0.6 – 1.2	January 6 th , 2020	~	~				\checkmark		Metals
BH20-5	26	0.6 – 1.2	January 6 th , 2020	~	\checkmark				\checkmark		Metals
BH20-6	31	1.2 – 1.8	January 6 th , 2020		~				\checkmark		Metals
BH20-7	33	0.0 - 0.6	January 6 th , 2020		~				\checkmark		
BH20-8	36	0.0 - 0.6	January 6 th , 2020		×				\checkmark		No Exceedances
BH20-9	42	1.2 – 1.8	January 7 th , 2020	×					\checkmark		Metals
BH20-10	46	0.6 – 0.8	January 7 th , 2020	×	×				\checkmark		No Exceedances
BH20-11	50	0.6 – 1.2	January 7 th , 2020		V				\checkmark		Metals
	53	0.6 – 1.2	January 7 th , 2020	\checkmark	\checkmark				\checkmark		No Exceedances
BH20-13	55	0.0 - 0.6	January 7 th , 2020	\checkmark	\checkmark				\checkmark		No Exceedances

Table 12 – Section 5.6.1: Soil Chemical Lab	oratory Analysis
---	------------------

Notes

XXX

Exceedances to the applicable Table 2 site condition standards

The Laboratory Certificates of Analysis are presented in **Appendix B** and the soil analytical results are presented in **Table 2** through **Table 5**, included at the end of this report in the Appendices.

Based on the analysis, select parameters were observed to exceed the appliable site condition standards. These exceedances, although summarized above in the **Table 16**, are further discussed herein:

Samples TP3-SS2, collected from depths of between 0.6 and 1.2 m bgs; BH20-2-9, collected from depths of between 1.2 and 1.8 m bgs; BH20-4-20, collected from depths of between 0.6 and 1.2 bgs; BH20-5-26, collected from depths of between 0.6 and 1.2 m bgs; BH20-6-31, collected from depths of between 1.2 and 1.8 m bgs; BH20-9-42, collected from depths of between 1.2 and 1.8 m bgs; and BH20-11-50, collected from depths of between 0.6 and 1.2 m bgs encountered elevated concentrations of Vanadium, a metal-based parameter, with concentrations above the Table 2 site condition standard. According to the Canadian Council of Ministers of the Environment (CCME) fact sheet, vanadium present in soils can be related to industrial activities but could also be related naturally geological formations with the highest concentrations found in shale and clays. During the intrusive investigation, a stratum of clay being at least 0.6 – 4.2 m thick was encountered across the Site. The CCME fact sheet also indicates that concentrations of naturally occurring vanadium across Canada typically increases in depth. The values encountered at the Site ranged between 80.1 and 109 μg/g, within the representative clay samples, generally within the range that could be a result of naturally occurring deposits.

It should be noted that although additional exceedances to the applicable Table 2 site condition standard were not encountered in the soils, at the time of the borehole advancement within the building (January 7th, 2020), olfactory evidence indicative of PHC impacts were detected in the soils beneath the southeast portion of the building slab, at depths between 0.6 and 1.2 m bgs. Although the samples submitted for laboratory analysis were found to meet the Table 2 SCS for VOC and PHC parameters.

5.6.2 Analytical Results to SCS

The environmental quality of the soil at the Site was compared to the MECP Table 2 ICC Standard. The Laboratory Certificate of Analysis is presented in **Appendix B**.

5.6.3 Contaminants of Concern (COC)

The contaminants of concern identified in the soil on the property are as follows:

- Metals, including Vanadium.
- 5.6.4 Chemical and Biological Transformations

No chemical or biological transformations were noted on, in or under the Phase Two Property.

5.6.5 Source of Contaminant Mass Contributing to the Groundwater

Olfactory evidence indicative of PHC impacts were detected in the soils beneath the southeast portion of the building slab, at depths between 0.6 and 1.2 m bgs. Although the samples submitted for laboratory analysis were found to meet the Table 2 SCS for VOC and PHC parameters, the olfactory evidence encountered suggests further potential impacts not intercepted by the borehole advancement program.

Vanadium exceeded the Table 2 SCS in seven (7) samples from locations across the Site. According to the Canadian Council of Ministers of the Environment (CCME) fact sheet, vanadium present in soils can be related to industrial activities but could also be related naturally geological formations with the highest concentrations found in shale and clays. During the intrusive investigation, a stratum of clay being at least 0.6 - 4.2 m thick was encountered across the Site. The CCME fact sheet also indicates that concentrations of naturally occurring vanadium across Canada typically increases in depth. The values encountered at the Site ranged between 80.1 and 109 µg/g, within the representative clay samples, generally within the range that could be a result of naturally occurring deposits. The levels encountered in this assessment are below

those of CCME and are not likely a result of the fill material on the Site, or current/former Site and neighbouring land activities, but rather naturally occurring in the subsurface deposits.

Based on these observations, groundwater impacted is possible for this Phase Two ESA Investigation.

5.7 Ground Water Quality

The Phase One ESA Conceptual Site Model identified the following Contaminants of Concern in relations to PCAs and APECs that may affect the Phase Two Property.

On January 9th, 2020 and December 20th, 2023, a total of nine (9) groundwater samples including one (1) field duplicate groundwater sample for all sample parameters was analyzed as follows, to appropriately evaluate the level of chemical impact to the groundwater beneath the Phase Two Property in the areas of the various APECs:

- Nine (9) samples for VOCs;
- Nine (9) samples for PHC fractions F1 to F4;
- Nine (9) samples for PCBs;
- Five (5) samples for PAHs;
- Five (5) samples for OC Pesticides; and
- Nine (9) samples for metals (including mercury and CrVi).

5.7.1 Location and Sample Depth

Table 17 – Section 5.7.1 below described the location and depth of the specific groundwater samples submitted for chemical laboratory analysis, and the results of the analyses in comparison to Table 2 site condition standards for coarse-grained soils.

						al Ana	alysis			
Well ID	Sample De Well ID ID (m			PHCs F2 F4	VOCs/F1	PAHs	PCBs	Metals	OC Pesticides	Standard Exceedance (Table 2 ICC for coarse-soils)
MW20-2	MW20-2	94.82	January 9 th , 2020	\checkmark	~			~		No Exceedances
MW20-2 Duplicate	MWX		January 9 th , 2020	\checkmark	✓			~		No Exceedances
MW20-2	MW20-2		December 20 th , 2023	\checkmark	~	~	~	~	~	РАН
MW20-3	MW20-3	96.13	January 9 th , 2020	\checkmark	~			~		Vanadium
	MW20-3		December 20 th , 2023	\checkmark	~	~	~	~	~	PAH
MW20-5	MW20-5	95.78	January 9 th , 2020	\checkmark	~			~		No Exceedances
	MW20-5		December 20 th , 2023	\checkmark	~	~	~	~	~	РАН
MW20-10	MW20-10	96.23	December 20 th , 2023	\checkmark	~	~	~	~	~	No Exceedances
MW23-3	MW23-3	97.16	December 20 th , 2023	\checkmark	~	~	~	~	~	РАН

Table 13 – Section 5.7.1: Groundwater Chemical Laboratory Analysis

Notes

XXX Duplicate sample collected and submitted for laboratory analysis

XXX Exceedances to the applicable Table 2 site condition standards

The Laboratory Certificates of Analysis are presented in Appendix B and detailed assessments of the groundwater analytical results are presented in **Table 6** through **Table 9**, included at the end of this report in the Appendices.

The environmental quality of the groundwater at the Phase Two Property was compared to the MECP Table 2 Standards for potable groundwater. As presented above in **Table 17 – Section 5.7.1**, various parameters were found to exceed the appliable Tabe 2 site condition standard. These exceedances are summarized as follows:

- PAH parameters, including **Benzo[a]pyrene**, **Benzo[b]fluoranthene**, **Benzo[g,h,i]perylene**, **Benzo[k]fluoranthene**, **Chrysene** and **Indeno [1,2,3-cd] pyrene** exceeded the site condition standards in the December 20th, 2023 groundwater sample collected from monitoring well **MW20-2**.
- **Vanadium** concentrations exceeded the site condition standards in the December 20th, 2023 groundwater sample collected from monitoring well **MW20-3**;
- Benzo[a]pyrene, a PAH parameter, also exceeded the Table 2 site condition standard in MW20-3;
- Benzo[a]pyrene, a PAH parameter, also exceeded the Table 2 site condition standard in MW20-3; and
- PAH parameters, including Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g,h,i]perylene, Benzo[k]fluoranthene, Chrysene and Fluoranthene exceeded the site condition standards in the December 20th, 2023 groundwater sample collected from monitoring well MW23-3.

It is inferred that the vanadium exceedance encountered may be contributed to naturally occurring deposits found in the underlying clay. Regionally, the Champlain Sea deposits are known to have naturally occurring

elevated concentration of vanadium. The PAH exceedances are likely the result of the former Site activities including the parking of heavy equipment and vehicles in the early 1990's or associated with the fill encountered across the Site. These PEC identified are assumed to contribute to the elevated PAH concentrations based on the location to which they were encountered, and the groundwater flow direction. It would be anticipated that if the PAH concentrations were associated with the gasoline service station to the north, the AST in the building on-Site; or the former commercial printing operations, the highest concentrations would be anticipated to be found along the northern property extents in MW20-3 and MW20-5. However, the highest PAH concentrations were noted in MW20-2, located in the parking & circulation area to the south of the building, and in MW23-3, located at the southwestern portion of the building.

Groundwater impacts with respect to the vanadium parameters has been delineated horizontally to the west and south, however vertical delineation has not been established at this time. As mentioned, this exceedance is likely attributed to the naturally occurring vanadium concentration common in the Champlain Sea deposits (clay) across the Site, therefore, it would be inferred that bedrock groundwater would likely have lesser concentrations. Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade, therefore, it is assumed that the vanadium exceedances in the groundwater is limited to depths of between 23 - 37 m below grade.

The previously identified APEC A and APEC F are anticipated to be encountered in the groundwater that exceeded the SCS for PAH parameters across on the Phase Two Property.

5.7.2 Documentation of Field Filtering

Field Filtering was conducted for metals only. The Certificates of Analysis show no lab filtering for the samples submitted for this Site.

5.7.3 Analytical Results to SCS

The environmental quality of the groundwater at the Phase Two Property was compared to the MECP Table 2 ICC Standard.

The Laboratory Certificate of Analysis is presented in Appendix B.

5.7.4 Contaminants of Concern (COC)

The contaminants of concern identified in the groundwater on the property are as follows:

- Benzo[a]pyrene;
- Benzo[b]fluoranthene;
- Benzo[g,h,i]perylene;
- Benzo[k]fluoranthene;
- Chrysene;
- Indeno [1,2,3-cd] pyrene;
- Fluoranthene; and
- Vanadium.
- 5.7.5 Chemical and Biological Transformation

There are no chemical or biological transformations noted in the groundwater for the COC.

5.7.6 Soil Serves as Source of Contamination to Groundwater

The upper fill stratum, generally from between 0.2 and 1.2 m below grade, is permeable and may contribute to the quality of the groundwater.

5.7.7 Presence of LNAPLs or DNAPLs

No free phase products were encountered in the groundwater.

5.8 Sediment Quality

The Phase Two Property did not include a surface water body as defined under O. Reg. 153/04 (as amended); therefore, sediment was not sampled in this Phase Two ESA investigation.

5.9 Quality Assurance and Quality Control Results

A duplicate groundwater samples was collected and submitted for chemical laboratory analyses for QA/QC purposes. The sample collected in the field was placed in the cooler and subsequently submitted for analysis.

5.10 Phase Two Conceptual Site Model

Table 14 – Section 5.10 below describes the duplicate sample collected and tested during groundwater sampling as part of the field investigation of the Phase Two ESA.

	Groundwater							
Parameter	No. of Samples Tested	No. of Duplicates	No. of Trip Blank					
PHC (F1-F4)	8	1	-					
VOC	8	1	-					
РАН	5	-	-					
РСВ	5	-	-					
Metals	8	-	-					
OC Pesticides	5	-						

Section 3. (3).5 of Schedule E of O. Reg. 153/04 (as amended) requires at least one (1) field duplicate be collected and analyzed for every ten (10) sample parameters submitted for laboratory analysis.

Samples were transported in ice-filled coolers to ensure temperatures were maintained below 10°C, along with a Chain of Custody to Paracel Laboratories. Paracel performed the chemical analysis in compliance with the MECP "Laboratory Services Branch, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", as amended. No discrepancies were noted as samples were properly handled with regards to the following:

- Holding Time;
- Preservation Method;
- Storage requirement; and
- Container Type.

The Laboratory Certificates of Analysis for each samples were received and are presented in **Appendix B**. All certificates of analysis received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3) of O. Reg. 153/04 as amended.

The Qualified Person concluded that the data met the quality objective, and the decision-making was not affected. The Qualified Person has also concluded that the overall objectives of the investigation and assessment were met.

Duplicate samples were taken for Groundwater. The following formula was used to assess the various duplicates against their respective soil or groundwater samples.

Duplicate RPD = {([sample] – [sample duplicate])/([sample] + [sample duplicate])/2} x 100. The values calculated must fall in the Following Ranges shown on **Table 19 – Section 5.9**.

Most of the parameters met their respective RPD values with some exceptions. The soil is not homogenous and values greater than the listed RPD values were expected. Re-sampling was not conducted because the exceedances for the RPD values were small relative to the number of samples analyzed.

Parameter	Groundwater RPD Limit	Groundwater Duplicate
VOC	≤30%	≤0%
PHC	≤30%	≤0%
Metals	≤20%	≤22%

Table 15 – Section 5.10: Duplicate RPD Values in Less Than ≤

5.11 Phase Two Conceptual Site Model

The Phase Two Property is located at 1280 Trim Road, Ottawa, Ontario. The legal description of the Phase Two Property is Part 30, Concession 10S, Part 3 to 6, Cumberland, Ottawa, and the property PIN is 50R6444. The Phase Two Property has a rectangular shape and is between approximately 64 m wide (fronting Trim Road) by approximately 100 m deep, for a total area of approximately 6,430 m² (1.59 acres). The size and location of the property are shown in **Figure 2**.

The property is situated in a commercial/light industrial area along Trim Road. The Phase Two Property is currently in commercial land use as a storage facility for a commercial general contractor in addition to a 'chip-truck' operating at the southeastern portion of the Site.

Surficial geology consists of marine offshore deposits including clay, silty clay and silt, commonly calcareous and fossiliferous; local overlain by thin sand. Bedrock is part of Ottawa Formation, consisting mainly of grey limestone, some dolomite, shale and sandstone in the lower part. The topography of the Phase Two Property and neighbouring lands is generally flat. The Phase Two Property and the neighbouring lands have a common topographic elevation of approximately 60 m above mean sea level (amsl) according to *The Atlas of Canada - Toporama*. More specifically, the Site has a slight slope to the north, towards the Ottawa River.

According to *The Atlas of Canada – Toporama*, the overall regional groundwater flow direction is inferred to follow local topography to the north-northwest towards the Ottawa River, however, the nearest water body is approximately 680 m east of the Site (Cardinal Creek). Based on the results of the Phase Two ESA, completed in conjunction with this assessment, the groundwater flow direction across the Site, based on groundwater elevations measured in the monitoring wells, is found to be towards the north. For the purposes of this report, the groundwater flow direction across the Site will be inferred as north, following the topography of the area.

The Conceptual Site Model shows 34 PCAs on and surrounding the property of which relative to the groundwater flow direction, only 14 may have an impact on the Phase Two Property. **Figure 3** represents the PCAs on and surrounding the Phase Two Property. The PCAs that affect the Phase Two Property include six (6) on-Site PCAs including **PCA 28** for Gasoline and Associated Products Storage in Fixed Tanks, **PCA 30** for Importation of Fill Material of Unknown Quality, **PCA 31** for Ink Manufacturing, Processing and Bulk Storage, **PCA Other** for Known Impacted Soil Conditions, **PCA Other** for Parking and/or storage of suspected automobiles and equipment and **PCA 40** for Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications .The 14 PCAs generated 14 on-Site Areas of Potential Environmental Concern (APECs). The APECs are summarized as follows:

- **APEC A**: Presence of Fill Materials of Unknown Quality across the Site. There is a high risk of environmental impacts across the Site. Contaminants of Concern include PAHs, VOCs, PHCs and Metals.
- **APEC B**: Impacts of Gasoline and Associated Products Storage in Fixed Tanks on Site. There is a high risk of environmental impacts across the general northern portion of the Site, in the vicinity of the existing heating oil AST, which is located on the ground floor of the building, along the southcentral extent. Contaminants of Concern include VOCs and PHCs.
- **APEC C**: Impacts Associated with former Ink Manufacturing, Processing and Bulk Storage which operated on Site. There is a high risk of environmental impacts to the Site as a result of the former commercial printing facility which operated from between 2006/07 through 2012 on the subject property. Contaminants of Concern include PHCs and Metals.
- **APEC D**: Known PHC and Metal Impacted Soil across the Site. In 2020, a Phase II ESA was completed on the Site (updated January 2024) which revealed the presence of possible PHC impacts, in excess of the applicable provincial standards, under the slab of the building on Site and soil impacted with vanadium, although it is possible that vanadium encountered is naturally occurring. Contaminants of Concern include PHCs and Metals.
- APEC E: Impacts related to Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications on the Site. Due to the past operations o the Site, which included a lanscaping company, there is a high risk of environmental impacts across the southwestern portion of the Site for pesticides impacts. Contaminants of Concern include OP pesticides.
- **APEC F**: Impacts from parking and/or storage of suspected automobiles and equipment across the Site in at least the early 1990's presents a high risk of environmental impacts across the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- **APEC G**: Impact from Gasoline and Associated Products Storage in Fixed Tanks. There is a medium to high risk of environmental impacts across the northern portion of the Site as a result of the existing retail fuel dispensing operations on the property located immediately north of the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- **APEC H**: Impact from Metal Fabrication. There is a low to medium risk of environmental impacts to the Site from the former Other Support Activities for Mining, and Diamond Mining facility located to the south of the Site. Contaminants of Concern include VOCs, PHCs, and Metals.
- **APEC I**: Impacts from Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications. There is a low to medium risk of environmental impacts across the Site as a result of the previously operated Service Lawncare Ottawa facility to the south of the Site. Contaminants of Concern include OP pesticides.
- **APEC J**: Impacts from Ink Manufacturing, Processing and Bulk Storage. There is a low to medium risk of environmental impacts across the Site as a result of the previously operated Graphic Centre Caspari facility to the south of the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- **APEC K**: Impacts from Gasoline and Associated Products Storage in Fixed Tanks. There is a low to medium risk of environmental impacts across the Site as a result of the various construction companies which operated to the south of the Site. Contaminants of Concern include PAHs, VOCs and PHCs.
- **APEC L**: Impacts from the Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems. Kars Graphics operated as an Industrial Machinery, Equipment and Supplies, Wholesale facility to the south of the Site, which presents a low to medium risk of environmental impacts across the Site.

- **APEC M**: Impacts from Hardware Wholesale Distributors activities. There is a low to medium risk of environmental impacts across the Site as a result of the previously operated A wholesale trade agents and brokers, hardware wholesale-distributors, all other wholesaler-distributors, Other Home Furnishings Wholesaler-Distributors, and Service Establishment Machinery, Equipment and Supplies Wholesaler-Distributors facility to the south of the Site. Contaminants of Concern include VOCs, PHCs and Metals.
- **APEC N**: Impacts from Gasoline and Associated Products Storage in Fixed Tanks. There is a low to medium risk of environmental impacts across the Site as a result of the various construction companies which operated to the to the south of the Site. Contaminants of Concern include VOCs, PHCs and Metals.

The location of these APECs is shown in **Figure 4**.

The Ministry of the Environment, Conservation, and Parks (MECP) "Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition" (Table 2 Standards) for Industrial/Commercial/Community property use was considered the applicable Site Condition Standard (SCS) for the Phase Two Property and have been used to assess the chemical quality of the soil and groundwater samples obtained from the Phase Two Property. The soil and groundwater were analyzed for PHCs F1 to F4 Fractions, VOCs, PAHs, Metals, OP Pesticides, PCBs and Inorganics.

The parameters selected were to address the Contaminants of Potential Concern (COPC) from the Potentially Contaminating Activities (PCA) and the Areas of Potential Environmental Concern (APECs) identified in the Phase One ESA.

The CSM is based on the soil and groundwater results from 13 boreholes, three (3) test pits, five (5) monitoring wells and one (1) temporary piezometer. The approximate locations of each borehole and monitoring well are defined in **Figure 5**.

6 CONCLUSIONS

The Phase Two ESA for the RSC property has been conducted in accordance with the regulation by and under the supervision of a QP which includes the evaluation of information gathered from planning and conducting a site investigation to write the report and any updates as required by the regulation.

Select soil samples submitted for analysis exceeded the appliable site condition standards for vanadium. These samples included TP3-SS2; BH20-2-9; BH20-4-20; BH20-5-26; BH20-6-31; BH20-9-42; and BH20-11-50.

According to the Canadian Council of Ministers of the Environment (CCME) fact sheet, vanadium present in soils can be related to industrial activities but could also be related naturally geological formations with the highest concentrations found in shale and clays. During the intrusive investigation, a stratum of clay being at least 0.6 - 4.2 m thick was encountered across the Site. The CCME fact sheet also indicates that concentrations of naturally occurring vanadium across Canada typically increases in depth. The values encountered at the Site ranged between 80.1 and 109 µg/g, within the representative clay samples, generally within the range that could be a result of naturally occurring deposits.

The levels encountered in this assessment are below those of CCME and are not likely a result of the fill material on the Site, or current/former Site and neighbouring land activities, but rather naturally occurring in the subsurface deposits. It is recommended that if any soil is to be excavated as part of the proposed Site re-development, and the material is to be disposed of off-Site, that additional laboratory analysis be carried out on that material for vanadium to confirm if it is suitable for disposal as "clean-fill". Otherwise, the material should be disposed of at a licensed landfill facility or soil accepting facility (assuming it meets the site-specific applicable requirements). However, the soil may be used for onsite soil management.

No additional soil exceedances were encountered, however, as mentioned with respect to the Vanadium concentrations, soils across the Site may not be acceptable for re-use as "clean-fill" at an off-Site locations, and should be confirmed against the receiving properties applicable site conditions standard prior to re-development activities commencing. PHC parameters were detected in select underlying soils with notable olfactory evidence of PHC impacts at the time of the 2020 borehole advancement within the building on Site, however the concentration detected were in accordance with appliable Table 2 site condition standards.

The groundwater at the Phase Two Property was sampled at MW20-2; MW20-3; and MW20-5 in January 2020; and MW20-2; MW20-3; MW20-5; MW20-10 and MW23-3 in December 2023. Groundwater samples collected were generally analyzed for PHCs Fractions F1 through F4; VOCs, PAHs, PCBs, OP Pesticides, Metals and Inorganics.

A single metal exceedance was reported in the groundwater samples collected. Vanadium exceeded the Table 2 site condition standards in MW20-3. Various PAH parameters were also reported above the Table 2 site condition standards in the groundwater collected from MW20-2; MW20-3; MW20-5 and MW23-3. PAH parameters that exceeded the Table 2 site condition standards included Benzo[a]pyrene; Benzo[b]fluoranthene; Benzo[g,h,i]perylene;

Benzo[k]fluoranthene; Chrysene; Fluoranthene and Indeno [1,2,3-cd] pyrene. PCB and OP Presides concentrations were generally reported as less than the applicable laboratory detection limits, with select parameters being encountered with concentrations less than the Table 2 site condition standards.

It is inferred that the vanadium exceedance encountered may be contributed to naturally occurring deposits found in the underlying clay. Regionally, the Champlain Sea deposits are known to have naturally occurring elevated concentration of vanadium. The PAH exceedances are likely the result of the former Site activities including the parking of heavy equipment and vehicles in the early 1990's or associated with the fill encountered across the Site. These PEC identified are assumed to contribute to the elevated PAH concentrations based on the location to which they were encountered, and the groundwater flow direction. It would be anticipated that if the PAH concentrations were associated with the gasoline service station to the north, the AST in the building on-Site; or the former commercial printing operations, the highest concentrations would be anticipated to be found along the northern property extents in MW20-3 and MW20-5. However, the highest PAH concentrations were noted in MW20-2, located in the parking & circulation area to the south of the building, and in MW23-3, located at the southwestern portion of the building.

Groundwater impacts with respect to the vanadium parameters has been delineated horizontally to the west and south, however vertical delineation has not been established at this time. As mentioned, this exceedance is likely attributed to the naturally occurring vanadium concentration common in the Champlain Sea deposits (clay) across the Site, therefore, it would be inferred that bedrock groundwater would likely have lesser concentrations. Based on available geological resources, bedrock in the vicinity of the Site is inferred to be at depths ranging between 23 - 37 m below grade, therefore, it is assumed that the vanadium exceedances in the groundwater is limited to depths of between 23 - 37 m below grade.

The previously identified APEC A and APEC F are anticipated to be encountered in the groundwater that exceeded the SCS for PAH parameters across on the Phase Two Property. The source of the PAH impacted groundwater is inferred to be from the previous Site activities. Groundwater encountered during re-development should be considered 'contaminated' and handled accordingly during construction and dewatering. The risk to future occupants of the Site is considered low as it is understood that municipal water supply sources will service the Site, limiting the risk to expose of PAH in the overburden groundwater.

We trust you will find this report to be complete within our terms of reference. Should you have any questions regarding the information contained in the report, or require further assistance please contact the LRL Engineering office.

7 LIMITATIONS AND USE OF REPORT

Results of this Phase Two ESA should not be considered a warranty that the subject property is free from any and all contaminants from former and current practices, other than those noted in this report, nor that all compliance issues have been addressed.

Findings contained in this report are based on data and information collected during the Phase Two ESA of the subject property conducted by LRL Associates Ltd. Conclusions and recommendations are based solely on-site conditions encountered at the time of our site visit and fieldwork between January 6^{th,} 2020 and December 20th, 2023, supplemented by historical information and data obtained as described in this report. No assurance is made regarding changes in conditions subsequent to the time of this investigation. If additional information is discovered or obtained, LRL Engineering should be requested to re-evaluate the conclusions presented in this report and to provide amendments as required.

In evaluating the subject property, LRL Engineering has relied in good faith on information provided by individuals as noted in this report. We assume that the information provided is factual and accurate. We accept no responsibility for any deficiencies, misstatements or inaccuracies contained in this report as a result of omissions, misinterpretation or fraudulent acts of the persons contacted.

This report is intended for the sole use of Trim Works Developments Ltd. and their authorized agents. LRL Engineering will not be responsible for any use of the information contained within this report by any third party.

In addition, LRL Engineering will not be responsible for the real or perceived decrease in the property value, its saleability or ability to gain financing, through the reporting of factual information.

Yours truly, LRL Engineering

Jesson an

Jessica Arthurs Environmental Engineering Manager

Gianni Lametti, P. Eng.

I have reviewed the report and confirm that the Phase Two ESA including finds and conclusions, has been carried out in accordance with the requirements of O. Reg 153/04 as amened, in effect as of the date of this report.

W:\FILES 2023\230202\04 Environmental\02 PhaseIIESA\05 Reports\2023.01.12.LRL230202.REPORT PhaseTwoUpdateESA.1280TrimRoadOttawa.TrimWorks.R0.docx

8 **REFERENCES**

Canadian Standards Association, Phase II Environmental Site Assessment CAN/CSA-Z769-00, March 2000 (R2013).

Canadian Standards Association, Z768-01 Phase I Environmental Site Assessment, November 2001 (R2016).

City of Ottawa Interactive Map accessed through: http://maps.ottawa.ca/geoottawa/

Harrison, J.E., 1976, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Geological Survey of Canada, Map 1508A, Scale 1:125,000.

Ministry of Environment, Conservations and Parks, Ontario Regulation 153/04: Records of Site Condition – Part XV.1 of the Environmental Protection Act, as amended.

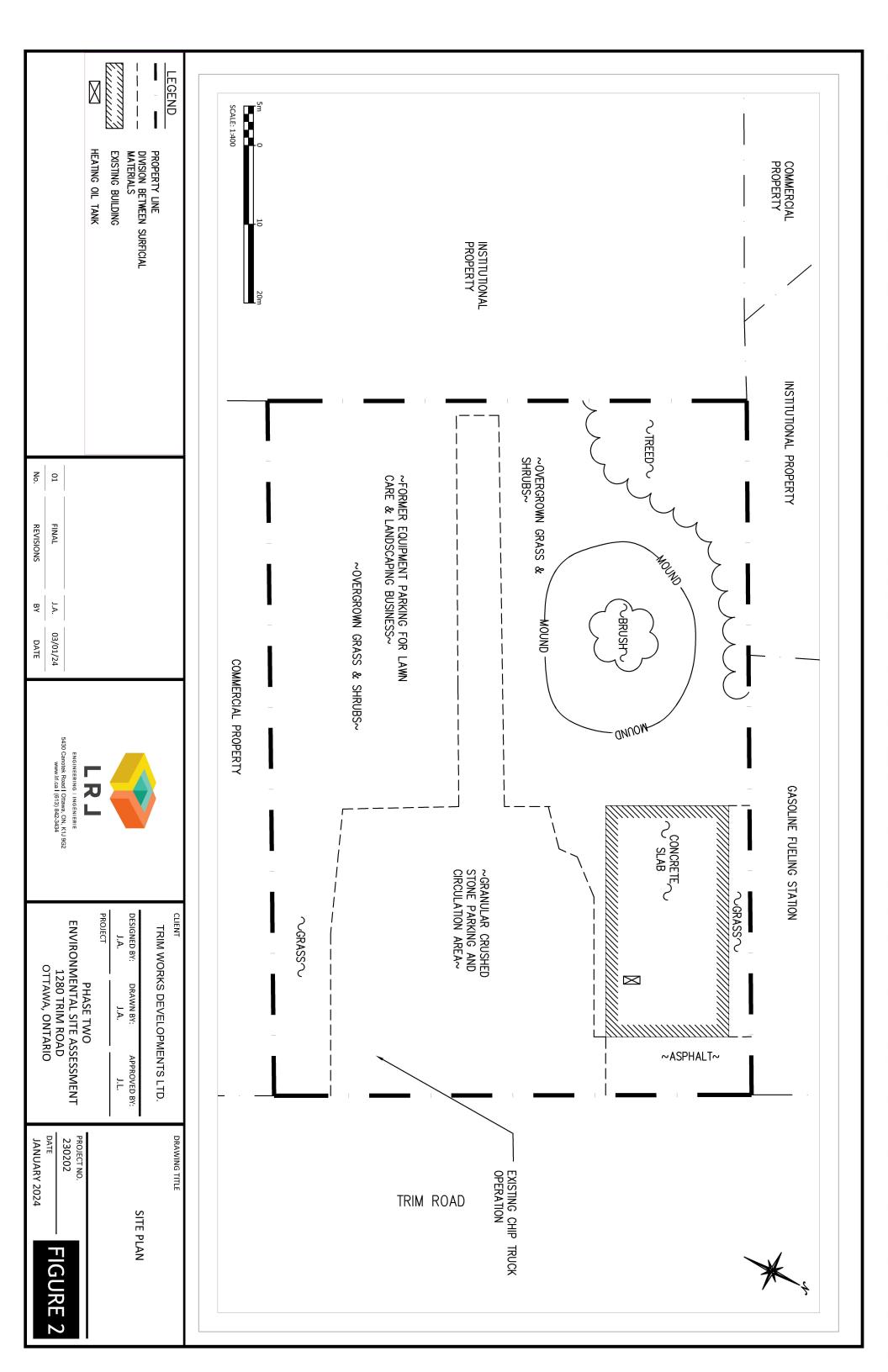
Ministry of Environment and Energy, Coal Tar Site Investigations 1986 – 1995, January 1997.

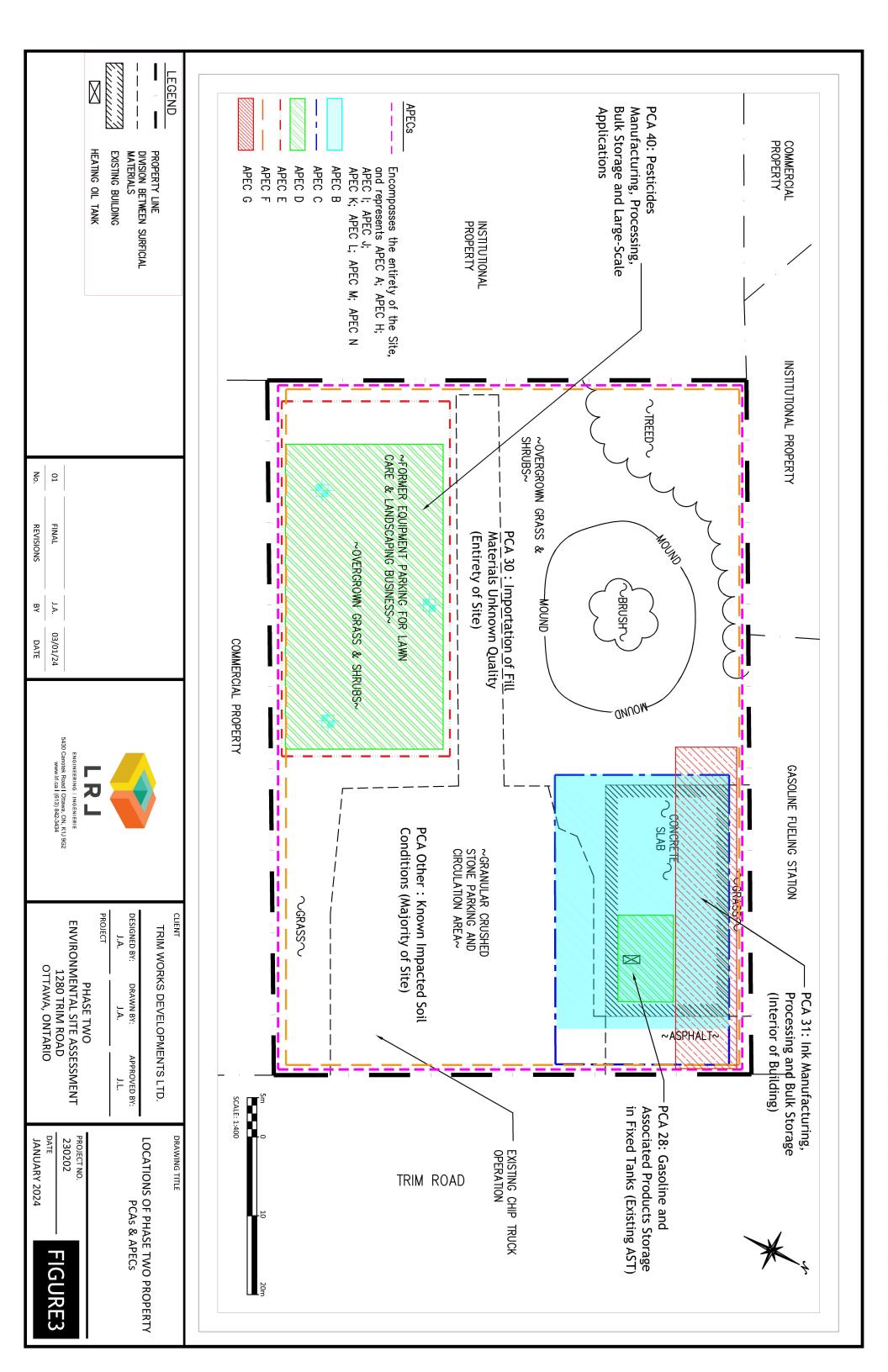
Ministry of the Environment, Guide for Completing Phase I Environmental Site Assessments Under Ontario Regulation 153/04, June 2011.

Ontario Ministry of the Environment, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, 1996.

Ontario Ministry of the Environment, *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, April 15, 2011.

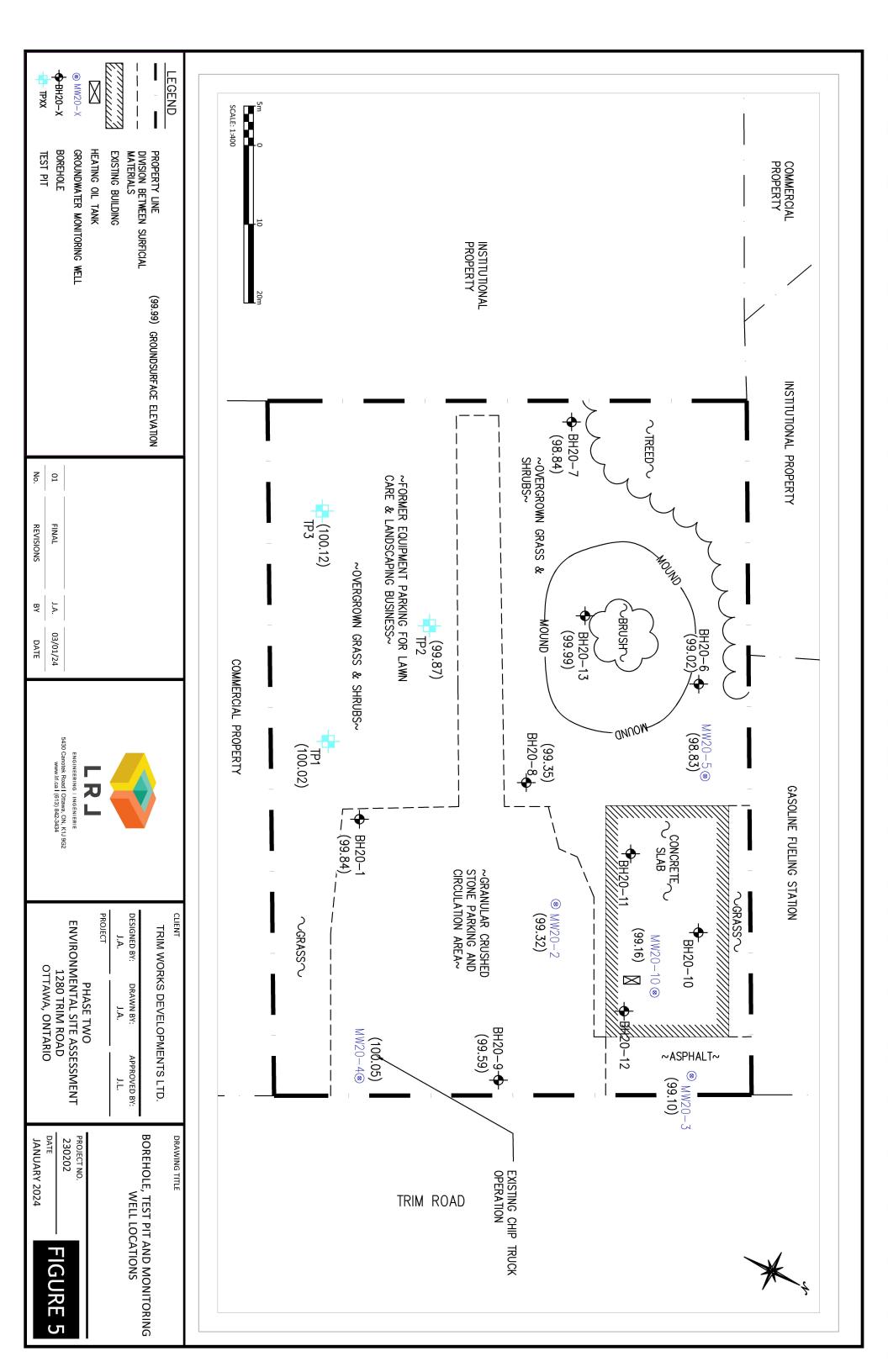
Ontario Regulation 903, made under the Water Resources Act of the Environmental Protection Act, *Wells*, R.R.O. 1990.

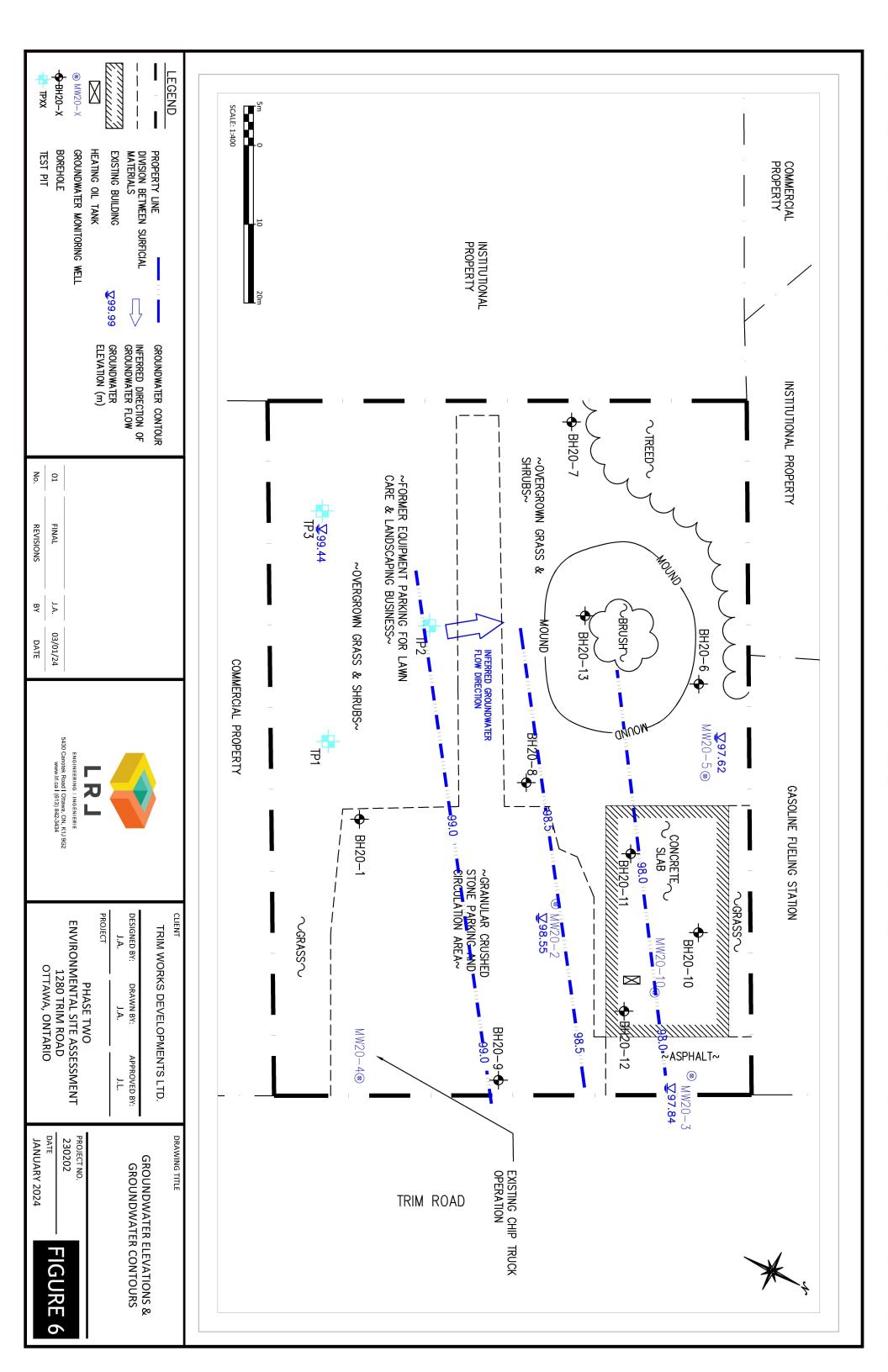

Ontario Well Records Map accessed through: <u>https://www.ontario.ca/environment-and-energy/map-well-records</u>

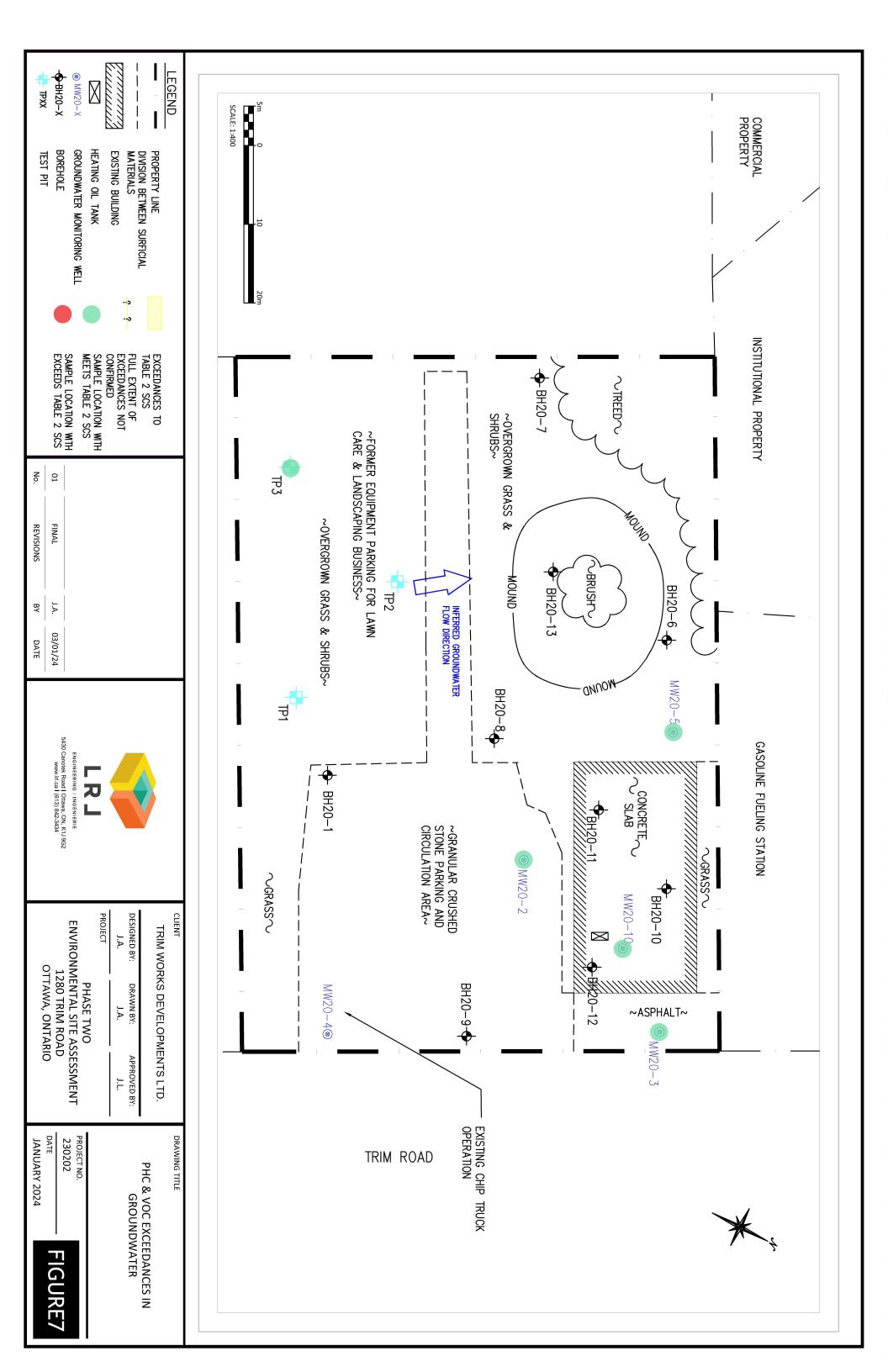

Phase One Environmental Site Assessment, 1280 Trim Road, Ottawa, Ontario, prepared by LRL Engineering, January 2024.

St-Onge, D.A., (compilation), 2009, Surficial Geology, Lower Ottawa Valley, Ontario-Quebec, Geological Survey of Canada, Map 2140A, Scale 1:125,000.

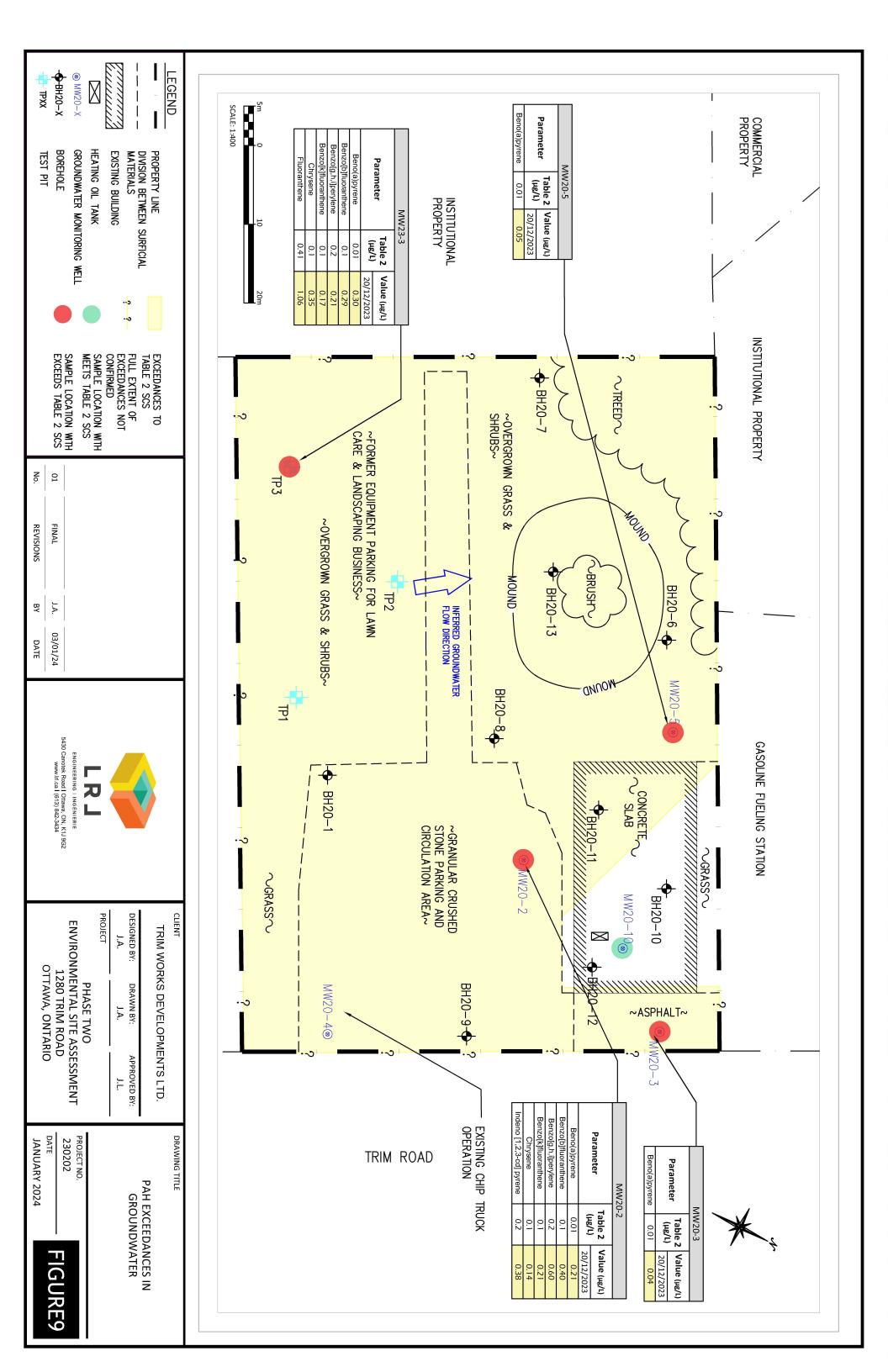
FIGURES

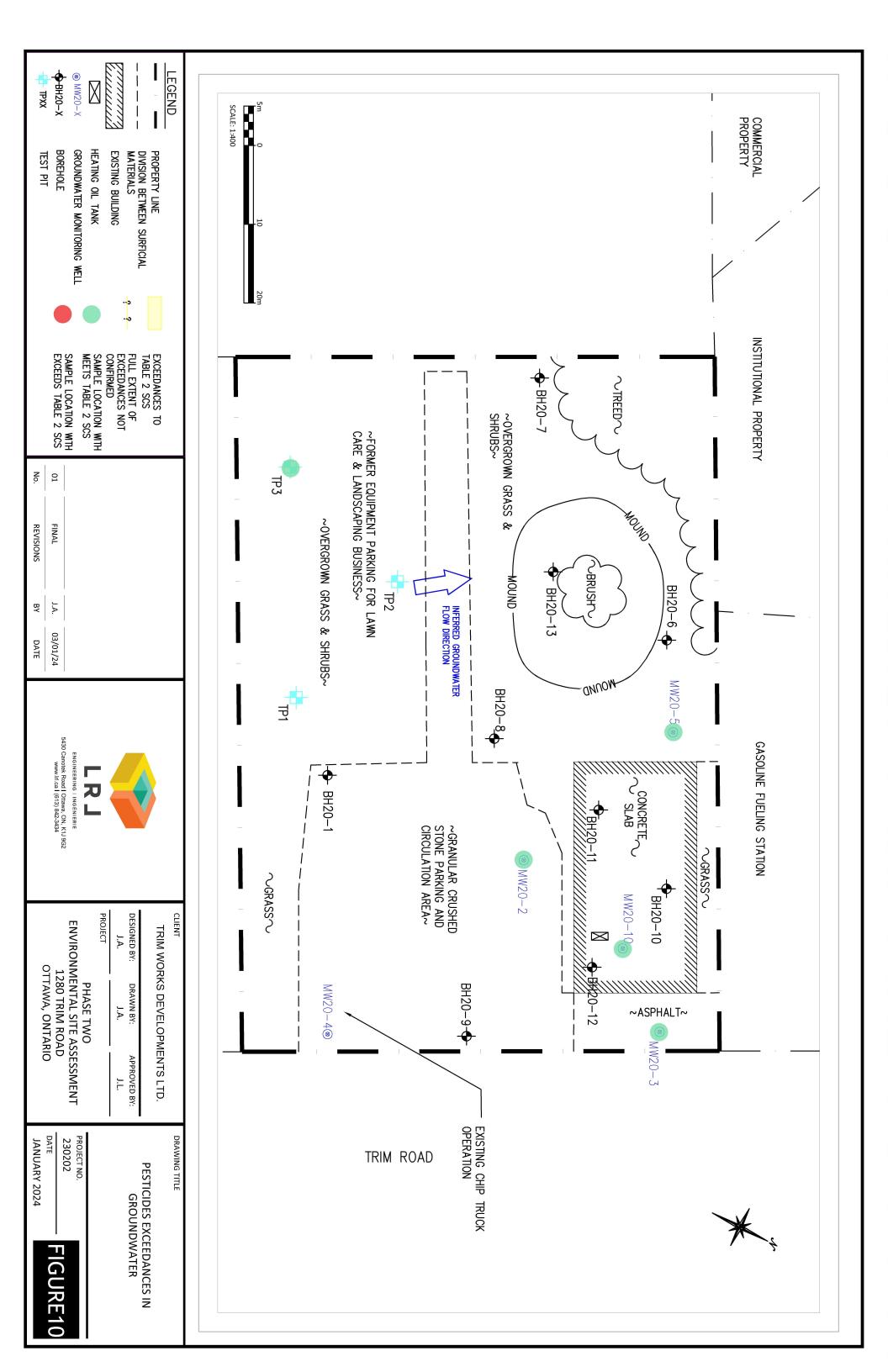


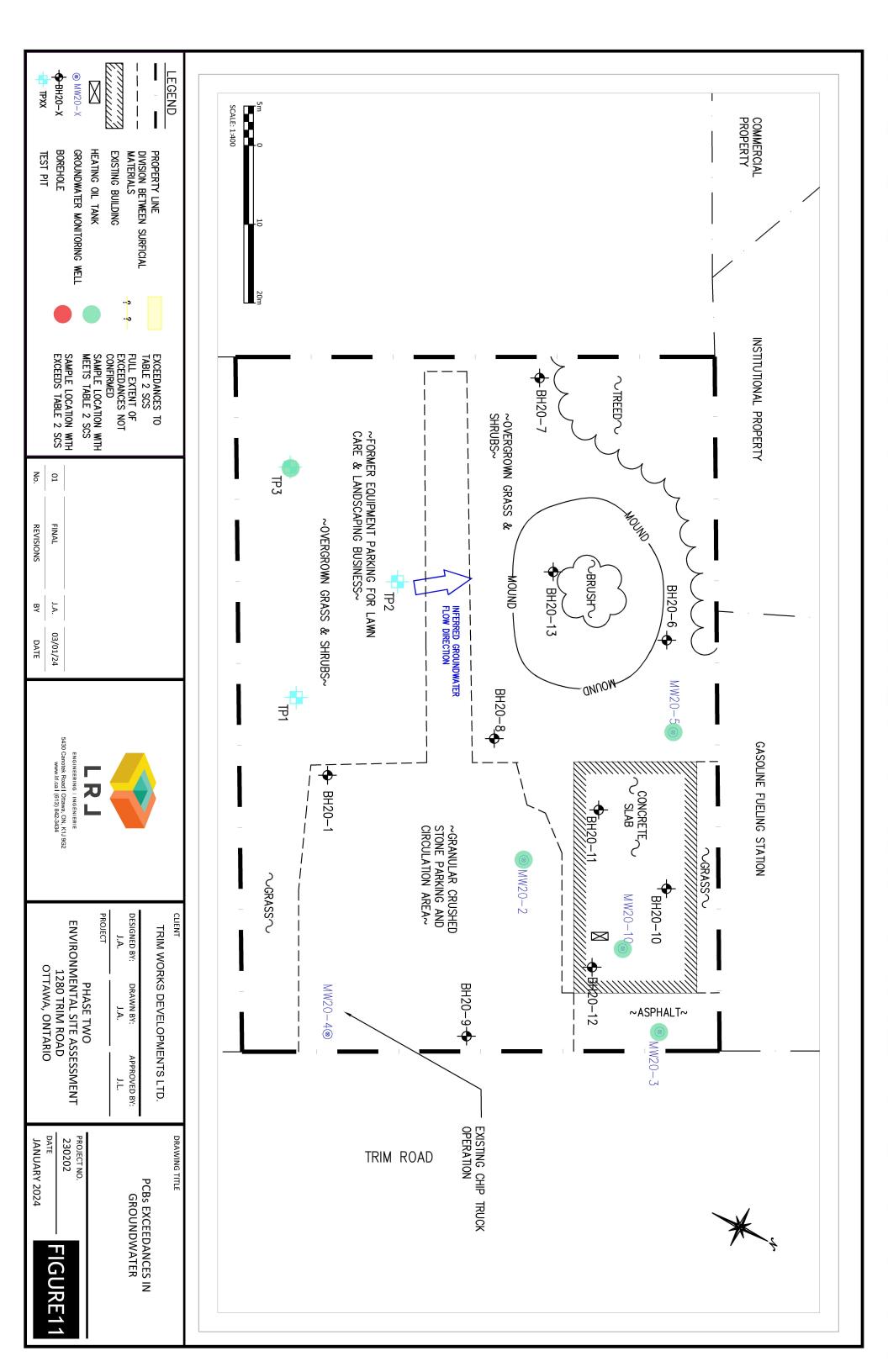


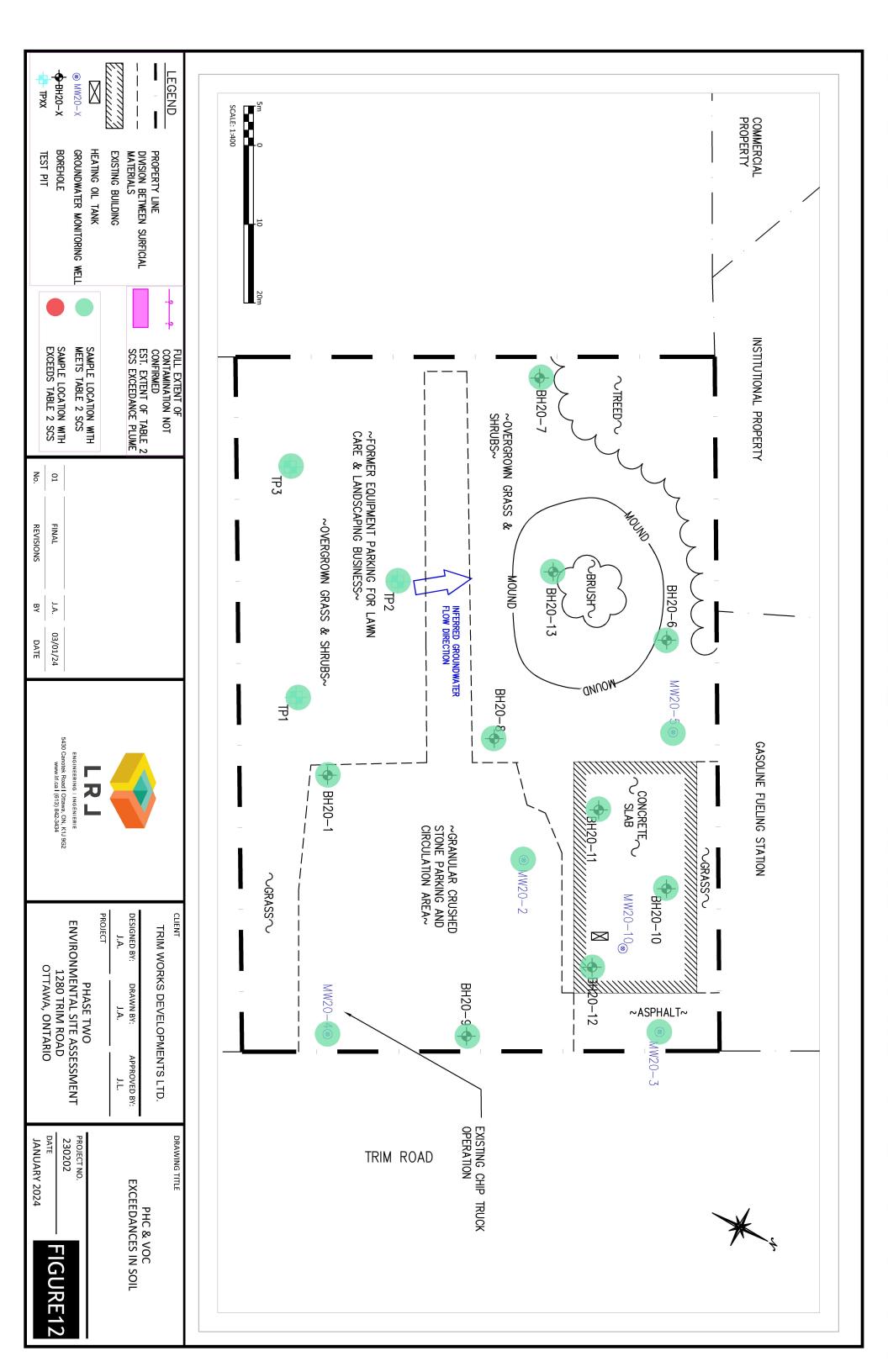


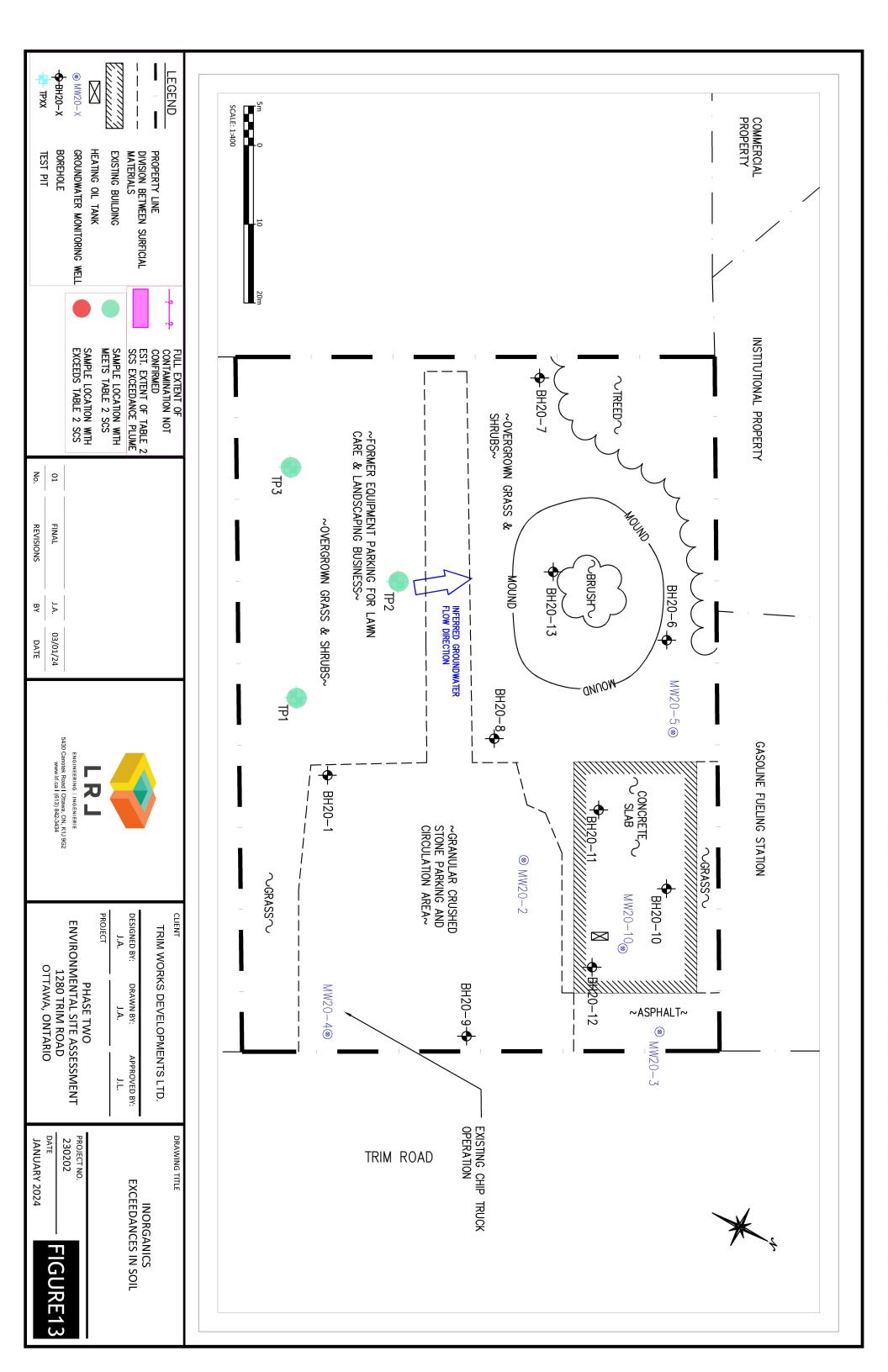

LEGEND PHASE ONE PROPERTY EXTENTS PCA - NOT A POTENTIAL RISK FOR APEC ON THE SITE PCA - A POTENTIAL RISK FOR APEC ON THE SITE PCA - A POTENTIAL RISK FOR APEC ON THE SITE PCA - A POTENTIAL RISK FOR APEC ON THE SITE ON THE SITE ON THE SITE ON THE SITE	
A DATE	
CLIENT TRIM WORKS DEVELOPMENTS LTD. DESIGNED BY: DRAWN BY: APPROVED BY: J.A. J.A. J.L. PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 1280 TRIM ROAD OTTAWA, ONTARIO JAN	
PCA WITHIN 250 M OF THE SITE (NOT TO SCALE) PROJECT NO. 230202 DATE JANUARY 2024	

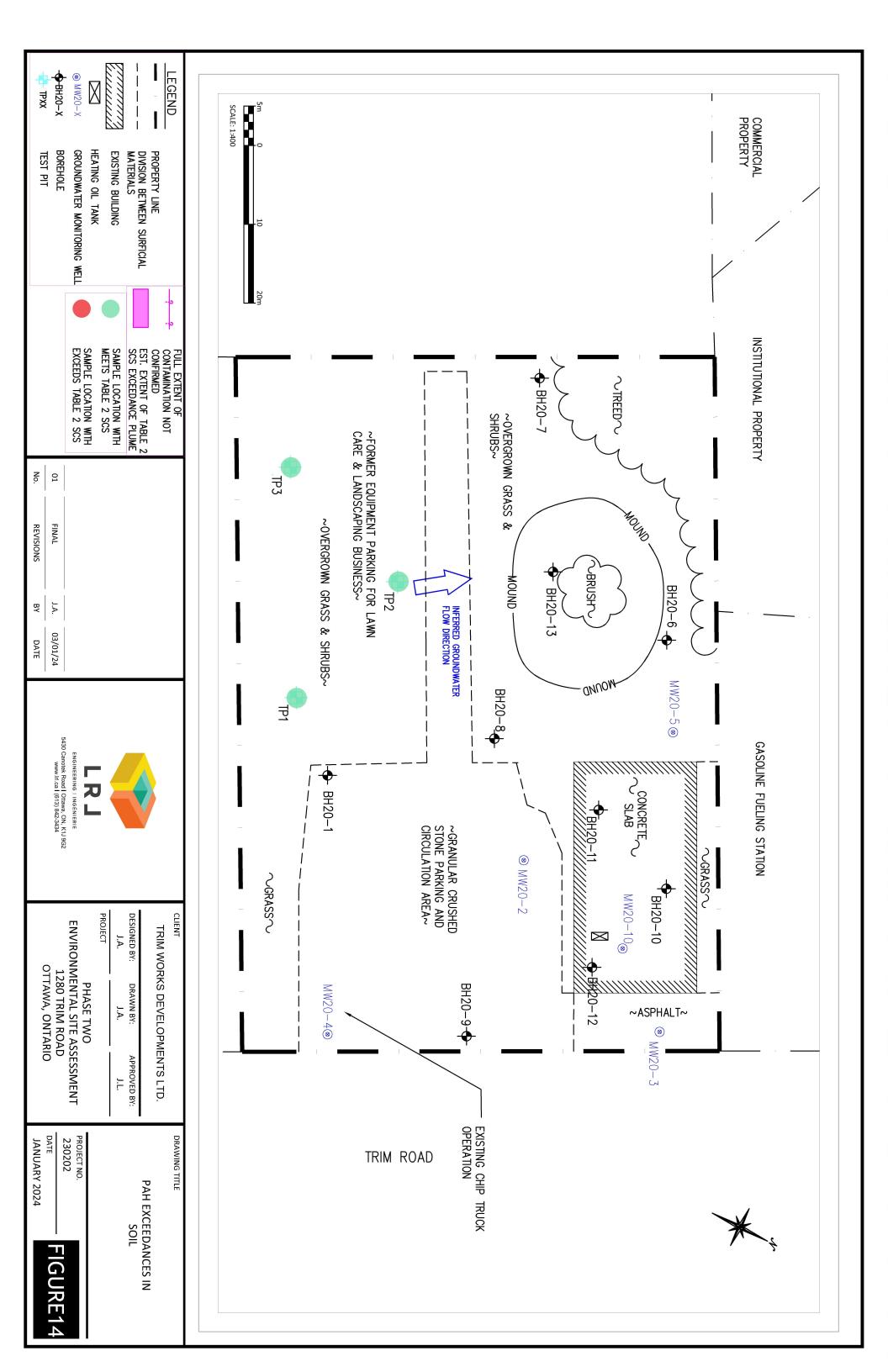


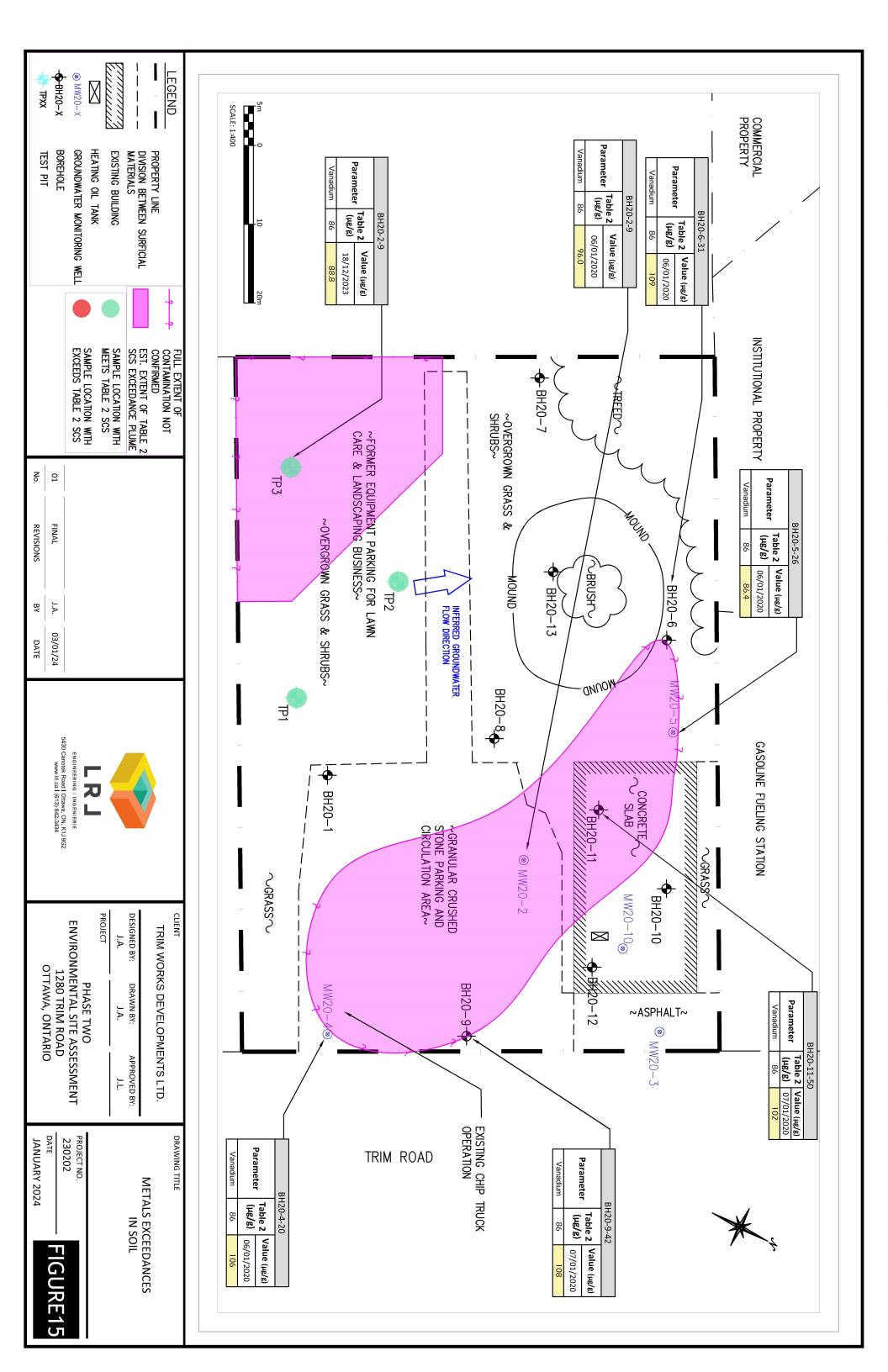


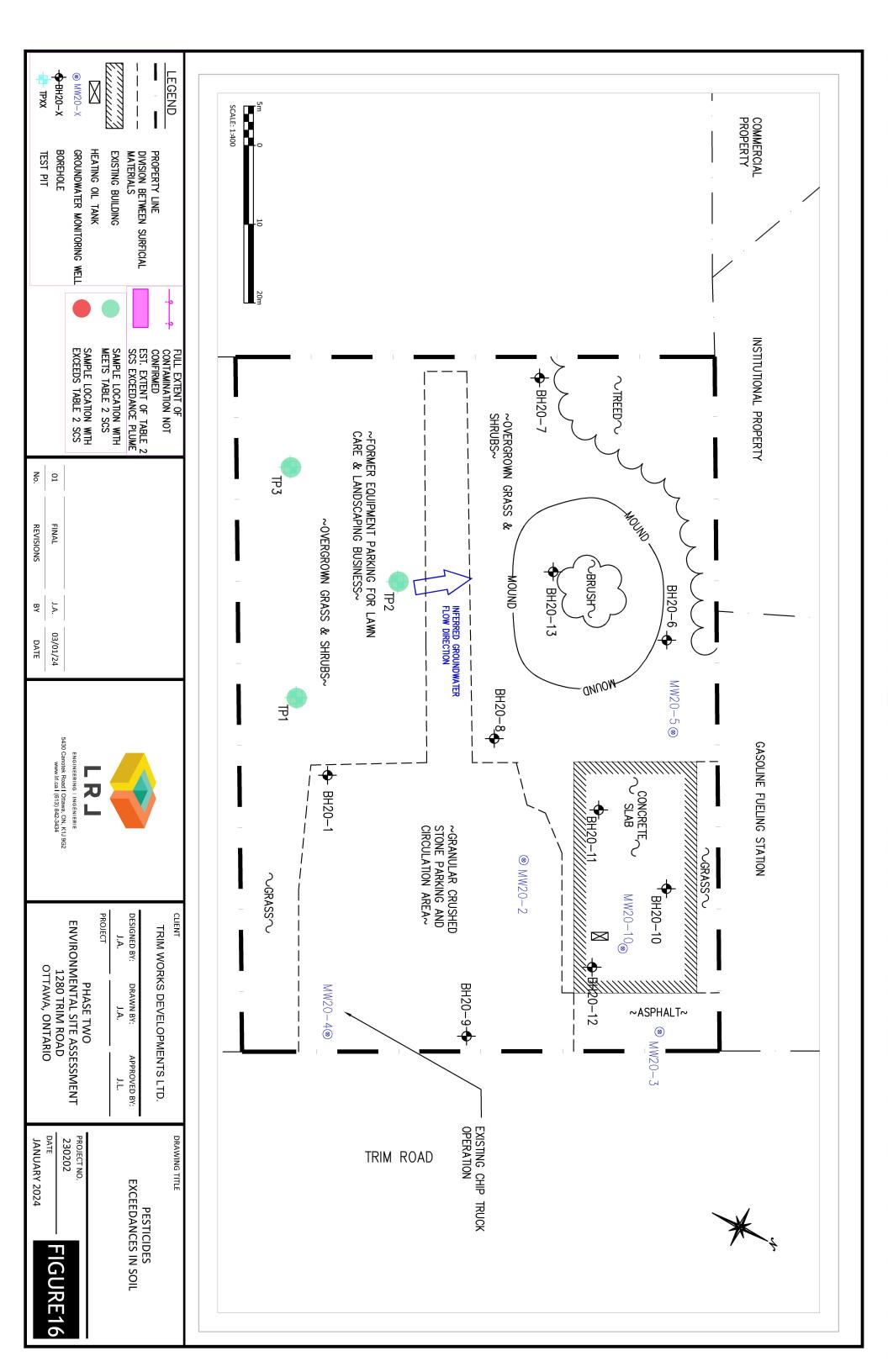


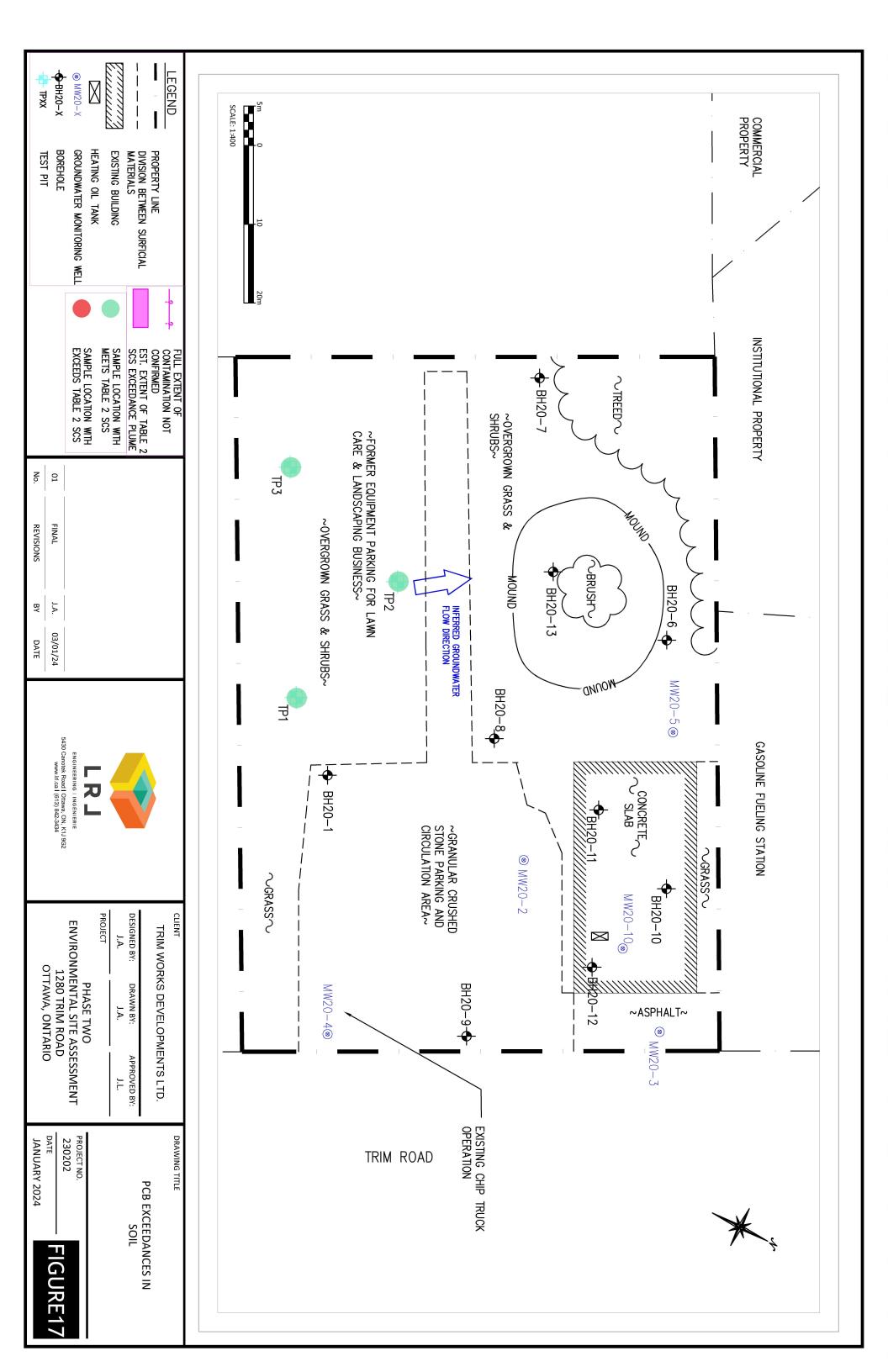












TABLES

 Table 1

 Summary of Groundsurface and Groundwater Elevations (December 18, 2023)

 Phase Two Environmental Site Assessment

 1280 Trim Road, Ottawa, Ontario

		L	RL File: 230202		
Monitoring Well	Ground Surface Elevation ¹ (m)	Reference Elevation ² (m)	Depth To Wa Reference Point	ter Table (m) Ground Surface	Groundwater Elevation (m)
MW20-2	99.32	99.20	0.65	0.77	98.55
MW20-3	99.18	99.10	1.26	1.34	97.84
MW20-5	98.83	98.77	1.15	1.21	97.62
MW20-10	99.16		0.59		
MW23-3	100.16	101.15	1.71	0.72	99.44

NOTES:

¹ Elevations measured from temporary benchmark established at the top-centre of the City of Ottawa storm sewer service cover, along Trim Road, immediately east of the Site (100.00 m).

² Reference elevation is top of PVC riser.

-- No Value/Not Measured

			O. Reg. 153/04 ¹							L	RL File: 230202		0									
			Table 2 ²										Sample									
Parameter	Units	MDL	Commercial Property Use Coarse textured soil	TP1-SS1	TP1-SS2	TP2-SS1	TP2-SS5	TP3-SS2	TP3-SS3	BH20-1-1	BH20-2-9	BH20-3-15	BH20-4-20	BH20-5-26	BH20-6-31	BH20-7-33	BH20-8-36	BH20-9-42	BH20-10-46	BH20-11-50	BH20-12-53	BH20-1
ple Date (d/m/y)				2023-12-18	2023-12-18	2023-12-18	2023-12-18	2023-12-18	2023-12-18	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-
th / Readings ³	m ppm	5		0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	2.4 - 3.0	0.6 - 1.2	1.2 - 1.8	0.0 - 0.6	1.2 - 1.8 <0.1	<u>0.6 - 1.2</u> <0.1	0.6 - 1.2	0.6 - 1.2	<u>1.2 - 1.8</u> <0.1	0.0 - 0.6	0.0 - 0.6	<u>1.2 - 1.8</u> 0.1	0.6 - 0.8	0.6 - 1.2	0.6 - 1.2 4.6	0.0
vsical Characteristics	ppin			2.7	0.0	0.2	1.0	2.1	2.2	0.2	-0.1	40.1	40.1	-0.1	-0.1	0.1	2.1	0.1	0.1	0.2	4.0	
Solids	% by wt.	0.1		74.2	73.6	74.9	70.1	71.8	70.3	77.5	80.7	87.0	78.5	83.2	73.5	60.3	97.3	77.9	93.4	76.3	80.5	9
neral Inorganics																						
R	N/A	0.01	12		1.50	2.25		2.30													-	
nductivity anide, free	uS/cm	5 0.03	1400 0.051		363	713 <0.03		634 <0.03														
	pH Units	0.05	0.051		7.19	6.86		6.80														
blatiles	pri onito	0.00			1.10	0.00		0.00														
etone	ug/g dry	0.50	16	<0.50			<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0
enzene	ug/g dry	0.02	0.32	<0.02			<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0
omodichloromethane	ug/g dry	0.05	18	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0
omoform	ug/g dry	0.05	0.61	< 0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0
omomethane	ug/g dry	0.05	0.05	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
Irbon Tetrachloride	ug/g dry ug/g dry	0.05	0.21	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<(
lloroform	ug/g dry ug/g dry	0.05	0.47	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
promochloromethane	ug/g dry	0.05	13	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
chlorodifluoromethane	ug/g dry	0.05	16	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
2-Dichlorobenzene	ug/g dry	0.05	6.8	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
Dichlorobenzene	ug/g dry	0.05	9.6	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
-Dichlorobenzene	ug/g dry	0.05	0.2	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<
-Dichloroethane	ug/g dry ug/g dry	0.05	17 0.05	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
-Dichloroethylene	ug/g dry ug/g dry	0.05	0.064	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
-1,2-Dichloroethylene	ug/g dry	0.05	55	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<
ns-1,2-Dichloroethylene	ug/g dry	0.05	1.3	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
2-Dichloropropane	ug/g dry	0.05	0.16	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
s-1,3-Dichloropropylene	ug/g dry	0.05		<0.05			< 0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<(
ans-1,3-Dichloropropylene	ug/g dry	0.05		<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05 <0.05	<0.05	<0.05	< 0.05	<(
3-Dichloropropene, total hylbenzene	ug/g dry ug/g dry	0.05	0.18 9.5	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
hylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	0.05	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
exane	ug/g dry	0.05	46	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
ethyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	70	<0.50			<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<(
ethyl Isobutyl Ketone	ug/g dry	0.50	31	<0.50			<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<(
ethyl tert-butyl ether	ug/g dry	0.05	11	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0
ethylene Chloride	ug/g dry	0.05	1.6	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<(
yrene 1,1,2-Tetrachloroethane	ug/g dry ug/g dry	0.05	34 0.087	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
1,2,2-Tetrachloroethane	ug/g dry ug/g dry	0.05	0.05	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0
trachloroethylene	ug/g dry	0.05	4.5	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0
luene	ug/g dry	0.05	68	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
,1-Trichloroethane	ug/g dry	0.05	6.1	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<(
,2-Trichloroethane	ug/g dry	0.05	0.05	< 0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<(
chloroethylene	ug/g dry	0.05	0.91	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
chlorofluoromethane yl Chloride	ug/g dry ug/g dry	0.05	4 0.032	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
p-Xylene	ug/g dry ug/g dry	0.02		<0.02			<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	~
(ylene	ug/g dry	0.05		<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<
enes, total	ug/g dry	0.05	26	<0.05			<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
Irocarbons																						
PHCs (C6-C10)	ug/g dry	7	55	<7			<7		<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	16	
PHCs (C10-C16)	ug/g dry	4	230	<4			<4		<4	<4	<4	<4	<4	<4	<4	9	<4	<4	<4	<4	107	
PHCs (C16-C34)	ug/g dry	8	1700 3300	<8 <6			<8 <6		<8	<8	<8	<8	<8 <6	<8	<8	13 <6	<8	<8	109	<8 <6	79 <6	
PHCs (C34-C50)	ug/g dry													<n< td=""><td><o< td=""><td><0></td><td><<u>n</u></td><td><u><n< u=""></n<></u></td><td></td><td></td><td><u>sn</u></td><td></td></o<></td></n<>	<o< td=""><td><0></td><td><<u>n</u></td><td><u><n< u=""></n<></u></td><td></td><td></td><td><u>sn</u></td><td></td></o<>	<0>	< <u>n</u>	<u><n< u=""></n<></u>			<u>sn</u>	

Table 3 Summary of Soil Semi Volatile Analysis Phase Two Environmental Site Assessment

			O. Reg. 153/04 ¹ Table 2 ²		Sample	
Parameter	Units	MDL	Commercial Property Use Coarse textured soil	TP1-SS1	TP2-SS5	TP3-SS3
Sample Date (d/m/y)				2023-12-18	2023-12-18	2023-12-18
Depth	m			0.0 - 0.6	2.4 - 3.0	1.2 - 1.8
CSV Readings ³	ppm	5		2.4	1.0	2.2
Physical Characteristics						
% Solids	% by wt.	0.1		74.2	70.1	70.3
Semi-Volatiles						
Acenaphthene	ug/g dry	0.02	21	<0.02	<0.02	<0.02
Acenaphthylene	ug/g dry	0.02	0.15	<0.02	<0.02	<0.02
Anthracene	ug/g dry	0.02	0.67	<0.02	<0.02	<0.02
Benzo[a]anthracene	ug/g dry	0.02	0.96	0.03	<0.02	<0.02
Benzo[a]pyrene	ug/g dry	0.02	0.3	0.02	<0.02	<0.02
Benzo[b]fluoranthene	ug/g dry	0.02	0.96	0.03	<0.02	<0.02
Benzo[g,h,i]perylene	ug/g dry	0.02	9.6	0.02	<0.02	<0.02
Benzo[k]fluoranthene	ug/g dry	0.02	0.96	<0.02	<0.02	<0.02
Chrysene	ug/g dry	0.02	9.6	0.03	<0.02	<0.02
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.1	<0.02	<0.02	<0.02
Fluoranthene	ug/g dry	0.02	9.6	0.07	<0.02	<0.02
Fluorene	ug/g dry	0.02	62	<0.02	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	ug/g dry	0.02	0.76	<0.02	<0.02	<0.02
1-Methylnaphthalene	ug/g dry	0.02	30	<0.02	<0.02	<0.02
2-Methylnaphthalene	ug/g dry	0.02	30	<0.02	<0.02	<0.02
Methylnaphthalene (1&2)	ug/g dry	0.04	30	<0.04	<0.04	<0.04
Naphthalene	ug/g dry	0.01	9.6	<0.01	<0.01	<0.01
Phenanthrene	ug/g dry	0.02	12	0.04	<0.02	<0.02
Pyrene	ug/g dry	0.02	96	0.06	<0.02	<0.02

NOTES:

1 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

2 Table 2: Full depth generic site condition standards in a potable groundwater condition.

3 Combustible soil vapour concentrations measured with a MiniRAE 3000 PID

MDL Method Detection Limit

-- No Value/Not Analysed

									Phase Two Environm 1280 Trim Road	il Metals Analysis nental Site Assessmer I, Ottawa, Ontario e: 230202	nt								
			O. Reg. 153/04 ¹ Table 2 ² Commercial Property Use								Sar								
Parameter	Units	MDL	Coarse textured soil	TP1-SS2	TP2-SS1	TP3-SS2	BH20-1-1	BH20-2-9	BH20-3-15	BH20-4-20	BH20-5-26	BH20-6-31	BH20-7-33	BH20-8-36	BH20-9-42	BH20-10-46	BH20-11-50	BH20-12-53	BH20-13-55
Sample Date (d/m/y)			-	2023-12-18	2023-12-18	2023-12-18	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-06	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07
Depth	m		-	0.6 - 1.2	0.0 - 0.6	0.6 - 1.2	0 - 0.6	1.2 - 1.8	0.6 - 1.2	0.6 - 1.2	0.6 - 1.2	1.2 - 1.8	0 - 0.6	0 - 0.6	1.2 - 1.8	0.6 - 0.8	0.6 - 1.2	0.6 - 1.2	0 - 0.6
Physical Characteristi % Solids	cs % by wt.	0.1		73.6	74.9	71.8	77.5	80.7	87.0	78.5	83.2	73.5	60.3	97.3	77.9	93.4	76.3	80.5	99.2
Metals	70 Dy WL	0.1		13.0	14.5	71.0	11.5	00.7	07.0	10.5	03.2	13.5	00.5	51.5	11.5	55.4	70.5	00.5	33.2
Antimony	ug/g dry	1.0	40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	ug/g dry	1.0	18	3.0	3.9	3.9	3.2	4.4	3	5.3	3.6	4.3	2.6	1.5	4.6	1.2	4.1	2.9	<1.0
Barium	ug/g dry	1.0	670	190	147	209	166	251	186	301	212	278	69.3	253	312	28.2	291	214	25
Beryllium	ug/g dry	0.5	8	0.8	0.8	0.8	0.6	0.9	0.6	0.9	0.8	1	<0.5	<0.5	1.0	<0.5	1.0	0.9	<0.5
Boron, available	ug/g dry	0.5	2	<0.5	1.0	<0.5													
Boron	ug/g dry	5.0	120	8.4	6.5	7.9	7.9	10.1	<5.0	7.3	6.7	9.2	9.5	9	9.9	<5.0	8.2	5.9	<5.0
Cadmium	ug/g dry	0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (VI)	ug/g dry	0.2	8	0.8	<0.2	1.0													
Chromium	ug/g dry	5.0	160	131	81.1	122	70.8	111	89.1	133	109	149	22	10	148	10	141	117	7.6
Cobalt	ug/g dry	1.0	80	22.3	17.3	23.2	14.6	24.3	14.7	28.1	17.5	27.6	7.7	2.4	28.1	3.6	23.0	20.2	3.4
Copper	ug/g dry	5.0	230	50.2	26.1	47.6	26	51.9	26.1	47.1	40	45.8	19.2	<5.0	55.8	<5.0	47.2	33.3	<5.0
Lead	ug/g dry	1.0	120	9.8	12.5	10.1	30.5	8.9	5.6	9.6	8.1	10.6	9.1	3.9	10.8	1.6	10.8	7.9	<1.0
Mercury	ug/g dry	0.1	3.9	<0.1	<0.1	<0.1		-					-					-	
Molybdenum	ug/g dry	1.0	40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nickel	ug/g dry	5.0	270	70.6	39.0	64.5	37.6	63.2	43.7	70.4	56.7	78.4	17.1	7.6	80.7	8.5	72.7	56.1	8.1
Selenium	ug/g dry	1.0	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	ug/g dry	0.3	40	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	ug/g dry	1.0	3.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	ug/g dry	1.0	33	<1.0	2.2	1.1	<1.0	1.1	<1.0	1.3	1.4	1.6	<1.0	<1.0	1.4	<1.0	2.2	1.8	<1.0
Vanadium	ug/g dry	10.0	86	84.3	69.3	<u>88.8</u>	56.5	<u>96.0</u>	80.1	<u>106</u>	<u>86.4</u>	<u>109</u>	24.2	<10.0	<u>108</u>	14.4	<u>102</u>	85.7	10.4
Zinc	ug/g dry	20.0	340	105	99.8	103	90.2	92.2	69.1	111.0	81.3	96.9	60.8	<20.0	104.0	21.5	101	99.2	<20.0

Table 4

NOTES:

 NOTES:

 1
 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

 2
 Table 2: Full depth generic site condition standards in a potable groundwater condition.

 MDL
 Method Detection Limit

 No Value/Not Analysed

 BOLD
 Above the Table 2 SCS

Table 5 Summary of Soil Pesticides and PCB Analysis Phase Two Environmental Site Assessment 1280 Trim Road, Ottawa, Ontario LRL File: 230202

			O. Reg. 153/04 ¹ Table 2 ²			Sample		
			Commercial Property Use	TP1-SS2	TP1-SS4	TP2-SS2	TP3-SS1	TP3-SS2
Parameter	Units	MDL	Coarse textured soil					
Sample Date (d/m/y) Depth	m			2023-12-18 0.6 - 1.2	2023-12-18 1.8 - 2.4	2023-12-18 0.6 - 1.2	2023-12-18 0.0 - 0.6	2023-12-18 0.6 - 1.2
Physical Characteristics				0.0 - 1.2	1.0 - 2.4	0.0 - 1.2	0.0 - 0.0	0.0 - 1.2
% Solids	% by wt.	0.1		73.6	61.3	76.8	91.8	71.8
Pesticides, OC	· · · · ·							
Aldrin	ug/g dry	0.01	0.088	<0.01		<0.01	<0.01	
gamma-BHC (Lindane)	ug/g dry	0.01	0.056	<0.01		<0.01	<0.01	
alpha-Chlordane	ug/g dry	0.01		<0.01		<0.01	<0.01	
gamma-Chlordane	ug/g dry	0.01		<0.01		<0.01	<0.01	
Chlordane	ug/g dry	0.01	0.05	<0.01		<0.01	<0.01	
o,p-DDD	ug/g dry	0.01		<0.01		<0.01	<0.01	
p,p-DDD	ug/g dry	0.02		<0.02		<0.02	<0.02	
DDD	ug/g dry	0.02	4.6	<0.02		<0.02	<0.02	
o,p-DDE	ug/g dry	0.01		<0.01		<0.01	<0.01	
p,p-DDE	ug/g dry	0.01		<0.01		<0.01	<0.01	
DDE	ug/g dry	0.01	0.52	<0.01		<0.01	<0.01	
o,p-DDT	ug/g dry	0.01		<0.01		<0.01	<0.01	
p,p-DDT	ug/g dry	0.01		<0.01		<0.01	<0.01	
DDT	ug/g dry	0.01	1.4	<0.01		<0.01	<0.01	
Dieldrin	ug/g dry	0.02	0.088	<0.02		<0.02	<0.02	
Endrin	ug/g dry	0.02	0.04	<0.02		<0.02	<0.02	
Endosulfan I	ug/g dry	0.01		<0.01		<0.01	<0.01	
Endosulfan II	ug/g dry	0.02		<0.02		<0.02	<0.02	
Endosulfan I/II	ug/g dry	0.02	0.3	<0.02		<0.02	<0.02	
Heptachlor	ug/g dry	0.01	0.19	<0.01		<0.01	<0.01	
Heptachlor Epoxide	ug/g dry	0.01	0.05	<0.01		<0.01	<0.01	
Hexachlorobenzene	ug/g dry	0.01	0.66	<0.01		<0.01	<0.01	
Hexachlorobutadiene	ug/g dry	0.01	0.031	<0.01		<0.01	<0.01	
Hexachloroethane	ug/g dry	0.01	0.21	<0.01		<0.01	<0.01	
Methoxychlor	ug/g dry	0.01	1.6	<0.01		<0.01	<0.01	
PCBs								
PCBs, total	ug/g dry	0.05	1.1		<0.05	<0.05		<0.05
NOTES								

NOTES: 1 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

² Table 2: Full depth generic site condition standards in a potable groundwater condition.

MDL Method Detection Limit

-- No Value/Not Analysed

Table 6 Summary of Groundwater PHC and VOC Analysis Phase Two Environmental Site Assessment 1280 Trim Road, Ottawa, Ontario LRL File: 230202

			O. Reg. 153/04 ¹ Table 2 ²					Sar	nple				
Parameter	Units	MDL	Commercial Property Use Coarse textured soil		MW20-2		MM	20-3	MW20-4	MW	20-5	MW20-10	MW23-3 (Test Pit
ample Date (d/m/y)	Unita	MDL		2020	-01-09	2023-12-18	2020-01-09	2023-12-18	2020-01-09	2020-01-09	2023-12-18	2023-12-18	2023-12
	ppm	0.1			.7	0.4	1.8	<0.1	5.3	0.2	<0.1	2.2	<0.1
eadspace VOC Readings ³			4		No	No	No	No	Dry	No	No	No	No
vidence of free product?						INU	NO	NO	Diy	INU	INO	NO	110
kcetone	ug/L	5.0	2700	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	67.4
lenzene	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<07.4
Bromodichloromethane	-		16	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
Bromotorm	ug/L	0.5	25	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
	ug/L												<0.5
Bromomethane	ug/L	0.5	0.89	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride Chlorobenzene	ug/L	0.2	30	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2
	ug/L								-				
Chloroform	ug/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	ug/L	0.5	25 590	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	ug/L	1.0		<1.0		<1.0			-				<1.0
,2-Dichlorobenzene	ug/L	0.5	3	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,3-Dichlorobenzene	ug/L	0.5	59	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,4-Dichlorobenzene	ug/L	0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1-Dichloroethane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
,2-Dichloroethane	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1-Dichloroethylene	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
is-1,2-Dichloroethylene	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
rans-1,2-Dichloroethylene	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
,2-Dichloropropane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
is-1,3-Dichloropropylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
ans-1,3-Dichloropropylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
,3-Dichloropropene, total	ug/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5
thylbenzene	ug/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
thylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2
lexane	ug/L	1.0	51	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	1800	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0
Nethyl Isobutyl Ketone	ug/L	5.0	640	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0
Nethyl tert-butyl ether	ug/L	2.0	15	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	<2.0
Nethylene Chloride	ug/L	5.0	50	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0
Styrene	ug/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1,1,2-Tetrachloroethane	ug/L	0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1,2,2-Tetrachloroethane	ug/L	0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Fetrachloroethylene	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
oluene	ug/L	0.5	24	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1,1-Trichloroethane	ug/L	0.5	200	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
,1,2-Trichloroethane	ug/L	0.5	4.7	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
richloroethylene	ug/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
richlorofluoromethane	ug/L	1.0	150	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0
'inyl Chloride	ug/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
n/p-Xylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
-Xylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Kylenes, total	ug/L	0.5	300	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
lydrocarbons													
1 PHCs (C6-C10)	ug/L	25	750	<25	<25	<25	<25	<25		<25	<25	<25	<25
2 PHCs (C10-C16)	ug/L	100	150	<100	<100	<100	<100	<100		<100	<100	<100	<100
3 PHCs (C16-C34)	ug/L	100	500	<100	<100	<100	<100	<100		<100	<100	<100	<10
A PHCs (C34-C50) 3TES: ¹ MECP's Soil, Ground Water and Sediment Site ² Table 2: Full depth generic site condition stand- ³ Headspace values were measured with a Minil ³ To meet the standard there must be no eviden ML Method Detection Limit ⁴ No ValueNAcI Analysed PHC Perforum Hydrocachon	ards in a potable g RAE 3000 PID.	roundwater	condition.	<100	<100	<100	<100	<100		<100	<100	<100	<100

W: FILES 2023/230202/04 Environmental/02 PhaseIIESA/05 Reports/2024.01.02 LRL230202. Tables. PhaseTwoUpdateESA.1280TrimRoadOttawa. TrimWorks

Table 7 Summary of Groundwater Metals Analysis Phase Two Environmental Site Assessment 1280 Trim Road, Ottawa, Ontario LRL File: 230202

			O. Reg. 153/04 ¹ Table 2 ²					Sar	nple				
Parameter	Units	MDL	Commercial Property Use Coarse-Textured Soil		MW20-2		MM	/20-3	MW20-4	MW	20-5	MW20-10	MW23-3 (Test Pit)
Sample Date (d/m/y)				2020	-01-09	2023-12-20	2020-01-09	2023-12-20	2020-01-09	2020-01-09	2023-12-20	2023-12-20	2023-12-20
Metals													
Antimony	µg/L	0.5	6	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Arsenic	µg/L	1	25	2	2	2	<1	<1		<1	3	<1	<1
Barium	μg/L	1	1000	135	133	30	83	17		58	26	29	62
Beryllium	μg/L	0.5	4	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
Boron	μg/L	10	5000	243	236	190	116	87		114	64	73	93
Cadmium	μg/L	0.1	2.7	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1
Chromium	μg/L	1	50	<1	<1	<1	<1	<1		<1	<1	<1	<1
Chromium (VI)	μg/L	10	25			<10		<10			<10	<10	<10
Cobalt	μg/L	0.5	3.8	0.7	0.8	<0.5	0.9	<0.5		<0.5	0.7	<0.5	0.9
Copper	μg/L	0.5	87	6.3	3.1	0.9	4	1.3		3.3	0.6	2.4	1.7
Lead	μg/L	0.1	10	0.4	<0.1	<0.1	0.1	<0.1		<0.1	<0.1	<0.1	<0.1
Mercury	μg/L	0.1	0.29			<0.1		<0.1			<0.1	<0.1	<0.1
Molybdenum	μg/L	0.5	70	6.1	6	3.7	2.7	2.2		1.5	1.8	2.3	1.4
Nickel	μg/L	1	100	2	2	<1	3	2		6	3	3	2
Selenium	µg/L	1	10	<1	<1	<1	<1	<1		<1	<1	<1	<1
Silver	µg/L	0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1
Sodium	μg/L	200	490000	399000	403000	342000	162000	162000		155000	78600	195000	191000
Thallium	µg/L	0.1	2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1
Uranium	μg/L	0.1	20	8.8	8.7	4.8	5.2	4.8		6.2	3.6	4.9	11.8
Vanadium	μg/L	0.5	6.2	2.4	2.4	1.0	1.1	<u>9.9</u>		1.9	1.5	1.7	2.1
Zinc	µg/L	5	1100	6	16	<5	5	<5		6	<5	<5	<5

NOTES:

 Image: Network
 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

 2
 Table 2: Generic Site Condition Standards for Use in a Potable Groundwater Condition, commercial property use.

 MDL
 Method Detection Limit.

-- No Value/Not Analysed.
 BOLD
 Above Table 2 Site Condition Standard.
 Italics
 Duplicate Sample Collected

Table 8 Summary of Groundwater PAH Analysis Phase Two Environmental Site Assessment 1280 Trim Road, Ottawa, Ontario

)	Trim Road,	Ottawa,	Ontario
	I RI File	230202	

			O. Reg. 153/04 ¹ Table 2 ²	2 Sampe								
Parameter	Units	MDL	Commercial Property Use Coarse textured soil	MW	20-2	MW	20-3	MW20-4	MW2	20-5	MW20-10	MW23-3 (Test Pit)
Sample Date (d/m/y)				2020-01-09	2023-12-20	2020-01-09	2023-12-20	2020-01-09	2020-01-09	2023-12-20	2023-12-20	2023-12-20
Headspace VOC Readings ³	ppm	0.1		0.7	0.4	1.8	<0.1	5.3	0.2	<0.1	2.2	<0.1
Evidence of free product?			4	No	No	No	No	Dry	No	No	No	No
Semi-Volatiles												
Acenaphthene	ug/L	0.05	4.1		<0.05		<0.05		-	<0.05	<0.05	<0.05
Acenaphthylene	ug/L	0.05	1		<0.05		<0.05		-	<0.05	<0.05	0.20
Anthracene	ug/L	0.01	2.4		0.04		0.03		-	0.04	0.02	0.23
Benzo[a]anthracene	ug/L	0.01	1		0.10		0.02		-	0.06	0.03	0.36
Benzo[a]pyrene	ug/L	0.01	0.01		<u>0.21</u>		<u>0.04</u>			<u>0.05</u>	<0.01	0.30
Benzo[b]fluoranthene	ug/L	0.05	0.1		<u>0.40</u>		0.05			0.06	<0.05	0.29
Benzo[g,h,i]perylene	ug/L	0.05	0.2		<u>0.60</u>		0.18			0.15	<0.05	<u>0.21</u>
Benzo[k]fluoranthene	ug/L	0.05	0.1		<u>0.21</u>		<0.05			<0.05	<0.05	<u>0.17</u>
Chrysene	ug/L	0.05	0.1		<u>0.14</u>		<0.05			0.06	<0.05	0.35
Dibenzo[a,h]anthracene	ug/L	0.05	0.2		0.05		<0.05			<0.05	<0.05	<0.05
Fluoranthene	ug/L	0.01	0.41		0.06		0.01	-		0.16	0.04	<u>1.06</u>
Fluorene	ug/L	0.05	120		<0.05		<0.05			<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	ug/L	0.05	0.2		<u>0.38</u>		0.12			0.09	<0.05	0.17
1-Methylnaphthalene	ug/L	0.05	3.2		<0.05		<0.05			<0.05	<0.05	<0.05
2-Methylnaphthalene	ug/L	0.05	3.2		<0.05		<0.05			<0.05	<0.05	<0.05
Methylnaphthalene (1&2)	ug/L	0.10	3.2		<0.10		<0.10			<0.10	<0.10	<0.10
Naphthalene	ug/L	0.05	11		<0.05		0.11			0.05	0.19	0.14
Phenanthrene	ug/L	0.05	1		<0.05		<0.05			0.09	0.06	0.51
Pyrene	ug/L	0.01	4.1		0.41		0.07			0.18	0.04	0.88
NOTES												

NOTES:

¹ MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

² Table 2: Full depth generic site condition standards in a potable groundwater condition.

³ Headspace values were measured with a MiniRAE 3000 PID.

⁴ To meet the standard there must be no evidence of free product including film or sheen.

MDL Method Detection Limit

-- No Value/Not Analysed

BOLD Above the Table 2 SCS

Table 9 Summary of Groundwater Pesticides & PCBs Analysis Phase Two Environmental Site Assessment 1280 Trim Road, Ottawa, Ontario LRL File: 230202

			O. Reg. 153/04 ¹ Table 2 ²	e 2 ² MW20-2								
Parameter	Units	MDL	Commercial Property Use Coarse textured soil	MV	/20-2	MW	20-3	MW20-4	MW	20-5	MW20-10	MW23-3 (Test Pit)
Sample Date (d/m/y)				2020-01-09	2023-12-20	2020-01-09	2023-12-20	2020-01-09	2020-01-09	2023-12-20	2023-12-18	2023-12-20
Pesticides, OC												
Aldrin	ug/L	0.01	0.35		<0.01		<0.01			<0.01	<0.01	<0.01
gamma-BHC (Lindane)	ug/L	0.01	1.2		<0.01		<0.01			<0.01	<0.01	<0.01
alpha-Chlordane	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
gamma-Chlordane	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
Chlordane	ug/L	0.01	7		<0.01		<0.01			<0.01	<0.01	<0.01
o,p-DDD	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
p,p-DDD	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
DDD	ug/L	0.01	10		<0.01		<0.01			<0.01	<0.01	<0.01
o,p-DDE	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
p,p-DDE	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
DDE	ug/L	0.01	10		<0.01		<0.01			<0.01	<0.01	<0.01
o,p-DDT	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	0.02
p,p-DDT	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
DDT	ug/L	0.01	2.8		<0.01		<0.01			<0.01	<0.01	0.02
Dieldrin	ug/L	0.01	0.35		<0.01		<0.01			<0.01	<0.01	<0.01
Endrin	ug/L	0.01	0.48		<0.01		<0.01			<0.01	<0.01	<0.01
Endosulfan I	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
Endosulfan II	ug/L	0.01			<0.01		<0.01			<0.01	<0.01	<0.01
Endosulfan I/II	ug/L	0.01	1.5		<0.01		<0.01			<0.01	<0.01	<0.01
Heptachlor	ug/L	0.01	1.5		<0.01		<0.01			<0.01	<0.01	<0.01
Heptachlor Epoxide	ug/L	0.01	0.048		<0.01		<0.01			<0.01	<0.01	<0.01
Hexachlorobenzene	ug/L	0.01	1		<0.01		<0.01			<0.01	<0.01	<0.01
Hexachlorobutadiene	ug/L	0.01	0.44		<0.01		<0.01			<0.01	<0.01	<0.01
Hexachloroethane	ug/L	0.01	2.1		<0.01		<0.01			<0.01	<0.01	<0.01
Methoxychlor	ug/L	0.01	6.5		<0.01		<0.01			<0.01	<0.01	<0.01
PCBs	ug/L											
PCBs, total	ug/L	0.05	3		<0.05		<0.05			<0.05	<0.05	<0.05

NOTES:

MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011 1

 mECF s can, clourly write and Securiterit Startudids for USE Under Part XV.1 of the E

 Table 2: Full depth generic site condition standards in a potable groundwater condition.

 MDL
 Method Detection Limit

No Value/Not Analysed ---

APPENDIX A

Borehole Logs / Test Pit Logs

Client: Halo Car Wash Inc.

Date: January 6, 2020

Field Personnel: VW

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

รเ			SAI	MPL	E D/	ATA				
		Ê			ber				Combustible Soil Vapours o ppm o	
		pth (>		Mum	(%) (V (%)	lysis	20 40 60 80	Monitoring Well Details
Ę	Soil Description	Elev./Depth (m)	Lithology	e	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □	
Depth		Ele	Lit L	Type	Sar	o Z	Rec	Lab	10 20 30 40 50 60 70 80 90	
0.0 ft m	Ground Surface	99.84 0.00	-					PHC,		
	FILL Silty sand with clay and gravel,	0.00	•	V	1			VOC,	0.2	
1.0	brown, loose.			X		24	100	Metals		
					2				<0.1	
2.0	CLAY	99.23 0.61	Ŧ						<0.1	
3.0-	Silty, becoming less silty with depth. Colour alternating between		H.		3	9	<u> </u>			
	grey, grey-brown and reddish- brown. Moist, to saturated at 1.2 m		Ŧ		4	9	69		<0.1	
4.0	bgs. Stiff.		Ŧ							
			H	V						
5.0			Ŧ	X	5	12	67		, <0.1	
		98.01	Æ							
6.0	End of Borehole	1.83								
7.0										
8.0										
9.0										
10.0 - 3.0										
11.0										
12.0										
4.0										
14.0										
15.0										
16.0										
Easting	Easting: 0462524				8				NOTES BGS_Bolow Ground Surface	
Site Dat	cover	(100.	00 m	ı)				BGS - Below Ground Surface PHC - Petroleum Hydrocarbons		
Grounds	op of I	Riser	Elev	<i>.</i> :				VOC - Volatile Organic Com	oounds	
Hole Dia	meter: 203 mm M	onitor	ing V	Vell	Diam	eter:				

Client: Halo Car Wash Inc.

Date: January 6, 2020

Location: 1280 Trim Road, Ottawa, Ontario Field Personnel: VW

Project: Phase II Environmental Site Assessment

LRJ **Driller:** George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	BSURFACE PROFILE			SAI	MPL	E D/	ATA			
		Ê			ber				Combustible Soil Vapoursoppm20406080	
		Elev./Depth (m)	>		Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	20 40 60 80	Monitoring Well Details
Ę	Soil Description	./Del	log		ple 1	RQ	ver	Anal		Dotailo
Depth		Elev	Lithology	Type	Sam	N or	Reco	Lab	□ % LEL □ 10 20 30 40 50 60 70 80 90	
0.0 ft m	Ground Surface	98.84 0.00								
	TOPSOIL Loam, presence of organic	0.00		V				PHC, VOC,		
1.0-	material (i.e. vegetation, roots),		222	Y	33	15	21	Metals	0.1	
	brown, dry, loose.		22							
2.0	CLAY	98.23 0.61	Ĩ							
	Silty, becoming less silty with depth. Colour alternating between									
3.0	grey, grey-brown and reddish-				34	9	35		, <0.1	
4.0	brown. Moist, stiff.		Ŧ							
			Ŧ	V						
5.0			Ŧ	X	35	9	77		<0.1	
			Æ							
6.0	End of Borehole	97.01 1.83								
2.0 7.0										
8.0										
-										
9.0-										
10.0 - 3.0										
11.0										
12.0										
13.0 4.0										
14.0										
15.0										
16.0										
 Easting:	orthin	g: 50	3752	23	I	I		NOTES		
Site Datu	cover	(100.	00 m	ı)				BGS - Below Ground Surface PHC - Petroleum Hydrocarbons		
Grounds	op of F							VOC - Volatile Organic Comp		
Hole Dia	meter: 203 mm M	onitor	ing V	Vell	Diam	eter:				

Client: Halo Car Wash Inc.

Date: January 6, 2020

Field Personnel: VW

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	IBSURFACE PROFILE	SAMPLE DATA					ATA			
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	Combustible Soil Vapours o ppm o 20 40 60 80 • % LEL • 10 20 30 40 50 60 70 80 90	Monitoring Well Details
0.0 ft m	Ground Surface	99.35 0.00								
1.0	FILL Silty sand with gravel, brown, loose.				36	78	69	PHC, VOC, Metals	°2.7	
2.0 3.0 	CLAY Silty, becoming less silty with depth. Colour alternating between grey, blue-grey and grey-brown. Moist to saturated at 1.8 m bgs. Stiff.	98.74 0.61			37	9	33		, <0.1	
					38	11	42		, <0.1	
7.0 8.0		96.91			39	6	100		0.2	
9.0	End of Borehole	2.44								
10.0 - 3.0										
11.0										
14.0										
15.0										
16.0										
Site Datu	um: Center of sanitary sewer manhole							NOTES BGS - Below Ground Surface PHC - Petroleum Hydrocarbo VOC - Volatile Organic Comp	ns	
		Top of Riser Elev.: Monitoring Well Diameter:								

Borehole Log: BH20-10

Driller: George Downing Estate Drilling Ltd.

Project No.: 190766

Client: Halo Car Wash Inc.

Date: January 7, 2020

Field Personnel: VW

Drilling Equipment: Split-Spoon and Jack-Hammer

Drilling Method: Manual

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

SU	BSURFACE PROFILE			SAN	MPL	E D/	٩TA			
		(m			ber				Combustible Soil Vapours o ppm o	
		oth (i	~		Mum	(%)	(%) /	ysis	20 40 60 80	Monitoring Well Details
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	Details
ft m	CONCRETE SLAB	-	****							
0.0 0.0	Ground Surface	<u>99.16</u> 0.00								
- 0.0 - 0.0 1.0	FILL Crushed stone underlain by sand, brown, moist, loose.	0.00			45		60		, 0.1	
2.0								PHC, VOC,	0.1	
	CLAY Silty, colour alternating between	98.40 0.76	Ŧ,	V	46			Metals	, 0.1	
3.0 			Å	47		50		<0.1		
5.0		H H	Y	48		71		, <0.1		
-		07 33	Ŧ							
6.0	End of Borehole	97.33 1.83								
2.0 7.0										
8.0										
9.0 –										
10.0 - 3.0										
 11.0										
12.0										
13.0 - 4.0										
13.0 <u>-</u> 4.0										
14.0										
15.0										
 Easting:	0462531 Nc	orthing	g: 50	3756	5				NOTES	<u> </u>
_	Im: Center of sanitary sewer manhole of		-						BGS - Below Ground Surface PHC - Petroleum Hydrocarbo	
	-	p of F							VOC - Volatile Organic Comp	bounds
Hole Dia	meter: 51 mm Mo	onitor	ing V	Vell I	Diam	eter:				

Driller: George Downing Estate Drilling Ltd.

Project No.: 190766

Client: Halo Car Wash Inc.

Date: January 7, 2020

7, 2020 Field Personnel: VW
Drilling Equipment: Split-Spoon and Jack-Hammer

r Drilling Method: Manual

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

	SU	BSURFACE PROFILE			SAN	MPL	E D/	ATA			
			pth (m) y Number D (%) y (%) Iysis							Combustible Soil Vapours ppm ° 20 40 60 80	Monitoring Well
Denth		Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	Details
ft	m	CONCRETE SLAB	-	***							
0.0	- 0.0	Ground Surface	99.16 0.00								
1.0	-	Crushed stone underlain by sand, brown, moist, loose. Presence of black organic material.				49		71		0.1	
2.0	-	CLAY Silty, grey, moist, stiff.	98.55 0.61	H H	Ţ	50		33	PHC, VOC, Metals	0.2	
4.0	- 1.0 -			Ħ							
5.0	-			HHH		51		100		, <0.1	
6.0	-		97.33	2							
	- 2.0	End of Borehole									
7.0	-										
8.0	-										
9.0	- - 3.0										
10.0	- 3.0										
11.0 - - -	-										
12.0	_										
13.0	- 4.0										
- 	-										
15.0	-										
Ea	- stina:	0462520 N o	Northing: 5037562							NOTES	<u> </u>
		m: Center of sanitary sewer manhole of		-						BGS - Below Ground Surface PHC - Petroleum Hydrocarbo VOC - Volatile Organic Comp	ons
Gr	ounds	urface Elevation: 99.16 m To	p of l	Riser	Elev	·.:					
Ho	Hole Diameter: 51 mm Monitoring Well Diameter:										

Driller: George Downing Estate Drilling Ltd.

Project No.: 190766

Client: Halo Car Wash Inc.

Date: January 7, 2020

Field Personnel: VW

Drilling Equipment: Split-Spoon and Jack-Hammer Drilling Method: Manual

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

SU	BSURFACE PROFILE	SAMPLE DATA								
		Ê			ber				Combustible Soil Vapours o ppm o	
		oth (~		Mum	(%)	(%) /	ysis	20 40 60 80	Monitoring Well Details
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	
ft m										
	CONCRETE SLAB Ground Surface	99 16								
<u>- 0.0</u> - <u>-</u> 1.0 - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u>	FILL Crushed stone underlain by sand, brown, moist, loose. Presence of black organic material.	99.16			49		71		0.1	
2.0 3.0 4.0	CLAY Silty, colour alternating between grey, grey-brown and reddish- brown, moist, stiff. PHC odour detected throughout.	98.52 0.64			50		33	PHC, VOC, Metals	4 .6	
5.0-		07.00	H H H		51		100		0.6	
6.0	End of Borehole	97.33 1.83								
- 2.0 7.0 - 8.0 - 9.0 - 10.0 - 11.0 - 12.0 - 13.0 - 14.0 - 15.0 - - - - - - - - - - - - -										
⊢ Easting:	0462522 N d	Northing: 5037555							NOTES	I
_	um: Center of sanitary sewer manhole		-						BGS - Below Ground Surface PHC - Petroleum Hydrocarbo	ons
Grounds	surface Elevation: 99.16 m To	p of F	Riser	Elev	·.:				VOC - Volatile Organic Com	pounds
Groundsurface Elevation: 99.16 mTop of Riser Elev.:Hole Diameter: 51 mmMonitoring Well Diameter:										

Borehole Log: BH20-13

Project No.: 190766

Location: 1280 Trim Road, Ottawa, Ontario

Client: Halo Car Wash Inc. Date: January 7, 2020

Field Personnel: VW

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: Split-Spoon and Jack-Hammer

Drilling Method: Manual

Project: Phase II Environmental Site Assessment

SU			SAI	MPL	E D/	ATA				
		(m			lber	()		ß	Combustible Soil Vapoursoppm20406080	.
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	20 40 60 80	Monitoring Well Details
ft_m	Ground Surface	99.99 0.00								
	FILL Medium-grained sand, brown, moist, loose.	0.00			55		83	PHC, VOC, Metals	0.1	
3.0 - 		<u>98.77</u> 1.22			56		44		, <0.1	
5.0	CLAY Silty, grey-brown, moist, stiff. LOAM Dark brown, soft, moist. Presence of organic material (i.e. vegetation, /	98.59 1.40		X	57 58 5		67		0.1 <0.1 <0.1	
6.0 2.0 7.0	CLAY Silty, dark grey, moist, stiff. End of Borehole	<u>98.16</u> 1.83								
8.0										
10.0 - 3.0 3.0 										
14.0										
15.0 - - - - 16.0 - - -										
	0462485 N d	orthin	n. 20	3753	1 36				NOTES	
Site Datu	um: Center of sanitary sewer manhole	cover	(100.	00 m	ו)				BGS - Below Ground Surface PHC - Petroleum Hydrocarbo VOC - Volatile Organic Comp	ns
Grounds	surface Elevation: 99.99 m To	op of I	Riser	Elev	/.:					
Hole Dia	meter: 51 mm Mo									

Project: Phase II Environmental Site Assessment **Location:** 1280 Trim Road, Ottawa, Ontario

Client: Halo Car Wash Inc.

Date: January 6, 2020

Field Personnel: VW

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	SUBSURFACE PROFILE SAMPLE DATA									
		(u			nber	()	()	s	Combustible Soil Vapours ppm 0 20 40 60 80	
	Soil Description	epth	gy		Nun	%) QC	iry (%	alysi	20 40 60 80	Monitoring Well Details
Depth		Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	
	Ground Surface			-	S	z	œ			
0.0 0.0	TOPSOIL	99.02 0.00	$\sim \sim$	V						
1.0-	Loam, presence of organic material (i.e. vegetation, roots), brown, dry, loose.		22222		30	28	42		<0.1	
2.0		98.41 0.61	~~~							
3.0 - 1.0						10	0			
4.0	CLAY	97.80 1.22						PHC,		
5.0 	Silty, becoming less silty with depth. Colour alternating between grey, brown and reddish-brown. Moist to saturated at 1.8 m bgs.				31	10	63	VOC, Metals	, <0.1	
6.0	Stiff to very stiff with depth.		Ŧ							
2.0			Ŧ	V					<0.1	
7.0					32	27	100		, ~0.1	
8.0	End of Borehole	96.58 2.44								
9.0										
10.0 - 3.0										
11.0										
12.0										
14.0										
15.0										
16.0 										
Easting:	0462486 N	orthin	g: 50	3755	51	•	•		NOTES	
Site Datu	Im: Center of sanitary sewer manhole	cover	(100.	00 m	ı)				BGS - Below Ground Surface PHC - Petroleum Hydrocarbo	ons
Grounds	surface Elevation: 99.02 m To	op of I	Riser	Elev	<i>.:</i>				VOC - Volatile Organic Com	bounds
Hole Dia	meter: 203 mm M									

Client: Halo Car Wash Inc.

Date: January 7, 2020

Location: 1280 Trim Road, Ottawa, Ontario Field Personnel: VW

Project: Phase II Environmental Site Assessment

LRJ **Driller:** George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	BSURFACE PROFILE			SAI	MPL	E D/	ATA			
		Ê			ber	_			Combustible Soil Vapours o ppm o	
	Soil Description	epth (i	gy		Num	(%) ac	ery (%)	alysis	20 40 60 80	Monitoring Well Details
Depth		Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	
0.0 ft m	Ground Surface	99.59 0.00	-							
	FILL Silty sand with clay and gravel, brown, loose.				40	50 for 2"	10		0.1	
2.0 	CLAY Silty, becoming less silty with depth. Colour alternating between grey, grey-brown and reddish- brown. Moist to saturated at 1.8 m bgs. Stiff to soft with depth.	98.98	HHHH		41	11	23		, <0.1	
					42	11	63	PHC, VOC, Metals	0.1	
7.0 - 2.0					43	7	83		<0.1	
9.0		96.54	H H H		44	6	100		, 0.1	
	End of Borehole	3.05								
11.0										
12.0										
13.0 - 4.0										
14.0										
15.0										
16.0 										
Easting:	0462544 N	orthin	g: 50	3755	51		•		NOTES	
	Im: Center of sanitary sewer manhole								BGS - Below Ground Surface PHC - Petroleum Hydrocarbo VOC - Volatile Organic Comp	ns
Grounds	surface Elevation: 99.59 m To	op of I	Riser	Elev	·.:					
Hole Dia	Hole Diameter: 203 mm Monitoring Well Diameter:									

Project: Phase II Environmental Site Assessment

Project No.: 190766

Client: Halo Car Wash Inc.

Date: January 6, 2020

Location: 1280 Trim Road, Ottawa, Ontario Field Personnel: VW

LRJ **Driller:** George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	BSURFACE PROFILE			SA	MPL	E D/	ATA			
		Ê			ber	_			Combustible Soil Vapours o ppm o	
		oth (Mum	(%)	(%) /	ysis	20 40 60 80	Monitoring Well Details
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	Dotailo
0.0 ft m	Ground Surface	99.32 0.00								
1.0	FILL Sand and gravel underlain by sand, brown, moist, loose.	98.71			6 7	88	83		, 0.2 , <0.1	um Casing
2.0 	CLAY Silty, becoming less silty with depth. Colour alternating between grey, grey-brown and reddish- brown. Moist to saturated at 1.8 m bgs. Very stiff to very soft with	0.61	H H H H		8	22	100		, <0.1	Bentonite
5.0	depth. Thin black seams running vertically between 0.6 m and 1.2 m bgs.				9	9	69	PHC, VOC, Metals	, <0.1	
			H H H H		10	5	100		, <0.1	011/20200)
9.0			HHH		11	3	100		, <0.1	#2 Silica Sand • 111111111111111111111111
					12	0	100		, <0.1	#2 Silica Sand
13.0 - 4.0 					13	0	100		0.1	
- - 15.0 - - - - - - - - - - - - - - - - - - -		94.44							<0.1	
	End of Borehole	4.88								
Grounds	um: Center of sanitary sewer manhole surface Elevation: 99.32 m	op of I	(100. Riser	00 m Elev) 7 .: 99.				NOTES Groundwater sample collecte submitted for the analysis of I Compounds (PHC), Volatile ((VOC) and Metals.	Petroleum Hydrocarbon
Hole Dia	meter: 203 mm M	m	BGS - Below Ground Surface)						

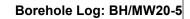
Borehole Log: BH/MW20-3

Project No.: 190766

Client: Halo Car Wash Inc.

Date: January 6, 2020

Location: 1280 Trim Road, Ottawa, Ontario


Project: Phase II Environmental Site Assessment

Field Personnel: VW

LRJ Date: Janua Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	SUBSURFACE PROFILE SAMPLE DATA									
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	Combustible Soil Vapours ppm 0 20 40 60 80 % KEL 10 20 30 40 50 60 70 80 90	Monitoring Well Details
ft_m	Ground Surface	99.18 0.00								
1.0		98.57 0.61				50 for 4"	0			um Casing
3.0 - 	CLAY Silty, becoming less silty with depth. Colour alternating between grey, grey-brown and reddish- brown. Moist to saturated at 1.8 m bgs. Stiff to soft with depth.	0.01			15	12	58	PHC, VOC, Metals	, <0.1	Bentonite
5.0	Some seams of oxidation visible between 1.8 m and 2.4 m bgs. Dark grey seam at 0.7 m bgs.	oxidation visible and 2.4 m bgs.								1664 (9/01/202
7.0 - 2.0 7.0		17 5 100							, <0.1	Silica Sand B Silica Sand B
9.0		96.13	H H H		18	4	100		, <0.1	#2 S
11.0	End of Borehole	3.05								
Easting: 0462536Northing: 5037568Site Datum: Center of sanitary sewer manhole cover (100.00 m)Groundsurface Elevation: 99.18 mHole Diameter: 203 mmMonitoring Well Diameter: 32 mm							m	NOTES Groundwater sample collecte submitted for the analysis of I Compounds (PHC), Volatile ((VOC) and Metals. BGS - Below Ground Surface	Petroleum Hydrocarbon Organic Compounds	

Client: Halo Car Wash Inc.

Date: January 6, 2020

Location: 1280 Trim Road, Ottawa, Ontario Field Personnel: VW

Project: Phase II Environmental Site Assessment

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	BSURFACE PROFILE			SAI	MPL	E D/	ATA			
		٦.			ber				Combustible Soil Vapours o ppm o	
		pth (v		Num	%) (y (%	lysis	20 40 60 80	Monitoring Well Details
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	□ % LEL □ 10 20 30 40 50 60 70 80 90	
0.0 ft m	Ground Surface TOPSOIL	98.83	\sim		24				<0.1	
	Loam, presence of organic material (i.e. vegetation, roots), brown, dry, loose.		H H H		24	5	60		<0.1	bgs (9/01/202
2.0	Silty, becoming less silty with depth. Colour alternating between grey, grey-brown and reddish- brown. Moist to saturated at 1.8 m bgs. Stiff to soft with depth.		HHHH		26	14	69	PHC, VOC, Metals	, <0.1	Bentonite
			A A A A		27	8	83		, <0.1	
6.0 2.0 7.0			HHHH		28	4	100		<0.1	Silica Sand
9.0		95.78 3.05	HHHH		29	3	88		, <0.1	#2 Si
	End of Borehole	3.05								
11.0										
13.0 - 4.0										
14.0										
15.0										
16.0										
Easting:	0462502	orthin	a. 50	2755	 : 1				NOTES	
Site Datu	Im: Center of sanitary sewer manhole	cover	(100.	00 m	1)	.77 m	I		Groundwater sample collecte submitted for the analysis of I Compounds (PHC), Volatile C	Petroleum Hydrocarbon
	Groundsurface Elevation: 98.83 mTop of Riser Elev.: 98.77 mHole Diameter: 203 mmMonitoring Well Diameter: 32 mm								(VOC) and Metals. BGS - Below Ground Surface	

Client: Halo Car Wash Inc.

Date: January 6, 2020

Field Personnel: VW

Project: Phase II Environmental Site Assessment

Location: 1280 Trim Road, Ottawa, Ontario

Driller: George Downing Estate Drilling Ltd.

Drilling Equipment: CME55 Truck-Mount

SU	BSURFACE PROFILE			SAI	MPL	ED	ΑΤΑ			
Depth	Soil Description	Elev./Depth (m)	Lithology	Type	Sample Number	N or RQD (%)	Recovery (%)	Lab Analysis	Combustible Soil Vapours o ppm o 20 40 60 80 Image: Solid Vapours o generalized o 20 40 60 80 o 10 20 30 40 50 60 70 80 90	Monitoring Well Details
0.0 ft m	Ground Surface	100.05								
	FILL Sand and gravel, brown, loose.	99.44 0.61			19	50 for 4"	4		, 0.4	um Casing
2.0 	CLAY Silty, becoming less silty with depth. Colour alternating between grey, grey-brown and reddish- brown. Moist, saturated at 1.8 m bgs. Stiff, becoming firm to soft	0.61			20	13	75	PHC, VOC, Metals	, <0.1	Bentonite
5.0	with depth. Oxidation visible between at 1.3 m bgs.				21	10	100		, <0.1	
6.0 2.0 7.0					22	5	100		<0.1	#2 Silica Sand
9.0		97.00			23	3	50		, <0.1	#2 Si Dhr.N ((9/d1/120)
	End of Borehole	3.05								Ŧ
11.0										
12.0										
13.0 - 4.0										
15.0										
-										
Site Datu Grounds	Easting: 0462536Northing: 5037539Site Datum: Center of sanitary sewer manhole cover (100.00 m)Groundsurface Elevation: 100.05 mTop of Riser Elev.: 99.93 mUse Dispersion 200 mm							NOTES Groundwater sample collecte submitted for the analysis of Compounds (PHC), Volatile C (VOC) and Metals.	Petroleum Hydrocarbon	
Hole Dia	Hole Diameter: 203 mm Monitoring Well Diameter: 32 mm								BGS - Below Ground Surface)

PROJECT NO.: 230202

CLIENT: TRIM WORKS DEVELOPMENTS LTD.

DATE: DECEMBER 18, 2023

TEST PIT LOG: TP1

PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 1280 TRIM ROAD, OTTAWA, ONTARIO

FIELD PERSONNEL: R. KALADAF

DIGGING EQUIPMENT: BACKHOE

DIGGING CONTRACTOR: COURCHESNE EXCAVATION

Combustible Soil Vapours (ppm) SAMPLE NUMBER ELEV./DEPTH (m) 10 50 70 90 30 RECOVERY (%) LABORATORY ANALYSIS MONITORING WELL 1 **_** . DETAILS ГІТНОГОСУ ISOBUTYLENE (ppm) DEPTH SOIL DESCRIPTION ТҮРЕ . <u>Е</u> 0.0 <u>—</u> 0.0 1.0 <u>—</u> 1.0 <u>—</u> 1.0 <u>—</u> 1.0 <u>—</u> 600 1000 1400 1800 200 1 100.02 0.00 CLAY: Moist becoming saturated at 0.6 m below PHC, grade, grey. GR SS1 100 VOC, PAH 2.4 2.0 METALS, GR **SS**2 100 INORANICS OCP 4.0 - 1.0 100 GR SS3 < 0.1 ∃ 6.0 7.0 2.0 PCB 22 100 GR SS4 8.0 _ GR SS5 100 9.0 ∃ 10.0 97.02 -3.0 3.00 End of Test Pit 12.0-13.0 40 14.0 15.0 Ξ 16.0 -5.0 17.0 ∃ 18.0 19.0**-**- 6.0 20.0 NOTES: NORTHING: 5037512 EASTING: 462526 OCP: OC Pesticides MONITORING WELL DIAMETER: N/A SITE DATUM: Top of Riser of Existing Monitoring Well MW20-2 (99.20 m) VOC: Volatile Organic Compounds

GROUNDSURFACE ELEVATION: 100.02 m TOP OF RISER ELEVATION: --TEST PIT DIMENSIONS: LENGTH: 3.5 m

WIDTH: 1.0 m

PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

N/A: Not applicable

PROJECT NO .: 230202

CLIENT: TRIM WORKS DEVELOPMENTS LTD.

DATE: DECEMBER 18, 2023

TEST PIT LOG: TP2

PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 1280 TRIM ROAD, OTTAWA, ONTARIO

FIELD PERSONNEL: R. KALADAF

DIGGING CONTRACTOR: COURCHESNE EXCAVATION

DIGGING EQUIPMENT: BACKHOE

								Combustible Soil Vapours			
DEPTH	SOIL DESCRIPTION	ELEV./DEPTH (m)	ГІТНОГОСУ	TYPE	SAMPLE NUMBER	RECOVERY (%)	LABORATORY ANALYSIS	(ppm) 10 30 50 70 90 10 30 50 70 90 MONITORING WELL DETAILS 1SOBUTYLENE (ppm) 200 600 1000 1400 1800			
FT M 0.0 0.0		99.87	e 1								
	FILL: Medium to fine-grained sand, dry becoming moist at 0.6 m below grade, brown, presence of vegetation roots between 0.0 and 0.3 m below grade.	0.00		GR	SS1	100	METALS, INORANICS	• 0.2			
	CLAY: Saturated, grey, traces of vegetation roots from between 1.2 and 1.8 m below grade.			GR	SS2	100	OCP, PCB				
$1.0 \frac{1}{1.0}$ $2.0 \frac{1}{1.0}$ $3.0 \frac{1}{1.0}$ $4.0 \frac{1}{1.0}$ $4.0 \frac{1}{1.0}$ $6.0 \frac{1}{1.0}$ 2.0 $7.0 \frac{1}{1.0}$ $8.0 \frac{1}{1.0}$ $9.0 \frac{1}{1.0}$ $3.0 \frac{1}{1.0}$				GR	SS3	100	•	ı <0,1			
7.0 7.0 7.0				GR	SS4	100		0.1			
9.0		96.87		GR	SS5	100	PHC, VOC, PAH				
10.0 - 3.0	End of Test Pit	3.00									
11.0											
12.0											
12.0 13.0 4.0 14.0											
ニュー											
15.0											
16.0 16.0 17											
17.0											
18.0											
19.0											
20.0 - 6.0											
<u> </u>											
EASTING: 46		MORT	TORIN		7514 E LL DIAMETE	ER: N/	A	NOTES: OCP: OC Pesticides VOC: Volatile Organic Compounds			
	Γop of Riser of Existing Monitoring Well MW20-2 FACE ELEVATION: 99.87 m			ER E	LEVATION:			PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons			
TEST PIT DIME	ENSIONS: LENGTH: 3.5 m	WIDTH						PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls N/A: Not applicable			

DIGGING CONTRACTOR: COURCHESNE EXCAVATION

PROJECT NO .: 230202

CLIENT: TRIM WORKS DEVELOPMENTS LTD.

DATE: DECEMBER 18, 2023

TEST PIT LOG: TP3

PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 1280 TRIM ROAD, OTTAWA, ONTARIO

FIELD PERSONNEL: R. KALADAF

DIGGING EQUIPMENT: BACKHOE

DEPTH	SOIL DESCRIPTION	ELEV./DEPTH (m)	гітногосу	ТҮРЕ	SAMPLE NUMBER	RECOVERY (%)	LABORATORY ANALYSIS	10	30 - II	stible S (ppr 50 30 30 30 30 30 30 30 30 30 30 30 30 30	n)	70 – – I pm)	90 	MONITORING WELL DETAILS
		100.12												
$0.0 - M_{0.0}$ $1.0 - M_{0.0}$ $1.0 - M_{0.0}$ $1.0 - M_{0.0}$ $1.0 - M_{0.0}$ $3.0 - M_{0.0}$ $3.0 - M_{0.0}$ $4.0 - M_{0.0}$ $5.0 - M_{0.0}$ $6.0 - M_{0.0}$ $6.0 - M_{0.0}$ $6.0 - M_{0.0}$ $6.0 - M_{0.0}$ $7.0 - M_{0.0}$ $8.0 - M_{0.0}$ $9.0 - M_{0.0}$ $10.0 - M_{0.0}$ 10.0 - M	FILL: Medium to fine-grained sand, dry becoming moist at 0.6 m below grade, brown, presence of vegetation roots between 0.0 and 0.3 m below grade.	0.00		GR	SS1	100	OCP	0.3						-
3.0 - 1.0		98.92		GR	SS2	100	METALS, INORGANIC PCB	;=-2.1						BENTOMITE B
5.0	CLAY: Saturated, grey.	1.20		GR	SS3	100	PHC, VOC, PAH	2.2						BENTONITE 0.72 m bgs (Decembe
7.0 2.0				GR	SS4	100		1.6						
9.0 - 3.0		97.12		GR	SS5	100		• 1.1						
11.0	End of Test Pit	3.00												Groundwater samples collected December 20, 2023 were submitted for laboratory analysis of VOC, PHC, PAH, Metals, General Inorganics, OC Pesticides, PCB.
_														
15.0 16.0														
17.0 17.0 18.0														
15.0 16.0 17.0 18.0 19.0 20.0 														
Ξ-														- I
EASTING: 462492 NORTHING: 5037495 OCP: OC Pesticides SITE DATUM: Top of Riser of Existing Monitoring Well MW20-2 (99.20 m) MONITORING WELL DIAMETER: N/A OCP: OC Pesticides GROUNDSURFACE ELEVATION: 100.12 m TOP OF RISER ELEVATION: PAH: Polycyclic Aromatic Hydrocarbons TEST PIT DIMENSIONS: LENGTH: 3.5 m WIDTH: 1.0 m NOTES:							s							

APPENDIX B

Certificates of Laboratory Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road Ottawa, ON K1J 9G2 Attn: Valerie Weisflock

Client PO: Project: 190766 Custody: 124815

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Order #: 2002311

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2002311-01	BH20-1-1
2002311-02	BH/MW20-2-9
2002311-03	BH/MW20-3-15
2002311-04	BH/MW20-4-20
2002311-05	BH/MW20-5-26
2002311-06	BH20-6-31
2002311-07	BH20-7-33
2002311-08	BH20-8-36
2002311-09	BH20-9-42
2002311-10	BH20-10-46
2002311-11	BH20-11-50
2002311-12	BH20-12-53
2002311-13	BH20-13-55

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020 Project Description: 190766

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	10-Jan-20	10-Jan-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Jan-20	12-Jan-20
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	10-Jan-20	10-Jan-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	10-Jan-20	10-Jan-20
Solids, %	Gravimetric, calculation	10-Jan-20	11-Jan-20

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

	Client ID: Sample Date: Sample ID: MDL/Units	BH20-1-1 06-Jan-20 09:00 2002311-01 Soil	BH/MW20-2-9 06-Jan-20 09:00 2002311-02 Soil	BH/MW20-3-15 06-Jan-20 09:00 2002311-03 Soil	BH/MW20-4-20 06-Jan-20 12:00 2002311-04 Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	77.5	80.7	87.0	78.5
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.2	4.4	3.0	5.3
Barium	1.0 ug/g dry	166	251	186	301
Beryllium	0.5 ug/g dry	0.6	0.9	0.6	0.9
Boron	5.0 ug/g dry	7.9	10.1	<5.0	7.3
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	70.8	111	89.1	133
Cobalt	1.0 ug/g dry	14.6	24.3	14.7	28.1
Copper	5.0 ug/g dry	26.0	51.9	26.1	47.1
Lead	1.0 ug/g dry	30.5	8.9	5.6	9.6
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	37.6	63.2	43.7	70.4
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	1.1	<1.0	1.3
Vanadium	10.0 ug/g dry	56.5	96.0	80.1	106
Zinc	20.0 ug/g dry	90.2	92.2	69.1	111
Volatiles				1	
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

	Client ID: Sample Date:	BH20-1-1 06-Jan-20 09:00	BH/MW20-2-9 06-Jan-20 09:00	BH/MW20-3-15 06-Jan-20 09:00	BH/MW20-4-20 06-Jan-20 12:00
	Sample ID:	2002311-01	2002311-02	2002311-03	2002311-04
[MDL/Units	Soil	Soil	Soil	Soil
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
4-Bromofluorobenzene	Surrogate	108%	106%	105%	108%
Dibromofluoromethane	Surrogate	62.2%	67.6%	66.0%	63.1%
Toluene-d8	Surrogate	121%	113%	122%	122%
Hydrocarbons			•		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

	Client ID: Sample Date: Sample ID: MDL/Units	BH/MW20-5-26 06-Jan-20 12:00 2002311-05 Soil	BH20-6-31 06-Jan-20 12:00 2002311-06 Soil	BH20-7-33 06-Jan-20 12:00 2002311-07 Soil	BH20-8-36 06-Jan-20 12:00 2002311-08 Soil
Physical Characteristics					· · · · ·
% Solids	0.1 % by Wt.	83.2	75.5	60.3	97.3
Metals					,
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.6	4.3	2.6	1.5
Barium	1.0 ug/g dry	212	278	69.3	253
Beryllium	0.5 ug/g dry	0.8	1.0	<0.5	<0.5
Boron	5.0 ug/g dry	6.7	9.2	9.5	9.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	109	149	22.0	10.0
Cobalt	1.0 ug/g dry	17.5	27.6	7.7	2.4
Copper	5.0 ug/g dry	40.0	45.8	19.2	<5.0
Lead	1.0 ug/g dry	8.1	10.6	9.1	3.9
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	56.7	78.4	17.1	7.6
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	1.4	1.6	<1.0	<1.0
Vanadium	10.0 ug/g dry	86.4	109	24.2	<10.0
Zinc	20.0 ug/g dry	81.3	96.9	60.8	<20.0
Volatiles			-		
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

[Client ID: Sample Date: Sample ID: MDL/Units	BH/MW20-5-26 06-Jan-20 12:00 2002311-05 Soil	BH20-6-31 06-Jan-20 12:00 2002311-06 Soil	BH20-7-33 06-Jan-20 12:00 2002311-07 Soil	BH20-8-36 06-Jan-20 12:00 2002311-08 Soil
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
4-Bromofluorobenzene	Surrogate	109%	114%	108%	106%
Dibromofluoromethane	Surrogate	70.1%	74.4%	75.8%	77.1%
Toluene-d8	Surrogate	123%	124%	123%	115%
Hydrocarbons			·		· · · · · · · · · · · · · · · · · · ·
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	9	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	13	<8

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

	Client ID:	BH/MW20-5-26	BH20-6-31	BH20-7-33	BH20-8-36
	Sample Date:	06-Jan-20 12:00	06-Jan-20 12:00	06-Jan-20 12:00	06-Jan-20 12:00
	Sample ID:	2002311-05	2002311-06	2002311-07	2002311-08
	MDL/Units	Soil	Soil	Soil	Soil
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

	Client ID: Sample Date: Sample ID: MDL/Units	BH20-9-42 07-Jan-20 09:00 2002311-09 Soil	BH20-10-46 07-Jan-20 09:00 2002311-10 Soil	BH20-11-50 07-Jan-20 09:00 2002311-11 Soil	BH20-12-53 07-Jan-20 12:00 2002311-12 Soil
Physical Characteristics	WDE/Onits	0011	0011		0011
% Solids	0.1 % by Wt.	77.9	93.4	76.3	80.5
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.6	1.2	4.1	2.9
Barium	1.0 ug/g dry	312	28.2	291	214
Beryllium	0.5 ug/g dry	1.0	<0.5	1.0	0.9
Boron	5.0 ug/g dry	9.9	<5.0	8.2	5.9
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	148	10.0	141	117
Cobalt	1.0 ug/g dry	28.1	3.6	23.0	20.2
Copper	5.0 ug/g dry	55.8	<5.0	47.2	33.3
Lead	1.0 ug/g dry	10.8	1.6	10.8	7.9
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	80.7	8.5	72.7	56.1
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	1.4	<1.0	2.2	1.8
Vanadium	10.0 ug/g dry	108	14.4	102	85.7
Zinc	20.0 ug/g dry	104	21.5	101	99.2
Volatiles					
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

1	Client ID: Sample Date: Sample ID: MDL/Units	BH20-9-42 07-Jan-20 09:00 2002311-09 Soil	BH20-10-46 07-Jan-20 09:00 2002311-10 Soil	BH20-11-50 07-Jan-20 09:00 2002311-11 Soil	BH20-12-53 07-Jan-20 12:00 2002311-12 Soil
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
4-Bromofluorobenzene	Surrogate	111%	107%	118%	86.7%
Dibromofluoromethane	Surrogate	76.6%	79.3%	80.2%	80.5%
Toluene-d8	Surrogate	111%	127%	125%	125%
Hydrocarbons			·		·
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	16
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	107
F3 PHCs (C16-C34)	8 ug/g dry	<8	109	<8	79

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

	Client ID:	BH20-9-42	BH20-10-46	BH20-11-50	BH20-12-53
	Sample Date:	07-Jan-20 09:00	07-Jan-20 09:00	07-Jan-20 09:00	07-Jan-20 12:00
	Sample ID:	2002311-09	2002311-10	2002311-11	2002311-12
	MDL/Units	Soil	Soil	Soil	Soil
F4 PHCs (C34-C50)	6 ug/g dry	<6	87	<6	<6

Report Date: 14-Jan-2020

Order Date: 9-Jan-2020

	Client ID:	BH20-13-55	-	-	-
	Sample Date: Sample ID:	07-Jan-20 12:00 2002311-13	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	99.2	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	<1.0	-	-	-
Barium	1.0 ug/g dry	25.0	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	7.6	-	-	-
Cobalt	1.0 ug/g dry	3.4	-	-	-
Copper	5.0 ug/g dry	<5.0	-	-	-
Lead	1.0 ug/g dry	<1.0	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	8.1	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	10.4	-	-	-
Zinc	20.0 ug/g dry	<20.0	-	-	-
Volatiles			1		
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

	Client ID:	BH20-13-55			1
	Sample Date:	07-Jan-20 12:00	-	-	-
	Sample ID:	2002311-13	-	-	-
	MDL/Units	Soil	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	95.0%	-	-	-
Dibromofluoromethane	Surrogate	69.4%	-	-	-
Toluene-d8	Surrogate	122%	-	-	-
Hydrocarbons			+ + +		
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

	Client ID:	BH20-13-55	-	-	-
	Sample Date:	07-Jan-20 12:00	-	-	-
	Sample ID:	2002311-13	-	-	-
	MDL/Units	Soil	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Order #: 2002311

Report Date: 14-Jan-2020

Order Date: 9-Jan-2020

Project Description: 190766

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons			-					-	
Hydrocarbons		-							
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles			55						
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g ug/g						
Bromodichloromethane	ND	0.02	ug/g ug/g						
Bromoform	ND	0.05	ug/g ug/g						
Bromomethane	ND	0.05	ug/g ug/g						
Carbon Tetrachloride	ND	0.05	ug/g ug/g						
Chlorobenzene	ND	0.05	ug/g ug/g						
Chloroform	ND	0.05	ug/g ug/g						
Dibromochloromethane	ND	0.05	ug/g ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene 1,1,1-Trichloroethane	ND ND	0.05	ug/g						

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.61		ug/g		113	50-140			
Surrogate: Dibromofluoromethane	3.16		ug/g		98.6	50-140			
Surrogate: Toluene-d8	3.37		ug/g		105	50-140			

Order #: 2002311

Report Date: 14-Jan-2020

Order Date: 9-Jan-2020

Project Description: 190766

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	763	7	ug/g dry	774			1.4	40	
F2 PHCs (C10-C16)	3870	4	ug/g dry	3760			2.9	30	
F3 PHCs (C16-C34)	1950	8	ug/g dry	1890			3.1	30	
F4 PHCs (C34-C50)	221	6	ug/g dry	235			6.4	30	
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	4.4	1.0	ug/g dry	4.2			6.4	30	
Barium	96.1	1.0	ug/g dry	91.1			5.4	30	
Beryllium	0.7	0.5	ug/g dry	0.7			2.7	30	
Boron	12.5	5.0	ug/g dry	12.8			2.7	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	28.1	5.0	ug/g dry	27.8			1.1	30	
Cobalt	10.9	1.0	ug/g dry	10.8			1.4	30	
Copper	24.2	5.0	ug/g dry	24.2			0.2	30	
Lead	11.7	1.0	ug/g dry	11.5			1.6	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	24.5	5.0	ug/g dry	23.9			2.7	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver Thallium	ND	0.3	ug/g dry	ND			0.0	30	
	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	34.5	10.0	ug/g dry	35.1			1.8	30	
	49.5	20.0	ug/g dry	55.5			11.6	30	
Physical Characteristics % Solids	81.0	0.1	% by Wt.	82.9			2.4	25	
Volatiles	01.0	0.1	70 DY VVI.	02.9			2.4	20	
		0.50	<i>,</i> ,					50	
Acetone	ND	0.50	ug/g dry	ND			5.0	50	
Benzene	0.133	0.02	ug/g dry	0.140			5.2	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50 50	
Bromoform	ND	0.05	ug/g dry	ND				50 50	
Bromomethane Carbon Tetrachloride	ND ND	0.05 0.05	ug/g dry	ND ND				50 50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50 50	
Chloroform	ND	0.05	ug/g dry ug/g dry	ND				50 50	
Dibromochloromethane	ND	0.05		ND				50 50	
Dichlorodifluoromethane	ND	0.05	ug/g dry ug/g dry	ND				50 50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	7.59	0.05	ug/g dry	8.12			6.8	50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND			-	50	
Hexane	0.241	0.05	ug/g dry	0.189			24.2	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	7.80	0.05	ug/g dry	7.84			0.5	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	34.7	0.05	ug/g dry	37.6			8.1	50	
o-Xylene	15.7	0.05	ug/g dry	17.4			10.6	50	
Surrogate: 4-Bromofluorobenzene	3.61		ug/g dry		101	50-140			
Surrogate: Dibromofluoromethane	2.53		ug/g dry		71.0	50-140			
Surrogate: Toluene-d8	4.00		ug/g dry		112	50-140			

Method Quality Control: Spike

Report Date: 14-Jan-2020
Order Date: 9-Jan-2020
Project Description: 190766

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	179	7	ug/g		89.4	80-120			
F2 PHCs (C10-C16)	92	4	ug/g		115	80-120			
F3 PHCs (C16-C34)	234	8	ug/g		119	80-120			
F4 PHCs (C34-C50)	376	6	ug/g	235	102	60-140			
Metals									
Antimony	44.6		ug/L	ND	88.8	70-130			
Arsenic	56.5		ug/L	1.7	110	70-130			
Barium	88.0		ug/L	36.4	103	70-130			
Beryllium	50.8		ug/L	ND	101	70-130			
Boron	52.4		ug/L	5.1	94.6	70-130			
Cadmium	51.2		ug/L	ND	102	70-130			
Chromium	67.3		ug/L	11.1	112	70-130			
Cobalt	51.2		ug/L	4.3	93.8	70-130			
Copper	63.5		ug/L	9.7	108	70-130			
Lead	51.5		ug/L	4.6	93.8	70-130			
Molybdenum	53.3		ug/L	ND	106	70-130			
Nickel	62.8		ug/L	9.6	107	70-130			
Selenium	52.4		ug/L	ND	104	70-130			
Silver	43.8		ug/L	ND	87.5	70-130			
Thallium	45.9		ug/L	ND	91.7	70-130			
Uranium	49.3		ug/L	ND	98.0	70-130			
Vanadium	69.9		ug/L	14.0	112	70-130			
Zinc	59.3		ug/L	22.2	74.3	70-130			
Volatiles									
Acetone	7.31	0.50	ug/g		73.1	50-140			
Benzene	2.96	0.02	ug/g		74.0	60-130			
Bromodichloromethane	3.15	0.05	ug/g		78.7	60-130			
Bromoform	4.80	0.05	ug/g		120	60-130			
Bromomethane	2.45	0.05	ug/g		61.3	50-140			
Carbon Tetrachloride	3.98	0.05	ug/g		99.5	60-130			
Chlorobenzene	3.95	0.05	ug/g		98.7	60-130			
Chloroform	3.15	0.05	ug/g		78.7	60-130			
Dibromochloromethane	4.52	0.05	ug/g		113	60-130			
Dichlorodifluoromethane	2.54	0.05	ug/g		63.4	50-140			
1,2-Dichlorobenzene	3.54	0.05	ug/g		88.6	60-130			
1,3-Dichlorobenzene	3.47	0.05	ug/g		86.8	60-130			
1,4-Dichlorobenzene	3.43	0.05	ug/g		85.8	60-130			
1,1-Dichloroethane	2.76	0.05	ug/g		69.0	60-130			
1,2-Dichloroethane	3.42	0.05	ug/g		85.6	60-130			
1,1-Dichloroethylene	3.32	0.05	ug/g		82.9	60-130			
cis-1,2-Dichloroethylene	2.73	0.05	ug/g		68.3	60-130			
trans-1,2-Dichloroethylene	2.53	0.05	ug/g		63.3	60-130			
1,2-Dichloropropane	2.87	0.05	ug/g		71.7	60-130			
cis-1,3-Dichloropropylene	3.45	0.05	ug/g		86.3	60-130			
trans-1,3-Dichloropropylene	3.45	0.05	ug/g		86.3	60-130			
Ethylbenzene	4.15	0.05	ug/g		104	60-130			
Ethylene dibromide (dibromoethane	4.03	0.05	ug/g		101	60-130			
Hexane	2.77	0.05	ug/g		69.2	60-130			
Methyl Ethyl Ketone (2-Butanone)	6.08	0.50	ug/g		60.8	50-140			
Methyl Isobutyl Ketone	7.46	0.50	ug/g		74.6	50-140			

Order #: 2002311

Order #: 2002311

Report Date: 14-Jan-2020 Order Date: 9-Jan-2020

Project Description: 190766

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl tert-butyl ether	6.50	0.05	ug/g		65.0	50-140			
Methylene Chloride	3.08	0.05	ug/g		77.1	60-130			
Styrene	4.08	0.05	ug/g		102	60-130			
1,1,1,2-Tetrachloroethane	4.45	0.05	ug/g		111	60-130			
1,1,2,2-Tetrachloroethane	3.86	0.05	ug/g		96.4	60-130			
Tetrachloroethylene	3.84	0.05	ug/g		96.0	60-130			
Toluene	3.82	0.05	ug/g		95.5	60-130			
1,1,1-Trichloroethane	3.42	0.05	ug/g		85.5	60-130			
1,1,2-Trichloroethane	3.22	0.05	ug/g		80.4	60-130			
Trichloroethylene	3.24	0.05	ug/g		80.9	60-130			
Trichlorofluoromethane	3.60	0.05	ug/g		90.1	50-140			
Vinyl chloride	2.45	0.02	ug/g		61.2	50-140			
m,p-Xylenes	8.51	0.05	ug/g		106	60-130			
o-Xylene	4.45	0.05	ug/g		111	60-130			
Surrogate: 4-Bromofluorobenzene	2.66		ug/g		83.2	50-140			

Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match -Applies to samples: BH20-6-31, BH20-7-33

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	Paracel ID: 2				. Laurent ario K10)-1947 paracella Jilabs.co	a 4J8 ibs.com	Para (22		rder Jse (Chain Of Custody (Lab Use Only) Nº 124815					
Client Name: 1 DI Dece	xitetis Ltd.		Project	Ref:	190766									P	age	of 2	:	
Contact Name: Walence h	Jeisflock		Quote I PO #:	#:	1						_	-	🗆 1 da		aroun		e] 3 day	v
Address: 5430 Canote K15 9	ik Rd. Ottawa, ON G2	/		.11.7	eisflock	Olrl	ca			3		-	🗆 2 da				🛛 Regu	
Telephone: 613 - 842 - 3	3434			Vh	10110							Da	ate Req	uired:			_	=
Regulation 153/04	Other Regulation	N	latrix T	ype: S	(Soil/Sed.) GW (Gro	ound Water)						Re	quired	Analys	is			
Table 1 Res/Park Med/Fine	REG 558 PWQO	5	W (Su		/ater) SS (Storm/San aint) A (Air) O (Othe		1	-			-	Т	Г	T				
Table 2 Ind/Comm Coarse Agri/Other	CCME MISA SU - Sani SU - Storm						+ BTEX			d								
Table	Mun:	×	Air Volume	of Containers	Sample	Taken	s F1-F4+BTEX	s	s	als by ICP		CrVI	10					
For RSC: Yes No Sample ID/Locatio	_	Matrix	Air Vo	# of 0	Date	Time	PHCs	vocs	PAHS	Metals	Hg	N N	5					
1 R U 10 - 1 - 1		5		2	\$ Jan6/20	AM	X	X		X								
2 PU/MW7D-2	- 9	1						1										
3 NIL/ML270-	3-15					V						_					_	
4 Ku/mw70-1	4-70					pm						_	┢	-	-		_	
5 KH/MW70-	5-26						\parallel	4				+	4	011			0.0	al (
6 RH20-6-	31							#	-			+	Mel	-	-		BW	MW
7 6420-7-3	33								-			+	Ma	2H V	a) re	2051	BH/1	W
8 BH20-8-3	6				\checkmark	V		+	+			-	+	7	lip	AL	C.	-
9 BH20-9-4	2	1		1	Jan 7/20	AM			-	+		+	+	-	+	-		-
10 BH20-10-4	6	2		V		V	1	Jγ	1	4		Mathe	d of Deli	VARV:				
Comments: Labels may be d	Afficult to read.	Ple	651	24	allifyon			pr	ob	len U	5		Pa	274	6			
Relinquished By (Sign):	Pellale Received By D	1	4	Tea	and the second se	Received at I	ab: 2dA	1	5	214		Verifie Date/	1	hj	KA.	(b)	21	2
Relinquished By (Print): Valerie	7		01	20	12.10	Temperature	and	eg.	0°C	250		1	rified: [0] B	1-0	M-	A	14/2
Date/Time: Jan, 8, 220@ Chain of Custody (Env.) xlsx	3:00 pm Temperature				°C PH. Revision 3.0		-d.	0										1)

					aurent io K10 1947 racella abs.com	a 4J8 bs.com	Parac (1	.ab U	se Oi	nty)	ber		•	(Lab	Of Cus Use Onl 4814	W)	
lient Name: 1 01 Decad	sates 1+0		Project	Ref:	190760	o								Pag	ge <u>2</u> o	2	
iontad Name: Valeric W	wates Ltd.	-	Quote	#:										Turnar	round 1	ime	
ddress: 5430 Canotel KIJ 962	e Rel. Ottowa, on		PO #: E-mail:	V	Deisflock	21-1.00	i					1] 1 day] 2 day te Requ	1		□ 3 d ⊠ Rej	
elephone: 613 842 34	34									_							
Regulation 153/04	Other Regulation	M	latrix T	ype: S	(Soil/Sed.) GW (Gro	ound Water)						Req	uired A	Analysis			
Table 1 Res/Park Med/Fine		S	W (Su		ater) SS (Storm/San int) A (Air) O (Othe		-	П	Т	Т	Т	Π			Т	Τ	Γ
Table 2 Ind/Comm Coarse Table 3 Agri/Other Table	CCME MISA SU - Sani SU - Storm Mun:	×	Air Volume	of Containers	Sample	Taken	s F1-F4+BTEX	8		als by ICP		B (HWS)					
For RSC: Yes No	Other:	Matrix	Air Vo	# of 0	Date	Time	PHCs	vocs	PAHS	Met	Hg	B (H					
Sample ID/Location		5	-	1	Jan 7/20	An	Y	X		X							
1 BH20-11- 5	20	1	-	L	un / a	DM	1										
2 3420-12-	<u> </u>	1	-	1						J							
3 BH20-13-	22	V		V	V	0	V										
4		-	+	-			+					T					
5		-	-	-			+					T					
6		-	-	-			+				+	T					
7		-	+	-			+	-	Η			T					
8		-	-	-			+	-				T					
9		-	-	-			-	-		-		+		\square			T
10							_			_	N	ethod	I of Deliv	ery:			
Comments:													Pa	ray	el		
Relinquished By (Sign):	and all Received By D	Driver/	Depot:	30	UNE 0 17.10	Received at Lat	m	0	7	24		erified ate/Ti	M	A4	And og	20	KA2-
Relinquished By (Print): Valerie Date/Time: Jan. 8, 2020	Tamparature	-	101	120	°C PM.	Temperature:	di 8	5	°C	1.	p	H Veri	ified:	Ву:			10/
Chain of Custody (Env.) xlsx	• • • • • • • • •				Revision 3.0												

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road Ottawa, ON K1J 9G2 Attn: Valerie Weisflock

Client PO: Project: 190766 Custody: 124806

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Order #: 2002440

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2002440-01	MW20-2
2002440-02	MW20-3
2002440-03	MW20-5
2002440-04	MWX

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Project Description: 190766

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	10-Jan-20	10-Jan-20
PHC F1	CWS Tier 1 - P&T GC-FID	10-Jan-20	11-Jan-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	15-Jan-20	15-Jan-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	10-Jan-20	11-Jan-20

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

	Client ID: Sample Date: Sample ID:	MW20-2 09-Jan-20 12:00 2002440-01 Water	MW20-3 09-Jan-20 12:00 2002440-02 Water	MW20-5 09-Jan-20 12:00 2002440-03 Water	MWX 09-Jan-20 12:00 2002440-04 Water
Metals	MDL/Units	Water	Water	Water	vvaler
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Arsenic	1 ug/L	2	<1	<1	2
Barium	1 ug/L	135	83	58	133
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	243	116	114	236
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	0.7	0.9	<0.5	0.8
Copper	0.5 ug/L	6.3	4.0	3.3	3.1
Lead	0.1 ug/L	0.4	0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	6.1	2.7	1.5	6.0
Nickel	1 ug/L	2	3	6	2
Selenium	1 ug/L	<1	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Sodium	200 ug/L	399000	162000	155000	403000
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	8.8	5.2	6.2	8.7
Vanadium	0.5 ug/L	2.4	1.1	1.9	2.4
Zinc	5 ug/L	6	5	6	16
Volatiles			, , , , , , , , , , , , , , , , , , ,	Ŭ	10
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Г	Client ID: Sample Date: Sample ID: MDL/Units	MW20-2 09-Jan-20 12:00 2002440-01 Water	MW20-3 09-Jan-20 12:00 2002440-02 Water	MW20-5 09-Jan-20 12:00 2002440-03 Water	MWX 09-Jan-20 12:00 2002440-04 Water
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethan	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	113%	111%	112%	112%
Dibromofluoromethane	Surrogate	106%	108%	107%	105%
Toluene-d8	Surrogate	90.0%	89.6%	90.5%	89.1%
Hydrocarbons			•		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Project Description: 190766

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			- 3						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND ND	0.2	ug/L						
Hexane Mathyl Ethyl Katana (2 Butanana)	ND ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether Methylene Chloride		2.0	ug/L						
	ND ND	5.0	ug/L						
Styrene		0.5	ug/L						
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND	0.5	ug/L						
Tetrachloroethylene		0.5	ug/L						
Toluene	ND ND	0.5 0.5	ug/L ug/L						

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Project Description: 190766

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	93.5		ug/L		117	50-140			
Surrogate: Dibromofluoromethane	77.5		ug/L		96.9	50-140			
Surrogate: Toluene-d8	74.2		ug/L		92.8	50-140			

Order #: 2002440

Report Date: 16-Jan-2020

Order Date: 10-Jan-2020

Project Description: 190766

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Antimony	0.50	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	23.6	1	ug/L	23.9			1.3	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	23	10	ug/L	22			3.2	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	0.92	0.5	ug/L	0.90			1.4	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	1.30	0.5	ug/L	1.15			12.5	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	14500	200	ug/L	15300			5.5	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	9	5	ug/L	9			1.2	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	3.55	0.5	ug/L	2.60			30.9	30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	4.78	0.5	ug/L	3.67			26.3	30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND	0.5 0.5	ug/L	ND ND				30 30	
1, 1, 2 ⁻ 111011010ethane		0.5	ug/L	ND				30	

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Project Description: 190766

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	93.4		ug/L		117	50-140			
Surrogate: Dibromofluoromethane	82.4		ug/L		103	50-140			
Surrogate: Toluene-d8	72.1		ug/L		90.2	50-140			

Method Quality Control: Spike

Hydrocarbons s supple	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
F1 PHCs (C10-C16) 1820 25 ug/L 90.9 68.2 80-117 F2 PHCs (C10-C16) 100 ug/L 67.2 80-140 F3 PHCs (C16-C34) 2830 100 ug/L 67.2 80-140 Attimony 49.0 ug/L ND 97.7 80-120 Arsenic 55.8 ug/L ND 97.7 80-120 Barium 72.7 ug/L 23.9 97.6 80-120 Cathium 51.3 ug/L ND 103 80-120 Cathium 51.3 ug/L ND 103 80-120 Copper 53.5 ug/L ND 104 80-120 Cobalt 45.2 ug/L ND 104 80-120 Cobalt 45.2 ug/L ND 104 80-120 Cobalt 45.2 ug/L ND 84.5 80-120 Cobalt 52.8 ug/L ND 84.5 80-120 Soldnum 52.8 ug/L ND 84.5 80-120 Sol	Hvdrocarbons									
F2 PHCs (C10-C16) 100 ug/L 68.2 60-140 F3 PHCs (C16-C34) 2630 100 ug/L 60.7 60-140 Metal (S) 00 ug/L ND 97.7 80-120 Arsenic 55.8 ug/L ND 97.6 80-120 Barlum 72.7 ug/L ND 97.6 80-120 Beryllinn 52.5 ug/L ND 103 80-120 Cadminum 51.3 ug/L ND 103 80-120 Cobati 42.2 ug/L ND 104 80-120 Cobati 42.2 ug/L ND 105 80-120 Cobati 42.2 ug/L ND 84.8 80-120 Cobati 42.3 ug/L ND 84.8 80-120 Selenium 47.9 ug/L ND 84.8 80-120 Selenium 47.9 ug/L ND 88.0 80-120 Selenium 47.9 ug/L ND 88.0 100 Selenium		1820	25	ug/L		90.9	68-117			
F3 PHCs (C16-C34) 2830 100 ug/L 67.2 60-140 HPLGs (C34-C50) 1510 100 ug/L ND 97.7 60-140 Antimony 49.0 ug/L ND 97.7 80-120 Arsenic 55.8 ug/L ND 97.7 80-120 Barium 72.7 ug/L 23.9 97.6 80-120 Boron 66 ug/L ND 103 80-120 Catamium 51.3 ug/L ND 103 80-120 Cobati 48.2 ug/L ND 108 80-120 Coper 53.5 ug/L ND 104 80-120 Cobati 42.3 ug/L ND 84-120 104 80-120 Selenium 52.6 ug/L ND 84-120 104 80-120 Selenium 52.6 ug/L ND 84-120 104 80-120 Selenium 49.0 ug/L ND 84-120 104 80-120 Selenium 49.5 ug/L		1090	100			68.2	60-140			
F4 PHCs (C34-C50) 1510 100 ug/L ND 60.7 60.140 Metals		2630				67.2	60-140			
Antimony 49.0 ug/L ND 97.7 80-120 Arsenic 55.8 ug/L 23.9 97.6 80-120 Barium 52.5 ug/L 23.9 97.6 80-120 Barjilum 52.5 ug/L 22.9 86.8 80-120 Cadmium 51.3 ug/L ND 105 80-120 Cadmium 54.9 ug/L ND 82.4 80-120 Cobati 46.2 ug/L ND 82.4 80-120 Cobati 45.2 ug/L ND 84.8 80-120 Laad 42.3 ug/L ND 84.9 80-120 Soldorum 52.6 ug/L ND 87.4 80-120 Soldorum 44.9 ug/L ND 85.4 80-120 Soldorum 44.9 ug/L ND 85.4 80-120 Soldorum 44.9 ug/L ND 85.4 80-120 Vanadium	F4 PHCs (C34-C50)	1510	100			60.7	60-140			
Arsenic 55.8 ug/L ND ND H11 80-120 Barlum 52.5 ug/L ND 105 80-120 Boron 66 ug/L ND 103 80-120 Cadmium 51.3 ug/L ND 103 80-120 Chomium 64.9 ug/L ND 92.4 80-120 Coball 46.2 ug/L ND 92.4 80-120 Coball 46.2 ug/L ND 92.4 80-120 Coball 46.2 ug/L ND 84.5 80-120 Coball 42.3 ug/L ND 84.5 80-120 Nickel 52.6 ug/L ND 84.5 80-120 Siker 43.5 ug/L ND 87.0 80-120 Siker 43.5 ug/L ND 88.0 80-120 Uranium 44.9 ug/L ND 88.0 80-120 Uranium	Metals									
Barlum 72.7 up1 23.9 97.6 80-120 Beryllum 52.5 up1 ND 105 80-120 Cadmilum 51.3 up1 ND 103 80-120 Chomium 54.9 up1 ND 103 80-120 Cobalt 46.2 up1 ND 103 80-120 Cobalt 46.2 up1 ND 105 80-120 Cobalt 46.2 up1 ND 94.8 80-120 Lead 42.3 up1 ND 94.8 80-120 Nickel 52.6 up1 ND 84.8 80-120 Selenium 47.9 up1 ND 87.4 80-120 Sodium 660 up1 ND 80.8 80-120 Thallium 44.9 up1<	Antimony	49.0		ug/L	ND	97.7	80-120			
Beryllum 52.5 up ND ND 80-120 Baron 66 ug/L ND 103 80-120 Cadmium 51.3 ug/L ND 103 80-120 Chomium 64.9 ug/L ND 92.4 80-120 Copper 63.5 ug/L ND 92.4 80-120 Copper 63.5 ug/L ND 84.5 80-120 Nickel 22.6 ug/L ND 84.5 80-120 Silver 43.5 ug/L ND 95.4 80-120 Silver 43.5 ug/L ND 95.4 80-120 Vanadium 44.9 ug/L ND 86.0 80-120 Vanadium 54.9 ug/L ND 80.0 80-120 Vanadium 54.9 ug/L ND 80.0 80-120 Vanadium 54.9 ug/L ND 80.0 80-120 Vanadium 54.9<	Arsenic	55.8		ug/L	ND	111	80-120			
Boron 66 ug/L 22 86.8 80-120 Cadmium 51.3 ug/L ND 103 80-120 Cobalt 46.2 ug/L ND 92.4 80-120 Cobalt 46.2 ug/L ND 92.4 80-120 Cobalt 42.3 ug/L ND 84.5 80-120 Nickal 52.6 ug/L ND 84.5 80-120 Nickal 52.6 ug/L ND 84.3 80-120 Solium 43.5 ug/L ND 89.4 80-120 Solium 43.5 ug/L ND 89.9 80-120 Vanadium 44.0 ug/L ND 89.9 80-120 Zinc 60 ug/L ND 89.9 80-120 Zinc 62.0 5.0 ug/L ND 89.10 80-120 Zinc 62.0 5.0 ug/L ND 89.120 80-120 <t< td=""><td>Barium</td><td>72.7</td><td></td><td>ug/L</td><td>23.9</td><td>97.6</td><td>80-120</td><td></td><td></td><td></td></t<>	Barium	72.7		ug/L	23.9	97.6	80-120			
Cadmium 51.3 ug/L ND 103 80-120 Chromium 54.9 ug/L ND 103 80-120 Cobalt 46.2 ug/L ND 105 80-120 Copper 53.5 ug/L 0.90 105 80-120 Molydoenum 50.2 ug/L ND 84.5 80-120 Nickel 52.4 ug/L ND 84.4 80-120 Silver 43.5 ug/L ND 85.4 80-120 Silver 43.5 ug/L ND 86.4 80-120 Vanadum 44.9 ug/L ND 89.9 80-120 Vanadum 54.9 ug/L ND 80.0 80-120 Vanadum 54.9 ug/L ND 88.6 80-120 Vanadum 29.6 0.5 ug/L 70.0 60-130 Bromone 28.0 0.5 ug/L 71.1 60-130 Bromodichloromethane </td <td>Beryllium</td> <td>52.5</td> <td></td> <td>ug/L</td> <td>ND</td> <td>105</td> <td>80-120</td> <td></td> <td></td> <td></td>	Beryllium	52.5		ug/L	ND	105	80-120			
Chronium 54.9 ug/L ND 109 80-120 Cobait 46.2 ug/L ND 92.4 80-120 Copper 53.5 ug/L ND 84.5 80-120 Lead 42.3 ug/L ND 84.5 80-120 Nickal 52.6 ug/L ND 95.4 80-120 Selenium 47.9 ug/L ND 95.0 80-120 Sodium 8660 ug/L ND 95.0 80-120 Sodium 44.0 ug/L ND 85.0 80-120 Vanadum 54.9 ug/L ND 88.0 80-120 Vanadum 54.9 ug/L ND 88.0 80-120 Vanadum 54.0 0.5 ug/L ND 88.0 80-120 Vanadum 28.0 0.5 ug/L ND 88.0 80-120 Vanadum 24.0 0.5 ug/L ND 80-120 80-120	Boron	66		ug/L	22	86.8	80-120			
Cobalt 46.2 ug/L ND 92.4 80-120 Copper 53.5 ug/L 0.80 165 80-120 Molybdenum 50.2 ug/L 1.15 98.1 80-120 Molybdenum 50.2 ug/L ND 144 80-120 Selenium 47.9 ug/L ND 95.4 80-120 Selenium 47.9 ug/L ND 87.0 80-120 Sodium 8660 ug/L ND 88.0 80-120 Vanadium 44.9 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 88.6 80-120 Vanadium 54.9 ug/L ND 88.0 80-120 Vanadium 64.0 ug/L ND 80-120 80-120 Vanadi	Cadmium	51.3		ug/L	ND	103	80-120			
Copper 53.5 ug/L ND 105 80-120 Lead 42.3 ug/L ND 84.5 80-120 Nickel 52.6 ug/L ND 84.5 80-120 Nickel 52.6 ug/L ND 95.4 80-120 Silver 43.5 ug/L ND 95.4 80-120 Sodium 8660 ug/L ND 85.0 80-120 Yanadium 44.9 ug/L ND 89.9 80-120 Vanadium 54.9 ug/L ND 89.9 80-120 Zinc 60 ug/L ND 89.9 80-120 Zinc 60 ug/L ND 80.0 80-120 Zinc 60 ug/L ND 88.0 80-120 Bromodichloromethane 28.6 0.5 ug/L ND 80.0 80-120 Bromodichloromethane 28.6 0.5 ug/L ND 80.0 80-120 </td <td>Chromium</td> <td>54.9</td> <td></td> <td>ug/L</td> <td>ND</td> <td>109</td> <td>80-120</td> <td></td> <td></td> <td></td>	Chromium	54.9		ug/L	ND	109	80-120			
Lead Variable Variable <th< td=""><td>Cobalt</td><td>46.2</td><td></td><td>ug/L</td><td>ND</td><td>92.4</td><td>80-120</td><td></td><td></td><td></td></th<>	Cobalt	46.2		ug/L	ND	92.4	80-120			
Makyadenum 50.2 ug/L 1.15 98.1 80-120 Nickel 52.6 ug/L ND 104 80-120 Silver 43.5 ug/L ND 95.4 80-120 Silver 43.5 ug/L ND 87.0 80-120 Sodium 8660 ug/L ND 89.9 80-120 Thallum 44.9 ug/L ND 89.9 80-120 Vanadium 54.9 ug/L ND 88.0 80-120 Zinc 60 ug/L ND 80.120 Vanadium 54.9 ug/L ND 109 80-120 Zinc 60 ug/L 70.0 60-130 Bromodichioromethane 28.0 0.5 ug/L 74.1 60-130 Bromodichioromethane 28.6 0.5 ug/L 74.1 60-130 Bromodichioromethane 28.7 0.5 ug/L 74.4 60-130 Dibrorodifucromethane	Copper	53.5		ug/L	0.90	105	80-120			
Nickel 52.6 ug/L ND 104 80-120 Selenium 47.9 ug/L ND 95.4 80-120 Sodium 8660 ug/L ND 87.0 80-120 Sodium 8660 ug/L ND 89.9 80-120 Thallium 44.9 ug/L ND 89.9 80-120 Vanadium 54.9 ug/L ND 80.9 80-120 Zinc 60 ug/L ND 109 80-120 Brozone 22.0 5.0 ug/L 9 102 80-120 Brozone 28.0 0.5 ug/L 74.1 60-130 Bromodichloromethane 29.6 0.5 ug/L 74.1 60-130 Bromoform 33.5 0.5 ug/L 74.1 60-130 Chlorobenzene 29.4 0.5 ug/L 74.8 60-130 Chlorobenzene 29.4 0.5 ug/L 74.8 60-130 <td>Lead</td> <td>42.3</td> <td></td> <td>ug/L</td> <td>ND</td> <td>84.5</td> <td>80-120</td> <td></td> <td></td> <td></td>	Lead	42.3		ug/L	ND	84.5	80-120			
Selenium 47.9 ug/L ND 95.4 80-120 Silver 43.5 ug/L 229 84.3 80-120 Thallium 44.9 ug/L ND 89.9 80-120 Uranium 44.0 ug/L ND 89.9 80-120 Vanadium 54.9 ug/L ND 109 80-120 Zinc 60 ug/L 9 102 80-120 Vanadium 54.9 ug/L ND 109 80-120 Zinc 60 ug/L 9 102 80-120 Valatiles	Molybdenum	50.2		ug/L	1.15	98.1	80-120			
Silver 43.5 ug/L ND 87.0 80-120 Sodium 8660 ug/L ND 84.3 80-120 Thallium 44.9 ug/L ND 88.0 80-120 Uranium 44.0 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 80.120 Zinc 60 ug/L 9 102 80-120 Sodioh 60 ug/L 9 102 80-120 Prescription 80.0 5.0 ug/L 9 102 80-120 Sodioh 60 ug/L 9 102 80-120 100 Bromodichhoromethane 29.6 0.5 ug/L 70.0 60-130 Bromodichhoromethane 29.6 0.5 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 71.4 60-130 Dichoromethane 26.7 1.0 ug/L 71.4 60-130	Nickel				ND					
Sodium 8660 ug/L 229 84.3 80-120 Thalluum 44.9 ug/L ND 89.9 80-120 Vanadum 54.9 ug/L ND 88.0 80-120 Zinc 60 ug/L ND 109 80-120 Zinc 60 ug/L 9 109 80-120 Valatiles Acetone 62.0 5.0 ug/L 9 100 80-120 Bromodichloromethane 29.6 0.5 ug/L 70.0 60-130 Bromodichloromethane 29.6 0.5 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 74.8 60-130 Dichorodifluoromethane 26.7 1.0 ug/L 71.9 60-130 1,3-Dichlorobenzene 29.7 0.5 </td <td>Selenium</td> <td></td> <td></td> <td>ug/L</td> <td>ND</td> <td>95.4</td> <td>80-120</td> <td></td> <td></td> <td></td>	Selenium			ug/L	ND	95.4	80-120			
Thallium 44.9 ug/L ND 89.9 80-120 Uranium 44.0 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 88.0 80-120 Zinc 60 ug/L 9 102 80-120 Volatiles Acetone 62.0 5.0 ug/L 70.0 60-130 Bromodichloromethane 29.6 0.5 ug/L 74.1 60-130 Bromoform 33.5 0.5 ug/L 82.8 60-130 Bromoform 33.5 0.5 ug/L 74.1 60-130 Bromoform 33.5 0.5 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Chlorobenzene 29.7 0.5 ug/L 74.8 60-130 Dibhorodifluoromethane 26.7 1.0 ug/L 74.8 60-130 1,2-Dichlorobenzene 29.0 0.5 ug/L 74.8 60-130 1,2-Dichlorobenzene 27.6				-						
Uranium 44.0 ug/L ND 88.0 80-120 Vanadium 54.9 ug/L ND 109 80-120 Zinc 60 ug/L 9 102 80-120 Volatiles	Sodium									
Vanadium 54.9 ug/L ND 109 80-120 Zinc 60 ug/L 9 102 80-120 Volatilies state state state state Acetone 62.0 5.0 ug/L 70.0 60-130 Benzene 28.0 0.5 ug/L 74.1 60-130 Bromodichloromethane 29.6 0.5 ug/L 83.8 60-130 Bromodethane 29.6 0.5 ug/L 74.1 60-130 Bromoferm 33.5 0.5 ug/L 73.5 60-130 Carbon Tetrachloride 34.6 0.2 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 71.8 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 1,2-Dichlorobenzene 29.0 0.5 ug/L 71.8 60-130 1,2-Dichlorobenzene 29.7 0.5 ug/L 74.4	Thallium									
Zinc 60 ug/L 9 102 80-120 Volatiles										
Volatiles Acetone 62.0 5.0 ug/L 62.0 50.140 Benzene 28.0 0.5 ug/L 70.0 60.130 Bromodichloromethane 29.6 0.5 ug/L 74.1 60.130 Bromoform 33.5 0.5 ug/L 83.8 60.130 Bromomethane 48.8 0.5 ug/L 83.8 60.130 Carbon Tetrachloride 34.6 0.2 ug/L 73.5 60.130 Chlorobenzene 29.4 0.5 ug/L 77.4 60.130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60.130 Dibromochloromethane 26.7 1.0 ug/L 74.8 60.130 1,3-Dichlorobenzene 29.0 0.5 ug/L 71.8 60.130 1,3-Dichlorobenzene 29.7 0.5 ug/L 74.2 60.130 1,1-Dichloroethane 27.6 0.5 ug/L 74.2 60.130 1,1-Dichloroethyl				-						
Acetone 62.0 5.0 ug/L 62.0 50-140 Benzene 28.0 0.5 ug/L 70.0 60-130 Bromodichloromethane 29.6 0.5 ug/L 74.1 60-130 Bromoform 33.5 0.5 ug/L 83.8 60-130 Bromomethane 48.8 0.5 ug/L 82.6 60-130 Carbon Tetrachloride 34.6 0.2 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 Dichloroffluoromethane 26.7 1.0 ug/L 66.8 50-140 1,2-Dichlorobenzene 29.0 0.5 ug/L 71.8 60-130 1,3-Dichlorobenzene 29.7 0.5 ug/L 74.2 60-130 1,1-Dichloroethane 27.6 0.5 ug/L 74.2 60-130 1,1-Dichloroethylene 28.6 0.5 ug/L 74.4 60-130 1,1-Dichloroethylene 28.6<	Zinc	60		ug/L	9	102	80-120			
Benzene 28.0 0.5 ug/L 70.0 60-130 Bromodichloromethane 29.6 0.5 ug/L 74.1 60-130 Bromodorm 33.5 0.5 ug/L 83.8 60-130 Bromomethane 48.8 0.5 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 73.5 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 Dichlorodfluoromethane 28.7 1.0 ug/L 76.8 50-140 1,2-Dichlorobenzene 29.0 0.5 ug/L 71.8 60-130 1,3-Dichlorobenzene 29.7 0.5 ug/L 74.2 60-130 1,1-Dichloroethane 27.6 0.5 ug/L 68.1 60-130 1,2-Dichloroethylene 28.6 0.5 ug/L 68.1 60-130 1,2-Dichloroethylene 28.6	Volatiles									
Bromodichloromethane 29.6 0.5 ug/L 74.1 60-130 Bromoform 33.5 0.5 ug/L 83.8 60-130 Bromomethane 48.8 0.5 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 86.6 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 Dichlorodhfluoromethane 26.7 1.0 ug/L 66.8 50-140 1,2-Dichlorobenzene 29.0 0.5 ug/L 71.8 60-130 1,2-Dichlorobenzene 29.0 0.5 ug/L 72.6 60-130 1,4-Dichlorobenzene 29.7 0.5 ug/L 74.2 60-130 1,2-Dichloroethane 27.2 0.5 ug/L 68.1 60-130 1,2-Dichloroethylene 28.6 0.5 ug/L 68.1 60-130 1,2-Dichloroethylene <t< td=""><td>Acetone</td><td>62.0</td><td>5.0</td><td>ug/L</td><td></td><td>62.0</td><td>50-140</td><td></td><td></td><td></td></t<>	Acetone	62.0	5.0	ug/L		62.0	50-140			
Bromoform 33.5 0.5 ug/L 83.8 60-130 Bromomethane 48.8 0.5 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 86.6 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Chloroform 30.9 0.5 ug/L 77.4 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 Jichlorobenzene 29.0 0.5 ug/L 71.8 60-130 1,2-Dichlorobenzene 29.0 0.5 ug/L 72.6 60-130 1,3-Dichlorobenzene 29.7 0.5 ug/L 71.9 60-130 1,4-Dichlorobenzene 27.6 0.5 ug/L 74.2 60-130 1,1-Dichloroethane 27.2 0.5 ug/L 68.1 60-130 1,2-Dichloroethylene 28.6 0.5 ug/L 71.4 60-130 trans-1,2-Dichloroethylene 28.2	Benzene					70.0	60-130			
Bromomethane 48.8 0.5 ug/L 122 50-140 Carbon Tetrachloride 34.6 0.2 ug/L 86.6 60-130 Chlorobenzene 29.4 0.5 ug/L 73.5 60-130 Chloroform 30.9 0.5 ug/L 77.4 60-130 Dibromochloromethane 28.7 0.5 ug/L 71.8 60-130 Dichlorodifluoromethane 28.7 0.5 ug/L 72.6 60-130 1,2-Dichlorobenzene 29.0 0.5 ug/L 72.6 60-130 1,3-Dichlorobenzene 29.7 0.5 ug/L 74.2 60-130 1,4-Dichloroethane 27.6 0.5 ug/L 74.2 60-130 1,1-Dichloroethane 27.2 0.5 ug/L 74.2 60-130 1,1-Dichloroethylene 28.6 0.5 ug/L 74.4 60-130 1,1-Dichloroethylene 28.6 0.5 ug/L 74.4 60-130 1,2-Dichloroethylene 28.6 0.5 ug/L 70.4 60-130 cis-1,2-Dichloro				ug/L						
Carbon Tetrachloride34.60.2ug/L86.660-130Chlorobenzene29.40.5ug/L73.560-130Chloroform30.90.5ug/L77.460-130Dibromochloromethane28.70.5ug/L71.860-1301,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene29.00.5ug/L71.960-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L74.260-1301,2-Dichloroethane27.60.5ug/L68.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,2-Dichloroethylene28.60.5ug/L71.460-1301,2-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene28.40.5ug/L70.460-1301,2-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene28.40.5ug/L75.960-1301,2-Dichloropropylene26.40.5ug/L75.960-1301,2-Dichloropropylene26.40.5ug/L76.660-1301,3-Dichloropropylene29.80.5ug/L76.660-1301,3-Dichloropropylene29.80.5ug/L66.260-1301,3-Dichloropropylene26.50.2ug/L67.6 <td>Bromoform</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bromoform									
Chlorobenzene29.40.5ug/L73.560-130Chloroform30.90.5ug/L77.460-130Dibromochloromethane28.70.5ug/L71.860-130Dichlorodifluoromethane26.71.0ug/L66.850-1401,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene29.70.5ug/L74.260-1301,4-Dichlorobenzene29.70.5ug/L69.160-1301,1-Dichloroethane27.60.5ug/L68.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,2-Dichloroethylene28.60.5ug/L71.460-1301,2-Dichloroethylene28.20.5ug/L68.160-1301,2-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene28.20.5ug/L75.960-1301,2-Dichloroethylene27.40.5ug/L75.960-1301,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L74.660-130trans-1,3-Dichloropropylene29.80.5ug/L66.060-130trans-1,3-Dichloropropylene26.50.2ug/L66.260-130trans-1,3-Dichloropropylene27.71.0ug/L69.260-130Ethylbenzene27.71.0ug/L										
Chloroform30.90.5ug/L77.460-130Dibromochloromethane28.70.5ug/L71.860-130Dichlorodifluoromethane26.71.0ug/L66.850-1401,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene28.80.5ug/L74.260-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L68.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-1301,2-Dichloroethylene28.60.5ug/L70.460-1301,2-Dichloroethylene28.60.5ug/L70.460-1301,2-Dichloroethylene28.60.5ug/L70.460-1301,2-Dichloroethylene28.60.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L70.460-130trans-1,2-Dichloropropane30.40.5ug/L75.960-130trans-1,3-Dichloropropylene26.40.5ug/L74.660-130trans-1,3-Dichloropropylene29.80.5ug/L66.060-130trans-1,3-Dichloropropylene27.00.5ug/L66.260-130Ethylbenzene27.71.0ug/L69.260-130										
Dibromochloromethane28.70.5ug/L71.860-130Dichlorodifluoromethane26.71.0ug/L66.850-1401,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene28.80.5ug/L71.960-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L68.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,2-Dichloroethylene28.60.5ug/L71.460-1301,1-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloroptylene26.40.5ug/L66.060-1301,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L67.660-130Ethylenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
Dichlorodifluoromethane26.71.0ug/L66.850-1401,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene28.80.5ug/L71.960-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L68.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,2-Dichloroethylene28.60.5ug/L71.460-1301,1-Dichloroethylene28.20.5ug/L70.460-1301,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloroptylene26.40.5ug/L66.060-1301,3-Dichloropropylene29.80.5ug/L74.660-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylenzene27.00.5ug/L66.260-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130				-						
1,2-Dichlorobenzene29.00.5ug/L72.660-1301,3-Dichlorobenzene28.80.5ug/L71.960-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L69.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloroptylene26.40.5ug/L75.960-130cis-1,3-Dichloroptylene26.40.5ug/L75.960-130trans-1,3-Dichloroptylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L66.260-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
1,3-Dichlorobenzene28.80.5ug/L71.960-1301,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L69.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L70.460-130trans-1,2-Dichloroethylene26.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L66.060-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
1,4-Dichlorobenzene29.70.5ug/L74.260-1301,1-Dichloroethane27.60.5ug/L69.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloroptopane30.40.5ug/L68.460-130cis-1,3-Dichloropropylene26.40.5ug/L75.960-130trans-1,3-Dichloropropylene29.80.5ug/L66.060-130trans-1,3-Dichloropropylene27.00.5ug/L67.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130	-									
1,1-Dichloroethane27.60.5ug/L69.160-1301,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloroptopane30.40.5ug/L75.960-130cis-1,3-Dichloroptopylene26.40.5ug/L66.060-130trans-1,3-Dichloroptopylene29.80.5ug/L66.060-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130				-						
1,2-Dichloroethane27.20.5ug/L68.160-1301,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
1,1-Dichloroethylene28.60.5ug/L71.460-130cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
cis-1,2-Dichloroethylene28.20.5ug/L70.460-130trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130	-									
trans-1,2-Dichloroethylene27.40.5ug/L68.460-1301,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130				-						
1,2-Dichloropropane30.40.5ug/L75.960-130cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
cis-1,3-Dichloropropylene26.40.5ug/L66.060-130trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130	•									
trans-1,3-Dichloropropylene29.80.5ug/L74.660-130Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
Ethylbenzene27.00.5ug/L67.660-130Ethylene dibromide (dibromoethane26.50.2ug/L66.260-130Hexane27.71.0ug/L69.260-130										
Ethylene dibromide (dibromoethane 26.5 0.2 ug/L 66.2 60-130 Hexane 27.7 1.0 ug/L 69.2 60-130										
Hexane 27.7 1.0 ug/L 69.2 60-130										
0										
	Methyl Ethyl Ketone (2-Butanone)	68.6	5.0	ug/L		68.6	50-130 50-140			

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Order #: 2002440

Report Date: 16-Jan-2020 Order Date: 10-Jan-2020

Project Description: 190766

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl Isobutyl Ketone	61.1	5.0	ug/L		61.1	50-140			
Methyl tert-butyl ether	65.5	2.0	ug/L		65.5	50-140			
Methylene Chloride	29.0	5.0	ug/L		72.4	60-130			
Styrene	27.9	0.5	ug/L		69.7	60-130			
1,1,1,2-Tetrachloroethane	29.0	0.5	ug/L		72.6	60-130			
1,1,2,2-Tetrachloroethane	27.3	0.5	ug/L		68.2	60-130			
Tetrachloroethylene	32.6	0.5	ug/L		81.4	60-130			
Toluene	27.4	0.5	ug/L		68.4	60-130			
1,1,1-Trichloroethane	30.3	0.5	ug/L		75.8	60-130			
1,1,2-Trichloroethane	29.3	0.5	ug/L		73.2	60-130			
Trichloroethylene	29.8	0.5	ug/L		74.5	60-130			
Trichlorofluoromethane	33.1	1.0	ug/L		82.8	60-130			
Vinyl chloride	27.2	0.5	ug/L		68.1	50-140			
m,p-Xylenes	60.8	0.5	ug/L		76.1	60-130			
o-Xylene	29.1	0.5	ug/L		72.7	60-130			
Surrogate: 4-Bromofluorobenzene	85.6		ug/L		107	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	Paracel ID: 20024				Iffice 19 St. Lauren , Ontario K10 0-749-1947 cel@paracella aracellabs.co	G 4J8 abs.com	Parac (1	Lab L	lse (Only)		Chain Of Custody (Lab Use Only) N° 124806			ly	
Client Name: A La	sociates Ltd.		Project	Ref:	19076	6								P	age	of	
Contact Name: Valerie	Deisflack		Quote	#:										Turn	around	Time	
Address: 5430 Can KIJ 962 Telephone: 613 842	notek Rd. Offa	wa	PO #: E-mail:	L	Iweasfle	ockelr	1,00	4		-			□ 1 □ 2 Date R				l 3 day KRegular
Regulation 153/04	Other Regulation	N	latrix T	ype: S	(Soil/Sed.) GW (Gr	ound Water)						R	equire	d Analy	is		
Table 1 Res/Park Med/Fine	REG 558 PWQO	5	W (Su		/ater) SS (Storm/Sar aint) A (Air) O (Oth							_		-			
Table 2 Ind/Comm Coarse				P (P													
Table 3 Agri/Other	🗆 SU - Sani 🗌 SU - Storm			ners	6	Talaa	F1-F4+BTEX			by ICP							
Table	Mun:		amu	Containers	Sample	F1-F				VS)							
For RSC: Yes No	Other:	Matrix	Air Volume	of	Date	Time	PHCs	vocs	PAHS	Metals	Hg	Cr	B (HWS)				
Sample ID/Locatio	on Name	2	4	#	2 01	<u> </u>	X	Ý	ū	X	-	Ŭ	-	-		1	+
1 MW20-2	-	yn T	1	7	Jan. 9/20	Plu	$\left(\right)$	A	Η	4		+	+	-	\vdash		
2 MW20-3		+	-	-			╈			\vdash	\square	-	+	+		-	
3 MW20-7			-		1			1		H	$\left \right $	+	╉	+	\vdash	-	
4 MWX		V	-	V	V	-	Y	V		ď		-	╉	+			
5		_	-	-			+	-	\vdash		\square	-	╉	+-			
6		-	-	-			+	-		-	H	-	+	+		_	
7			-	-			-	-		-	\square	-	+	+		_	
8			_	_			-	-		_	$\left \right $	-	+			-	
9							_	-			\square	-	+	+		_	
10		Ļ															
Comments: All metals	somples are			- }	il tereol.	0	0	7	9				hod of D	MC	lk	~	is
Relinquished By (Sign):	Peceived By D)river/(Depot:			Received at Lab	Di	1		2.	/		/Time:	M	<i>f</i> //	2-1	04
Relinquished By (Print): Valent	e Deistlock				°C	Temperature:	4000	JQ.	°C	a.	00	pH V	erified:	× B	MA	~	211
Chain of Custody (Env.) xlsx	20@9:00Hin Temperature				Revision 3.0		+.0								1		

LRL Associat	es Ltd.						
5430 Canotek F	Road						
Ottawa, ON K1	J 9G2						
Attn: Raed Kan	dalaft						
						Report Date: 27-Dec-	-2023
Client PO:						Order Date: 19-Dec-	-2023
Project: 230202						Order #: 235118	4
Custody: 1296	604						
This Certificate of submitted:	of Analysis contain	analytical data applicable to t	he following samples	as			
Paracel ID	Client ID						
2351184-01	TP1-SS1						
2351184-02	TP1-SS2						
2351184-03	TP1-SS4						
2351184-04	TP2-SS1						
2351184-05	TP2-SS2						
2351184-06	TP2-SS5						
2351184-07	TP3-SS1						
2351184-08	TP3-SS2						
2351184-09	TP3-SS3						

Approved By:

Nose

Dale Robertson, BSc

Laboratory Director

Client: LRL Associates Ltd.

Client PO:

Analysis Summary Table

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	21-Dec-23	21-Dec-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	20-Dec-23	22-Dec-23
Conductivity	MOE E3138 - probe @25 °C, water ext	21-Dec-23	21-Dec-23
Cyanide, free	MOE E3015 - Auto Colour, water extraction	21-Dec-23	21-Dec-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	21-Dec-23	21-Dec-23
PCBs, total	SW846 8082A - GC-ECD	20-Dec-23	21-Dec-23
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	21-Dec-23	21-Dec-23
PHC F1	CWS Tier 1 - P&T GC-FID	20-Dec-23	21-Dec-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	20-Dec-23	21-Dec-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	21-Dec-23	21-Dec-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	20-Dec-23	21-Dec-23
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	20-Dec-23	21-Dec-23
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	20-Dec-23	21-Dec-23
SAR	Calculated	21-Dec-23	21-Dec-23
Solids, %	CWS Tier 1 - Gravimetric	20-Dec-23	21-Dec-23

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP1-SS1	TP1-SS2	TP1-SS4	TP2-SS1		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-01	2351184-02	2351184-03	2351184-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	L		•	1		J	
% Solids	0.1 % by Wt.	74.2	73.6	61.3	74.9	-	-
General Inorganics							
SAR	0.01 N/A	-	1.50	-	2.25	-	-
Conductivity	5 uS/cm	-	363	-	713	-	-
Cyanide, free	0.03 ug/g	-	<0.03	-	<0.03	-	-
pH	0.05 pH Units	-	7.19	-	6.86	-	-
Metals							
Antimony	1.0 ug/g	-	<1.0	-	<1.0	-	-
Arsenic	1.0 ug/g	-	3.0	-	3.9	-	-
Barium	1.0 ug/g	-	190	-	147	-	-
Beryllium	0.5 ug/g	-	0.8	-	0.8	-	-
Boron	5.0 ug/g	-	8.4	-	6.5	-	-
Boron, available	0.5 ug/g	-	<0.5	-	1.0	-	-
Cadmium	0.5 ug/g	-	<0.5	-	<0.5	-	-
Chromium	5.0 ug/g	-	131	-	81.1	-	-
Chromium (VI)	0.2 ug/g	-	0.8	-	<0.2	-	-
Cobalt	1.0 ug/g	-	22.3	-	17.3	-	-
Copper	5.0 ug/g	-	50.2	-	26.1	-	-
Lead	1.0 ug/g	-	9.8	-	12.5	-	-
Mercury	0.1 ug/g	-	<0.1	-	<0.1	-	-
Molybdenum	1.0 ug/g	-	<1.0	-	<1.0	-	-
Nickel	5.0 ug/g	-	70.6	-	39.0	-	-
Selenium	1.0 ug/g	-	<1.0	-	<1.0	-	-
Silver	0.3 ug/g	-	<0.3	-	<0.3	-	-
Thallium	1.0 ug/g	-	<1.0	-	<1.0	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

PARACEL

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP1-SS1	TP1-SS2	TP1-SS4	TP2-SS1		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-01	2351184-02	2351184-03	2351184-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals	•			<u>.</u>			•
Uranium	1.0 ug/g	-	<1.0	-	2.2	-	-
Vanadium	10.0 ug/g	-	84.3	-	69.3	-	-
Zinc	20.0 ug/g	-	105	-	99.8	-	-
Volatiles						-	
Acetone	0.50 ug/g	<0.50	-	-	-	-	-
Benzene	0.02 ug/g	<0.02	-	-	-	-	-
Bromodichloromethane	0.05 ug/g	<0.05	-	-	-	-	-
Bromoform	0.05 ug/g	<0.05	-	-	-	-	-
Bromomethane	0.05 ug/g	<0.05	-	-	-	-	-
Carbon Tetrachloride	0.05 ug/g	<0.05	-	-	-	-	-
Chlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
Chloroform	0.05 ug/g	<0.05	-	-	-	-	-
Dibromochloromethane	0.05 ug/g	<0.05	-	-	-	-	-
Dichlorodifluoromethane	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,3-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,4-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,1-Dichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichloropropane	0.05 ug/g	<0.05	-	-	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	-	-	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	-	-	-	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP1-SS1 18-Dec-23 09:00 2351184-01 Soil	TP1-SS2 18-Dec-23 09:00 2351184-02 Soil	TP1-SS4 18-Dec-23 09:00 2351184-03 Soil	TP2-SS1 18-Dec-23 09:00 2351184-04 Soil	-	-
Volatiles							
1,3-Dichloropropene, total	0.05 ug/g	<0.05	-	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	-	-	-	-	-
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	-	-	-	-	-
Hexane	0.05 ug/g	<0.05	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	-	-	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	-	-	-	-	-
Methyl tert-butyl ether	0.05 ug/g	<0.05	-	-	-	-	-
Methylene Chloride	0.05 ug/g	<0.05	-	-	-	-	-
Styrene	0.05 ug/g	<0.05	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	-	-	-	-	-
Tetrachloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
Toluene	0.05 ug/g	<0.05	-	-	-	-	-
1,1,1-Trichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1,2-Trichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
Trichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
Trichlorofluoromethane	0.05 ug/g	<0.05	-	-	-	-	-
Vinyl chloride	0.02 ug/g	<0.02	-	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	-	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	-	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	-	-	-	-	-
Toluene-d8	Surrogate	83.4%	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	99.9%	-	-	-	-	-
Dibromofluoromethane	Surrogate	103%	-	-	-	-	-
Hydrocarbons							

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP1-SS1	TP1-SS2	TP1-SS4	TP2-SS1		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-01 Soil	2351184-02 Soil	2351184-03 Soil	2351184-04 Soil		
	Matrix:	301	301	301	301		
ll. due e a de a se	MDL/Units						
Hydrocarbons	7.00/0	<7					T
F1 PHCs (C6-C10)	7 ug/g		-	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	-	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	-	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	-	-	-	-	-
Semi-Volatiles					1	1	T
Acenaphthene	0.02 ug/g	<0.02	-	-	-	-	-
Acenaphthylene	0.02 ug/g	<0.02	-	-	-	-	-
Anthracene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [a] anthracene	0.02 ug/g	0.03	-	-	-	-	-
Benzo [a] pyrene	0.02 ug/g	0.02	-	-	-	-	-
Benzo [b] fluoranthene	0.02 ug/g	0.03	-	-	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g	0.02	-	-	-	-	-
Benzo [k] fluoranthene	0.02 ug/g	<0.02	-	-	-	-	-
Chrysene	0.02 ug/g	0.03	-	-	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	-	-	-	-	-
Fluoranthene	0.02 ug/g	0.07	-	-	-	-	-
Fluorene	0.02 ug/g	<0.02	-	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	-	-	-	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	-	-	-	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	-	-	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	-	-	-	-	-
Naphthalene	0.01 ug/g	<0.01	-	-	-	-	-
Phenanthrene	0.02 ug/g	0.04	-	-	-	-	-
Pyrene	0.02 ug/g	0.06	-	-	-	-	-
2-Fluorobiphenyl	Surrogate	66.5%	-	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP1-SS1	TP1-SS2	TP1-SS4	TP2-SS1		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-01	2351184-02	2351184-03	2351184-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles							
Terphenyl-d14	Surrogate	78.9%	-	-	-	-	-
Pesticides, OC							
Aldrin	0.01 ug/g	-	<0.01	-	-	-	-
gamma-BHC (Lindane)	0.01 ug/g	-	<0.01	-	-	-	-
alpha-Chlordane	0.01 ug/g	-	<0.01	-	-	-	-
gamma-Chlordane	0.01 ug/g	-	<0.01	-	-	-	-
Chlordane	0.01 ug/g	-	<0.01	-	-	-	-
o,p'-DDD	0.01 ug/g	-	<0.01	-	-	-	-
p,p'-DDD	0.02 ug/g	-	<0.02	-	-	-	-
DDD	0.02 ug/g	-	<0.02	-	-	-	-
o,p'-DDE	0.01 ug/g	-	<0.01	-	-	-	-
p,p'-DDE	0.01 ug/g	-	<0.01	-	-	-	-
DDE	0.01 ug/g	-	<0.01	-	-	-	-
o,p'-DDT	0.01 ug/g	-	<0.01	-	-	-	-
p,p'-DDT	0.01 ug/g	-	<0.01	-	-	-	-
DDT	0.01 ug/g	-	<0.01	-	-	-	-
Dieldrin	0.02 ug/g	-	<0.02	-	-	-	-
Endrin	0.02 ug/g	-	<0.02	-	-	-	-
Endosulfan I	0.01 ug/g	-	<0.01	-	-	-	-
Endosulfan II	0.02 ug/g	-	<0.02	-	-	-	-
Endosulfan I/II	0.02 ug/g	-	<0.02	-	-	-	-
Heptachlor	0.01 ug/g	-	<0.01	-	-	-	-
Heptachlor epoxide	0.01 ug/g	-	<0.01	-	-	-	-
Hexachlorobenzene	0.01 ug/g	-	<0.01	-	-	-	-
Hexachlorobutadiene	0.01 ug/g	-	<0.01	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

	Client ID: Sample Date: Sample ID:	TP1-SS1 18-Dec-23 09:00 2351184-01	TP1-SS2 18-Dec-23 09:00 2351184-02	TP1-SS4 18-Dec-23 09:00 2351184-03	TP2-SS1 18-Dec-23 09:00 2351184-04	-	-
	Matrix: MDL/Units	Soil	Soil	Soil	Soil		
Pesticides, OC	MDL/Units						
Hexachloroethane	0.01 ug/g	-	<0.01	-	-	-	-
Methoxychlor	0.01 ug/g	-	<0.01	-	-	-	-
Decachlorobiphenyl	Surrogate	-	67.8%	-	-	-	-
PCBs						-	
PCBs, total	0.05 ug/g	-	-	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	-	-	101%	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID: Sample Date: Sample ID:	TP2-SS2 18-Dec-23 09:00 2351184-05	TP2-SS5 18-Dec-23 09:00 2351184-06	TP3-SS1 18-Dec-23 09:00 2351184-07	TP3-SS2 18-Dec-23 09:00 2351184-08	-	-
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics					ļ		
% Solids	0.1 % by Wt.	76.8	70.1	91.8	71.8	-	-
General Inorganics							
SAR	0.01 N/A	-	-	-	2.30	-	-
Conductivity	5 uS/cm	-	-	-	634	-	-
Cyanide, free	0.03 ug/g	-	-	-	<0.03	-	-
рН	0.05 pH Units	-	-	-	6.80	-	-
Metals							
Antimony	1.0 ug/g	-	-	-	<1.0	-	-
Arsenic	1.0 ug/g	-	-	-	3.9	-	-
Barium	1.0 ug/g	-	-	-	209	-	-
Beryllium	0.5 ug/g	-	-	-	0.8	-	-
Boron	5.0 ug/g	-	-	-	7.9	-	-
Boron, available	0.5 ug/g	-	-	-	<0.5	-	-
Cadmium	0.5 ug/g	-	-	-	<0.5	-	-
Chromium	5.0 ug/g	-	-	-	122	-	-
Chromium (VI)	0.2 ug/g	-	-	-	1.0	-	-
Cobalt	1.0 ug/g	-	-	-	23.2	-	-
Copper	5.0 ug/g	-	-	-	47.6	-	-
Lead	1.0 ug/g	-	-	-	10.1	-	-
Mercury	0.1 ug/g	-	-	-	<0.1	-	-
Molybdenum	1.0 ug/g	-	-	-	<1.0	-	-
Nickel	5.0 ug/g	-	-	-	64.5	-	-
Selenium	1.0 ug/g	-	-	-	<1.0	-	-
Silver	0.3 ug/g	-	-	-	<0.3	-	-
Thallium	1.0 ug/g	-	-	-	<1.0	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP2-SS2 18-Dec-23 09:00 2351184-05 Soil	TP2-SS5 18-Dec-23 09:00 2351184-06 Soil	TP3-SS1 18-Dec-23 09:00 2351184-07 Soil	TP3-SS2 18-Dec-23 09:00 2351184-08 Soil	-	-
Metals	WDL/OIIIts						
Uranium	1.0 ug/g	-	-	-	1.1	-	-
Vanadium	10.0 ug/g	-	-	-	88.8	-	-
Zinc	20.0 ug/g	-	-	-	103	-	-
Volatiles	ļi			<u> </u>			
Acetone	0.50 ug/g	-	<0.50	-	-	-	-
Benzene	0.02 ug/g	-	<0.02	-	-	-	-
Bromodichloromethane	0.05 ug/g	-	<0.05	-	-	-	-
Bromoform	0.05 ug/g	-	<0.05	-	-	-	-
Bromomethane	0.05 ug/g	-	<0.05	-	-	-	-
Carbon Tetrachloride	0.05 ug/g	-	<0.05	-	-	-	-
Chlorobenzene	0.05 ug/g	-	<0.05	-	-	-	-
Chloroform	0.05 ug/g	-	<0.05	-	-	-	-
Dibromochloromethane	0.05 ug/g	-	<0.05	-	-	-	-
Dichlorodifluoromethane	0.05 ug/g	-	<0.05	-	-	-	-
1,2-Dichlorobenzene	0.05 ug/g	-	<0.05	-	-	-	-
1,3-Dichlorobenzene	0.05 ug/g	-	<0.05	-	-	-	-
1,4-Dichlorobenzene	0.05 ug/g	-	<0.05	-	-	-	-
1,1-Dichloroethane	0.05 ug/g	-	<0.05	-	-	-	-
1,2-Dichloroethane	0.05 ug/g	-	<0.05	-	-	-	-
1,1-Dichloroethylene	0.05 ug/g	-	<0.05	-	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g	-	<0.05	-	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g	-	<0.05	-	-	-	-
1,2-Dichloropropane	0.05 ug/g	-	<0.05	-	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g	-	<0.05	-	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	-	<0.05	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP2-SS2	TP2-SS5	TP3-SS1	TP3-SS2		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-05	2351184-06	2351184-07	2351184-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles	·			•			
1,3-Dichloropropene, total	0.05 ug/g	-	<0.05	-	-	-	-
Ethylbenzene	0.05 ug/g	-	<0.05	-	-	-	-
Ethylene dibromide (dibromoethane,	0.05 ug/g	-	<0.05	-	-	-	-
Hexane	0.05 ug/g	-	<0.05	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	-	<0.50	-	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g	-	<0.50	-	-	-	-
Methyl tert-butyl ether	0.05 ug/g	-	<0.05	-	-	-	-
Methylene Chloride	0.05 ug/g	-	<0.05	-	-	-	-
Styrene	0.05 ug/g	-	<0.05	-	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g	-	<0.05	-	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g	-	<0.05	-	-	-	-
Tetrachloroethylene	0.05 ug/g	-	<0.05	-	-	-	-
Toluene	0.05 ug/g	-	<0.05	-	-	-	-
1,1,1-Trichloroethane	0.05 ug/g	-	<0.05	-	-	-	-
1,1,2-Trichloroethane	0.05 ug/g	-	<0.05	-	-	-	-
Trichloroethylene	0.05 ug/g	-	<0.05	-	-	-	-
Trichlorofluoromethane	0.05 ug/g	-	<0.05	-	-	-	-
Vinyl chloride	0.02 ug/g	-	<0.02	-	-	-	-
m,p-Xylenes	0.05 ug/g	-	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	-	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	-	<0.05	-	-	-	-
Dibromofluoromethane	Surrogate	-	114%	-	-	-	-
Toluene-d8	Surrogate	-	86.3%	-	-	-	-
4-Bromofluorobenzene	Surrogate	-	95.6%	-	-	-	-
Hydrocarbons							

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP2-SS2	TP2-SS5	TP3-SS1	TP3-SS2		
	Sample Date:	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	18-Dec-23 09:00	-	-
	Sample ID:	2351184-05	2351184-06	2351184-07	2351184-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	-	<7	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	-	<4	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	-	<8	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	-	<6	-	-	-	-
Semi-Volatiles							
Acenaphthene	0.02 ug/g	-	<0.02	-	-	-	-
Acenaphthylene	0.02 ug/g	-	<0.02	-	-	-	-
Anthracene	0.02 ug/g	-	<0.02	-	-	-	-
Benzo [a] anthracene	0.02 ug/g	-	<0.02	-	-	-	-
Benzo [a] pyrene	0.02 ug/g	-	<0.02	-	-	-	-
Benzo [b] fluoranthene	0.02 ug/g	-	<0.02	-	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g	-	<0.02	-	-	-	-
Benzo [k] fluoranthene	0.02 ug/g	-	<0.02	-	-	-	-
Chrysene	0.02 ug/g	-	<0.02	-	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g	-	<0.02	-	-	-	-
Fluoranthene	0.02 ug/g	-	<0.02	-	-	-	-
Fluorene	0.02 ug/g	-	<0.02	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	-	<0.02	-	-	-	-
1-Methylnaphthalene	0.02 ug/g	-	<0.02	-	-	-	-
2-Methylnaphthalene	0.02 ug/g	-	<0.02	-	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g	-	<0.04	-	-	-	-
Naphthalene	0.01 ug/g	-	<0.01	-	-	-	-
Phenanthrene	0.02 ug/g	-	<0.02	-	-	-	-
Pyrene	0.02 ug/g	-	<0.02	-	-	-	-
2-Fluorobiphenyl	Surrogate	-	56.6%	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP2-SS2 18-Dec-23 09:00 2351184-05 Soil	TP2-SS5 18-Dec-23 09:00 2351184-06 Soil	TP3-SS1 18-Dec-23 09:00 2351184-07 Soil	TP3-SS2 18-Dec-23 09:00 2351184-08 Soil	-	-
Semi-Volatiles	WDE/Onits						
Terphenyl-d14	Surrogate	-	58.8%	-	-	-	-
Pesticides, OC	· · · ·			ł	1		L. L
Aldrin	0.01 ug/g	<0.01	-	<0.01	-	-	-
gamma-BHC (Lindane)	0.01 ug/g	<0.01	-	<0.01	-	-	-
alpha-Chlordane	0.01 ug/g	<0.01	-	<0.01	-	-	-
gamma-Chlordane	0.01 ug/g	<0.01	-	<0.01	-	-	-
Chlordane	0.01 ug/g	<0.01	-	<0.01	-	-	-
o,p'-DDD	0.01 ug/g	<0.01	-	<0.01	-	-	-
p,p'-DDD	0.02 ug/g	<0.02	-	<0.02	-	-	-
DDD	0.02 ug/g	<0.02	-	<0.02	-	-	-
o,p'-DDE	0.01 ug/g	<0.01	-	<0.01	-	-	-
p,p'-DDE	0.01 ug/g	<0.01	-	<0.01	-	-	-
DDE	0.01 ug/g	<0.01	-	<0.01	-	-	-
o,p'-DDT	0.01 ug/g	<0.01	-	<0.01	-	-	-
p,p'-DDT	0.01 ug/g	<0.01	-	<0.01	-	-	-
DDT	0.01 ug/g	<0.01	-	<0.01	-	-	-
Dieldrin	0.02 ug/g	<0.02	-	<0.02	-	-	-
Endrin	0.02 ug/g	<0.02	-	<0.02	-	-	-
Endosulfan I	0.01 ug/g	<0.01	-	<0.01	-	-	-
Endosulfan II	0.02 ug/g	<0.02	-	<0.02	-	-	-
Endosulfan I/II	0.02 ug/g	<0.02	-	<0.02	-	-	-
Heptachlor	0.01 ug/g	<0.01	-	<0.01	-	-	-
Heptachlor epoxide	0.01 ug/g	<0.01	-	<0.01	-	-	-
Hexachlorobenzene	0.01 ug/g	<0.01	-	<0.01	-	-	-
Hexachlorobutadiene	0.01 ug/g	<0.01	-	<0.01	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP2-SS2 18-Dec-23 09:00 2351184-05 Soil	TP2-SS5 18-Dec-23 09:00 2351184-06 Soil	TP3-SS1 18-Dec-23 09:00 2351184-07 Soil	TP3-SS2 18-Dec-23 09:00 2351184-08 Soil	-	-
Pesticides, OC					ļI		Į
Hexachloroethane	0.01 ug/g	<0.01	-	<0.01	-	-	-
Methoxychlor	0.01 ug/g	<0.01	-	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	80.1%	-	68.1%	-	-	-
PCBs							
PCBs, total	0.05 ug/g	<0.05	-	-	<0.05	-	-
Decachlorobiphenyl	Surrogate	101%	-	-	106%	-	_

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	-						
	Client ID:	TP3-SS3					
	Sample Date:	18-Dec-23 09:00				-	-
	Sample ID:	2351184-09					
	Matrix:	Soil					
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	70.3	-	-	-	-	-
Volatiles							
Acetone	0.50 ug/g	<0.50	-	-	-	-	-
Benzene	0.02 ug/g	<0.02	-	-	-	-	-
Bromodichloromethane	0.05 ug/g	<0.05	-	-	-	-	-
Bromoform	0.05 ug/g	<0.05	-	-	-	-	-
Bromomethane	0.05 ug/g	<0.05	-	-	-	-	-
Carbon Tetrachloride	0.05 ug/g	<0.05	-	-	-	-	-
Chlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
Chloroform	0.05 ug/g	<0.05	-	-	-	-	-
Dibromochloromethane	0.05 ug/g	<0.05	-	-	-	-	-
Dichlorodifluoromethane	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,3-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,4-Dichlorobenzene	0.05 ug/g	<0.05	-	-	-	-	-
1,1-Dichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
1,2-Dichloropropane	0.05 ug/g	<0.05	-	-	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	-	-	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	-	-	-	-	-
1,3-Dichloropropene, total	0.05 ug/g	<0.05	-	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	-	-	-	-	-
					l	L	

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

	Client ID:	TP3-SS3					
	Sample Date:	18-Dec-23 09:00				-	-
	Sample ID:	2351184-09					
	Matrix:	Soil					
]	MDL/Units						
Volatiles				ł	ł	1	
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	-	-	-	-	-
Hexane	0.05 ug/g	<0.05	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	-	-	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	-	-	-	-	-
Methyl tert-butyl ether	0.05 ug/g	<0.05	-	-	-	-	-
Methylene Chloride	0.05 ug/g	<0.05	-	-	-	-	-
Styrene	0.05 ug/g	<0.05	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	-	-	-	-	-
Tetrachloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
Toluene	0.05 ug/g	<0.05	-	-	-	-	-
1,1,1-Trichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
1,1,2-Trichloroethane	0.05 ug/g	<0.05	-	-	-	-	-
Trichloroethylene	0.05 ug/g	<0.05	-	-	-	-	-
Trichlorofluoromethane	0.05 ug/g	<0.05	-	-	-	-	-
Vinyl chloride	0.02 ug/g	<0.02	-	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	-	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	-	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	-	-	-	-	-
Dibromofluoromethane	Surrogate	103%	-	-	-	-	-
Toluene-d8	Surrogate	85.8%	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	99.1%	-	-	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	-	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	-	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

	_						
	Client ID:	TP3-SS3					
	Sample Date:	18-Dec-23 09:00				-	-
	Sample ID:	2351184-09					
	Matrix:	Soil					
	MDL/Units						
Hydrocarbons							
F3 PHCs (C16-C34)	8 ug/g	<8	-	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	-	-	-	-	-
Semi-Volatiles					-		
Acenaphthene	0.02 ug/g	<0.02	-	-	-	-	-
Acenaphthylene	0.02 ug/g	<0.02	-	-	-	-	-
Anthracene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [a] anthracene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [a] pyrene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [b] fluoranthene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	-	-	-	-	-
Benzo [k] fluoranthene	0.02 ug/g	<0.02	-	-	-	-	-
Chrysene	0.02 ug/g	<0.02	-	-	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	-	-	-	-	-
Fluoranthene	0.02 ug/g	<0.02	-	-	-	-	-
Fluorene	0.02 ug/g	<0.02	-	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	-	-	-	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	-	-	-	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	-	-	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	-	-	-	-	-
Naphthalene	0.01 ug/g	<0.01	-	-	-	-	-
Phenanthrene	0.02 ug/g	<0.02	-	-	-	-	-
Pyrene	0.02 ug/g	<0.02	-	-	-	-	-
2-Fluorobiphenyl	Surrogate	58.5%	-	-	-	-	-
Terphenyl-d14	Surrogate	67.6%	-	-	-	-	-

PARACEL

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

GenerationsConductivityNDSuS/cmConductivityND0.33ug/sHaraconsug/sF1 HOS (C6201)ND7ug/sF2 PEOS (C10-C16)ND4ug/sF3 HCS (C16-C34)ND8ug/sF3 HCS (C16-C34)ND10ug/sF3 HCS (C16-C34)ND10ug/sF3 HCS (C16-C34)ND10ug/sFa HCS (C34-C50)ND10ug/sFa HCS (C16-C34)ND10ug/sFa HCS (C34-C50)ND10ug/sFa HCS (C34-C50)	Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Cyanido.free ND 0.03 ugit Hydrocarbon F1 PHCs (C6-C10) ND 7 ugit F2 PHCs (C10-C16) ND 4 ugit F3 PHCs (C16-C34) ND 4 ugit F4 PHCs (C34-C50) ND 0 ugit Antimory ND 1.0 ugit Arsenic ND 1.0 ugit Barkim ugit Boron, available ND 0.5 ugit Boron ND 0.5 ugit Chromlum (Vi) ND 0.5 ugit Chromlum (Vi) ND 0.5 ugit Cabali Company ND 0.5 ugit Meduto ND 0.5 ugit Cabali Company ND 0.5 ugit Cabali Company ND 0.5 ugit Molydenum ND 0.5 ugit Molydenum </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hydrocarbons ND 7 ug's F1 PHCs (C6-C10) ND 4 ug's F3 PHCs (C16-C34) ND 8 ug's F3 PHCs (C16-C34) ND 8 ug's Atlmony ND 10 ug's Atlmony ND 1.0 ug's Barlun ND 1.0 ug's Barlun ND 0.5 ug's Boron, available ND 0.5 ug's Boron, available ND 0.5 ug's Cadmium ND 0.5 ug's Chomium (V1) ND 0.5 ug's Coper ND 0.5 ug's Coper ND 0.5 ug's Mecury ND 0.5									
F1 PICs (C6-C10) ND 7 ugi F2 PICs (C10-C34) ND 4 ugi F3 PICs (C10-C34) ND 6 ugi F4 PICs (C34-C50) ND 0 ugi Antimony ND 1.0 ugi Arsenic ND 1.0 ugi Barlum ND 1.0 ugi Boron, available ND 0.0 ugi Boron, available ND 0.5 ugi Chomium (V1) ND 0.5 ugi Chomium (V1) ND 0.5 ugi Cobalt ND 0.5 ugi Cobalt ND 0.5 ugi Molydenum ND 0.5 ugi Noise 0.0 ugi ugi No	Cyanide, free	ND	0.03	ug/g					
F2 PHCs (C10-C16) ND 4 ug'g F3 PHCs (C10-C34) ND 8 ug/g F4 PHCs (C34-C50) ND 6 ug/g Mitmony ND 1.0 ug/g Arsenic ND 1.0 ug/g Barlun ND 1.0 ug/g Born, available ND 0.5 ug/g Born, available ND 0.5 ug/g Chomium (V1) ND 0.5 ug/g Chomium (V1) ND 0.2 ug/g Cobat ND 0.2 ug/g Cobat ND 0.2 ug/g Cobat ND 0.2 ug/g Cobat ND 0.2 ug/g Molybdenum ND 0.2 ug/g Molybdenum ND 0.3 ug/g Silver ND 1.0 ug/g Molybdenum ND 0.3 ug/g Silver ND 1.0<									
F3 PHC2 (C16-C34) ND 8 ug F4 PHC2 (C34-C50) ND 6 ug Matian ND 1.0 ug/s Arsenic ND 1.0 ug/s Arsenic ND 1.0 ug/s Barlum ND 0.0 ug/s Berglium ND 0.5 ug/s Boron, available ND 0.5 ug/s Cadmum ND 0.5 ug/s Chromium (V1) ND 0.5 ug/s Cobalt ND 0.5 ug/s Cobalt ND 0.5 ug/s Cobalt ND 0.5 ug/s Maydenum ND 0.5 ug/s Molydenum ND 1.0 ug/s Nobydenum ND 1.0 ug/s Nakel ND 1.0 ug/s Sterd ND 1.0 ug/s Nobydenum ND ug/s <tr< td=""><td></td><td>ND</td><td>7</td><td>ug/g</td><td></td><td></td><td></td><td></td><td></td></tr<>		ND	7	ug/g					
F4 PHCs (C34-C50) ND 6 ugd Antimony ND 1.0 ugd Arsenic ND 1.0 ugd Barun ND 1.0 ugd Beryllun ND 0.0 ugd Boron, available ND 0.5 ugd Cadmiun ND 0.5 ugd Chomiun (VI) ND 0.2 ugd Chomiun (VI) ND 0.2 ugd Copper ND 0.2 ugd Kedury ND 0.2 ugd Nomun ND 0.2 ugd Kedury ND 1.0 ugd Kedury ND 0.0 ugd Kedury ND 0.0 ugd Kedury ND 0.0 ugd Kedury ND		ND	4	ug/g					
Matanoy ND 1.0 ug/s Arsenic ND 1.0 ug/s Barium ND 1.0 ug/s Barjum ND 0.5 ug/s Boron, available ND 0.5 ug/s Cohon ND 0.0 0.9 ug/s Cadmium ND 0.5 ug/s Chomium (VI) ND 0.2 ug/s Chomium (VI) ND 0.2 ug/s Chomium (VI) ND 0.2 ug/s Cobalt ND 1.0 ug/s Cobalt ND 1.0 ug/s Merury ND 0.0 ug/s Nodeshum ND 0.1 ug/s Nodeshum ND 1.0 ug/s Silver ND 1.0 ug/s Vandum <td></td> <td>ND</td> <td>8</td> <td>ug/g</td> <td></td> <td></td> <td></td> <td></td> <td></td>		ND	8	ug/g					
Animony ND 1.0 ug/g Arsenic ND 1.0 ug/g Barlum ND 0.5 ug/g Boron ND 0.5 ug/g Boron ND 0.5 ug/g Cadmium ND 0.5 ug/g Cadmium ND 0.5 ug/g Chronium (VI) ND 0.2 ug/g Chronium (CI) ND 0.2 ug/g Copper ND 5.0 ug/g Copper ND 5.0 ug/g Mercury ND 1.0 ug/g Netode ND 1.0 ug/g Nickel ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 5.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Varium ND 1.0 ug/g N	F4 PHCs (C34-C50)	ND	6	ug/g					
Arsenic ND 1.0 ug/g Barlum ND 1.0 ug/g Beryllium ND 0.5 ug/g Boron, available ND 0.5 ug/g Boron ND 0.5 ug/g Cadmium ND 0.5 ug/g Chromium (VI) ND 0.2 ug/g Chorbium (VI) ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 5.0 ug/g Mercury ND 1.0 ug/g Molydenum ND 0.1 ug/g Selenium ND 1.0 ug/g Siked ND 1.0 ug/g Selenium ND 1.0 ug/g Siker ND 0.3 ug/g Vanadium ND 1.0 ug/g Vanadium ND 1.0 ug/g Vanadium ND 1.0 ug/g	Metals								
Barium ND 1.0 ug/g Berglium ND 0.5 ug/g Boron, available ND 0.5 ug/g Cadmium ND 0.5 ug/g Cadmium ND 0.5 ug/g Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 5.0 ug/g Cobalt ND 5.0 ug/g Coper ND 5.0 ug/g Mercury ND 1.0 ug/g Noldenum ND 5.0 ug/g Noldenum ND 1.0 ug/g Noldenum ND 1.0 ug/g Noldenum ND 5.0 ug/g Steenium ND 1.0 ug/g Steenium ND 0.3 ug/g Vanadum ND 0.0 ug/g Vanadum ND 1.0 ug/g	Antimony	ND	1.0	ug/g					
Barium ND 1.0 ug/g Beryllium ND 0.5 ug/g Boron, available ND 0.5 ug/g Cadmium ND 0.5 ug/g Cadmium ND 0.2 ug/g Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 5.0 ug/g Cobalt ND 5.0 ug/g Coper ND 5.0 ug/g Mercury ND 1.0 ug/g Noldenum ND 1.0 ug/g Nokel ND 1.0 ug/g Nokel ND 1.0 ug/g Stenium ND 5.0 ug/g Stern ND 1.0 ug/g Stern ND 1.0 ug/g Stern ND 1.0 ug/g Vanadum ND 1.0 ug/g <tr< td=""><td>Arsenic</td><td>ND</td><td>1.0</td><td>ug/g</td><td></td><td></td><td></td><td></td><td></td></tr<>	Arsenic	ND	1.0	ug/g					
Beryllium ND 0.5 ug/g Boron, available ND 0.5 ug/g Boron ND 5.0 ug/g Cadmium ND 0.2 ug/g Chromium (VI) ND 0.2 ug/g Cobalt ND 0.2 ug/g Cobalt ND 0.0 ug/g Cobalt ND 1.0 ug/g Lead ND 1.0 ug/g Molydenum ND 0.1 ug/g Noldbenum ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Vanadum ND 1.0 ug/g Vanadum ND 1.0 ug/g Vanadum ND 1.0 ug/g Vanadum ND 1.0 ug/g	Barium	ND	1.0						
Boron, available ND 0.5 ug/g Boron ND 5.0 ug/g Cadmium ND 0.5 ug/g Chromium(VI) ND 0.2 ug/g Chromium(VI) ND 5.0 ug/g Cobalt ND 5.0 ug/g Cobalt ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 1.0 ug/g Sikver ND 0.1 ug/g Nickel ND 1.0 ug/g Sikver ND 0.1 ug/g Thallium ND 1.0 ug/g Uranium ND 0.3 ug/g Vanadium ND 0.0 ug/g Zinc ND 0.0 ug/g PCBs, total ND 0.05 ug/g	Beryllium	ND	0.5						
Boron ND 5.0 ug/g Cadmium ND 0.5 ug/g Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Noldeenum ND 1.0 ug/g Nickel ND 1.0 ug/g Silver ND 1.0 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Varadum ND 1.0 ug/g Zinc ND 1.0 ug/g Varadum ND 1.0 ug/g Zinc ND 1.0 ug/g Zinc ND 1.0 ug/g Zinc ND 1.0 ug/g Z	Boron, available		0.5						
Cadmium ND 0.5 ugg Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 1.0 ug/g Mercury ND 1.0 ug/g Molydenum ND 1.0 ug/g Nickel ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Thallium ND 1.0 ug/g Vanadium ND 0.3 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 0.05 ug/g									
Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Nolyddenum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Uranium ND 1.0 ug/g Zinc ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g Zinc ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 2.05 ug/g	Cadmium								
Chromium ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Nolydenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 5.0 ug/g Silver ND 1.0 ug/g Thallium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 0.0 ug/g									
Cobalt ND 1.0 ug'g Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 1.0 ug/g Thallium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 1.0 ug/g									
Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 0.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 0.05 ug/g									
Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 0.3 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs ND 0.0 ug/g									
Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g PCBs, total ND 0.05 ug/g									
Molybdenum ND 1.0 ug'g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 10.0 ug/g PCBs, total ND 0.05 ug/g									
Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 10.0 ug/g PCBs, total ND 0.05 ug/g									
Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 10.0 ug/g PCBs ND 0.05 ug/g	-								
Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g PCBs ND 0.05 ug/g									
Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g PCBs ND 0.05 ug/g									
Uranium ND 1.0 ug/g Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g PCBs ND 0.05 ug/g									
VanadiumND10.0ug/gZincND20.0ug/gPCBsPCBs, totalND0.05ug/g									
ZincND20.0ug/gPCBs PCBs, totalND0.05ug/g									
PCBs ND 0.05 ug/g									
PCBs, total ND 0.05 ug/g		ND	20.0	uy/y					
			0.05	uala					
Surroyate. Decachiorobiphenyi 0.107 % 107 00-140			0.05		107	60 140			
	Surroyate. Decachioropiphenyi	0.107		%	107	00-140			

Order #: 2351184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

1-800-749-1947 • www.paracellabs.com

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Pesticides, OC								
Aldrin	ND	0.01	ug/g					
gamma-BHC (Lindane)	ND	0.01	ug/g					
alpha-Chlordane	ND	0.01	ug/g					
gamma-Chlordane	ND	0.01	ug/g					
Chlordane	ND	0.01	ug/g					
o,p'-DDD	ND	0.01	ug/g					
p,p'-DDD	ND	0.02	ug/g					
DDD	ND	0.02	ug/g					
o,p'-DDE	ND	0.01	ug/g					
p,p'-DDE	ND	0.01	ug/g					
DDE	ND	0.01	ug/g					
o,p'-DDT	ND	0.01	ug/g					
p,p'-DDT	ND	0.01	ug/g					
DDT	ND	0.01	ug/g					
Dieldrin	ND	0.02	ug/g					
Endrin	ND	0.02	ug/g					
Endosulfan I	ND	0.01	ug/g					
Endosulfan II	ND	0.02	ug/g					
Endosulfan I/II	ND	0.02	ug/g					
Heptachlor	ND	0.01	ug/g					
Heptachlor epoxide	ND	0.01	ug/g					
Hexachlorobenzene	ND	0.01	ug/g					
Hexachlorobutadiene	ND	0.01	ug/g					
Hexachloroethane	ND	0.01	ug/g					
Methoxychlor	ND	0.01	ug/g					
Surrogate: Decachlorobiphenyl	0.0917		%	91.7	50-140			
Semi-Volatiles								
Acenaphthene	ND	0.02	ug/g					
Acenaphthylene	ND	0.02	ug/g					
Anthracene	ND	0.02	ug/g					
Benzo [a] anthracene	ND	0.02	ug/g					
Benzo [a] pyrene	ND	0.02	ug/g					

Order #: 2351184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Order	#:	2351 [°]	184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [b] fluoranthene	ND	0.02	ug/g					
Benzo [g,h,i] perylene	ND	0.02	ug/g					
Benzo [k] fluoranthene	ND	0.02	ug/g					
Chrysene	ND	0.02	ug/g					
Dibenzo [a,h] anthracene	ND	0.02	ug/g					
Fluoranthene	ND	0.02	ug/g					
Fluorene	ND	0.02	ug/g					
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g					
1-Methylnaphthalene	ND	0.02	ug/g					
2-Methylnaphthalene	ND	0.02	ug/g					
Methylnaphthalene (1&2)	ND	0.04	ug/g					
Naphthalene	ND	0.01	ug/g					
Phenanthrene	ND	0.02	ug/g					
Pyrene	ND	0.02	ug/g					
Surrogate: 2-Fluorobiphenyl	0.797		%	59.7	50-140			
Surrogate: Terphenyl-d14	0.895		%	67.1	50-140			
Volatiles								
Acetone	ND	0.50	ug/g					
Benzene	ND	0.02	ug/g					
Bromodichloromethane	ND	0.05	ug/g					
Bromoform	ND	0.05	ug/g					
Bromomethane	ND	0.05	ug/g					
Carbon Tetrachloride	ND	0.05	ug/g					
Chlorobenzene	ND	0.05	ug/g					
Chloroform	ND	0.05	ug/g					
Dibromochloromethane	ND	0.05	ug/g					
Dichlorodifluoromethane	ND	0.05	ug/g					
1,2-Dichlorobenzene	ND	0.05	ug/g					
1,3-Dichlorobenzene	ND	0.05	ug/g					
1,4-Dichlorobenzene	ND	0.05	ug/g					
1,1-Dichloroethane	ND	0.05	ug/g					
1,2-Dichloroethane	ND	0.05	ug/g					

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

_					-	
0	rder	#:	23	511	84	1

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1-Dichloroethylene	ND	0.05	ug/g					
cis-1,2-Dichloroethylene	ND	0.05	ug/g					
trans-1,2-Dichloroethylene	ND	0.05	ug/g					
1,2-Dichloropropane	ND	0.05	ug/g					
cis-1,3-Dichloropropylene	ND	0.05	ug/g					
trans-1,3-Dichloropropylene	ND	0.05	ug/g					
1,3-Dichloropropene, total	ND	0.05	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g					
Hexane	ND	0.05	ug/g					
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g					
Methyl Isobutyl Ketone	ND	0.50	ug/g					
Methyl tert-butyl ether	ND	0.05	ug/g					
Methylene Chloride	ND	0.05	ug/g					
Styrene	ND	0.05	ug/g					
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g					
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g					
Tetrachloroethylene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
1,1,1-Trichloroethane	ND	0.05	ug/g					
1,1,2-Trichloroethane	ND	0.05	ug/g					
Trichloroethylene	ND	0.05	ug/g					
Trichlorofluoromethane	ND	0.05	ug/g					
Vinyl chloride	ND	0.02	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: 4-Bromofluorobenzene	2.92		%	91.3	50-140			
Surrogate: Dibromofluoromethane	3.18		%	99.4	50-140			
Surrogate: Toluene-d8	2.45		%	76.5	50-140			

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Order	#:	2351 [°]	184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	2.40	0.01	N/A	2.76			14.0	30	
Conductivity	433	5	uS/cm	446			2.8	5	
Cyanide, free	ND	0.03	ug/g	ND			NC	35	
рН	7.25	0.05	pH Units	7.19			0.8	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	4.0	1.0	ug/g	ND			NC	30	
Arsenic	8.2	1.0	ug/g	7.3			11.2	30	
Barium	68.0	1.0	ug/g	66.0			2.9	30	
Beryllium	1.1	0.5	ug/g	0.7			NC	30	
Boron, available	ND	0.5	ug/g	ND			NC	35	
Boron	11.8	5.0	ug/g	11.5			2.1	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	22.4	5.0	ug/g	20.6			8.5	30	
Cobalt	9.8	1.0	ug/g	9.0			8.0	30	
Copper	18.3	5.0	ug/g	16.2			11.8	30	
Lead	10.8	1.0	ug/g	10.2			6.2	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	4.3	1.0	ug/g	3.6			16.2	30	
Nickel	26.7	5.0	ug/g	24.7			7.7	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	1.7	1.0	ug/g	1.5			12.2	30	
Vanadium	35.0	10.0	ug/g	33.1			5.8	30	

Surrogate: Decachlorobiphenyl

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Analyte

Zinc

PCBs PCBs, total

Method Quality Control: Duplicate

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Notes

Pesticides, OC									
Aldrin	ND	0.01	ug/g	ND			NC	40	
gamma-BHC (Lindane)	ND	0.01	ug/g	ND			NC	40	
alpha-Chlordane	ND	0.01	ug/g	ND			NC	40	
gamma-Chlordane	ND	0.01	ug/g	ND			NC	40	
o,p'-DDD	ND	0.01	ug/g	ND			NC	40	
p,p'-DDD	ND	0.02	ug/g	ND			NC	40	
o,p'-DDE	ND	0.01	ug/g	ND			NC	40	
p,p'-DDE	ND	0.01	ug/g	ND			NC	40	
o,p'-DDT	ND	0.01	ug/g	ND			NC	40	
p,p'-DDT	ND	0.01	ug/g	ND			NC	40	
Dieldrin	ND	0.02	ug/g	ND			NC	40	
Endrin	ND	0.02	ug/g	ND			NC	40	
Endosulfan I	ND	0.01	ug/g	ND			NC	40	
Endosulfan II	ND	0.02	ug/g	ND			NC	40	
Heptachlor	ND	0.01	ug/g	ND			NC	40	
Heptachlor epoxide	ND	0.01	ug/g	ND			NC	40	
Hexachlorobenzene	ND	0.01	ug/g	ND			NC	40	
Hexachlorobutadiene	ND	0.01	ug/g	ND			NC	40	
Hexachloroethane	ND	0.01	ug/g	ND			NC	40	
Methoxychlor	ND	0.01	ug/g	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.0959		%		70.6	50-140			
Physical Characteristics									
% Solids	75.4	0.1	% by Wt.	75.5			0.1	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	

Source

Result

53.3

ND

Units

ug/g

ug/g

%

Reporting

Limit

20.0

0.05

Result

56.9

ND

0.168

%REC

Limit

60-140

%REC

103

RPD

Limit

30

40

RPD

6.5

NC

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	0.032	0.02	ug/g	0.029			7.2	40	
Benzo [a] pyrene	0.026	0.02	ug/g	0.022			12.9	40	
Benzo [b] fluoranthene	0.026	0.02	ug/g	0.028			7.4	40	
Benzo [g,h,i] perylene	0.022	0.02	ug/g	0.021			6.5	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	0.027	0.02	ug/g	0.031			12.8	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	0.079	0.02	ug/g	0.070			12.4	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	0.046	0.02	ug/g	0.037			21.7	40	
Pyrene	0.067	0.02	ug/g	0.057			15.8	40	
Surrogate: 2-Fluorobiphenyl	0.829		%		46.1	50-140			S-04
Surrogate: Terphenyl-d14	0.782		%		43.5	50-140			S-04
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Order	#:	2351 ⁴	184
-------	----	-------------------	-----

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	2.87		%		87.4	50-140			
Surrogate: Dibromofluoromethane	2.92		%		88.9	50-140			
Surrogate: Toluene-d8	2.40		%		72.9	50-140			

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD Limit	Notes
General Inorganics Cyanide, free	0.288	0.03	ug/g	ND	93.4	50-150		
Hydrocarbons	0.200	0.00	49,9	11D	00.1	00 100		
F1 PHCs (C6-C10)	176	7	ug/g	ND	88.2	85-115		
F2 PHCs (C10-C16)	133	4	ug/g	ND	115	60-140		
F3 PHCs (C16-C34)	367	8	ug/g	ND	129	60-140		
F4 PHCs (C34-C50)	246	6	ug/g	ND	137	60-140		
Metals			00					
Arsenic	48.7	1.0	ug/g	2.9	91.5	70-130		
Barium	68.3	1.0	ug/g	26.4	83.8	70-130		
Beryllium	46.3	0.5	ug/g	ND	92.0	70-130		
Boron, available	3.72	0.5	ug/g	ND	74.3	70-122		
Boron	49.3	5.0	ug/g	ND	89.4	70-130		
Cadmium	40.8	0.5	ug/g	ND	81.4	70-130		
Chromium (VI)	5.2	0.2	ug/g	ND	98.5	70-130		
Chromium	56.1	5.0	ug/g	8.2	95.7	70-130		
Cobalt	49.4	1.0	ug/g	3.6	91.5	70-130		
Copper	51.0	5.0	ug/g	6.5	89.1	70-130		
Lead	44.9	1.0	ug/g	4.1	81.6	70-130		
Mercury	1.39	0.1	ug/g	ND	92.9	70-130		
Molybdenum	43.7	1.0	ug/g	1.5	84.5	70-130		
Nickel	55.1	5.0	ug/g	9.9	90.4	70-130		
Selenium	42.9	1.0	ug/g	ND	85.6	70-130		
Silver	40.3	0.3	ug/g	ND	80.6	70-130		
Thallium	44.3	1.0	ug/g	ND	88.3	70-130		
Uranium	43.8	1.0	ug/g	ND	86.4	70-130		
Vanadium	59.9	10.0	ug/g	13.2	93.4	70-130		
Zinc	64.0	20.0	ug/g	21.3	85.3	70-130		
PCBs								
PCBs, total	0.830	0.05	ug/g	ND	127	60-140		
Surrogate: Decachlorobiphenyl	0.167		%		102	60-140		

Order #: 2351184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Pesticides, OC									
Aldrin	0.29	0.01	ug/g	ND	106	50-140			
gamma-BHC (Lindane)	0.36	0.01	ug/g	ND	132	50-140			
alpha-Chlordane	0.34	0.01	ug/g	ND	127	50-140			
gamma-Chlordane	0.31	0.01	ug/g	ND	116	50-140			
o,p'-DDD	0.22	0.01	ug/g	ND	80.4	50-140			
p,p'-DDD	0.33	0.02	ug/g	ND	120	50-140			
o,p'-DDE	0.26	0.01	ug/g	ND	95.9	50-140			
p,p'-DDE	0.32	0.01	ug/g	ND	117	50-140			
o,p'-DDT	0.26	0.01	ug/g	ND	97.2	50-140			
p,p'-DDT	0.33	0.01	ug/g	ND	121	50-140			
Dieldrin	0.29	0.02	ug/g	ND	108	50-140			
Endrin	0.35	0.02	ug/g	ND	130	50-140			
Endosulfan I	0.35	0.01	ug/g	ND	129	50-140			
Endosulfan II	0.34	0.02	ug/g	ND	125	50-140			
Heptachlor	0.31	0.01	ug/g	ND	114	50-140			
Heptachlor epoxide	0.35	0.01	ug/g	ND	127	50-140			
Hexachlorobenzene	0.23	0.01	ug/g	ND	85.4	50-140			
Hexachlorobutadiene	0.35	0.01	ug/g	ND	128	50-140			
Hexachloroethane	0.36	0.01	ug/g	ND	132	50-140			
Methoxychlor	0.34	0.01	ug/g	ND	126	50-140			
Surrogate: Decachlorobiphenyl	0.0968		%		71.2	50-140			
Semi-Volatiles									
Acenaphthene	0.159	0.02	ug/g	ND	70.9	50-140			
Acenaphthylene	0.176	0.02	ug/g	ND	78.1	50-140			
Anthracene	0.186	0.02	ug/g	ND	82.9	50-140			
Benzo [a] anthracene	0.206	0.02	ug/g	0.029	78.7	50-140			
Benzo [a] pyrene	0.158	0.02	ug/g	0.022	60.2	50-140			
Benzo [b] fluoranthene	0.193	0.02	ug/g	0.028	73.6	50-140			
Benzo [g,h,i] perylene	0.173	0.02	ug/g	0.021	67.7	50-140			
Benzo [k] fluoranthene	0.211	0.02	ug/g	ND	93.7	50-140			

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Project Description: 230202

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chrysene	0.200	0.02	ug/g	0.031	75.1	50-140			
Dibenzo [a,h] anthracene	0.146	0.02	ug/g	ND	65.2	50-140			
Fluoranthene	0.295	0.02	ug/g	0.070	100	50-140			
Fluorene	0.146	0.02	ug/g	ND	65.1	50-140			
Indeno [1,2,3-cd] pyrene	0.172	0.02	ug/g	ND	76.6	50-140			
1-Methylnaphthalene	0.157	0.02	ug/g	ND	70.0	50-140			
2-Methylnaphthalene	0.159	0.02	ug/g	ND	71.0	50-140			
Naphthalene	0.179	0.01	ug/g	ND	79.5	50-140			
Phenanthrene	0.213	0.02	ug/g	0.037	78.3	50-140			
Pyrene	0.280	0.02	ug/g	0.057	99.2	50-140			
Surrogate: 2-Fluorobiphenyl	1.23		%		68.5	50-140			
Surrogate: Terphenyl-d14	1.17		%		65.0	50-140			
Volatiles									
Acetone	10.6	0.50	ug/g	ND	106	50-140			
Benzene	4.15	0.02	ug/g	ND	104	60-130			
Bromodichloromethane	4.21	0.05	ug/g	ND	105	60-130			
Bromoform	4.45	0.05	ug/g	ND	111	60-130			
Bromomethane	4.38	0.05	ug/g	ND	109	50-140			
Carbon Tetrachloride	4.74	0.05	ug/g	ND	119	60-130			
Chlorobenzene	4.25	0.05	ug/g	ND	106	60-130			
Chloroform	4.29	0.05	ug/g	ND	107	60-130			
Dibromochloromethane	4.18	0.05	ug/g	ND	104	60-130			
Dichlorodifluoromethane	4.13	0.05	ug/g	ND	103	50-140			
1,2-Dichlorobenzene	3.77	0.05	ug/g	ND	94.3	60-130			
1,3-Dichlorobenzene	3.91	0.05	ug/g	ND	97.8	60-130			
1,4-Dichlorobenzene	3.86	0.05	ug/g	ND	96.6	60-130			
1,1-Dichloroethane	3.69	0.05	ug/g	ND	92.2	60-130			
1,2-Dichloroethane	4.01	0.05	ug/g	ND	100	60-130			
1,1-Dichloroethylene	3.84	0.05	ug/g	ND	96.0	60-130			
cis-1,2-Dichloroethylene	3.89	0.05	ug/g	ND	97.3	60-130			
trans-1,2-Dichloroethylene	4.05	0.05	ug/g	ND	101	60-130			

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloropropane	3.63	0.05	ug/g	ND	90.7	60-130			
cis-1,3-Dichloropropylene	3.77	0.05	ug/g	ND	94.1	60-130			
trans-1,3-Dichloropropylene	3.60	0.05	ug/g	ND	90.1	60-130			
Ethylbenzene	3.56	0.05	ug/g	ND	89.0	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	3.81	0.05	ug/g	ND	95.3	60-130			
Hexane	4.32	0.05	ug/g	ND	108	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.16	0.50	ug/g	ND	91.6	50-140			
Methyl Isobutyl Ketone	8.41	0.50	ug/g	ND	84.1	50-140			
Methyl tert-butyl ether	8.74	0.05	ug/g	ND	87.4	50-140			
Methylene Chloride	4.04	0.05	ug/g	ND	101	60-130			
Styrene	3.62	0.05	ug/g	ND	90.4	60-130			
1,1,1,2-Tetrachloroethane	4.19	0.05	ug/g	ND	105	60-130			
1,1,2,2-Tetrachloroethane	3.53	0.05	ug/g	ND	88.2	60-130			
Tetrachloroethylene	4.78	0.05	ug/g	ND	120	60-130			
Toluene	4.02	0.05	ug/g	ND	100	60-130			
1,1,1-Trichloroethane	4.68	0.05	ug/g	ND	117	60-130			
1,1,2-Trichloroethane	4.10	0.05	ug/g	ND	103	60-130			
Trichloroethylene	4.23	0.05	ug/g	ND	106	60-130			
Trichlorofluoromethane	4.71	0.05	ug/g	ND	118	50-140			
Vinyl chloride	3.81	0.02	ug/g	ND	95.2	50-140			
m,p-Xylenes	7.64	0.05	ug/g	ND	95.5	60-130			
o-Xylene	3.81	0.05	ug/g	ND	95.3	60-130			
Surrogate: 4-Bromofluorobenzene	2.20		%		68.7	50-140			
Surrogate: Dibromofluoromethane	3.13		%		97.9	50-140			
Surrogate: Toluene-d8	2.24		%		70.1	50-140			

Order #: 2351184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Qualifier Notes:

QC Qualifiers:

S-04

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC crite
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2351184

Report Date: 27-Dec-2023

Order Date: 19-Dec-2023

GPARA LABORATORI	LO LID.						84			Par 23	(Lab	Orde Use	Onl		er	Chain Of Custody (Lab Use Only) Nº 129604			1		
Contact Name: Raed K			10	Project Ref: 230202										Page of Turnaround Time							
Address: 5430 canote Telephone: 61323044		Hawa,	a 1997 - 19 7	PO #: E-mai	ili V .	kend	alaft	e Ir Lr	1.Co L.Co	1						1 1 2 Date R	day day		iround	□ 3	day egular
Regulation 153/04	Other Re	and the second sec		/atrix	Type:	s (Soil/Se	d) GW (Gr	ound V	Vater)				53/0	-		19	5				34
Table 1 Res/Park Med/Fin Table 2 Ind/Comm Coarse	e Come	PWQ0 MISA		SW (Su	Inface V	Water) SS	(Storm/Sar Air) O (Oth	nitary Se	ewer)	1			1 15	_	R	equire	d An	nalysis	S	an a	
Table 3 Agri/Other Table For RSC: Yes No	U SU - Sani Mun: Other:	SU - Storm	Matrix	Air Volume	of Containers		Sample	Taken	4	S STATES	2	s	als land O.R	уй ,	а	Three a	SUMPON	4	CBS	n kar	
Sample ID/Locati	The second s	ing the	<u> </u>	Air	(年)		Date	6.1	lime	PHCs	VOCs	PAHs	Met	Нg	Cr	They a		ŏ	C		
	TPI-SSI	(55	-	3	18.1	2.2023	A	m	X	X	X									í.
FI-2512					$\left \right $								Х			X		X	ions)a	salà (m):	4
3 TP1-554 4 TP2-551				22.5	\square		3	<u>11-1</u>					,						X		
5 TP2-552	and a second second	A second second	-		H^{-}		01.0		1		-		X								
6 TP2 - 55			}	1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			2				~			-	_			X	X		
7		-	-			-				X	X	Х		-	_	-		-		_	
* TP3- 551 * TP3-55;						1	н	1		-	· ,	-		\rightarrow	_	.		X			
9 TP3-55		1	V		1		A 1			J	ज	1	χ	\rightarrow	_	X	-		X		
10	<u>></u>		v		<u> </u>		·	N.	<u> </u>	X	Δ	X	-	+			+	-	_	-	-
elinquished By (Sign		Received By Dr	iver/De	pot:				Permisser	Lat Lab:	1	-				W	d of Del	ivery:	<u>n</u>	N,		
elinquished By (Print): Por Col	11	Date/Time:			-	1.	1	Ð.	201	a	M		2	5	/erified	BY:	H	135)		
ate/Time: 19.12.23	K	Date/Time: Demperature:				°C		Date/Tir	ne: ve	1.3	20	°C	1		Date/T	ime: ified: [Dec	C By:	19,8	23 11	7:4
Chain of Custody (Env.) xlsx	4-	10 2 6 12 C	1.1651	873 LA 14	11.020	Davi	sion 3.0	21.45	6.	<i>t</i>		Č		ľ	a) ver	ineu. L	1	1			

Paracel ID Client ID	
This Certificate of Analysis contains analytical data applicable to the following samples as submitted:	
Custody:	Order #. 2551275
Project: 230202	Order #: 2351279
Client PO:	Order Date: 20-Dec-2023
Attn: Raed Kandalaft	Report Date: 2-Jan-2024
Ottawa, ON K1J 9G2	
5430 Canotek Road	
LRL Associates Ltd.	

Approved By:

-

2351279-01

2351279-02

2351279-03

2351279-04

2351279-05

. .

. . .

MW20-2

MW20-3 MW20-5

MW20-10

MW23-3 (Test Pit)

Nosa

Dale Robertson, BSc

Laboratory Director

Client: LRL Associates Ltd.

Client PO:

Analysis Anions

Cyanide, free

Mercury by CVAA

Metals, ICP-MS

PHCs F2 to F4

PCBs, total

PHC F1

pН

Analysis Summary Table

Chromium, hexavalent - water

REG 153: PAHs by GC-MS

REG 153: VOCs by P&T GC/MS

REG 153: Pesticides, OC

Extraction Date

21-Dec-23

22-Dec-23

21-Dec-23

21-Dec-23

21-Dec-23

29-Dec-23

21-Dec-23

21-Dec-23

22-Dec-23

28-Dec-23

29-Dec-23

21-Dec-23

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Analysis Date

22-Dec-23

22-Dec-23

21-Dec-23

21-Dec-23

21-Dec-23

29-Dec-23

21-Dec-23

21-Dec-23

22-Dec-23

28-Dec-23

29-Dec-23

21-Dec-23

Project Description: 230202

OTTAWA = MISSISSAUGA	 HAMILTON 	 KINGSTON 	 LONDON 	 NIAGARA 	 WINDSOR 	 RICHMOND 	HILL
----------------------	------------------------------	------------------------------	----------------------------	-----------------------------	-----------------------------	------------------------------	------

Method Reference/Description

MOE E3056 - colourimetric

MOE E3015 - Auto Colour

EPA 200.8 - ICP-MS

EPA 608 - GC-ECD

EPA 245.2 - Cold Vapour AA

EPA 150.1 - pH probe @25 °C

CWS Tier 1 - GC-FID, extraction

EPA 625 - GC-MS, extraction

CWS Tier 1 - P&T GC-FID

EPA 8081B - GC-ECD

EPA 624 - P&T GC-MS

EPA 300.1 - IC

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	Client ID:	MW20-2	MW20-3	MW20-5	MW20-10		
	Sample Date:	20-Dec-23 13:20	20-Dec-23 10:00	20-Dec-23 09:00	20-Dec-23 12:00	-	-
	Sample ID:	2351279-01	2351279-02	2351279-03	2351279-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
General Inorganics					•	•	
Cyanide, free	2 ug/L	<2	<2	<2	<2	-	-
рН	0.1 pH Units	7.7	7.5	7.4	7.6	-	-
Anions					-		
Chloride	1 mg/L	411	193	50	335	-	-
Metals							
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	-	-
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Arsenic	1 ug/L	2	<1	3	<1	-	-
Barium	1 ug/L	30	17	26	29	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Boron	10 ug/L	190	87	64	73	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	-	-
Chromium (VI)	10 ug/L	<10	<10	<10	<10	-	-
Chromium	1 ug/L	<1	<1	<1	<1	-	-
Cobalt	0.5 ug/L	<0.5	<0.5	0.7	<0.5	-	-
Copper	0.5 ug/L	0.9	1.3	0.6	2.4	-	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	0.5 ug/L	3.7	2.2	1.8	2.3	-	-
Nickel	1 ug/L	<1	2	3	3	-	-
Selenium	1 ug/L	<1	<1	<1	<1	-	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	-	-
Sodium	200 ug/L	342000	162000	78600	195000	-	-
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	-	-
Uranium	0.1 ug/L	4.8	4.8	3.6	4.9	-	-
Vanadium	0.5 ug/L	1.0	9.9	1.5	1.7	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	Client ID:	MW20-2	MW20-3	MW20-5	MW20-10		
	Sample Date:	20-Dec-23 13:20	20-Dec-23 10:00	20-Dec-23 09:00	20-Dec-23 12:00	-	-
	Sample ID:	2351279-01	2351279-02	2351279-03	2351279-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Metals	LI		1	Į			
Zinc	5 ug/L	<5	<5	<5	<5	-	-
Volatiles	•						
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	<0.2	<0.2	<0.2	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	Client ID:	MW20-2	MW20-3	MW20-5	MW20-10		
	Sample Date:	20-Dec-23 13:20	20-Dec-23 10:00	20-Dec-23 09:00	20-Dec-23 12:00	-	-
	Sample ID:	2351279-01	2351279-02	2351279-03	2351279-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Volatiles	Ļ		1	ł	Į	1	
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Toluene-d8	Surrogate	115%	118%	109%	124%	-	-
Dibromofluoromethane	Surrogate	109%	117%	100%	103%	-	-
4-Bromofluorobenzene	Surrogate	94.8%	131%	122%	98.4%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	Client ID:	MW20-2	MW20-3	MW20-5	MW20-10		
	Sample Date:	20-Dec-23 13:20	20-Dec-23 10:00	20-Dec-23 09:00	20-Dec-23 12:00	-	-
	Sample ID:	2351279-01	2351279-02	2351279-03	2351279-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Hydrocarbons							
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100	-	-
Semi-Volatiles							
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
Anthracene	0.01 ug/L	0.04	0.03	0.04	0.02	-	-
Benzo [a] anthracene	0.01 ug/L	0.10	0.02	0.06	0.03	-	-
Benzo [a] pyrene	0.01 ug/L	0.21	0.04	0.05	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	0.40	0.05	0.06	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	0.60	0.18	0.15	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	0.21	<0.05	<0.05	<0.05	-	-
Chrysene	0.05 ug/L	0.14	<0.05	0.06	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	0.05	<0.05	<0.05	<0.05	-	-
Fluoranthene	0.01 ug/L	0.06	0.01	0.16	0.04	-	-
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	0.38	0.12	0.09	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	<0.10	<0.10	-	-
Naphthalene	0.05 ug/L	<0.05	0.11	0.05	0.19	-	-
Phenanthrene	0.05 ug/L	<0.05	<0.05	0.09	0.06	-	-
Pyrene	0.01 ug/L	0.41	0.07	0.18	0.04	-	-
2-Fluorobiphenyl	Surrogate	61.9%	65.9%	67.9%	65.6%	-	-
Terphenyl-d14	Surrogate	81.0%	86.6%	109%	93.1%	-	-
Pesticides, OC							

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	Client ID:	MW20-2	MW20-3	MW20-5	MW20-10		
	Sample Date:	20-Dec-23 13:20	20-Dec-23 10:00	20-Dec-23 09:00	20-Dec-23 12:00	-	-
	Sample ID:	2351279-01	2351279-02	2351279-03	2351279-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Pesticides, OC				•			
Aldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Dieldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan I	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan I/II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobutadiene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Hexachloroethane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

	Client ID: Sample Date: Sample ID: Matrix:	MW20-2 20-Dec-23 13:20 2351279-01 Ground Water	MW20-3 20-Dec-23 10:00 2351279-02 Ground Water	MW20-5 20-Dec-23 09:00 2351279-03 Ground Water	MW20-10 20-Dec-23 12:00 2351279-04 Ground Water	-	-
	MDL/Units						
Pesticides, OC			-				
Decachlorobiphenyl	Surrogate	72.5%	78.9%	81.9%	119%	-	-
PCBs							
PCBs, total	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	-	-
Decachlorobiphenyl	Surrogate	98.1%	104%	103%	107%	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

shent PO.							Toject Description. 230202
	Client ID: Sample Date: Sample ID: Matrix:	MW23-3 (Test Pit) 20-Dec-23 10:40 2351279-05 Ground Water				-	-
	MDL/Units						
General Inorganics	· · · · ·						+
Cyanide, free	2 ug/L	<2	-	-	-	-	-
рН	0.1 pH Units	7.2	-	-	-	-	-
Anions							
Chloride	1 mg/L	543	-	-	-	-	-
Metals							
Mercury	0.1 ug/L	<0.1	-	-	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-	-	-
Arsenic	1 ug/L	<1	-	-	-	-	-
Barium	1 ug/L	62	-	-	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-	-	-
Boron	10 ug/L	93	-	-	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-	-	-
Chromium	1 ug/L	<1	-	-	-	-	-
Cobalt	0.5 ug/L	0.9	-	-	-	-	-
Copper	0.5 ug/L	1.7	-	-	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-	-	-
Molybdenum	0.5 ug/L	1.4	-	-	-	-	-
Nickel	1 ug/L	2	-	-	-	-	-
Selenium	1 ug/L	<1	-	-	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-	-	-
Sodium	200 ug/L	191000	-	-	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-	-	-
Uranium	0.1 ug/L	11.8	-	-	-	-	-
Vanadium	0.5 ug/L	2.1	-	-	-	-	-
					•	•	*

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Client PO:						F	roject Description: 230202
	Client ID:	MW23-3 (Test Pit)					
	Sample Date:	20-Dec-23 10:40				-	-
	Sample ID:	2351279-05					
	Matrix:	Ground Water					
	MDL/Units						
Metals							•
Zinc	5 ug/L	<5	-	-	-	-	-
Volatiles							
Acetone	5.0 ug/L	67.4	-	-	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	-	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

	_						
	Client ID:	MW23-3 (Test Pit)					
	Sample Date:	20-Dec-23 10:40				-	-
	Sample ID:	2351279-05					
	Matrix:	Ground Water					
	MDL/Units						
Volatiles	-						
Ethylbenzene	0.5 ug/L	<0.5	-	-	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-	-	-
Dibromofluoromethane	Surrogate	135%	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	92.6%	-	-	-	-	-
Toluene-d8	Surrogate	115%	-	-	-	-	-
Hydrocarbons					-		
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-	-	-

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Shent I O.						•	Toject Description. 200202
	Client ID:	MW23-3 (Test Pit)					
	Sample Date:	20-Dec-23 10:40				-	
	Sample ID:	2351279-05					
	Matrix:	Ground Water					
	MDL/Units						
Hydrocarbons	II			1	4		+
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-	-	-
Semi-Volatiles							
Acenaphthene	0.05 ug/L	<0.05	-	-	-	-	-
Acenaphthylene	0.05 ug/L	0.20	-	-	-	-	-
Anthracene	0.01 ug/L	0.23	-	-	-	-	-
Benzo [a] anthracene	0.01 ug/L	0.36	-	-	-	-	-
Benzo [a] pyrene	0.01 ug/L	0.30	-	-	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	0.29	-	-	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	0.21	-	-	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	0.17	-	-	-	-	-
Chrysene	0.05 ug/L	0.35	-	-	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-	-	-
Fluoranthene	0.01 ug/L	1.06	-	-	-	-	-
Fluorene	0.05 ug/L	<0.05	-	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	0.17	-	-	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	-	-	-	-
Naphthalene	0.05 ug/L	0.14	-	-	-	-	-
Phenanthrene	0.05 ug/L	0.51	-	-	-	-	-
Pyrene	0.01 ug/L	0.88	-	-	-	-	-
2-Fluorobiphenyl	Surrogate	57.8%	-	-	-	-	-
Terphenyl-d14	Surrogate	69.0%	-	-	-	-	-
Pesticides, OC							

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Client ID:	MW23-3 (Test Pit)					
Sample Date:	20-Dec-23 10:40				-	-
Sample ID:	2351279-05					
Matrix:	Ground Water					
MDL/Units						
					_	
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	0.02	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	0.02	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
0.01 ug/L	<0.01	-	-	-	-	-
	Sample Date: Sample ID: Matrix: MDL/Units 0.01 ug/L 0.01 ug/L	Sample Date: 20-Dec-23 10:40 Sample ID: 2351279-05 Matrix: Ground Water MDL/Units 0.01 ug/L <0.01	Sample Date: 20-Dec-23 10:40 Sample ID: 2351279-05 Ground Water Imatrix: MDL/Units <0.01	Sample Date: 20-Dec-23 10:40 2351279-05 Ground Water MDL/Units Ground Water MDL/Units - 0.01 ug/L <0.01	Sample Date: Sample Date: Matrix: 20-Dec-23 10:40 2351279-05 Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water Mutrix: Sample Date: Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water Mutrix: Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water Image: Sample Date: Ground Water 0.01 ug/L <0.01	Sample Date Sample Db Matrix: 20-Dec-23 10:40 2351279-05 Ground Water Image: Constraint of the symptotic symptotic Ground Water Image: Constraint of the symptotic symptotic MUL/Units Image: Constraint of the symptotic symptot

Client: LRL Associates Ltd.

Client PO:

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

	Client ID: Sample Date: Sample ID: Matrix:					-	-
	MDL/Units						
Pesticides, OC					•		
Decachlorobiphenyl	Surrogate	105%	-	-	-	-	-
PCBs							
PCBs, total	0.05 ug/L	<0.05	-	-	-	-	-
Decachlorobiphenyl	Surrogate	85.9%	-	-	-	-	-

PARACEL

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
General Inorganics								
Cyanide, free	ND	2	ug/L					
Hydrocarbons		0.5						
F1 PHCs (C6-C10)	ND	25	ug/L					
F2 PHCs (C10-C16)	ND	100	ug/L					
F3 PHCs (C16-C34)	ND	100	ug/L					
F4 PHCs (C34-C50)	ND	100	ug/L					
Metals								
Mercury	ND	0.1	ug/L					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Chromium (VI)	ND	10	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Lead	ND	0.1	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Thallium	ND	0.1	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
PCBs		č	~9, _					
PCBs, total	ND	0.05	ug/L					

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2351279

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Order #: 2351	279
---------------	-----

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Decachlorobiphenyl	0.373		%	74.6	60-140			
Pesticides, OC								
Aldrin	ND	0.01	ug/L					
gamma-BHC (Lindane)	ND	0.01	ug/L					
alpha-Chlordane	ND	0.01	ug/L					
gamma-Chlordane	ND	0.01	ug/L					
Chlordane	ND	0.01	ug/L					
o,p'-DDD	ND	0.01	ug/L					
p,p'-DDD	ND	0.01	ug/L					
DDD	ND	0.01	ug/L					
o,p'-DDE	ND	0.01	ug/L					
p,p'-DDE	ND	0.01	ug/L					
DDE	ND	0.01	ug/L					
o,p'-DDT	ND	0.01	ug/L					
p,p'-DDT	ND	0.01	ug/L					
DDT	ND	0.01	ug/L					
Dieldrin	ND	0.01	ug/L					
Endrin	ND	0.01	ug/L					
Endosulfan I	ND	0.01	ug/L					
Endosulfan II	ND	0.01	ug/L					
Endosulfan I/II	ND	0.01	ug/L					
Heptachlor	ND	0.01	ug/L					
Heptachlor epoxide	ND	0.01	ug/L					
Hexachlorobenzene	ND	0.01	ug/L					
Hexachlorobutadiene	ND	0.01	ug/L					
Hexachloroethane	ND	0.01	ug/L					
Methoxychlor	ND	0.01	ug/L					
Surrogate: Decachlorobiphenyl	0.521		%	104	50-140			
Semi-Volatiles								
Acenaphthene	ND	0.05	ug/L					
Acenaphthylene	ND	0.05	ug/L					
Anthracene	ND	0.01	ug/L					
			~					

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

_			
Orde	r #۰	2351	279
	· T .	2001	ZI V

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [a] anthracene	ND	0.01	ug/L					
Benzo [a] pyrene	ND	0.01	ug/L					
Benzo [b] fluoranthene	ND	0.05	ug/L					
Benzo [g,h,i] perylene	ND	0.05	ug/L					
Benzo [k] fluoranthene	ND	0.05	ug/L					
Chrysene	ND	0.05	ug/L					
Dibenzo [a,h] anthracene	ND	0.05	ug/L					
Fluoranthene	ND	0.01	ug/L					
Fluorene	ND	0.05	ug/L					
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L					
1-Methylnaphthalene	ND	0.05	ug/L					
2-Methylnaphthalene	ND	0.05	ug/L					
Methylnaphthalene (1&2)	ND	0.10	ug/L					
Naphthalene	ND	0.05	ug/L					
Phenanthrene	ND	0.05	ug/L					
Pyrene	ND	0.01	ug/L					
Surrogate: 2-Fluorobiphenyl	13.7		%	68.5	50-140			
Surrogate: Terphenyl-d14	23.1		%	115	50-140			
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	107		%	134	50-140			
Surrogate: Dibromofluoromethane	88.2		%	110	50-140			
Surrogate: Toluene-d8	84.1		%	105	50-140			

Order #: 2351279

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

PARACEL

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Chloride	92.9	1	mg/L	91.8			1.2	20	
General Inorganics	02.0	·							
Cyanide, free	ND	2	ug/L	ND			NC	20	
pH	10.0	0.1	pH Units	10.0			0.5	3.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	122	1	ug/L	119			2.4	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	148	10	ug/L	154			4.0	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	ND	0.5	ug/L	ND			NC	20	
Lead	0.13	0.1	ug/L	0.13			4.0	20	
Molybdenum	0.60	0.5	ug/L	0.61			2.1	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	68600	200	ug/L	71900			4.7	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	1.1	0.1	ug/L	1.1			0.6	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	6	5	ug/L	6			1.7	20	
Volatiles									
Acetone	76.2	5.0	ug/L	67.4			12.2	30	

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Duplicate

Order #: 2351279				
	Order	# ·	2351	279

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Project Description: 230202

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	81.7		%		102	50-140			
Surrogate: Dibromofluoromethane	90.7		%		113	50-140			
Surrogate: Toluene-d8	106		%		133	50-140			

PARACEL

Certificate of Analysis

General Inorganics Cyanide, free

Hydrocarbons

F1 PHCs (C6-C10)

F2 PHCs (C10-C16)

F3 PHCs (C16-C34)

F4 PHCs (C34-C50)

Client: LRL Associates Ltd.

Client PO:

Analyte

Anions Chloride

Metals Mercury

Arsenic

Boron

Beryllium

Cadmium

Chromium

Cobalt

Copper

Molybdenum

Lead

Nickel

Silver

Sodium

Thallium

Uranium

Vanadium

Zinc

PCBs PCBs, total

Selenium

Chromium (VI)

Method Quality Control: Spike

Reporting

Limit

1

2

25

100

100

100

0.1

1

0.5

10

0.1

10

1

0.5

0.5

0.1

0.5

1

1

0.1

200

0.1

0.1

0.5

5

0.05

Result

101

47.5

1850

1590

4210

2320

2.52

48.3

45.1

47

40.2

191

47.7

45.0

41.4

37.8

43.3

43.9

47.5

42.0

8650

40.1

42.5

49.4

45

1.01

Order	±٠	2351	279
Uldel	π .	2001	613

Notes

QM-07

QM-07

RPD

Limit

RPD

%REC

Limit

70-124

61-139

85-115

60-140

60-140

60-140

70-130

80-120

80-120

80-120

80-120

70-130

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

65-135

Source

Result

91.8

ND

0.13

0.61

ND

ND

ND

ND

ND

1.1

ND

6

ND

%REC

96.0

95.0

92.6

99.3

107

93.6

84.1

95.9

90.2

93.9

80.3

95.5

95.1

89.6

82.5

75.4

85.4

86.7

94.7

83.9

86.5

80.2

82.7

98.5

77.9

101

Units

mg/L

ug/L

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

OTTAWA •	MISSISSAUGA	 HAMILTON 	KINGSTON	LONDON	NIAGARA	 WINDSOR 	RICHMOND	HILL

1-800-749-1947		www.paracellabs.com
----------------	--	---------------------

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Surrogate: Decachlorobiphenyl 0.401 % 80.2 60-140 Pesticides, OC Image: Chick and the state a	
Aldrin0.510.01ug/LND10250-140gamma-BHC (Lindane)0.610.01ug/LND12150-140alpha-Chlordane0.650.01ug/LND13050-140gamma-Chlordane0.610.01ug/LND12250-140o,p'-DDD0.300.01ug/LND60.550-140o,p'-DDD0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140o,p'-DDT0.560.01ug/LND11350-140o,p'-DDT0.580.01ug/LND11350-140o,p'-DDT0.510.01ug/LND10250-140	
gamma-BHC (Lindane)0.610.01ug/LND12150-140alpha-Chlordane0.650.01ug/LND13050-140gamma-Chlordane0.610.01ug/LND12250-140o,p'-DDD0.300.01ug/LND60.550-140o,p'-DDL0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140o,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.580.01ug/LND76.350-140o,p'-DDT0.510.01ug/LND10250-140	
alpha-Chlordane0.650.01ug/LND13050-140gamma-Chlordane0.610.01ug/LND12250-140o,p'-DDD0.300.01ug/LND60.550-140p,p'-DDD0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
gamma-Chlordane0.610.01ug/LND12250-140o,p'-DDD0.300.01ug/LND60.550-140p,p'-DDD0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
o,p'-DDD0.300.01ug/LND60.550-140p,p'-DDD0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
p,p'-DDD0.520.01ug/LND10450-140o,p'-DDE0.420.01ug/LND84.250-140p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
o,p'-DDE0.420.01ug/LND84.250-140p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
p,p'-DDE0.560.01ug/LND11350-140o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
o,p'-DDT0.380.01ug/LND76.350-140p,p'-DDT0.510.01ug/LND10250-140	
p,p'-DDT 0.51 0.01 ug/L ND 102 50-140	
Dieldrin 0.66 0.01 ug/L ND 132 50-140	
Endrin 0.58 0.01 ug/L ND 116 50-140	
Endosulfan I 0.66 0.01 ug/L ND 131 50-140	
Endosulfan II 0.57 0.01 ug/L ND 113 50-140	
Heptachlor 0.48 0.01 ug/L ND 96.7 50-140	
Heptachlor epoxide 0.67 0.01 ug/L ND 134 50-140	
Hexachlorobenzene 0.54 0.01 ug/L ND 108 50-140	
Hexachlorobutadiene 0.61 0.01 ug/L ND 122 50-140	
Hexachloroethane 0.36 0.01 ug/L ND 72.8 50-140	
Methoxychlor 0.49 0.01 ug/L ND 97.1 50-140	
Surrogate: Decachlorobiphenyl 0.399 % 79.7 50-140	
Semi-Volatiles	
Acenaphthene 4.62 0.05 ug/L ND 92.4 50-140	
Acenaphthylene 4.55 0.05 ug/L ND 91.1 50-140	
Anthracene 5.00 0.01 ug/L ND 100 50-140	
Benzo [a] anthracene 4.10 0.01 ug/L ND 82.0 50-140	
Benzo [a] pyrene 4.17 0.01 ug/L ND 83.4 50-140	
Benzo [b] fluoranthene 4.04 0.05 ug/L ND 80.8 50-140	
Benzo [g,h,i] perylene 4.20 0.05 ug/L ND 84.1 50-140	

Order #: 2351279

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [k] fluoranthene	4.06	0.05	ug/L	ND	81.3	50-140			
Chrysene	4.51	0.05	ug/L	ND	90.3	50-140			
Dibenzo [a,h] anthracene	4.42	0.05	ug/L	ND	88.4	50-140			
Fluoranthene	4.79	0.01	ug/L	ND	95.7	50-140			
Fluorene	4.19	0.05	ug/L	ND	83.8	50-140			
Indeno [1,2,3-cd] pyrene	4.41	0.05	ug/L	ND	88.1	50-140			
1-Methylnaphthalene	4.09	0.05	ug/L	ND	81.9	50-140			
2-Methylnaphthalene	4.42	0.05	ug/L	ND	88.4	50-140			
Naphthalene	5.20	0.05	ug/L	ND	104	50-140			
Phenanthrene	4.52	0.05	ug/L	ND	90.3	50-140			
Pyrene	4.93	0.01	ug/L	ND	98.6	50-140			
Surrogate: 2-Fluorobiphenyl	12.3		%		61.7	50-140			
Surrogate: Terphenyl-d14	24.2		%		121	50-140			
Volatiles									
Acetone	94.4	5.0	ug/L	ND	94.4	50-140			
Benzene	41.9	0.5	ug/L	ND	105	60-130			
Bromodichloromethane	48.7	0.5	ug/L	ND	122	60-130			
Bromoform	46.0	0.5	ug/L	ND	115	60-130			
Bromomethane	39.0	0.5	ug/L	ND	97.6	50-140			
Carbon Tetrachloride	43.8	0.2	ug/L	ND	110	60-130			
Chlorobenzene	50.1	0.5	ug/L	ND	125	60-130			
Chloroform	44.1	0.5	ug/L	ND	110	60-130			
Dibromochloromethane	41.3	0.5	ug/L	ND	103	60-130			
Dichlorodifluoromethane	34.7	1.0	ug/L	ND	86.8	50-140			
1,2-Dichlorobenzene	49.4	0.5	ug/L	ND	123	60-130			
1,3-Dichlorobenzene	48.7	0.5	ug/L	ND	122	60-130			
1,4-Dichlorobenzene	40.1	0.5	ug/L	ND	100	60-130			
1,1-Dichloroethane	48.1	0.5	ug/L	ND	120	60-130			
1,2-Dichloroethane	47.1	0.5	ug/L	ND	118	60-130			
1,1-Dichloroethylene	38.4	0.5	ug/L	ND	95.9	60-130			
cis-1,2-Dichloroethylene	37.2	0.5	ug/L	ND	93.1	60-130			

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
trans-1,2-Dichloroethylene	46.6	0.5	ug/L	ND	116	60-130			
1,2-Dichloropropane	44.3	0.5	ug/L	ND	111	60-130			
cis-1,3-Dichloropropylene	50.4	0.5	ug/L	ND	126	60-130			
trans-1,3-Dichloropropylene	41.0	0.5	ug/L	ND	102	60-130			
Ethylbenzene	44.3	0.5	ug/L	ND	111	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	42.6	0.2	ug/L	ND	107	60-130			
Hexane	44.8	1.0	ug/L	ND	112	60-130			
Methyl Ethyl Ketone (2-Butanone)	123	5.0	ug/L	ND	123	50-140			
Methyl Isobutyl Ketone	80.2	5.0	ug/L	ND	80.2	50-140			
Methyl tert-butyl ether	115	2.0	ug/L	ND	115	50-140			
Methylene Chloride	51.1	5.0	ug/L	ND	128	60-130			
Styrene	44.0	0.5	ug/L	ND	110	60-130			
1,1,1,2-Tetrachloroethane	40.4	0.5	ug/L	ND	101	60-130			
1,1,2,2-Tetrachloroethane	45.4	0.5	ug/L	ND	114	60-130			
Tetrachloroethylene	45.7	0.5	ug/L	ND	114	60-130			
Toluene	41.9	0.5	ug/L	ND	105	60-130			
1,1,1-Trichloroethane	47.1	0.5	ug/L	ND	118	60-130			
1,1,2-Trichloroethane	33.4	0.5	ug/L	ND	83.4	60-130			
Trichloroethylene	42.5	0.5	ug/L	ND	106	60-130			
Trichlorofluoromethane	38.0	1.0	ug/L	ND	95.0	60-130			
Vinyl chloride	34.6	0.5	ug/L	ND	86.6	50-140			
m,p-Xylenes	82.2	0.5	ug/L	ND	103	60-130			
o-Xylene	48.8	0.5	ug/L	ND	122	60-130			
Surrogate: 4-Bromofluorobenzene	74.2		%		92.7	50-140			
Surrogate: Dibromofluoromethane	86.1		%		108	50-140			
Surrogate: Toluene-d8	74.6		%		93.3	50-140			

Report Date: 02-Jan-2024

Order Date: 20-Dec-2023

Client: LRL Associates Ltd.

Client PO:

Qualifier Notes:

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Project Description: 230202

Report Date: 02-Jan-2024

Order #: 2351279

O PARA			arac			351279		Pa		l Orde b Use			r		Ch		Of C	Custo Only)	dy	
Client Name:							m	2	39	518	7.	9					3		3	
LKL ASSOCIAL	e5	1			ct Ref:	2302	02				- 6	1	1		1	Pa	age)	of	1	
Contact Name: Raed K				Quot	:#:	<u>.</u>	6 - 16 - Sy	.,2		1	- 6				Т	urna	aroun	d Tim	.) e	
Address: 53430 Canotes	k, Kol, Offa	WA, ON.		PO #:		1 10 1									day			[] 3 da	av
elephone:				E-mai	1 1	candalaff arthurs E	elr.ca					1	7	□ 2	day				Reg	,
elephone: 613-203-44	45	100 C			2	arthurs 6	LrL.cq	, dea						ate R	lequir	ed:			1.000	unu
Regulation 153/04		egulation		Intello 1		5/5-1/5-11 punto	esta and				-		-	1110					-	_
Table 1 🗌 Res/Park 🗌 Med/Fine	e 🗆 REG 558	PWQ0		W (Su	rface V	S (Soil/Sed.) GW (G Vater) SS (Storm/Sa	iround Water) initary Sewer)	Required Analysis												
Table 2 🗌 Ind/Comm 🗌 Coarse	CCME	□ misa			P (P	aint) A (Air) O (Ot	her)		Г	Π		Т		5	T	-	-	and the second		
Table 3 Agri/Other	🗆 SU - Sani	SU - Storm			22							S	CB'S		s.					
Table	Mun:	6		me	Itaine	Sample	Taken				9	eta	U LA	2	τ,	X				
For RSC: Yes No	Other:		Matrix	Air Volume	of Containers	Selection of the				s	at se	Σ						1.1	··· *	
Sample ID/Locatio	on Name	10. s. j		Air	0 #	Date	Time	PHCs	VOCS	PAHS		1			0					
11020-2	1.	1	Gω		11	Dec, 20, 2023	1:20	X	X	Х		Х	XX		X	I				
110000 3	1	1				the second second	10:00	1	1			1	11	1			iл	1.1	ant -	
110020 = 3							9:00								1				1	-
1000-10	· · · · · · · · · · · · ·	en en la surra	2.1.	i i i i	1	and and and a sector of	12100								17					-
11000-5110	est Pit)		\checkmark			\checkmark	10:40	N	1	1		1,	11	1	/	-	-	-	-	7
5										1			1	P	+	+	-			_
7		1										+	+	┢	+	+	+			
3											1	+	+	┢	+	+	+	41.44		
9									<i>r</i> -			+	+	┢	+	+	+			_
0 mments:																-			-	
								-				M	ethod	of Del	ivery:		. 1	1	A	0
inquished By (Sign):		Desciond D. D.	the second second					1							11	n	14		R	$\left(\right)$
		Received By Dri	ver/De	pot:			Received at 178:	3		15	R	310	erified	By:	1	t	M	~		-
inquished By (Print): Raed K		Date/Time:					Date/Time:	0	5	n	5	2 Da	ite/Tir	ne: 🏌	H	iso	1 0	21	10.	,
te/Time: 20.12.202	3	Temperature:		83	235	°C	Temperature:	M	2	°c/	X	pł	l Verif	ied: [Jec	<u>ک</u> (By:	110	3	6:1	+ 0
ain of Custody (Env.) xlsx				5. Ji 3. Yu	0.00000	Revision 3.0	J.	0,		1	6.6	-L				10	HP			26