

GEOTECHNICAL INVESTIGATION REPORT PROPOSED MIXED-USE DEVELOPMENT PHASE 4 WATERIDGE VILLAGE

OTTAWA, ONTARIO

Report Ref. No. CO682.00 February 5, 2019 Revised October 14, 2020

Prepared For:

Canada Lands Company CLC Limited 100 Queen Street , Unit 1050 Ottawa, ON K1P 1J9

Prepared By:

Terrapex Environmental Ltd.

Distribution:

Digital Copy

Canada Lands Company CLC Limited

CONTENTS

1	INTR	DUCTION	
2	BAC	GROUND	
3	FIELD	WORK	
4	LABC	RATORY TESTS	
5	SITE	ND SUBSURFACE CO	ONDITIONS
	5.1	Site Description	4
	5.2	Asphaltic Concrete P	avement4
	5.3	Granular Base Course	e4
	5.4	Topsoil	5
	5.5	Fill Material	5
	5.6	Native Soils	5
		5.6.1 Silty Sand to S	Sand with trace silt5
		5.6.2 Silt with trace	sand to sandy silt5
			6
		5.6.4 Gravelly Sand	d7
	5.7	Bedrock	7
	5.8	Groundwater	7
6	DISC	JSSION AND RECON	MENDATIONS
	6.1	Site Grading	8
	6.2	Engineered Fill	
	6.3	Excavation	
	6.4	Reuse of On-site Exco	avated Soil as a Compacted Backfill11
	6.5	Groundwater Control	
	6.6	Residential and Mixe	d-Use Buildings11
		6.6.1 Foundation D	Design11
		6.6.2 Concrete Sla	b-on-Grade13
	6.7	Park 1: North Commu	nity Park14
		6.7.1 Community B	Building15
			.a16
			Jre16
		the second se	
		•	Recommendations in Sensitive Marine Soil17
	6.8		6
	6.9		
	6.10	Pavement Design	

		6.10.1 On-Grade Construction	
		6.10.2 Above Parking Garage Roof	
	6.11	Lateral Earth Pressure	21
	6.12	Earthquake Design Parameters	22
	6.13	Chemical Characterization of Subsurface Soil	22
7	LIMIT	TATIONS OF REPORT	

APPENDICES

APPENDIX A	LIMITATIONS OF REPORT
APPENDIX B	DRAWING 1: SITE LOCATION
	DRAWING 2: PROPOSED DEVELOPMENT PLAN
	DRAWING 3: BOREHOLE AND TEST PIT LOCATION PLAN
	DRAWING 4: PREVIOUS BOREHOLE AND TEST PIT LOCATION PLAN
	DRAWING 5: PROPOSED PARK 1
	DRAWING 6: PROPOSED GRADING PLAN - PART OF PHASE 4
	DRAWING 7: PROPOSED GRADING PLAN - PART OF PHASE 4 & 2
	DRAWING 8: EXTENT OF CLAY SOILS
APPENDIX C	BOREHOLE AND TEST PIT LOG SHEETS
APPENDIX D	PREVIOUS BOREHOLE AND TEST PIT LOG SHEETS
APPENDIX E	LABORATORY TEST RESULTS
APPENDIX F	TYPICAL DRAINAGE SYSTEM
APPENDIX G	CERTIFICATE OF CHEMICAL ANALYSES

INTRODUCTION

Alston Associates, the previous Geotechnical Division of Terrapex Environmental Ltd. **(Terrapex)** was retained by Canada Lands Company CLC Limited (CLC) to carry out a geotechnical investigation for the proposed mixed-use development of Wateridge Village (Phase 4) located at the property of the former Canadian Forces Base (CFB) Rockcliffe in the City of Ottawa, Ontario. Authorization to proceed with this study was given by Mr. Jean Lachance of CLC.

We understand that CLC is seeking approval to develop the land at Wateridge Village referred to as Phase 4 Lands and construct Park 1 located on Block 1.

The Phase 4 area is located north of Registered Plans of Subdivisions 4M-1559 and 4M-1581 in Wateridge Village, as shown on Drawing 2 attached in Appendix B of this report. Drawing 2 also shows the proposed land use of the property sub-divided into blocks according to the type of development. According to the proposed development plan, the site is scheduled to contain three low to mid-rise mixed use Blocks (2, 3 and 4), two low to mid-rise residential Blocks (5 and 6) and Park 1 (Block 1).

A grading plan dated December 2018 was prepared by IBI Group; attached in Appendix B as Drawings 6 and 7. Details regarding building locations, design and municipal infrastructure on Blocks 1-6 were not available at the time of the investigation, and accordingly the recommendations provided in this report are considered to be preliminary in nature, subject for review and revision upon completion of proposed plans.

The geotechnical report prepared by Terrapex dated February 5, 2019, included Phases 2 and 4. CLC requested that in accordance with the City of Ottawa requirements, our original report be separated to reflect only Phase 4 Development Lands.

The purpose of this investigation was to characterize the subsurface soil and groundwater conditions, to determine the engineering properties of the various soil deposits underlying the site, and to provide geotechnical engineering recommendations pertaining to the proposed development.

This report presents the results of the investigation performed in accordance with the general terms of reference outlined above and is intended for the guidance of the client and the design architects or engineers only. It is assumed that the design will be in accordance with the applicable building codes and standards.

2 BACKGROUND

A number of geotechnical and hydrogeological investigations were completed at the former CFB Rockcliffe property for CLC and documented in the following reports; copies of which were provided to us by CLC:

- "Geotechnical Investigation Phase 1B Development Site Servicing, Wateridge Village at Rockcliffe, Ottawa, Ontario", dated November 2016 (DST File No: IN-SO-026755);
- "Geotechnical Investigation Phase 1A Development Site Servicing, Former CFB Rockcliffe Development, Ottawa, Ontario", dated November 2015 (DST File No: OE-OT- 015358);

- "Final Geotechnical Investigation for Subdivision Approval, Former CFB Rockcliffe Development, Ottawa, Ontario", dated September 2015 (DST File No: OE-OT-015358);
- "Preliminary Geotechnical and Hydrogeological Investigation Proposed Stormwater Management Pond, CLC Rockcliff Lands Hemlock Road and Aviation Parkway, Ottawa, Ontario", dated May 2015 (Golder Associates File No: 1521309);
- "Geotechnical Investigation Report for Preliminary Assessment for Building Foundation, Services Installation and Grade Raise Analysis Mapping – Phase 1 Development, Former CFB Rockcliffe, Ottawa, Ontario", dated April 2014 (DST File No: GS-OT-015358);
- "Hydrogeological Report Stormwater Management Support Studies, Former CFB Rockcliffe, Ottawa, Ontario, dated October 2013" (DST File No: OE-OT- 017184);
- "Preliminary Geotechnical Investigation, Rockcliffe Redevelopment Program", dated March 2006 (DST File No.: OGO6562).

The locations of the previous boreholes and test pits advanced in the Phase 4 development area are shown on Drawing 4 attached in Appendix B of this report. The logs of the previous boreholes and test pits are also attached to this report in Appendix D.

According to the previous borehole and test pit findings, topsoil up to about 200 mm in depth is present across the site. Asphaltic concrete, with a thickness of about 40-100 mm, is present on existing roads and driveways. The topsoil and asphaltic concrete are underlain by fill material consisting of various silty sand, sand and gravel or clay in various areas of the site, with thickness ranging from approximately 0.2 to 2.9 m.

The native overburden soil encountered below the fill generally consisted of variable layers of clay, silt sand and sandy and silty till. Bedrock was encountered at depths ranging from 1.2 to 2.9 m below grade. Boreholes drilled into the bedrock typically encountered horizontally bedded, grey limestone with minor narrow shale bedding, interpreted to be of the Ottawa Group. The bedrock surface is generally unweathered or has a narrow weathered zone, less than one meter thick.

The applicable information from the previous geotechnical investigations are discussed and applied to the comments and recommendations presented in this report.

3 FIELDWORK

The fieldwork for this investigation was carried out during the period between November 13 and 20, and December 14, 2018. It consisted of sixty seven (67) boreholes and twenty four (24) exploratory test pits, advanced by drilling and excavation contractors commissioned by **Terrapex**. Of the sixty seven (67) boreholes and twenty four (24) exploratory test pits, twenty six (26) boreholes and eleven (11) test pits were advanced in or near the Phase 4 development lands. The number and location of the boreholes were chosen by **Terrapex** to provide general coverage of the site for the proposed development, and reviewed and approved by IBI Group and CLC. The locations of the test pits were chosen by **Terrapex** to provide general coverage between the boreholes to confirm the depth of bedrock. The locations of the boreholes and test pits advanced within Phase 4 are shown on Drawing 3; enclosed in Appendix B of this report.

The boreholes; designated as BH109 through BH129, BH131, BH133, BH134 and BH173, were advanced to

depths ranging from 0.6 to 2.9 m below ground surface (mbgs). Three (3) of the boreholes; MW111, MW124, and MW125 were instrumented with monitoring wells to determine the long term groundwater table at the site.

The exploratory test pits (designated as TP204 through TP214) were extended to depths ranging from 0.4 to 1.84 mbgs to confirm the existence and depth of bedrock.

The ground surface elevations at the locations of the boreholes and test pits were established by **Terrapex** using Topcon Hiper V GNSS Receiver and Trimble R10 GNSS Receiver respectively.

Standard penetration tests were carried out in the course of advancing the boreholes to take representative soil samples and to measure penetration index values (N-values) to characterize the condition of the various soil materials. The number of blows of the striking hammer required to drive the split spoon sampler to 300 mm depth was recorded and these are presented on the logs as penetration index values. Results of SPT are shown on the borehole log sheets in Appendix C of this report.

Groundwater level observations were made in the boreholes and test pits upon completion of each of their advancement, and in the monitoring wells on December 17, 2018. The results of the groundwater measurements are discussed in Section 4.5 of this report.

The fieldwork for this project was carried out under the supervision of an experienced geotechnical technician from this office who laid out the positions of the boreholes and test pits in the field; arranged locates of buried services; effected the drilling, test pit excavation, sampling and in situ testing; observed groundwater conditions; and prepared field borehole and test pit log sheets.

4 LABORATORY TESTS

The soil samples retained from the split spoon sampler were properly sealed, labelled and brought to our laboratory. They were visually classified and water content tests were conducted on all soil samples retained from Boreholes BH114, BH118, MW124 and MW125. The results of the classification, water contents, and Standard Penetration Tests are presented on the borehole logs sheets attached in Appendix C of this report.

Grain-size analyses were carried out on four (4) soil samples; Atterberg Limits test was performed on two. The results of these tests are presented as Figures E-1 through E-6 in Appendix E.

In addition, two (2) soil samples were submitted to an analytical laboratory for chemical analyses for pH and soluble sulphate tests. The results of these tests are enclosed in Appendix G; discussed in Section 6.13 of this report.

5 SITE AND SUBSURFACE CONDITIONS

Full details of the subsurface and groundwater conditions at the site are given on the borehole Log sheets attached in Appendix C of this report.

The following paragraphs present a description of the site and a commentary on the engineering

properties of the various soil materials contacted in the boreholes.

It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as exact planes of geological change.

5.1 Site Description

The subject site is located at the former CFB Rockcliffe property in the City of Ottawa. The former CFB Rockcliffe property is approximately 310 acres; bounded by Aviation Parkway to the west, Sir George Etienne Cartier Parkway to the North, the National Research Council of Canada campus to the east, and existing residential communities and Montfort Hospital to the south. It is bounded by two bedrock escarpments situated at the south and north boundaries. The Rockcliffe Airport is also located in the vicinity of the site, just north of Sir George Etienne Cartier Parkway.

The report reflects our investigation carried out within the Phase 4 development lands as shown in Drawing 1, attached in Appendix B.

The Phase 4 lands are situated north of Hemlock Road, west of Codd's Road, east of vacant NCC lands, and south of Sir George Etienne Cartier Parkway. It has been divided into Blocks 1 through 6 and include proposed Oshedina Street and Winisik Street. The north escarpment is located along the north boundary of Phase 4. The slope of the escarpment is almost vertical with exposed bedrock. There is a storm management pond at the bottom of the escarpment.

There are several old pathways, roadways and driveways traversing through the Phase 4 lands from past land use, and new storm and sewer lines have been installed along the alignment of Oshedina Street and east towards the storm sewer outfall. Stockpiles of fill material from previous phases and ongoing construction activities are located in and around Block 5, within the northern half of Block 2, and scattered throughout the north area of Block 1. The remainder of Phase 4 is covered with light to moderate vegetation with mature trees predominately outlining the perimeters of the Blocks, and scattered throughout Block 1 (Park1). The ground surface topography of Phase 4 lands slopes down from south to north and from east to west, the ground surface elevations at the borehole and test pit locations ranged between 77.25 at Test Pit TP208 to 89.57 m at Borehole BH120.

5.2 Asphaltic Concrete Pavement

Boreholes BH107, BH108, BH115, and BH121 were advanced through asphaltic concrete pavement. They revealed that the thickness of the asphaltic concrete ranges from approximately 40 to 100 mm.

5.3 Granular Base Course

The base course supporting the asphaltic concrete consists of sandy gravel to gravely sand. The thickness of this granular soil ranges from approximately 700 mm.

Penetration resistance of the base course material measured N-values ranging from 10 to 44, indicating

its compactness condition is compact. The water content of the tested sample of the granular base from Borehole BH107 was about 5% by weight; being damp in appearance.

5.4 Topsoil

Topsoil was encountered in Boreholes BH114, BH118, BH131 and BH134. The thickness of the topsoil at the boreholes varies between approximately 50 and 250 mm.

It should be noted that the topsoil thickness will vary between boreholes. Thicker topsoil than that found in the boreholes may be present in places.

5.5 Fill Material

Fill material is present in all boreholes below the pavement granular base, the topsoil, or surficial vegetation with the exception of Boreholes BH118, BH127, and BH131. The fill consists of various gravelly sand to sandy gravel, silty sand to sandy silt with trace of gravel, and clayey silt soils; extending to approximate depths ranging from 0.3 to 2.9 mbgs. The fill contains traces of organic, rootlet, and rock fragment. At the locations of Boreholes BH114, BH116, BH118, and BH120, the fill material contains trace cinder.

SPT carried out in the silty, sandy, and gravelly fill material measured N-values ranging from 3 to 50/25 mm penetration; indicating very loose to very dense compactness condition; generally being compact. The higher N-values are likely due to the split spoon sampler striking boulders or construction rubble. SPT carried out in the clayey silt fill material measured N-values ranging from 3 to 36; indicating soft to hard consistency; generally being firm.

The fill material is generally brown to dark brown in color and damp to moist in appearance. The water content of the tested fill samples from Boreholes BH107, BH114, BH118, MW124, and MW125, ranges from 5 to 33% by weight.

5.6 Native Soils

5.6.1 Silty Sand to Sand with trace silt

Silty sand to sand with trace silt soils are present below the fill / topsoil materials in Boreholes BH127 and BH131. The sandy soils contain variable proportions of silt classifying the soil as sand with trace to some silt and silty sand.

The silty sand to sand unit is generally brown in colour and moist in appearance.

Penetration resistance in the silty sand to sand units provided N-values ranging from 12 to 74/50 mm penetration, indicating compact to very dense compactness condition.

5.6.2 Silt with trace sand to sandy silt

Silt with trace sand to sandy silt soils are present below the fill material in Boreholes BH112, BH113, BH116, BH118, BH120, BH124, BH126, BH134, and BH173. This unit contains variable proportions of sand

classifying the soil as silt with trace sand to sandy silt.

The sandy silt to silt unit is generally brown in colour. The water content of the tested silt samples from Boreholes BH124, ranges from approximately 8 to 20% by weight; generally being moist to wet in appearance.

Penetration resistance in the silt unit provided N-values ranging from 12 to 50/25 mm penetration, indicating compact to very dense compactness condition.

Sieve and hydrometer grain size analyses were carried out on three (3) samples of silt soil obtained from Boreholes BH112 and BH120. The test results are enclosed in Appendix E as Figures E-1 and E-2, and summarized below.

Borehole Number	Sample Depth (mbgs) and No.	Sample Description	Gravel %	Sand %	Silt %	Clay %
BH112	0.76 (Sample 2)	Silt, some clay, trace sand, trace gravel	3	8	73	16
BH120	0.76 (Sample 2)	Silt, some sand, trace clay	0	20	71	9

Based on the results of the grain size analysis, the K values of the silt soils range from 10⁻⁵ cm/sec to less than 10⁻⁶ cm/sec; low permeability.

5.6.3 Clay and Silt

A deposit of silt and clay to clayey silt ranging in thickness from 1.2 to 1.9 m is present below the fill material in Boreholes BH125, BH133 and BH173.

The clay and silt unit is generally brown in colour. The water content of the tested clay and silt samples tested from Borehole BH125 ranges from approximately 11 to 36% by weight; generally being moist to wet in appearance.

Penetration resistance in the clay and silt soil measured N-values ranging from 6 to 17, indicating firm to very stiff consistencies.

Sieve and hydrometer grain size analyses and Atterberg Limits test were carried out on two (2) samples of clay and silt soils. The test results are enclosed in Appendix E as Figures E-3 through E-6, and summarized below.

Borehole No.	Sample Depth (mbgs) and No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Liquid Limit	Plasticity Index	Soil Classification
BH125	1.5 (Sample 3)	Clay and Silt, trace sand	0	1	45	54	58	34	Inorganic clays of high plasticity
BH134	0.8 (Sample 2)	Clay and Silt, trace sand	0	4	37	59	53	28	Inorganic clays of high plasticity

The soil classification was based on the plasticity chart as shown on Figure 3.1 of the CFEM, 4th Edition.

Based on the results of the grain size analysis, the K values of the clay and silt soil is less than 10⁻⁷ cm/sec; very low relative permeability.

5.6.4 Gravelly Sand

A gravelly sand deposit is present in Borehole BH107; positioned at an approximate depth of 1.8 mbgs and extending to the bedrock at 2.2 mbgs.

SPT in the gravelly sand unit had N-value of 75/254 mm penetration, indicating very dense compactness condition. It is greyish brown in colour and has a moist appearance.

5.7 Bedrock

Bedrock was encountered in all boreholes and test pits at approximate depths ranging from 0.6 to 2.9 mbgs, at approximate elevations 76.27 m at Test Pit TP 208 to 88.37 m at Borehole BH120. The bedrock was proven by auger refusal and observations made in test pits. The test pits confirmed that refusal to further advancement of the boreholes was due to bedrock and not large boulders or buried concrete slabs. The depth and elevation of the bedrock encountered in the test pits is tabulated in the table below.

Test Pit No.	Ground Elevation (m)	Depth of Bedrock (mbgs)	Elevation of Bedrock (m)
TP204	86.64	1.84	84.80
TP205	85.81	1.64	84.17
TP206	84.13	1.60	82.53
TP207	82.29	0.64	81.65
TP208	77.25	0.98	76.27
TP209	83.71	1.70	82.01
TP210	88.84	1.60	87.24
TP211	89.64	1.35	88.29
TP212	89.04	1.07	87.97
TP213	88.05	0.78	87.27
TP214	88.28	1.30	86.98

Based on the ground surface elevations, the surface of the rock dips down from the east to the west and from the central section of the site toward the north and south.

The bedrock at the base of all test pits consists of grey limestone.

Review of available geological mapping and previous geotechnical investigations indicates that the bedrock is of the Ottawa Formation, consisting of limestone with some shale bedding and some sandstone in the basal part. According to the previous investigations at the site, the rock is classified to be strong to very strong.

5.8 Groundwater

Groundwater level and cave-in of the unlined side walls of the boreholes were measured during the course of the borehole drilling and upon completion of the boreholes; shown on the individual borehole

logs. All boreholes were open and dry upon completion with the exception of the ones listed in the following table:

Borehole No.	Groundwater Depth (m)	Cave-in Level (mbgs)
BH107	Dry	1.8
BH108	Dry	1.5
BH110	Dry	0.9
BH133	Dry	1.8
BH134	0.9	Open

Groundwater conditions exposed in the test pit excavations were also observed. All test pits remained dry upon completion of excavation.

Groundwater levels in the monitoring wells were measured on December 17, 2018. The results of the groundwater measurement are shown in the following table.

Borehole No.	Ground Elevation (m)	Bottom of the Monitoring Well Depth (m)	Bottom of the Monitoring Well Elevation (m)	Groundwater Depth (mbgs)	Groundwater Elevation (mbgs)
MW111	86.96	2.6	84.36	Dry	-
MW124	90.15	1.7	88.45	Dry	-
MW125	82.65	2.4	80.25	0.25	82.40

It should be noted that groundwater levels are subject to seasonal fluctuations. A higher groundwater level condition will likely develop in the spring and following significant rainfall events.

6 DISCUSSION AND RECOMMENDATIONS

The following discussions and recommendations are based on the factual data obtained from the boreholes and test pits advanced at the site by **Terrapex** and are intended for use by the client and design architects and engineers only.

Contractors bidding on this project or conducting work associated with this project should make their own interpretation of the factual data and/or carry out their own investigations.

On the basis of our fieldwork, laboratory tests and other pertinent information supplied by the client, the following comments and recommendations are made.

6.1 Site Grading

The proposed grading plan prepared and provided for our use by IBI Group and dated December 2018 is included in Appendix B as Drawings 6 and 7.

Based on the proposed grading plan, there will be some modifications to the site grading. The grade will be raised/cut by a maximum of 1m. Given the subsurface conditions at the site; i.e. shallow bedrock, and the absence of thick layers of soft clay, the proposed grade raise will not cause any settlement of the subsoil.

6.2 Engineered Fill

The following recommendations regarding construction of engineered fill should be adhered to during the construction stage:

- All surface vegetation, organic materials, softened and disturbed soils must be removed, and the exposed subgrade soils proof-rolled with an inspection by the Geotechnical Engineer prior to any fill placement.
- In the event that the engineered fill will be used to support structures, the existing fill must be removed in its entirety prior to placement of new fill.
- Soils used as engineered fill should be free of organics and/or other unsuitable material. The engineered fill must be placed in lifts not exceeding 200 mm in thickness and compacted to at least 98% Standard Proctor maximum Dry Density (SPMDD).
- Engineered fill operations should be monitored and compaction tests should be performed on a full-time basis by a qualified engineering technician supervised by the project engineer.
- The boundaries of the engineered fill must be clearly and accurately laid out in the field by qualified surveyors prior to the commencement of engineered fill construction. The top of the engineered fill should extend a minimum of 2.5 m beyond the envelope of the proposed structures. Where the depth of engineered fill exceeds 1.5 m, this horizontal distance of 2.5 m beyond the perimeter of the structure should be increased by at least 1 m for each 1.5 m depth of fill. The edges of the engineered fill should be sloped at a maximum of 3 horizontal to 1 vertical in order to avoid weakening of the engineered fill edges due to slope movement.
- Due to the potential detrimental effects of differential settlement between the engineered fill and the native soils, any buildings where footings are to be placed engineered fill or partly on engineered fill and partly on native soils should include steel reinforcement. The foundation walls of house foundations supported on engineered fill should be reinforced to bridge localized soft spots and zones of non-uniform compaction, and to minimize structural distress due to differential settlement of the engineered fill.
- The engineered fill operation should take place in favorable climatic conditions. If the work is carried out in months where freezing temperatures may occur, all frost affected material must be removed prior to the placement of frost-free fill.
- If unusual soil conditions become apparent during construction, due to subsurface groundwater influences, our office should be contacted in order to assess the conditions and recommend appropriate remedial measures.

6.3 Excavation

Based on the borehole findings, excavation for foundations, potential basements, sewer trenches and utilities will be carried out through fill material, sandy, silty, and clayey native soils, and bedrock. Excavation of the soil strata is not expected to pose any difficulty and can be carried out with heavy hydraulic excavators.

Significant bedrock excavation is anticipated across the site. According to the rock core data from the previous investigations, the bedrock generally consists of strong to very strong limestone with interbedded shale of variable bed thicknesses and depth across the site.

Bedrock excavation is expected to be carried out using line drilling and blasting, hoe ramming or both.

Provision should be made in the excavation contract to include the use of these techniques for excavation in bedrock.

Blasting operations must be carried out in accordance with City of Ottawa Special Provision S.P. No: F-1201 and under the supervision of a blasting specialist engineer. Vibration monitoring of the blasting operation should be undertaken to ensure that the blasting meets the limiting vibration criteria at all times.

The contractor should submit a complete and detailed blasting design and monitoring proposal prepared by a blasting/vibrations specialist prior to commencing blasting. This would have to be reviewed and accepted in relation to the requirements of the blasting specifications. Vibration monitoring of the blasting should be carried out to ensure that the blasting meets the limiting vibration criteria at all times. A pre-blast condition survey should be carried out of surrounding structures and utilities located within 100 m of the excavation site. The condition survey should also include the National Research Council's Montreal Road Campus located east of the subject site.

All excavations must be carried out in accordance with Occupational Health and Safety Act (OHSA). With respect to OHSA, the near surface fill, compact sandy silt to silt and sand to silty sand, and firm clay and silt soils are expected to conform to Type 3 soils. The dense to very dense sandy silt to silt and sand to silty sand, and stiff to very stiff clay and silt soils can be classified as Type 2 soils. The bedrock is classified as Type 1 soil.

Temporary excavations for slopes in Type 3 soil should not exceed 1.0 horizontal to 1.0 vertical. In the event very loose and/or soft soils are encountered at shallow depths or within zones of persistent seepage, it will be necessary to flatten the side slopes as necessary to achieve stable conditions. In wet sandy soils it may be necessary to slope the excavation at inclinations from 1.0 vertical to 2.0 horizontal to 1.0 vertical to 3.0 horizontal. Excavations in Type 2 soil may be cut with vertical side-walls within the lower 1.2 m height of excavation and 1.0 horizontal to 1.0 vertical above this height. Excavations in the bedrock may be cut with vertical side-walls.

For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. Excavation side-slopes should not be unduly left exposed to inclement weather. Excavation slopes consisting of sandy soils will be prone to gullying in periods of wet weather, unless the slopes are properly sheeted with tarpaulins.

It should be noted that the on-site fill material may contain boulders, cobbles and remnants of former buildings in the form of buried concrete. Provisions must be made in the excavation and foundation installation contracts for the removal of possible boulders and concrete.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation sidewalls must be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects.

It is anticipated that sufficient space will be available to slope the sidewalls of basement excavations; as such it should not be necessary to shore the basement excavation walls.

6.4 Reuse of On-site Excavated Soil as a Compacted Backfill

On-site excavated inorganic native soils are considered suitable for reuse as backfill material within the roadways and pipeline trench excavations, provided their water content is within 2% of their optimum water contents (OWC) as determined by Standard Proctor test, and the materials are effectively compacted with heavy compaction rollers.

While the quality of the native soils are considered suitable for backfilling; the moisture content of the soils and the lift thickness for compaction must be properly controlled during the backfilling. Alternatively, imported suitable material should be used.

Measured water content ranges from approximately 4 to 36% within the native soils and from 5 to 37% within the fill material; generally being close to the wet side of the material's OWC. On-site native soils that are wetter than their OWC should be dried sufficiently prior to use as backfill in order to achieve the specified degree of compaction. Spreading the material in a wide area and air drying will be required to achieve the specified compaction of the native material. Thorough vertical mixing of the excavated soils will be required to provide a material that can be adequately compacted.

The spoil resulting from excavation through the bedrock will contain a large amount of hard rock slabs which will be virtually impossible to compact. Bedrock crushed on-site can be used as granular material provided that it conforms to OPSS gradation requirements and physical properties.

6.5 Groundwater Control

Based on observations made during drilling of the boreholes and excavation of the test pits, close examination of the soil samples extracted from the boreholes, and groundwater measurements made in the monitoring wells, significant groundwater problems are not anticipated within the presumed excavation depths throughout the site. While some seepage of groundwater from localized permeable layers will occur during construction, it will be possible to remove any such seepage using submersible pumps.

Dewatering can be carried out using existing Permit to Take Water (PTTW) obtained by CLC from the MOECP.

Surface water should be directed away from open excavations.

6.6 Residential and Mixed-Use Buildings

6.6.1 Foundation Design

We understand that the proposed buildings will be constructed over a single level basement. Details regarding the remaining Blocks were not available at the time of the investigation, and accordingly the recommendations provided in this report are considered to be preliminary in nature, subject for review and revision upon completion of proposed plans. Additional boreholes may have to be advanced by the builders at the site once the details of the proposed buildings are finalized.

Conventionally, footing foundations of heated and unheated buildings are positioned at depths of 1.5 m and 1.8 m respectively below exterior grade in the Ottawa area, in order to provide protection to the foundation soil from freezing temperatures.

The foundations for the mid-rise buildings should be installed on the bedrock.

It should also be noted that intact bedrock will not be subjected to frost heave, and provided that footings are extended to non-fractured intact rock, the minimum founding depth of 1.8 m would not apply, and the footings may be placed at shallower depths.

It is not recommended to install the foundations of the proposed low-rise buildings on the existing fill material. Based on the borehole findings, the bearing stratum should consist of the bedrock, native soil or engineered fill. The native soil throughout the site is considered suitable for the support of low rise building foundations. Locally, it will be necessary to deepen the foundations where the native soil is less competent in strength.

Foundations may be constructed on engineered fill provided that the existing fill is removed in its entirety and the engineered fill is constructed in accordance with recommendations provided in Section 6.2 of this report.

Conventional spread and strip footings may be used to support the proposed buildings.

Foundations installed on the native soil or certified engineered fill may be designed based on bearing resistance of 100 KPa at Serviceability Limit States (SLS), and factored geotechnical bearing resistances at Ultimate Limit States (ULS) of 150 kPa.

The geotechnical bearing resistances recommended above are for vertical loads (no inclination) and no eccentricity. The total and differential settlements of spread footing foundations founded on the native soil designed in accordance with the recommendations provided in this report should not exceed the conventional limits of 25 mm and 19 mm respectively.

Foundations installed on the bedrock may be designed for a factored bearing resistance at Ultimate Limit States of 1 MPa (ULS). The serviceability limit state is not applicable as bedrock will not undergo settlement.

Due to variations in the consistency of the founding soils and/or loosening caused by to excavating disturbance and/or seasonal frost effects, all footing subgrade must be evaluated by the Geotechnical Engineer prior to placing formwork and foundation concrete to ensure that the soil exposed at the excavation base is consistent with the design geotechnical bearing resistance.

In the event necessary, the stepping of the footings at different elevations should be carried out at an angle no steeper than 2 horizontal (clear horizontal distance between footings) to 1 vertical (difference in elevation) on the native soil and 1 horizontal to 1 vertical on the bedrock. No individual footing step should be greater than 0.6 m.

Rainwater or groundwater seepage entering the foundation excavations must be pumped away (not allowed to pond). The foundation subgrade soils should be protected from freezing, inundation and equipment traffic at all times. If unstable subgrade conditions develop, **Terrapex** should be contacted in order to assess the conditions and make appropriate recommendations.

The native soils and rock tend to weather and deteriorate rapidly on exposure to atmosphere or surface water, so construction scheduling should consider the amount of excavation left exposed to the elements, during foundation preparation. **Terrapex** recommends that footings placed on the exposed soil should be poured on the same day as they are excavated, after removal of all unsuitable founding materials and approval of the bearing surface. Alternatively, a concrete mud slab could be used to protect a bearing surface where footing construction is to be delayed.

In the absence of a significant clay soil within the residential Blocks (Blocks 2 to 6), a tree planting restriction does not apply for the proposed residential buildings as outlined in the City of Ottawa's, Tree Planting in Sensitive Marine Clay Soils 2017 Guideline.

6.6.2 Concrete Slab-on-Grade

For building(s) without basement construction, the subgrade supporting the ground floor slab should consist of native soil or engineered fill. Subgrade preparation should include the removal of surface vegetation, organic materials, weak and softened soils and all fill soils. After removal of all unsuitable materials, the subgrade should be proof-rolled with heavy rubber tired equipment and adjudged as satisfactory before constructing engineered fill or placement of granular base course. The proof-rolling operation should be witnessed by the Geotechnical Engineer. Any soft or unsuitable subgrade areas which deflect significantly should be sub-excavated and replaced with suitable engineered fill material compacted to at least 98% of SPMDD.

For building(s) that include a single level basement, the basement floor slabs should rest on the native soil, bedrock or engineered fill; suitable for slab-on-grade construction. Subgrade preparation should include the removal of any disturbed soils, followed by proof-rolling to confirm the subgrade conditions. Any unsuitable subgrade areas which deflect significantly should be sub-excavated and replaced with suitable engineered fill material compacted to at least 98% of its SPMDD.

Where new fill is required to raise the grade, the excavated earth fill and native sandy silty clay material from the site or similar clean imported fill material may be used, free from topsoil, organic or deleterious matter, provided the material is placed in large areas where it can be compacted with a heavy vibratory roller. The fill material should not be frozen and should not be too dry or too wet for efficient compaction (moisture content at optimum or 2% greater than optimum). The fill placement should not be performed during winter months when freezing temperatures occur persistently or intermittently. All fill placed below the slab on grade areas of the buildings must be placed in thin lifts of 200 mm thickness or less, and compacted to a minimum of 98% of SPMDD.

Provided the subgrade, under-floor fill and granular base are prepared in accordance with the above recommendations, the Modulus of Subgrade Reaction (ks) for floor slab design will be 25,000 kPa/m.

It is recommended that a combined moisture barrier and a leveling course, having a minimum thickness of 150 mm and comprised of free draining material be provided as a base for the slab-ongrade. For building(s) without basement construction, either Granular "A" or 20 mm crusher run limestone may be used. For building(s) with basement construction, 20 mm clear crushed limestone is recommended as the base course. The Granular "A" should be compacted to 100% of its SPMDD; the 20 mm clear stone must be compacted by vibration to a dense state. For building(s) containing a basement level, an exterior perimeter drainage system, consisting of 100 mm diameter weeping tile wrapped in filter fabric and covered with a minimum 150 mm clear crushed stone should be placed along the exterior foundation walls, below the level of the granular base of the floor slab. The weeping tiles must be connected to a positive frost free outlet from which the water can be removed, or connected to a sump located in the basement. The water from the sump must be pumped out to a suitable discharge point. The installation of the perimeter drains as well as the outlet must conform to the applicable plumbing code requirements.

For building(s) without basement construction, perimeter drainage at the foundation level is not required provided the finished floor surface is at least 150 mm above the prevailing grade and the surrounding surfaces slope away from the buildings.

For building(s) with basement construction, the basement wall backfill for a minimum lateral distance of 0.6 m out from the wall should consist of free-draining granular material such as OPSS Granular "B" Type I. Damp-proofing must be applied to the exterior basement walls.

The soils at this site are susceptible to frost effects which would have the potential to deform hard landscaping adjacent to the building. At locations where proposed buildings are expected to have flush entrances, care must be taken in detailing the exterior slabs / sidewalks, providing insulation / drainage / non-frost susceptible backfill to maintain the flush threshold during freezing weather conditions.

6.7 Park 1: North Community Park

It is understood that the north Community Park will be located on Block 1 along the northern border of the site and occupy an area of 10.34 hectares. It will partially front onto Codd's Road on the east and local roads on the west and south sides. It will overlook the Ottawa River on the north side.

The topography of the park area is not level; generally sloping down from south to north. It contains steep ridges and some significant tree and vegetation groupings along the northern and southern boundaries.

The park will serve as the primary passive-recreational space for the community and contain a multiuse pathway system, a community building, look-out area with water feature, outdoor amphitheatre, shade structure, playground, splash pad, open space free play area, toboggan hill, and community gathering area. The approximate locations of the proposed features are shown on the Facility FIT Plan and provided for our use by CLC; shown on Drawing 5 attached in Appendix B.

According to the proposed grading plan, there will be some minor modifications to the park grades. Details regarding building locations, design and municipal infrastructure on Block 1 are considered to be preliminary in nature, subject for review and revision upon completion of proposed plans.

6.7.1 Community Building

It is anticipated that the proposed community building will be a 3,000 ft², single storey above grade structure: constructed on the west side of the park.

The subsurface conditions for the proposed building are represented by Borehole BH127. The borehole reveals that bedrock is situated at an approximate depth of 1.5 mbgs.

Conventional spread and wall footings may be used to support the proposed building. Footing foundations which rest on the bedrock may be designed to apply a factored bearing resistance at Ultimate Limit States of 1 MPa (ULS). The serviceability limit state is not applicable as bedrock will not undergo settlement.

The rock tends to weather and deteriorate rapidly on exposure to atmosphere or surface water, so construction scheduling should consider the amount of excavation left exposed to the elements, during foundation preparation. **Terrapex** recommends that footings placed on the exposed bedrock should be poured on the same day as they are excavated, after removal of all unsuitable founding materials and approval of the bearing surface. Alternatively, a concrete mud slab could be used to protect a bearing surface where footing construction is to be delayed.

The subgrade supporting the floor slab of the community building will consist of native silty sand soil.

Subgrade preparation should include the removal of surface vegetation, organic materials, weak and softened soils. After removal of all unsuitable materials, the subgrade should then be proof-rolled with heavy rubber tired equipment and adjudged as satisfactory before preparing the granular base course. The proof-rolling operation should be witnessed by geotechnical staff. Any soft or unsuitable subgrade areas should be sub-excavated and replaced with suitable approved compacted backfill; placed in maximum lifts of 200 mm and compacted to at least 98% of SPMDD.

Where new fill is required to raise the grade, the excavated earth fill and native sand and silt material from the site or similar clean imported fill material free from topsoil, organic or deleterious matter, may be used, provided the material is placed in large areas where it can be compacted with a heavy vibratory roller. The fill material should not be frozen and should not be too dry or too wet for efficient compaction (moisture content at optimum or 2% greater than optimum). The fill placement should not be performed during winter months when freezing temperatures occur persistently or intermittently. All fill placed below the slab on grade areas of the buildings must be placed in thin lifts of 150 mm thickness or less, and compacted to a minimum of 98% of SPMDD.

It is recommended that a combined moisture barrier and a levelling course, with a minimum thickness of 150 mm and comprised of free draining material be provided as a base for the slab-on-grade, either Granular "A" or 20 mm crusher run limestone may be used and compacted to 100% of its SPMDD.

Perimeter drainage at the foundation level is not required provided the finished floor surface is at least 150 mm above the prevailing grade and the surrounding surfaces slope away from the building at a gradient of at least 2 percent.

6.7.2 Look-Out Area

We understand that it is proposed to construct a look-out area with a prominent water feature along the northern boundary to optimize the views to the Ottawa River.

Test Pit (TP208) was advanced in the proposed look-out area and revealed that the stratigraphy in this area consists of fill material extending to an approximate depth of 1.7 mbgs, followed by bedrock.

Conventional spread and strip footings founded on the bedrock may be used to support the proposed structure. It is recommended that the foundation is designed and prepared in accordance with the recommendations provided in section 6.7.1 of this report.

Due to the proximity of the proposed lookout structure to the crest of the escarpment at the northern boundary of the park, a slope stability analysis must be carried out based on the profile of the existing slope and subsurface soil and groundwater data collected from the current and previous investigations. The proposed structure must be set a safe distance from the crest of the escarpment.

6.7.3 Shade Structure

Borehole BH128 which was advanced in the proposed shade structure area revealed that the soil stratigraphy consists of fill; extending to an approximate depth of 1 mbgs, followed by bedrock.

Conventional spread and strip footings founded on the bedrock may be used to support the proposed structure. It is recommended that the foundation is designed and prepared in accordance with the recommendations provided in section 6.7.1 of this report.

The subgrade supporting the floor slab of the shade structure will consist of fill soil. It is recommended that the subgrade is prepared in accordance with the recommendations provided in section 6.7.1 of this report.

It is recommended that a combined moisture barrier and a levelling course, with a minimum thickness of 150 mm and comprised of free draining material be provided as a base for the slab-on-grade, either Granular "A" or 20 mm crusher run limestone may be used and compacted to 100% of its SPMDD. The granular material must be adequately drained to minimize frost heave or be provided with insulation.

Uplift resistance should be considered for the design of the canopy structure which is subject to wind uplift forces. The uplift resistance should be provided using the dead weight of the foundation as well the soil weight above the footing of the canopy structures. For design purposes, the unit weight of concrete may be taken as 24 kN/m³ and the backfill placed above the footings is 20 kN/m³. If increased uplift capacities are required, this may be achieved by increasing the weight (size) of the foundation, or alternatively, with the use of rock anchors.

6.7.4 Playground

It is expected that the playground structures will be lightly loaded frame structures, which will probably be supported on a set of foundations.

Borehole BH129 which was advanced in the vicinity of the proposed playgroundand revealed that the soil stratigraphy consists of fill extending to an approximate depth of 1.5 mbgs, followed by bedrock.

Conventional spread and strip footings founded on the bedrock may be used to support the proposed structure. It is recommended that the foundation is designed and prepared in accordance with the recommendations provided in section 6.7.1 of this report.

The site preparation should consist of removing the existing topsoil layer and profiling the subgrade to the design grades to provide efficient drainage. The fill should provide a satisfactory subgrade to support the playing field.

If any unsuitable fill is contacted at subgrade elevation, this should be removed to contact the underlying competent native sand and silt (till) soil. The sub-excavation should be upfilled with suitable selected fill material (reuse of site excavated soil) and compacted to a dry density of not less than 95% of the materials SPMDD. Construction of turf and the site subgrade systems should be carried out to meet the design requirements of the artificial turf supplier.

6.7.5 Splash Pad

It is anticipated that the splash pad will consist of concrete slab on grade. It is recommended that the subgrade is prepared in accordance with the recommendations provided for in section 6.7.1 of this report.

Once the subgrade soils have been improved, it is recommended that a minimum 300 mm thick levelling granular base course (Granular A or 20 mm crusher run limestone) is constructed to provide uniform support to the concrete slab.

Sub-drains are recommended to prevent accumulation of water within the granular material, to intercept excess subsurface moisture and minimize subgrade softening. The invert of sub-drains should be maintained at least 0.3 m below subgrade level.

The foundation soils should be insulated from freezing conditions in order to mitigate movement of the foundation soils as a result of the freeze-thaw cycle.

A styrofoam insulating layer (about 150 mm thick) may be placed to rest on the granular base layer under the concrete slab extending a minimum of 1.8 m beyond the outside limit of the floor slab and is placed at a slight slope grading away from the structure to encourage drainage.

The insulation should be protected against degradation by sunlight and damage from surface traffic (with about 200 mm thick overlay layer consisting of granular material, topsoil or sod).

6.7.6 Tree Planting Recommendations in Sensitive Clay Soil

A clay soil layer ranging in thickness between 1.2 and 1.8 m is present in Boreholes MW125, BH133, BH134 and BH173, located in the east section of the Park Block. The approximate area containing the clay soil is shown on Drawing 8 attached in Appendix B. Based on the new concept drawing of Park 1 (Kishkabika Park) no structures are proposed for this area of the site with the exception of a toboggan hill and walking trails. Therefore the tree planting restrictions as described in the City of Ottawa's Tree Planting in Sensitive Marine Clay Soils 2017 Guideline, do not apply for the proposed development.

6.8 Slope Stability Blocks 1 and 6

Based on grading plans received from IBI, the existing slope traversing Block 6 is approximately 2.5 m in height and stands at a gradient of 1V:8H. This slope is considered to be stable and no analysis is required. The grading plan for this area is shown on Drawing 6 attached in Appendix B.

Terrapex has been commissioned by CLC to carry out a stability assessment of the slope present in the southeast corner of Block 1. The findings of this assessment will be reported under separate cover.

6.9 Service Trenches

Based on the proposed site grades, sewer pipes and water mains will be supported on the bedrock or undisturbed native sandy and silty soils which are considered suitable for supporting water mains, sewer pipes, manholes, catch basins and other related structures

The type of bedding depends mainly on the strength of the subgrade immediately below the invert levels.

Normal Class 'B' bedding is recommended for underground utilities. Granular 'A' or 19 mm crusher-run limestone can be used as bedding material; all granular materials should meet OPS 1010 specifications. The bedding material should be compacted to a minimum of 95% SPMD. Bedding details should follow the applicable governing design detail (i.e. City of Ottawa, OPSD). Trenches dug for these purposes should not be unduly left exposed to inclement weather.

Pipe bedding and backfill for flexible pipes should be undertaken in accordance with OPSD 802.010. Pipe embedment and cover for rigid pipes should be undertaken in accordance with OPSD 802.030.

If unsuitable bedding conditions occur, careful preparation and strengthening of the trench bases prior to sewer installation will be required. The subgrade may be strengthened by placing a thick mat consisting of 50 mm crusher-run limestone. Field conditions will determine the depth of stone required. Geotextiles and/or geogrids may be helpful and these options should be reviewed by **Terrapex** on a case by case basis.

Sand cover material should be placed as backfill to at least 300 mm above the top of pipes. Placement of additional granular material (thickness dictated by the type of compaction equipment) as required or use of smaller compaction equipment for the first few lifts of native material above the pipe will probably be necessary to prevent damage to the pipe during the trench backfill compaction.

It is recommended that service trenches be backfilled with on-site native materials such that at least 95% of SPMDD is obtained in the lower zone of the trench and 98% of SPMDD for the upper 1000 mm. In areas of narrow trenches or confined spaces such as around manholes, catch basins, etc., the use of aggregate fill such as Granular 'B' Type I (OPSS 1010) is required if there is to be post-construction grade integrity.

Impermeable clay should be provided across the entire width of the service trenches. It is recommended that the seals be at least 1.0 m in length along the trench (in accordance with the city of Ottawa Standard S8). The seals should be constructed at intervals no greater than 100 m along all sewer installations.

6.10 Pavement Design

6.10.1 On-Grade Construction

Based on the existing topography of the site and the proposed grades, re-grading of the subgrade will be required. It is anticipated that the sub-grade material for the pavement will generally comprise of engineered fill.

The subgrade should be thoroughly proof-rolled and re-compacted to ensure uniformity in subgrade strength and support. Lift thicknesses should not exceed 200 mm in a loose state and the excavated site material should be compacted using heavy vibratory rollers. As an alternative, if suitable on-site native material is not available, the upper part of the subgrade could be improved by placing imported granular material.

If construction is carried out in inclement weather, there is a likelihood that some amount of road subbase supplement will be required (i.e. some sub-excavation followed by granular replacement).

Given the frost susceptibility and drainage characteristics of the subgrade soils, the pavement design presented below is recommended.

Pavement Layer	Compaction Requirements	Light Duty Pavement Local Residential Routes	Heavy Duty Pavement Transit Routes
Surface Course	as per OPSS 310	40 mm Superpave 12.5 Level B Asphalt (PG58-34)	40 mm Superpave 12.5 Level D Asphalt (PG64-34)
Binder Course	Binder Course OPSS 310 Level B Aspha		100 mm Superpave 19 mm Level D Asphalt (PG64-34)
Granular Base	100% SPMDD	150mm Granular 'A' (OPSS 1010) Pit Run or 19mm Crusher Run Limestone	150mm Granular 'A' (OPSS 1010) Pit Run or 19mm Crusher Run Limestone
Granular Sub-Base	100% SPMDD	450 mm Granular 'B' Type II (OPSS 1010)	600 mm Granular 'B' Type II (OPSS 1010)

Recommended Asphaltic Concrete Pavement Structure Design (Minimum Component Thicknesses)

The subgrade must be compacted to at least 98% of SPMDD for at least the upper 600 mm and 95% below this level. The granular base and sub-base materials should be compacted to a minimum of 100% SPMDD.

The long-term performance of the proposed pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved as much as practically possible when fill is placed and that the subgrade is not disturbed and weakened after it is exposed.

Control of surface water is a significant factor in achieving good pavement life. Grading adjacent to the pavement areas must be designed so that water is not allowed to pond adjacent to the outside edges of the pavement or curb. In addition, the need for adequate drainage cannot be overemphasized. The subgrade must be free of depressions and sloped (preferably at a minimum gradient of three percent) to provide effective drainage toward subgrade drains. Continuous sub-drains are recommended to intercept excess subsurface moisture at the curb lines and catch basins. The invert of sub-drains should be maintained at least 0.3 m below subgrade level.

Additional comments on the construction of pavement areas are as follows:

- As part of the subgrade preparation, the proposed pavement areas should be stripped of vegetation, topsoil, unsuitable earth fill and other obvious objectionable material. The subgrade should be properly shaped and sloped as required, and then proof-rolled. Loose/soft or spongy subgrade areas should be sub-excavated and replaced with suitable approved material compacted to at least 98% of SPMDD.
- Where new fill is needed to increase the grade or replace disturbed portions of the subgrade, excavated inorganic soils or similar clean imported fill materials may be used, provided their moisture content is maintained within 2% of the soil's optimum moisture content. All fill must be placed and compacted to not less than 98% of SPMDD.
- For fine-grained soils, as encountered at the site, the degree of compaction specification alone cannot ensure distress free subgrade. Proof-rolling must be carried out and witnessed by **Terrapex** personnel for final recommendations of sub-base thicknesses.
- In the event that pavement construction takes place in the spring thaw, the late fall, or following periods of significant rainfall, it should be anticipated that an increase in thickness of the granular sub-base layer will be required to compensate for reduced subgrade strength.

6.10.2 Above Parking Garage Roof

The pavement above the parking garage roof slab may be comprised of a minimum of 75 mm thick layer of granular 'A' topped with asphaltic concrete having a minimum thickness of 80 mm (40 mm HL8 and 40 mm HL3). The asphaltic concrete materials should be rolled and compacted in accordance with OPSS 310 requirements.

The gradation and physical properties of HL-3 and HL-8 asphaltic concrete, and Granular 'A' shall conform to the OPSS standards.

The critical section of pavement will be at the transition between the pavement on grade and the pavement above the garage roof slab. In order to alleviate the detrimental effects of dynamic loading / settlement / pavement depression in the backfill to the rigid garage roof structure, it is recommended that an approach type slab be constructed at the entrance/exit points, by extending the granular sub-base to greater depths along the exterior garage wall.

The granular courses of the pavement should be placed in lifts not exceeding 150 mm thick and be compacted to a minimum of 100% SPMDD.

6.11 Lateral Earth Pressure

Parameters used in the determination of earth pressure acting on temporary shoring and basement walls are defined below.

Parameter	Definition	Units
Φ'	angle of internal friction	degrees
γ	bulk unit weight of soil	kN/m ³
Ka	active earth pressure coefficient (Rankine)	dimensionless
Ko	at-rest earth pressure coefficient (Rankine)	dimensionless
Kp	passive earth pressure coefficient (Rankine)	dimensionless

Soil Parameters

The appropriate un-factored values for use in the design of structures subject to unbalanced earth pressures at this site are tabulated as follows:

Soil Parameter Values

A 11	Parameter					
Soil	Φ'	Y	Κα	Kp	Ko	
Fill Material	28°	18	0.36	2.77	0.53	
Silty Sand to Sand	compact - 32°	19.0	0.31	3.25	0.47	
Silt to Sandy Silt	dense to very dense - 36°	19.0	0.26	3.85	0.41	
Clay and Silt	30°	20	0.33	3.00	0.5	
Bedrock	36°	25	0.26	3.85	0.41	

Walls or bracings subject to unbalanced earth pressures must be designed to resist a pressure that can be calculated based on the following formula:

$P = K (\gamma h + q)$

Where P = lateral pressure in kPa acting at a depth h (m) below ground surface

K = applicable lateral earth pressure coefficient

 γ = bulk unit weight of backfill (kN/m³)

q = the complete surcharge loading (kPa)

This equation assumes that free-draining backfill and positive drainage is provided to ensure that there is no hydrostatic pressure acting in conjunction with the earth pressure.

The coefficient of earth pressure at rest (K_{\circ}) should be used in the calculation of the earth pressure on the basement walls.

Resistance to sliding of earth retaining structures is developed by friction between the base of the footing and the soil. This friction (R) depends on the normal load on the soil contact (N) and the

frictional resistance of the soil (tan Φ ') expressed as: $R = N \tan \Phi$ '. This is an ultimate resistance value and does not contain a factor of safety.

6.12 Earthquake Design Parameters

The 2012 Ontario Building Code (OBC) stipulates the methodology for earthquake design analysis, as set out in Subsection 4.1.8.7. The determination of the type of analysis is predicated on the importance of the structure, the spectral response acceleration and the site classification.

The parameters for determination of the Site Classification for Seismic Site Response are set out in Table 4.1.8.4.A of the 2012 OBC. The classification is based on the determination of the average shear wave velocity in the top 30 meters of the site stratigraphy, where shear wave velocity (vs) measurements have been taken. In the absence of such measurements, the classification is estimated on the basis of empirical analysis of undrained shear strength or penetration resistance. The applicable penetration resistance is that which has been corrected to a rod energy efficiency of 60% of the theoretical maximum or the (N60) value.

Based on the current and previous borehole and test pit information, the subsurface stratigraphy generally comprises surficial topsoil and asphaltic concrete pavement, underlain by fill material, followed by various native soils consisting of silty sand to sand, sandy silt to silt, and clay and silt soils, underlain by limestone bedrock at shallow depths. Based on the above, the site designation for seismic analysis is estimated to be Class B according to Table 4.1.8.4.A from the quoted code.

The site specific 5% damped spectral acceleration coefficients, and the peak ground acceleration factors are provided in the 2012 Ontario Building Code - Supplementary Standards SB-1 (September 14, 2012), Table 1.2, location Ottawa, Ontario.

6.13 Chemical Characterization of Subsurface Soil

Two (2) soil samples obtained from Boreholes BH108 and BH127 were submitted to Maxxam Analytics Inc. for pH index test, water-soluble sulphate, and chloride content to determine the potential of attacking the subsurface concrete and corrosion of steel pipelines. The test results are summarized below:

Soil Parameter	BH108: 0.76 mbgs (Sample 2)	BH127: 0.76 mbgs (Sample 2)
рН	7.58	7.54
Water-soluble Sulphate (%)	0.0098	0.0026
Chloride (%)	ND*	ND

*ND: Not Detected

The pH of the tested samples indicates a slight alkalinity. The concentration of water-soluble sulphate content of the tested samples is below the CSA Standard of 0.1% water-soluble sulphate (Table 12 of CSA A23.1, Requirements for Concrete Subjected to Sulphate Attack). Special concrete mixes against sulphate attack is therefore not required for the sub-surface concrete of the proposed buildings. The chloride content was not detected in the tested samples.

The Certificate of Analysis provided by the analytical chemical testing laboratory is contained in Appendix G of this report.

7 LIMITATIONS OF REPORT

The Limitations of Report, as quoted in Appendix 'A', are an integral part of this report.

Yours respectfully Terrapex Environmental Ltd.

Ruchal Jogo

Rachel Herzog, C.E.T Project Coordinator and Senior Field Inspector

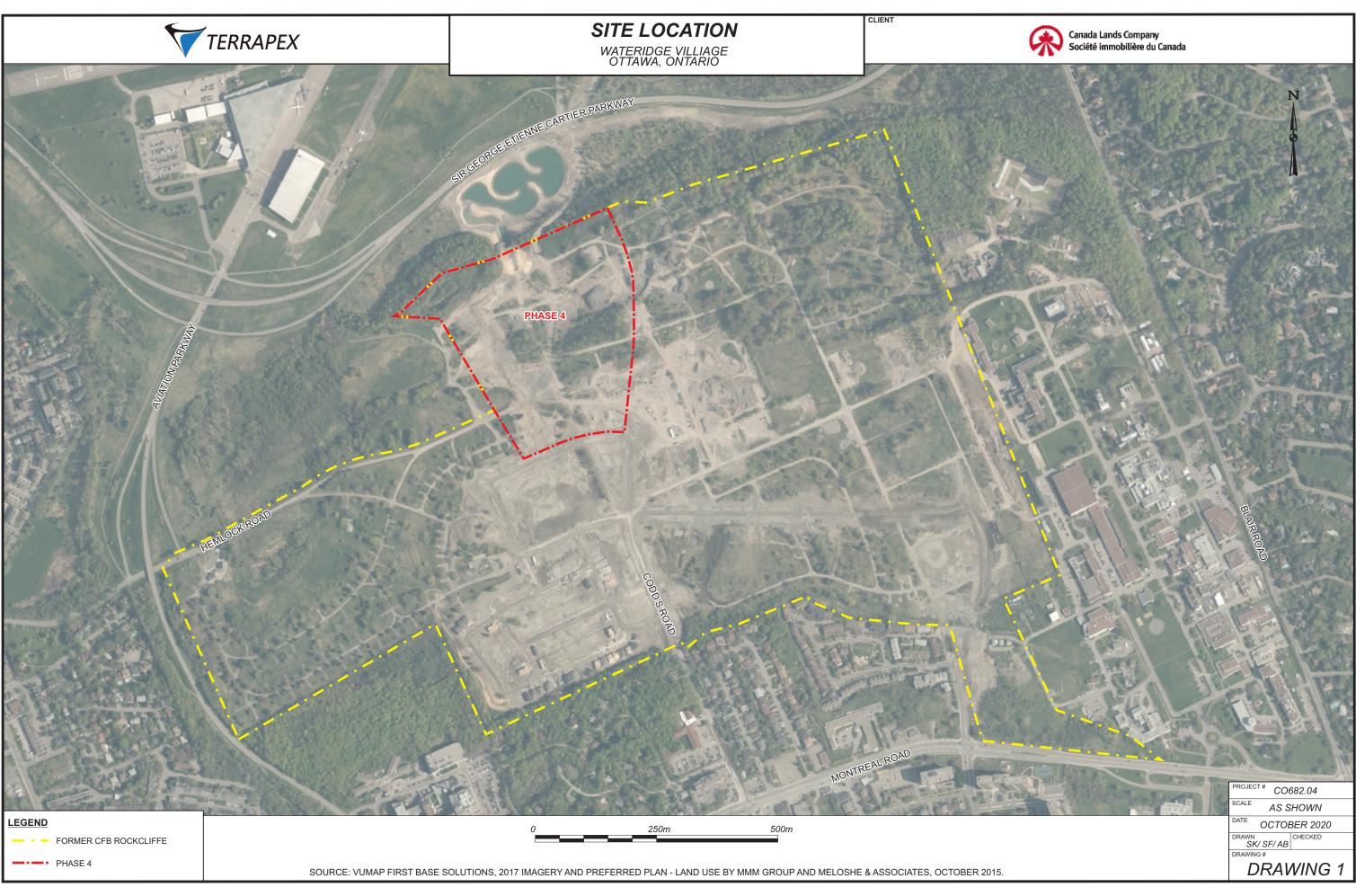
Vic Nersesian, P. Eng. Vice President, Geotechnical Services

APPENDIX A LIMITATIONS OF REPORT

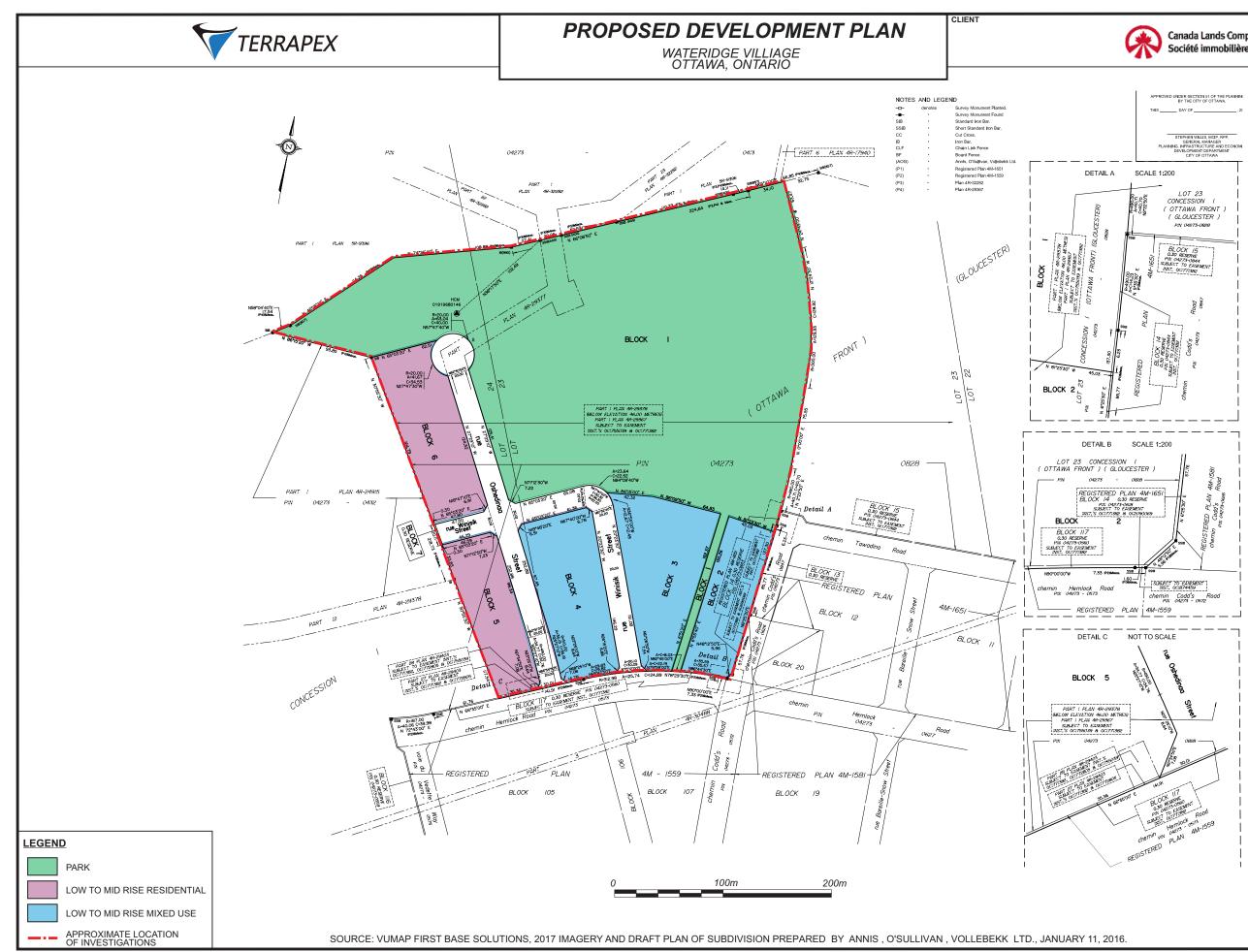
Limitations of report

The conclusions and recommendations in this report are based on information determined at the inspection locations. Soil and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the soil investigation.

The design recommendations given in this report are applicable only to the project described in the text, and then only if constructed substantially in accordance with details of alignment and elevations stated in the report. Since all details of the design may not be known to us, in our analysis certain assumptions had to be made as set out in this report. The actual conditions may, however, vary from those assumed, in which case changes and modifications may be required to our recommendations.

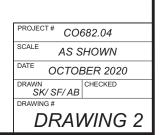

This report was prepared for Canada Lands Company CLC Limited by Terrapex Environmental Ltd. The material in it reflects Alston Associates judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions which the Third Party may make based on it, are the sole responsibility of such Third Parties.

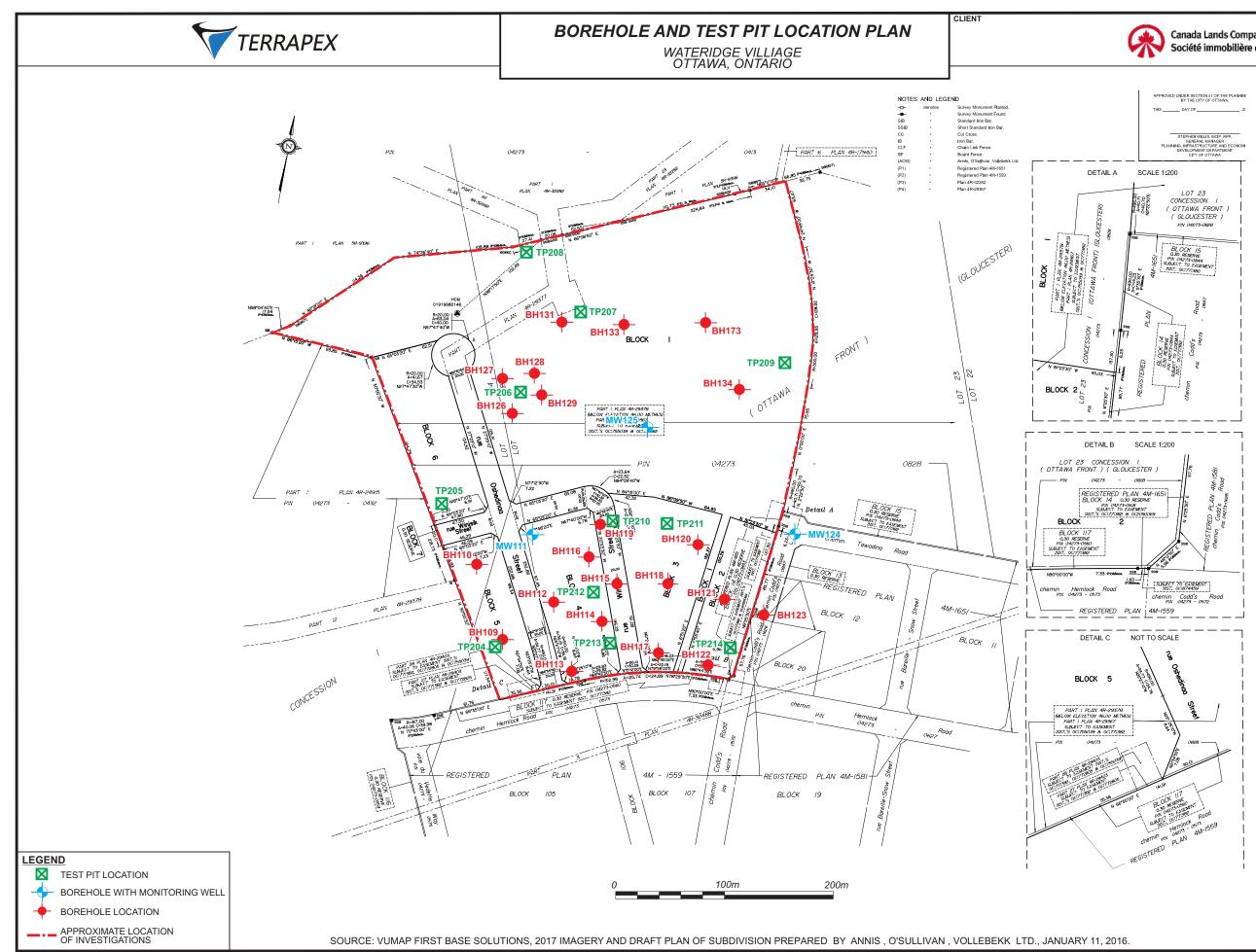
We recommend, therefore, that we be retained during the final design stage to review the design drawings and to verify that they are consistent with our recommendations or the assumptions made in our analysis. We recommend also that we be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the test holes. In cases where these recommendations are not followed, the company's responsibility is limited to accurately interpreting the conditions encountered at the test holes, only.

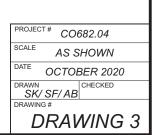

The comments given in this report on potential construction problems and possible methods are intended for the guidance of the design engineer, only. The number of inspection locations may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.

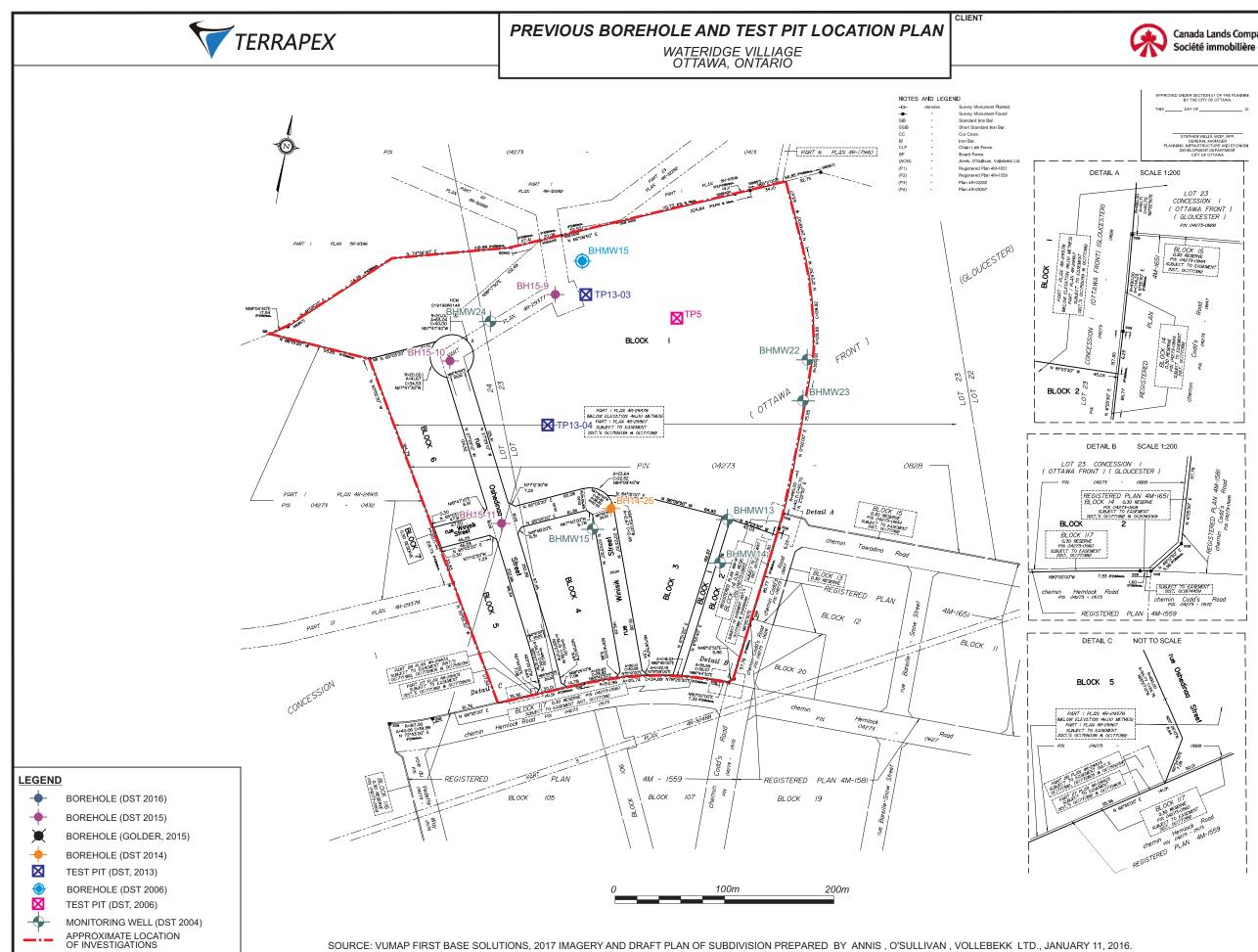
APPENDIX B

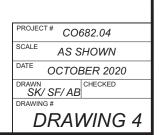
DRAWING 1: SITE LOCATION DRAWING 2: PROPOSED DEVELOPMENT PLAN DRAWING 3: BOREHOLE AND TEST PIT LOCATION PLAN DRAWING 4: PREVIOUS BOREHOLE AND TEST PIT LOCATION PLAN DRAWING 5: PROPOSED PARK 1 DRAWING 6: PROPOSED GRADING PLAN – PART OF PHASE 4 DRAWING 7: PROPOSED GRADING PLAN – PART OF PHASE 2 & 4 DRAWING 8: EXTENT OF Clay SOILS

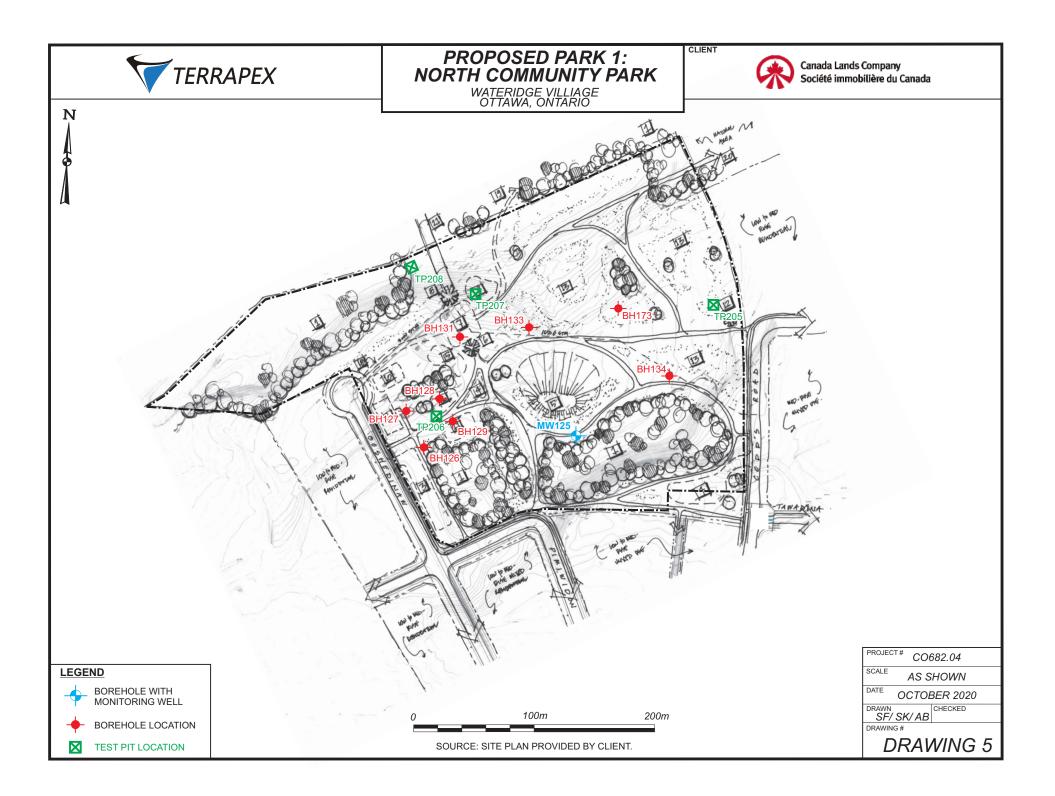


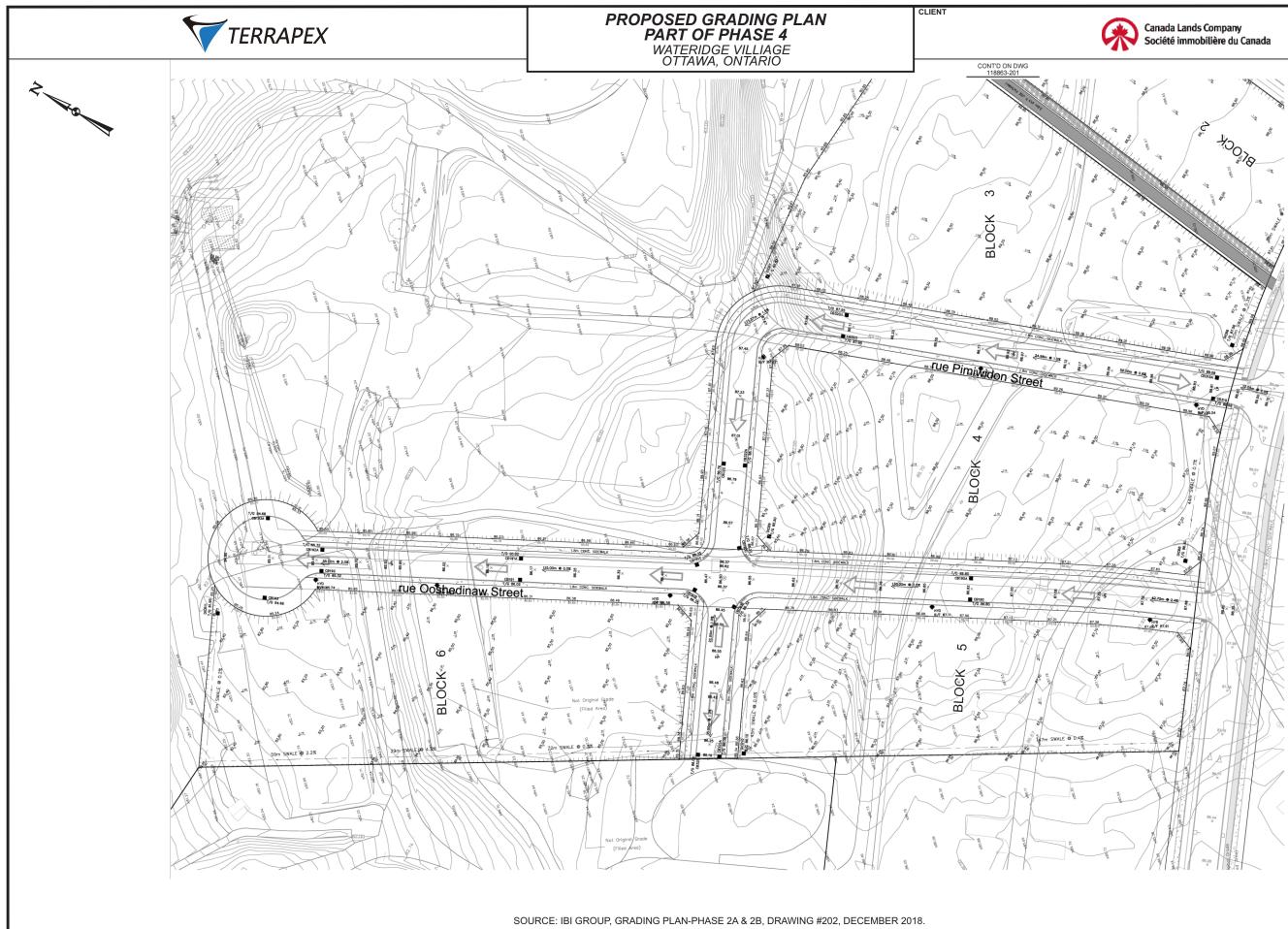



Canada Lands Company Société immobilière du Canada

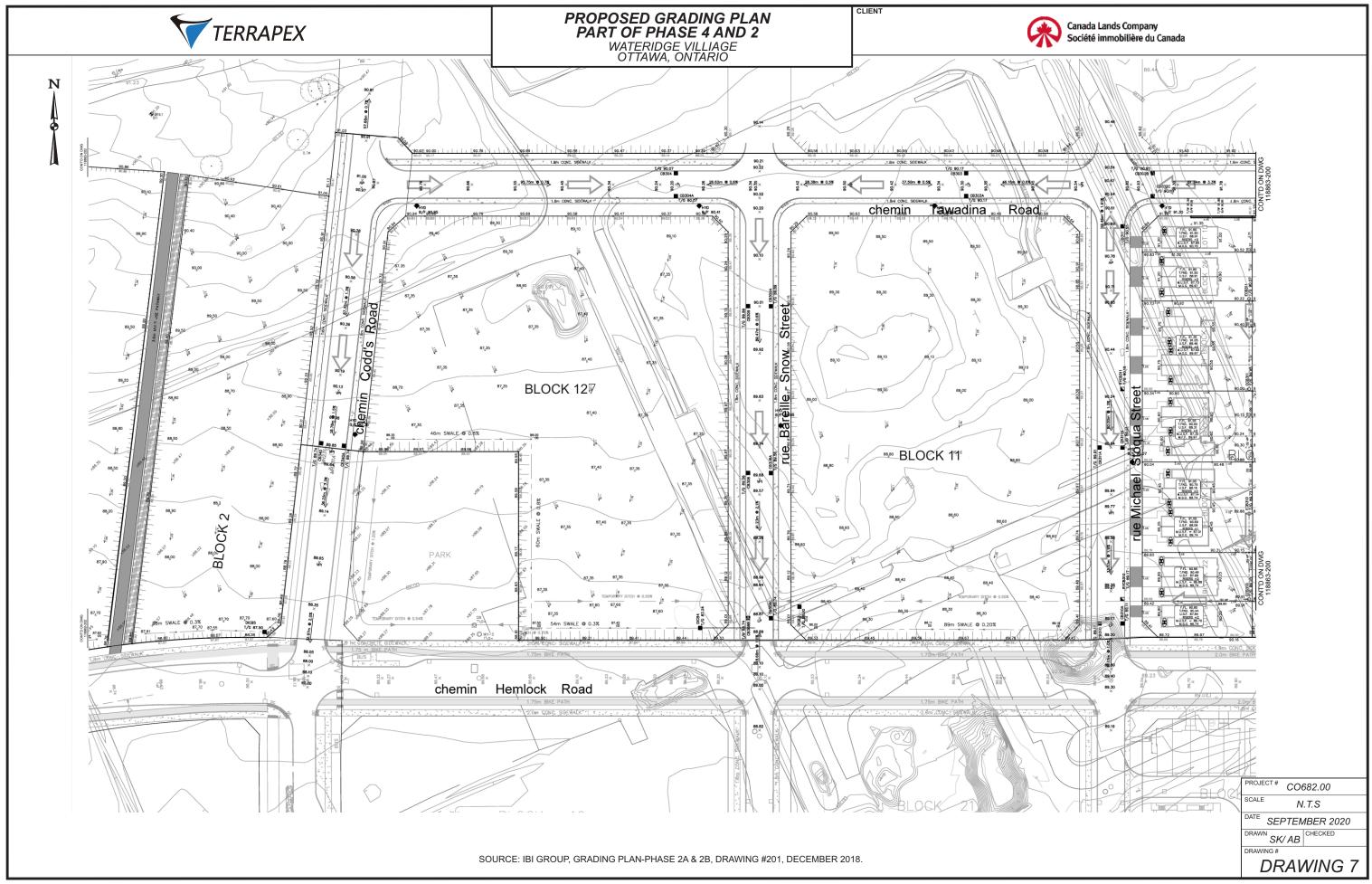


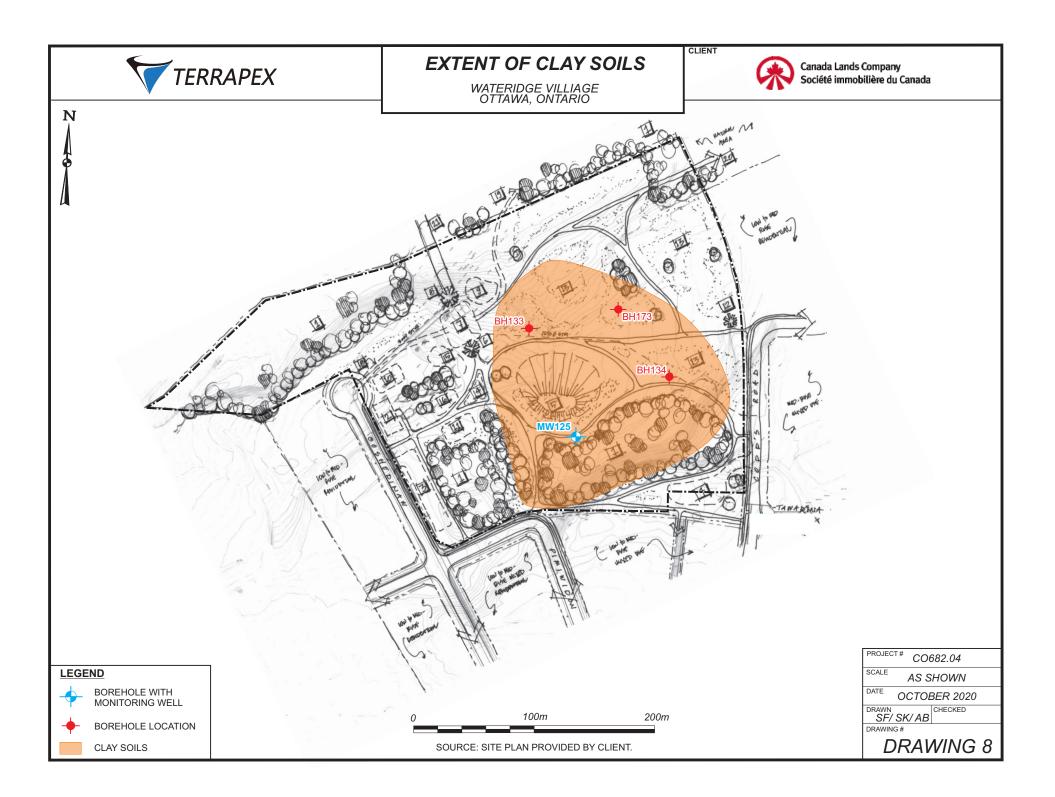



Canada Lands Company Société immobilière du Canada



Canada Lands Company Société immobilière du Canada





PROJECT # CO682.00
SCALE N.T.S
DATE OCTOBER 2020
SK/AB
DRAWING #
DRAWING 6

APPENDIX C BOREHOLE AND TEST PIT LOG SHEETS

				Iow Stem A BINEER: VN	-	<u>Spoon</u>) 87.338	Bŀ	1 No	o.: 109
LOCATION	J: Rockcliffe, Ottawa	NORTH	ING: 5	033491	EASTING	6: 450202			.: CO682.00
SAMPLE T	YPE AUGER DRIVEN		CORI		DYNAMIC C	CONE	SHELBY		
SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELE VATION (m)	Shear Strer (kPa) 40 80 120 N-Value (Blows/300 20 40 60	160 nm) PL	Water Content (%) . W.C. LL 40 60 80	SAMPLE NO. SAMPLE TYPE	SPT(N) Well Construction	REMARKS
	soft, moist, dark brown, clayey silt traces of sand, gravel, and organics (FILL)	- 0.25	87.25 - - 87 - - - - - - - - - - - - - - - - - - -	50/125			1 5	50/ 25	Borehole open and dy o completion. Rock in spoon tip at 0.3 m bgs
		- 0.75	86.25 86.25 86.25	40			2A	40	Difficult augering from 1.0 m bgs to refusal.
	dense to compact, damp, light brown silty sand, some clay, trace gravel (FILL)	- 1.5 - 1.75 - 2 - 2.25	85.75 - 	23			3	23	Relocated drill 1 m S to avoid rocks.
		- 2.5	84.75 - 84.75 - 84.5 -	64			4	64	Auger refusal at 2.9 m bgs.
	END OF BOREHOLE								
	alston associates			LOGGED E	 Y: RH		DATE: N	lovemb	er 19, 2018
	geotechnical division of <i>TERRAPEX</i>			REVIEWED		Page 1 of 1			

			D: Hol				-						D	ы	NL	o : 110
			CT ENG			VN			V. (m)							D.: 110
SAMPLE T			CORI		554		_		TING: /IC CC		130	-	HEL			
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	S 40 (E	N-' Blows) 12(Value \$/300	ngth 0 160)	C	Water Conter (%) W.C.	it LL		Ц		Well	
	FROZEN GROUND	0	86.25 - 													Borehole caved-in at 0.91 m bgs and dry on completion.
	very dense, damp, grey gravel, some sand (FILL)	- 0.5	86 - - - 85.75 -				80					1.	×	80)	
	compact, damp to wet, brown sandy silt, some gravel, trace organics trace oxidization (FILL)	- 0.75 	85.5			Å						11 2/	H			
	compact to very dense, moist to wet, dark brown, silty gravel, trace sand, trace organics and rock fragments	- 1.25	- - 85.25 - - - - -	31								21	3	- 31		Auger refusal at 1.40 m bgs.
	END OF BOREHOLE															
	alston associates	1	1				BY: D BY		 N	-	de 1		ATE	: Nc	vemb	L per 19, 2018

CLIENT: Canada Lands Company CLC Limited			IIOW Ste		-	& Split Sp			R	н	NI	o.: MW111
PROJECT: Wateridge Village LOCATION: Rockcliffe, Ottawa	_		033607		_	EV. (m) 86 STING: 45						D.: CO682.00
SAMPLE TYPE AUGER DRIVEN	M	CORI				AMIC CONE		SH				
GWL NO SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Shear (40 80 N- (Blow	0 120 Value s/300	0 160 e ▲ mm)	Wat Cont (% PL W.0 20 40	ent) C. LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	
(m) Image: Construction of the second se	0.25	86.75 - 86.75 - 86.25 - 86.25 - 86.25 - 85.75	N- (Blow) 20 44 3 4 4 26 61/2	s/3000 <u>60</u>	mm)	PL W.(1 2 SAMPLE		(V) LAS 3 4 226 61// 228	Const	Monitoring well was dry on December 17, 2018. Bentonite sand sand and screen Auger refusal at 2.7 m bgs.
alston associate geotechnical division of TERRAPI	5		LOGG		3Y: RH		RILLING Page 1 of		Ē:	Nov	emb	er 19, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHO				-						R	н	Nc	o.: 112
	N: Rockcliffe, Ottawa	NORTH						EV. (m) STING:							.: CO682.00
SAMPLE 1		M	CORII			_				Π	SH				
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Str (kPa) 80 12 N-Valu ows/30 40 6	20 16 Je Omm	n 50)	PL	Water Content (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	
	FROZEN GROUND dense, moist, brown	0	-				0				1A				borehole open and dry on completion.
	sand and gravel, trace organics (FILL) very dense, damp, light brown SANDY SILT trace organics rock fragments occassional oxidized pockets		88.25		36						1B 2		36 58/ 228		Auger refusal at 1.2 m bgs.
	END OF BOREHOLE	-	-												
	alston associates	 ; ;	1		GED				-	ILLINC		I TE:	Nov	ı vemb	er 19, 2018

		METHC PROJE				-					-	R	н	Nc	o.: 113
		NORTH				I N		EV. (m) STING:							D.: CO682.00
SAMPLE T		Ν	CORI					MIC CO				ELB		1110	SPLIT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	St 40 (B	N-Va lows/3	rengt a) 1 <u>20 1</u> lue 00mm	h 60 ▲ 1)	PL	Water Content (%) W.C. 40 60	LL	SAMPLE NO.	щ	SPT(N)	Well Construction	
	compact, damp, dark brown sandy gravel mixed with organics (FILL) very dense, damp, brown silty sand, large gravel (FILL)	- - 0.25 - - - 0.5	87.5 - 87.25 -	10	0/75						1		10 50/ 75		Borehole open and dry on completion. Difficult augering to 0.76 m to refusal at 1.0 m bgs
	END OF BOREHOLE														
	alston associates geotechnical division of TERRAPEX		•		GGED VIEW				-	ILLING		TE:	Nov	vemb	er 19, 2018

		METHC PROJE				-			<u>Spoon</u> 88.30			B	н	Nc	o.: 114
		NORTH							45028						.: CO682.00
SAMPLE T		Π	CORI				'NAM			Π	SHI	ELB	Y		SPLIT SPOON
G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	She 40 (Blc	ear Str (kPa 80 1: N-Valu ws/30 40 6	20 160 Je 🔺 Omm)	0	C PL	Water Content (%) W.C. L		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	TOPSOIL (250 mm)	-	88.25 -					21			1A				Borehole open and dry on completion.
	compact, damp to dry, brown/dark brown sand some silt, trace rootlets, trace gravel, trace cinder (FILL)	- 0.25 - 0.5 - 0.75	88 - - - 87.75 -	12			1	1			1B		12		
		- - - - -	87.5 - - 87.25 -	4	6		7				2		46		
	dense to compact damp light brown mixed dark brown SANDY SILT trace gravel, trace organics	- - - - - - -	87 - - - 86.75 -		/										Auger refusal at 2.1 m
		- 1.75 - - - 2	86.5 - - - 86.25 -	▲ 13			4				3		13		bgs.
	alston associates geotechnical division of TERRAPEX				GED		 RH 7: VN		DRIL			L re:	Nov	 /emb	er 19, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHC PROJE				-		Split S /. (m)				R	н	Nc	o.: 115
	N: Rockcliffe, Ottawa	NORTH						ΓING:							.: CO682.00
SAMPLE 1		Ν	CORI							235		ELB			
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Blo	ear Str (kPa) 80 12 N-Valu ows/30	20 160 20 160 1e 🔺)	PL	Water Conten (%) W.C.	t	SAMPLE NO.	ш	SPT(N)	Well Construction	
	JESCRIPTION ASPHALTIC CONCRETE (40 mm) dense, damp, brown gravelly sand, trace asphalt (FILL) Very dense, damp, brown sandy silt, traces of gravel and rock fragments (FILL) END OF BOREHOLE	E 0 -0.25 -0.5 - 0.75 - 1	89 - 88.75 - 88.5 -		40 6	Omm)			W.C.		dwys 1		44 50/ 100		Borehole open and dry on completion. Relocated drill 1 m N, confirmed bedrock depth of 1.0 m bgs. Auger refusal at 1.0 m bgs.
	alston associates geotechnical division of TERRAPH	S Ex	1		GED GEWE			N	-	ILLING		TE:	No	/emb	L er 19, 2018

		METHO				-				0		D		NZ	o.: 116
		PROJE				-		EV. (m) STING:							.: CO682.00
SAMPLE		Ν	CORI					MIC CO			SHI			1110	SPLIT SPOON
TOBMY'S LIOS	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Str (kPa) 80 12 N-Valu ows/30	ength 2016 Je Omm)	1 50	W Cc PL V	Vater ontent (%) V.C. L		SAMPLE NO.	SAMPLE TYPE		Well Construction	REMARKS
Soll S	DESCRIPTION stiff, moist-wet, grey clayey silt (FILL) loose, moist, brown/dark brown sandy silt, traces of organics and cinder (FILL) very dense, damp, light brown SANDY SILT occassional oxidized pockets END OF BOREHOLE	0.25	88.75 - 88.75 - 88.25 - 88.25 - 88.25 -		N-Vali ows/30 40 6 75/22	0mm) 0 80)		V.C. L		1A 1B 2		9 9 75/ 2228	Cons	Borehole open and dry on completion. Auger refusal at 1.44 m bgs.
	alston associates				GGED				DRIL			ſĒ:	Nov	emb	er 19, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHC PROJE						EV. (m					B	H	No	o.: 117
LOCATION	N: Rockcliffe, Ottawa	NORTH			98		EA	STING	6: 45	035)	F	PRO	JEC	T NO	.: CO682.00
SAMPLE 1	TYPE AUGER DRIVEN		CORI					MIC C			Ľ,	SHE	ELB	Y		
SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B	hear St (kPa 80 1 N-Va lows/30 40	<u>20 1</u> ue 00mm	60 ▲ n)	PL	Wate Conte (%) . W.C	ent 5. LL	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	compact, moist, brown mixed grey sandy silt, traces of clay and gravel (FILL)	0	88 - 									1A		12		Borehole open and dry on completion.
	loose, moist, dark brown/black sandy silt, some organics (FILL)	- 0.5	87.5 - - - 87.25 -									1B				Auger refusal at 1.23 n
	firm, moist, brownish grey clayey silt, trace sand (FILL) END OF BOREHOLE	- - - - - -	87 -	▲ 10	D							2		10		bgs.
	alston associates															
	aiston associatos		110	GGED	1 RY	·RH	-		RIII		ΠΔΤ	E.		10mh	er 16, 2018	

	Canada Lands Company CLC Limited	METHC PROJE				-						RI	-1	Nc	o.: 118
	N: Rockcliffe, Ottawa	NORTH							88.07 4503						.: CO682.00
SAMPLE		M	CORI							Π		ELB			SPLIT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Str (kPa) 80 12 N-Valu pws/30	ength 2016 Je (0mm)	0	(PL	Water Content (%) W.C.		SAMPLE NO.	Е ТҮРЕ		Well Construction	
	TOPSOIL (200 mm)	0	88 -	20	40 6	0 80)	20 4	40 <u>60</u> 7	80	1A		0)		Borehole open and dry on completion.
	loose, moist, dark brown sandy silt, traces of cinder and rootlet (FILI dense, moist brown with grey mottling SANDY SILT, some clay, trace gravel	-) -) - 0.5 - 0.75	87.75 - - - 87.5 -	5				12			1B		5		Auger refusal at 0.96 m bgs.
	END OF BOREHOLE			30/	50 •						2		50		
	alston associates geotechnical division of V TERRAPEX				GED			N		_LING e 1 of		TE:	Nov	emb	er 16, 2018

	Canada Lands Company CLC Limited	METHO				-							<u></u>		
	: Wateridge Village	PROJEC						EV. (m							o.: 119
	N: Rockcliffe, Ottawa	NORTH			13	_		STING)267	_			CIN	0.: CO682.00
SAMPLE T	TYPE AUGER DRIVEN		CORII		near Str (kPa	1		MIC C	Wate			SHEL			SPLIT SPOON
Solt Syndol R	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Bl	(kPa <u>80 1</u> N-Val lows/30 40 6	20 16 ue 0mm	50 ▲)	PL	Conter (%) W.C. 40 6	LL		SAMPLE NO.	SAMPLE I TPE	Well	
	very dense, moist, dark brown sand and gravel, large rock in spoon (FILL)	0.25	88.5 - 				90 ▲					1	9	D	Borehole open and dry on completion. Auger refusal at 0.65 m bgs.
	END OF BOREHOLE														
	alston associates geotechnical division of Verraped	x			GGED VIEWE				_	RILLII ige 1		ATE	: N	ovem	ber 19, 2018

0 0		CT ENG ING: 5 CORII (^(III) NOILEABI	0335 NG		D	EAS YNA	EV. (m) STING: MIC CO	4503		F	PRO	JEC.		D.: 120 .: CO682.00
SAMPLE TYPE AUGER DRIVEN	DEPTH (m)	CORI	NG S⊦		1	YNA	міс со						-	
GWL (M) SOIL DESCRIPTION	DEPTH (m)		Sh	near Str (kPa	1					SHI	ELB	Y		SPLIT SPOON
compact, moist, dark brown/brown		ELEVA	(Bl	80 12 N-Valu lows/30 40 6	20 16 Je Omm	60 ▲ ı)	PL	Water Content (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE		Well Construction	REMARKS
(FILL)	- 0.25	89.5 -	13	40 0					80	1A		13		Borehole open and dry on completion.
very dense, damp, light brown SILT some sand, trace clay	- 0.5 - 0.75 - 1	89 - 89 - 88.75 - 88.75 - 88.5 -		1	00/2	80				1B 2		100/ 280		Auger refusal at 1.20 m bgs.
END OF BOREHOLE			\vdash	+		$\left \right $	+	+	+					
alston associatos				GGED	BV.	RH		יפח					emb	er 16, 2018
alston associates geotechnical division of TERRAPEX				VIEWE				-	e 1 of			INUV	CIID	51 10, 2010

		Canada Lands Company CLC Limited Wateridge Village	METHC PROJE					-	<u>& Split</u> EV. (m)				В	Н	No	o.: 121
		N: Rockcliffe, Ottawa	NORTH						STING:							D.: CO682.00
SAM	IPLE T	TYPE AUGER DRIVEN		CORI	NG		[AMIC C		Г	-	IELE	ЗY		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	S 40 (E	Blows/	trenc a) 120 alue 300m	nth 160 ▲ m)	PL	Water Conter (%) W.C. 40 60	ıt LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
		ASPHALTIC CONCRETE (75 mm)		88.5 -	20	0 40	60	80	20	40 60			0,	0,		Borehole open and dry on completion.
		compact, moist to wet, dark brown sandy gravel, trace asphalt (FILL)	- 0.25	88.25	14							1		14		Auger refusal at 0.80 m bgs.
N		END OF BOREHOLE														
		alston associates	 5	I	LO	GGE	D B1	/:_RI	⊥ -				TE:	No	l vemb	er 16, 2018
		geotechnical division of 🗡 TERRAPE	x		RE	VIEV	/ED	BY:	VN	Pa	ge 1	of 1				

		METHC PROJE					-	V. (m)	88.02	0		B	Н	No	o.: 122
LOCATION	N: Rockcliffe, Ottawa	NORTH	IING: 5	03350)9		EAS	STING:	4503	95					.: CO682.00
SAMPLE T	TYPE AUGER DRIVEN		CORI					міс со			SH	ELB	Y		
BOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blo	ear Stro (kPa) 80 12 N-Valu ows/30 40 6	20 16 ie 🔺 Omm)	0	Ci PL	Vater ontent (%) W.C. L 0 60		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	moist, dark brown/black silt, some sand, some gravel (FILL)	- 0.25 - 0.5	88 - 												Borehole open and dry on completion.
	greyish blue, moist, hard clayey silt, trace sand, trace gravel (FILL)	- 1 - 1 - 1.25 - 1.25 - 1.5	87		36 ▲						1		36		Auger refusal at 1.52 n bgs.
	alston associates geotechnical division of TERRAPEX				GED				DRIL			ſE:	Nov	/emb	er 16, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHC PROJE					-	<u>& Split</u> EV. (m)				R	н	No	o.: 123
	J: Rockcliffe, Ottawa	NORTH						STING:							.: CO682.00
SAMPLE T			CORI				-			Π		ELE			SPLIT SPOON
() BOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	S 40 (E	5hear (kl (kl <u>80</u> N-V Blows/ 0 40	Stren Pa) 120 alue 300m	gth 160 nm)	PL	Water Conten (%) W.C. 40 60	lL	SAMPLE NO.	ш	SPT(N)	Well Construction	
	loose, moist, brown sandy silt, some gravel, trace clay (FILL)	0.25	88.5 -	8	0/25						1		8 50/ 25		Borehole open and dry on completion. Auger refusal at 0.94 m bgs.
	END OF BOREHOLE														
	alston associates	5 x	I				Y: RI BY:		-	ILLIN ge 1 c		TE:	No	I /emb	er 16, 2018

		METHC				-								- MIA/4 0 4
	0 0	PROJE NORTH				N			90.147					D.: MW124 D.: CO682.00
SAMPLE T			CORI		51			MIC CC	450454	-	HEL			SPLIT SPOON
GWL GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Sti (kPa 80 1 N-Val ows/30	rength a) 20 16 ue 00mm	n 50 ▲	PL	Water Content (%) W.C. LL		SAMPLE NO.		Well Construction	1
	Compact, damp to moist, dark brown silty sand, some gravel, trace organics (FILL) compact to dense light brown SANDY SILT we END OF BOREHOLE	0.25 0.5 0.75 - 0.75 - 1 - 1.25	90 - 90 - 89.75 - 89.5 -	20	40 (W.C. LL 0 60 80	2 2				Monitoring well was dry on Decemebr 17, 2018. Bentonite sand sand and screen Auger refusal at 1.70 m bgs.
	alston associates	1	I		GGED /IEWI				DRILLI Page 1		ATE	No ^v	l vemb	l per 16, 2018

CLIENT: Canada Lands Company CLC Limited PROJECT: Wateridge Village	METHC PROJE							<mark>. Spl</mark> ≣V. (i						B	н	N	o.: MW125
LOCATION: Rockcliffe, Ottawa	NORTH							STIN									D.: CO682.00
SAMPLE TYPE AUGER DRIVEN		CORI				D		MIC					SHI				SPLIT SPOON
	DEPTH (m)	ELEVATION (m)	4	08 N Blow	r Stro (kPa) 0 12 -Valu /s/30/ 0 6	20 10 Je , Omm	50 •)		Co		nt LL	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	0.25	82.5 - 82.25 -	12	<u> </u>					33			-	1		12		Groundwater was measured at 0.25 mbgs on December 17, 2018. Bentonite
firm, moist, grey layered CLAY and SILT	- 0.75	81.75 - 81.75 - 81.5 -	▲ g						34				2		9		sand
trace sand occassional oxidized layers	- 1.75	80.75 -	4 9	0/50				11	36				3		9 50/ 50		sand and screen Auger refusal at 2.46 m bgs.
END OF BOREHOLE	<u> </u>	80.25 -							-			_			50		<u>.</u>
alston associates			LC	GGG	ED	BY:	Rŀ	1		DR	RILL	ING	DAT	E:	Nov	/emb	per 20, 2018
geotechnical division of TERRAPEX			R	EVIE	EWE	DB	Y: \	/N		Pa	ge 1	of	1				

	Canada Lands Company CLC Limited Wateridge Village	METHC PROJE					-	<u>& Spli</u> _EV. (r			1	-	В	н	No	o.: 126
	Rockcliffe, Ottawa	NORTH						ASTIN								.: CO682.00
SAMPLE T	YPE AUGER DRIVEN		CORI	NG				AMIC			П	SH	ELB	Υ		SPLIT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E		120 /alue /300	0 160 ; ▲ mm)		Wa Cont (% rL W. 40	c. LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	compact, moist, brown gravelly sand, trace rock fragments (FILL)	- 0.25	84.25 - 84.25 - 84 - 83.75 -	12			80		40			1		12		Borehole open and dry on completion.
	compact, dry, brown SANDY SILT occassional oxidized layers trace rock fragments	- 0.75	83.5 - 83.25 - 83.25 -	25								2		25		
		- 1.5	-	50/	/125							3		50/ 125		Auger refusal at 1.65 m bgs.
	alston associates			-			BY: R			DRILL			TE:	Nov	/emb	er 20, 2018

	Canada Lands Company CLC Limited	METHOD: H				-						D	Ц	NZ	o.: 127
	: Wateridge Village N: Rockcliffe, Ottawa	PROJECT E NORTHING:				-		V. (m) TING:							J <i>Z</i> .: CO682.00
SAMPLE T					,			AIC CC				ELB			
GWL SVMBOL GWL SVMBOL	SOIL DESCRIPTION		1	Shea 40 8	0 12 -Valu /s/300	ength 0 160 e (0mm)	0	C PL	Water ontent (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	
	brown, moist compact to dense SILTY SAND some rock fragments	0	14	19	74/5						1		19 74/ 50		Borehole open and dry on completion. Difficult augering between the depths of 0.76 and 1.52 m bgs. Auger refusal at 1.52 m bgs.
	END OF BOREHOLE														
	alston associates geotechnical division of VTERRAPED	<pre></pre>		LOGG					-	LLINC		TE:	Nov	/emb	l er 20, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHO				-		Split S			\neg	R	н	Nc	o.: 128
	N: Rockcliffe, Ottawa	NORTH						STING:							.: CO682.00
SAMPLE 1			CORII			_		MIC CO				ELB			
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Str (kPa 80 12 N-Valu ows/30 40 6	ength) 20 16 Je Omm	50)	PL	Water Conten (%) W.C.	t	SAMPLE NO.	SAMPLE TYPE		Well Construction	<u>↓↓</u>
	FROZEN GROUND	0	84-		<u>40 c</u>		0	4							Borehole open and dry on completion.
	compact, moist, brown silty sand, trace gravel (FILL) rock fragments	- 0.5	83.75 - 	15 • 50/	/75 🛦						1		15 50/ 75		Auger refusal at 1.0 m bgs.
	END OF BOREHOLE														
	alston associates geotechnical division of TERRAPE	5	I		GED JEWE				-	ILLIN ge 1 o		I TE:	Nov	l /emb	er 20, 2018

	Canada Lands Company CLC Limited : Wateridge Village	METHO PROJE				-	Split S V. (m)				R	н	Na	o.: 129
	N: Rockcliffe, Ottawa	NORTH					STING:							.: CO682.00
SAMPLE 1			CORII	NG			MIC CO		Π	SH	ELB	Y		SPLIT SPOON
BOIL SYMBOL (a) B	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sh 40 (Bl	ear Str (kPa 80 1: N-Valu ows/30 40 6	20 16 Je (Omm)	Co	Vater ontent (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	compact, moist, brown silty sand, trace gravel rock (FILL) fragments	-0.25	84.25 - 84 - - 83.75 - - 83.25 - - 83.25 - - - - - - - - - - - - - - - - - - -	10	//50 ▲	0 80	20 4	<u> </u>	80	1		10		Borehole open and dry on completion. Auger refusal at 1.52 m bgs.
	alston associates	•			GGED			-	LLING e 1 of		TE:	Nov	/emb	er 20, 2018

	METHO					-	r & S	plit S	Spoc	n						404
PROJECT: Wateridge Village	PROJE	CT ENG	SINE	ER:	VN	E	ELEV.	(m)	83.	039						o.: 131
	NORTH			795		E	ASTI	ING:	450)20 [,]	1	F	PRC	JEC	T NO	.: CO682.00
SAMPLE TYPE AUGER DRIVEN		CORI			0		NAMI				Ц	SH	ELB	Y		SPLIT SPOON
GWL (m) TOR SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E	N-' Blows) 120 Value s/300	0 160 ∋ ▲		С	Water conter (%) W.C.	nt LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
TOPSOIL (50 mm)	0	83-								<u> </u>						Borehole open and dry on completion.
compact brown dense moist light brown SILTY SAND	- 0.5	82.75 82.5 82.5 82.25 82.25 82 82 82 82 82 82	12	0/75	`							1		12 50/ 75		Auger refusal at 1.52 m bgs.
END OF BOREHOLE	_ 1.0															
alston associates			LO	GGI	ED E	3Y:	RH		-				E:	Nov	emb	er 20, 2018
geotechnical division of TERRAPEX			RE	VIE	WED	D BY	: VN		Pa	ge 1	l of	1				

		Canada Lands Company CLC Limited	METHO						er &	Split	t Spo	on						400
PRO	DJECT	: Wateridge Village	PROJE	CT ENG	SINE	ER	: VN	١	ELE	EV. (m	n) 81	.775	5		B	H	NC	o.: 133
		N: Rockcliffe, Ottawa	NORTH			3799	9			STING			0				T NO	.: CO682.00
SAN	/IPLE 1	TYPE AUGER DRIVEN		CORI		04.04				MIC	CONE		Ц	SHI	ELB	Y		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	μ0 ε N (Blow	ar Str (kPa) 30 12 I-Valu vs/30	20 16 Je Omm	60 ▲)		Conte (%)	ent) C. LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	0)	FROZEN GROUND		81.75 -		20 4	10 6	08	0	20	40 0	<u>60 E</u>	30	0	0)	0		Borehole caved-in at
		END OF BOREHOLE	- 0.25 - 0.5 - 0.75 - 1 - 1.25 - 1.5 - 1.75 - 2	81.25 - 81.25 - 81.25 - 81 - 80.75 - 80.55 - 80.25 -		25	5							1 2A 3 1		25 8 17 25		Borehole caved-in at 1.83 m bgs and dry on completion.
		. • -			 													
		alston associates geotechnical division of TERRAPEX			-				RH Y: \		_	RILL age			E:	Nov	emb	er 20, 2018

				D: Spl					-		n) 8	32.81	9	-	В	н	No	o.: 134
			NORTH	ING: 5	033	758	}	_				1503						.: CO682.00
SAM	1PLE T	YPE AUGER DRIVEN	Η	CORI	NG			D	YNA	MIC	CON	١E	Π	SH	ELB	Y		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	08 N Blow	r Stre (kPa) 0 12 -Valu rs/300	20 16 le Dmm)	50 •		Coi (ater ntent %) /.C. L 60		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
		TOPSOIL (150 mm)	0	82.75 -					<u> </u>					1A				On completion of the borehole water was at
		brownish orange, moist, loose sand some silt trace organics (FILL)	- 0.25	82.5 -	6									1B		6		0.91 m bgs.
_		light brown	-	82.25 - - - 82 -										2C				
▼		stiff, moist CLAY and SILT	- - 1 - - - - 1.25	- - 81.75 - - -		13					⊢	4		2		13		
		trace sand greyish brown	- 1.5	81.5 - - 														Difficult augering between the depths of
			- - - - - -	81 -		11								ЗA		11		1.8 m to refusal. Auger refusal at 2.13 m bgs.
		brown, wet, loose SILT, some sand, some gravel	-2	- 80.75 -										зв				
		alston associates			-		GED					DRIL			TE:	Nov	/emb	er 20, 2018

CLIENT: Canada Lands Company CLC Limited			ow Stem	-				<u>^</u>	_	D	ц	N	125
PROJECT: Wateridge Village LOCATION: Rockcliffe, Ottawa	-		033790	VIN		EV. (m) STING:							D.: 135
SAMPLE TYPE AUGER DRIVEN		CORI				MIC CO		+/	SHI				
	DEPTH (m)	ELEVATION (m)	Shear S (kF 40 80 N-V; (Blows/3	Streng Pa) 120 alue 300m	nth 160 ▲ m)	V Ca PL	Vater ontent (%) W.C. L		SAMPLE NO.		SPT(N)	Well Construction	
very dense, moist, brown gravelly sand, some silt (FILL)	0	84.75 - 	20 40		80	20 4	0 60	80	1		50		Borehole open and dry on completion. Auger refusal at 0.70 m
END OF BOREHOLE	-	84.25											bgs.
alston associates			LOGGE				DRIL Page			TE:	Nov	emb	er 20, 2018

	Canada Lands Company CLC Limited	METHC PROJE				-		Split		8	-	В	н	No	o.: BH173
	N: Rockcliffe, Ottawa	NORTH						STING: 4							.: CO682.00
SAMPLE T	TYPE AUGER DRIVEN		CORI	NG		D١	YNAI	MIC CO	NE	Π	SH	ELB	Y		SPLIT SPOON
G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B	near Str (kPa <u>80 1</u> N-Vali lows/30 40 6	20 16 Je / Omm)	i0	Co (Vater Intent (%) V.C. L		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	loose, moist, brown gravelly sand (FILL)	- 0.25	82.5 -	6			-				1A		6		Borehole open and dry on completion.
	loose, moist, brown silty sand, trace gravel (FILL)	- 0.5 - 0.75	82.25 - - - 82 - - - - - - - - - - - - - - - - - - -								1B 2A				
		- 1 - 1 - 1.25	81.75 - - - 81.5 - - -	▲ 6							2В		6		
	firm, moist, grey CLAYEY SILT	- 1.5 - 1.75 - 2	81.25 - - 81 - 81 - - - - - - - - - - - - - - - - - - -	6							3		6		
▼	loose to compact, wet, brown SANDY SILT, trace gravel occassional oxidized pockets	- 2.25	80.5 - 80.25 - 80.25 - 80.25 -		18						4		18		Auger refusal at 2.72 n bgs.
	END OF BOREHOLE														
	alston associates	 S		LO	GGED	BY:	RH		DRIL	LING		TE:	Nov	/emb	er 20, 2018
	geotechnical division of 🟹 TERRAPE	EX		RE	VIEWE	D B	Y: V	/N	Page	1 of	1				

		s Company CLC Limite	ed		HOD:								TON	~	~ 4		
	JECT: Wateridge \				JECT					1	ELE	EV. (m) 86.640	TP No.:				
	TION: Rockcliffe,				THIN			484	1			STING: 450194	PROJECT NO.: C	268			
SAME		AUGER DRI	VEN				NG			D	YNA	MIC CONE S	HELBY	Ц.	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St} Tip F	ar Stren (kPa) 30, 120 410 COP Resistar g/cm 2) 00, 150	• 160 nce	2	PL \ 0 40			,	SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0 - - - 0.25		On completion the test pit was dry and open.										damp, da sand and	d gravel				86.5 -
- - - 0.5												(FIL	-L) 				86.25 -
- - - 0.75												damp, sand some g	y silt				86 -
- - - 1 -												(FIL	L)				85.75 -
- - - 1.25												mo light brown					85.5 - 85.25 -
- - 1.5 -		Defend @ 4.04 m has										silty sand, s	some clay ne fragments				85 -
- - 1.75		Refusal @ 1.84 m bgs on Limestone Bedrock									***	END OF TEST PI					-
	al geot	ston associa	tes RRAPEX								: RH 3Y: \		DRILLING DATE: Page 1 of 1	De	cem	ber	14,

CLIE	NT: Canada Land	s Company CLC Limite	ed	MET	HOD:	Exc	cavat	or				TON	~	~ ~		
	JECT: Wateridge			PRO	JECT	ENG	SINEE	R: VI	N	ELE	EV. (m) 85.810	TP No.:	2	05		
	TION: Rockcliffe,			NOR	_			606	_		STING: 450123	PROJECT NO.: C	068			
SAMF		AUGER DRI	VEN			ORI	NG		Ľ	DYNA	MIC CONE S	HELBY		SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	ar Strenç (kPa) 30 120 the Cont Resistan g/cm 2) 00 150	● 160 ce	F 20		.C. LL 60 8		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		On completion the test pit was dry and open.								\otimes						85.75 -
- - 0.25 -		pit was dry and open.									moist gravel some (FII	to trace sand				85.5 -
- 0.5 - -											damp, da	rk brown				85.25 - - -
- 0.75											topsoil, tra (FII					85 -
-1 - -																84.75 -
- 1.25 - -		Refusal @ 1.64 m bgs									damp, SAND` trace clay, t	Y SILT				84.5 - -
- 1.5		on Limestone Bedrock														84.25 -
											END OF TEST PI					
		on associate	25	1			LO	GGED	ΒY	: R⊦	1	DRILLING DATE:	De	cem	ber	14,
1	aeotec	nnical division of TERRA	PEX				RE	VIEW	ED E	BY: \	/N	Page 1 of 1				

		s Company CLC Limite	əd	MET									TON	~	~~		
	JECT: Wateridge			PRO						1		EV. (m) 84.13	TP No.:				
	TION: Rockcliffe,				THIN	-		3719				STING: 450179	PROJECT NO.: C	068			
SAME		AUGER DRI	VEN Shei	ar Stren			ING				YNA		HELBY	<u> </u>	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	(kPa) (kPa)(● 160 ice	2		W.C. 0 60			SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
_ 0 _ _ _		On completion the test pit was dry and open.										moist, da TOPS some	SOIL				84 -
- 0.25 - - -												moist, SILTY	brown SAND				83.75 -
- 0.5 - -												∖ trace or	ganics				83.5 -
- 0.75 - -												damp, grey	ich brown				83.25 -
-1 - -												SAND trace g	/ SILT				83 -
- 1.25		Refusal @ 1.60 m bgs on Limestone bedrock with thinnly bedded															82.75 -
- 1.5 -		shale layers															-
												END OF TEST PI	·				
	n	lston associe	ates) OGG	ED	BY:	RH	l	DRILLING DATE:	De	cem	<u>ber</u>	14,
	ge	otechnical division of 🔽	TERRAPEX					EVIE					Page 1 of 1				

LOCATION: Rockcliffe, Ottawa NORTHING: 5033801 EASTING: 450221 PROJECT NO.: COE82.00 SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOR (i) H AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOR (i) H H AUGER AUGER PL W.C. LL INSTRUMENTATION DATA SOIL INSTRUMENTATION DATA BEMARKS 405486 c50.160 FL W.C. LL INSTRUMENTATION DATA INSTRUMENTATION DATA <th></th> <th>NT: Canada Land IECT: Wateridge \</th> <th>s Company CLC Limite /illage</th> <th>ed</th> <th>METH PRO</th> <th></th> <th></th> <th></th> <th>/N</th> <th>ELI</th> <th>EV. (m) 82.29</th> <th>TP No.:</th> <th>2</th> <th>07</th> <th></th> <th></th>		NT: Canada Land IECT: Wateridge \	s Company CLC Limite /illage	ed	METH PRO				/N	ELI	EV. (m) 82.29	TP No.:	2	07		
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOR (i) INSTRUMENTATION DATA REMARKS 40st80c 200 160 Tip Resistance (kg/cm 2) PL W.C. LL 20 40 60 80 jo SOIL DESCRIPTION ji ji </th <th></th> <th></th> <th>-</th> <th></th>			-													
INSTRUMENTATION DATA REMARKS (kPa) 40st8hc 220 40 (kg/cm 2) 50 100 150 200 Note that the state of	SAMF	PLE TYPE	AUGER DRI	VEN		< c	ORI	NG				SHELBY	Π	SPL	IT S	POON
0 On completion the test pit was dry and open. 82. 0.25 moist, brown SILTY SAND Some gravel trace limestone fragments 81.	DEPTH (m)		REMARKS	40 _{Sta} † Sta Tip F	(kPa) 120 tic Cone Resistanc g/cm 2)	160 ce				SOIL SYMBOL			SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
-0.25 SILTY SAND -0.5 Some gravel -0.5 on Limestone Bedrock (weathered at surface)	0															82.25 -
END OF TEST PIT			on Limestone Bedrock								SILTY some	SAND gravel				82 - 81.75 -
											END OF TEST PI	T				
alston associates LOGGED BY: RH DRILLING DATE: December 14, geotechnical division of VTERRAPEX REVIEWED BY: VN Page 1 of 1													De	cem	ber	14,

		s Company CLC Limite	ed	MET									TON	~	~~		
	JECT: Wateridge			PRO						١		EV. (m) 77.25	TP No.:				
	TION: Rockcliffe,			NOR				8847	7			STING: 450162	PROJECT NO.: C	068			
SAM		AUGER DRI		ar Streng			NG			D	YNA	MIC CONE S	HELBY	<u> </u>	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	(kPa) (kPa)(● 160 ce	2	PL \ 0 40		LL 0 80)	SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELE VATION (m)
- 0 - 0.25		On completion the test pit was dry and open.										moist, dark bro sandy TC trace ro	OPSOIL				77.25
- - 0.5																	76.75 -
- - 0.75 - -		Refusal @ 0.98 m bgs on Limestone bedrock with thinnly bedded shale layers										damp, grey CLAYE	vish brown Y SILT				76.5 -
		shale layers										END OF TEST PI					
		Ilston associ									: RH 3Y: \		DRILLING DATE: Page 1 of 1	56		501	,

CLIE	NT: Canada Lands	s Company CLC Limite	ed	MET	HOD:	Exc	cava	ator		_			TON	~	~~		
PRO	JECT: Wateridge \	/illage		PRO	JECT	ENC	SINE	ER:	VN		ELE	EV. (m) 83.71	TP No.:	2	09		
	ATION: Rockcliffe,			NOR				788		_		STING: 450415	PROJECT NO.: C	068	32.00)	
SAME		AUGER DRI	VEN			ORI	NG			DY	YNA	MIC CONE S	HELBY		SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	ar Strenç (kPa) 120 120 120 120 120 120 120 120 120 120	_ 160 ce			V.C.			SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		On completion water was entering the test pit from an old subdrain at 1.5 m bgs.										limestone fragmo (FII					83.5 -
- 0.5												damp, sand, trace moist, lig	silt (FILL)				83.25 -
- 0.75												sand some (FIL	y silt gravel				83 -
-1												, , , , , , , , , , , , , , , , , , ,	,				82.75 -
- - - 1.25												wet, greyi sandy cla (FII	ayey silt				82.5 -
- 		Refusal @ 1.70 m bgs on Limestone Bedrock															82.25 -
		Iston associ											DRILLING DATE: Page 1 of 1	De	cem	ber	14,

	Canada Lands : Wateridge V	Company CLC Limite	ed				cavat GINEE	tor ER: ∖	/N	ELI	EV. (m) 88.84	TP No.:	2 '	<u>10</u>		
LOCATION	N: Rockcliffe,	Ottawa		NOR	THIN	G: 5	60336	616		EA	STING: 450282	PROJECT NO.: C				
SAMPLE T	TYPE	AUGER DRI					NG					SHELBY	Ţ.	SPL		POON
DEPTH (TRUMENTATION DATA	REMARKS	40 _{St} 8 - St8 Tip R (ki	r Streng (kPa) the Con- tesistan g/cm 2) 00 150	_160 ice			.C. L		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
	DATA	REMARKS On completion the test pit was dry and open.	Tip R (kg	tesistan g/cm 2)	ice							IPTION , grey himestone LL) concrete rk brown ce to some sand ets (FILL) ht brown Y SILT gravel	SAMPLE TY	Sample N		о
		ston associo								<u>Ý: R</u> H BY: \		DRILLING DATE: Page 1 of 1	De	cerr	ber	14,

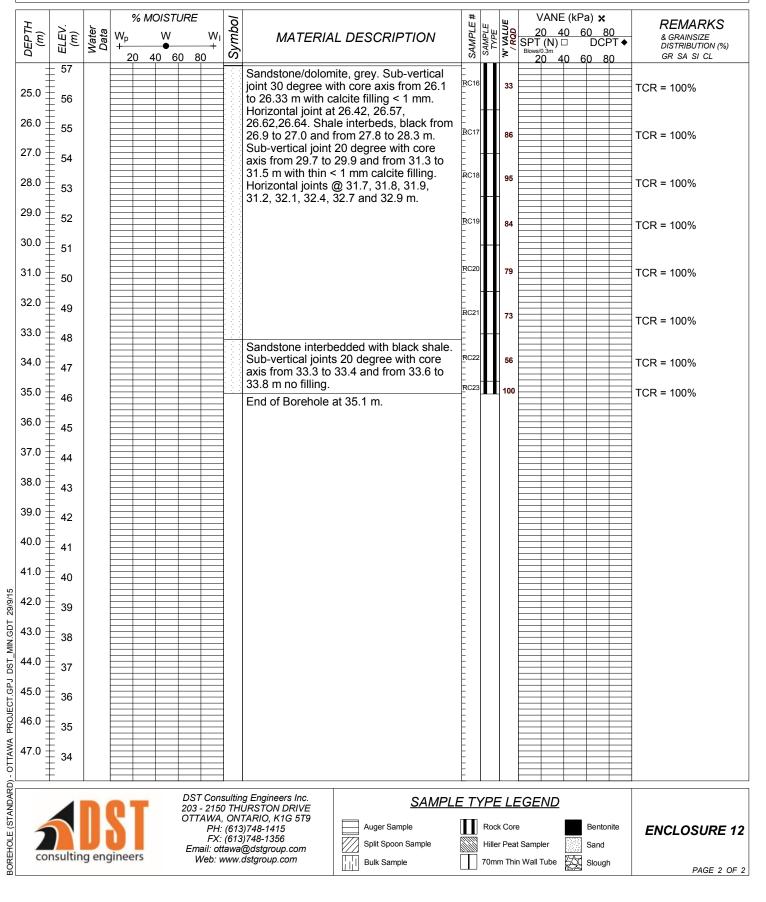
	JECT: Wateridge	<u>s Company CLC Limite</u> /illage	a				avato INEEI		N	ELE	EV. (m) 89.64	TP No.:	2'	11		
	ATION: Rockcliffe,	-				G: 5	03362	21			STING: 450332	PROJECT NO.: (
SAM	PLE TYPE	AUGER DRI	VEN				١G			DYNA		SHELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St} 8 Tip F (k	ar Streng (kPa) (k	● 160 ice		PL W.0			SOIL SYMBOL	SC DESCR	DIL IPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELE VATION (m)
0 0.25		On completion the test pit was caving in between 0.8- 1.35 m bgs.										ark brown SOIL				89.5
- 0.5											moist, brow SILTY some shale trace o					89.25 89
- 0.75 - 1											damp, lig	jht brown Y SILT	_			88.75
- 1.25		Refusal @ 1.35 m bgs on Limestone Bedrock										ne fragments ge gravel				88.5
	a	Iston associe	ates					GED		: RF		DRILLING DATE Page 1 of 1	De	cem	ber	14,

CLIEN	NT: Canada Land	s Company CLC Limite	ed	MET											_	4.0		
	JECT: Wateridge			PRO					VN	EL	EV	. (m) 89.04		TP No.:				
	TION: Rockcliffe,			NOR				549				ING: 45027		PROJECT NO.: C	068			
SAMF		AUGER DRI	VEN			ORI	NG			DYN/	AMI	IC CONE	S	HELBY	\perp	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	ar Streng (kPa) 30 120 Resistan cg/cm 2) 00 150	_ 160 ce	2		V.C.) 60		SOIL SYMBOL		DES	SO SCR	IL IPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		On completion the test pit was caving in										asi	ohaltic	concrete				89 -
- - 0.25 -		between 0.18- 0.4 m bgs.											damp,	grey I gravel				- - 88.75 - -
- - 0.5 -													damp, I					88.5 -
- 0.75 -		Refusal @ 1.07 m bgs										t	race co	Y SAND obbles fragments				88.25 -
-1		on Limestone Bedrock								1								88 -
									ED B	Y. R		ND OF TE	STPI				ber	14
		lston associo								Y: R				DRILLING DATE	De	ecem	ber	14,
		otechnical division of 😽					R	EVIE	WED	DBY:	VN	1		Page 1 of 1				

		s Company CLC Limite	ed		THOD						1		TON	~	40		
	JECT: Wateridge			<u> </u>	DJECT					1	ELE	EV. (m) 88.05	TP No.:				
	ATION: Rockcliffe,							3505	5			STING: 450298	PROJECT NO.: C	268	32.00)	
SAM		AUGER DRI	VEN				ING			D	YNA	MIC CONE S	HELBY	1	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St}	ar Strei (kPa) 30, 120 Resista g/cm 2 00, 150) 160 Ince			W.C.			SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
()) HL430 - 0.25 - 0.5 - 0.75	DATA	REMARKS Din completion the test pit remained open and dry. Refusal @ 0.78 m bgs on Limestone Bedrock (fractured at surface)	40 ₅ HSt Tip I	30, 12(Resista	ince	2							IPTION rk brown SOIL sand	SAMPLE TY	SAMPLE NO	SPT(N)	87.75 87.5
	ge	Iston associe	ates TERRAPEX								: RH 3Y: \		DRILLING DATE: Page 1 of 1	De	ecem	ber	14,

	JECT: Wateridge	<u>s Company CLC Limite</u> /illage	ed				avato INEEF		N	ELE	EV. (m) 88.26	TP No.:	2'	14		
	ATION: Rockcliffe,	-		NOR	THIN	G: 5	03351	9			STING: 450408	PROJECT NO.: C				
SAM	PLE TYPE	AUGER DRI	VEN		_		١G		C	YNA		SHELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 _{St} HSt Tip F (k	ar Streng (kPa) and 120 and 120 and 120 and 120 and 120 and 150 and 150	160 ce		L W.C			SOIL SYMBOL		DIL RIPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		On completion the test pit was open and dry.						Π		\otimes	damp, bro	wnish grey				88.25
• 0.25 • 0.5		pir was open and ary.									damp, light brossand sand trace to so	me sand (FILL) ownish orange dy silt ome topsoil LL)	_			88 87.75
0.75											SAND	, grey Y SILT				87.5
· 1 · 1.25		Refusal @ 1.30 m bgs on Limestone Bedrock										trace clay ge gravel				87.25 87
	a	Iston associe						GED IEW		: RH		DRILLING DATE Page 1 of 1	De	cem	ber	14,

APPENDIX D PREVIOUS BOREHOLE AND TEST PIT LOG SHEETS


DST REF. No.: **OE-OT-015358** CLIENT: **Canada Lands Company (CLC)** PROJECT: **Phase 1A Development - Site Servicing** LOCATION: **Former CFB Rockliffe, Ottawa, Ontario,** SURFACE ELEVATION: 81.20 metres

Drilling Data METHOD: Hollow Stem Auger/Core Barrel/NQ DIAMETER: 200 mm DATE: 26 August 2015 COORDINATES: 5033823.631 m N, 450194.353 m E

DEPTH (m)	(m) ELEV.	Water Data	Wp +		OISTO W		W	Symbol	MATERIA	L DES	SCRIPTION	SAMPLE #	SAMPLE	N' VALUE	SP	VANE 20 4 T (N) ^{s/0.3m} 20 4	0 6 □	DCF	0 PT ✦	REMARKS & GRAINSIZE DISTRIBUTION (%) GR SA SI CL
	81							Ĩ,	CRUSHED GRAV			- SS1								
1.0	- 80								SAND, topsoil, dr	<u> </u>		Ē								
2.0	79								Limestone, grey, weathered from to vertical fracture fr oxydized	op to 2	.2 m deep. Sub	RC1		41						TCR = 83%
3.0 4.0	78								Shale, black with become grey at 4 from 3.22 to 4.16	.14 m.	nestone partings, Highly fractured	IRC2		49						TCR = 92%
5.0	77								Limestone, dark g black shale partin m and from 5.38	grey, b Igs froi	m 4.49 m to 5.38	J_ RC3		82						TCR = 100%
6.0	75									10 5.05)	- - -RC4		100						
7.0	74								Black shale, high	ly fract	ured			-						TCR = 100%
8.0	- 73							E	Limestone, dark g	grey, b	iomicrite	RC5		43						TCR = 100%
9.0	72								Limestone arev. a	cristalir 15 deg		RC6		92						TCR = 96%
	71								Shale,black					-						
11.0 12.0	70								Limestone, green fractured from 14			RC7		100						TCR = 100%
13.0	69 68											 		100						TCR = 100%
14.0	67											-RC9		75						TCR = 100%
15.0 16.0	66								Shale, black with 16.5 to 17.4 m. S	ub-ver	tical joint 20	RC10		90						TCR = 100%
17.0	65 64								with thin < 1mm c interbeds from 19	alcite 1 0.3 to 2		- - - RC11		66						TCR = 93%
18.0	63								21.8 to 22.1 m. H 23.0 and 23.3 m. 23.3 to 23.5 m.					-						
19.0	62											RC12		78						TCR = 100%
20.0	61											RC13		100						TCR = 100%
21.0 22.0	60 59											E RC14		93						TCR = 100%
23.0	58											RC15		75						TCR = 98%
				T		203	- 215	0 TH	g Engineers Inc. URSTON DRIVE		SAMPL		YPI	Ξ <i>L</i> .	EGE	END		·1		
Cor	nsultin	g enc	gine	ers		OT En	TAWA PH FX: nail: oi	, ON : (613 : (613 ttawa	TARIO, K1G 5T9 3)748-1415 3)748-1356 @dstgroup.com dstgroup.com	2	Auger Sample Split Spoon Sample		Hille		at Sam	pler I Tube		Benton Sand		ENCLOSURE 11
										Ш	Bulk Sample	Ш	, UI		ni vväl	iuue		Slough	I	PAGE 1 OF

Drilling Data METHOD: Hollow Stem Auger/Core Barrel/NQ DIAMETER: 200 mm DATE: 26 August 2015 COORDINATES: 5033823.631 m N, 450194.353 m E

DST REF. No.: OE-OT-015358 **Drilling Data** CLIENT: Canada Lands Company (CLC) METHOD: Hollow Stem Auger/ NQ Size Core Barrel PROJECT: Phase 1A Development - Site Servicing DIAMETER: 200 mm LOCATION: Former CFB Rockliffe, Ottawa Ontario DATE: August 21, 2015 COORDINATES: 5033743.938 m N, 450109.419 m E SURFACE ELEVATION: 83.46 metres % MOISTURE VANE (kPa) x 'N' VALUE Symbo SAMPLE REMARKS DEPTH (m) SAMPLE TYPE 20 40 60 80 SPT (N) □ DCPT Water Data (m) ELEV Wp W W & GRAINSIZE DISTRIBUTION (%) MATERIAL DESCRIPTION DCPT + 40 60 80 GR SA SI CL 20 20 40 60 80 ASPHALT ~ 50 mm 19 mm diameter standpipe piezometer FILL - SAND AND GRAVEL - grey, 83 SS1 24 Ŀ installed as shown compact FILL - SILT AND GRAVEL - sandy, 1.0 SS2 83 brown and dark brown, very dense 75 mm thick gravel seam at 0.9 m 82 LIMESTONE BEDROCK - Grey to dark grey RC 2.0 RC1 - 1.14 m, TCR = 80%, SCR = 67%, RQD = 33% 81 3.0 80 RC2 - 1.73 m, TCR = 78%, SCR = 71%, RQD = 57% 4.0 79 - Groundwater level is 4.62 m (Elev. 78.8 m) RC 5.0 RC3 - 1.50 m, TCR = 100%, SCR = 81%, on October 1, 2015 RQD = 81% 78 6.0 RC 77 RC4 - 1.45 m, TCR = 97%, SCR = 84%, RQD = 93% 7.0 RC5 RC5 - 0.25 m, TCR = 100%, SCR = 76 100%, RQD = 92% End of Borehole at 7.4 m. 8.0 75 30REHOLE (STANDARD) - OTTAWA PROJECT.GPJ DST_MIN.GDT 11/26/15 9.0 74 10.0 73 11.0 72 DST Consulting Engineers Inc. 203 - 2150 THURSTON DRIVE SAMPLE TYPE LEGEND OTTAWA, ONTARIO, K1G 5T9 Rock Core PH: (613)748-1415 Auger Sample Bentonite **ENCLOSURE 13** FX: (613)748-1356 Split Spoon Sample Hiller Peat Sampler Sand Email: ottawa@dstgroup.com consulting engineers Web: www.dstgroup.com 70mm Thin Wall Tube Bulk Sample PAGE 1 OF 1

DST REF. No.: **OE-OT-015358** CLIENT: **Canada Lands Company (CLC)** PROJECT: **Phase 1A Development - Site Servicing** LOCATION: **Former CFB Rockliffe, Ottawa Ontario** SURFACE ELEVATION: 85.34 metres Drilling Data METHOD: Hollow Stem Auger/ NQ Size Core Barrel DIAMETER: 200 mm DATE: August 21, 2015 COORDINATES: 5033606.53 m N, 450180.104 m E

DEPTH (m)	(m) (m)	Water Data	Wp +	6 MC	W		V	- 12		AL DESCRIPTION	SAMPLE #	SAMPLE	TYPE	IN. VALUE	2 SPT	<u>04</u> (N)	06	a) x 50 8 DCF 50 8	0 PT✦	REMARKS & GRAINSIZE DISTRIBUTION (%) GR SA SI CL
-	- - 85						+	Ì	TOPSOIL ~ 150	mm ID GRAVEL - silty, grey,	_			16	φ					-
1.0 -									compact	D GIVAVEL - Silly, grey,	-									
-	- 84								TOPSOIL ~ 50 r			K		11	₫					-
-	-							Ň		AVEL - Silty, grey		Ĩ	Í							
-	-								LIMESTONE BE	DROCK - Grey to dark	-									-
2.0 -	-							\rightarrow	RC1 - 1.21 m, T	CR = 93%, SCR = 90%,	-RC	'								
-	- 83 -								RQD = 65%		E									
-	F										F									
3.0 -	-							\neg	8		-									-
-	- 82								PC2 153 m T	CR = 99%, SCR = 90%,	RC	2								
-	- -							- 2	RC2 - 1.53 m, T	011 - 33/0, 3013 - 30%,	F						-			1
4.0 -	ŀ							╞	SHALE BEDRO	CK - Black	-'E									1
-	- 81						_	-	KI	DROCK - Grey to dark	7		T							4
-								\Rightarrow	grey RC3 - 1 50 m T	CR = 95%, SCR = 93%,	F									
-								-	RQD = 87%	or = 3570, 00r = 3570,	RC	3								-
5.0 -	ŀ																			
-	- 80							-			-									-
-	[L									-
6.0 -	-						_	$-\mathcal{V}$			+									-
-	79								SHALE BEDRO	CK - Black	RC	4								
-	-							-=	RC4 - 1.55 m, T	CR = 100%, SCR =	-									-
7.0 -	F								100%, RQD = 9		_									
	- 70						_	-	KI	DROCK - Grey to dark	-		_	-						-
-	- 78								grey RC5 - 1.12 m, T	CR = 97%, SCR = 97%,	E									
-	-							-	RQD = 97%		RC	5								-
8.0 -	F										E									
-	- 77						_		End of Borehole	at 8.3 m.	-	┦	-							
-	F										L									
9.0 -	F							_			F									
-	- 76										E									4
-	F							_			╞			-						
- 10.0 -	F										E									-
- 10.0	- -							_			F									-
-	- 75 -										E									
-	F							\neg			F									-
11.0 -	F										F						L			
-	- 74										F									-
-	-							-			╞									-
	_]
				r		203	3 - 21	50 TI	ng Engineers Inc. IURSTON DRIVE ITARIO, K1G 5T9	SAMPL	<u>E 7</u>	_				ND				
1)						Pl	H: (61	3)748-1415 3)748-1356	Auger Sample		3	ock (55354	Bentor	nite	ENCLOSURE 14
	nsultin	g end	inee	rs			nail: (ottaw	@dstgroup.com	Split Spoon Sample		N T			Samp			Sand		
		y chie					web.		v.dstgroup.com	Bulk Sample		<u>70</u>)mm	ſhin	Wall	l'ube				PAGE 1 OF 1

DST REF. No.: **OE-OT-015358** CLIENT: **Canada Lands Company** PROJECT: **Former CFB Rockcliffe** LOCATION: **Ottawa, Ontario** SURFACE ELEV.: **86.27 metres**

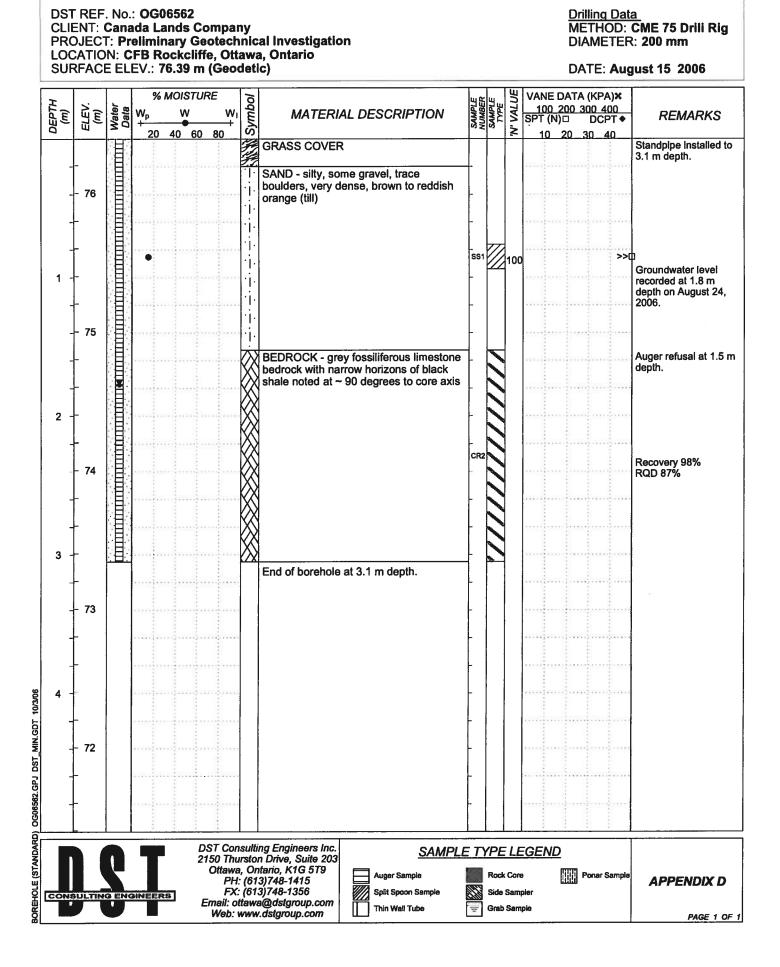
Drilling Data METHOD: Hollow Stem Auger DIAMETER: 80 mm ID DATE: March 3, 2014 COORDINATES: 5033642.48 m N, 450271.46 m E

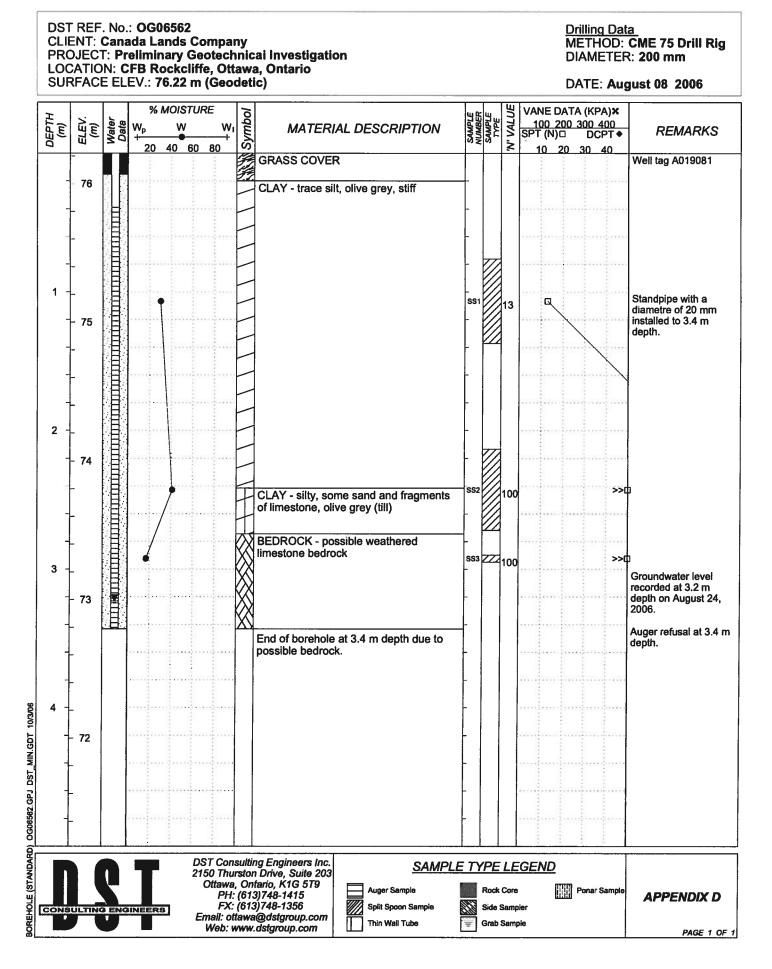
Т				% M	IOIST	URE		ю			# UI		Ш	\	/ANE (1 0 40 (N) □ 0.3m 0 40	kPa) 🗙		REMARKS
DEPTH		Water	3 Wr	,	W		Wı	Symbol	MATERIAL	DESCRIPTION	SAMPLE #	SAMPLE TYPE	'N' VALUE		0 40	<u>60</u>	30 PT▲	& GRAINSIZE DISTRIBUTION (%)
DE		ŝ	·+ ا		40 6	i0 8	_+ 0	SY			SAA	SAN	Ž	Blows/	0.3m	60 8	F I ♥ 80	DISTRIBUTION (%) GR SA SI CL
	- 86			<u> </u>			Ĕ		TOPSOIL - with gr	rass and roots	-							
	1		-					ÌÌ	ASPHALT - 50 mr		TAS1							
1.0	÷ 85			¥					SAND & GRAVEL		_SS2		7	G-				-
	1 00			6					SAND - some silt f	to silty, some gravel,	SS3		100-	+			-	
2.0	1.			-	-				trace clay and root brown, loose	ts, occasional cobbles,	F					_		
	<u></u> <u></u> + 84			_					End of Borehole a	t 1 7 m	E							
3.0	£			-					Auger Refusal	u 1.7 m	F							
	± 83			-					U		F							
4.0	}										E							
4.0	<u>=</u> 82			_							F							-
	1			-							F							
5.0	- 81										Ē							
	1			_							E							
6.0	₽ 80			-							F							
	1			-							F							
7.0	1,										E		1					
	1 79			-							F							-
8.0	ŧ			-							F							
	1 78			-	-						F					_		
9.0	1										E							
0.0	£ 77			-							F							
10.0	1			-	-						F							
10.0	76										Ē							
	£										F							-
11.0	75			-							F							
-	1		_	-		-					F							
12.0	<u>}</u>										E							
4	1- 74			-							F							
0 13.0	1			-							F							
Z Z	<u>+</u> 73			_							Ē							
14.0	£			_							F							-
2	- 72			-							F							-
<u> </u>	1			-		-					F							
	71										E							
	£				1						F		1	<u> </u>			-	4
법 16.0	7				-	-					F						1	
Š	1										E							
ຜຼິ 17.0	÷ 69										F		1					4
1535	1 09			-	1						F		1				-	4
6 18.0	1										Ē		1]
-Sel	<u></u>										E		1					
5 ≸ 19.0	£										F							4
	67			-	1						F		1	<u> </u>			-	1
	1										E							
12.0 BOREHOLE (STANDARD) - OTTAWA GS-07-015358 ROCKCLIFFE PHASE I.GPJ DST_MIN.GD1 4/11/1/1		_				DST	Cons	ultin	g Engineers Inc.				- ,					
ANG			0	Т		203 -	- 2150	TH	JRSTON DRIVE	SAMPLE	= /	ΥPE	: LI	EGE	<u>UVI</u>			
IS]						011	PH:	(613	TARIO, K1G 5T9)748-1415	Auger Sample		Roc	k Cor	е		Bento	onite	ENCLOSURE 1
		IJ	U			Em	FX:	(613)748-1356 @dstgroup.com	Split Spoon Sample		Hille	er Pea	t Samp	ler 👸	Sand		
	onsult	ng en	gine	ers					dstgroup.com	Bulk Sample				n Wall	32	0.00		
										<u> </u>								PAGE 1 OF 1

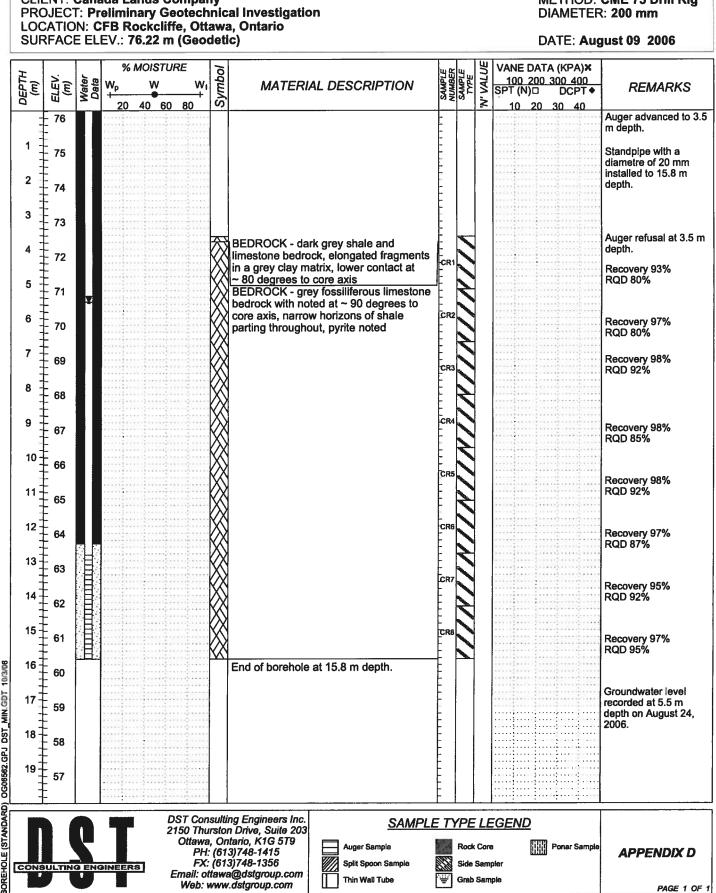
LOG OF TESTPIT TP13-03

DST REF. No.: **OE-OT-017184** CLIENT: **Canada Lands Company (CLC)** PROJECT: **Stormwater Management Plan** LOCATION: **Former CFB Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: **77.73 metres**

<u>Testpit Data</u> METHOD: Excavator DATE: 9/6/2013 COORDINATES: 5033845.5 m N, 450226 m E

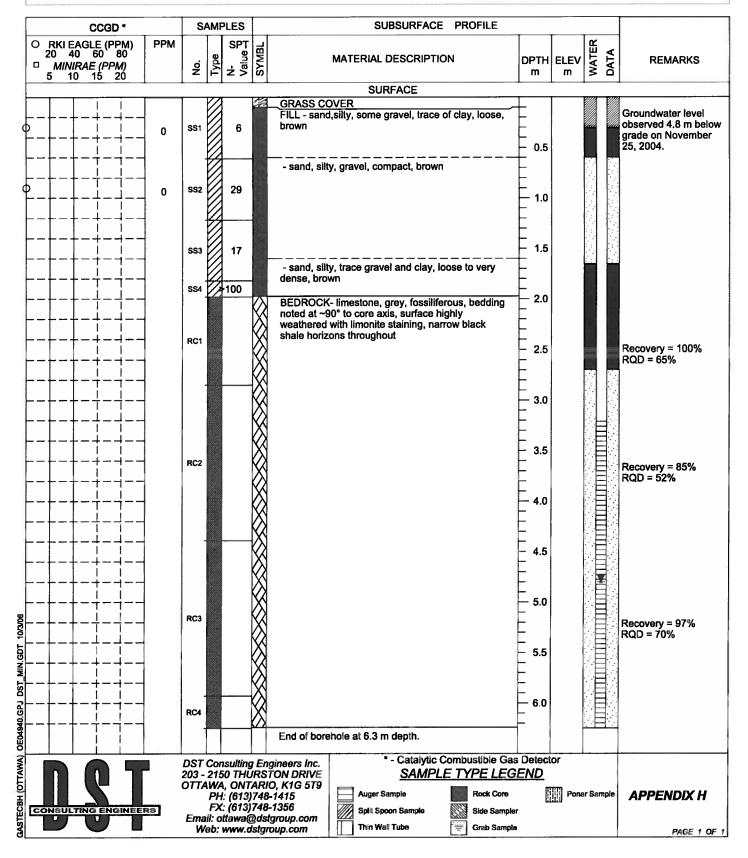

Γ	I			ç	% MC	DISTU	IRE	,	0			(<i>m</i>)	111	ПE			(kPa			REMARKS
	DEPTH (m)	(m) (m)	Water Data	Wp +		W		Wi	Symbol	MATERIA	L DESCRIPTION	DEPTH(m)	SAMPLE TYPE	'N' VALUE	2() 4 CP1	<u>06</u> Г (kPa	<u>08(</u> a) ♦	2	& GRAINSIZE DISTRIBUTION (%)
-	۵	ш	7	20	0 40	0 60	80	י א			GRAVEL - some roots,	DE	S.	Ž,	30			0 120	00	GR SA SI CL
	0.2-	-							*	cobbles and boul	ders, dark brown	_								
	0.4-	_								FILL - SAND - tra brown	ace gravel and silt, light									
	0.6-	_									ravelly, light brown									
	0.8-	- 77							*			_								
	1.0-	-							$\widetilde{\mathbb{A}}$	CLAY - Silty, stiff		- 1								
	1.2-	-										_								
	1.4-	_										_								
	1.6-	-										_							>> x	130+ kPa
	1.8-	- 76										_								
	2.0-	-										-2								
	2.2-	_							<u> </u>	End of Testpit at Refusal	2.1 m									
	2.4-	-								Relusal		_								
	2.6	_										_								
	2.8-	- 75										_								
	3.0-	-										-3								
/17/13	3.2-	_										_								
DST_MIN.GDT 10/17/13	3.4-	_										_								
ST_MIN.	3.6-	-										-								
	3.8-	- 74										_								
CLIFFE.	4.0-	_										-4								
B ROCK	4.2-	-										-								
184 CFI	4.4-	_										-								
-0T-017	4.6-	_										-								
TESTPIT (STANDARD) - OTTAWA OE-OT-017184 CFB ROCKCLIFFE.GPJ	4.8-	- 73			_							-								
- OTTA		_																		
) ARD)				•	r		203 -	2150	τнι	g Engineers Inc. JRSTON DRIVE	SAMPLE		/PE	ELE	GEI	ND				
(STANE	1	5					ΟΤΤΑ	PH: (613	TARIO, K1G 5T9)748-1415)748-1356		Bul	k San	nple						ENCLOSURE 3
ESTPIT	con	nsultin	g eng	inee	rs			ail: otta	wa(@dstgroup.com dstgroup.com										PAGE 1 OF 1


LOG OF TESTPIT TP13-04


DST REF. No.: **OE-OT-017184** CLIENT: **Canada Lands Company (CLC)** PROJECT: **Stormwater Management Plan** LOCATION: **Former CFB Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: **84.31 metres**

<u>Testpit Data</u> METHOD: **Excavator** DATE: **9/6/2013** COORDINATES: **5033718.5** m N, **450202.2** m E

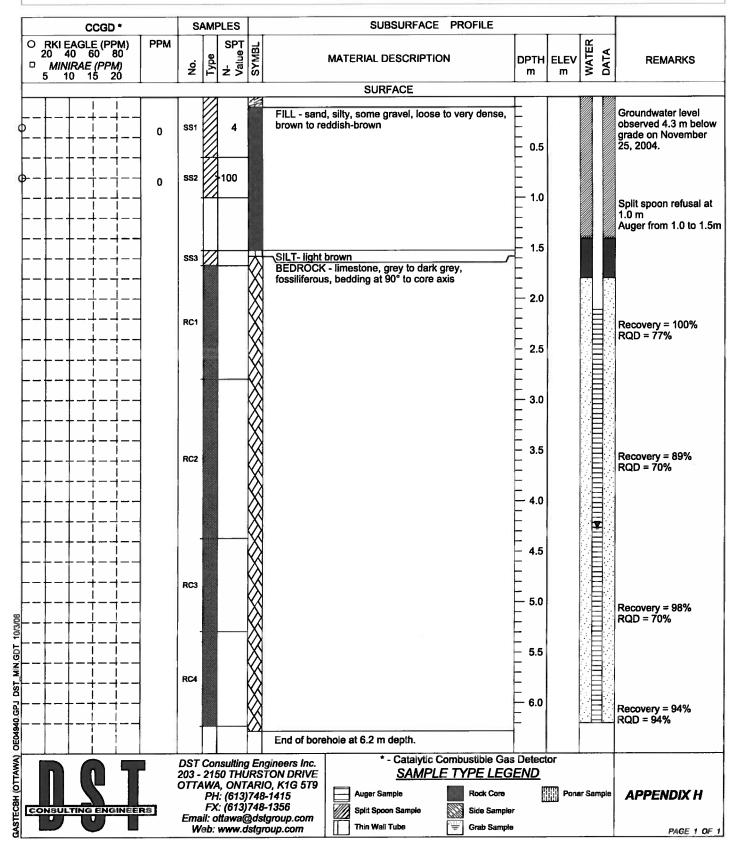
	DEPTH (m)	(m) (m)	Water Data	Wp +	MOIST W 40			Symbol	MATERIA	L DESCRIPTION	DEPTH(m)	SAMPLE TYPE	'N' VALUE	20) <u>4(</u> CPT	(kPa	08	REMARKS & GRAINSIZE DISTRIBUTION (%) GR SA SI CL
		_					XXXXX		FILL - SAND & G and silt, some co	RAVEL - trace roots bbles, dark brown								
	0.2-	- 84									-							
	0.4-	_									-							
	0.6-	_							FILL - SAND - so cobbles, grey	me silt, boulders and	+							
	0.8-	_							cobbles, grey		-							
	1.0-	_									-1							
	1.2-	- 83							SILT - Sandy, tra	ce gravel	+							
	1.4-	00									-							
	1.6-										-							
	1.8-	_			_				End of Testpit at	1.8 m	+							
	2.0-	-							Refusal		-2							
	2.2-	-									-							
	2.4-	- 82									_							
	2.6-	_									-							
	2.8-	_									-							
	3.0-	_									-3							
/17/13	3.2-	-									-							
DST_MIN.GDT 10/17/13	3.4-	- 81									_							
MIN	3.6-	-									_							
	3.8-	-									_							
LIFFE.C	4.0-	_									-4							
ROCKC	4.2-	_																
84 CFB	4.4-	- 80																
T-0171	4.6-	_																
A OE-O	4.8	_																
DTTAW	ч.0 ⁻																	
TESTPIT (STANDARD) - OTTAWA OE-OT-017184 CFB ROCKCLIFFE.GPJ						DST	Consi	ultin THI	g Engineers Inc. JRSTON DRIVE	SAMPLI		/PE	LE	GEI	<u>VD</u>			
STAND,	1					OTT	AWA, PH: (ON1 613	TARIO, K1G 5T9)748-1415		Bul	k San	nple					ENCLOSURE 4
ESTPIT (con	nsultin	g eng	jineer	s	Em V	ail: otta	awa()748-1356 @dstgroup.com dstgroup.com									PAGE 1 OF 1


DST REF. No.: OG06562 **CLIENT: Canada Lands Company**

Drilling Data METHOD: CME 75 Drill Rig

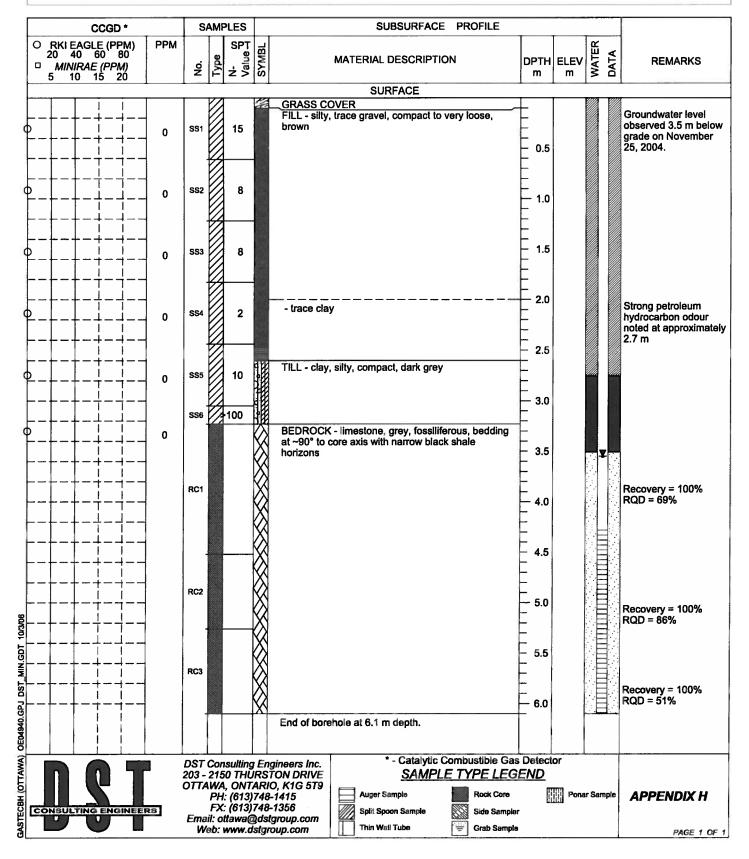
DST REF. No.: **OE04940** CLIENT: **Canada Lands Company** PROJECT: **Steam Line Decommissioning** LOCATION: **Canadian Forces Base, Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: --/--

Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm


DATE: November 15 2004

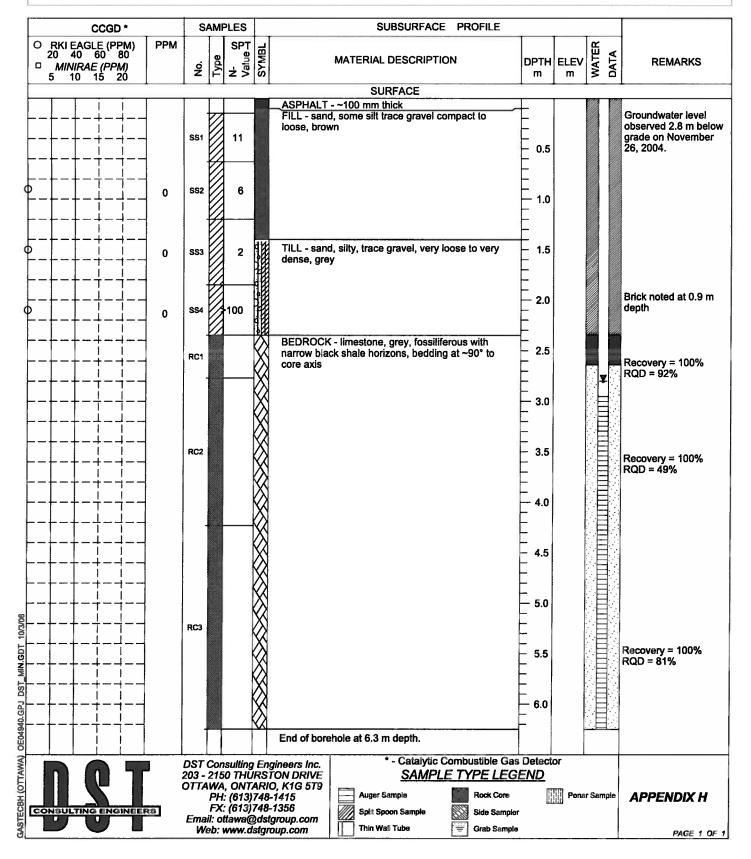
DST REF. No.: OE04940 CLIENT: Canada Lands Company PROJECT: Steam Line Decommissioning LOCATION: Canadian Forces Base, Rockcliffe, Ottawa, Ontario SURFACE ELEV.: --/--

Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm


DATE: November 16 2004

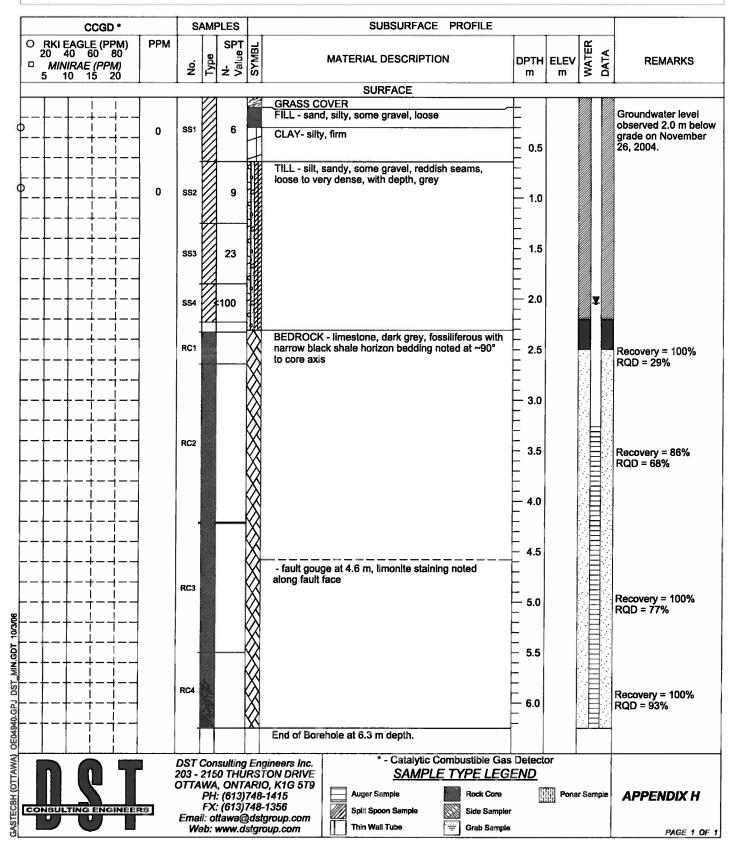
DST REF. No.: **OE04940** CLIENT: **Canada Lands Company** PROJECT: **Steam Line Decommissioning** LOCATION: **Canadian Forces Base, Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: --/--

Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm


DATE: November 16 2004

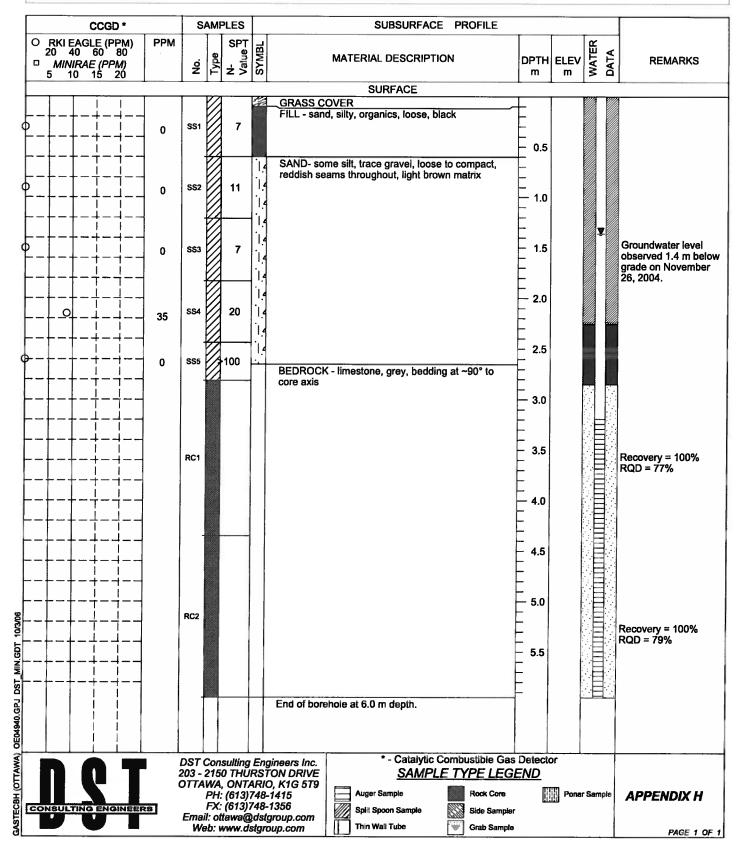
DST REF. No.: **OE04940** CLIENT: **Canada Lands Company** PROJECT: **Steam Line Decommissioning** LOCATION: **Canadian Forces Base, Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: --/--

Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm


DATE: November 18 2004

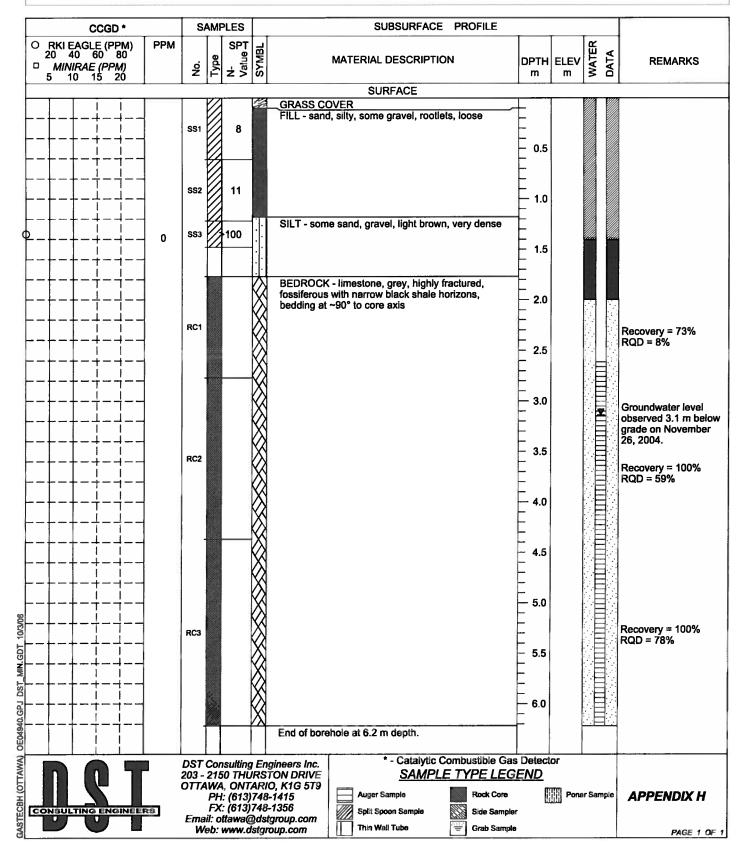
DST REF. No.: OE04940 CLIENT: Canada Lands Company PROJECT: Steam Line Decommissioning LOCATION: Canadian Forces Base, Rockcliffe, Ottawa, Ontario SURFACE ELEV.: --/--

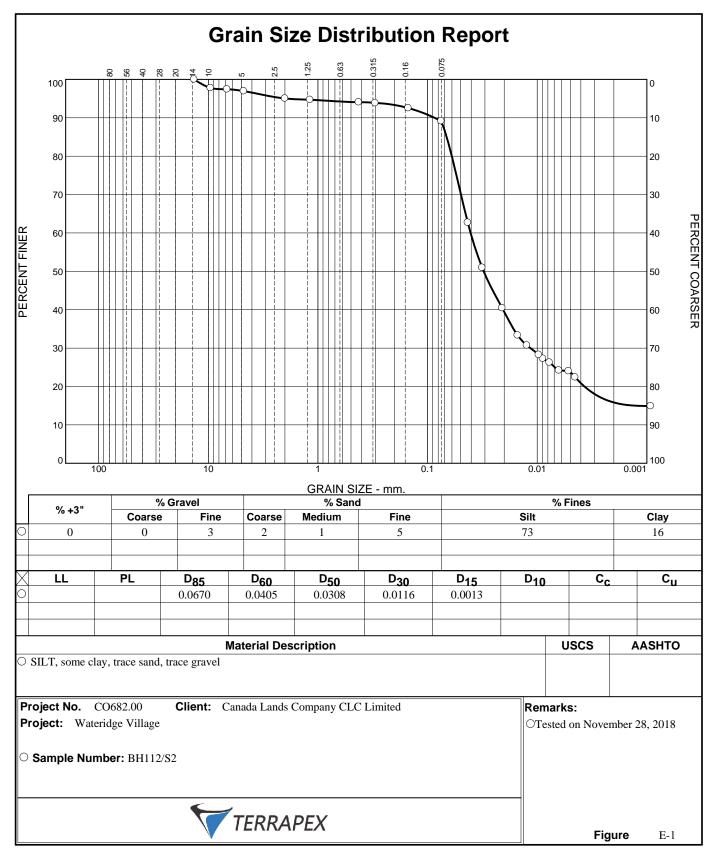
Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm

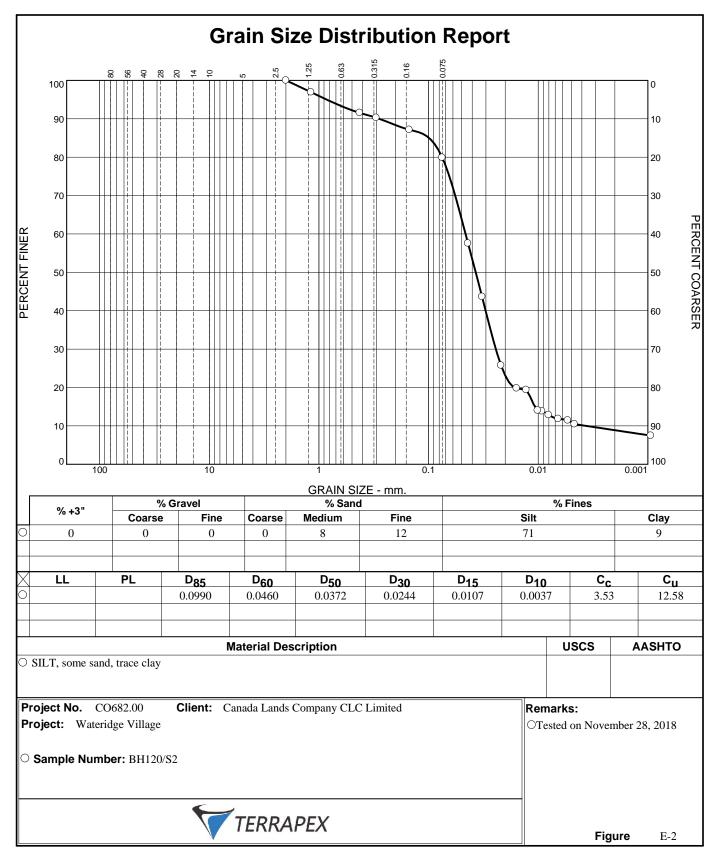

DATE: November 18 2004

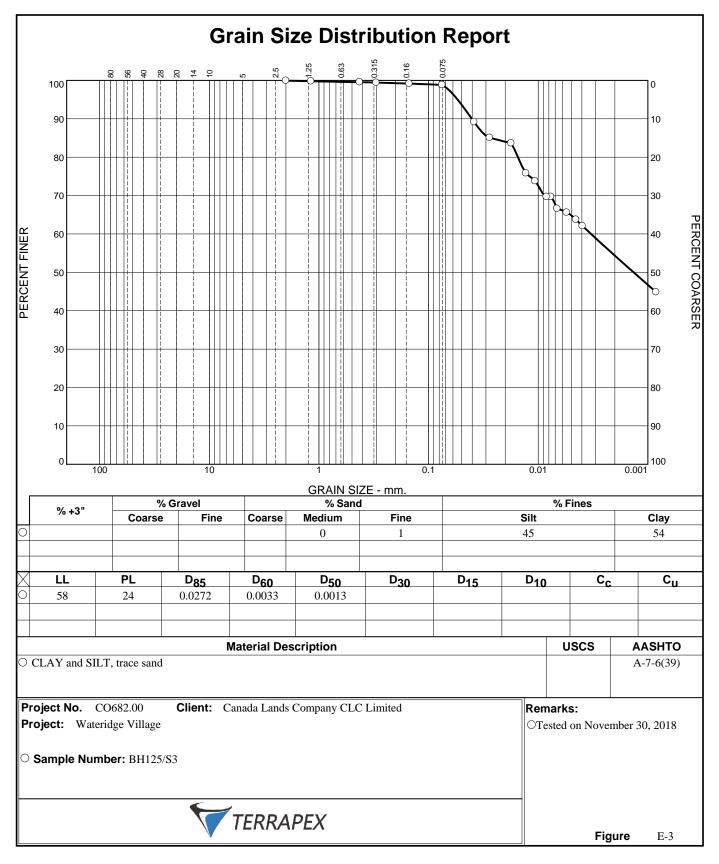
DST REF. No.: OE04940 CLIENT: Canada Lands Company PROJECT: Steam Line Decommissioning LOCATION: Canadian Forces Base, Rockcliffe, Ottawa, Ontario SURFACE ELEV.: --/--

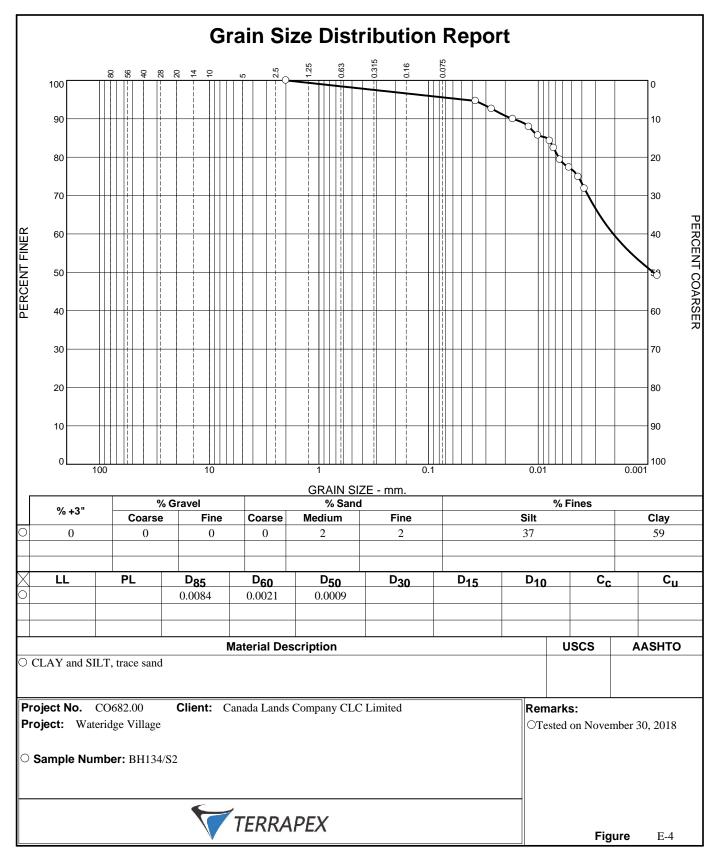
Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm

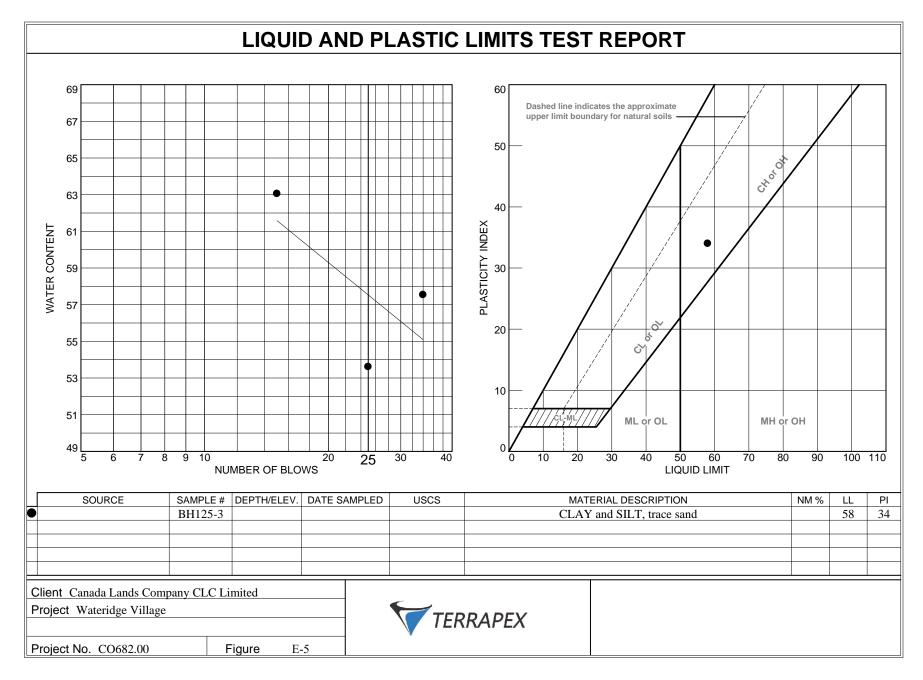

DATE: November 22 2004

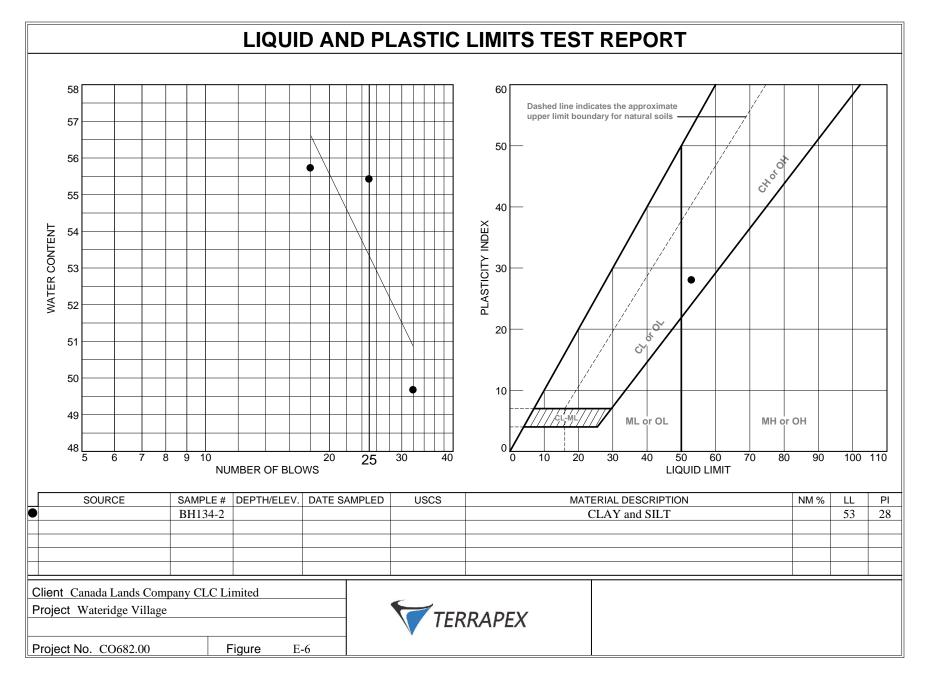

DST REF. No.: **OE04940** CLIENT: **Canada Lands Company** PROJECT: **Steam Line Decommissioning** LOCATION: **Canadian Forces Base, Rockcliffe, Ottawa, Ontario** SURFACE ELEV.: --/--

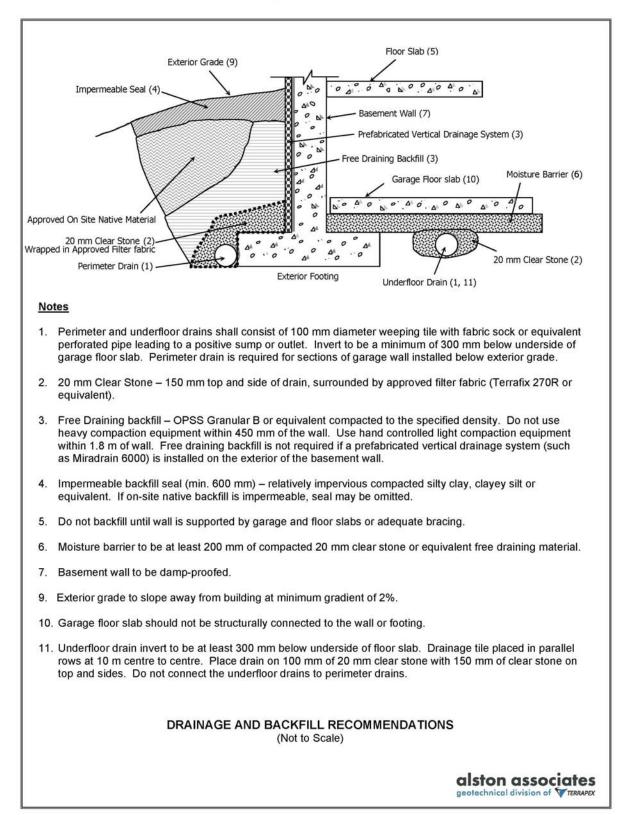

Drilling Data METHOD: CME 55 Track Mounted Drill Rig DIAMETER: 200 mm


DATE: November 23 2004




APPENDIX E LABORATORY TEST RESULTS




Tested By: <u>RH</u>

Tested By: RH

APPENDIX F TYPICAL DRAINAGE SYSTEM

Drainage and Backfill Details

APPENDIX G CERTIFICATE OF CHEMICAL ANALYSES

Your Project #: CO682.00 Site Location: WATERIDGE VILLAGE Your C.O.C. #: 117522

Attention: Rachel Herzog

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2018/12/20 Report #: R5534330 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X8071 Received: 2018/12/18, 11:30

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Anions (1)	4	2018/12/20	2018/12/20	CAM SOP-00435	SM 23 4110 B m
Moisture (1)	4	N/A	2018/12/19	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT (1)	4	2018/12/20	2018/12/20	CAM SOP-00413	EPA 9045 D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Your Project #: CO682.00 Site Location: WATERIDGE VILLAGE Your C.O.C. #: 117522

Attention: Rachel Herzog

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2018/12/20 Report #: R5534330 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X8071 Received: 2018/12/18, 11:30

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CO682.00 Site Location: WATERIDGE VILLAGE Sampler Initials: RH

RESULTS OF ANALYSES OF SOIL

Maxxam ID		IOS514	IOS515	IOS516	IOS517			IOS517		
Compling Data		2018/12/11	2018/12/11	2018/12/11	2018/12/11			2018/12/11		
Sampling Date		14:15	14:00	13:30	13:45			13:45		
COC Number		117522	117522	117522	117522			117522		
	UNITS	BH108-2	BH127-2	BH153-3	BH156-2	RDL	QC Batch	BH156-2 Lab-Dup	RDL	QC Batch
Inorganics										
Moisture	%	20	15	11	10	1.0	5896681			
Available (CaCl2) pH	рН	7.58	7.54	7.66	7.77		5898613			
Chloride (Cl-)	ug/g	ND	ND	ND	ND	10	5898620	ND	10	5898620
Sulphate (SO4)	ug/g	98	26	ND	ND	20	5898620	24	20	5898620
RDL = Reportable Detection	imit									
QC Batch = Quality Control B	atch									
Lab-Dup = Laboratory Initiate	ed Duplic	cate								
ND = Not detected										

Report Date: 2018/12/20

Terrapex Environmental Ltd Client Project #: CO682.00 Site Location: WATERIDGE VILLAGE Sampler Initials: RH

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IOS514 BH108-2 Soil					Collected: 2018/12/11 Shipped: Received: 2018/12/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions		IC	5898620	2018/12/20	2018/12/20	Fari Dehdezi
Moisture		BAL	5896681	N/A	2018/12/19	Prgya Panchal
pH CaCl2 EXTRACT		AT	5898613	2018/12/20	2018/12/20	Gnana Thomas
Maxxam ID: Sample ID: Matrix:	IOS515 BH127-2 Soil					Collected: 2018/12/11 Shipped: Received: 2018/12/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions		IC	5898620	2018/12/20	2018/12/20	Fari Dehdezi
Moisture		BAL	5896681	N/A	2018/12/19	Prgya Panchal
pH CaCl2 EXTRACT		AT	5898613	2018/12/20	2018/12/20	Gnana Thomas
Maxxam ID: Sample ID: Matrix:	IOS516 BH153-3 Soil					Collected: 2018/12/11 Shipped: Received: 2018/12/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions		IC	5898620	2018/12/20	2018/12/20	Fari Dehdezi
Moisture		BAL	5896681	N/A	2018/12/19	Prgya Panchal
pH CaCl2 EXTRACT		AT	5898613	2018/12/20	2018/12/20	Gnana Thomas
Maxxam ID: Sample ID: Matrix:	IOS517 BH156-2 Soil					Collected: 2018/12/11 Shipped: Received: 2018/12/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions		IC	5898620	2018/12/20	2018/12/20	Fari Dehdezi
Moisture		BAL	5896681	N/A	2018/12/19	Prgya Panchal
pH CaCl2 EXTRACT		AT	5898613	2018/12/20	2018/12/20	Gnana Thomas
Maxxam ID: Sample ID: Matrix:	IOS517 Dup BH156-2 Soil					Collected: 2018/12/11 Shipped: Received: 2018/12/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions		IC	5898620	2018/12/20	2018/12/20	Fari Dehdezi

Page 4 of 7

Terrapex Environmental Ltd Client Project #: CO682.00 Site Location: WATERIDGE VILLAGE Sampler Initials: RH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.0°C

Results relate only to the items tested.

Report Date: 2018/12/20

Terrapex Environmental Ltd Client Project #: CO682.00 Site Location: WATERIDGE VILLAGE Sampler Initials: RH

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5896681	JS9	RPD	Moisture	2018/12/19	2.4		%	20
5898613	GTO	Spiked Blank	Available (CaCl2) pH	2018/12/20		100	%	97 - 103
5898613	GTO	RPD	Available (CaCl2) pH	2018/12/20	0.40		%	N/A
5898620	FD	Matrix Spike [IOS517-01]	Chloride (Cl-)	2018/12/20		NC	%	70 - 130
			Sulphate (SO4)	2018/12/20		NC	%	75 - 125
5898620	FD	Spiked Blank	Chloride (Cl-)	2018/12/20		98	%	70 - 130
			Sulphate (SO4)	2018/12/20		99	%	75 - 125
5898620	FD	Method Blank	Chloride (Cl-)	2018/12/20	ND, RDL=10		ug/g	
			Sulphate (SO4)	2018/12/20	ND, RDL=20		ug/g	
5898620	FD	RPD [IOS517-01]	Chloride (Cl-)	2018/12/20	NC		%	35
			Sulphate (SO4)	2018/12/20	19		%	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Terrapex Environmental Ltd Client Project #: CO682.00 Site Location: WATERIDGE VILLAGE Sampler Initials: RH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.