#### Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

**Archaeological Services** 

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

## patersongroup

### **Geotechnical Investigation**

Proposed Mixed-Use Development 1518-1526 Stittsville Main Street Ottawa, Ontario

**Prepared For** 

**Inverness Homes** 

July 24, 2024

Report: PG5418-1 Revision 3

## **Table of Contents**

## Page

| 1.0 | Intro                   | duction1                            |  |  |  |  |  |  |  |  |  |
|-----|-------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|
| 2.0 | Prop                    | osed Development1                   |  |  |  |  |  |  |  |  |  |
| 3.0 | Method of Investigation |                                     |  |  |  |  |  |  |  |  |  |
|     | 3.1                     | Field Investigation                 |  |  |  |  |  |  |  |  |  |
|     | 3.2                     | Field Survey                        |  |  |  |  |  |  |  |  |  |
|     | 3.3                     | Laboratory Testing                  |  |  |  |  |  |  |  |  |  |
|     | 3.4                     | Analytical Testing                  |  |  |  |  |  |  |  |  |  |
| 4.0 | Obse                    | ervations                           |  |  |  |  |  |  |  |  |  |
|     | 4.1                     | Surface Conditions                  |  |  |  |  |  |  |  |  |  |
|     | 4.2                     | Subsurface Profile                  |  |  |  |  |  |  |  |  |  |
|     | 4.3                     | Groundwater                         |  |  |  |  |  |  |  |  |  |
| 5.0 | Disc                    | ussion                              |  |  |  |  |  |  |  |  |  |
|     | 5.1                     | Geotechnical Assessment             |  |  |  |  |  |  |  |  |  |
|     | 5.2                     | Site Grading and Preparation        |  |  |  |  |  |  |  |  |  |
|     | 5.3                     | Foundation Design                   |  |  |  |  |  |  |  |  |  |
|     | 5.4                     | Design for Earthquakes              |  |  |  |  |  |  |  |  |  |
|     | 5.5                     | Slab on Grade Construction          |  |  |  |  |  |  |  |  |  |
|     | 5.6                     | Pavement Structure                  |  |  |  |  |  |  |  |  |  |
| 6.0 | Desi                    | gn and Construction Precautions     |  |  |  |  |  |  |  |  |  |
|     | 6.1                     | Foundation Drainage and Backfill    |  |  |  |  |  |  |  |  |  |
|     | 6.2                     | Protection Against Frost Action     |  |  |  |  |  |  |  |  |  |
|     | 6.3                     | Excavation Side Slopes              |  |  |  |  |  |  |  |  |  |
|     | 6.4                     | Pipe Bedding and Backfill           |  |  |  |  |  |  |  |  |  |
|     | 6.5                     | Groundwater Control                 |  |  |  |  |  |  |  |  |  |
|     | 6.6                     | Winter Construction                 |  |  |  |  |  |  |  |  |  |
|     | 6.7                     | Corrosion Potential and Sulphate 14 |  |  |  |  |  |  |  |  |  |
| 7.0 | Reco                    | ommendations                        |  |  |  |  |  |  |  |  |  |
| 8.0 | State                   | ement of Limitations                |  |  |  |  |  |  |  |  |  |



## **Appendices**

- Appendix 1Soil Profile and Test Data Sheets<br/>Symbols and Terms<br/>Grain Size Distribution Analysis<br/>Analytical Testing Results
- Appendix 2Figure 1 Key PlanFigure 2 Aerial Photograph 2014Figure 3 Aerial Photograph 2017Drawing PG5418-1 Test Hole Location Plan
- **Appendix 3** Site Memorandum documenting Field Density Testing

## 1.0 Introduction

Paterson Group (Paterson) was commissioned by Inverness Homes to conduct a geotechnical investigation for the proposed mixed-use development to be located at 1518-1526 Stittsville Main Street in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objectives of the geotechnical investigation were to:

- determine the subsoil and groundwater conditions at this site by means of test holes.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect its design.

The following report has been prepared specifically and solely for the aforementioned project. This report contains geotechnical findings and includes recommendations pertaining to the design and construction of the proposed development as they are understood at the time of writing this report.

## 2.0 Proposed Development

Based on the available conceptual drawing, it is understood that the proposed development will consist of a 4-storey residential building and a 2-storey mixed-use building, each with a slab-on-grade (no below-grade space). The proposed buildings will be surrounded by asphalt-paved access lanes and parking areas with landscaped margins.

It is also understood that the proposed development will be municipally serviced.



## 3.0 Method of Investigation

### 3.1 Field Investigation

The field program for the investigation was carried out on July 22 and 23, 2020. At that time, twelve (12) boreholes were advanced to a maximum depth of 9.0 m below the existing ground surface. Previous geotechnical investigations were also undertaken by Paterson at the subject site, which included advancing 5 and 3 boreholes in 2011 and 2019, respectively, to a maximum depth of 9.6 m. The test hole locations were distributed across the site in a manner to provide general coverage of the subject site. The locations of the test holes are shown on Drawing PG5418-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were put down using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

#### Sampling and In Situ Testing

Soil samples were collected from the boreholes using a 50 mm diameter splitspoon (SS) sampler or from the auger flights. The split-spoon and auger samples were classified on site, placed in sealed plastic bags, and transported to the laboratory for further review. The depths at which the split-spoon and auger samples were recovered from the boreholes are shown as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Diamond drilling was carried out at BH 1-19, BH 2-19, BH 3-19, and BH 3-20 to assess the bedrock quality. A recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are shown on the Soil Profile and Test Data sheets in Appendix 1. The recovery value is the ratio, in percentage, of the length of the bedrock sample recovered over the length of the drilled section. The RQD value is the ratio, in percentage, of the total length of intact rock pieces longer than 100 mm in one drilled section over the length of the drilled section. These values are indicative of the quality of the bedrock. The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1 of this report.

#### Groundwater

A 32 mm diameter PVC groundwater monitoring well was installed at BH 3 and a 51 mm diameter PVC groundwater monitoring well was installed at BH 1, BH 2, and BH 12. Flexible polyethylene standpipes were installed at the remaining boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

#### Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

### 3.2 Field Survey

The borehole locations were selected by Paterson personnel to provide general coverage of the site. The boreholes were located in the field by Paterson. The ground surface elevations at the test hole locations were determined by Paterson and are referenced to a geodetic datum. The test hole locations and the ground surface elevation at each test hole location are presented on Drawing PG5418-1 - Test Hole Location Plan included in Appendix 2.

### 3.3 Laboratory Testing

The soil samples recovered from the subject site were examined in our laboratory to review the results of the field logging. A grain size distribution analysis was completed on 1 sample of the on-site silty sand prior to its reuse as backfill material. The result of this test is provided in Appendix 1.

### 3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

## 4.0 Observations

## 4.1 Surface Conditions

The subject site is currently occupied by a an abandoned 2-storey building located at the northwest end of the site, and a 1-storey building located in the central portion of the site. The remainder of the site consists of a gravel parking area of the eastern portion of the site.

The subject site is bordered to the north, northwest, and south by commercial properties, to the southwest by residential properties, and to the east by Stittsville Main Street. The existing ground surface across the site is relatively level at approximate geodetic elevation 121.5 m.

Based on available historical photographs of the subject site, a building was located in the northeast portion of the site fronting onto Stittsville Main Street as recently as 2014, and was no longer present in 2017. Reference should be made to the aerial photographs in Figure 2 - Aerial Photograph - 2014 and Figure 3 - Aerial Photograph - 2017 which illustrate the former and present site conditions, respectively.

## 4.2 Subsurface Profile

#### Overburden

Generally, the soil conditions encountered at the test hole locations consist of topsoil or a 0.4 to 2.3 m thick layer of fill underlying the ground surface. The fill was generally observed to consist of a loose to dense, brown silty sand with varying amounts of crushed stone, brick, concrete, wood and coal.

Underlying the topsoil and/or fill, a sand to silty sand/sandy silt deposit was encountered, which was generally loose in the upper portion of the deposit, becoming compact to dense at approximate depths of 2 to 3 m.

A glacial till deposit was encountered underlying the silty sand/sandy silt at approximate depths of 3.7 to 5.3 m. The glacial till was generally observed to consist of a dense, brown silty sand with gravel, cobbles, and boulders.

Practical refusal to the augers was encountered at approximate depths ranging from 4.2 to 7 m, generally increasing west to east across the site.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

#### **Grain Size Distribution Testing**

Grain size distribution was also completed on 1 selected soil sample. The result of the grain size analysis is summarized in Table 1 below, and is presented on the Grain Size Distribution Results sheet in Appendix 1.

| Table 1 - Summary of Grain Size Distribution Analysis |           |     |     |      |  |  |  |  |
|-------------------------------------------------------|-----------|-----|-----|------|--|--|--|--|
| Source Sample Gravel (%) Sand (%) Silt (%) & Clay (%) |           |     |     |      |  |  |  |  |
| Site                                                  | Stockpile | 5.0 | 3.4 | 91.6 |  |  |  |  |

Based on the grain size distribution testing results, this material can be described as sand with trace gravel, silt, and clay.

#### Bedrock

Bedrock was cored at BH 3-20, BH 1-19, BH 2-19, and BH 3-19 to depths of up to 9.6 m, and was observed to consist of grey limestone with interbedded shale. Based on the RQD values, the upper portion of the bedrock core was generally noted to be of very poor to fair quality, becoming good to excellent quality with depth.

Based on available geological mapping, the bedrock in this area consists of interbedded limestone and dolostone of the Gull River Formation with an overburden drift thickness of 5 to 6 m depth.

### 4.3 Groundwater

The measured groundwater levels in the boreholes are presented in Table 2 and are also shown on the Soil Profile and Test Data sheets in Appendix 1.

| Table 2 - Summary of Groundwater Level Readings |                 |           |              |                 |  |  |
|-------------------------------------------------|-----------------|-----------|--------------|-----------------|--|--|
| Borehole                                        | Ground          | Groundwat | er Levels, m |                 |  |  |
| Number                                          | Elevation,<br>m | Depth     | Elevation    | Recording Date  |  |  |
| BH 1-20                                         | 121.77          | 5.39      | 116.38       | August 6, 2020  |  |  |
| BH 2-20                                         | 121.23          | 5.42      | 115.81       | August 6, 2020  |  |  |
| BH 3-20                                         | 121.78          | 5.10      | 116.68       | August 6, 2020  |  |  |
| BH 4-20                                         | 121.61          | Dry       | -            | August 11, 2020 |  |  |
| BH 5-20                                         | 121.47          | Dry       | -            | August 11, 2020 |  |  |

| Kingston | North Bay |
|----------|-----------|
|          |           |

| Table 2 - Summary of Groundwater Level Readings [continued] |        |      |        |                 |  |  |  |  |
|-------------------------------------------------------------|--------|------|--------|-----------------|--|--|--|--|
| BH 6-20                                                     | 121.52 | Dry  | -      | August 11, 2020 |  |  |  |  |
| BH 7-20                                                     | 121.71 | Dry  | -      | August 11, 2020 |  |  |  |  |
| BH 8-20                                                     | 121.50 | Dry  | -      | August 11, 2020 |  |  |  |  |
| BH 9-20                                                     | 121.23 | 3.41 | 117.82 | August 11, 2020 |  |  |  |  |
| BH 10-20                                                    | 121.46 | Dry  | -      | August 11, 2020 |  |  |  |  |
| BH 11-20                                                    | 121.03 | 2.42 | 118.61 | August 11, 2020 |  |  |  |  |
| BH 12-20                                                    | 121.14 | Dry  | -      | August 11, 2020 |  |  |  |  |
| BH 1-19                                                     | 121.82 | 5.07 | 116.75 | August 6, 2020  |  |  |  |  |
| BH 2-19                                                     | 121.53 | 5.15 | 116.38 | August 6, 2020  |  |  |  |  |

Long-term groundwater level can also be estimated based on the observed moisture levels, colour and consistency of the recovered soil samples. Based on these observations, it is estimated the long-term groundwater table can be expected between between an approximate 4 to 5 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

### **Percolation Rate**

Based on our grain size testing results and our experience with the encountered soils, a conservative percolation rate of **30 mm/hr** can be used for the sand to silty sand/sandy silt deposit at this site.

## 5.0 Discussion

### 5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed development. It is recommended that the proposed buildings be founded on conventional spread footings bearing on the undisturbed, compact to dense sand to silty sand/sandy silt.

Where uncontrolled fill material is encountered at the underside of footing (USF) elevation, it should be sub-excavated to the undisturbed, compact to dense silty sand/sandy silt. Engineered fill should then be placed and compacted up to the USF elevation.

As part of an environmental remediation in 2022 and 2023, some soils were excavated in the central portion of the site. The excavated soils which remained on-site were then used to backfill the remedial excavation, and were placed and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD), under inspection from Paterson. The site memorandum documenting this compaction testing is provided in Appendix 3.

As a silty clay deposit was not encountered at the subject site, a permissible grade raise restriction is not required for the proposed development. Further, clay seals are not required for the proposed site servicing pipes.

Dependent on the founding depths of the site services, bedrock removal may be required. The above and other considerations are further discussed in the following sections.

## 5.2 Site Grading and Preparation

### **Stripping Depth**

Topsoil and fill, such as those containing organic or deleterious materials, should be stripped from under any buildings and other settlement sensitive structures. It is anticipated that the existing fill within the proposed building footprints, free of deleterious material and significant amounts of organics, can be left in place below the proposed building slabs-on-grade, outside of the lateral support zones for the footings. However, it is recommended that the existing fill layer be proof-rolled several times under dry conditions and above freezing temperatures and approved by Paterson personnel at the time of construction. Any poor performing areas noted during the proof-rolling operation should be removed and replaced with an approved fill. Existing foundation walls and other construction debris should be entirely removed from within the building perimeter. Under paved areas, existing construction remnants should be excavated to a minimum of 1 m below final grade.

#### **Bedrock Removal**

Should it be required dependent on the depth of the proposed site servicing, bedrock removal can be accomplished by hoe ramming where the bedrock is weathered and/or where only small quantities of the bedrock need to be removed. Sound bedrock may be removed by line drilling, controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm per second during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

#### **Vibration Considerations**

Construction operations are also the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipment could be a source of vibrations: piling rig, hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the adjoining buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz.

Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, it is recommended that a preconstruction survey be completed to minimize the risks of claims during or following the construction of the proposed building.

#### **Fill Placement**

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to the delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the materials Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavate soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill should be spread in thin lifts and, at minimum, compacted by the tracks of the spreading equipment to minimize voids. If the non-specified fill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundations walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

### 5.3 Foundation Design

#### **Bearing Resistance Values**

Footings placed on the undisturbed, compact to dense silty sand/sandy silt can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**, incorporating a geotechnical resistance factor of 0.5.

Where the silty sand/sandy silt is observed to be in a loose state of compactness at the USF elevation, it should be proof-compacted using several passes of vibratory plate compactor, under the inspection of Paterson.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious material, such as loose, frozen or disturbed soil, whether in situ or not, have been removed in dry conditions, prior to the placement of concrete for footings.

Footings placed on a soil bearing surface and designed using the bearing resistance values at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

#### Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels.

Adequate lateral support is provided to a compact to dense silty sand/sandy sit bearing surface above the groundwater table when a plane extending horizontally and vertically from the underside of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher bearing capacity as the bearing medium soil.

Adequate lateral support is provided to a sound bedrock bearing medium when a plane extending down and out from the bottom edge of the footing at a minimum of 1H:6V (or flatter) passes only through sound bedrock or a material of the same or higher capacity as the bedrock, such as concrete. A heavily fractured, weathered bedrock bearing medium will require a lateral support zone of 1H:1V (or flatter).

### 5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. A higher seismic site class may be applicable, such as Class A or B, provided the footings are within 3 m of the bedrock surface. However, this would need to be confirmed by performing a seismic shear wave velocity test at the subject site. Soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the 2012 Ontario Building Code for a full discussion of the earthquake design requirements.

### 5.5 Slab on Grade Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the undisturbed, existing fill or silty sand/sandy silt subgrade, approved by the geotechnical consultant at the time of excavation, will be considered an acceptable subgrade surface on which to commence backfilling for slab-on-grade construction.

A vibratory drum roller should complete several passes over the subgrade surface as a proof-rolling program. Any poor performing areas should be removed and reinstated with an engineered fill, such as OPSS Granular B Type II. It is recommended that the upper 200 mm of sub-floor fill consist of OPSS Granular A crushed stone. All backfill materials required to raise grade within the footprint of the proposed building should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

### 5.6 Pavement Structure

The recommended pavement structures for the subject site are shown in Tables 3 and 4 below.

| Table 3 - Recommended Flexible Pavement Structure - At-Grade Parking Areas                 |                                                         |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| Thickness (mm) Material Description                                                        |                                                         |  |  |  |  |  |
| 50                                                                                         | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete |  |  |  |  |  |
| 150                                                                                        | BASE - OPSS Granular A Crushed Stone                    |  |  |  |  |  |
| 300                                                                                        | SUBBASE - OPSS Granular B Type II                       |  |  |  |  |  |
| SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |                                                         |  |  |  |  |  |

| Table 4 - Recommended Flexible Pavement Structure         Access Lanes and Heavy Truck Parking Areas |                                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| Thickness (mm)                                                                                       | Material Description                                                                       |  |  |  |  |
| 40                                                                                                   | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete                                    |  |  |  |  |
| 50                                                                                                   | Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete                                  |  |  |  |  |
| 150                                                                                                  | BASE - OPSS Granular A Crushed Stone                                                       |  |  |  |  |
| 450                                                                                                  | SUBBASE - OPSS Granular B Type II                                                          |  |  |  |  |
| SUBGRADE - In situ se                                                                                | SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |  |  |  |  |

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project. If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the SPMDD with suitable vibratory equipment.

## 6.0 Design and Construction Precautions

## 6.1 Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free draining, non-frost susceptible granular materials. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, can be used for this purpose.

Excavated on-site fill and/or silty sand to sandy silt could also be re-used for backfilling the exterior sides of the foundation walls. However, this material would need to be maintained in an unfrozen state and at a suitable moisture content for compaction if it is to be re-used on-site.

## 6.2 **Protection Against Frost Action**

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure. Such exterior structures require additional frost protection, such as 2.1 m of soil cover, or a reduced thickness of soil cover if rigid insulation is used.

## 6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides. Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to be installed at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not remain exposed for extended periods of time.

## 6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be used for bedding for sewer and water pipes when placed on soil subgrade. The bedding should be increased to a thickness of 300 mm of Granular A where bedrock is encountered at the subgrade level. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A.

The bedding and cover materials should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 99% of the SPMDD.

The site excavated silty sand may be placed above cover material if the excavation operations are completed in dry weather conditions and the site excavated material is approved by the geotechnical consultant.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce the potential differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

### 6.5 Groundwater Control

Infiltration levels are anticipated to be low through the sides of the excavation and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) Category 3 may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, anticipated between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

### 6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project, where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

### 6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a slightly aggressive corrosive environment.

## 7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- A review of architectural and structural drawings to ensure adequate frost protection is provided to the subsoil.
- Inspection of all foundation drainage systems
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **□** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

## 8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. The extent of the limited area depends on the soil, bedrock and groundwater conditions, as well the history of the site reflecting natural, construction, and other activities. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Inverness Homes or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

#### Paterson Group Inc.

Owen Canton, E.I.T.

**Report Distribution:** 

- Inverness Homes
- Paterson Group (1 digital copy)



Scott Dennis, P. Eng.

## **APPENDIX 1**

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

**GRAIN SIZE DISTRIBUTION ANALYSIS** 

ANALYTICAL TESTING RESULTS

## SOIL PROFILE AND TEST DATA

FILE NO.

**PG5418** 

**Geotechnical Investigation** 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

Geodetic

| BORINGS BY CME-55 Low Clearance Drill DATE July 22, 2020 BH 1-20                   |    |                    |    |     |         |                                                             |         |                               |                                                         |
|------------------------------------------------------------------------------------|----|--------------------|----|-----|---------|-------------------------------------------------------------|---------|-------------------------------|---------------------------------------------------------|
| SOIL DESCRIPTION                                                                   |    | SAMPLE DEPTH ELEV. |    |     |         | lesist. Blows/0.3m<br>₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ |         |                               |                                                         |
|                                                                                    |    | PER PER PE         |    | (m) |         | Vater Content %                                             |         |                               |                                                         |
| GROUND SURFACE                                                                     | LS | F                  | NN | REC | N<br>OF | 0-                                                          | -121.77 | 20                            | 40 60 80 ≥ Ŭ<br>≥ Ŭ                                     |
| FILL: Brown silty sand with crushed stone0.66                                      |    | AU                 | 1  |     |         | 0                                                           | 121.77  |                               |                                                         |
| FILL: Red-brown silty sand, trace organics                                         |    | ss                 | 2  | 54  | 5       | 1-                                                          | -120.77 |                               |                                                         |
|                                                                                    |    | ss                 | 3  | 46  | 12      | 2-                                                          | -119.77 |                               |                                                         |
|                                                                                    |    | ss                 | 4  | 54  | 17      | 3-                                                          | -118.77 |                               |                                                         |
| Compact, brown SILTY SAND                                                          |    | ss                 | 5  | 58  | 33      |                                                             |         |                               |                                                         |
|                                                                                    |    | ss                 | 6  | 50  | 28      | 4 -                                                         | -117.77 |                               |                                                         |
| <u>5</u> .18                                                                       |    | ss                 | 7  | 67  | 24      | 5-                                                          | -116.77 |                               |                                                         |
| GLACIAL TILL: Dense, brown silty<br>sand with gravel, cobbles and<br>boulders 5.94 |    | ss                 | 8  | 67  | 55      |                                                             |         |                               |                                                         |
| End of Borehole                                                                    |    | -                  |    |     |         |                                                             |         |                               |                                                         |
| Practical refusal to augering at 5.94m depth.                                      |    |                    |    |     |         |                                                             |         |                               |                                                         |
| (GWL @ 5.39m - Aug. 6, 2020)                                                       |    |                    |    |     |         |                                                             |         |                               |                                                         |
|                                                                                    |    |                    |    |     |         |                                                             |         |                               |                                                         |
|                                                                                    |    |                    |    |     |         |                                                             |         |                               |                                                         |
|                                                                                    |    |                    |    |     |         |                                                             |         |                               |                                                         |
|                                                                                    |    |                    |    |     |         |                                                             |         | 20<br><b>Shea</b><br>▲ Undist | 40 60 80 100<br>ar Strength (kPa)<br>turbed △ Remoulded |

### SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

FILE NO. **PG5418** 

HOLE NO. BH 2-20 BORINGS BY CME-55 Low Clearance Drill DATE July 22, 2020 SAMPLE Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER TYPE o/0  $\bigcirc$ Water Content % **GROUND SURFACE** 80 20 40 60 0+121.23TOPSOIL 0.18 AU 1 1+120.23 SS 2 6 54 Loose to compact, brown SILTY SS 3 46 4 SAND 2+119.23 SS 4 14 58 3+118.23SS 5 79 18 3.80 4+117.23 SS 6 67 45 Dense, brown SANDY SILT SS 7 40 62 5+116.23SS 8 76 50+ 5.77 GLACIAL TILL: Dense, brown silty 5.94 sand with gravel, cobbles and boulders End of Borehole Practical refusal to augering at 5.94m depth. (GWL @ 5.42m - Aug. 6, 2020)

### SOIL PROFILE AND TEST DATA

**Geotechnical Investigation** 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

#### REMARKS

| DATUM | Geodetic |  |
|-------|----------|--|
|       |          |  |

**PG5418** 

FILE NO.

#### HOLE NO. BH 3-20 BORINGS BY CME-55 Low Clearance Drill DATE July 22, 2020 SAMPLE Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) RECOVERY STRATA N VALUE or RQD NUMBER TYPE o/0 $\bigcirc$ Water Content % **GROUND SURFACE** 80 20 40 60 0+121.781. hhh. hhh. hh AU 1 FILL: Brown silty sand with crushed 1+120.78 SS 2 10 17 stone SS 3 25 6 2+119.78 2.29 SS 4 23 42 3+118.78SS 5 75 24 Compact, brown SILTY SAND 4+117.78 SS 22 6 58 SS 7 71 24 5+116.785.49 RC 1 100 56 6+115.78 BEDROCK: Very poor to fair quality, RC 2 60 0 7+114.78 grey limestone with interbedded shale 8+113.78 RC 3 100 60 9.04 9+112.78 End of Borehole (GWL @ 5.10m - Aug. 6, 2020) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

## SOIL PROFILE AND TEST DATA

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

BORINGS BY CME-55 Low Clearance Drill

Geodetic

#### REMARKS

DATUM

|   | Ot    | tawa, Or   | ntario |                  |                                     |      |
|---|-------|------------|--------|------------------|-------------------------------------|------|
|   |       |            |        |                  | FILE NO. PG541                      | 8    |
| D | ATE . | July 22, 2 | 020    | HOLE NO. BH 4-20 | )                                   |      |
|   |       | DEPTH      | ELEV.  |                  | esist. Blows/0.3m<br>) mm Dia. Cone |      |
|   | Вe    | (m)        | (m)    |                  |                                     | eter |

| SOIL DESCRIPTION                                                                | PLOT     |      | SAN    | IPLE          |                | DEPTH | ELEV.    | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                         |
|---------------------------------------------------------------------------------|----------|------|--------|---------------|----------------|-------|----------|----------------------------------------------------------------------|
|                                                                                 | STRATA P | ТҮРЕ | NUMBER | ∾<br>RECOVERY | VALUE<br>r ROD | (m)   | (m)      | ● 50 mm Dia. Cone<br>○ Water Content %<br>20 40 60 80 Construction   |
| GROUND SURFACE                                                                  | LS.      |      | NC     | REC           | N VJ<br>OF     | 0-    | -121.61  | 20 40 60 80 <u></u>                                                  |
| FILL: Brown sand with gravel                                                    |          | AU   | 1      |               |                |       | - 121.01 |                                                                      |
| <b>FILL:</b> Brown silty sand with gravel, some cobbles, concrete, trace brick, |          | ss   | 2      | 29            | 23             | 1-    | -120.61  |                                                                      |
| wood                                                                            |          | ss   | 3      | 12            | 50+            | 2-    | -119.61  |                                                                      |
| <i><sup>_</sup></i>                                                             |          | ss   | 4      | 58            | 16             |       |          |                                                                      |
|                                                                                 |          | ss   | 5      | 54            | 21             | 3-    | -118.61  |                                                                      |
| Compact, brown <b>SILTY SAND</b>                                                |          | ss   | 6      | 62            | 27             | 4-    | -117.61  |                                                                      |
| 5.18                                                                            |          | ss   | 7      | 75            | 21             | 5-    | -116.61  |                                                                      |
| End of Borehole<br>(Piezometer blocked at 3.94m depth -<br>August 11, 2020)     |          |      |        |               |                |       |          |                                                                      |
|                                                                                 |          |      |        |               |                |       |          | 20 40 60 80 100<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded |

## SOIL PROFILE AND TEST DATA

 $\blacktriangle$  Undisturbed  $\triangle$  Remoulded

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| DATUM Geodetic                       |              |                      |        |               |                   |              |              |       | FILE  | NO.                  | 35418               |                            |
|--------------------------------------|--------------|----------------------|--------|---------------|-------------------|--------------|--------------|-------|-------|----------------------|---------------------|----------------------------|
|                                      | וו:-ר        |                      |        | _             |                   |              |              |       | HOL   | <sup>E NO.</sup> BH  | 5-20                |                            |
| BORINGS BY CME-55 Low Clearance      |              |                      | SVI    | IPLE          |                   | July 22, 2   | .020         | Don B | ociet | Blows/0              |                     |                            |
| SOIL DESCRIPTION                     | РГОТ         |                      | JAN    |               |                   | DEPTH<br>(m) | ELEV.<br>(m) |       |       | Dia. Cor             |                     | er<br>ion                  |
|                                      | STRATA       | ТҮРЕ                 | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (,           | (,           | • v   | Vator | Content <sup>o</sup> | 2/2                 | Piezometer<br>Construction |
| GROUND SURFACE                       | STE          | £                    | NUN    | RECO          | N<br>OL           |              |              | 20    | 40    |                      | <sup>78</sup><br>80 | Piez                       |
| FILL: Brown silty sand with gravel   | $\bigotimes$ |                      | 1      |               |                   | 0-           | -121.47      |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              | ss                   | 2      | 54            | 6                 | 1-           | 120.47       |       |       |                      |                     |                            |
|                                      |              | $\Delta$             |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              | ss                   | 3      | 50            | 13                |              | -119.47      |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   | 2-           | -119.47      |       |       |                      |                     |                            |
| Compact, brown SILTY SAND            |              | ss                   | 4      | 54            | 20                |              |              |       |       |                      |                     |                            |
|                                      |              | $\overline{\Lambda}$ |        |               |                   | 3-           | 118.47       |       |       |                      |                     |                            |
|                                      |              | ss                   | 5      | 79            | 33                |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   | 4-           | 117.47       |       |       |                      |                     |                            |
|                                      |              | ss                   | 6      | 58            | 33                |              |              |       |       |                      |                     |                            |
|                                      |              | ss                   | 7      | 79            | 28                |              |              |       |       |                      |                     |                            |
| End of Borehole                      |              | Δ.                   | ,      | /5            | 20                | 5-           | -116.47      |       |       |                      |                     |                            |
| (Piezometer blocked at 4.26m depth - |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
| August 11, 2020)                     |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              |       |       |                      |                     |                            |
|                                      |              |                      |        |               |                   |              |              | 20    | 40    |                      | 80 10               | 00                         |
|                                      |              |                      |        |               |                   |              |              |       |       | ength (kF            |                     |                            |

## SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| DATUM Geodetic                                            |        |            |        |               | ·                 |                            |             |            | FILE NC                                      | PG5418                | }                          |
|-----------------------------------------------------------|--------|------------|--------|---------------|-------------------|----------------------------|-------------|------------|----------------------------------------------|-----------------------|----------------------------|
| REMARKS                                                   | الاند  |            |        |               | A.T.F.            |                            | 020         |            | HOLE N                                       | <sup>o.</sup> BH 6-20 |                            |
| BORINGS BY CME-55 Low Clearance SOIL DESCRIPTION          | ТОЛЧ   |            | SAN    | IPLE          |                   | July 23, 2<br>DEPTH<br>(m) | DEPTH ELEV. |            | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone |                       |                            |
|                                                           | STRATA | ТҮРЕ       | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |                            | ()          | 0 V        | Vater Co                                     | ntent %               | Piezometer<br>Construction |
| GROUND SURFACE                                            | 01     |            | I      | RE            | zv                | 0-                         | -121.52     | 20         | 40                                           | 60 80                 | ĒŎ                         |
| FILL: Brown silty sand with gravel,<br>trace organics0.38 |        | AU         | 1      |               |                   |                            | 121.02      |            |                                              |                       |                            |
| Compact to dense, brown <b>SILTY</b><br><b>SAND</b>       |        | ∦ss<br>⊽   | 2      | 54            | 9                 | 1-                         | -120.52     |            |                                              |                       |                            |
|                                                           |        | ∦ ss<br>∏  | 3      | 67            | 18                | 2-                         | -119.52     |            |                                              |                       |                            |
|                                                           |        | ∦ ss<br>∏  | 4      | 71            | 28                | 3-                         | -118.52     |            |                                              |                       |                            |
|                                                           |        | ∦ss<br>∦ss | 5<br>6 | 62<br>79      | 26<br>25          | 4-                         | -117.52     |            |                                              |                       |                            |
| 5.11                                                      |        | ss         | 7      | 62            | 31                | 5-                         | -116.52     |            |                                              |                       |                            |
| End of Borehole                                           |        | <u> </u>   |        |               |                   |                            | 110.02      |            |                                              |                       |                            |
| Practical refusal to augering at 5.11m depth.             |        |            |        |               |                   |                            |             |            |                                              |                       |                            |
| (Piezometer blocked at 4.12m depth -<br>August 11, 2020)  |        |            |        |               |                   |                            |             | 20<br>Shoc |                                              | 60 80 -               | 100                        |

## SOIL PROFILE AND TEST DATA

FILE NO.

**PG5418** 

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

#### REMARKS

DATUM

| BORINGS BY CME-55 Low Clearance                                     | Drill    |                                                                            |        | г             | ATE .             | July 23, 2 | 2020    |                        | HOLE                     | <sup>NO.</sup> BH         | 7-20 |                            |
|---------------------------------------------------------------------|----------|----------------------------------------------------------------------------|--------|---------------|-------------------|------------|---------|------------------------|--------------------------|---------------------------|------|----------------------------|
| SOIL DESCRIPTION                                                    | PLOT     |                                                                            | SAN    | IPLE          |                   | DEPTH      | ELEV.   |                        |                          | Blows/0.<br>Dia. Con      |      | - 5                        |
|                                                                     | STRATA 1 | ТҮРЕ                                                                       | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m)        | (m)     | • Water Content %      |                          |                           |      | Piezometer<br>Construction |
| GROUND SURFACE                                                      |          |                                                                            | Z      | RE            | z <sup>o</sup>    | 0-         | 121.71  | 20                     | 40                       | 60 8                      | B0   | i č č                      |
| TOPSOIL0.10                                                         |          | AU                                                                         | 1      |               |                   |            | 121.71  |                        |                          |                           |      |                            |
|                                                                     |          | ss<br>V                                                                    | 2      | 50            | 5                 | 1-         | -120.71 |                        |                          |                           |      |                            |
| Loose to dense, brown SILTY SAND                                    |          | SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS<br>SS | 3      | 50            | 8                 | 2-         | -119.71 |                        |                          |                           |      |                            |
|                                                                     |          | ∬ ss<br>∏ ss                                                               | 4      | 75<br>75      | 26<br>28          | 3-         | -118.71 |                        |                          |                           |      |                            |
|                                                                     |          | ss                                                                         | 6      | 83            | 33                | 4-         | -117.71 |                        |                          |                           |      |                            |
| 4.57<br>Compact, brown <b>SANDY SILT</b><br>5.18<br>End of Borehole |          | ss                                                                         | 7      | 92            | 28                | 5-         | -116.71 |                        |                          |                           |      |                            |
| (Piezometer blocked at 4.23m depth -<br>August 11, 2020)            |          |                                                                            |        |               |                   |            |         |                        |                          |                           |      |                            |
|                                                                     |          |                                                                            |        |               |                   |            |         |                        |                          |                           |      |                            |
|                                                                     |          |                                                                            |        |               |                   |            |         |                        |                          |                           |      |                            |
|                                                                     |          |                                                                            |        |               |                   |            |         |                        |                          |                           |      |                            |
|                                                                     |          |                                                                            |        |               |                   |            |         |                        |                          |                           |      |                            |
|                                                                     |          |                                                                            |        |               |                   |            |         | 20<br>Shea<br>▲ Undist | 40<br>ar Stren<br>turbed | 60 8<br>1930 60<br>△ Remo | a)   | 00                         |

## SOIL PROFILE AND TEST DATA

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| DATUM Geodetic                                                                 |        |        |        |                       |                   |              |              |                        | FILE                    | NO.                 | PG5418                                 |                            |
|--------------------------------------------------------------------------------|--------|--------|--------|-----------------------|-------------------|--------------|--------------|------------------------|-------------------------|---------------------|----------------------------------------|----------------------------|
| REMARKS<br>BORINGS BY CME-55 Low Clearance I                                   | ٦rill  |        |        |                       | ATE               | July 23, 2   | 020          |                        | HOL                     | .e no.              | BH 8-20                                |                            |
|                                                                                |        |        | SAN    | /IPLE                 |                   |              |              | Pen. R                 | Pen. Resist. Blows/0.3m |                     |                                        |                            |
| SOIL DESCRIPTION                                                               | A PLOT |        | e,     | ХХ                    | Но                | DEPTH<br>(m) | ELEV.<br>(m) | • 50 mm Dia. Cone      |                         |                     |                                        | ster                       |
|                                                                                | STRATA | ТҮРЕ   | NUMBER | °<br>≈<br>©<br>©<br>© | N VALUE<br>or RQD |              |              | 0 V                    | Vater                   | Conte               | nt %                                   | Piezometer<br>Construction |
| GROUND SURFACE                                                                 | N      |        | N      | RE                    | zÓ                | 0            | 121.50       | 20                     | 40                      | 60                  | 80                                     | la<br>R<br>B<br>R<br>S     |
| FILL: Topsoil with sand, some gravel, organics and boulders                    |        | AU     | 1      |                       |                   | 0            | 121.50       |                        |                         |                     |                                        |                            |
|                                                                                |        | ss     | 2      | 50                    | 5                 | 1-           | -120.50      |                        |                         |                     |                                        |                            |
|                                                                                |        | Δ      |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
| Loose to compact, brown <b>SILTY</b><br><b>SAND</b>                            |        | ss     | 3      | 42                    | 3                 | 2-           | -119.50      |                        |                         |                     | ······································ |                            |
|                                                                                |        | ss     | 4      | 50                    | 18                |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        | ss     | 5      | 58                    | 23                | 3-           | -118.50      |                        |                         |                     |                                        |                            |
| <u>3.81</u>                                                                    |        | Δ-     | 5      | 00                    | 23                |              |              |                        |                         |                     |                                        |                            |
| Dense, brown SANDY SILT                                                        |        | ss     | 6      | 75                    | 50+               | 4-           | -117.50      |                        | <u></u>                 |                     |                                        |                            |
| GLACIAL TILL: Brown silty sand with 22<br>weathered bedrock<br>End of Borehole |        | i<br>L |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
| Practical refusal to augering at 4.22m depth.                                  |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
| (Piezometer blocked at 4.02m depth -<br>August 11, 2020)                       |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
| August 11, 2020)                                                               |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              |                        |                         |                     |                                        |                            |
|                                                                                |        |        |        |                       |                   |              |              | 20<br>Shea<br>▲ Undist |                         | 60<br>ength<br>∆ Re |                                        | <b>00</b>                  |

## SOIL PROFILE AND TEST DATA

FILE NO.

**PG5418** 

**Geotechnical Investigation** 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

#### REMARKS

DATUM

| BORINGS BY | CME-55 Low | Clearance | Dril |
|------------|------------|-----------|------|
|------------|------------|-----------|------|

Geodetic

|                                               | BY CME-55 Low Clearance Drill DATE July 23, 2020 HOLE NO. BH 9-20 |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|-----------------------------------------------|-------------------------------------------------------------------|------|--------|---------------|-------------------|--------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| BORINGS BY CME-55 Low Clearance               |                                                                   |      | SAN    |               |                   | July 23, 2   | .020         | Pen R      | esist. Blows/0.3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| SOIL DESCRIPTION                              | PLOT                                                              |      |        |               |                   | DEPTH<br>(m) | ELEV.<br>(m) |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion                     |
|                                               | STRATA                                                            | ТҮРЕ | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |              | (,           |            | 0 mm Dia. Cone     Japane Strange St | struct                  |
| GROUND SURFACE                                | STI                                                               | L L  | NUN    | RECO          | N<br>OL A         |              |              | 20         | 40 60 80 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cons                    |
|                                               | 5                                                                 | ×-   | _      |               |                   | -0-          | -121.23      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{\mathbb{W}}$ |
|                                               |                                                                   | AU   | 1      |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      | _      | 50            |                   | 1-           | 120.23       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   | ss   | 2      | 50            | 6                 |              | 120.20       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   | ss   | 3      | 75            | 8                 |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      | 3      | 75            | 0                 | 2-           | 119.23       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| Loose to compact, brown <b>SILTY</b><br>SAND  |                                                                   | ss   | 4      | 62            | 13                |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   | 1 33 | 4      | 02            | 13                | 0            | 110.00       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   | ss   | 5      | 54            | 18                | 3-           | -118.23      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   | ss   | 6      | 58            | 32                | 4-           | 117.23       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| 4.57                                          | ,                                                                 |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| Dense, brown <b>SANDY SILT</b> , trace gravel |                                                                   | ss   | 7      | 79            | 31                |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| End of Borehole                               | 3                                                                 |      |        |               |                   | 5-           | -116.23      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| (GWL @ 3.40m - Aug. 11, 2020)                 |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
| (GWE @ 0.+011 Aug. 11, 2020)                  |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                               |                                                                   |      |        |               |                   |              |              | 20<br>Shea | 40 60 80 100<br>ar Strength (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|                                               |                                                                   |      |        |               |                   |              |              | Undist     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |

## SOIL PROFILE AND TEST DATA

Geotechnical Investigation 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

#### REMARKS

DATUM

Geodetic

| FILE NO. | PG5418 |
|----------|--------|
|          |        |

#### HOLE NO. BH10-20

| ORINGS BY CME-55 Low Clearance I                                                                            | Drill    |          |        | 0             | DATE              | July 23, 2 | 020     |                                     | BH10-20                                            | )          |
|-------------------------------------------------------------------------------------------------------------|----------|----------|--------|---------------|-------------------|------------|---------|-------------------------------------|----------------------------------------------------|------------|
| SOIL DESCRIPTION                                                                                            | PLOT     |          | SAMPLE |               | DEPTH ELEV.       |            |         | esist. Blows/0.3m<br>0 mm Dia. Cone |                                                    |            |
| GROUND SURFACE                                                                                              | STRATA I | ТҮРЕ     | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m)        | (m)     |                                     | /ater Content %           40         60         80 | Piazomatar |
| <b>OPSOIL</b> 0.13                                                                                          |          | <b>X</b> |        |               |                   | - 0-       | 121.46  |                                     |                                                    |            |
| .oose, red-brown <b>SILTY SAND,</b> trace<br>jravel                                                         |          | AU       | 1      | 50            |                   | 1-         | -120.46 |                                     |                                                    |            |
| 1.37                                                                                                        |          | ss       | 2      | 58            | 6                 | I          | 120.40  |                                     |                                                    |            |
|                                                                                                             |          | ss       | 3      | 50            | 4                 | 2-         | -119.46 |                                     |                                                    |            |
| pose to compact, brown <b>SILTY</b><br>AND                                                                  |          | ss       | 4      | 58            | 8                 | 3-         | -118.46 |                                     |                                                    |            |
|                                                                                                             |          | ss       | 5      | 79            | 28                | 5          | 110.40  |                                     |                                                    |            |
| 4.57                                                                                                        |          | ss       | 6      | 67            | 30                | 4-         | -117.46 |                                     |                                                    |            |
| ense, brown <b>SANDY SILT,</b> trace<br>lay5.00<br>nd of Borehole                                           |          | ss       | 7      | 59            | 50+               | 5-         | -116.46 |                                     |                                                    |            |
| Practical refusal to augering at 5.00m<br>lepth.<br>Piezometer blocked at 4.43m depth -<br>August 11, 2020) |          |          |        |               |                   |            |         |                                     |                                                    |            |
|                                                                                                             |          |          |        |               |                   |            |         | 20<br>Shea<br>▲ Undist              | r Strength (kPa)                                   | ⊣<br>I 00  |

## SOIL PROFILE AND TEST DATA

FILE NO.

**PG5418** 

**Geotechnical Investigation** 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

#### REMARKS

DATUM

Geodetic

| BORINGS BY CME-55 Low Clearance                                                   |           |      |        |               |                 |            |          | HOLE NO. BH11-20                                      |
|-----------------------------------------------------------------------------------|-----------|------|--------|---------------|-----------------|------------|----------|-------------------------------------------------------|
|                                                                                   | Drill     |      | SAN    | D<br>APLE     | ATE .           | July 22, 2 | ELEV.    | Pen. Resist. Blows/0.3m                               |
| SOIL DESCRIPTION                                                                  | STRATA PI | ТҮРЕ | NUMBER | %<br>RECOVERY | VALUE<br>NE RQD | (m)        | (m)      | ● 50 mm Dia. Cone<br>○ Water Content %<br>20 40 60 80 |
| GROUND SURFACE                                                                    | 2         |      | NC NC  | REC           | N<br>OF         | 0          | -121.03  | 20 40 60 80                                           |
| TOPSOIL0.18                                                                       | 8         | AU   | 1      |               |                 |            | - 121.03 |                                                       |
| Loose to compact, red-brown <b>SILTY</b><br>SAND                                  |           | ss   | 2      | 42            | 5               | 1-         | 120.03   |                                                       |
| - brown by 1.4m depth                                                             |           | ss   | 3      | 75            | 10              | 2-         | -119.03  |                                                       |
| 3.0                                                                               | 5         | ss   | 4      | 75            | 14              | 0-         | -118.03  |                                                       |
| Compact to dense, grey SANDY                                                      |           | ss   | 5      | 71            | 27              | 5          | 110.03   |                                                       |
| ILT, trace clay4.57                                                               | 7         | ss   | 6      | 58            | 32              | 4-         | -117.03  |                                                       |
| GLACIAL TILL: Dense, brown silty<br>sand with gravel, cobbles and<br>poulders5.18 | B         | ss   | 7      | 46            | 31              | 5-         | -116.03  |                                                       |
| End of Borehole<br>(GWL @ 2.42m - Aug. 11, 2020)                                  |           |      |        |               |                 |            |          | 20 40 60 80 100<br>Shear Strength (kPa)               |

## SOIL PROFILE AND TEST DATA

FILE NO.

HOLE NO.

**PG5418** 

**Geotechnical Investigation** 1520, 1524 and 1526 Stittsville Main Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

#### REMARKS

DATUM

| BORINGS BY | CME-55 Lo | ow Clearance I | Drill |
|------------|-----------|----------------|-------|
|            |           |                |       |

Geodetic

| BORINGS BY CME-55 Low Clearance I                                                               | Drill       |                                                             |        | D           | ATE 、          | July 22, 2 | 020     | 1   | BH12-20                     |            |                            |  |
|-------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------|--------|-------------|----------------|------------|---------|-----|-----------------------------|------------|----------------------------|--|
| SOIL DESCRIPTION                                                                                |             |                                                             | SAMPLE |             | 1              | 4          | ELEV.   |     | esist. Blo<br>0 mm Dia      | <u>ب</u> د |                            |  |
|                                                                                                 | STRATA PLOT | ТҮРЕ                                                        | NUMBER | °%<br>©™ERY | VALUE<br>r RQD | (m)        | (m)     | • V | Vater Con                   | tent %     | Piezometer<br>Construction |  |
| GROUND SURFACE                                                                                  | Ω           |                                                             | IJ     | REC         | N<br>OL        |            | 101 14  | 20  | 40 60                       | 0 80       | O Pie                      |  |
| TOPSOIL0.20                                                                                     |             | ×<br>*                                                      | 1      |             |                | 0-         | -121.14 |     |                             |            |                            |  |
| Loose, brown <b>SILTY SAND,</b> some<br>gravel                                                  |             | AU<br>SS                                                    | 2      | 8           | 8              | 1-         | -120.14 |     |                             |            |                            |  |
| 1.52                                                                                            |             | $\mathbb{A}^{33}$                                           | 2      | 0           | 0              |            |         |     |                             |            |                            |  |
|                                                                                                 |             | ss                                                          | 3      | 50          | 5              | 2-         | -119.14 |     |                             |            |                            |  |
| Loose to compact, brown <b>SILTY</b><br>SAND                                                    |             | ss                                                          | 4      | 58          | 10             |            |         |     |                             |            |                            |  |
|                                                                                                 |             |                                                             |        |             |                | 3-         | 118.14  |     |                             |            |                            |  |
|                                                                                                 |             | ss                                                          | 5      | 62          | 18             |            |         |     |                             |            |                            |  |
| 3.81<br>GLACIAL TILL: Dense, brown silty<br>sand with weathered bedrock 4.22<br>End of Borehole |             | ss                                                          | 6      | 50          | 50+            | 4-         | -117.14 |     |                             |            |                            |  |
| Practical refusal to augering at 4.22m depth.                                                   |             |                                                             |        |             |                |            |         |     |                             |            |                            |  |
| (Piezometer blocked at 4.44m depth -<br>August 11, 2020)                                        |             |                                                             |        |             |                |            |         | 20  | 40 60                       |            | 00                         |  |
|                                                                                                 |             | Shear Strength (kF           ▲ Undisturbed         △ Remote |        |             |                |            |         |     | <b>h (kPa)</b><br>Remoulded |            |                            |  |

| patersong                                                             | 15                | SOIL PROFILE AND TEST DATA<br>Phase II - Environmental Site Assessment<br>1520 Stittsville Main Street<br>Ottawa, Ontario |                   |                 |                   |              |              |          |                                                     |             |               |                 |
|-----------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------|--------------|--------------|----------|-----------------------------------------------------|-------------|---------------|-----------------|
| DATUM TBM - Top of Bell Cana<br>Stittsville Main Street. A<br>REMARKS | da manl<br>ssumed | nole c<br>eleva                                                                                                           | over l<br>ation = | ocate<br>= 100. | d on s            |              |              | e of     | FILE                                                | E NO.       | PE462         | 9               |
| BORINGS BY CME 55 Power Auger                                         |                   |                                                                                                                           |                   | п               | <b>ATE</b>        | 2019 Jun     | <u>م</u> ع   |          | HOL                                                 | .e no.      | BH 1          |                 |
|                                                                       |                   |                                                                                                                           | SVI               |                 |                   |              |              | Photo    | loniza                                              | ation F     | )etector      |                 |
| SOIL DESCRIPTION                                                      | A PLOT            |                                                                                                                           |                   |                 | Шо                | DEPTH<br>(m) | ELEV.<br>(m) |          | o Ionization Detector<br>olatile Organic Rdg. (ppm) |             |               | Monitoring Well |
|                                                                       | STRATA            | ПУРЕ                                                                                                                      | NUMBER            | %<br>RECOVERY   | N VALUE<br>or ROD |              |              | ○ Lowe   | er Exp                                              | olosive     | e Limit %     | onitori         |
| GROUND SURFACE                                                        | s<br>v            | ~                                                                                                                         | N                 | RE              | z                 | 0-           | 100.14       | 20       | 40                                                  | 60          | 80            | ž               |
|                                                                       |                   | BAU 8                                                                                                                     | 1                 |                 |                   |              | 100.14       | •        |                                                     |             |               |                 |
| FILL: Brown sand with cobbles                                         |                   | ×<br>∏                                                                                                                    |                   |                 |                   |              |              |          |                                                     | ••••••      |               |                 |
|                                                                       |                   | ss                                                                                                                        | 1                 | 58              | 2                 | 1-           | -99.14       | •        |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           | 0                 | 00              | 0                 |              |              |          |                                                     |             |               |                 |
| 2                                                                     | .29               | ∦ss                                                                                                                       | 2                 | 38              | 2                 | 2-           | 98.14        |          |                                                     |             |               |                 |
|                                                                       |                   | ss                                                                                                                        | 3                 | 67              | 11                |              |              |          |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           | U                 |                 |                   | 3-           | -97.14       |          |                                                     |             |               |                 |
| Compact, light brown <b>SAND</b>                                      |                   | ss                                                                                                                        | 4                 | 83              | 17                |              |              | •        |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     | •••••       |               |                 |
|                                                                       |                   | ss                                                                                                                        | 5                 | 67              | 18                | 4-           | -96.14       | •        |                                                     |             |               |                 |
|                                                                       |                   | $\overline{\nabla}$                                                                                                       |                   |                 |                   |              |              |          |                                                     |             |               |                 |
| 5                                                                     | 30                | ss                                                                                                                        | 6                 | 79              | 15                | 5-           | 95.14        | •        |                                                     |             |               |                 |
| 5.3                                                                   |                   | ss                                                                                                                        | 7                 | 83              | 26                |              |              |          |                                                     |             |               |                 |
| Compact, grey-brown SILTY<br>SAND                                     |                   | Δ                                                                                                                         |                   |                 |                   | 6-           | -94.14       |          |                                                     |             |               |                 |
| 6                                                                     | .25               | ⊠ SS<br>RC                                                                                                                | 8<br>1            | 8               | 50+               |              |              | •        |                                                     |             |               |                 |
|                                                                       |                   | _                                                                                                                         | •                 |                 |                   |              |              |          |                                                     |             |               |                 |
|                                                                       |                   | _                                                                                                                         |                   |                 |                   | 7-           | -93.14       |          |                                                     |             |               |                 |
| BEDROCK: Grey limestone with                                          |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     |             |               |                 |
| shale                                                                 |                   | RC                                                                                                                        | 2                 |                 |                   | 8-           | 92.14        |          |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     |             |               |                 |
|                                                                       |                   | _                                                                                                                         |                   |                 |                   | 9-           | -91.14       |          |                                                     |             |               |                 |
| <u>^</u>                                                              |                   | RC                                                                                                                        | 3                 | 94              | 82                |              |              |          |                                                     |             |               |                 |
| 9                                                                     | .63               |                                                                                                                           |                   |                 |                   |              |              |          |                                                     |             | <u></u>       | <u>∔∵</u> F     |
| (GWL @ 5.60m - June 11, 2019)                                         |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     |             |               |                 |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              | 100      |                                                     |             | 400 5         |                 |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              |          |                                                     | 300<br>Rdg. | (ppm)         | 00              |
|                                                                       |                   |                                                                                                                           |                   |                 |                   |              |              | ▲ Full G | as Res                                              | sp. △ M     | lethane Elim. |                 |

| patersongr                              |        | -        |        | sulting       |                     |                | nvironm | ental Site A                           |                                     | T DATA          |                                                                                                                                                                                                                                    |
|-----------------------------------------|--------|----------|--------|---------------|---------------------|----------------|---------|----------------------------------------|-------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATUM       TBM - Top of Bell Canada    | manh   | nole c   | over l | ocated        | <b>Ot</b><br>d on s | tawa, Or       | ntario  |                                        | FILE NO.                            | PE4629          |                                                                                                                                                                                                                                    |
| Stittsville Main Street. Ass<br>REMARKS | umed   | eleva    | tion = | = 100.0       | 00m.                |                |         | HOLE NO.                               | )                                   |                 |                                                                                                                                                                                                                                    |
| BORINGS BY CME 55 Power Auger           |        |          |        | D             | ATE 2               | re 2019 June 3 |         |                                        | HOLE NO.                            | BH 2            |                                                                                                                                                                                                                                    |
|                                         | PLOT   |          | SAN    | IPLE          |                     | DEPTH          | ELEV.   |                                        | oto Ionization Detector             |                 |                                                                                                                                                                                                                                    |
| SOIL DESCRIPTION                        |        | E        | BER    | TERY          | VALUE<br>r RQD      | (m)            | (m)     |                                        | ile Organic F                       |                 | Monitoring Well<br>Construction                                                                                                                                                                                                    |
| GROUND SURFACE                          | STRATA | ТҮРЕ     | NUMBER | %<br>RECOVERY | N VA<br>or F        |                |         | C Lower                                | Explosive                           | e Limit %<br>80 | Monit                                                                                                                                                                                                                              |
|                                         |        |          |        |               |                     | 0-             | -99.86  |                                        |                                     |                 |                                                                                                                                                                                                                                    |
| FILL: Brown sand with brick             |        | ss       | 1      | 42            | 2                   | 1-             | -98.86  | •••••••••••••••••••••••••••••••••••••• |                                     |                 | մյունը ներերերին ներերերին երերերին երերերին երերերին երերերին երերերին երերերին երերերին երերերին երերերին եր<br>Առուս եւ երերերին երեր |
| 2.13                                    |        | ss       | 2      | 12            | 5                   | 2-             | -97.86  | •                                      |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        | ss       | 3      | 75            | 8                   |                |         | •                                      |                                     |                 |                                                                                                                                                                                                                                    |
| oose to compact, light brown<br>AND     |        | ⊥<br>∏ss | 4      | 67            | 13                  | 3-             | 96.86   |                                        |                                     |                 | וון לוון לוון לוון לוון לוון לוון לוון                                                                                                                                                                                             |
|                                         |        |          | 4      | 07            | 15                  |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        | ss       | 5      | 58            | 19                  | 4-             | -95.86  | •                                      |                                     |                 | TITITI<br>T                                                                                                                                                                                                                        |
|                                         |        | ss       | 6      | 71            | 18                  |                | 04.90   | •                                      |                                     |                 |                                                                                                                                                                                                                                    |
| 5.61                                    |        | ∐<br>∑ss | 7      | 100           | 50+                 | 5-             | -94.86  |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        | Δ 00     | •      |               |                     | 6-             | -93.86  |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        | RC       | 1      | 82            | 60                  |                | 00.00   |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        |          |        |               |                     | 7-             | -92.86  |                                        |                                     |                 |                                                                                                                                                                                                                                    |
| BEDROCK: Grey limestone with shale      |        |          |        |               |                     |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        | RC       | 2      | 100           | 97                  | 8-             | 91.86   |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        |          |        |               |                     |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
| 9.07<br>End of Borehole                 |        | RC       | 3      | 100           | 100                 | 9-             | 90.86   |                                        |                                     |                 |                                                                                                                                                                                                                                    |
| (GWL @ 4.56m - June 11, 2019)           |        |          |        |               |                     |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        |          |        |               |                     |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        |          |        |               |                     |                |         |                                        |                                     |                 |                                                                                                                                                                                                                                    |
|                                         |        |          |        |               |                     |                |         |                                        | 200 300<br>agle Rdg.<br>s Resp. △ M |                 | 00                                                                                                                                                                                                                                 |

|                                           |                      |                 |                                                                  |              |                | SOIL PROFILE AND TEST DATA                      |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|-------------------------------------------|----------------------|-----------------|------------------------------------------------------------------|--------------|----------------|-------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|------------------------------------------|--|--|--|
| 154 Colonnade Road South, Ottawa, Or      |                      | -               |                                                                  | ineers       | 15             | 1520 Stittsville Main Street<br>Ottawa, Ontario |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           | a man<br>sumed       | nole c<br>eleva | d on sidewalk, east side of <b>FILE NO.</b><br>DOm. <b>PE462</b> |              |                |                                                 |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
| REMARKS<br>BORINGS BY CME 55 Power Auger  |                      |                 | ATE 2                                                            | 2019 Jun     | e 3            |                                                 | HOLE NO.                                                         | BH 3                                                                                                                                                                          |                                       |        |                                          |  |  |  |
|                                           | 당 SAMI               |                 |                                                                  |              |                |                                                 | DEPTH ELEV. Photo Ionization Det                                 |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
| SOIL DESCRIPTION                          |                      | ы               | ER                                                               | ERY          | VALUE<br>r RQD | (m)                                             | (m)                                                              | Photo Ionization Detector       Image: Constraint of the sector         ● Volatile Organic Rdg. (ppm)         ○ Lower Explosive Limit %         20       40       60       80 |                                       |        |                                          |  |  |  |
| GROUND SURFACE                            | STRATA               |                 |                                                                  | N VA<br>or F |                |                                                 | <ul> <li>Lower Explosive Limit %</li> <li>20 40 60 80</li> </ul> |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      |                 |                                                                  |              |                | 0-                                              | -99.85                                                           |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      | ss              | 1                                                                | 62           | 11             | 1-                                              | -98.85                                                           | •                                                                                                                                                                             |                                       |        | տեղերերերերերերերերերերերերերերերերերերե |  |  |  |
|                                           |                      | ss              | 2                                                                | 62           | 16             |                                                 | 07.05                                                            | •                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · |        | <u>սիդիդիդոր</u>                         |  |  |  |
| Compact, light brown <b>SAND</b>          |                      |                 |                                                                  | 70           |                | 2-                                              | -97.85                                                           |                                                                                                                                                                               |                                       |        | լլլլլլլլլլ                               |  |  |  |
|                                           |                      | ss<br>7         | 3                                                                | 79           | 20             | 3-                                              | -96.85                                                           |                                                                                                                                                                               |                                       |        | <u>իրիդիրի</u>                           |  |  |  |
|                                           |                      | ss              | 4                                                                | 62           | 21             |                                                 | •                                                                | •                                                                                                                                                                             |                                       |        | իրիրի<br>Սրիրի                           |  |  |  |
| - grey-brown by 3.8m depth                |                      | ss              | 5                                                                | 71           | 24             | 4-                                              | -95.85                                                           | •                                                                                                                                                                             |                                       |        | <u>սիդորիսիս</u>                         |  |  |  |
|                                           |                      | ss              | 6                                                                | 79           | 25             | 5-                                              | -94.85                                                           | •                                                                                                                                                                             |                                       |        | <u>լիիկիկի</u><br>≱<br>իլիկիկիկ          |  |  |  |
| 5.84                                      | 4                    | _               |                                                                  |              |                |                                                 |                                                                  |                                                                                                                                                                               |                                       |        | իկիկիկիկի<br>իկիկիկիկի                   |  |  |  |
|                                           |                      | RC              | 1                                                                | 100          | 71             | 6-                                              | -93.85                                                           |                                                                                                                                                                               |                                       | ······ |                                          |  |  |  |
| <b>BEDROCK:</b> Grey limestone with shale |                      |                 |                                                                  |              |                | 7-                                              | -92.85                                                           |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      | RC              | 2                                                                | 100          | 73             | 8-                                              | -91.85                                                           |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      |                 |                                                                  |              |                |                                                 |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
| 9.32                                      | $\mathbf{p}_{1}^{+}$ | RC              | 3                                                                | 100          | 92             | 9-                                              | -90.85                                                           |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
| (GWL @ 4.24m - June 11, 2019)             |                      |                 |                                                                  |              |                |                                                 |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      |                 |                                                                  |              |                |                                                 |                                                                  |                                                                                                                                                                               |                                       |        |                                          |  |  |  |
|                                           |                      |                 |                                                                  |              |                |                                                 |                                                                  |                                                                                                                                                                               | 200 300<br>Eagle Rdg.<br>as Resp. △ M |        | 00                                       |  |  |  |

Consulting Engineers

## SOIL PROFILE AND TEST DATA

FILE NO.

**PE2459** 

Phase I - II Environmental Site Assessment 1524 and 1526 Main Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

#### DATUM

| REMARKS                                                              |                                                                                                          |           |        |               |                   |         |       |                                              |                                       |                                 |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|--------|---------------|-------------------|---------|-------|----------------------------------------------|---------------------------------------|---------------------------------|
| BORINGS BY CME 75 Power Auger                                        |                                                                                                          |           | D      | ATE S         | 9 Nov 11          |         | BH 1  |                                              |                                       |                                 |
| SOIL DESCRIPTION                                                     | PLOT                                                                                                     | SAMPLE    |        |               |                   | DEPTH   | ELEV. | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone |                                       |                                 |
|                                                                      | STRATA I                                                                                                 | ТҮРЕ      | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m) (m) |       |                                              | r Explosive Limit %                   | Monitoring Well<br>Construction |
| GROUND SURFACE                                                       | ST                                                                                                       | H         | ŊŊ     | REC           | N OF              |         |       | 20                                           | 40 60 80                              | Mo                              |
| FILL: Brown silty sand with gravel, occasional pieces of coal        |                                                                                                          | ss        | 1      | 25            | 16                | 0-      | -     |                                              |                                       |                                 |
| <u>1.4</u>                                                           | 5                                                                                                        | ss        | 2      | 33            | 5                 | 2-      | -     |                                              |                                       |                                 |
| Loose to compact, brown <b>SILTY SAND</b>                            |                                                                                                          | ss        | 3      | 50            | 7                 | 3-      | -     | · · · · · · · · · · · · · · · · · · ·        | · · · · · · · · · · · · · · · · · · · |                                 |
|                                                                      |                                                                                                          | ss        | 4      | 58            | 25                |         | Z     | ······································       | · · · · · · · · · · · · · · · · · · · |                                 |
|                                                                      |                                                                                                          | ss<br>7   | 5      | 50            | 21                | 4-      | -     |                                              |                                       |                                 |
| <u>5.2</u>                                                           |                                                                                                          | ss        | 6      | 58            | 32                | 5-      | - 2   |                                              |                                       |                                 |
| Dense to very dense,<br>grey-brown SILTY<br>SAND-GRAVEL with cobbles |                                                                                                          | ∦ ss<br>∏ | 7      | 67            | 42                | 6-      | -     |                                              |                                       |                                 |
| 6.9                                                                  | 00<br><u>1</u><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | x ss      | 8<br>9 | 82<br>75      | 50+<br>50+        |         | 2     |                                              | · · · · · · · · · · · · · · · · · · · |                                 |
| End of Borehole<br>Practical refusal to augering @<br>6.96m depth    |                                                                                                          |           |        |               |                   |         |       | 100                                          | 200 300 400 50                        | 00                              |
|                                                                      |                                                                                                          |           |        |               |                   |         |       | Photo                                        | Organic Rdg. (ppm)                    |                                 |
|                                                                      |                                                                                                          |           |        |               |                   |         |       |                                              | - Organic huy. (ppm)                  |                                 |

Consulting Engineers

# SOIL PROFILE AND TEST DATA

FILE NO.

**PE2459** 

Phase I - II Environmental Site Assessment 1524 and 1526 Main Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

### DATUM

#### REMARKS

| BORINGS BY CME 75 Power Auger                                     |          |        |        | D             | ATE S             | 9 Nov 11 |       | HOLE NO. BH 2                                                                                                       |              |
|-------------------------------------------------------------------|----------|--------|--------|---------------|-------------------|----------|-------|---------------------------------------------------------------------------------------------------------------------|--------------|
| SOIL DESCRIPTION 법                                                |          |        | SAMPLE |               |                   | DEPTH    | ELEV. | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone                                                                        |              |
|                                                                   |          | ЭДХТ   | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m)      | (m)   | ○ Lower Explosive Limit %                                                                                           | Construction |
| GROUND SURFACE                                                    | STRATA   |        | Z      | RE            | z <sup>o</sup>    | 0-       | _     |                                                                                                                     |              |
| <b>FILL:</b> Brown silty sand with gravel                         |          | ss     | 1      | 33            | 17                | 1-       | - 2   |                                                                                                                     |              |
| 2                                                                 | 21       | ss     | 2      | 17            | 12                | 2-       | _     |                                                                                                                     |              |
|                                                                   |          | ss     | 3      | 67            | 14                | 3-       | _     |                                                                                                                     |              |
| Compact, brown SILTY SAND                                         |          | ss     | 4      | 58            | 20                |          | 2     |                                                                                                                     |              |
|                                                                   |          | ss<br> | 5      | 58            | 18                | 4-       | - 2   |                                                                                                                     |              |
| 5.                                                                | 26<br>   | SS<br> | 6      | 67            | 26                | 5-       |       |                                                                                                                     |              |
| Very dense, grey <b>SILTY</b><br><b>SAND-GRAVEL</b> with cobbles  |          | SS SS  | 7      | 67            | 50+               | 6-       | -     |                                                                                                                     |              |
| 6.                                                                | 71<br>71 | ⊠ ss   | 8      | 100           | 50+               |          |       |                                                                                                                     |              |
| End of Borehole<br>Practical refusal to augering @<br>6.71m depth |          |        |        |               |                   |          |       |                                                                                                                     |              |
| (GWL @ 6.14m-Nov. 14/11)                                          |          |        |        |               |                   |          |       |                                                                                                                     |              |
|                                                                   |          |        |        |               |                   |          |       | 100       200       300       400       500         Photo Ionization Detector         △ Volatile Organic Rdg. (ppm) |              |

Consulting Engineers

# SOIL PROFILE AND TEST DATA

FILE NO.

**PE2459** 

Phase I - II Environmental Site Assessment 1524 and 1526 Main Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

#### DATUM

### REMARKS

| BORINGS BY CME 75 Power Auge                                    | er                                                                                                                                                                                                                                                                                                                                                     |             |        | D             | ATE S             | 9 Nov 11 |       |     | HOLE NO. BH 3                                              |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------|-------------------|----------|-------|-----|------------------------------------------------------------|
| SOIL DESCRIPTION                                                | PLOT                                                                                                                                                                                                                                                                                                                                                   |             | SAN    | IPLE          |                   | DEPTH    | ELEV. |     | esist. Blows/0.3m                                          |
|                                                                 | STRATA F                                                                                                                                                                                                                                                                                                                                               | ТҮРЕ        | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m)      | (m)   |     | esist. Blows/0.3m<br>0 mm Dia. Cone<br>r Explosive Limit % |
| GROUND SURFACE                                                  | ß                                                                                                                                                                                                                                                                                                                                                      |             | N      | RE            | zÖ                | 0-       |       | 20  | 40 60 80 Š                                                 |
| FILL: Brown silty sand with gravel                              | _ 0.60                                                                                                                                                                                                                                                                                                                                                 | ×<br>×<br>× |        |               |                   | 0-       |       |     |                                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                        | ss          | 1      | 50            | 6                 | 1-       |       |     |                                                            |
| Loose to compact, brown                                         |                                                                                                                                                                                                                                                                                                                                                        | ss          | 2      | 42            | 2                 | 2-       |       |     |                                                            |
| Loose to compact, brown SILTY SAND                              |                                                                                                                                                                                                                                                                                                                                                        | ss          | 3      | 67            | 6                 | 3-       |       |     |                                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                        | ss          | 4      | 67            | 15                |          | 2     |     |                                                            |
|                                                                 | 4. <u>50</u>                                                                                                                                                                                                                                                                                                                                           | ss          | 5      | 58            | 21                | 4-       | 2     | A   |                                                            |
| Very dense, grey-brown<br><b>SILTY SAND-GRAVEL</b> with cobbles | بالمربع المربع المر<br>موجع المربع ال<br>موجع المربع ال | ss          | 6      | 80            | 50+               | 5-       | -     |     |                                                            |
| End of Borehole                                                 | _ <u>5</u> .49                                                                                                                                                                                                                                                                                                                                         |             |        |               |                   |          |       |     | · · · · · · · · · · · · · · · · · · ·                      |
| Practical refusal to augering @<br>5.49m depth                  |                                                                                                                                                                                                                                                                                                                                                        |             |        |               |                   |          |       |     |                                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                        |             |        |               |                   |          |       | 100 | 200 300 400 500                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                        |             |        |               |                   |          |       |     | Ionization Detector<br>e Organic Rdg. (ppm)                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                        |             |        |               |                   |          |       |     |                                                            |

Consulting Engineers

# SOIL PROFILE AND TEST DATA

FILE NO.

Phase I - II Environmental Site Assessment 1524 and 1526 Main Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

#### DATUM

**PE2459** REMARKS HOLE NO. BH 4 BORINGS BY CME 75 Power Auger DATE 9 Nov 11 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE % Lower Explosive Limit % 0 40 60 80 20 **GROUND SURFACE** 0 1,0,0,0,0,0,0,0 FILL: Brown silty sand, trace gravel and boulders 1 SS 1 7 33 1.45 SS 2 67 13 2 Compact, brown SILTY SAND SS 3 67 16 3 SS 4 75 21 3.73 4 SS 5 58 46 Dense to very dense, brown SILTY SAND-GRAVEL with SS 6 75 37 5 cobbles Ţ SS 7 59 50 +6 SS 8 75 50+ <u>6.32</u> End of Borehole Practical refusal to augering @ 6.32m depth (GWL @ 5.12m-Nov. 9/11) 200 300 400 500 100 Photo Ionization Detector △ Volatile Organic Rdg. (ppm)

Consulting Engineers

# SOIL PROFILE AND TEST DATA

FILE NO.

**PE2459** 

Phase I - II Environmental Site Assessment 1524 and 1526 Main Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

#### DATUM

### REMARKS

| REMARKS                                                                            |                                                                                 |      |        |               |                   |              |              | HOLE NO. DU E                                                    |                 |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|--------|---------------|-------------------|--------------|--------------|------------------------------------------------------------------|-----------------|
| BORINGS BY CME 75 Power Auger                                                      | PLOT                                                                            |      |        |               |                   | 9 Nov 11     |              | Pen. Resist. Blows/0.3m                                          |                 |
| SOIL DESCRIPTION                                                                   |                                                                                 |      | ER     | ERY           | SD<br>D<br>U      | DEPTH<br>(m) | ELEV.<br>(m) | • 50 mm Dia. Cone                                                | Monitoring Well |
|                                                                                    | STRATA                                                                          | ЭДҮТ | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |              |              | <ul> <li>Lower Explosive Limit %</li> <li>20 40 60 80</li> </ul> | Monit           |
| GROUND SURFACE                                                                     |                                                                                 |      |        |               |                   | 0-           | _            |                                                                  |                 |
| 0.                                                                                 | <u>25</u>                                                                       | SS   | 1      | 42            | 3                 | 1-           | _            |                                                                  |                 |
| Loose to compact, brown<br>SILTY SAND                                              |                                                                                 | SS   | 2      | 42            | 5                 |              |              |                                                                  |                 |
|                                                                                    |                                                                                 | ss   | 3      | 92            | 21                | 2-           | -            |                                                                  |                 |
| - grey-brown by 3.0m depth                                                         |                                                                                 | ss   | 4      | 75            | 22                | 3-           | -            |                                                                  |                 |
| 4                                                                                  | 50                                                                              | ss   | 5      | 67            | 20                | 4-           | -            |                                                                  |                 |
|                                                                                    |                                                                                 | ss   | 6      | 75            | 32                | 5-           | -            |                                                                  |                 |
| Dense to very dense, grey<br>SILTY SAND-GRAVEL with<br>cobbles and shale fragments |                                                                                 | ss   | 7      | 67            | 50                | 6-           | _            |                                                                  |                 |
| 6                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ss   | 8      | 44            | 50+               |              |              |                                                                  |                 |
| End of Borehole                                                                    |                                                                                 |      |        |               |                   |              |              | <u>1</u>                                                         |                 |
| Practical refusal to augering @<br>6.81m depth                                     |                                                                                 |      |        |               |                   |              |              |                                                                  |                 |
|                                                                                    |                                                                                 |      |        |               |                   |              |              | 100 200 300 400 500                                              | 0               |
|                                                                                    |                                                                                 |      |        |               |                   |              |              | Photo Ionization Detector<br>△ Volatile Organic Rdg. (ppm)       |                 |

# SYMBOLS AND TERMS

### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

| Relative Density | 'N' Value | Relative Density % |
|------------------|-----------|--------------------|
| Very Loose       | <4        | <15                |
| Loose            | 4-10      | 15-35              |
| Compact          | 10-30     | 35-65              |
| Dense            | 30-50     | 65-85              |
| Very Dense       | >50       | >85                |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

| Consistency | Undrained Shear Strength (kPa) | 'N' Value |  |
|-------------|--------------------------------|-----------|--|
| Very Soft   | <12                            | <2        |  |
| Soft        | 12-25                          | 2-4       |  |
| Firm        | 25-50                          | 4-8       |  |
| Stiff       | 50-100                         | 8-15      |  |
| Very Stiff  | 100-200                        | 15-30     |  |
| Hard        | >200                           | >30       |  |

## SYMBOLS AND TERMS (continued)

### **SOIL DESCRIPTION (continued)**

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

#### RQD % ROCK QUALITY

| 90-100 | Excellent, intact, very sound                                |
|--------|--------------------------------------------------------------|
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |

### SAMPLE TYPES

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard |
|----|---|---------------------------------------------------------------------------------|
|    |   | Penetration Test (SPT))                                                         |

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

## SYMBOLS AND TERMS (continued)

### **GRAIN SIZE DISTRIBUTION**

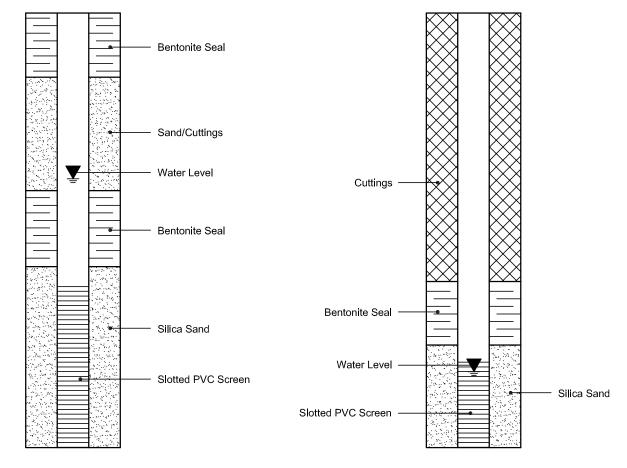
| MC%<br>LL<br>PL<br>PI                                          | -<br>-<br>- | Natural moisture content or water content of sample, %<br>Liquid Limit, % (water content above which soil behaves as a liquid)<br>Plastic limit, % (water content above which soil behaves plastically)<br>Plasticity index, % (difference between LL and PL) |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Dxx                                                            | -           | Grain size which xx% of the soil, by weight, is of finer grain sizes<br>These grain size descriptions are not used below 0.075 mm grain size                                                                                                                  |  |  |  |  |  |  |
| D10                                                            | -           | Grain size at which 10% of the soil is finer (effective grain size)                                                                                                                                                                                           |  |  |  |  |  |  |
| D60                                                            | -           | Grain size at which 60% of the soil is finer                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Сс                                                             | -           | Concavity coefficient = $(D30)^2 / (D10 \times D60)$                                                                                                                                                                                                          |  |  |  |  |  |  |
| Cu                                                             | -           | Uniformity coefficient = D60 / D10                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Cc and Cu are used to assess the grading of sands and gravels: |             |                                                                                                                                                                                                                                                               |  |  |  |  |  |  |

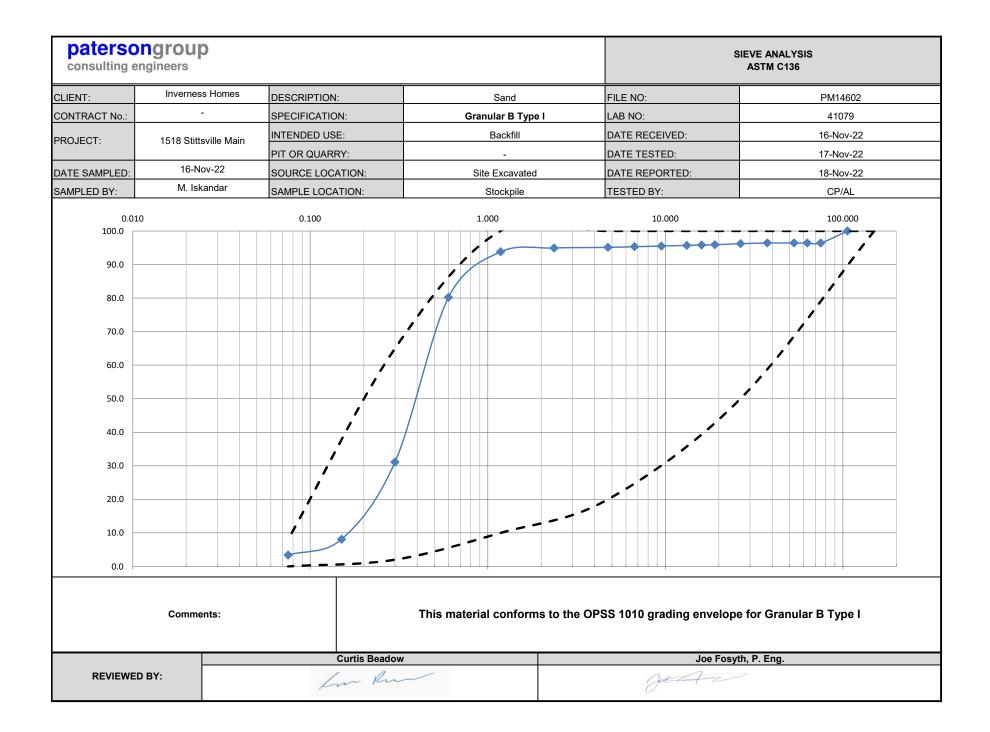
Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

## **CONSOLIDATION TEST**

| p'o      | -  | Present effective overburden pressure at sample depth          |
|----------|----|----------------------------------------------------------------|
| p'c      | -  | Preconsolidation pressure of (maximum past pressure on) sample |
| Ccr      | -  | Recompression index (in effect at pressures below p'c)         |
| Cc       | -  | Compression index (in effect at pressures above p'c)           |
| OC Ratio | )  | Overconsolidaton ratio = $p'_c / p'_o$                         |
| Void Rat | io | Initial sample void ratio = volume of voids / volume of solids |
| Wo       | -  | Initial water content (at start of consolidation test)         |

### PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.


## SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill $\nabla$ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

### MONITORING WELL AND PIEZOMETER CONSTRUCTION



PIEZOMETER CONSTRUCTION





| paterson<br>consulting eng | ineers             |                     |                                     |                                |                | SIEVE AN<br>ASTM |           |
|----------------------------|--------------------|---------------------|-------------------------------------|--------------------------------|----------------|------------------|-----------|
| LIENT:                     | Invernes           | s Homes             | DESCRIPTION:                        | Si                             | and            | FILE NO.:        | PM14602   |
| ONTRACT NO.:               |                    | -                   | SPECIFICATION:                      | Granula                        | r B Type I     | LAB NO.:         | 41079     |
| PROJECT:                   | 1518 Stitte        | sville Main         | INTENDED USE:                       | ENDED USE: Backfill DATE REC'D |                |                  |           |
| NOJECT.                    | 1010 300           |                     | PIT OR QUARRY                       | :                              | -              | DATE TESTED:     | 17-Nov-22 |
| DATE SAMPLED:              | 16-N               | ov-22               | SOURCE LOCAT                        | ION:                           | Site Excavated | DATE REPT'D:     | 18-Nov-22 |
| SAMPLED BY:                | M. Isk             | andar               | SAMPLE LOCATI                       | ON:                            | Stockpile      | TESTED BY:       | CP/AL     |
| VEIGHT BEFORE              | WASH               |                     |                                     |                                |                | 24339.6          |           |
| VEIGHT AFTER W             | ASH                |                     |                                     |                                |                |                  |           |
| SIEVE SIZE (mm)            | WEIGHT<br>RETAINED | PERCENT<br>RETAINED | PERCENT<br>PASSING                  | LOWER SPEC                     | UPPER SPEC     | REM              | ARK       |
| 150                        |                    |                     |                                     | 100.0                          | 100.0          |                  |           |
| 106                        | 0.0                | 0.0                 | 100.0                               |                                |                |                  |           |
| 75                         | 888.3              | 3.6                 | 96.4                                |                                |                |                  |           |
| 63                         | 888.3              | 3.6                 | 96.4                                |                                |                |                  |           |
| 53                         | 888.3              | 3.6                 | 96.4                                |                                |                |                  |           |
| 37.5                       | 888.3              | 3.6                 | 96.4                                |                                |                |                  |           |
| 26.5                       | 932.2              | 3.8                 | 96.2                                | 50.0                           | 100.0          |                  |           |
| 19                         | 1004.0             | 4.1                 | 95.9                                |                                |                |                  |           |
| 16                         | 1028.8             | 4.2                 | 95.8                                |                                |                |                  |           |
| 13.2                       | 1040.1             | 4.3                 | 95.7                                |                                |                |                  |           |
| 9.5                        | 1096.8             | 4.5                 | 95.5                                |                                |                |                  |           |
| 6.7                        | 1146.0             | 4.7                 | 95.3                                |                                |                | for physic       | cals only |
| 4.75                       | 1196.7             | 4.9                 | 95.1                                | 20.0                           | 100.0          |                  | <u>,</u>  |
| PAN                        | 23101.7            |                     |                                     |                                |                |                  |           |
| SIEVE CHECK CO             |                    | 0.17                |                                     |                                | 0.3% max.      |                  |           |
|                            | VE (Before Wash)   | -                   |                                     |                                |                | 295              |           |
| VIEGHT FINE SIE            |                    |                     |                                     |                                |                | 286.7            |           |
| SIEVE SIZE (mm)            | WEIGHT<br>RETAINED | PERCENT<br>RETAINED | PERCENT<br>PASSING                  | PERCENT<br>PASSING<br>COMBINED | LOWER SPEC     | UPPER SPEC       | REMARK    |
| 2.36                       | 0.5                | 0.2                 | 99.8                                | 94.9                           |                |                  |           |
| 1.18                       | 3.9                | 1.3                 | 98.7                                | 93.8                           | 10.0           | 100.0            |           |
| 0.6                        | 46.2               | 15.7                | 84.3                                | 80.2                           |                |                  |           |
| 0.3                        | 198.6              | 67.3                | 32.7                                | 31.1                           | 2.0            | 65.0             |           |
| 0.15                       | 269.8              | 91.5                | 8.5                                 | 8.1                            |                |                  |           |
| 0.075                      | 284.3              | 96.4                | 3.6                                 | 3.4                            | 0.0            | 8.0              |           |
| PAN                        | 286.7              |                     |                                     |                                |                |                  |           |
| SIEVE CHECK FIN            |                    | 0.00                |                                     | 0.3% max.                      | Į              | REFERENCE        | MATERIAL  |
| DTHER TESTS                |                    | Come ato d Du       |                                     |                                | RESULT<br>1790 | LAB NO.          | RESULT    |
| ASTM D698<br>ASTM D698     |                    |                     | y Density kg/m3<br>loisture Content |                                | 14.3%          |                  |           |
|                            |                    |                     |                                     |                                |                |                  |           |
|                            |                    | Curtis Beadow       |                                     |                                |                | /th, P. Eng.     |           |
| REVIEWED BY:               | h                  | n An                |                                     |                                | Je-            | 72               |           |



### Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 30462 Report Date: 29-Jul-2020

Order Date: 23-Jul-2020

Project Description: PE4767

|                          | Client ID:    | BH10-20-SS5     | - | - | - |
|--------------------------|---------------|-----------------|---|---|---|
|                          | Sample Date:  | 23-Jul-20 09:30 | - | - | - |
|                          | Sample ID:    | 2030452-01      | - | - | - |
|                          | MDL/Units     | Soil            | - | - | - |
| Physical Characteristics |               |                 |   |   |   |
| % Solids                 | 0.1 % by Wt.  | 92.4            | - | - | - |
| General Inorganics       |               |                 |   |   |   |
| рН                       | 0.05 pH Units | 7.80            | - | - | - |
| Resistivity              | 0.10 Ohm.m    | 125             | - | - | - |
| Anions                   |               |                 |   |   |   |
| Chloride                 | 5 ug/g dry    | 11              | - | - | - |
| Sulphate                 | 5 ug/g dry    | <5              | - | - | - |

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

# **APPENDIX 2**

FIGURE 1 - KEY PLAN

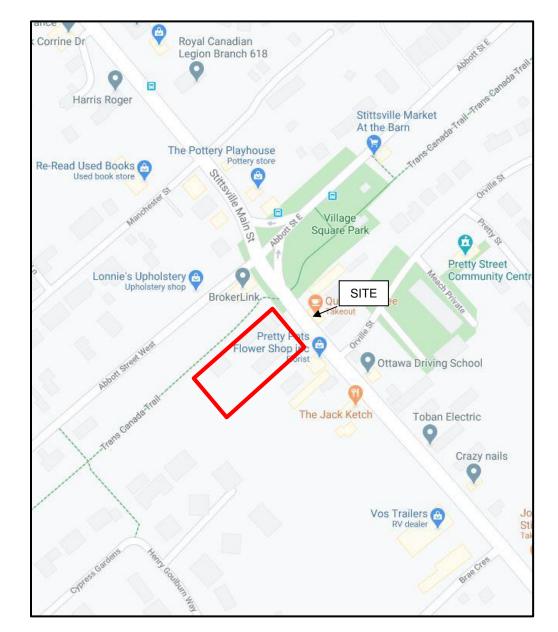

FIGURE 2 - AERIAL PHOTOGRAPH - 2014

FIGURE 3 - AERIAL PHOTOGRAPH - 2017

DRAWING PG5418-1 - TEST HOLE LOCATION PLAN

# **KEY PLAN**

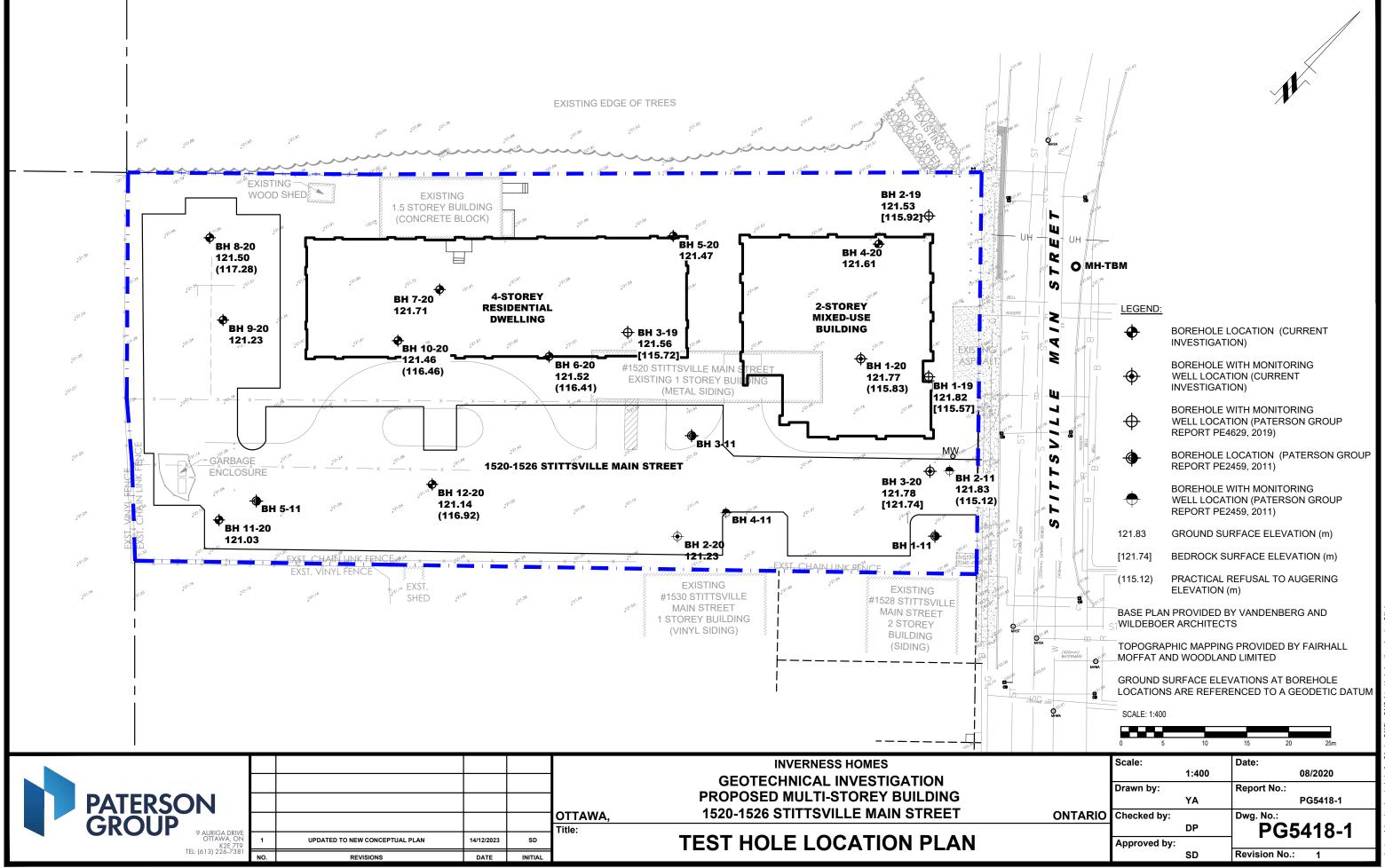
# **FIGURE 1**





# FIGURE 2

Aerial Photograph - 2014


patersongroup



# FIGURE 3

Aerial Photograph - 2017

patersongroup



# **APPENDIX 3**

SITE MEMORANDUM DOCUMENTING FIELD DENSITY TESTING



## Site Memorandum: Field Density Testing

| TO:       | Inverness Homes Inc.                                                          | DATE: Jun 05.2023 | 8:00 AM | FILE: PM14602 |
|-----------|-------------------------------------------------------------------------------|-------------------|---------|---------------|
| PROJECT:  | 1518 Stittsville Main Street - Excavation Backfill                            |                   |         |               |
| ADDRESS:  | 1518 Stittsville Main Street, Stittsville                                     |                   |         |               |
| LOCATION: | Sand Backfill - for the location see the sketch marked as Excavation Location |                   |         |               |
| AUTHOR:   | Mohit Taheliyani                                                              |                   |         |               |
|           |                                                                               |                   |         |               |

Note: If any recommendations provided by the Paterson Group result in an additional cost, the contractor shall obtain authorization from the owner directly, prior to undertaking the work.

#### COMMENTS:

Further to your request, Paterson Group (Paterson) carried out a site visit to conduct a field density testing at the aforementioned location.

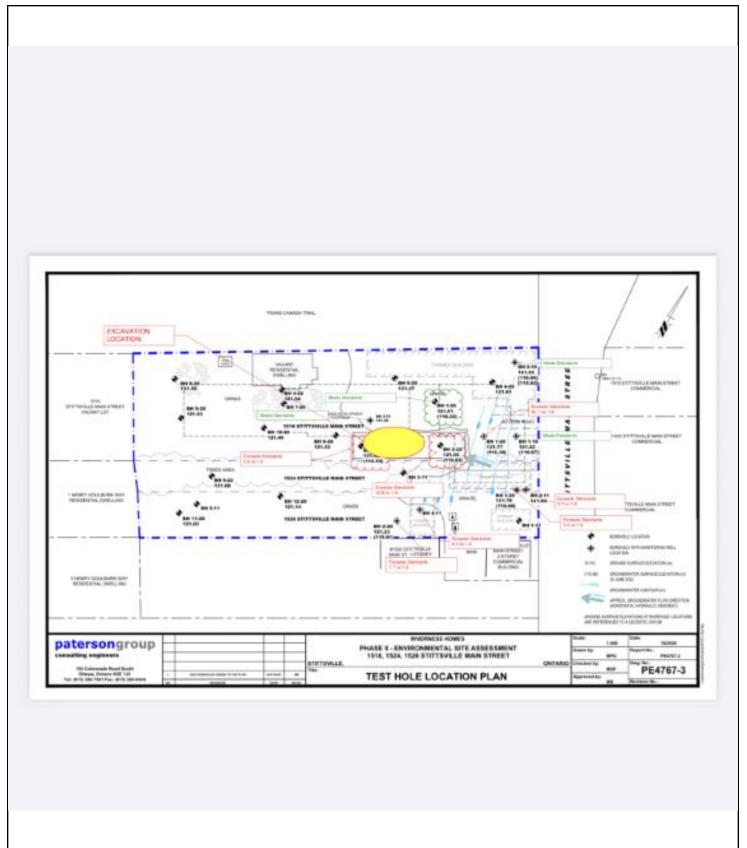
# Field Density Test: Engineered Fill : Sand Backfill - for the location see the sketch marked as Excavation Location

A total of flirty eight (48) field density tests were conducted on a native sand.

#### **Conforming:**

Those results conform to the minimum required 98.0% SPMDD.

### TEST RESEARCE RESULT & RESULT


MOHIT TAHELIYANI



# Site Memorandum: Field Density Testing

9 Auriga Drive Ottawa, Ontario. K2E 7T9 Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

#### **TEST LOCATION PLAN**







# Site Memorandum: Field Density Testing

Ottawa, Ontario. K2E 7T9 Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca



