

DESIGN BRIEF

FOR

BARRHAVEN CONSERVANCY DEVELOPMENT CORPORATION

PROPOSED RESIDENTIAL SITE PLAN

CONSERVANCY STACKED TOWNS

CITY OF OTTAWA

PROJECT NO.: 24-1398

JANUARY 2025 © DSEL

DESIGN BRIEF FOR PROPOSED RESIDENTIAL SITE PLAN

BARRHAVEN CONSERVANCY DEVELOPMENT CORPORATION

PROJECT NO: 24-1398

TABLE OF CONTENTS

1.0	INTRODUCTION 1
1.1	Existing Conditions
1.2	Site Plan Layout2
1.3	Consultation Summary2
1.4	Required Permits / Approvals2
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS
2.1	Existing Studies, Guidelines, and Reports4
3.0	WATER SUPPLY SERVICING
3.1	Existing Water Supply Services7
3.2	Water Supply Servicing Design7
3.3	Water Supply Conclusion
4.0	WASTEWATER SERVICING
4.1	Existing Wastewater Services9
4.2	Wastewater Design9
4.3	Wastewater Servicing Conclusions 10
5.0	STORMWATER MANAGEMENT 11
5.1	Existing Stormwater Services11
5.2	Stormwater Management Design and Objectives11
5.3	Hydraulic Grade Line Analysis 12
5.4	Major System Design
5.5	Grading and Drainage Design13
5.6	Quality Controls
5.7	Stormwater Servicing Conclusions 14
6.0	EROSION AND SEDIMENT CONTROL 15
7.0	CONCLUSION AND RECOMMENDATIONS

DRAWINGS

Drawing 0	Title Page and Key Plan
Drawing 1	General Notes
Drawing 2	Details and Tables
Drawing 3	Details
Drawing 4	TWSI Details
Drawings 5	General Plan
Drawings 6-8	Plan and Profiles
Drawing 9	Grading Plan
Drawing 10	Cross-sections
Drawing 11	Sanitary Drainage Plan
Drawing 12	Storm Drainage Plan
Drawing 13	100-Year Static Pond Area and ICDs
Drawings 14-15	Erosion and Sediment Control Plans

TABLES

- Table 1:Development Statistics for BCDC East Condo Site PlanTable 2:Potential Required Permits/ApprovalsTable 3:Water Supply Design CriteriaTable 4:Water Demand Proposed Conditions
- Table 5: Wastewater Design Criteria
- Table 6: Storm Sewer Design Criteria

APPENDICES

Appendix A	General
Appendix B	Water Supply
Appendix C	Wastewater Collection
Appendix D	Stormwater Management

DESIGN BRIEF FOR PROPOSED RESIDENTIAL SITE PLAN

BARRHAVEN CONSERVANCY DEVELOPMENT CORPORATION

CITY OF OTTAWA PROJECT NO: 24-1398

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Design Brief in support of a site plan application for the stacked townhouse condo block within Barrhaven Conservancy East on behalf of the Barrhaven Conservancy Development Corporation (BCDC).

The overall Conservancy land area is approximately 139.7 ha (all land use components) and is located within the City of Ottawa urban boundary in the Barrhaven ward. The Conservancy East development area has previously had detailed design prepared and approved with initial phases of servicing/homebuilding currently under construction. The subject site plan block is within Phase 3 of the Conservancy East lands and is bound by the proposed townhomes fronting Les Emmerson (N) to the north, Les Emmerson (N) to the west, Conservancy Drive to the south, and Mineral Street to the east. The site plan block design (Q4 Architects Inc., December 2024) is provided in **Appendix A**.

The objective of this report is to provide sufficient detail with respect to the availability of site services to support the application of site plan control.

1.1 Existing Conditions

The **Conservancy East** lands containing the site plan block are relatively flat with the existing elevations ranging from 91.9 m in the north to 91 m in the south. All existing flows are either overland to the Jock River or conveyed to the Jock River by way of the Fraser-Clarke Watercourse (and its tributaries) and Borrisokane Road ditches which run through the subject property. The property is within the Jock River watershed and is under the jurisdiction of the RVCA.

1.2 Site Plan Layout

The proposed project consists of 10 blocks of stacked dwellings, above ground parking, walkways, and amenity space. See proposed site plan in **Appendix A**.

The predicted populations currently associated with the development concept are described in the following table below.

Land Use	Total Area (ha)	Projected Residential Units	Residential Population per Unit *	Projected Population
Stacked Townhouses	0.48	196	2.3	451
Parkette/Amenity	0.36			
Roads/parking/walkways	0.92			
Total	1.76	196		451

 Table 1: Development Statistics for BCDC East Condo Site Plan

* NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies.

1.3 Consultation Summary

Consultation with the with City of Ottawa Planning and Engineering Staff was initiated in July 2024 for the Conservancy East Stacked Condo block to review City Standards, submission requirements, and the availability of background information. The subject Site Plan was contemplated in the servicing of the Conservancy East Phase 3 & 4 subdivision area.

1.4 Required Permits / Approvals

The City of Ottawa must approve detailed engineering design drawings and reports prior to construction of the proposed infrastructure identified in this report.

The following additional approvals and permits listed in **Table 2** are expected to be required prior to construction of the municipal infrastructure detailed herein. Other permits and approvals may be required, as detailed in the other studies submitted as part of the Planning Act applications (e.g. *Tree Conservation Report, Phase 1 Environmental Site Assessment, etc.*).

Agency	Permit/Approval Required	Trigger	Remarks
MECP / City of Ottawa	Environmental Compliance Approval	Construction of new sanitary & storm sewers.	MECP is expected to review the stormwater collection system and wastewater collection system by transfer of review.

Table 2: Potential Required Permits/Approvals

MECP	Permit to Take Water	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater will be required during construction, given groundwater conditions and proposed land uses/ municipal infrastructure.
City of Ottawa	MOE Form 1 – Record of Watermains Authorized as a Future Alteration	Construction of watermains.	The City of Ottawa is expected to review the watermains on behalf of the MECP.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following documents were referenced in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, February 5, 2014. (ISDTB-2014-01)
 - Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, September 6, 2016. (PIEDTB-2016-01)
 - Technical Bulletin ISTB-2018-01, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, March 21, 2018. (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-03, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, June, 2018. (ISTB-2018-04)
 - Technical Bulletin ISTB-2019-02, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, July 8, 2019. (ISTB-2019-02)
 - Technical Bulletin IWSTB-2024-04, Screening Criteria Infiltrationtype LIDs for Development, City of Ottawa, September 12, 2024.
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)

- Technical Bulletin ISTB-2018-02 City of Ottawa, March 21, 2018. (ISTB-2018-02)
- Technical Bulletin ISTB-2021-03 City of Ottawa, August 18, 2021 (ISTB-2021-03)
- Technical Bulletin IWSTB-2024-05 City of Ottawa, November 18, 2024 (IWSTB-2024-05)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)
- Mississippi-Rideau Source Water Protection Plan, MVCA & RVCA, August 2014.
- Erosion & Sediment Control Guidelines for Urban Construction,
 Greater Golden Horseshoe Area Conservation Authorities, December 2006.
- Hydraulic Potable Water Assessment for Barrhaven Conservancy Development Corporation Stantec, March 2021 (Stantec Hydraulic Analysis)
- Jock River Reach One Subwatershed Study Stantec, 2007 (Jock River SWS)
- Geotechnical Investigation, Proposed Residential Development, Conservancy Lands East, Ottawa, Ontario
 Paterson Group, September 24, 2019 (Project No. PG5036-1)
 (Geotechnical Report)
- Barrhaven Conservancy East (Phases 2, 3, 4 & Jock River): Water Distribution System Analysis
 Stantec, June 2, 2022 (Stantec Hydraulic Analysis - East)

- Adequacy of Services Report for Barrhaven Conservancy Development Corporation, Barrhaven Conservancy East David Schaeffer Engineering Ltd., July 2021 (DSEL East FSR)
- Design Brief for Barrhaven Conservancy East Phase 2, 3, & Jock River David Schaeffer Engineering Ltd., June 2022
- Barrhaven Conservancy East Site Plan (Conservancy Stacked Towns) Stormwater Analysis
 JFSA, January 2025 (JFSA SWM Analysis)
- Caivan Barrhaven Conservancy East Development Phase 3.1 and 4 Detailed Design
 Stantec, October 29, 2024 (Stantec Hydraulic Analysis Update - Memo)
- Design Brief for Barrhaven Conservancy East Phase 3 David Schaeffer Engineering Ltd., January 2025 (DSEL East Design Brief)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The Conservancy East lands are located adjacent to the City of Ottawa's Pressure Zone (PZ) 3SW (previously known as PZ BARR). PZ SUC services the lands that are east of the subject property, as well as south of the Jock River.

An extension of the watermain network is proposed within the Conservancy East Subdivision, which will also provide a feed for the subject site plan block. The watermains for the subdivision were designed in conjunction with the **Stantec Hydraulic Analysis – East** and the **Stantec Hydraulic Analysis Update – Memo** prepared by Stantec included in **Appendix B**.

3.2 Water Supply Servicing Design

As shown in the **General Plan**, water servicing will be provided internal to the site via 200mm and 150mm watermains that will be looped within the site plan block and connect to the 200mm diameter watermain on Mineral Street and Les Emmerson (N). Units 1-4 within Blocks 1 and 9 will be serviced via 50mm copper watermains fed from the 150mm watermain off Private Street 6 and 4, respectively. The subject lands will be metered at the connections to Les Emerson Drive (N) and Mineral Street, and all mains contained within are private.

The **Stantec Hydraulic Analysis - East** and for the broader subdivision previously estimated the required fire flow at 217 L/s (13,000 L/min). The City of Ottawa's recent Technical Bulletin (IWSTB-2024-05) states that the requirement for levels of fire protection on private property in urban areas is covered in Section A-3.2.5.7 of the OBC and as such a fire flow requirement of 6,300 L/min was determined for the subject site plan blocks. At the time of publishing this design brief, Stantec has not received the boundary conditions from the City and will update the hydraulic model once received. An update from Stantec will be provided under separate cover to demonstrate conformance with City guidelines.

Design Parameter	Value	
Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July		
2010)		
Residential – Detached Single	2.3 p/unit	
Minimum Watermain Size	150 mm diameter	
Minimum Depth of Cover	2.4 m from top of watermain to finished grade	
During normal operating conditions desired operating pressure is within	350 kPa and 480kPa	
During fire flow operating pressure must not drop below	140 kPa	
Stantec Hydraulic Analysis, Stantec, June 2022 for Population Exceeding 3000		
Persons		
Residential – SFH, MLT	280 L/cap/day	
Residential – Average Day Demand	Population x Demand	
Residential – Max Day Demand	AVDY x 2.5	
Residential – Peak Hour Demand	MXDY x 2.2	

Table 3: Water Supply Design Criteria

Fire Flow Requirement 13,000 L/min

Table 4 summarizes the estimated water supply demands seen in **Appendix B** for the proposed site plan based on the **Water Supply Guidelines**. Fire flows were estimated for the most constrained blocks within the site plan and yielded a required fire flow of 6,300 L/min.

Table 4: Water Demand Proposed Conditions

Design Parameter	Estimated Demand ¹ (L/min)	Boundary Condition (m H ₂ O / kPa)
Average Daily Demand	103.2	
Max Day + Fire Flow	257.4 + 6,300= 6557.4	
Peak Hour	565.8	
1) Water demand calculation per Water Supply Guidelines . See Appendix B for detailed calculations.		

3.3 Water Supply Conclusion

The site plan blocks will be serviced internally and ultimately be looped back to the subdivision. The system has been reviewed for required domestic demand and fire flows and meets all necessary requirements.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site was considered in the design of the Barrhaven Conservancy East Subdivision and will drain to the the existing SNC sanitary sewer which serves as the ultimate outlet for the overall development. Please refer to the **Sanitary Drainage Plan** prepared by DSEL, included in **Appendix C**.

4.2 Wastewater Design

The site plan blocks fronting the Les Emmerson Drive (N), Conservancy Drive, and Mineral Street will connect directly to the sanitary sewers within the public ROW with one lateral servicing two units (upper and lower). The internal sanitary sewer layout within the site plan will consist of a 200mm PVC sanitary sewer that will follow Lane 1, connecting to Les Emmerson (MH17A) at the west and Mineral Street (MH46A) at the east. Internally, one lateral will service two units (upper and lower).

The site was originally assumed to have a population of 470 during the subdivision design. However, the estimated population of the proposed subdivision is now lower (451 persons) given updates to the proposed number of units, and as such total flows to the existing SNC sanitary sewer will be marginally reduced.

Table 5 below summarizes the design standards used in the development of the proposed wastewater sewer system for the Barrhaven Conservancy East Subdivision. The sanitary calculation sheets have been updated to reflect the revised population and are included in **Appendix C**.

Design Parameter	Value	
Current Design Guidelines		
Residential – Stacked TH Condo	2.3 p/unit	
Average Daily Demand	280 L/d/person	
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0	
Commercial / Institutional Flows	28,000 L/ha/day	
Commercial / Institutional Peak Factor	1.5	
Infiltration and Inflow Allowance	0.33 L/s/ha	
Park Flows	28,000 L/ha/d	
Park Peaking Factor	1.0	
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	
Minimum Sewer Size	200mm diameter	
Minimum Manning's `n'	0.013	
Minimum Depth of Cover	2.5m from crown of sewer to grade	
Minimum Full Flowing Velocity	0.6m/s	
Maximum Full Flowing Velocity	3.0m/s	
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012, and associated Technical Bulletins.		

Table 5: Wastewater Design Criteria

4.3 Wastewater Servicing Conclusions

The subject property will be serviced by local sanitary sewers which will outlet to the existing infrastructure. The subject site has been contemplated in the downstream sewers. Sufficient capacity exists to support the development.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

As discussed in the **Serviceability in Support of Draft Plan Updates Memo (DSEL, 2024)**, the development of the site plan block was considered in the functional subdivision design.

5.2 Stormwater Management Design and Objectives

The Barrhaven Conservancy East Subdivision Phase 3 & 4 functional design made the following assumptions regarding the proposed site plan block:

- The site plan block has a drainage area of approximately 1.76 hectares with 81% imperviousness.
- As modeled in the April 2024 Preliminary HGL Analysis (Phase 3 & 4 FSR Submission), the site plan block shows a drainage split where the minor system is serviced by MH704 at Les Emmerson Drive (N) and by MH507 on Mineral Street. All flows are ultimately conveyed to the downstream OGS units (OGS 5, 6 and 7), with no on-site storage considered.
- The excess major system flows were anticipated to drain east and west overland to Les Emmerson Drive (N) and Mineral Street and subsequently to the Jock River.
- Quality and erosion control treatment for the site plan block is considered in the design of the treatment train approach.
- The 100-year Chicago 3 Hour Event & 5-year Jock River Water Level results in a Hydraulic Grade Line (HGL) as reported in *Table 3* of the **JFSA SWM Analysis** in **Appendix D**.

On-site storm flows will be captured by local CB infrastructure and allocated to infiltration chambers within the parking areas. **Table 6** below summarizes the design standards used for the proposed on-site storm sewer system. Storm calculation sheets for the subject property have been appended to this technical brief in **Appendix D**.

Design Parameter	Value
Minor System Design Return Period	1:2 year (PIEDTB-2016-01) for private roads, without ponding
Major System Design Return Period	1:100 year
Intensity Duration Frequency Curve (IDF) 2-year storm event: A=732.951 B=6.199 C=0.810 5-year storm event: A = 998.071 B = 6.053 C = 0.814	$i = \frac{A}{\left(t_c + B\right)^c}$
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Storm sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$

Table 6: Storm Sewer Design Criteria

Runoff coefficient for paved and roof areas	0.9	
Runoff coefficient for landscaped	0.2	
areas		
Minimum Sewer Size	250 mm diameter	
Minimum Manning's `n' for pipe flow	0.013	
Minimum Depth of Cover	1.5 m from crown of sewer to grade	
Minimum Full Flowing Velocity	0.8 m/s	
Maximum Full Flowing Velocity	6.0 m/s	
Clearance from 100-Year Hydraulic		
Grade Line to Building Opening	0.30 m	
Design Parameter	Value	
	Value	
Max. Allowable Flow Depth on Municipal Roads	35 cm above gutter (PIEDTB-2016-01)	
Extent of Major System	To be contained within the private road and parking areas or adjacent to the ROW provided that the water level must not touch any part of the building envelope and must remain below the lowest building opening during the stress test event (100-year + 20%) and 15cm vertical clearance is maintained between spill elevation on the street and the ground elevation at the nearest building envelope (PIEDTB-2016-01)	
Stormwater Management Model	PCSWMM (version 7.4) – See JFSA report File No. 1474(03) in Appx D	
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr, D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm	
Imperviousness	Based on runoff coefficient (C) where Percent Imperviousness = $(C - 0.2) / 0.7 \times 100\%$.	
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS Type II Design Storms. Maximum intensity averaged over 10 minutes.	
Historical Events	July 1st, 1979, August 4th, 1988 and August 8th, 1996	
Climate Change Street Test	20% increase in the 100-year, 3-hour Chicago storm	
Extracted from City of Ottawa Sewer Design Guidelines, October 2012, and ISSU, and based on recent residential subdivisions in City of Ottawa.		

5.3 Hydraulic Grade Line Analysis

A detailed hydraulic grade line (HGL) modelling analysis has been completed for the proposed system based on the 100-year 3-hour Chicago and 24-hour SCS design storms, including

historical design storms and climate change stress test as required. The HGL and freeboard clearances are tabled in **Appendix D** for reference.

5.4 Major System Design

Major system conveyance, or overland flow (OLF), is provided to accommodate flows in excess of the minor system capacity. OLF is accommodated by generally storing stormwater up to the 100-year design event in road sags then routing additional surface flow along the road network and rear yards storm retention tank between Lane 1 and Private Street 4 & 6, as shown in the *Storm Drainage Plans*.

5.5 Grading and Drainage Design

The following additional grading criteria and guidelines are applied to detailed design, per City of **Ottawa Guidelines** and standard industry practices:

- Slope in grassed areas will be between 2% and 7%;
- > Grades in excess of 7% will require terracing to a maximum of a 3:1 slope;
- Swales are to be 0.15m deep with 3:1 side slopes unless otherwise indicated on the drawings; and,
- > Perforated pipe will be required for drainage swales if they are less than 1.5% in slope;
- > Grades within the roads and parking stalls are limited to min 1% and max 5%.

Drawing 9 illustrates the proposed detailed grading. External areas north of the development will be captured by the proposed system in the interim condition. It is expected that once those parcels are developed, stormwater will be attenuated on-site and directed toward Mineral Street and Les Emmerson Drive (N) per City Standards. Where required, External lands to the east will be conveyed around the development in a cut of swale.

5.6 Quality Controls

The subject lands are required to provide quality controls prior to directing stormwater to the municipal sewers and ultimately the Jock River. Quality control is provided through a treatment train system including CB Shields, deep sump catch basins, and infiltration chambers. The treatment train system is tributary to a downstream Oil Grit Separator sized with consideration for the subjection lands.

DSEL reviewed tributary areas and associated percent imperviousness to the receiving OGS units (OGS 5, 6 and 7). **Appendix D** contains an overall figure illustrating tributary areas and corresponding OGS sizing.

It is proposed to provide infiltration through ADS Stormtech Chambers at strategic locations throughout the site. **Appendix D** contains preliminary layouts provided by the manufacturer which have been incorporate into the design plans.

Appendix D contains detailed description and calculations demonstrating that 80% TSS removal will be achieved through the treatment train system.

5.7 Stormwater Servicing Conclusions

The SWM design for the site plan block assumes that all flow is directed to the Jock River, with on-site infiltration, deep sump catchbasins, and CB shields in conformance with the overall development treatment train approach for water quality control.

6.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated. Prior to topsoil stripping, earthworks or construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fencing will be installed around the perimeter of the active part of the site (and headwater features) and will be cleaned and maintained throughout construction. The silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catchbasins will have catchbasin inserts installed during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access to prevent mud tracking onto adjacent roads.

The following additional recommendations to the Contractor will be included in contract documents:

- > Limit extent of exposed soils at any given time.
- > Re-vegetate exposed areas as soon as possible.
- > Minimize the area to be cleared and grubbed.
- > Protect exposed slopes with plastic or synthetic mulches.
- > Install silt fence to prevent sediment from entering any existing ditches.
- > No refueling or cleaning of equipment near existing watercourses.
- > Provide sediment traps and basins during dewatering.

The Contractor will be required to complete regular inspections and guarantee proper performance. The inspection is to include:

- > Verification that water is not flowing under silt barriers.
- > Clean and change inserts at catch basins.

7.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by BCDC to prepare a Design Brief in support of their application for site plan control. The preceding report outlines the following:

- Water surrounding water main infrastructure within the Conservancy East Subdivision is available to support the subject lands. Sufficient pressure is available within the City's desired pressure range.
- Wastewater Sanitary sewers within the development have been proposed or are under construction. The sanitary sewer network will be available and have capacity to support the site plan block.
- Stormwater Storm servicing was previously considered in the design of the receiving sewers and downstream OGS units. The subject property consists of a series of gravity sewers servicing the landscape and parking lot areas. Runoff from the development will be treated by CB shields, deep sump CBs, infiltration chambers, and OGS units prior to outletting to the Jock River.

The submitted materials demonstrate that the water, sanitary, and storm services currently proposed and/ or under construction can accommodate the contemplated development.

Prepared by,

Per: Peter Mott, P.Eng. © DSEL

David Schaeffer Engineering Ltd. 120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856 dsel.ca

APPENDIX A

SITE AREA PAVED AREA		17,615.32 m ² (1.76 ha) 5874m ² (33.34%)		ZONEPROVISI	ON - PLANNED UNIT DEVELOPMENT	REQUIRED	PRO PO SED
LANDSCAPED AREA	۵.	7057.08 m ² (40.06%)		162A(Z)	Min. Lot Area (m2)	ELIFR ツ	∈3ைகாணை அ
DAIND SC AT LD AND		7037.00 III (40.00 /a)		162A(Z)	Min. Lot Width (m)	18	223.9
IO IAL BUILDING CO	OVERAGE	4684.2325 m ⁻ (26.5929	a)	162A(Z)	Min. Front Yard Setback (m)	3	>3.4
TOTAL GROSS FLOC	ORAREA	17,617.5428 m ²		162B.6	Min. Rear yard setback (m)	6	4.5
DENSITY (UPH)		111 UPH		162B(Z)	Min. Comerside setback	3	3
ZONE CATEGORY		B4(Z)		162A(Z)	Max Building Height (m	15	13.5
				161	Landscaped Area	30%	39%
DWELLING BLOCK	DWELLING TYPE	GROSS FLOOR AREA	UNITS	131.1	Min. Width of Private Way / Parking Aisle (m)	6	6.1
BLOCKS	24 UNITS	(m ²)	48	131.4a	Min. Setback for Any Wall of a Residential Buildings Within a Planned Unit Development	1.2	5
8 - 10	STACKED DWELLING			131.2	Min. setback for any wall of a residential use building to a private way	1.8	>4.5
BLOCKS	20 UNITS		100	137	AMENITY AREA		
4-5-6-7-9	STACKED DWELLING			137.6	Total min. amenity area (6m ² per unit)	Ⅲ314 ツ	山田で1980年88 ツ
4 0 0 7 0				137.6	ով 1944)՝ աղանիլ ոմ էլերտարը ,ֆետի՝ 1810–1138-իզան	出に1918第 ツ	ы лылд У
0.000	16 UNITE		10	65	PERMITTED PROJECTION INTO REQUIRED YARDS		
BLOCKS			48	65.5.i	Fire escapes, Open Stairways, Stoop (m)	>0.6m to lot line	0.5 m
1-2-3	SIACKED DWELLING					2m no closer	2m no closer
		TO TAL UNITS	196	65.6.a(i)	Covered or Uncovered Balcony, Porch and Deck	than 1 to a lot	than 1.74 to a lo
]		line	line

	PARKING REQUIREMENTS	REQUIRED	PROPOSE
101 (Table R10)	Resident Parking - 1.2 spaces/unit	235	196 (1.0)
102 (Table column III)	Visitor Parking - 0.2 spaces/unit	39	22 (0.11)
106.1	Min. Perpendicular Parking Space Size (m)	2.6 x 5.2	2.6 x 5.2
107 (Table 107.d)	Min. Requires Aisle Width	6.0	6.1
	BARRIER FREE PARKING		
Traffic and Parking Bylaw Section 111	Min. Barrier Free Parking **	1	1
111	BICYCLESTORAGE		
111R	Min. bicycle parking space dimension, horizontal	Width: 0.6m	0.6
	(m)	Length: 1.8m	1.8
111A(b)	Min. Bicycle parking space accessaisle Width (m)	1.5	1.5
111.11	Min. Bicycle Parking 0.5 spaces/unit	98	100
110(a)(b)	LANDSCAPE A REA SURROUNDING PARKING LOT		
110.a	Abutting a Street (m)	3	>16m
110.b	Not Abutting a street (m)	3	>3m
110.1.b	Min. % of parking lot landscape	15%	>19%
110	REFUSE COLLECTION AREAS		
110.3b	Min. Waste collection setback to lot line	3	>30m
110.3.c/d	Opaque Screen Min. Height (m)	2	2***

n Standards - Section 3.1 Design of Public Parking 4% of parking spaces pr d 21 visitor spaces have been designed to be barrier/free. 1 Type A size pr) refuse container is provide, the screening requirement of Section (30/o) =

SITE PLAN NOTES IE PLAN NOTES . DO NOTSCALE DRAWINGS FOR PRINT. 2. THIS DRAWING IS THE EXCULSIVE PROPERTY OF QLA ARCHITECT SAND CAIVAN. COPYRIGHT RESERVED. WALKWAY SAND CURBS TO BE TED INTO PUBLIC ROW WHERE APPLICABLE . REFERENCE CAID FOR TAWA TW.SL DETAIL SC7.3

ARCHITECTS

Q4 ARCHITECTS INC.

4 110 YONGE STREET Suite 602, Toronto ON M2P 2B7

T. 416.322.6334 F. 416.322.7294 E. info@q4archite

The contractor / builder must verify all dimensions on the job and report any discrepancy to the design

Drawings are NOT to be scaled. All drawings and specifications are instruments of service and

Q4 Architects Inc. retains the copyright in all drawings, plans, sketches, and all digital information. They may not be copied used for any other projects or purposes or distributed without the written consent of Q4 Architects Inc.

ATTACHED MPLAN. FROM THE SURVEYED PLAN SEPT 13, XREE INTO DRAWING OCATIONSTO BE CONFIRMED

	~			
	~	ADDITIONAL COMMENTISSUED TO CLIENT	2024.6.0	
	11	NEW LAYOUT-ISSUED TO CLIENT	2024.1127	
	10	ADDITIONAL COMMENTS-ISSUED TO CLIENT	2024.08.27	
	9	ADDITIONAL COMMENTS-ISSUED TO CLIENT	2024.08.26	
	8	ADDITIONAL COMMENTS-ISSUED TO CLIENT	2024.08.16	
	7	ADDITIONAL COMMENTS-ISSUED TO CLIENT	2024.08.06	
1	6	ADDITIONAL SITE STATS-ISSUED TO CLIENT	2024.07.25	
1	5	REVISED AS PER CITY AND CLIENT COMMENTS	2024.07.17	
	4	REVISED GARBAGE LAYOUT	2024.07.16	
	3	SP12 AFTER CITY'S COMMENTS	2024.07.15	
	2	ADD HYDRO TRANSFORMER	2024.07.05	
	1	Q4A SP1	2024.06.27	

Issued / Revision Chart

Project Title

CONSERVANCY STACKED TOWNS

	200 DUITISUKAITE NU
Location (DTTAWA, ON.
	Plan No. 18754 and File No. D07-12-24-0097
Legal Name	Part of Lot 14, Concession 3 (Rideau Front), Geographic Township of Nepean Part of PIN 04595-4929 (LT)
Client	CAIVAN
Project No.	
Scale	1:500
Drawn By	СТ
Checked By	СТ

OVERALL SITE PLAN

David Schaeffer Engineering Ltd. 120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856 dsel.ca

APPENDIX B

Caivan BCDC Site Plan Required Fire Flow

Required Fire Flow per IWSTB-2024-05 (OBC A-3.2.5.7) Block 10

 $Q = K V S_{tot}$

Where,

Q 201,272	minimum supply of water in litres
K 18	water supply coefficient from Table 1
V 7,454.50	total building volume in cubic metres
S _{tot} 1.50	total spacial coefficient from property line exposures
S _{tot} 1.50	total spacial coefficient from property line exposure

Buidling Volume	Area (m²)	h (m)	V (m³)
Basement	45.01	3.05	137.3
Ground	42.09	3.4	143.1
2nd floor	44.71	3.4	152.0
3rd floor	46.65	2.47	115.2
Attic	23.74	3.1	73.6
			604.0

units total vol

621.2 X 12 7454.50 m³

Required minimum water supply flow rate, L/min

	RFF (L/min)	(L)	Q (
	2700	108,000	
	3600	135,000	108,000
	4500	162,000	135,000
	5400	190,000	162,000
< Required Fire Flow	6300	270,000	190,000
	9000		270,000

Spacial Coefficient

	m	S
North	44.7	0.00
South	30.9	0.00
West	12.7	0.00
East	5	0.50

Spatial Coefficient vs Exposure Distance

1

Caivan BCDC Site Plan Required Fire Flow

Required Fire Flow per IWSTB-2024-05 (OBC A-3.2.5.7) Block 8

 $Q = K V S_{tot}$

Where,

Q	144,916	minimum supply of water in litres
К	18	water supply coefficient from Table 1
V	7,454.50	total building volume in cubic metres
S _{tot}	1.08	total spacial coefficient from property line exposures

Buidling Volume	Area (m²)	h (m)	V (m³)	
Basement	45.01	3.05	137.3	
Ground	42.09	3.4	143.1	
2nd floor	44.71	3.4	152.0	
3rd floor	46.65	2.47	115.2	
Attic	23.74	3.1	73.6	
			621.2	>

units total vol

X 12 7454.50 m³

Required minimum water supply flow rate, L/min

	RFF (L/min)	(L)	Q (
	2700	108,000	
	3600	135,000	108,000
< Required Fire Flow	4500	162,000	135,000
	5400	190,000	162,000
	6300	270,000	190,000
	9000		270,000

Spacial Coefficient

	m	S
North	9.2	0.08
South	18.9	0
West	25.1	0
East	20.7	0

Caivan BCDC Site Plan Required Fire Flow

Required Fire Flow per IWSTB-2024-05 (OBC A-3.2.5.7) Block 1

 $Q = K V S_{tot}$

Where,

Q	97,505	minimum supply of water in litres
K	18	water supply coefficient from Table 1
V 4	,969.67	total building volume in cubic metres
S _{tot}	1.09	total spacial coefficient from property line exposures

Buidling Volume	Area (m²)	h (m)	V (m³)
Basement	45.01	3.05	137.3
Ground	42.09	3.4	143.1
2nd floor	44.71	3.4	152.0
3rd floor	46.65	2.47	115.2
Attic	23.74	3.1	73.6
			621.2

2 5 units total vol 2 X 8 4969.67 m³

Required minimum water supply flow rate, L/min

	RFF (L/min)	(L)	Q
< Required Fire Flow	2700	108,000	
	3600	135,000	108,000
	4500	162,000	135,000
	5400	190,000	162,000
	6300	270,000	190,000
	9000		270,000

Spacial Coefficient

	m	S
North	25.8	0
South	31.9	0
West	9.1	0.09
East	23.3	0

Spatial Coefficient vs Exposure Distance

Memo

To:	Marc Pichette	From:	Hamidreza Mohabbat / Alexandre Mineault-G	
	Barrhaven Conservancy Development			
	Corporations		Stantec Consulting Ltd.	
Project/File:	163401964	Date:	October 29, 2024	

Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

1 **Overview**

Stantec previously completed the Barrhaven Conservancy East Water Distribution System Analysis report in June 2022 in support of David Schaeffer Engineering Limited (DSEL)'s update to their Functional Servicing Report for the subject lands, which at the time included future developments west of Borrisokane Road that have since then been switched to the Barrhaven Conservancy West lands. In addition, Stantec completed a technical memo in June 2024 in support of functional design for the Barrhaven Conservancy East Development Phases 3 and Phase 4 (now Phase 4, and Phases 3.1 and 3.2 respectively), which included phasing changes, as well as revisions to the proposed road layout and unit configurations.

DSEL is currently advancing the detailed design for the Conservancy East Phases 4 and 3.1 as shown in **Figure 1**, which include phasing changes and revised unit configurations. To support DSEL's efforts, Stantec compared the previous concept plan with the latest plan dated September 18, 2024.

This memo summarizes the changes in unit counts, and associated water demands from what was previously considered in Stantec's June 2024 Update and outlines the fire flow requirements for the proposed phases.

1.1 Concept Plan Layout & Phasing Comparison

In addition to the changes to unit counts (discussed in **Section 1.2**), phasing modifications are proposed within the Barrhaven Conservancy East Lands. **Table 1**, compares the phasing considered as part of the June 2024 Study to what is being proposed now. Please refer to the attached concept plans for additional information on phasing boundaries.

June 2024 Update (March 2024 Concept Plan)	September 2024 Update (September 2024 Concept Plan)	Design/Construction Status		
Conservancy East Phase 2	Conservancy East Phase 2	Under Construction		
Conservancy East Phase 3	Conservancy East Phase 4	Undergoing Detailed Design		
Concertionaly East Phase 4	Conservancy East Phase 3.1	Undergoing Detailed Design		
Conservancy East Phase 4	Conservancy East Phase 3.2	Future Detailed Design Forthcoming		
Jock River Phase 1	Jock River Phase 1	Under Construction		

Table 1: Phasing Comparison for Barrhaven Conservancy East Lands

Reference:	Caivan Barrhaven Conservanc	y East Develop	oment - Phases 3.1 and	d 4 Detailed Design
		,,, _, ,, ,, ,, ,, ,, ,, ,, ,, ,		• • • • • • • • • • • • • • • • •

June 2024 Update (March 2024 Concept Plan)	September 2024 Update (September 2024 Concept Plan)	Design/Construction Status	
Jock River Phase 2	Jock River Phase 2	Designed and Approved	
Jock River Phase 3	Jock River Phase 3	Designed and Approved	

As shown in the table above and as depicted in **Figure 1** the current Phase 4 which is a private block currently being designed for site plan approval, was referred to as Phase 3 in the June 2024 update, and the current Phases 3.1 and 3.2 were referred to as Phase 4 in the June 2024 report. Given the changes in the proposed phasing, an interim condition hydraulic assessment for the proposed Conservancy East Phases 3.1 and 4 will be required in order to confirm that the watermain sizing is appropriate to meet previously established design criteria. In addition, fire flow requirements (FFR) and resulting fire flow measures required will need to be confirmed for the proposed phases to ensure that the FFR do not exceed the maximum allowable fire flow.

Figure 1: Revised Phasing Boundaries

1.2 Growth Projection Update

The residential population was estimated based on household sizes as per population densities (or persons per unit, PPU) specified in the City's Water Design Guidelines. As part of the June 2024 Study, the total number of units for Barrhaven Conservancy East was estimated to be 1,272 (527 Single Family Homes or SFH and 745 Townhome MTL), with a total residential population of 3,803.

Based on the updated draft plan for Phase 3.1 and site plan for Phase 4, the total number of units for Barrhaven Conservancy East was estimated to be 1,267 (527 SFH, 740 MTL), with a total residential population of 3,790.

Table 2 shows the new estimated number of units per phase of development, and the projected populations based on the distribution of unit types.

Phase	Sub- phase	Unit Type	Units	PPU	Population (ppl)
2		Singles	204	3.4	694
		Towns	99	2.7	267
		Phase 2 Sub-total	303	-	961
		Singles	0	3.4	0
	3.1	Towns	182	2.7	491
		Phase 3.1 Sub-total	182	-	491
3		Singles	0	3.4	0
	2.2	Towns	204	2.7	551
	3.2	Phase 3.2 Sub-total	204	-	551
		Phase 3 Sub-total	386	-	1,042
4		Singles	0	3.4	0
		Towns	196	2.7	529
		Phase 4 Sub-total	196	-	529
	JR1	Singles	105	3.4	357
		Towns	0	2.7	0
		Jock River 1 Sub-total	105	-	357
		Singles	91	3.4	309
Jock River	JR2	Towns	0	2.7	0
(JR)		Jock River 2 Sub-total	91	-	309
		Singles	127	3.4	432
	JR3	Towns	59	2.7	159
		Jock River 3 Sub-total	186	-	591
		Jock River Phases Sub-total	382	-	1,258
		East Development Grand Total	1,267	-	3,790

Table 2: Estimated Unit Counts and Populations Based on Updated Concept Plan

1.3 Water Demand Projection Comparison

The City's Water Design Guidelines refer to the MECP Guidelines for consumption rates for buildout population greater than 3,000. The MECP Guidelines provide a consumption rate range of 270 L/cap/day to 450 L/cap/day. The City's Water Design Guidelines consumption rates for subdivisions of 501 to 3,000 persons (i.e., 280 L/cap/day) fall within that range. The demand rates and peaking factors from the Water Design Guidelines and Technical Bulletin ISTB-2021-03 were applied in the June 2024 Study, and the same approach was used for this assessment. The average day (AVDY) demands, maximum day (MXDY)

demands, and peak hour (PKHR) demands were identified as 12.33 L/s, 30.81 L/s, and 67.79 L/s, respectively, for Barrhaven Conservancy East in the June 2024 Study.

The updated buildout population of the proposed development is 3,790, as discussed in **Section 1.2**. The estimated AVDY, MXDY and PKHR demand projections, based on the updated concept plan, are summarized in **Table 3**.

Phase	Sub- phase		Unit Types	Units	Population (ppl)	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
2		Singles		204	694	2.25	5.62	12.36
		Towns		99	267	0.87	2.17	4.76
			Phase 2 Sub-total	303	961	3.11	7.79	17.13
		Singles		0	0	0.00	0.00	0.00
	3.1	Towns		182	491	1.59	3.98	8.76
			Phase 3 .1 Sub-total	182	491	1.59	3.98	8.76
3		Singles		0	0	0.00	0.00	0.00
	3.2	Towns		204	551	1.79	4.46	9.82
			Phase 3.2 Sub-total	204	551	1.79	4.46	9.82
			Phase 3 Sub-total	386	1,042	3.38	8.44	18.58
4 T		Singles		0	0	0.00	0.00	0.00
		Towns		196	529	1.72	4.29	9.43
			Phase 4 Sub-total	196	529	1.72	4.29	9.43
		Singles		105	357	1.16	2.89	6.36
	JR1	Towns		0	0	0.00	0.00	0.00
			Jock River 1 Sub-total	105	357	1.16	2.89	6.36
		Singles		91	309	1.00	2.51	5.51
Jock	JR2	Towns		0	0	0.00	0.00	0.00
River			Jock River 2 Sub-total	91	309	1.00	2.51	5.51
		Singles		127	432	1.40	3.50	7.70
	JR3	Towns		59	159	0.52	1.29	2.84
			Jock River 3 Sub-total	186	591	1.92	4.79	10.54
			Jock River Phase Sub-total	382	1,258	4.08	10.19	22.41
		Ea	st Development Grand Total	1,267	3,790	12.28	30.70	67.55

Table 3: Estimated Demand Projects Based on Updated Concept Plan

Based on the updated draft plan for Phase 3.1 and site plan for Phase 4, the AVDY, MXDY and PKHR demands decreased by 0.05 L/s, 0.11 L/s and 0.24 L/s, respectively, in comparison to what was established in the June 2024 Study. This change is negligible and will not impact the overall water system distribution results in the ultimate condition.

2 Fire Flow Requirement Analysis

It is important to note that the overall watermain network recommendations are governed by fire flow requirements. As part of the 2022 Study, a maximum required fire flow (RFF) of 216.67 L/s (13,000 L/min) was identified. This RFF was linked to the governing unit design at the time, which consisted of rear-lane townhome blocks. Given the change in proposed unit configuration, detailed FUS calculations are required for the area.

Additionally, from the provisions listed in the City of Ottawa's Technical Bulletin ISDTB-2014-02, if specific conditions listed below are met, the RFF can be capped at 10,000 L/min.

- 1. The building footprint is less than 600 m².
- 2. The rear unit exposure is at least 10 m.
- 3. The total number of residential units in a block is less than or equal to 6.

Some residential blocks in Phase 3.1 will meet the conditions outlined above, and as such, the RFF may be capped at 10,000 L/min for such blocks. However, the rear exposure distance is less than 10 m in some instances, and as such, detailed FUS calculations are required. Furthermore, the proposed stacked townhome building blocks in Phase 4 comprise more than six (6) stacked townhouses, and as such, detailed FUS calculations are also required.

To calculate the fire flow requirements, it is assumed that the units will be built using "Wood Frame" construction and its occupancy content will classify as "Limited Combustible". Additionally, it is assumed that neither the subject building nor the neighbouring buildings are equipped with a sprinkler system. Lastly, since Phase 4 will proceed before Phase 3.1, interim conditions were considered for the fire flow requirements in Phase 4. For these interim conditions, the exposure distances between adjacent buildings were calculated without including the buildings in Phase 3.1.

Table 4 outlines the fire flow requirements for the residential blocks in Phase 4 (interim) based on FUS calculations. **Table 5** summarizes the fire flow requirements for the residential blocks in Phases 4 and 3.1 upon construction of Phase 3.1. Detailed calculations can be found in the **Appendix A3**.

For the interim Phase 4 conditions, the maximum RFF is 15,000 L/min. Once Phase 3.1 is constructed, the RFFs within Phase 4 increase due to shorter exposure distances to adjacent buildings. The maximum RFF for Phases 4 and 3.1 is 16,000 L/min and 15,000 L/min, respectively. These values exceed the fire flow objective of 13,000 L/min established in the 2022 Study. Therefore, additional hydraulic modelling analyses are necessary to assess the network's capacity to provide these fire flows while maintaining a residual pressure of 138 kPa (20 psi).

Block No	Number of Townhouses	Number of Storeys	Total Number of Units	Fire Flow Requirements (L/min) [L/s]	Required Duration of FF (hrs)	Meets Technical Bulletin ISDTB- 2014-02 Conditions?
1	8	3	16	12,000 [200]	2.5	No
2	8	3	16	10,000 [167]	2	No
3	8	3	16	13,000 [217]	2.5	No
4	12	3	24	15,000 [250]	3	No
5	10	3	20	12,000 [200]	2.5	No
6	10	3	20	12,000 [200]	2.5	No
7	12	3	24	15,000 [250]	3	No
8	12	3	24	13,000 [217]	2.5	No
9	6	3	12	11,000 [183]	2	No
10	12	3	24	15,000 [250]	3	No

Table 4: Fire Flow Requirements for Phase 4 (Interim)

 Table 5: Fire Flow Requirements for Phases 3.1 and 4

Phase	Block No	Number of Townhouses	Number of Storeys	Total Number of Units	Fire Flow Requirements (L/min) [L/s]	Required Duration of FF (hrs)	Meets Technical Bulletin ISDTB- 2014-02 Conditions?
	3	3*	2	3	9,000 [150]	2	No
3.1	13	4*	2	4	11,000 [183]	2	No
	12	6*	2	6	15,000 [250]	3	No
	1	8	3	16	13,000 [217]	2.5	No
	2	8	3	16	12,000 [200]	2.5	No
	3	8	3	16	14,000 [233]	3	No
	4	12	3	24	16,000 [267]	3.5	No
	5	10	3	20	14,000 [233]	3	No
4	6	10	3	20	13,000 [217]	2.5	No
	7	12	3	24	15,000 [250]	3	No
	8	12	3	24	16,000 [267]	3.5	No
	9	6	3	12	12,000 [200]	2.5	No
	10	12	3	24	16,000 [267]	3.5	No

* Worst-case reported only.

3 Hydraulic Assessment

The original water system model was developed using the Infowater Pro software. Following the latest concept plans received for the Barrhaven Conservancy East lands, the water system model was updated to capture the new unit densities and water demands, as well as the proposed road alignment within Phase 4.

Although the proposed development will ultimately have three (3) connection points to the City's existing water distribution system, this hydraulic analysis only considered servicing for Caivan's Barrhaven Conservancy East Development via two (2) initial connections:

- Connection #1: The existing 305 mm stub extending from Chapman Mills Drive; and
- Connection #2: The T-junction on the existing 203 mm watermain at Danson Gardens Grove and Darjeeling Avenue.

Furthermore, the hydraulic analysis and watermain sizing documented in this memo only consider the Zone SUC servicing conditions. At this time, updated water boundary conditions, inclusive of updated residential water demands and bigger fire flows, are not available. To proceed with the analysis, the latest water boundary conditions received from the City (dated May 3, 2024) were used to estimate the water boundary conditions for the updated water demands. This included extrapolating what would be the hydraulic conditions for larger fire flows (RRF of 15,000 L/min and 16,000 L/min) using the previously received boundary conditions as a base. For this exercise, a linear relationship was established at each connection from the previous boundary conditions.

Details on the water boundary condition estimates are reported in **Appendix A4**. A summary of the water boundary conditions considered for this analysis are listed in **Table 6** (Phase 4) and **Table 7** (Phase 3.1). For the analysis of Phase 4, it is assumed that Phases 2, JR1 and 4 are fully developed. For Phases 3.1, it is assumed that Phases 2, JR1, 4, and 3.1 are fully developed.

		HGL (m)		
Scenario	Water Demand (L/s)	Connection 1 - Chapman Mills Drive	Connection 2 - Danson Gardens Grove & DarJeeling Ave	
Average Daily Demand	5.99	146.3	146.9	
Peak Hour Demand	32.92	145.2	145.2	
Maximum Day Demand + FF (250 L/s)	264.96	135.3	130.8	

Table	6: Estimated	Boundary	Condition	under	Interim	Phase 4
			•••••••			

		HGL (m)		
Scenario	Water Demand (L/s)	Connection 1 - Chapman Mills Drive	Connection 2 - Danson Gardens Grove & DarJeeling Ave	
Average Daily Demand	7.58	146.2	146.8	
Peak Hour Demand	41.68	144.8	144.7	
Maximum Day Demand + FF (250 L/s)	268.95	135.2	130.6	
Maximum Day Demand + FF (267 L/s)	285.62	134.4	129.5	

Table 7: Estimated Boundary Condition under Interim Phase 3.1

The updated water model was used to evaluate the hydraulic conditions during interim conditions (Phase 4 and Phase 3.1). Specifically, the model was used to assess fire flow capacity within the interim hydraulic network. The assumed watermain network, sized in previous studies, is presented in **Appendix A5**. It includes a 200 mm dia. loop crossing Phase 4, as well as additional 300 mm dia. looping once Phase 3.1 is constructed.

3.1 Interim Phase 4

Under MXDY+FF conditions, a minimum residual pressure of 20 psi must be maintained under the required fire flow of 250 L/s (15,000 L/min). Modelled results under MXDY+FF conditions (**Appendix A5**) suggest that using the alternative procedure as outlined in Appendix I (Guidelines on Coordination of Hydrant Placement with Required Fire Flow) of the City's Technical Bulletin ISDTB-2018-02, a fire flow of 250 L/s (15,000 L/min) is achievable within Phase 4 under interim conditions. This alternative procedure consists of assuming a maximum flow capacity of 5,700 L/min per class AA hydrant within 75 m of the model nodes, and a maximum flow capacity of 3,800 L/min for Class AA hydrants between 75 and 150 m. To ensure appropriate hydrant coverage, at least two Class AA hydrants are required within Phase 4. It is assumed that additional Class AA hydrants will be located along adjacent streets, such as Conservancy Drive and Mineral Street, to meet the necessary coverage.

These results suggest that the proposed watermain network, sized in previous studies, would offer adequate fire flow protection, provided that appropriate hydrant coverage is in place. <u>However, this shall be confirmed</u> once updated water boundary conditions are received from the City.

If there are any limitations in providing the RFF of 15,000 L/min, additional fire control measures would be necessary. These measures could range from architectural changes to the units, changing the construction materials from "Wood Frame" to "Ordinary Construction" materials, to implementation of fire walls. The need for fire mitigation measures will be confirmed with the revised potable water hydraulic analysis, which will be completed upon receipt of the revised boundary conditions and summarized in a report that will be submitted under separate cover.

3.2 Interim Phase 3.1

Under MXDY+FF conditions, a minimum residual pressure of 20 psi must be maintained under the required fire flow of 250 L/s (15,000 L/min) within Phase 3.1, and 267 L/s (16,000 L/min) for Phase 4. Modelled results under MXDY+FF conditions (**Appendix A5**), suggest that the proposed watermain network, sized in previous studies, can provide the required fire flows for Phase 3.1 and Phase 4 provided that appropriate hydrant coverage is in place (alternative procedure as outlined in Appendix I of ISDTB-2018-02). <u>However, this shall be confirmed once updated water boundary conditions are received from the City.</u>

4 Conclusions

Based on the updated development plan for the Barrhaven Conservancy East Development, the number of units decreased by 5 compared to the June 2024 development plan. This results in an estimated population decrease of 13 and slightly lower AVDY, MXDY and PKHR demands for the development compared to the values assessed in the June 2024 study.

Based on the updated draft plan for Phase 3.1 and site plan for Phase 4, the AVDY, MXDY and PKHR demands decreased by 0.05 L/s, 0.11 L/s and 0.24 L/s, respectively, in comparison to what was established in the June 2024 Study. This change is negligible and will not impact the overall water system distribution results in the ultimate condition.

Furthermore, FUS calculations for the proposed stacked townhome blocks within Phase 4, as well as 6-unit townhouse blocks within Phase 3.1, show that in some cases, the RFF exceeds the previously required fire flow objective of 13,000 L/min (216.67 L/s), identified as part of previous analyses for these development lands.

To assess the hydraulic conditions under interim conditions, the latest water boundary conditions received from the City (dated May 3, 2024) were used to estimate the water boundary conditions for the updated water demands. This included extrapolating the hydraulic conditions for larger flows (RFFs of 15,000 L/min and 16,000 L/min) than those considered in the previously received boundary conditions.

The model was then used to assess fire flow capacity within the interim hydraulic network. Modelled results under MXDY+FF conditions suggest that if the alternative procedure as outlined in Appendix I of the City's ISDTB-2018-02 is employed, the required fire flows for Phase 3.1 and Phase 4 are achievable with the previously established watermain network. <u>However, this shall be confirmed once updated water boundary conditions are received from the City.</u>

This memo serves as a preliminary summary of initial observations in support of DSEL's update to the Servicing Design Brief for Phases 3.1 and 4 of the Barrhaven Conservancy East Development.

However, a detailed hydraulic analysis for interim phasing conditions is required to confirm watermain sizing at dead ends. The interim condition analysis requires obtaining updated water boundary conditions from the City. As a result, the revised potable water hydraulic analysis will be completed upon receipt of the revised boundary conditions and a report will be submitted under separate cover.

5 Closure

We trust this information meets your needs. Should you have any questions, please contact the undersigned.

Regards,

STANTEC CONSULTING LTD.

Hamid Mohabbat MASc. Water Resources Designer Direct: 416 598-7138 Hamidreza.Mohabbat@stantec.com Alexandre Mineault-Guitard P.Eng. Water Resources Engineer Direct: 613 725-5532 alexandre.mineault-guitard@stantec.com

Attachments:

- A1 Site Plan (June 2024)
- A2 Updated Site Plan (September 2024)
- A3 Fire Underwriter Survey Fire Flow Requirement Calculations
- A4 Water Boundary Condition Estimates
- A5 Modelling Results
Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

APPENDIX A1: Unit Plans (Dated June 2024)

	Image: Second								CAI LEGEND: RLTH (18.9m D 19.6' STANDAF 35' DETACHED 41' DETACHED 41' DETACHED 50' DETACHED 50' DETACHED 50' DETACHED STACKED CON PARKS WALKWAY/SE PHASE BOUND BCDCE DRAFT	VAN EPTH) RD TOWNHOUSE D HOME D HOME (REGULAR) D HOME (OVERSIZED) D HOME D HOME
				v v v v v v v v v v v v v v v v v v v	*					# UNITS
			and a state of the		20 X2 X2	24 12 Jul			- STACKED	204
3.09 Ha			JR		plateau Elat	ion Heights			18.9m RLTH	87
					240 240 247 240 240	24 20 20 20			19.6' TH	454
									35' SINGLE	189
								Ň	41' REGULAR	52
									41' OVERSIZED	33
		$\sim //$	-						42' SINGLE	118
						\rightarrow	\sim		50' SINGLE	135
							_*	**************************************	Total	1272
			>	20 ×	ă.		Ø		15 Unit count recount, tables up	dated to reflect 24-03-07
				ý @ <u></u>	Ū				14 revisions made on sk-8.2 no	w sk-8.3 24-02-21
									Revised Les Emmerson, ren	aved TH block for 24/02/13
		*9							11 Updated STND TH to new 1	9.6' TH24/01/18
		/ *0 /							10 Updated Plan and Phasing a	nd unit counts 24/01/11
	l l l l l l l l l l l l l l l l l l l	× *9	1						REV# DESCRIP	IDITE 23/12/15 FION DATE
		/ /							DATE:	DRAWN BY:
			00000				10.0		2024-03-07	IV
			BCDC2		JK. 1	JR. 2	JK.3	Type Total		
		Stacked		204	<u></u>			204		
		KLI		8	57			87		100.0
East of Mineral (1/300)	2.2233 ha	19.6' TH	140	31	.4			454	OTL	400.2
West of Mineral (1/600)	1.0083 ba	35' Single	100			18	47	24 189		
Tatal Dequired	2 0217 ha	41' Regular	16			10	15	5 46		
	3.2317 ha	41' Oversize	13			9	6	5 33	CONSERV	ANCY EAST
Total Parkland in Provided BCDC E	3.6100 ha	42' Single	46			19	48	11 124		
Total Overdedication in BCDC East	0.3783 ha	50' Single	29			49	35	22 135	DRAWING #:	
		Sub-Total	344	204 40	01 1	05	151	67 1272	SK.	-08.3
		Total			1272					

Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

APPENDIX A2: Unit Plans (Dated September 2024)

PMI				I.			5	1	EF	Contraction of the	the second				2000	in the state	Uque	400	and a	Ch Ch Ch			
							No. of the second			100		-								Cha	piner		Interior (a)
	okane Road		Croissant Deciduous Crescent				promen		Emmerson Drive		Tomes rome with the second sec	rade Les ve ve ve ve ve ve	200 200 <th>• •</th> <th></th> <th>PARK 0.52 Ha (1.29 Acres</th> <th></th> <th>10 10 10 10 10 10 10 10 10 10 10 10 10 1</th> <th></th> <th></th> <th></th> <th></th> <th>THE REAL PROPERTY OF</th>	• •		PARK 0.52 Ha (1.29 Acres		10 10 10 10 10 10 10 10 10 10 10 10 10 1					THE REAL PROPERTY OF
Route Borris		emeral Crescent	F	PARK				nois Sapli	promenac	de Conservo 10, 10, 10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	ancy Drive و معرف معرف معرف معرف معرف معرف معرف معرف	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20 40 50 50 51 51 20 30 50 50 51 51	 キ キ<th>y une \$\$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</th><th>Upder Moy 4 6 6 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</th><th>006 Street 006 St</th><th>anoe Street rue Canoe Street Se S S S S S S S</th><th>الله الله الله الله الله الله الله الله</th><th>27 28 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20</th><th>산 약 중 중 K 관 관 삼 같 Euphord</th><th></th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th>	y une \$\$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Upder Moy 4 6 6 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	006 Street 006 St	anoe Street rue Canoe Street Se S S S S S S S	الله الله الله الله الله الله الله الله	27 28 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20	산 약 중 중 K 관 관 삼 같 Euphord		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Croissant Eph	3 (7	6.09 H 7.64 Ac	a :res)	442 443 443 446 446 446 446 446 446 446 446		- -	درمی درمی <th< th=""><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th> ・ (1) ・ ・ ・</th><th>420 420 420</th><th></th><th>60 60 60 60 60</th><th></th><th>400 400 400 400 400 400 400 400 400 400</th><th>rue co</th><th>The Co</th><th><u>. 8 8 8 8 9</u></th><th><u>*</u></th><th>78 78 78</th><th>plateg</th><th>ч ></th></th<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ・ (1) ・ ・ ・	420 420 420		60 60 60		400 400 400 400 400 400 400 400 400 400	rue co	The Co	<u>. 8 8 8 8 9</u>	<u>*</u>	78 78 78	plateg	ч >
							3 53 54 0 - 0			<u>as</u> <u>ay</u> <u>ay</u> <u>ay</u>	42 49		K _			10	8	ja-		ě		à	A STATE OF THE STA
		Conserv	/ancy an	d Jock	River U	nit Coun	t							Jook	*0	//							
	PHASE: UNIT TYPE:	PH2	PH3	PH4	JR. 1	JR. 2	JR.3	TYPE TOTAL		C. S.	-				10 × 10			2.00	-	-		Contraction of the local division of the loc	
	STACKED	0	0	196	0	0	0	196							/			12	Berny	Logi		985	
	18.9m RLTH	0	90 296	0	0	0	0 59	90 454						1	and the	Married Woman	1	115	in the	536A	277.	1	
	35' SINGLE	100	0	0	18	22	49	189		and the second				-		843	and a	1 18	ALL S	hard		and and	
	41' REGULAR	15	0	0	10	11	9	45	Charles and	200		2	32			2.2		1 12	5-3	1.1	28		
	41' OVERSIZED	14	0	0	9	3	8	34	Part and	100	120	- 2	10 miles		the A			1 State	3.54	King M	34		
	42' SINGLE 50' SINGI F	46 29	0	0	19 49	35 20	24 37	124 135	TREASTREET,	the s	-	2	-	ALL I	3.14	-	ATH Y	Seal	6	1 14	Sim T	and the second s	
	Sub-Total	303	386	196	105	91	186		na fa fan argid	C. Margane and	Person	UR/Au	a La	A. A.	General	-	(MER S	1	1	-		5	
	Phase Total	68	39	196		382	I	1267	States of Lot of	EF	E		THE	- An	Call Cal	Sec. 2	TO AT 1	12.					
	Total			I	1267				Contract Street, or	100			CERT	Three	A. 1	Care and	and the se				1	and sea	

SK-9.0

DRAWING #:

BCDC EAST

PROJECT NAME:

PROJECT NO.: OTL400.2_OTL402_OTL400.4

2024-09-18

DAT	TE: DI	RAWN B	Y:
REV#	DESCRIPTION		DATE
10	Updated Plan and Phasing and uni	t counts	24/01/11
11	Updated STND TH to new 19.6' TH	1	24/01/18
12	Revised Les Emmerson, removed singles	TH block for	24/02/13
13	SK8.2 NEW UNIT COUNT REOPT	IMIZED BANKS	24/02/21
14	revisions made on sk-8.2 now sk-8	.3	24-02-21
15	Unit count recount, tables updated	to reflect	24-03-07

240918 240822

240816

24-05-06

LV

19.6' STANDARD TOWNHOUSE

41' DETACHED HOME (REGULAR) 41' DETACHED HOME (OVERSIZED)

WALKWAY/SERVICING BLOCK

RLTH (18.9m DEPTH)

35' DETACHED HOME

42' DETACHED HOME 50' DETACHED HOME STACKED CONDO BLOCK

PHASE BOUNDARY

PARKS

Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

APPENDIX A3: Fire Underwriter Survey Fire Flow Requirement Calculations (No Fire Control Measure)

Stantec	10011101100
Stuntee	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation

163401964 Barrhaven Conservancy Development Project 10/22/2024 1

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

#:

Description:

Phase 4; Block #1

Notes: Block #1 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task	Notes Value Ro Used Flo						Req'd Fire Flow (L/min)				
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructi	on			1.5	-
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-
	Area	379	379	379							1,137	-
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -							11,000		
4	Determine Occupancy Charge		Limited Combustible -15% S									9,350
	¥					Nor	10				0%	
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0
Ŭ	Reduction		NOT Fully Supervised of N/A									
						% Coverage of S	prinkler System				0%	
5A	Determine Bylaw Requirement		Community	/ bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fin	ewall / Sprinkle	red ?	-	-
6	Exposures (Max 75%)	Front	3.1 to 10	12	3	21-41	Type V		NO		16%	
	Exposures (Max. 75%)	Right	20.1 to 30	31	3	81-100	Type V		NO		8%	2 805
		Rear	20.1 to 30	37	2	61-80	Type V		NO		6%	2,000
		Left	> 30	0	0	0-20	Type V		NO		0%	
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	t 1000L/min				12,000
7	Determine Final Required					Total Rec	uired Fire Flow in L/s					200
	Fire Flow					Required Du	uration of Fire Flow (hrs)					2.50
	Required Volume of Fire Flow (m ³)									1,800		

Stantoc	TOOTHETIOW
Juniec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:
	Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 2

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #2

Notes: Block #2 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task	Notes Value Ro Used Flo						Req'd Fire Flow (L/min)				
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructi	on			1.5	-
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-
	Area	379	379	379							1,137	-
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -							11,000		
4	Determine Occupancy Charge		Limited Combustible -15%								9,350	
						Nor	10				0%	
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0
•	Reduction		NOT Fully SuperVised of N/A									
						% Coverage of S	prinkler System				0%	
5A	Determine Bylaw Requirement		Community	/ bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fin	ewall / Sprinkle	red ?	-	-
6	Exposures (Max 75%)	Front	20.1 to 30	12	3	21-41	Type V		NO		2%	
	Exposures (max. 75%)	Right	20.1 to 30	14	2	21-41	Type V		NO		2%	561
		Rear	> 30	0	0	0-20	Type V		NO		0%	
		Left	20.1 to 30	12	3	21-41	Type V	<u> </u>	NO		2%	
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	t 1000L/min				10,000
7	Determine Final Required					Total Rec	juired Fire Flow in L/s					167
	Fire Flow					Required Du	iration of Fire Flow (hrs)					2.00
						Required V	olume of Fire Flow (m ³)					1,200

Stantec	103111611000
Stantec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:

163401964 Barrhaven Conservancy Development Project 10/22/2024 3 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Description: PI

Phase 4; Block #3

Notes: Block #3 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, and 2 end unitsconfiguration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task	Notes Value Re Used Flo							Req'd Fire Flow (L/min)			
1	Determine Type of Construction			T,	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n	1.5	-		
2	Determine Effective Floor		Su	m of All Floor A	reas				YES	-		
-	Area	379	379	379					1,137	-		
3	Determine Required Fire Flow		$(F = 220 \times C \times A^{1/2})$. Round to nearest 1000 L/min -									
4	Determine Occupancy Charge		Limited Combustible -15% 9									
						Nor	ne		0%			
5	Determine Sprinkler		Non-Standard Water Supply or N/A									
Ŭ	Reduction					Not Fully Supe	rvised or N/A		0%			
						% Coverage of S	prinkler System		0%			
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected	NO	-		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-		
6	Determine increase for Exposures (Max, 75%)	Front	> 30	0	0	0-20	Type V	NO	0%			
	Exposures (Max. 75%)	Right	3.1 to 10	31	3	81-100	Type V	NO	19%	3 273		
		Rear	> 30	31	3	81-100	Type V	NO	0%	0,210		
		Left	3.1 to 10	12	3	21-41	Type V	NO	16%			
		-			Total Req	uired Fire Flow in	n L/min, Rounded to Nearest	1000L/min		13,000		
7	Determine Final Required					Total Rec	quired Fire Flow in L/s			217		
	Fire Flow					Required D	uration of Fire Flow (hrs)			2.50		
						Required V	olume of Fire Flow (m ³)			1,950		

Stanter	
Junie	Stantec Project #: Project Name:
	Date:
	Fire Flow Calculation

163401964 Barrhaven Conservancy Development Project 10/22/2024 4

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

#:

Description:

Phase 4; Block #4

Notes: Block #4 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, and 2 end units configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task	Notes Value Ro Used Fic							Req'd Fire Flow (L/min)		
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n	1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas				YES	-	
_	Area	568	568	568					1,704	-	
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -								
4	Determine Occupancy Charge		Limited Combustible -15% 1								
	~ ~					Nor	10		0%		
5	Determine Sprinkler		0%	- 0							
Ŭ	Reduction					Not Fully Supe	rvised or N/A		0%	- °	
						% Coverage of S	prinkler System		0%		
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected	NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-	
6	Exposures (Max 75%)	Front	> 30	0	0	0-20	Туре V	NO	0%		
	Exposures (Max. 75%)	Right	3.1 to 10	12	3	21-41	Type V	NO	16%	3 213	
		Rear	> 30	38	2	61-80	Type V	NO	0%	0,210	
		Left	10.1 to 20	12	3	21-41	Type V	NO	11%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min		15,000	
7	Determine Final Required					Total Rec	uired Fire Flow in L/s			250	
	Fire Flow					Required Du	uration of Fire Flow (hrs)			3.00	
						Required V	olume of Fire Flow (m ³)			2,700	

Stantoc	TOOTHETIOW
Juniec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:
	Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 5

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #5

Notes: Block #5 comprises a total of 20 stacked townhouse units. For FUS calculations, the block was considered as 10 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 8 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task				Value Used	Req'd Fire Flow (L/min)							
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n			1.5	-	
2	Determine Effective Floor	Sum of All Floor Areas									YES	-	
_	Area	473	473	473							1,420	-	
3	Determine Required Fire Flow		$(F = 220 \times C \times A^{1/2})$. Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible										
			None										
5	Determine Sprinkler		Non-Standard Water Supply or N/A										
, , , , , , , , , , , , , , , , , , ,	Reduction	Not Fully Supervised of N/A											
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	/ bylaw requirin	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	> 30	46	3	> 100	Туре V		NO		0%		
		Right	20.1 to 30	12	3	21-41	Type V		NO		2%	1.326	
		Rear	> 30	0	0	0-20	Type V		NO		0%	.,	
		Left	10.1 to 20	12	3	21-41	I ype V	10001 (NO		11%		
					I otal Requ	Jired Fire Flow in	L/min, Rounded to Nearest	1000L/min				12,000	
7	Determine Final Required					I Otal Red	uretion of Fire Flow In L/S					200	
	FILE FIOW					Required Di	aration of Fire Flow (nrs)					2.50	
						Requirea v	olume of Fire Flow (m [*])					1,800	

Stantec	100 meriov
Stantec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation

163401964 Barrhaven Conservancy Development Project 10/22/2024 6

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

#:

Description:

Phase 4; Block #6

Notes: Block #6 comprises a total of 20 stacked townhouse units. For FUS calculations, the block was considered as 10 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 8 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task		Notes										
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Construction	on			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
	Area	473	473	473							1,420	-	
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible										
		None											
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
Ŭ	Reduction	Not Fully Supervised or N/A										-	
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max, 75%)	Front	> 30	46	3	> 100	Type V		NO		0%		
		Right	10.1 to 20	12	3	21-41	Type V		NO		11%	1 326	
		Rear	> 30	0	0	0-20	Type V		NO		0%	.,020	
		Left	20.1 to 30	12	3	21-41	Type V	L	NO		2%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	1000L/min				12,000	
7	Determine Final Required					Total Rec	uired Fire Flow in L/s					200	
	Fire Flow					Required Du	Iration of Fire Flow (hrs)					2.50	
						Required V	olume of Fire Flow (m ³)					1,800	

Stantoc	1031 He How
Juniec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:
	Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 7 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #7

Notes: Block #7 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task		Notes Va Us										
1	Determine Type of Construction			T,	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	on		1.5	-		
2	Determine Effective Floor	Sum of All Floor Areas									-		
	Area	568	568	568						1,703	-		
3	Determine Required Fire Flow		$(F = 220 \times C \times A^{1/2})$. Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible										
			None										
5	Determine Sprinkler				N	on-Standard Wat	er Supply or N/A			0%	0		
ľ	Reduction		0%	-									
						% Coverage of S	prinkler System			0%			
5A	Determine Bylaw Requirement		Community	y bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	r protected	NO	-		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinklered ?	-	-		
6	Exposures (Max 75%)	Front	> 30	0	0	0-20	Type V		NO	0%			
	Exposures (Max. 75%)	Right	10.1 to 20	12	3	21-41	Type V		NO	11%	2 618		
		Rear	> 30	38	3	> 100	Type V		NO	0%	2,010		
		Left	10.1 to 20	12	3	21-41	Type V		NO	11%			
					Total Req	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min			15,000		
7	Determine Final Required					Total Rec	uired Fire Flow in L/s				250		
	Fire Flow					Required D	uration of Fire Flow (hrs)				3.00		
						Required V	olume of Fire Flow (m ³)				2,700		

Stantoc	10511101100
June	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation

163401964
Barrhaven Conservancy Development Project
10/22/2024
8

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

#:

Description:

Phase 4; Block #8

Notes: Block #8 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task				Value Used	Req'd Fire Flow (L/min)						
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n		1.5	-	
2	Determine Effective Floor		YES	-								
-	Area	568	568	568						1,703	-	
3	Determine Required Fire Flow		(F = 220 x C x $A^{1/2}$). Round to nearest 1000 L/min									
4	Determine Occupancy Charge		Limited Combustible									
			None									
5	Determine Sprinkler				No	on-Standard Wat	er Supply or N/A			0%	0	
•	Reduction			0%	- °							
						% Coverage of S	prinkler System			0%		
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected	1	NO	-	
	Determine Income for	Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprir	klered ?	-	-	
6	Exposures (Max 75%)	Front	10.1 to 20	12	3	21-41	Type V	NO		11%		
	Exposures (Max. 75%)	Right	20.1 to 30	12	3	21-41	Type V	NO		2%	1 547	
		Rear	> 30	0	0	0-20	Type V	NO		0%	,	
		Left	> 30	36	2	61-80	Type V	NO		0%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min			13,000	
7	Determine Final Required					I otal Rec	uirea Fire Flow in L/s				217	
	Fire Flow					Required Du	uration of Fire Flow (hrs)				2.50	
		Required Volume of Fire Flow (m ³)									1,950	

Stantoc	
Juniec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation

163401964 Barrhaven Conservancy Development Project 10/22/2024 9

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

#:

Description:

Phase 4; Block #9

Notes: Block #9 comprises a total of 12 stacked townhouse units. For FUS calculations, the block was considered as 6 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 4 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 511 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task				Value Used	Req'd Fire Flow (L/min)							
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	on			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
_	Area	284	284	284							852	-	
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible										
		None											
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
	Reduction					Not Fully Supe	rvised or N/A				0%		
			% Coverage of Sprinkler System 0%										
5A	Determine Bylaw Requirement		Community	/ bylaw requirinę	g all building th	at may be built wi	hin 30m of subject building to	be fully sprinkle	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	> 30	72	2	> 100	Type V		NO		0%		
		Right	3.1 to 10	46	3	> 100	Type V		NO		20%	2.975	
		Rear	> 30	31	3	81-100	Type V		NO		0%	_,	
		Left	10.1 to 20	46	3	> 100	l ype V	10001 /	NO		15%		
					I otal Requ	Jirea Fire Flow in	L/min, Rounded to Nearest	1000L/min				11,000	
7	Determine Final Required					I otal Red	ured FIFE FIOW IN L/S					183	
	FILE FIOM					Required DL	iration of Fire Flow (nrs)					2.00	
						Required V	olume of Fire Flow (m°)					1,320	

Stantoc	TOOTHETIOW
Juniec	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:
	Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 10 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #10

Notes: Block #10 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers. Interim Conditions: Phase 3.1 not constructed.

Step	Task				Value Used	Req'd Fire Flow (L/min)							
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	on			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
-	Area	568	568	568							1,703	-	
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible										
			None										
5	Determine Sprinkler		Non-Standard Water Supply or N/A										
•	Reduction	Not Fully Supervised of N/A											
			% Coverage of Sprinkler System										
5A	Determine Bylaw Requirement		Community	/ bylaw requirin	g all building th	at may be built wi	hin 30m of subject building to	be fully sprinkl	er protected		NO	-	
	Determine Income for	Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	> 30	0	0	0-20	Type V		NO		0%		
		Right	10.1 to 20	12	3	21-41	Type V		NO		11%	3.213	
		Rear	3.1 to 10	12	3	21-41	Type V		NO		16%	0,210	
		Left	> 30	0	0	0-20	Type V	L	NO		0%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min				15,000	
7	Determine Final Required					I otal Rec	uirea Fire Flow in L/s					250	
	Fire Flow					Required Du	iration of Fire Flow (hrs)					3.00	
		olume of Fire Flow (m [°])	Flow (m ³)										

Stantoc	103111011000	Calcul
Stantec	Stantec Project #:	16340
	Project Name:	Barrha
	Date:	10/22/
	Fire Flow Calculation #:	11
	Description:	Phase

)1964 aven Conservancy Development Project /2024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #1

Notes: Block #1 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes Value Used										
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Construction	on			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
	Area	379	379	379							1,137	-	
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min -										
4	Determine Occupancy Charge		Limited Combustible -15%										
			None										
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
•	Reduction	Not Fully SuperVised of N/A											
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	/ bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	3.1 to 10	12	3	21-41	Type V		NO		16%		
	Exposures (Max. 75%)	Right	20.1 to 30	31	3	81-100	Type V		NO		8%	3 366	
		Rear	20.1 to 30	37	2	61-80	Type V		NO		6%	0,000	
		Left	20.1 to 30	36	2	61-80	Type V		NO		6%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	: 1000L/min				13,000	
7	Determine Final Required					Total Rec	uired Fire Flow in L/s					217	
	Fire Flow					Required Du	uration of Fire Flow (hrs)					2.50	
						Required V	olume of Fire Flow (m ³)					1,950	

Stantoc	FUS FILE FILW C	alcula
June	Stantec Project #:	163401
	Project Name:	Barrha
	Date:	10/22/2
	Fire Flow Calculation #:	12
	Description:	Phase

163401964 Barrhaven Conservancy Development Project 10/22/2024 12 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #2

Notes: Block #2 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes Value Used											
1	Determine Type of Construction			т	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n	1.5	-				
2	Determine Effective Floor		Su	m of All Floor A	reas				YES	-				
_	Area	379	379	379					1,137	-				
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -											
4	Determine Occupancy Charge		Limited Combustible											
						Nor	10		0%					
5	Determine Sprinkler		0%	- 0										
Ŭ	Reduction		0%	- °										
						% Coverage of S	prinkler System		0%					
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected	NO	-				
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-				
6	Determine increase for Exposures (Max, 75%)	Front	20.1 to 30	12	3	21-41	Type V	NO	2%					
	Exposures (Max. 75%)	Right	20.1 to 30	14	2	21-41	Type V	NO	2%	2 244				
		Rear	3.1 to 10	36	2	61-80	Type V	NO	18%	2,211				
		Left	20.1 to 30	12	3	21-41	Type V	NO	2%					
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min		12,000				
7	Determine Final Required					Total Rec	juired Fire Flow in L/s			200				
	Fire Flow					Required Du	uration of Fire Flow (hrs)			2.50				
						Required V	olume of Fire Flow (m ³)			1,800				

Stantoc	103111611000	Jaiculai
June	Stantec Project #:	1634019
	Project Name:	Barrhave
	Date:	10/22/20
	Fire Flow Calculation #:	13
	Description:	Phase 4;

964 en Conservancy Development Project 24

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #3

Notes: Block #3 comprises a total of 16 stacked townhouse units. For FUS calculations, the block was considered as 8 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 6 inside units, and 2 end unitsconfiguration with an average floor area of 510 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes V										
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n	1.5	-			
2	Determine Effective Floor		Sum of All Floor Areas										
-	Area	379	379	379					1,137	-			
3	Determine Required Fire Flow		$(F = 220 \times C \times A^{1/2})$. Round to nearest 1000 L/min -										
4	Determine Occupancy Charge		Limited Combustible										
			0%										
5	Determine Sprinkler				N	on-Standard Wat	er Supply or N/A		0%	0			
, ,	Reduction					Not Fully Supe	rvised or N/A		0%	- °			
			% Coverage of Sprinkler System										
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected	NO	-			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-			
6	Determine increase for Exposures (Max, 75%)	Front	20.1 to 30	72	2	> 100	Type V	NO	10%				
	Exposures (Max. 75%)	Right	3.1 to 10	31	3	81-100	Type V	NO	19%	4 208			
		Rear	> 30	31	3	81-100	Type V	NO	0%	1,200			
		Left	3.1 to 10	12	3	21-41	Type V	NO	16%				
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min		14,000			
7	Determine Final Required					Total Rec	uired Fire Flow in L/s			233			
	Fire Flow					Required Du	iration of Fire Flow (hrs)			3.00			
						Required V	olume of Fire Flow (m ³)			2,520			

Stantoc	10311161100	Call
Stantec	Stantec Project #:	16
	Project Name:	В
	Date:	10
	Fire Flow Calculation #:	14
	Description:	PI

163401964 Barrhaven Conservancy Development Project 10/22/2024 14 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #4

Notes: Block #4 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, and 2 end units configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes										
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	'n			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
_	Area	568	568	568							1,704	-	
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min -										
4	Determine Occupancy Charge		Limited Combustible -1!										
			None										
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
•	Reduction	Not reuny supervised or N/A									0%	-	
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	/ bylaw requirin	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	r protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	20.1 to 30	72	2	> 100	Туре V		NO		10%		
		Right	3.1 to 10	12	3	21-41	Type V		NO		16%	4,403	
		Rear	> 30	38	2	61-80	Type V		NO		0%	,	
		Left	10.1 to 20	12	3	21-41	Type V		NO		11%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min				16,000	
7	Determine Final Required					Total Rec	juired Fire Flow in L/s					267	
	Fire Flow					Required Di	uration of Fire Flow (hrs)					3.50	
						Required V	olume of Fire Flow (m ³)					3,360	

Stantoc		Jaicul
Stantec	Stantec Project #:	16340 ⁻
	Project Name:	Barrha
	Date:	10/22/2
	Fire Flow Calculation #:	15
	Description:	Phase

1964 aven Conservancy Development Project 2024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #5

Notes: Block #5 comprises a total of 20 stacked townhouse units. For FUS calculations, the block was considered as 10 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 8 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes Va										
1	Determine Type of Construction			Tj	ype V - Wood	Frame / Type IV-I	D - Mass Timber Constructio	n			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
-	Area	473	473	473							1,420	-	
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -										
4	Determine Occupancy Charge		Limited Combustible										
			None										
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
Ū	Reduction											, ů	
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wil	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
	Determine Income for	Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	> 30	46	3	> 100	Type V		NO		0%		
		Right	20.1 to 30	12	3	21-41	Type V		NO		2%	3 366	
		Rear	3.1 to 10	60	2	> 100	Type V		NO		20%	0,000	
		Left	10.1 to 20	12	3	21-41	Type V	L	NO		11%		
					Total Requ	ired Fire Flow in	L/min, Rounded to Nearest	1000L/min				14,000	
7	Determine Final Required					Total Req	juired Fire Flow in L/s					233	
	Fire Flow					Required Du	uration of Fire Flow (hrs)					3.00	
	Required Volume of Fire Flow (m ³)											2,520	

Stantoc	I US I ITE I IOW C	aicu
Juniec	Stantec Project #:	1634
	Project Name:	Barrl
	Date:	10/22
	Fire Flow Calculation #:	16
	Description:	Phas

401964 rhaven Conservancy Development Project 2/2024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #6

Notes: Block #6 comprises a total of 20 stacked townhouse units. For FUS calculations, the block was considered as 10 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 8 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes Valu Use										
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructi	on			1.5	-	
2	Determine Effective Floor		Su	m of All Floor A	reas						YES	-	
	Area	473	473	473							1,420	-	
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min -										
4	Determine Occupancy Charge		Limited Combustible -15%										
			None										
5	Determine Sprinkler	Non-Standard Water Supply or N/A										0	
, ,	Reduction	Not runny supervised of N/A									0%	, ů	
						% Coverage of S	prinkler System				0%		
5A	Determine Bylaw Requirement		Community	/ bylaw requirinę	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fin	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	> 30	46	3	> 100	Type V		NO		0%		
	Exposures (Max. 75%)	Right	10.1 to 20	12	3	21-41	Type V		NO		11%	3 264	
		Rear	3.1 to 10	48	2	81-100	Type V		NO		19%	0,201	
		Left	20.1 to 30	12	3	21-41	Type V	<u> </u>	NO		2%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	t 1000L/min				13,000	
7	Determine Final Required					Total Rec	uired Fire Flow in L/s					217	
	Fire Flow					Required Du	Iration of Fire Flow (hrs)					2.50	
						Required V	olume of Fire Flow (m ³)					1,950	

Stantoc	1051 He How C	alcula
Stantec	Stantec Project #:	1634019
	Project Name:	Barrhav
	Date:	10/22/20
	Fire Flow Calculation #:	17
	Description:	Phase 4

964 ven Conservancy Development Project 024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #7

Notes: Block #7 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes										
1	Determine Type of Construction			Tj	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n			1.5	-	
2	Determine Effective Floor		Su	YES	-								
-	Area	Area 568 568 568 termine Required Fire									1,703	-	
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible -15										
			None										
4 Charge None 5 Determine Sprinkler Reduction Non-Standard Water Supply Not Fully Supervised or I % Coverage of Sprinkler Sy • Determine Bylaw Community bylaw requiring of building that may be built within 30m or								' Supply or N/A				0	
Ĵ	Reduction					Not Fully Supe	rvised or N/A				0%		
			% Coverage of Sprinkler System										
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building the	at may be built wi	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
	Determine berner for	Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	20.1 to 30	37	2	61-80	Type V		NO		6%		
	Exposures (Max. 75%)	Right	10.1 to 20	12	3	21-41	Type V		NO		11%	3 332	
		Rear	> 30	38	3	> 100	Type V		NO		0%	0,002	
		Left	10.1 to 20	12	3	21-41	Type V	<u> </u>	NO		11%		
					Total Requ	ired Fire Flow in	L/min, Rounded to Nearest	1000L/min				15,000	
7	Determine Final Required					Total Rec	juired Fire Flow in L/s					250	
	Fire Flow					Required Du	iration of Fire Flow (hrs)					3.00	
						Required V	olume of Fire Flow (m ³)					2,700	

Stantoc		Salcula
Stantec	Stantec Project #:	163401
	Project Name:	Barrha
	Date:	10/22/2
	Fire Flow Calculation #:	18
	Description:	Phase

1964 aven Conservancy Development Project 2024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #8

Notes: Block #8 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes										
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-I	D - Mass Timber Constructi	on			1.5	-	
2	Determine Effective Floor		Su	YES	-								
_	Area	568	568	568							1,703	-	
3	Determine Required Fire Flow		$(F = 220 \times C \times A^{1/2})$. Round to nearest 1000 L/min										
4	Determine Occupancy Charge		Limited Combustible -										
				0%									
5	Determine Sprinkler				No	on-Standard Wat	er Supply or N/A				0%	0	
5	Reduction	Not Fully Supervised of N/A										-	
						% Coverage of S	orinkler System				0%		
5A	Determine Bylaw Requirement		Community	/ bylaw requirinę	g all building th	at may be built wil	thin 30m of subject building to	be fully sprinkl	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkle	red ?	-	-	
6	Exposures (Max 75%)	Front	10.1 to 20	12	3	21-41	Type V		NO		11%		
		Right	20.1 to 30	12	3	21-41	Type V		NO		2%	4 522	
		Rear	3.1 to 10	48	2	81-100	Type V		NO		19%	.,022	
		Left	20.1 to 30	36	2	61-80	Type V	<u> </u>	NO		6%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Neares	t 1000L/min				16,000	
7	Determine Final Required					Total Req	uired Fire Flow in L/s					267	
	Fire Flow					Required Du	iration of Fire Flow (hrs)					3.50	
						Required V	olume of Fire Flow (m ³)					3,360	

Stantec	103111611000	Jaicu
Stantee	Stantec Project #:	1634
	Project Name:	Barrl
	Date:	10/22
	Fire Flow Calculation #:	19
	Description:	Phas

401964 haven Conservancy Development Project 2/2024

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #9

Notes: Block #9 comprises a total of 12 stacked townhouse units. For FUS calculations, the block was considered as 6 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 4 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 511 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes										
1	Determine Type of Construction			T)	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	on			1.5	-	
2	Determine Effective Floor		Su	YES	-								
_	Area	284	284 284 284									-	
3	Determine Required Fire Flow		(F = 220 x C x $A^{1/2}$). Round to nearest 1000 L/min										
4	Determine Occupancy Charge			-15%	8,500								
				0%									
5	Determine Sprinkler				N	on-Standard Wat	er Supply or N/A				0%	0	
Ů	Reduction	No runny supervised of N/A										-	
			% Coverage of Sprinkler System										
5A	Determine Bylaw Requirement		Community	/ bylaw requirinę	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	er protected		NO	-	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	ewall / Sprinkler	red ?	-	-	
6	Exposures (Max, 75%)	Front	20.1 to 30	72	2	> 100	Type V		NO		10%		
	Exposures (Max. 75%)	Right	3.1 to 10	46	3	> 100	Type V		NO		20%	3 825	
		Rear	> 30	31	3	81-100	Type V		NO		0%	0,020	
		Left	10.1 to 20	46	3	> 100	Type V		NO		15%		
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min				12,000	
7	Determine Final Required					Total Rec	uired Fire Flow in L/s					200	
	Fire Flow					Required Du	Iration of Fire Flow (hrs)					2.50	
						Required V	olume of Fire Flow (m ³)					1,800	

Stantoc	I US I HE I IUW Ca
Junice	Stantec Project #:
	Project Name:
	Date:
	Fire Flow Calculation #:
	Description:

163401964
Barrhaven Conservancy Development Project
10/22/2024
20

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 4; Block #10

Notes: Block #10 comprises a total of 24 stacked townhouse units. For FUS calculations, the block was considered as 12 - 3 storeys units, with a basement (more than 50% below ground). It is also assumed that the block consists of 10 inside units, 1 corner unit, and 1 end unit configuration with an average floor area of 509 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes											
1	Determine Type of Construction			T,	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	on		1.5	-			
2	Determine Effective Floor		Su	Sum of All Floor Areas										
	Area	568	568	568						1,703	-			
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min											
4	Determine Occupancy Charge			-15%	11,900									
			None											
5	Determine Sprinkler		0%	0										
5	Reduction					Not Fully Supe	rvised or N/A			0%	, °			
						% Coverage of S	prinkler System			0%				
5A	Determine Bylaw Requirement		Community	y bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	er protected	NO	-			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinklered ?	-	-			
6	Exposures (Max 75%)	Front	> 30	0	0	0-20	Type V		NO	0%				
		Right	10.1 to 20	12	3	21-41	Type V		NO	11%	3 927			
		Rear	3.1 to 10	12	3	21-41	Type V		NO	16%	0,021			
		Left	20.1 to 30	36	2	61-80	Type V		NO	6%				
					Total Req	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min			16,000			
7	Determine Final Required					Total Rec	uired Fire Flow in L/s				267			
	Fire Flow					Required Du	uration of Fire Flow (hrs)				3.50			
						Required V	olume of Fire Flow (m ³)				3,360			

Stantec Stantec Project #: Project Name: Date: Fire Flow Calculation #: Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 21

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 3.1; Block #3

Notes: Block #3 comprises a total of 3 townhouse units of 2 storeys units, with a basement (more than 50% below ground). It is also assumed that the average floor area is 775 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes												
1	Determine Type of Construction			T	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n			1.5	-			
2	Determine Effective Floor		Sum of All Floor Areas												
_	Area	216	216								432	-			
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min												
4	Determine Occupancy Charge		Limited Combustible -15												
			None												
5	p Task Determine Type of Construction	Non-Standard Water Supply or N/A									0				
5	Reduction					Not Fully Supe	rvised or N/A				0%				
			% Coverage of Sprinkler System												
5A	Determine Bylaw Requirement		Community	/ bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	er protected		NO	-			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinkle	red ?	-	-			
6	Exposures (Max, 75%)	Front	20.1 to 30	14	2	21-41	Туре V		NO		2%				
	Exposures (Max. 75%)	Right	3.1 to 10	14	2	21-41	Туре V		NO		16%	3 273			
		Rear	3.1 to 10	18	2	21-41	Type V		NO		16%	0,210			
		Left	0 to 3	14	2	21-41	Туре V		NO		21%				
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min				9,000			
7	Determine Final Required					Total Rec	uired Fire Flow in L/s				YES - 432 - - 7,000 -15% 5,950 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 16% 3,273 16% 3,273 150 2.00 1,080 1,080				
l '	Fire Flow					Required Du	ration of Fire Flow (hrs)					2.00			
						Required V	olume of Fire Flow (m ³)					1,080			

Stantec Stantec Project #: 1 Project Name: B Date: 1 Fire Flow Calculation #: 2 Description: P

163401964 Barrhaven Conservancy Development Project 10/22/2024 22 Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 3.1; Block #13

Notes: Block #13 comprises a total of 6 townhouse units of 2 storeys units, with a basement (more than 50% below ground). It is also assumed that the average floor area is 775 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes											
1	Determine Type of Construction			T,	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n		1.5	-			
2	Determine Effective Floor		Su	YES	-									
-	Area	288	288 288 (F = 200 + 0 + 1 ^{1/2}). Down dda racemat 4000 l (min								-			
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min											
4	Determine Occupancy Charge			-15%	6,800									
				0%										
5	Determine Sprinkler		Notes Type V - Wood Frame / Type IV-D - Mass Timber Construction Sum of All Floor Areas 288			0%	0							
Ŭ	Reduction					Not Fully Supe	rvised or N/A			0%	- °			
			% Coverage of Sprinkler System											
5A	Determine Bylaw Requirement		Community	/ bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkler protected		NO	-			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinkle	ered ?	-	-			
6	Exposures (Max 75%)	Front	20.1 to 30	36	2	61-80	Туре V	NO		6%				
	Exposures (Max. 75%)	Right	0 to 3	14	2	21-41	Туре V	NO		21%	4 624			
		Rear	3.1 to 10	38	3	> 100	Туре V	NO		20%	1,021			
		Left	0 to 3	14	2	21-41	Туре V	NO		21%				
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min			11,000			
7	Determine Final Required					Total Rec	uired Fire Flow in L/s				183			
	Fire Flow			Limited Combustible-15%None0%Non-Standard Water Supply or N/A0%Not Fully Supervised or N/A0%Not Fully Supervised or N/A0%% Coverage of Sprinkler System0%Community bylaw requiring all building that may be built within 30m of subject building to be fully sprinkler protectedNOXposure tance (m)Exposed Length (m)Length -Height Factor (m x stories)Construction of Adjacent WallFirewall / Sprinklered ? NO-Not to 3036261-80Type VNO6%0 to 314221-41Type VNO21%Total Required Fire Flow in L/min, Rounded to Nearest 1000L/minTotal Required Fire Flow in L/sFire Wind Sprinkler StoriesTotal Required Fire Flow in L/sRequired Volume of Fire Flow (m³)										
						Required V	olume of Fire Flow (m ³)				1,320			

Stantec Stantec Project #: Project Name: Date: Fire Flow Calculation #: Description:

163401964 Barrhaven Conservancy Development Project 10/22/2024 23

Data inputted by: Alexandre Mineault-G, P.Eng. Data reviewed by: Alexandre Mineault-G, P.Eng.

Phase 3.1; Block #12

Notes: Block #12 comprises a total of 6 townhouse units of 2 storeys units, with a basement (more than 50% below ground). It is also assumed that the average floor area is 775 sq. ft. Wood Frame Construction, no sprinklers.

Step	Task		Notes											
1	Determine Type of Construction			T,	ype V - Wood	Frame / Type IV-	D - Mass Timber Constructio	n			1.5	-		
2	Determine Effective Floor		Su	m of All Floor A	reas				-	-	YES	-		
_	Area	432	432 432								864	-		
3	Determine Required Fire Flow		$(F = 220 \text{ x C x A}^{1/2})$. Round to nearest 1000 L/min											
4	Determine Occupancy Charge			-15%	8,500									
			None											
5	Determine Sprinkler		Non-Standard Water Supply or N/A											
Ŭ	Reduction	Not Fully Supervised or N/A									Value Used Req'd Fire Flow (L/min) 1.5 - YES - 864 - -15% 8,500 0% 0 0% 0 0% 0 0% - 10,000 - -15% 8,500 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 10% - 21% 6,120 21% 250 3.00 2,700			
			% Coverage of Sprinkler System											
5A	Determine Bylaw Requirement		Community	v bylaw requiring	g all building th	at may be built wi	thin 30m of subject building to	be fully sprinkle	er protected		NO	-		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinkle	red ?	-	-		
6	Exposures (Max 75%)	Front	20.1 to 30	72	2	> 100	Туре V		NO		10%			
	Exposures (max. 75%)	Right	0 to 3	14	2	21-41	Туре V		NO		21%	6 120		
		Rear	3.1 to 10	38	3	> 100	Type V		NO		20%	0,120		
		Left	0 to 3	14	2	21-41	Туре V		NO		21%			
					Total Requ	uired Fire Flow in	L/min, Rounded to Nearest	1000L/min				15,000		
7	Determine Final Required	Total Required Fire Flow in L/s										Value Used Req'd Fire Flow (L/min) 1.5 - YES - 864 - -15% 8,500 0% 0 0% 0 0% 0 0% - 1.5% 8,500 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 10% - 110% - 21% 6,120 20% 250 3.00 3.00		
	Fire Flow	Required Duration of Fire Flow (hrs)												
						Required V	olume of Fire Flow (m ³)					2,700		

Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

Appendix A4: Water Boundary Condition Estimates

Reference: Caivan Barrhaven Conservancy East Development - Phases 3.1 and 4 Detailed Design

Appendix A5: Modelling Results

MXDY+FF (250 L/s) – Phase 4 (Interim)

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Hydrant Available Flow (L/s)
J01	0.00	59.21	135.15	250.00
J02	0.00	59.77	135.12	250.00
J05	0.24	60.25	135.10	250.00
J06	0.24	60.38	135.10	250.00
J07	0.00	60.54	135.09	250.00
J08	0.00	60.41	135.09	250.00
J09	0.00	59.90	135.09	250.00
J10	0.00	60.15	135.09	250.00
J11	0.00	60.04	135.09	250.00
J12	0.00	59.90	135.09	250.00
J15	0.24	60.10	135.10	250.00
J152	0.48	60.58	135.09	250.00
J153	0.24	59.57	135.08	250.00
J16	0.24	60.25	135.09	250.00
J17	0.24	60.07	135.09	250.00
J18	0.24	59.85	135.08	250.00
J19	0.24	59.64	135.08	250.00
J20	0.24	60.11	135.08	250.00
J21	1.07	59.95	135.08	250.00
J22	1.07	60.01	135.08	250.00
J27	0.24	60.39	135.09	250.00
J28	0.24	60.31	135.09	250.00
J29	0.24	60.31	135.09	250.00
J30	0.24	60.24	135.09	250.00
J31	0.24	60.37	135.09	250.00
J32	0.24	60.27	135.09	250.00
J33	0.24	60.50	135.09	250.00
J34	0.24	60.38	135.09	250.00
J35	0.24	60.33	135.09	250.00
J36	0.24	60.47	135.09	250.00
J40	0.00	59.93	135.09	250.00
J46	0.00	59.97	135.09	250.00
J48	0.00	60.01	135.09	250.00
J50	0.48	59.92	135.09	250.00
J51	0.48	60.07	135.09	250.00
J52	0.48	60.10	135.09	250.00
J53	0.48	60.20	135.09	250.00
J55	0.48	60.69	135.09	250.00
J76	0.24	60.26	135.09	250.00
J77	0.24	59.97	135.09	245.00
J78	0.24	60.13	135.09	250.00
J79	0.24	60.22	135.09	250.00
J83	0.24	59.85	135.08	250.00
J84	0.24	59.72	135.08	250.00
J85	0.24	59.82	135.08	209.02
J86	0.24	60.04	135.08	198.54
J87	0.24	59.99	135.08	198.68
J88	0.24	59.85	135.08	212.24
188	0.24	59.85	135.08	250.00
	0.24	59.68	135.08	243.51
J91	0.24	59.98	135.08	250.00
J92	1.07	59.79	135.08	232.62*
J93	1.07	59.68	135.08	229.89*

* 250 L/s available from multiple hydrants, as per Technical Bulletin ISDTB-2018-02.

MXDY+FF (250 L/s) – Phase 4 (Interim)

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Hydrant Available Flow (L/s)
J01	0.00	58.95	134.97	250.00
J02	0.00	59.49	134.92	250.00
J05	0.24	59.95	134.89	250.00
J06	0.24	60.08	134.88	250.00
J07	0.00	60.24	134.88	250.00
J08	0.00	60.11	134.88	250.00
J09	0.00	59.59	134.88	250.00
J10	0.00	59.85	134.88	250.00
J11	0.00	59.74	134.88	250.00
J12	0.00	59.59	134.88	250.00
J15	0.24	59.80	134.88	250.00
J152	0.48	60.28	134.88	250.00
J153	0.24	59.26	134.86	250.00
J16	0.24	59.94	134.88	250.00
J17	0.24	59.76	134.87	250.00
J18	0.24	59.54	134.87	250.00
.119	0.24	59.33	134.86	250.00
120	0.24	59.80	134.86	250.00
121	1.07	59.60	134.86	250.00
120	1.07	59.04	124.00	250.00
J22	0.44	59.70	134.00	250.00
J23	0.44	59.62	134.00	250.00
J24	0.44	59.95	134.86	250.00
J25	0.44	59.84	134.86	250.00
J26	0.44	59.94	134.86	250.00
J27	0.24	60.07	134.86	250.00
J28	0.24	60.00	134.86	250.00
J29	0.24	60.00	134.87	250.00
J30	0.24	59.93	134.87	250.00
J31	0.24	60.06	134.87	250.00
J32	0.24	59.96	134.87	250.00
J33	0.24	60.19	134.87	250.00
J34	0.24	60.07	134.87	250.00
J35	0.24	60.03	134.88	250.00
J36	0.24	60.16	134.88	250.00
J37	0.44	59.61	134.86	250.00
J40	0.00	59.62	134.88	250.00
J46	0.00	59.67	134.88	250.00
J48	0.00	59.71	134.88	250.00
J50	0.48	59.62	134.88	250.00
J51	0.48	59.77	134.88	250.00
J52	0.48	59.79	134.88	250.00
J53	0.48	59.89	134.88	250.00
J55	0.48	60.39	134.88	250.00
J75	0.44	59.77	134.86	250.00
J76	0.24	59.94	134.86	250.00
J77	0.24	59.66	134.86	250.00
J78	0.24	59.82	134.87	250.00
J79	0.24	59.91	134.87	250.00
J80	0.44	59.47	134.86	250.00
J81	0.44	59.28	134.86	250.00
J82	0.44	59.33	134.86	250.00
J83	0.24	59.54	134.86	250.00
J84	0.24	59.41	134.86	250.00
J85	0.24	59.51	134.86	214.36
J86	0.24	59.73	134.86	202.82
J87	0.24	59.68	134.86	202.90
J88	0.24	59.54	134.86	217.47
J89	0.24	59.54	134.86	250.00

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Hydrant Available Flow (L/s)
J90	0.24	59.37	134.86	250.00
J91	0.24	59.67	134.86	250.00
J92	1.07	59.48	134.86	244.93*
J93	1.07	59.37	134.86	248.39*

* 250 L/s available from multiple hydrants, as per Technical Bulletin ISDTB-2018-02.

MXDY+FF (267 L/s) – Phase 4 (Interim)

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Hydrant Available Flow (L/s)
J01	0.00	57.81	134.17	267.00
J02	0.00	58.35	134.12	267.00
J05	0.24	58.81	134.09	267.00
J06	0.24	58.94	134.08	267.00
J07	0.00	59.10	134.08	267.00
J08	0.00	58.97	134.08	267.00
J09	0.00	58.46	134.08	267.00
J10	0.00	58.71	134.08	267.00
J11	0.00	58.60	134.08	267.00
J12	0.00	58.46	134.08	267.00
J15	0.24	58.66	134.08	267.00
J152	0.48	59.14	134.08	267.00
J153	0.24	58.12	134.06	267.00
J16	0.24	58.81	134.08	267.00
J17	0.24	58.63	134.07	267.00
J18	0.24	58.41	134.07	267.00
J19	0.24	58.19	134.06	267.00
J20	0.24	58.66	134.06	267.00
J21	1.07	58.50	134.06	267.00
J22	1.07	58.56	134.06	267.00
J23	0.44	58.69	134.06	267.00
J24	0.44	58.82	134.06	267.00
J25	0.44	58.70	134.06	267.00
J26	0.44	58.80	134.06	267.00
J27	0.24	58.93	134.06	267.00
J28	0.24	58.86	134.06	267.00
J29	0.24	58.86	134.07	267.00
J30	0.24	58.79	134.07	267.00
J31	0.24	58.92	134.07	267.00
J32	0.24	58.83	134.07	267.00
J33	0.24	59.06	134.07	267.00
J34	0.24	58.93	134.07	267.00
J35	0.24	58.89	134.08	267.00
J36	0.24	59.02	134.08	267.00
J37	0.44	58.47	134.06	267.00
J40	0.00	58.49	134.08	267.00
J46	0.00	58.53	134.08	267.00
J48	0.00	58.57	134.08	267.00
J50	0.48	58.49	134.08	267.00
J51	0.48	58.63	134.08	267.00
J52	0.48	58.66	134.08	267.00
J53	0.48	58.76	134.08	267.00
J55	0.48	59.25	134.08	267.00
J75	0.44	58.63	134.06	246.40*
J76	0.24	58.80	134.06	267.00
J77	0.24	58.52	134.06	246.10
J78	0.24	58.68	134.07	267.00
J79	0.24	58.77	134.07	262.71
J80	0.44	58.33	134.06	253.35

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Hydrant Available Flow (L/s)
J81	0.44	58.15	134.06	260.37
J82	0.44	58.19	134.06	267.00
J83	0.24	58.40	134.06	267.00
J84	0.24	58.28	134.06	267.00
J85	0.24	58.38	134.06	209.73
J86	0.24	58.59	134.06	198.46
J87	0.24	58.55	134.06	198.53
J88	0.24	58.40	134.06	212.78
J89	0.24	58.40	134.06	267.00
J90	0.24	58.23	134.06	246.86
J91	0.24	58.53	134.06	267.00
J92	1.07	58.34	134.06	239.65*
J93	1.07	58.23	134.06	243.03*

* 267 L/s available from multiple hydrants, as per Technical Bulletin ISDTB-2018-02.

David Schaeffer Engineering Ltd. 120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856 dsel.ca

APPENDIX C

SANITARY SEWER CALCULATION SHEET

ſ

Manning's n=0.013															Ilawa															
	LOCATION	I				RESIDENTIA	AL AREA AND	POPULATION					COM	М	INSTIT	PARK	C	+ +	IN	FILTRATIO	N				PIPE					
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUMU		PEAK	PEAK	AREA	ACCU.	AREA ACCU.	AREA AC	CCU. P	EAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	L.	
		М.Н.	M.H.	(ha)		Singles	rownnouse		AREA (ha)	PUP.	FACT.	(I/s)	(ha)	(ha)	(ha) (ha)	(ha) (h	ĸ⊨A Fi ha) (low I/s)	AREA (ha)	AREA (ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(FULL) (I/s)	u act/u cap	(FULL) (m/s)	(ACT.) (m/s)	
BCDC FAST				+												+		$\neg \top$												
	THERE BOORDO ON	126A	130A	-	34				0.00					0.00	0.00	0	.00 0	0.00	0.00	0.00	0.00	0.00	87.0	200	0.65	26 44	0.00	0.84	0.05	
		130A	17A		10				0.00	0				0.00	0.00	0	.00 0	0.00	0.00	0.00	0.00	0.00	36.0	200	0.35	19.40	0.00	0.62	0.03	
To Les Emmer	rson Drive (N), Pipe 17	A - 18A							0.00	0				0.00	0.00	0	.00			0.00										
		100.4	100.4		00				0.00					0.00	0.00				0.00	0.00	0.00	0.00	00.0	000	0.05	00.44	0.00	0.04	0.05	
		132A	123A		32				0.00	0				0.00	0.00	0	.00 0	0.00	0.00	0.00	0.00	0.00	80.0	200	0.65	26.44	0.00	0.84	0.05	
		123A	124A	-	4				0.00	0				0.00	0.00	0		0.00	0.00	0.00	0.00	0.00	11.5	200	0.35	19.40	0.00	0.62	0.03	
To Mineral Stre	eet Pipe 46A - 47A	124A	40A						0.00	0				0.00	0.00	0	00 0	.00	0.00	0.00	0.00	0.00	11.0	200	0.25	29.75	0.00	0.01	0.05	
ro minora out									0.00	Ŭ				0.00	0.00	Ŭ	.00			0.00										
		-																												
						-																								
		-																												
																		_	POFE	ESS/QAV										
																		- /	970	The second	<u> </u>									
						-												-/	\mathcal{A}		121-									
																		- 6	W	. HU	Z									
																		Ē.	100	167932	R									
																		_\			> /-									
																		— \´	Por C	2-0114	2									
																			NCE NCE	OF ON										
																			\sim	~	_									
I			I	1	DESIGN	PARAMET	FRS			I	1				Decian	ed:							I		I	I	I		I	
Park Flow =		9300	L/ha/da	0.10764	DEGIGIN	I/s/Ha	LING								Design	N	1.S.			I NOJECI			BCDC E	AST STA	CKED C					
Average Daily F	low =	280	l/p/day	0.0044		1/= /1 1 -			Industrial	Peak Fact	tor = as p	er MOE G	raph								NI.	(B.	AKKHA\	EN CON	ICERVAN	ICY EAST	PHASE 4)		
Comm/Inst Flow	r = :	28000	L/ha/da L/ha/da	0.3241		l/s/Ha l/s/Ha			Extraneou	us Flow = Velocity =		0.330	L/S/ha m/s		Checke	a: \v	vi			LOCATIO	N:				City of	Ottawa				
Max Res. Peak	Factor =	4.00	L/Ha/ud	0.40008		1/3/11d			Manning's	s n =	(Conc)	0.013	(Pvc)	0.013		v	•								Sity of	Cland				
Commercial/Inst	t./Park Peak Factor =	1.50							Townhous	se coeff=	(·····)	2.7	. /		Dwg. R	eference:				File Ref:		20-1180		Date:				Sheet No.	1	
Institutional =		0.32	l/s/Ha						Single ho	use coeff=		3.4			Sanitary	Drainage Plan,	Dwgs. No.	. 110-112	2			20-1100			Jan 2025			of	1	

Ottowa

David Schaeffer Engineering Ltd. 120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856 dsel.ca

APPENDIX D

C NTECH **ENGINEERED SOLUTIONS**

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION**

Project Name:	891 Conserv	ancy East	Engineer:	DSEL			
Location:	Ottawa, ON		Contact:	Peter Mott			
OGS #:	5		Report Date: 2	29-Aug-24			
Area	8.55	ha	Rainfall Statio	n #	215		
Weighted C	0.68		Particle Size D	istribution	FINE		
CDS Model	5640	(OFFLINE)	CDS Treatmen	nt Capacity	255	l/s	

<u>Rainfall</u> Intensity ¹ (mm/hr)	Percent Rainfall Volume ¹	<u>Cumulative</u> <u>Rainfall</u> <u>Volume</u>	<u>Total</u> <u>Flowrate</u> <u>(I/s)</u>	<u>Treated</u> Flowrate (I/s)	<u>Operating</u> <u>Rate (%)</u>	Removal Efficiency <u>(%)</u>	Incremental Removal (%)								
1.0	10.6%	19.8%	16.2	16.2	6.3	97.0	10.3								
1.5	9.9%	29.7%	24.2	24.2	9.5	96.1	9.5								
2.0	8.4%	38.1%	32.3	32.3	12.7	95.2	8.0								
2.5	7.7%	45.8%	40.4	40.4	15.9	94.3	7.3								
3.0	5.9%	51.7%	48.5	48.5	19.0	93.4	5.5								
3.5	4.4%	56.1%	56.6	56.6	22.2	92.5	4.0								
4.0	4.0 4.7% 60.7% 64.7 64.7 25.4 91.6 4.3 4.5 3.3% 64.0% 72.7 72.7 28.5 90.7 3.0														
4.5	4.5 3.3% 64.0% 72.7 72.7 28.5 90.7 3.0 5.0 2.0% 67.1% 20.0 20.2 2.7 3.0														
5.0	3.0%	67.1%	80.8	80.8	31.7	89.8	2.7								
6.0	5.4%	72.4%	97.0	97.0	38.0	88.0	4.7								
7.0	4.4%	76.8%	113.1	113.1	44.4	86.1	3.7								
8.0	3.5%	80.3%	129.3	129.3	50.7	84.3	3.0								
9.0	2.8%	83.2%	145.5	145.5	57.1	82.5	2.3								
10.0	2.2%	85.3%	161.6	161.6	63.4	80.7	1.8								
15.0	7.0%	92.3%	242.4	242.4	95.1	71.6	5.0								
20.0	4.5%	96.9%	323.3	254.9	100.0	55.3	2.5								
25.0	1.4%	98.3%	404.1	254.9	100.0	44.3	0.6								
30.0	0.7%	99.0%	484.9	254.9	100.0	36.9	0.2								
35.0	0.5%	99.5%	565.7	254.9	100.0	31.6	0.1								
40.0	0.5%	100.0%	646.5	254.9	100.0	27.7	0.2								
							87.9								
				Rem	10val Efficiency	Adjustment ² =	6.5%								
	Predicted Net Annual Load Removal Efficiency = 81.4%														
Predicted Annual Rainfall Treated = 97.6%															
- Based on 42 years of hourly rainfall data from Canadian Station 6105976, Ottawa ON															
2 - Reduction du	ie to use of 60-r	ninute data for a	site that has	a time of conce	entration less th	an 30-minutes.									

3 - CDS Efficiency based on testing conducted at the University of Central Florida
 4 - CDS design flowrate and scaling based on standard manufacturer model & product specifications

C NTECH ENGINEERED SOLUTIONS

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON ETV PARTICLE SIZE DISTRIBUTION

Project: Barrhaven Conservancy Fast Engineer: DSEL												
		inservancy Last			Cirgineer.	Dotes Matt						
Location:	Ottawa				Contact:	Peter Mott						
OGS ID:	OGS 6				Report Date:	19-Dec-24						
A	F 0F	ha		Treatm		100.7	1/2					
Area:	5.35	na		Treatm	ent Capacity:	108.7	I/S					
C- Value:	0.53			Particle Size	Distribution:	ETV						
CDS Model:	8											
						-						
Rainfall	Percent	Cumulative	<u>Total</u>	Treated	Operating	<u>Removal</u>	Incremental					
Intensity ¹	Rainfall	<u>Rainfall</u>	Flowrate	Flowrate (I/s)	Bate (%)	Efficiency	Bemoval (%)					
<u>(mm/hr)</u>	<u>Volume¹</u>	<u>Volume</u>	<u>(l/s)</u>		<u>Indic (70)</u>	<u>(%)</u>	<u></u>					
0.5	9.2%	9.2%	4.2	4.2	3.9	72.7	6.7					
1.0	10.6%	19.8%	8.5	8.5	7.8	68.4	7.3					
1.5	9.9%	29.7%	12.7	12.7	11.7	64.5	6.4					
2.0	8.4%	38.1%	17.0	17.0	15.6	61.0	5.1					
2.5	7.7%	45.8%	21.2	21.2	19.5	58.0	4.5					
3.0	5.9%	51.7%	25.4	25.4	23.4	55.3	3.3					
3.5	4.4%	56.1%	29.7	29.7	27.3	53.0	2.3					
4.0	4.7%	60.7%	33.9	33.9	31.2	51.0	2.4					
4.5	3.3%	64.0%	38.1	38.1	35.1	49.2	1.6					
5.0	3.0%	67.1%	42.4	42.4	39.0	47.7	1.4					
6.0	5.4%	72.4%	50.9	50.9	46.8	45.4	2.4					
7.0	4.4%	76.8%	59.3	59.3	54.6	43.6	1.9					
8.0	3.5%	80.3%	67.8	67.8	62.4	42.3	1.5					
9.0	2.8%	83.2%	76.3	76.3	70.2	41.0	1.2					
10.0	2.2%	85.3%	84.8	84.8	78.0	39.6	0.9					
15.0	7.0%	92.3%	127.2	108.7	100.0	27.8	1.9					
20.0	4.5%	96.9%	169.6	108.7	100.0	20.9	0.9					
25.0	1.4%	98.3%	211.9	108.7	100.0	16.7	0.2					
30.0	0.7%	99.0%	254.3	108.7	100.0	13.9	0.1					
35.0	0.5%	99.5%	296.7	108.7	100.0	11.9	0.1					
40.0	0.5%	100.0%	339.1	108.7	100.0	10.4	0.1					
45.0	0.0%	100.0%	381.5	108.7	100.0	9.3	0.0					
50.0	0.0%	100.0%	423.9	108.7	100.0	8.4	0.0					
							52.1					
			Predic	ted Net Annual	Load Remov	al Efficiency =	52.1%					
				Predicted	% Annual <mark>Ra</mark> ii	nfall Treated =	95.6%					
1 - Based on 42	years of hourly	y rainfall data fron	n Canadian S	station 6105976,	Ottawa ON							
2 - TSS Removal Rate Based on ETV Testing												

C NTECH C

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON ETV PARTICLE SIZE DISTRIBUTION

Project: Developer Concernancy Fact												
Project: Barrhaven Conservancy East Engineer: DSEL												
Location:	Ottawa				Contact:	Peter Mott						
OGS ID:	OGS 7				Report Date:	19-Dec-24						
Area:	5.44	ha		Treatm	ent Capacity:	169.9	l/s					
C- Value:	0.75			Particle Size	Distribution:	ETV						
CDS Model:	10											
Rainfall	Percent	Cumulative	Total	_	•	Removal						
Intensity ¹	Rainfall	Rainfall	Flowrate	Treated	<u>Operating</u>	Efficiency	Incremental					
(mm/hr)	Volume ¹	Volume	(l/s)	Flowrate (I/s)	<u>Rate (%)</u>	(%)	Removal (%)					
0.5	9.2%	9.2%	5.7	5.7	3.3	73.4	6.7					
1.0	10.6%	19.8%	11.3	11.3	6.7	69.6	7.4					
1.5	9.9%	29.7%	17.0	17.0	10.0	66.1	6.5					
2.0	8.4%	38.1%	22.7	22.7	13.4	63.0	5.3					
2.5	7.7%	45.8%	28.4	28.4	16.7	60.1	4.6					
3.0	5.9%	51.7%	34.0	34.0	20.0	57.6	3.4					
3.5	4.4%	56.1%	39.7	39.7	23.4	55.3	2.4					
4.0	4.7%	60.7%	45.4	45.4	26.7	53.3	2.5					
4.5	3.3%	64.0%	51.0	51.0	30.0	51.5	1.7					
5.0	3.0%	67.1%	56.7	56.7	33.4	50.0	1.5					
6.0	5.4%	72.4%	68.1	68.1	40.1	47.4	2.6					
7.0	4.4%	76.8%	79.4	79.4	46.7	45.4	2.0					
8.0	3.5%	80.3%	90.7	90.7	53.4	43.9	1.6					
9.0	2.8%	83.2%	102.1	102.1	60.1	42.6	1.2					
10.0	2.2%	85.3%	113.4	113.4	66.8	41.5	0.9					
15.0	7.0%	92.3%	170.1	169.9	100.0	32.5	2.3					
20.0	4.5%	96.9%	226.8	169.9	100.0	24.4	1.1					
25.0	1.4%	98.3%	283.6	169.9	100.0	19.5	0.3					
30.0	0.7%	99.0%	340.3	169.9	100.0	16.3	0.1					
35.0	0.5%	99.5%	397.0	169.9	100.0	13.9	0.1					
40.0	0.5%	100.0%	453.7	169.9	100.0	12.2	0.1					
45.0	0.0%	100.0%	510.4	169.9	100.0	10.8	0.0					
<u>50.0</u> 0.0% 100.0% 567.1 169.9 100.0 9.8 0												
							54.2					
			Predic	ted Net Annua	Load Remov	al Efficiency =	54.2%					
				Predicted	% Annual Raii	nfall Treated =	97.3%					
1 - Based on 42	years of hourly	/ rainfall data fron	n Canadian S	tation 6105976,	Ottawa ON							
2 - TSS Removal Rate Based on ETV Testing												

CINTECH ENGINEERED SOLUTIONS

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON ETV PARTICLE SIZE DISTRIBUTION

Project: Location:	Barrhaven Cor Ottawa	nservancy East			Engineer: Contact:	DSEL Peter Mott	
OGS ID:	06513				Report Date:	19-Dec-24	
Area: C- Value: CDS Model:	1.22 0.7 4	ha		Treatm Particle Size	ent Capacity: Distribution:	27.2 ETV	l/s
<u>Rainfall</u> Intensity ¹ (mm/hr)	<u>Percent</u> <u>Rainfall</u> Volume ¹	<u>Cumulative</u> <u>Rainfall</u> <u>Volume</u>	<u>Total</u> Flowrate (I/s)	<u>Treated</u> Flowrate (I/s)	<u>Operating</u> <u>Rate (%)</u>	<u>Removal</u> Efficiency <u>(%)</u>	Incremental Removal (%)
0.5	9.2%	9.2%	1.2	1.2	4.4	72.2	6.6
1.0	10.6%	19.8%	2.4	2.4	8.7	67.4	7.2
1.5	9.9%	29.7%	3.6	3.6	13.1	63.2	6.3
2.0	8.4%	38.1%	4.7	4.7	17.5	59.5	5.0
2.5	7.7%	45.8%	5.9	5.9	21.8	56.3	4.3
3.0	5.9%	51.7%	7.1	7.1	26.2	53.6	3.2
3.5	4.4%	56.1%	8.3	8.3	30.6	51.3	2.2
4.0	4.7%	60.7%	9.5	9.5	34.9	49.3	2.3
4.5	3.3%	64.0%	10.7	10.7	39.3	47.6	1.6
5.0	3.0%	67.1%	11.9	11.9	43.7	46.2	1.4
6.0	5.4%	72.4%	14.2	14.2	52.4	44.1	2.4
7.0	4.4%	76.8%	16.6	16.6	61.1	42.5	1.8
8.0	3.5%	80.3%	19.0	19.0	69.9	41.0	1.5
9.0	2.8%	83.2%	21.4	21.4	78.6	39.4	1.1
10.0	2.2%	85.3%	23.7	23.7	87.3	37.3	0.8
15.0	7.0%	92.3%	35.6	27.2	100.0	24.9	1.7
20.0	4.5%	96.9%	47.5	27.2	100.0	18.6	0.8
25.0	1.4%	98.3%	59.4	27.2	100.0	14.9	0.2
30.0	0.7%	99.0%	71.2	27.2	100.0	12.4	0.1
35.0	0.5%	99.5%	83.1	27.2	100.0	10.7	0.1
40.0	0.5%	100.0%	95.0	27.2	100.0	9.3	0.1
45.0	0.0%	100.0%	106.8	27.2	100.0	8.3	0.0
50.0	0.0%	100.0%	118.7	27.2	100.0	7.5	0.0
1 Deced on 40	vers of be with		Predic	ted Net Annua Predicted	Load Remov	al Efficiency = nfall Treated =	50.6 50.6% 94.5%
2 - TSS Remova	l Rate Based o	on ETV Testing	i Ganadiari S	01000000000000000000000000000000000000	Ollawa ON		

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years

Manning	0.013		Conector roads Return Frequency = 0 years																													
	1.00					,				ARE	A (Ha)									FL	.ow							SEWER DA	ТА			
	LOCA	ATION		2 `	YEAR			5 YE	EAR		10	YEAR			100 Y	/EAR		Time of	Intensity	Intensity	Intensity	Intensity	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
			AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year	10 Year	100 Year										
Location	From Node	To Node	(Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(Ha)	2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q full
	OT OT 40																															
BCDC EA	SI SIAC	G15			1 20	1 20			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.01	104.10	100.14	170 56	106	450	450	CONC	0.20	06 E	107 5022	0 9017	1 7092	0.921
	615	704	0.62	0.80	1.38	1.30			0.00	0.00		0.00	0.00			0.00	0.00	11.00	70.61	05.57	122.14	163.64	07	450	450	CONC	0.20	36.5	227 8056	0.8017	0.7222	0.831
To Les Fr	merson [)rive (N) P	ine 704 -	705	0.00	1.30			0.00	0.00		0.00	0.00			0.00	0.00	12.52	10.55	35.51	111.30	103.04	31	000	000	CONC	0.15	50.5	201.0000	0.0411	0.7255	0.403
TO LOD LI		, i i i i i i i i i i i i i i i i i i i	100104	100		1.00				0.00			0.00				0.00	12.02														
	530	531	0.62	0.80	1.37	1.37			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	105	450	450	CONC	0.25	79.5	142.5531	0.8963	1.4783	0.738
	531	532			0.00	1.37			0.00	0.00		0.00	0.00			0.00	0.00	11.48	71.56	96.98	113.65	166.09	98	450	450	CONC	0.20	13.0	127.5033	0.8017	0.2703	0.769
	532	507	0.02	0.52	0.02	1.39			0.00	0.00		0.00	0.00			0.00	0.00	11.75	70.69	95.78	112.24	164.01	98	675	675	CONC	0.15	10.0	325.5584	0.9098	0.1832	0.302
To Minera	l Street, P	ipe 507 - 5	10			1.39				0.00			0.00				0.00	11.93														
												-																				
				1		1			İ	İ		1	1		1		1	İ	İ	İ												
													1				İ															
											1																					
-																																
				1	1	İ			1	1		1	1		1		1	1	1	1												
L				I								 																				
											├ ─── ├ ───																					
					-						<u>├</u> ───	+																				
├ ──				 	+					<u> </u>	├── ├	+	+		+		+	<u> </u>	<u> </u>													
—				1					1	1		1	1				1		- ressin													
				1								1	1				1		ROFESSIC	SVAL N												
				1		İ			1	1		1	1		1		1	182	AN	191												
																		1 2/0	1 A		1											
																		E E	W. LIU	JÄ												
																		1 1	001679	32 7												
L																		\ c	-		/											
Definitions										N7 .								12	25-01-14	181	/		Designed:			PROJECT: I	SCDC EA	ST STACK	ED CONDO	SITE PLAN	1	
Q = 2.78 A	IK, where		1.0.1-2							Notes:	Deinfell Intensity O	_						Nº4	Nor	ONTAT			Charles 1		M.S.	E	SARRHAV	EN CONS	ERVANCYE	AST Ph4		
Q = Peak F	n bectara-	ts per second	1 (L/S)							2) Min 1/-1	camian-mensity Curv	5							OF				Checked:		WT	LUCATION			City of C	ttawa		
I = Rainfal	Intensity ()	nm/h)								∠j wiitt. vel	oony = 0.00 m/s												Dwg. Refe	rence:	W.L.	File Ref			Date:	lawa	Sheet No	
R = Runof	Coefficien	t,																					Dwg. 113-11	15				20-1180	14 Jan 1	2025	SHEET	1 OF 1

wa

 re: Geotechnical Review – Groundwater Infiltration Proposed Residential Development – Conservancy Lands East and West Borrisokane Road – Ottawa, Ontario
 to: Caivan Communities – Hugo Lalonde – hugo.lalonde@caivan.com
 date: October 21, 2024

file: PG5036-MEMO.42

Further to your request and authorization, Paterson Group (Paterson) prepared the current memorandum to provide a geotechnical review and recommendations with respect to management of groundwater infiltration into the sump pits of townhouse blocks and back-to-back style residential dwellings. This memorandum should be read in conjunction with the Sump Pump Feasibility Report (Paterson Group Report PG5036-LET.01 Revision 3 dated September 5, 2022).

Geotechnical Review & Recommendations

The subject residential development consists of single-family homes, townhouse blocks and back-to-back style residential buildings. Buildings which include a basement level will use sump pump(s) to provide an outlet for stormwater and spring melt water collected from the perimeter foundation drainage system.

Based on the geotechnical investigation completed by others, the subsurface profile at the subject site generally consists of topsoil underlain by a very stiff to stiff, brown silty clay crust, becoming firm to stiff and grey in colour by approximate depths of 2.5 to 3.0 m below the existing ground surface. The silty clay deposit generally extended to the maximum depth of the boreholes. The long-term groundwater elevation at the subject site is expected at an approximate geodetic elevation ranging from 88.3 to 90.0 m.

Hydraulic conductivity (slug) testing was completed by Paterson and by others at select monitoring wells installed during the geotechnical investigation, by others. Based on the results of the slug testing, the silty clay within the subject site has a hydraulic conductivity ranging from 5.0×10^{-8} and 2.0×10^{-5} m/sec.

It is understood that the proposed townhouse blocks may consist of up to 12 units, with an approximate building of footprint of 720 m². From the hydraulic conductivity of the in-situ soils and the sizing of the building footprint, sump pumps for the proposed townhouse blocks should be sized to handle an approximate volume of up to 200,000 L/day.

As such, it is recommended that the proposed townhouse blocks be outfitted with a sufficient number of sump pumps to effectively drain this volume of water. The location(s) of the sump pump(s) should be evenly distributed across each building footprint.

We trust that the current submission meets your immediate requirements.

Best Regards,

Paterson Group Inc.

Kevin A. Pickard, P.Eng.

Cct. 21, 2024 100531344 Kan. hellow BROVINCE OF ONTARIC

Scott S. Dennis, P.Eng.

Ottawa Head Office 9 Auriga Drive Ottawa – Ontario – K2E 7T9 Tel: (613) 226-7381

Ottawa Laboratory 28 Concourse Gate Ottawa – Ontario – K2E 7T7 Tel: (613) 226-7381

List of Services

Geotechnical Engineering ♦ Environmental Engineering ♦ Hydrogeology Materials Testing ♦ Retaining Wall Design ♦ Rural Development Design Temporary Shoring Design ♦ Building Science ♦ Noise and Vibration Studies

JFSA Canada Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 T 613-836-3884 F 613-836-0332

jfsa.com

January 13, 2025

Project Number: 1474(03)

David Schaeffer Engineering Ltd. 120 Iber Road, Suite 103 Stittsville, ON K2S 1E9

Attention: Peter Mott, P.Eng

Subject: Barrhaven Conservancy East Site Plan (Conservancy Stacked Towns)-Stormwater Analysis

1.1.1 Introduction

The purpose of this Stormwater Management analysis is to outline the proposed stormwater management strategy for the development of the Barrhaven Conservancy East Site Plan located north of Conservancy Drive, east of Les Emerson Drive and west of Mineral Street, in Barrhaven Ontario. The following memo addresses the stormwater management requirements associated with the proposed development in accordance with the guidelines and regulations set forth by the City of Ottawa and the Ministry of the Environment, Conservation and Parks (MECP).

The proposed development will consist primarily of stacked town homes/ roads/parking and parkette/amenities. The total site area is approximately **1.76 ha** at **81%** imperviousness, due to grading constraints **0.53 ha** of the site plan will drain directly to nearby roads or rear yard swales within the greater subdivision. **Figure 1** provides an overview of the subcatchments within the site plan study area. All stormwater runoff from the subject property will be conveyed to the Jock River via storm sewer network within the greater Barrhaven Conservancy East Subdivision.

1.1.2 Stormwater Management Design Criteria

The stormwater management design for this site have been designed in accordance with the following regulatory guidelines:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
- City of Ottawa Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, February 2014.
- City of Ottawa Technical Bulletin PIEDTB-2016-01, City of Ottawa, September 2016.
- City of Ottawa Technical Bulletin ISTB-2018-04, City of Ottawa, June 2018.
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)

1.1.3 Quality Control

The site will provide a minimum 80% TSS removal through a treatment train approach consisting of CB Shields, deep sump catch basins, Stormtech underground storage infiltration chambers and end of pipe Oil Grit Separator (OGS). A total of six (6) underground storage infiltration chambers will be integrated within the site to retain and infiltrate some of the runoff from **1.23 ha** of drainage area (drainage area to each underground infiltration trench is shown in **Figure 2**).

Runoff from within the development will be captured by the catch basins then conveyed to the underground storage infiltration chambers for quality treatment by infiltration. Once the storage infiltration chambers are full, the excess runoff will overflow to the main storm sewer. All storage infiltration chambers have been sized by DSEL and will provide a total storage volume of **97 m³** or **78.8 m³/ha**. Based on average imperviousness of **85%**, the required onsite storage volumes to provide 70% TSS removal is **30 m³/ha** and **40 m³/ha** for 80% TSS removal. The storage volume provided is more than twice the volume required to achieve 70% TSS removal.

Pre-treatment prior to infiltration will be provided by deep sumps and CB Shields, which will be installed at all catch basins within the site plan. Based on ETV testing, CB Shields can provide **25%** to **64%** removal efficiency depending on flow rates. The current design has **24** catch basins to service the **1.23 ha** area with an average imperviousness of **85%**. Based on 27 years of continuous simulations, the average TSS removal rate from the CB Shields has been established at **57%**. The deep sump catch basins will further enhance TSS removal by as much as **25%**. However, as there was much debate on this topic during a recent OLT, we have voluntarily reduced the TSS removal rate from deep sump catch basins to **10%**, from **25%**.

As such, stormwater quality treatment for this site will be provided through the combined use of CB Shields, deep sumps, underground storage units for infiltration and end of pipe OGS. Using a conservative TSS removal rate of **50%** for OGSs, total TSS removal for the site, can be estimated as **94.20%**, based on the elements presented above and the following equation.:

 $Total TSS Removal (\%) = 1 - [(1 - \%TSS Removal Method 1) \times (1 - \%TSS Removal Method 2) \times ... \times (1 - \%TSS Removal Method n)]$

 $Total TSS Removal (\%) = 1 - (1 - 0.57) \times (1 - 0.10) \times (1 - 0.7) \times (1 - 0.5)$ Total TSS Removal (\%) = 94.20%

Refer to **Attachment A** and **Attachment B** for full details about the underground storage infiltration chambers and TSS removal calculations, respectively. Note that to ensure a conservative design the volume provided by the underground trenches to provide the required TSS removal has not been considered in the stormwater management modelling.

1.1.4 Quantity Control

The site does not have any specific quantity control requirements, as the site will outlet to the lower reaches of the Jock River and quantity control is not required. Although runoff from the site must be controlled to ensure that it does not adversely impact the operations of the storm sewer network within the greater Conservancy East Subdivision. To ensure that this is the case, the detailed site plan modelling has been incorporated into the greater subdivision modelling. This approach allows for the runoff and the HGLs from both the site plan and subdivision to be dynamically assessed in a single unified model.

1.1.5 Model Representation

The major system storage volume available on the site is represented by storage nodes in the model, derived from the detailed grading surface produced by DSEL, a copy of this detailed grading surface has been provided in **Figure 3**. Runoff from the site is directed to these storage nodes, which are connected to orifices that simulate the flow restriction of the CB grate. From there, the runoff is conveyed to the storm sewer network within the site. During extreme events, the CB grate may act as a constriction to flow, causing ponding at the CB. In these scenarios, the entire major system conveyance network has been modeled using a series of short (5m) open rectangular links. This allows major system flows to cascade from one low point to another during extreme events if the ponding elevation exceeds the localized high point between the two respective low points. **Figure 4** outlines the minor system connectivity within the site and **Figure 5** outlines the major system network.

1.1.6 Results

As a part of the detailed modelling the major system ponding and storm sewer HGL have been assessed in detail. **Table 1** below outlines the peak flows leaving the site for the 2, 5, 100-year events under free outlet conditions.

System	Location	002yrChicago3hr	005yrChicago3hr	100yrChicago3hr
Minor System	West	0.109	0.158	0.287
wintor system	East	0.103	0.142	0.225
	Northwest	0.000	0.000	0.000
Major System	Southwest	0.000	0.000	0.000
iviajor system	Northeast	0.000	0.000	0.000
	Southeast	0.001	0.002	0.004

Table 1: Minor and Major System Outflows (m³/s) – Free Outlet (see Figure 5)

Table 2 outlines the maximum ponding elevations during both the 100-year SCS 24Hr and 100-year CHI 3Hr event as well as the stress test event (100yr CHI 3Hr+20%). Note that this analysis assumes a fixed 5-year water level on the Jock River in accordance with the analysis completed for the greater Conservancy East Subdivision SWM analysis. Based on this analysis the maximum ponding depth on site is **22 cm** for the 100-year event and **26 cm** for the stress test event.

Table 3 outlines the maximum HGL within the storm sewer network for the site. This analysis was also complete for the design storms specified above, with the same outlet condition. Based on this analysis the minimum freeboard from the top of MH is **17 cm** at **MH-531**, for the 100-year events and **11 cm** at **MH-531**, for the stress test event. It is important to highlight that like the greater subdivision, all units within the site plan will have sump pumps in place, thus the HGL criterion for this site is to ensure that the HGL does not reach the surface. Based on this detailed analysis it is shown that this criterion has been met.

1.1.7 Conclusions

This Stormwater Management Memo has presented the proposed stormwater management strategy for the development of the Barrhaven Conservancy East Site Plan located north of Conservancy Drive, east of Les Emerson Drive and west of Mineral Street, in Barrhaven Ontario. The proposed design meets the regulatory requirements set forth by the City of Ottawa and the Ministry of the Environment, Conservation and Parks (MECP) and addresses the stormwater management objectives of quantity control, quality control, and erosion and sediment control. The implementation of the proposed measures will help to mitigate the impacts of development on the receiving water body and surrounding environment.

Yours truly, **JFSA Canada Inc.**

Oumar Daly Ndiaye, M.Eng., EIT Water Resources Engineer-in-Training

Reviewed by:

J.F Sabourin, M.Eng, P.En Director of Water Resources Projects

Figures

- Figure 1: Subcatchments Overview
- Figure 2: Underground Storage Infiltration Chambers Drainage Areas Overview
- Figure 3: Detailed Grading Surface
- Figure 4: Minor System
- Figure 5: Major System

Tables

- Table 1:
 Minor and Major System Outflows Free Outlet
- Table 2:Maximum Ponding Depths / Elevations for the 100-Year SCS Storm, 100-Year
Chicago Storm & 100-Year Chicago Storm +20%
- Table 3:
 Freeboard Results 100-Year Events & Stress Test Event with 5 Year Jock River

 Water Level
 Vater Stress

Attachments

Attachment A:	Stormtech Underground Storage Infiltration Chambers Design Tables and
	Sizing Calculations

Attachment B: TSS Removal Calculations

Cotob Rosin		Total Depth			Water Surface Elevation	1
	100 Year 24 Hr SCS	100 Year 3 Hr CHI	100 Year 3 Hr CHI+20%	100 Year 24 Hr SCS	100 Year 3 Hr CHI	100 Year 3 Hr CHI+20%
שו	(cm)	(cm)	(cm)	(m)	(m)	(m)
CB_362	11	13	15	93.23	93.25	93.27
CB_363	7	11	15	93.19	93.23	93.27
CB_364	12	16	19	93.09	93.13	93.16
CB_365	14	16	19	93.11	93.13	93.16
CB_366	16	19	23	93.02	93.05	93.09
CB_367	15	19	23	93.02	93.05	93.09
CB_368	16	19	24	93.15	93.19	93.23
CB_369	16	19	24	93.15	93.19	93.23
CB_370	12	15	17	93.16	93.18	93.21
CB_371	12	15	17	93.16	93.18	93.20
CB_372	11	14	17	93.21	93.24	93.27
CB_373	3	9	12	93.14	93.19	93.23
CB_374	14	18	21	93.02	93.05	93.09
CB_375	8	10	12	93.05	93.07	93.09
CB_376	2	3	4	93.12	93.12	93.13
CB_377	3	3	4	93.12	93.12	93.13
CB_378	7	12	18	93.10	93.14	93.20
CB_379	6	12	18	93.09	93.14	93.20
CB_380	12	14	16	93.19	93.21	93.24
CB_381	19	22	26	93.02	93.05	93.09
CB_383	8	11	16	93.15	93.18	93.23
CB_384	10	14	19	93.15	93.19	93.23
CB_385	8	11	13	93.15	93.18	93.21
CB_386	1	2	9	93.10	93.11	93.18
CB_387	2	3	4	93.01	93.02	93.03
Max	19	22	26	93.23	93.25	93.27

Table 2: Maximum Ponding Depths / Elevations for the 100-Year SCS Storm, 100-Year Chicago Storm & 100-Year Chicago Storm +20%

Table 3: Freeboard Results - 100-Year Events & Stress Test Event

	Invert			Max HGL			Freeboard	
MH-ID	Elevation		100 Year 24 Hr SCS	100 Year 3 Hr CHI	100 Year 3 Hr CHI+20%	100 Year 24 Hr SCS	100 Year 3 Hr CHI	100 Year 3 Hr
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
MH-530	90.77	93.40	92.96	93.01	93.07	0.44	0.39	0.33
MH-531	90.54	93.08	92.83	92.91	92.97	0.25	0.17	0.11
MH-532	90.29	93.11	92.80	92.89	92.96	0.31	0.22	0.15
MH-613	90.96	93.45	93.03	93.08	93.13	0.42	0.37	0.32
MH-615	90.64	93.15	92.87	92.96	93.02	0.28	0.19	0.13
-					Min	0.25	0.17	0.11
					Max	0.44	0.39	0.33
					Average	0.34	0.27	0.21

C:\Users\OumarDalyNdiaye\J.F. Sabourin and Associates Inc\JFSA-OTTAWA-SERVER - Documents\PROJ\1474(03)-21\20241216-BCDC-Phase 3 & Site Plan\Design\GIS\20250107-Site Plan Memo Figures

C:\Users\OumarDalyNdiaye\J.F. Sabourin and Associates Inc\JFSA-OTTAWA-SERVER - Documents\PROJ\1474(03)-21\20241216-BCDC-Phase 3 & Site Plan\Design\GIS\20250107-Site Plan Memo Figures

JFSA Canada Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 T 613-836-3884 F 613-836-0332

jfsa.com

Attachment A

Stormtech Underground Storage Infiltration Chambers Design Tables and Sizing Calculations

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	HAIDER NASRULLAH 647-850-9417 HAIDER.NASRULLAH@ADSPIPE.COM
ADS SALES REP	BRAD DUNLOP 613-893-7336 BRAD.DUNLOP@ADS-PIPE.COM
PROJECT NO.	S430138

1398 BCDC OTTAWA, ON, CANADA

SC-310 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-310. 1
- 2 CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE OR POLYETHYLENE COPOLYMERS
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3 THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS. THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE 5. THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6. "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7.
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING. CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2").
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8 ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2922 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE 10. ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
- ADS DOES NOT DESIGN OR PROVIDE MEMBRANE LINER SYSTEMS. TO MINIMIZE THE LEAKAGE POTENTIAL OF LINER SYSTEMS, THE MEMBRANE 11. LINER SYSTEM SHOULD BE DESIGNED BY A KNOWLEDGEABLE GEOTEXTILE PROFESSIONAL AND INSTALLED BY A QUALIFIED CONTRACTOR.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310 SYSTEM

- STORMTECH SC-310 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". 2
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- 6 MAINTAIN MINIMUM - 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- 7. 467. 5. 56. OR 57
- THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN 8 ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1
- THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD, ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-800-821-6710 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE; AASHTO M43 #3, 357, 4,

STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

PROPOSED LAYOUT: LID C1	CONCEPTUAL ELEVATIONS				
20 STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE	ITEM ON	DESCRIPTION
8 STORMTECH SC-310 END CAPS 152 STONE ABOVE (mm) 152 STONE RELOW (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE GRADE (TOP OF DIDIP CONDENT: PAVEMENT)	1.168	PRE-CORED END CAP	A	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / T\ CONNECTIONS
40 STONE BELOW (mm) 40 STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): TOP OF STONE:	1.016	PREFABRICATED EZ END CAP	В	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310E BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
BELOW ELEVATION 0.711 (PERIMETER STONE INCLUDED)	TOP OF STONE. TOP OF SC-310 CHAMBER: 200 mm x 200 mm TOP MANIFOLD INVERT:	0.711	PRE-CORED END CAP	С	200 mm BOTTOM PRE-CORED END CAP, PART#: SC310EPE08BP0 CONNECTIONS
(COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT:	0.175		D	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAM
58.0 SYSTEM AREA (m ²)	BOTTOM OF SC-310 CHAMBER:	0.168	PIPE CONNECTION	F	200 mm BOTTOM CONNECTION
34.7 SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
			NYLOPLAST (OUTLET)	Н	750 mm DIAMETER (DESIGN BY ENGINEER)
			INSPECTION PORT	I	150 mm SEE DETAIL

PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

NOTES

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER CO
NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORM

*INVERT AB	OVE BAS	E OF CHAMBER					7
	INVERT*	MAX FLOW					UCTION
P OF ALL 200 mm TOP	89 mm					G	ONSTR
CEZ / TYP OF ALL 300 mm	23 mm			DA	: RT	ED: R(IG OR C LICABLE
C / TYP OF ALL 200 mm BOTTOM	15 mm		DC	SANA	AWN	ECKE	BIDDIN LL APPI
P	90 mm		BC	oN, O	DR	СН	USE IN AEET AI
	15 mm		398	WA,		38	D FOR TAILS N
		38 L/s IN	1	DTTA	325	4301	TED DE
		20 L/s OUT		0	14/20	S :# -	NOT IN SOCIA ⁻
					E: 01/	JECT	VING IS ALL AS
					DAT	PRO	IS DRAV ED AND
							VE. THI JEPICTE
						-	ENTATI ICT(S) E
						JOIT C	EPRESI
						SCRIF	JECT R AT THE
						DE	ER PRO
							R OTHE
					+	~	EOR") O EOR T(
						Ť	ORD ("I OF THE
						JRW	DF REC BILITY
					+	Щ	SPONSI
						DAT	'S ENGI ATE RES
A B B C D B B C D B C D C D C D C D C D C			Storm Tach®		Cnamper System	1-800-821-6710 WWW.STORMTECH.COM	<u>IJĎED TO ADS/STORMTECH UNDER THE DIRECTION OF THE PROJEC</u> AWING PRIOR TO BIDDING AND/OR CONSTRUCTION. IT IS THE ULTII
			4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-2473				THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PRO WITHOUT THE EORY SPROR APPROVAL. EOR SHALL REVIEW THIS DR LAWS, REGULATIONS, AND PROJECT REGULREMENTS.
			~	SH	EET		4
RAGE VOLUME CAN BE ACHIEVED	ON SITE		2	C	רי	1	Ī

PR	OPOSED LAYOUT: LID C2	CONCEPTUAL ELEVATIONS			-	
4	STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE	ITEM ON	DESCRIPTION
4 152	STORMTECH SC-310 END CAPS STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE CRADE (TOD OF DICID CONCRETE DAVEMENT):	1.168 1.016	PRE-CORED END CAP	A	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / TYP CONNECTIONS
40	STONE BELOW (IIIII) STONE VOID INSTALLED SYSTEM VOLUME (m ³)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT). MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.016	PREFABRICATED EZ END CAP	В	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310EC BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
5.5	BELOW ELEVATION 0.711 (PERIMETER STONE INCLUDED)	TOP OF SC-310 CHAMBER: 200 mm x 200 mm TOP MANIFOLD INVERT:	0.559	PRE-CORED END CAP	С	200 mm BOTTOM PRE-CORED END CAP, PART#: SC310EPE08BPC CONNECTIONS
	COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT: 200 mm BOTTOM CONNECTION INVERT:	0.175	FLAMP MANIFOLD	D E	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAMF 200 mm x 200 mm TOP MANIFOLD, MOLDED FITTINGS
15.7	SYSTEM AREA (m ²)	BOTTOM OF SC-310 CHAMBER:	0.152	PIPE CONNECTION	F	200 mm BOTTOM CONNECTION
17.6	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
				NYLOPLAST (OUTLET)	Н	750 mm DIAMETER (DESIGN BY ENGINEER)
				INSPECTION PORT		150 mm SEE DETAIL

PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

NOTES

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER CO
NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STOR

*INVERT AB	OVE BAS					CTION
OF ALL 200 mm TOP	89 mm				F	NSTRUC
EZ / TYP OF ALL 300 mm	23 mm			<u>स</u>	D: RC	OR COI :ABLE
/ TYP OF ALL 200 mm BOTTOM	15 mm		CO	WN: I	CKEL	. APPLIC
)			3CI	DRA	Я	SE IN B ET ALL
	89 mm)8 E	Ϋ́		CR U
			135	I AW	0138	NDED F) DETAI
		20 L/s OUT	H C	1/202	: S43	T INTER CIATED
				01/14	CT #	ASSO
				ATE: 0	SOJE	AWING
					L F	THIS DF CTED A
						ATIVE. S) DEPI
					No	ESENT.
					ZIPTI	T REPR HE PRO
					ESCF	ROJEC ¹ HAT TH
					B	HER PF SURE T
						or ot to en:
				++	¥	("EOR") HE EOR
					<u>с</u>	Y OF TH
					DRM	R OF RE
					LTE	GINEEF
					DA	ATER
					M	ROJEC E ULTIN
					CH.CC	IS THE P
					MTEC	ION OF
			©_		STOR	DIRECT
			с С	E	WW.S	R THE I R CONS
			ě	'stei	×	I UNDE AND/O
			3	r Sy	-6710	MTECH DDING
			L O	mbe	0-821.	S/STOR R TO BI
			St	Chai	1-80(TO ADS G PRIO
			••			OVIDED
			Q			ON PR(THIS D
			4 BLV 4302(ר ר	DRMATI REVIEW
			EMAN OH 7473	1	ñ.	ON INF(HALL F MENTS
			TRUE ARD, 733-	-	_	ASED (EOR S QUIRE
			4640 -800-		1	ARED B ROVAL. ECT RE
						I PREP, JR APP J PROJ
			X		I C	S BEEN KS PRIC NS, AN
				Ŭ	0	ING HA HE EOF ULATIO
						S DRAW HOUT TI S, REGL
			-		-	THIS WITH LAW:
OVER REQUIREMENTS ARE MET			s או 2	HEET NE	1	1
AGE VOLUME CAN BE ACHIEVED	ON SITE.		5	JI [_]	I	I

PROPOSED LAYOUT: LID C3	CONCEPTUAL ELEVATIONS				
20 STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE	ITEM ON	DESCRIPTION
8 STORMTECH SC-310 END CAPS 152 STONE ABOVE (mm) 152 STONE PELOW (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	1.168	PRE-CORED END CAP	A	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / T\ CONNECTIONS
40 STONE VOID 152 STONE VOID 153 STONE VOID 154 STONE VOID 154 STONE VOID 154 STONE VOID 155 STONE BELOW (mm) 152 STONE BELOW (mm) 152 STONE BELOW (mm) 153 STONE BELOW (mm) 154 STONE BELOW (mm) 155 STONE BELOW (mm) 155 STONE BELOW (mm) 155 STONE BELOW (mm) 155 STONE VOID 155 UM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): TOP OF STONE:	1.016	PREFABRICATED EZ END CAP	В	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310E BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS	
BELOW ELEVATION 0.711 (PERIMETER STONE INCLUDED)	TOP OF STORE. TOP OF SC-310 CHAMBER: 200 mm x 200 mm TOP MANIFOLD INV/FRT:	0.559	PRE-CORED END CAP	С	200 mm BOTTOM PRE-CORED END CAP, PART#: SC310EPE08BPC CONNECTIONS
(COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT:	0.175		D	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAM
58.0 SYSTEM AREA (m ²)	BOTTOM OF SC-310 CHAMBER:	0.168	PIPE CONNECTION	F	200 mm BOTTOM CONNECTION
34.7 SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
			NYLOPLAST (OUTLET)	Н	750 mm DIAMETER (DESIGN BY ENGINEER)
			INSPECTION PORT	I	150 mm SEE DETAIL

PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

NOTES

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER CO
NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORM

l	OVE BASE	E OF CHAMBER					7
	INVERT*	MAX FLOW					UCTION
/P OF ALL 200 mm TOP	89 mm					Ы	
CEZ / TYP OF ALL 300 mm	23 mm			DA	RT	D: R(3 OR C ICABLE
C / TYP OF ALL 200 mm BOTTOM	15 mm		DC	ANA:	3WN:	ECKE	L APPL
P			BCI	N, C	DR/	В	ISE IN E
	89 mm 15 mm		98	VA, O		8	I FOR U
		38 L/s IN	13	TTAV	25	3013	ENDED ED DET
		20 L/s OUT		Ö	4/20:	#: S4	OT INT OCIATE
					01/1	ECT	N IS N
					ATE	ROJI	AND A
				┥		<u> </u>	THIS C
							IATIVE. (S) DEF
						NO	RESENT
						RIPTI	T REPF HE PR(
						ESCF	RUEC
						ā	HER PI SURE 1
) OR OI
						¥	("EOR") HE EOR
						<u>с</u>	CORD Y OF TH
						DRM	SIBILIT
						Ш	SPONS
						DA	F'S ENC ATE RE
						Σ	NLTIM.
						H.CO	THE PF IS THE
						ATEC	ON OF ION. IT
G			e			TORN	IRUCT
B 6 5			2			W.S.	CONS
			ē		sten	Ň	UNDER ND/OR
			-	ć	ñ	3710	DING A
					lber	821-6	STORM TO BID
					nan	-800-	D ADS/
			Ű		ر	-	
			_				I PROV
			3LVD 026				VIATION
			AAN E H 43 73		50	2	INFOR \LL RE\ :NTS
			RUEN 20, 0 33-74		•	·	ED ON OR SH/
			ードドベ	- I	``	_	ED BAS VAL. E T RFOI
			40 T -LIA 100-				$\square \sim \cdots$
			4640 T HILLIA 1-800-		Ц Ц		APPRO APPRO
			4640 T HILLIA 1-800-1				BEEN PREPARE PRIOR APPRO AND PROJEC
			4640 T HILLIA 1-800-1				5 HAS BEEN PREPARE EOR'S PRIOR APPRO TIONS AND PROJEC
			4640 T HILLIA HILLIA 1-800-1				AWING HAS BEEN PREPARE IT THE EOR'S PRIOR APPRO FGILLATIONS AND PROJECT
			4640 T HILIA HILIA 1-800-1				HIS DRAWING HAS BEEN PREPARE VITHOUT THE EOR'S PRIOR APPRO AWS REGILIATIONS AND PROJEC
			4640 T HILLIA 1-800-1	SH			THIS DRAWING HAS BEEN PREPARE WITHOUT THE EOR'S PRIOR APPRO I AWS, RFGILI ATIONS, AND PROJEC
COVER REQUIREMENTS ARE MET. RAGE VOLUME CAN BE ACHIEVED	ON SITE			SHI			THIS DRAWING HAS BEEN PREPARE WITHOUT THE EOR'S PRIOR APPRO I AWS REGULATIONS AND PROJECT

PR	OPOSED LAYOUT: LID C4	CONCEPTUAL ELEVATIONS			-	
24	STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE	ΙΤΕΜ ΟΝ Ι ΔΥΟΠΤ	DESCRIPTION
8	STORMTECH SC-310 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	1.168	PRE-CORED END CAP	A	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / T
152	STONE BELOW (mm)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	1.016			CONNECTIONS 300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310E
40	INSTALLED SYSTEM VOLUME (m ³)	TOP OF STONE:	0.711	PREFABRICATED EZ END CAP	В	BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
25.3	BELOW ELEVATION 0.711 (PERIMETER STONE INCLUDED)	TOP OF SC-310 CHAMBER: 200 mm x 200 mm TOP MANIFOLD INVERT	0.559 0.241	PRE-CORED END CAP	С	CONNECTIONS
	(COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT:	0.175	FLAMP	D	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAM
	(BASE STONE INCLUDED)	200 mm BOTTOM CONNECTION INVERT:	0.168	MANIFOLD	E	200 mm x 200 mm TOP MANIFOLD, MOLDED FITTINGS
67.8	SYSTEM AREA (m²)	BOTTOM OF SC-310 CHAMBER:	0.152	PIPE CONNECTION	F	200 mm BOTTOM CONNECTION
39.0	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
				NYLOPLAST (OUTLET)	Н	750 mm DIAMETER (DESIGN BY ENGINEER)
				INSPECTION PORT	I	150 mm SEE DETAIL

PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

PR	OPOSED LAYOUT: LID C5	CONCEPTUAL ELEVATIONS			-	
4	STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE	ITEM ON	DESCRIPTION
4 152	STORMTECH SC-310 END CAPS STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE CRADE (TOP OF DICID CONCRETE DAVEMENT):	1.168 1.016	PRE-CORED END CAP	A	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / TYP CONNECTIONS
40	STONE BELOW (IIIII) STONE VOID INSTALLED SYSTEM VOLUME (m ³)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT). MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.016	PREFABRICATED EZ END CAP	В	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310EC BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS
5.5	BELOW ELEVATION 0.711 (PERIMETER STONE INCLUDED)	TOP OF SC-310 CHAMBER: 200 mm x 200 mm TOP MANIFOLD INVERT:	0.711	PRE-CORED END CAP	С	200 mm BOTTOM PRE-CORED END CAP, PART#: SC310EPE08BPC CONNECTIONS
	COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT: 200 mm BOTTOM CONNECTION INVERT:	0.175	FLAMP MANIFOLD	D E	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAMF 200 mm x 200 mm TOP MANIFOLD, MOLDED FITTINGS
15.7	SYSTEM AREA (m ²)	BOTTOM OF SC-310 CHAMBER:	0.152	PIPE CONNECTION	F	200 mm BOTTOM CONNECTION
17.6	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
				NYLOPLAST (OUTLET)	Н	750 mm DIAMETER (DESIGN BY ENGINEER)
				INSPECTION PORT	I	150 mm SEE DETAIL

PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

NOTES

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER CO
NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STOR

PROPOSED LAYOUT: LID C6	CONCEPTUAL ELEVATIONS				
20 STORMTECH SC-310 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	2.997	PART TYPE		DESCRIPTION
10 STORMTECH SC-310 END CAPS 152 STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	1.168 1.016	PRE-CORED END CAP	A	200 mm BOTTOM PRE-CORED END CAP, PART#: SC310EPE08BPC
152 STONE BELOW (mm) 40 STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.016	PRE-CORED END CAP	В	200 mm TOP PRE-CORED END CAP, PART#: SC310EPE08TPC / TY CONNECTIONS
BELOW ELEVATION 0.711	TOP OF STONE: TOP OF SC-310 CHAMBER:	0.711	PREFABRICATED EZ END CAP	С	300 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC310E0
(COVER STONE INCLUDED)	300 mm ISOLATOR ROW PLUS INVERT:	0.241	FLAMP	D	INSTALL FLAMP ON 300 mm ACCESS PIPE / PART#: SC31012RAM
59.0 SYSTEM AREA (m ²)	200 mm BOTTOM CONNECTION INVERT: BOTTOM OF SC-310 CHAMBER:	0.168	PIPE CONNECTION	F	200 mm X 200 mm TOP MANIFOLD, MOLDED FITTINGS 200 mm BOTTOM CONNECTION
32.4 SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000	NYLOPLAST (INLET W/ ISO PLUS ROW)	G	750 mm DIAMETER (610 mm SUMP MIN)
			NYLOPLAST (OUTLET)	н	750 mm DIAMETER (DESIGN BY ENGINEER)
			INSPECTION PORT		150 mm SEE DETAIL

> PLACE MINIMUM 3.810 m OF ADSPLUS625 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

- BED LIMITS

NOTES THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STOR

*INVERT AB	OVE BAS	E OF CHAMBER					7
	INVERT*	MAX FLOW					UCTIO.
C / TYP OF ALL 200 mm BOTTOM	15 mm		_			5	ONSTR
YP OF ALL 200 mm TOP	89 mm			DA	RT	D:RC	G OR C
CEZ / TYP OF ALL 300 mm	23 mm		- RE	ANA!	AWN:	ECKE	BIDDIN(.L APPL
IP			C	JN, C	DR/	CHE	JSE IN I EET AL
	89 mm 15 mm		3CL	NA, C		8	D FOR L
		63 L/s IN	98 E	VTTA	25	13013	ed det
		20 L/s OUT	13	0	14/20	#: S ⁴	NOT IN SOCIAT
					: 01/	JECT	ING IS I
					DATE	PRO,	S DRAM
							/E. THIS EPICTE
							CT(S) DI
						TION	EPRESE PRODU(
						CRIF	JECT RI AT THE F
						DES	er pro. Re tha
							R OTHE D ENSU
					+		EOR") O
Î						1 E	ORD ("E OF THE
						RW	DF REC BILITY (
					+	Ш	NEER (
						DAI	'S ENGI
H H H H H H H H H H H H H H H H H H H			Storm Tach®		Chamber System	1-800-821-6710 WWW.STORMTECH.COM	VIDED TO ADS/STORMTECH UNDER THE DIRECTION OF THE PROJEC (AWING PRIOR TO BIDDING AND/OR CONSTRUCTION. IT IS THE ULTIN
			4640 TRUEMAN BLVD HILLIARD, OH 43026 1.800.733.7473				HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PRO TITHOUT THE EORS PROR APPROVAL. EOR SHALL REVIEW THIS DF WILL OF THE ATTONIC AND NOT PROTOCOLOUR STATUS
COVER REQUIREMENTS ARE MET RAGE VOLUME CAN BE ACHIEVED	ON SITE		7	sн С	_{EET}	1	<u>⊫≥:</u> 1

ACCEPTABLE FILL MATERIALS: STORMTECH SC-310 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMF
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREP/ INSTA
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN CC THE CHAM 6" (150 mi WELL G PROC VEHICLE
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE5	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE C

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (A

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR COMPACTION REQUIREMENTS.

4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT TI

5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-310 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. REFERENCE STORMTECH DESIGN MANUAL FOR BEARING CAPACITY GUIDANCE.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. THE ASC IS DEFINED IN SECTION
 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

		_		
PACTION / DENSITY REQUIREMENT ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.	1398 BCDC TTAWA. ON. CANADA	25 DRAWN: RT	30138 CHECKED: RCT ENDED FOR USE IN BIDDING OR CONSTRUCTION ID DETAILS MEET ALL APPLICABLE	
BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN n) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR ESSED AGGREGATE MATERIALS. ROLLER GROSS WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).	0	DATE: 01/14/20:	PROJECT #: S4	
NO COMPACTION REQUIRED.			TATIVE. TH r(S) DEPICT	
OMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}			RIPTION CT REPRESEN THE PRODUCT	
ASHTO M43) STONE".			DESC ER PROJE	
SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR) OR OTHI R TO ENSU	
HE SITE DESIGN ENGINEER'S DISCRETION.			CHK SRD ("EOR F THE EOI	
			DATE ENGINEE	
Image: Image:	StormTech® Chamber System 1-800-821-6710 WWW STORMTECH.COM DED TO ADSISTORATECH UNDER THE DIRECTION OF THE PRO			
	4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473		IS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI INOUT THE EOR'S PRIOR APPROVAL. EOR SHALL REVIEW THIS DRA	
	SH Q (<u>⊧≷:</u> 11	
	00	JL	11	

NTS

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
 - REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.1.
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) Α3
 - A.4.
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. A.5.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN В.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1 OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

100F 11

PART #	STUB	В	С
SC310EPE06TPC	6" (150 mm)	5.8" (147 mm)	
SC310EPE06BPC	0 (100 mm)		0.5" (13 m
SC310EPE08TPC	8" (200 mm)	3.5" (89 mm)	
SC310EPE08BPC			0.6" (15 m
SC310EPE10TPC	10" (250 mm)	1.4" (36 mm)	
SC310EPE10BPC			0.7" (18 m
SC310ECEZ*	12" (300 mm)		0.9" (23 m

NOTE: ALL DIMENSIONS ARE NOMINAL; PRE-CORED END CAPS END WITH "PC"

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/SOLID COVER OPTIONS			
8" (200 mm)	2808AG	PEDESTRIAN LIGHT STANDARD LIGHT DUTY DUTY		SOLID LIGHT DUTY	
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY	
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID	
(300 mm)		AASHTO H-10	H-20	AASHTO H-20	
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID	
(375 mm)		AASHTO H-10	H-20	AASHTO H-20	
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID	
(450 mm)		AASHTO H-10	H-20	AASHTO H-20	
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID	
(600 mm)		AASHTO H-10	H-20	AASHTO H-20	
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID	
(750 mm)		AASHTO H-20	H-20	AASHTO H-20	

1308 8000	230 000	OTTAWA, ON, CANADA	DATE: 01/14/2025 DRAWN: RT	PROJECT #: S430138 CHECKED: RCT	D AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE
				DESCRIPTION	3 OTHER PROJECT REPRESENTATIVE. THI:) ENSURE THAT THE PRODUCT(S) DEPICTE
				DATE DRW CHK	ET'S ENGINEER OF RECORD ("EOR") OF MATE RESPONSIBILITY OF THE EOR TC
	Nyjonjact [®]			770-932-2443 WWW.NYLOPLAST-US.COM	DED TO ADS/STORMTECH UNDER THE DIRECTION OF THE PROJEC WING PRIOR TO BIDDING AND/OR CONSTRUCTION. IT IS THE ULTIN
4640 TRUEMAN BLVD	HILLIARD, OH 43026 1-800-733-7473				S BEEN PREPARED BASED ON INFORMATION PROVIC 'S PRIOR APPROVAL. EOR SHALL REVIEW THIS DRAV NS, AND PROJECT REQUIREMENTS.
	11	sн С	EET)F	1	THIS DRAWING HA WITHOUT THE EOF LAWS, REGULATIO

Chamber ID	Units (SC- 310)	TOP OF GRATE	CHAMBER INV	CHAMBER OBV	CHAMBER HEIGHT	CHAMBER COVER DEPTH	PERIMETER STONE THICKNESS	OUTLET PIPE INV @CHAMBER	OUTLET PIPE SIZE (mm)	OUTLET PIPE LENGTH	OUTLET PIPE SLOPE (%)	outlet Pipe INV @ Main Pipe	Trib Area (Ha)	RC	Imp	Required Volume (cu.m) for 80% TSS removal per Ha	Required Volume (cu.m) for 80% TSS removal	Provided Volume(cu.m)	Footprint (m2)
C1	20	93.12	90.72	91.12	0.405	1.20	0.15	91.92	300	7.5	1.0	91.85	0.275	0.76	80%	39	10.7	21.5	58.0
C2	4	93.09	91.34	91.74	0.405	1.20	0.15	91.89	300	6.0	1.0	91.83	0.068	0.75	79%	38	2.6	5.5	15.7
C3	20	93.05	91.30	91.70	0.405	1.20	0.15	91.85	300	2.5	1.0	91.83	0.277	0.81	87%	40	11.1	21.5	58.0
C4	24	93.05	91.30	91.70	0.405	1.20	0.15	91.85	300	7.5	1.0	91.78	0.331	0.81	87%	40	13.2	25.3	67.8
C5	4	93.17	91.42	91.82	0.405	1.20	0.15	91.97	300	5.0	1.0	91.92	0.057	0.74	77%	38	2.2	5.5	15.7
C6	16	93.11	91.26	91.66	0.405	1.30	0.15	91.81	300	2.0	1.0	91.79	0.224	0.82	89%	40	9.0	17.7	48.2
Total													1.23				48.8	97.0	263.4

As per MOE 2003, Storage (m3/ha) required for 80% TSS removal with infiltration

Imp (%) Storage (m3/ha) 35% 25

55% 30

70% 35 85% 40

JFSA Canada Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 T 613-836-3884 F 613-836-0332

jfsa.com

Attachment B

TSS Removal Calculations

Optimum TSS Removal	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5	Alt. 6	Alt. 7	Alt. 8	Alt. 9	Alt. 10
5%						-				
10%										
88%										
75%			х							
80%										
57%		X		X	X			X		X
10%	х			X		х				x
80%				X	X	X			i i	
70%							X			X
50%			x				X	X	X	x
25%								X	X	
85%										
80%	Í.	X								
Overall Performace			87.5%	92.3%	91.4%	82.0%	85.0%	83.88%	62.50%	94.20%
Removal Rate Met	thod 1) x (1-	TSS Remova	al Rate Meth	nod 2) x (1-	TSS Remov	al Rate Me	ethod 3 x	.)		
iltration systems o	r other per	mutations of	same							
	Optimum TSS Removal 5% 10% 88% 75% 80% 57% 80% 57% 10% 80% 50% 55% 80% 25% 85% 80% 70% 80% 70% 10% 80% 70% 10% 80% 70% 10% 80% 70% 10% 80% 70% 10% 10% 10% 10% 10% 10% 10% 10% 10% 1	Optimum TSS Removal Alt. 1 5% 10% 10% 88% 75% 80% 57% 10% X 80% 25% 25% 85% 25% 85% 80%	Optimum TSS Removal Alt. 1 Alt. 2 5%	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 5% -	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 5% -	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 5%	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 5% - <t< td=""><td>Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 5% <</td><td>Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 Alt. 8 5%</td><td>Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 Alt. 8 Alt. 9 5% </td></t<>	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 5% <	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 Alt. 8 5%	Optimum TSS Removal Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 Alt. 6 Alt. 7 Alt. 8 Alt. 9 5%