

Phase Two Environmental Site Assessment

363 Entrepreneur Crescent Ottawa, Ontario

Prepared for:

Entrepreneur Holding Corporation 363 Entrepreneur Crescent Vars, Ontario

Attention: Dustin Wilson

LRL File No.: 220487 April 10, 2023 (Revised August 27, 2024)

LRL File: 220487 April 2023 (Revised August 2024) Page i

EXECUTIVE SUMMARY

Entrepreneur Holding Corporation has retained LRL Engineering (LRL) to complete a Phase Two Environmental Site Assessment (ESA) on the properties located at 363 Entrepreneur Crescent, Ottawa, Ontario (herein referred to as the "Site"). A Phase Two ESA was completed to address the presence or absence of one or more contaminants at the Site as determined in the Phase One ESA and to assess the quality of the soil and ground water.

The Phase Two Property has a rectangular shape, with a total area of approximately 3000 m² or 0.75 acre. The Site is presently generally undeveloped with exception to a granular base applied across the majority of the surface of the Site, and is used as a storage yard for the adjacent YSB Hoisting Equipment & YSB Carpentry facility. Topography is generally flat with a slight slope towards south-west corner of the Site, with an elevation of 78 m above mean sea level (amsl).

The findings of the corresponding Phase I ESA should be read in conjunction with the Phase Two ESA presented herein. The Phase I ESA noted seven (7) areas of potential environmental concern (APECs) that were recommended to be further investigated via a Phase Two ESA. The APECs identified included:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase Il Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil, and/or sediment)
APEC A	Entire Property	PCA 32: Iron and Steel Manufacturing and Processing	On Site	Metals	Soil and Groundwater
APEC B	Entire Property	PCA 30: Importation of Fill Materials of Unknown Quality	On Site	PAHs, VOCs, PHCs, Metals, Inorganic, OP pesticides	Soil and Groundwater
APEC C	Eastern portion of the Site	PCA 32: Iron and Steel Manufacturing and Processing	Off-Site	Metals	Soil and Groundwater
APEC D	Western portion of the Site	PCA Other: Construction company workshop and storage yard	Off-Site	PHC, VOC, Metals	Soil and Groundwater
APEC E	Western portion of the Site	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks.	Off-Site	PHC, VOC	Soil and Groundwater
APEC F	Western portion of the Site	PCA 34: Metal Fabrication.	Off-Site	Metals	Soil and Groundwater
APEC G	Western portion of the Site	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems.	Off-Site	VOC, PHC, Metals	Soil and Groundwater

The purpose of a Phase Two ESA is to determine if recognized potential environmental concerns have negatively impacted the soil and groundwater quality of the subject Site. Such an assessment provides information regarding the nature and extent of potential contamination to assist in making informed business decisions about the property. Contaminants of concern for the PCAs identified are: Volatile Organic Compounds (VOC); Petroleum Hydrocarbons PHC – F1

LRL File: 220487 April 2023 (Revised August 2024) Page ii

through F4; Polycyclic Aromatic Hydrocarbons (PAHs); Polychlorinated Biphenyls (PCBs); Metals; Metal hydrides; and inorganic parameters (conductivity, SAR, and pH).

Regulatory requirements for assessing environmental conditions of a site are established by Ontario Regulation 153/04 – Records of Site Conditions, Part XV.1 of the Environmental Protection Act (O. Reg. 153/04). Site condition standards are set out in the MECP's" Soil, *Ground Water and Sediment Standards for Use Under Part IV.1 of the Environmental Protection Act*", April 15, 2011, as amended. The applicable SCS used was the Table 2 ICC Standards for finegrained soils in a potable groundwater condition for Industrial/Commercial/Community (ICC) Use.

The investigation involved advancing ten (10) boreholes across the Site at strategic locations based on areas of potential environmental concern. Four (4) of the boreholes were completed as monitoring wells to assess the ground water quality. Representative soil and groundwater samples submitted to an accredited laboratory for analysis of suspected parameters of concern.

Subsurface conditions across the Site generally included a layer of sand and gravel fill extending from surface to 0.85 m bgs. Underlying the fill material was a layer of brown silty sand which extended from the bottom of the fill layer to 1.2 m bgs followed by silty clay to a depth of 6.0 m bgs where the boreholes were terminated. Refusal over inferred bedrock was not encountered in any of the boreholes.

Based on our Site visit, results of soil and groundwater sampling, and laboratory analytical programs compared to the applicable MECP Table 2 SCS, LRL offers the following conclusions regarding environmental conditions of the subject site:

Soil Quality

- Olfactory evidence of petroleum hydrocarbon impacts was not observed in the soils collected throughout all boreholes;
- CSV concentrations of all soil samples collected were between non-detect (<0.1) and 0.3 ppm;
- VOC parameter concentrations were below the detection limits in all samples;
- PAH parameter concentrations were below the detection limits in select samples submitted for analysis;
- PHC parameters analysed were not detected in any soil samples submitted for analysis, with the exception of BH23-1-SS1, BH23-2-SS1, BH23-3-SS1, BH23-5-SS1, BH23-7-SS1, BH23-9-SS1, BH23-10-SS1. The PHC concentrations measured were found to be within the MECP Table 2 criteria;
- Select metals parameters analysed were detected in soil samples, however, the detectable levels of Metals were within the MECP Table 2 with the exception of Lead which was detected in BH23-7-SS1 exceeded the MECP Table 2 criteria; and
- Select inorganics parameters analysed were detected in soil samples, however, the
 detectable levels of inorganics were within the MECP Table 2 with the exception of BH235-SS1 where the conductivity was exceeded the MECP Table 2 criteria.

Groundwater Quality

 Olfactory evidence of petroleum hydrocarbon impacts was not observed in the groundwater collected throughout all monitoring wells;

LRL File: 220487 April 2023 (Revised August 2024) Page iii

- VOC parameter concentrations were below the detection limits in all groundwater samples with the exception of the Acetone which was detected at MW23-2 and MW23-3. However, the detectable levels of VOCs were within the MECP Table 2 criteria:
- PHCs parameters analysed were below the detection limit in all groundwater samples
- PAH parameter concentrations were detected in groundwater samples; however, the detectable levels of PAH were within the MECP Table 2 with the exception of the following parameters in MW23-3:
 - On March 16, 2023: Benzo [a] pyrene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Chrysene, and Fluoranthene were detected;
 - On April 17, 2023: Benzo [a] pyrene was detected.
- Metals parameters analysed were detected in all groundwater samples, however, the
 detectable levels of Metals were within the MECP Table 2 with the exception of Vanadium
 which was detected in MW23-3 exceeded the MECP Table 2 criteria during the sampling
 event on March 16, 2023.

Based on the findings of Phase Two ESA the soil at the Site are generally in compliance with MECP Table 2 criteria with the exception of the top level of BH23-5 and BH23-7. The groundwater at the Site is generally in compliance with MECP Table 2 criteria with the exception of MW23-3. Remediation work to be completed during the construction work. No further delineation or environmental work is considered to be warranted at this time.

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Current and Proposed Land Uses	2
	1.4	Applicable Site Condition Standard	2
2	BAG	CKGROUND INFORMATION	3
	2.1	Physical Setting	3
	2.2	Past Investigations	4
3	SCO	OPE OF INVESTIGATION	5
	3.1	Overview of Site Investigation	5
	3.2	Media Investigation	5
	3.2.	1 Soil Investigation	5
	3.2.	2 Groundwater Investigation	6
	3.3	Phase One Site Conceptual Model	7
	3.3.	1 Physical Settings	8
	3.3.	2 Water Bodies and Areas of Natural Significance	9
	3.4	Deviations from Sampling and Analysis Plan	
	3.5	Impediments	
4	INV	ESTIGATION METHOD	
	4.1	General	9
	4.2	Drilling Investigation	9
	4.2.	1 Name of the Contractor	9
	4.2.	2 Description of the Equipment Used	.10
	4.2.	3 Description of Measures taken to Minimize Cross-Contamination	.10
	4.2.	, , , ,	
	4.3	Soil Sampling	.10
	4.3.	1 Description of Equipment Used for Soil Collection	.10
	4.3.		
	4.4	Field Screening Measurements	.12
	4.4.	o	
	4.4. 4.4.		.13

	4.5	Groundwater: Monitoring Well Installation	13
	4.5.1	Description of the Equipment	13
	4.5.2	Measures to Minimize Potential Cross-Contamination	13
	4.5.3	Frequency of Sample Collection during Drilling	14
	4.5.4	Monitoring Well Development	14
	4.6	Groundwater: Sampling	14
	4.7	Sediment: Sampling	15
	4.8	Analytical Testing	15
	4.9 F	Residue Management Procedures	15
	4.9.1	Soil Cuttings – Drilling	15
	4.9.2	Water from Well Development and Purging	15
	4.10	Elevation Surveying	
	4.11	Quality Assurance and Quality Control Measures	15
	4.11.	Laboratory Supplied Sample Containers and Shipment Procedures	15
	4.11.	Description of Equipment Cleaning Procedures	16
	4.11.	Description of Field Quality Control Measures	17
	4.11.	Deviations from the Quality Assurance and Quality Control Program	17
5		EW AND EVALUATION	
	5.1	Geology	18
	5.1.1	Geological Conditions Encountered	18
	5.1.2	Elevations Geodetic Benchmark	18
	5.1.3	Aquifer and Aquitard Properties	18
	5.1.4	Confirmatory Soil and Groundwater Monitoring Well Design and Rationale	19
	5.2	Groundwater Elevations	20
	5.2.1	Discussion and Rationale for Location and Screen Intervals	20
	5.2.2	Interphase Probe	20
	5.2.3	Product Thickness	20
	5.3	Soil Texture	20
	5.3.1	Rationale for the Use of Fine – Medium Soil Texture	20
	5.3.2	Results of the Grain Size Analysis for Fine – Medium Soil Texture	20
	5.3.3	Rationale for the Number of Samples Collected and Analysed for Grain Size	00
	-	Sis	
	54	SOIL FIEID SCLEENING	20

	5.5	Sc	oil Quality	21
	5.5	.1	Location and Depth of Sampling	21
	5.5	.2	Analytical Results to SCS	23
	5.5	.3	Contaminants of Concern (COC)	24
	5.5	.4	Chemical and Biological Transformations	24
	5.6	Gı	ound Water Quality	24
	5.6	.1	Location and Sample Depth	25
	5.6	.2	Documentation of Field Filtering	26
	5.6	.3	Analytical Results to SCS	26
	5.6	.4	Contaminants of Concern (COC)	26
	5.6	.5	Chemical and Biological Transformation	27
	5.6	.6	Soil Serves as Source of Contamination to Groundwater	27
	5.6	.7	Presence of LNAPLs or DNAPLs	27
	5.7	Se	ediment Quality	27
6	PH	ASI	TWO CONCEPTUAL SITE MODEL	27
	6.1	Cı	urrent and Historical Site Use and Surrounding Land Use	27
	6.2	Po	otentially Contaminating Activities (PCAs)	27
	6.3	Ar	eas of Potential Environmental Concern (APECs)	28
	6.4	Co	ontaminants of Potential Concern (COPCs)	29
7	СО	NC	LUSIONS	29
8	LIN	IIT/	ATIONS AND USE OF REPORT	30
9	RE	FEF	RENCES	32

LRL File: 220487 April 2023 (Revised August 2024) Page vii

FIGURES

(In order following text)

- Figure 1 Site Location
- Figure 2 Site Plan Borehole and Monitoring Well Locations
- Figure 3 Groundwater Elevations and Contours
- Figure 4 Soil Exceedances to the Applicable Site Condition Standards
- Figure 5 Groundwater Exceedances to the Applicable Site Condition Standards

TABLES

(In order following Figures)

- Table 1 Summary of Ground Surface and Groundwater Elevations
- Table 2 Summary of Soil PHC, VOC, and Inorganics Analysis
- **Table 3** Summary of Soil PAH and Metals
- Table 4 Summary of Groundwater PHC, VOC, and Inorganics Analysis
- **Table 5** Summary of Groundwater PAH and Metals

APPENDICES

(In order following Tables)

- Appendix A Environmental Borehole Logs
- Appendix B Certificates of Laboratory Analysis

1 Introduction

Entrepreneur Holding Corporation has retained LRL Associates Ltd. (LRL) to complete a Phase Two Environmental Site Assessment (ESA) on the properties located at 363 Entrepreneur Crescent, Ottawa, Ontario (herein referred to as the "Site"). The Site Location is presented in **Figure 1.**

The legal description of the property is Part of block 3 Plan 50M136 Part 3 ON Plan 50R6694; Subject to an Easement in Gross Over Part 9 ON Plan 4R-27830 As in OC1627867; City of Ottawa.

The objectives of the Phase Two ESA are to address the presence or absence of one or more contaminants at the Site as determined in the Phase One ESA and to assess the quality of the soil and ground water.

1.1 Site Description

The Site is located at the municipal address of 363 Entrepreneur Crescent, Ottawa, Ontario. The property is situated in a commercial area along Entrepreneur Crescent, Ottawa. The Site is presently generally undeveloped with exception to a granular base applied across the majority of the surface of the Site, and is used as a storage yard for the adjacent YSB Hoisting Equipment & YSB Carpentry facility. The Site set within a low-density commercial and light industrial area of Ottawa, Ontario, southeast of the City's urban extents. The property is bounded by Entrepreneur Crescent followed by an un-known commercial/light industrial operation to the south, mineral-aggregate extraction facility to the north, YSB Hoisting Equipment & YSB Carpentry facility to the east, and construction company yard followed by vehicle storage yard to the west. The Site Plan is presented in **Figure 2.**

A summary of the Site description is provided in Table 1 – Section 1.1

Table 1 – Section 1.1: Summary of Site Description

Parameters	Information
Location/ Address	363 Entrepreneur Crescent, Ottawa, Ontario
	The location of the Site is presented in the included Figure 1 .
Property Identification Numbers	PIN#: 14558-0401 (LT)
(PINs)	
Legal Description	Part of block 3 Plan 50M136 Part 3 ON Plan 50R6694;
	Subject to an Easement in Gross Over Part 9 ON Plan 4R-
	27830 As in OC1627867; City of Ottawa.
Shape	The Phase Two Property is a rectangular shaped land.
Access to the Phase Two Property	The Phase Two Property can be accessed from Entrepreneur Crescent
Occupancy	Storage yard for adjacent YSB Hoisting equipment facility.
Current Land Use	Warehouse, light industrial use.
	The Phase Two ESA property has been used as a storage yard for hoisting equipment for the neighboring industrial company since at least mid of 2022.
Proposed Future Land Use	Industrial Warehouse – Including office space and open warehousing (no manufacturing activity).

LRL File: 220487 April 2023 (Revised August 2024) Page 2 of 32

1.2 Property Ownership

The Qualified Person from LRL was retained by the Client to carry out this Phase Two ESA. The Site ownership information is presented in **Table 2 – Section 1.2**.

Table 2 – Section 1.2: Phase Two Property Owner Contact Information

Company	Contact
Phase Two Property Owner	Entrepreneur Holdings Corporation
Phase Two Property Contact	Dustin Wilson

1.3 Current and Proposed Land Uses

The Site is currently undeveloped, and at the time of this ESA, is used as a storage yard for hoisting equipment for the neighboring industrial company. The future development of the Site is to be industrial warehouse, including office space and open warehousing (no manufacturing activity). An application for a Record of Site Condition (RSC) is not required in support of the proposed property transaction.

1.4 Applicable Site Condition Standard

The results of the soil chemical analysis were evaluated using the Standards prescribed in the Ministry of the Environment, Conservation and Parks (MECP) Table 2 ICC Standards for fine-grained soils in a potable groundwater condition. These Standards were used to evaluate soil quality based on the samples collected and tested, to determine whether soil quality compiled with MECP Standards, and to determine whether additional investigations are required or warranted.

The Site was assessed using the Standards contained in MECP Table 2 of the above referenced Standards. The us of the Table 2 Standards is considered appropriate by LRL based on the following considerations listed in **Table 3 – Section 1.4.**

Table 3 – Section 1.4: Phase Two Property Conditions

Parameters	Information
Proposed Land Use	Industrial/Commercial/Community (ICC) Use
Potable or Non-	Potable Groundwater
Potable Ground Water	
Proximity to Surface Water	Bear Brook Creek is located approximately 2.2 km northwest of the Site and Shaw's Creek is located approximately 2.74 km east. Several neighbouring ditches are also identified to the south, west, and north of the Site. An unnamed water course is identified along the northern perimeter of Site.
Areas of Natural	There are no Areas of Natural Scientific Interest (ANSI) in the study area,
Significance	nor environmentally sensitive areas that encroach within 30 m of the
	Phase Two Property.
Nature and Depth of Bedrock Strata	According to the data obtained from EcoLog ERIS, Ontario wells, and Bedrock available data for the depth of bedrock, the depth to bedrock can be assumed to be between approximate 23 and 32 m below grade (estimated 46 and 55 m amsl). The bedrock is comprised mainly of Carlsbad Formation: grey shale, sandy shale, and some dolomitic layers.
Direction of Groundwater Flow	The groundwater flow was assessed during field investigations, it is found that groundwater is moving in a south-east direction towards a small channel that connects with Shaw's Creek. Shaw's Creek is located approximately 2.74 km east of the Site.
Grain Size Analysis	Fine textured soil will be applied for the purpose of this report.
PH of Soil	Soil pH was between 8 and 11.2

Based on the Site conditions described in **Table 3 – Section 1.4**, the applicable criteria to be used in this Phase Two ESA is Ontario Regulation 153/04 "Table 2: Full Depth Generic Site Condition Standards in a potable Ground Water Condition" for Industrial/Commercial/Community (ICC) Use (Table 2 ICC Standards) as per the MECP document titled "Soil, Ground Water and Sediment Standards for Use under Part XV. 1 of the Environmental Protection Act", dated April 15, 2011, as amended.

2 BACKGROUND INFORMATION

2.1 Physical Setting

The Site is located approximately 78 m above mean sea level (amsl) and is generally flat land with a slight slope towards south-west corner of the Site. The nearest open water body is the Bear Brook, located approximately 2.2 km to the northwest of the Site. However, several neighbouring ditches are identified to the south, west, and north of the Site. An un-named water course is identified along the northern perimeter of Site. Groundwater flow has been identified as flowing in the south-east direction towards Shaw's Creek located 2.74 km east of the Site.

According to the Radon Potential Map of Ontario obtained from the website of Canada Radon, the Phase Two Study Area is located in the Relative Radon Hazard Zone 3 – Guarded.

The Site is not within any Areas of Natural and Scientific Interest (ANSI) identified by the Ministry of Natural Resources (MNR) as having provincial significance, and there are no areas of natural significance encroaching within 30 m of the Site.

LRL File: 220487 April 2023 (Revised August 2024) Page 4 of 32

2.2 Past Investigations

As previously mentioned, a Phase One ESA was completed for the subject Site in support of a Site Plan Application package to the City of Ottawa for the development of an industrial warehouse facility. The Phase I ESA should be read in conjunction with this Phase II ESA report.

The findings of the Phase One ESA the following potential contaminating activities which were considered a potential concern to the quality of the Site:

- PCA 32: Iron and Steel Manufacturing and Processing. The adjacent property hoist
 equipment manufacturing and rental company (YSB Hoisting equipment facility), is
 identified as an industrial use which involves assembling, processing, storing,
 warehousing, or distributing hoisting equipment. Associated material and equipment are
 stored on the Site since at least mid of 2022;
- **PCA 30**: Importation of Fill Material of Unknown Quality. Based on available information obtained, a layer of granular crushed stone was applied across the surface of the subject property in 2022 (est.). The source and quality of the material is unknown, therefore its conditions, in addition to the underlying materials, should be investigated:
- PCA 32: Iron and Steel Manufacturing and Processing. 357 Entrepreneur Crescent, immediately east of the Site, occupied by a hoist equipment rental company (YSB Hoisting Equipment & YSB Carpentry facility), industrial use which involves assembling, processing, storing, warehousing, or distributing hoisting equipment;
- PCA Other: Construction company workshop and storage yard. 371 Entrepreneur Crescent, immediately west of the Site, occupied by Galaxy Construction - workshop and storage yard;
- **PCA 28**: Gasoline and Associated Products Storage in Fixed Tanks. 5495 Boundary Road, approximately 170 m west of the Site. Reported to be an abandoned service station with records of underground liquid fuel storage tanks;
- **PCA 34**: Metal Fabrication. 5507 Boundary Road, approximately 170 m west of the Site. Listed as Renes Welding Inc. a fabricated metal products facility established in 1982.
- **PCA 52**: Storage, maintenance, fuelling, and repair of equipment, vehicles, and material used to maintain transportation systems. 381 Entrepreneur Cresent approximately 40 m to the west of the Site was used as a vehicle storage yard.
- PCA 58: Waste Disposal and Waste Management, including thermal treatment, landfilling
 and transfer of waste, other than use of biosoils as soil conditioners. Immediately north of
 the Site is a mineral-aggregate extraction facility that has a snow disposal operation during
 winter months.

Contaminants of concern are: Petroleum Hydrocarbon Compounds (PHCs); Volatile Organic Compounds (VOCs); Polycyclic Aromatic Hydrocarbons (PAHs); Polychlorinated Biphenyls (PCBs); Metals; Metal hydrides, inorganic parameters (conductivity, SAR, and pH).

Based on the above findings, select potential environmental concerns associated with the current and historical use of the Site and neighbouring properties have been identified. As such, a Phase Two Environmental Site Assessment is considered warranted at this time.

3 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

LRL's Phase Two ESA included the analysis of field investigations carried out between March 13th and April 16th, 2023. The field investigation was carried out to assess the quality of the soil and groundwater of the Phase Two Property in relation to the Areas of Potential Environmental Concern (APECs) identified by the previously prepared Phase One Conceptual Site Model, as mentioned above in Section 2.2.

The scope of the investigation included:

- Preparation of a Health and Safety Plan;
- Advancement of a total of ten (10) boreholes to a maximum depth of 6.0 m bgs;
- Four (4) boreholes were completed into monitoring wells designed to intercept the water table.
- Groundwater elevation measurements using an interphase probe for the potential measurements of free phase product either floating on the water table or the base of any water column.
- Field observations were made in accordance with LRL's Standard of Operation (SOP);
- Collection of the arbitrary ground surface elevations for borehole and monitoring well locations; and
- Samples collected were submitted and analyzed by Paracel Laboratories Ltd. testing laboratory companies to the MECP Table 2 ICC Standards for fine-textured soil.

3.2 Media Investigation

The Phase Two ESA was designed to investigate the potential for impact to soil and groundwater media on, in and beneath the Phase Two Property. The sampling of sediment was not performed, as there were no surface bodies of water on the Site during the Phase Two investigation.

3.2.1 Soil Investigation

The soil investigation was designed to investigate the APECs identified by the Phase One ESA, and consisted of the following components:

- Ten (10) boreholes were drilled on the Site (BH1 through BH10) to a maximum depth of 6.0 m bgs or refusal (whichever came first), The locations of the boreholes are presented in Figure 2;
- The boreholes were advanced utilizing direct push methodology using the static weight of the geo-probe combined with a hydraulic hammer. Samples were retrieved at regular intervals with a 50 mm outside diameter of Macro barrel sample liners which dropping 1200 mm;
- Inspection and logging of the Macro barrel liner samples in the field with observations noted pertaining to the soil type, composition, visual staining, discolouration, and olfactory clues for potential chemical impacts;
- Collection of soil samples from each soil layer;
- Prepared sub-samples for chemical laboratory analysis;

LRL File: 220487 April 2023 (Revised August 2024) Page 6 of 32

- Field screening of soil samples using Mini Rae 2000 Photoionization Detector (PID) to measure headspace vapour concentrations and determine the potential existence of PHC fractions and other VOCs;
- Collection of sub-samples of soil for chemical laboratory analysis was done using laboratory prepared, pre-labelled jars and vials. Sub-samples were placed in coolers. Based on the headspace vapour of analysis, the soil samples that exhibited the worst-case vapour readings were submitted to the analytical laboratory, along with a Chain of Custody Form for those samples;
- One (1) QA/QC was conducted on a duplicate sample, for every 10 sample parameters measured in the field. Two (2) field duplicate soil sample was analyzed for PHCs, VOCs, metals, and inorganics; and
- Soil cuttings were collected and remained on-site for future disposal.

3.2.2 Groundwater Investigation

The groundwater investigation was designed to intercept the groundwater table located approximately 0.9 m bgs.

- Four (4) monitoring wells (MW23-2, MW23-3, MW23-4, and MW23-5) were installed to assess the potential impact on the groundwater.
- The well screens for MW23-4, and MW23-5 were placed at the bottom of the 3.0 m of the monitoring well depth, with a maximum depth of 6.0 m bgs;
- The well screens for MW23-2, and MW23-3 were placed at the bottom of the 0.90 m of the monitoring well depth, with a maximum depth of 4.0 m bgs;
- Development of each well, prior to sampling by the removal (purge) of at least
 - Ten (10) times the volume of water contained in each well one day before the sampling day, and
 - Three (3) times the volume of water contained in each well on the sampling day.
- Determination of the presence of non-aqueous phase liquid-free product and the static groundwater elevation at each well;
- Groundwater samples were placed in laboratory-prepared and pre-labelled jars and placed in ice-filled cooler boxes for storage and transportation to the analytical laboratory, along with a Chain of Custody Form;
- Retention of a copy of the Chain of Custody Form once samples were submitted for analysis;
- Ensured the temperature of the samples submitted was below 10°C; and
- Chemical analysis of four (4) groundwater samples for contaminants of concern associated with specific APEC(s) identified by the Phase One ESA. Specifically, samples were submitted for analysis of PHCs, VOCs, PAHs, metals, metal forming hydrides, EC, SAR, and pH. Groundwater samples from MW23-2, and MW23-3 were submitted also for phenols analysis.

3.3 Phase One Site Conceptual Model

The PCAs on the Phase One Property and within Phase One Study Area identified through records review, interview, and site reconnaissance are summarized in **Table 4 – Section 3.3**.

Table 4 - Section 3.3: Phase One CSM - PCAS

No. On Map	PCA # (Table 2, Schedule D, Ontario Regulation 153/04)	Direction from/Location on Phase I Property	Approximate Distance from Phase I Property (m)	Relative to the groundwater flow direction
32	PCA 32: Iron and Steel Manufacturing and Processing	On-Site	0	On-Site
30	PCA 30: Importation of Fill Materials of Unknown Quality	On-Site	0	On-Site
32	PCA 32: Iron and Steel Manufacturing and Processing	East	0	Down- gradient
Other	PCA Other: Construction company workshop and storage yard	West	0	Up-gradient
28	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks	West	170	Up-gradient
34	PCA 34: Metal Fabrication	West	170	Up-gradient
	PCA 52: Storage, maintenance, fuelling, and repair of equipment, vehicles, and material used to maintain transportation systems.	West	40	Up-gradient
	PCA 58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners.	North	0	Trans-gradient

The potentially contaminating activities identified above have been evaluated by a qualified person to determine whether an area of potential environmental concern will transpose on the Phase I Property as a result of their presence within the Phase I Property or Phase I Study Area. The rationale for the exclusion of one or more PCAs may be the result of, but not limited to, the direction of Site location in conjunction with proposed groundwater flow direction, distance from the site, results from previous environmental reports, etc.

The Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA are summarized in **Table 5 – Section 3.3** as follows:

Table 5 - Section 3.3: Phase One CSM - APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase Il Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil, and/or sediment)
APEC A	Entire Property	PCA 32: Iron and Steel Manufacturing and Processing	On Site	Metals	Soil and Groundwater
APEC B	Entire Property	PCA 30: Importation of Fill Materials of Unknown Quality	On Site	PAHs, VOCs, PHCs, Metals, OP pesticides	Soil and Groundwater
APEC C	Eastern portion of the Site	PCA 32: Iron and Steel Manufacturing and Processing	Off-Site	Metals	Soil and Groundwater
APEC D	Western portion of the Site	PCA Other: Construction company workshop and storage yard	Off-Site	PHC, VOC, Metals	Soil and Groundwater
APEC E	Western portion of the Site	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks.	Off-Site	PHC, VOC	Soil and Groundwater
APEC F	Western portion of the Site	PCA 34: Metal Fabrication.	Off-Site	Metals	Soil and Groundwater
APEC G	Western portion of the Site	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems.	Off-Site	VOC, PHC, Metals	Soil and Groundwater

Notes:

3.3.1 Physical Settings

The entire property is situated on an area of offshore marine deposits consisting of clay, silty clay, and silt, commonly calcareous and fossiliferous; locally overlain by thin sand. The bedrock in the vicinity of the Site is expected to be grey shale, sandy shale, and some dolomitic layers in part of the Carlsbad Formation.

Based on GIS mapping obtained through GeoOttawa, the nearest open water body is the Bear Brook creek located approximately 2.2 km to the northwest of the Site. However, groundwater flow has been identified as flowing in the south-east direction towards Shaw's Creek located 2.74 km east of the Site. Several neighbouring ditches are identified to the south, west, and north of the Site including an un-named water course along the northern perimeter of Site.

^{1 -} Area of Potential Environmental Concern (APEC) means the area on, in, or under a Phase One Property where one or more contaminants are potentially present, as determined through the Phase One ESA, including through:

⁽a) Identification of past or present uses on, in, or under the Phase One Property, and

⁽b) Identification of potentially contaminating activity.

^{2 -} Potentially Contaminating Activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One Study Area

3.3.2 Water Bodies and Areas of Natural Significance

There are no Areas of Natural Significance within the Phase One Study Area. No water body is identified within 30 m of the Site, with the excepting of an un-named water course along the northern perimeter of Site

3.4 Deviations from Sampling and Analysis Plan

LRL did not deviate from the SOPs and forms outlined above. The location of the boreholes in relation to the PCAs and APECs are presented in **Figure 2**.

No deviations occurred from the initial Sampling and Analysis Plan.

3.5 Impediments

At the time of this assessment, the Site was used as a storage yard for the adjacent YSB Hoisting equipment facility, located immediately east of the Site. Hoisting equipment stored on the ground surface distributed on the parameters of the Site, which limited the access for the drilling activities.

4 INVESTIGATION METHOD

4.1 General

The Phase Two ESA involved various field activities to investigate the quality of the soil and groundwater and was comprised of the following components.

- Retaining public and private utility locator companies;
- Retaining a certified (MECP licensed well drillers) contractor for drilling the boreholes and installing the monitoring wells;
- Supervision and documentation of borehole drilling and monitoring well installation field activities;
- Soil characterization and logging;
- Soil sample collection for chemical analysis;
- Well development;
- Determining the presence of any non-aqueous phase free product and water elevation monitoring; and
- Groundwater sample collection for chemical analysis.

4.2 Drilling Investigation

Prior to conducting subsurface activities on the Site, LRL contacted a private locating company (USL-1) for the public & private locates. The utility contractor was retained to verify all borehole positions were adjusted to be an appropriate distance from buried utilities. Overhead wires were not present in the drilling areas.

Ten (10) boreholes were drilled to depths of 6.0 m bgs with a rubber track-mounted geoprobe. Four (4) boreholes were completed into monitoring wells. Flush mount well casings were installed to cover the monitoring wells. The work was undertaken on March 13 and March 14, 2023.

4.2.1 Name of the Contractor

George Downing Estate Drilling Ltd. are licensed environmental and geotechnical drillers and were commissioned to drill the ten (10) boreholes and install the four (4) monitoring wells.

LRL File: 220487 April 2023 (Revised August 2024) Page 10 of 32

4.2.2 Description of the Equipment Used

The ten (10) boreholes were drilled by a rubber track-mounted geo-probe, equipped with 1.2 m in length Macro barrel sample liners. The boreholes that had monitoring wells installed were fitted with a 2-inch diameter PVC pipe and 10 foot well screen where #2 silica sand and 3/4" bentonite chips.

4.2.3 Description of Measures taken to Minimize Cross-Contamination

The plastic tube of the macro barrel sample liners was changed after each sample to prevent cross contamination. The dedicated gloves were changed after each sample to prevent cross-contamination. The used plastic tube and gloves were placed in garbage bags and removed from the Site at the end of the drilling program.

4.2.4 The Frequency of Sample Collection

Sampling intervals for the boreholes were continuously taken with a 1.2 m in length macro barrel sample liners from the ground surface to 6.0 m bgs.

4.3 Soil Sampling

4.3.1 Description of Equipment Used for Soil Collection

The soil is removed from the macro barrel sample liners and placed in pre-labelled, laboratory prepared jars and methanol-filled vials and in clear plastic bags marked as BH-X-SSY.

Following field screening with a photo ionization detector, samples were placed in appropriate laboratory-supplied, pre-labelled bottles and methanol-filled vials (for VOCs and PHC F1 analysis) and placed directly into ice-filled coolers for storage and transportation to Paracel Laboratories (Ottawa, Ontario).

4.3.2 Geological Descriptions of Soil Samples

Table 6 - Section 4.3.2: Geological Description of Soil Samples

Exploratory		·	Depth	
Location	Type	Geological Description	Range	Soil Sample
BH/MW	· ·		(m bgs)	·
BH1	Fill - Granular	Sand with gravel, moist, grey.	0.0 – 0.85	SS1
]	Base	Gana Wan graver, moles, grey.	0.0 0.00	001
	Disturbed	Silty sand, moist, brown.	0.85 – 1.2	SS2,
	Native	,		
	Disturbed	Clay, Silty at (1.20 - 1.95 m bgs) and at (3.65	1.2 – 6.0	SS3, SS4, SS5,
	Native	- 4.50 m bgs), grey, brown at (1.20 - 1.95 m		SS6, SS7, SS8,
		bgs), saturated.		SS9, SS10.
BH2	Fill - Granular Base	Sand with gravel, moist, grey.	0.0 – 0.85	SS1
	Undisturbed	Silty sand, moist, brown.	0.85 – 1.2	SS2
	Native	•		
	Undisturbed	Clay, Silty at (1.20 - 1.95 m bgs) and at	1.2 – 6.0	SS3, SS4, SS5,
	Native	(3.65 - 4.50 m bgs), brown becoming grey at		SS6, SS7, SS8,
BH3	Fill - Granular	(1.95 m bgs), saturated. Sand with gravel, grey, moist, saturated at	0.0 – 0.85	SS9, SS10. SS1
5115	Base	(0.0-0.2 m bgs).	0.0 0.00	001
	Undisturbed	Silty sand, green, moist.	0.85 – 1.2	SS2
	Native			
	Undisturbed	Clay, Silty at (1.20 - 1.95 m bgs) and at	1.2 – 6.0	SS3, SS4, SS5,
	Native	(3.60 - 4.25 m bgs), brown becoming grey at (1.95 m bgs), some red at (1.95 - 2.4 m bgs)		SS6, SS7, SS8, SS9, SS10.
		and at (4.25 - 4.8 m bgs), saturated.		339, 3310.
BH4	Fill - Granular	Sand with gravel, grey, moist, saturated at	0.0 – 1.0	SS1
	Base	(0.0-0.2 m bgs).		
	Undisturbed	Silty sand, moist, brown.	1.0 – 1.2	SS2
	Native	Class City and the A (4.00 0.00 mg/s and City	40.00	000 004 005
	Undisturbed Native	Clay, Silty sandy at (1.20 – 2.0 m bgs), Silty at (3.6 – 4.25 m bgs), brown becoming grey	1.2 – 6.0	SS3, SS4, SS5, SS6, SS7, SS8,
	Nauve	at (2.0 m bgs), saturated.		SS9, SS10.
BH5	Fill - Granular	Sand with gravel, grey, moist, saturated at	0.0 – 1.0	SS1
	Base	(0.0-0.2 m bgs).		
		Silty sand, moist, brown.	1.0 – 1.2	SS2
	Native	Olav. Cita at /4 0 4 75 1 2 2 1 2 2	40.00	000 004 005
	Undisturbed	Clay, Silty at (1.2 – 1.75m bgs), brown becoming grey at (1.75 m bgs), some red,	1.2 – 6.0	SS3, SS4, SS5,
	Native	saturated.		SS6, SS7, SS8, SS9, SS10.
ВН6	Fill - Granular	Sand with gravel, brown at (0.0 – 0.35 m	0.0 - 0.85	SS1
	Base	bgs) followed by grey to (0.85 m bgs), dry.		
	Undisturbed	Silty sand, moist, brown.	0.85 – 1.2	SS2
	Native			000 00: 555
	Undisturbed	Clay, Silty sandy at (1.20 – 1.9 m bgs), Silty	1.2 – 6.0	SS3, SS4, SS5,
	Native	at (4.8 – 6.0 m bgs), brown becoming grey with depth, saturated.		SS6, SS7, SS8, SS9, SS10.
		with depth, saturated.		559, 5510.

ВН7	Fill - Granular Base	Sand with gravel, grey, dry, moist at (0.0 - 0.1 m bgs).	0.0 – 1.0	SS1
Undisturbed Native		Silty sand, moist, brown.	1.0 – 1.2	SS2
	Undisturbed Native	Clay, Silty at (1.2 – 1.95m bgs) and at (3.6 – 4.2 m bgs), grey, brown at (1.2 – 1.95 m bgs), some red at (1.2 – 2.4 m bgs) and at (4.8 – 6.0 m bgs), saturated.	1.2 – 6.0	SS3, SS4, SS5, SS6, SS7, SS8, SS9, SS10.
ВН8	Fill - Granular Base	Sand with gravel, moist, grey.	0.0 – 0.80	SS1
		Sand, Silty to (1.10 m bgs), followed by silty clayey, brown with some red spots, wet.	0.80 – 1.2	SS2
	Undisturbed Native	Clay, Silty at (1.20 - 1.95 m bgs) and at (3.65 - 4.50 m bgs), grey, brown at (1.20 - 1.95 m bgs), saturated.	1.2 – 6.0	SS3, SS4, SS5, SS6, SS7, SS8, SS9, SS10.
ВН9	Fill - Granular Base	Sand with gravel, grey, dry, moist at (0.0-0.1 m bgs).	0.0 – 1.0	SS1
	Undisturbed Native	Silty sand, moist, brown.	1.0 – 1.2	SS2
	Undisturbed Native	Clay, Silty at (1.2 – 1.85m bgs), grey-brown with some red at (1.2 – 1.85 m bgs) followed by grey, saturated.	1.2 – 2.4	SS3, SS4.
BH10	Fill - Granular Base	Sand with gravel, grey, dry, moist at (0.0 - 0.1 m bgs).	0.0 – 0.85	SS1
	Undisturbed Native	Silty sand, moist, brown.	0.85 – 1.2	SS2
	Undisturbed Native	Clay, Silty at (1.2 – 1.9 m bgs), grey-brown with some red at (1.2 – 1.9 m bgs) followed by grey with red, saturated.	1.2 – 2.4	SS3, SS4.

4.4 Field Screening Measurements

Field screening of the soil involved the use of a PID to measure headspace concentrations of VOCs (as Isobutylene) in conjunction with visual and olfactory observations. This combination of field screening tools were used to determine the "worst-case" sample of the site and the selection of the samples for submission of VOC and PHC analysis.

4.4.1 PID Screening

Soil samples collected were screened for vapours using the Mini Rae 2000 Photoionization Detector (PID). The Mini Rae 2000 Photoionization Detector (PID) was calibrated prior to use. Screening of VOC headspace concentrations were performed in accordance with LRL's SOP for Field Measurement of Soil Screening Parameters.

VOC measurements were taken by collecting soil samples into dedicated plastic sampling bags and inserting into the bag while maintaining a tight seal around the probe. The measurements that represent the highest value detected within the first 30 seconds of the field screening and measurements were documented into the field notes. Soil samples with the highest combustible vapours detected were then submitted for laboratory analysis, as shown in **Table 10 – Section 5.5.1**

LRL File: 220487 April 2023 (Revised August 2024) Page 13 of 32

4.4.2 Chemicals Detected and Associated Detection Limits

The monitoring program was performed using the Mini Rae 2000 Photoionization Detector (PID) equipped with a low range PID sensor and configured to detect VOCs calibrated to isobutylene (IBL). Mini Rae 2000 Photoionization Detector (PID) provides detection limit ranges between 0 – 1000 ppm for VOCs.

4.4.3 Procedure for Checking Calibration of Equipment

Mini Rae 2000 Photoionization Detector (PID) was calibrated by LRL staff with isobutylene calibration gas prior to use. The calibration of the Mini Rae 2000 Photoionization Detector (PID) is verified by operating the unit in a fresh air environment and ensuring zero readings for all parameters measured.

4.5 Groundwater: Monitoring Well Installation

Four (4) of the ten (10) boreholes drilled had monitoring wells installed. The locations of all four (4) monitoring wells were determined to permit sampling the groundwater pertaining to APECs identified in the Phase One Environmental Site Assessment.

A three (3) m 2-inch diameter well screen was placed at the base of the borehole with a PVC cap at the end of the screen. The screen was encompassed with #2 silica sand that extends approximately 0.3 m above the well screen. The well was then sealed with ¾ inch bentonite chips above the sand pack to approximately 10 cm bgs. The 2 inch PVC well riser completed the length of the well and a J-plug was installed at the top of the riser. The monitoring well was encased by a flush mount casing.

4.5.1 Description of the Equipment

The monitoring wells were drilled with a rubber track-mounted geo-probe a 50 mm outside diameter auger.

The monitoring wells were constructed using the following materials:

- Dedicated polyvinyl chloride (PVC) individually wrapped riser pipes and screens;
- 50 mm (2 inches) diameter Schedule 40 PVC pipe capped at the top;
- 50 mm (2 inches) diameter Schedule 40 No. 10-slot PVC screen with a screen length of 3.0 m and capped at the base with a J-Plug;
- Sand pack to approximately 0.3 m above the top of the well screen;
- Bentonite seal to approximately 10 cm bgs; and,
- Flush mounts were installed to cover the monitoring wells on the granular surface.

4.5.2 Measures to Minimize Potential Cross-Contamination

A dedicated sampling device consisting of a Sterile dedicated tubing and foot valve attached was used to collect groundwater samples from each monitoring well. The groundwater was placed directly in the pre-labelled laboratory-prepared sample containers and was tightly sealed and placed directly into a cooler for delivery to the laboratory. Sterile butyl nitrile gloves were changed for each well to ensure no cross-contamination during the sampling program.

4.5.3 Frequency of Sample Collection during Drilling

Groundwater samples were not collected during borehole drilling or monitoring well installation.

4.5.4 Monitoring Well Development

Prior to well development, the groundwater elevation at each monitoring well was established using a Heron H. Oil Oil/Water interface probe. The interface probe was used to assess the monitoring well for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs). If a free product were present, the thickness of the free product would be measured and recorded, and the actual groundwater surface was corrected accordingly. The interface probe was thoroughly washed with de-ionized water and dried with a clean cloth prior to use at a subsequent well.

Subsequent to the groundwater elevation survey, each well was developed by the removal of at least ten (10) times the volume of water (if possible) contained in each well using a Sterile dedicated tubing and foot valve attached. The purged groundwater removed was collected in dedicated five (5) gallon pails (23 litres) to inspect the removed water for visible identifiers or sheen. The amount of water removed from each well was recorded and is summarized in Table 7 – Section 4.5.4 as follows.

Table 7 – Section 4.5.4: Monitoring Well Development

Monitoring Well	Ground water Level (m bgs)	Depth of water column (m)	Required Purge Volume (L)	Date of Development/Purging	The volume of Fluid Removed from Well (L)
MW23-2	0.19	3.69	74	March 15, 2023	74
MW23-3	0.23	3.65	73	March 15, 2023	73
MW23-4	0.26	5.76	115	March 15, 2023	115
MW23-5	0.07	5.55	119	March 15, 2023	120

4.6 Groundwater: Sampling

Groundwater samples were collected on March 16, 2023, following the removal of at least three (3) times the volume of water (if possible) contained in each well using a Sterile dedicated tubing and foot valve attached, in accordance with LRL's SOP for Ground Water Purging and Sampling.

Groundwater samples were collected from the well as soon as there was sufficient groundwater in the well for sample collection (95% of the original water column).

The jars and vials were prepared in advance by the laboratory. The pre-labelled jars were filled in the field sealed when full, packaged in bubble wrap and placed into an ice-filled cool box to maintain temperatures below 10 °C for storage and transportation. The chain of custody form was completed in the field, placed in a protective wrap, and placed into the cooler box for delivery to the laboratory. A copy of the Chain of Custody was retained and is attached to the report in **Appendix D**.

LRL File: 220487 April 2023 (Revised August 2024) Page 15 of 32

4.7 Sediment: Sampling

The Phase II Property did not contain a body of water as defined under Ontario Regulation 153/04 (as amended); therefore, sediment was not present in the investigation area and no sediment sampling was conducted.

4.8 Analytical Testing

The soil and groundwater samples were submitted to ALS Environmental, analytical laboratories accredited by the Canadian Association for Laboratory Accreditation (CALA). The analyses were performed in compliance with the MOE Laboratory Services Branch, "Protocol for Analytical Methods Used in the Assessment of Properties under Past XV.1 of the Environmental Protection Act of the Environmental Protection Act, July 1, 2011".

4.9 Residue Management Procedures

4.9.1 Soil Cuttings – Drilling

Soil cuttings removed from the drill augers were stored on-site for future disposal. If the soil is to be disposed of in a licensed facility, a Toxicity Characteristic Leaching Procedure (TCLP) analysis will be required along with the bulk analysis.

4.9.2 Water from Well Development and Purging

Water generated from the well development and the purging of the wells was released on the surface of the soil. The groundwater encountered at the site did not exhibit any visual or olfactory evidence of chemical impact, sheen, or NAPLs and met the MECP Table 2 ICC Standard for finegrained soils.

4.10 Elevation Surveying

Ground surface elevations of all boreholes and monitoring wells were surveyed and referenced to a temporary benchmark. This benchmark was established on the centre surface of the Entrepreneur Crescent opposite to the Site. It was given an arbitrary elevation of 100.00 m. The results of the elevation survey are summarized in the borehole logs in **Appendix A**.

4.11 Quality Assurance and Quality Control Measures

4.11.1 Laboratory Supplied Sample Containers and Shipment Procedures

Table 8 – Section 4.11.1 below provides a detailed description of the sample containers, preservation, labelling, handling, and custody for the samples submitted.

Table 8 – Section 4.11.1: Sampling Parameters and Containers

Parameter	Sample	Preservative	Handling & Custody Samples
	Container		
Soil Samples		•	
Metals, PHCs (F2-	Amber	None	Soil samples were collected from the Macro barrel sample liners by hand or with the use of a clean steel
F4), PAHs, PCB.	glass Teflon lined		trowel and transferred to a zip lock bag for field screening.
	lids		Samples taken for laboratory analysis were placed in
VOCs, PHC (F1)	Vial	Methanol	pre-prepared and labelled laboratory-supplied sample containers, observing the laboratory requirements for specific sample volumes according to the testing required. The soil samples collected for laboratory analysis were immediately placed into ice-filled cool boxes for storage and transportation to the laboratory. On arrival, all samples were removed from the ice-filled cool box and immediately refrigerated pending final chemical analysis sample selection. Selected samples for laboratory analysis were placed in ice-filled cool boxes and dispatched to the accredited chemical laboratory under Chain of Custody procedures.
Groundwater Samples	S		
PHCs (F2-F4).	Amber Glass Bottle	HCL	Groundwater samples were collected using a low-flow waterra® pump and dispensed directly into the appropriate pre-labelled, laboratory-supplied
VOCs, PHC (F1)	Vials	NaHSO4	groundwater sample containers. The collected groundwater samples were immediately placed into
Metals, Inorganics.	Amber Glass Bottle		ice-filled cool boxes for storage and transportation to the laboratory. On arrival at the laboratory, all samples
PCB, PAHs	Amber Glass Bottle	None	were removed from the ice-filled cool box and immediately refrigerated pending final chemical analysis sample selection. Selected samples for laboratory analysis were placed in ice-filled cool boxes and dispatched to the accredited chemical laboratory under Chain of Custody procedures.

Soil samples were collected using dedicated prepared 250 ml jars, syringes, and vials provided by Paracel Laboratories Ltd. Soil samples that required VOC analysis involved placing approximately 5 g of soil into dedicated methanol-filled vials. This method was used to ensure no loss of VOCs during transportation. The vials were placed in the cooler containing the trip blank for VOC analysis. The cooler was placed in ice to ensure the temperature of samples was lower than 10 °C on arrival at the laboratory.

4.11.2 Description of Equipment Cleaning Procedures

The boreholes were drilled utilizing direct push methodology using the static weight of the geoprobe to minimize the possibility for cross-contamination between potentially impacted and nonimpacted soil or groundwater layers.

Core samples of soil were obtained during the drilling was collected via a 1.20 m in length macro barrel sample liners. The macro barrel sample liner uses a plastic liner to facilitate soil removal.

LRL File: 220487 April 2023 (Revised August 2024) Page 17 of 32

Plastic liners are one-time use liners and will not be reused for sampling of multiple intervals or soil boring locations to prevent cross-contamination on re-use.

Soil samples were collected from the plastic liner by hand (using dedicated nitrile gloves that were disposed of after each sample), to mitigate cross-contamination. If necessary, soil samples contained in the plastic liner were removed with the aid of a stainless-steel trowel. Subsequent to soil sample collection, any hand-tool used for sample collection were immediately cleaned in accordance with LRL's SOP, as follows:

- Scrubbed with a wire brush in an Alconox solution (a powdered precision cleaner, that is biodegradable and has interfering-residue free and corrosion-inhibiting properties);
- Rinsed with distilled or de-ionized water; and
- Towelled with dedicated disposable dry towels.

The soil samples were placed directly into pre-labelled jars specific to the chemical analysis desired. The location of each sampling point is recorded, and the pre-labelled jars were placed in coolers and packed with ice. The remaining sample after classification were placed in a large zip lock bag for further field screening by means of PID for vapour headspace measurements.

4.11.3 Description of Field Quality Control Measures

Soil samples were placed into laboratory-provided bottles and vials that were clearly labelled with the sample location, date, and chemical analysis to be conducted on each sample jar. The same labelling was applied to the chain of custody forms. Dedicated nitrile gloves were used for each sample collected in the field and disposed of immediately after use.

VOC samples were collected in methanol vials filled by the laboratory and an exact amount of VOC impacted soil was added to the vials by means of a syringe that captures 5 ml of soil to be added to the vials. The vial caps are tightly sealed and placed directly in a bubble cap package and placed upright into a cooler packed with ice. Sample screening by means of a PID, olfactory clues, discoloration, soil characteristics, and texture were used to determine which samples were to be submitted for further analysis.

Samples for analysis of metals parameters were placed into amber-coloured jars prepared by the laboratory sealed with a Teflon-lined cap. The jars were filled to the brim and capped tightly to minimize the vapour headspace in the jar. These jars were placed in bubble wrap containers and placed into a cooler packed with ice. The selection of the samples for analysis was based on the field screening method outlined in LRL SOPs.

Groundwater samples were placed into laboratory prepared (with appropriate preservatives) and supplied bottles and vials. The vials and jars were filled to the brim to minimize VOC loss.

The following packaging and transportation procedures were followed:

- Correctly labelled samples were packed in ice-filled cool boxes to maintain temperatures below 10°C during sample collection and transportation from the Phase II Property to the laboratory and the chemical testing to Paracel Laboratories Inc.; and
- A copy of the chain of custody form was maintained.

4.11.4 Deviations from the Quality Assurance and Quality Control Program

There were no deviations from the Quality Assurance and Quality Control Program.

LRL File: 220487 April 2023 (Revised August 2024) Page 18 of 32

5 REVIEW AND EVALUATION

5.1 Geology

The entire property is situated on an area of offshore marine deposits consisting of clay, silty clay, and silt, commonly calcareous and fossiliferous; locally overlain by thin sand.

The bedrock in the vicinity of the Site is expected to be grey shale, sandy shale, and some dolomitic layers in part of the Carlsbad Formation.

5.1.1 Geological Conditions Encountered

Ten (10) boreholes were advanced across the Site. The soils encountered consisted mainly of Fill (granular base), followed by brown silty sand followed by grey clay.

No sheen or evidence of Light Non-Aqueous (LNAPL) and Dense Non-Aqueous Phase Liquid (DNAPL) as free product was observed in any of the monitoring wells. No hydrocarbon odours were detected in any of the monitoring wells.

The groundwater monitoring wells were positioned to identify potential groundwater impacts associated with the PCAs and APECs identified on the Site. Groundwater contours and inferred groundwater flow direction are presented in **Figure 3**.

5.1.2 Elevations Geodetic Benchmark

A laser level was used to determine the geodetic elevations for each borehole and monitoring well.

5.1.3 Aquifer and Aquitard Properties

The soil stratigraphy indicated that the overburden was primarily comprised of fine-medium grain sand. The monitoring wells were installed to a depth between 6.0 m and 4.0 m bgs and exhibited a static water level of 0.30 m bgs on average.

5.1.4 Confirmatory Soil and Groundwater Monitoring Well Design and Rationale

Table 9 – Section 5.1.4: Confirmatory Soil and Groundwater Monitoring Well Design and Rationale

Monitoring Well	Target Aquitard or Aquifer	Screen interval Depth (m bgs)	APEC	PCA	Rational
MW2	Silty clay	0.9 – 4.0	APEC B	PCA 32: Iron and Steel Manufacturing and Processing. PCA 30: Importation of Fill Materials of Unknown Quality.	Soil and groundwater for potential presence of Metals, PAHs, PHCs, VOCs, BTEX. pH, EC, and SAR.
			APEC D	PCA Other: Construction company workshop and storage yard	pri, Eo, and OAIX.
			APEC E	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks. PCA 34: Metal Fabrication.	
			APEC F	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to	
			APEC G	maintain transportation systems.	
MW3	Silty clay	0.9 – 4.0	APEC A APEC B	PCA 32: Iron and Steel Manufacturing and Processing. PCA 30: Importation of Fill Materials of Unknown Quality.	Soil and groundwater for potential presence of Metals, PAHs, PHCs, VOCs, BTEX. pH, EC, and SAR.
MW4	Silty clay	3.0 – 6.0	APEC B APEC C	PCA 32: Iron and Steel Manufacturing and Processing. PCA 30: Importation of Fill Materials of Unknown Quality. PCA 32: Iron and Steel	Soil and groundwater for potential presence of Metals, PAHs, PHCs, VOCs, BTEX. pH, EC, and SAR.
MW5	Silty clay	3.0 – 6.0	APEC A	Manufacturing and Processing PCA 32: Iron and Steel Manufacturing and Processing.	Soil and
			APEC B	PCA 30: Importation of Fill Materials of Unknown Quality.	groundwater for potential presence of Metals, PAHs, PHCs, VOCs, BTEX. pH, EC, and SAR.

LRL File: 220487 April 2023 (Revised August 2024) Page 20 of 32

5.2 Groundwater Elevations

The direction of groundwater flow has been determined to be in the southeastern direction. **Figure 3** shows the groundwater flow direction.

5.2.1 Discussion and Rationale for Location and Screen Intervals

The wells were placed so that the triangulation of the groundwater elevations could be conducted to determine the groundwater flow direction. The three-meter screen was used to straddle the groundwater table for the interception of LNAPLs and the potential of free phase and dissolved fractions of DNAPLs.

5.2.2 Interphase Probe

No LNAPSLs or DNAPLs were detected with the interphase Probe during the measuring of water levels before and after well development.

5.2.3 Product Thickness

No free product was encountered.

5.3 Soil Texture

Under Ontario Regulation 153/04 (as amended). "coarse-textured soil" is soil that contains more than 50 percent bypass of particles that are 75 micrometers (um) or larger in mean diameter.

5.3.1 Rationale for the Use of Fine – Medium Soil Texture

Refer to LRL Geotechnical Investigation, soil texture analysis illustrates that the soil at Phase Two Property considered to be of fine-grained texture.

5.3.2 Results of the Grain Size Analysis for Fine – Medium Soil Texture

Not applicable

5.3.3 Rationale for the Number of Samples Collected and Analysed for Grain Size Analysis Not applicable

5.4 Soil: Field Screening

The samples were examined in the field for lithology as well as for aesthetic evidence of impacts (i.e., debris, staining, and odours). In addition, headspace readings were recorded using a photo-ionization detector (PID) calibrated to isobutylene (IBL). This combination of field screening tools was used to determine the "worst-case" sample(s) collected from the subject site. The findings of the field screening measurements and head Space analyses are summarized in the borehole logs in **Appendix A**.

5.5 Soil Quality

The Phase One ESA Conceptual Site Model identified the following Contaminants of Concern in the soil in relation to the PCAs and two (2) APECs that may affect the Phase II Property.

- Volatile Organic Compounds (VOC);
- Petroleum Hydrocarbons PHC F1 through F4;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Polychlorinated Biphenyls (PCBs); and
- Metals; Metal hydrides, and inorganic parameters (conductivity, SAR, and pH).

On March 13 and March 14, 2023, a total of twenty-four (24) samples, were submitted to evaluate the level of potential chemical impact on the soils beneath the Site.

5.5.1 Location and Depth of Sampling

The following table describes the location and depth of the specific samples submitted for chemical laboratory analysis, and the results of the analyses in comparison to MECP Table 2 ICC.

Table 10 – Section 5.5.1: Soil Chemical Laboratory Analysis

				С	hemi	cal A	nalys	sis		Standard
Borehole ID	Sample ID	Depth (m bgs)	Date Sampled	PHC F2 - F4	VOCs/F1	Metals	General Inorganic	PAHs	PCBs	Exceedance (Table 2 ICC for Fine sand)
	SS1	0.0 - 0.85	March 14, 2023	√	✓	√	✓			No Exceedances
	SS2	0.85 - 1.2	March 14, 2023							
	SS3	1.2 – 1.9	March 14, 2023	✓	✓					No Exceedances
	SS4	1.9 - 2.4	March 14, 2023					✓	✓	No Exceedances
	SS5	2.4 - 3.0	March 14, 2023							
BH1	SS6	3.0 - 3.6	March 14, 2023							
	SS7	3.6 - 4.5	March 14, 2023							
	SS8	4.5 - 4.8	March 14, 2023							
	SS9	4.8 - 5.4	March 14, 2023							
	SS10	5.4 - 6.0	March 14, 2023							
	SS1	0.0 - 0.85	March 14, 2023	√	✓	✓	√			No Exceedances
	SS2	0.85 – 1.2	March 14, 2023							
	SS3	1.2 – 1.95	March 14, 2023							
	SS4	1.95 – 2.4	March 14, 2023							
	SS5	2.4 - 3.0	March 14, 2023							
BH2	SS6	3.0 - 3.6	March 14, 2023							
5112	SS7	3.6 - 4.2	March 14, 2023							
	SS8	4.2 - 4.8	March 14, 2023							
	SS9	4.8 – 5.4	March 14, 2023							
	SS10	5.4 - 6.0	March 14, 2023							
	SS40	0.0 - 0.85	March 14, 2023	✓	✓	~	✓			No Exceedances
	SS1	0.0 - 0.85	March 14, 2023	✓	✓	✓	✓			No Exceedances
	SS2	0.85 – 1.2	March 14, 2023	✓	✓					No Exceedances
	SS3	1.2 – 1.95	March 14, 2023			✓	✓			No Exceedances
BH3	SS4	1.95 – 2.4	March 14, 2023					✓	✓	No Exceedances
	SS5	2.4 - 3.0	March 14, 2023							
	SS6	3.0 - 3.6	March 14, 2023							
	SS7	3.6 – 4.25	March 14, 2023							
ĺ	SS8	4.25 – 4.8	March 14, 2023							

				С	hemi	cal A	nalys	sis		Standard
Borehole ID	Sample ID	Depth (m bgs)	Date Sampled	PHC F2 - F4	VOCs/F1	Metals	General Inorganic		PCBs	Exceedance (Table 2 ICC for Fine sand)
	SS9	4.8 – 5.4	March 14, 2023							
	SS10	5.4 - 6.0	March 14, 2023							
	SS1	0.0 1.0	March 13, 2023			✓	✓			No Exceedances
	SS2	1.0 – 1.2	March 13, 2023	✓	✓	✓				No Exceedances
	SS3	1.2 – 2.0	March 13, 2023			✓	✓			No Exceedances
	SS4	2.0 - 2.4	March 13, 2023					✓	✓	No Exceedances
BH4	SS5	2.4 - 3.0	March 13, 2023							
	SS6	3.0 - 3.6	March 13, 2023							
	SS7	3.6 - 4.25	March 13, 2023							
	SS8	4.25 - 4.8	March 13, 2023							
	SS9	4.8 - 5.4	March 13, 2023							
	SS10	5.4 - 6.0	March 13, 2023							
	SS1	0.0 – 1.0	March 13, 2023	√	√	✓	√			No Exceedances with the exception of conductivity
	SS2	1.0 – 1.2	March 13, 2023							
	SS3	1.2 – 1.75	March 13, 2023	✓	✓	✓				No Exceedances
	SS4	1.75 – 2.4	March 13, 2023							
BH5	SS5	2.4 - 3.0	March 13, 2023							
	SS6	3.0 - 3.6	March 13, 2023							
<u> </u>	SS7	3.6 - 4.2	March 13, 2023							
	SS8	4.2 - 4.8	March 13, 2023							
	SS9	4.8 - 5.4	March 13, 2023							
	SS10	5.4 - 6.0	March 13, 2023							
	SS20	0.0 - 1.0	March 13, 2023	✓	✓	✓	✓			No Exceedances
	SS1	0.0 – 0.85	March 13, 2023	✓	✓	✓	✓	ļ		
	SS2	0.85 – 1.2	March 13, 2023					ļ		No Exceedances
	SS3	1.2 – 1.9	March 13, 2023					ļ		
	SS4	1.9 – 2.4	March 13, 2023							
BH6	SS5	2.4 – 3.0	March 13, 2023							
	SS6 No sample	3.0 - 3.6 $3.6 - 4.8$	March 13, 2023 							
	in the tube									
	SS7	4.8 – 5.4	March 13, 2023							
	SS8	5.4 - 6.0	March 13, 2023							
	SS1	0.0 – 1.0	March 14, 2023	√	√	✓	√			No Exceedances with the exception of Lead
	SS2	1.0 – 1.2	March 14, 2023			✓		-	-	N = .
	SS3	1.2 – 1.95	March 14, 2023			· ·			-	No Exceedances
D.1.7	SS4	1.95 – 2.4	March 14, 2023		-			-	-	
BH7	SS5	2.4 – 3.0	March 14, 2023							
	SS6	3.0 – 3.6	March 14, 2023							
	SS7	3.6 – 4.2	March 14, 2023		-			-		
	SS8	4.2 – 4.8	March 14, 2023		-			-		
	SS9 SS10	4.8 – 5.4 5.4 – 6.0	March 14, 2023					-		
	SS10 SS1	0.0 - 0.80	March 14, 2023 March 13, 2023			\vdash		-		
	SS2	0.80 – 1.2	March 13, 2023	√	✓	V	√	1		No Evacadances
	SS2 SS3	1.2 – 1.9	March 13, 2023 March 13, 2023	,	Ť	V /	•			No Exceedances No Exceedances
BH8	SS4	1.9 – 2.4	March 13, 2023		 	+		 	\vdash	IND EXCEPTIONS
	SS5	$\frac{1.9 - 2.4}{2.4 - 3.0}$	March 13, 2023		 					
	SS6	3.0 – 3.6	March 13, 2023		-					
	SS7	3.6 – 4.2	March 13, 2023							
	551	J.U - 4.Z	WIGHT 10, 2020	l	1	1		1		

Borehole ID	Sample ID	Depth (m bgs)	Date Sampled	- w		F2		PCBs	Standard Exceedance (Table 2 ICC for Fine sand)	
	SS8	4.2 – 4.8	March 13, 2023							
	SS9	4.8 – 5.4	March 13, 2023							
	SS10	5.4 – 6.0	March 13, 2023							
	SS1	0.0 – 1.0	March 14, 2023	✓	✓	✓	✓			No Exceedances
BH9	SS2	1.0 – 1.2	March 14, 2023							
Di 19	SS3	1.2 – 1.85	March 14, 2023							
	SS4	1.85 – 2.4	March 14, 2023							
	SS1	0.0 - 0.85	March 14, 2023	✓	✓	✓	✓			No Exceedances
BH10	SS2	0.85 – 1.2	March 14, 2023			✓				No Exceedances
Drill	SS3	1.2 – 1.9	March 14, 2023							
	SS4	1.9 – 2.4	March 14, 2023							

5.5.2 Analytical Results to SCS

The environmental quality of the soil at the Site was compared to the MECP Table 2 ICC Standard. The Laboratory Certificates of Analysis are presented in **Appendix B.** Results of soil analysis and respective MECP standards are presented in **Table 2** and **Table 3**.

At least one (1) soil sample, considered to be "worst case" based on field observations, from each borehole was submitted for chemical analysis to confirm the field observations of petroleum hydrocarbon impacts. The samples were submitted for analysis of PHCs, VOCs, PCBs, PAHs, Metals Reg.153/4, and general Inorganics.

- VOC parameter concentrations were below the detection limits in all samples.
- PAH parameter concentrations were below the detection limits in select samples submitted for analysis.
- Select metals parameters analysed were detected in soil samples, however, the detectable levels of Metals were within the MECP Table 2 with the exception of:
 - BH23-7-SS1: Lead was detected.
- Select inorganics parameters analysed were detected in soil samples, however, the detectable levels of inorganics were within the MECP Table 2 with the exception of:
 - BH23-5-SS1: Conductivity was detected.
- PHCs parameters analysed were not detected in soil samples, with the exception of the following:
 - BH23-1-SS1: PHCs (F3, F4, and F4G) were detected;
 - BH23-2-SS1: PHCs (F3, F4, and F4G) were detected;
 - BH23-3-SS1: PHCs (F3, F4, and F4G) were detected;
 - BH23-5-SS1: PHCs (F3, F4, and F4G) were detected;
 - BH23-7-SS1: PHCs (F3, F4, and F4G) were detected;
 - BH23-9-SS1: PHCs (F3, F4, and F4G) were detected; and
 - BH23-10-SS1: PHCs (F3, F4, and F4G) were detected

However, the detectable levels of PHCs were within the MECP Table 2 criteria.

5.5.3 Contaminants of Concern (COC)

The following contaminants of concern were identified in the soil on the Phase Two Property:

Table 11 - Section 5.5.3: Soil Exceedances

Borehole ID	Sample ID	Parameter	Units	MECP Table 2	Value
BH23-5	SS1	Conductivity	μS/cm	1400	1460
BH23-7	SS1	Lead	μg/L	120	284

5.5.4 Chemical and Biological Transformations

No chemical or biological transformations were noted on, in or under the Phase Two Property.

5.6 Ground Water Quality

The Phase One ESA Conceptual Site Model identified the following Contaminants of Concern in relations to PCAs and APECs that may affect the Phase Two Property:

- Volatile Organic Compounds (VOC);
- Petroleum Hydrocarbons PHC F1 through F4;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- · Polychlorinated Biphenyls (PCBs); and
- Metals; Metal hydrides, and inorganic parameters (conductivity, SAR, and pH).

On March 16, 2023, a total of four (4) groundwater samples was analyzed as follows, to appropriately evaluate the level of chemical impact to the groundwater beneath the Phase Two Property in the areas of the various APECs:

- Four (4) samples for VOCs;
- Four (4) samples for PHC fractions F1 to F4;
- Four (4) samples for PAHs;
- Four (4) samples for metals, metal hydrides, and general inorganics; and
- Two (2) samples for phenols.

On April 17, 2023, LRL returned to the Site, and one (1) groundwater sample was collected from M23-3 for the analyses of:

- PAHs; and
- · Metals.

5.6.1 Location and Sample Depth

Table 12 – Section 5.6.1 below described the location and depth of the specific groundwater samples submitted for chemical laboratory analysis, and the results of the analyses in comparison to Table 2 Standards for fine-grained soils.

Table 12 – Section 5.6.1: Groundwater Chemical Laboratory Analysis

				Chemical Analysis						
Well ID	Sample ID	Depth (m asl)	Date Sampled	PAH F2-F4	VOCs/F1	PAHs	M & M Hyd	General Inorganics	Phenois	Standard Exceedance (Table 2 ICC for fine sand)
MW23-2	MW23-2	81.85	March 16, 2023	✓	~	~	✓	✓		No Exceedances
MW23-3	MW23-3	81.85	March 16, 2023	✓	√	√	✓	✓	√	Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Fluoranthene, and Vanadium
			April 16, 2023			~	✓			Benzo[a]pyrene,
MW23-4	MW23-4	83.90	March 16, 2023	✓	✓	✓	√	√	✓	No Exceedances
MW23-5	MW23-5	83.90	March 16, 2023	✓	√	√	✓	√		No Exceedances

The Laboratory Certificates of Analysis are presented in **Appendix B** and detailed assessments of the groundwater analytical results are presented in **Tables 4** and **5** (attachments).

The environmental quality of the groundwater at the Phase Two Property was compared to the MECP Table 2 ICC Standards for potable groundwater. All samples met the Table 2 standards for potable groundwater for all parameters analyzed with the exception of MW23-3 were the following parameters were detected exceeds the MECP Table 2 ICC standards:

- On March 16, 2023
 - Benzo [a] pyrene;
 - Benzo [b] fluoranthene;
 - Benzo [k] fluoranthene;
 - Chrysene;
 - Fluoranthene; and
 - Vanadium.
- On April 17, 2023
 - Benzo [a] pyrene;

All other groundwater samples met the MECP Table 2 ICC standards for all parameters analyzed.

5.6.2 Documentation of Field Filtering

Field Filtering was conducted for metals only. The Certificates of Analysis show no lab filtering for the samples submitted for this Site.

5.6.3 Analytical Results to SCS

The environmental quality of the groundwater at the Phase Two Property was compared to the MECP Table 2 ICC Standard. The exceedances identified in the groundwater for MW23-3 are as follows:

- VOC parameter concentrations were below the detection limits in all groundwater samples with the exception of the following:
 - MW23-2: Acetone was detected.
 - MW23-3: Acetone was detected

However, the detectable levels of VOCs were within the MECP Table 2 criteria;

- PAH parameter concentrations were detected in groundwater samples; however, the detectable levels of PAH were within the MECP Table 2 with the exception of the following parameters for MW23-3:
 - On March 16, 2023: Benzo [a] pyrene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Chrysene, and Fluoranthene were detected;
 - On April 17, 2023: Benzo [a] pyrene.
- Metals parameters analysed were detected in all groundwater samples, however, the detectable levels of Metals were within the MECP Table 2 with the exception of the following parameter for MW23-3:
 - On March 16, 2023: Vanadium was detected;
- PHCs parameters analysed were below the detection limit in all groundwater samples.

The Laboratory Certificate of Analysis is presented in **Appendix D**.

5.6.4 Contaminants of Concern (COC)

The contaminants of concern identified in the groundwater on the property are as follows:

Table 13 – Section 5.6.4: Groundwater Exceedances

Monitoring well #	Parameter	MECP Table 2 (μg/L)	Value (μ g/L) March 16, 2023	Value (μg/ L) April 17, 2023
	Benzo [a] pyrene	0.01	0.33	0.07
	Benzo [b] fluoranthene	0.1	0.52	No Exceedances
MW23-3	Benzo [k] fluoranthene	0.1	0.24	No Exceedances
	Chrysene	0.1	0.56	No Exceedances
	Fluoranthene	0.41	0.91	No Exceedances
	Vanadium	6.2	20.9	No Exceedances

5.6.5 Chemical and Biological Transformation

There are no chemical or biological transformations noted in the groundwater for the COC.

5.6.6 Soil Serves as Source of Contamination to Groundwater

The soil is permeable and may contribute to the quality of the groundwater.

5.6.7 Presence of LNAPLs or DNAPLs

No free phase products were encountered in the groundwater.

5.7 Sediment Quality

The Phase Two Property did not include a surface water body as defined under O. Reg. 153/04 (as amended); therefore, sediment was not sampled in this Phase Two ESA investigation.

6 Phase Two Conceptual site Model

6.1 Current and Historical Site Use and Surrounding Land Use

The Phase Two Property is located at 363 Entrepreneur Crescent, Ottawa, Ontario. The legal description of the Phase Two Property is Part of block 3 Plan 50M136 Part 3 ON Plan 50R6694; Subject to an Easement in Gross Over Part 9 ON Plan 4R-27830 As in OC1627867, City of Ottawa. The Phase Two Property has a rectangular shape and covers an area of approximately 3000 m² (0.75 acre). The size and location of the property are shown in **Figure 2**.

The property is situated in a commercial area along Entrepreneur Crescent. The Phase Two Property is currently undeveloped, and at the time of this ESA, is used as a storage yard for hoisting equipment for the neighboring industrial company since at least mid of 2022.

6.2 Potentially Contaminating Activities (PCAs)

The Conceptual Site Model shows four (4) PCAs on and surrounding the property of which relative to the groundwater flow direction. The PCAs that affect the Phase Two Property include:

- **PCA 32:** Iron and Steel Manufacturing and Processing. The adjacent property hoist equipment manufacturing and rental company (YSB Hoisting equipment facility), is identified as an industrial use which involves assembling, processing, storing, warehousing, or distributing hoisting equipment. Associated material and equipment are stored on the Site since at least mid of 2022;
- PCA 30: Importation of Fill Material of Unknown Quality. Based on available information obtained, a layer of granular crushed stone was applied across the surface of the subject property in 2022 (est.). The source and quality of the material is unknown, therefore its conditions, in addition to the underlying materials, should be investigated;
- PCA 32: Iron and Steel Manufacturing and Processing. 357 Entrepreneur Crescent, immediately east of the Site, occupied by a hoist equipment rental company (YSB Hoisting Equipment & YSB Carpentry facility), industrial use which involves assembling, processing, storing, warehousing, or distributing hoisting equipment;
- PCA Other: Construction company workshop and storage yard. 371 Entrepreneur Crescent, immediately west of the Site, occupied by Galaxy Construction - workshop and storage yard;

- PCA 28: Gasoline and Associated Products Storage in Fixed Tanks. 5495 Boundary Road, approximately 170 m west of the Site. Reported to be an abandoned service station with records of underground liquid fuel storage tanks;
- **PCA 34:** Metal Fabrication. 5507 Boundary Road, approximately 170 m west of the Site. Listed as Renes Welding Inc. a fabricated metal products facility established in 1982.
- **PCA 52:** Storage, maintenance, fuelling, and repair of equipment, vehicles, and material used to maintain transportation systems. 381 Entrepreneur Cresent approximately 40 m to the west of the Site was used as a vehicle storage yard.
- PCA 58: Waste Disposal and Waste Management, including thermal treatment, landfilling
 and transfer of waste, other than use of biosoils as soil conditioners. Immediatily north of
 the Site is a mineral-aggregate extraction facility that has a snow disposal operation during
 winter months.

6.3 Areas of Potential Environmental Concern (APECs)

The eight (8) PCAs generated seven (7) on-Site Areas of Potential Environmental Concern (APECs):

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase II Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil, and/or sediment)
APEC A	Entire Property	PCA 32: Iron and Steel Manufacturing and Processing	On Site	Metals	Soil and Groundwater
APEC B	Entire Property	PCA 30: Importation of Fill Materials of Unknown Quality	On Site	PAHs, VOCs, PHCs, Metals, OP pesticides	Soil and Groundwater
APEC C	Eastern portion of the Site	PCA 32: Iron and Steel Manufacturing and Processing	Off-Site	Metals	Soil and Groundwater
APEC D	Western portion of the Site	PCA Other: Construction company workshop and storage yard	Off-Site	PHC, VOC, Metals	Soil and Groundwater
APEC E	Western portion of the Site	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks.	Off-Site	PHC, VOC	Soil and Groundwater
APEC F	Western portion of the Site	PCA 34: Metal Fabrication.	Off-Site	Metals	Soil and Groundwater
APEC G	Western portion of the Site	PCA 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems.	Off-Site	VOC, PHC, Metals	Soil and Groundwater

6.4 Contaminants of Potential Concern (COPCs)

The contaminants of potential concern (COPCs) in soil and groundwater for the Site were based on the APECs identified at the Site during Phase One ESA and observations at the time of the drilling program. The following CPCs for the Site were suspected to be associated with the identified APECs:

- Petroleum Hydrocarbons ranges F1-F4 (PHCs);
- Volatile Organic Compounds (VOCs);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- · Polychlorinated Biphenyls (PCBs); and
- Metals, Metal hydrides, and General Inorganics.

An assessment of the COPCs for the Site was completed as part of the Phase Two ESA analytical submission program. Soil and groundwater samples were submitted for a combination of the COPCs dependant on borehole and monitoring well locations with respect to the APECs.

7 CONCLUSIONS

Based on our Site visit, results of soil and groundwater sampling and laboratory analytical programs compared to the applicable MECP Table 2 SCS, LRL offers the following conclusions regarding environmental conditions of the subject site:

Soil Quality

The soil at the Phase Two Property was sampled at BH23-1, BH23-2, BH23-3, BH23-4, BH23-5, BH23-6, BH23-7, BH23-8, BH23-9, and BH23-10 and was analyzed for General Inorganics, PHCs F1 to F4, VOCs, PCB, PAH and Metals.

Exceedances were identified in the soil for Lead in BH23-7-SS1 and Conductivity BH23-5-SS1.

Groundwater Quality

The groundwater at the Phase Two Property was sampled at MW23-2, MW23-3, MW23-4, MW23-5 and was analyzed for VOCs, PHCs F1 to F4, PAH, general inorganics, and phenols.

Exceedances were identified in the groundwater for the following parameters in MW23-3

- On March 16, 2023: Benzo [a] pyrene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Chrysene, Fluoranthene, and Vanadium were detected;
- On April 17, 2023: Benzo [a] pyrene.

Remediation work via the excavation of the soil at BH23-7 SS1 and BH23-5-SS1 will address the soil impacts. The remediation scope of work for this project is anticipated to be generally completed as follows:

- At the time of development of the Site, a Qualified Person (as per O. Reg. 153/04), or a component individual under direction of the Qualified Person shall visit the Site to direct the remediation activities through excavation in the areas of concern;
- Confirm soils to be removed by a licenced hauler for off-Site disposal at a provincially approved waste disposal facility. Prior to acceptance of the material, a representative TCLP sample must be collected and submitted for analysis, with the analytical results provided to the accepting facility;

- Screen soil samples for combustible soil vapours using a combustible gas detector, as well
 as for visual and olfactory evidence of contamination in order to identify worst-case soil
 samples, although select parameters or concern may not emit vapours;
- Groundwater encountered in the open excavation will be removed from the Site by a licensed contractor, until analytical results demonstrate that concentrations of concern are considered acceptable with respect to the applicable site condition standards;
- Confirmatory samples (soil and groundwater) will be collected from the excavation limits and submitted for chemical analyses of parameters of concern (metals (namely lead), conductivity, PAHs);
- Assess subsurface conditions with respect to contaminants of concern in accordance with the Ontario Ministry of Environment and Climate Change's Soil, Ground Water and Sediment Standards for Use Under Part IV.1 of the Environmental Protection Act, April 15 2011; and
- Prepare a reporting letter detailing site activities and findings.

Removal of the groundwater table via a vac truck may remove the sole exceedance for Benzo (a) pyrene B(a)P. Removal of the soil surrounding this exceedance at MW23-3 may also assist in its removal from the groundwater table.

8 LIMITATIONS AND USE OF REPORT

Results of this Phase Two ESA should not be considered a warranty that the subject property is free from any and all contaminants from former and current practices, other than those noted in this report, nor that all compliance issues have been addressed.

Findings contained in this report are based on data and information collected during the Phase II ESA of the subject property conducted by LRL Engineering Conclusions and recommendations are based solely on-site conditions encountered at the time of our site visit and fieldwork between March 13th and April 16th, 2023, supplemented by historical information and data obtained as described in this report. No assurance is made regarding changes in conditions subsequent to the time of this investigation. If additional information is discovered or obtained, LRL Engineering should be requested to re-evaluate the conclusions presented in this report and to provide amendments as required.

In evaluating the subject property, LRL Engineering has relied in good faith on information provided by individuals as noted in this report. We assume that the information provided is factual and accurate. We accept no responsibility for any deficiencies, misstatements or inaccuracies contained in this report as a result of omissions, misinterpretation or fraudulent acts of the persons contacted.

This report is intended for the sole use of Entrepreneur Holding Corporation and their authorized agents. LRL Enigneering will not be responsible for any use of the information contained within this report by any third party.

In addition, LRL Engineering will not be responsible for the real or perceived decrease in the property value, its saleability or ability to gain financing, through the reporting of factual information.

Yours truly, LRL Associates Ltd.

G. LAMETTI ME 90232703

Aug 27 2024

John (Gianni) Lametti, P. Eng. QP_{ESA} Environmental Engineer

Jessica Arthurs Environmental Engineering Manager

5430 Canotek Road | Ottawa, ON, K1J 9G2 | info@lrl.ca | www.lrl.ca | (613) 842-3434

LRL File: 220487 April 2023 (Revised August 2024) Page 32 of 32

9 REFERENCES

Canadian Standards Association, Phase Two Environmental Site Assessment CAN/CSA-Z769-00, March 2000 (R2013).

Canadian Standards Association, Z768-01 Phase I Environmental Site Assessment, November 2001 (R2016).

City of Ottawa Interactive Map accessed through: http://maps.ottawa.ca/geoottawa/

Harrison, J.E., 1976, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Geological Survey of Canada, Map 1508A, Scale 1:125,000.

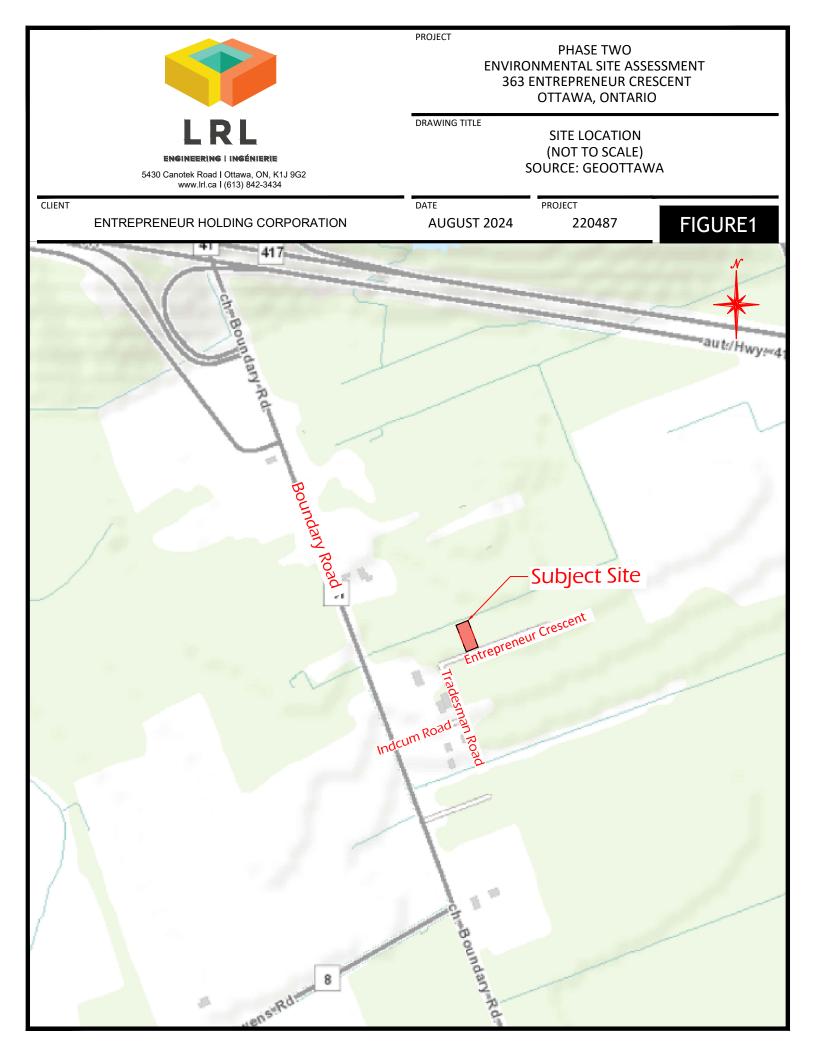
Ministry of Environment, Conservations and Parks, Ontario Regulation 153/04: Records of Site Condition – Part XV.1 of the Environmental Protection Act, as amended.

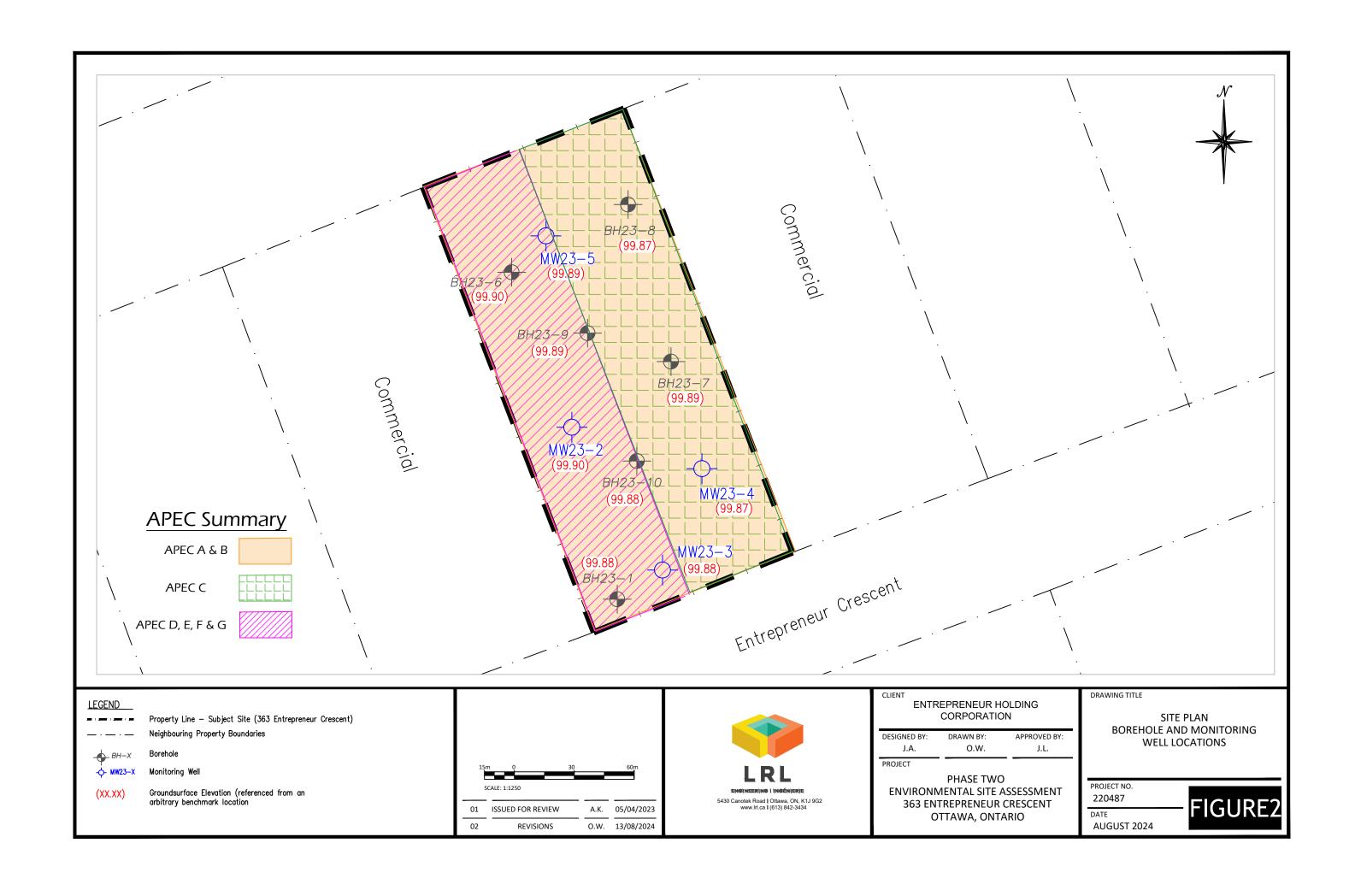
Ministry of Environment and Energy, Coal Tar Site Investigations 1986 – 1995, January 1997.

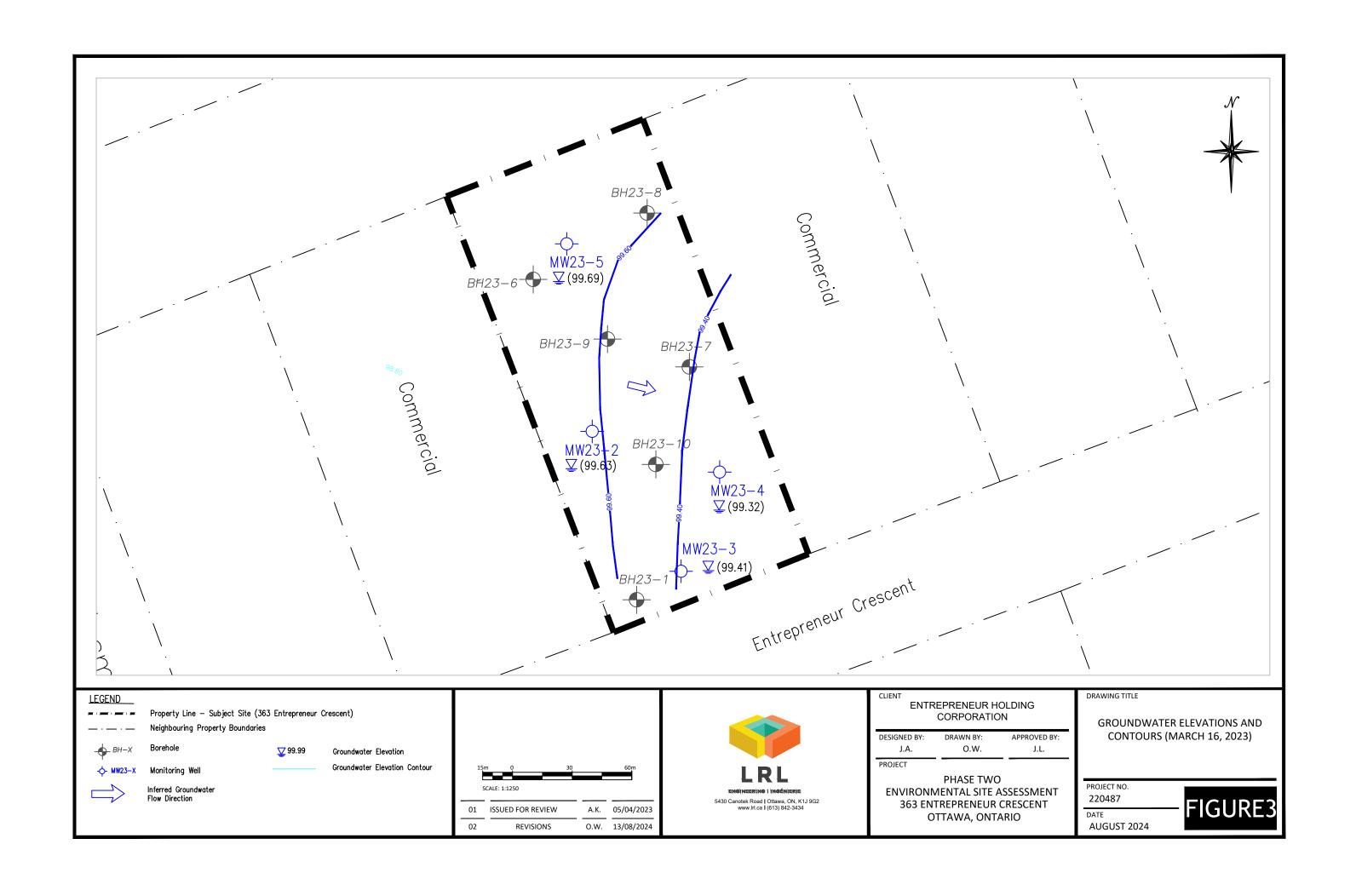
Ministry of the Environment, Guide for Completing Phase I Environmental Site Assessments Under Ontario Regulation 153/04, June 2011.

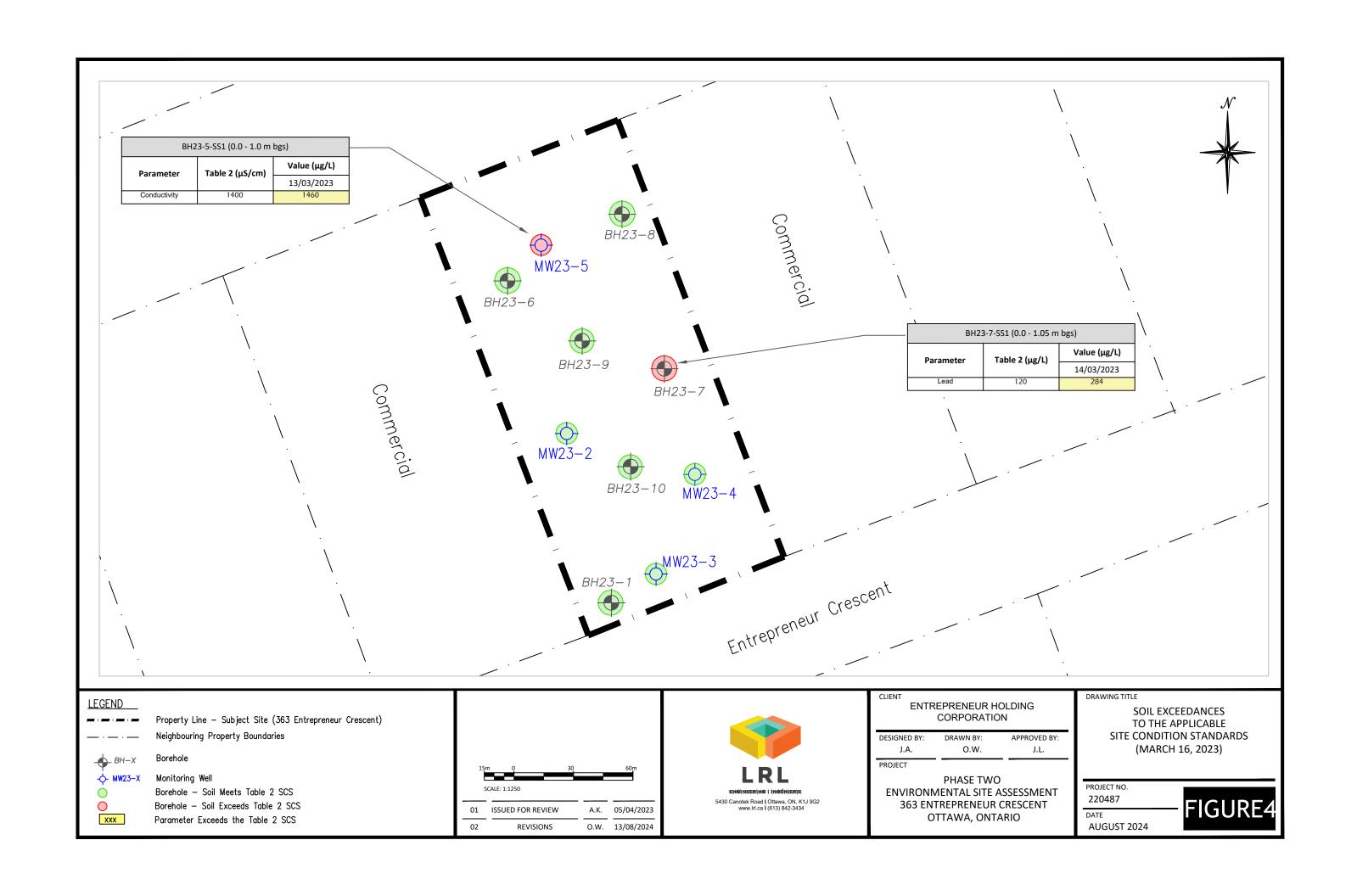
Ontario Ministry of the Environment, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, 1996.

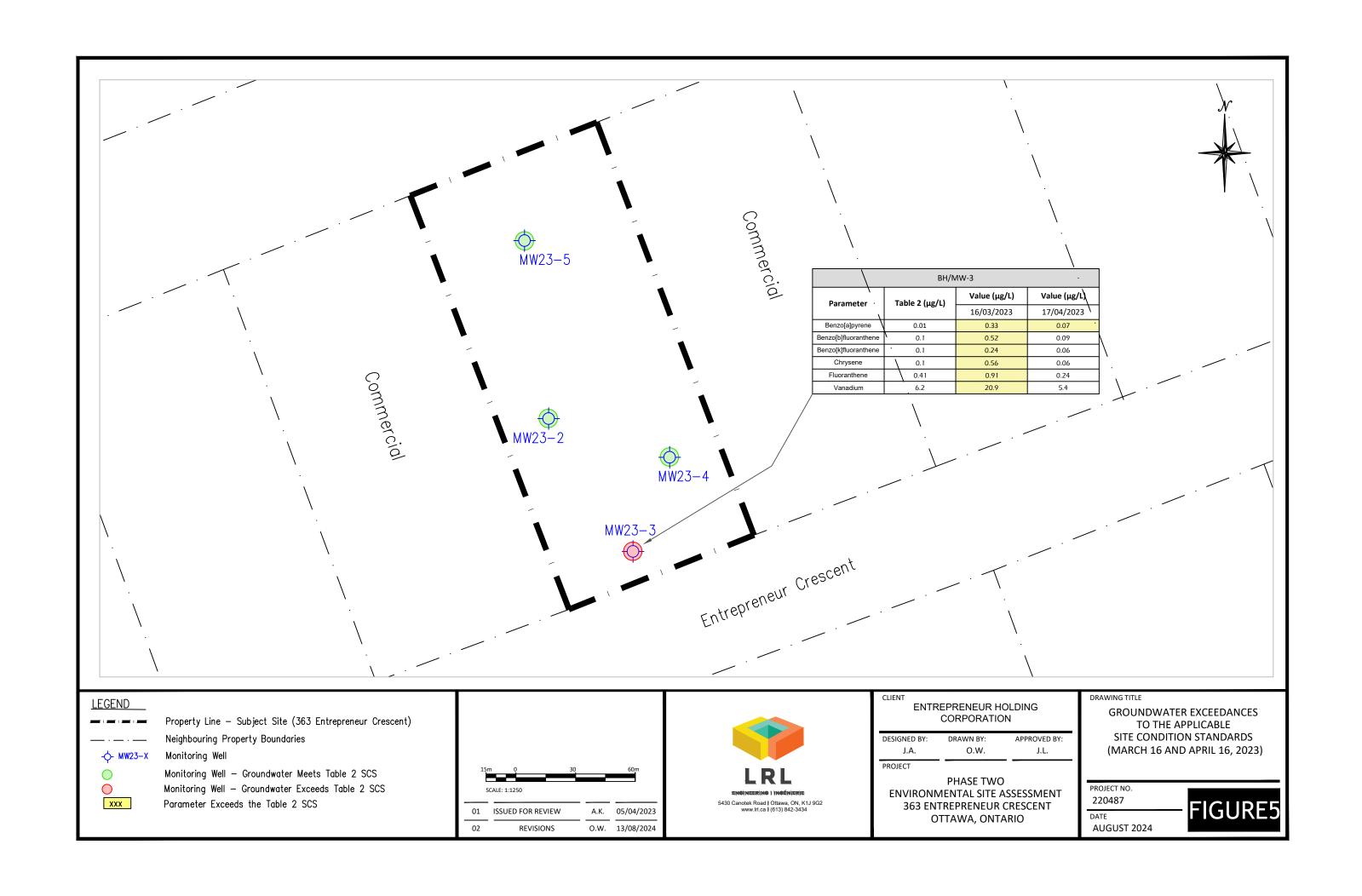
Ontario Ministry of the Environment, *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, April 15, 2011.

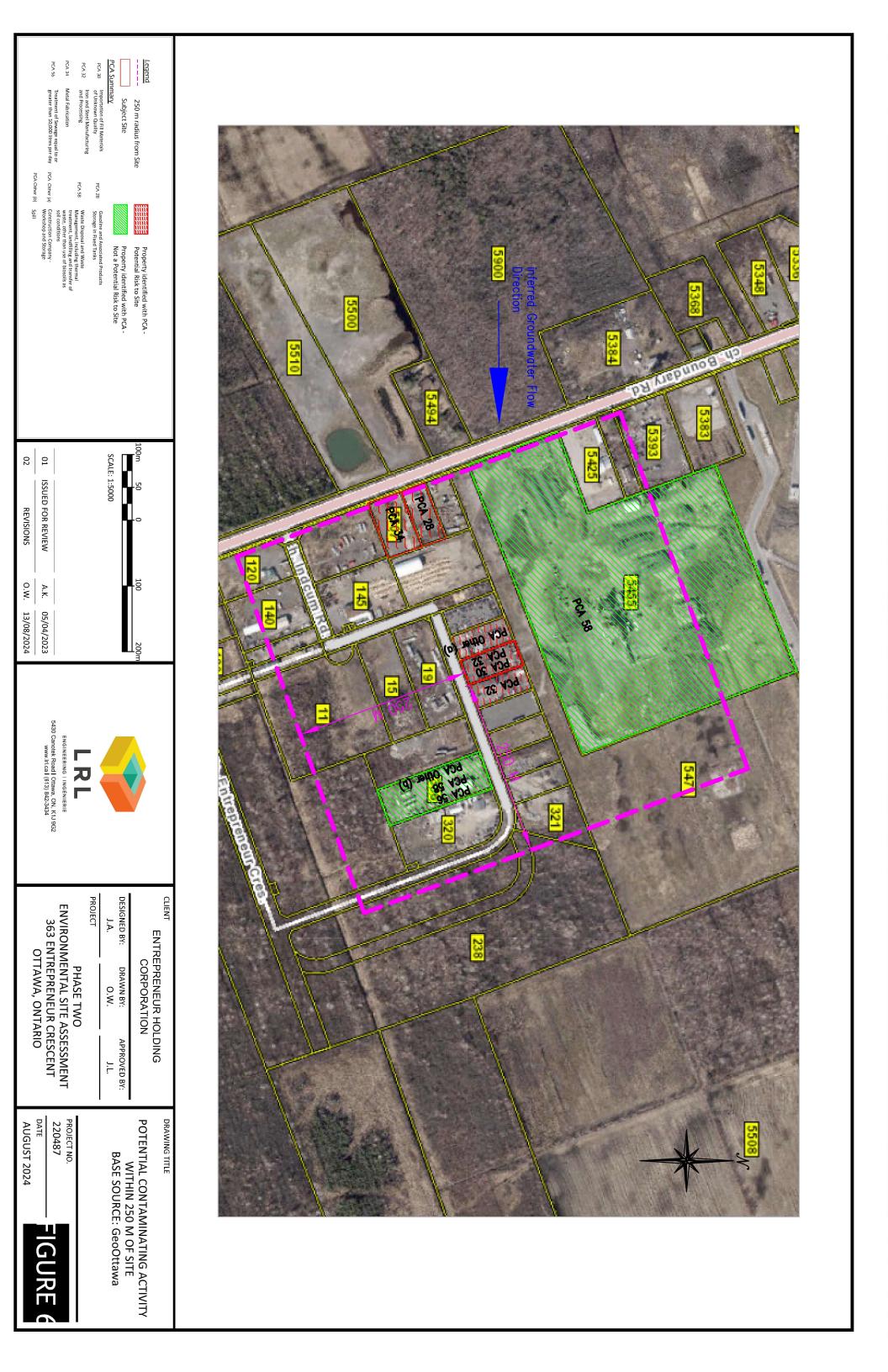

Ontario Regulation 903, made under the Water Resources Act of the Environmental Protection Act, *Wells*, R.R.O. 1990.

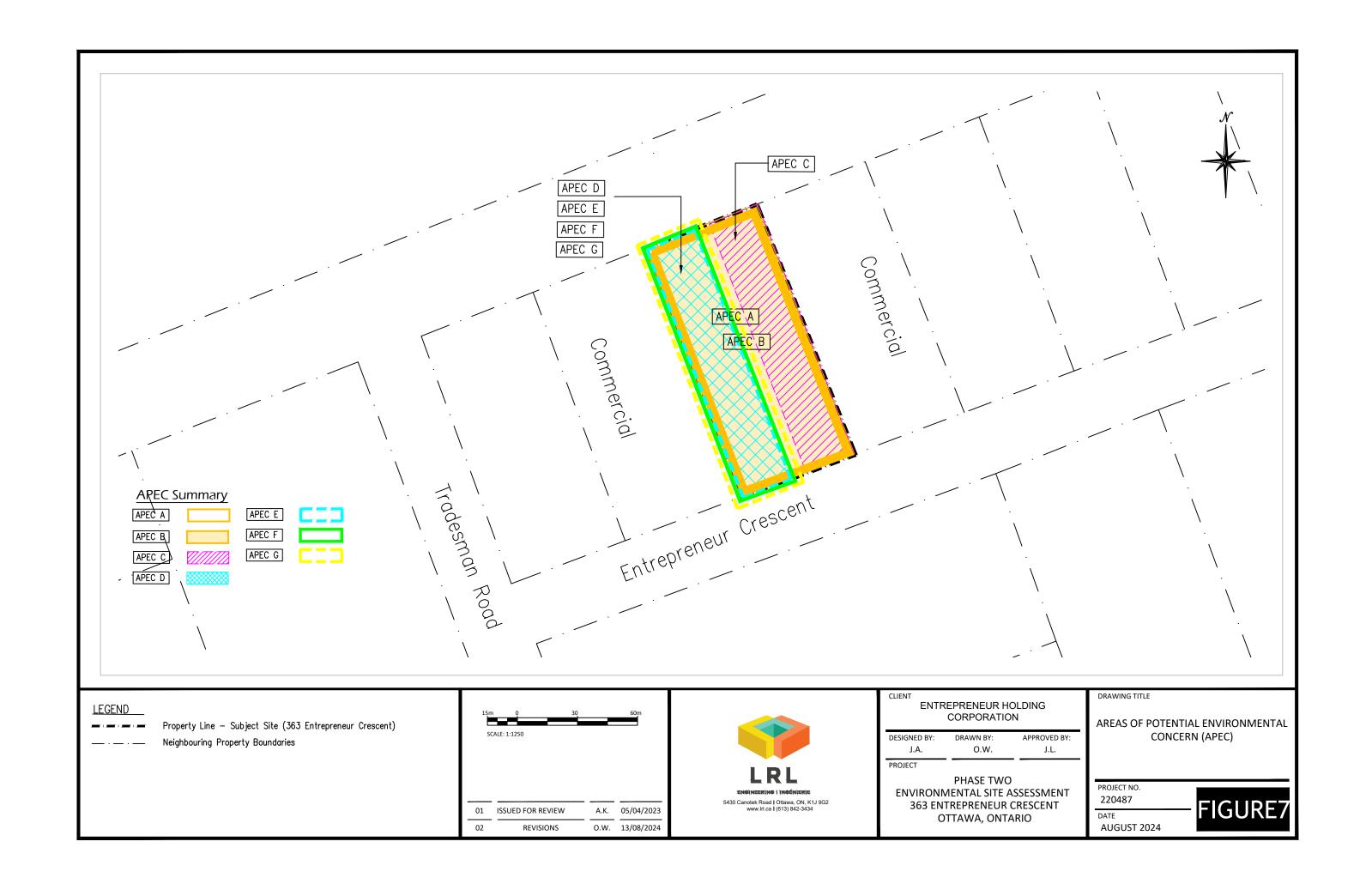

Ontario Well Records Map accessed through: https://www.ontario.ca/environment-and-energy/map-well-records


St-Onge, D.A., (compilation), 2009, Surficial Geology, Lower Ottawa Valley, Ontario-Quebec, Geological Survey of Canada, Map 2140A, Scale 1:125,000.


5430 Canotek Road | Ottawa, ON, K1J 9G2 | info@lrl.ca | www.lrl.ca | (613) 842-3434


FIGURES





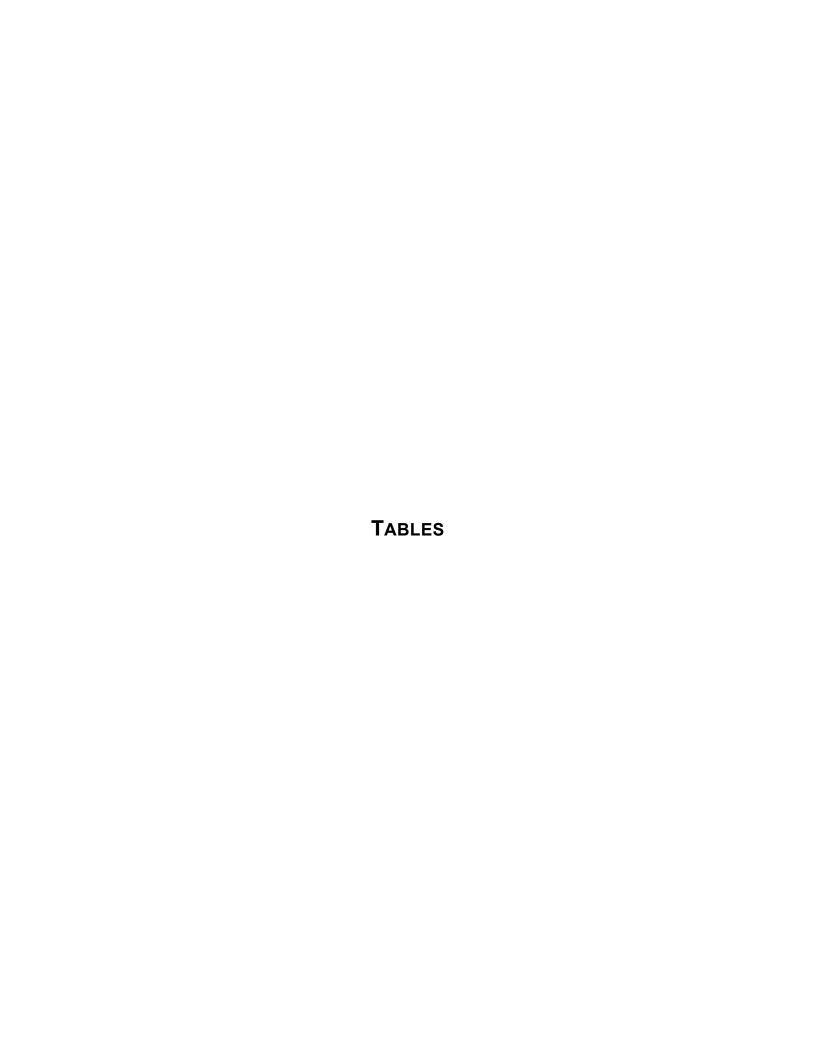


Table 1 Summary of Ground Surface and Groundwater Elevations (March 16, 2023)

Phase Two Environmental Site Assessment 363 Entrepreneur Crescent, Ottawa, Ontario LRL File: 220487

Monitoring Well	Ground Surface Elevation ¹ (m)	Reference Elevation ² (m)	Depth To Wa	ater Table (m) Ground Surface	Groundwater Elevation (m)
BH23-1	99.88				
BH/MW23-2	99.90	99.83	0.20	0.27	99.63
BH/MW23-3	99.88	99.80	0.39	0.47	99.41
BH/MW23-4	99.87	99.79	0.47	0.55	99.32
BH/MW23-5	99.89	99.78	0.09	0.20	99.69
BH23-6	99.90				
BH23-7	99.89				
BH23-8	99.87				
BH23-9	99.89				
BH23-10	99.88				

NOTES

₁ Elevations measured from temporary benchmark established "R" on the word "danger" on the storm sewer grate on Forward Avenue directly west of the Site (100.00 m).

² Reference elevation is top of PVC riser.

Table 2 Summary of Soil VOC, PHC, and General Inorganics Analysis Phase Two Environmental Site Assessment 363 Entrepreneur Crescent, Ottawa, Ontario 1018-2014-07

													neur Crescent, Otta LRL File: 220487													
			O. Reg. 153/04 ¹ Table 2 ²				D	UP							San	nple	DUP									
Parameter	Units		Industrial / Commercial Use Fine textured soil	RH23-1-SS1	BH23-1-SS3	BH23-1-SS4	BH23-2-SS1	RH23-2-SS40	BH23-3-SS1	RH23.3.SS2	RH23-3-SS3	RH23-3-SS4	BH23-4-SS1	RH23-4-SS2	RH23-4-SS3	RH23-4-SS4	BH23-5-SS1 BH23-	-SS20 BH23-5-SS3	BH23-6-SS2	BH23-7-SS1	RH23-7-SS3	BH23-8-SS2	RH23-8-SS3	RH23-9-SS1	BH23-10-SS1	BH23-10-SS2
Sample Date (d/m/y)	Units	MUL	110 00000000	14-Mar-23	14-Mar-23	14-Mar-23	14-M	ar-23	14-Mar-23	14:Mar:23	14-Mar-23	14-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23	13-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23
Depth below top of Ground	m			0.0 - 0.85	1.20 - 1.95	1.95 - 2.40	0.0	0.85	0.0 - 0.8	0.8 - 1.2	1.20 - 1.95	1.95 - 2.4	0.0 - 1.0	1.0 - 1.2	1.20 - 2.0	2.0 - 2.4	0.0 - 1.0	1.2 - 1.75	0.85 - 1.20	0.0 - 1.05	1.20 - 1.95	0.8 - 1.20	1.2 - 1.90	0.0 - 1.0	0.0 - 0.85	0.85 - 1.20
CSV Readings ³	ppm	5		0.1	<0.1	<0.1	C	.2	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	0.3	0.1	0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Physical Characteristics																										
% Solids	% by wt.	0.1		87.8	69.2	53.6	84.7	84.4	84.4	83.7	83.2	53.7	92.5	85.5	78.4	60.0	83.3 8-	.0 76.6	80.9	83.4	70.6	77.2	64.7	88.8	88.4	82.3
General Inorganics																										
SAR	N/A	0.01	12	0.44	-		0.29	0.29	0.11		1.61		0.11	-	1.87		0.31 0.	13	1.39	0.33		1.51		0.13	0.44	-
Conductivity	uS/cm	5	1400	726	-		1010	971	1010		280		1060	-	401		1460 12	50	256	1190	-	350		1160	1240	-
Cyanide, free	ug/g dry	0.03	0.051	<0.03		**	<0.03	<0.03	<0.03	-	<0.03		<0.03	-	<0.03		<0.03 <0	03	<0.03	<0.03	-	<0.03		<0.03	<0.03	-
pH	pH Units	0.1	-	9.85	-		10.9	10.78	10.46	-	8.35		11.02	-	8.04		10.84 11	14	9.03	10.94	-	8.56		11.14	10.74	-
Volatiles																										
Acetone		0.50	28	<0.5	<0.5	**	<0.5	<0.5	<0.5	<0.5							<0.5 <		<0.5	<0.5		<0.5		<0.5	<0.5	
Berzene		0.02	0.4	<0.02	<0.02	**	<0.02	<0.02	<0.02	<0.02	**	**		<0.02	**	**	<0.02 <0		<0.02	<0.02		<0.02	**	<0.02	<0.02	
Bromodichloromethane	ug/g dry	0.05	1.9	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05						**	<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	-
Bromoform Bromomethane		0.05	1.7	<0.05	<0.05 <0.05		<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05		**					<0.05 <0		<0.05 <0.05	<0.05		<0.05 <0.05	**	<0.05	<0.05	-
Carbon Tetrachloride	ug/g dry ug/g dry	0.05	0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-	-			<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	
Chlorobenzene		0.05	2.7	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-				<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	
Chloroform		0.05	0.18	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05			-				<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	
Dibromochloromethane	ugig dry	0.05	2.9	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	-		-	-	-		<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	
Dichlorodfluoromethane	ug/g dry	0.05	25	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05							<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
1,2-Dichlorobenzene		0.05	1.7	< 0.05	<0.05		< 0.05	<0.05	<0.05	<0.05							<0.05 <0		<0.05	<0.05		<0.05		<0.05	< 0.05	-
1,3-Dichlorobenzene		0.05	12	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	<0.05		<0.05		<0.05	<0.05	-
1,4-Dichlorobenzene	ug/g dry	0.05	0.57	< 0.05	<0.05		< 0.05	< 0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	< 0.05	-	<0.05		< 0.05	< 0.05	-
1,1-Dichloroethane	ug/g dry	0.05	0.6	< 0.05	<0.05		< 0.05	< 0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	< 0.05	-	<0.05		< 0.05	< 0.05	-
1,2-Dichloroethane	ugig dry	0.05	0.05	< 0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	<0.05		<0.05		< 0.05	<0.05	-
1,1-Dichloroethylene	ug/g dry	0.05	0.48	<0.05	<0.05	**	<0.05	<0.05	<0.05	<0.05			-	-	**		<0.05 <0	05 <0.05	<0.05	<0.05	-	<0.05		<0.05	<0.05	
cis-1,2-Dichloroethylene	ug/g dry	0.05	2.5	<0.05	<0.05	**	<0.05	<0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	<0.05	-	<0.05		<0.05	<0.05	
trans-1,2-Dichloroethylene	ug/g dry	0.05	2.5	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-	-			<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	-
1,2-Dichloropropane		0.05	0.68	<0.05	<0.05	**	<0.05	<0.05	<0.05	<0.05							<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
cis-1,3-Dichloropropylene		0.05	-	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05			-	-	-	**	<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	-
trans-1,3-Dichloropropylene 1,3-Dichloropropene, total	ug/g dry	0.05	0.081	<0.05	<0.05 <0.05		<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05			-	-			<0.05 <0		<0.05	<0.05 <0.05	-	<0.05 <0.05		<0.05	<0.05	-
Ethybenzene	ug/g dry ug/g dry	0.05	1.6	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05				<0.05			<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
Ethylene dibromide (dibromoethane, 1.2-)		0.05	0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05							<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
Hexane	ug/g dry	0.05	88	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05				-			<0.05 <0		<0.05	<0.05	-	<0.05		<0.05	<0.05	
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	88	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5			-	-			<0.5		<0.5	<0.5		<0.5		<0.5	<0.5	
Methyl Isobutyl Ketone		0.50	210	< 0.5	<0.5		<0.5	<0.5	<0.5	<0.5			-	-			<0.5	.5 <0.5	<0.5	<0.5	-	<0.5		<0.5	<0.5	-
Methyl tert-butyl ether		0.05	2.3	< 0.05	<0.05		< 0.05	< 0.05	<0.05	<0.05			-	-			<0.05 <0	05 <0.05	<0.05	< 0.05	-	<0.05		< 0.05	< 0.05	-
Methylene Chloride	ug/g dry	0.05	2	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05							<0.05 <0	05 <0.05	<0.05	<0.05		<0.05		<0.05	<0.05	-
Styrene	ug/g dry	0.05	43	< 0.05	<0.05	**	< 0.05	< 0.05	<0.05	<0.05					**		<0.05 <0		<0.05	< 0.05		<0.05		< 0.05	<0.05	-
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	0.11	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05					-		<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.094	<0.05	<0.05		< 0.05	<0.05	<0.05	<0.05	-				-		<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	-
Tetrachioroethylene	ug/g dry	0.05	2.5	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05		**					<0.05 <0		<0.05	<0.05		<0.05	**	<0.05	<0.05	-
Toluene	.00.7	0.05	9	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05				<0.05			<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	-
1,1,1-Trichloroethane	.00.7	0.05	12	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05						**	<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	-
1,1,2-Trichloroethane	ug/g dry	0.05	0.11	<0.05	<0.05		<0.05 <0.05	<0.05	<0.05	<0.05			-	-	-		<0.05 <0		<0.05 <0.05	<0.05		<0.05		<0.05	<0.05	-
Trichloroethylene Trichloroffi promethane	ug/g dry ug/g dry	0.05	0.61 5.8	<0.05	<0.05	-	<0.05	< 0.05	<0.05	<0.05	-		-	-			<0.05 <0		<0.05	<0.05		<0.05		< 0.05	<0.05	
Vinvi Chloride	.00.7	0.03	0.25	<0.02	<0.03		<0.03	<0.00	<0.03	<0.02							<0.02 <0		<0.02	<0.02		<0.02		<0.03	<0.03	
m/p-Xylene	ug/g dry	0.02	0.25	<0.02	<0.02	-	<0.02	<0.02	<0.05	<0.05			-	<0.05			<0.05 <0		<0.05	<0.05	-	<0.05		<0.02	<0.05	
o-Xylene		0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05				<0.05			<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
Xylenes, total		0.05	30	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05				<0.05			<0.05 <0		<0.05	<0.05		<0.05		<0.05	<0.05	
Hydrocarbons																										
F1 PHCs (C6-C10)	ug/g dry	7	65	<7	<7		<7	<7	<7	<7				<7			<7 .	7 <7	<7	<7		<7		<7	<7	-
F2 PHCs (C10-C16)	ug/g dry	4	250	<40	<4		<40	<40	<40	<4				<4			<40 <	0 <4	<4	<4		<4		<40	<40	
F3 PHCs (C16-C34)	ug/g dry	8	2500	447	<8	**	376	250	108	<8				<8	**			8 <8	<8	165		<8		515	429	-
F4 PHCs (C34-C50)	ug/g dry	6	6600	2050	<6	-	1300	1060	619	<6				<6	-		292 9		<6	222		<6		2000	1760	-
F4G PHCs (gravimetric)	ug/g dry	50	6600	1570	-		2230	1930	1090				-	-			960 29	30		585	-			4940	3450	-

F4G PHCG (grammetric) uply dy 50 6600 1570

EXITE:

MCCP 500 Clone/Water and Sediment Standards for Use Unifor Pee X1.1 of the Environmental Protection Act April 15, 2011

Table 2.7 in dispit Biologyane Asia continue the site in a levided Continue continue.

MCL Ment of Deviction Line:

No Value Not Angled

Fig. Revision 1 Act April 15, 2011

No Value Not Angled

Fig. Revision 1 Act Angled

Table 3 Summary of Soil Metals Analysis Limited Phase II Environmental Site Assessment 363 Entrepreneur Crescent, Ottawa, Ontario LRL File: 220487

														LRL File: 220487													
			O. Reg. 153/04 ¹ Table 2 ²												S	Sample											
							1	DUP									DI	UP									
Parameter	Units	MDL	Industrial / Commercial Use Fine textured soil	BH23-1-SS1	BH23-1-SS3	BH23-1-SS4	BH23-2-SS1	BH23-2-SS40	BH23-3-SS1	BH23-3-SS2	BH23-3-SS3	BH23-3-SS4	BH23-4-SS1	BH23-4-SS2	BH23-4-SS3	BH23-4-SS4	BH23-5-SS1	BH23-5-SS20	BH23-5-SS3	BH23-6-SS2	BH23-7-SS1	BH23-7-SS3	BH23-8-SS2	BH23-8-SS3	BH23-9-SS1	BH23-10-SS1	BH23-10-SS2
Sample Date (d/m/y)				14-Mar-23	14-Mar-23	14-Mar-23		Mar-23	14-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23		ar-23	13-Mar-23	13-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23	13-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23
Depth	m			0.0 - 0.85	1.20 - 1.95	1.95 - 2.40	0.0	0 - 0.85	0.0 - 0.8	0.8 - 1.2	1.20 - 1.95	1.95 - 2.4	0.0 - 1.0	1.0 - 1.2	1.20 - 2.0	2.0 - 2.4	0.0	- 1.0	1.2 - 1.75	0.85 - 1.20	0.0 - 1.05	1.20 - 1.95	0.8 - 1.20	1.2 - 1.90	0.0 - 1.0	0.0 - 0.85	0.85 - 1.20
PCBs	ug/g dry	0.05	1.1			<0.05			-	-		<0.05	-			<0.05				-			-			-	-
Polycyclic Aromatic Hyd																											
Acenaphthene	ug/L		29			<0.02	-					<0.02				<0.02						-				-	
Acenaphthylene	ug/L		0.17			<0.02	-	-			-	<0.02				<0.02					-	-				-	
Anthracene	ug/L	0.01	0.74			<0.02				-		<0.02	-			<0.02				-		-	-				-
Benzo[a]anthracene	ug/L		0.96			<0.02	-					<0.02			**	<0.02											
Benzo[a]pyrene		0.01	0.3			<0.02	-	-			-	<0.02				<0.02		-			-	-				-	-
Benzo[b]fluoranthene	ug/L		0.96			<0.02		-				<0.02				<0.02		-			-	-	-			-	-
Benzo[g,h,i]perylene	ug/L	0.05	9.6			<0.02				-		<0.02				<0.02					-	-				-	-
Benzo[k]fluoranthene	ug/L	0.05	0.96 9.6			<0.02	-	-				<0.02				<0.02				-	-	-	-	-		-	-
Chrysene	ug/L						-	-		-			-					-		-			-			-	-
Dibenzo[a,h]anthracene Fluoranthene	ug/L ug/L	0.05	9.6		-	<0.02	-	-			-	<0.02 <0.02		-		<0.02	-	-			-		-	-			-
Fluorene	ug/L	0.05	96			<0.02	-	-				<0.02				<0.02				-	-	-		-			
Indeno[1,2,3-cd]pyrene	ug/L	0.05	0.95			<0.02	-					<0.02				<0.02				-	-	-		-			
1-Methylnaphthalene	ug/L	0.05	42			<0.02	-					<0.02				<0.02						-		-			
2-Methylnaphthalene	ug/L	0.05	42			<0.02	-	-				<0.02				<0.02				-						-	
Methylnaphthalene (1&2)		0.10	42			<0.02			-			<0.02	-			<0.02				-		-	-				-
Naphthalene	ug/L	0.05	28.00			<0.04						<0.04				<0.04											-
Phenanthrene	ug/L	0.05	16			<0.02	-	-				<0.02				<0.02				-		-				-	-
Pyrene	ug/L	0.03	96			<0.02						<0.02				<0.02				-						-	
Metals	Ug/ L	0.01	00			40.0L						40.02				10.0L											
Antimony	ug/g dry	1.0	50	<1.0			<1.0	<1.0	<1.0	-	<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.0
Arsenic	ug/g dry	1.0	18	3.9			4.2	4	4.2		2	-	3.3	1.9	2.5		4	4	3.2	1.2	3.5	3.9	3.7	3.9	4	3.1	1.6
Barium	ug/g dry	1.0	670	105			108	110	142		58.1		87.2	26.9	97.3		80.8	96.9	110	34.6	100	135	224	150	95	82.1	35.9
Beryllium	ug/g dry	1.0	10	<0.5			<0.5	<0.5	<0.5	-	<0.5		<0.5	<0.5	0.6		<0.5	<0.5	0.7	<0.5	<0.5	0.8	0.7	1.1	<0.5	<0.5	<0.5
Boron	ug/g dry	1.0	120	9.7			10.6	10.8	13.3		<5.0	-	10.7	<5	7.7		11.4	11.7	10.1	<5	11.3	11	7.2	18	11.1	10.3	<5.0
Boron, available	ug/g dry	0.5	2	0.7			0.7	0.7	0.8		<0.5		0.5	<0.5	<0.5		0.6	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	0.5	0.5	<0.5
Cadmium	ug/g dry	0.5	1.9	<0.5			<0.5	<0.5	<0.5	-	<0.5	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	ug/g dry	1.0	160	26.2			24.5	22.7	31.5		29.1		19.2	19.7	47.8		21.5	24.8	62.3	20.5	32.5	70.9	68.9	80.8	20.8	27.1	23.2
Chromium (VI)	ug/g dry	0.2	10	<0.2			<0.2	<0.2	<0.2	-	<0.2	-	<0.2	<0.2	0.3		<0.2	0.4	<0.2	<0.2	<0.2	0.3	0.3	0.3	<0.2	<0.2	0.3
Cobalt	ug/g dry	1.0	100	6.6			6.6	6	7.8		6.1		5.1	4.3	10.1		4.8	6.6	12.1	4.4	6.9	14.6	16.1	17.1	4.5	5.5	4.9
Copper	ug/g dry	1.0	300	22			19.2	17.8	34.4	-	11.4	-	16.7	7.1	18.6		17.5	26.4	27.1	6.6	21.7	32.1	30.9	35.2	19.5	14.5	6.8
Lead	ug/g dry	1.0	120	24.4			22.3	21.3	26.7		3.5	-	18.4	2.4	5.1		19.9	20.5	6.4	2	284	7.5	6	8.9	16.8	12.6	2.6
Mercury	ug/g dry	0.1	20	<0.1			<0.1	<0.1	<0.1		<0.1		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	ug/g dry	1.0	40	3.2			1.3	1.3	1.3		<1		1.2	<1.0	<1.0		2.9	3.1	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	2.2	1.5	<1.0
Nickel	ug/g dry	1.0	340	17.2			16.9	15.5	19.4		14.6	-	13.3	9.8	25.7		12.2	14.1	34.1	9.5	17.9	40	37.3	46.7	11.8	13.5	10.6
Selenium	ug/g dry	1.0	5.5	1.1			<1.0	<1.0	<1.0		<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0	<1.0	<1.0
Silver	ug/g dry	0.5	50	<0.3			<0.3	<0.3	<0.3		<0.3		<0.3	<0.3	<0.3		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	ug/g dry	1.0	3.3	<1.0			<1.0	<1.0	<1.0		<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	ug/g dry	1.0	33	<1.0			<1.0	<1.0	<1.0		<1.0		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1	<1	<1.0
Vanadium	ug/g dry	1.0	86	31.5			33.3	30.1	35.9		36.2		26.7	27.7	45.2		23.3	26.5	53	26	31.4	62.5	74.2	69.6	23.9	28.4	29.9
Zinc	ug/g dry	1.0	340	59.2			55.4	54.8	89	-	23.9	-	50.7	<20.0	42		57.8	62.6	58.1	<20	64.8	66.3	81.3	72.4	66.7	68.6	<20.0
ZITIC	ug/g ary	1.0	340	59.2			55.4	54.8	89		23.9		50.7	<20.0	42		5/.8	b2.b	58.1	<20	b4.ŏ	bb.3	81.3	/2.4	bb./	b8.b	

Cinc ug/g dry 1.0 340 59.2 -
NOTES:

1 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

2 Table 2: Full depth Background site condition standards in a Potable Groundwater condition.

No ValuePhot Analysed

BOLD

Exceeds Table 2: Site Condition Standard

Table 4 Summary of Groundwater VOC, PHC, and General Inorganics Analysis Phase Two Environmental Site Assessment 363 Entrepreneur Crescont, Ottawa, Ontario LRL File: 220487

			LRL File: 220487				
			O. Reg. 153/04 ¹ Table 2 ²		San	nple	
Parameter	Units	MDL	Industrial / Commercial Use Fine textured soil	MW23-2	MW23-3	MW23-4	MW23-5
Sample Date (d/m/y)				16-Mar-23		16-Mar-23	16-Mar-23
Depth of groundwater below top of casing	m			0.20	0.39	0.47	0.09
Headspace VOC Readings ³	ppm	0.1		<0.1	<0.1	<0.1	<0.1
Evidence of free product?			4	No	No	No	No
General Inorganics							
SAR		0.01		4.79	3.26	9	7.78
Conductivity	uS/cm	5	-	1710	1030	2910	2430
Ph	pH Units	0.1		7.6	10.9	7.9	7.9
Phenolics	ug/L	0.001	0.89		0.068	0.001	
Volatiles							
Acetone	ug/L	5.0	2700	5.3	33.6	<0.5	<5.0
Benzene	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L	0.5	16	<0.5	<0.5	<0.5	<0.5
Bromoform	ug/L	0.5	25	<0.5	<0.5	<0.5	<0.5
Bromomethane	ug/L	0.5	0.89	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	ug/L	0.2	5	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	ug/L	0.5	30	<0.5	<0.5	<0.5	<0.5
Chloroform	ug/L	0.5	22	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	ug/L	0.5	25	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	ug/L	1.0	590	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L	0.5	3	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	ug/L	0.5	59	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	0.5	1	<0.5	<0.5	<0.5	<0.5
1.1-Dichloroethane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
1.2-Dichloroethane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
,		0.5	14	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	ug/L	0.5		<0.5			<0.5
cis-1,2-Dichloroethylene	ug/L	0.5	17		<0.5	<0.5	
trans-1,2-Dichloroethylene	ug/L		17	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	ug/L		-	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	ug/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	ug/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Hexane	ug/L	1.0	520	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	1800	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	ug/L	5.0	640	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	ug/L	2.0	15	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	ug/L	5.0	50	<5.0	<5.0	<5.0	<5.0
Styrene	ug/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	ug/L	0.5	1.1	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	ug/L	0.5	1	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	ug/L	0.5	17	<0.5	<0.5	<0.5	<0.5
Toluene	ug/L	0.5	24	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	ug/L	0.5	200	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	0.5	5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	ug/L	1.0	150	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	ug/L	0.5	1.7	<0.5	<0.5	<0.5	<0.5
m/p-Xylene	ug/L	0.5		<0.5	<0.5	<0.5	<0.5
o-Xylene	ug/L	0.5	=	<0.5	<0.5	<0.5	<0.5
Xylenes, total	ug/L	0.5	300	<0.5	<0.5	<0.5	<0.5
Hydrocarbons							
F1 PHCs (C6-C10)	ug/L	25	750	<25	<25	<25	<25
F2 PHCs (C10-C16)	ug/L	100	150	<100	<100	<100	<100
F3 PHCs (C16-C34)	ug/L	100	500	<100	<100	<100	<100
F4 PHCs (C34-C50)	ug/L	100	500	<100	<100	<100	<100
NOTES:							

- NOTES:

 MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011

 Table 2: Full depth Background site condition standards in a Potable Groundwater condition.

 To meet the standard there must be no evidence of free product including film or sheen.

 MDL

 Method Detection Limit

 No Value/Not Analysed

 PHC

 Petroleum Hydrocarbon

 BOLD

 Above Table 7 Standard

Table 5 Summary of Groundwater PAH and Metals Analysis Phase Two Environmental Site Assessment 363 Entrepreneur Crescent, Ottawa, Ontario LRL File: 220487

				LRL File: 220487					
			O. Reg. 153/04 ¹ Table 2 ²	Sample					
Parameter	Units	MDL	Industrial / Commercial Use Fine textured soil	MW23-2	MW	23-3	MW23-4	MW23-5	
Sample Date (d/m/y)	00			16-Mar-23	16-Mar-23	17-Apr-23	16-Mar-23	16-Mar-23	
Polycyclic Aromatic Hydro	carbons					<u> </u>			
Acenaphthene	ug/L	0.05	4.1	<0.05	0.59	0.98	<0.05	<0.05	
Acenaphthylene	ug/L	0.05	1	<0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	ug/L	0.01	2.4	<0.01	0.26	0.15	<0.01	<0.01	
Benzo[a]anthracene	ug/L	0.01	1	<0.01	0.48	0.09	<0.01	<0.01	
Benzo[a]pyrene	ug/L	0.01	0.01	<0.01	0.33	0.07	<0.01	<0.01	
Benzo[b]fluoranthene	ug/L	0.05	0.1	<0.05	0.52	0.09	<0.05	<0.05	
Benzo[g,h,i]perylene	ug/L	0.05	0.2	<0.05	0.19	0.05	<0.05	<0.05	
Benzo[k]fluoranthene	ug/L	0.05	0.1	<0.05	<u>0.24</u>	0.06	<0.05	<0.05	
Chrysene	ug/L	0.05	0.1	<0.05	<u>0.56</u>	0.06	<0.05	<0.05	
Dibenzo[a,h]anthracene	ug/L	0.05	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	ug/L	0.01	0.41	0.06	<u>0.91</u>	0.24	0.02	<0.01	
Fluorene	ug/L	0.05	120	<0.05	0.41	0.40	<0.05	<0.05	
Indeno[1,2,3-cd]pyrene	ug/L	0.05	0.2	<0.05	0.18	<0.05	<0.05	<0.05	
1-Methylnaphthalene	ug/L	0.05	3.2	<0.05	0.44	0.38	<0.05	<0.05	
2-Methylnaphthalene	ug/L	0.05	3.2	<0.05	0.49	0.48	<0.05	<0.05	
Methylnaphthalene (1&2)	ug/L	0.10	3.2	<0.10	0.93	0.85	<0.10	<0.10	
Naphthalene	ug/L	0.05	11	<0.05	4.98	4.36	<0.05	<0.05	
Phenanthrene -	ug/L	0.05	1	0.11	0.96	0.64	0.07	<0.05	
Pyrene	ug/L	0.01	4.10	0.05	0.68	0.18	<0.01	<0.01	
Metals					0.4			0.4	
Mercury	ug/L	0.1	1	<0.1	<0.1		<0.1	<0.1	
Antimony	ug/L	0.5	6	<0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	ug/L	1.0	25	2 84	2 28	<u>4</u> 26	2 124	2 99	
Barium	ug/L	0.5	1000	<0.5	<0.5	<0.5	<0.5	<0.5	
Beryllium Boron	ug/L ug/L	10	5000	56	23	23	167	157	
Cadmium	ug/L	0.1	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	
Chromium	ug/L	1.0	50	<1.0	1	<1	<1.0	2	
Chromium (VI)	ug/L	10	25	<10	<10		<10	<10	
Cobalt	ug/L	0.5	3.8	2.1	<0.5	<0.5	0.7	1.1	
Copper	ug/L	0.5	87	0.9	3.0	<0.5	3.3	3.6	
Lead	ug/L	0.1	10	<0.1	<0.1	<0.1	<0.1	0.3	
Molybdenum	ug/L	0.5	70	2.5	16.7	6.6	1.4	0.6	
Nickel	ug/L	1.0	100	5	12	6	2	3	
Selenium	ug/L	1.0	10	<1	<1	<1	<1	<1	
Silver	ug/L	0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	
Sodium	ug/L	200	490000	161000	106000	115000	381000	306000	
Thallium	ug/L	0.1	2	<0.1	<0.1	<0.1	<0.1	<0.1	
Uranium	ug/L	0.1	20	1.8	0.8	2.9	0.6	0.4	
Vanadium	ug/L	0.5	6.2	1.7	<u>20.9</u>	5.4	1.6	2.8	
Zinc	ug/L	5.0	1100	<5.0	<5.0	<5.0	<5.0	<5.0	

NOTES:

- MECP's Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011
- Table 2: Full depth Background site condition standards in a Potable Groundwater condition.
- MDL Method Detection Limit
- No Value/Not Analysed

BOLD Above Table 2 Standard

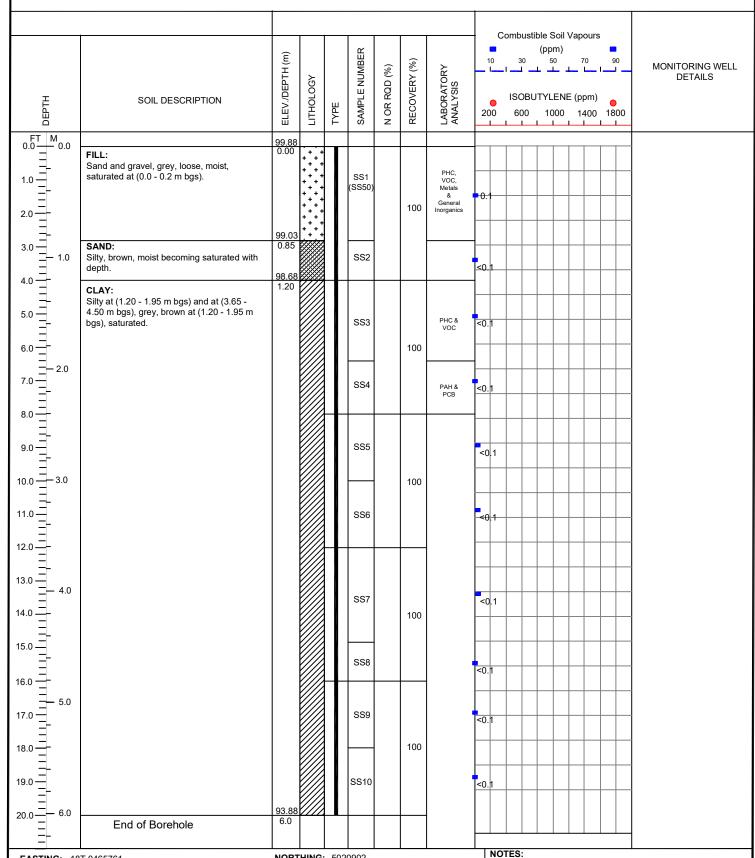
APPENDIX A

Borehole Logs

5430 Canotek Road Ottawa, ON, K1J 9G2 www.irl.cal (613) 842-3434

PROJECT NO.: 220487

DATE: MARCH 14, 2023


CLIENT: ENTREPRENEUR HOLDING CORPORATION

PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE **DRILLING METHOD: DIRECT PUSH**

EASTING: 18T 0465761

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

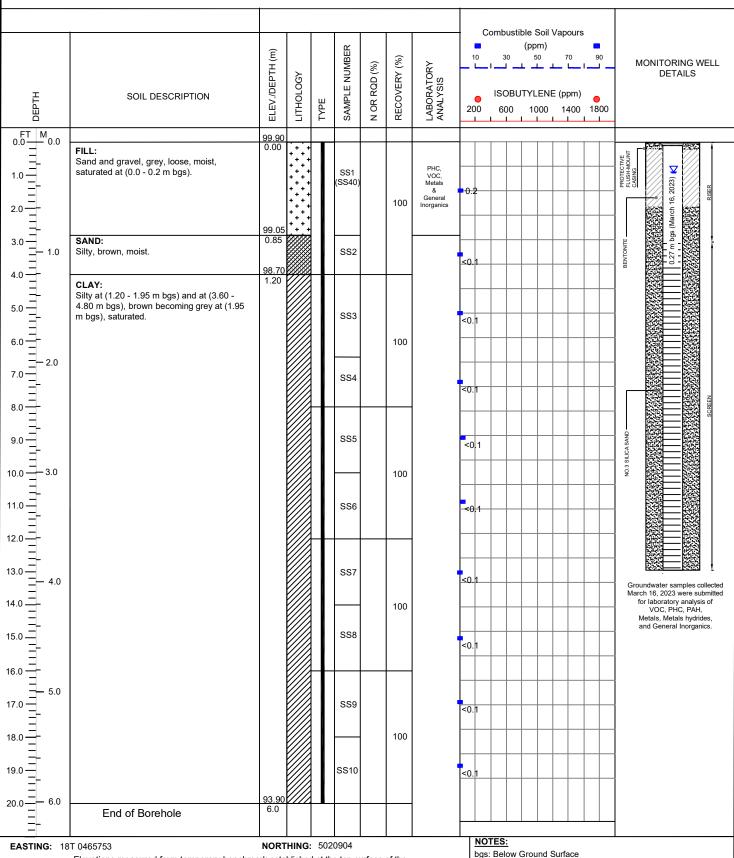
GROUNDSURFACE ELEVATION: 99.88 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A

bgs: Below Ground Surface VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

LRJ ENGINEERING I INGENIERIE 5430 Canotok Road) Ottona, OM KU 903 www.iria [167] 942-943

PROJECT NO.: 220487


PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

DATE: MARCH 14, 2023 FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLING METHOD: DIRECT PUSH

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the

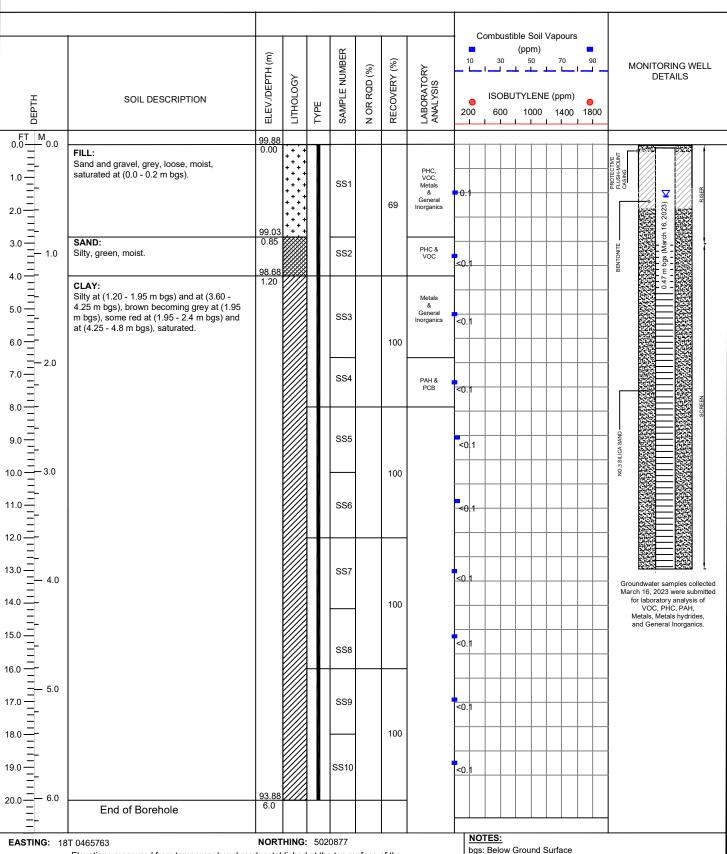
Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

GROUNDSURFACE ELEVATION: 99.90 m
HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A
MONITORING WELL DIAMETER: N/A

ogs: Below Ground Suriace
VOC: Volatile Organic Compounds
PHC: Petroleum Hydrocarbons
PAH: Polycyclic Aromatic Hydrocarbons
PCB: Polychlorinated Biphenyls

PROJECT NO.: 220487


PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER **DATE:** MARCH 14, 2023

DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. **DRILLING METHOD: DIRECT PUSH**

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

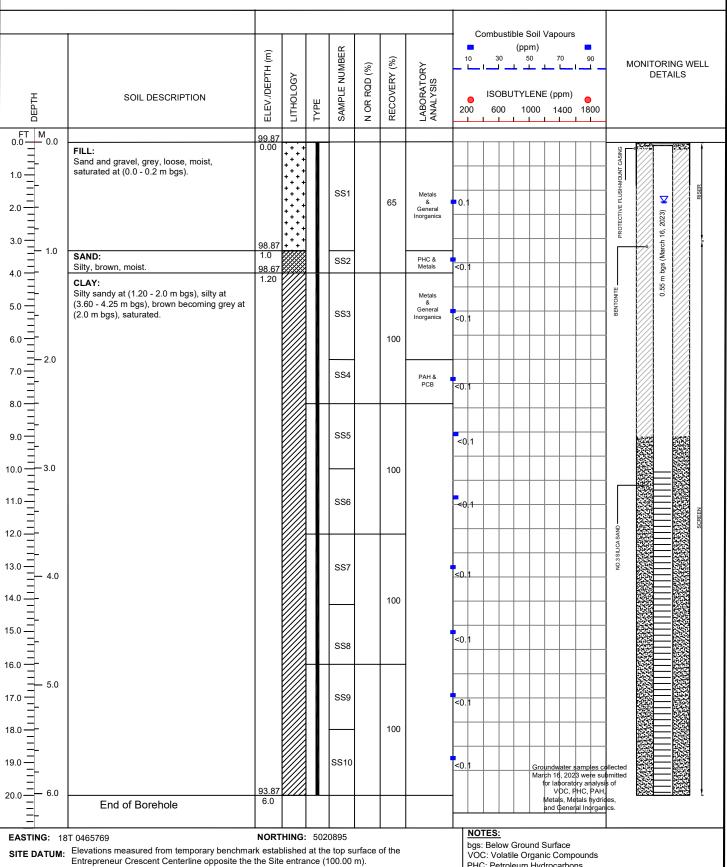
GROUNDSURFACE ELEVATION: 99.88 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A

VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons

PCB: Polychlorinated Biphenyls

PROJECT NO.: 220487


PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

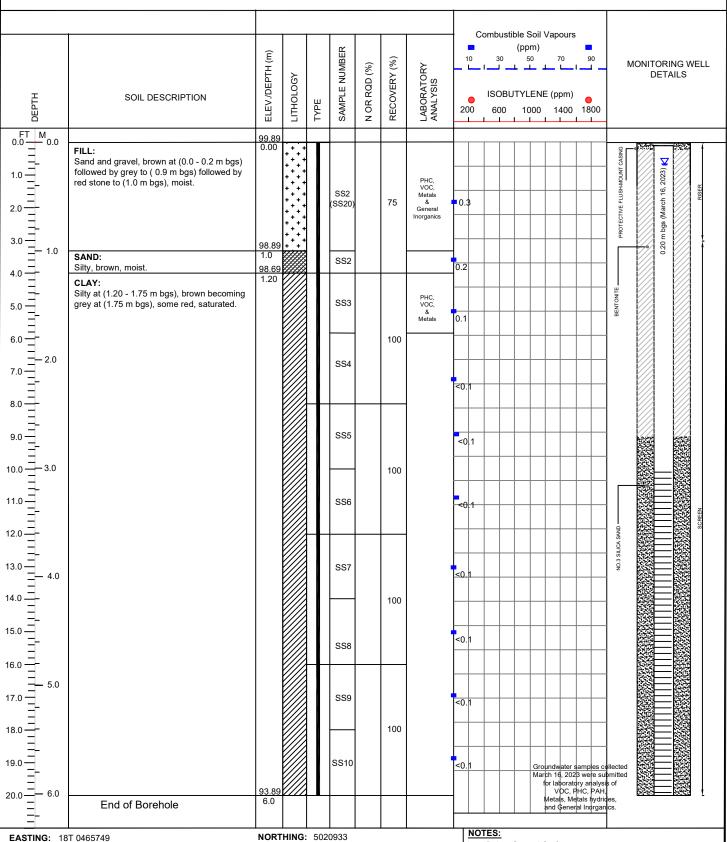
FIELD PERSONNEL: ABDUL KADER **DATE:** MARCH 13, 2023

DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLING METHOD: DIRECT PUSH DRILLER: GEORGE DOWNING ESTATE DRILLING LTD.

GROUNDSURFACE ELEVATION: 99.87 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

PROJECT NO.: 220487


PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

DATE: MARCH 13, 2023 FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLING METHOD: DIRECT PUSH

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

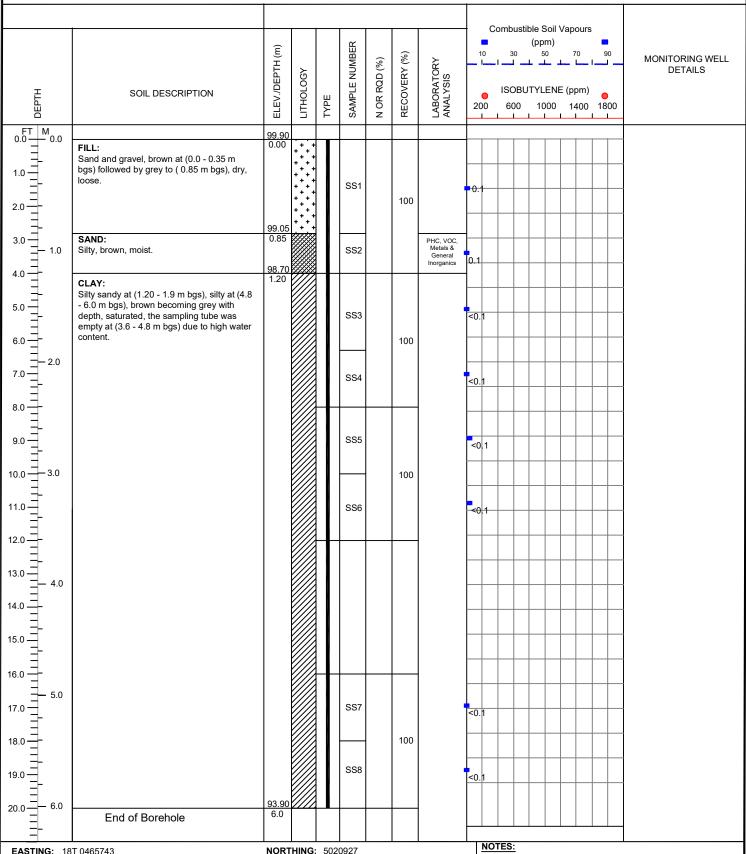
GROUNDSURFACE ELEVATION: 99.89 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A

bgs: Below Ground Surface VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

5430 Canotek Road Ottawa, ON, K1J 9G2 www.irl.cal (613) 842-3434

PROJECT NO.: 220487


CLIENT: ENTREPRENEUR HOLDING CORPORATION

PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER **DATE:** MARCH 13, 2023

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLING METHOD: DIRECT PUSH

EASTING: 18T 0465743

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

GROUNDSURFACE ELEVATION: 99.90 m HOLE DIAMETER: 91 mm

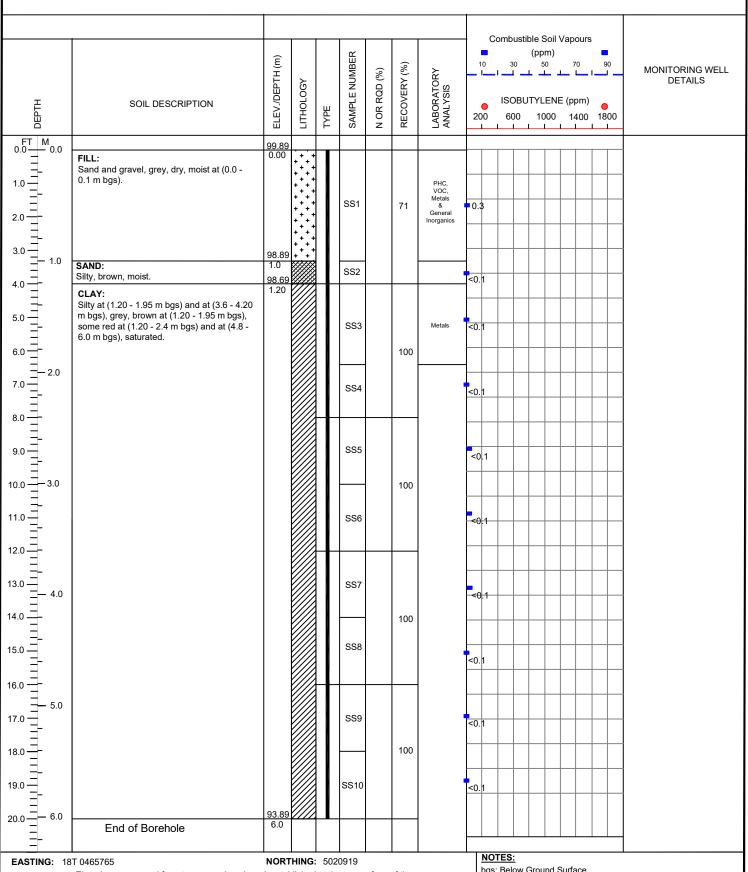
TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A bgs: Below Ground Surface

VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons

PCB: Polychlorinated Biphenyls

PROJECT NO.: 220487

DATE: MARCH 14, 2023


PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE **DRILLING METHOD: DIRECT PUSH**

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

GROUNDSURFACE ELEVATION: 99.89 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A bgs: Below Ground Surface
VOC: Volatile Organic Compounds
PHC: Petroleum Hydrocarbons PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

LRJ
ENNIEDNI INGHIERIE
5590-Crantis Read Orania ON M1002

GROUNDSURFACE ELEVATION: 99.87 m

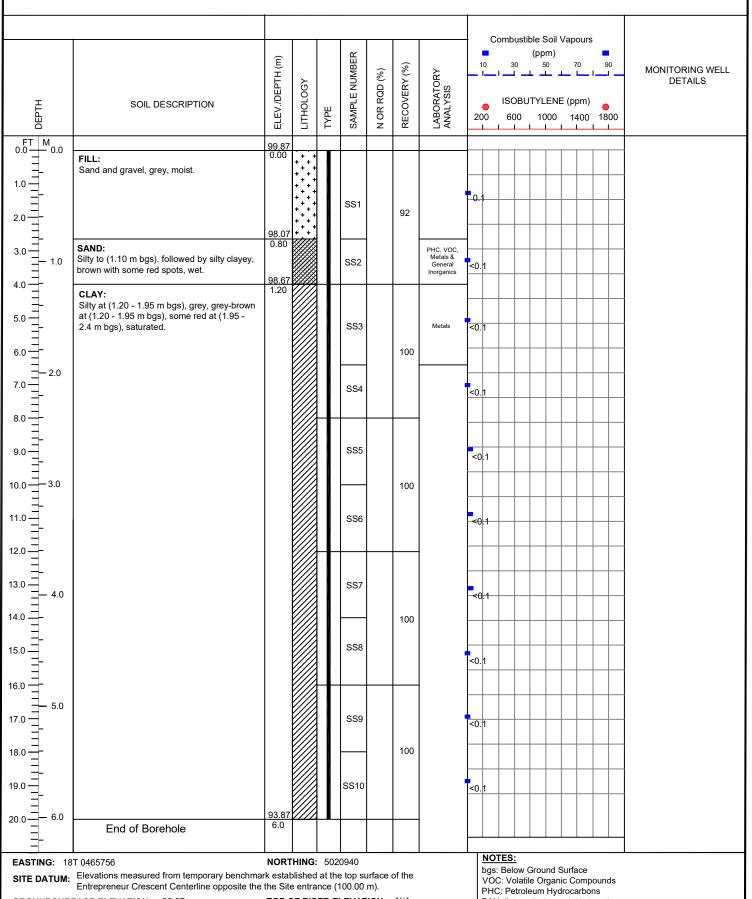
HOLE DIAMETER: 91 mm

PROJECT NO.: 220487

DATE: MARCH 13, 2023

PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLIENT: ENTREPRENEUR HOLDING CORPORATION


LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

N/A: Not applicable

FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE DRILLING METHOD: DIRECT PUSH

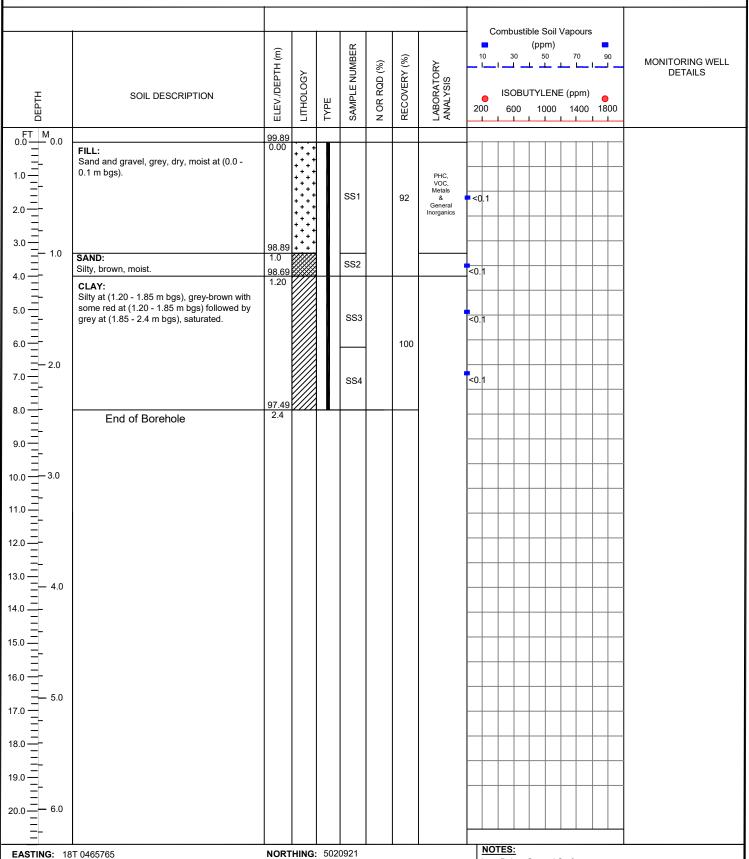
TOP OF RISER ELEVATION: N/A

MONITORING WELL DIAMETER: N/A

5430 Canotek Road Ottawa, ON, K1J 9G2 www.iri.ca (613) 842-3434

PROJECT NO.: 220487

DATE: MARCH 14, 2023


CLIENT: ENTREPRENEUR HOLDING CORPORATION

PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. DRILLING EQUIPMENT: TRACK MOUNTED GEO-PROBE **DRILLING METHOD: DIRECT PUSH**

EASTING: 18T 0465765

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

GROUNDSURFACE ELEVATION: 99.89 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A

bgs: Below Ground Surface

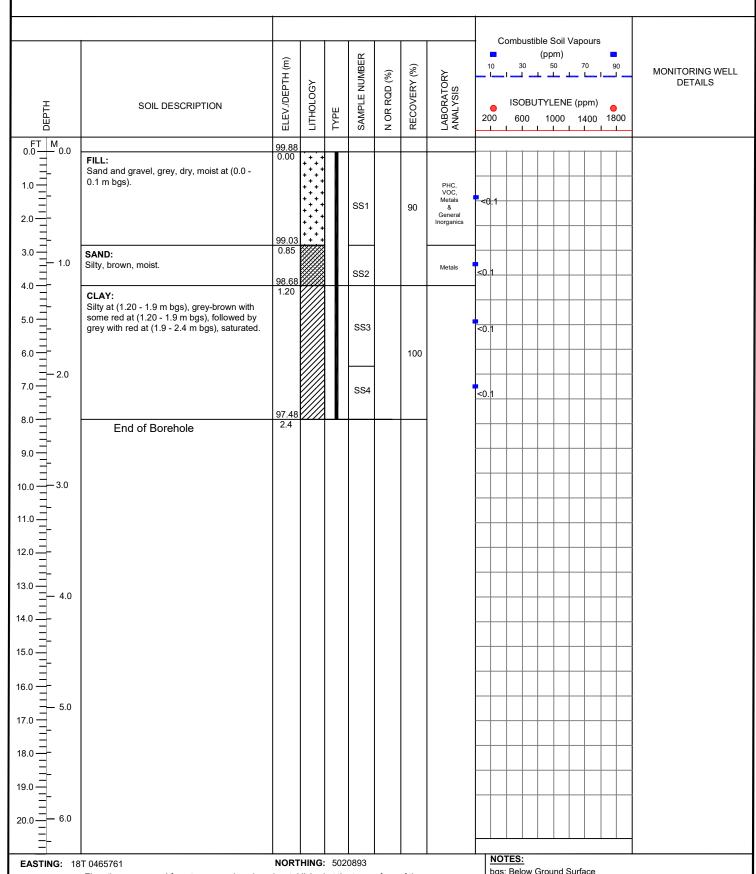
VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons

PAH: Polycyclic Aromatic Hydrocarbons PCB: Polychlorinated Biphenyls

PROJECT NO.: 220487

DATE: MARCH 14, 2023

PROJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT


CLIENT: ENTREPRENEUR HOLDING CORPORATION

LOCATION: 363 ENTREPRENEUR CRESCENT, OTTAWA, ONTARIO

FIELD PERSONNEL: ABDUL KADER

DRILLER: GEORGE DOWNING ESTATE DRILLING LTD. **DRILLING EQUIPMENT:** TRACK MOUNTED GEO-PROBE

DRILLING METHOD: DIRECT PUSH

SITE DATUM: Elevations measured from temporary benchmark established at the top surface of the Entrepreneur Crescent Centerline opposite the the Site entrance (100.00 m).

GROUNDSURFACE ELEVATION: 99.88 m HOLE DIAMETER: 91 mm

TOP OF RISER ELEVATION: N/A MONITORING WELL DIAMETER: N/A bgs: Below Ground Surface

VOC: Volatile Organic Compounds PHC: Petroleum Hydrocarbons

PAH: Polycyclic Aromatic Hydrocarbons

PCB: Polychlorinated Biphenyls

APPENDIX B

Certificates of Laboratory Analysis

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road Ottawa, ON K1J 9G2 Attn: Abdul Kader Alhaj

Client PO:

Project: 220487

Custody: 139923,139924,139927

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Revised Report Order #: 2311444

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2311444-01	BH23-1-SS1
2311444-02	BH23-1-SS3
2311444-03	BH23-1-SS4
2311444-04	BH/MW23-2-SS1
2311444-05	BH/MW23-2-SS40
2311444-06	BH/MW23-3-SS1
2311444-07	BH/MW23-3-SS2
2311444-08	BH/MW23-3-SS3
2311444-09	BH/MW23-3-SS4
2311444-10	BH/MW23-4-SS1
2311444-11	MW/BH23-4-SS2
2311444-12	BH/MW23-4-SS3
2311444-13	MW/BH23-4-SS4
2311444-14	BH/MW23-5-SS1
2311444-15	BH/MW23-5-SS20
2311444-16	BH/MW23-5-SS3
2311444-17	BH23-6-SS2
2311444-18	BH23-7-SS1
2311444-19	BH23-7-SS3
2311444-20	BH23-8-SS2
2311444-21	BH23-8-SS3
2311444-22	BH23-9-SS1
2311444-23	BH23-10-SS1
2311444-24	BH23-10-SS2

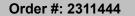
Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Order #: 2311444

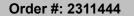

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	21-Mar-23	21-Mar-23
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	17-Mar-23	17-Mar-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	17-Mar-23	21-Mar-23
Conductivity	MOE E3138 - probe @25 °C, water ext	21-Mar-23	21-Mar-23
Cyanide, free	MOE E3015 - Auto Colour, water extraction	20-Mar-23	20-Mar-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	21-Mar-23	21-Mar-23
PCBs, total	SW846 8082A - GC-ECD	17-Mar-23	20-Mar-23
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	20-Mar-23	20-Mar-23
PHC F1	CWS Tier 1 - P&T GC-FID	17-Mar-23	17-Mar-23
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	21-Mar-23	22-Mar-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	17-Mar-23	20-Mar-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	21-Mar-23	21-Mar-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	15-Mar-23	20-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	17-Mar-23	17-Mar-23
SAR	Calculated	21-Mar-23	21-Mar-23
Solids, %	CWS Tier 1 - Gravimetric	17-Mar-23	17-Mar-23

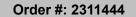


Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 220487

Report Date: 28-Mar-2023
Order Date: 16-Mar-2023

	Client ID: Sample Date: Sample ID: MDL/Units	BH23-1-SS1 14-Mar-23 00:00 2311444-01 Soil	BH23-1-SS3 14-Mar-23 00:00 2311444-02 Soil	BH23-1-SS4 14-Mar-23 00:00 2311444-03 Soil	BH/MW23-2-SS1 14-Mar-23 00:00 2311444-04 Soil
Physical Characteristics	ms 2 om o		!		
% Solids	0.1 % by Wt.	87.8	69.2	53.6	84.7
General Inorganics			•		•
SAR	0.01 N/A	0.44	-	-	0.29
Conductivity	5 uS/cm	726	-	-	1010
Cyanide, free	0.03 ug/g dry	<0.03	-	-	<0.03
pН	0.05 pH Units	9.85	-	-	10.90
Metals			•		•
Antimony	1.0 ug/g dry	<1.0	-	-	<1.0
Arsenic	1.0 ug/g dry	3.9	-	-	4.2
Barium	1.0 ug/g dry	105	-	-	108
Beryllium	0.5 ug/g dry	<0.5	-	-	<0.5
Boron	5.0 ug/g dry	9.7	-	-	10.6
Boron, available	0.5 ug/g dry	0.7	-	-	0.7
Cadmium	0.5 ug/g dry	<0.5	-	-	<0.5
Chromium	5.0 ug/g dry	26.2	-	-	24.5
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	<0.2
Cobalt	1.0 ug/g dry	6.6	-	-	6.6
Copper	5.0 ug/g dry	22.0	-	-	19.2
Lead	1.0 ug/g dry	24.4	-	-	22.3
Mercury	0.1 ug/g dry	<0.1	_	-	<0.1
Molybdenum	1.0 ug/g dry	3.2	-	-	1.3
Nickel	5.0 ug/g dry	17.2	-	-	16.9
Selenium	1.0 ug/g dry	1.1	_	_	<1.0
Silver	0.3 ug/g dry	<0.3	_	-	<0.3
Thallium	1.0 ug/g dry	<1.0	_	-	<1.0
Uranium	1.0 ug/g dry	<1.0	-	-	<1.0
Vanadium	10.0 ug/g dry	31.5	_	-	33.3
Zinc	20.0 ug/g dry	59.2	_	-	55.4
Volatiles	1		 		1
Acetone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	_	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	_	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	_	<0.05


Report Date: 28-Mar-2023

Certificate of Analysis Client: LRL Associates Ltd.

Order Date: 16-Mar-2023 Client PO: Project Description: 220487

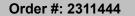
	Client ID: Sample Date: Sample ID:	BH23-1-SS1 14-Mar-23 00:00 2311444-01	BH23-1-SS3 14-Mar-23 00:00 2311444-02	BH23-1-SS4 14-Mar-23 00:00 2311444-03	BH/MW23-2-SS1 14-Mar-23 00:00 2311444-04
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05

Certificate of Analysis
Client: LRL Associates Ltd.

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Client PO: Project Description: 220487

	Client ID: Sample Date: Sample ID: MDL/Units	BH23-1-SS1 14-Mar-23 00:00 2311444-01 Soil	BH23-1-SS3 14-Mar-23 00:00 2311444-02 Soil	BH23-1-SS4 14-Mar-23 00:00 2311444-03 Soil	BH/MW23-2-SS1 14-Mar-23 00:00 2311444-04 Soil
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	_	<0.05
4-Bromofluorobenzene	Surrogate	107%	118%	-	106%
Dibromofluoromethane	Surrogate	109%	121%	-	110%
Toluene-d8	Surrogate	99.3%	109%	-	99.5%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	<40 [1]	<4	-	<40 [1]
F3 PHCs (C16-C34)	8 ug/g dry	447	<8	-	376
F4 PHCs (C34-C50)	6 ug/g dry	2050 [14]	<6	-	1300 [14]
F4G PHCs (gravimetric)	50 ug/g dry	1570	-	-	2230
Semi-Volatiles	•		•	•	
Acenaphthene	0.02 ug/g dry	-	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	-	<0.02	-
Anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] pyrene	0.02 ug/g dry	-	-	<0.02	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	<0.02	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Chrysene	0.02 ug/g dry	-	-	<0.02	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.02	-
Fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Fluorene	0.02 ug/g dry	-	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	<0.02	-
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	-
Naphthalene	0.01 ug/g dry	-	-	<0.01	-
Phenanthrene	0.02 ug/g dry	-	-	<0.02	-
Pyrene	0.02 ug/g dry	-	-	<0.02	-
2-Fluorobiphenyl	Surrogate	-	-	79.2%	-
Terphenyl-d14	Surrogate	-	-	110%	-
PCBs					
PCBs, total	0.05 ug/g dry	-	-	<0.05	-
Decachlorobiphenyl	Surrogate	-	-	99.9%	-



Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 22048

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023 Project Description: 220487

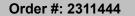
	Client ID: Sample Date: Sample ID: MDL/Units	BH/MW23-2-SS40 14-Mar-23 00:00 2311444-05 Soil	BH/MW23-3-SS1 14-Mar-23 00:00 2311444-06 Soil	BH/MW23-3-SS2 14-Mar-23 00:00 2311444-07 Soil	BH/MW23-3-SS3 14-Mar-23 00:00 2311444-08 Soil
Physical Characteristics				ı	
% Solids	0.1 % by Wt.	84.4	84.4	83.7	83.2
General Inorganics	· · ·		· 1	· I	· · · · · · · · · · · · · · · · · · ·
SAR	0.01 N/A	0.29	0.11	-	1.61
Conductivity	5 uS/cm	971	1010	-	280
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	-	<0.03
pН	0.05 pH Units	10.78	10.46	-	8.35
Metals			1	· I	·
Antimony	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Arsenic	1.0 ug/g dry	4.0	4.2	-	2.0
Barium	1.0 ug/g dry	110	142	-	58.1
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	<0.5
Boron	5.0 ug/g dry	10.8	13.3	-	<5.0
Boron, available	0.5 ug/g dry	0.7	0.8	-	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	<0.5
Chromium	5.0 ug/g dry	22.7	31.5	-	29.1
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	-	<0.2
Cobalt	1.0 ug/g dry	6.0	7.8	-	6.1
Copper	5.0 ug/g dry	17.8	34.4	-	11.4
Lead	1.0 ug/g dry	21.3	26.7	-	3.5
Mercury	0.1 ug/g dry	<0.1	<0.1	-	<0.1
Molybdenum	1.0 ug/g dry	1.3	1.3	-	<1.0
Nickel	5.0 ug/g dry	15.5	19.4	-	14.6
Selenium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	-	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	-	<1.0
Vanadium	10.0 ug/g dry	30.1	35.9	-	36.2
Zinc	20.0 ug/g dry	54.8	89.0	-	23.9
Volatiles				· ·	
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-

Certificate of Analysis
Client: LRL Associates Ltd.

Client PO:

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

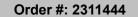
Project Description: 220487


	Client ID: Sample Date: Sample ID:	BH/MW23-2-SS40 14-Mar-23 00:00 2311444-05 Soil	BH/MW23-3-SS1 14-Mar-23 00:00 2311444-06 Soil	BH/MW23-3-SS2 14-Mar-23 00:00 2311444-07 Soil	BH/MW23-3-SS3 14-Mar-23 00:00 2311444-08 Soil
Chlorobenzene	MDL/Units 0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	_
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	_
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	_
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	_
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-

Certificate of AnalysisReport Date: 28-Mar-2023Client:LRL Associates Ltd.Order Date: 16-Mar-2023

Client PO: Project Description: 220487

	Client ID:	BH/MW23-2-SS40	BH/MW23-3-SS1	BH/MW23-3-SS2	BH/MW23-3-SS3
	Sample Date:	14-Mar-23 00:00	14-Mar-23 00:00	14-Mar-23 00:00	14-Mar-23 00:00
	Sample ID:	2311444-05	2311444-06	2311444-07	2311444-08
	MDL/Units	Soil	Soil	Soil	Soil
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	107%	108%	110%	-
Dibromofluoromethane	Surrogate	108%	108%	112%	-
Toluene-d8	Surrogate	99.0%	98.2%	101%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<40 [1]	<40 [1]	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	250	108	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	1060 [14]	619 [14]	<6	-
F4G PHCs (gravimetric)	50 ug/g dry	1930	1090	-	-

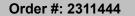

Certificate of Analysis
Client: LRL Associates Ltd.

Client PO:

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

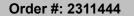
	Client ID: Sample Date:	BH/MW23-3-SS4 14-Mar-23 00:00 2311444-09	BH/MW23-4-SS1 13-Mar-23 00:00 2311444-10	MW/BH23-4-SS2 13-Mar-23 00:00 2311444-11	BH/MW23-4-SS3 13-Mar-23 00:00 2311444-12
	Sample ID: MDL/Units	2311444-09 Soil	2311444-10 Soil	2311444-11 Soil	2311444-12 Soil
Physical Characteristics	MDE/Onits		1 33		00
% Solids	0.1 % by Wt.	53.7	92.5	85.5	78.4
General Inorganics	•		•	•	
SAR	0.01 N/A	-	0.11	-	1.87
Conductivity	5 uS/cm	-	1060	-	401
Cyanide, free	0.03 ug/g dry	-	<0.03	-	<0.03
рН	0.05 pH Units	-	11.02	-	8.04
Metals					
Antimony	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	-	3.3	1.9	2.5
Barium	1.0 ug/g dry	-	87.2	26.9	97.3
Beryllium	0.5 ug/g dry	-	<0.5	<0.5	0.6
Boron	5.0 ug/g dry	-	10.7	<5.0	7.7
Boron, available	0.5 ug/g dry	-	0.5	<0.5	<0.5
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	-	19.2	19.7	47.8
Chromium (VI)	0.2 ug/g dry	-	<0.2	<0.2	0.3
Cobalt	1.0 ug/g dry	-	5.1	4.3	10.1
Copper	5.0 ug/g dry	-	16.7	7.1	18.6
Lead	1.0 ug/g dry	-	18.4	2.4	5.1
Mercury	0.1 ug/g dry	-	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	-	1.2	<1.0	<1.0
Nickel	5.0 ug/g dry	-	13.3	9.8	25.7
Selenium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	-	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	-	26.7	27.7	45.2
Zinc	20.0 ug/g dry	-	50.7	<20.0	42.0
Volatiles					
Benzene	0.02 ug/g dry	-	-	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-
Toluene	0.05 ug/g dry	-	-	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-
o-Xylene	0.05 ug/g dry	-	-	<0.05	-
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-


Report Date: 28-Mar-2023

Certificate of Analysis Client: LRL Associates Ltd.

Order Date: 16-Mar-2023 Client PO: Project Description: 220487

	Client ID: Sample Date:	BH/MW23-3-SS4 14-Mar-23 00:00	BH/MW23-4-SS1 13-Mar-23 00:00 2311444-10	MW/BH23-4-SS2 13-Mar-23 00:00	BH/MW23-4-SS3 13-Mar-23 00:00
	Sample ID: MDL/Units	2311444-09 Soil	2311444-10 Soil	2311444-11 Soil	2311444-12 Soil
Toluene-d8	Surrogate	-	-	99.4%	-
l Hydrocarbons	ļļ			ļ	
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	-	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	-	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	-	-	<6	-
Semi-Volatiles	-				
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	-	-	-
Anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Chrysene	0.02 ug/g dry	<0.02	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-
Fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Fluorene	0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	<0.02	-	-	-
Pyrene	0.02 ug/g dry	<0.02	-	-	-
2-Fluorobiphenyl	Surrogate	82.8%	-	-	-
Terphenyl-d14	Surrogate	108%	-	-	-
PCBs				•	
PCBs, total	0.05 ug/g dry	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	106%	-	-	-

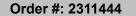

Certificate of Analysis
Client: LRL Associates Ltd.

Client: LRL Associates Ltd.
Client PO:

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

	Client ID: Sample Date: Sample ID: MDL/Units	MW/BH23-4-SS4 13-Mar-23 00:00 2311444-13 Soil	BH/MW23-5-SS1 13-Mar-23 00:00 2311444-14 Soil	BH/MW23-5-SS20 13-Mar-23 00:00 2311444-15 Soil	BH/MW23-5-SS3 13-Mar-23 00:00 2311444-16 Soil
Physical Characteristics	WDL/OTHES				3011
% Solids	0.1 % by Wt.	60.0	83.3	84.0	76.6
General Inorganics				-	
SAR	0.01 N/A	-	0.31	0.33	-
Conductivity	5 uS/cm	-	1460	1250	-
Cyanide, free	0.03 ug/g dry	-	<0.03	<0.03	-
рН	0.05 pH Units	-	10.84	11.14	-
Metals					
Antimony	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	-	4.0	4.0	3.2
Barium	1.0 ug/g dry	-	80.8	96.9	110
Beryllium	0.5 ug/g dry	-	<0.5	<0.5	0.7
Boron	5.0 ug/g dry	-	11.4	11.7	10.1
Boron, available	0.5 ug/g dry	-	0.6	<0.5	<0.5
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	-	21.5	24.8	62.3
Chromium (VI)	0.2 ug/g dry	-	<0.2	0.4	<0.2
Cobalt	1.0 ug/g dry	-	4.8	6.6	12.1
Copper	5.0 ug/g dry	-	17.5	26.4	27.1
Lead	1.0 ug/g dry	-	19.9	20.5	6.4
Mercury	0.1 ug/g dry	-	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	-	2.9	3.1	<1.0
Nickel	5.0 ug/g dry	-	12.2	14.1	34.1
Selenium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	-	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	-	23.3	26.5	53.0
Zinc	20.0 ug/g dry	-	57.8	62.6	58.1
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	<0.05	<0.05

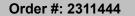


Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 220487

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

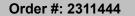
	Client ID: Sample Date:	MW/BH23-4-SS4 13-Mar-23 00:00	BH/MW23-5-SS1 13-Mar-23 00:00	BH/MW23-5-SS20 13-Mar-23 00:00	BH/MW23-5-SS3 13-Mar-23 00:00
	Sample ID:	2311444-13	2311444-14	2311444-15	2311444-16
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05


Report Date: 28-Mar-2023

Certificate of Analysis Client: LRL Associates Ltd.

Order Date: 16-Mar-2023 Client PO: Project Description: 220487

Xylenes, total 0.05 ug/g dry -		Client ID: Sample Date: Sample ID: MDL/Units	MW/BH23-4-SS4 13-Mar-23 00:00 2311444-13 Soil	BH/MW23-5-SS1 13-Mar-23 00:00 2311444-14 Soil	BH/MW23-5-SS20 13-Mar-23 00:00 2311444-15 Soil	BH/MW23-5-SS3 13-Mar-23 00:00 2311444-16 Soil
	Xvlenes, total					
Dibromofiluoromethane Surrogate - 112% 108% 114% 10	<u> </u>		-			
Toluene-d8 Surrogate . 101% 100% 104% Hydrocarbons F1 PHCS (C6C-C10) 7 Jugle dry . < < 7 < 7 < 7 < 7 < 7 PHCS (C6C-C10) 7 Jugle dry . < < 40 [1] < 40 [1] < 40 [1] < 4 < 7 PHCS (C16-C34) 8 Jugle dry . < 90 328 < 8 < 8 < 8 P4 PHCS (C34-C50) 6 Jugle dry . < 99 0 328 < 8 < 8 P4 PHCS (C34-C50) 6 Jugle dry . < 960 2990 - < Semi-Volatiles F3 PHCS (gravimetric) 50 Jugle dry . < 960 2990 - < Semi-Volatiles			_			
Hydrocarbons Fi PHCs (C5C-10) 7 ug/g dry					•	
FT PHCs (C6-C10)		Surrogate	-	10176	100%	10476
F2 PHGs (C10-C16)		7 ug/g dry	-	<7	<7	<7
F3 PHCs (C16-C34)	, ,	1	-	+		<4
F4 PHCs (C34-C50) 6 ugig dry - 292 [14] 903 [14] <6 F4G PHCs (gravimetric) 50 ugig dry - 960 2990 - Semi-Votatiles Acenaphthene 0.02 ugig dry <0.02						
F4G PHCs (gravimetric) 50 ug/g dry -				+		
Semi-Volatilies						
Acenaphthene 0.02 ug/g dry <0.02	ļ	22 19/9 11/		1 000		
Anthracene 0.02 ug/g dry < 0.02		0.02 ug/g dry	<0.02	-	-	-
Benzo [a] anthracene 0.02 ug/g dry <0.02 - - - -	Acenaphthylene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] pyrene	Anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [b] fluoranthene 0.02 ug/g dry <0.02 - - - -	Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [g,h,i] perylene 0.02 ug/g dry <0.02 - - -	Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	-
Benzo [k] fluoranthene	Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Benzo [k] fluoranthene 0.02 ug/g dry <0.02 - - - -		0.02 ug/g dry	<0.02	-	-	-
Chrysene 0.02 ug/g dry < 0.02 - - - Dibenzo [a,h] anthracene 0.02 ug/g dry < 0.02		0.02 ug/g dry	<0.02	-	-	-
Dibenzo [a,h] anthracene 0.02 ug/g dry <0.02 - - - - -		0.02 ug/g dry	<0.02	-	-	-
Fluoranthene 0.02 ug/g dry <0.02		0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene 0.02 ug/g dry < 0.02 - - - 1-Methylnaphthalene 0.02 ug/g dry < 0.02		0.02 ug/g dry	<0.02	-	-	-
1-Methylnaphthalene	Fluorene	0.02 ug/g dry	<0.02	-	-	-
1-Methylnaphthalene 0.02 ug/g dry <0.02	Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene		0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2) 0.04 ug/g dry < 0.04 - - - Naphthalene 0.01 ug/g dry < 0.01		0.02 ug/g dry	<0.02	-	-	-
Naphthalene 0.01 ug/g dry < 0.01 - - - Phenanthrene 0.02 ug/g dry < 0.02		1		-	-	-
Phenanthrene 0.02 ug/g dry <0.02	Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Pyrene 0.02 ug/g dry < 0.02 - - - 2-Fluorobiphenyl Surrogate 81.6% - - - Terphenyl-d14 Surrogate 112% - - - PCBs PCBs, total 0.05 ug/g dry < 0.05	<u> </u>			-	-	-
2-Fluorobiphenyl Surrogate 81.6% - - - Terphenyl-d14 Surrogate 112% - - - PCBs PCBs, total 0.05 ug/g dry <0.05				-	-	-
Terphenyl-d14 Surrogate 112% - - - PCBs PCBs, total 0.05 ug/g dry <0.05						
PCBs 0.05 ug/g dry < 0.05 - - -				_	_	_
PCBs, total 0.05 ug/g dry <0.05	<u> </u>	-	/		ļ	ļ
Decachlorobiphenyl Surrogate 116%		0.05 ug/g dry	<0.05	-	-	-
	Decachlorobiphenyl	Surrogate	116%	-	-	-



Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 220487

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

	Client ID: Sample Date: Sample ID:	BH23-6-SS2 13-Mar-23 00:00 2311444-17	BH23-7-SS1 14-Mar-23 00:00 2311444-18	BH23-7-SS3 14-Mar-23 00:00 2311444-19	BH23-8-SS2 13-Mar-23 00:00 2311444-20
Physical Characteristics	MDL/Units	Soil	Soil	Soil	Soil
% Solids	0.1 % by Wt.	80.9	83.4	70.6	77.2
General Inorganics	0.1 70 By W.	00.9	05.4	70.0	11.2
SAR	0.01 N/A	1.39	0.33	-	1.51
Conductivity	5 uS/cm	256	1190	-	350
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	-	<0.03
pH	0.05 pH Units	9.03	10.94	-	8.56
Metals	+		-		
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	1.2	3.5	3.9	3.7
Barium	1.0 ug/g dry	34.6	100	135	224
Beryllium	0.5 ug/g dry	<0.5	<0.5	0.8	0.7
Boron	5.0 ug/g dry	<5.0	11.3	11.0	7.2
Boron, available	0.5 ug/g dry	<0.5	0.8	<0.5	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	20.5	32.5	70.9	68.9
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	0.3	0.3
Cobalt	1.0 ug/g dry	4.4	6.9	14.6	16.1
Copper	5.0 ug/g dry	6.6	21.7	32.1	30.9
Lead	1.0 ug/g dry	2.0	284	7.5	6.0
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	2.5	<1.0	<1.0
Nickel	5.0 ug/g dry	9.5	17.9	40.0	37.3
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	26.0	31.4	62.5	74.2
Zinc	20.0 ug/g dry	<20.0	64.8	66.3	81.3
Volatiles					
Acetone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05

Report Date: 28-Mar-2023

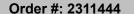
Order Date: 16-Mar-2023

Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 220487

	Client ID: Sample Date:	BH23-6-SS2 13-Mar-23 00:00	BH23-7-SS1 14-Mar-23 00:00	BH23-7-SS3 14-Mar-23 00:00	BH23-8-SS2 13-Mar-23 00:00
	Sample ID:	2311444-17	2311444-18	2311444-19	2311444-20
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL


Order #: 2311444

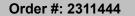
Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

	Client ID:	BH23-6-SS2	BH23-7-SS1	BH23-7-SS3	BH23-8-SS2
	Sample Date:	13-Mar-23 00:00	14-Mar-23 00:00	14-Mar-23 00:00	13-Mar-23 00:00
	Sample ID:	2311444-17	2311444-18	2311444-19	2311444-20
	MDL/Units	Soil	Soil	Soil	Soil
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
4-Bromofluorobenzene	Surrogate	115%	109%	-	115%
Dibromofluoromethane	Surrogate	118%	113%	-	119%
Toluene-d8	Surrogate	105%	99.3%	-	107%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	165	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	222 [14]	-	<6
F4G PHCs (gravimetric)	50 ug/g dry	-	585	-	-

Report Date: 28-Mar-2023



Certificate of Analysis Client: LRL Associates Ltd.

Order Date: 16-Mar-2023 Client PO: Project Description: 220487

BH23-9-SS1 Client ID: BH23-8-SS3 BH23-10-SS1 BH23-10-SS2 Sample Date: 13-Mar-23 00:00 14-Mar-23 00:00 14-Mar-23 00:00 14-Mar-23 00:00 2311444-22 2311444-24 2311444-21 2311444-23 Sample ID: Soil Soil Soil Soil MDL/Units **Physical Characteristics** 0.1 % by Wt. % Solids 64.7 88.8 88.4 82.3 General Inorganics 0.01 N/A SAR 0.13 0.44 5 uS/cm Conductivity 1160 1240 0.03 ug/g dry < 0.03 Cyanide, free < 0.03 0.05 pH Units рΗ 11.14 10.74 Metals 1.0 ug/g dry Antimony <1.0 <1.0 <1.0 <1.0 1.0 ug/g dry Arsenic 3.9 4.0 3.1 1.6 1.0 ug/g dry Barium 150 95.0 82.1 35.9 0.5 ug/g dry Beryllium 1.1 < 0.5 < 0.5 < 0.5 5.0 ug/g dry < 5.0 Boron 18.0 11.1 10.3 0.5 ug/g dry Boron, available < 0.5 0.5 0.5 < 0.5 0.5 ug/g dry Cadmium <0.5 < 0.5 < 0.5 < 0.5 5.0 ug/g dry Chromium 80.8 20.8 27.1 23.2 Chromium (VI) 0.2 ug/g dry 0.3 <0.2 <0.2 0.3 1.0 ug/g dry Cobalt 4.5 4.9 17.1 5.5 5.0 ug/g dry Copper 35.2 19.5 14.5 6.8 1.0 ug/g dry Lead 8.9 16.8 12.6 2.6 0.1 ug/g dry Mercury < 0.1 <0.1 < 0.1 < 0.1 1.0 ug/g dry 2.2 Molybdenum <1.0 1.5 <1.0 5.0 ug/g dry Nickel 46.7 10.6 11.8 13.5 1.0 ug/g dry Selenium <1.0 <1.0 <1.0 <1.0 Silver 0.3 ug/g dry < 0.3 < 0.3 < 0.3 < 0.3 Thallium 1.0 ug/g dry <1.0 <1.0 <1.0 <1.0 Uranium 1.0 ug/g dry <1.0 <1.0 <1.0 <1.0 10.0 ug/g dry Vanadium 69.6 23.9 28.4 29.9 20.0 ug/g dry Zinc 72.4 66.7 68.6 <20.0 Volatiles 0.50 ug/g dry Acetone < 0.50 < 0.50 0.02 ug/g dry < 0.02 Benzene < 0.02 0.05 ug/g dry Bromodichloromethane < 0.05 < 0.05 0.05 ug/g dry Bromoform < 0.05 < 0.05 0.05 ug/g dry Bromomethane < 0.05 < 0.05 0.05 ug/g dry Carbon Tetrachloride < 0.05 < 0.05

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Certificate of Analysis
Client: LRL Associates Ltd.

Client PO: Project Description: 220487

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

	Client ID:	BH23-8-SS3	BH23-9-SS1	BH23-10-SS1	BH23-10-SS2
	Sample Date: Sample ID:	13-Mar-23 00:00 2311444-21	14-Mar-23 00:00 2311444-22	14-Mar-23 00:00 2311444-23	14-Mar-23 00:00 2311444-24
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Certificate of Analysis
Client: LRL Associates Ltd.
Client PO:

	Client ID:	BH23-8-SS3	BH23-9-SS1	BH23-10-SS1	BH23-10-SS2
	Sample Date:	13-Mar-23 00:00	14-Mar-23 00:00	14-Mar-23 00:00	14-Mar-23 00:00
	Sample ID:	2311444-21	2311444-22	2311444-23	2311444-24
	MDL/Units	Soil	Soil	Soil	Soil
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	-	104%	105%	-
Dibromofluoromethane	Surrogate	-	105%	110%	-
Toluene-d8	Surrogate	-	95.8%	98.1%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<40 [1]	<40 [1]	-
F3 PHCs (C16-C34)	8 ug/g dry	-	515	429	-
F4 PHCs (C34-C50)	6 ug/g dry	-	2000 [14]	1760 [14]	-
F4G PHCs (gravimetric)	50 ug/g dry	-	4940	3450	-

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Order #: 2311444

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Cyanide, free	ND	0.03	ug/g						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium Chromium (VI)	ND ND	0.5 0.2	ug/g						
Chromium	ND ND	5.0	ug/g ug/g						
Cobalt	ND ND	1.0	ug/g ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc PCBs	ND	20.0	ug/g						
PCBs, total	ND	0.05	ug/g						
Surrogate: Decachlorobiphenyl	0.102	0.00	ug/g		102	60-140			
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND ND	0.02 0.02	ug/g						
Benzo [g,h,i] perylene Benzo [k] fluoranthene	ND ND	0.02	ug/g						
Chrysene	ND ND	0.02	ug/g ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		00.0	E0 440			
Surrogate: 2-Fluorobiphenyl	1.07		ug/g		80.6	50-140			
Surrogate: Terphenyl-d14	1.23		ug/g		92.6	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting	119	Source	0/550	%REC	DDD	RPD	Notes
Allalyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND ND	0.05	ug/g ug/g						
o-Xylene	ND ND	0.05	ug/g ug/g						
Xylenes, total	ND ND	0.05	ug/g ug/g						
Surrogate: 4-Bromofluorobenzene	10.1	0.00	ug/g ug/g		126	50-140			
Surrogate: Dibromofluoromethane	8.19				102	50-140 50-140			
	8.19 7.60		ug/g						
Surrogate: Toluene-d8		0.00	ug/g		95.0	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	7.60		ug/g		95.0	50-140			

Client PO:

Order #: 2311444

Certificate of Analysis

Client: LRL Associates Ltd.

Order Date: 16-Mar-2023

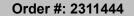
Project Description: 220487

Report Date: 28-Mar-2023

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
eneral Inorganics									
SAR	0.40	0.01	N/A	0.44			9.5	30	
Conductivity	728	5	uS/cm	726			0.3	5	
Cyanide, free	ND	0.03	ug/g	ND			NC	35	
pH	9.89	0.05	pH Units	9.85			0.4	2.3	
lydrocarbons			F				• • • • • • • • • • • • • • • • • • • •		
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND ND	40	ug/g ug/g	ND			NC	30	
F3 PHCs (C16-C34)	476	80	ug/g ug/g	447			6.2	30	
F4 PHCs (C34-C50)	1320	60	ug/g	2050			43.5	30	QR-04
	1020	00	ug/g	2000			40.0	30	QI CO-I
letals									
Antimony	ND	1.0	ug/g	1.3			NC	30	
Arsenic	1.4	1.0	ug/g	1.4			1.4	30	
Barium	38.9	1.0	ug/g	36.3			7.1	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron, available	0.74	0.5	ug/g	0.71			4.2	35	
Boron	8.8	5.0	ug/g	8.5			3.3	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	30.4	5.0	ug/g	27.6			9.4	30	
Cobalt	4.0	1.0	ug/g	3.6			9.3	30	
Copper	20.3	5.0	ug/g	15.1			29.4	30	
Lead	17.1	1.0	ug/g	22.7			28.1	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	9.3	5.0	ug/g	9.0			3.0	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	17.6	10.0	ug/g	17.8			1.0	30	
Zinc	45.1	20.0	ug/g	44.9			0.4	30	
CBs	10.1	20.0	49/9	11.0			0.1	00	
PCBs, total	ND	0.05	ug/g	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.204		ug/g		109	60-140			
hysical Characteristics									
% Solids	86.2	0.1	% by Wt.	87.8			1.8	25	
emi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g ug/g	ND			NC	40	
r-metrymaphthalene 2-Methylnaphthalene	ND ND	0.02	ug/g ug/g	ND			NC	40	
z-metrymaphthalene Naphthalene	ND ND	0.02	ug/g ug/g	ND			NC	40	
Napritraierie Phenanthrene	ND ND	0.01	ug/g ug/g	ND ND			NC NC	40	

Order #: 2311444

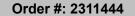

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: 2-Fluorobiphenyl	1.03		ug/g		64.8	50-140			
Surrogate: Terphenyl-d14	1.33		ug/g		83.6	50-140			
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	10.0		ug/g		106	50-140			
Surrogate: Dibromofluoromethane	10.2		ug/g		108	50-140			
Surrogate: Toluene-d8	9.29		ug/g		98.0	50-140			
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	9.29		ug/g		98.0	50-140			



Certificate of Analysis
Client: LRL Associates Ltd.
Client PO:

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Cyanide, free	0.283	0.03	ug/g	ND	89.4	50-150			
- Hydrocarbons									
F1 PHCs (C6-C10)	186	7	ug/g	ND	92.8	80-120			
F2 PHCs (C10-C16)	76	4	ug/g ug/g	ND	95.2	80-120			
F3 PHCs (C16-C34)	197	8	ug/g ug/g	ND	100	80-120			
F4 PHCs (C34-C50)	141	6	ug/g ug/g	ND	114	80-120			
F4G PHCs (gravimetric)	1170	50	ug/g	ND	117	80-120			
Metals	1170	00	49/9	110		00 120			
	44.0	4.0		ND	00.0	70.400			
Antimony	41.8	1.0	ug/g	ND	82.6	70-130			
Arsenic	51.6	1.0	ug/g	ND	102	70-130			
Barium	66.8	1.0	ug/g	14.5	105	70-130 70-130			
Beryllium	52.8	0.5	ug/g	ND	105	70-130			
Boron, available	4.00	0.5	ug/g	ND	80.0	70-122			
Boron	50.9	5.0	ug/g	ND	95.0	70-130			
Cadmium	50.6	0.5	ug/g	ND	101 51.0	70-130		,	NA 05
Chromium (VI)	0.1	0.2	ug/g	ND	51.0	70-130		(QM-05
Chromium	69.2	5.0	ug/g	11.1	116	70-130			
Cobalt	53.8	1.0	ug/g	1.4	105	70-130			
Copper	56.1	5.0	ug/g	6.1	100	70-130			
Lead	52.2	1.0	ug/g	9.1	86.2	70-130			
Mercury	1.08	0.1	ug/g	ND	71.9	70-130			
Molybdenum	49.6	1.0	ug/g	ND	98.7	70-130			
Nickel	53.7	5.0	ug/g	ND	100	70-130			
Selenium	45.6	1.0	ug/g	ND	91.0	70-130			
Silver	44.3	0.3	ug/g	ND	88.5	70-130			
Thallium	48.4	1.0	ug/g	ND	96.6	70-130			
Uranium	46.8	1.0	ug/g	ND	93.3	70-130			
Vanadium	64.5	10.0	ug/g	ND	115	70-130			
Zinc	64.3	20.0	ug/g	ND	92.6	70-130			
CBs									
PCBs, total	0.956	0.05	ug/g	ND	128	60-140			
Surrogate: Decachlorobiphenyl	0.192		ug/g		103	60-140			
emi-Volatiles									
Acenaphthene	0.143	0.02	ug/g	ND	71.5	50-140			
Acenaphthylene	0.116	0.02	ug/g	ND	58.2	50-140			
Anthracene	0.123	0.02	ug/g	ND	61.7	50-140			
Benzo [a] anthracene	0.124	0.02	ug/g	ND	61.9	50-140			
Benzo [a] pyrene	0.140	0.02	ug/g	ND	70.0	50-140			
Benzo [b] fluoranthene	0.173	0.02	ug/g	ND	86.9	50-140			
Benzo [g,h,i] perylene	0.138	0.02	ug/g	ND	69.3	50-140			
Benzo [k] fluoranthene	0.143	0.02	ug/g	ND	71.6	50-140			
Chrysene	0.177	0.02	ug/g	ND	88.9	50-140			
Dibenzo [a,h] anthracene	0.147	0.02	ug/g	ND	73.6	50-140			
Fluoranthene	0.129	0.02	ug/g	ND	64.7	50-140			
Fluorene	0.116	0.02	ug/g	ND	58.0	50-140			
Indeno [1,2,3-cd] pyrene	0.149	0.02	ug/g	ND	74.5	50-140			
1-Methylnaphthalene	0.155	0.02	ug/g	ND	77.9	50-140			

Certificate of Analysis
Client: LRL Associates Ltd.

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Client PO: Project Description: 220487

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
2-Methylnaphthalene	0.168	0.02	ug/g	ND	84.4	50-140			
Naphthalene	0.163	0.01	ug/g	ND	81.5	50-140			
Phenanthrene	0.136	0.02	ug/g	ND	67.9	50-140			
Pyrene	0.127	0.02	ug/g	ND	63.9	50-140			
Surrogate: 2-Fluorobiphenyl	1.11		ug/g		69.7	50-140			
Surrogate: Terphenyl-d14	1.23		ug/g		77.1	50-140			
olatiles									
Acetone	12.8	0.50	ug/g	ND	128	50-140			
Benzene	3.73	0.02	ug/g	ND	93.2	60-130			
Bromodichloromethane	3.80	0.05	ug/g	ND	94.9	60-130			
Bromoform	3.97	0.05	ug/g	ND	99.3	60-130			
Bromomethane	4.82	0.05	ug/g	ND	121	50-140			
Carbon Tetrachloride	3.64	0.05	ug/g	ND	91.1	60-130			
Chlorobenzene	3.84	0.05	ug/g ug/g	ND	96.0	60-130			
Chloroform	3.79	0.05	ug/g ug/g	ND	94.8	60-130			
Dibromochloromethane	4.12	0.05	ug/g ug/g	ND	103	60-130			
Dichlorodifluoromethane	3.42	0.05	ug/g ug/g	ND	85.4	50-130			
1,2-Dichlorobenzene	3.34	0.05	ug/g ug/g	ND	83.4	60-130			
1,3-Dichlorobenzene	3.46	0.05		ND	86.5	60-130			
	3.40	0.05	ug/g	ND	79.1	60-130			
1,4-Dichlorobenzene	4.25	0.05	ug/g	ND	106	60-130			
1,1-Dichloroethane			ug/g						
1,2-Dichloroethane	3.70	0.05	ug/g	ND	92.5	60-130			
1,1-Dichloroethylene	3.91	0.05	ug/g	ND	97.8	60-130			
cis-1,2-Dichloroethylene	3.69	0.05	ug/g	ND	92.2	60-130			
rans-1,2-Dichloroethylene	3.63	0.05	ug/g	ND	90.8	60-130			
1,2-Dichloropropane	3.56	0.05	ug/g	ND	88.9	60-130			
cis-1,3-Dichloropropylene	3.53	0.05	ug/g	ND	88.2	60-130			
trans-1,3-Dichloropropylene	3.64	0.05	ug/g	ND	91.0	60-130			
Ethylbenzene	3.78	0.05	ug/g	ND	94.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.82	0.05	ug/g	ND	95.6	60-130			
Hexane	4.19	0.05	ug/g	ND	105	60-130			
Methyl Ethyl Ketone (2-Butanone)	11.0	0.50	ug/g	ND	110	50-140			
Methyl Isobutyl Ketone	9.34	0.50	ug/g	ND	93.4	50-140			
Methyl tert-butyl ether	8.09	0.05	ug/g	ND	80.9	50-140			
Methylene Chloride	4.11	0.05	ug/g	ND	103	60-130			
Styrene	3.80	0.05	ug/g	ND	95.1	60-130			
1,1,1,2-Tetrachloroethane	3.98	0.05	ug/g	ND	99.6	60-130			
1,1,2,2-Tetrachloroethane	4.22	0.05	ug/g	ND	106	60-130			
Tetrachloroethylene	4.03	0.05	ug/g	ND	101	60-130			
Toluene	3.99	0.05	ug/g	ND	99.7	60-130			
1,1,1-Trichloroethane	3.62	0.05	ug/g	ND	90.5	60-130			
1,1,2-Trichloroethane	3.64	0.05	ug/g	ND	90.9	60-130			
Trichloroethylene	3.55	0.05	ug/g	ND	88.6	60-130			
Trichlorofluoromethane	4.41	0.05	ug/g	ND	110	50-140			
Vinyl chloride	3.77	0.02	ug/g	ND	94.4	50-140			
n,p-Xylenes	7.90	0.05	ug/g	ND	98.7	60-130			
o-Xylene	4.02	0.05	ug/g	ND	100	60-130			
Surrogate: 4-Bromofluorobenzene	7.53		ug/g		94.1	50-140			
Surrogate: Dibromofluoromethane	8.03		ug/g		100	50-140			
Surrogate: Toluene-d8	6.15		ug/g		76.9	50-140			

Order #: 2311444

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	3.73	0.02	ug/g	ND	93.2	60-130			
Ethylbenzene	3.78	0.05	ug/g	ND	94.5	60-130			
Toluene	3.99	0.05	ug/g	ND	99.7	60-130			
m,p-Xylenes	7.90	0.05	ug/g	ND	98.7	60-130			
o-Xylene	4.02	0.05	ug/g	ND	100	60-130			
Surrogate: Toluene-d8	6.15		ug/g		76.9	50-140			

Certificate of Analysis

Client: LRL Associates Ltd.

Or

Client PO:

Proje

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023 Project Description: 220487

Qualifier Notes:

Login Qualifiers:

Container and COC sample IDs don't match - Sample Label reads " BH/MW23-2-SS1 " and the chain of custody reads "BH/MW-2-SS1 "

Applies to samples: BH/MW23-2-SS1

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-2-SS40" and the chain of custody reads "BH/MW-2-SS40"

Applies to samples: BH/MW23-2-SS40

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-3-SS1" and the chain of custody reads "BH/MW-3-SS1"

Applies to samples: BH/MW23-3-SS1

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-3-SS2" and the chain of custody reads "BH/MW-3-SS2"

Applies to samples: BH/MW23-3-SS2

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-3-SS3" and the chain of custody reads "BH/MW-3-SS3"

Applies to samples: BH/MW23-3-SS3

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-3-SS4" and the chain of custody reads "BH/MW-3-SS4"

Applies to samples: BH/MW23-3-SS4

Container and COC sample IDs don't match - Sample Label reads "BH/MW23-4-SS1" and the chain of custody reads "BH/MW-4-SS1" on the methanol vial and Sample Label reads "MW/BH23-4-SS1" and the chain of custody reads "BH/MW-4-SS1" on the soil jar

Applies to samples: BH/MW23-4-SS1

Container and COC sample IDs don't match - Sample Label reads "BH23-5-SS20" and the chain of custody reads "BH/MW23-5-SS20"

Applies to samples: BH/MW23-5-SS20

Container and COC sample IDs don't match - Sample Label reads "BH23-5-SS3" and the chain of custody reads "BH/MW23-5-SS3"

Applies to samples: BH/MW23-5-SS3

Container and COC sample IDs don't match - Sample Label reads "MW/BH23-4-SS2" and the chain of custody reads "BH/MW23-4-SS2"

Applies to samples: MW/BH23-4-SS2

Container and COC sample IDs don't match - Sample Label reads "MW/BH23-4-SS4" and the chain of custody reads "BH/MW23-4-SS4"

Applies to samples: MW/BH23-4-SS4

Container and COC sample IDs don't match - Sample Label reads "MW/BH23-5-SS1" and the chain of custody reads "BH/MW23-5-SS1" on the methanol vial and Sample Label reads "BH23-5-SS1" and the chain of custody reads "BH/MW23-5-SS1" on the soil jar

Applies to samples: BH/MW23-5-SS1

Sample Qualifiers:

1: Elevated reporting limits due to the nature of the sample matrix.

14: GC-FID signal did not return to baseline by C50

Report Date: 28-Mar-2023 Order Date: 16-Mar-2023

Client PO: Project Description: 220487

QC Qualifiers:

Certificate of Analysis

Client: LRL Associates Ltd.

QM-05 The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

QR-04 Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1-Revised report includes additional metals data.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

6	PA	RA	C		
	LABOR	ATORT	E S	LTI).

Paracel Order Number Chain Of Custody
(Lab Use Only) (Lab Use Only)

	-							+	light of	a angli					2.1		020
Client Name: LRA As	Social	es		Projec	t Ref;	22048	7	J.	4	j.	3	155	L REAL	4	Pag	e <u>L</u> o	f 3
Contact Name:	DN .		1	Quote	#: , , ,,	A bear	1 1		1	-	7		2	Ī	urna	ound	Time
Address: 5470 Can Obbawa	elet Rd	4.5		PO#;		. V. 10 h	,	,		, , -,				1 day			☐ 3 da
Oblawa	ON			E-mail	0	Kader					U	ı		2 day			Regi
Telephone:	, 1 1 (DESCRIPTION)	programme and the second	Company of	000									Date	Requi	red:		
REG 153/04 REG 406/19	Other R	egulation			V V	ele ile il enile		Link			1000						
☐ Table 1 ☐ Res/Park ☐ Med/Fine	☐ REG 558	□ PWQ0	1			S (Soil/Sed.) GW (Gr Vater) SS (Storm/San		- Anti-				Re	quirec	d Anak	ysis		
☑ Table 2 ☐ Ind/Comm ☐ Coarse	□, CCME	☐ MISA				Paint) A (Air) O (Oth		×			~4	1330	PERMIT			T	TI
☐ Table 3 ☐ Agri/Other	□ SU - Sani	□ SU-Storm		1	5.	Pro test		+BTEX			7				5	10	UI F
□. Table	Mun:			J. P.	Containers	Sample	Taken	F1-F4+			200				ani	\sim	
For RSC: ☐ Yes ☐ No	□ Other:		×	Air Volume		personal in a			8	5	Metals RAGE			B (HWS)	Inorganies	8	
Sample ID/Location			Matrio	Air	, tq	Date.	. Time	PHCs	WOCs	PAHs	Met	Ð	CrV	8	L	α	and I
1 BH23-1-551	Company of the second	and the second	5		2	2013.03.14	Pim	X	X	(A) and	gricanisti.	X	((m) ₁ a.d	Approximately and the second	X		
2 BH23-1 -553	3		1	36	1	Lang.	U T	X	K								Ad I
3 BH23-1-554		Barrior and Control of	1	96.7	al an	Control of the second s	desired to a	ra mit		X	J me	proper year			me h y	X	
4. BH/MW-2-55						1. 1. 10		K	K		X				X	1	as (f)
5. BH/MW_2-SS								K	1		Χ				X		
6. DH/MW-3-55	1					1 25		X			X				X		
7 BI/MW-3-55			1					X	1		, ,				-		111
8 · BH/MW - 3-553	?		\dagger			(C) 10		- N	Ť		Χ				Χ	- 1	7 1
9 BH/MW-3-554			+			1	d	1		X	/`				\ 	X	
10 BH/WW-Y- (S)			4		1	2023 03.13	1	+		~	K				Χ	^+	
omments:					•	1060000	am	-			/	Mathe	vl of Do	livaces	/ \	1910	
	7											10	M	divery:	<u></u>	10	النيا
elinquished By (Sign):		Received By Dr	river/D	epot:	ķ.	Sides 6	Received a geb:	11/5	5	160	28	velde	0 By:	1		1	d helt
elinquished By (Print): Abdul Ko	de	Date/Time:			7		Date Ume:	1/	20	00	3	Date/1	Time:	lar	16	23	173
ate/Time: 2073, 03, 11, 1	4.70	Temperature:				°C	Temperature:	7	100	~X		pH Ve	rified:		By:	رے	
hain of Custody (Env) xlsx	100					Revision 4.0	<u> </u>	211									7 2 1

Paracel ID: 2311444

LABORATORIES LID.

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

Contact Name: ASSOC Valves			Proje	ct Ref:	2:	204	87	1	1	j.	ei,	74			Pa	ge 1	of 3	,
Mall Kader	'	3 15	Quote	#:	-	A. Carrier	6 1	8	7	, i	1				214	7	d Time	
5 450 Canotes RA			PO #:		- 7	7	T. O //		, ,	. ,	7			1 day				3 day
Telephone: 10 Telephone:	,		E-mai		ake	dera	Irl.ca					-	- 0	2 day			2	Regular
613 315 660 Z			F- 10	1 6		Mar Day of Comments of	Magazini Maraji ng 1911						Date	Requ	ired:			
☐ REG 153/04 ☐ REG 406/19 Other Re	gulation		Matrix 1	vno:	\$ /\$nii/\$n	d) cw/c	round Water)	120		1 40					72 1 1			
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558	□ PWQ0			rface '	Water) SS	(Storm/Sar	nitary Sewer)	100				Re	equire	d Ana	lysis			
Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME	☐ MISA			P (Paint) A (Air) O (Oth	er)	X			~	343			OT FILE			
☐ Table 3 ☐ Agri/Other ☐ SU - Sani	SÚ-Storm		7.7	67.5	e gul	A		18			15				N		0	
☐ Table Mun: For RSC: ☐ Yes ☐ No ☐ Other:	-	, ×	Air Volume	Containers	. 45.5	Sample	Taken	S F1-F4+BTEX	10		Shepo 15		.,	(S)	Sympson 25	B	isal	
Sample ID/Location Name		Matriò	AirV	# of	O contract	ate	. Time	PHCs	VOCs	PAHs	Metals	Ď	2	B (HWS)	Two	7		
1. BH/MW23-4-552	e de chi dina anno	5	la may d	2	2023	,03,13	Pim	X	2 10		X		9,1	j, w.	- Nilly	r.ant	pwgle.	
2 DH/MW 23-4- SS3		1	d	Ĭ		of ab		1			X				X			-
3 BH/MW 23 - 4 - SSY	Arriva agreement	-	direct to			or controlled		10000		X	100		Specify St.		_	1	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 BA/MW 27-5-SSI				1			am	X	K	_		X			^/	X	est P	+
5 BH/MW 23-5-5520		1					am	î	1			I V		/	X			-
6 BH/MW23-5-553		\dagger			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		am	+	+			-			X	· · · · ·	g = 1, ar	-
7 BH 23-6-552				+		r	aim					-			./		+	
8 BH 23 - 7-SSI	-			(10)	2027	27 14	aim	d	4		-				X	F. S.	ion is	-
9 BH23-7-553						03.14		-	4			\vdash			X		_	
10 BH 23-8-552		U		1	1.1		a.m	1	. /		-				./		3 1 1	
omments:		V		V	wis.	03.13	am	X	X		-	V			X			1
											and the	Metho	d of De	o V	1	1	\wedge	
elinquished By (Sign):	Received By Dr	iver/De	epot:		5		Recurve Valuable			10	28	erifie	d By:			- [1	
elinquished By (Print): Not up had	Date/Time:				Scon 7.	P5. 1	CIN	ue)	0			1	1		7761	9.88	
ate/Time: 2023.03.16 4:20	Temperature:	-		_	0-		Horce	M	6,	208			ime: N		16/	23	17	34
nain of Custody (Env) xlsx	200000000000000000000000000000000000000	-			°C		Temperature:	6,0	Z .°C			H Ver	rified: L		By:		- 20	

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

ENDORATORIES ETD.						1		7		1					002	
Client Name: LRL ASSOCIATES		Projec	t Ref:	220483) free	7		j.	, a	10			Pag	ge 3	of 3	1
Abdultader Address: 5430 Canol ctr Rd Ottawa, ON.	1 4475		#c _{18.3}		7 1	4	14	7	1		7,	1	lurna	round	Time	1
Address: 5430 Canot ch Rd		PO #:								-		1 day			[□ 3 day
Obawa, ON.		E-mail	(2 Kader @	lv ca	1	1 1			· .		2 day			Į.	K Regula
Telephone: 613 315 6602	Andrews of the second of			dia si	**************************************					i de	Date	Requi	ired:	rage v r		
☐ REG 153/04 ☐ REG 406/19 Other Regulation	on A	Astriy T	vna:	S (Soil/Sed.) GW (G	round Water)			135		1197				7 1 17		
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ F				Vater) SS (Storm/Sa		10.95				Red	quired	Anal	ysis			
Table 2 □ Ind/Comm □ Coarse □ CCME □ !	MISA		P (P	aint) A (Air) O (Oth	ner)	X			ľΝ				V			1
☐ Tablé 3 ☐ Agri/Other ☐ SU - Sani ☐ S	SU - Storm		N. N.	ai,ηC, , ,		F1-F4+BTEX			R.P. 1153	,			77		ħ d	}
□-Table Mün:		a e	Containe	Sample	Taken	1-F			8	•			Jary			1
For RSC: Yes No Other:	, ă	Air Volume		63602			8	<u>0</u>	Metals		_	B (HWS)	Inorganics	•	pte He	
Sample ID/Location Name	Matrix	Air	10	ACASI, Date	Time	PHCs	VOCs	PAHs	Me	Ď.	Ö.	· B	H) Jacob	Э. с	
1 BH23-8-553	S	anv La	2	2023.03.14	A·m	sappa, a	Appel		X	ing s	Jeografia	e e	- samp	i produce i prod		
2 BH23-9-551	1	13	10	g king	1	X	X		X				X		33	
3 SH23-10-551 4 BH23-10-557	400		in part		age to a minimum of the	X	X	- 10	X		given 1	p s corps	X	4-10	21.4	
4 BH23-10-557	A)		V	8	4				V						63	1
5																T
6				·A /												
7																
8	1	-	-	S		+		!								
9	1	-				+	-						. 1		1171 1	-
10		-				+	_	7								
Comments:									-		1-10-					1
2 A + 10									de este d	wetno	a or be	livery:	1	/	10	
Relinquished By (Sign): Rec	ceived By Driver/D	epot:		1	Received At Lab:	n. 0		10	02	Verifie	d By:		١		1	31
Relinquished By (Print): All III Dai	te/Time:			US norse: P	Datellion		3	(0)	\sim	Data/T	2			719	oron uni	
Abau Rader					Marc	V	161	W					- 16,			7:34
Chain of Custody (Envi xlsx	mperature:			°C Revision 4.0	Temperature:	+;	,C			pH Ver	rified:	<u></u>	By:	347 ·		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road Ottawa, ON K1J 9G2 Attn: Abdul Kader Alhaj

Client PO:

Project: 220487 Custody: 139922 Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Order #: 2311446

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

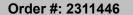
Paracel ID	Client ID
2311446-01	MW23-2
2311446-02	MW23-3
2311446-03	MW23-4
2311446-04	MW23-5

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Client: LRL Associates Ltd.

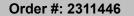

Order #: 2311446

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Client PO: Project Description: 220487

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - water	MOE E3056 - colourimetric	21-Mar-23	21-Mar-23
Conductivity	EPA 9050A- probe @25 °C	17-Mar-23	17-Mar-23
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	20-Mar-23	20-Mar-23
Metals, ICP-MS	EPA 200.8 - ICP-MS	17-Mar-23	17-Mar-23
рН	EPA 150.1 - pH probe @25 °C	17-Mar-23	17-Mar-23
PHC F1	CWS Tier 1 - P&T GC-FID	17-Mar-23	17-Mar-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Mar-23	22-Mar-23
Phenolics	EPA 420.2 - Auto Colour, 4AAP	20-Mar-23	20-Mar-23
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	20-Mar-23	20-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	17-Mar-23	17-Mar-23
SAR	Calculated	21-Mar-23	21-Mar-23


Report Date: 22-Mar-2023

Certificate of Analysis Client: LRL Associates Ltd.

Order Date: 16-Mar-2023 Client PO: Project Description: 220487

MW23-3 Client ID: MW23-2 MW23-4 MW23-5 Sample Date: 16-Mar-23 15:50 16-Mar-23 15:40 16-Mar-23 15:30 16-Mar-23 15:20 2311446-01 2311446-02 2311446-03 2311446-04 Sample ID: **Ground Water** Ground Water **Ground Water Ground Water** MDL/Units **General Inorganics** 0.01 SAR 4.79 3.26 9.00 7.78 5 uS/cm Conductivity 1710 1030 2910 2430 0.1 pH Units рΗ 10.9 7.9 7.6 7.9 0.001 mg/L Phenolics 0.068 0.001 _ Metals Mercury 0.1 ug/L <0.1 < 0.1 < 0.1 < 0.1 0.5 ug/L Antimony <0.5 < 0.5 < 0.5 < 0.5 1 ug/L Arsenic 2 2 2 2 1 ug/L Barium 84 28 124 99 0.5 ug/L Beryllium < 0.5 < 0.5 <0.5 < 0.5 10 ug/L Boron 56 23 167 157 0.1 ug/L Cadmium <0.1 <0.1 <0.1 < 0.1 1 ug/L 2 Chromium <1 1 <1 10 ug/L Chromium (VI) <10 <10 <10 <10 0.5 ug/L Cobalt < 0.5 0.7 2.1 1.1 0.5 ug/L Copper 0.9 3.0 3.3 3.6 0.1 ug/L Lead <0.1 <0.1 <0.1 0.3 0.5 ug/L Molybdenum 1.4 2.5 16.7 0.6 1 ug/L Nickel 5 12 2 3 1 ug/L Selenium <1 <1 <1 <1 Silver 0.1 ug/L <0.1 < 0.1 < 0.1 < 0.1 200 ug/L Sodium 381000 161000 106000 306000 0.1 ug/L Thallium < 0.1 < 0.1 < 0.1 <0.1 0.1 ug/L Uranium 1.8 8.0 0.6 0.4 0.5 ug/L Vanadium 1.7 20.9 1.6 2.8 5 ug/L Zinc <5 <5 <5 <5 Volatiles 5.0 ug/L Acetone 5.3 33.6 <5.0 <5.0 0.5 ug/L Benzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Bromodichloromethane < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Bromoform <0.5 <0.5 <0.5 < 0.5 Bromomethane 0.5 ug/L < 0.5 <0.5 < 0.5 <0.5 0.2 ug/L Carbon Tetrachloride < 0.2 < 0.2 < 0.2 < 0.2 0.5 ug/L Chlorobenzene < 0.5 <0.5 < 0.5 < 0.5 0.5 ug/L Chloroform <0.5 < 0.5 < 0.5 < 0.5

Certificate of Analysis
Client: LRL Associates Ltd.

Client PO:

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Γ	Client ID: Sample Date: Sample ID: MDL/Units	MW23-2 16-Mar-23 15:50 2311446-01 Ground Water	MW23-3 16-Mar-23 15:40 2311446-02 Ground Water	MW23-4 16-Mar-23 15:30 2311446-03 Ground Water	MW23-5 16-Mar-23 15:20 2311446-04 Ground Water
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	102%	102%	102%	102%
Dibromofluoromethane	Surrogate	74.2%	75.5%	90.9%	89.0%

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

	Client ID: Sample Date: Sample ID:	MW23-2 16-Mar-23 15:50 2311446-01	MW23-3 16-Mar-23 15:40 2311446-02	MW23-4 16-Mar-23 15:30 2311446-03	MW23-5 16-Mar-23 15:20 2311446-04
Toluene-d8	MDL/Units Surrogate	Ground Water 110%	Ground Water 110%	Ground Water 111%	Ground Water 110%
Hydrocarbons		11070	11070	11170	11070
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
Semi-Volatiles	+ + +	-100	1.00	100	100
Acenaphthene	0.05 ug/L	<0.05	0.59	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Anthracene	0.01 ug/L	<0.01	0.26	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	0.48	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	0.33	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	0.52	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	0.19	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	0.24	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	0.56	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	0.06	0.91	0.02	<0.01
Fluorene	0.05 ug/L	<0.05	0.41	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	0.18	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	0.44	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	<0.05	0.49	<0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	0.93	<0.10	<0.10
Naphthalene	0.05 ug/L	<0.05	4.98	<0.05	<0.05
Phenanthrene	0.05 ug/L	0.11	0.96	0.07	<0.05
Pyrene	0.01 ug/L	0.05	0.68	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	57.0%	60.7%	64.4%	74.1%
Terphenyl-d14	Surrogate	60.0%	55.5%	52.9%	56.5%

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Certificate of Analysis Client: LRL Associates Ltd. Client PO:

Method Quality Control: Blank

Analyte	D14	Reporting		Source	0/8=0	%REC	DES	RPD	N1 - 4 -
Allalyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
lydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34) F4 PHCs (C34-C50)	ND ND	100 100	ug/L ug/L						
Metals	ND	100	ug/L						
Mercury	ND	0.1	ug/L						
Antimony	ND ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium Cobalt	ND ND	1 0.5	ug/L						
	ND ND	0.5	ug/L						
Copper Lead	ND ND	0.5	ug/L ug/L						
Molybdenum	ND ND	0.5	ug/L ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc Semi-Volatiles	ND	5	ug/L						
	ND	0.05	/1						
Acenaphthene Acenaphthylene	ND ND	0.05 0.05	ug/L ug/L						
Anthracene	ND	0.03	ug/L						
Benzo [a] anthracene	ND ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene Indeno [1,2,3-cd] pyrene	ND ND	0.05	ug/L						
1-Methylnaphthalene	ND ND	0.05 0.05	ug/L ug/L						
2-Methylnaphthalene	ND ND	0.05	ug/L ug/L						
Methylnaphthalene (1&2)	ND ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	15.0		ug/L		75.1	50-140			
Surrogate: Terphenyl-d14	19.2		ug/L		96.0	50-140			
/olatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						

Order #: 2311446

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	81.7		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	64.7		ug/L		80.9	50-140			
Surrogate: Toluene-d8	90.6		ug/L		113	50-140			

Client PO:

Order #: 2311446

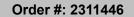
Certificate of AnalysisReport Date: 22-Mar-2023Client:LRL Associates Ltd.Order Date: 16-Mar-2023

Project Description: 220487

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	330	5	uS/cm	324			1.7	5	
pH	7.9	0.1	pH Units	7.9			0.3	3.3	
Phenolics	0.001	0.001	mg/L	0.001			NC	10	
Hydrocarbons	0.001	0.001	g,∟	0.001			.10		
•			_					•	
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	15	10	ug/L	14			9.9	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	8.0			NC	20	
Cobalt	0.51	0.5	ug/L	2.95			NC	20	
Copper	2.26	0.5	ug/L	8.98			NC	20	
Lead	0.24	0.1	ug/L	9.29			NC	20	
Molybdenum	3.32	0.5	ug/L	4.12			NC	20	
Nickel	1.6	1	ug/L	5.8			NC	20	
Selenium	ND	1	ug/L	1.6			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	559000	2000	ug/L	609000			8.5	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	0.7	0.1	ug/L	0.8			13.9	20	
Vanadium	1.49	0.5	ug/L	13.1			NC	20	
Zinc	ND	5	ug/L	14			NC	20	
/olatiles									
Acetone	8.22	5.0	ug/L	9.52			14.7	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	3.85	0.5	ug/L	2.92			27.5	30	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	

Order #: 2311446


Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

 Client:
 LRL Associates Ltd.
 Order Date: 16-Mar-2023

 Client PO:
 Project Description: 220487

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	7.60	0.5	ug/L	5.91			25.0	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	14.6	0.5	ug/L	11.1			27.6	30	
o-Xylene	7.09	0.5	ug/L	5.40			27.1	30	
Surrogate: 4-Bromofluorobenzene	80.6		ug/L		101	50-140			
Surrogate: Dibromofluoromethane	60.9		ug/L		76.1	50-140			
Surrogate: Toluene-d8	88. <i>4</i>		ug/L		110	50-140			

Certificate of Analysis
Client: LRL Associates Ltd.
Client PO:

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023 **Project Description: 220487**

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Phenolics	0.026	0.001	mg/L	0.001	101	67-133			
lydrocarbons									
F1 PHCs (C6-C10)	1910	25	ug/L	ND	95.6	68-117			
F2 PHCs (C10-C16)	1770	100	ug/L	ND	111	60-140			
F3 PHCs (C16-C34)	4520	100	ug/L	ND	115	60-140			
F4 PHCs (C34-C50)	2360	100	ug/L	ND	95.3	60-140			
letals			Ü						
Mercury	2.60	0.1	ug/L	ND	86.8	70-130			
Arsenic	51.7	1	ug/L	ND	102	80-120			
Beryllium	44.7	0.5	ug/L	ND	89.1	80-120			
Boron	54	10	ug/L	14	81.5	80-120			
Cadmium	43.2	0.1	ug/L	ND	86.2	80-120			
Chromium (VI)	199	10	ug/L	ND	99.5	70-130			
Chromium	61.5	1	ug/L	8.0	107	80-120			
Cobalt	57.3	0.5	ug/L	2.95	107	80-120			
Copper	52.0	0.5	ug/L	8.98	86.1	80-120			
Lead	56.8	0.1	ug/L	ND	114	80-120			
Molybdenum	60.4	0.5	ug/L	4.12	113	80-120			
Nickel	54.9	1	ug/L	5.8	98.3	80-120			
Selenium	41.1	1	ug/L	1.6	79.1	80-120		C	QM-07
Silver	42.7	0.1	ug/L	ND	85.3	80-120			
Sodium	11700	200	ug/L	ND	117	80-120			
Thallium	43.5	0.1	ug/L	ND	86.9	80-120			
Uranium	49.3	0.1	ug/L	0.8	97.1	80-120			
- Vanadium	64.5	0.5	ug/L	13.1	103	80-120			
emi-Volatiles			Ü						
Acenaphthene	4.61	0.05	ug/L	ND	92.2	50-140			
Acenaphthylene	4.14	0.05	ug/L	ND	82.9	50-140			
Anthracene	4.23	0.03	ug/L ug/L	ND	84.6	50-140			
Benzo [a] anthracene	4.98	0.01	ug/L	ND	99.6	50-140			
Benzo [a] pyrene	5.51	0.01	ug/L	ND	110	50-140			
Benzo [b] fluoranthene	5.88	0.05	ug/L	ND	118	50-140			
Benzo [g,h,i] perylene	3.97	0.05	ug/L	ND	79.5	50-140			
Benzo [k] fluoranthene	5.56	0.05	ug/L	ND	111	50-140			
Chrysene	5.33	0.05	ug/L	ND	107	50-140			
Dibenzo [a,h] anthracene	4.34	0.05	ug/L	ND	86.8	50-140			
Fluoranthene	4.36	0.01	ug/L	ND	87.1	50-140			
Fluorene	4.35	0.05	ug/L	ND	87.0	50-140			
Indeno [1,2,3-cd] pyrene	4.55	0.05	ug/L	ND	91.0	50-140			
1-Methylnaphthalene	4.93	0.05	ug/L	ND	98.6	50-140			
2-Methylnaphthalene	5.31	0.05	ug/L	ND	106	50-140			
Naphthalene	4.88	0.05	ug/L	ND	97.5	50-140			
Phenanthrene	4.19	0.05	ug/L	ND	83.8	50-140			
Pyrene	4.42	0.01	ug/L	ND	88.4	50-140			
Surrogate: 2-Fluorobiphenyl	19.5		ug/L		97.4	50-140			
Surrogate: Terphenyl-d14	22.4		ug/L		112	50-140			
olatiles			-						
Acetone	110	5.0	ug/L	ND	110	50-140			

Client PO:

Client: LRL Associates Ltd.

Order #: 2311446

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Project Description: 220487

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	42.2	0.5	ug/L	ND	105	60-130			
Bromodichloromethane	45.5	0.5	ug/L	ND	114	60-130			
Bromoform	35.9	0.5	ug/L	ND	89.7	60-130			
Bromomethane	48.7	0.5	ug/L	ND	122	50-140			
Carbon Tetrachloride	36.0	0.2	ug/L	ND	90.0	60-130			
Chlorobenzene	44.4	0.5	ug/L	ND	111	60-130			
Chloroform	44.7	0.5	ug/L	ND	112	60-130			
Dibromochloromethane	35.5	0.5	ug/L	ND	88.8	60-130			
Dichlorodifluoromethane	42.8	1.0	ug/L	ND	107	50-140			
1,2-Dichlorobenzene	39.8	0.5	ug/L	ND	99.4	60-130			
1,3-Dichlorobenzene	37.5	0.5	ug/L	ND	93.7	60-130			
1,4-Dichlorobenzene	37.0	0.5	ug/L	ND	92.4	60-130			
1,1-Dichloroethane	42.3	0.5	ug/L	ND	106	60-130			
1,2-Dichloroethane	46.2	0.5	ug/L	ND	116	60-130			
1,1-Dichloroethylene	45.4	0.5	ug/L	ND	113	60-130			
cis-1,2-Dichloroethylene	41.0	0.5	ug/L	ND	103	60-130			
trans-1,2-Dichloroethylene	37.9	0.5	ug/L	ND	94.7	60-130			
1,2-Dichloropropane	46.3	0.5	ug/L	ND	116	60-130			
cis-1,3-Dichloropropylene	43.5	0.5	ug/L	ND	109	60-130			
trans-1,3-Dichloropropylene	42.1	0.5	ug/L	ND	105	60-130			
Ethylbenzene	46.0	0.5	ug/L	ND	115	60-130			
Ethylene dibromide (dibromoethane, 1,2-	38.4	0.2	ug/L	ND	96.0	60-130			
Hexane	45.9	1.0	ug/L	ND	115	60-130			
Methyl Ethyl Ketone (2-Butanone)	129	5.0	ug/L	ND	129	50-140			
Methyl Isobutyl Ketone	125	5.0	ug/L	ND	125	50-140			
Methyl tert-butyl ether	111	2.0	ug/L	ND	111	50-140			
Methylene Chloride	44.2	5.0	ug/L	ND	111	60-130			
Styrene	34.2	0.5	ug/L	ND	85.6	60-130			
1,1,1,2-Tetrachloroethane	35.7	0.5	ug/L	ND	89.4	60-130			
1,1,2,2-Tetrachloroethane	37.4	0.5	ug/L	ND	93.6	60-130			
Tetrachloroethylene	39.2	0.5	ug/L	ND	98.1	60-130			
Toluene	48.1	0.5	ug/L	ND	120	60-130			
1,1,1-Trichloroethane	44.2	0.5	ug/L	ND	111	60-130			
1,1,2-Trichloroethane	47.5	0.5	ug/L	ND	119	60-130			
Trichloroethylene	42.9	0.5	ug/L	ND	107	60-130			
Trichlorofluoromethane	49.7	1.0	ug/L	ND	124	60-130			
Vinyl chloride	39.6	0.5	ug/L	ND	99.0	50-140			
m,p-Xylenes	90.2	0.5	ug/L	ND	113	60-130			
o-Xylene	45.8	0.5	ug/L	ND	115	60-130			
Surrogate: 4-Bromofluorobenzene	79.8		ug/L		99.8	50-140			
Surrogate: Dibromofluoromethane	82.2		ug/L		103	50-140			
Surrogate: Toluene-d8	85.8		ug/L		107	50-140			

Report Date: 22-Mar-2023 Order Date: 16-Mar-2023

Client PO: Project Description: 220487

Qualifier Notes:

Login Qualifiers:

Certificate of Analysis

Client: LRL Associates Ltd.

Container(s) - Labeled improperly/insufficient information - (VOC x2) Sample labelled as MW23-5 chain of

custody reads MW23-4

Applies to samples: MW23-4

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

0	P	A	R	A	C	-	
	LAB	0 R	A T 0	RΙ	ES	LT	D.

Paracel Order Number (Lab Use Only)

2311446

Chain Of Custody (Lab Use Only)

Client Name: LAL ASSOC Vales	Project Ref: 22	0487		Page lo	Ţ
Contact Name: LRL Associates Contact Name: Abdul Yeder Address: 5470 carrol of Rd	Quote #:	7		Turnaround 1	īme
Address: 5470 capatet Rd	PO #:			□ 1 day	☐ 3 day
Ottawa, ON	E-mail: atal	4 @ Inl.ca		□ 2 day	
Telephone: 613 315 6602		1 - 1111000		Date Required:	
REG 153/04 REG 406/19 Other Regulation	Matrix Type: S (Soil/Sed.)	GW (Ground Water)			
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PW			R	equired Analysis	
► Table 2	P (Paint) A (Air	O (Other)		2	
☐ Table 3 ☐ Agri/Other ☐ SU-Sani ☐ SU	- Storm	, t+BT	I C P	B (HWS) Medal Hydriv	%
Table Mun:	olume Containers	Sample Taken	by 10		Z Z
For RSC: Yes No Other:	Matrix Air Volume # of Contai	re Time	60	B (HWS)	DH Pends
Sample ID/Location Name				No GE E	0 70
1 MW23-2	au 8 2023.0	3.16 3:50 ×	XXX	XX	XX
2 MW23-3	9	3:40			1 ×
3 MW22 U 4 MW23 - 5	q	3:30			$ \times$
$\frac{4}{100}$ MW23-5	d 8 d	- 3:20 ₹	4 4 4	4 4	4
5					E _{rep} C
6					
7					
8					
9				1 1	
.0				. \	
omments:			Meth	pd of Delivery	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				MAKL	\wedge
rlinquished By (Sign): Receiv	ed By Driver/Depot:	Received ages 100	S 122 Verifi	ed By:	
linquished By (Print): Abdul Konsul Date/	ime:	Christy gas.	C ACA Date	Time: 1	1:50
ite/Time: 2422 02 11 11 26	rature: °C	Temperature: 4 2	°C PH V		
nain of Custody (Env) xlsx		4.0		540	emcnins

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road Ottawa, ON K1J 9G2 Attn: Jessica Arthurs

Client PO:

Project: 220487 Custody: 69848 Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

Order #: 2316082

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2316082-01 MW23-3

Approved By:

Dale Robertson, BSc Laboratory Director

Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

Project Description: 220487

Client: LRL Associates Ltd.
Client PO:

Certificate of Analysis

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	19-Apr-23	19-Apr-23
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	19-Apr-23	20-Apr-23

Report Date: 20-Apr-2023

Order Date: 17-Apr-2023

Project Description: 220487

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

					<u> </u>
	Client ID:	MW23-3	-	_	-
	Sample Date:	17-Apr-23 12:00	-	-	-
	Sample ID:	2316082-01	-	-	-
Metals	MDL/Units	Ground Water	-	-	-
	0.5 ug/L			Ī	Ī
Antimony		<0.5	-	-	-
Arsenic	1 ug/L	4	-	-	-
Barium	1 ug/L	26	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	23	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	<1	-	-	-
Cobalt	0.5 ug/L	<0.5	-	-	-
Copper	0.5 ug/L	<0.5	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Molybdenum	0.5 ug/L	6.6	-	-	-
Nickel	1 ug/L	6	-	-	-
Selenium	1 ug/L	<1	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	115000	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	2.9	-	-	-
Vanadium	0.5 ug/L	5.4	-	-	-
Zinc	5 ug/L	<5	-	-	-
Semi-Volatiles	'		1	•	•
Acenaphthene	0.05 ug/L	0.98	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Anthracene	0.01 ug/L	0.15	-	-	-
Benzo [a] anthracene	0.01 ug/L	0.09	-	-	-
Benzo [a] pyrene	0.01 ug/L	0.07	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	0.09	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	0.06	-	-	-
Chrysene	0.05 ug/L	0.06	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.24	-	-	-
Fluorene	0.05 ug/L	0.40	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	0.38	-	-	-
2-Methylnaphthalene	0.05 ug/L	0.48	-	-	-

Client: LRL Associates Ltd.

Order #: 2316082

Report Date: 20-Apr-2023

Order Date: 17-Apr-2023

Client PO: Project Description: 220487

	Sample ID MDL/Units 0.10 ug/L 0.05 ug/L 0.05 ug/L	MW23-3	-	-	-
	Sample Date:	17-Apr-23 12:00	-	-	-
	Sample ID:	2316082-01	-	-	-
	MDL/Units	Ground Water	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	0.85	-	-	-
Naphthalene	0.05 ug/L	4.36	-	-	-
Phenanthrene	0.05 ug/L	0.64	-	-	-
Pyrene	0.01 ug/L	0.18	-	-	-
2-Fluorobiphenyl	Surrogate	84.4%	-	-	-
Terphenyl-d14	Surrogate	130%	-	-	-

Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

Project Description: 220487

Certificate of Analysis

Client: LRL Associates Ltd.

Client PO:

Method Quality Control: Blank

Analysis		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND ND	200	ug/L ug/L						
Thallium	ND ND	0.1	ug/L ug/L						
Uranium	ND ND	0.1	ug/L ug/L						
Vanadium	ND ND	0.1	ug/L ug/L						
Zinc	ND ND	5.5	ug/L ug/L						
Zinc Semi-Volatiles	ואט	3	ug/L						
		0.05	n						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	22.7		ug/L		114	50-140			
Surrogate: Terphenyl-d14	22.7		ug/L		114	50-140			

Order #: 2316082

Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

 Client:
 LRL Associates Ltd.
 Order Date: 17-Apr-2023

 Client PO:
 Project Description: 220487

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
Metals										
Antimony	0.51	0.5	ug/L	0.52			2.5	20		
Arsenic	ND	1	ug/L	ND			NC	20		
Barium	49.0	1	ug/L	51.0			3.9	20		
Beryllium	ND	0.5	ug/L	ND			NC	20		
Boron	29	10	ug/L	30			1.3	20		
Cadmium	ND	0.1	ug/L	ND			NC	20		
Chromium	ND	1	ug/L	ND			NC	20		
Cobalt	ND	0.5	ug/L	ND			NC	20		
Copper	1.84	0.5	ug/L	1.86			1.2	20		
Lead	ND	0.1	ug/L	ND			NC	20		
Molybdenum	0.80	0.5	ug/L	0.85			5.5	20		
Nickel	ND	1	ug/L	ND			NC	20		
Selenium	ND	1	ug/L	ND			NC	20		
Silver	ND	0.1	ug/L	ND			NC	20		
Sodium	70000	200	ug/L	75800			7.9	20		
Thallium	ND	0.1	ug/L	ND			NC	20		
Uranium	0.4	0.1	ug/L	0.4			5.2	20		
Vanadium	ND	0.5	ug/L	ND			NC	20		
Zinc	ND	5	ug/L	ND			NC	20		

Order #: 2316082

Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

 Client:
 LRL Associates Ltd.
 Order Date: 17-Apr-2023

 Client PO:
 Project Description: 220487

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Arsenic	52.1	1	ug/L	ND	103	80-120			
Barium	91.0	1	ug/L	51.0	80.2	80-120			
Beryllium	43.5	0.5	ug/L	ND	87.0	80-120			
Boron	68	10	ug/L	30	76.7	80-120		(QM-07
Cadmium	44.9	0.1	ug/L	ND	89.8	80-120			
Chromium	51.4	1	ug/L	ND	102	80-120			
Cobalt	48.0	0.5	ug/L	ND	95.9	80-120			
Copper	45.1	0.5	ug/L	1.86	86.4	80-120			
Lead	41.6	0.1	ug/L	ND	83.2	80-120			
Molybdenum	43.5	0.5	ug/L	0.85	85.4	80-120			
Nickel	49.9	1	ug/L	ND	98.2	80-120			
Selenium	45.5	1	ug/L	ND	90.0	80-120			
Silver	44.2	0.1	ug/L	ND	88.5	80-120			
Sodium	9980	200	ug/L	ND	99.8	80-120			
Thallium	42.6	0.1	ug/L	ND	85.2	80-120			
Uranium	44.9	0.1	ug/L	0.4	89.0	80-120			
Vanadium	53.7	0.5	ug/L	ND	107	80-120			
Zinc	44	5	ug/L	ND	83.2	80-120			
Semi-Volatiles									
Acenaphthene	4.08	0.05	ug/L	ND	81.7	50-140			
Acenaphthylene	3.62	0.05	ug/L	ND	72.4	50-140			
Anthracene	3.88	0.01	ug/L	ND	77.6	50-140			
Benzo [a] anthracene	4.39	0.01	ug/L	ND	87.9	50-140			
Benzo [a] pyrene	4.89	0.01	ug/L	ND	97.7	50-140			
Benzo [b] fluoranthene	4.72	0.05	ug/L	ND	94.4	50-140			
Benzo [g,h,i] perylene	3.41	0.05	ug/L	ND	68.2	50-140			
Benzo [k] fluoranthene	5.20	0.05	ug/L	ND	104	50-140			
Chrysene	5.22	0.05	ug/L	ND	104	50-140			
Dibenzo [a,h] anthracene	3.63	0.05	ug/L	ND	72.7	50-140			
Fluoranthene	3.76	0.01	ug/L	ND	75.2	50-140			
Fluorene	4.10	0.05	ug/L	ND	82.0	50-140			
Indeno [1,2,3-cd] pyrene	3.55	0.05	ug/L	ND	71.0	50-140			
1-Methylnaphthalene	5.39	0.05	ug/L	ND	108	50-140			
2-Methylnaphthalene	5.57	0.05	ug/L	ND	111	50-140			
Naphthalene	4.68	0.05	ug/L	ND	93.5	50-140			
Phenanthrene	3.95	0.05	ug/L	ND	79.1	50-140			
Pyrene	3.87	0.01	ug/L	ND	77.5	50-140			
Surrogate: 2-Fluorobiphenyl	21.0		ug/L		105	50-140			
Surrogate: Terphenyl-d14	22.3		ug/L		111	50-140			

Report Date: 20-Apr-2023 Order Date: 17-Apr-2023

Client PO: Project Description: 220487

Qualifier Notes:

Login Qualifiers:

Certificate of Analysis

Client: LRL Associates Ltd.

Sample - Filtered and preserved by Paracel upon receipt at the laboratory - metals

Applies to samples: MW23-3

Sample - ICP-MS Metals not submitted according to Reg. 153/04, Amended 2011 - not field filtered and

preserved

Applies to samples: MW23-3

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Chain Of Custody Paracel Order Number (Lab Use Only) (Lab Use Only)

	LADORATORI	LJ LID																
Client Name	" LRL				Project Ref: 220487								Page of					
Contact Nan	ne: Jessica A	rthurs	7		Quote	uote #:							1			_		
Address:	5430 Canotek	Road			PO#:									day		1	□ 3 day	
	ottawa jon	KIJ 9	GZ		E-mail			77.77		-								
Telephone:	613 842 34		out the step of		Jarthurs@irlica								Date Required:				1	
REG 1	53/04 REG 406/19	Other Re	egulation	l N	latrix T	vne:	S/Soil/Sed) GW/G	round Water)						58.197	73.70	819	2	
☐ Table 1	Table 1 □ Res/Park □ Med/Fine □ REG 558 □ PWQO Table 2 □ Ind/Comm □ Coarse □ CCME □ MISA				Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)							Re	equired Analysis					
Table 2	☐ Ind/Comm ☐ Coarse	□ CCME	☐ MISA		P (Paint) A (Air) O (Other)					(4)	T	T	П	T	T			
☐ Table 3	☐ Agri/Other	☐ SU - Sani	☐ SU - Storm	2						Metals								
☐ Table	_	Mun:			ne	taine	Sample	Taken										
For F	RSC: 🗆 Yes 🛂 No	Other:		ž	Air Volume	of Containers			PAH	A		Turnaround □ 1 day □ 2 day	g)1					
	Sample ID/Locatio	n Name		Matrix	Air	tt:	Date	Time	d	FU							4	
1	MW23-3			Gw		2	April 17/23	1200 pm	X	X				1	. 1- 1-1	1637	7	
2			÷				read to a	73	3			77-			3.1			
3		. ,,	attended to the second				The Control of the Control										1	
4												7.1				-		
5								1/2.						_	+			
6											+-			_	+-	\vdash		
7						-					+			+	+-			
8						_	7.1				+			+	+-	\vdash		
9				-	_						+-			+	-			
10				-					-		+-			+	1.15	61		
Comments:														1-0-00-1999	120.00.71.00			
	not filtered - 1	Rinsed in	field									Metho	of of Peli	all i	in			
Relinquished	d By (Sign):		Received By D	river/De	epot:			Received at Laby	1		10	Verifie	d By:	1		5	146,46	
Relinquished	By (Print): A-thurs		Date/Time:					Date/Time: Ap	v 15	1/23	1pm	Date/1	Time:	por	17/	23	1326	
Date/Time:		7:58 pm	Temperature:				°C	Temperature:	8,		-							
Chain of Cust	adu (Blank) ylev	V	-			-	D. C. L. A.			_					7 5 7 1 1		THE PARTY	