DEWATERING ASSESSMENT – PROPOSED EXCAVATION

1047 Richmond Road Ottawa, Ontario

CO972.00

FINAL REPORT

March 4, 2025 Revised: April 10, 2025

Prepared for:

FENGATE DEVELOPMENT HOLDINGS LP

TERRAPEX

90 Scarsdale Road Toronto, Ontario, M3B 2R7 Telephone: (416) 245-0011 hydrogeology@terrapex.com www.terrapex.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1							
2.0	SITE CHARACTERIZATION	2							
3.0	FIELDWORK	3							
	 3.1 Groundwater Monitoring Well Construction	4 7							
4.0	HYDROCHEMICAL ANALYSES – Discharge Criteria Assessment	9							
5.0	DEWATERING ASSESSMENT								
	 5.1 Building Geometry and Hydrogeology	10 12 13 13							
6.0	WATER TAKING PLAN	15							
	 6.1 Natural Environment Considerations	15 15							
7.0	DISCHARGE PLAN	17							
	 7.1 Maximum Quantity to be Discharged	17 17 17							
8.0	REPORTING AND NOTIFICATION REQUIREMENTS	19							
9.0	Conclusions AND RECOMMENDATIONS	21							
10.0	CLOSURE	22							

FIGURES

- Figure 1 Site Location
- Figure 2 Study Area
- Figure 3 Mitigation Measures
- Figure 4 P2 Floor Plan

TABLES

Table 1:	Summary of Groundwater Monitoring Conditions
Table 2:	Measured Groundwater Levels5
Table 3:	Hydraulic Conductivity
Table 4:	Summary of Estimated Construction Dewatering Volumes for Concept Development
	12

APPENDICES

- Appendix I Borehole Log Reports
- Appendix II Hydraulic Analyses Reports
- Appendix III Analytical Laboratory Analyses Reports
- Appendix IV Curriculum Vitae

1.0 INTRODUCTION

Terrapex Environmental Ltd. (Terrapex) has been retained by Fengate Development Holdings LP to carry out a hydrogeological investigation, including dewatering assessment for the proposed excavation. The purpose of this investigation was to assess estimated dewatering quality and quantity for the proposed excavation.

The area of interest is located on the property of 1047 Richmond Road in Ottawa, Ontario (the Site). The location of the Site is provided on **Figure 1**. It is understood that the proposed footprint, shown on **Figure 2** will be carried out in two phases, with the footprint shaded darker to be carried out at a later date. The dewatering estimates provided in this report are limited to the first phase of excavation.

2.0 SITE CHARACTERIZATION

Review of online Ministry of Environment, Conservation and Parks (MECP) mapping (Source Protection Atlas, accessed July 2024), indicated that the area of interest is within a groundwater intake protection zone (Zone 2), which was identified as a groundwater and surface water area that discharges to a river body (i.e., the River of Ottawa). The Site was also reported to overlie a shallow-seated aquifer which is inclined towards infiltration (MECP; Source Protection Atlas, accessed July 2024). Based on historical reporting, the Site is not located in an area designated in a municipal official plan as a well-head protection area (WSP, 2023).

A review of the available well records shows that there are 131 reported wells within approximately 500 metres of the subject property. Of the known wells, two (2) wells within 100 metres are reported to be purposed for water supply use.

3.0 FIELDWORK

3.1 GROUNDWATER MONITORING WELL CONSTRUCTION

As part of the hydrogeological investigations, monitoring wells constructed by Golder Associates Ltd. (Golder, now WSP Canada Inc.) in September and November 2021, and May and October 2022 were used. The fieldwork for this project was carried out under the supervision of a licensed Professional Hydrogeologist in accordance with the provincial Professional Geoscientists Act (2002). A summary of test well construction specifications is provided in **Table 1**, below. The locations of the monitoring wells are provided in **Figure 2**.

Well ID	Date of Construction		te Location one 18T)	Approximate Ground Surface Elevation	Measured Screened Interval	Soils at Screened Interval	SPT N- Value at Screened
		metres east	metres north	masl	mbg		Interval
BH21-1	24-Sep-2021	361274	5026290	65.73	4.57 to 7.62	Limestone	-
BH21-2	21-Sep-2021	361298	5026359	65.46	3.96 to 7.01	Limestone	-
BH21-3	22-Sep-2021	361289	5026355	65.24	4.57 to 7.62	Limestone	-
BH21-4	21-Sep-2021	361314	5026370	65.09	4.57 to 7.62	Limestone	-
BH21-5	24-Sep-2021	361328	5026358	65.47	4.57 to 7.62	Limestone	-
BH21-11	12-Nov-2021	439016	5024866	65.26	2.49 to 5.54	Limestone	-
BH21-14	12-Nov-2021	439036	5024909	64.84	3.05 to 4.57	Limestone	-
BH21-15A	12-Nov-2021	439046	5024914	64.84	3.96 to 7.01	Limestone	RQD 40% to 80%
BH21-15B	12-Nov-2021	439046	5024914	64.84	1.53 to 3.05	Silty Sand to Sand	-
BH21-19	25-Nov-2021	439039	5024882	65.95	2.70 to 5.13	Limestone	-
BH21-20	24-Nov-2021	439047	5024862	65.93	3.30 to 5.18	Limestone	-
BH21-21	21-Dec-2021	439040	5024927	64.41	1.64 to 4.92	Silty and Sand	-
BH21-22	21-Dec-2021	439033	5024915	64.62	1.31 to 4.59	Sand	-
BH22-1	11-May-2022	439049	5024907	65.02	8.06 to 9.60	Limestone	-
BH22-2	9-May-2022	439035	5024907	64.90	4.41 to 7.46	Limestone	-
BH22-3	10-May-2022	439053	5024917	64.85	5.18 to 6.7	Limestone	-
BH22-4	9-May-2022	439027	5024905	64.75	4.87 to 7.92	Limestone	-
BH22-5	11-May-2022	439071	5024856	65.94	7.61 to 10.66	Limestone	-
BH22-6	3-Oct-2022	439037	5024908	64.90	6.00 to 7.00	Limestone	-
BH22-7	3-Oct-2022	439047	5024904	65.11	6.00 to 7.01	Limestone	-
BH22-8	4-Nov-2022	439037	5024909	64.87	9.00 to 10.00	Limestone	-
BH22-9 (S)	15-May-2023	439049	5024939	64.22	4.57 to 7.62	Limestone	-
BH22-9 (D)	15-May-2023	439050	5024939	64.23	9.06 to 10.66	Limestone	-
BH22-10 (S)	15-May-2023	439067	5024926	64.83	4.57 to 7.62	Limestone	-
BH22-10 (D)	15-May-2023	439068	5024925	64.81	9.06 to 10.06	Limestone	-

TABLE 1: SUMMARY OF GROUNDWATER MONITORING CONDITIONS

Information taken from Phase Two Environmental Site Assessment, 1047 Richmond Rd, Ottawa, Ontario; WSP, October 2023

Based on the information in **Table 1**, above and the appended borehole logs provided in **Appendix I**, the interface between overburden and bedrock ranges from 58.11 masl to 63.92

masl, with an average elevation of 61.99 masl. The average depth-to-bedrock is used as part of the dewatering estimates, below.

3.2 **GROUNDWATER MONITORING**

Groundwater measurements were reported during ten (10) site visit events, carried out by Golder/WSP and Terrapex between October 4, 2021, and June 27, 2024. A summary of the groundwater depths is presented in **Table 2**. The recorded water levels reflect the groundwater conditions on the dates they were measured.

The most recent groundwater monitoring visit event was carried out by Terrapex on June 27, 2024. In this visit, groundwater piezometric head measurements were measured manually at locations BH21-1 to BH21-4, BH21-11, BH21-14, BH21-15A, BH21-15B, BH21-20 to BH21-22, BH22-2 to BH22-8, BH22-10(S), and BH22-10(D) by Terrapex.

CO972.00

TABLE 2: MEASURED GROUNDWATER LEVELS

Location Identification BH21-1 BH21-2 BH21-3 BH21-3 BH21-4 BH21-4 BH21-4 BH21-5 BH21-15 BH21-11 BH21-15 BH21-15 BH21-15B BH21-15B BH21-20							G	roundwater M	leasurement	5			
Location	Screened Interval	Depth to Bedrock	Ground Surface		2021		20)22		202	23		2024
			Elevation	Oct 4	Nov 30	Dec 22	May 26	Nov 15	May 23	Jun 30	Jul 19	Aug 8	Jun 27
	mbg		masl	mbg (masl)									
BH21-1	4.57 to 7.62	1.83	65.73	7.69 (58.04)	7.63 (58.10)	7.66 (58.70)	NM	NM	NM	NM	NM	7.54 (58.19)	4.18 (61.55)
BH21-2	3.96 to 7.01	2.66	65.46	4.54 (60.92)	4.58 (60.88)	4.58 (60.88)	NM	NM	NM	NM	NM	4.32 (61.14)	2.89 (62.57)
BH21-3	4.57 to 7.62	3.05	65.24	4.28 (60.96)	3.80 (61.44)	3.80 (61.44)	NM	NM	NM	NM	NM	3.52 (61.72)	0.85 (64.39)
BH21-4	4.57 to 7.62	3.66	65.09	2.65 (62.44)	2.83 (62.26)	2.83 (62.26)	2.44 (62.65)	3.17 (61.92)	2.64 (62.45)	3.09 (62.0)	2.55 (62.54)	2.03 (63.06)	2.06 (63.03)
BH21-5	4.57 to 7.62	3.66	65.47	3.95 (61.52)	4.04 (61.43)	3.94 (61.53)	NM	NM	NM	NM	NM	DC	DC
BH21-11	2.49 to 5.54	1.52	65.26	NI	2.96 (62.30)	2.96 (62.30)	NM	NM	NM	NM	NM	2.28 (62.98)	2.10 (63.17)
BH21-14	3.05 to 4.57	1.68	64.84	NI	2.48 (62.36)	2.44 (62.40)	2.13 (62.71)	2.80 (62.05)	2.40 (62.44)	2.43 (62.41)	2.23 (62.61)	1.84 (63.00)	1.80 (63.04)
BH21-15A	3.96 to 7.01	3.15	64.84	NI	2.74 (62.10)	2.74 (62.10)	NM	NM	2.46 (62.38)	NM	NM	NM	2.81 (62.03)
BH21-15B	1.53 to 3.05	3.15	64.84	NI	2.59 (62.25)	2.59 (62.25)	NM	NM	2.38 (62.46)	NM	NM	NM	1.83 (63.01)
BH21-19	2.70 to 5.13	2.03	65.95	NI	3.44 (62.51)	3.44 (62.51)	NM						
BH21-20	3.30 to 5.18	2.29	65.93	NI	3.82 (62.11)	3.82 (62.11)	NM	NM	NM	NM	NM	NM	2.14 (63.79)
BH21-21	1.64 to 4.92	4.26	64.41	NI	NI	2.43 (61.98)	NM	NM	NM	2.27 (62.14)	NM	2.03 (62.38)	1.67 (62.75)
BH21-22	1.31 to 4.59	2.95	64.62	NI	NI	2.72 (61.90)	NM	NM	2.37 (62.25)	2.27 (62.35)	NM	1.90 (62.72)	1.74 (62.88)
BH22-1	8.06 to 9.60	3.40	65.02	NI	NI	NI	7.87 (57.15)	8.20 (56.82)	7.57 (57.45)	7.72 (57.30)	7.84 (57.18)	NM (-)	NM (-)
BH22-2	4.41 to 7.46	2.90	64.90	NI	NI	NI	6.98 (57.92)	2.98 (61.92)	2.37 (62.53)	3.10 (61.80)	2.58 (62.32)	NM (-)	2.10 (62.80)
BH22-3	5.18 to 6.7	2.74	64.85	NI	NI	NI	2.30 (62.55)	6.81 (58.04)	7.42 (57.43)	7.36 (57.49)	6.83 (58.02)	6.79 (58.06)	6.71 (58.14)

EASR Support Document

BH22-4	4.87 to 7.92	2.29	64.75	NI	NI	NI	6.85	7.10	7.14	7.10	6.83	6.53	6.49
DH22-4	4.07 10 7.92	2.29	04.75	INI	INI	INI	(57.90)	(57.65)	(57.61)	(57.65)	(57.92)	(58.22)	(58.26)
BH22-5	7.61 to 10.66	3.35	65.94	NI	NI	NI	7.79	NM	7.95	7.86	NM	7.84	7.49
	1.01 10 10.00	0.00	00.04				(58.15)		(57.99)	(58.08)	14101	(58.10)	(58.46)
BH22-6	6.00 to 7.00	2.50	64.90	NI	NI	NI	NI	6.85	6.85	6.78	7.02	6.72	6.19
BLIEE 0	0.00 10 7.00	2.00	01.00					(58.05)	(58.05)	(58.12)	(57.88)	(58.18)	(58.71)
BH22-7	6.00 to 7.01	3.20	65.11	NI	NI	NI	NI	6.92	6.90	NM	6.77	6.65	6.64
	0.00107.01	0.20	00.11					(58.19)	(58.21)	(-)	(58.34)	(58.46)	(58.47)
BH22-8	9.00 to 10.00	2.65	64.87	NI	NI	NI	NI	8.11	8.00	7.83	7.87	7.66	7.52
BIIZZ 0	0.00 10 10.00	2.00	04.07					(56.76)	(56.87)	(57.04)	(57.00)	(57.21)	(57.35)
BH22-9 (S)	4.57 to 7.62	4.11	64.22	NI	NI	NI	NI	NI	7.51	NM	NM	5.44	NM
B1122 0 (0)	4.07 10 7.02	7.11	04.22						(56.71)			(58.78)	(-)
BH22-9 (D)	9.06 to 10.66	4.11	64.23	NI	NI	NI	NI	NI	8.56	NM	NM	7.85	NM
Brizz (B)	0.00 10 10.00		01.20						(55.67)			(56.38)	(-)
BH22-10 (S)	4.57 to 7.62	3.96	64.83	NI	NI	NI	NI	NI	7.49	NM	NM	7.04	6.55
21122 10 (0)	1.07 10 7.02	0.00	01.00						(57.34)			(57.79)	(58.28)
BH22-10 (D)	9.06 to 10.06	3.96	64.81	NI	NI	NI	NI	NI	9.15	NM	NM	7.86	7.49
D1122 10 (D)	0.00 10 10.00	0.00	04.01						(55.66)			(56.95)	(57.33)

Elevations taken from Borehole logs released by WSP, 2023

masl = metres above sea level

mbg = metres below ground

NI = not installed

NM = not measured

DC = decommissioned

Italics indicate groundwater measurements carried out by others

Shaded cells indicate high/low values.

Green cells indicate an aquifer which is generally more shallow, and not connected to the aquifer screened in the others.

Based on the information above, groundwater appears to within two separate layers, which are not defined by depth of screen or by adjacent materials screened in. Further, these wells are not linked spatially, as seen in BH21-14, BH22-08, BH22-06, and BH22-03, which are clustered in the same general area. Further description is provided below:

- Wells BH21-1, BH22-1, and BH22-3 through BH22-10 have water levels ranging from 4.18 mbg to 9.15 mbg.
- Wells BH21-3 through BH21-5, BH21-11, BH21-14, BH21-15, BH21-19 through BH21-22, and BH22-2 were observed to have water levels ranging from 0.85 mbg to 4.58 mbg.
- It is noted that wells BH21-3 through BH21-5, and BH21-15A are screened deeper, but appear to have piezometric head levels more similar to the 'shallow' aquifer.

This suggests two separate aquifers that are not connected, and controlled by bedrock fractures and other paths-of-least-resistance that do not link. Infiltrated waters are also understood to follow the surface of the bedrock, before penetrating downwards.

These two aquifers were considered separate for the purposes of dewatering estimates.

Based on a visual examination of the measured water levels summarized in **Table 2**, the vertical hydraulic gradient direction is downward, indicating the Site generally functions as a recharge area. Groundwater found within the overburden is assumed to recharge into the bedrock through fractures and other paths-of-least-resistance. This corroborates the aquifer conditions reported by the MECP Source Protection Atlas.

3.3 HYDROSTRATIGRAPHIC CONCEPT

Based on the measurements summarized in **Table 2** and borehole information, Terrapex has interpreted a hydrostratigraphic concept where unconnected aquifers occupy the same geographical area and are controlled by fracture systems.

For the purpose of the calculations, subsurface conditions are considered to be saturated (with one aquifer or another), from a depth of 1.80 mbg (BH21-14) to the bottom of the excavation. When considering 'saturated', this indicates that water will occupy encountered fractures at those depths, and not uniformly through porosity.

It is noted that a groundwater level of 0.83 mbg was measured at location BH21-3. This value does not corroborate the historical measurements reported for this location, and is presumed to be a result of a damaged flush-mount cap.

3.4 HYDRAULIC TESTING

To estimate the hydraulic conductivity (K) of the soil and/or bedrock materials adjacent to the screened intervals at the tested monitoring wells, single well response tests were carried out at

locations BH21-14, BH22-4, BH21-4, BH21-15, BH21-22, BH22-08 and BH21-01. Single Well Response test reports are provided in **Appendix II**.

The tests were carried out by rapidly removing a volume of water from the well (Rising Head Test) or adding a volume of water from a well (Falling Head Test) and monitoring the subsequent water level recovery to the static water level conditions. The Bouwer and Rice (1976) method was applied to test data, using the unconfined solution. The data was analyzed using the AQTESOLVTM (v. 4.50). A summary of the single well response tests carried out is presented below in **Table 3**.

Location Identification	Description of Soil Moisture	Soils at Screened	Screened Interval	SPT N-Value at Screened Interval	Estimated Hydraulic Conductivity
Identification	Conditions	Interval	mbg	Screened Interval	K (m/s)
BH21-14	Saturated	Crushed limestone	2.7 to 4.57	-	1.89 x 10⁻ ⁶
BH22-4	Saturated	Limestone (bedrock)	4.3 to 7.92	-	1.59 x 10 ⁻⁶
BH21-4	Saturated	Limestone (bedrock)	4.57 to 7.62	-	1.82 x 10 ⁻⁶
BH21-15A	Saturated	Limestone (bedrock)	3.96 to 7.01	RQD 40% to 80%	1.80 x 10 ⁻⁶
BH21-22	Saturated	Sand and silt	0.9 to 4.27	-	8.64 x 10 ⁻⁶
BH21-22	Saturated	Limestone (bedrock)	0.9 to 4.27	-	3.24 x 10 ⁻⁸
BH22-08	Saturated	Limestone (bedrock)	8.5 to 10	-	1.64 x 10 ⁻⁶
BH21-01	Saturated	Limestone (bedrock)	8.08 to 9.6	-	1.27 x 10 ⁻⁷

TABLE 3: HYDRAULIC CONDUCTIVITY

mbg– indicates 'metres below ground. masl– indicates 'metres above sea level.

Shaded cell indicates the highest ('fastest') hydraulic conductivities for overburden and bedrock.

As summarized in **Table 3**, hydraulic conductivities were consistently estimated to be approximately from 3.24×10^{-8} m/s to 8.64×10^{-6} m/s at the locations and depths tested. The highest measured hydraulic conductivity for the overburden was 8.64×10^{-6} m/s, seen in the sand and silt materials, whereas the highest measured hydraulic conductivity for the bedrock was 1.82×10^{-6} m/s.

These results are consistent with sand and silt and bedrock, and are considered relatively semipervious and impervious, respectively (Bear 1972; Freeze and Cherry, 1979).

4.0 HYDROCHEMICAL ANALYSES – DISCHARGE CRITERIA ASSESSMENT

Analytical laboratory investigations were carried out to characterize the hydrochemical conditions of the groundwater at the Site for the purposes of temporary dewatering and long term foundation drainage operations. One representative non-filtered groundwater sample was collected at location MW202 on March 18, 2025 using low-flow draw methods and sent to and sent to Bureau Veritas Laboratory (BV) in Mississauga, Ontario under contract with Terrapex. BV is accredited by Standards Council of Canada (SCC) to International Standard ISO/IEC 17025:2005, General Requirement for the Competence of Testing and Calibration Laboratories. Monitoring well MW202 was selected at the time as a "worst-case" for groundwater concentrations at the Site based on previous analytical results prior to remediation.

Based on the analytical laboratory findings, tested parameters complied with the criteria of the City of Ottawa Sewer Use Bylaw for Sanitary and Combined Sewers.

Laboratory Reports for the results are provided in Appendix III.

5.0 DEWATERING ASSESSMENT

Temporary dewatering estimates were based on provided concept dimensions for the proposed construction excavation, and based on the steady state inflow, which is expected to be consistent through the excavation operations. Estimates for the overburden and bedrock were calculated independently.

The planned development may require buried municipal infrastructure, such as piped sanitary sewer, storm sewer and other utilities. The depths of excavation trenches associated with the construction of that infrastructure are presently not determined. Where below the water table, seepage management should be anticipated for installing of this infrastructure under dry and safer working conditions.

5.1 BUILDING GEOMETRY AND HYDROGEOLOGY

We understand that it is proposed to redevelop the property with a multi-storey building with two (2) levels of underground (Building A). The provided cross-section (Drawing A300; rla/architecture, 24 March 2025) indicates that the P2 lower surface has an elevation of 57.800 masl. The average ground elevation of all surveyed monitoring well locations in **Table 2** was calculated to be 65.04 masl, which means the P2 lower surface would be approximately 7.24 mbg. As such, the proposed excavation depth is expected to cut into the saturated zone and dewatering will be required during construction.

Provided floor plans (Site Plan SP-1; rla/architecture, 2025-03-24) show an irregular floor plan shape of approximately 4,815.46 m².

It is understood that the excavation above represents a portion of the total excavation, and that the remaining footprint for Tower B will be excavated at a later date.

5.2 ESTIMATED CONSTRUCTION DEWATERING VOLUMES

The hydraulic conductivities derived from *in situ* testing were used to estimate a worst-case scenario for temporary construction dewatering rates. It is understood that the area of the P2 subsurface level is approximately 4,815.46 m² and the longest length of the building is approximately 77.67 m (Drawing #19186 of the Site Plan, sheet SP-1; rla/architecture, 24 March 2025). Dewatering estimates of the irregularly shaped building footprint were simplified to a rectangle with dimensions of 77.67 m by 62 m, representative of the area of the P2 subsurface level, and a depth to the P2 lower surface level of 7.24 mbg.

At the time of this report release, designs for Tower B were not available to Terrapex. It is understood that the remaining footprint for Tower B will be excavated at a later date.

The following assumptions were made:	
Excavation Footprint:	Phase One ('west side' Tower A)
	77.67 m x 62 m
	(~4,815 m²)
Approximate Ground Surface:	0 mbg datum
	(approximately 65.0 masl)
Target dewatering depth:	7.24 mbg + 1 m (slab)
	= 8.24 mbg
Hydraulic conductivity:	8.6 x 10⁻ ⁶ m/s (overburden)
	1.8 x 10 ⁻⁶ m/s (bedrock)
Highest measured static groundwater elevation:	1.80 mbg (at BH21-14)
	(64.39 masl)
Estimated Drawdown:	Total Drawdown:
	8.24 mbg – 1.80 mbg = 6.44 m
	Overburden:
	65 masl - 61.99 masl – 1.80 mbg = 2.16 m
	Bedrock:
	6.44 m – 2.16 m = 4.28 m

To estimate the steady state dewatering rate, the modified Jacob's equation was applied, as presented in Powers et. al. (2007), using the groundwater conditions summarized above. The dewatering rate was estimated for radial flow and flow to a trench from a line source. The steady state dewatering rate estimates are summarized in **Table 4**, below.

		(A)	(B)	(C)	(D)	
Excavation Concept	Dimensions ²	Estimated Dewatering Volume	Incident Precipitation ¹	Total Dewatering Volume (A+B)	Design Dewatering Volume (A x FOS) + B	Zone of Influence (ZOI)
	(length / width / drawdown)	(L/day)	(L/day)	(L/day)	(L/day)	(m radius)
Phase One ('west side	e' Tower A) ³					
Overburden K = 8.6 x 10 ⁻⁶ m/s	77.67 m / 62 m / 2.16 m	28,282	72,233	100,515	114,656	19
Bedrock K = 1.8 x 10 ⁻⁶ m/s	77.67 m / 62 m / 4.28 m	128,191	-	128,191	192,287	17
Total Estimated Dewatering	77.67 m / 62 m / 6.44 m	156,473	72,233	228,706	306,943	19 m within overburden

TABLE 4: SUMMARY OF ESTIMATED CONSTRUCTION DEWATERING VOLUMES FOR CONCEPT DEVELOPMENT DEVELOPMENT

¹ Based on a storm with a precipitation of 15 mm

² Dimensions provided in rla/architecture (2025-03-24)

FOS = Factor of Safety of 1.5

5.3 TOTAL DEWATERING RATE

Water takings in excess of 50,000 L/day are regulated by the Ministry of Environment, Conservation and Parks (MECP). Certain construction dewatering activities up to 400,000 L/day may qualify for a self-registration process under the Environmental Activity Sector Registry ("EASR"). A Category 3 PTTW is required where the proposed water taking is greater than 400,000 L/day.

Temporary construction dewatering calculations, based on the assumption and analyses above, are provided in **Appendix II**. **Table 4** summarizes the anticipated steady state dewatering rate estimates. It is noted that higher dewatering rates may be required initially for short periods of time to remove the volume of groundwater stored within the adjacent pore space and/or bedrock and suppress the groundwater level to 6.44 mbg.

As summarized in **Table 4**, based on the conditions encountered during the hydrogeological field investigations, the excavation is anticipated to required temporary construction dewatering (inclusive of incident rainfall and a Factor of Safety of 1.5) equivalent to approximately 306,943 L/day during the construction of Tower A.

5.4 ZONE OF INFLUENCE

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The dewatering zone of influence was estimated for the excavation area using the groundwater elevations and hydraulic conductivities provided above and using the empirical Sichart and Kyrieleis relationship described in Powers (2007).

The estimated Zones of Influence are provided in **Table 4**, above, and as part of the analyses provided in **Appendix II**.

Zone of Influence - Overburden

Based on the hydraulic conductivity and proposed excavation dimensions, the dewatering operations are anticipated to have a Zone of Influence (ZOI) equivalent to a 19-metre radius from the dewatering locations.

Zone of Influence - Bedrock

Based on the hydraulic conductivity and proposed excavation dimensions, the dewatering operations are anticipated to have a Zone of Influence (ZOI) equivalent to a 17-metre radius from the dewatering locations.

It is understood that the zone of influence relies on soil porosity as part of the estimate calculations. Bedrock, by nature, does not have porosity and the ZOI is reliant upon local fracture system connectivity. As such, the ZOI for the bedrock is strictly an estimate.

5.5 INCIDENT PRECIPITATION

In addition to groundwater inflows, the total dewatering rate needs to consider the removal of incident precipitation that must be handled with the groundwater. Obstructions, berms and/or grading should be used to direct overland drainage away from the excavations to the extent possible.

A 15 mm precipitation event was used for the estimates provided in **Table 4**, above.

5.6 **PERMITTING**

Water takings in excess of 50,000 L/day are regulated by the Ministry of Environment, Conservation and Parks (MECP). Certain construction dewatering activities up to 400,000 L/day may qualify for a self-registration process under the Environmental Activity Sector Registry ("EASR"). A Category 3 Permit to Take Water (PTTW) is required where the proposed water taking is greater than 400,000 L/day. It is understood that permitting with the province no longer requires the contribution of incident rainfall (July 1, 2022).

The volumes summarized above indicate that an Environmental Activity Sector Registration (EASR) will be required during construction for the concept excavation dimensions for Tower A. This assumes that one tower will be excavated at a time. Should both towers be excavated at the same time, a Permit to Take Water (PTTW) would be required.

It is noted that dewatering operations will need to draw the groundwater to at least one meter below the excavation floor (CFEM, 2006).

6.0 WATER TAKING PLAN

6.1 NATURAL ENVIRONMENT CONSIDERATIONS

Site dewatering is not anticipated to have any negative impacts on the natural environment as the durations and volumes expected will not have a measurable effect on nearby well levels and all groundwater will pass through an onsite groundwater treatment system before discharging to a sanitary sewer pipe. Specific measures have been recommended to reduce potential risks during excavation dewatering. These best management practices (BMPs) should be followed:

- Appropriate sediment, contamination and erosion control measures must be used by the contractor to regulate stormwater and discharge water. Equipment should not be at risk of contaminating soil or water and flows must be controlled; and,
- Appropriate spill management (location and response procedures) plan will be developed and used by the contractor.

6.2 POTENTIAL SETTLEMENT ISSUES

As mentioned in **Section 5.4**, the ZOI was calculated to be approximately 19 m within overburden and approximately 17 m within bedrock (**Table 5**, above).

Localized subsidence immediately adjacent to the excavation due to a loss of hydrostatic pressure with the soil pore space, and care should be given to operating within the ZOI with machinery. Ground response beyond the limits of the investigation may vary where soil conditions vary; however, assuming conditions are relatively consistent through the dewatering zone of influence, the expected settlement is anticipated to decrease with increasing distance from the excavation.

6.3 ENVIRONMENTAL MANAGEMENT PLAN (EMP)

In order to monitor and mitigate potential impacts of any dewatering operation, it is recommended that an Environmental Management Plan (EMP) be developed. The key points of the proposed recommended EMP are as follows:

- To monitor groundwater levels;
- To measure and record dewatering volumes;
- To assess groundwater/surface water interactions;
- To assess possible changes in groundwater quality;
- To carry out settlement monitoring inspections; and,
- To provide mitigation and adaptive management, when necessary.

Where a higher level of confidence is required, such as locations where a building structure is nearby, the contractor may implement a settlement monitoring program to confirm that

settlements are less than 25 mm or as otherwise specified by utility owners. The settlement monitoring program would include an array of in-ground monitoring points founded on the building, which would be surveyed periodically to confirm that no subsidence is occurring.

Shop drawings indicating the proposed in-ground monitoring point type/construction and the location of each point should be submitted by the contractor and approved by the engineer prior to construction. Monitoring should start prior to excavation to obtain a baseline, then weekly during excavation and dewatering, then monthly after excavation is complete until the groundwater level is permitted to return to static conditions.

6.4 EXPECTED AREA OF INFLUENCE

As discussed in Section 4.1, the Zone of Influence (ZOI) is estimated to be 19m within overburden and approximately 17 m within bedrock (**Table 5**, above).

The nearest potable well to the Site (MOE Well Record 1503902, drilled to a depth of 29 m) is located approximately 150 m from the anticipated dewatering operations. This well was constructed in 1953 and is assumed to not be in use. As such, water supply is not anticipated to be affected by the water taking. Shop drawings indicating the proposed in-ground monitoring point type/construction and the location of each point should be submitted by the contractor and approved by the engineer prior to construction. Monitoring should start prior to excavation to obtain a baseline, then weekly during excavation and dewatering, then monthly after excavation is complete until the groundwater level is permitted to return to static conditions.

7.0 DISCHARGE PLAN

7.1 MAXIMUM QUANTITY TO BE DISCHARGED

The maximum quantity of water to be discharged is estimated to be 306,943 L/day for each tower. A Specialist Dewatering Contractor will carry out dewatering operations as appropriate using best management practices and will be operated for up to 24 hours per day.

The total dewatering of the excavation is estimated to be 306,943 L/day for each tower, inclusive of incident precipitation and with a factor of safety of 1.5. The recommended **EASR limit being applied for is 399,000 L/day.**

7.2 DISCHARGE LOCATION

The proposed discharge location for the excavation is shown on **Figure 3**. Water will be pumped from the excavation to a groundwater treatment system using a pipe or hose. Treated water will be discharged to a sanitary sewer pipe on the Site. Locations are subject to change pending discussion with the contractor.

7.3 **GROUNDWATER TREATMENT AND DISCHARGE**

As summarized in **Section 4**, all groundwater quality parameters met the requirements of the City of Ottawa Sewer Use Criteria for Sanitary and Combined Sewers,. Based on the results, treatment of the groundwater effluent would not be required prior to discharge to the sanitary sewer, although additional sampling may be required.

7.4 **MONITORING**

Dewatering and discharge monitoring will be conducted during dewatering operations in accordance with the requirements detailed below. Monitoring records need to be retained for up to five years after completion of all dewatering activities at the Site and will include the following:

- Visual inspection of the discharge effluent at least once daily to ensure there is no visible oil or sheen;
- Water quantity (i.e., water taking rates) will be metered and recorded by the contractor on a daily basis;
- Discharge activities will be suspended if:
 - Any parameters in the discharge water exceeds the established criteria identified above; or
 - Visible oil or sheen is observed in the discharge water.

Until suitable water quality conditions are restored (either through settling or using the mitigation measures identified above), discharge activities will be postponed, and a filtered water quality

sample will be collected and submitted for laboratory analysis of turbidity, TSS, and other parameters regulated under the municipal sanitary sewer permit.

7.5 QUALIFICATIONS OF QP

The water taking plan was prepared by Zen Keizars, P.Geo. and Andrew Durbano, P.Geo., on July 26, 2024. Copies of both curricula vitae are presented in **Appendix IV**.

8.0 **REPORTING AND NOTIFICATION REQUIREMENTS**

An EASR identifies a number of reporting and notification requirements that need to be undertaken within specific time periods. These reporting requirements include:

- Any changes to the information included in the EASR will be made by the contractor online within 30 days of becoming aware of these changes.
- A request needs to be submitted to remove the registration from the EASR if and once the contractor no longer engaging in the prescribed activity.
- The actual volume of water taken daily shall be reported to the Ministry on or before March 31 in each year. If no water is taken, then a "no taking" report must be entered. The water takings shall be reported online through the Regulatory Self-Reporting System (RSRS) which is accessed through the same online account as the EASR. A record of the water taking must be created and retained by the registrant for a period of five years after the last day of water taking. The record shall state:
 - \circ the dates on which groundwater, storm water or both were taken;
 - for each day on which groundwater, storm water or both were taken, the average rate at which it was taken in litres per second; and
 - the volume of ground water, storm water or both taken each day in litres.
- If the taking of water is intended to continue for more than 365 days, the contractor must provide written notice about the taking to the local municipalities (upper-tier and lower or single tier, if applicable) and any conservation authority within whose jurisdiction the proposed water taking is located prior to commencing dewatering. This notification must include:
 - o the name of the person proposing to take and discharge the water;
 - the dates on which the water will be taken;
 - where the water taken from; and
 - the location of the proposed discharge.
- If the taking of water is no longer needed, within 30 days after the day the activity is ceased, the contactor must give notice to the MECP that the water taking is complete by filing that information on EASR online registration.
- If a complaint is received with respect to the taking of water and the complaint relates to the natural environment, the Ministry shall be notified of the complaint immediately after the complaint is received. Notification shall be to the local District Office of the Ministry during normal business hours and after hours to the Ministry's Spills Action Centre by calling 416-325-3000 or 1-800-268-6060. A record of the complaint must be made and retained for a minimum period of five years and have the following minimal information:
 - the date and time the complaint was received;

- \circ a copy of the complaint, if it is a written complaint;
- o a summary of the complaint, if it is not a written complaint; and
- o a summary of measures taken, if any, to address the complaint.

A record of all water quality measurements and analytical results, as well as daily dewatering rates needs to be retained by the contractor and client and may be requested by the MECP for up to 5 years after dewatering activities have been completed.

9.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the information above, obtained during the review of the Site:

- The subsurface stratigraphy is generally comprised of compact to very dense sandy silt to sand and silt, very stiff to hard clayey silt, dense to very dense sand and gravel, and very dense silty sand and sand. The soil throughout the Site is overlain by fill materials consisting of loose silty sand, compact sand, loose sandy clay, and firm to stiff clayey silt. All boreholes were covered by asphaltic concrete.
- *In-situ* measurements of **the static groundwater** level ranged from approximately 1.80 mbg to 9.15 mbg.
- **Hydraulic conductivity** maximums were estimated to be approximately 8.6 x 10⁻⁶ m/s in the overburden, and 1.8 x 10⁻⁶ m/s in the bedrock.
- Analytical hydrochemical analyses indicate that tested groundwater does meet the criteria for the City of Ottawa discharge to sanitary and combined sewers. Note that results for dioxins and furans, and N-Nitrosodimethylamine were still pending at the time of this report.
- The temporary construction dewatering volume was estimated to be 306,943 L/day for Tower A (inclusive of incident rainfall and with a Factor of Safety of 1.5 for groundwater contributions) and is dependent on the number of fractures encountered.
- Based on these concepts, the volumes summarized above indicate that an Environmental Activity Sector Registration (EASR) will be required during construction for the concept excavation dimensions for Tower A. It is assumed that one tower will be excavated at a time.
- A Private Water Discharge Agreement would be required for discharge of construction dewatering effluent to sewer services.

10.0 CLOSURE

This report has been completed in accordance with the terms of reference for this project as agreed upon by Fengate Development Holdings LP (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted hydrogeological consulting practices in this area.

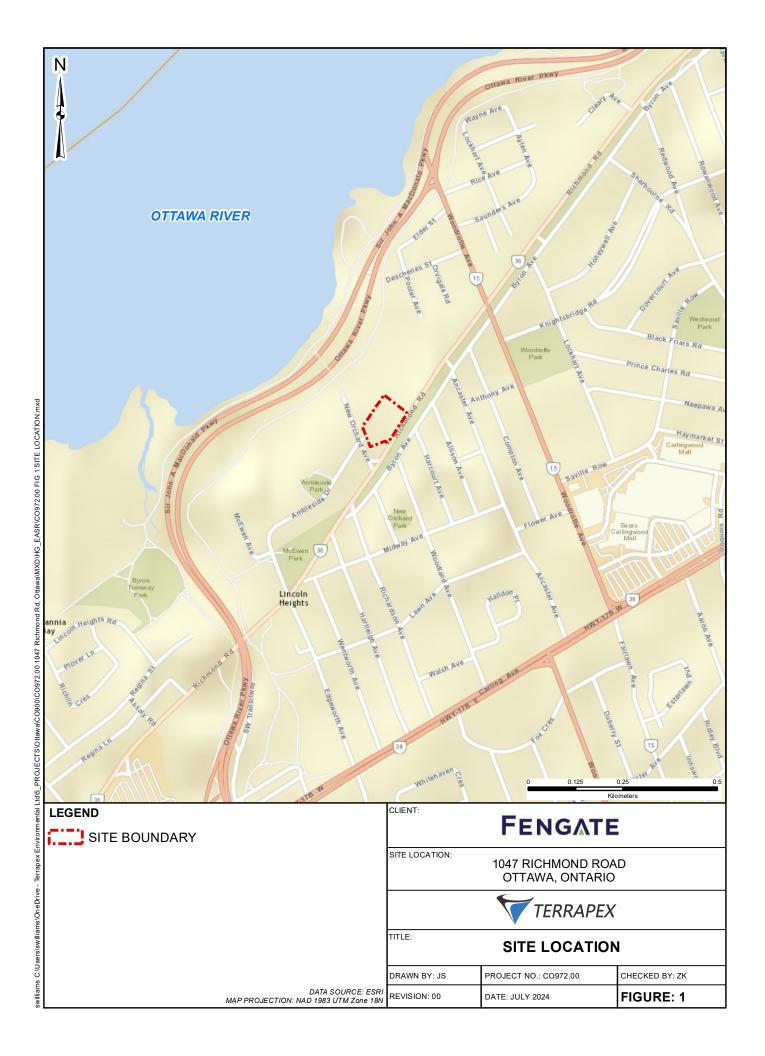
The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. Where applicable, the assessment of the environmental quality of groundwater was limited to a study of those chemical parameters specifically addressed in this report.

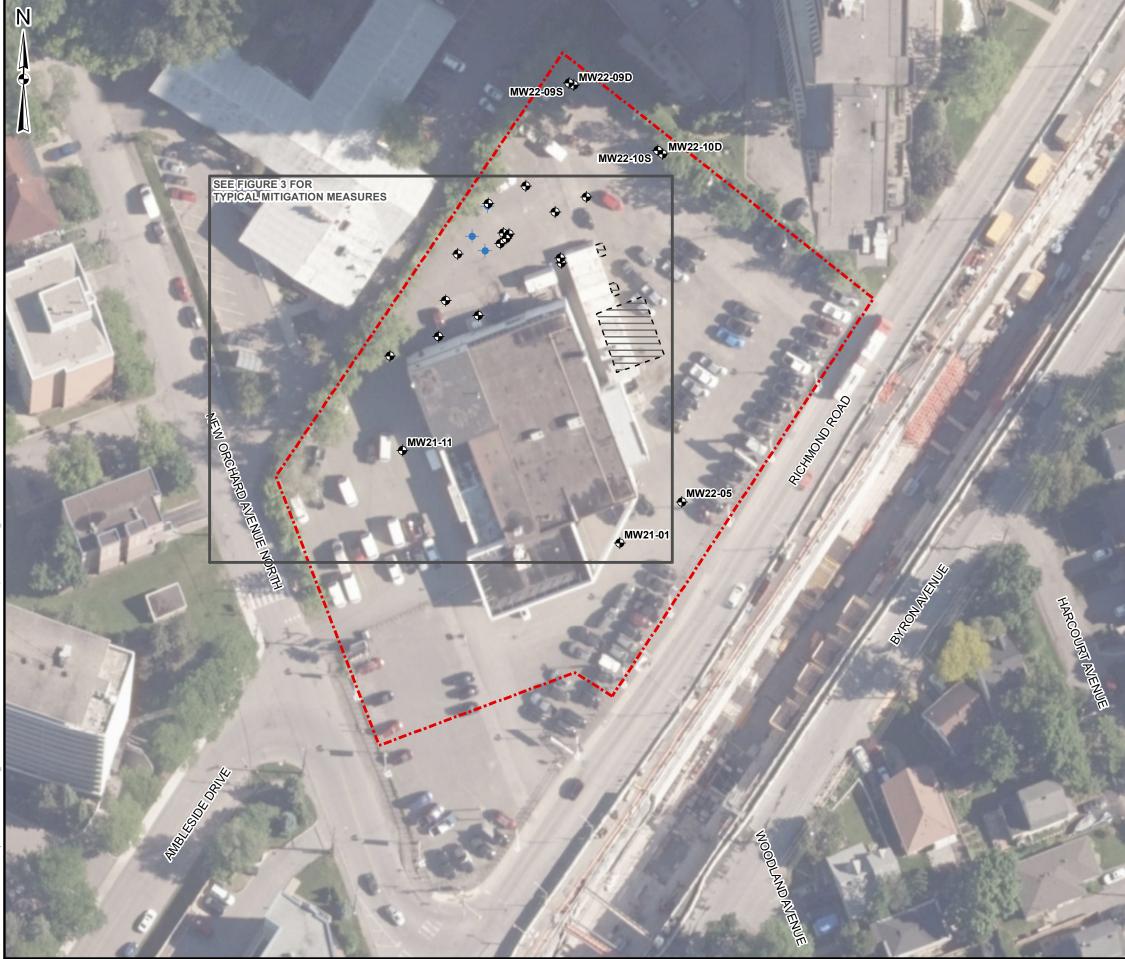
Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of Fengate Development Holdings LP. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than Fengate Development Holdings LP.

Respectfully submitted,

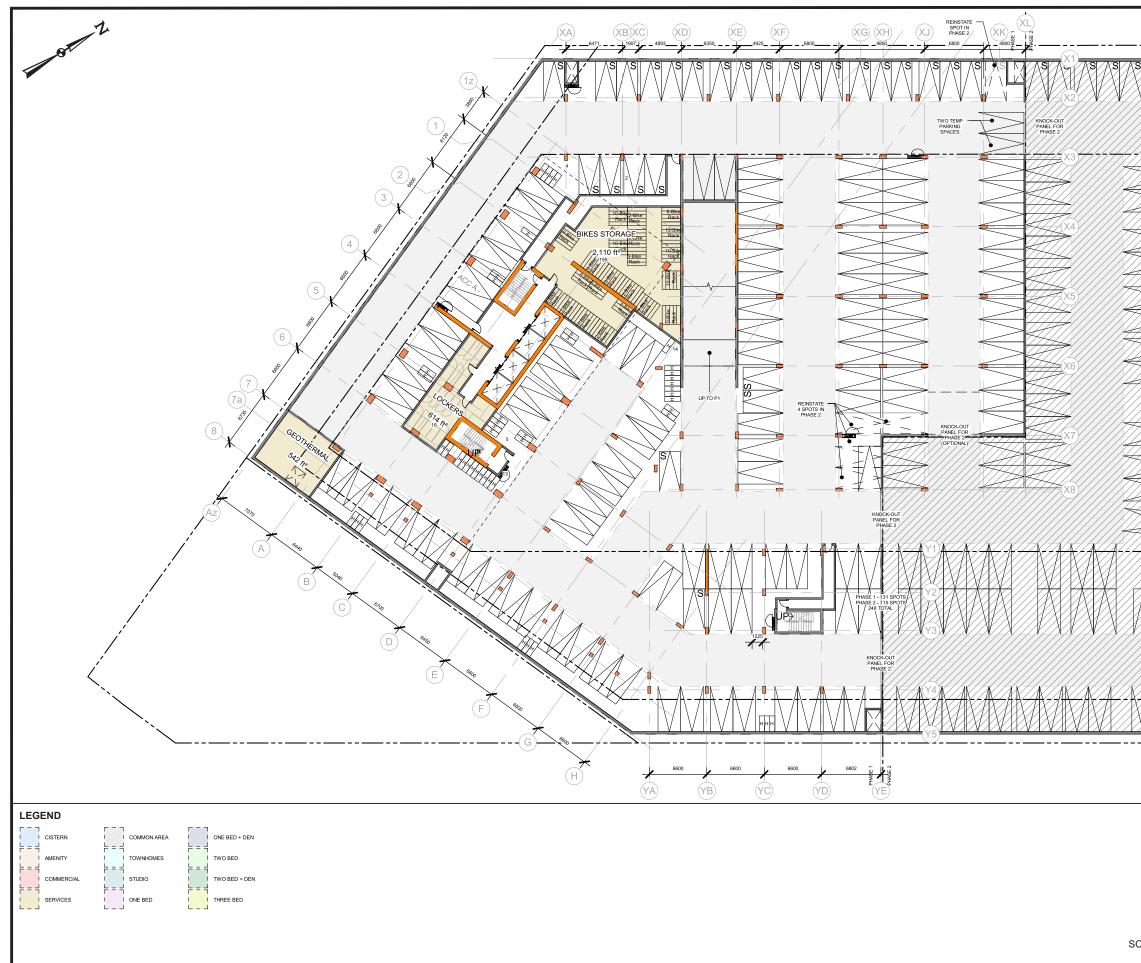
TERRAPEX ENVIRONMENTAL LTD.


Andrew Durbano, M.Sc., P.Geo. Hydrogeologist



Zen Keizars, P.Geo., FGC. Senior Hydrogeologist

FIGURES



	LEGEND									
1										
(,	SITE B	OUNDARY								
4	EXCAV	ATION LOCATION								
6										
2		IOLE (TERRAPEX)								
6	🔶 MONIT	ORING WELL (OTHERS	5)							
l										
l										
l										
2										
5										
0										
4										
8										
2										
2										
2										
5										
ŝ										
2										
2										
1										
l										
l										
2										
6										
	0	40 20 20	40 50							
1	0	10 20 30	40 50							
		Metres								
		C OTTAIN/A								
	DATA SOURCE: CITY O MAP PROJECTION: NA									
	CLIENT:									
		FENGATE	ġ.							
		LINGWIE	0.							
-	SITE LOCATION:									
		1047 RICHMOND ROA OTTAWA, ONTARIO	U							
		TERRAPE	X							
			./\							
		*								
	TITLE:									
		STUDY AREA								
	DRAWN BY:	PROJECT NO.:	CHECKED BY:							
	JS/SW	CO972.00	ZK							
	REVISION:	DATE:	FIGURE:							
	00	JULY 2024	2							
1.00										

LEGEND		
SITE B	OUNDARY	
	SED EXCAVATION FOR	ł
	GROUND PARKING	
	DSED DISCHARGE TREA M LOCATION	ATMENT
— – EXISTI	NG SANITARY SEWER I	INE
	DISCHARGE TREATMEN	T SYSTEM IS TO
BE DETERMINE	D AFTER DISCUSSIONS V	-
CONTRACTOR. 2. THE DISCHAF	RGE LOCATION TO SANITA	ARY SEWER IS
	INED AFTER DISCUSSION	
	0 10	20
	Metres	
DATA SOURCE: CITY O	ΕΟΤΤΑΨΑ	
MAP PROJECTION: NAL		
	FENGATE	
SITE LOCATION:	1047 RICHMOND ROAL	ר
	OTTAWA, ONTARIO	
	TERRAPE	X
TITLE:	V	
	AL MITIGATION MEA	SURES
DRAWN BY:	PROJECT NO.:	CHECKED BY:
JS/SW	CO972.00	ZK
REVISION:	DATE:	FIGURE:
00	APRIL 2025	5

	CLIENT:	FENGATE	8
	SITE LOCATION:	1047 RICHMOND ROAD OTTAWA, ONTARIO	
		TERRAPEX	
	TITLE: DRAWN BY:	P2 FLOOR PLAN	CHECKED BY:
CALE: AS SHOWN	DRAWN BY: SW REVISION:	CO972.00	ZK FIGURE:
	00	JANUARY 2025	4

APPENDIX I

BOREHOLE LOG REPORTS

RECORD OF BOREHOLE: 21-01

SHEET 1 OF 1

BORING DATE: September 24, 2021

DATUM: Geodetic

LOCATION: N 5026314.5 ;E 361326.2 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц	ДОН	Ţ	SOIL PROFILE			SA	MPLE		HEADSPACE COMBUSTIB VAPOUR CONCENTRATIO ND = Not Detected 100 200 300	BLE DNS [PPM] ⊕	HYDRAULIC CONDUCTIVITY, k, cm/s	μĻ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE ORGANIC V/ CONCENTRATIONS [PPM] ND = Not Detected	APOUR] 🗌		WI LAB	OR STANDPIPE INSTALLATION
		_	GROUND SURFACE	S	65.73			8	100 200 300	400	20 40 60	80	
0		Stem)	ASPHALT FILL - (SW) gravelly SAND, angular; brown (PAVEMENT STRUCTURE); ion-cohesive, moist FILL - (SM) gravelly SILTY SAND; grey		0.00 0.10 65.43 0.30	1	ss	19€	ND			Metals	Flush Mount Casing
1	Power Auger	ΞĮ	to dark brown, trace sand (SP); non-coohesive, moist, compact to very loose			2	SS	4€	³ ND				
2		_	BEDROCK (Auger Refusal) (Air hammer from 1.83 m to 7.62 m)		63.90 1.83	3	SS	2 €	ND			PHCs, VOCs	Bentonite Seal
3													
5	Air Hammer	H Bit											Silica Sand
6													50 mm Diam. PVC #10 Slot Screen
8			End of Borehole Note(s): 1. Water level at BH21-01 measured at a depth of 7.66 m (Elev. 58.04 m) on		<u>58.11</u> 7.62								↓
9			October 4, 2021 2. Record of borehole log not prepared for geotechnical engineering purposes										
10													
DE 1:		ISC	CALE						GOLD	ER			I OGGED: DG IECKED: AG

RECORD OF BOREHOLE: 21-02

BORING DATE: September 21, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026359.3 ;E 361297.8 SAMPLER HAMMER, 64kg; DROP, 760mm

Į	DOH.		SOIL PROFILE			SA	MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected	HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.30m	ND = Not Detected 100 200 300 400 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected	k, cm/s 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp - 0 ^W WI	OR STANDPIPE INSTALLATION
	BO	_		STF	(m)	2		BLG	100 200 300 400	20 40 60 80	
0			GROUND SURFACE		65.46						Flush Mount
		F V F	FILL - (SW) gravellyl SAND, angular; grey (PAVEMENT STRUCTURE); non-cohesive, moist FILL - (SP) SAND, fine to medium, trace slit; brown; non-cohesive, moist,		0.08 <u>65.16</u> 0.30	1	ss	22 🧲	ND		Casing
1	- 13	otem)	compact to dense		64.2 <u>4</u> 1.22	2	SS	31 €	³ ND	Met	als
	Power Aug) (Io	GRAVEL; dark brown, contains brick fragments and rootlets; non-cohesive, moist, compact		63.63	3	ss	10€	ND		
2			Highly weathered BEDROCK		1.83	4	ss	>84	⁹ ND		Bentonite Seal
						5	ss	>50	ND	PHC VO	Ds, Cs
3		E (BEDROCK (Auger Refusal) (Air hammer from 3.05 M TO 7.62 M)		62.41 3.05						Ϋ́
4											SIlica Sand
5	Ter										
	Air Hammer										50 mm Diam PV/C
6											50 mm Diam. PVC #10 Slot Screen
7											
╞		E	End of Borehole		57.84 7.62						
8		1	Note(s):								
			1. Water level at BH21-03 measured at a depth of 3.17 m (Elev. 62.28 m) on October 4, 2021								
9		f	 Record of borehole log not prepared for geotechnical engineering purposes 								
10											
 DEF	PTH	SC.	ALE	1	I				GOLDER		LOGGED: DG

RECORD OF BOREHOLE: 21-03

BORING DATE: September 21 & 22, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026355.1 ;E 361289.2 SAMPLER HAMMER, 64kg; DROP, 760mm

ATE. September 21 & 22, 2021

	DOH-		SOIL PROFILE		1	SA	MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected	HYDRAULIC CONDUCTIVITY, k, cm/s	RG	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.30m	ND = Not Detected 100 200 300 400 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] □	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
\square	BO	í		STF	(m)			BLC	ND = Not Detected 100 200 300 400	20 40 60 80		
0			GROUND SURFACE		65.24							
			FILL - (SW) gravelly SAND, angular; grey (PAVEMENT STRUCTURE); non-cohesive, moist		0.08 64.6 <u>3</u>	1	ss	43€	D ND		VOCs	Flush Mount Casing
1		Stem)	FILL - (SP) SAND, fine to medium, trace silt; brown; non-cohesive, moist, dense		0.61	2	SS	31€	D ND		PHCs	
	er Auger	Diam. (Hollow \$	FILL - (SM) SILTY SAND, some topsoil, trace gravel; dark brown, contains shale fragments; non-cohesive, moist, compact		1.22	3	SS	12 (9 ND		Metals	
2		200 mm	Highly weathered BEDROCK		63.41 1.83	4	SS	>94	B ND			
						5	ss	52/ 6"				Bentonite Seal
3 _			BEDROCK (Auger Refusal) (Air hammer from 3.05 m to 7.62 m)		62.19 3.05							Ţ
5	Air Hammer	H Bit										SIlica Sand
6												50 mm Diam. PVC #10 Slot Screen
,					57.62							가지, 사망, 사망, 사망, 사망, 사망, 사망, 사망, 사망, 사망, 사망
ſ		1	End of Borehole		7.62							
8			Note(s): 1. Water level at BH21-03 measured at a depth of 3.56 m (Elev. 61.68 m) on October 4, 2021									
9			2. Record of borehole log not prepared for geotechnical engineering purposes									
10												
DEF 1:5		-15	CALE	1	I	I			GOLDER			DGGED: DG ECKED: AG

LOCATION: N 5026369.7 ;E 361313.7

RECORD OF BOREHOLE: 21-04

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: September 21, 2021

SA	٩M	PLE	R HAMMER, 64kg; DROP, 760mm												PE	NETRA	TION TE	EST HAN	MMER,	64kg; DROP, 760mm
щ	Τ	ЧОD	SOIL PROFILE			SA	AMPI	ES	HEAI VAP	OSPACE (OUR CON Not Detec		STIBLE ATIONS	[PPM] {	HYDF	AULIC C k, cm/s		TIVITY,		ں _	
I SCAL TRES		METH		PLOT		ĸ		.30m		100 2	00 3	400 4	400			1	1	0-3	TIONAL	PIEZOMETER OR STANDPIPE
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	HEAI CON	OSPACE (CENTRAT Not Detect	ORGANI TIONS [F	C VAPO PM]	UR	- 1	/ATER C			NT WI	ADDITIONAL LAB. TESTING	INSTALLATION
		BC		STF	(m)	-		BLO				400	400					80 	<u> </u>	
0			GROUND SURFACE ASPHALT		65.09 0.05		-		-										+	Flush Mount
-			FILL - (SM) SILTY SAND, trace gravel; brown to grey brown, contains wood fragments; non-cohesive, moist, loose to			1	SS	9											VOCs	5
Ē			compact				-													
- 1						2	SS	10												
-		(u					-													
Ē	2	ow Ster				3	SS	7												
-	Power Aurer	200 mm Diam. (Hollow Stem)																		
- 2	Pow	mm Dia				4	SS	14	€											- Bentonite Seal
E		200			62.65 2.44				ND											
-			(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,		2.44	5	SS	49	Ð											_
- 3			dense				ss	55/											PHCs	-
-						6	_ 55	55/ 4"											PHUS	
-					61.43															
E .			BEDROCK (Auger Refusal) (Air hammer from 3.66 m to 7.62 m)		3.66															
- 4 -																				-
-				副																SIlica Sand
-																				
- - 5																				
-																				
Ē	Air Hammer	H Bit																		
- 6																				50 mm Diam. PVC
-				劃																#10 Slot Screen
-				曹																
-																				
— 7 _				闦																
-																				
F			End of Borehole		57.47 7.62															
- 8			Note(s):																	-
/22 ZS			1. Water level at BH21-01 measured at a depth of 2.50 m (Elev. 62.59 m) on October 4, 2021																	
DT 3/5			2. Record of borehole log not prepared for geotechnical engineering purposes																	
AIS.GD																				-
GAL-N																				
GPJ																				
104078																				-
01 214																				
MIS-BHS 001 21494078.GPJ GAL-MIS.GDT 3/3/22 ZS	EP	ГНS	CALE							GO	LI	DE	R						L	OGGED: DG
ິ <u></u> ¥ 1:	: 50)					~	V											CH	ECKED: AG

RECORD OF BOREHOLE: 21-05 LOCATION: N 5026358.2 ;E 361327.9

BORING DATE: September 22/24, 2021

SHEET 1 OF 1

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

	ЦОН		SOIL PROFILE	1		SA	MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕	HYDRAULIC CONDUCTIVITY, k, cm/s	
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detected 100 200 300 400 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PM] □ ND = Not Detected □ □	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	PIEZOMETER OR STANDPIPE INSTALLATION
+	ğ	i	GROUND SURFACE	ST	(m)	<u> </u>		BĽ		20 40 60 80	
0		+	ASPHALT	~~~~	65.47						Flush Mount
			FILL - (SP) SAND, fine to coarse, some gravel, trace silt; brown; non-cohesive, moist, compact		0.08 64.86 0.61	1	ss	15€	3 ND		Casing
1			FILL - (SM/GW) SILTY SAND and GRAVEL; dark brown, contains wood fragments; non-cohesive, moist, compact		0.61	2	SS	20			PHCs, VOCs
		v Stem)	Possible FILL - (SP) SILTY SAND, fine		64.02 1.45		ss	52/ 0"	D ND		PHCs, VOCs
2	Power Auger) mm Diam. (Hollow	to coarse, trace silt, trace gravel; grey brown; non-cohesive, moist, compact to dense			4	SS	20	D ND		
		200 mn			62.73	5	ss	39	D ND		Bentonite Seal
3			(SM) gravelly SILTY SAND, non-plastic fines; grey brown, contains cobbles (GLACIAL TILL); non-cohesive, moist, dense		2.74	6	ss	46€			
					61.82	7	ss	34/ 10"	D ND		
4 5 6 7	Air Hammer	HBit	(Air hammer from 3.65 m to 7.62 m)								50 mm Diam. PVC #10 Slot Screen
8			End of Borehole Note(s): 1. Water level at BH21-01 measured at a depth of 3.85 m (Elev 61.62 m) on October 4, 2021		57.85 7.62						
9			2. Record of borehole log not prepared for geotechnical engineering purposes								
10											
DEF	PTF	- IS	CALE	1	I	1			GOLDER		LOGGED: DG

LOCATION: N 5026332.1 ;E 361283.0

RECORD OF BOREHOLE: 21-11

SHEET 1 OF 1

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: November 12, 2021

ļ			SOIL PROFILE			S/	AMPL	-	HEADSE VAPOUE ND = No	PACE C R CONC	OMBUS ENTRA		[PPM] €		k, ci	n/s	IDUCTI			NG	PIEZOMETER
METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	ND = No 100 HEADSF CONCE ND = No	PACE O	RGANI ONS [P	-	400 UR	, v				PERCEI	NT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	2	ы Ш		STF	(m)		_	BLC	100			00	400		20	40	60				
0		\mathbf{H}	GROUND SURFACE GRAVEL	C \$2	65.26 0.00										-						Flush Mount
			(SP) SAND; brown; non-cohesive, dry		64.96 0.30																Casing
			(SP) SAIND; brown; non-conesive, ary				SS		® ND												
			(SM) SILTY SAND; grey-brown; non-cohesive, dry		64.50 0.76																
1			non-cohesive, dry			2	SS		œ											Metals	
									ND											Metals, PHCs, VOCs	Bentonite Seal
			Soft, broken, LIMESTONE		63.74 1.52	2															
						3	SS		₽ ND											Metals	
2				瞫																	
				瞫																	SIlica Sand
	uger	pe		瞫																	
	Power Auger	Geoprobe		瞫																	
3	ď			壨																	
				副																	
				瞫																	5.VC
																					50 mm Diam PV/C
4																					50 mm Diam. PVC #10 Slot Screen
				Ē																	
F																					
5				間																	
					59.72																
			End of Borehole Upon Refusal		5.54																
6			Note(s):																		
			1. Water level at BH21-11 measured at a																		
			depth of 2.96 m (Elev. 62.30 m) on November 30, 2021																		
			2. Record of borehole log not prepared for geotechnical engineering purposes																		
7			ior geoleon modi engineening purposes																		
8																					
9																					
10																					
DE	PT	ΉS	CALE						G	i O	L	DE	R							LC	DGGED: AB
1:	50																			CH	ECKED: DS

RECORD OF BOREHOLE: 21-12

BORING DATE: November 11, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026352.5 ;E 361280.2 SAMPLER HAMMER, 64kg; DROP, 760mm

L S	тнор	SOIL PROFILE	F			MPLE	s H N E /	HEADSPACE /APOUR CON ND = Not Deter 100 2		TIBLE	[PPM] ⊕	HYDRAU	LIC COND , cm/s		ING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		EADSPACE	ORGANI FIONS [P cted	C VAPO PM]	100 UR D	WAT	10 ⁻⁵ TER CONT	ENT PERC	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE		64.88			-	100 2	.00 3		100	20	40	00		
0 -		GRAVEL (SP) SAND; brown; non-cohesive, dry		0.00 64.58 0.30		SS	œ₽ ∧	D								
1	Power Auger Geoprobe				2	SS	∎^	D							Metals	
2		Soft, crushed, LIMESTONE		62.90 1.98	3	SS		D			Ð				Metals, PHCs, VOCs	
					4	SS	⊕									
3		End of Borehole Upon Refusal Note(s): 1. Record of borehole log not prepared for geotechnical engineering purposes		2.54												
4																
5																
6																
7																
8																
9																
10																
	PTH S	CALE						GC	 	 ר ר	Þ					GGED: AB

RECORD OF BOREHOLE: 21-13

BORING DATE: November 11, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026364.0 ;E 361291.0 SAMPLER HAMMER, 64kg; DROP, 760mm

	Τ		SOIL PROFILE			SA	MPL	ES	HEAD	SPACE	COMBL	JSTIBL	E		HYDF	RAULIC	ço	NDUCT	IVITY,			
DEPTH SCALE METRES		BORING METHOD		DT			-		VAPO	SPACE UR CON Vot Deter 00 2	CENTF	300	NS [P ۱۸	'PM]⊕ 10		k, cn 10 ⁻⁶	n/s 10 ⁻	[;] 1(J-4 4	0-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR
TH SC ETRE		U M	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	HEAD	SPACE	ORGAN	IIC VA	POU	R	V				PERCE		TES	STANDPIPE
M DEP			DESCRIPTION	RAT/	DEPTH (m)	MUN	₽	SWO	CONC ND = 1	SPACE ENTRA Vot Dete	FIONS [PPM]				/p				WI	ADC LAB.	INSTALLATION
	+	á		ST				В				300	40	00		20	40			80	<u> </u>	
(┝		GROUND SURFACE GRAVEL	1050	64.86 0.00	-	-				-	_					-				-	
E				886	64.56																	
F			(SP) SAND; brown; non-cohesive, dry		0.30	1	SS	1	⊕ ND													
-																						
Ē.		obe																				_
F	Power Auger	Geoprobe				2	SS	C	1⊕ ND												Metals	
F	ď								ND													
E					63.18																	
È			Soft, crushed, LIMESTONE		1.68	3	SS	C	⊕ ND												Metals	
	² 🗋				62.73				ND													-
E			End of Borehole Upon Refusal		2.13																	
E			Note(s):																			
F			1. Record of borehole log not prepared												1							
- :	3		for geotechnical engineering purposes												1							-
E															1							
F																						
F																						
Ē	1																					-
F																						
-																						
E																						
-																						
- (5																					-
E																						
E																						
F																						
	5																					-
F																						
F																						
E																						
È,	,																					_
Ę																						
E																						
È																						
F.																						
{	3																					-
- Z																						
3/3/2																						
10 E															1							
USIN-	9																					-
P															1							
2															1							
78.G																						
.0140- - 10																						-
1 21																						
MIS-BHS 001 21494078.GPJ GAL-MIS.GDT 3/3/22 ZS		- - - - - -						Ņ		~ ~			_	~							14	
-8-S □	: 50		CALE) (G C	L	υ	E	R								DGGED: AB ECKED: DS
ΣĽ	. 30																				СЦ	LONLD. DO

RECORD OF BOREHOLE: 21-14

BORING DATE: November 12, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026375.7 ;E 361302.2 SAMPLER HAMMER, 64kg; DROP, 760mm

SHE		тнор	SOIL PROFILE	5			MPL		HEADS VAPOL ND = N 10	PACE JR CO	E COM NCEN ected			PPM] ⊕		RAULIC k, cm	CONI n/s 10 ⁻⁵	DUCTIV		n-3	NAL	PIEZOMETE OR	ĒR
METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	HEADS CONCE ND = N	PACE ENTRA	E ORG ATION ected	S [PPN	/APOl I]		v w	VATER	CON	10 ⁻⁴ TENT P ⊖ ^W	ERCE	NT WI	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATIO	
			GROUND SURFACE	٥ ٥	64.84			8	10	0	200	300	4	00		20	40	60	8	0			
0		Π	GRAVEL	88	0.00																	Flush Mount	
			(SP) SAND; brown; non-cohesive, dry (SM) SILTY SAND; grey-brown; non-cohesive, dry		0.15 64.08	1	ss]⊕ ND													Casing	ξ.
1						2	ss]⊕ ND													Bentonite Seal	
2	Power Auger	Geoprobe	Soft, crushed, LIMESTONE			3	ss		□ ⊕ ND												PHCs, VOCs		
3	Pow	Ge																				∑ Silica Sand	$(0, \nabla C, V, V)$
4																						50 mm Diam. PVC #10 Slot Screen	
																							20,20
		-	End of Borehole Upon Refusal	<u></u>	60.27 4.57																		23
5			Note(s):																				
			1. Water level at BH21-14 measured at																				
			a depth of 2.48 m (Elev. 62.36 m) on November 30, 2021																				
			2. Record of borehole log not prepared for geotechnical engineering purposes																				
6			for geotecrifical engineering purposes																				
7																							
8																							
9																							
10																							
DE	PT	TH S	CALE					¢		; (ור	. D	F	Þ							L	OGGED: AB	
1:	50						<					. ບ	-	17							C⊢	ECKED: DS	

RECORD OF BOREHOLE: 21-15

BORING DATE: November 12, 2021

SHEET 1 OF 2

DATUM: Geodetic

LOCATION: N 5026380.1 ;E 361312.4 SAMPLER HAMMER, 64kg; DROP, 760mm

щ		Ģ	SOIL PROFILE			SA	MPL	ES	HEAD VAPO	SPACE (UR CON	COMBU	STIBLE ATIONS [PPM] ⊕	HYDR	AULIC C k, cm/s	ONDUCT	IVITY,		ں _	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	ND = 1 1 HEAD	Vot Detec 00 2 L SPACE (ted 00 3 L		00 UR			0 ⁻⁵ 10 L ONTENT			ADDITIONAL LAB. TESTING	OR STANDPIPE
DEPI		BORIN	DESCRIPTION	STRAT/	DEPTH (m)	NUM	Τ	BLOWS				C VAPO PM]	100	w	⊳ ⊢			WI	ADC LAB.	INSTALLATION
— o		_	GROUND SURFACE GRAVEL		64.84 0.00												0 0			A B
			(SP) SAND; brown; non-cohesive, dry		0.15	1	SS	[⊐⊕ ND											
- - 1 - 1 -			(SM) SILTY SAND; grey-brown; non-cohesive, moist		0.76	2	ss	[□⊕ ND											- -
- - - - 2 -	Power Auger	Geoprobe	(SP) SAND; grey; non-cohesive, wet		<u>63.01</u> 1.83	3	ss	[סא				⊕						PHCs, VOCs	
- - - - - - - - 3					21.22	4	ss	[]⊕ ND											
			Soft, crushed, LIMESTONE		61.69 3.15 61.05	5	SS													् स
- 4 			Borehole continued on RECORD OF DRILLHOLE 21-15		3.79															
- - - - - - - -																				-
- 7																				-
3/3/22 ZS																				-
MIS-BHS 001 21494078.GPJ GAL-MIS.GDT 3/3/22 ZS																				
MIS-BHS 001 21	EPT : 50		CALE							GO	 L	DE	R							DGGED: AB ECKED: DS

Γ			T: 21494078		RE	СС	DR	D	0											5									IEET 2 OF 2	
			DN: N 5026380.1 ;E 361312.4							D	RIL	L RI	G:	Ge	opr	obe												DA	ATUM: Geodetic	
				(1)			빌	J	N -	D Join Fau		LING	В	ID- B	ITR leddi oliat	ing	TOR:	Marat PL - Pla CU- Cui	nar	PO	- Polis	hed			IR - E			:k		
DEPTH SCALE	METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR	S V C	SHR- /N - CJ - ECO	Veir Con VER SOL	ar juga Y ID 5 %	te R.Q.E %	0 0 0 0 0	0- C	Conta Drtho Cleav	ict dona	Lal S II .r.t. E S	JN- Uno ST - Ste R - Irre DISCO	dulating pped gular	SN Ro MB TY DAT		oth Ih	I Brea	ak s) IYDR NDU K, cn	AULIC	tions re viations Dia TYPoir Ir (N	metra nt Loa ndex MPa)	_		
	4		BEDROCK SURFACE		60.88		-	804	40	804	101	004		<u>6</u>			6								$\overline{\prod}$	~	4 9		A	В
	5	Rotary Drill HQ3 Core	Thin-medium bedded, grey, LIMESTONE Thin-medium bedded, grey, LIMESTONE		3.96 <u>59.48</u> 5.36	1	100																							
	7		End of Drillhole Note(s):		57.83 7.01	2	100																							
	8		 Water level at BH21-15A measured at a depth of 2.74 m (Elev. 62.10 m) on November 30, 2021 Water level at BH21-15B measured at a depth of 2.59 m (Elev. 62.25 m) on November 30, 2021 Record of borehole log not prepared 																											
	9		for geotechnical engineering purposes																											
	10																													
	11																													
MIS-RCK 004 21494078.GPJ GAL-MISS.GDT 3/3/22 ZS	13																													
MIS-RCK 00	DEI 1:		SCALE								G	С)	L	C)	EF	2									· ·		DGGED: AB ECKED: DS	

RECORD OF BOREHOLE: 21-16

BORING DATE: November 11, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026367.9 ;E 361324.2 SAMPLER HAMMER, 64kg; DROP, 760mm

y	Q	SOIL PROFILE			SA	MPLE	∃S	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 100 200 300 400	HYDRAULIC CONDUCTIVITY, k, cm/s	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM]	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp → 0 ^W WI	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE		65.27			Ē	100 200 300 400	20 40 60 80	
	e	GRAVEL (SM) SILTY SAND; grey-brown; non-cohesive, dry		0.00	1	SS	6	Ð		
1	Power Auger Geoprobe				2	SS	Œ	₽		PHCs, VOCs
2		End of Borehole Upon Refusal		63.34 1.93	3	SS	G	⊕		
3		Note(s): 1. Record of borehole log not prepared for geotechnical engineering purposes								
4										
5										
6										
7										
7										
8										
9										
10										
DEF	PTH S	CALE	<u> </u>					GOLDER		LOGGED: AB

LOCATION: N 5026361.4 ;E 361337.9

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 21-17

BORING DATE: November 11, 2021

SHEET 1 OF 1

DATUM: Geodetic

	ГНОВ	SOIL PROFILE		_	SA	MPL		HEADS VAPOL ND = N	PACE C IR CONO of Detect	OMBUS ENTRA ed	TIONS [PPM] ⊕ 00	HYDR/	AULIC C k, cm/s				NG NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	HEADS	PACE C	RGANI		00 JR	W	0 ⁻⁶ 1 ATER C	ONTENT		NT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- -	BORI		STRA ⁻	DEPTH (m)	IN		BLOW	ND = N	ot Deteci	ed		口 00	W	p ⊢			WI 80	LAE	
0		GROUND SURFACE		65.64					. 20	<u> </u>				Ĺ	Ĺ	-			
_		GRAVEL (SM) SILTY SAND; grey-brown;		0.00															
		non-cohesive, dry			1	SS		B⊕ ND											
1	lger De				2	SS		fe fe										DHC.	
	Power Auger Geoprobe				2	33		⊕ ND										PHCs, VOCs	
	8																		
2					3	SS		₽ ND											
_		End of Borehole		63.15 2.49															
		Upon Refusal		2.40															
3		Note(s):																	
		1. Record of borehole log not prepared for geotechnical engineering purposes																	
4																			
5																			
6																			
Ŭ																			
7																			
8																			
9																			
10																			
	PTH S	CALE					Ņ					n							GGED: AB
1:4						k			J O	LL	ノヒ	К							ECKED: DS

RECORD OF BOREHOLE: 21-18

BORING DATE: November 11, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026348.5 ;E 361331.5 SAMPLER HAMMER, 64kg; DROP, 760mm

Ш	DOH		SOIL PROFILE	1.		SA	MPL		HEADSPACE VAPOUR CO ND = Not Dete 100		STIBLE ATIONS [I	PPM] ⊕	HYDRA	ULIC CC k, cm/s	NDUCT	IVITY,		Ę,	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD			STRATA PLOT	ELEV.	ĭΕR	щ	BLOWS/0.30m		200 3		00	10 ⁻		¹⁵ 10 NTENT		0 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
E ME	BRING		DESCRIPTION	RATA	DEPTH	NUMBER	түре	/SWO	HEADSPACE CONCENTRA ND = Not Dete	URGANI TIONS [F	PM]							ADDI ABB. 7	INSTALLATION
	BC	i		STI	(m)	_		B				00	20				30 		
0		+	GROUND SURFACE GRAVEL		65.70 0.00														
		Ī	(SP) SAND; brown; non-cohesive, dry		0.15														
						1	SS	'	⊐⊕ ND										
1																			
	Power Auger	Geoprobe				2	SS		®⊕ ND									PHCs, VOCs	
	Power	Geor	(SM) SILTY SAND: grev-brown:	(종) (종)	64.18 1.52														
			(SM) SILTY SAND; grey-brown; non-cohesive, moist to wet																
2						3	SS		∎ ND										
						4	SS	(€ ND										
	1	+	End of Borehole	 	62.96 2.74														
3			Upon Refusal Note(s):																
			1. Record of borehole log not prepared																
			for geotechnical engineering purposes																
4																			
5																			
6																			
0																			
7																			
·																			
8																			
9																			
10																			
DE	PTH	H S	CALE					个	GC) F	R						LC	OGGED: AB
1:	50						<	V				• •						CH	ECKED: DS

LOCATION: N 5026348.9 ;E 361305.7

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 21-19

BORING DATE: November 25, 2021

SHEET 1 OF 1

DATUM: Geodetic

	BORING METHOD		SOIL PROFILE	1.		S/	MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 100 200 300 400	HYDRAULIC CONDUCTIVITY, k, cm/s	Ş₽	PIEZOMETER
METRES	MFT			STRATA PLOT		н.		BLOWS/0.30m		10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR
MET	Ů		DESCRIPTION	TAF	ELEV.	NUMBER	түре	VS/0.	HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM]	WATER CONTENT PERCENT		INSTALLATION
	30RI			TRA	DEPTH (m)	₹		TOW	ND = Not Detected	Wp I WI	LAI	
-+	4	-	GROUND SURFACE	ò			\vdash	В	100 200 300 400	20 40 60 80	$\left \right $	
0		+	CONCRETE pad	P. 6	65.95 0.00		\vdash				<u> </u>	Fluch Mount
			FILL - (SP) SAND, fine, trace silt; light		0.00 65.75 0.20							Flush Mount
			brown; non-cohesive, dry, loose		0.20	1	SS	C	- +		PHCs, VOCs	X-1
									ND		VOCs	
1						2	SS	(
	¥.	Ē									E	Bentonite Seal
	Hilti TE 3000 AVR	ner Drill			64.32	3	SS	L				
	Ë	Ham	(CL) SILTY CLAY, trace sand; dark grey;	Â	1.63							
	훕		non-cohesive, dry, compact		63.92	4	SS	C				
2			BEDROCK		2.03				ND			
				詽臣								
			- Fractured zone from 2.4 m to 3.1 m									Silica Sand
			depth	Ē							ľ	
3				鼲								
				計								
				匚								적종
												No.
				瞫								52 mm Diam. PVC
4	Auge	robe									#	#10 Slot Screen
	Power Auger	Geoprobe		Ē								
	۵			間	ł							N.
				即								10 A
				眮								200 A
5					60.82							200 A
f		\neg	End of Borehole		5.13	1						124
			Note(s):									
			1. Water level at BH21-19 measured at									
			a depth of 3.44 m (Elev, 62.51 m) on									
6			November 30, 2021									
			2. Record of borehole log not prepared for geotechnical engineering purposes									
			ior geoteorinical engineering purposes									
7												
8												
9												
ฮ												
10												
DEF	PTH	H S	CALE						GOLDER		LO	GGED: GS
	50							Ý				CKED: DS

RECORD OF BOREHOLE: 21-20

BORING DATE: November 24, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026328.5 ;E 361313.9 SAMPLER HAMMER, 64kg; DROP, 760mm

S			SOIL PROFILE	F			MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 100 200 300 400	HYDRAULIC CONDUCTIVITY, k, cm/s	
METRES			DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	100 200 300 400 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS (PPM) □ <i>ND</i> = <i>Not Detected</i> 100 200 300 400	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp - <u>OW</u> WI 20 40 60 80	PIEZOMETER OR STANDPIPE INSTALLATION
0			GROUND SURFACE		65.93						
0.			CONCRETE pad FILL - (SP) SAND, fine, trace silt, trace clay, trace gravel; light to dark brown, cobbles; non-cohesive; dry		0.00	1	SS	[] ⊕ Ø		Flush Mount
1		-	(CL) SILTY CLAY, trace sand, trace gravel; dark grey; non-cohesive, dry		<u>64.41</u> 1.52		SS		□ ⊕ ND		PHCs, VOCs Bentonite Seal
2	-		BEDROCK		63.64 2.29	3	SS	[D ⊕ ND		
3	Power Auger	Geoprobe	BEDKOCK		2.29	4	SS	[] ⊕ ⊿N		Silica Sand
4											52 mm Diam. PVC
											#10 Slot Screen
5				圓							
			End of Borehole		5.18						
6			Note(s): 1. Water level at BH21-20 measured at a depth of 3.82 m (Elev. 62.11 m) on November 30, 2021								
			 Record of borehole log not prepared for geotechnical engineering purposes 								
7											
8											
9											
10											
DEI	PTI	H S	CALE	1					GOLDER		LOGGED: GS

RECORD OF BOREHOLE: 21-21

SHEET 1 OF 1

BORING DATE: December 21, 2021

DATUM: Geodetic

LOCATION: N 5026393.6 ;E 361305.9 SAMPLER HAMMER, 64kg; DROP, 760mm

. December 21, 2021

	Τ	0	SOIL PROFILE			SA	MPLE	s	HEAD	SPACE COMBUS	TIBLE		HYDRA		ONDUCT	IVITY,				-
DEPTH SCALE METRES		BORING METHOD		5					VAPO ND = I	Vot Detected	TIONS [P 00 40		10	k, cm/s		D ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR	
H SC		U W U		PLC	ELEV.	BER	Щ	0.30					I			PERCE	I	TES ⁻	STANDPIPE	
DEPT		RIN	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	ТҮРЕ	BLOWS/0.30m		SPACE ORGANIC ENTRATIONS [P	PM]		Wp				WI	ADD AB.	INSTALLATION	
		B		STF	(m)	~	i	BLO			0 40	00	20				0			
— o			GROUND SURFACE		64.41															_
È			ASPHALT SAND; brown; non-cohesive, moist		0.00															
E			SAND, DIOWI, HOI-CONESIVE, MOISC		0.15															
È						1	SS	€) ND										Bentonite	
F					63.60														Dontonito	
- 1			SILT, trace sand; grey; cohesive, moidy		0.81															
È						2	SS	¢]											
F					62.89				ND										Silica Sand	
F			SAND, trace gravel; brown;		1.52															
Ē	Ider	, e	non-cohesive																	
- 2	Power Auger	Geoprobe				3	SS	f] ⊕											-
F	Pov	ő																		
F																			<u> </u>	
E						4	SS	€	0											
-									ND											
- 3			SAND, trace gravel; brown;		61.36 3.05														#10 Slot Screen	-
E			non-cohesive, wet		0.00	5	SS	F]⊕											
E .					60.90															
F			BEDROCK		3.51	6	22													
F					60.45	0	55	Ĭ												
- 4			End of Borehole		3.96															4- 2-
Ē			Note(s):																	
E			1. Water level at BH21-21 measured at a																	
E			depth of 2.43 m (Elev. 61.98 m) on December 22, 2021																	
- 5			2. Record of borehole log not prepared																	_
Ē			for geotechnical engineering purposes																	
E																				
È.																				
F																				
- 6																				_
-																				
F																				
-																				
E																				
- 7																				-
Ł																				
E																				
Ł																				
E																				
- 8																				-
ZZ																				
3/22																				
 -																				
8																				
9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1																				-
GAL																				
2																				
78.G																				
- - - 10																				_
1 21																				
MIS-BHS 001 21494078.GPJ GAL-MIS.GDT 3/3/22 ZS				· 1																-
H8-S			SCALE				Ľ		; (GOL	ЭE	R							DGGED: DS	
≝ ¹	: 50																	CH	ECKED: DS	_

RECORD OF BOREHOLE: 21-22

BORING DATE: December 21, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026381.4 ;E 361298.9 SAMPLER HAMMER, 64kg; DROP, 760mm

,	ДĢ	SOIL PROFILE			SA	AMPL	ES	HEADSPACE CO VAPOUR CONC ND = Not Detecto 100 20	OMBUS ENTRA	FIBLE FIONS [F	PM] 🕀	HYDRAU k	LIC CON	IDUCTIVI	Γ Υ ,	٥	PIEZOMETER
METRES	Ē		-OT		۰۲		30m	ND = Not Detecte 100 20	ed D 30	0 40	00	10 ⁻⁶		10-4	10 ⁻³	STIN	OR
ETF	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE O	RGANIC	VAPOU	R _	1		ITENT PE		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
2	ORIN		'RAT	DEPTH (m)	NN	≻	ŇO	HEADSPACE OF CONCENTRATION ND = Not Detector	ONS [PF ed	'M]		WpH		-O ^W	- WI	ADI	
	ă		ST	(11)			В	100 20		0 40		20	40	60	80		
0		GROUND SURFACE		64.62													P. T
		ASPHALT SAND; brown; non-cohesive, moist	25 0	0.00		-											
						1											📕
																	Bentonite
					1	SS											
1					'	33		ND									
																	Silica Sand
]													
	Auger	SAND; brown; non-cohesive, moist		63.10 1.52													
	Power Auger	SAND; brown; non-cohesive, moist															
2	٩ (2	SS	4	Ð									
								ND									
				62.18													[4
		SILT, trace sand; grey brown; non-cohesive, moist		2.44	3	ss		₽□ ND									
		BEDROCK	<u></u>	61.88 2.74	-	1		ND									PVC #10 Slot
3				1													
				1		1											4
┝		-1		1		1											
			텔														
			Ш.	1													
4			F	1		1											
				60.35		1											
		End of Borehole		4.27													
		Note(s):				1											
		1. Water level at BH21-22 measured at a	1			1											
5		depth of 2.72 m (Elev. 61.90 m) on December 22, 2021				1											
		2. Record of borehole log not prepared															
		for geotechnical engineering purposes				1											
						1											
						1											
6						1											
						1											
						1											
						1											
7																	
						1											
						1											
8						1											
						1											
						1											
9						1											
я						1											
						1											
						1											
10																	
10																	
				I		<u> </u>											
DEF	ΡТΗ	SCALE					个	GO	ιг) F	R					L	OGGED: DS
	50						٦ž				•					0.1	ECKED: DS

RECORD OF BOREHOLE: 21-23

BORING DATE: December 21, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026359.1 ;E 361327.6 SAMPLER HAMMER, 64kg; DROP, 760mm

	THOD	SOIL PROFILE		1	S/	MPL	ES	HEADSPACE C VAPOUR CON ND = Not Detec 100 20	OMBUS CENTRA	TIBLE TIONS [F	PPM] 🕀	HYDRA	k, cm/s				NG	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	ER		BLOWS/0.30m	100 20	0 ⁰ 3	00 40	00					0-3	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ξ	RING	DESCRIPTION	ATA	DEPTH	NUMBER	түре	NS/C	HEADSPACE C CONCENTRAT ND = Not Detec	RGANIO	C VAPOL PM]	IR 🗌						B. T	INSTALLATION
i	BOF		3TR∕	(m)	ĭ		3LO/							W		WI	[▼] ▼	
		GROUND SURFACE	0,	05.55				100 20	10 3	00 40	00	20	<u>, 4</u>	<u>0 6</u>	50 8 	80	+	
0		ASPHALT		65.50 0.00	-													
		SAND; brown; non-cohesive, moist		0.15														
					1	SS	∣∉	Ð										
1								ND										
				:														
			2															
	5	SILTY SAND, some coarse sand; brown	n; [A]	63.98 1.52														
	Power Auger Geoprobe	non-cohesive, moist																
2	Geor	-			2	SS	∣∉	ND										
~	_																	
						-												
]	3	SS	∣∉	ND										
				1				-										
3			一個			1												
				62.15 3.35	4	SS				⊕								
		BEDROCK		3.35			ļĪ			-								
ŀ		End of Borehole		61.84 3.66		1												
		Note(s):																
4																		
		1. Borehole log not for geotechnical purposes.																
_																		
5																		
6																		
7																		
8																		
_																		
9																		
10																		
																1		
DEI	ΡΤΗ	SCALE						GO	1 5		D						LC	GGED: DS
								G U U	LL	ノロ	ĸ							ECKED: DS

RECORD OF BOREHOLE: 21-24

BORING DATE: December 21, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026357.1 ;E 361328.2 SAMPLER HAMMER, 64kg; DROP, 760mm

		0	SOIL PROFILE			SA	MPL	ES	HEAD	SPACE				HYDR	AULIC C k, cm/s	ONDUCT	IVITY,		(1)	
DEPTH SCALE METRES		BORING METHOD		от				۳	ND = /	lot Detec	centro ted	TIBLE TIONS [I 00 4	00	1		0 ⁻⁵ 1		0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
ETRE		Ш	DECODIDITION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m							ATER C				TES	STANDPIPE
ME		RIN	DESCRIPTION	ZAT/	DEPTH	MUN	Σ	SWC		ENTRAT	IONS [P	C VAPOL PM]				W		WI	ADC -ABC	INSTALLATION
-		B		STF	(m)	-		BLO				00 4	00					0	_	
— c	L		GROUND SURFACE		65.51															
Ē	Έ		ASPHALTIC CONCRETE		0.00		-													
-			SAND; dark brown, contains rootlets; non-cohesive, moist		0.15															
-						1	ss													
-																				
-				2			-													-
- 1	1																			-
-						2	SS		Ð											
-					63.99															-
-	2	pe a	SILTY SAND; grey; non-cohesive, moist		1.52															-
E	V	Geoprobe				3	ss													-
- 2	2	5 O																		-
F																				-
E																				-
E						4	ss		θI											-
F																				-
- 3	3			間		<u> </u>	-													-
F						5	SS													-
-					1		55				Ĩ									-
-			End of Borehole		61.85 3.66															-
F			Note(s):																	-
- 4	1																			
-			1. Borehole log not for geotechnical purposes.																	-
																				-
-																				-
- e																				
-																				
E																				-
E																				-
-																				
- - e	3																			-
-																				-
E																				-
E .																				
E																				
- 7	7																			-
-																				-
-																				-
-																				
Ē																				
- e	3																			-
- - -																				-
52 -																				-
3/3/																				-
ца Га																				
UIS.	9																			-
AL-A																				-
ບ່ - 																				
																				-
4078																				
- 10 - 17																				-
01 2																				
MIS-BHS 001 21494078.GPJ GAL-MIS.GDT 3/3/22 ZS	EP	THS	SCALE							\sim		DE	D						L	OGGED: DS
ୟ ମ 1	 : 5						k			<u>ں</u> د		ノロ	ĸ							ECKED: DS
≥	. J	~						7											0.1	

RECORD OF BOREHOLE: 21-25

BORING DATE: December 21, 2021

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026315.8 ;E 361338.3 SAMPLER HAMMER, 64kg; DROP, 760mm

ц., Г	BORING METHOD	SOIL PROFILE	<u> </u>		S/	MPL		HEADSP/ VAPOUR ND = Not 100	ACE CO CONCE	MBUST ENTRAT	TIBLE TIONS [F	PPM] 🕀	HYDRA	k, cm/s				₽G	PIEZOMETER
DEPTH SCALE METRES	MET		STRATA PLOT		н К		BLOWS/0.30m	ואס = Not 100	200	30	0 40	00	10				0-3	ADDITIONAL LAB. TESTING	OR
MET	DNG	DESCRIPTION	TA P	ELEV. DEPTH	NUMBER	TYPE	VS/0.	HEADSP/ CONCEN ND = Not				IR D	W		ONTENT	PERCE		DDIT B. TE	STANDPIPE INSTALLATION
5	BOR		TRA	(m)	₽		3LOV								0			[AA]	
		GROUND SURFACE	s	00.01	-	-	ш	100	200	30	0 40	00	2	4	ιο ε 	50 E	30	-	
0		ASPHALT		66.01 0.00		-												-	
		SAND		0.15		1													
			2																
				1	1	SS	•	ND ND											
1								ND											
	ger																		
	Power Auger Geoprobe			:															
	Pov Ge				2	SS	¶	■ ND											
2		SILTY SAND, trace gravel; grey;		63.93															
		non-cohesive, moist	141																
			掛]	3	SS													
					ľ														
3			围	62.96															
3		BEDROCK		3.05	4	SS		Ð											
ŀ		End of Borehole	Ë	62.66 3.35	Ĺ			ND											
		Note(s):																	
4		1. Borehole log not for geotechnical purposes.																	
5																			
6																			
Ű																			
7																			
8																			
9																			
э																			
10																			
														•	•	•			
		SCALE					C	G	Ο	LC) E	R							OGGED: DS
1:5	50					-												CH	ECKED: DS

		ECT: 21494078 TION: N 5026373.18; E 361314.80	REC		RD		OF BORE			Bŀ	122-0)1					HEET 1 OF 2 ATUM: Geodetic	
SPT		CPT HAMMER: MASS, 64kg; DROP, 760mm					ILL RIG: Geopre	-	-022									
		-		SA	MPL	ES	HEADSPACE C	OMBUS	TIBLE					TIVITY,	т			-
METRES	BORING METHOD	DESCRIPTION	(m) (m) (m) (m)	BER	ТҮРЕ	BLOWS/0.3m	VAPOUR CONO ND = Not Detect 100 20 HEADSPACE O CONCENTRATI ND = Not Detected	ed 00 3 L RGANIC		00	10 W.	ATER CO		0 ⁻⁴ 10 PERCEN	١T	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
	Ш	GROUND SURFACE				8	100 20	00 3	00 4	00	2	0 4	06	0 80	0			
0 -		FILL - (SW) SAND and GRAVEL, with asphalt fragments; non-cohesive, dry FILL - (SP) SAND, medium to coarse, trace silt and gravel; brown; non-cohesive, moist	65.0 0.0 64.7 0.2	10 '7	DP	- [Flush Mount Casing	
2	Power Auger	FILL - (SM) SILTY SAND, medium to coarse, gravelly; grey brown; non-cohesive, moist to wet	63.5 1.5	i0 i2 3	DP	- €	אס פון אס											
3			61.6	4	DP	- €	ND											
4 5 6	Air Hammer	BEDROCK		0													Bentonite Seal ∑ D	
8				-		-	+										∑ D Silica Sand	
					<u> </u>													_
DEF 1:4		H SCALE					115	•]									ogged: Dg Iecked:	

			T: 21494078 N: N 5026373.18; E 361314.80	I	REC	OF	RD	C	F BO	RE	HOL	.E:	BH	122-0)1					HEET 2 OF 2	
									ring date			022							D	ATUM: Geodetic	
_			T HAMMER: MASS, 64kg; DROP, 760mm						HEADSPA	-		TIBI F		HYDRA	AULIC CO						
CALE	'n	THOE	SOIL PROFILE	5			MPL		VAPOUR (ND = Not D 100	CONCE	NTRA	FIONS [F	-		k, cm/s			0-3 I	TING	PIEZOMET OR	ER
DEPTH SCALE	MEIKE	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	HEADSPA CONCENT ND = Not D	CE ORO RATION etected	GANIC NS [PPI	VAPOUF M]	2	W. Wr				NT WI	ADDITIONAL LAB. TESTING	STANDPIF	
	8		CONTINUED FROM PREVIOUS PAGE						100	200		-0 40	,0	2	4	0 0	0 0				
alchmond Rudz Datalguntz1494078.GPJ GAL-MIS-GDT 10/2/23 ZS	8	Air Hammer B0	END OF BOREHOLE Notes: 1. Water level at BH22-01 measured at a depth of 8.20 m (Elev. 56.82 m) on May 26, 2022. 2. Borehole log not prepared for geotechnical engineering purposes.		(m) 55.42 9.60			BL(ND = Not D. 100											52 mm Diam. PVC #10 Slot Screen	
S:\CLIENIS\FENG	16																				
A-BHS 001	DEF 1:4		CALE	<u> </u>						5)									ogged: Dg Ecked:	

											Vlay 9, 20)22						D	
SP'	r/do		THAMMER: MASS, 64kg; DROP, 760mm			1				: Geopr									
~	THOD		SOIL PROFILE			SA	MPL		VAPO	UR CON	COMBUS ICENTRA	TIBLE TIONS [PPM] 🕀		k, cm/s	ONDUCI	T	BAL	PIEZOMETER
MEIRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	HEAD: CONC ND = N		DRGANIC TONS [PF ted	VAPOU 'M]	R	W Wr	• I	IL DNTENT O ^W		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE		64.90														
			FILL - (SP) gravelly SAND, with asphalt fragments; grey brown; moist, non-cohesive, moist FILL - (SP) SAND, medium to coarse, some fines; brown; non-cohesive, moist		0.00 <u>64.60</u> 0.30		DP	- 6) ND										Silica Sand
1	Direct Push	mm Diar	FILL - (SP/SC) SAND to CLAYEY SAND, low to high plastic fines; grey to dark brown; non-cohesive, moist GLACIAL TILL to WEATHERED BEDROCK		63.61 1.29 63.38 1.52	_	DP	- €	∃ ND										
2							DP	- @	ND										Bentonite Seal S
3			BEDROCK		62.00 2.90				ND										
4	mmer																		Silica Sand
6	Air Hammer																		52 mm Diam. PVC #10 Slot Screen
8			END OF BOREHOLE Notes: 1. Water level at BH22-02 measured at a		<u>57.44</u> 7.46							 							
-			CONTINUED NEXT PAGE																

		CT: 21494078 ION: N 5026383.15; E 361318.50		REC	0	RD) C)F B	ORE	HO	LE:	BH	122-0)2					IEET 2 OF 2
		IGN. N 3020303.13, E 301310.30							ATE: N)22							DA	ATUM: Geodetic
SI	-	CPT HAMMER: MASS, 64kg; DROP, 760mm			-				: Geopr										
ALE	BORING METHOD	SOIL PROFILE	F	1	SA	MPL	_	VAPO	SPACE (UR CON lot Detec 00 2	CENTRA	TIONS [F			k, cm/s			. [ING ING	PIEZOMETER
DEPTH SCALE METRES	IG ME	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m					00 		1	0 ⁻⁵ 10 L ONTENT		0 ⁻³ ⊥ ⊥ NT	ADDITIONAL LAB. TESTING	
DEP.	BORIN	DESCRIPTION	TRAT/	DEPTH (m)	NUM	Σ	3LOW	$ND = \Lambda$	lot Detect	ed	VAPOUF M]		w	• 			WI	ADC LAB.	INSTALLATION
		CONTINUED FROM PREVIOUS PAGE	ò				ш	1	00 2	00 3	00 40	00	2	20 4	0 6	60 E	30		
- 8		depth of 2.98 m (Elev. 61.92 m) on May 26, 2022.																	-
E		2. Borehole log not prepared for																	-
-		geotechnical engineering purposes.																	
F																			-
9																			-
E																			-
F																			
F																			-
- - - 10																			
-	′																		-
F																			-
F																			
Ē																			-
- 11																			_
F																			
F																			
-																			-
- 12	,																		-
																			-
10/2/23 23																			-
																			-
13 - 13																			-
1 1																			
																			-
																			-
																			-
																			-
																			-
15 1- 15	;																		-
- 10 - 11																			
																			-
- - 16	;																		-
	EPTH	SCALE							119									L	DGGED: KG
- 1	: 40																		ECKED:

			T: 21494078		REC	O	RD) C)F B	ORE	HO	LE:	BH	22-0)3				SI	HEET 1 OF 1	
LC	DCA	TIO	N: N 5026373.77; E 361301.53					BC	ORING D	ATE: N	<i>l</i> lay 10, 2	2022							D	ATUM: Geodetic	
SF	PT/D	DCP	T HAMMER: MASS, 64kg; DROP, 760mm					DF	RILL RIG	: Geopr	obe										
щ	G	3	SOIL PROFILE			SA	MPL	ES	VAPO	UR CON	COMBUS	TIBLE	PPM] ⊕	HYDR/	AULIC C k, cm/s	ONDUC	FIVITY,	Т	٥		
DEPTH SCALE METRES		H H		LOT		Ř		.3m	ND = 1 1	lot Detec 00 2	ted 00 34	-	20	10		0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETE	
EPTH		DN C	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	CONC	ENTRAT	RGANIC	VAPOUF M]	× □			ONTENT			AB. TE	STANDPIPE	
ä				STR/	(m)	ĩ		BLC		lot Detect 00 2		00 40	00					WI 80	< 1		
— o		_	GROUND SURFACE	××××	64.85 0.00																N1 N1
È			FILL - (SW) gravelly SAND, asphalt, fragments; grey brown; non-cohesive, dry		1															Flush Mount Casing	8 8 - 1 -
Ē			FILL - (SM) SILTY SAND, medium to		64.55 0.30		DP	-	₽⊕												
È.			coarse, gravelly; brown; non-cohesive, moist						ND												
F																					
- 1																					
F	rger	e				2	DP	-	□ ⊕ ND												-
F	Power Auger	Geoprobe																			-
E	ď						ĺ														-
E						3	DP	- 1													-
- 2																					
E																					-
È.						4	DP	- 1	D⊕ ND											Deuteuite Ocel	
Ē					62.11															Bentonite Seal	
Ē.			BEDROCK		2.74																
- 3 -																					-
F																					-
F																					
E																					
- 4																					-
3																					
-	mer																				
	Air Hammer																				
5 5																				Silica Sand	- 18 - 18 - 18
																					-
																				52 mm Diam . P\/C	
6																				52 mm Diam. PVC #10 Slot Screen	
2-																					848 - 272 -
			END OF BOREHOLE	Ē	58.15 6.70																1979 -
			Notes:		5.70																-
i 7			1 Water level at BH22-03 measured at a																		
			depth of 7.38 m (Elev. 57.47 m) on May 26, 2022.																		
			2. Borehole log not prepared for																	∑ s	
-			geotechnical engineering purposes.																		-
																					-
0	EPT	HS	CALE																L	OGGED: DG	
1:	40									• •	11									ECKED:	

Soll PROFILE SAMPLES DPMAND PENETRATION Description 0 DESCRIPTION 0 ELEV. 0 0 SHEAR STRENGTH nat.V. + C 0 GROUND SURFACE 4.75 0	NCE, BLOWS/0.3m 40 60 I I STRENGTH nat V. + rem V. +		DRAULIC CONDUCTIVITY, -	
0 FILL - (SP) gravely SAND, with asphalt fragments; grey brown; non-cohesive, noist 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		S/0.3m 60 80 nat V. + Q - ● rem V. ⊕ U - ○	k, cm/s 10 ⁴ 10 ³ 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT W W W 20 40 60 80	PIEZOMETER OR STANDPIPE INSTALLATION
1 fragments; grey brown; non-cohesive, moist 64.45 1 DP . 1 fill (SP) SAND, medium to coarse, some fines; brown; non-cohesive, moist 0.30 1 DP . 1 fill (SP)/SC) SAND to CLAYEY SAND, to Plastic fines; brown; non-cohesive, moist 63.46 1.29 2 FILL - (SP)/SC) SAND to CLAYEY SAND, to CLAYEY SAND, to Plastic fines; brown; non-cohesive, moist 63.23 1.52 3 GLACIAL TILL to WEATHERED CRUST 3 DP .				[4
2 BEDROCK				Silica Sand
2 BEDROCK 3 4				
3 4 4				
				Bentonite Seal
Art Harmonic Article A				Silica Sand
				52 mm Diam. PVC #10 Slot Screen

		T: 21494078 N: N 5026371.34; E 361293.22		REC	OF	RD						BH	122-0)4					IEET 2 OF 2
									ATE: M : Geopr	-)22							DF	ATUM: Geodetic
	1	PT HAMMER: MASS, 64kg; DROP, 760mm SOIL PROFILE				MPLI			-)N	<u> </u>	HYDR	AULIC CO	ONDUC.				
CALE	ETHO		Ь						MIC PEN TANCE, 0 4			, 0		k, cm/s 0 ⁻⁶ 10			0-3	NAL	PIEZOMETER OR
DEPTH S METRI	BORING MI	DESCRIPTION	STRATA PL	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3	SHEAF Cu, kPa	L R STREN a	GTH r	ı⊥ natV. + emV.⊕	Q - ● U - O	w w				NT WI	ADDITIC LAB. TES	STANDPIPE
Succentional relation rout under the relation relation of the relation routed and the routed and the relation routed and the rout		DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAF Cu, kPa	L R STREN a	GTH r	ı⊥ natV. + emV.⊕		w w	ATER CO			NT	ADDITIONAL LAB. TESTING	STANDPIPE
		CALE		1								<u> </u>	I	<u> </u>		<u> </u>	I		DGGED: DG ECKED:

SPT		T HAMMER: MASS, 64kg; DROP, 760mm						Geopro						<u></u>	1	<u>г</u>
METRES	BORING METHOD	SOIL PROFILE DESCRIPTION	D		SAMF LABE	З	ND = N 11 HEADS CONCI ND = N	SPACE CI JR CONC Jot Detecte 20 20 SPACE OF ENTRATIO tot Detecter 20 20	ed 0 30 RGANIC DNS [PP d	00 40 VAPOUF M]	200 2 2	k 10 ⁻⁶ WA ⁻	I FER CON	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE FILL - (SW) gravelly SAND, angular; grey, with asphalt fragments; non-cohesive, dry FILL - (SP) SAND, medium to coarse, gravelly; brown; non-cohesive, moist		65.94 0.00 65.64 0.30	1 DI											Flush Mount Casing
1	_	gravery, brown, nor-concisite, moise		64.42	2 DI	D _										
2	Power Auge Geoprobe	FILL - (SM) SILTY SAND, medium to coarse, gravelly; grey brown; non-cohesie, moist		1.52	3 DI	2 -	Ð ND									
3					4 DI		€⊒ ND									
4		BEDROCK		62.59 3.35	5 DI	· -										Bentonite Seal
5	Air Hammer															
7														 		Silica Sand 52 mm Diam. PVC #10 Slot Screen

			F: 21494078		REC	OF	RD) C)F B	ORE	HO	_E:	BH	122-0)5				Sł	IEET 2 OF 2
	LOC	CATIO	N: N 5026323.15; E 361338.38					BO	RING D	ATE: N	/lay 11, 2	2022							D	ATUM: Geodetic
	SPT	DCP	T HAMMER: MASS, 64kg; DROP, 760mm			-		DR	ILL RIG	: Geopr	obe									
Щ		Ę	SOIL PROFILE			SA	MPL	ES	VAPO	JR CON	CENTRA	TIBLE TIONS [F	PPM] ⊕	HYDR/	AULIC C k, cm/s	ONDUCT	TIVITY,	Т	QL	PIEZOMETER
DEPTH SCALE	N L L	BORING METHOD		ЪСОТ		Ř		0.3m		lot Detect 00 2			00) ⁻⁵ 10		0 ⁻³ ⊥	ADDITIONAL LAB. TESTING	OR
EPTH	M	RING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	HEADS CONCI	SPACE C ENTRAT	RGANIC	VAPOUF M]				ONTENT			ADDI AB. T	INSTALLATION
		B		STF	(m)	z		BL(00 40	00					80		
	8		CONTINUED FROM PREVIOUS PAGE BEDROCK																	
	9	Air Hammer			55.00															52 mm Diam. PVC
E	ł		END OF BOREHOLE		55.28 10.66															<u>- LA LA</u>
-	11		Notes: 1. Water level at BH22-05 measured at a depth of 7.79 m (Elev. 58.15 m) on May 26, 2022.																	- - - - -
			2. Borehole log not prepared for geotechnical engineering purposes.																	-
SZ 52/2/01	12																			
	13																			- - - -
																				-
	14																			
																				- - - - -
	15																			- - - -
																				-
	16																			-
	DEF 1 : 4		CALE		<u> </u>)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		DGGED: DG ECKED:

		T: 21494078		REC	OF	RD	0	F B	ORE	EHO	LE:	B⊦	122-0)6				SI	HEET 1 OF 2
LO	CATIC	DN: N 5026374.80; E 361302.66					BO	RING D	ATE: C	October 3	3, 2022							D	ATUM: Geodetic
SP	T/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm					DR	ILL RIG:											
ш	8	SOIL PROFILE			SA	MPLE	s	DYNA		ETRATIO	DN 10.3m	>	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	Т	.0	
DEPTH SCALE METRES	BORING METHOD		ŌŢ		~		Ĕ	2				30 \	1		0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
AETR 9	N 0 N	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAF	STREM	I GTH r	natV. +	Q- •	w	ATER C	I ONTENT	I PERCE	I NT	ĔĔ.	STANDPIPE INSTALLATION
DEP	BORI		TRAI	DEPTH (m)	NUN	F	BLOV	Cu, kPa			em V.⊕				—0 ^W			AB	
		GROUND SURFACE	S				-	2	0 4	10 E	30 E	30	2	20 4	40 6	<u>50 8</u>	30		
— 0 —		ASPHALT (50 mm)	****	64.90 8:09															44
-		FILL - (SP/GP) SAND and GRAVEL FILL - (SP) SAND, trace gravel; brown;		64.65 0.25															Flush Mount Casing
-		non-cohesive, moist		0.20															Flush Mount Casing
-																			
-																			
- 1																			
E																			
-																			
-																			
-																			
-																			
- 2		(SM) SILTY SAND, some fines, trace	XXX	62.85 2.05															-
_		gravel; brown-grey; non-cohesive, moist																	
E				62.40															
-		BEDROCK (Limestone)		2.50															
-																			
- 3																			Bentonite Seal
-																			
-																			
-	' ' '																		
E																			
- 4																			
3-																			
1 1																			
)) - -																			
5 – 5																			
9/0t																			
2 - Z -																			SIlica Sand
5 - 6																			SIlica Sand
																			l XHX
			臣																50 mm Diam. PVC #10 Slot Screen
				1															
				57.90															
- 7 -		END OF BOREHOLE		7.00															
		Notes:																	
		1. Water level at BH22-06 measured at a depth of 6.08 m (Elev. 58.82 m) on May																	
		26, 2022.																	
z -		2. Borehole log not prepared for geotechnical engineering purposes.																	~~~
	⊢−			+	┝┥	- –	-				+	<u> </u>	+		+	·	+	<u> </u>	<u>\</u>
		CONTINUED NEXT PAGE																	
DE	PTH S	SCALE							19	5]]								μ	OGGED: JB
									•										ECKED: DS

		CT: 21494078 DN: N 5026374.80; E 361302.66		REC	OF	RD	C	F B	ORE	HO	_E:	BH	122-0)6					IEET 2 OF 2
LC	JUATIC	JN: N 5026374.80; E 361302.66								october 3	8, 2022							DA	ATUM: Geodetic
	1	PT HAMMER: MASS, 64kg; DROP, 760mm								ETRATIC		<u> </u>				-1) //			
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	~	TYPE 34YT	BLOWS/0.3m	RESIS 2	TANCE, 0 4	BLOWS/	0.3m 0 8 at V. + em V. ⊕		10 W	k, cm/s) ⁻⁶ 10 ATER C0		PERCEI		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE	ST	(,			В	2	0 4	0 6	0 8	0	2	0 4	06	8 0	0		
- 8 - - - - - - - - - - - - -																			\$ - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -																			- - - - - - - - - - - - - - - - - - -
- 11 - 11 - 12																			
1 1 1 1																			-
																			-
	EPTH S : 40	SCALE							15))									DGGED: JB ECKED: DS

		T: 21494078		REC	OF	RD) C)F B	ORE	EHO	LE:	Bŀ	122-0)7				SI	HEET 1 OF 1
LC	CATIC	DN: N 5026370.88; E 361313.48					BO	RING D	ATE: C	October 3	3, 2022							D	ATUM: Geodetic
SF	T/DCF	PT HAMMER: MASS, 64kg; DROP, 760mm					DR	ILL RIG	:										
щ	QO	SOIL PROFILE			SA	MPL	ES	DYNA RESIS	VIC PEN TANCE,	ETRATIO BLOWS	DN ⁄0.3m	Ž	HYDR.	AULIC C k, cm/s	ONDUC	TIVITY,	Т	٥	
DEPTH SCALE METRES	BORING METHOD		LOT		۲		.3m					30	1		0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR
PTH MET	ING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	SHEAI Cu, kP	R STREN	IGTH r	natV. + remV.⊕	Q - ● U - O				PERCE		DDIT B. TE	STANDPIPE INSTALLATION
DE	BOR		STRA	(m)	٦٢		BLO					30				ا 30 8	WI 30	∣⋖⊴	
0		GROUND SURFACE		65.11				2									Ī		
- 0		ASPHALT (50 mm) FILL - (SP/GP) SAND and GRAVEL	***	8.09 0.05 64.91															ব্যুম্ব ন্যুম্ব
-		FILL - (SM) SILTY SAND, trace graveL; brown; non-cohesive, moist		0.20															Flush Mount Casing
F		blown, non-conesive, moist																	a a -
F																			
F																			-
- 1																			
F																			
-																			
-																			
F																			-
- 2 -		(SM) Gravelly SILTY SAND, trace		63.06 2.05															
-		cobbles and crushed boulders; brown-grey; non-cohesive, moist																	
-																			
-																			
E																			
— 3 -																			Bentonite Seal -
-		BEDROCK (Limestone)		61.91 3.20															
E .			臣																
E			臣																
E																			
- 4			臣																
			臣																
-																			
			臣																
2																			-
																			ন্ <u>য</u>
																			SIlica Sand
- 6																			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1-																			
-																			50 mm Diam. PVC #10 Slot Screen
																			#10 Slot Screen
			Ħ																
	\vdash	END OF BOREHOLE	┝╤┸	58.11 7.00	-						-		-					-	<u> </u>
-		Notes:																	
		1. Water level at BH22-07 measured at a																	-
Ē		depth of 6.91 m (Elev. 58.20 m) on May 26, 2022.																	
E		2. Borehole log not prepared for																	
2 8		geotechnical engineering purposes.																	
	EPTH S	SCALE							119									L	OGGED: JB
1:	40																	СН	ECKED: DS

		CT: 21494078	REC	ORD	0	F BORE	EHOLE:	Bŀ	122-08			HEET 1 OF 2
	UCAT	ION: N 5026375.62; E 361303.08			BOF	RING DATE: 0	October 3, 202	2			D	ATUM: Geodetic
S	PT/DC	CPT HAMMER: MASS, 64kg; DROP, 760mm				LL RIG:						
щ	Ę	SOIL PROFILE		SAMPLE	s	DYNAMIC PEN RESISTANCE,	ETRATION BLOWS/0.3m	ì	HYDRAULIC CC k, cm/s	ONDUCTIVITY,	۲ پې	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m) (m)	NUMBER TYPE	BLOWS/0.3m	SHEAR STREM Cu, kPa	40 60 NGTH nat V. rem V.	80 + Q- ● ⊕ U- ○ 80			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	64.87									
T 10/2/23 ZS	2	GROUND SURFACE ASPHALT (50 mm) FILL - (SP/GP) SAND and GRAVEL FILL - (SP) SAND, trace gravel; brown; non-cohesive, moist (SM) SILTY SAND, some fines, trace gravel; brown-grey; non-cohesive, moist BEDROCK (Limestone)	64.87 0.30 64.57 0.30 62.69 2.18 1.9 2.65									Flush Mount Casing
RICHMOND_RD\02_DATA\GINT21494078.GPJ GAL-MIS.GD	5 5 5 7 7											∑ ₽ ₽
201 s		CONTINUED NEXT PAGE										
GTA-BHS (1 D	EPTH : 40	SCALE				114						OGGED: JB IECKED: DS

		JECT: 21494078 ATION: N 5026375.62; E 361303.08		REC	OF	RD						BH	122-0)8					HEET 2 OF 2 ATUM: Geodetic	
								RING D ILL RIG		October (3, 2022							U	ATOW. Geodelic	
	_	DCPT HAMMER: MASS, 64kg; DROP, 760mm								ETRATIO		<u></u>	HYDRA	AULIC C						
DEPTH SCALE METRES		SOIL PROFILE	5			MPLI	_	RESIS	TANCE,	BLOWS/	0.3m	5		k, cm/s			0-3	ADDITIONAL LAB. TESTING	PIEZOMETER	٦
TH SC ETRE		ຟິ ປິ DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m		R STREM	I	60 8 L nat V. +	0 Q - ●		ATER C		L	I	TES.	OR STANDPIPE	
DEP			TRAT	DEPTH (m)	NUN	≿∣	LOW	Cu, kP	а	r	em V. 🕀	U- O		• I			WI	ADI	INSTALLATIO	'IN
	-	CONTINUED FROM PREVIOUS PAGE	ەن ا	. ,		_	ш	2	20 4	ιο ε 	50 8 	0	2	0 4	<u>0 6</u>	50 E	30			
- 8		BEDROCK (Limestone)		-																- 1
-			Ħ																Bentonite Seal	
F																				-
-																				33:
-			臣																SIlica Sand	
9 _		T.																		9-19-
-																			25.00	- 12
-			Ē																50 mm Diam. PVC #10 Slot Screen	H2 -
-			Ħ																#10 SIGL Screen	
-																			2.5	8 8 - 8 8 9 -
— 10 -		END OF BOREHOLE		54.87 10.00															k	- <u>1-1-1</u> -
F		Notes:																		-
F		1. Water level at BH22-08 measured at a depth of 8.11 m (Elev. 56.76 m) on May																		-
Ē.		26, 2022.																		-
-		2. Borehole log not prepared for geotechnical engineering purposes.																		-
- 11 -																				
-																				-
-																				-
-																				-
-																				-
- 12 G -	1																			
07 - 12 07 - 07 07 - 17																				-
<u>-</u>																				-
																				-
																				-
5 – 13 9 –																				-
с - -																				-
9401																				-
 																				-
																				-
14 - 14																				
																				-
																				-
																				-
																				-
1 – 15	1																			-
Í																				-
																				-
																				-
																				-
) — 16 0																				
]									1	I	1	1			
DI		TH SCALE																	OGGED: JB	
1 و	: 40)																CH	ECKED: DS	

PROJECT: 21494078 LOCATION: N 5026404.46; E 361315.65

RECORD OF BOREHOLE: BH22-09

DATUM: Geodetic

BORING DATE: May 15 - 16, 2023

DRILL RIG: Massenza MI3

N LL	THOD	SOIL PROFILE			SAMF	_	HEADSI VAPOUI ND = No	PACE CO R CONCE t Detected) 200				k, c	IC CONDU m/s			ING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	HEADSF CONCEI ND = Not	PACE ORONTRATION	GANIC V NS [PPM	APOUR 1]		Wp 🛏		NT PERC	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	0	64.23	+	+	100	200	300	0 40	U	20	40	60	80	-	
0 -		ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; grey; (Pavement Structure)/ FILL - (SM) SILTY SAND, trace gravel, lorganic matter; dark brown; hon-cohesive, moist FILL - (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist		8.88 0.05 64.03 0.20 0.30 63.16	2		□ ⊕ ND ND										Flushmount
	tary asing	(SM) gravelly SILTY SAND, thin to thick laminations, fine to coarse, contains cobbles and boulders; brown to grey-brown (TILL); non-cohesive, moist to wet		1.07	3		⊡⊕ ND										
2	Air Rotary 140 mm Casing				4		D ⊕ ND										Bentonite Seal
3					5		D ⊕ ND										
4				60.12	6		□ ⊕ ND										
5		Slightly weathered to fresh, medium to thickly bedded, medium grey, fine grained, non-porous to faintly porous, medium strong, Dolostone interbedded with shale, limestone and sandstone		4.11													Sand #2
6	Air Rotary 89 mm Air Hammer																Screen
7																	
8					- + -		┣∔		+				_+	_	+		Bentonite Seal
		CONTINUED NEXT PAGE						15									

SHEET 1 OF 3

PROJECT: 21494078 LOCATION: N 5026404.46; E 361315.65

RECORD OF BOREHOLE: BH22-09

SHEET 2 OF 3 DATUM: Geodetic

BORING DATE: May 15 - 16, 2023

ш	8	SOIL PROFILE			SAM	I IPLE	LL RIG: Masse		PPMI @	HYDRA	AULIC C k, cm/s	ONDUC	TIVITY,	Т	.0	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	HEADSPACE C VAPOUR CONC ND = Not Detect 100 20 HEADSPACE O CONCENTRATI ND = Not Detecte 100 20	RGANIC ONS [PF d	2	W. Wr	D ⁻⁶ 10 L ATER CO	IL DNTENT O ^W		10 ⁻³ ⊥ :NT WI B0	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 8 - - 9	Air Rotary 89 mm Air Hammer	CONTINUED FROM PREVIOUS PAGE Slightly weathered to fresh, medium to thickly bedded, medium grey, fine grained, non-porous to faintly porous, medium strong, Dolostone interbedded with shale, limestone and sandstone		54.17												Bentonite Seal
- 11		END OF BOREHOLE		10.06												
- 13																
- 14																
- 15 - 16																
DEF	PTH S	CALE					115								L	OGGED:

RECORD OF BOREHOLE: BH22-10

LOCATION: N 5026390.88; E 361333.63

BORING DATE: May 15 - 16, 2023

SHEET 1 OF 3

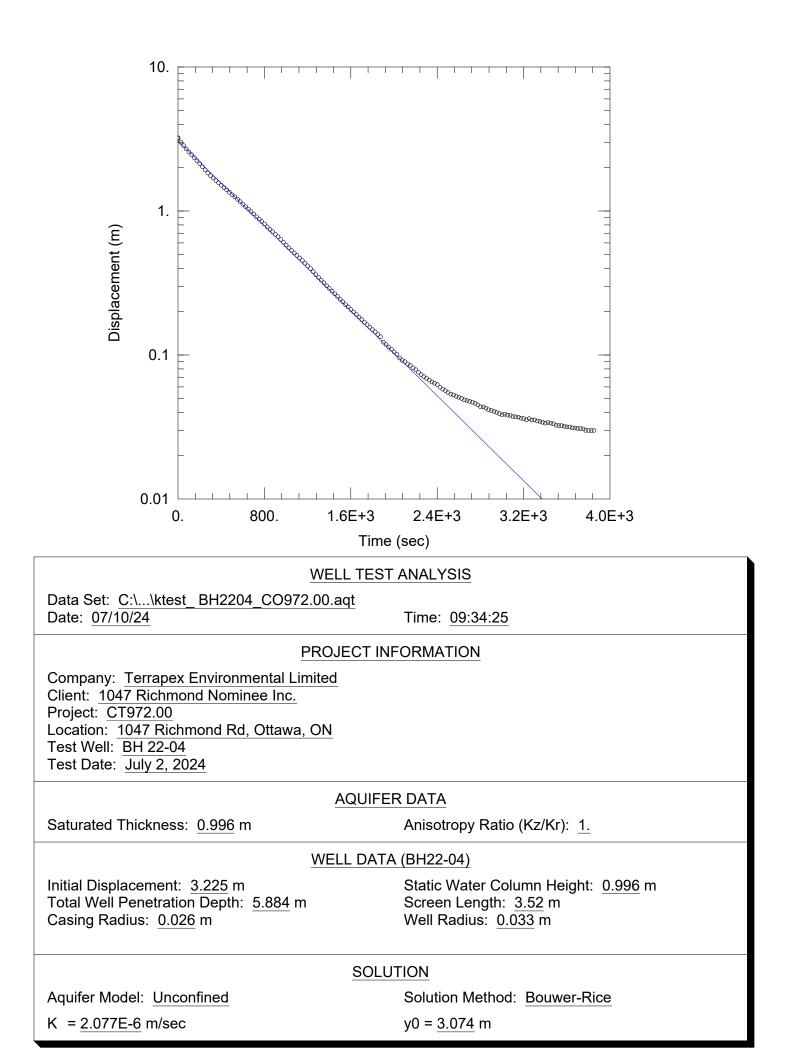
DATUM: Geodetic

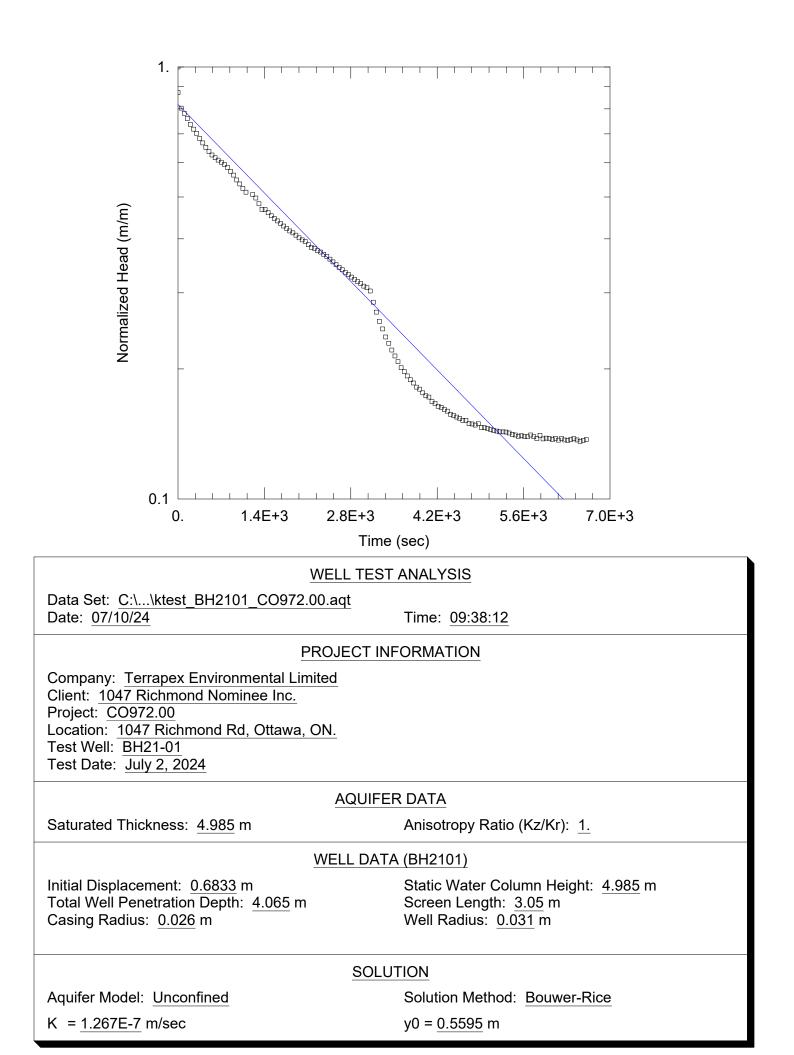
DRILL RIG: Massenza MI3

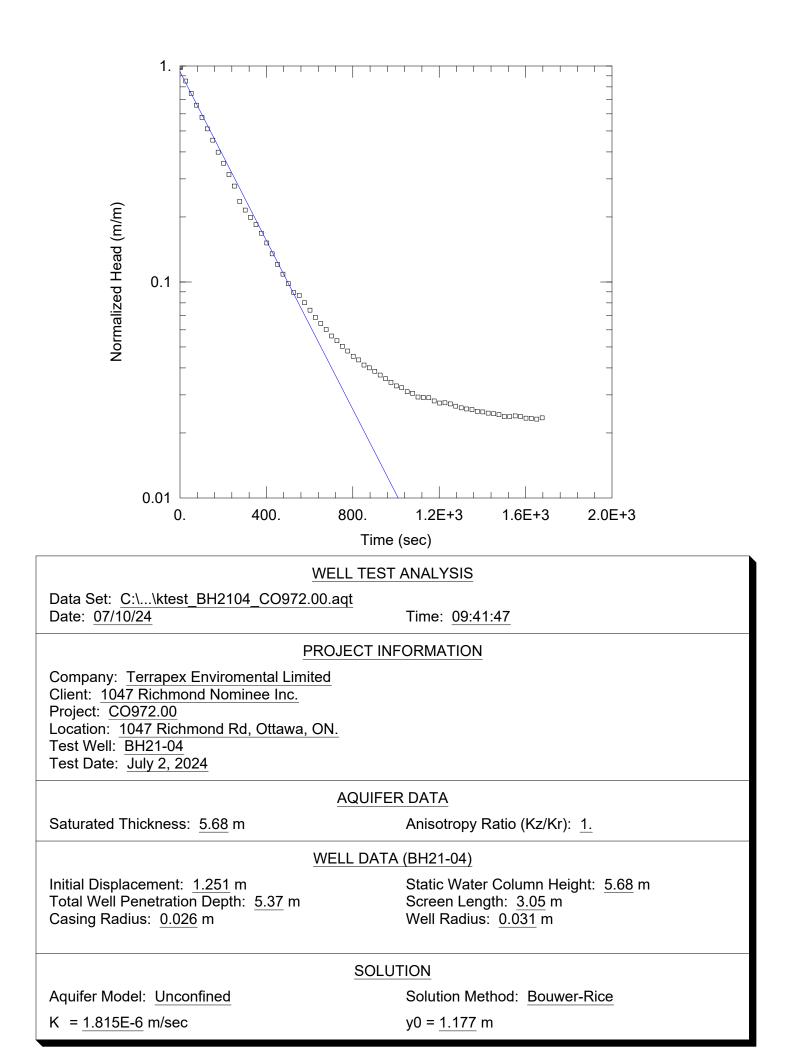
GROUND SURFACE ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; yrey; (Pavement Structure) FILL - (SP) SAND, fine to medium, some gravel to gravelly, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, trace plastic fines, contains cobbles and boulders; grey-brown (TILL); non-cohesive, moist (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL); non-cohesive, wet	.∢ _	ELEV. DEPTH (m) 64.81 0.00 0.08 0.15 64.35 0.46 63.29 1.52 62.52 2.29	ADDEL AD	BLOWS/0.3m	HEADS CONCE ND = N	of Detected 0 0 0 0 0 0 0 0 0 0 0 0 0	RGANIC \ ONS [PPN d	/APOUR //]		10 ⁶ WAT Wp I 20	ER CONTE		10 ³ ± ENT I WI 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; grey; (Pavement Structure) FILL - (SP) SAND, fine to medium, some gravel to gravelly, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, trace plastic fines, contains cobbles and boulders; grey-brown (TILL); non-cohesive, moist (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL);		0.00 0.08 0.15 0.435 0.46 0.46 63.29 1.52 62.52	2						<u> </u>		U#				Flushmount
(SW) gravelly SAND, angular; grey; (Pavement Structure) FILL - (SP) SAND, fine to medium, some gravel to gravelly, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, trace plastic fines, contains cobbles and boulders; grey-brown (TILL); non-cohesive, moist (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist (SW) gravelly SLTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL);		0.00 0.08 0.15 0.435 0.46 0.46 63.29 1.52 62.52	2												Flushmount
grey; (Pavement Structure) FILL - (SP) SAND, fine to medium, some gravel to gravelly, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, trace plastic fines, contains cobbles and boulders; grey-brown (TILL); non-cohesive, moist (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL);		64.35 0.46 63.29 1.52 62.52	2												Flushmount
grey-brown (TILL); non-cohesive, moist (SW) gravelly SAND, fine to coarse, trace silt; brown; non-cohesive, moist (SM) gravelly SILTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL);		1.52	3												
(SM) gravelly SILTY SAND, contains cobbles and boulders, thin laminations of sand, fine to coarse; grey-brown (TILL);		1.52													
sand, fine to coarse; grey-brown (TILL);			4												
sand, fine to coarse; grey-brown (TILL);					1										Bentonite Seal
			5		□ ⊕ ND										
			6		D⊕ ND										
Slightly weathered to fresh, medium to		60.85 3.96	7		t⊕ ND										
thickly bedded, medium grey, fine grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone															Sand #2
															े दे दे दे दे
															Screen
															ر به در به در
															دای بهروایه و ایران ا
															∑ S Bentonite Seal
	22		-+	1-			+		+	-	+-		+		_
	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded witth shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded witth shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded witth shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbedided with shale, limestone and sandstone	grained, non-porous to fainty porous, medium strong, Dolostone, interbeddded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong, Dolostone, interbedded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong. Dokostone, interbedded with shale, limestone and sandstone	grained, non-porous to faintly porous. medium strong. Dolostone, interbeddidded with shale, limestone and sandstone	grained, non-porous to faintly porous, medium strong. Dolostone, interbeddided with shale, limestone and sandstone	grained, non-porcus to faintly porcus, medium strong. Dolostone, interbedded with shale, limestone and sandstone

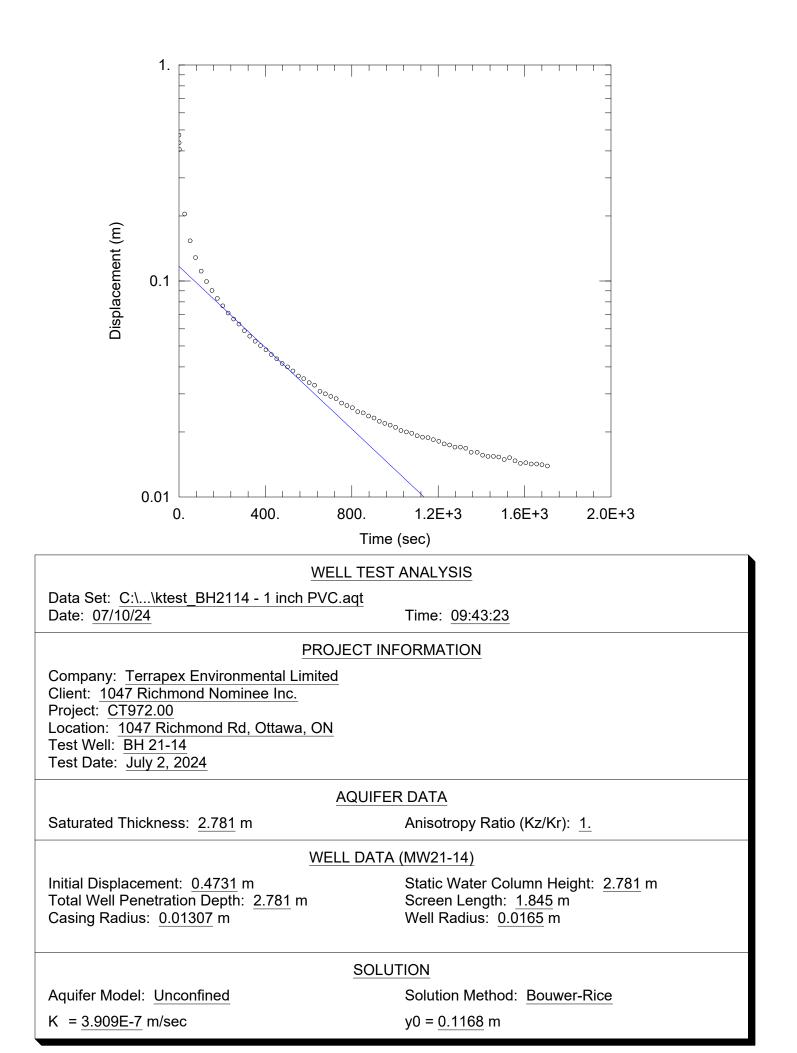
PROJECT: 21494078 LOCATION: N 5026390.88; E 361333.63

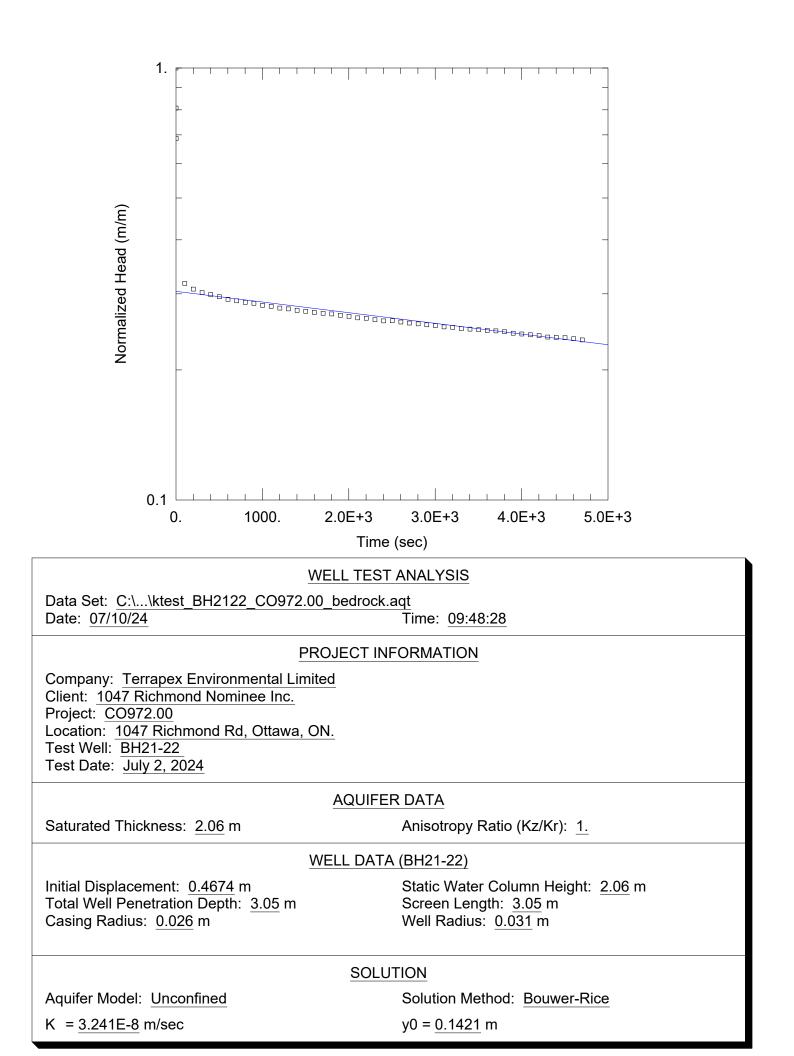
RECORD OF BOREHOLE: BH22-10

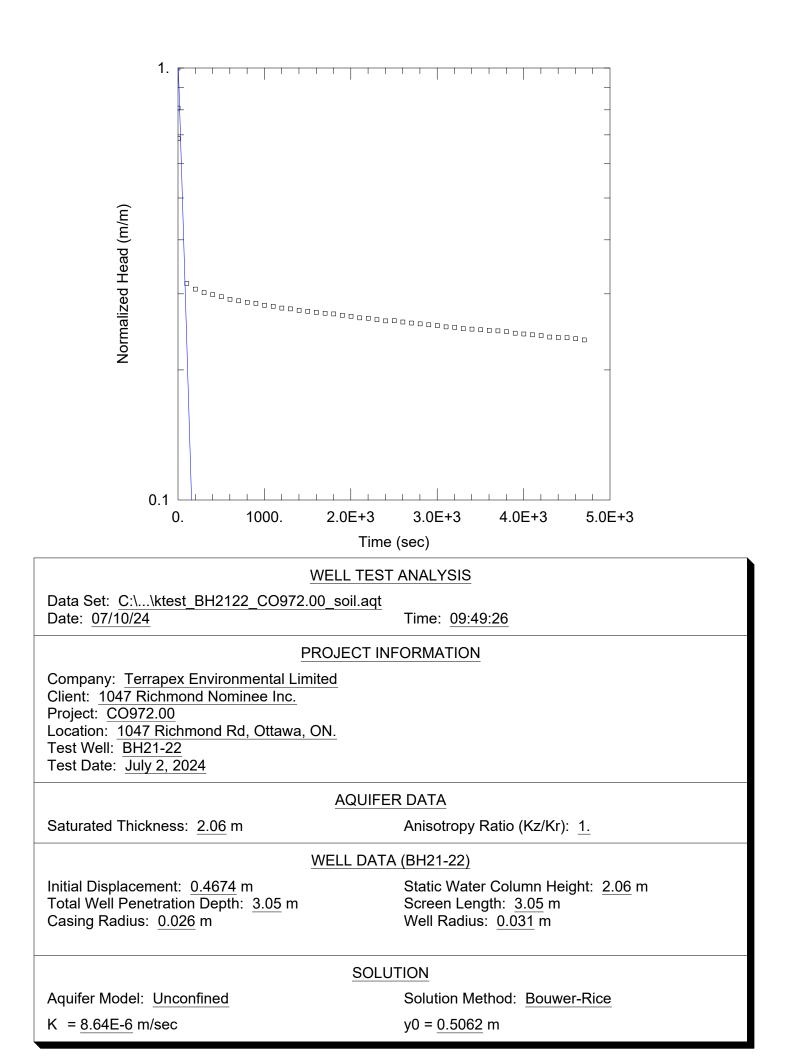

SHEET 2 OF 3 DATUM: Geodetic

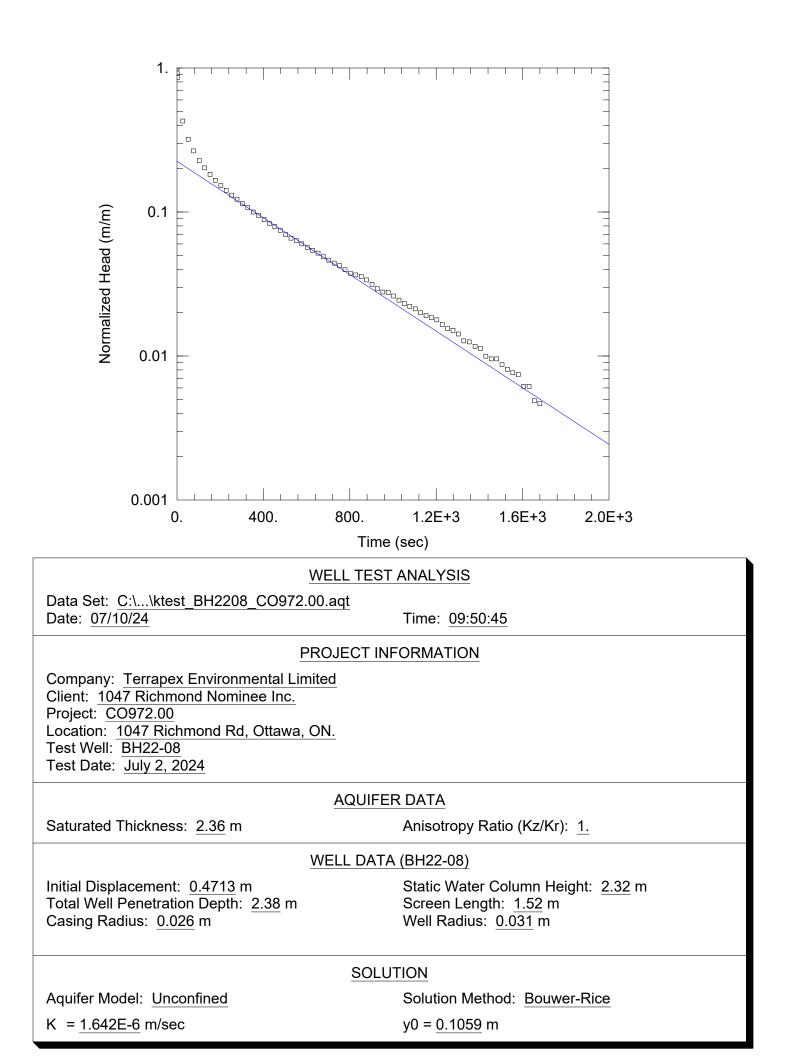

BORING DATE: May 15 - 16, 2023


		1					DR	RILL RIG: Massenz									
ALE	гнор	SOIL PROFILE	F		SA	.MPL		HEADSPACE CON VAPOUR CONCE ND = Not Detected	MBUSTIE NTRATIO				AULIC CO k, cm/s		Ţ	AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	ND = Not Detected 100 200 HEADSPACE ORC CONCENTRATION ND = Not Detected 100 200	GANIC VA	APOUR		Wp	0 ⁻⁶ 10 ATER CO	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 8 -	Air Rotary 89 mm Air Hammer	CONTINUED FROM PREVIOUS PAGE Slightly weathered to fresh, medium to thickly bedded, medium grey, fine grained, non-porous to faintly porous, medium strong, Dolostone, interbeddded witth shale, limestone and sandstone								400	, 						Bentonite Seal Sand #2 Screen Sand #2
- 11		END OF BOREHOLE	22	<u>54.45</u> 10.36													
- 12																	
- 13																	
- 14																	
- 15																	
- 16 DEF 1:4		SCALE						115	 								OGGED: ECKED: DS


APPENDIX II


HYDRAULIC ANALYSES





APPENDIX II

DEWATERING ANALYSES

	Construction Dewatering Wo	orksheet - Full Excavatio	on
TERRAPEX		Project: Project Number: Location:	1047 Richmond Road, Ottawa, Ontario CO972.00 Provided Excavation Footprint
•		Date:	24 March, 2025
	Input Para	meters	
	 Aquifer Thickness Target Aquifer Thickness Effective Drawdown Hydraulic Conductivity Hydraulic Conductivity Excavation length Excavation width 	(H) (h) (Δh) (K) (K) (a) (b)	15 m 8.56 m 6.44 m 8.6E-06 m/s 7.4E-01 m/d 77.67 m 62 m
	(8) Excavation Length/Width Ratio	(b) (a/b)	1.3
Anthonotomotifficiation	Distance Cal	culations	
	(9) Width of Dewatering	(L)	28 m
	(10) Radius/Zone of Influence (ZOI)	(R _o)	57 m
	(11) Equivalent Radius of Well (where a/b ≤ 1.5)	(R _s)	39 m
Radial flow, water table	<pre>(12) Equivalent Radius of Well (where a/b > 1.5)</pre>	(R _s)	m
	Volume Cald	culations	
	<pre>(13) Trench Calculation (where a/b ≤ 1.5)</pre>	(Q) (Q)	308 m3/day 308,484 L/day
	(14) Trench Calculation (where a/b > 1.5)	(Q) (Q)	m3/day L/day
	(15) Anticipated Incident Precipitation		72,233 L/day @ 15mm storm
Figure 6.8 Approximate analysis of long, narrow systems.	SUMMARY OF	VOLUMES	
	Estimated Dewatering Volume Incident Precipitation (15mm storm) Total Dewatering Volume (A+B) Design Dewatering Volume (Ax1.5+B) Permiting Calculation (Ax1.5) Permanent Dewatering (Ax1.5)	(A) (B) (C) (D)	308,484 L/day 72,233 L/day 380,717 L/day 534,959 L/day 462,726 L/day 462,726 L/day
	Relevant Formulae (Powers, 20	07)	
	 (9) R_e / 2 (10) 3000 (H - h) x sqrt (K) (11) sqrt ([a × b) / ρ) 		(eq. 6.15, p. 105) (eq. 6.12, p. 71) (eq. 6.9, p. 70) (eq. 6.10, p.102)
	 (12) (a+b)/pi) (13) (pi x K x (H² - h^o2)) / In ((Ro+Ra) / Ra) + 2 x (X x K x (H² - h^o2)) /(2 x (14) (pi x K x (H² - h^o2)) / In ((Ro+Ra)/Ra) + 2 x (X x K x (H² - h^o2)) / (2 x I 		(pg. 66.67,68; eq. 6.1 and 6.2) (pg. 66.67,68; eq. 6.1 and 6.2)
l	(15) axbx25		(zk 1Sept2022)

	Construction Dewatering Works	heet - Excavation Floo	r	
		Project:	1047 Richmond Ro Ottawa, Ont	
		Project Number:	CO972	
TERRAPEX		Location:	Lower Layer - Kvalu	
		Date:	24 March, 2	025
	Input Parame	eters		
	Input Parameters	(11)	10.04	
Original head	(1) Aquifer Thickness	(H)	12.84 m 8.56 m	
	(2) Target Depth (3) Effective Drawdown	(h)	4.28 m	
	(-)	(Δh)	4.20 m 1.8E-06 m/s	
		(K)	1.6E-01 m/d	
	(5) Hydraulic Conductivity	(K)		
	(6) Excavation length	(a)	77.67 m	
	(7) Excavation width	(b)	62 m	
b v	(8) Excavation Length/Width Ratio	(a/b)	1.3	
	Distance Calcu	lations		
	(9) Width of Dewatering	(L)	9 m	
	(10) Radius/Zone of Influence (ZOI)	(R _o)	17 m	
	(11) Equivalent Radius of Well(where a/b ≤ 1.5)	(R _s)	39 m	
Radial flow, water table aquifier	(12) Equivalent Radius of Well (where a/b > 1.5)	(R _s)	m	
	Volume Calcul	ations		
×		(2)		
	(13) Trench Calculation(where a/b ≤ 1.5)	(Q) (Q)	128 m3/day 128,191 L/day	
$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	(14) Trench Calculation	(Q)	m3/day	
	(where $a/b > 1.5$)	(Q)	L/day	
	(15) Anticipated Incident Precipitation		72,233 L/day @ 15mm storn	n
Figure 6.8 Approximate analysis of long, narrow systems.	SUMMARY OF V	DLUMES		
	Estimated Dewatering Volume	(A)	128 101 L/day	
	Estimated Dewatering Volume Incident Precipitation (15mm storm)	(A) (B)	128,191 L/day 72,233 L/day	
	Total Dewatering Volume (A+B)	(C)	200,424 L/day	
	Design Dewatering Volume (Ax1.5+B)	(O) (D)	264,520 L/day	
	Permiting Calculation (Ax1.5)	(D)	192,287 L/day	
	Permanent Dewatering (Ax1.5)		192,287 L/day	
	Relevant Formulae (Powers, 2			
	(9) R _o /2		(eq. 6.15, p. 105)	
	(10) 3000 (H - h) x sqrt (K)		(eq. 6.12, p. 71)	
	(11) sqrt ((a x b)/ pi)		(eq. 6.9, p. 70)	(eq. 6.10, p.102
	(12) (a+b)/pi)			
	(13) (pi x K x (H^2 - h^2)) / ln ((Ro+Rs) / Rs) + 2 x (X x K x (H^2 - h^2)) /(2 x L)	(pg. 66,67,68; eq. 6.1 and 6.2)	
	(14) (pi x K x (H^2 - h^2)) / ln ((Ro+Rs)/ Rs) + 2 x (X x K x (H^2 - h^2)) / (2 x L)	(pg. 66,67,68; eq. 6.1 and 6.2)	
	(15) axbx25			(zk 1Sept2022)

<text><text><text><text><text> New Network <th< th=""><th colspan="8">Construction Dewatering Worksheet - Summary of Estimates</th></th<></text></text></text></text></text>	Construction Dewatering Worksheet - Summary of Estimates								
SUMMARY DETAILED BREAKDOWN FOR ASSESSING IMPACT OF IMPERMEABLE EXCAVATION SURFACES (if applicable) Relative Builting full excavation @ Kvalue 1 SUMMARY DETAILED BREAKDOWN FOR ASSESSING IMPACT OF IMPERMEABLE EXCAVATION SURFACES (if applicable) Builting full excavation @ Kvalue 1 South (day) Compliande and lower layer @ Kvalue 2 181280 Uday Contribution from indide and lower layer @ Kvalue 2 181280 Uday Orophing volume from indide layer @ Kvalue 2 181280 Uday West Wall 77.7 7.884 Anticipated Volumes for Surfaces West Wall 77.7 7.884 Anticipated Volumes for Surfaces Resultant Contribution from Middle Layer @ Kvalue 2 181280 Uday Middle Layer North Wall 77.7 7.7 A to tot application of the full of tot of safety) Total (no factor of safety) 156,473 Uday Total (no factor of safety) 156,473 Uday Vest Wall 62.0 0 1	TERRAPEX				P	roject Number: Location:		Ottawa, Ontari CO972.0 Provided Excavatio	o O n
Full Excavation using full excavation @ Kvalue 1 308,484 Liday Liday Resultant Contribution from Under and lower layers @ Kvalue 1 280,202 Liday Resultant Contribution from Under layers @ Kvalue 1 280,202 Liday Resultant Contribution from Under layers @ Kvalue 1 280,202 Liday Resultant Contribution from Under layers @ Kvalue 2 181,290 Liday Resultant Contribution from Middle Layer @ Kvalue 2 181,290 Liday Resultant Contribution from Middle Layer @ Kvalue 2 181,290 Liday Resultant Contribution from Middle Layer @ Kvalue 2 104/a 77.7 7.7684 1 7.7684 1 7.7684 Resultant Contribution from Middle Layer @ Kvalue 2 0 Liday 0 1 0			Dewatering Rate Estimates						
Full Excavation using full excavation (% Ivalue 1 308,484 Lday Cropping Volume from middle and lower layers @ Kvalue 1 280,202 Lday Permeable? Surfaces Cropping Volume from middle and lower layers @ Kvalue 2 181,290 Lday (Clay Value 7, 7,864 1 7,864 Cropping Volume from lower layer @ Kvalue 2 181,290 Lday South Wall 77,7 7,864 1 7,864 Resultant Contribution from Middle Layer @ Kvalue 2 0 Uday Vest Wall 62.0 6,277 1 6,277 Resultant Contribution from Lower layer @ Kvalue 3 (or floor) 128,191 Lday Vest Wall 62.0 0 1 0 South Wall 77,7 0 1 0 0 0 West Wall 62.0 0 1 0 0 0 South Wall 77,7 0 1 0 0 0 West Wall 62.0 2.8,452 1 36,43 36,43 1 36,44 West Wall 62.0 2.	SUMMARY		DETAILED BREAKDOWN		ING IMPACT (Relative	Is Surface		
Resultant Contribution from Upper Layer @ Kvalue 1 28,282 L/day Contribution from middle and lower layers @ Kvalue 2 181,290 L/day Cropping volume from lower layer @ Kvalue 2 181,290 L/day Resultant Contribution from Middle Layer @ Kvalue 2 0 L/day Resultant Contribution from Lower layer @ Kvalue 3 (or floor) 128,191 L/day Middle Layer (or floor) 128,191 L/day Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 156,473 L/day Kesultant Contribution from (or al, user layer @ Kvalue 3 (or floor) 128,191 L/day Middle Layer (or floor) 126,473 L/day Kesultant Contribution from from Gater of safety) 156,473 L/day Kesultant Contribution from (or al, user layer @ Kvalue 3 (or floor) 128,191 L/day Middle Layer (or floor) 106,473 L/day Lower Layer (or floor) North Wall 77.7 35,643 Lower Layer (or floor) North Wall <td>Full Excavation using full excavation @ Kvalue 1</td> <td>308,484 L/day</td> <td></td> <td>Surface</td> <td>Perimeter</td> <td></td> <td></td> <td></td> <td></td>	Full Excavation using full excavation @ Kvalue 1	308,484 L/day		Surface	Perimeter				
Resultant Contribution from Upper Layer @ Kvalue 1 28,282 L/day Contribution from middle and lower layers @ Kvalue 2 181,290 L/day Cropping volume from lower layer @ Kvalue 2 181,290 L/day Resultant Contribution from Middle Layer @ Kvalue 3 0 L/day Middle Layer @ Kvalue 3 (or floor) 128,191 L/day Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 156,473 L/day West Wall 77.7 35,643 East Wall 62.0 0 West Wall 77.7 0 Out Wall 77.7 0 1 0 Bouth Wall 62.0 0 1 0 Bouth Wall 77.7 35,643 1 35,643 Bouth Wall 77.7 35,643 1 28,452					(m)	(L/day)	Yes=1 / No=0	(L/day)	
Contribution from middle and lower layers @ Kvalue 2 181,290 L/day Cropping volume from lower layer @ Kvalue 2 101,290 L/day Resultant Contribution from Middle Layer @ Kvalue 3 (or floor) 0 L/day Middle Layer @ Kvalue 3 (or floor) 128,191 L/day Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 156,473 L/day West Wall 62.0 0 West Wall 62.0 0 Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 0 West Wall 62.0 0 East Wall 62.0 1 0 West Wall 62.0 0 1 28,452 South Wall 77.7 35,643 1 35,643 Middle Layer (or floor) 82,0 28,452 1 28,452 South Wall 77.7 3			Upper Layer	North Wall	77.7	7,864	1	7,864	
Cropping volume from lower layer @ Kvalue 2 181,290 L/day Resultant Contribution from Middle Layer @ Kvalue 2 0 L/day Resultant Contribution from Lower layer @ Kvalue 3 (or floor) 128,191 L/day Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 128,191 L/day West Wall 62.0 0 West Wall 77.7 0 1 0 South Wall 77.7 0 1 0 West Wall 62.0 0 1 0 West Wall 77.7 0 1 0 South Wall 77.7 0 1 0 West Wall 62.0 0 1 0 West Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 Total Groundwater Contribution Incident PTTN 72,233 1 35,643 West Wall 62.0 28,452 1		· •		East Wall	62.0	6,277	1	6,277	
Resultant Contribution from Middle Layer @ Kvalue 2 0 L/day Resultant Contribution from Lower layer @ Kvalue 3 (or floor) 128,191 L/day Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 128,191 L/day Lower Layer (or floor) 128,191 L/day Middle Layer 0 Middle Layer 0 Total (no factor of safety) 156,473 L/day Lower Layer (or floor) 128,452 South Wall 77.7 0 1	Contribution from middle and lower layers @ Kvalue 2	181,290 L/day		South Wall	77.7	7,864	1	7,864	
East Wall 62.0 0 1 0 South Wall 77.7 0 1 0 South Wall 77.7 0 1 0 North Wall 77.7 35,643 1 35,643 East Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 Incident PTIN 72,233 1 28,452 1 South Wall 77.7 10 10 10 10 Incident PTIN 72,233 1 28,470 12 10 10<		181,290 L/day		West Wall		6,277	1	6,277	
South Wall 77.7 0 1 0 Total (no factor of safety) 156,473 L/day Lower Layer (or floor) North Wall 77.7 0 1 0 West Wall 62.0 0 1 0 0 West Wall 62.0 0 1 0 0 West Wall 62.0 28,452 1 28,452 South Wall 77.7 35,643 1 28,452 South Wall 77.7 35,643 1 28,452 South Wall 62.0 28,452 1 28,452 Total Groundwater Contribution 156,473 1 28,452 West Wall 62.0 28,452 1 28,452 Total Groundwater POTIN 156,473 1 28,452 1 West Wall 62.0 28,452 1 28,452 1 Total Groundwater POTIN 156,473 1 28,452 1 1 1 1 1 1 1 1	Resultant Contribution from Middle Layer @ Kvalue 2	0 L/day	Middle Layer			0	1	0	
West Wall 62.0 0 1 0 North Wall 77.7 35,643 1 35,643 Lower Layer (or floor) North Wall 77.7 35,643 1 35,643 South Wall 77.7 35,643 1 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 1 28,452 Total Groundwater Contribution Incident PTTN 166,473 1 28,452 1 28,452 South Wall 62.0 28,452 1 28,452 1 28,452 Total Groundwater Contribution Incident PTTN 156,473 1 28,452 1 28,452 South Wall 62.0 28,452 1 28,452 1 28,452 Total Groundwater POTN 7 23,213 1 24,452 1 1 1 1 1 1 1 1 1 1						0	1	0	
Total (no factor of safety) 156,473 L/day Lower Layer (or floor) North Wall 77.7 35,643 1 36,643 East Wall 62.0 28,452 1 28,452 1 28,452 South Wall 77.7 35,643 1 35,643 1 28,452 South Wall 62.0 28,452 1 28,452 1 28,452 West Wall 62.0 28,452 1 28,452 1 28,452 Total Groundwater Contribution 156,473 1 22,33 1 22,33 FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 5 1.5 Design Dewatering Volume (A X FOS + B)(D) 306,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day	Resultant Contribution from Lower layer @ Kvalue 3 (or floor)	128,191 L/day				-	1	· · · · · ·	
East Wall 62.0 20,452 1 28,452 South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 Total Groundwater Contribution Incident PTTN 72,233 FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PTTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Total Dewatering Volume (C) 228,706 L/day Design Dewatering Volume (A S Safety (FOS) 1.5 Design Dewatering Volume (A S FB)(D) 36,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day							1		
South Wall 77.7 35,643 1 35,643 West Wall 62.0 28,452 1 28,452 Total Groundwater Contribution Incident PTTN 156,473 172,233 FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PTTN 72,233 L/day Incident PPTN (B) 72,233 Total Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 Design Dewatering Volume (A Safety (FOS) 1.5 PTTW Calculation (no rain, just groundwater) 234,710 L/day	Total (no factor of safety)	156,473 L/day	Lower Layer (or floor				1		
West Wall 62.0 28,452 1 28,452 Total Groundwater Contribution Incident PTTN 156,473 FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PTTN (B) 72,233 Uday Total Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (A) 156,473 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 Design Dewatering Volume (A Safety (FOS) 1.5 Design Dewatering Volume (A Safety (FOS) 1.5 PTTW Calculation (no rain, just groundwater) 234,710 L/day							1		_
Total Groundwater Contribution 156,473 Incident PTTN 72,233 FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Incident PPTN (B) 72,233 L/day Incident PPTN (B) 72,233 L/day Incident PPTN (C) 228,706 L/day Incident PPTN (FOS) 1.5 1.5 Design Dewatering Volume (A x FOS HS)[D) 366,433 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day							1		_
Incident PTTN 72,233 FACTORS OF SAFETY, PERMITTING, AND DESIGN 156,473 L/day Estimated Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Eactor of Safety (FOS) 1.5 1.5 Design Dewatering Volume (A x FOS + B)(D) 305,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day				West Wall	62.0		1		_
FACTORS OF SAFETY, PERMITTING, AND DESIGN Estimated Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 Design Dewatering Volume (A x FOS + B)(D) 306,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day						Total Groundw			
Estimated Dewatering Volume (A) 156,473 L/day Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 1.5 Design Dewatering Volume (A × DS + B)(D) 306,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day							Incident PTTN	12,23	3
Incident PPTN (B) 72,233 L/day Total Dewatering Volume (C) 228,706 L/day Factor of Safety (FOS) 1.5 1.5 Design Dewatering Volume (A x FOS + B)(D) 306,943 L/day PTTW Calculation (no rain, just groundwater) 234,710 L/day				FAC	TORS OF SA	FETY, PERMITT	ING, AND DESIGN		
Total Dewatering Volume (Č) 228,706 L/daý Factor of Safety (FOS) 1.5 Design Dewatering Volume (A x FOS + B)(D) 306,943 L/day PTTW Calculation (no rain, just groun water) 224,710 L/day							• • • •		
Factor of Safety (FOS)1.5Design Dewatering Volume (A x FOS + B)(D)306,943L/dayPTTW Calculation (no rain, just groundwater)234,710L/day									
Design Dewatering Volume (A x FOS + B)(D)306,943L/dayPTTW Calculation (no rain, just groundwater)234,710L/day									
PTTW Calculation (no rain, just groundwater) 234,710 L/day					Design Dev				L/day
			Permanent Dewateri	iq (A x D), assi					
Permanent Dewatering (A x D), assumes rainwater directed away from foundation 43 GPM									

APPENDIX III

HYDROCHEMICAL ANALYSES

Your Project #: CO972.00 Site#: 1047 RICHMOND ROAD Site Location: FERNGATE RICHMOND Your C.O.C. #: C#1038203-01-01

Attention: Keith Brown

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

Report Date: 2025/04/07 Report #: R8516006 Version: 2 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C529290 Received: 2025/03/18, 16:20

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2025/03/21	2025/03/21	CAM SOP-00301	EPA 8270E m
Sewer Use By-Law Semivolatile Organics	1	2025/03/24	2025/03/25	CAM SOP 00301	EPA 8270 m
Carbonaceous BOD	1	2025/03/20	2025/03/25	CAM SOP-00427	SM 24 5210B m
Total Cyanide	1	2025/03/20	2025/03/20	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2025/03/19	2025/03/20	CAM SOP-00449	SM 24 4500-F C m
Formaldehyde (HPLC)	1	2025/03/20	2025/03/21	CAM SOP-00310	EPA 8315A m
Mercury in Water by CVAA	1	2025/04/01	2025/04/01	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2025/03/24	2025/03/24	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2025/03/19	CAM SOP-00552	SM9222B, MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2025/03/22	2025/03/24	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2025/03/22	2025/03/24	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2025/03/23	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2025/03/23	2025/03/23	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2025/03/24	2025/03/25	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2025/03/20	CAM SOP-00307	EPA 8081B/ 8082A
Phenols (4AAP)	1	N/A	2025/03/20	CAM SOP-00444	OMOE E3179 m
рН	1	2025/03/19	2025/03/20	CAM SOP-00413	SM 24th-4500H+ B
Sulphate by Automated Turbidimetry	1	N/A	2025/03/20	CAM SOP-00464	SM 24 4500-SO42- E m
Sulphide	1	N/A	2025/03/20	CAM SOP-00455	SM 24 4500-S G m
Total Kjeldahl Nitrogen in Water	1	2025/03/19	2025/03/20	CAM SOP-00938	SM 4500-N B m
Total PAHs (Hamilton, Ottawa S.U.B.) (2)	1	N/A	2025/03/26	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2025/03/23	2025/03/23	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2025/03/20	2025/03/20	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	1	N/A	2025/03/21	CAM SOP-00228	EPA 8260D
Non-Routine Volatile Organic Compounds	1	N/A	2025/03/24	CAM SOP-00226	EPA 8260D m

Remarks:

ľ

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession

Page 1 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: CO972.00 Site#: 1047 RICHMOND ROAD Site Location: FERNGATE RICHMOND Your C.O.C. #: C#1038203-01-01

Attention: Keith Brown

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2025/04/07 Report #: R8516006 Version: 2 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C529290

Received: 2025/03/18, 16:20

using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

(2) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Katherine Szozda, Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor

validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		APAK85		
Sampling Date		2025/03/18		
		11:00		
COC Number		C#1038203-01-01		
	UNITS	MW202	RDL	QC Batch
Calculated Parameters				
Total Animal/Vegetable Oil and Grease	mg/L	1.3	0.50	9893602
Inorganics				
Total Carbonaceous BOD	mg/L	<2	2	9894347
Fluoride (F-)	mg/L	0.55	0.10	9894143
Total Kjeldahl Nitrogen (TKN)	mg/L	1.9	0.10	9894081
рН	рН	9.72		9894144
Phenols-4AAP	mg/L	<0.0010	0.0010	9894519
Total Suspended Solids	mg/L	<10	10	9894875
Dissolved Sulphate (SO4)	mg/L	1200	5.0	9893130
Sulphide	mg/L	<0.020	0.020	9894449
Total Cyanide (CN)	mg/L	<0.0050	0.0050	9894264
Miscellaneous Parameters				
Formaldehyde	ug/L	<10	10	9894794
Petroleum Hydrocarbons				
Total Oil & Grease	mg/L	2.1	0.50	9896095
Total Oil & Grease Mineral/Synthetic	mg/L	0.80	0.50	9896096
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

NONYL PHENOL AND NONYL PHENOL ETHOXYLATE (WATER)

Bureau Veritas ID		APAK85					
Sampling Date		2025/03/18 11:00					
COC Number		C#1038203-01-01					
	UNITS	MW202	RDL	QC Batch			
Miscellaneous Parameters							
Nonylphenol Ethoxylate (Total)	mg/L	<0.005	0.005	9895906			
Nonylphenol (Total)	mg/L	<0.001	0.001	9895905			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Page 4 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Bureau Veritas ID		APAK85				
Sampling Date						
COC Number		C#1038203-01-01				
	UNITS	MW202	RDL	QC Batch		
Metals						
Mercury (Hg)	mg/L	<0.00010	0.00010	9902107		
Total Aluminum (Al)	ug/L	35	4.9	9896591		
Total Antimony (Sb)	ug/L	<0.50	0.50	9896591		
Total Arsenic (As)	ug/L	<1.0	1.0	9896591		
Total Bismuth (Bi)	ug/L	<1.0	1.0	9896591		
Total Boron (B)	ug/L	210	10	9896591		
Total Cadmium (Cd)	ug/L	<0.090	0.090	9896591		
Total Chromium (Cr)	ug/L	7.7	5.0	9896591		
Total Cobalt (Co)	ug/L	<0.50	0.50	9896591		
Total Copper (Cu)	ug/L	<0.90	0.90	9896591		
Total Lead (Pb)	ug/L	<0.50	0.50	9896591		
Total Manganese (Mn)	ug/L	<2.0	2.0	9896591		
Total Molybdenum (Mo)	ug/L	180	0.50	9896591		
Total Nickel (Ni)	ug/L	<1.0	1.0	9896591		
Total Phosphorus (P)	ug/L	<100	100	9896591		
Total Selenium (Se)	ug/L	3.1	2.0	9896591		
Total Silver (Ag)	ug/L	<0.090	0.090	9896591		
Total Tin (Sn)	ug/L	<1.0	1.0	9896591		
Total Titanium (Ti)	ug/L	<5.0	5.0	9896591		
Total Vanadium (V)	ug/L	4.8	0.50	9896591		
Total Zinc (Zn)	ug/L	<5.0	5.0	9896591		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Page 5 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

	1			
Bureau Veritas ID		ΑΡΑΚ85		
Sampling Date		2025/03/18		
		11:00		
COC Number		C#1038203-01-01		
	UNITS	MW202	RDL	QC Batch
Semivolatile Organics				
1-Methylnaphthalene	ug/L	<0.3	0.3	9896850
2-Methylnaphthalene	ug/L	<0.3	0.3	9896850
Fluorene	ug/L	<0.3	0.3	9896850
Naphthalene	ug/L	<0.3	0.3	9896850
Di-N-butyl phthalate	ug/L	<2	2	9896850
Bis(2-ethylhexyl)phthalate	ug/L	<2	2	9896850
Phenanthrene	ug/L	<0.2	0.2	9896850
Anthracene	ug/L	<0.2	0.2	9896850
Fluoranthene	ug/L	<0.2	0.2	9896850
Pyrene	ug/L	<0.2	0.2	9896850
Benzo(a)anthracene	ug/L	<0.2	0.2	9896850
Chrysene	ug/L	<0.2	0.2	9896850
Benzo(b/j)fluoranthene	ug/L	<0.2	0.2	9896850
Benzo(k)fluoranthene	ug/L	<0.2	0.2	9896850
Benzo(a)pyrene	ug/L	<0.2	0.2	9896850
Indeno(1,2,3-cd)pyrene	ug/L	<0.2	0.2	9896850
Dibenzo(a,h)anthracene	ug/L	<0.2	0.2	9896850
Benzo(g,h,i)perylene	ug/L	<0.2	0.2	9896850
Dibenzo(a,i)pyrene	ug/L	<0.2	0.2	9896850
Benzo(e)pyrene	ug/L	<0.2	0.2	9896850
Perylene	ug/L	<0.2	0.2	9896850
Dibenzo(a,j) acridine	ug/L	<0.4	0.4	9896850
7H-Dibenzo(c,g) Carbazole	ug/L	<0.4	0.4	9896850
2,4-Dichlorophenol	ug/L	<0.30	0.30	9895187
Benzyl butyl phthalate	ug/L	<0.50	0.50	9895187
Bis(2-chloroethoxy)methane	ug/L	<0.50	0.50	9895187
di-n-octyl phthalate	ug/L	<0.80	0.80	9895187
Diethyl phthalate	ug/L	<1.0	1.0	9895187
Indole	ug/L	<1.0	1.0	9895187
Calculated Parameters				
Total PAHs (18 PAHs)	ug/L	<0.96	0.96	9893886
Surrogate Recovery (%)				
2,4,6-Tribromophenol	%	40		9895187
RDL = Reportable Detection Li QC Batch = Quality Control Ba				

SEMI-VOLATILE ORGANICS BY GC-MS (WATER) Bureau Veritas ID APAK85

	2025/03/18 11:00						
	C#1038203-01-01						
UNITS	MW202	RDL	QC Batch				
%	45		9895187				
%	14		9895187				
%	71		9895187				
%	48		9895187				
%	11		9895187				
%	36		9896850				
%	42		9896850				
%	96		9896850				
%	57		9896850				
%	50		9896850				
RDL = Reportable Detection Limit							
atch							
	% %	11:00 C#1038203-01-01 UNITS % 45 % 14 % 71 % 48 % 11 % 36 % 96 % 50 imit	11:00 C#1038203-01-01 UNITS MW202 % 45 % 14 % 71 % 48 % 11 % 36 % 96 % 57 % 50				

Page 7 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID				
		APAK85		
Sampling Date		2025/03/18		
		11:00		
COC Number		C#1038203-01-01		
	UNITS	MW202	RDL	QC Batc
/olatile Organics				
Benzene	ug/L	<0.20	0.20	9894715
Bromodichloromethane	ug/L	<0.50	0.50	989471
Bromoform	ug/L	<1.0	1.0	989471
Bromomethane	ug/L	<0.50	0.50	989471
Carbon Tetrachloride	ug/L	<0.19	0.19	989471
Chlorobenzene	ug/L	<0.20	0.20	989471
Chloroethane	ug/L	<1.0	1.0	989471
Chloroform	ug/L	<0.20	0.20	989471
Chloromethane	ug/L	<5.0	5.0	989471
Dibromochloromethane	ug/L	<0.50	0.50	989471
I,2-Dichlorobenzene	ug/L	<0.40	0.40	989471
I,3-Dichlorobenzene	ug/L	<0.40	0.40	989471
I,4-Dichlorobenzene	ug/L	<0.40	0.40	989471
I,1-Dichloroethane	ug/L	<0.20	0.20	989471
I,2-Dichloroethane	ug/L	<0.49	0.49	989471
I,1-Dichloroethylene	ug/L	<0.20	0.20	989471
is-1,2-Dichloroethylene	ug/L	<0.50	0.50	989471
rans-1,2-Dichloroethylene	ug/L	<0.50	0.50	989471
I,2-Dichloropropane	ug/L	<0.20	0.20	989471
is-1,3-Dichloropropene	ug/L	<0.30	0.30	989471
rans-1,3-Dichloropropene	ug/L	<0.40	0.40	989471
Ethylbenzene	ug/L	<0.20	0.20	989471
Ethylene Dibromide	ug/L	<0.19	0.19	989471
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	989471
Styrene	ug/L	<0.40	0.40	989471
I,1,2,2-Tetrachloroethane	ug/L	<0.40	0.40	989471
Tetrachloroethylene	ug/L	<0.20	0.20	989471
1,3,5-Trimethylbenzene	ug/L	<1.0	1.0	9894724
Toluene	ug/L	<0.20	0.20	989471
1,1,1-Trichloroethane	ug/L	<0.20	0.20	989471
I,1,2-Trichloroethane	ug/L	<0.40	0.40	989471
Trichloroethylene	ug/L	<0.20	0.20	989471
	<u>,</u>	<0.50	0.50	989471

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		APAK85		
Sampling Date		2025/03/18 11:00		
COC Number		C#1038203-01-01		
	UNITS	MW202	RDL	QC Batch
Vinyl Chloride	ug/L	<0.20	0.20	9894715
p+m-Xylene	ug/L	<0.20	0.20	9894715
o-Xylene	ug/L	<0.20	0.20	9894715
Total Xylenes	ug/L	<0.20	0.20	9894715
Surrogate Recovery (%)	-			
4-Bromofluorobenzene	%	99		9894715
D4-1,2-Dichloroethane	%	107		9894715
D8-Toluene	%	91		9894715
4-Bromofluorobenzene	%	106		9894724
D4-1,2-Dichloroethane	%	114		9894724
D8-Toluene	%	94		9894724
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Page 9 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

ORGANOCHLORINATED PESTICIDES BY GC-ECD (WATER)

Bureau Veritas ID		ΑΡΑΚ85				
Sampling Date		2025/03/18 11:00				
COC Number		C#1038203-01-01				
	UNITS	MW202	RDL	QC Batch		
Calculated Parameters						
Total PCB	ug/L	<0.05	0.05	9893603		
Pesticides & Herbicides						
Hexachlorobenzene	ug/L	<0.005	0.005	9896430		
Surrogate Recovery (%)						
2,4,5,6-Tetrachloro-m-xylene	%	66		9896430		
Decachlorobiphenyl	%	73		9896430		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Page 10 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

MICROBIOLOGY (WATER)

Bureau Veritas ID		APAK85						
Sampling Date		2025/03/18						
Sampling Date		11:00						
COC Number		C#1038203-01-01						
	UNITS	MW202	RDL	QC Batch				
Microbiological								
Escherichia coli	CFU/100mL	<10	10	9894155				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	atch							

Collected: 2025/03/18

TEST SUMMARY

Bureau Veritas ID:	APAK85
Sample ID:	MW202
Matrix:	Water

Test Description						
rescibescription		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water b	oy GC/MS	GC/MS	9895187	2025/03/21	2025/03/21	Ahmed Ismail
Sewer Use By-Law Semivola	tile Organics	GC/MS	9896850	2025/03/24	2025/03/25	Ahmed Ismail
Carbonaceous BOD		DO	9894347	2025/03/20	2025/03/25	Gurjot Kaur
Total Cyanide		SKAL/CN	9894264	2025/03/20	2025/03/20	Prgya Panchal
Fluoride		ISE	9894143	2025/03/19	2025/03/20	Nachiketa Gohil
Formaldehyde (HPLC)		LC/UV	9894794	2025/03/20	2025/03/21	Kimberley Linde
Mercury in Water by CVAA		CV/AA	9902107	2025/04/01	2025/04/01	Maitri PATIL
Total Metals Analysis by ICP	MS	ICP/MS	9896591	2025/03/24	2025/03/24	Azita Fazaeli
E.coli, (CFU/100mL)		PL	9894155	N/A	2025/03/19	Jessica (Ya Ping) Qiang
Total Nonylphenol in Liquid	s by HPLC	LC/FLU	9895905	2025/03/22	2025/03/24	Michael Huynh
Nonylphenol Ethoxylates in	Liquids: HPLC	LC/FLU	9895906	2025/03/22	2025/03/24	Michael Huynh
Animal and Vegetable Oil and	nd Grease	BAL	9893602	N/A	2025/03/23	Automated Statchk
Total Oil and Grease		BAL	9896095	2025/03/23	2025/03/23	Navneet Singh
OC Pesticides (Selected) & F	РСВ	GC/ECD	9896430	2025/03/24	2025/03/25	Harish Patel
OC Pesticides Summed Para	imeters	CALC	9893603	N/A	2025/03/20	Automated Statchk
Phenols (4AAP)		TECH/PHEN	9894519	N/A	2025/03/20	Sachi Patel
рН		AT	9894144	2025/03/19	2025/03/20	Nachiketa Gohil
Sulphate by Automated Tur	bidimetry	SKAL	9893130	N/A	2025/03/20	Alina Dobreanu
Sulphide		ISE/S	9894449	N/A	2025/03/20	Gurparteek KAUR
Total Kjeldahl Nitrogen in W	/ater	SKAL	9894081	2025/03/19	2025/03/20	Kruti Jitesh Patel
Total PAHs (Hamilton, Ottav	wa S.U.B.)	CALC	9893886	N/A	2025/03/26	Automated Statchk
Mineral/Synthetic O & G (TI	PH Heavy Oil)	BAL	9896096	2025/03/23	2025/03/23	Navneet Singh
Total Suspended Solids		BAL	9894875	2025/03/20	2025/03/20	Binuja Kodithuwakku Arachchilage
Volatile Organic Compound	s in Water	GC/MS	9894715	N/A	2025/03/21	Gabriella Morrone
Non-Routine Volatile Organ	ic Compounds	P&T/MS	9894724	N/A	2025/03/24	Hai Son Tran

Bureau Veritas ID: APAK85 Dup Sample ID: MW202 Matrix: Water

Collected:	2025/03/18
Shipped:	
Received:	2025/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	9896850	2025/03/24	2025/03/25	Ahmed Ismail
Fluoride	ISE	9894143	2025/03/19	2025/03/20	Nachiketa Gohil
Total Nonylphenol in Liquids by HPLC	LC/FLU	9895905	2025/03/22	2025/03/24	Michael Huynh
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9895906	2025/03/22	2025/03/24	Michael Huynh
рН	AT	9894144	2025/03/19	2025/03/20	Nachiketa Gohil
Total Suspended Solids	BAL	9894875	2025/03/20	2025/03/20	Binuja Kodithuwakku Arachchilage

0 #

> Page 12 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Sample APAK85 [MW202] : VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

Ø

Terrapex Environmental Ltd Client Project #: CO972.00 Site Location: FERNGATE RICHMOND Sampler Initials: EB

QUALITY ASSURANCE REPORT

¥.	QA/QC								
5	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	9893130	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2025/03/20		NC	%	75 - 125
7	9893130	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2025/03/20		91	%	80 - 120
10	9893130	ADB	Method Blank	Dissolved Sulphate (SO4)	2025/03/20	<1.0		mg/L	
82	9893130	ADB	RPD	Dissolved Sulphate (SO4)	2025/03/20	0.61		%	20
0	9894081	KJP	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2025/03/20		104	%	80 - 120
Ľ	9894081	KJP	QC Standard	Total Kjeldahl Nitrogen (TKN)	2025/03/20		97	%	80 - 120
抽	9894081	KJP	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2025/03/20		99	%	80 - 120
1.2	9894081	KJP	Method Blank	Total Kjeldahl Nitrogen (TKN)	2025/03/20	<0.10		mg/L	
5	9894081	KJP	RPD	Total Kjeldahl Nitrogen (TKN)	2025/03/20	NC		%	20
109	9894143	NGI	Matrix Spike [APAK85-09]	Fluoride (F-)	2025/03/20		95	%	80 - 120
Ø	9894143	NGI	Spiked Blank	Fluoride (F-)	2025/03/20		99	%	80 - 120
-	9894143	NGI	Method Blank	Fluoride (F-)	2025/03/20	<0.10		mg/L	
	9894143	NGI	RPD [APAK85-09]	Fluoride (F-)	2025/03/20	3.3		%	20
Ľ	9894144	NGI	Spiked Blank	рН	2025/03/20		102	%	98 - 103
1	9894144	NGI	RPD [APAK85-09]	рН	2025/03/20	0.30		%	N/A
	9894264	GYA	Matrix Spike	Total Cyanide (CN)	2025/03/20		94	%	80 - 120
1	9894264	GYA	Spiked Blank	Total Cyanide (CN)	2025/03/20		93	%	80 - 120
	9894264	GYA	Method Blank	Total Cyanide (CN)	2025/03/20	<0.0050		mg/L	
100	9894264	GYA	RPD	Total Cyanide (CN)	2025/03/20	NC		%	20
#	9894347	GUJ	QC Standard	Total Carbonaceous BOD	2025/03/25		96	%	80 - 120
h.	9894347	GUJ	Method Blank	Total Carbonaceous BOD	2025/03/25	<2		mg/L	
Q	9894347	GUJ	RPD	Total Carbonaceous BOD	2025/03/25	0.40		%	30
	9894449	GTK	Matrix Spike	Sulphide	2025/03/20		82	%	80 - 120
1	9894449	GTK	Spiked Blank	Sulphide	2025/03/20		97	%	80 - 120
	9894449	GTK	Method Blank	Sulphide	2025/03/20	<0.020		mg/L	20
I.	9894449	GTK	RPD	Sulphide	2025/03/20	1.6	100	%	20
	9894519	SPC	Matrix Spike	Phenols-4AAP	2025/03/20		100	%	80 - 120
10	9894519 9894519	SPC SPC	Spiked Blank Method Blank	Phenols-4AAP	2025/03/20	<0.0010	102	%	80 - 120
	9894519 9894519	SPC	RPD	Phenols-4AAP Phenols-4AAP	2025/03/20	<0.0010 NC		mg/L %	20
Q	9894519 9894715	GMN	Matrix Spike	4-Bromofluorobenzene	2025/03/20 2025/03/21	NC	100	%	20 70 - 130
μ.	9094715	Givin		D4-1,2-Dichloroethane	2025/03/21		100	%	70 - 130 70 - 130
100				D8-Toluene	2025/03/21		103	%	70 - 130 70 - 130
h				Benzene	2025/03/21		102	%	70 - 130 70 - 130
0				Bromodichloromethane	2025/03/21		110	%	70 - 130
				Bromoform	2025/03/21		110	%	70 - 130
>				Bromomethane	2025/03/21		110	%	60 - 140
-				Carbon Tetrachloride	2025/03/21		112	%	70 - 130
1				Chlorobenzene	2025/03/21		103	%	70 - 130
				Chloroethane	2025/03/21		120	%	70 - 130
Q				Chloroform	2025/03/21		110	%	70 - 130
0				Chloromethane	2025/03/21		128	%	60 - 140
				Dibromochloromethane	2025/03/21		114	%	70 - 130
10				1,2-Dichlorobenzene	2025/03/21		109	%	70 - 130
-				1,3-Dichlorobenzene	2025/03/21		107	%	70 - 130
M				1,4-Dichlorobenzene	2025/03/21		111	%	70 - 130
Ĭ,				1,1-Dichloroethane	2025/03/21		106	%	70 - 130
				1,2-Dichloroethane	2025/03/21		116	%	70 - 130
				1,1-Dichloroethylene	2025/03/21		108	%	70 - 130
				cis-1,2-Dichloroethylene	2025/03/21		117	%	70 - 130
Į				trans-1,2-Dichloroethylene	2025/03/21		115	%	70 - 130
-									

Page 14 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

í.	QA/QC								
	Batch Ir	nit	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
1				1,2-Dichloropropane	2025/03/21		115	%	70 - 130
				cis-1,3-Dichloropropene	2025/03/21		112	%	70 - 130
١				trans-1,3-Dichloropropene	2025/03/21		125	%	70 - 130
				Ethylbenzene	2025/03/21		109	%	70 - 130
)				Ethylene Dibromide	2025/03/21		112	%	70 - 130
ł.				Methylene Chloride(Dichloromethane)	2025/03/21		107	%	70 - 130
				Styrene	2025/03/21		111	%	70 - 130
				1,1,2,2-Tetrachloroethane	2025/03/21		107	%	70 - 130
1				Tetrachloroethylene	2025/03/21		NC	%	70 - 130
Å				Toluene	2025/03/21		113	%	70 - 130
Į.				1,1,1-Trichloroethane	2025/03/21		106	%	70 - 130
2				1,1,2-Trichloroethane	2025/03/21		119	%	70 - 130
				Trichloroethylene	2025/03/21		110	%	70 - 130
				Trichlorofluoromethane (FREON 11)	2025/03/21		110	%	70 - 130
6				Vinyl Chloride	2025/03/21		119	%	70 - 130
i.				p+m-Xylene	2025/03/21		110	%	70 - 130
i.				o-Xylene	2025/03/21		115	%	70 - 130
Y	9894715 GI	MN	Spiked Blank	4-Bromofluorobenzene	2025/03/21		99	%	70 - 130
5				D4-1,2-Dichloroethane	2025/03/21		99	%	70 - 130
1				D8-Toluene	2025/03/21		103	%	70 - 130
				Benzene	2025/03/21		97	%	70 - 130
5				Bromodichloromethane	2025/03/21		96	%	70 - 130
				Bromoform	2025/03/21		99	%	70 - 130
ì.				Bromomethane	2025/03/21		97	%	60 - 140
				Carbon Tetrachloride	2025/03/21		101	%	70 - 130
Į.				Chlorobenzene	2025/03/21		92	%	70 - 130
				Chloroethane	2025/03/21		107	%	70 - 130
Ŋ				Chloroform	2025/03/21		97	%	70 - 130
				Chloromethane	2025/03/21		100	%	60 - 140
Ų				Dibromochloromethane	2025/03/21		99	%	70 - 130
1				1,2-Dichlorobenzene	2025/03/21		99	%	70 - 130
				1,3-Dichlorobenzene	2025/03/21 2025/03/21		97	%	70 - 130
6				1,4-Dichlorobenzene 1,1-Dichloroethane	2025/03/21 2025/03/21		102 94	% %	70 - 130 70 - 130
ĥ.				1,2-Dichloroethane	2025/03/21		94 100	%	70 - 130 70 - 130
1				1,1-Dichloroethylene	2025/03/21		97	%	70 - 130 70 - 130
)				cis-1,2-Dichloroethylene	2025/03/21		102	%	70 - 130 70 - 130
				trans-1,2-Dichloroethylene	2025/03/21		102	%	70 - 130
1				1,2-Dichloropropane	2025/03/21		102	%	70 - 130
				cis-1,3-Dichloropropene	2025/03/21		93	%	70 - 130
1				trans-1,3-Dichloropropene	2025/03/21		101	%	70 - 130
)				Ethylbenzene	2025/03/21		101	%	70 - 130
1				Ethylene Dibromide	2025/03/21		96	%	70 - 130
1				Methylene Chloride(Dichloromethane)	2025/03/21		93	%	70 - 130
1				Styrene	2025/03/21		101	%	70 - 130
١				1,1,2,2-Tetrachloroethane	2025/03/21		92	%	70 - 130
l.				Tetrachloroethylene	2025/03/21		95	%	70 - 130
				Toluene	2025/03/21		101	%	70 - 130
				1,1,1-Trichloroethane	2025/03/21		95	%	70 - 130
				1,1,2-Trichloroethane	2025/03/21		104	%	70 - 130
				Trichloroethylene	2025/03/21		98	%	70 - 130

Page 15 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Lim
			Trichlorofluoromethane (FREON 11)	2025/03/21		99	%	70 - 13
			Vinyl Chloride	2025/03/21		107	%	70 - 13
			p+m-Xylene	2025/03/21		100	%	70 - 13
			o-Xylene	2025/03/21		107	%	70 - 13
9894715	GMN	Method Blank	4-Bromofluorobenzene	2025/03/21		102	%	70 - 13
			D4-1,2-Dichloroethane	2025/03/21		103	%	70 - 1
			D8-Toluene	2025/03/21		92	%	70 - 1
			Benzene	2025/03/21	<0.20		ug/L	
			Bromodichloromethane	2025/03/21	<0.50		ug/L	
			Bromoform	2025/03/21	<1.0		ug/L	
			Bromomethane	2025/03/21	<0.50		ug/L	
			Carbon Tetrachloride	2025/03/21	<0.19		ug/L	
			Chlorobenzene	2025/03/21	<0.20		ug/L	
			Chloroethane	2025/03/21	<1.0		ug/L	
			Chloroform	2025/03/21	<0.20		ug/L	
			Chloromethane	2025/03/21	<5.0		ug/L	
			Dibromochloromethane	2025/03/21	<0.50		ug/L	
			1,2-Dichlorobenzene	2025/03/21	<0.40		ug/L	
			1,3-Dichlorobenzene	2025/03/21	<0.40		ug/L	
			1,4-Dichlorobenzene	2025/03/21	<0.40		ug/L	
			1,1-Dichloroethane	2025/03/21	<0.20		ug/L	
			1,2-Dichloroethane	2025/03/21	<0.49		ug/L	
			1,1-Dichloroethylene	2025/03/21	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2025/03/21	<0.20		ug/L	
			trans-1,2-Dichloroethylene	2025/03/21	<0.50		ug/L	
			1,2-Dichloropropane	2025/03/21	<0.20		ug/L	
			cis-1,3-Dichloropropene	2025/03/21	<0.20		ug/L	
			trans-1,3-Dichloropropene	2025/03/21	<0.40			
			Ethylbenzene	2025/03/21	<0.40		ug/L ug/L	
					<0.20			
			Ethylene Dibromide	2025/03/21			ug/L	
			Methylene Chloride(Dichloromethane)	2025/03/21	<2.0		ug/L	
			Styrene	2025/03/21	<0.40		ug/L	
			1,1,2,2-Tetrachloroethane	2025/03/21	<0.40		ug/L	
			Tetrachloroethylene	2025/03/21	<0.20		ug/L	
			Toluene	2025/03/21	<0.20		ug/L	
			1,1,1-Trichloroethane	2025/03/21	<0.20		ug/L	
			1,1,2-Trichloroethane	2025/03/21	<0.40		ug/L	
			Trichloroethylene	2025/03/21	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2025/03/21	<0.50		ug/L	
			Vinyl Chloride	2025/03/21	<0.20		ug/L	
			p+m-Xylene	2025/03/21	<0.20		ug/L	
			o-Xylene	2025/03/21	<0.20		ug/L	
			Total Xylenes	2025/03/21	<0.20		ug/L	
894715	GMN	RPD	Benzene	2025/03/21	NC		%	30
			Bromodichloromethane	2025/03/21	NC		%	30
			Bromoform	2025/03/21	NC		%	30
			Bromomethane	2025/03/21	NC		%	30
			Carbon Tetrachloride	2025/03/21	NC		%	30
			Chlorobenzene	2025/03/21	NC		%	30
			Chloroform	2025/03/21	1.8		%	30
			Dibromochloromethane	2025/03/21	NC		%	30

Page 16 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

÷	QA/QC			_			_		
ò.	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
1				1,2-Dichlorobenzene	2025/03/21	NC		%	30
				1,3-Dichlorobenzene	2025/03/21	NC		%	30
Ų,				1,4-Dichlorobenzene	2025/03/21	NC		%	30
Ø				1,1-Dichloroethane	2025/03/21	NC		%	30
×.				1,2-Dichloroethane	2025/03/21	NC		%	30
ľ				1,1-Dichloroethylene	2025/03/21	NC		%	30
100				cis-1,2-Dichloroethylene	2025/03/21	NC		%	30
2				trans-1,2-Dichloroethylene	2025/03/21	NC		%	30
0				1,2-Dichloropropane	2025/03/21	NC		%	30
iñ.				cis-1,3-Dichloropropene	2025/03/21	NC		%	30
				trans-1,3-Dichloropropene	2025/03/21	NC		%	30
-				Ethylbenzene	2025/03/21	NC		%	30
				Ethylene Dibromide	2025/03/21	NC		%	30
Ľ				Methylene Chloride(Dichloromethane)	2025/03/21	NC		%	30
5				Styrene	2025/03/21	NC		%	30
				1,1,2,2-Tetrachloroethane	2025/03/21	NC		%	30
Ū,				Tetrachloroethylene	2025/03/21	0		%	30
- C				Toluene	2025/03/21	NC		%	30
1				1,1,1-Trichloroethane	2025/03/21	NC		%	30
#				1,1,2-Trichloroethane	2025/03/21	NC		%	30
h.				Trichloroethylene	2025/03/21	0.72		%	30
đ				Trichlorofluoromethane (FREON 11)	2025/03/21	NC		%	30
κ.				Vinyl Chloride	2025/03/21	NC		%	30
ein				p+m-Xylene	2025/03/21	NC		%	30
				o-Xylene	2025/03/21	NC		%	30
Į.				Total Xylenes	2025/03/21	NC		%	30
10	9894724	HST	Matrix Spike	4-Bromofluorobenzene	2025/03/24		102	%	70 - 130
10				D4-1,2-Dichloroethane	2025/03/24		104	%	70 - 130
				D8-Toluene	2025/03/24		102	%	70 - 130
Ū,				1,3,5-Trimethylbenzene	2025/03/24		108	%	60 - 140
μ.	9894724	HST	Spiked Blank	4-Bromofluorobenzene	2025/03/24		100	%	70 - 130
				D4-1,2-Dichloroethane	2025/03/24		102	%	70 - 130
L.				D8-Toluene	2025/03/24		100	%	70 - 130
				1,3,5-Trimethylbenzene	2025/03/24		104	%	60 - 140
0	9894724	HST	Method Blank	4-Bromofluorobenzene	2025/03/24		104	%	70 - 130
>				D4-1,2-Dichloroethane	2025/03/24		111	%	70 - 130
21				D8-Toluene	2025/03/24		95	%	70 - 130
4				1,3,5-Trimethylbenzene	2025/03/24	<0.20		ug/L	
al.	9894724	HST	RPD	1,3,5-Trimethylbenzene	2025/03/24	NC		%	30
(j	9894794	KIH	Matrix Spike	Formaldehyde	2025/03/21		107	%	40 - 130
2	9894794	KIH	Spiked Blank	Formaldehyde	2025/03/21		111	%	40 - 130
Q	9894794	KIH	Method Blank	Formaldehyde	2025/03/21	<10		ug/L	
le l	9894794	KIH	RPD	Formaldehyde	2025/03/21	NC		%	40
=	9894875	BKG	Spiked Blank	Total Suspended Solids	2025/03/20	10	101	%	80 - 120
1	9894875	BKG	Method Blank	Total Suspended Solids	2025/03/20	<10		mg/L	20
1	9894875	BKG	RPD [APAK85-10]	Total Suspended Solids	2025/03/20	NC		%	20
	9895187	AHI	Matrix Spike [APAK85-05]	2,4,6-Tribromophenol	2025/03/21		59	%	10 - 130
				2-Fluorobiphenyl	2025/03/21		42	%	30 - 130
				2-Fluorophenol	2025/03/21		19	%	10 - 130
				D14-Terphenyl	2025/03/21		61	%	30 - 130
Į				D5-Nitrobenzene	2025/03/21		49	%	30 - 130

Page 17 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Ø

Terrapex Environmental Ltd Client Project #: CO972.00 Site Location: FERNGATE RICHMOND Sampler Initials: EB

QUALITY ASSURANCE REPORT(CONT'D)

₩.	QA/QC								
÷	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
-	Batteri		Q0.7pc	D5-Phenol	2025/03/21	14.46	13	%	10 - 130
7				2,4-Dichlorophenol	2025/03/21		49	%	10 - 130
				Benzyl butyl phthalate	2025/03/21		76	%	30 - 130
Ŵ				Bis(2-chloroethoxy)methane	2025/03/21		50	%	30 - 130
0				di-n-octyl phthalate	2025/03/21		94	%	30 - 130
				Diethyl phthalate	2025/03/21		61	%	30 - 130
348				Indole	2025/03/21		31	%	30 - 130
	9895187	AHI	Spiked Blank	2,4,6-Tribromophenol	2025/03/21		96	%	10 - 130
2	5655167		Spiked Blank	2-Fluorobiphenyl	2025/03/21		66	%	30 - 130
aia -				2-Fluorophenol	2025/03/21		40	%	10 - 130
Ø				D14-Terphenyl	2025/03/21		40 72	%	30 - 130
				D5-Nitrobenzene	2025/03/21		72	%	30 - 130 30 - 130
-				D5-Phenol	2025/03/21		29	%	30 - 130 10 - 130
ſ				2,4-Dichlorophenol	2025/03/21		79	%	10 - 130
later -				Benzyl butyl phthalate	2025/03/21		89	%	10 - 130 30 - 130
1				Bis(2-chloroethoxy)methane	2025/03/21		84	%	30 - 130 30 - 130
-				di-n-octyl phthalate	2025/03/21		84 108	%	30 - 130 30 - 130
Ū,				Diethyl phthalate	2025/03/21		93	%	30 - 130 30 - 130
2				Indole	2025/03/21		63	%	30 - 130 30 - 130
¥	9895187		Mathed Dlank		2025/03/21		73		
	9893187	AHI	Method Blank	2,4,6-Tribromophenol 2-Fluorobiphenyl	2025/03/21		73	% %	10 - 130 30 - 130
5				2-Fluorophenol	2025/03/21		36	%	30 - 130 10 - 130
Ø							50 74	%	10 - 130 30 - 130
۸.				D14-Terphenyl	2025/03/21 2025/03/21		74	%	30 - 130 30 - 130
<u>^</u>				D5-Nitrobenzene D5-Phenol			24	%	
					2025/03/21	<0.30	24		10 - 130
1				2,4-Dichlorophenol	2025/03/21 2025/03/21	< 0.50		ug/L	
				Benzyl butyl phthalate	2025/03/21	< 0.50		ug/L	
0				Bis(2-chloroethoxy)methane di-n-octyl phthalate	2025/03/21	<0.50		ug/L ug/L	
				Diethyl phthalate	2025/03/21	<1.0		ug/L ug/L	
Ű,				Indole	2025/03/21				
₩	9895187	AHI	RPD		2025/03/21	<1.0 NC		ug/L %	40
100	9893187	АПІ	RPD	2,4-Dichlorophenol	2025/03/21	NC		%	40
<u>h</u>				Benzyl butyl phthalate Bis(2-chloroethoxy)methane	2025/03/21	NC		%	40 40
0				di-n-octyl phthalate	2025/03/21	NC		%	40 40
¥				Diethyl phthalate	2025/03/21	NC		%	40 40
>				Indole	2025/03/21	NC		%	40 40
521	9895905	мын	Matrix Spike	Nonylphenol (Total)	2025/03/21	NC	127	%	40 50 - 130
4	9895905 9895905		Spiked Blank	Nonylphenol (Total)	2025/03/23		127	%	50 - 130 50 - 130
jii .	9895905	MHU MHU	Method Blank	Nonylphenol (Total)	2025/03/23	<0.001	112		50 - 150
(j	9895905 9895905	MHU	RPD [APAK85-06]	Nonylphenol (Total)	2025/03/24	NC		mg/L %	40
	9895905	MHU	Matrix Spike	Nonylphenol Ethoxylate (Total)	2025/03/23	NC	104	%	40 50 - 130
0	9895906	MHU	Spiked Blank	Nonylphenol Ethoxylate (Total)	2025/03/23		104	%	50 - 130 50 - 130
h.	9895906 9895906		Method Blank	Nonylphenol Ethoxylate (Total)	2025/03/23	<0.005	107		20 - 120
3	9895906	MHU MHU	RPD [APAK85-06]	Nonylphenol Ethoxylate (Total)	2025/03/24	×0.005 NC		mg/L %	40
7	9895906	NSG	Spiked Blank	Total Oil & Grease	2025/03/24 2025/03/23	INC	99	%	40 80 - 110
1	9896095 9896095	NSG	RPD	Total Oil & Grease	2025/03/23	0.25	55	%	25
	9896095	NSG	Method Blank	Total Oil & Grease	2025/03/23	<0.25 <0.50			25
	9896095	NSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2025/03/23	NU.30	96	mg/L %	65 - 130
	9896096	NSG	RPD	Total Oil & Grease Mineral/Synthetic	2025/03/23	0	50	%	25
	9896096	NSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2025/03/23	<0.50		™g/L	25
l	2020020	1130			2023/03/23	NO.30		ш <u>в</u> / L	

Page 18 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

μ̈́.	QA/QC								
	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	9896430	HP1	Matrix Spike [APAK85-07]	2,4,5,6-Tetrachloro-m-xylene	2025/03/25		76	%	50 - 130
1				Decachlorobiphenyl	2025/03/25		98	%	50 - 130
Ø				Hexachlorobenzene	2025/03/25		88	%	50 - 130
C	9896430	HP1	Spiked Blank	2,4,5,6-Tetrachloro-m-xylene	2025/03/25		58	%	50 - 130
0				Decachlorobiphenyl	2025/03/25		137 (1)	%	50 - 130
Ľ				Hexachlorobenzene	2025/03/25		80	%	50 - 130
ài.	9896430	HP1	RPD	Hexachlorobenzene	2025/03/25	0.79		%	30
				Hexachlorobenzene	2025/03/25	NC		%	30
5	9896430	HP1	Method Blank	2,4,5,6-Tetrachloro-m-xylene	2025/03/25		51	%	50 - 130
- C				Decachlorobiphenyl	2025/03/25		129	%	50 - 130
Ø				Hexachlorobenzene	2025/03/25	<0.005		ug/L	
-	9896591	AFZ	Matrix Spike	Total Aluminum (Al)	2025/03/24		NC	%	80 - 120
ù.				Total Antimony (Sb)	2025/03/24		109	%	80 - 120
L				Total Arsenic (As)	2025/03/24		108	%	80 - 120
				Total Bismuth (Bi)	2025/03/24		97	%	80 - 120
2				Total Boron (B)	2025/03/24		101	%	80 - 120
Q				Total Cadmium (Cd)	2025/03/24		101	%	80 - 120
				Total Chromium (Cr)	2025/03/24		106	%	80 - 120
				Total Cobalt (Co)	2025/03/24		104	%	80 - 120
1				Total Copper (Cu)	2025/03/24		104	%	80 - 120
h.				Total Lead (Pb)	2025/03/24		100	%	80 - 120
đ				Total Manganese (Mn)	2025/03/24		103	%	80 - 120
				Total Molybdenum (Mo)	2025/03/24		108	%	80 - 120
				Total Nickel (Ni)	2025/03/24		101	%	80 - 120
				Total Phosphorus (P)	2025/03/24		113	%	80 - 120
Į.				Total Selenium (Se)	2025/03/24		103	%	80 - 120
				Total Silver (Ag)	2025/03/24		98	%	80 - 120
Ø				Total Tin (Sn)	2025/03/24		105	%	80 - 120
				Total Titanium (Ti)	2025/03/24		109	%	80 - 120
Q				Total Vanadium (V)	2025/03/24		108	%	80 - 120
μ	0000501	A 57	Cuiliad Dlauli	Total Zinc (Zn)	2025/03/24		99	%	80 - 120
	9896591	AFZ	Spiked Blank	Total Aluminum (Al)	2025/03/24 2025/03/24		97	%	80 - 120
<u>h</u>				Total Antimony (Sb)			104 106	% %	80 - 120 80 - 120
0				Total Arsenic (As) Total Bismuth (Bi)	2025/03/24 2025/03/24		108	%	80 - 120 80 - 120
				Total Boron (B)	2025/03/24		99	%	80 - 120 80 - 120
>				Total Cadmium (Cd)	2025/03/24		102	%	80 - 120 80 - 120
				Total Chromium (Cr)	2025/03/24		102	%	80 - 120 80 - 120
1				Total Cobalt (Co)	2025/03/24		102	%	80 - 120
				Total Copper (Cu)	2025/03/24		102	%	80 - 120
0				Total Lead (Pb)	2025/03/24		102	%	80 - 120
0				Total Manganese (Mn)	2025/03/24		104	%	80 - 120
				Total Molybdenum (Mo)	2025/03/24		100	%	80 - 120
				Total Nickel (Ni)	2025/03/24		101	%	80 - 120
				Total Phosphorus (P)	2025/03/24		100	%	80 - 120
A				Total Selenium (Se)	2025/03/24		105	%	80 - 120
11				Total Silver (Ag)	2025/03/24		98	%	80 - 120
				Total Tin (Sn)	2025/03/24		100	%	80 - 120
				Total Titanium (Ti)	2025/03/24		95	%	80 - 120
				Total Vanadium (V)	2025/03/24		101	%	80 - 120
				Total Zinc (Zn)	2025/03/24		107	%	80 - 120
Ľ				. /	, ,				

Page 19 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Ø

Terrapex Environmental Ltd Client Project #: CO972.00 Site Location: FERNGATE RICHMOND Sampler Initials: EB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
9896591	AFZ	Method Blank	Total Aluminum (Al)	2025/03/24	<4.9		ug/L	
			Total Antimony (Sb)	2025/03/24	<0.50		ug/L	
			Total Arsenic (As)	2025/03/24	<1.0		ug/L	
			Total Bismuth (Bi)	2025/03/24	<1.0		ug/L	
			Total Boron (B)	2025/03/24	<10		ug/L	
			Total Cadmium (Cd)	2025/03/24	<0.090		ug/L	
			Total Chromium (Cr)	2025/03/24	<5.0		ug/L	
			Total Cobalt (Co)	2025/03/24	<0.50		ug/L	
			Total Copper (Cu)	2025/03/24	<0.90		ug/L	
			Total Lead (Pb)	2025/03/24	<0.50		ug/L	
			Total Manganese (Mn)	2025/03/24	<2.0		ug/L	
			Total Molybdenum (Mo)	2025/03/24	<0.50		ug/L	
			Total Nickel (Ni)	2025/03/24	<1.0		ug/L	
			Total Phosphorus (P)	2025/03/24	<100		ug/L	
			Total Selenium (Se)	2025/03/24	<2.0		ug/L	
			Total Silver (Ag)	2025/03/24	<0.090		ug/L	
			Total Tin (Sn)	2025/03/24	<1.0		ug/L	
			Total Titanium (Ti)	2025/03/24	<5.0		ug/L	
			Total Vanadium (V)	2025/03/24	<0.50		ug/L	
			Total Zinc (Zn)	2025/03/24	<5.0		ug/L	
9896591	AFZ	RPD	Total Aluminum (Al)	2025/03/24	0.72		%	20
			Total Antimony (Sb)	2025/03/24	NC		%	20
			Total Arsenic (As)	2025/03/24	18		%	20
			Total Cadmium (Cd)	2025/03/24	NC		%	20
			Total Chromium (Cr)	2025/03/24	2.4		%	20
			Total Cobalt (Co)	2025/03/24	0		%	20
			Total Copper (Cu)	2025/03/24	1.4		%	20
			Total Lead (Pb)	2025/03/24	1.5		%	20
			Total Manganese (Mn)	2025/03/24	3.3		%	20
			Total Molybdenum (Mo)	2025/03/24	2.1		%	20
			Total Nickel (Ni)	2025/03/24	2.8		%	20
			Total Phosphorus (P)	2025/03/24	NC		%	20
			Total Selenium (Se)	2025/03/24	NC		%	20
			Total Silver (Ag)	2025/03/24	NC		%	20
			Total Tin (Sn)	2025/03/24	NC		%	20
			Total Titanium (Ti)	2025/03/24	9.6		%	20
			Total Zinc (Zn)	2025/03/24	1.1		%	20
9896850	AHI	Matrix Spike	1-Methylnaphthalene	2025/03/25	1.1	59	%	30 - 1
	7.0.11	maan opike	2,4,6-Tribromophenol	2025/03/25		55	%	10 - 1
			2-Fluorobiphenyl	2025/03/25		49	%	30 - 1
			2-Methylnaphthalene	2025/03/25		55	%	30 - 1
			D14-Terphenyl (FS)	2025/03/25		97	%	30 - 1
			D5-Nitrobenzene	2025/03/25		63	%	30 - 1
			D8-Acenaphthylene	2025/03/25		55	%	30 - 1
			Fluorene	2025/03/25		61	%	30 - 1
			Naphthalene	2025/03/25		51	%	30 - 1 30 - 1
			Di-N-butyl phthalate	2025/03/25		109	%	30 - 1 30 - 1
				2025/03/25				
			Bis(2-ethylhexyl)phthalate Phenanthrene			105	%	30 - 1
			Anthracene	2025/03/25 2025/03/25		70 71	% %	30 - 1
						71		30 - 1
			Fluoranthene	2025/03/25		110	%	30 - 1

Page 20 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Results

Partial/Rush

Voritas

D C O J D C

Terrapex Environmental Ltd Client Project #: CO972.00 Site Location: FERNGATE RICHMOND Sampler Initials: EB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Pyrene	2025/03/25		112	%	30 - 130
			Benzo(a)anthracene	2025/03/25		109	%	30 - 130
			Chrysene	2025/03/25		92	%	30 - 130
			Benzo(b/j)fluoranthene	2025/03/25		92	%	30 - 130
			Benzo(k)fluoranthene	2025/03/25		90	%	30 - 130
			Benzo(a)pyrene	2025/03/25		94	%	30 - 130
1			Indeno(1,2,3-cd)pyrene	2025/03/25		106	%	30 - 130
			Dibenzo(a,h)anthracene	2025/03/25		105	%	30 - 130
			Benzo(g,h,i)perylene	2025/03/25		110	%	30 - 130
			Dibenzo(a,i)pyrene	2025/03/25		43	%	30 - 130
			Benzo(e)pyrene	2025/03/25		90	%	30 - 130
			Perylene	2025/03/25		109	%	30 - 130
			Dibenzo(a,j) acridine	2025/03/25		97	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2025/03/25		85	%	30 - 130
9896850	AHI	Spiked Blank	1-Methylnaphthalene	2025/03/25		79	%	30 - 130
			2,4,6-Tribromophenol	2025/03/25		88	%	10 - 130
			2-Fluorobiphenyl	2025/03/25		74	%	30 - 130
			2-Methylnaphthalene	2025/03/25		74	%	30 - 130
			D14-Terphenyl (FS)	2025/03/25		101	%	30 - 130
			D5-Nitrobenzene	2025/03/25		95	%	30 - 130
			D8-Acenaphthylene	2025/03/25		87	%	30 - 130
			Fluorene	2025/03/25		97	%	30 - 130
			Naphthalene	2025/03/25		68	%	30 - 130
			Di-N-butyl phthalate	2025/03/25		99	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2025/03/25		116	%	30 - 130
			Phenanthrene	2025/03/25		105	%	30 - 130
			Anthracene	2025/03/25		104	%	30 - 130
			Fluoranthene	2025/03/25		121	%	30 - 130
			Pyrene Borney (a) anthronoun	2025/03/25		121	%	30 - 130
			Benzo(a)anthracene	2025/03/25		113	%	30 - 130
			Chrysene	2025/03/25		95	%	30 - 130
			Benzo(b/j)fluoranthene	2025/03/25		99 85	%	30 - 130 30 - 130
i			Benzo(k)fluoranthene Benzo(a)pyrene	2025/03/25 2025/03/25		85 98	% %	30 - 130 30 - 130
			Indeno(1,2,3-cd)pyrene	2025/03/25		98 109	%	30 - 130 30 - 130
			Dibenzo(a,h)anthracene	2025/03/25		109	%	30 - 130 30 - 130
			Benzo(g,h,i)perylene	2025/03/25		109	%	30 - 130 30 - 130
			Dibenzo(a,i)pyrene	2025/03/25		45	%	30 - 130 30 - 130
			Benzo(e)pyrene	2025/03/25		93	%	30 - 130
			Perylene	2025/03/25		113	%	30 - 130
			Dibenzo(a,j) acridine	2025/03/25		102	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2025/03/25		92	%	30 - 130
9896850	AHI	Method Blank	1-Methylnaphthalene	2025/03/25	<0.3		ug/L	
	,		2,4,6-Tribromophenol	2025/03/25		69	%	10 - 130
			2-Fluorobiphenyl	2025/03/25		78	%	30 - 130
			2-Methylnaphthalene	2025/03/25	<0.3	-	ug/L	
			D14-Terphenyl (FS)	2025/03/25		101	%	30 - 130
			D5-Nitrobenzene	2025/03/25		90	%	30 - 130
			D8-Acenaphthylene	2025/03/25		85	%	30 - 130
			Fluorene	2025/03/25	<0.3		ug/L	
			Naphthalene	2025/03/25	<0.3		ug/L	

Page 21 of 24

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
			Di-N-butyl phthalate	2025/03/25	<2		ug/L	
			Bis(2-ethylhexyl)phthalate	2025/03/25	<2		ug/L	
			Phenanthrene	2025/03/25	<0.2		ug/L	
			Anthracene	2025/03/25	<0.2		ug/L	
			Fluoranthene	2025/03/25	<0.2		ug/L	
			Pyrene	2025/03/25	<0.2		ug/L	
			Benzo(a)anthracene	2025/03/25	<0.2		ug/L	
			Chrysene	2025/03/25	<0.2		ug/L	
			Benzo(b/j)fluoranthene	2025/03/25	<0.2		ug/L	
			Benzo(k)fluoranthene	2025/03/25	<0.2		ug/L	
			Benzo(a)pyrene	2025/03/25	<0.2		ug/L	
			Indeno(1,2,3-cd)pyrene	2025/03/25	<0.2		ug/L	
			Dibenzo(a,h)anthracene	2025/03/25	<0.2		ug/L	
			Benzo(g,h,i)perylene	2025/03/25	<0.2		ug/L	
			Dibenzo(a,i)pyrene	2025/03/25	<0.2		ug/L	
			Benzo(e)pyrene	2025/03/25	<0.2		ug/L	
			Perylene	2025/03/25	<0.2		ug/L	
			Dibenzo(a,j) acridine	2025/03/25	<0.4		ug/L	
			7H-Dibenzo(c,g) Carbazole	2025/03/25	<0.4		ug/L	
9896850	AHI	RPD [APAK85-04]	1-Methylnaphthalene	2025/03/25	NC		%	40
0000000			2-Methylnaphthalene	2025/03/25	NC		%	40
			Fluorene	2025/03/25	NC		%	40
			Naphthalene	2025/03/25	NC		%	40
			Di-N-butyl phthalate	2025/03/25	NC		%	40
			Bis(2-ethylhexyl)phthalate	2025/03/25	NC		%	40
			Phenanthrene	2025/03/25	NC		%	40
			Anthracene	2025/03/25	NC		%	40
			Fluoranthene	2025/03/25	NC NC		% %	40
			Pyrene Borner (a) anthronoun	2025/03/25				40
			Benzo(a)anthracene	2025/03/25	NC		%	40
			Chrysene	2025/03/25	NC		%	40
			Benzo(b/j)fluoranthene	2025/03/25	NC		%	40
			Benzo(k)fluoranthene	2025/03/25	NC		%	40
			Benzo(a)pyrene	2025/03/25	NC		%	40
			Indeno(1,2,3-cd)pyrene	2025/03/25	NC		%	40
			Dibenzo(a,h)anthracene	2025/03/25	NC		%	40
			Benzo(g,h,i)perylene	2025/03/25	NC		%	40
			Dibenzo(a,i)pyrene	2025/03/25	NC		%	40
			Benzo(e)pyrene	2025/03/25	NC		%	40
			Perylene	2025/03/25	NC		%	40
			Dibenzo(a,j) acridine	2025/03/25	NC		%	40
			7H-Dibenzo(c,g) Carbazole	2025/03/25	NC		%	40
9902107	MPJ	Reagent Blank	Mercury (Hg)	2025/04/01	<0.00010		mg/L	
9902107	MPJ	Matrix Spike	Mercury (Hg)	2025/04/01		89	%	75 - 1
9902107	MPJ	Spiked Blank	Mercury (Hg)	2025/04/01		97	%	80 - 1
9902107	MPJ	Method Blank	Mercury (Hg)	2025/04/01	<0.00010		mg/L	

QUALITY ASSURANCE REPORT(CONT'D)

			QUALITY ASSURA	ANCE REPORT(CONT'D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
9902107	MPJ	RPD	Mercury (Hg)	2025/04/01	NC		%	20
N/A = No	t Applic	able						
Duplicate	: Paire	d analysis of a sepa	rate portion of the same sample. Used to ev	valuate the variance in the measure	ment.			
Reagent I	Blank: A	A blank matrix cont	aining all reagents used in the analytical pro	cedure. Used to determine any ana	lytical contam	ination.		
Matrix Sp	ike: A s	ample to which a l	known amount of the analyte of interest has	been added. Used to evaluate sam	ple matrix inte	erference.		
QC Stand	ard: A s	ample of known co	ncentration prepared by an external agency	under stringent conditions. Used	as an independ	lent check of me	thod accur	racy.
Spiked Bl	ank: A b	olank matrix sample	e to which a known amount of the analyte, u	usually from a second source, has be	een added. Use	ed to evaluate m	ethod accu	iracy.
Method E	lank: A	blank matrix cont	aining all reagents used in the analytical pro	cedure. Used to identify laboratory	contamination	າ.		
Surrogate	: A pu	e or isotopically lal	beled compound whose behavior mirrors the	e analytes of interest. Used to evalu	uate extraction	efficiency.		
•	•	, ,	he matrix spike was not calculated. The rela ecovery calculation (matrix spike concentrati			•	nd the spike	e amount
NC (Dupli	cate RP	D): The duplicate R	PD was not calculated. The concentration in	the sample and/or duplicate was to	o low to perm	nit a reliable RPD	calculation	n (absolut

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Surrogate recovery was above the upper control limit. This may represent a high bias in some results.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Tessian Qiang

Jessica (Ya Ping) Qiang, Analyst II

Lowie A Hording

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Ø

Page 24 of 24 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com **APPENDIX IV**

CURRICULUM VITAE

Position:	Senior Hydrogeologist, Durham Office				
Qualifications:			y of Western Ontario er University		
Experience:	Terrapex Environmental Ltd. – Senior Hydrogeologist		2020 to present		
	Trent University – Sessional Professor		2015 to present		
	Beacon Environmental Ltd. – Practice Lead, Hydrogeology		2018 to 2020		
	Golder Environmental Ltd. – Hydrogeologist		2016 to 2018		
	Anthropocene Green Inc. – Senior Project Manager		2015 to 2016		
	WSP / Genivar – Project Manager		2012 to 2015		

Zen Keizars is a Senior Hydrogeologist with over twenty years of experience leading projects, with a focus on hydrogeological investigations and water-balance assessments. His extensive ground-level experience and broad theoretical skill-set are ideal for providing fast and adaptive multi-disciplinary support at any level.

Mr. Keizars is the current Vice President, and a Past President of Professional Geoscientists Ontario (PGO; previously APGO) and a sessional instructor at Trent University, providing instruction in several non-elective third-year courses. Zen sits on several Municipal Committees, including the Groundwater Strategy Steering Committee (City of Toronto), and the Watershed Characterization Committee (City of Peterborough). In recognition of his professionalism and contributions to geoscience, Zen was awarded a lifetime Fellowship to Geoscientists Canada (FGC) in 2020.

Representative projects include the following:

Fotenn Planning & Design:

Hydrogeological Investigation, Ontario Place – 955 Lake Shore Boulevard West, Toronto, Ontario

Corporation of the City of Brampton: Hydrogeological Investigation, 125 McLaughlin Road North, Brampton, Ontario

Township of King:

Hydrogeological Investigation and Water Balance Assessment, Seneca College - 13990 Dufferin Street, Township of King

Corporation of the County of Prince Edward:

Third-party Peer Review: Hydrogeological Investigation, Stinson Block Road Subdivision, Community of Consecon, Prince Edward County, Ontario

CreateTO : Hydrogeological Investigation, Bus Station – 610 Bay Street and 130 Elizabeth Street, Toronto, Ontario

CreateTO :

Hydrogeological Investigation, 3586 Lawrence Heights East, Toronto, Ontario

CreateTO :

Hydrogeological Investigation, Bus Station – 610 Bay Street and 130 Elizabeth Street, Toronto, Ontario

CreateTO: Hydrogeological Investigation, 1190 York Mills Road, Toronto, Ontario

CreateTO: Hydrogeological Investigation, 1035 Sheppard Avenue West, Toronto, Ontario.

First Capital Asset Management: Hydrogeological Investigation, 3434 Lawrence Avenue East, Toronto, Ontario.

First Capital Asset Management: Hydrogeological Investigation, 34-70 Montgomery Avenue, Toronto, Ontario.

First Capital Asset Management: Hydrogeological Investigation, 2650 Lawrence Avenue East, Toronto, Ontario.

First Capital Asset Management:

Hydrogeological Investigation, 245 Morningside Avenue, Toronto, Ontario.

Hazelview Investments:

Hydrological Review, Proposed Mixed-Use Development, 1590 and 1650 Dundas Street East, Mississauga, Ontario.

Daniels High Rise Corporation:

Hydrogeological Investigation, Proposed Mixed-Use Development, Gerrard Street East and Parliament Street, Toronto, Ontario.

Daniels High Rise Corporation:

Hydrogeological Investigation, Dundas Street East and Postridge Drive, Oakville, Ontario

The MBTW Group:

Unnamed Park 524 and 525 Hydrogeological Assessment and Feature-based Water Balance.

Starlight Investments Inc.:

Hydrogeological Investigation and Water Balance, 37 Johnson Street, Barrie, Ontario.

LIV Communities:

Hydrogeological Investigation and Feature-Based Water Balance, 620 Colborne Avenue, Brantford, Ontario.

GFL:

Hydrogeological Investigation, Proposed Compost Operations Relocation, 17125 Lafleche Road, Moose Creek, Ontario

Smart Centres:

Preliminary Geotechnical and Hydrogeological Investigation, Major Weston Centres Limited Site – Toronto, Ontario.

Smart Centres:

Hydrogeological Investigation and Water Balance, 51, 53, 55, & 75 Bradford St. and 20 Checkley St., Barrie, Ontario

ANDREW DURBANO, M.Sc., P.Geo.

Education:	M.Sc. Geology	2014	University of Saskatchewan, Saskatoon		
	B.Sc. Honors Specialization in Environmental Geoscience	2009	University of Western Ontario, London		
Professional Associations:	Professional Geoscientist (P.Geo), Professional Geoscientists Ontario (PGO)				
Safety Training:	Standard First Aid and CPR Petroleum Oriented Safety Training (POST) Workplace Hazardous Materials Information Sys	stem (WH	MIS)		

EXPERIENCE

2022 to present – Terrapex Environmental Ltd., Toronto, ON

Project Manager/ Hydrogeologist

Responsible for planning, coordinating, and executing hydrogeological field work programs, including report writing, data compilation, and analysis.

Duties and responsibilities included:

- Conducting groundwater well drilling and installation, groundwater monitoring, groundwater sampling, and well response tests as part of municipal foundation drainage requirements for clients (e.g., land developers)
- Conducting short-term construction dewatering calculations as part of the groundwater provincial permitting process for clients
- Writing detailed technical reports that summarize the methods, findings, and recommendations produced under the described scope of work
- Troubleshooting equipment and logistical issues over the phone with field technicians on site to complete field work in a timely manner
- Training and mentoring field staff in best fieldwork practices and data analysis to help improve efficiency and foster a more team-oriented workplace

2018 to 2022 – Terrapex Environmental Ltd., Toronto, ON

Geo-Environmental Field Technician

Responsible for coordinating and executing a wide range of field work programs, including collection of field data, data compilation, analysis, and assisting in report writing.

Duties and responsibilities included:

• Conducting groundwater well drilling and installation, soil vapour monitoring, groundwater monitoring, surveying, and groundwater sampling as part of municipal and provincial environmental requirements for clients (e.g., landowners, developers)

ANDREW DURBANO, M.Sc., P.Geo.

- Supervision of the decommissioning of groundwater monitoring wells as part of provincial requirements for clients
- Assisting in the completion of detailed technical reports for the purposes of meeting provincial environmental requirements for clients, which included compiling soil and groundwater laboratory analysis data, analyzing groundwater data, and reviewing maps for bedrock geology and topography
- Training and mentoring new/ junior field staff in conducting safe and efficient fieldwork practices and data collection to help maintain a high standard of safety and fostering teamwork while working on site for clients

2014 – 2017 – Geological Survey of Canada, Calgary, AB

Physical Scientist

Temporary full-time contract position renewed multiple times between 2014 and 2017, responsible for data compilation, analysis, and report writing of deliverables under the direction of Research Scientists.

Duties and responsibilities included:

- Participating as an active member of a fieldwork expedition to Banks Island, Northwest Territories, operating under a strict timeframe to complete research goals
- Compiling and analyzing relevant petroleum geochemistry data and structural geology data in Excel and ArcGIS
- Geologic modelling of petroleum geochemistry data through use of Geospatial Analyst tool in ArcGIS
- Created maps and technical figures for open file reports and scientific research papers
- Assisted in writing open file reports
- Published a research paper from M.Sc. thesis.

2012 (summer) - Husky Energy, Calgary, AB

Geology Summer Student

Duties and responsibilities included:

- Picking formation tops, created isopach and structure maps, and correlating well log crosssections using AccuMap and Geographix software
- Logging core for sedimentological analysis
- Participating as part of a team to integrate well log, map data and 3-D seismic to meet project goals within timeframe

2010 – 2012 – Geological Survey of Canada, Calgary, AB

Research Affiliate

Duties and responsibilities included:

- Participating as an active member of two fieldwork expeditions on Victoria Island, Northwest Territories operating under a strict timeframe. Mapping was ground-based with handheld devices loaded with ArcGIS software with additional airborne mapping and outcrop stratigraphy
- Measured sections and collected rock samples for the analysis of trace fossils

• Logged core for the detailed examination of sedimentary structures.

Publications

- Durbano, A.M., Hadlari, T., Fallas, K.M., and Jiang, C., 2017. Combined depth and S1 maps from Rock-Eval 6/TOC data of the Canol Formation, northern Mackenzie Valley, Northwest Territories; Geological Survey of Canada, Open File 8206.
- Hadlari, T., Midwinter, D., Galloway, J.M., Dewing, K. and Durbano, A.M., 2016. Mesozoic rift to postrift tectonostratigraphy of the Sverdrup Basin, Canadian Arctic. Marine and Petroleum Geology 76, 148–158.
- Hadlari, T., MacLean, B.C., Pyle L.J., Fallas, K.M., and Durbano A.M., 2015. A combined depth and thermal maturity map of the Canol Formation, northern Mackenzie Valley, NWT; Geological Survey of Canada, Open File 7865.
- Durbano, A.M., Pratt, B.R., Hadlari, T. and Dewing, K., 2015. Sedimentology of an early Cambrian tide-dominated embayment: Quyuk Formation, Victoria Island, Arctic Canada. Sedimentary Geology 320, 1–18.