

P.O. Box 189 Kemptville, Ontario K0G 1J0 Civil • Geotechnical • Structural • Environmental • Hydrogeology (613) 860-0923

FAX: (613) 258-0475

REPORT ON

GEOTECHNICAL INVESTIGATION PROPOSED COMMERCIAL BUILDINGS 151-159 WESCAR LANE CITY OF OTTAWA, ONTARIO

Project # 230403

Submitted to:

Sunbelt Rentals Inc. 2489 Sheffield Road Ottawa, Ontario K1B 3V6

DISTRIBUTION

1 copy – Sunbelt Rentals Inc. 1 copy - Kollaard Associates Inc.

June 14, 2023 – Revised December 6, 2023 Revised August 29, 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION AND SITE GEOLOGY	1
2.1	Existing Conditions and Site Geology	1
2.2	PROPOSED DEVELOPMENT	2
3.0	PROCEDURE	2
4.0	SUBSURFACE CONDITIONS	4
4.1	GENERAL	4
4.2	Fill	4
4.3	Silt	5
4.4	Sand	5
4.5	GLACIAL TILL	6
4.6	POTENTIAL BEDROCK	
4.7	MOISTURE CONTENTS	
4.8	GROUNDWATER	
4.9	CORROSIVITY ON REINFORCEMENT AND SULPHATE ATTACK ON PORTLAND CEMENT	7
5.0	GEOTECHNICAL GUIDELINES AND RECOMMENDATIONS	9
5.1	GENERAL	9
5.2	Foundations for Proposed Commercial Buildings	9
5.3	SUBSURFACE CONDITIONS AT THE UNDERSIDE OF FOOTING LEVEL	
5.4	FOUNDATION EXCAVATION	
5.5	CONVENTIONAL SPREAD FOOTING FOUNDATIONS	
5.6	Engineered Fill	
5.7	FROST PROTECTION REQUIREMENTS FOR SPREAD FOOTING FOUNDATIONS	
5.8	FOUNDATION WALL BACKFILL AND DRAINAGE	
5.9	SLAB ON GRADE SUPPORT	
5.10		
5.11		
	11.1 Seismic Site Classification Ontario Building Code	
	11.1 National Building Code Seismic Hazard Calculation	
5.	11.2 Potential for Soil Liquefaction	
6.0	ACCESS ROADWAY AND PARKING LOT PAVEMENTS	
6.1	SUBGRADE PREPARATION	
6.2	Parking Area Structure	16
7.0	HYDRAULIC CONDUCTIVITY TESTING	17
8.0	CONSTRUCTION CONSIDERATIONS	19

RECORD OF BOREHOLE SHEETS

List of Abbreviations

LIST OF FIGURES

FIGURE 1 - KEY PLAN FIGURE 2 - SITE PLAN

LIST OF ATTACHMENTS

ATTACHMENT A - Laboratory Test Results for Physical Properties ATTACHMENT B - Laboratory Test Results for Chemical Properties ATTACHMENT C - National Building Code Seismic Hazard Calculation ATTACHMENT D – Hydraulic Conductivity Calculations

P.O. Box 189 Kemptville, Ontario K0G 1J0

FAX: (613) 258-0475

June 14, 2023 – Revised December 6, 2023 Revised August 29, 2024

230403

Sunbelt Rentals Inc. 2489 Sheffield Road Ottawa, Ontario K1B 3V6

RE: GEOTECHNICAL INVESTIGATION PROPOSED COMMERCIAL DEVELOPMENT 151-159 WESCAR LANE CITY OF OTTAWA, ONTARIO

1.0 INTRODUCTION

This report presents the results of a geotechnical investigation carried out for the above noted proposed commercial development to be located at 151 - 159 Wescar Lane, City of Ottawa, Ontario (see Key Plan, Figure 1).

The purpose of the investigation was to:

- Identify the subsurface conditions at the site by means of a limited number of boreholes;
- Based on the factual information obtained, provide recommendations and guidelines on the geotechnical engineering aspects of the project design; including bearing capacity and other construction considerations, which could influence design decisions.

2.0 BACKGROUND INFORMATION AND SITE GEOLOGY

2.1 Existing Conditions and Site Geology

The site is currently vacant. The site is bordered on the west and south by undeveloped lands and farmland, on the north by Cavanmore Road followed by residential development and on the east by Wescar Lane followed by commercial development.

Based on a review of the surficial geology map for the site area, it is expected that the site is generally underlain by coarse textured glaciomarine deposits consisting of sand, gravel, minor silt and clay and/or glacial till. A review of the bedrock geology map indicates that the bedrock underlying the site consists of limestone, dolostone, shale, arkose and sandstone of the Ottawa Group, Simcoe Group and Shadow Lake Formation.

2.2 Proposed Development

The site consists of about a 4.6 hectare (11.4 acres), irregular shaped property located southwest of the intersection of Cavanmore Road and Wescar Lane in the City of Ottawa, Ontario (see Key Plan, Figure 1).

Based on information provided for the development, it is proposed to construct two commercial buildings. The proposed commercial buildings will consist of the following:

- Building A: 3,342 square metres
- Building B: 1,128 square metres

Preliminary information provided by the client indicates that the proposed buildings will consist of one two-storey and one single-storey steel frame metal clad structure. The proposed buildings will be placed on conventional concrete spread footing foundations with a concrete slab-on-grade construction (no basement). The interior layout of the buildings are not known at this time, however, it is understood the interiors will consist mostly of warehouse space along with some associated office spaces. The proposed buildings will be provided with an asphaltic concrete surfaced access roadway and parking lot.

The proposed development will be serviced by private services including a drilled cased well, an onsite septic system and a stormwater management facility.

3.0 PROCEDURE

The field work for this investigation was carried out on May 29 and 30, 2023, at which time eleven (11) boreholes numbered BH1 to BH11 and one additional borehole labelled BH-STORM were put down at the site using a track mounted drill rig equipped with a hollow stem auger owned and operated by CCC Environment and Geotechnical Drilling of Ottawa, Ontario. Boreholes BH1 to BH4

and B9 were put down within the proposed building footprints. Boreholes BH5 to BH8, BH10 and BH11 were put down within the proposed parking lot area for pavement design purposes. Borehole BH-STORM was put down within the proposed stormwater pond for others, and its contents are not discussed in this report.

The subsurface soil conditions encountered at the boreholes were classified based on visual and tactile examination of the samples recovered (ASTM D2488 - Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), standard penetration tests (ASTM D-1586 – Penetration Test and Split Barrel Sampling of Soils as well as laboratory test results on select samples. In situ vane shear testing (ASTM D-2573 Standard Test Method for Field Shear Test in Cohesive Soil) was not carried out as cohesive materials were not encountered. The soils were classified using the Unified Soil Classification System. Groundwater conditions at the boreholes and test pits were noted at the time of drilling. Groundwater was measured at a later date in a standpipe put down within one borehole (BH9). The boreholes were loosely backfilled with the excavated materials and auger cuttings upon completion of the fieldwork.

Three soil samples (BH3 – SS6 – 3.8 - 4.4 m, BH4 – SS11 – 7.6 - 8.2 m & BH9 – SS4 – 2.3 - 2.9 m) were submitted for Particle Size Analysis (ASTM D422), two soil samples (BH2 – SS8 – 5.2 - 5.8 m & BH4 – SS9 – 6.1 - 6.7 m) were submitted for sieve analysis (ASTM C136) and one soil sample (BH1 – SS4 – 2.3 - 2.9 m) was submitted for Atterberg Limits testing (ASTM D4318). The samples were selected based on depth and tactile examination to be representative of the various soil conditions encountered at the site.

Two samples of soil (BH2 - SS3 - 1.5 - 2.1 m & BH4 - SS3 - 1.5 - 2.1 m) were also delivered to a chemical laboratory for testing for any indication of potential soil sulphate attack and soil corrosion on buried concrete and steel.

A total of 52 soil samples recovered from the boreholes were also tested for moisture content (ASTM D2216).

The field work was supervised throughout by a member of our engineering staff who located the boreholes and test pits in the field, logged the boreholes and cared for the samples obtained. A description of the subsurface conditions encountered at the boreholes is given in the attached

Record of Borehole Sheets. The results of the laboratory testing of the soil samples are presented in the Laboratory Test Results section and Attachment B following the text in this report. The approximate locations of the boreholes are shown on the attached Site Plan, Figure 2.

4.0 SUBSURFACE CONDITIONS

4.1 General

As previously indicated, a description of the subsurface conditions encountered at the boreholes is provided in the attached Record of Borehole Sheets following the text of this report. The borehole logs indicate the subsurface conditions at the specific hole locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. Subsurface conditions at locations other than borehole locations may vary from the conditions encountered at the boreholes.

The soil descriptions in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves judgement and Kollaard Associates Inc. does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

The groundwater conditions described in this report refer only to those observed at the location and on the date the observations were noted in the report and on the borehole logs. Groundwater conditions may vary seasonally, or may be affected by construction activities on or in the vicinity of the site.

The following is a brief overview of the subsurface conditions encountered at the boreholes.

4.2 Fill

Fill materials consisting of red brown, yellow brown or grey brown silty sand, fine to medium sand and/or sand and gravel were encountered from the surface at all boreholes. The fill materials extended to a depth of about 0.6 to 1.5 metres at the borehole locations. The fill materials were fully penetrated in boreholes BH1 to BH6 and BH8 to BH10. Boreholes BH7 and BH11 were terminated within the fill materials at a depth of about 1.5 metres.

4.3 Silt

Beneath the fill materials, a layer of grey brown to grey clayey silt with a trace to some sand was encountered in boreholes BH1 to BH6 and BH8 to BH10. The silt was encountered at depths ranging between 0.6 and 1.5 metres below the existing ground surface. The results of standard penetration tests completed within the silt gave N values of between 2 and 41 blows per 0.3 metres, indicating a very loose to dense state of compaction. The silt was fully penetrated in boreholes BH1 to BH4 and BH9, and had a thickness of between 1.7 and 5.9 metres. Boreholes BH5, BH6, BH8 and BH10 were terminated within the silt.

The results of two hydrometer tests (ASTM D422) on samples of soil (BH3 – SS6 – 3.8 - 4.4 m & BH9 – SS4 – 2.3 - 2.9 m) indicate the samples have the following:

Sample	Depth(metres)	% Gravel	% Sand	% Silt	% Clay
BH3 – SS6	3.8 - 4.4	0.0	15.4	57.6	27.0
BH9 – SS4	2.3 - 2.9	1.3	27.3	45.4	26.0

The results of Atterberg Limits tests and moisture content (ASTM D422) conducted on one soil sample (BH1 – SS4 – 2.3 - 2.9 m) of the silt are presented in the following table and in Attachment A at the end of the report. The tested silt sample classifies as low plasticity in accordance with the Unified Soil Classification System. The results of the laboratory testing are located in Attachment A.

Sample	Depth(metres)	LL (%)	PL (%)	PI (%)	W (%)
BH1-SS6	2.3 – 2.9	22.0	12.7	9.3	20.2

Table I – Atterberg Limit and Water Content Results

LL: Liquid Limit PL: Plastic Limit PI: Plasticity Index w: water content CL: Inorganic Low Plastic Soils

The results are located in Attachment A. The response to concerns regarding the Atterberg Limit Test Results have also been included in Attachment A.

4.4 Sand

Beneath the silt, a layer of grey silty sand and/or fine to medium sand was encountered in boreholes BH1 to BH4 and BH9. The sand materials were encountered at depths ranging between 2.7 and 6.1 metres below the existing ground surface. The results of standard penetration tests completed within

the sand gave N values of between 1 and 31 blows per 0.3 metres, indicating a very loose to dense state of compaction. The sand was fully penetrated in boreholes BH1 to BH4 and BH9, and had a thickness of between 0.6 and 2.0 metres.

The results of two sieve analysis tests (ASTM C136) on samples of soil (BH2 – SS8 – 5.2 - 5.8 m & BH4 – SS9 – 6.1 - 6.7 m) indicates the samples had a gravel content of 0 to 1.7 percent, a sand content of 48.8 to 78.1 percent, and a silt and clay content of 61.2 to 20.2 percent. The results are located in Attachment A.

4.5 Glacial Till

A deposit of grey silty sand with some gravel, cobbles, boulders and a trace of clay (glacial till) was encountered beneath the sand materials in boreholes BH1 to BH4 and BH9. The glacial till was encountered at depths ranging between 3.3 and 7.3 metres below the existing ground surface. The results of standard penetration tests completed in the glacial till gave N values of between 7 and 100 blows per 0.3 metres, indicating a loose to very dense state of compaction. Boreholes BH1 and BH4 were terminated within the glacial till at a depth of about 8.2 metres below the existing ground surface. Practical refusal on bedrock or large boulders was encountered within the glacial till at boreholes BH2, BH3 and BH9.

The results of a hydrometer test (ASTM D422) on a sample of soil (BH4 – SS11 – 7.6 – 8.2 m) indicates the sample has the following:

Sample	Depth(metres)	% Gravel	% Sand	% Silt	% Clay
BH4 – SS11	7.6 – 8.2	12.8	55.8	23.4	8.0

The results are located in Attachment A.

4.6 Potential Bedrock

Practical refusal on bedrock or large boulders was encountered in boreholes BH2, BH3 and BH9 at depths of about 7.6, 7.8 and 6.4 metres, respectively, below the existing ground surface.

4.7 Moisture Contents

A total of 52 soil samples were also tested for moisture content (ASTM D2216). The measured moisture contents of the fill materials ranged from 4 to 19 percent. The measured moisture contents of the silt material ranged from 16 to 32 percent. The measured moisture contents of the sand materials ranged from 20 to 29 percent. The measured moisture contents of the glacial till ranged from 7 to 24 percent. The results of the moisture content are included on the Record of Borehole sheets following the text of this report.

4.8 Groundwater

Some groundwater was encountered in boreholes BH1, BH2, BH3, BH4, BH6, BH7, BH9 and BH10 at the time of drilling on May 29, and May 30, 2023, at depths of about 3.0, 3.8, 3.0, 3.0, 1.2, 1.2, 0.8 and 1.3 metres, respectively, below the existing ground surface. Boreholes BH5, BH8 and BH11 were dry at the time of drilling on May 29 and May 30, 2023. Groundwater was measured in a standpipe installed within borehole BH9 at a depth of about 1.1 metres below the existing ground surface on June 14, 2023. Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as early spring.

4.9 Corrosivity on Reinforcement and Sulphate Attack on Portland Cement

The results of the laboratory testing of two soil samples submitted for chemistry testing related to corrosivity are summarized in the following tables.

Item	Threshold of Concern	Test Result	Comment
Chlorides (Cl)	Cl > 0.04 %	<0.0005	Negligible
рН	pH < 5.5	7.70	Negligible concern
Resistivity	R < 20,000 ohm-cm	10500	Mildly Corrosive
Sulphates (SO ₄)	SO ₄ > 0.1%	<0.0020	Negligible concern
BH4 – SS3 – 1.5 – 2.1	m		

BH2 – SS3	– 1.5 – 2.1 m
------------------	---------------

Item	Threshold of Concern	Test Result	Comment
Chlorides (Cl)	Cl > 0.04 %	<0.0005	Negligible
рН	pH < 5.5	7.69	Negligible concern
Resistivity	R < 20,000 ohm-cm	9430	Moderately Corrosive
Sulphates (SO ₄)	SO ₄ > 0.1%	<0.0020	Negligible concern

June 14, 2023 – Revised August 29, 2024 -8- 230403 The results of the laboratory testing of a soil samples for sulphate gave percent sulphates of less than 0.0020. The National Research Council of Canada (NRC) recognizes four categories of potential sulphate attack of buried concrete based on percent sulphate in soil. From 0 to 0.10 percent the potential is negligible, from 0.10 to 0.20 percent the potential is mild but positive, from 0.20 to 0.50 percent the potential is considerable and 0.50 percent and greater the potential is severe. Based on the above, the soils are considered to have a negligible potential for sulphate

Sunbelt Rentals Inc.

attack on buried concrete materials and accordingly, conventional GU or MS Portland cement may be used in the construction of the proposed concrete elements.

The pH value for the soil samples was reported to be between 7.69 and 7.70, indicating a durable condition against corrosion. These values were evaluated using Table 2 of Building Research Establishment (BRE) Digest 362 (July 1991). The pH is greater than 5.5 indicating the concrete will not be exposed to attack from acids.

The chloride content of the samples was also compared with the threshold level and present negligible concrete corrosion potential.

Corrosivity Rating for soils ranges from extremely corrosive with a resistivity rating <1000 ohm-cm to non-corrosive with a resistivity of >20,000 ohm-cm as follows:

Soil Resistivity (ohm-cm)	Corrosivity Rating
> 20,000	non- corrosive
10,000 to 20,000	mildly corrosive
5,000 to 10,000	moderately corrosive
3,000 to 5,000	corrosive
1,000 to 3,000	highly corrosive
< 1,000	extremely corrosive

The soil resistivity was found to be between 9430 and 10500 ohm-cm for the samples analyzed making the soil mildly to moderately corrosive for buried steel. Increasing the specified strength and increasing concrete cover and adding air entrainment into any reinforced concrete in contact with the soil is recommended. Additional special protection, other than listed above, is not required for reinforcement steel within the concrete foundation walls.

Based on the chemical test results, Type GU General Use Hydraulic Cement may be used for this proposed development. Special protection in the form of air entrainment and minimum cover is required for reinforcement steel within the concrete walls.

The laboratory results are presented in Attachment B following this report.

5.0 GEOTECHNICAL GUIDELINES AND RECOMMENDATIONS

5.1 General

This section of the report provides engineering guidelines on the geotechnical design aspects of the project based on our interpretation of the information from the test holes and the project requirements. It is stressed that the information in the following sections is provided for the guidance of the designers and is intended for this project only. Contractors bidding on or undertaking the works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of the factual data as it affects their construction techniques, schedule, safety and equipment capabilities.

The professional services for this project include only the geotechnical aspects of the subsurface conditions at this site. The presence or implications of possible surface and/or subsurface contamination resulting from previous uses or activities at this site or adjacent properties, and/or resulting from the introduction onto the site of materials from offsite sources are outside the terms of reference for this report.

5.2 Foundations for Proposed Commercial Buildings

It is understood that the proposed commercial buildings will consist of conventional concrete spread footing foundations complete with cast-in-place concrete foundation walls and concrete slab-on-grade construction and no basements.

As previously indicated, the subsurface conditions at the site encountered at the boreholes advanced during the investigation consisted of fill materials (silty sand, fine to medium sand and/or sand and gravel) overlying silt with a trace to some sand and clay, followed by silty sand and/or fine to medium sand over glacial till then bedrock. The allowable bearing pressure for any footings depends on the depth of the footings below original ground surface, the width of the footings, and the

height above the original ground surface of any landscape grade raise adjacent to the foundations and the thickness of the soils deposit beneath the footings.

5.3 Subsurface Conditions at the Underside of Footing Level

It is expected that the subgrade immediately below the proposed footing level will consist of silt. Once the excavations for the foundations are complete, the exposed subgrade should be inspected by a qualified geotechnical person. Should the subgrade consist of loose silt, the subgrade should be sub-excavated to remove the loose material to a depth of 0.6 metres below the underside of footing elevation.

5.4 Foundation Excavation


The excavations for the foundation should be taken through any fill or otherwise deleterious material to bear on the native, undisturbed grey brown silt subgrade. The sides of the excavations should be sloped in accordance with the requirements of Ontario Regulation 213/91, s. 226 under the Occupational Health and Safety Act. According to the Act, the native soils at the site can be classified as Type 3 soil, however, this classification should be confirmed by qualified individuals as the site is excavated and if necessary, adjusted.

It is expected that the side slopes of the excavation will be stable in the short term provided the walls are sloped at 1H:1V through the fill materials and native silt to the bottom of the excavation and provided no excavated materials are stockpiled within 3 metres of the top of the excavations.

5.5 Conventional Spread Footing Foundations

The allowable bearing pressure for any footings depends on the depth of the footings below original ground surface, the width of the footings, and the height above the original ground surface of any landscape grade raise adjacent to the foundation.

For the proposed commercial buildings, a maximum allowable bearing pressure of 120 kilopascals using serviceability limit states design and a factored ultimate bearing resistance of 360 kilopascals using ultimate limit states design, may be used for the design of conventional strip footings or pad footings founded on the silt or on a suitably constructed engineered pad placed on the silt.

The maximum total and differential settlement of the footings are expected to be less than 25 millimetres and 20 millimetres, respectively, using the above allowable bearing pressure and resistance. There is no maximum grade raise associated with the above allowable bearing pressure.

The subgrade surface should be inspected and approved by geotechnical personnel prior to placement of any granulars.

5.6 Engineered Fill

Should the complete removal of all fill materials and any otherwise deleterious material result in a subgrade below the proposed founding level, any fill required to raise the footings for the proposed building to founding level should consist of granular material meeting Ontario Provincial Standards Specifications (OPSS) requirements for Granular A or Granular B Type II and should be compacted in maximum 300 millimetre thick loose lifts to 98 percent of the standard Proctor maximum dry density. It is considered that the engineered fill should be compacted using dynamic compaction with a large diameter vibratory steel drum roller or diesel plate compactor. If a diesel plate compactor is used, the lift thickness may need to be restricted to less than 300 mm to achieve proper compaction. Compaction should be verified by a suitable field compaction test method.

To allow the spread of load beneath the foundations, the engineered fill should extend out from the outside edges of the footings for a horizontal distance of 0.5 metres and then down and out at a slope of 1 horizontal to 1 vertical, or flatter. The excavations for the structure should be sized to accommodate this fill placement.

The first lift of engineered fill material should have a thickness of 300 millimetres in order to protect the subgrade during compaction. Should the subgrade surface consist of silt below the water table, a 4 ounce per square yard non woven geotextile fabric should be placed between the engineered fill and the silt subgrade. It is considered that the placement of a geotextile fabric between the engineered fill and the subgrade is not necessary where granular materials meeting the grading requirements for OPSS Granular A or Granular B Type I or Type II are placed on a silt subgrade above the normal ground water level. It is recommended that trucks are not used to place the engineered fill on the subgrade. The fill should be dumped at the edge of the excavation and moved into place with a tracked bulldozer or excavator.

The native soils at this site will be sensitive to disturbance from construction operations and from rainwater or snowmelt, and frost. In order to minimize disturbance, construction traffic operating directly on the subgrade should be kept to an absolute minimum and the subgrade should be protected from below freezing temperatures.

5.7 Frost Protection Requirements for Spread Footing Foundations

In general, all exterior foundation elements and those in any unheated parts of the proposed buildings should be provided with at least 1.5 metres of earth cover for frost protection purposes. Isolated, unheated foundation elements adjacent to surfaces, which are cleared of snow cover during winter months should be provided with a minimum 1.8 metres of earth cover for frost protection purposes.

5.8 Foundation Wall Backfill and Drainage

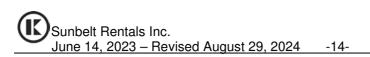
Provided the proposed finished floor surfaces are everywhere above the exterior finished grade, the granular materials beneath the proposed floor slabs are properly compacted and provided the exterior grade is adequately sloped away from the proposed buildings, no perimeter foundation drainage system is required.

Groundwater inflow from the native soils into the foundation excavations during construction, if any should be handled by pumping from sumps within the excavations.

The native soils encountered at this site are considered to be frost susceptible. As such, to prevent possible foundation frost jacking, the backfill against any unheated or insulated walls or isolated walls or piers should consist of free draining, non-frost susceptible material. If imported material is required, it should consist of sand or sand and gravel meeting OPSS Granular B Type I grading requirements.

Alternatively, foundations could be backfilled on the exterior with native material in conjunction with the use of an approved proprietary drainage layer system (such as Platon System Membrane) against the foundation wall. There is potential for possible frost jacking of the upper portion of some types of these drainage layer systems if frost susceptible material is used as backfill. To mitigate this potential, the upper approximately 0.6 metres of the foundation should be backfilled with non-frost susceptible granular material.

Where the granular backfill will ultimately support a pavement structure or walkway, it is suggested that the wall backfill material be compacted in 250 millimetre thick lifts to 95 percent of the standard Proctor dry density value. In that case any native material proposed for foundation backfill should be inspected and approved by the geotechnical engineer.


5.9 Slab on Grade Support

As stated above, it is expected that the proposed buildings will be founded on native silt or on an engineered pad placed on the native subgrade. For predictable performance of the proposed concrete floor slabs, all existing fill material and any otherwise deleterious material should be removed from below the proposed floor slab areas. The exposed native subgrade surface should then be inspected and approved by geotechnical personnel. Any soft areas evident should be subexcavated and replaced with suitable engineered fill.

The fill materials beneath the proposed concrete floor slab on grades should consist of a minimum of 150 millimetre thickness of crushed stone meeting OPSS Granular A immediately beneath the concrete floor slab followed by sand, or sand and gravel meeting the OPSS for Granular B Type I, or crushed stone meeting OPSS grading requirements for Granular B Type II, or other material approved by the Geotechnical Engineer. The fill materials should be compacted in maximum 300 millimetre thick lifts to at least 95 percent of the standard Proctor maximum dry density.

The slabs should be structurally independent from walls and columns, which are supported by the foundations. This is to reduce any structural distress that may occur as a result of differential soil movement. If it is intended to place any internal non-load bearing partitions directly on the slab-on-grades, such walls should also be structurally independent from other elements of the building founded on the conventional foundation system so that some relative vertical movement between the floor slabs and foundations can occur freely.

The concrete floor slabs should be saw cut at regular intervals to minimize random cracking of the slab due to shrinkage of the concrete. The saw cut depth should be about one quarter of the

thickness of the slab. The crack control cuts should be placed at a grid spacing not exceeding the lesser of 25 times the slab thickness or 4.5 metres. The slabs should be cut as soon as it is possible to work on the slabs without damaging the surface of the slabs. Under slab drainage is not considered necessary provided that the floor slab levels are above the finished exterior ground surface level.

5.10 Ground Water in Excavation and Construction Dewatering

Groundwater was measured in boreholes BH1 to BH4, BH6, BH7, BH9 and BH10 at the time of drilling on May 29 and 30, 2023 at about 0.8 to 3.8 metres below the existing ground surface. Boreholes BH5, BH8 and BH11 were dry at the time of drilling. Water was measured in a standpipe placed within borehole BH9 at about 1.1 metres below the existing ground surface on June 14, 2023. It is expected that the proposed USF for the building foundations may be placed below the water level. As such, it is anticipated that there could be significant inflow into the excavation during construction of the foundation for the underground parking area. There is potential that a permit to take water PTTW may be required in accordance with MECP guidelines where construction of the flows of more than 400,000 Litres/day. At minimum a registration on the Environmental Activity Sector Registry (EASR) as per O.Reg. 63/16 will be required.

5.11 Seismic Design for the Proposed Commercial Buildings

5.11.1 Seismic Site Classification Ontario Building Code

For seismic design purposes, in accordance with the 2012 OBC Section 4.1.8.4, Table 4.1.8.4.A., the site classification for seismic site response is Site Class D. The subsurface conditions below the proposed foundation design level consist of loose to compact silt with sand, loose to dense silty sand and loose to very dense glacial till followed by bedrock.

In accordance with the 2012 OBC Section 4.1.8.4, Table 4.1.8.4.A., the average properties of the top 30 metres will result in an average standard penetration resistance = $15 \le N(60) \le 50$. In addition there are no conditions in the profile where there are more than 3 m of soil with a plasticity index PI \ge 20; or moisture content \ge 40%; or undrained strength \le 25kPa.

5.11.1 National Building Code Seismic Hazard Calculation

The online 2015 National Building Code Seismic Hazard Calculation was used to verify the seismic conditions at the site. The design Peak Ground Acceleration (PGA) for the site was calculated as 0.250 with a 2% probability of exceedance in 50 years based on the interpolation of the 2015 National Building Code Seismic Hazard calculation. The seismic site classification for the site is indicated to be Seismic Site Class D. The results of the calculation are attached in Attachment C following the text of this report.

5.11.2 Potential for Soil Liquefaction

As previously indicated, the soils below the proposed foundations will consist of silt followed by sand over glacial till overlying bedrock at about 6.3 to greater than 8.2 metres below the existing ground surface. Consideration for the potential for soil liquefaction was determined by considering the ratio between the cyclic resistance ratio (CRR) and the cyclic stress ratio (CSR) for the soils between the proposed underside of footing level and the depth explored by standard penetration testing. CSR and CRR values are not computed for N'(60) > 30

For Building A

The average factor of safety against liquefaction for the soils assessed for an earthquake with a magnitude of 7.5 is 0.295 / 0.020 = 10.0

For Building B The average factor of safety against liquefaction for the soils assessed for an earthquake with a magnitude of 7.5 is 0.179 / 0.022 = 8.15

The silt at the site has a clay content of 26 to 27 percent. Soils with a clay content of greater than 15 percent are not considered susceptible to liquefaction. At the depth and thickness present, the sand is not considered a concern for liquefaction. As such there is no risk to the buildings at the site resulting from seismic liquefaction.

6.0 ACCESS ROADWAY AND PARKING LOT PAVEMENTS

6.1 Subgrade Preparation

In preparation for pavement construction at this site any fill materials, soft, wet or deleterious materials should be removed from the proposed access roadway and parking lot area. The exposed subgrade surface should then be proof inspected and approved by geotechnical personnel. It is considered that the subgrade should consist of silt. Any soft or unacceptable areas evident should be subexcavated and replaced with suitable earth borrow material. The subgrade should be shaped and crowned to promote drainage of the roadway and parking area granulars. Following approval of the preparation of the subgrade, the pavement granulars may be placed.

For any areas of the site that require the subgrade to be raised to proposed roadway and parking area subgrade level, the material used should consist of OPSS select subgrade material or OPSS Granular B Type I or Type II. Materials used for raising the subgrade to proposed roadway and parking area subgrade level should be placed in maximum 300 millimetre thick loose lifts and be compacted to at least 95 percent of the standard Proctor maximum dry density using suitable compaction equipment.

6.2 Parking Area Structure

Based on the results of the boreholes, a layer of fill materials (silty sand, fine to medium sand, sand and gravel) overlying native silt was encountered. It is considered that the fill materials and any other deleterious materials should be removed within the proposed parking areas.

Following approval of the subgrade surface by geotechnical personnel, the granular material (engineered fill) consisting of granular crushed stone meeting OPSS grading requirements as described below.

Asphaltic Concrete Surfaced Areas

For pavement areas subject to cars and light trucks the pavement should consist of:

50 millimetres of Superpave 12.5 hot mix asphaltic concrete over150 millimetres of OPSS Granular A base over300 millimetres of OPSS Granular B, Type II subbase

(50 or 100 millimetre minus crushed stone)

Non-woven geotextile fabric (6 oz/sqy) such as Terrafix 360R or Thrace-Ling 150EX or approved alternative.

For pavement areas subject to heavy truck loading the pavement should consist of:

40 millimetres of Superpave 12.5 hot mix asphaltic concrete over

50 millimetres of Superpave 19 hot mix asphaltic concrete over

150 millimetres of OPSS Granular A base over

300 millimetres of OPSS Granular B, Type II subbase

(50 or 100 millimetre minus crushed stone)

Non-woven geotextile fabric (6 oz/sy) such as Terrafix 360R or Thrace-Ling 150EX or approved alternative.

Performance grade PG 58-34 asphaltic concrete should be specified. Compaction of the granular pavement materials should be carried out in maximum 300 millimetre thick loose lifts to 100 percent of the standard Proctor maximum dry density value using suitable vibratory compaction equipment.

The above pavement structures will be adequate on an acceptable subgrade, that is, one where any roadway fill has been adequately compacted. If the roadway subgrade is disturbed or wetted due to construction operations or precipitation, the granular thicknesses given above may not be adequate and it may be necessary to increase the thickness of the Granular B Type II subbase.

All areas marked "Concrete Surface" are to be designed by the structural engineer.

7.0 HYDRAULIC CONDUCTIVITY TESTING

Kollaard Associates Inc returned to the site on November 28 and 30, 2023 to complete two in-situ hydraulic conductivity assessments within the foot print of the proposed stormwater management infiltration trench (see Site Plan, Figure 1). The subsurface conditions consisted of about 1.5 metres of fill materials (fine to medium sand or sand and gravel) overlying clayey silt with a trace of sand.

A water level was taken from the standpipe installed in borehole BH9 prior to the fieldwork on November 30, 2023. Groundwater was measured at a depth of about 1.6 metres below the existing ground surface.

Two in-situ hydraulic conductivity tests were completed using a Guelph Permeameter within the area of the proposed storm infiltration area in the existing materials within 1.0 metres of the underside of the proposed infiltration trench. The existing soils at this level were described as red brown fine to medium sand fill. The results of the testing and associated calculations are included as Appendix D following this report.

The results of the calculations based on the in-situ hydraulic conductivity tests gave a coefficient of permeability of between 1.0×10^{-4} and 2.7×10^{-5} cm/s.

The following table obtained from the Low Impact Development Stormwater Management Planning and Design Guide - Appendix C produced by Credit Valley Conservation and Toronto and Region Conservation indicates the relationship between the Percolation Time, Coefficient of Permeability and Infiltration Rate.

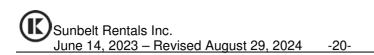
Table C1: Approximate relationships between hydraulic conductivity, percolation time and infiltration rate

Hydraulic Conductivity, K _{fs} (centimetres/second)	Percolation Time, T (minutes/centimetre)	Infiltration Rate, 1/T (millimetres/hour)
0.1	2	300
0.01	4	150
0.001	8	75
0.0001	12	50
0.00001	20	30
0.000001	50	12

Source: Ontario Ministry of Municipal Affairs and Housing (OMMAH). 1997. Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions. Toronto, Ontario.

From the above comparison, the existing soils within 1 metre of the bottom of the infiltration trenches would have an estimated infiltration rate of 30 to 50millimetres/hour.

8.0 CONSTRUCTION CONSIDERATIONS


It is suggested that the final design drawings for the project, including the proposed site grading plan, be reviewed by the geotechnical engineer to ensure that the guidelines provided in this report have been interpreted as intended.

The engagement of the services of the geotechnical consultant during construction is recommended to confirm that the subsurface conditions throughout the proposed development do not materially differ from those given in the report and that the construction activities do not adversely affect the intent of the design.

All foundation areas and any engineered fill areas for the proposed buildings should be inspected by Kollaard Associates Inc. to ensure that a suitable subgrade has been reached and properly prepared. The placing and compaction of any granular materials beneath the foundations should be inspected to ensure that the materials used conform to the grading and compaction specifications.

The subgrade for the access roadway and parking areas should be inspected and approved by geotechnical personnel. In situ density testing should be carried out on the roadway and parking area granular materials to ensure the materials meet the specifications from a compaction point of view.

The native silt at this site will be sensitive to disturbance from construction operations, from rainwater or snow melt and frost. In order to minimize disturbance, construction traffic operating directly on the subgrade should be kept to an absolute minimum and the subgrade should be protected from below freezing temperatures.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report or if we may be of further services to you, please do not hesitate to contact our office.

Regards, Kollaard Associates Inc.

Jan Tatan

Dean Tataryn, B.E.S., EP.

Steve DeWit, P.Eng.

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER: 63.5 kg, Drop, 0.76 mm

DEPTH SCALE (meters)	SOIL PROFILE						ES			GHEA Cu.		NGTH ×		NET	IC CO RATI	RE (%)	PIEZOMETER OR STANDPIPE INSTALLATION			
TH SC neters	DESCRIPTION		STRATA PLOT		NUMBER	түре	BLOWS/0.3m					GTH			ST	 UISTUI UTENT	INSTALLATION			
DEP		DEPTH (m)	STRAT	ELEV. (m)	NUN	Ϋ́	BLOW	0 2		Cu. 40	kPa 60	о 80100	0		300 n 60	₀ĕğ				
	Yellow brown fine to medium sand (FILL)	0.00		120.72	1	SS	8									12				
 1.0	Grey brown fine to medium sand (FILL)	0.76		119.96	2	SS	26	-								19				
	Grey CLAYEY SILT, trace sand	1.22		119.50				-												
2.0					3	SS	5	-								32	Some groundwater			
					4	SS	7									20	observed at about 3.0 metres below the existing ground surface,			
<u>3.0</u> 					5	SS	2	-								23	May 29, 2023. ́ ⊻_			
 	Grey SILTY SAND	4.11		116.61	6	SS	11	-								17				
 5.0					7	SS	6	-								21				
				1.1.5.00				-												
6.0	Grey fine to medium SAND	5.33		115.39	8	SS	21	-								20				
					9	SS	29									20				
 7.0		7.00	XX7¥X7		10	SS	9	-								25				
 <u>8.0</u>	Grey silty sand, some gravel, cobbles, boulders, trace clay (GLACIAL TILL)	7.32		113.40	11	SS	7	-								13				
	End of borehole in GLACIAL TILL	8.23	YT KS	112.49					<u> </u>			1					J			
	SCALE: 1 to 50						-D TV					 								

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

CHECKED: SD

PROJECT NUMBER:230403

SHEET:1 of 1

DATUM:GEODETIC

DATE OF BORING: 2023-05-29

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

S)	SOIL PROFILE						ES			SHE Cu	AR S	STRE	NGTH ×			NET	IC CO		RE	PIEZOMETER OR STANDPIPE
DEPTH SCALE (meters)	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	0	C	Си	ı. kPa	а	o O			ows/:	ST 300 n			
	Ded hussing fine to use discus	(m)	5	(m)	_		8	0	20	40	6	<u> </u>	<u>30 100</u>	0	20	40	60	8010	0	,
┝ ┥	Red brown fine to medium sand (FILL)	0.00	\bigotimes	121.02																
-	Grey silty clay (FILL)	0.30		120.72	1	SS	1												12	
⊢ ⊣			\boxtimes																	
┝ ┥			\boxtimes																	
1.0			\bigotimes		2	SS	6								_					
	Yellow brown fine to medium	1.07		119.95	2	33	0												15	
	sand (FILL)																			
	Grey brown CLAYEY SILT,	1.52	http	119.50																
	trace sand				3	SS	8												29	
2.0															_					Some
																				groundwater observed at about
																				3.8 metres below
					4	SS	9												21	the existing
																				ground surface, May 29, 2023.
3.0																			_	Way 29, 2025.
	Grey CLAYEY SILT, trace	3.05		117.97															28	
	Sand				5	SS	7												20	
																				_
																				Σ
4.0					6	SS	9												20	
					0	33	9												20	
5.0					7	SS	12												22	
- 5.0	Grey fine to medium SAND	4.88		116.14	-										-				_	
├ _╡	Grey SILTY SAND	5.64		115.38	8	SS	1												22	
6.0		0.04		110.00																
			227077																	
- 1	Grey silty sand, some gravel, cobbles, boulders, trace clay	6.10		114.92	9	SS	58													
- 1	(GLACIAL TILL)																		11	
- 1			E CARL																	
7.0																				
			I H		10	SS	16													
- 1			UH)		10	33	10												13	
F 1			U/X																	
╞───┛	Practical refusal on bedrock or	7.62		113.40			L						1		1					
	large boulder																			

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

LOGGED: CI

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM:GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER: 63.5 kg, Drop, 0.76 mm

ALE	SOIL PROF	ILE			SA	AMPL	.ES				EAR J. kP			GTH			'NA ENE			ONE ON	ы Э	PIEZOMETER OR STANDPIPE
DEPTH SCALE (meters)	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	RE	M S	HE/ C	AR S u. kP	TRE 'a	NG o	тн	_	b	٦ Nows	'ES' 5/30	T 0 n	nm	MOISTURE CONTENT (%)	INSTALLATION
	Yellow brown silty sand (FILL)	(m) 0.00	<u> </u>	(m) 122.42				0	20	40) 6	0	80	100	0	20	4() (50	80100		
					1	SS	9														7	
	Yellow brown sand and gravel (FILL)	0.30		122.12	'	00	5														l '	
1.0																						
					2	SS	26														4	
	Grey brown CLAYEY SILT,	1.22		121.20																		
L _	trace sand																					
					3	SS	19														17	
2.0					ľ	00	10											_	_			Some
																						groundwater observed at about
																						3.0 metres below
					4	SS	38														20	the existing
3.0																						ground surface, May 29, 2023. ⊻
	Grey CLAYEY SILT, trace	3.05	$\left\{ \left \right \right\}$	119.37												-		-				Σ
	sand	0.00		110.07	5	SS	7														20	
F -						00	'															
4.0																						
L _					6	SS	3														27	
					7	SS	2														22	
5.0					'	55	2								_			_			-	
					8	SS	3														19	
6.0	Grey SILTY SAND	5.79		116.63																		
[]					9	SS	15														20	
					9	33	15														20	
L _																						
7.0																						
L -	Grey silty sand, some gravel, cobbles, boulders, trace clay	7.01		115.41	10	SS	2														19	
	(GLACIAL TILL)																					
))))		11	00	100														24	
	Practical refusal on bedrock or	7.77	WN/XY	114.65		55		<u> </u>				L									1	J
	large boulder																					

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

LOGGED: CI

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM:GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM:GEODETIC

DEPTH SCALE (meters)	SOIL PROFI	LE	1.		SA	MPL	ES.				AR S . kPa		NGTH ×		DY PE	NET	IC CO	ONE ON	RE Г (%)	PIEZOMETER OR STANDPIPE
TH SC meter	DESCRIPTION		STRATA PLOT		NUMBER	түре	BLOWS/0.3m						GTH		ы		ST 300 n		MOISTURE CONTENT (%)	INSTALLATION
DEP		DEPTH (m)	STRAI	ELEV. (m)	NUN	F	BLOV	0 2) 20	40	. kPa 60		o 30 100	0				80100	ĕõ	
	Yellow brown sand and gravel (FILL)	0.00		122.46	1	SS	11												4	
					2	SS	18	-											4	
	Grey brown CLAYEY SILT, trace sand	1.52		120.94	3	SS	15	-											23	Some groundwater
 3.0					4	SS	41	-											20	observed at about 3.0 metres below the existing ground surface, May 29, 2023.
	Grey CLAYEY SILT, trace — — sand	3.05		119.41	5	SS	26	-											16	Ϋ́Υ.
4.0 					6	SS	5	-											28	
 					7	SS	6	-											25	
 6.0					8	SS	17	-											18	
	Grey fine to medium SAND	6.10		116.36	9	SS	31	-											22	
 	Grey silty sand, some gravel, cobbles, boulders, trace clay	7.32		115.14	10	SS	10	-											29	
8.0	(GLACIAL TILL)				11	SS	40												16	
	End of borehole in GLACIAL TILL	8.23		114.23																
DEPTH	SCALE: 1 to 50																	LOGG	ED: C	I
BORIN	G METHOD: Power Auger				1	AUGI	ER TY	'PE: 3	200	mm	Hollo	ow S	tem					CHECI	KED: S	SD

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

SCALE ers)	SOIL PROFI	LE	i		SA	MPL	ES	-	JIST <	AR ST . kPa	RENGTH ×	 	NET	IC C RAT			RE . (%)	PIEZOMETER OR STANDPIPE
DEPTH SC (meters	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m		EM S 0 20	R STR . kPa 60	ENGTH 0 80 100	0		ST 300 I 60	nm 801	00	MOISTURE CONTENT (%)	INSTALLATION
	Topsoil (FILL) Yellow brown silty sand (FILL)	0.00 0.10		121.81 121.71														
 <u></u> 1.0 	Grey brown CLAYEY SILT, trace sand	0.61		121.20														
	End of borehole in SILT	1.52		120.29			•				·							

Borehole dry, May 29, 2023.

DEPTH SCALE: 1 to 50

LOGGED: CI

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM:GEODETIC

PROJECT: Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER: 63.5 kg, Drop, 0.76 mm

	-																		
PTH SCALE (meters)	SOIL PROF	ILE			S	AMPL	ES			SHE/ Cu.	-	RENGTH	1			IC CO RATI		RE (%)	PIEZOMETER OR STANDPIPE
H SC, eters			PLOT		ER	ш	0.3m		Me			ENGTH				ST		MOISTUF	INSTALLATION
DEPTI (me	DESCRIPTION	DEPTH	RATA	ELEV.	NUMBER	ТҮРЕ	-OWS/0.3m		0		kPa	0		bl	ows/	300 n	nm	NO NT NO	
ā		(m)	STI	(m)	2		B	0	20	40	60	80100	0	20	40	60	8010	0	
 <u>1.0</u>	Red brown silty sand (FILL)	0.00		122.34															V
	Grey brown CLAYEY SILT, trace sand	1.22		121.12															<u> </u>
	End of borehole in SILT	1.52		120.82															

1.52 End of borehole in SILT

> Some groundwater observed at about 1.2 metres below the existing ground surface, May 29, 2023.

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

LOGGED: CI

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM: GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

ALE (SOIL PROF	ILE	1		SA	MPL	ES	UNE		Cu.	-		GTH ×	'NAM ENET	RAT	RE (%)	PIEZOMETER OR STANDPIPE
DEPTH SCAI (meters)	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m		EM S o 20	Cu.		0		lows/	ST 300 r 60	MOISTURE CONTENT (%)	INSTALLATION
 1.0	Yellow brown sand and gravel (FILL)	(m) 0.00		(m) 122.06													
	End of borehole in FILL	1.52		120.54													<u> </u>

Some groundwater observed at about 1.2 metres below the existing ground surface, May 29, 2023.

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

LOGGED: CI

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-29 SHEET:1 of 1

DATUM:GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

SCALE ters)	SOIL PROF	ILE			SA	MPL	ES	-	DIST <	AR ST . kPa	RENGTH	YNAM PENET	RAT	RE . (%)	PIEZOMETER OR STANDPIPE
DEPTH SCA (meters)	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m		EM S 0 20	. kPa	ENGTH 0 80 100	olows/		MOISTURE CONTENT (%)	INSTALLATION
	Red brown silty sand (FILL)	0.00		121.09								, 40		,	
 _ 1.0	Grey brown CLAYEY SILT, trace sand	0.61		120.48											
	End of borehole in SILT	1.52		119.57											

Borehole dry, May 30, 2023.

DEPTH SCALE: 1 to 50

LOGGED: CI

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-30 SHEET:1 of 1

DATUM:GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm PROJECT NUMBER:230403 DATE OF BORING: 2023-05-30 SHEET:1 of 1

DATUM:GEODETIC

(s	SOIL PROF	ILE	Ŀ	1	SAMPLES					k Pa	NGT	н 	ENE	NIC C FRA1 EST	ΓÍΟ		URE IT (%)		ANDI	PIPE
(meters)	DESCRIPTION	DEPTH (m)	STRATA PLOT	ELEV. (m)	NUMBER	түре	BLOWS/0.3m	0		kPa 60	0		ows	/300	mr	n 80100	MOISTURE CONTENT (%)	INST	ALL	ATIC
-	Yellow brown silty sand (FILL)	0.00		120.98	1	SS	7								/		11			
	Yellow brown fine to medium sand (FILL) Grey brown fine to medium	0.40		120.58 120.37															V	
<u> </u>	sand (FILL) Grey brown CLAYEY SILT,	1.07		119.91	2	SS	2										25		Ā	
- - +	Trace sand	1.52		119.46																
0	sand	1.52		119.46	3	SS	4										27	Some ground	wate	r
-	Grey SILTY SAND	2.74		118.24	4	ss	8										29	observ 0.8 me the exi ground	tres t sting surf	belø
0	Grey silty sand, some gravel, cobbles, boulders, trace clay	3.35		117.63	5	ss	18										24	May : Grou meas stanc abou	20) /ate /d ii /e a 1 m	e
- 0 -	(GLACIAL TILL)				6	SS	14										13	belov grour June	e e urf 20	i
- - 0 -					7	SS	23										7			
					8	SS	84										7			
0					9	SS	100										9			
	Practical refusal on bedrock or large boulder	6.35		114.63																

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

LOGGED: CI

CHECKED: SD

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

SCALE ers)	SOIL PROF	ILE	i	1	SA	MPL	ES		T SHE Cu.	-	RENGTH ×			NET	IC CO RATI		RE (%)	PIEZOMETER OR STANDPIPE
DEPTH SC (meters	DESCRIPTION	DEPTH	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m	EM \$ 0 20		R STR kPa 60	ENGTH 0 80 100	0	b le 20		ST 300 n 60	n m 80100	MOISTURE CONTENT (%)	INSTALLATION
 1.0	Red brown fine to medium sand (FILL)	(m) 0.00		(m) 121.42				20					20	40				
	Grey brown CLAYEY SILT, trace sand	1.00		120.42														Ţ
	End of borehole in SILT	1.52		119.90														

Some groundwater observed at about 1.3 metres below the existing ground surface, May 30, 2023.

DEPTH SCALE: 1 to 50

LOGGED: CI

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-30 SHEET:1 of 1

DATUM:GEODETIC

PROJECT:Proposed Industrial Development CLIENT:Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:63.5 kg, Drop, 0.76 mm

Visite Visite	TECT	문한 STANDPIPE
Red brown silty sand (FILL) 0.00 120.96 120.96 - - - -	TEST blows/300 mm 20 40 60 80100	PIEZOMETER OR STANDPIPE INSTALLATION INSTALLATION

Borehole dry, May 30, 2023.

DEPTH SCALE: 1 to 50

LOGGED: CI

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-30 SHEET:1 of 1

DATUM:GEODETIC

BOREHOLE BH-STORM

PROJECT:Proposed Industrial Development **CLIENT:**Sunbelt Rentals Inc LOCATION:151 - 159 Wescar Lane PENETRATION TEST HAMMER:

DEPTH SCALE (meters) UNDIST SHEAR STRENGTH DYNAMIC CONE SAMPLES MOISTURE CONTENT (%) PIEZOMETER OR SOIL PROFILE STANDPIPE Cu. kPa PENETRATION х х TEST INSTALLATION STRATA PLOT BLOWS/0.3m NUMBER **REM SHEAR STRENGTH** TYPE DESCRIPTION blows/300 mm DEPTH ELEV. Cu. kPa 0 0 20 40 60 **80100**0 20 40 60 80100 0 (m) (m) Red brown fine to medium 0.00 ᅮ sand (FILL) 0.15 SS 1 5 Grey brown fine to medium sand (FILL) 1.0 ∇ 2 SS 8 Grey brown sand and gravel 1.07 (FILL) Grey brown CLAYEY SILT, 1.52 trace sand 3 SS 7 2.0 Some groundwater osberved at about

3.0

DEPTH SCALE: 1 to 50

BORING METHOD: Power Auger

AUGER TYPE: 200 mm Hollow Stem

LOGGED: CI

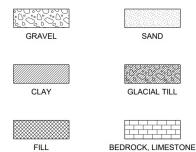
CHECKED: SD

PROJECT NUMBER:230403 DATE OF BORING: 2023-05-30 SHEET:1 of 1

DATUM: GEODETIC

1.1 metres below the existing 4 SS 7 ground surface, May 30, 2023. End of borehole in SILT 3.05

LIST OF ABBREVIATIONS AND TERMINOLOGY


	SAMPLE TYPES
AS	Auger Sample
CS	Chunk Sample
DO	Drive Open
MS	Manual Sample
RC	Rock Core
SS	Split Spoon Sample
TO	Thin-Walled Open Shelby Tube
WS	Wash Sample

PENETRATION RESISTANCE

Standard Penetration Resistance (N) The number of blows by a 63.5 kg hammer dropped 760 millimeters required to drive a 50 mm drive open sampler for a distance of 300 mm.

Dynamic Penetration Resistance The number of blows by a 63.5 kg hammer dropped 760 mm to drive a 50 mm diameter, 60° cone attached to 'A' size drill rods for a distance of 300 mm.

мн	Sampler advanced by static weight of
VVII	hammer and drill rods.
WR	Sampler advanced by static weight of drill
VVI	rods.
РН	Sampler advanced by hydraulic pressure
ГП	from drill rig.
РМ	Sampler advanced by manual pressure.

GROUNDWATER LEVEL

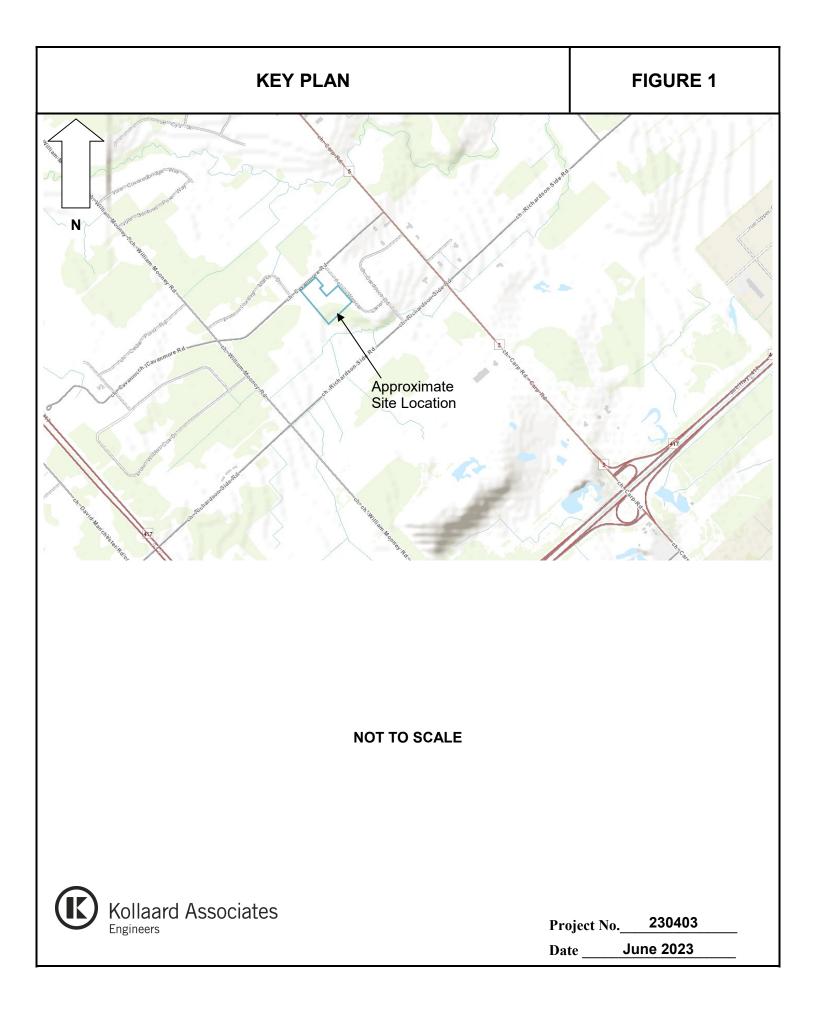
SOIL DESCRIPTIONS

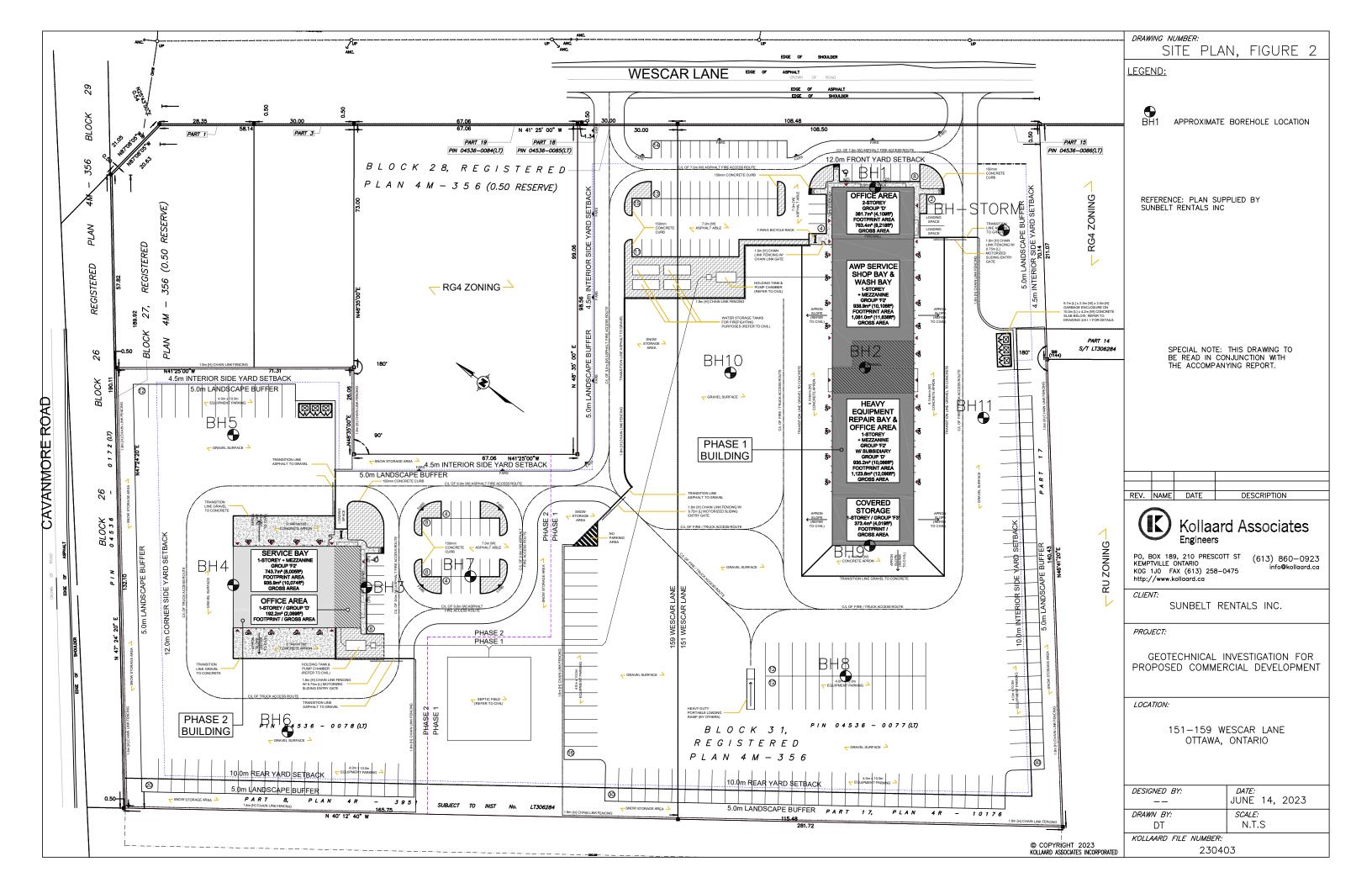
Relative Density	'N' Value
Very Loose	0 – 4
Loose	4 – 10
Compact	10 – 30
Dense	30 – 50
Very Dense	>50

Consistency	Cu, kPa
Very Soft	0 – 12
Soft	12 – 25
Firm	25 – 50
Stiff	50 – 100
Very Stiff	>100

LIST OF COMMON SYMBOLS	
Cu	Undrained Shear Strength
е	Void Ratio
Сс	Compression Index
Cv	Coefficient of Consolidation
k	Coefficient of Permeability
PI	Plasticity Index
n	Porosity
u	Pore Pressure
W	Moisture Content
LL	Liquid Limit
PL	Plastic Limit
r	Unit Weight of Soil
у	Unit Weight of Submerged Soil
cr	Normal Stress

SOIL TESTS		
С	Consolidation Test	
Н	Hydrometer Analysis	
М	Sieve Analysis	
MH	Sieve and Hydrometer Analysis	
U	Unconfined Compression Test	
Q	Undrained Triaxial Test	
VA	Field Vane, Undisturbed and Remolded Shear Strength	


SILT


10 10 10 10 10 10 1 P 10 10 10 10 10 10

ORGANIC SOILS

BEDROCK

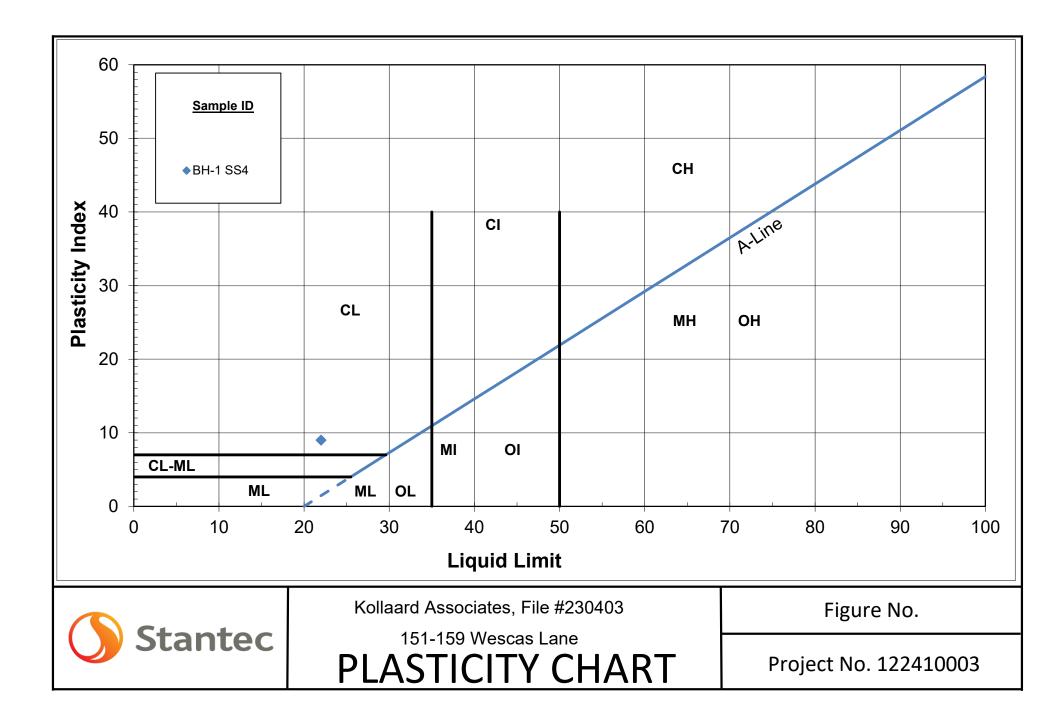
WELL, SAND

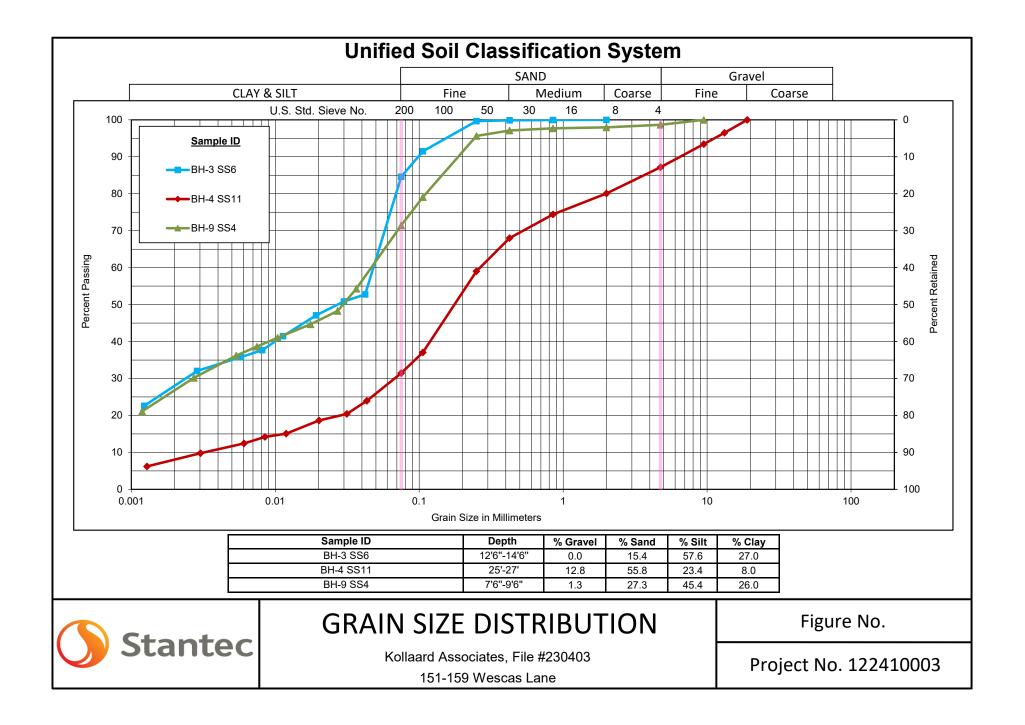
ATTACHMENT A

Laboratory Test Results for Physical Properties

			Мо	isture Cont	tent							
			LS - 7	701 / ASTM D	2216							
PROJECT NO.: 230403		DATE SAMP	LED: May 29	9 & 30, 2023	DATE TESTI	ED: May 31,	2023					
CLIENT: Sunbelt Rentals In	nc	DATE RECE	IVED:		TESTED BY:	: CI						
LOCATION: 151 - 159 We	scar Lane	DATE REQU	ESTED:		FILE NO.:							
	METHOD A				METHOD B							
Water Cont	ent Recorde	ed to +/- 1%			Water	Content Re	corded to +	-/- 0.1%				
Sieve Size	en Mass	, Balance Re		Sieve Size, mm			Bala	Balance Readability, g				
	kg	1	0	75.0	5	¢σ		10				
	kg		0	37.5	1	-		10				
	∿s Og	0.		19	250	-		0.1				
) g	0.		9.5	50	0		0.1				
) g	0.		9.5 4.75	20	-		0.1				
) g	0.		2.00	20	-		0.1				
2.00 20	5		1 D 2216 TA		20	5		0.1				
Bore Hole:	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1			
Sample No.:	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS9			
Depth:	0-0.6	0.8-1.4	1.5-2.1	2.3-2.9	3.0-3.6	3.8-4.4	4.5-5.2	5.3-5.9	6.1-6.7			
Tare No.:	1	2	3	4	5	6	7	8	9			
Tare +Wet Soil (gms)	80.64	99.13	82.10	89.69	87.86	78.69	110.95	100.81	105.69			
Tare + Dry Soil (gms)	74.48	86.90	67.13	78.00	75.33	70.11	95.66	87.31	91.62			
Mass of Water (gms)	6.16	12.23	14.97	11.69	12.53	8.58	15.29	13.50	14.07			
Mass of Tare (gms)	20.92	20.93	20.96	20.96	20.93	20.94	21.13	21.11	21.43			
Mass of Solids (gms)	53.56	65.97	46.17	57.04	54.40	49.17	74.53	66.20	70.19			
WATER CONTENT (%)	12	19	32	20	23	17	21	20	20			
Drying Tempterature (⁰C), if other than 110 ±5⁰C												
Bore Hole:	BH1	BH1	BH2	BH2	BH2	BH2	BH2	BH2	BH2			
Sample No.:	SS10	SS11	SS1	SS2	SS3	SS4	SS5	SS6	SS7			
Depth:	6.9-7.5	7.6-8.2	0-0.6	0.8-1.4	1.5-2.1	2.3-2.9	3.0-3.6	3.8-4.4	4.5-5.2			
Tare No.:	10	11	12	13	1.5-2.1	15	<u> </u>	17	4.5-5.2			
Tare +Wet Soil (gms)	106.24	115.78	78.84	93.33	103.92	87.54	102.70	93.42	112.06			
Tare + Dry Soil (gms)	89.22	105.19	72.83	83.89	85.24	75.96	84.88	81.33	95.62			
Mass of Water (gms)	17.02	105.19	6.01	9.44	18.68	11.58	17.82	12.09	16.44			
Mass of Tare (gms)	21.02	20.91	20.94	20.95	20.84	21.05	20.94	20.87	20.96			
Mass of Solids (gms)	68.20	84.28	51.89	62.94	64.40	54.91	63.94	60.46	74.66			
WATER CONTENT (%)	25	13	12	15	29	21	28	20	22			
Drying Tempterature (°C), if other than 110 ±5°C							20					

Bore Hole:	BH2	BH2	BH2	BH3	BH3	BH3	BH3	BH3	BH3
Sample No.:	SS8	SS9	SS10	SS1	SS2	SS3	SS4	SS5	SS6
Depth:	5.3-5.9	6.1-6.7	6.9-7.5	0-0.6	0.8-1.4	1.5-2.1	2.3-2.9	3.0-3.6	3.8-4.4
Tare No.:	19	20	21	22	23	24	25	26	27
Tare +Wet Soil (gms)	95.67	89.07	109.45	87.67	88.31	102.03	81.41	112.57	89.42
Tare + Dry Soil (gms)	81.97	82.29	99.60	83.31	85.62	90.34	71.26	97.19	75.00
Mass of Water (gms)	13.70	6.78	9.85	4.36	2.69	11.69	10.15	15.38	14.42
Mass of Tare (gms)	21.05	21.12	20.99	20.99	21.05	21.02	20.92	21.01	20.98
Mass of Solids (gms)	60.92	61.17	78.61	62.32	64.57	69.32	50.34	76.18	54.02
WATER CONTENT (%)	22	11	13	7	4	17	20	20	27
Drying Tempterature (°C), if other than 110 ±5°C									


Bore Hole:	BH3	BH3	BH3	BH3	BH3	BH4	BH4	BH4	BH4
Sample No.:	SS7	SS8	SS9	SS10	SS11	SS1	SS2	SS3	SS4
Depth:	4.5-5.2	5.3-5.9	6.1-6.7	6.9-7.5	7.6-8.2	0-0.6	0.8-1.4	1.5-2.1	2.3-2.9
Tare No.:	28	29	30	31	32	33	34	35	36
Tare +Wet Soil (gms)	89.59	96.85	110.73	96.21	102.62	77.86	92.68	79.82	79.46
Tare + Dry Soil (gms)	77.42	84.46	95.62	84.20	86.83	75.56	90.08	68.62	69.88
Mass of Water (gms)	12.17	12.39	15.11	12.01	15.79	2.30	2.60	11.20	9.58
Mass of Tare (gms)	20.91	20.91	20.99	20.88	20.95	21.03	20.98	20.95	20.90
Mass of Solids (gms)	56.51	63.55	74.63	63.32	65.88	54.53	69.10	47.67	48.98
WATER CONTENT (%)	22	19	20	19	24	4	4	23	20
Drying Tempterature (⁰C), if other than 110 ±5⁰C									


Bore Hole:	BH4	BH9	BH9						
Sample No.:	SS5	SS6	SS7	SS8	SS9	SS10	SS11	SS1	SS2
Depth:	3.0-3.6	3.8-4.4	4.5-5.2	5.3-5.9	6.1-6.7	6.9-7.5	7.6-8.2	0-0.6	0.8-1.4
Tare No.:	37	38	39	40	41	42	43	44	45
Tare +Wet Soil (gms)	94.51	88.84	91.91	78.48	92.17	88.77	99.04	75.79	72.02
Tare + Dry Soil (gms)	84.19	74.05	77.85	69.57	79.28	73.45	88.48	70.20	61.85
Mass of Water (gms)	10.32	14.79	14.06	8.91	12.89	15.32	10.56	5.59	10.17
Mass of Tare (gms)	21.08	20.94	20.87	21.03	20.95	20.81	21.01	20.89	20.95
Mass of Solids (gms)	63.11	53.11	56.98	48.54	58.33	52.64	67.47	49.31	40.90
WATER CONTENT (%)	16	28	25	18	22	29	16	11	25
Drying Tempterature (°C), if other than 110 ±5°C									

Bore Hole:	BH9							
Sample No.:	SS3	SS4	SS5	SS6	SS7	SS8	SS9	
Depth:	1.5-2.1	2.3-2.9	3.0-3.6	3.8-4.4	4.5-5.2	5.3-5.9	6.1-6.7	
Tare No.:	46	47	48	1	2	3	4	
Tare +Wet Soil (gms)	81.31	81.98	87.50	92.66	92.40	80.15	85.30	
Tare + Dry Soil (gms)	68.60	68.25	74.40	84.59	87.83	76.22	79.83	
Mass of Water (gms)	12.71	13.73	13.10	8.07	4.57	3.93	5.47	
Mass of Tare (gms)	20.89	21.13	20.93	20.92	20.95	20.92	20.94	
Mass of Solids (gms)	47.71	47.12	53.47	63.67	66.88	55.30	58.89	
WATER CONTENT (%)	27	29	24	13	7	7	9	
Drying Tempterature (ºC), if other than 110 ±5ºC								

	(GRAIN S	SIZE D	ISTRIB	UTIO	N ANA	LYSIS						FI	GURE	1
100 90 80 70 50 40 30 30															
20 10															
0 ⊢ 0.01			0	.1		GRA	1 IN SIZE	(millim	etres)		10				
	ZE (mm) PASSING	76.2	53	26.5 100.0	19.0 100.0	16 100.0	13.2 100.0	9.5 100.0	4.75 100.0	2.36 99.1	1.180 98.4	0.600 96.7	0.300 93.8	0.15 80.5	0.07
CLIENT: PROJECT: TYPE OF MA DATE SAMP SOURCE:	151-159 ATERIAL:	Rentals Ind Wescar La Sandy S May 29	ane				-	OUR RE INTEND DATE TH SAMPLE	ED USE: ESTED:		230403 June 1,		-		-
REMARKS:	012-330						-				<u> </u>		-		-
	Engine 210 Pres	aard ers cott Stree		ocia	tes			Tested I					Keevil-N		
Box 189 Kemptville, ON KOG 1J0 (613) 860-0923, www.kollaard.ca					Date:			Dean Ta	ataryn, B	B.E.S., EF	,				

	GRAIN S	SIZE D	ISTRIB	UTIO	N ANA	LYSIS						FI	GURE	2
100										+++++				
90														
80														
70														
ISSE 50														
00 00 000 000 000 000 000 000 000 000														
			/											
30														
20														
10														
0.01		0	.1			1				10				
0.01		0	.1		GRA		(millim	etres)		10				
														<u> </u>
SIEVE SIZE (mm) SAMPLE PASSING	76.2	53	26.5 100.0	19.0 100.0	16 98.9	13.2 98.9	9.5 98.9	4.75 98.3	2.36 98.1	1.180 97.9	0.600 97.5	0.300 93.5	0.15 50.2	0.07
	entals Inc Wescar La					-	OUR RE	F.:		230403		-		
	Sandy Si	ilt					INTEND	ED USE:						_
TYPE OF MATERIAL:														
TYPE OF MATERIAL: DATE SAMPLED:	May 29,	2023				DATE TESTED: June 1,				2023				
	May 29,	2023				-	DATE TI			June 1, 2	2023			
DATE SAMPLED:	May 29,	2023				-					2023	-		-
DATE SAMPLED: SOURCE: BH4-SS9 REMARKS:	aard /	Ass	ocia	tes				E NO:				Keevil-N	ЛсКirdy	-

Stantec

	PROJECT DETAILS									
Client:	Kollaard Associates, File #230403	Project No.:	122410003							
Project:	151-159 Wescas Lane	Test Method:	LS702							
Material Type:	Soil	Sampled By:	Kollaard Associates							
Source:	BH-3	Date Sampled:	June 2, 2023							
Sample No.:	SS6	Tested By:	Brian Prevost							
Sample Depth	12'6"-14'6"	Date Tested:	June 9, 2023							

SOIL INFORMATION									
Liquid Limit (LL)									
Plasticity Index (PI)									
Soil Classification									
Specific Gravity (G _s)	2.750								
Sg. Correction Factor (α)	0.978								
Mass of Dispersing Agent/Litre	40	g							

HYDROMETER DETAILS								
Volume of Bulb (V _B), (cm ³)	63.0							
Length of Bulb (L ₂), (cm)	14.47							
Length from '0' Reading to Top of Bulb (L_1) , (cm)	10.29							
Scale Dimension (h _s), (cm/Div)	0.155							
Cross-Sectional Area of Cylinder (A), (cm ²)	27.25							
Meniscus Correction (H _m), (g/L)	1.0							

START TIME

E 9:23 AM

				HYD	ROMETER A	NALYSIS					
		Elapsed Time	Hs	H _c	Temperature	Corrected Reading	Percent Passing				Diameter
Date	Time	т	Divisions	Divisions	Tc	$R = H_s - H_c$	Р	L	η	К	D
		Mins	g/L	g/L	C°	g/L	%	cm	Poise		mm
09-Jun-23	9:24 AM	1	35.0	7.0	23.0	28.0	52.75	10.78904	9.39251	0.012818	0.04210
09-Jun-23	9:25 AM	2	34.0	7.0	23.0	27.0	50.86	10.94404	9.39251	0.012818	0.02999
09-Jun-23	9:28 AM	5	32.0	7.0	23.0	25.0	47.10	11.25404	9.39251	0.012818	0.01923
09-Jun-23	9:38 AM	15	29.0	7.0	23.0	22.0	41.44	11.71904	9.39251	0.012818	0.01133
09-Jun-23	9:53 AM	30	27.0	7.0	23.0	20.0	37.68	12.02904	9.39251	0.012818	0.00812
09-Jun-23	10:23 AM	60	26.0	7.0	23.0	19.0	35.79	12.18404	9.39251	0.012818	0.00578
09-Jun-23	1:33 PM	250	24.0	7.0	23.0	17.0	32.0246	12.49404	9.39251	0.012818	0.00287
10-Jun-23	9:23 AM	1440	19.0	7.0	23.0	12.0	22.6056	13.26904	9.39251	0.012818	0.00123
Remarks:							Reviewed By:	Par	scen P	rever	5-
							Date:		June 1	2, 2023	

CALCULATION OF DRY SOIL MASS

149.30

150.49 0.9921

52.35 51.94

100.00

51.94

Oven Dried Mass (W_o), (g)

Hygroscopic Corr. Factor (F=W_o/W_a) Air Dried Mass in Analysis (M_a), (g)

Oven Dried Mass in Analysis (M_o), (g) Percent Passing 2.0 mm Sieve (P₁₀), (%)

Sample Represented (W), (g)

Air Dried Mass (W_a), (g)

Particle-Size Analysis of Soils LS702

AASHTO T88

WASH TEST DATA	
Oven Dry Mass In Hydrometer Analysis (g)	51.94
Sample Weight after Hydrometer and Wash (g)	8.34
Percent Passing No. 200 Sieve (%)	83.9
Percent Passing Corrected (%)	83.94

PER	PERCENT LOSS IN SIEVE								
Sample Weight Before Sieve (g) 203.10 Sample Weight After Sieve (g) 203.00									
	203.00								
	0.05								
	SIEV	E ANALYS	SIS						
	Sieve Size mm	Cum. Wt. Retained	Percent Passing						
	75.0		100.0						
	63.0		100.0						
	53.0		100.0						
	37.5		100.0						
	26.5		100.0						
	19.0		100.0						
	13.2		100.0						
	9.5		100.0						
	4.75		100.0						
	2.00	0.0	100.0						
	Total (C + F) ¹	203.00							
	0.850	0.03	99.94						
	0.425	0.07	99.87						
	0.250	0.18	99.65						
_	0.106	4.43	91.47						
	0.075	7.99	84.62						
	PAN	8.34							

Note 1: (C + F) = Coarse + Fine

V:\01216\active\laboratory_standing_offers\2023-Laboratory Standing Offers\122410003 Kollaard Associates\June 5, Three Hyd_One Limit_MCs, Kollaard #230403\Hydrometer-Lab Standing Offers.xlsx

Stantec

PROJECT DETAILS								
Client:	Kollaard Associates, File #230403	Project No.:	122410003					
Project:	151-159 Wescas Lane	Test Method:	LS702					
Material Type:	Soil	Sampled By:	Kollaard Associates					
Source:	BH-4	Date Sampled:	June 2, 2023					
Sample No.:	SS11	Tested By:	Brian Prevost					
Sample Depth	25'-27'	Date Tested:	June 9, 2023					

SOIL INFORMATION									
Liquid Limit (LL)									
Plasticity Index (PI)									
Soil Classification									
Specific Gravity (G _s)	2.750								
Sg. Correction Factor (α)	0.978								
Mass of Dispersing Agent/Litre	24	g							

HYDROMETER DETAILS							
Volume of Bulb (V _B), (cm ³)	63.0						
Length of Bulb (L ₂), (cm)	14.47						
Length from '0' Reading to Top of Bulb (L_1) , (cm)	10.29						
Scale Dimension (h _s), (cm/Div)	0.155						
Cross-Sectional Area of Cylinder (A), (cm ²)	27.25						
Meniscus Correction (H _m), (g/L)	1.0						

START TIME 9:45 AM

	0.107										
		ROMETER A	NALYSIS								
		Elapsed Time	Hs	H _c	Temperature	Corrected Reading	Percent Passing				Diameter
Date	Time	Т	Divisions	Divisions	T _c	$R = H_s - H_c$	Р	L	η	К	D
		Mins	g/L	g/L	°C	g/L	%	cm	Poise		mm
9-Jun-23	9:46 AM	1	31.0	4.0	23.0	27.0	23.95	11.40904	9.39251	0.012818	0.04330
9-Jun-23	9:47 AM	2	27.0	4.0	23.0	23.0	20.40	12.02904	9.39251	0.012818	0.03144
9-Jun-23	9:50 AM	5	25.0	4.0	23.0	21.0	18.62	12.33904	9.39251	0.012818	0.02014
9-Jun-23	10:00 AM	15	21.0	4.0	23.0	17.0	15.08	12.95904	9.39251	0.012818	0.01191
9-Jun-23	10:15 AM	30	20.0	4.0	23	16.0	14.19	13.11404	9.39251	0.012818	0.00848
9-Jun-23	10:45 AM	60	18.0	4.0	23.0	14.0	12.42	13.42404	9.39251	0.012818	0.00606
9-Jun-23	1:55 PM	250	15.0	4.0	23	11.0	9.76	13.88904	9.39251	0.012818	0.00302
10-Jun-23	9:45 AM	1440	11.0	4.0	23	7.0	6.21	14.50904	9.39251	0.012818	0.00129
Remarks:	Remarks:						Reviewed By:	R	exteen	Preur	-
							Date:		June 1	2, 2023	

V:\01216\active\laboratory_standing_offers\2023-Laboratory Standing Offers\122410003 Kollaard Associates\June 5, Three Hyd_One Limit_MCs, Kollaard #230403\Hydrometer-Lab Standing Offers.xlsx

Particle-Size Analysis of Soils LS702 AASHTO T88

WASH TEST DATA Oven Dry Mass In Hydrometer Analysis (g) 88.3 Sample Weight after Hydrometer and Wash (g) 54.4 Percent Passing No. 200 Sieve (%) 38.3 Percent Passing No. 200 Sieve (%) 38.3 Percent Passing Corrected (%) 30.7 Percent Passing Corrected (%) Percent Passing Corrected (%) Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5 9.5 63.1 93.4
Sample Weight after Hydrometer and Wash (g) 54.4 Percent Passing No. 200 Sieve (%) 38. Percent Passing Corrected (%) 30.7 PERCENT LOSS IN SIEVE Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 13.2 33.6 96.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 63.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 37.5 100.0 37.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
PERCENT LOSS IN SIEVE Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 SIEVE ANALYSIS Sieve Size mm Cum. Wt. Retained Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 SIEVE ANALYSIS Percent Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
Sample Weight Before Sieve (g) 960.50 Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 SIEVE ANALYSIS Percent Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
Sample Weight After Sieve (g) 959.30 Percent Loss in Sieve (%) 0.12 SIEVE ANALYSIS Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 63.0 100.0 53.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5 <
Control Control Output Percent Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5 100.0
SIEVE ANALYSIS Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
Sieve Size mm Cum. Wt. Retained Percent Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
Sieve Size mm Retained Passing 75.0 100.0 63.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
63.0 100.0 53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
53.0 100.0 37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
37.5 100.0 26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
26.5 100.0 19.0 0.0 100.0 13.2 33.6 96.5
19.0 0.0 100.0 13.2 33.6 96.5
13.2 <u>33.6</u> 96.5
9.5 <mark>63.1</mark> 93.4
4.75 123.2 87.2
2.00 191.3 80.1
Total (C + F) ¹ 959.30
0.850 <u>6.27</u> 74.40
0.425 13.33 68.00
0.250 23.23 59.03
0.106 47.49 37.04
0.075 53.67 31.43
iameter PAN 54.46

Note 1: (C + F) = Coarse + Fine

CALCULATION OF DRY SOIL M	IASS
Oven Dried Mass (W _o), (g)	190.00
Air Dried Mass (W _a), (g)	190.61
Hygroscopic Corr. Factor (F=W _o /W _a)	0.9968
Air Dried Mass in Analysis (M _a), (g)	88.63
Oven Dried Mass in Analysis (M_o), (g)	88.35
Percent Passing 2.0 mm Sieve (P ₁₀), (%)	80.08
Sample Represented (W), (g)	110.32

	Air Dried Mass in Analysis (M _a), (g
	Oven Dried Mass in Analysis (M _o)
	Percent Passing 2.0 mm Sieve (P
	Sample Represented (W), (g)
•	

Stantec

PROJECT DETAILS									
Client:	Kollaard Associates, File #230403	Project No.:	122410003						
Project:	151-159 Wescas Lane	Test Method:	LS702						
Material Type:	Soil	Sampled By:	Kollaard Associates						
Source:	BH-9	Date Sampled:	June 2, 2023						
Sample No.:	SS4	Tested By:	Brian Prevost						
Sample Depth	7'6''-9'6''	Date Tested:	June 9, 2023						

SOIL INFORMATION									
Liquid Limit (LL)									
Plasticity Index (PI)									
Soil Classification									
Specific Gravity (G _s)	2.750								
Sg. Correction Factor (α)	0.978								
Mass of Dispersing Agent/Litre	40	g							

HYDROMETER DETAILS							
Volume of Bulb (V _B), (cm ³)	63.0						
Length of Bulb (L ₂), (cm)	14.47						
Length from '0' Reading to Top of Bulb (L_1) , (cm)	10.29						
Scale Dimension (h _s), (cm/Div)	0.155						
Cross-Sectional Area of Cylinder (A), (cm ²)	27.2						
Meniscus Correction (H _m), (g/L)	1.0						

START TIME 9:11 AM

	HYDROMETER ANALYSIS										
		Elapsed Time	H _s	H _c	Temperature	Corrected Reading	Percent Passing				Diameter
Date	Time	т	Divisions	Divisions	Tc	$R = H_s - H_c$	Р	L	η	К	D
		Mins	g/L	g/L	°C	g/L	%	cm	Poise		mm
9-Jun-23	9:12 AM	1	52.0	7.0	23.0	45.0	54.31	8.15191	9.39251	0.012818	0.03660
9-Jun-23	9:13 AM	2	47.0	7.0	23.0	40.0	48.27	8.92691	9.39251	0.012818	0.02708
9-Jun-23	9:16 AM	5	44.0	7.0	23.0	37.0	44.65	9.39191	9.39251	0.012818	0.01757
9-Jun-23	9:26 AM	15	41.0	7.0	23.0	34.0	41.03	9.85691	9.39251	0.012818	0.01039
9-Jun-23	9:41 AM	30	39.0	7.0	23	32.0	38.62	10.16691	9.39251	0.012818	0.00746
9-Jun-23	10:11 AM	60	37.0	7.0	23.0	30.0	36.20	10.47691	9.39251	0.012818	0.00536
9-Jun-23	1:21 PM	250	32.0	7.0	23	25.0	30.17	11.25191	9.39251	0.012818	0.00272
10-Jun-23	9:11 AM	1440	24.5	7.0	23	17.5	21.12	12.41441	9.39251	0.012818	0.00119
Remarks:	emarks:					Reviewed By:	Pax	Acaen F	Feirer	2-	
							Date:		June 1	2, 2023	

V:l01216\active\laboratory_standing_offers\2023-Laboratory Standing Offers\122410003 Kollaard Associates\June 5, Three Hyd_One Limit_MCs, Kollaard #230403\Hydrometer-Lab Standing Offers.xlsx

CALCULATION OF DRY SOIL MASS						
Oven Dried Mass (W₀), (g)	244.84					
Air Dried Mass (W _a), (g)	246.75					
Hygroscopic Corr. Factor (F=W _o /W _a)	0.9923					
Air Dried Mass in Analysis (M _a), (g)	80.04					
Oven Dried Mass in Analysis (M₀), (g)	79.42					
Percent Passing 2.0 mm Sieve (P ₁₀), (%)	97.96					
Sample Represented (W), (g)	81.07					

Particle-Size Analysis of Soils LS702

AASHTO T88

WASH TEST DATA	
Oven Dry Mass In Hydrometer Analysis (g)	79.42
Sample Weight after Hydrometer and Wash (g)	22.50
Percent Passing No. 200 Sieve (%)	71.7
Percent Passing Corrected (%)	70.21

PER	PERCENT LOSS IN SIEVE						
5	Sample Weight Be	efore Sieve (g)	334.00				
	Sample Weight	After Sieve (g)	333.60				
	Percent Los	s in Sieve (%)	0.12				
	SIEV	E ANALYS	SIS				
	Sieve Size mm	Cum. Wt. Retained	Percent Passing				
	75.0		100.0				
	63.0		100.0				
	53.0		100.0				
	37.5		100.0				
	26.5		100.0				
	19.0		100.0				
	13.2		100.0				
	9.5	0.0	100.0				
	4.75	4.5	98.7				
	2.00	6.8	98.0				
	Total (C + F) ¹	333.60					
	0.850	0.20	97.72				
	0.425	0.69	97.11				
	0.250	1.87	95.66				
-	0.106	15.30	79.09				
	0.075	21.52	71.42				
1	PAN	22.50					

Note 1: (C + F) = Coarse + Fine

Stantec

Stantec Consulting Ltd. 2781 Lancaster Rd, Suite 100 A&B, Ottawa ON K1B 1A7

June 12, 2023 File: 122410003

Client: Kollaard Associates Engineers., File #230403

Reference: ASTM D4318 Atterberg Limit & D2216 Moisture Content 151-159 Wescas Lane

The following table summarizes Atterberg Limit & Moisture Contents results.

Source	Moisture Content (%)	Liquid Limit	Plastic Limit	Plasticity Index
BH-1 SS4	20.2	22.0	12.7	9.3
BH-3 SS6	25.0			
BH-4 SS11	9.2			
BH-9 SS4	24.1			

Sincerely,

Stantec Consulting Ltd.

Brian Preve

Brian Prevost For: Laboratory Supervisor Tel: 613-738-6075 Fax: 613-722-2799 brian.prevost@stantec.com

Attachments: Plasticity Chart

(613) 860-0923

FAX: (613) 258-0475

August 29, 2024

230403

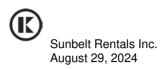
Sunbelt Rentals Inc. 2849 Sheffield Road Ottawa, Ontario K1B 3V6

Re: RESPONSE TO CITY OF OTTAWA OUTSTANDING GEOTECHNICAL COMMENT

This memo provides our response to an outstanding comment from the City of Ottawa's review regarding the geotechnical report dated June 14, 2023 by Kollaard Associates Inc., Project 230403, for the proposed commercial development at 151-159 Wescar Lane, Stittsville, City of Ottawa, Ontario.

• Original Comment - The MC is close to the LL; please discuss.

Original Response - The results of the Atterberg Limit testing was incorrectly reported as CH: Inorganic High Plastic Soils and should have been reported as CL: Inorganic clays of low to medium plasticity. Kollaard Associates has revised the report to reflect the change.


 (City02): OUTSTANDING. Thank you for the revised information, however I'm not sure that answers the question. The concern is that that the liquid limit (LL) of 22% shown in Table 1 is very close to the moisture content 20.2% (MC/WC). (Ref: Table 1, page 8 of 55). The City is always wary of unstable soils, and we'll need a bit more discussion of what impact this might have on the development.

A review of the laboratory test results including both the hydrometer test results and the Atterberg Limits test results indicate that the soils in question consist of a Low Plastic Clayey Silt. The Atterberg Limit test results were as follows:

Sample	Depth(metres)	LL (%)	PL (%)	PI (%)	W (%)		
BH1-SS6	2.3 – 2.9	22.0	12.7	9.3	20.2		

Table I –	- Atterberg I	Limit and	Water	Content Results	5

It is noted that the no in-situ shear tests were completed during the test hole drilling program as the soils encountered represented as non-cohesive materials. In-situ shear testing is reserved for cohesive materials.

Atterberg limits tests establish the moisture contents at which fine grained clay and silt soils transition between solid, semi-solid, plastic and liquid states. The Liquidity Index LI of a soil is calculated as the (Natural Water Content MC – Plastic Limit PL) / Plasticity Index. PI The Plasticity Index is calculated as the Liquid Limit – the Plastic Limit. As the MC approaches the LL, the LI will approach 1. As the LI approached 1 the soil is closer to being in its liquid state and is more prone to liquefaction under seismic conditions and more prone to shrinkage and shrinkage related settlement. Liquefaction results in bearing failures or excessive settlement.

-2-

With respect to shrinkage:

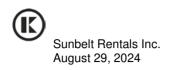
Because the soil consists of clayey silt rather than a marine deposited sensitive silty clay, the soil is not particularly susceptible to shrinkage as a result of decreasing moisture content. The clay content is not sufficient to cause expansion and contraction due to changing moisture contents. This is common knowledge as indicated by the City of Ottawa's own Tree Planting in Sensitive Marine Clays Soils – 2017 Guidelines.

With respect to potential for liquefaction:

For the soil tested, the LI is equal to (20.2 - 12.7)/9.3 = 0.806. This indicates that the soil is approaching the state at which it is susceptible to liquefaction.

From 6.6.3.2(6) of the Canadian Foundation Engineering Manual, soils having a MC/LL of > 0.85 and a PI of < 12 are potentially susceptible to liquefaction or cyclic mobility. The soil tested has a MR/LL of 0.92 and a PI of 9.3. As such it is susceptible to liquefaction

From 6.6.1 of the CFEM


The following factors influence the liquefaction potential of a given site:

1. Soil type: saturated granular soils, especially fine loose sands and reclaimed soils, with poor drainage conditions are susceptible to liquefaction. -

2. Relative density: loose sands are more susceptible to liquefaction, e.g., sand with Dr > 80% is not likely to liquefy.

3. Confining pressure: the confining pressure increases the resistance to liquefaction.

Section 5.11.2 of the geotechnical report discusses the potential for soil liquefaction under seismic conditions. The results of the calculations presented in this section indicate that the soils present at the site are of sufficiently density such that they are not susceptible to liquefaction.

There are no large slopes present at the site. As such issues related to slope instability due to potential liquefaction of the soils within a slope are also not a concern at the site.

-3-

As such, the close proximity of the natural water content of the soil tested to the liquid limit does not indicate that the soils present will potentially be unstable or that there is any risk present at the site due to unstable soils or liquefaction of the soils.

We trust that this report provides sufficient information for your present purposes. If you have any questions concerning this information or if we can be of further assistance to you, please do not hesitate to contact our office.

Yours truly, Kollaard Associates Inc.

Man Tatan

PROFESSIONAL 29.AUG.2024 S. E. deWit 100079612

Dean Tataryn, B.E.S., EP.

Steve deWit, P.Eng.

ATTACHMENT B

Laboratory Test Results for Chemical Properties

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS						
Work Order	: WT2316184	Page	: 1 of 3			
Client	: Kollaard Associates Inc.	Laboratory	: Waterloo - Environmental			
Contact	: Dean Tataryn	Account Manager	: Costas Farassoglou			
Address	: 210 Prescott Street Unit 1	Address	: 60 Northland Road, Unit 1			
	Kemptville ON Canada K0G1J0		Waterloo ON Canada N2V 2B8			
Telephone	: 613 860 0923	Telephone	: 613 225 8279			
Project	: 230403	Date Samples Received	: 07-Jun-2023 11:40			
PO	:	Date Analysis Commenced	: 08-Jun-2023			
C-O-C number	:	Issue Date	: 13-Jun-2023 17:32			
Sampler	:					
Site	:					
Quote number	: SOA 2022					
No. of samples received	: 2					
No. of samples analysed	: 2					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
μS/cm	microsiemens per centimetre
mg/kg	milligrams per kilogram
ohm cm	ohm centimetres (resistivity)
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Soil/Solid	Client sample ID			BH2-SS3	BH4-SS3				
(Matrix: Soil/Solid)									
			Client samp	ling date / time	29-May-2023 10:00	29-May-2023 13:00			
Analyte	CAS Number	Method/Lab	LOR	Unit	WT2316184-001	WT2316184-002			
					Result	Result			
Physical Tests									
Conductivity (1:2 leachate)		E100-L/WT	5.00	μS/cm	95.5	106			
pH (1:2 soil:CaCl2-aq)		E108A/WT	0.10	pH units	7.70	7.69			
Resistivity		EC100R/WT	100	ohm cm	10500	9430			
Leachable Anions & Nutrients	Leachable Anions & Nutrients								
Chloride, soluble ion content	16887-00-6	E236.CI/WT	5.0	mg/kg	<5.0	<5.0			
Sulfate, soluble ion content	14808-79-8	E236.SO4/WT	20	mg/kg	<20	<20			

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

	Drinking Water (DW) Samples ¹ (client use)		(lab use only)	ALS Lab Work Order # (lab use only): *	LSD:	Job # 230403	ALS Account # / Quote #:	Contact:	Company:	Copy of Invo
In the samples for human consumption use? Inc Cubes I could by: Interpretation of the samples for human consumption use? Interpretation of the samples for human consumption use? Interpretation of the samples for human consumption use? Interpretation of the samples for human consumption use? Interpretation of the samples for human consumption use? Interpretation of the samples for human consumption use? Interpretation of the samples and portions of this form may delay analysis. Please full in this form the user of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. Interpretation of the white - report copy. Interpretation of the white - report copy. Interpretation of the samples are laken from a Received by: WHITE - LABORATORY COPY YELLOW - CILENT COPY Failure to complete all portions of this form may delay analysis. Please full in this form the user of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.	lise)		(This description will appear on the report) HZ-SS3 HZ-SS3	ab use only): WTJ316184 Sample Identification and/or Coordinates		-	071021		[Copy of Invoice with Report Types Tho
Time: F	ructions / Spe		ne report))					
Received by:	cify Griteria to ;			ALS Contact:	Requisitioner: Location:	Major/Minor Code:	0	Email 2	Email 1 or Fax metalolist	Colort Invision
INITIAL SHIPME	a to add on report by c (electronic COC only)	Wite the 1	(dd-mmm-yy) May 24,2003	Melanie M. Date			il and Gas Requ	and the second se		-
INITIAL SHIPMENT RECEPTION (lab use only) LR Date: 06/07/23 WHITE - LABORATORY COPY VI 2 user acknowledges and agrees with the Terms and Condition	Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below		-	Sampler: Time		PO# Routing Code:	Oil and Gas Required Fields (client use)	Email 2		
Iab use only) 7/23 RY COPY YEL Ims and Conditions	-down list below	7105	Sample Type				t use)	2. 101 100 K	FAX	I
Ice Packs Cooling Ini IN 7.1 7.1 Time: 1\; 40 LOW - CLIEN	Frozen	×		osivity (KOLL)	AARD-0	CORR-	WT)	04	Ì	
Ice Packs I ice Cubes C Custody Cooling Initiated I INITIAL COOLER TEMPERATURES & 71 FINAL ST Time: 1			V O V D BTEX	C, FI- 2tals R- AH (PI 1/F1-F4	F4(100 AH-	(<u>Voc</u> genic -51)	R511 s (R -W	FI SIL T)	-F	NT NT
eal intact Yes	Telephone : +1 519 886 6910 Telephone : +1 519 886 6910 SAMPLE CONDITION AS RECEIVED (lab use only)	WT2316104	Environmental Division Waterloo Water Reference							
	0 use only)	0	o ^e on							

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

Page

9

COC Number: 17 -

Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may app Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply

Canada Toll Free: 1 800 668 9878

Environm www.alsglobal.com Concat a

Invoice To

Same as Report To

D YES

NO NO

Email 3 Email 2 Email 1 or Fax dean@kollaard.ca

Select Distribution:

EMAIL

MAIL FAX

PRIORITY (Business Days) 4 day [P4-20%] 3 day [P3-25%] 2 day [P2-50%]

2 day [P2-50%]

(Laboratory opening fees may apply)]

Same Day, Weekend or Statutory holiday [E2 -2009

EMERGENCY

1 Business day [E1 - 100%]

For tests that can not be performed according to the service level selected, you will be contacted.

Analysis Request

B

Date and Time Required for all E&P TATs:

Compare Results to Criteria on Report - provide details below if box checked Quality Control (QC) Report with Report Select Report Format: J PDF

EXCEL EDD (DIGITAL)

Report Format / Distribution

City/Province: Street:

Kemptville, Ontario

210 Prescott Street, Unit 1 P.O. Box 189 Company address below will appear on the final

report

Phone: Contact: Company: Report To

613.860.0923, ext.225

Dean Tataryn

Kollaard Associates (27196)

Contact and company name below will appear on the final report

Postal Code:

KOG 1J0

(ALS)

ATTACHMENT C

National Building Code Seismic Hazard Calculation

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 45.292N 75.981W

User File Reference: 151 - 159 Wescar Lane

2023-06-05 15:16 UT

Probability of exceedance per annum	0.000404	0.001	0.0021	0.01
Probability of exceedance in 50 years	2 %	5 %	10 %	40 %
Sa (0.05)	0.394	0.211	0.124	0.037
Sa (0.1)	0.465	0.260	0.160	0.053
Sa (0.2)	0.390	0.224	0.141	0.049
Sa (0.3)	0.298	0.173	0.110	0.039
Sa (0.5)	0.213	0.125	0.080	0.029
Sa (1.0)	0.107	0.064	0.041	0.014
Sa (2.0)	0.052	0.030	0.019	0.006
Sa (5.0)	0.014	0.008	0.004	0.001
Sa (10.0)	0.005	0.003	0.002	0.001
PGA (g)	0.250	0.142	0.088	0.028
PGV (m/s)	0.177	0.100	0.062	0.019

Notes: Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are highlighted in yellow. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. **These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.**

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

Structural Commentaries (User's Guide - NBC 2015: Part 4 of Division B) Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

ATTACHMENT D

Hydraulic Conductivity Calculations

Guelph Permeameter Test

- Location	151 - 159 \	Nescar Lane		Date:	2023-11-28
Investigator	CI				
Depth of Hole (cm)	25	Hole Diamet	er (cm)	6	
Reservoir Used During Test (Select One)			Combined (X)		
Reservoir Constant	Used		35.31		

15

Single/First Head Test

Water Level in Well (cm)

[t] Time (mins.)	∆t (mins.)	Water Level in Reservoir (cm)	∆h (cm)	Rate of change ∆h/∆t (cm/min)
0		5.5		
2	2	5.7	0.2	0.1
4	2	6	0.3	0.15
6	2	6.2	0.2	0.1
8.5	2.5	6.6	0.4	0.16
10.5	2	6.8	0.2	0.1
12.5	2	7	0.2	0.1
14.5	2	7.2	0.2	0.1

Guelph Permeameter Test Location 151 - 159 Wescar Lane

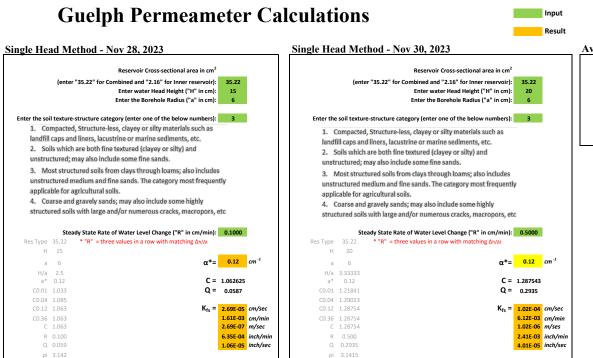
Date: 2023-11-30

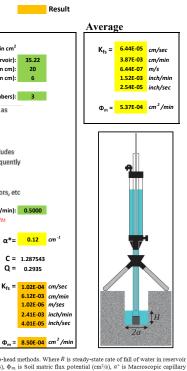
Investigator Isaac Bacon Depth of Hole (cm) 28 Hole Diameter (cm)

6

Reservoir Used During Test (Select One Combined (X) **Reservoir Constant Used**

35.31


Single/First Head Test


Water Level in Well (cm)

20

[t] Time (mins.)	∆t (mins.)	Water Level in Reservoir (cm)	∆h (cm)	Rate of change ∆h/∆t (cm/min)
0		5.5		
1	1	6.3	0.8	0.8
2	1	6.8	0.5	0.5
3	1	7.5	0.7	0.7
4	1	8.2	0.7	0.7
5	1	8.8	0.6	0.6
6	1	9.3	0.5	0.5
7	1	10	0.7	0.7
8	1	10.6	0.6	0.6
9	1	11.2	0.6	0.6
10	1	11.7	0.5	0.5
11	1	12.3	0.6	0.6
12	1	13.0	0.7	0.7
13	1	13.5	0.5	0.5
14	1	14.1	0.6	0.6
15	1	14.7	0.6	0.6
16	1	15.3	0.6	0.6
17	1	15.8	0.5	0.5
18	1	16.3	0.5	0.5
19	1	16.8	0.5	0.5
20	1	17.3	0.5	0.5

SoilMeistur=

 Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.
 Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.

 Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.

4. Coarse and gravely sands; may also include some highly

structured soils with large and/or numerous cracks, macropors, etc

Calculation formulas related to shape factor (C). Where H_I is the first water head height (cm), H_I is the second water head height (cm), a is borehole radius (cm) and a^{a} is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C, reads to be calculated while for two-head method, C, and C, are calculated (Zang et al., 1995).

 $\Phi_{\rm m} = 2.24E-04 \ cm^2 / min$

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.081 + 0.121 \left(\frac{H_{2/a}}{4}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.663} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.663} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{f_2} is Soil saturated hydraulic conductivity (cm/s), ϕ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) , H_2 is the second head of water established in borehole (cm) and C is Shane factor (from Table 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \big(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\big)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$