

640 Compass Street (Part 1 on 4R-35191, Block 140 on 4M-1544)

Servicing and Stormwater Management Report

May 22, 2025

Prepared for:

Richcraft Homes Ltd.

Prepared by:

Stantec Consulting Ltd. 400 – 1331 Clyde Avenue Ottawa ON K2C 3G4

File Number: 160401759

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
1	Servicing and SWM	WJ/SB	24.11.04	DT	24.11.04	SG	24.11.04
2	Revised as per City Comments	WJ	25.05.22	DT	25.05.22	SG	25.05.12

Limitations and Sign-off

The conclusions in the report titled *640 Compass Street Servicing and Stormwater Management Report* are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Richcraft Homes Ltd. (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:

Warren Johnston, CET Printed Name and Title

Signature

Spencer Beaton, EIT Printed Name and Title

Reviewed by:

Approved by:

Prepared by:

Signature

Sheridan Gillis Printed Name and Title

Dutin Thiffault, P.Eng. Printed Name and Title

Signature

Table of Contents

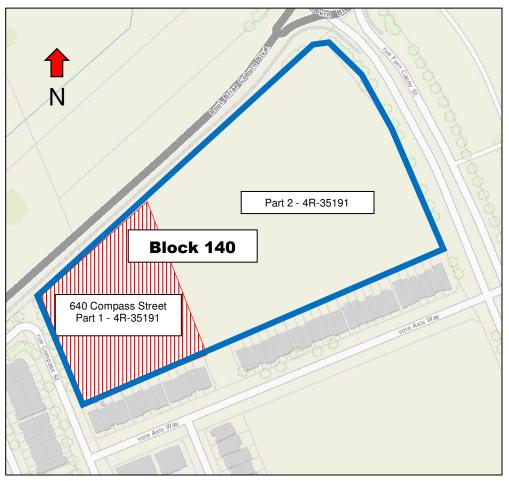
1.1 Objective 2 Reference Documents 2 3 Potable Water Servicing 3 3.1 Background 3 3.2 Proposed Watermain Sizing and Layout 3 3.2.1 Connections to Existing Infrastructure 3 3.2.2 Ground Elevations 4 3.2.3 Domestic Water Demands 5 3.3.1 Level of Service 6 3.3.2 Fire Flow Demands 6 3.3.1 Allowable Pressures 6 3.3.1 Model Development 8 4 Wastewater Servicing 12 4.1 Background 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3.1 Allowable Release Rate 15 5.3.1 Allowable Release Rate 15 5.3.1 Allowable Release Rate 16 <	Limit	ations a	and Sign-off	i
2 Reference Documents 2 3 Potable Water Servicing 3 3.1 Background 3 3.2 Proposed Watermain Sizing and Layout 3 3.2.1 Connections to Existing Infrastructure 3 3.2.2 Ground Elevations 4 3.2.3 Level of Service 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 7 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 7 3.4.1 Model Development. 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 Storage Requirements 17 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale	1			
3.1 Background 3 3.2 Proposed Watermain Sizing and Layout 3 3.2.1 Connections to Existing Infrastructure 3 3.2.2 Ground Elevations 4 3.2.3 Domestic Water Demands 5 3.3 Level of Service 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 7 3.4.1 Model Development. 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.2 Stormwater Management Design 14 5.3.1 Allowable Release Rate 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1.1 P	2	Refer	ence Documents	2
3.1 Background 3 3.2 Proposed Watermain Sizing and Layout 3 3.2.1 Connections to Existing Infrastructure 3 3.2.2 Ground Elevations 4 3.2.3 Domestic Water Demands 5 3.3 Level of Service 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 7 3.4.1 Model Development. 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.2 Stormwater Management Design 14 5.3.1 Allowable Release Rate 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1.1 P	3	Potał	ole Water Servicing	3
3.2 Proposed Watermain Sizing and Layout 3 3.2.1 Connections to Existing Infrastructure 3 3.2.2 Ground Elevations 4 3.2.3 Domestic Water Demands 5 3.3 Level of Service. 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 7 3.4.1 Model Development 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management Design 14 5.1 Background 14 5.2 Stormwater Management Design 14 5.3 Stormwater Management Design 14 5.3 Allowable Release Rate 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Allowable Release Rate	•			
3.2.1 Connections to Existing Infrastructure. 3 3.2.2 Ground Elevations. 4 3.2.3 Domestic Water Demands. 5 3.3 Level of Service. 6 3.3.1 Allowable Pressures. 6 3.3.2 Fire Flow Demands. 6 3.4.1 Model Development. 8 4 Wastewater Servicing. 12 4.1 Background. 12 4.2 Design Criteria. 12 4.3 Sanitary Servicing Design. 13 5 Stormwater Management and Storm Servicing. 14 5.1 Background 14 5.2 Stormwater Management Design. 14 5.3 Post-Development Modelling. 15 5.3.1 Allowable Release Rate. 15 5.3.2 Modelling Rationale. 16 5.3.3 Storage Requirements. 17 5.4 Results and Discussion 18 6 Geotechnical Investigation. 20 6.1.1 Proposed Pavement Structure. 20 6.2 G				
3.2.2 Ground Elevations 4 3.2.3 Domestic Water Demands 5 3.3 Level of Service. 6 3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 6 3.4 Hydraulic Analysis 7 3.4.1 Model Development 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 Stormwater Management Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Investigation 20 6.1.1 Prosped Pavement Structure 20 6.1.2 Sewer/Watermain I				
3.3 Level of Service			3.2.2 Ground Elevations	4
3.3.1 Allowable Pressures 6 3.3.2 Fire Flow Demands 6 3.4 Hydraulic Analysis 7 3.4.1 Model Development 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.1 Background 14 5.2 Stormwater Management Design 14 5.3 Stormwater Management Design 14 5.4 Design Criteria and Constraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Grading Plan 22 7 Utilities 22 8 Approvals 22 <				
3.3.2 Fire Flow Demands 6 3.4 Hydraulic Analysis 7 3.4.1 Model Development. 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria. 12 4.3 Sanitary Servicing Design. 13 5 Stormwater Management and Storm Servicing 14 5.1 Background 14 5.2 Stormwater Management Design. 14 5.3 In Design Criteria and Constraints 14 5.4 Post-Development Modelling 15 5.3.1 Allowable Release Rate. 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements. 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading. 20 6.1.1 Grooted Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 23 10 Conclusions and R		3.3		
3.4 Hydraulic Analysis 7 3.4.1 Model Development 8 4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria 12 4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.3 Approvals 22 9 Erosion Control 23 10				
3.4.1 Model Development				
4 Wastewater Servicing 12 4.1 Background 12 4.2 Design Criteria. 12 4.3 Sanitary Servicing Design. 13 5 Stormwater Management and Storm Servicing. 14 5.1 Background 14 5.2 Stormwater Management Design 14 5.3 Tobesign Criteria and Constraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading. 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.2 Wastewater Servicing<		3.4		
4.1 Background. 12 4.2 Design Criteria. 12 4.3 Sanitary Servicing Design. 13 5 Stormwater Management and Storm Servicing 14 5.1 Background. 14 5.2 Stormwater Management Design. 14 5.2 Stormwater Management Design. 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate. 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements. 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading. 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities. 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations. 24 10.3 Stormwater			3.4.1 Model Development	. 8
4.1 Background. 12 4.2 Design Criteria. 12 4.3 Sanitary Servicing Design. 13 5 Stormwater Management and Storm Servicing 14 5.1 Background. 14 5.2 Stormwater Management Design. 14 5.2 Stormwater Management Design. 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate. 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements. 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading. 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities. 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations. 24 10.3 Stormwater	4	Wast	ewater Servicing	12
4.3 Sanitary Servicing Design 13 5 Stormwater Management and Storm Servicing 14 5.1 Background 14 5.2 Stormwater Management Design 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.2				
5 Stormwater Management and Storm Servicing 14 5.1 Background 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 The Design Criteria and Constraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24		4.2	Design Criteria	12
5.1 Background 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 Design Criteria and Constraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Investigation 20 6.1 Geotechnical Investigation 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servi		4.3	Sanitary Servicing Design	13
5.1 Background 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.2 Stormwater Management Design 14 5.3 Design Criteria and Constraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Investigation 20 6.1 Geotechnical Investigation 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servi	5	Storn	nwater Management and Storm Servicing	14
5.2 Stormwater Management Design	•		Background	14
5.2.1 Design Čriteria and Čonstraints 14 5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.3.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 24 10.5 Approvals/Permits 25				
5.3 Post-Development Modelling 15 5.3.1 Allowable Release Rate 15 5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25		•		
5.3.2 Modelling Rationale 16 5.3.3 Storage Requirements 17 5.3.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25		5.3		
5.3.3 Storage Requirements 17 5.3.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.2 Grading Plan 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25			5.3.1 Allowable Release Rate	15
5.3.4 Uncontrolled Areas 17 5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25			5.3.2 Modelling Rationale	16
5.4 Results and Discussion 18 6 Geotechnical Considerations and Grading. 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25				
6 Geotechnical Considerations and Grading. 20 6.1 Geotechnical Investigation 20 6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities. 22 8 Approvals 22 9 Erosion Control. 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25				
6.1Geotechnical Investigation206.1.1Proposed Pavement Structure206.1.2Sewer/Watermain Installation216.2Grading Plan227Utilities228Approvals229Erosion Control2310Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25		5.4	Results and Discussion	18
6.1Geotechnical Investigation206.1.1Proposed Pavement Structure206.1.2Sewer/Watermain Installation216.2Grading Plan227Utilities228Approvals229Erosion Control2310Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25	6	Geot	echnical Considerations and Grading	20
6.1.1 Proposed Pavement Structure 20 6.1.2 Sewer/Watermain Installation 21 6.2 Grading Plan 22 7 Utilities 22 8 Approvals 22 9 Erosion Control 23 10 Conclusions and Recommendations 24 10.1 Potable Water Servicing 24 10.2 Wastewater Servicing 24 10.3 Stormwater Management and Servicing 24 10.4 Grading 25 10.5 Approvals/Permits 25	•			
6.1.2Sewer/Watermain Installation216.2Grading Plan227Utilities228Approvals229Erosion Control2310Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25		••••		
7Utilities				
8Approvals229Erosion Control2310Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25		6.2	Grading Plan	22
8Approvals229Erosion Control2310Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25	7	Utiliti	es	22
9 Erosion Control	8	Appr	ovals	22
10Conclusions and Recommendations2410.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25		••		
10.1Potable Water Servicing2410.2Wastewater Servicing2410.3Stormwater Management and Servicing2410.4Grading2510.5Approvals/Permits25				
10.2Wastewater Servicing.2410.3Stormwater Management and Servicing.2410.4Grading	10			
10.3Stormwater Management and Servicing.2410.4Grading				
10.4 Grading				
10.5 Approvals/Permits			6 6	

List of Tables

Table 3.1	Residential Water Demands for 640 Compass	6
Table 3.2	Fire Flow Calculations Using FUS Methodology	
Table 3.3	Boundary Condtions for Connection Points for 640 Compass	
Table 3.4	C-Factors Applied Based on Watermain Diameter	8
Table 4.1	Sanitary Peak Flow at Proposed SAN MH 1	
Table 5.1	640 Compass Street Target Release Rates	
Table 5.2	Peak Surface Volume and Controlled Discharge Summary	
Table 5.3	Peak Uncontrolled 2-Year and 100-Year Release Rates	
Table 5.4	Storm Event Peak Discharge Rates	
Table 5.5	2-Year and 100-Year Heads and Flow Rates at ICDs	
Table 6.1	Recommended Pavement Structure for Access Lanes	
Table 6.2	Recommended Pavement Structure for Car-Only Parking Areas	

List of Figures

Figure 1.1	Key Map of Trails Edge West Block 140	. 1
Figure 3.1	Proposed Watermain Layout and Pipe Diameters (mm)	. 4
	Ground Elevations (m) at Nodes	
Figure 3.3	Maximum Pressures (psi) in Block 29 During AVDY Conditions	. 9
Figure 3.4	Minimum Pressures (psi) in Block 29 During PKHR Conditions 1	10
	Available Fire Flows (L/s) in Block 29 During MXDY Conditions 1	


List of Appendices

 \bigcirc

- Appendix A Potable Water Servicing
- Appendix B Wastewater Servicing Calculations
- Appendix C Stormwater Management
- Appendix D Geotechnical Information
- Appendix E Proposed Site Plan

1 Introduction

Richcraft Homes Ltd. (Richcraft) has commissioned Stantec Consulting Ltd. (Stantec) to prepare the following Servicing and Stormwater Management Report in support of the Site Plan Application for 640 Compass Street, (Part 1 on 4R-35191, Block 140 on 4M-1544) within TrailsEdge West Phase 2 Subdivision (known as Block 135 in the previously approved Trails Edge West servicing brief). The subject site is within the City of Ottawa, bound by Brian Coburn Boulevard to the North, Part 2 of Block 140 to the east, Axis Way to the South, and Compass Street to the West (refer to Figure 1.1 below).

Figure 1.1 Key Map of Trails Edge West Block 140 Including 640 Compass

The 640 Compass Street property is currently zoned DR (Development Reserve) and occupies 0.96 ha of land. The site is currently undeveloped. The proposed development consists of sixty-six (66) two-bedroom terrace flat units as shown in the site plan included in **Appendix E**.

Servicing and stormwater management constraints for the entire block were identified as part of the previously approved *Design Brief for the Trails Edge West* subdivision (DSEL, 2015) as well as within the *Stormwater Management Report for the Trails Edge West Subdivision* (JFSA, 2015). Preliminary servicing and stormwater management analysis for the 640 Compass site was further detailed using the approved subdivision servicing as a base as part of an internal memo titled *Block 140 – Trails Edge West – Civil Servicing* Constraints (DSEL, 2022). Findings from the three noted reports are referenced throughout this report.

1.1 Objective

This site servicing and stormwater management (SWM) report has been prepared to present an internal servicing scheme that is free of conflicts, uses existing/approved infrastructure, and meets all design criteria as identified in background documents and City of Ottawa design guidelines.

2 **Reference Documents**

The following documents were referenced in the preparation of this report:

- City of Ottawa Sewer Design Guidelines, 2nd Edition, City of Ottawa, October 2012.
- City of Ottawa Design Guidelines Water Distribution, 1st Edition, Infrastructure Services Department, City of Ottawa, July 2010.
- Technical Bulletin ISDTB-2014-02 Revision to Ottawa Design Guidelines Water, City of Ottawa, May 2014.
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016.
- Technical Bulletin ISTB-2018-01 Revision to Ottawa Design Guidelines Sewer, City of Ottawa, March 2018.
- Technical Bulletin ISTB-2018-02 Revision to Ottawa Design Guidelines Water Distribution, City of Ottawa, March 2018.
- Memorandum: Block 140 Trails Edge West Civil Servicing Constraints, DSEL, July 2022.
- Design Brief for the Trails Edge West Richcraft Group of Companies, DSEL, Revision 3, January 26, 2015.
- Stormwater Management Report for the Trails Edge Subdivision, JFSA, Updated January 2015.

3 Potable Water Servicing

3.1 Background

The proposed development is located within Zone 2E of the City of Ottawa's water distribution system. This zone is fed by the Forest Ridge Pump Station. The site will be fed by a 200 mm diameter watermain on Compass Street.

3.2 Proposed Watermain Sizing and Layout

3.2.1 Connections to Existing Infrastructure

The proposed watermain alignment and sizing for the development is demonstrated on **Drawing SSP-1**. A 200 mm diameter watermain is proposed to follow the alignment of the private roads within the subject property with two connections to the existing 200 mm diameter watermain on Compass Street at the entrance to the 640 Compass site.

640 Compass Street Section 3 Potable Water Servicing May 22, 2025

Figure 3.1 shows the location of the two (2) connection points to the existing watermain.

Figure 3.1 Proposed Watermain Layout and Pipe Diameters (mm)

3.2.2 Ground Elevations

Proposed ground elevations throughout the 640 Compass site range from approximately 87.66 m to 87.88m at nodes in the watermain network.

Figure 3.2 Ground Elevations (m) at Nodes

3.2.3 Domestic Water Demands

640 Compass contains a total of sixty-six (66) two-bedroom terrace flat units, with an estimated total population of 178 persons. Refer to **Appendix A.1** for detailed domestic water demand calculations.

Water demands for the development were estimated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 280 L/cap/d. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak

hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. The calculated residential water consumption is represented in Table 3.1.

Unit Type	Units	Persons/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Two-bedroom Terrace Flats	66	2.7	178	0.58	1.44	3.18

Table 3.1 Residential Water Demands for 640 Compass

3.3 Level of Service

3.3.1 Allowable Pressures

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e., basic day, maximum day, and peak hour) should be in the range of 350 to 552 kPa (50 to 80 psi) and no less than 275 kPa (40 psi) at the ground elevation on the streets (i.e., at hydrant level). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way is 552 kPa (80 psi). As per the Ontario Building Code (OBC) & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated, pressure relief measures are required. The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). Under emergency fire flow conditions, the minimum pressure objective in the distribution system is 138 kPa (20 psi).

3.3.2 Fire Flow Demands

Fire flow calculations were completed using the Fire Underwriters Survey (FUS) methodology. Refer to **Appendix A.2** for detailed FUS calculations. The results of the fire flow calculations are summarized in Table 3.2.

Table 3.2	Fire Flow Calculations Using FUS Methodology
-----------	--

Unit Type	Description	Required Fire Flow (L/min)	Required Fire Flow (L/s)
Two-bedroom Terrace Flats	Two-storey building with twelve terrace units (worst case exposures: Block 5)	11,000	183

3.4 Hydraulic Analysis

Hydraulic modeling using PCSWMM was built by Stantec using the following boundary conditions as provided by City of Ottawa staff:

- 1. Boundary condition at the Compass Street watermain adjacent to the asphalt sidewalk between building Block 1 and Block 2.
- 2. Boundary condition at the Compass Street watermain across from the western entrance to the 640 Compass site.
- 3. Boundary condition at the Axis Way stub street through Block 139 located to the South of the 640 Compass site.

The boundary conditions used for the hydraulic analysis are summarized in Table 3.3.

Location	Max. HGL (AVDY), Head (m)	PKHR, Head (m)	MXDY+FF (183 L/s), Head (m)
1 – Compass Street (b/w building Block 1 and Block 2)	130.6	126.7	120.0
2 – Compass Street (western entrance to Block 140)	130.6	126.7	121.2
3 – Axis Way Stub Street (Block 139)	130.6	126.7	125.9

Table 3.3	Boundary Condtions for Connection Points for 640 Compass
-----------	--

The anticipated pressures in this development were assessed to meet minimum servicing requirements (average day and peak hour demands). A fire flow analysis was also performed under maximum day conditions. Detailed results are shown in **Appendix A3**.

3.4.1 Model Development

New watermains were added to the hydraulic model to simulate the proposed distribution system. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines (Table 3.4).

Table 3.4 C-Factors Applied Based on Watermain Diameter

Nominal Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130

3.4.1.1 Average Day & Peak Hour

The hydraulic model results show that the maximum pressures (AVDY condition) are anticipated to be approximately 419-421 kPa (60.7-61.1 psi) within the 640 Compass site. Minimum pressures during PKHR conditions are anticipated to be approximately 380-383 kPa (55.2-55.5 psi) for the site. These pressures lie within acceptable operating conditions, and no pressure reducing valves (PRVs) are required for the site.

Figure 3.3 and Figure 3.4 below identify the minimum and maximum pressure results for the simulation, respectively.

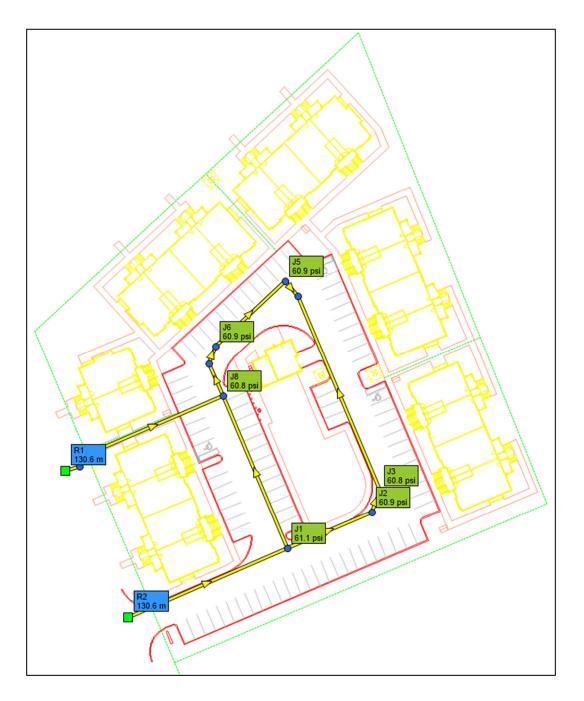


Figure 3.3 Maximum Pressures (psi) During AVDY Conditions

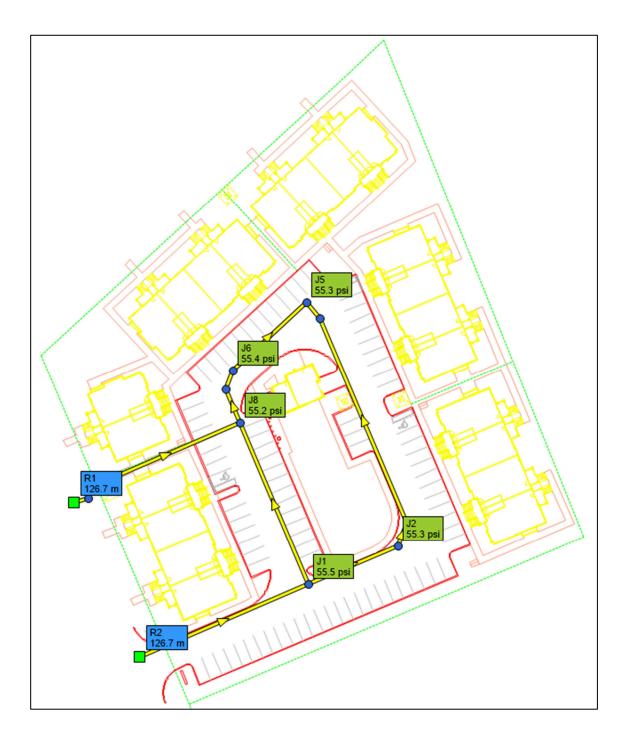


Figure 3.4 Minimum Pressures (psi) During PKHR Conditions

\bigcirc

3.4.1.2 Maximum Day Plus Fire flow

An analysis was carried out using the hydraulic model to determine if the proposed development, under maximum day demands, can achieve an additional fire flow of 11,000 L/min (183 L/s) while maintaining a residual pressure of 138 kPa (20 psi). This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of PCSWMM. The available flows are shown in Figure 3.5.

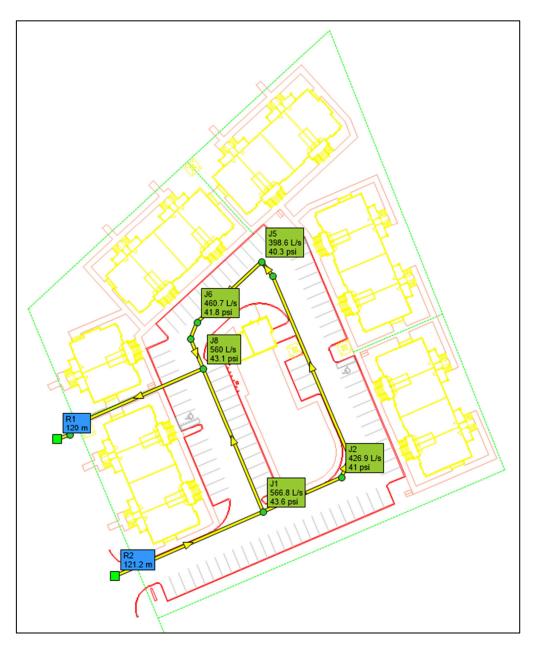


Figure 3.5 Available Fire Flows (L/s) During MXDY Conditions

Using the proposed pipe layout and sizing, a fire flow of 11,000 L/min (183 L/s) can be achieved while maintaining at least 20 psi residual pressure at all locations in the development.

4 Wastewater Servicing

4.1 Background

As indicated in the Trails Edge West – Richcraft Group of Companies Design Brief – Revision 3, (DSEL, January 2015), wastewater from the Trails Edge West Development is conveyed to the existing 600 mm diameter sanitary sewer on Renaud Road via gravity sewer network. Wastewater from the Trails Edge West Development is ultimately conveyed to the Forest Valley Pumping Station.

The DSEL Design Brief identifies MH2A located further east along Axis Way as being used to service the proposed block. As this outlet is not accessible based on the new block configuration, MH15A within Rainrock Crescent / Compass Street has been used as a connection point to sewers within the Trails Edge West subdivision. MH15A contributes to MH16A, which is immediately downstream of the original assumed connection MH2A. The population previously estimated for the original Block 135 was 184 persons.

4.2 Design Criteria

As outlined in the City of Ottawa Sewer Design Guidelines, the following design parameters were used to calculate wastewater flow rates and to size on-site sanitary sewers:

- Minimum full flow velocity 0.6 m/s
- Maximum full flow velocity 3.0 m/s
- Manning's roughness coefficient for all smooth-walled pipes 0.013
- Single family home persons per unit 3.4
- Townhouse persons per unit 2.7
- 2-bedroom apartments persons per unit 2.1
- Extraneous flow allowance 0.33 L/s/ha
- Residential average flows 280 L/cap/day
- Commercial/mixed-use flows 28,000 L/ha/day
- Maintenance hole spacing 120 m for pipes under 450 mm diameter, 150 m for pipes 450 mm diameter and larger
- Minimum cover 2.5 m
- Harmon correction factor 0.8

In addition, a residential peak factor based on Harmon's Equation was used to determine the peak design flows, per the City of Ottawa Sewer Design Guidelines.

Refer to **Appendix B** for the sanitary sewer design sheet for the proposed site.

4.3 Sanitary Servicing Design

A network of 200mm diameter sanitary sewers are proposed throughout the 640 Compass site to provide gravity sewer services to on-site buildings. Proposed SAN MH 1 is to tie into the existing 200 mm sewer main on Compass Street and serve as the sanitary outlet for the site. Sanitary flows will then be directed southwards from Compass Street to Renaud Road and continue southwest bound to Forest Valley Pumping Station. The proposed sanitary sewers within the 640 Compass site will not convey any upstream sanitary flows from Part 2 of Block 140. The proposed sanitary sewer layout for the subject site is shown in **Drawings SSP-1** and **SA-1**. The sanitary sewer design sheet is included in **Appendix B.1**.

The proposed peak flows from the site are summarized in Table 4.1 below.

MH ID	Total Area (ha)	Population	Peak Flow (L/s)	Sewer Diameter (mm)
SAN MH 1, 640 Compass contribution	0.96	178	2.4	200

Table 4.1	Sanitary Peak Flow at Proposed SAN MH 1
	calificary i califi ich at i repecced char mit i

Previously, the entire 3.84 ha Block 135 (including the proposed site) was to convey peak flows from an anticipated population of approximately 184. The current site plan anticipates much of the previously considered population will be used within the current 640 Compass site. Extrapolating the current population density to the entire Block 140 area of 3.84ha would result in a population of 712, with resultant peak flows of approximately 8.9L/s. Based on sanitary sewer calculation sheets for Trails Edge West, the most constrained downstream sanitary sewer has an available capacity of approximately 16.7L/s. As such, no downstream capacity concerns are anticipated based on the increase in population density proposed above that originally anticipated in the DSEL Servicing Brief. Background information, including the Trails Edge West sanitary sewer design sheet, is provided in **Appendix B.2**.

5 Stormwater Management and Storm Servicing

The proposed development encompasses approximately 0.96 ha of land with a residential land use containing three-storey terrace flat units. As shown on **Drawing SD-1**, post-development minor system peak flows from the development will be discharged to an existing 1,200 mm diameter storm sewer on Compass Street. Overland flows during major storm events will be directed to Compass Street ultimately discharging to EUC Pond 1, located south of the site. Stormwater quality control (80% TSS removal) is provided by EUC Pond 1, as described in the Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, (JFSA, January 2015). Refer to **Appendix C.6** for the storm drainage plan and storm sewer design sheet for the Trails Edge West Subdivision (JFSA, 2015).

In the existing condition, the site sheet drains overland uncontrolled to the east towards Fern Casey Street. The site is currently undeveloped.

5.1 Background

JFSA completed the detailed design of the Trails Edge West Subdivision in January 2015. The design of the storm sewers and EUC Pond 1 in the Trails Edge West site accounted for the future development of the broader Block 140 (then referred to as Block 135).

All of Block 140 was contemplated to be serviced via an existing 1050mm diameter storm sewer stub situated in a future ROW that connects to Axis Way between Compass and Fern Casey. In order to split flows between Part 1 and Part 2 of Block 140, additional services will be required for 640 Compass Street to connect directly to the storm sewer within Compass Street.

The Axis Way sewer that was previously contemplated to receive stormwater flows from Block 140 in its entirety is directed westerly to the sewer within Compass Street at the existing MH17. As such, only the sewer segment between MH15 and MH17 along Rainrock/Compass will need to be assessed to ensure sufficient capacity is available to receive flows from the 640 Compass Street property.

Major and minor system flows are to be ultimately conveyed to EUC Pond 1 for quality and quantity control per Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, (JFSA, January 2015).

Additional SWM criteria from this report are listed in the proceeding sections.

5.2 Stormwater Management Design

5.2.1 Design Criteria and Constraints

The design methodology for the SWM component of the development is as follows:

General

- Use of the Modified Rational Method (City of Ottawa).
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa).

Storm Sewer & Inlet Controls

- Proposed site to discharge to the existing 1200 mm diameter storm sewer on Compass Street, (Memorandum: Block 140 – Trails Edge West – Civil Servicing Constraints, DSEL extending the results of the Stormwater Management Report for the Trails Edge West Subdivision, JFSA).
- Minor system discharge rate from the entirety of Block 140 not to exceed 845.8 L/s in the 100year event (Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, JFSA).
- Size storm sewers to convey the 5-year storm event under free-flow conditions using 2012 City of Ottawa I-D-F parameters. (Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, JFSA). Note that the minimum requirements for storm sewers have been effectively superseded by revisions and technical bulletins to the City of Ottawa's Sewer Design Guidelines to require free-flow conveyance of the 2-year storm event.

Surface Storage & Overland Flow

- No surface ponding is permitted within the site during the 2-year storm event (City of Ottawa).
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35m for design storm events (i.e., up to 100-year storm) (City of Ottawa).
- Minimum clearance depth of 0.30m to be provided from spill elevations to building envelopes in proximity of overland flow routes or ponding areas (City of Ottawa).
- Provide adequate emergency overflow conveyance off-site (City of Ottawa).

In keeping with the 2-year inlet restriction criterion, inlet control devices (ICDs) are specified for all street catch basins to limit the inflow to the minor system. Restricted inlet rates to the sewer are necessary to prevent the hydraulic grade line from surcharging storm sewers into basements during major storms. Drawing SD-1 outlines the proposed storm sewer alignment and drainage divides.

5.3 Post-Development Modelling

5.3.1 Allowable Release Rate

The allowable release rate from Block 140 is based on the Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, (JFSA, January 2015), and interpolated for the 640 Compass site forming Part 1 of Block 140. The minor and major system target release rates are summarized in Table 5.1 below.

Block 140 total area per Trails Edge West Subdivision SWM report (ha):	3.65
Block 140 total flow per Trails Edge West Subdivision SWM report (L/s):	845.8
Block 140 per hectare flow per Trails Edge West Subdivision SWM report (L/s/ha):	231.7
640 Compass Street area (ha):	0.95
Target Release Rate (L/s):	222.5

Table 5.1640 Compass Street Target Release Rates

 Block 140 was shown to discharge its minor system to the storm sewer in Block 139 in the Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, (JFSA, January 2015). 640 Compass Street is now proposed to outlet to Compass Street and mirrored in the Memorandum: Block 140 – Trails Edge West – Civil Servicing Constraints, (DSEL, July 2022).

5.3.2 Modelling Rationale

The Modified Rational Method was employed to assess the rate of runoff generated during postdevelopment conditions. The post-development release rates for the site have been determined using the criteria above. A time of concentration for the post-development areas (10 minutes) was assigned based on the relatively small site and its proximity to the existing drainage outlet for the site. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). Peak flow rates have been calculated using the rational method as follows:

$$Q = 2.78(C)(I)(A)$$

Where:

Q = peak flow rate, L/s C = site runoff coefficient I = rainfall intensity, mm/hr (per City of Ottawa IDF curves) A = drainage area, ha

5.3.3 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. The use of controlled surface and underground storage within the parking area are proposed to reduce site peak outflow to the allowable target release rates. As per City of Ottawa criteria, no surface ponding is permitted within the site during the 2-year storm event. Refer to **Appendix C** for the 2-year Modified Rational Method calculations which demonstrate that no surface storage is required in the 2-year event except for less than 1 m³ of ponding for 10 minutes within the turf section of the amenity area, which is deemed insignificant.

It is proposed to detain stormwater on the surface in parking lot areas using inlet control devices (ICDs) in associated catch basins. Additional runoff in excess of the 100-year storm event that exceeds available on-site storage will be directed overland towards the Compass Street ROW at the southwest boundary of the site. Drainage areas C103A and C103AA will utilize underground storage pipes in conjunction with surface ponding.

The Modified Rational Method was employed to determine the peak volume stored in the catch basins and surface storage areas. The site was subdivided into subcatchments (subareas) as defined by the proposed grades and the location, nature, or presence/absence of inlet control devices (ICDs). Each subcatchment was assigned a runoff coefficient based on the proposed finished surface. Further details can be found in **Appendix C**, while **Drawing SD-1** illustrates the proposed subcatchments. The inlet control devices were sized based on the available target release rate from the site during the 2-year storm event. Storage volume and controlled release rates from the on-site catch basins during the 2 and 100-year events are summarized in the table below.

	ICD		2-Year Event	t	100-Year Event				
Area ID	(Circular Orifice)	Release Rate (L/s)	V _{required} (m ³)	V _{available} (m ³)	Release Rate (L/s)	V _{required} (m ³)	V _{available} (m ³)		
C103A	LMF75	7.2	7.4	46.8	7.6	39.0	46.8		
C104A	83 mm	19.9	0.9	33.7	21.2	24.8	33.7		
C105A	119 mm	24.3	0.0	22.6	38.5	19.2	22.6		
C103AA	101 mm	26.3	0.0	23.4	35.6	23.3	23.4		
C103AB	104 mm	17.9	0.0	15.5	28.9	12.5	15.5		

 Table 5.2
 Peak Surface Volume and Controlled Discharge Summary

5.3.4 Uncontrolled Areas

Due to grading restrictions, five subcatchment areas have been designed without a storage component. The UNC-1 catchment area discharges off-site uncontrolled to the adjacent Compass Street ROW and the UNC-2 catchment area discharges off-site uncontrolled to the adjacent Brian Coburn Boulevard ROW similar to existing conditions. The F103AC, F103AD, and F106A catchment areas are unrestricted to avoid spillage to the rear yard entrances and adjacent property. These areas discharge to the proposed storm sewers. Peak discharges from uncontrolled areas have been considered in the overall SWM plan and have been balanced through overcontrolling the proposed site discharge rates to meet target levels.

Table 5.3 summarizes the 2 and 100-year uncontrolled release rates from the proposed development.

Storm Return Period	Area ID	Area (ha)	Runoff 'C'	Tc (min)	Q _{release} (L/s)
	UNC-1	0.08	0.56	10	9.6
	UNC-2	0.08	0.55	10	9.4
2-year	F103AC	0.04	0.57	10	6.6
	F103AD	0.03	0.48	10	4.1
	F106A	0.05	0.40	10	5.8
	UNC-1	0.08	0.70	10	27.8
	UNC-2	0.08	0.69	10	27.3
100-year	F103AC	0.04	0.71	10	14.2
	F103AD	0.03	0.60	10	8.9
	F106A	0.05	0.50	10	12.4

Table 5.3Peak Uncontrolled 2-Year and 100-Year Release Rates

5.4 **Results and Discussion**

The following section summarizes the key analysis results. For detailed calculations please refer to the Modified Rational Method sheet in **Appendix B**.

Table 5.4 summarizes the minor system peak discharge rate from the proposed 640 Compass Street for the 5 and 100-year storm events.

Table 5.4Storm Event Peak Discharge Rates

	2-Year Peak Discharge (L/s)	100-Year Peak Discharge (L/s)			
Controlled Discharge	112.0	167.2			
Uncontrolled Sheet Flow	19.0	55.1			
Total	130.9	222.3			
Target	22	222.5			

 Block 140 was shown to discharge its minor system to the storm sewer in Block 139 in the Stormwater Management Report for the Trails Edge West Subdivision – City of Ottawa, (JFSA, January 2015). 640 Compass Street is now proposed to outlet to Compass Street as per the Memorandum: Block 140 – Trails Edge West – Civil Servicing Constraints, (DSEL, July 2022).

The minor system peak flow rate from the proposed 640 Compass Street site is equal to the allowable during all storm events up the 100-year storm event.

Table 5.5 presents the proposed ICDs with their corresponding heads and flows in the 2-year and 100-year storm events.

ICD Schedule										
Catchbasin ID	Area ID	Туре	2-yr Head (m)	2-yr Release Rate (L/s)	100-yr Head (m)	100-yr Release Rate (L/s)				
103A-1	C103A	LMF75	2.05	7.2	2.29	7.6				
104A-1	C104A	83 mm Circular Orifice	1.85	19.9	2.10	21.2				
105A-1	C105A	119 mm Circular Orifice	1.38	24.3	1.64	38.5				
103A	C103AA	101 mm Circular Orifice	2.55	26.3	2.71	35.6				
103AB-1	C103AB	104 mm Circular Orifice	1.38	17.9	1.58	28.9				

Table 5.52-Year and 100-Year Heads and Flow Rates at ICDs

1. CB 104A-2 and 104A-3 to be interconnected and controlled by a single ICD at CB 104A-1.

Per Rational Method storm sewer design sheets within the *Stormwater Management Report for the Trails Edge West Subdivision*, the downstream sewer segment within Compass Street between MH15 and MH17 maintains an additional free flow capacity of 462 L/s under the 5-year storm event. In addition, modeling for the subdivision under the 100-year 3-hour Chicago storm event identifies an available free flowing capacity of 320 L/s within the same downstream sewer segment. As the proposed site allowable discharge is 222.5 L/s, no deleterious downstream effects on pipe conveyance or HGL are anticipated based on the proposed servicing scheme.

 \bigcirc

6 Geotechnical Considerations and Grading

6.1 Geotechnical Investigation

A geotechnical investigation report for 640 Compass Street was completed by Paterson Group on October 1, 2024. Field testing consisting of the advancement of four (4) boreholes throughout the subject site was completed on September 9, 2022. Data from a previous investigation carried out by Paterson including a total of five (5) test holes was also taken into consideration. The geotechnical investigation report is included in **Appendix D.1**.

The site is undeveloped and mostly covered in grass. The grade across the site is generally level at an elevation of approximately 87 m. The subsurface profile within the site consists of 0.8 to 1.3m brown silty sand fill with some clay and crushed stone, underlain by a silty clay deposit. This silty clay deposit is generally very stiff to stiff brown silty clay crust within the upper 3 to 4 m below original ground surface. This brown silty clay transitions to a firm, grey silty clay as the depth increases.

Groundwater levels were taken at the four (4) boreholes advanced in 2020. The long-term groundwater table is anticipated to be at a 3 to 4 m depth, subject to seasonal fluctuations.

The site is considered suitable for the proposed development from a geotechnical perspective. Conventional shallow foundations placed on undisturbed stiff to firm silty clay, compacted silty sand to sandy silt, or engineered compacted fill, can be used for the proposed buildings.

A permissible grade raise restriction varies from 0.5m to 1.5 m above original ground surface depending on location within the site. A Permissible Grade Raise Plan is included in **Appendix D.1**. Final grading review is to be provided by Paterson Group to verify that the proposed grading plan meets permissible grade raise requirements.

6.1.1 Proposed Pavement Structure

Tables 6.1 and 6.2 summarize the recommended pavement structures for the development.

Thickness (mm)	Material Description
40	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD
450	Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD
-	Subgrade – OPSS Granular B Type I or II material placed over in situ soil or engineered fill.

 Table 6.1
 Recommended Pavement Structure for Access Lanes

 Table 6.2
 Recommended Pavement Structure for Car-Only Parking Areas

Thickness (mm)	Material Description
50	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD
300	Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD
-	Subgrade – OPSS Granular B Type II material placed over in situ soil or engineered fill

6.1.2 Sewer/Watermain Installation

The subsurface soils are considered to be Type 2 and 3 according to the Occupational Health and Safety Act and Regulations for Construction Projects. For excavations up to 3 m deep, 1H:1V slopes or shallower are recommended. A shallow slope should be used if the excavation is below the groundwater table. A trench box is required for all steep or vertical side slopes where workers are present.

At least 150mm of OPSS Granular A crushed stone compacted to 95% SPMDD is recommended as bedding for watermains and sewers, up to the springline of the pipes. The base thickness should be increased to 300 mm in the presence of the firm to stiff grey silty clay. OPSS Granular A crushed stone is to be used as cover material at least 300mm above the obvert of the pipes and compacted to a minimum of 95% SPMDD.

If the excavation and filling operations are carried out in dry weather, the moist brown silty clay is expected to be suitable as backfill material (above the cover material). Wet silty clay materials will be difficult to reuse without an extensive drying period. The trench backfill material within the frost zone (about 1.8 m below finished grade) should match the existing soils at the trench walls. Clay seals are recommended at no more than 60 m intervals in the service trenches and at strategic locations to reduce long-term lowering of the groundwater level in the site.

Open sumps and pumps are anticipated to be sufficient in providing groundwater control for relatively shallow excavations due to the impervious nature of the silty clay present throughout the site. A temporary Permit to Take Water (PTTW) from the Ontario Ministry of the Environment, Conservation and Parks (MECP) may be required if more than 400,000 L/day of ground and/or surface water need to be pumped during the construction phase (to be determined by the geotechnical consultant). The review/issuance of the permit may take upwards of 4 months. For typical ground/surface water pumping volumes (50,000 L/day to 400,000 L/day), registration on the Environmental Activity and Sector Registry (EASR) will be required. Two to four weeks should be allotted for the completion of this registration and the preparation of a Water Taking and Discharge Plan by a Qualified Person as required under O.Reg. 63/16.

The founding stratum should be protected from freezing temperatures if winter construction is anticipated. The trench excavations should also be completed in a manner that will avoid the introduction of frozen materials into the trenches.

6.2 Grading Plan

Proposed grading for the site is shown on **Drawing GP-1**. Proposed grading directs most of the overland flows controlled from the proposed development to Compass Street, as per the intent from background studies. A small portion of the site containing mostly landscape area drains uncontrolled towards Brian Coburn Boulevard to the North and Compass Street to the West.

The proposed grading has been developed to match the existing road grades along Compass Street to the West and Brian Coburn Boulevard Avenue to the North. The grade raise restriction outlined in the geotechnical investigation report has been generally respected throughout the site, with final review to be provided by the geotechnical consultant.

All grading, in-filling and backfilling works are to be completed as per the geotechnical recommendations made in Paterson's geotechnical investigation report (summarized above in **Section 6.1**).

7 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

8 Approvals

The City of Ottawa will review and approve most development applications as they relate to the provision of water supply, wastewater collection and disposal, and stormwater conveyance and treatment under Site Plan Approval processes.

An Environmental Compliance Approval (ECA) is not expected to be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed servicing works within the proposed private block so long as part lot control is not pursued for this development (i.e., as long as the property will be held under single ownership). The Mississippi Valley Conservation Authority (MVCA) will be circulated on this submission.

An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry (EASR) may be required for the site. The geotechnical consultant shall confirm at the time of application whether a PTTW or EASR registration is required.

No other approval requirements from other regulatory agencies are anticipated.

9 Erosion Control

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- Limit the extent of the exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- Provide sediment traps and basins during dewatering works.
- Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

As described in the geotechnical investigation report for the site (see **Appendix D.1**), it is recommended that the observed stockpiling of concrete and rebar be removed during future development. It was noted in the investigation that a Phase II – Environmental Site assessment is not required.

Refer to Drawing EC/DS-1 for the proposed location of silt fences, straw bales, and other erosion control measures.

10 Conclusions and Recommendations

10.1 Potable Water Servicing

The proposed watermain network is capable of achieving the level of service required by the City based on the hydraulic analysis, the following conclusions were made:

- The proposed water distribution system on site is recommended to consist of a 200 mm diameter watermain connecting to the existing 200 mm diameter watermain on Compass Street at two connection points, providing a looped system.
- The proposed watermain network operates below the maximum pressure objective of 552 kPa (80 psi) in both the average day (AVDY) and peak hour (PKHR) conditions, therefore not requiring pressure reducing valves on site.
- Considering maximum day domestic demands with an anticipated fire flow demand of 11,000 L/min (183 L/s), the proposed watermain network is capable of providing sufficient fire flow while maintaining a residual pressure of 138 kPa (20 psi) in all areas within the development.

10.2 Wastewater Servicing

Wastewater from the proposed development will be conveyed to the existing sanitary sewer on Compass Street constructed as part of the Trails Edge West Development. The wastewater is ultimately directed to the Forest Valley Pumping Station off Renaud Road.

A network of 200 mm diameter sanitary sewers are proposed throughout the site. The capacity of the existing sanitary sewers on Compass Street and Renaud Road were verified with the estimated peak wastewater flows from the proposed site and their relative increase from the overall Block 140 discharge estimates made in the Trails Edge West subdivision background reports. The analysis confirmed that there is sufficient capacity within the downstream sanitary sewer system to service the proposed site.

10.3 Stormwater Management and Servicing

The proposed stormwater management plan is in compliance with the requirements outlined in the background documents, the City of Ottawa Sewer Design Guidelines and the Ontario Ministry of the Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual.

Inlet control devices were defined for each subcatchment to restrict inflow rates to the storm sewers to that of the background report design criteria. Major system peak flows from the entire site will be directed to Compass Street, except for small uncontrolled areas to the north and east which will drain to Brian Coburn Boulevard and the undeveloped Part 2 of Block 140 as per existing conditions. Minor system peak flows will be directed to the existing 1200 mm diameter storm sewer on Compass Street. Quantity and quality control (80% TSS removal) of stormwater runoff will be provided at the downstream EUC Pond 1.

10.4 Grading

Proposed grading for the site directs most of the overland flows controlled from the proposed development to Compass Street, as per the intent from servicing studies for the Trails Edge West subdivision. A small portion of the site containing mostly landscape area drains uncontrolled towards existing Brain Coburn Boulevard to the North and Compass Street to the West.

All grading, in-filling, and backfilling works are to be completed as per the geotechnical recommendations made in Paterson's geotechnical investigation report (summarized above in Section 6.1).

10.5 Approvals/Permits

An MECP Environmental Compliance Approval (ECA) may be required for the installation of the proposed storm and sanitary sewers within the private site should part lot control be pursued to sever the property into separate parcels at a later date. A Permit to Take Water or registration on the EASR may be required for dewatering works during sewer/watermain installation, pending confirmation by the geotechnical consultant. The Mississippi Valley Conservation Authority (MVCA) will need to be consulted in order to obtain municipal approval for site development. No other approval requirements from other regulatory agencies are anticipated.

10.6 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

Appendices

Appendix A Potable Water Servicing

A.1 Domestic Water Demand Calculations

Trailsedge East Block 140, Ottawa, ON - Domestic Water Demand Estimates

Site Plan provided by M.David Blakely Architect Inc. Rev 7 Project No. 160401759

Densities as per City Guidelines:						
Townho	Townhouse Row Units ¹					
Row	2.7	рри				

Type of Unit	No. of	Population	Daily Rate of Demand ²	Avg Day Demand		Max Day Demand ³		Max Hour Demand ³	
	Units	Units	(L/cap/day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Block 1	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 2	6	16	280	3.2	0.05	7.9	0.13	17.3	0.29
Block 3	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 4	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 5	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 6	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58
Total Site :	66	178		34.7	0.58	86.6	1.44	190.6	3.18

Notes:

1 As per Table 4-1 from the City of Ottawa Water Design Guidelines, the persons per unit for Townhouse (row) units is 2.7

2 As per Table 4-2 from the City of Ottawa Water Design Guidelines and Technical Bulletin ISTB-2021-03, the average daily rate of water demand for residential areas: 280 L/cap/day

3 As per Table 4.2 from the City of Ottawa Water Design Guidelines, the water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum daily demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

A.2 FUS Calculation Sheets

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines Stantec

()

Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 1 Description: 2-storey residential townhouses c/w basement

Notes: Site Plan provided by M.David Blakely Architect Inc. Rev 7

Step	Task				Value Used	Req'd Fire Flow (L/min)						
1	Determine Type of Construction			1.5	-							
2	Determine Effective		Sum of All Floor Areas								-	-
2	Floor Area	412	412								824	-
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 1000 L/min				-	9000
4	Determine Occupancy Charae					Limited Co	ombustible				-15%	7650
						No	ne				0%	
5	Determine Sprinkler Reduction	ne Sprinkler Non-Standard Water Supply or N/A								0%	0	
5		Not Fully Supervised or N/A								0%		
		% Coverage of Sprinkler System								0%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Fire	wall / Sprinkle	red ?	-	-
	Determine Increase	North	3.1 to 10	13	2	21-49	Type V		NO		16%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Type V		NO		0%	2525
	, 6,61	South	10.1 to 20	13	2	21-49	Type V		NO		11%	2020
		West	20.1 to 30	32	2	61-80	Type V		NO		6%	
					Total Requi	ed Fire Flow	in L/min, Rounded to Ne	arest 1000L/	min			10000
7	Determine Final	stermine Final Total Required Fire Flow in L/s								166.7		
_	Required Fire Flow					Required	Duration of Fire Flow (hrs	;)				2.00
						Required	l Volume of Fire Flow (m ³)				1200

()

Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 2 Description: 2-storey residential townhouses c/w basements

Step	Task					No	ites				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I	/-D - Mass Timber C	onstruction			1.5	-
2	Determine Effective		Sum	of All Floor /	Areas						-	-
2	Floor Area	212	212								424	-
3	Determine Required Fire Flow				(F = 220 x C			-	7000			
4	Determine Occupancy Charae					Limited Co	ombustible				-15%	5950
						No	one				0%	
5	Determine Sprinkler				Non-	Standard Wo	ater Supply or N/A				0%	0
5	Reduction					0%	0					
						0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacen	t Wall Fire	ewall / Sprinkler	red ?	-	-
	Determine Increase	North	3.1 to 10	13	2	21-49	Type V		NO		16%	
6	for Exposures (Max. 75%)	East	> 30	16	0	0-20	Type V		NO		0%	1607
	7 5761	South	10.1 to 20	13	2	21-49	Type V		NO		11%	1007
		West	> 30	0	0	0-20	Type V		NO		0%	
					Total Requi	ed Fire Flow	in L/min, Rounded t	o Nearest 1000L	/min			8000
7	Determine Final					Total F	Required Fire Flow in	L/s				133.3
´	Required Fire Flow					Required	Duration of Fire Flov	v (hrs)				2.00
						Required	d Volume of Fire Flow	v (m ³)				960

()

Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 3 Description: 2-storey residential townhouses c/w basements

Step	Task					No	tes				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I	/-D - Mass Timber Cons	truction			1.5	-
2	Determine Effective		Sum	of All Floor /	Areas						-	-
2	Floor Area	412	412								824	-
3	Determine Required Fire Flow				(F = 220 x C			-	9000			
4	Determine Occupancy Charae						-15%	7650				
						No	one				0%	
5	Determine Sprinkler				Non-	Standard Wo	ater Supply or N/A				0%	0
5	Reduction					0%	0					
						0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wo	all Fire	ewall / Sprinkle	red ?	-	-
	Determine Increase	North	3.1 to 10	13	2	21-49	Type V		NO		16%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Type V		NO		0%	2066
	7 5761	South	10.1 to 20	13	2	21-49	Type V		NO		11%	2000
		West	> 30	0	0	0-20	Type V		NO		0%	
					Total Requi	ed Fire Flow	in L/min, Rounded to N	learest 1000L,	/min			10000
7	Determine Final					Total F	tequired Fire Flow in L/s					166.7
Ĺ	Required Fire Flow					Required	Duration of Fire Flow (h	nrs)				2.00
						Required	l Volume of Fire Flow (n	n ³)				1200

()

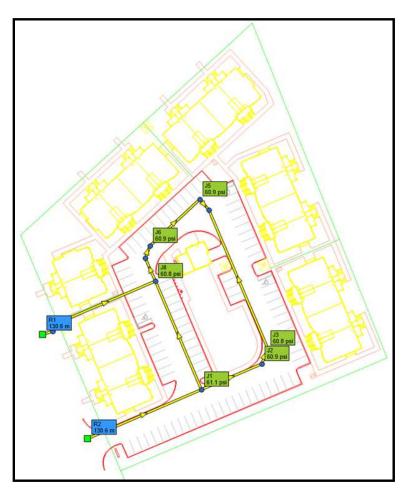
Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 4 Description: 2-storey residential townhouses c/w basements

Step	Task					No	tes				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I	/-D - Mass Timber Con	struction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas						-	-
2	Floor Area	77	83	103			263	-				
3	Determine Required Fire Flow				(F = 220 x C			-	5000			
4	Determine Occupancy Charae					Limited Co	ombustible				-15%	4250
						No	ne				0%	
5	Determine Sprinkler				Non-	Standard Wo	ater Supply or N/A				0%	0
5	Reduction					0%	0					
						0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent W	all Fire	ewall / Sprinkler	red ?	-	-
	Determine Increase	North	10.1 to 20	13	2	21-49	Туре V		NO		11%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Туре V		NO		0%	1998
	7 5761	South	3.1 to 10	13	2	21-49	Type V		NO		16%	1770
		West	0 to 3	0	0	0-20	Туре V		NO		20%	
					Total Requi	ed Fire Flow	in L/min, Rounded to	Nearest 1000L,	/min			6000
7	Determine Final					Total F	lequired Fire Flow in L/	s				100.0
_	Required Fire Flow					Required	Duration of Fire Flow (hrs)				2.00
						Required	l Volume of Fire Flow (m ³)				720

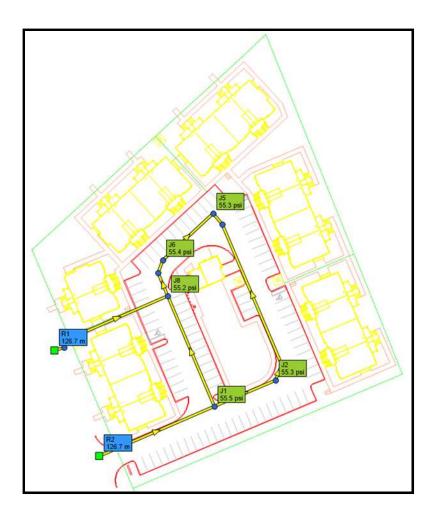
()

Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 5 Description: 2-storey residential townhouses c/w basements

Step	Task					No	ites					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	ıme / Type I	V-D - Mass Timber (Constructior	ı			1.5	-
2	Determine Effective		Sum	of All Floor /	Areas							-	-
2	Floor Area	412	412	0								824	-
3	Determine Required Fire Flow				(F = 220 x C			-	9000				
4	Determine Occupancy Charae					Limited Co	ombustible					-15%	7650
						No	one					0%	
5	Determine Sprinkler					0%	0						
5	Reduction					0%	0						
					% C	0	Sprinkler System					0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjace	ent Wall	Firewall / S	prinkler	ed ?	-	-
	Determine Increase	North	> 30	0	0	0-20	Type V		N	10		0%	
6	for Exposures (Max. 75%)	East	3.1 to 10	13	2	21-49	Type V		N	10		16%	2907
	7 3781	South	20.1 to 30	32	2	61-80	Type V		N	10		6%	2707
		West	3.1 to 10	13	2	21-49	Type V		N	10		16%	
					Total Requi	red Fire Flow	in L/min, Rounded	I to Nearest	1000L/min				11000
7	Determine Final					Total F	Required Fire Flow i	n L/s					183.3
<i>'</i>	Required Fire Flow					Required	Duration of Fire Flo	ow (hrs)					2.00
						Required	d Volume of Fire Flo	ow (m³)					1320

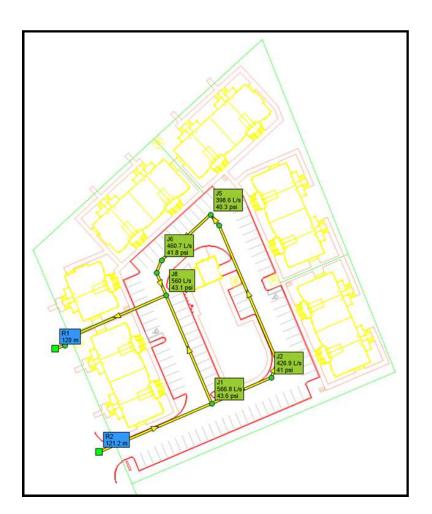

()

Stantec Project #: 160401759 Project Name: Trailsedge East Block 140 Date: 11/1/2024 Fire Flow Calculation #: 6 Description: 2-storey residential townhouses c/w basements


Step	Task					No	ites				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I	V-D - Mass Timber Co	onstruction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas						-	-
2	Floor Area	77	83	103							263	-
3	Determine Required Fire Flow				(F = 220 x C			-	5000			
4	Determine Occupancy Charae					Limited Co	ombustible				-15%	4250
						No	one				0%	
5	Determine Sprinkler				Non-	Standard Wo	ater Supply or N/A				0%	0
5	Reduction					0%	0					
						0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent	Wall Fire	ewall / Sprinkler	red ?	-	-
	Determine Increase	North	> 30	0	0	0-20	Type V		NO		0%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Type V		NO		0%	1233
	, 6,61	South	10.1 to 20	33	2	61-80	Type V		NO		13%	1200
		West	3.1 to 10	13	2	21-49	Type V		NO		16%	
					Total Requi	ed Fire Flow	in L/min, Rounded to	Nearest 1000L	/min			5000
7	Determine Final					Total F	Required Fire Flow in I	./s				83.3
´	Required Fire Flow					Required	Duration of Fire Flow	(hrs)				1.75
						Required	d Volume of Fire Flow	(m ³)				525

A.3 Watermain Hydraulic Analysis Results

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
J5	0.11	87.78	130.60	42.82	60.89	419.81
J6	0.11	87.75	130.60	42.85	60.93	420.11
J7	0.11	87.82	130.60	42.78	60.83	419.42
J8	0.11	87.84	130.60	42.76	60.80	419.23
J1	0.11	87.66	130.60	42.94	61.06	420.99
J2	0.11	87.80	130.60	42.80	60.86	419.62
J3	0.11	87.82	130.60	42.78	60.83	419.42
J4	0.11	87.88	130.60	42.72	60.75	418.83
J10	0.11	87.86	130.60	42.74	60.77	419.03
19	0.11	87.91	130.60	42.69	60.70	418.54



ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
J5	0.58	87.78	126.70	38.92	55.34	381.58
J6	0.58	87.75	126.70	38.95	55.39	381.87
J7	0.58	87.82	126.70	38.88	55.29	381.18
J8	0.58	87.84	126.70	38.85	55.24	380.89
J1	0.58	87.66	126.70	39.04	55.51	382.75
J2	0.58	87.80	126.70	38.89	55.30	381.28
J3	0.58	87.82	126.70	38.88	55.29	381.18
J4	0.58	87.88	126.70	38.82	55.20	380.60
J10	0.58	87.86	126.70	38.84	55.23	380.79
19	0.58	87.91	126.70	38.79	55.16	380.30

Fire Flow Results - Max Day + 267 L/s

	Static Demand	Static Pressure	Static Pressure	Static Pressure	Static Head	Fire Flow	Residual	Residual	Available	Available
ID	(L/s)	(m)	(psi)	(kPa)	(m)	Demand (L/s)	Pressure (m)	Pressure (psi)	Flow (L/s)	Pressure (psi)
J5	0.26	32.76	46.58	321.18	120.54	183.30	28.33	40.29	398.59	20
J6	0.26	32.76	46.58	321.18	120.50	183.30	29.39	41.79	460.74	20
J7	0.26	32.68	46.47	320.40	120.49	183.30	29.62	42.12	483.97	20
18	0.26	32.64	46.41	320.01	120.48	183.30	30.31	43.11	560.04	20
J1	0.26	33.03	46.97	323.83	120.69	183.30	30.63	43.55	566.78	20
J2	0.26	32.84	46.70	321.97	120.65	183.30	28.86	41.04	426.88	20
J3	0.26	32.82	46.67	321.77	120.64	183.30	28.59	40.66	412.60	20
J4	0.26	32.67	46.46	320.30	120.55	183.30	28.13	39.99	392.14	20
J10	0.26	32.18	45.76	315.50	120.04	183.30	31.80	45.22	1337.63	20
19	0.26	32.16	45.73	315.30	120.07	183.30	31.53	44.84	1034.99	20

Appendix B Wastewater Servicing Calculations

B.1 Sanitary Sewer Design Sheet

🚺 Sta	anteo	DA RE DE		Bloc	W	1/2024 1	FILE NUM	MBER:	160401759	DES (Ci	ARY S IGN SH ty of Ottav	IEET	R			MIN PEAK F PEAKING F PEAKING F PERSONS / PERSONS /		, = TRIAL):	4.0 2.0 2.4 1.5 3.4 2.7 1.8		AVG. DAILY COMMERCIA INDUSTRIAL INDUSTRIAL INSTITUTION INFILTRATIO	. (HEAVY) . (LIGHT) NAL	ON	280 28,000 55,000 35,000 28,000	Vp/day I/ha/day I/ha/day I/ha/day I/ha/day I/ha/day I/s/Ha		MINIMUM VE MAXIMUM VI MANNINGS f BEDDING CL MINIMUM CC HARMON CC	ELOCITY ASS OVER	FACTOR	0.60 3.00 0.013 B 2.50 0.8	m/s m					
LC	OCATION						RESIDENT	IAL AREA AND	POPULATION				СОММ	ERCIAL	INDUS	STRIAL (L)	INDUST	RIAL (H)	INSTITU	TIONAL	GREEN	/ UNUSED	C+I+I		INFILTRATION	N	TOTAL				PI	PE				
AREA ID	FROM	1	TO	AREA		UNITS		POP.	CUMUI	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.		M.H.		SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
R6B	6		4	0.32	0	24	0	65	0.32	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.32	0.32	0.1	0.9	65.4	200	PVC	SDR 35	0.65	27.0	3.22%	0.85	0.32
R4A	4		3	0.04	0	0	0	0	0.36	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.04	0.36	0.1	0.9	32.5	200	PVC	SDR 35	0.50	23.7	3.73%	0.74	0.29
R7A	7		6	0.14	0	12	0	32	0.14	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.14	0.14	0.0	0.4	28.6	200	PVC	SDR 35	0.65	27.0	1.60%	0.85	0.26
R6A	6		5	0.13	0	12	0	32	0.26	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.13	0.26	0.1	0.9	34.5	200	PVC	SDR 35	0.50	23.6	3.60%	0.74	0.29
R5A	5		3	0.28	0	18	0	49	0.55	113	3.58	1.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.28	0.55	0.2	1.5	53.7	200	PVC	SDR 35	0.50	23.6	6.33%	0.74	0.35
R3A	3		2	0.05	0	0	0	0	0.96	178	3.53	2.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.05	0.96	0.3	2.4	31.0	200	PVC	SDR 35	0.50	23.6	9.96%	0.74	0.40
	2		1	0.00	0	0	0	0	0.96	178	3.53	2.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.96	0.3	2.4	9.4	200	PVC	SDR 35	0.50	23.6	9.96%	0.74	0.40
																													200							

Appendix C Stormwater Management

C.1 Storm Sewer Design Sheet

Stantoc		640 Com Bloo	oass Stree k 140	:				N SEWE N SHEE			DESIGN I I = a / (t+t			(As per C	itv of Otta	wa Guideli	nes. 2012	2)																					
Stantec	DATE: REVISIOI	N.		-05-09 2	-			f Ottawa)			а =	1:2 yr		1:10 yr	1:100 yr			, 0.013		BEDDING (- 22A I	R																	
	DESIGNE	D BY:	V		FILE NUM	MBER:	16040175	59			a – b = c =	6.199 0.810	6.053 0.814	6.014	6.014	MINIMUM	COVER:	2.00 10	m		LA33 -	Б																	
LOCATION				01							J	0.010	0.014					10															PIPE SELEC	TION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH P	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR)	AxC (100YR))						Q _{CONTROL}	(CIA/360)	0	R DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
	F		(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)							
C103AA, C103AB, F103AC, F103AD C103A	103A 103	103 102	0.00	0.33 0.13	0.00 0.00	0.07 0.00	0.00 0.00	0.00	0.67 0.73	0.00	0.53 0.00	0.000 0.000	0.000 0.000	0.224 0.095	0.224 0.319	0.000 0.000	0.000 0.000	0.037 0.000	0.037 0.037	10.00 10.69	76.81 74.26	104.19 100.69	122.14 118.01	178.56 172.49	0.0 0.0	0.0 0.0	83.3 106.9	43.4 32.5	375 375	375 375	CIRCULAR CIRCULAR	PVC PVC	SDR 35 SDR 35	0.50 0.50		71.43% 91.74%	1.11 1.11	1.05 1.13	0.69 0.48
																				11.17																• , •			
F106A	106	105	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.40	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.020	10.00	76.81	104.19	122.14	178.56	0.0	0.0	9.9	33.9	300	300	CIRCULAR	PVC	SDR 35	0.50	68.0	14.59%	0.97	0.57	0.99
C105A C104A	105 104	104 102	0.00	0.17 0.15	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.72 0.71	0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000	0.121 0.109	0.121 0.231	0.000 0.000	0.000 0.000	0.000 0.000	0.020 0.020	10.99 10.65 11.57	73.22 74.40	99.26 100.88	116.33 118.24	170.02 172.83	0.0 0.0	0.0 0.0	42.9 74.2	34.5 56.4	300 375	300 375	CIRCULAR CIRCULAR	PVC PVC	SDR 35 SDR 35	0.50 0.50	68.0 116.6	63.06% 63.66%	0.97 1.11	0.88 1.02	0.65 0.92
	102	101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.549	0.000	0.000	0.000	0.057	11.57	71.26	96.57	113.16	165.37	0.0	0.0	173.6	28.1	450	450	CIRCULAR	CONCRETE	100-D	0.50	210.3	82.53%	1.28	1.28	0.37
	101	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.549	0.000	0.000	0.000	0.057	11.94 12.12	70.09	94.96	111.27	162.59	0.0	0.0	170.7	13.5	450 1200	450 1200	CIRCULAR	CONCRETE	100-D	0.50	210.3	81.15%	1.28	1.27	0.18
																																							_

C.2 Runoff Coefficient/Impervious Calculations

Name	Area (m2)	Hard Surface (m2)	Gravel Surface (m2)	Soft Surface (m2)	С
C103A	1195	954	0	241	0.76
C103AA	1539	1257	133	149	0.82
C103AB	958	875	0	83	0.84
C104A	1539	1023	0	516	0.67
C105A	1585	1165	0	420	0.71
F103AC	384	202	0	182	0.57
F103AD	309	125	0	184	0.48
F106A	454	127	0	327	0.40
UNC-1	838	435	0	403	0.56
UNC-2	800	399	0	401	0.55

Runoff Coefficient Calculations

C.3 2 and 100-Year Modified Rational Method Calculations

File No: 160401759 Project: 640 Compass Street Block 140 Date: 09-May-25

SWM Approach:

Post-development flows controlled as per Stormwater Management Report for the T West Subdivision prepared by JFSA dated January 2015.

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-catchr	nent		Area		Runoff			Overall
Area Catchment Type	ID / Description		(ha) "A"	C	Coefficient "C"	"A "	k C"	Runoff Coefficien
Uncontrolled - Tributary	F106A Su	Hard Soft btotal	0.014 0.036	0.05	0.9 0.2	0.013 0.007	0.02	0.400
Uncontrolled - Tributary	F103AC Su	Hard Soft btotal	0.021 0.019	0.04	0.9 0.2	0.019 0.004	0.0228	0.570
Uncontrolled - Tributary	F103AD Su	Hard Soft btotal	0.012 0.018	0.03	0.9 0.2	0.011 0.004	0.0144	0.480
Controlled - Tributary	C103AB	Hard Soft btotal	0.091 0.009	0.10	0.9 0.2	0.082 0.002	0.084	0.840
Controlled - Tributary	C103AA	Hard Soft btotal	0.133 0.017	0.15	0.9 0.2	0.120 0.003	0.123	0.820
Controlled - Tributary	C105A	Hard Soft btotal	0.117 0.043	0.16	0.9 0.2	0.105 0.009	0.1136	0.710
Controlled - Tributary	C104A	Hard Soft btotal	0.101 0.049	0.15	0.9 0.2	0.091 0.010	0.1005	0.670
Controlled - Tributary	C103A	Hard Soft btotal	0.096 0.024	0.12	0.9 0.2	0.086 0.005	0.0912	0.760
Uncontrolled - Non-Tributary	UNC-2 Su	Hard Soft btotal	0.040 0.040	0.08	0.9 0.2	0.036 0.008	0.044	0.550
Uncontrolled - Non-Tributary	UNC-1 Su	Hard Soft btotal	0.041 0.039	0.08	0.9 0.2	0.037 0.008	0.0448	0.560
Total /erall Runoff Coefficient= C:				0.960			0.658	0.69

Total Uncontrolled Areas (Non-Tributary)

```
0.160 ha
```

Total Site

0.960 ha

Date: 5/9/2025, 1:53 PM Stantec Consulting Ltd.

2025-05-08_mrm.xlsm, Area Summary W:\active\160401759\design\analysis\STM\

Stormwater Management Calculations

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

2 yr Intensity	$I = a/(t + b)^{c}$	a =	732.951	t (min)	l (mm/hr)
City of Ottawa	-	b =	6.199	10	76.81
		с =	0.81	20	52.03
				30	40.04
				40	32.86
				50	28.04
				60	24.56
				70	21.91
				80	19.83
				90	18.14
				100	16.75
				110	15.57
				120	14.56

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

	$I = a/(t + b)^{c}$		4705 000		
100 yr Intensity	i – a/(t + b)	a =	1735.688	t (min)	l (mm/hr)
City of Ottawa		b =	6.014	10	178.56
		c =	0.820	20	119.95
				30	91.87
				40	75.15
				50	63.95
				60	55.89
				70	49.79
				80	44.99
				90	41.11
				100	37.90
				110	35.20
				120	32.89

5 and 100 YEAR Target Release from the Site Post-development flows controlled as per Stormwater Management Report for the Trailsedge West Subdivision prepared by JFSA dated January 2015.

Block 140 tot	al flow per Tra	ilsedge West I report (ha): ilsedge West	3.65			
Su	bdivision SWN	I report (L/s):	845.8			
Block 140 per hecta Subdi	re flow per Tra vision SWM re	-	231.7			
	Compass Str	eet Area (ha):	0.96			
	Target Relea	ase Rate (L/s)	222.5			
	R Modified R	ational Metho	od for Entire	e Site		
Subdrainage Are Area (ha					Uncontrolled	- Tributary
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
5 10	103.57 76.81	5.76 4.27	5.8 4.3			
15	61.77	3.43	3.4			
20 25	52.03 45.17	2.89 2.51	2.9 2.5			
25 30	40.04	2.51	2.5 2.2			
35	36.06	2.00	2.0			
40	32.86	1.83	1.8			
45 50	30.24 28.04	1.68 1.56	1.7 1.6			
55	26.17	1.46	1.5			
60	24.56	1.37	1.4			
Subdrainage Are Area (ha					Uncontrolled	- Tributary
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
5	103.57	6.56	6.6	<u>(-:-)</u>	<u>, •/</u>	
10 15	76.81 61.77	4.87 3.92	4.9 3.9			
15 20	61.77 52.03	3.92 3.30	3.9 3.3			
25	45.17	2.86	2.9			
30 25	40.04	2.54	2.5			
35 40	36.06 32.86	2.29 2.08	2.3 2.1			
45	30.24	1.92	1.9			
50 55	28.04	1.78	1.8			
55 60	26.17 24.56	1.66 1.56	1.7 1.6			
Subdrainage Are Area (ha					Uncontrolled	- Tributary
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
5 10	103.57 76.81	4.15 3.07	4.1 3.1			
10	61.77	3.07 2.47	3.1 2.5			
20	52.03	2.08	2.1			
25	45.17	1.81	1.8			
30 35	40.04 36.06	1.60 1.44	1.6 1.4			
	32.86	1.32	1.3			
40						
45	30.24	1.21	1.2			
45 50	28.04	1.12	1.1			
45						
45 50 55 60 Subdrainage Are Area (ha	28.04 26.17 24.56 ea: C103AB	1.12 1.05	1.1 1.0		Controlled	- Tributary
45 50 55 60 Subdrainage Are Area (ha	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84	1.12 1.05 0.98 Qactual	1.1 1.0 1.0 Qrelease	Qstored (L/s)	Vstored	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10	28.04 26.17 24.56 24.56 24.56 24.56 24.56 26 27 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 26 26 26 26 26 26 26 26 26 26 26 26	1.12 1.05 0.98 Qactual (L/s) 17.9	1.1 1.0 1.0 Qrelease (L/s) 17.9	(L/s) 0.0	Vstored (m^3) 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20	28.04 26.17 24.56 24.56 24.56 24.56 24.56 26 27 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 24.56 26 24.56 26 24.56 24.56 26 24.56	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2	(L/s) 0.0 0.0	Vstored (m^3) 0.0 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10	28.04 26.17 24.56 24.56 24.56 24.56 24.56 26 27 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 21 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 24.56 26 26 26 26 26 26 26 26 26 26 26 26 26	1.12 1.05 0.98 Qactual (L/s) 17.9	1.1 1.0 1.0 Qrelease (L/s) 17.9	(L/s) 0.0	Vstored (m^3) 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5	(L/s) 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60	28.04 26.17 24.56 a: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	- Tributary
45 50 55 60 Subdrainage Area Area (ha tc (min) 10 20 30 40 50 60 70 80 90	28.04 26.17 24.56 24.56 24.56 24.56 24.56 24.56	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110	28.04 26.17 24.56 24.56 24.56 24.56 20.10 22 24.56 20.3 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 torage: Surface Orifice Equation	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 Storage Above on: Q = CdA(2g	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 torage: Surface Orifice Equatio Orifice Equatio	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 Storage Above on: Q = CdA(2g er: 104	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB h)^0.5 mm	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 storage: Surface Orifice Equation	28.04 26.17 24.56 ea: C103AB a): 0.10 C: 0.84 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 Storage Above on: Q = CdA(2g er: 104 on 86.16	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB h)^0.5	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Are Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 torage: Surface Orifice Equatio Orifice Equatio Orifice Equatio Orifice Equatio Orifice Equatio Orifice Equatio Drifice Equation Drifice Equat	$\begin{array}{c} 28.04\\ 26.17\\ 24.56\\ \hline ea: C103AB\\ a): 0.10\\ \hline C: 0.84\\ \hline 1 (2 yr)\\ (mm/hr)\\ \hline 76.81\\ 52.03\\ 40.04\\ 32.86\\ 28.04\\ 24.56\\ 21.91\\ 19.83\\ 18.14\\ 16.75\\ 15.57\\ 14.56\\ \hline Storage Above\\ on: Q = CdA(2ger: 104\\ on 86.16\\ on 87.54\\ oth 0.00\\ \hline \end{array}$	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB h)^0.5 mm m	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Area Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 torage: Surface Orifice Equatio Orifice Equatio Orifice Equatio Orifice Equatio Orifice Equatio	$\begin{array}{c} 28.04\\ 26.17\\ 24.56\\ \hline ea: C103AB\\ a): 0.10\\ \hline C: 0.84\\ \hline 1 (2 yr)\\ (mm/hr)\\ \hline 76.81\\ 52.03\\ 40.04\\ 32.86\\ 28.04\\ 24.56\\ 21.91\\ 19.83\\ 18.14\\ 16.75\\ 15.57\\ 14.56\\ \hline Storage Above\\ on: Q = CdA(2ger: 104\\ on 86.16\\ on 87.54\\ oth 0.00\\ \hline \end{array}$	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB h)^0.5 mm m m	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary
45 50 55 60 Subdrainage Area Area (ha tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 sorage: Surface Orifice Equation Orifice Equation Diameter Invert Elevation T/G Elevation Diameter Max Ponding Dep	$\begin{array}{c} 28.04\\ 26.17\\ 24.56\\ \hline ea: C103AB\\ a): 0.10\\ \hline C: 0.84\\ \hline 1 (2 yr)\\ (mm/hr)\\ \hline 76.81\\ 52.03\\ 40.04\\ 32.86\\ 28.04\\ 24.56\\ 21.91\\ 19.83\\ 18.14\\ 16.75\\ 15.57\\ 14.56\\ \hline Storage Above\\ on: Q = CdA(2ger: 104\\ on 86.16\\ on 87.54\\ oth 0.00\\ \hline \end{array}$	1.12 1.05 0.98 Qactual (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4 CB h)^0.5 mm m m m m	1.1 1.0 1.0 Qrelease (L/s) 17.9 12.2 9.4 7.7 6.5 5.7 5.1 4.6 4.2 3.9 3.6 3.4	(L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Tributary Volume Check

		Modified	Rational Mo	ethod for Enti	re Site	
Subdrai	nage Area: Area (ha): C:	F106A 0.05 0.50				Uncontrolled - Tributary
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 178.56	(L/s) 12.41	(L/s) 12.41	(L/s)	(m^3)
	20	119.95	8.34	8.34		
	30	91.87	6.38	6.38		
	40	75.15	5.22	5.22		
	50 60	63.95 55.89	4.44 3.88	4.44 3.88		
	70	49.79	3.46	3.46		
	80	44.99	3.13	3.13		
	90	41.11	2.86	2.86		
	100 110	37.90 35.20	2.63 2.45	2.63 2.45		
	120	32.89	2.45 2.29	2.43		
Subdrai	nage Area: Area (ha): C:	F103AC 0.04 0.71				Uncontrolled - Tributary
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 178.56	(L/s) 14.15	(L/s) 14.15	(L/s)	(m^3)
	20	119.95	9.50	9.50		
	30	91.87	7.28	7.28		
	40 50	75.15	5.95 5.07	5.95 5.07		
	50 60	63.95 55.89	5.07 4.43	5.07 4.43		
	70	49.79	3.94	3.94		
	80	44.99	3.56	3.56		
	90 100	41.11	3.26	3.26		
	100 110	37.90 35.20	3.00 2.79	3.00 2.79		
	120	32.89	2.61	2.61		
Subdrai	nage Area: Area (ha): C:	F103AD 0.03 0.60				Uncontrolled - Tributary
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 178.56	(L/s) 8.94	(L/s) 8.94	(L/s)	(m^3)
	20	119.95	6.00	6.00		
	30	91.87	4.60	4.60		
	40	75.15	3.76	3.76		
	50 60	63.95 55.89	3.20 2.80	3.20 2.80		
	70	49.79	2.49	2.49		
	80	44.99	2.25	2.25		
	90	41.11	2.06	2.06		
	100 110	37.90 35.20	1.90 1.76	1.90 1.76		
	120	32.89	1.65	1.65		
Subdrai	nage Area: Area (ha): C:	C103AB 0.10 1.00				Controlled - Tributary
		l (100 yr)	Qactual	Qrelease	Qstored	Vstored
	tc		(L/s)	(L/s)	(L/s)	(m^3)
	(min)	(mm/hr)				
			49.6 33.3	28.9 28.9	20.8 4.5	12.5 5.4
	(min) 10 20 30	(mm/hr) 178.56 119.95 91.87	49.6 33.3 25.5	28.9 28.9 25.5	20.8 4.5 0.0	12.5 5.4 0.0
	(min) 10 20 30 40	(mm/hr) 178.56 119.95 91.87 75.15	49.6 33.3 25.5 20.9	28.9 28.9 25.5 20.9	20.8 4.5 0.0 0.0	12.5 5.4 0.0 0.0
	(min) 10 20 30 40 50	(mm/hr) 178.56 119.95 91.87 75.15 63.95	49.6 33.3 25.5 20.9 17.8	28.9 28.9 25.5 20.9 17.8	20.8 4.5 0.0 0.0 0.0	12.5 5.4 0.0 0.0 0.0
	(min) 10 20 30 40	(mm/hr) 178.56 119.95 91.87 75.15	49.6 33.3 25.5 20.9	28.9 28.9 25.5 20.9	20.8 4.5 0.0 0.0	12.5 5.4 0.0 0.0
	(min) 10 20 30 40 50 60 70 80	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	(min) 10 20 30 40 50 60 70 80 90	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	(min) 10 20 30 40 50 60 70 80 90 100	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	(min) 10 20 30 40 50 60 70 80 90	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Storage:	(min) 10 20 30 40 50 60 70 80 90 100 110	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Ū	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rrage Above	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
	(min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Orific Orific Inve	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto ce Equation: e Diameter: ert Elevation	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g 104 86.16	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB h)^0.5 mm m	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Orific Orific Inve T/	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto e Equation: e Diameter: ert Elevation G Elevation	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g 104 86.16 87.54	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB h)^0.5 mm m	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 Where C =	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Orific Orific Inve T/ Max Por	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto ce Equation: e Diameter: ert Elevation	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g 104 86.16 87.54 0.20	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB h)^0.5 mm m	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 Where C =	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Orific Orific Inve T/ Max Por	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto ce Equation: e Diameter: ert Elevation G Elevation nding Depth	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g 104 86.16 87.54 0.20 85.09	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB h)^0.5 mm m m m	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 Where C = Volume availa	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Orific Orific Inve T/ Max Por Down	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Surface Sto ce Equation: e Diameter: ert Elevation G Elevation nding Depth	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 rage Above Q = CdA(2g 104 86.16 87.54 0.20 85.09 Stage	49.6 33.3 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 CB h)^0.5 mm m m	28.9 28.9 25.5 20.9 17.8 15.5 13.8 12.5 11.4 10.5 9.8 9.1 Where C =	20.8 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Stormwater Management Calculations

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

Subdrainage Area: Area (ha):														
C:	C103AA 0.15 0.82				Controlle	d - Tributary	Subdra	inage Area: Area (ha): C:	0.15				Controlle	ed - Tributar
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)			tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	76.81 52.03	26.3 17.8	26.3 17.8	0.0 0.0	0.0			10 20	178.56 119.95	74.5 50.0	35.6 35.6	38.8 14.4	23.3 17.3	
30 40 50	40.04 32.86 28.04	13.7 11.2 9.6	13.7 11.2 9.6	0.0 0.0 0.0	0.0 0.0 0.0			30 40 50	91.87 75.15 63.95	38.3 31.3 26.7	35.6 31.3 26.7	2.7 0.0 0.0	4.8 0.0 0.0	
60 70	24.56 21.91	9.0 8.4 7.5	8.4 7.5	0.0 0.0 0.0	0.0 0.0 0.0			60 70	55.89 49.79	23.3 20.8	23.3 20.8	0.0 0.0 0.0	0.0 0.0 0.0	
80 90	19.83 18.14	6.8 6.2	6.8 6.2	0.0 0.0	0.0 0.0			80 90	44.99 41.11	18.8 17.1	18.8 17.1	0.0 0.0	0.0 0.0	
100 110	16.75 15.57	5.7 5.3	5.7 5.3	0.0 0.0	0.0 0.0			100 110	37.90 35.20	15.8 14.7	15.8 14.7	0.0 0.0	0.0 0.0	
120 e: Underground	14.56 d Storage	5.0	5.0	0.0	0.0		Storage:	120 Undergrou	32.89 nd Storage	13.7	13.7	0.0	0.0	
Orifice Equation: (Q = CdA(2gh	ı)^0.5	Where C =	0.61			Orifi	ce Equation	: Q = CdA(2gh		Where C =	0.61		
Orifice Diameter: Invert Elevation T/G Elevation	101 84.96 87.64	mm m m					Inve	ce Diameter: ert Elevatior /G Elevatior	n 84.96 n		Volume availa Length of 900			3. 21.
ax Ponding Depth Downstream W/L	0.00 85.09	m m					Max Po	nding Depth	n 0.16 n	n	Volume availa	ble in 900mm		13. 16.
Г	Stage	Head	Discharge	Vreq	Vavail	Volume			Stage	Head	Discharge	Vreq	Vavail	Volume
year Water Level	87.64	(m) 2.55	(L/s) 26.3	(cu. m) 0.0	(cu. m) 23.4	Check OK	100-year	Water Leve	87.80	(m) 2.71	(L/s) 35.6	(cu. m) 23.3	(cu. m) 23.4 0.06	Check OK
Irainage Area: Area (ha): C:					Controlle	d - Tributary	Subdra	inage Area: Area (ha): C:	0.16				Controlle	ed - Tributar
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)			tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	76.81 52.03	24.3 16.4	24.3 16.4	0.0 0.0	0.0 0.0			10 20	178.56 119.95	70.5 47.4	38.5 38.5	32.0 8.9	19.2 10.6	
30 40	40.04 32.86	12.6 10.4	12.6 10.4	0.0 0.0	0.0 0.0			30 40	91.87 75.15	36.3 29.7	36.3 29.7	0.0 0.0	0.0 0.0	
50 60	28.04 24.56	8.9 7.8	8.9 7.8	0.0 0.0	0.0 0.0			50 60	63.95 55.89	25.2 22.1	25.2 22.1	0.0 0.0	0.0 0.0	
70 80 90	21.91 19.83 18.14	6.9 6.3 5.7	6.9 6.3 5.7	0.0 0.0 0.0	0.0 0.0 0.0			70 80 90	49.79 44.99 41.11	19.7 17.8 16.2	19.7 17.8 16.2	0.0 0.0 0.0	0.0 0.0 0.0	
90 100 110	16.75 15.57	5.7 5.3 4.9	5.7 5.3 4.9	0.0 0.0 0.0	0.0 0.0 0.0			90 100 110	37.90 35.20	15.0 13.9	15.0 13.9	0.0 0.0 0.0	0.0 0.0 0.0	
120	14.56	4.6	4.6	0.0	0.0			120	32.89	13.0	13.0	0.0	0.0	
e: Surface Stor Orifice Equation: (-		Where C =	0.61			Storage: Orific		orage Above (: Q = CdA(2gh		Where C =	0.61		
Drifice Diameter: Invert Elevation	119 86.16	mm m					Orific Inve	ce Diameter ert Elevation	: 119 n 86.16 n	nm	Volume availa		0.50	
T/G Elevation Ponding Depth	87.54 0.00	m m					Max Po	/G Elevatior nding Depth	n 0.26 n					
ownstream W/L	85.06 Stage	m Head	Discharge	Vreq	Vavail	Volume	Dowr	nstream W/L	. 85.06 n Stage	n Head	Discharge	Vreq	Vavail	Volume
r Water Level	87.54	(m) 1.38	(L/s) 24.3	(cu. m) 0.0	(cu. m) 22.6	Check OK	100-year	Water Leve	_	(m) 1.64	(L/s) 38.5	(cu. m) 19.2	(cu. m) 22.6 3.39	Check OK
							O to be							
ubdrainage Area: Area (ha): C:	C104A 0.15 0.67				Controlle	d - Tributary	Subdra	inage Area: Area (ha): C:	0.15				Controlle	ed - Tributar
Area (ha): C: tc (min)	0.15 0.67 I (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	d - Tributary	Subdra	Area (ha): C: tc (min)	: 0.15 : 0.84 (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	ed - Tributar
Area (ha): C: tc (min) 10 20	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03	(L/s) 21.5 14.5	(L/s) 19.9 14.5	(L/s) 1.6 0.0	Vstored (m^3) 0.9 0.0	d - Tributary	Subdra	Area (ha): C: tc (min) 10 20	: 0.15 0.84 (mm/hr) 178.56 119.95	(L/s) 62.4 41.9	(L/s) 21.2 21.2	(L/s) 41.2 20.7	Vstored (m^3) 24.7 24.8	ed - Tributar
Area (ha): C: (min) 10 20 30 40	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86	(L/s) 21.5 14.5 11.2 9.2	(L/s) 19.9 14.5 11.2 9.2	(L/s) 1.6 0.0 0.0 0.0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0	d - Tributary	Subdra	Area (ha): C: (min) 10 20 30 40	: 0.15 : 0.84 (mm/hr) 178.56 119.95 91.87 75.15	(L/s) 62.4 41.9 32.1 26.2	(L/s) 21.2 21.2 21.2 21.2 21.2	(L/s) 41.2 20.7 10.9 5.1	Vstored (m^3) 24.7 24.8 19.6 12.1	ed - Tributar
Area (ha): C: tc (min) 10 20 30 40 50 60	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Subdra	Area (ha): C: (min) 10 20 30 40 50 60	: 0.15 0.84 (mm/hr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0	ed - Tributar
Area (ha): C: (min) 10 20 30 40 50	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	(L/s) 21.5 14.5 11.2 9.2 7.8	(L/s) 19.9 14.5 11.2 9.2 7.8	(L/s) 1.6 0.0 0.0 0.0 0.0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	: 0.15 : 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95	(L/s) 62.4 41.9 32.1 26.2 22.3	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2	(L/s) 41.2 20.7 10.9 5.1 1.1	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4	ed - Tributar
Area (ha): C: (min) 10 20 30 40 50 60 70 80	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60 70	: 0.15 : 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0	ed - Tributar
Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary		Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.15 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ed - Tributar
Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Underground Orifice Equation: (0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Storage: Orifie	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou	: 0.15 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac : Q = CdA(2gh	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vstored (m [^] 3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ed - Tributar
Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Underground Orifice Equation: (Orifice Diameter: Invert Elevation	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage n)^0.5 mm m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Storage: Orific Orific Inve	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation ce Diameter ert Elevatior	: 0.15 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact : Q = CdA(2ght) : 83 mt : 85.67 mt	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage	(L/s) 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m [^] 3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d - Tributary	Storage: Orific Orific Inve T. Max Po	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation ce Diameter	: 0.15 0.84 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2ght 83 m 85.67 m 85.67 m 87.49 m 0.28 m	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage	(L/s) 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C =	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67 87.49 0.03	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage n)^0.5 mm m m m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr	Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	: 0.15 : 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac : Q = CdA(2gh : 83 n : 85.67 n : 87.49 n : 87.49 n : 84.82 n	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1.
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	$\begin{array}{c c} 0.15 \\ 0.67 \\\hline 1 (2 yr) \\ (mm/hr) \\\hline 76.81 \\ 52.03 \\ 40.04 \\ 32.86 \\ 28.04 \\ 24.56 \\ 21.91 \\ 19.83 \\ 18.14 \\ 16.75 \\ 15.57 \\ 14.56 \\\hline d and Surface \\ Q = CdA(2gh \\ 83 \\ 85.67 \\ 87.49 \\ 0.03 \\ 84.82 \\\hline Stage \\\hline 87.52 \\\hline \\ C103A \\ 0.12 \\\hline \end{array}$	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage h)^0.5 mm m m m m m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s)	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Ind and Surface Q = CdA(2gh 83 n 85.67 n 87.49 n 84.82 n Stage 87.77 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage n)^0.5 nm n n h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Total available Discharge (L/s)	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage h)^0.5 mm m m m m m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s)	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation ce Equation ce Equation ce Equation ce Equation ce Equation the Diameter ert Elevatior /G Elevatior nding Depth astream W/L Water Leve inage Area: Area (ha): C: tc	 0.15 0.84 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surface Q = CdA(2gh 83 nd 85.67 nd 85.67 nd 85.67 nd 84.82 nd 84.82 Stage 87.77 C103A 0.12 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage n)^0.5 nm n n h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Total available Discharge (L/s)	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage h)^0.5 mm m m m m M m M M M M M M M M M M M M M	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 7.2	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation ce Diameter ert Elevatior /G Elevatior nding Depth hstream W/L Water Leve inage Area: Area (ha): C: tc (min) 10 10 10 10 10 10 10 10 10 10	 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Ind and Surface Q = CdA(2gh 83 nd 85.67 nd 87.49 nd 84.82 nd 84.82 1 87.77 I (100 yr) (mm/hr) 178.56 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage a)^0.5 and h h h h h h h h h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Length of 2000 Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 7.6	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK
C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Underground Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 10 100 100 100 100 100 100	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage n)^0.5 mm m m m m M m M M M M M M M M M M M M M	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 7.2 7.2 7.2 7.2 7.2	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: C: C: C: C: C: C: C: C: C	 0.15 0.84 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2ght 83 mathematical state Mathematical state Mathematical state C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 119.95 91.87 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage n)^0.5 nm n Head (m) 2.10 Qactual (L/s) 56.6 38.0 29.1	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Total available Discharge (L/s) 21.2 Qrelease (L/s) 7.6 7.6 7.6 7.6 7.6	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK
Area (ha): C: C: C: C: C: C: C: C: C: C: C: C: C:	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surfac Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage a)^0.5 mm m m m m m m m m m m m m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 19.9	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation ce Equation ce Equation ce Equation ce Equation ce Equation the Diameter ert Elevatior /G Elevatior Mater Leve inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrou ce Equation ce Equation C Elevatior /G Elevatior Mater Leve inage Area: Area (ha): C Elevation 10 10 10 10 10 10 10 10 10 10	 0.15 0.84 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2ght 83 85.67 nd and Surfact Q = CdA(2ght 83 11 37.90 35.20 32.89 nd and Surfact Q = CdA(2ght 83 nd and Surfact nd and Surfact Q = CdA(2ght 83 nd and Surfact Q = CdA(2ght 83 nd and Surfact Q = CdA(2ght 83 nd and Surfact 11 13 14 15 15 15 15 15 15 15 15 16 17 17	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage a)^0.5 am b h h h h h h h h h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Total available Discharge (L/s) 21.2 7.6 <	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK
Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Underground Orifice Equation: C Orifice Diameter: Invert Elevation Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level E Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage b)^0.5 mm m m m m M m M M M M M M M M M M M M M	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 19.9	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout cc Equation cc Equation cc Equation cc Equation cc Equation cd Elevatior //G Elevatior nding Depth bastream W/L Water Leve inage Area: Area (ha): C: inage Area <	 0.15 0.84 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surface Q = CdA(2gh 83 nd and Surface Q = CdA(2gh 83 nd 85.67 nd 87.49 nd 28 nd 84.82 nd 84.82 nd 84.82 10.28 110.095 110.095 1178.56 119.95 91.87 75.15 63.95 55.89 49.79 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage 0)^0.5 nm n h h h h h h h h h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Length of 2000 Volume availa Discharge (L/s) 21.2 Discharge (L/s) 21.2 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 </td <td>(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td> <td>Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td> <td>1. 35. 1. 2. Volume Check OK</td>	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK
Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Underground 0 Orifice Equation: 0 Orifice Equation: 0 Orifice Equation: 0 Orifice Diameter: Invert Elevation T/G Elevation 7 Ponding Depth 0 ownstream W/L 0 ear Water Level 0 drainage Area: Area (ha): C: 10 20 30 40 50 60 60	$\begin{array}{c c} 0.15\\ 0.67\\\hline 1 (2 yr)\\ (mm/hr)\\\hline 76.81\\ 52.03\\ 40.04\\ 32.86\\ 28.04\\ 24.56\\ 21.91\\ 19.83\\ 18.14\\ 16.75\\ 15.57\\ 14.56\\\hline d and Surface\\\hline Q = CdA(2gh)\\ 83\\ 85.67\\ 87.49\\ 0.03\\ 84.82\\\hline Stage\\\hline 87.52\\\hline C103A\\ 0.12\\ 0.76\\\hline 1 (2 yr)\\ (mm/hr)\\\hline 76.81\\ 52.03\\ 40.04\\ 32.86\\ 28.04\\ 24.56\\\hline \end{array}$	(L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage a)^0.5 mm m m m m m m M m m m m m m m m m m m m m	(L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 7.2 7.2 7.2 7.2 7.2 7.1 6.2	(L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume Check OK	Storage: Orific Orific Inve T, Max Po Dowr 100-year	Area (ha): C: C: C: C: C: C: C: C: C: C	 0.15 0.84 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2ght) 83 nd and Surfact Q = CdA(2ght) 83 nd and Surfact Q = CdA(2ght) 83 nd 85.67 nd 87.49 nd .28 nd 84.82 nd 84.82 nd 87.77 C103A 0.12 0.95 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 	(L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 e Storage a)^0.5 mm n h h h h h h h h h h h h h	(L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 2000 Volume availa Length of 2001 Volume availa Length of 2001 Volume availa Discharge (L/s) 21.2 Orelease (L/s) 21.2	(L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1. 35. 1. 2. Volume Check OK

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

							Subdra							
Subdrainage Area: Area (ha): C:	C103AA 0.15 0.82				Controlle	d - Tributary		inage Area: Area (ha): C:	0.15				Controlle	ed - Tributa
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)			tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	76.81 52.03	26.3 17.8	26.3 17.8	0.0 0.0	0.0			10 20	178.56 119.95	74.5 50.0	35.6 35.6	38.8 14.4	23.3 17.3	
30 40	40.04 32.86	13.7 11.2	13.7 11.2	0.0 0.0	0.0 0.0			30 40	91.87 75.15	38.3 31.3	35.6 31.3	2.7 0.0	4.8 0.0	
50 60	28.04 24.56	9.6 8.4	9.6 8.4	0.0 0.0	0.0 0.0			50 60	63.95 55.89	26.7 23.3	26.7 23.3	0.0 0.0	0.0 0.0	
70 80	21.91 19.83	7.5 6.8	7.5 6.8	0.0 0.0	0.0 0.0			70 80	49.79 44.99	20.8 18.8	20.8 18.8	0.0 0.0	0.0 0.0	
90 100	18.14 16.75	6.2 5.7	6.2 5.7	0.0 0.0	0.0 0.0			90 100	41.11 37.90	17.1 15.8	17.1 15.8	0.0 0.0	0.0 0.0	
110 120	15.57 14.56	5.3 5.0	5.3 5.0	0.0 0.0	0.0 0.0			110 120	35.20 32.89	14.7 13.7	14.7 13.7	0.0 0.0	0.0 0.0	
orage: Underground	d Storage						Storage:	Undergrou	nd Storage					
Orifice Equation: (Where C =	0.61				•	Q = CdA(2gh)	,	Where C =	0.6	1	
Orifice Diameter: Invert Elevation T/G Elevation	101 84.96 87.64	mm m m					Inve	ce Diameter: ert Elevation /G Elevation	84.96 n		Volume availa Length of 900r			2
Max Ponding Depth Downstream W/L	87.64 0.00 85.09	m m m					Max Po	nding Depth	0.16 n	n	Volume availal Total available	ble in 900mm		2 1 1
	Stage	Head	Discharge	Vreq	Vavail	Volume	Down	.ouoani VV/L	Stage	Head	Discharge	Vreq	Vavail	Volume
2-year Water Level		(m) 2.55	(L/s) 26.3	(cu. m) 0.0	(cu. m) 23.4	Check OK	100-vear	Water Level		(m) 2.71	(L/s) 35.6	(cu. m) 23.3	(cu. m) 23.4	Check OK
_ your Trailor Level	J JT	2.00	20.0	0.0	_v.f		100-year		01.00	<u></u> 1 1		20.0	0.06	
Subdrainage Area: Area (ha): C:	C105A 0.16 0.71				Controlle	d - Tributary	Subdra	inage Area: Area (ha): C:	0.16				Controlle	ed - Tribu
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)			tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	76.81 52.03	24.3 16.4	24.3 16.4	0.0 0.0	0.0			10 20	178.56 119.95	70.5 47.4	38.5 38.5	32.0 8.9	19.2 10.6	
30 40	40.04 32.86	12.6 10.4	12.6 10.4	0.0 0.0	0.0 0.0			30 40	91.87 75.15	36.3 29.7	36.3 29.7	0.0 0.0	0.0 0.0	
50 60	28.04 24.56	8.9 7.8	8.9 7.8	0.0 0.0	0.0 0.0			50 60	63.95 55.89	25.2 22.1	25.2 22.1	0.0 0.0	0.0 0.0	
70 80	21.91 19.83	6.9 6.3	6.9 6.3	0.0 0.0	0.0 0.0			70 80	49.79 44.99	19.7 17.8	19.7 17.8	0.0 0.0	0.0 0.0	
90 100	18.14 16.75	5.7 5.3	5.7 5.3	0.0 0.0	0.0 0.0			90 100	41.11 37.90	16.2 15.0	16.2 15.0	0.0 0.0	0.0 0.0	
110 120	15.57 14.56	4.9 4.6	4.9 4.6	0.0 0.0	0.0 0.0			110 120	35.20 32.89	13.9 13.0	13.9 13.0	0.0 0.0	0.0 0.0	
orage: Surface Stor	age Above C	В					Storage:	Surface Sto	orage Above (СВ				
Orifice Equation: (Where C =	0.61					Q = CdA(2gh	-	Where C =	0.6	1	
Orifice Diameter: Invert Elevation	119 86.16	mm					 ()ritic 	e Diameter: ert Elevation		nm n	Volume availa	ble in CB	0.50	
	97 E1	m					Inve		Q7 54					
T/G Elevation Max Ponding Depth	87.54 0.00 85.06	m m					Inve T Max Po	/G Elevation nding Depth	0.26 n	n N				
T/G Elevation	0.00 85.06	m m m	Discharge	Vrea	Vavail	Volume	Inve T Max Po	/G Elevation	0.26 n 85.06 n	n n n	Discharge	Vreg	Vavail	Volum
T/G Elevation Max Ponding Depth	0.00 85.06 Stage	m m	Discharge (L/s) 24.3	Vreq (cu. m) 0.0	Vavail (cu. m) 22.6	Volume Check OK	Inve T, Max Po Down	/G Elevation nding Depth	0.26 n 85.06 n Stage	n N	Discharge (L/s) 38.5	Vreq (cu. m) 19.2	Vavail (cu. m) 22.6	
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level	0.00 85.06 Stage 87.54	m m m Head (m)	(L/s)	(cu. m)	(cu. m) 22.6	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth nstream W/L Water Level	0.26 n 85.06 n Stage 87.80	n n Head (m)	(L/s)	(cu. m)	(cu. m) 22.6 3.39	Check OK
T/G Elevation Max Ponding Depth Downstream W/L	0.00 85.06 Stage	m m m Head (m)	(L/s)	(cu. m)	(cu. m) 22.6	Check	Inve T, Max Po Down 100-year	/G Elevation nding Depth nstream W/L	0.26 n 85.06 n Stage 87.80 C104A 0.15	n n Head (m)	(L/s)	(cu. m)	(cu. m) 22.6 3.39	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr)	m m Head (m) 1.38 Qactual	(L/s) 24.3 Qrelease	(cu. m) 0.0 Qstored	(cu. m) 22.6 Controlle	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr)	n Head (m) 1.64 Qactual	(L/s) 38.5 Qrelease	(cu. m) 19.2 Qstored	(cu. m) 22.6 3.39 Controlle	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67	m m Head (m) 1.38	(L/s) 24.3	(cu. m) 0.0	(cu. m) 22.6 Controlle	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84	n n Head (m) 1.64	(L/s) 38.5	(cu. m) 19.2	(cu. m) 22.6 3.39 Controlle	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81	m m Head (m) 1.38 Qactual (L/s) 21.5	(L/s) 24.3 Qrelease (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6	(cu. m) 22.6 Controlle Vstored (m^3) 0.9	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56	n h Head (m) 1.64 Qactual (L/s) 62.4	(L/s) 38.5 Qrelease (L/s) 21.2	(cu. m) 19.2 Qstored (L/s) 41.2	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cu. m) 22.6 Controlled Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controlled (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 28.04 24.56 21.91 19.83 18.14 16.75	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controlled (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	n Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 15.7 14.4 13.2 12.3 11.5	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year Subdra	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 te Storage	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: (0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh	m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year Subdra Subdra	/G Elevation nding Depth hstream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 15.7 14.4 13.2 12.3 11.5 we Storage n)^0.5 nm n	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	<u>Check</u> OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67	m m M Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK	Inve T, Max Po Down 100-year Subdra Subdra Subdra Crific Inve T, Max Po	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Equation: ce Equation: ce Equation:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage n)^0.5 nm n n	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 20 30 40 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 100 100 100 100 70 80 90 100 100 100 100 70 80 90 100 100 100 100 100 100 100 100 100	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh) 83 85.67 87.49 0.03	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m Head	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C =	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controlled (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Subdra Subdra Crific Inve T, Max Po	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation ce Equation ce Equation ce Elevation ding Depth	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n	n Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 we Storage n)^0.5 nm n Head	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Total available Discharge	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 20 30 40 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120 50 60 70 80 90 100 100 100 100 100 70 80 90 100 100 100 100 70 80 90 100 100 100 100 100 100 100 100 100	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C =	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<u>Check</u> OK d - Tributary	Inve T, Max Po Down 100-year Subdra Subdra Subdra Subdra	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation ce Equation ce Equation ce Elevation ding Depth	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 87.49 n 0.28 n 87.49 n 0.28 n 87.49 n 0.28 n 87.49 n 0.28 n 87.49 n 0.28 n	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 we Storage n)^0.5 nm n n	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Total available	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 sorage: Underground Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m Head (m)	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s)	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controlled (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Equation: c	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 87.49 n 0.28 n 87.49 n 0.28 n 87.77 C103A 0.12	n Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 we Storage n)^0.5 nm n n h Head (m)	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Total available Discharge (L/s)	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh) 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr)	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m M m M m M	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth hstream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth hstream W/L Water Level inage Area: Area (ha): C:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 85.77 C103A 0.12 0.95 I (100 yr)	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 re Storage n)^0.5 nm h h h M M M M M M M M M M M M M	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 21	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh) 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m M m M m M M M M M M M M M	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation CE Equation CE Elevation ding Depth istream W/L Water Level inage Area: Area (ha): C:	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56	n Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 we Storage n)^0.5 nm n h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 21.2 7.6	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m M m M M M M M M M M M M M M	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 84.82 n Stage 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 19.95 91.87	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage n)^0.5 nm h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 21.2	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C:	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface 22.91 19.83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 14.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m m m m m m m m m m m 1.85	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Qrelease (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 87.515 63.95	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage h)^0.5 nm h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 21.2	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level 2-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 23.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 23.04 24.56 21.91	m m m M M m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m M m m M m m m m m m m m m	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Discharge (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 84.82 n Stage 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage n)^0.5 nm n h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 21.2 21.2 1.5 (L/s) 21.2 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) 2.5 (L/s) (L/	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribut ed - Tribut
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: Norrf Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 19.83 18.14	m m m Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m m M m m m m m m m m f a s 5 5 5.1 4.7 4.3 4.1 5 5 5.1 4.7 4.3 4.1 5 5 5.1 4.7 4.3 4.1 5 5 5.1 4.7 4.3 4.1 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5.1 4.7 4.3 4.1 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 1 4.7 4.3 4.1 5 5 5 5 5 5 1 4.7 4.3 4.1 8 5 5 5 5 5 5 5 1 4.7 4.3 4.1 7 8 5 5 5 5 5 1 8 6 9 6 1 5 5 5 5 5 1 8 7 6 9 6 1 5 5 5 5 1 1 4.7 4.3 4.1 7 8 5 1 5 5 5 5 1 1.2 5 5 5 5 1 1.2 5 5 1 1.2 5 5 1 1.2 5 1 1.2 5 5 1 1.2 5 5 1 1.2 5 1 1.2 5 1 1.2 5 5 1 1.2 5 1 1.2 5 1 5 1 1.2 5 1 1.2 5 1 1.2 5 1 1.2 5 1 1.2 5 1.2 5 1.1 5 1.2 5 1.1 5 1.2 5 1.2 5 1.2 5 1.2 5 1.1 5 1.2 5 5 5 1.2 5 5 5 1.2 5 5 5 5 5 1.2 5 5 5 5 1.2 5 5 5 5 1.2 5 5 5 1.2 5 5 5 5 5 5 1.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Discharge (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation nding Depth istream W/L Water Level	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfac Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 84.82 n Stage 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Notational Surfactor 0.28 n 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage h)^0.5 nm h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 21.2	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Check OK ed - Tribu
T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Underground Orifice Equation: C Orifice Equation: C Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L 2-year Water Level 2-year Water Level Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80	0.00 85.06 Stage 87.54 C104A 0.15 0.67 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 d and Surface Q = CdA(2gh 83 85.67 87.49 0.03 84.82 Stage 87.52 C103A 0.12 0.76 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 85.67 87.49 0.03 84.82 Stage 87.52	m m m M Head (m) 1.38 Qactual (L/s) 21.5 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 5.5 5.1 4.7 4.3 4.1 e Storage)^0.5 mm m m m m M m M m M M M M M M M M M M	(L/s) 24.3 Qrelease (L/s) 19.9 14.5 11.2 9.2 7.8 6.9 6.1 5.5 5.1 4.7 4.3 4.1 Where C = Discharge (L/s) 19.9 Discharge (L/s) 19.9	(cu. m) 0.0 Qstored (L/s) 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 Controller Vstored (m^3) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK d - Tributary	Inve T, Max Po Down 100-year Subdra Storage: Orific Inve T, Max Po Down 100-year	/G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout ce Equation: ce Diameter: ert Elevation /G Elevation nding Depth istream W/L Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Undergrout	0.26 n 85.06 n Stage 87.80 C104A 0.15 0.84 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 nd and Surfact Q = CdA(2gh 83 n 85.67 n 87.49 n 0.28 n 85.67 n 87.49 n 0.28 n 84.82 n Stage 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) T78.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 178.56 19.95 10.28 n 87.77 C103A 0.12 0.95 I (100 yr) (mm/hr) 178.56 19.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99	n h Head (m) 1.64 Qactual (L/s) 62.4 41.9 32.1 26.2 22.3 19.5 17.4 15.7 14.4 13.2 12.3 11.5 he Storage n)^0.5 nm h h h h h h h h h h h h h	(L/s) 38.5 Qrelease (L/s) 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 19.5 17.4 15.7 14.4 13.2 12.3 11.5 Where C = Volume availa Length of 200r Volume availa Length of 200r Volume availa Discharge (L/s) 21.2 Qrelease (L/s) 21.2	(cu. m) 19.2 Qstored (L/s) 41.2 20.7 10.9 5.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0	(cu. m) 22.6 3.39 Controlle Vstored (m^3) 24.7 24.8 19.6 12.1 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ed - Tribut 3 Volume Check

Stormwater Management Calculations

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

Orifice Diameter		mm						Orifice Diameter			\/_h			
Invert Elevatior T/G Elevatior		m						Invert Elevatio T/G Elevatio			Volume availa Length of 900r			1.5 m 10.0 m
/ax Ponding Depth		m m					N/	ax Ponding Dept			Volume availa		BOSS	6.4 m
Downstream W/L		m						Downstream W/			Total available			7.8 m
Downstream w/L	. 04.04	111						Downstream w/	_ 04.041	11			i uctures	7.0 1
	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check			Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
2-year Water Leve	87.47	2.05	7.2	7.4	46.8	ONCON	100-	-year Water Leve	87.71	2.29	7.6	39.0	46.8	OK
5								,					7.87	
Subdrainage Area: Area (ha): C	0.08			Ur	ncontrolled - I	Non-Tributary	Su	ıbdrainage Area Area (ha) C	: 0.08			U	Incontrolled - N	Non-Tributary
		Opertual	Orologoo	Qstored	Vstored	l				Ocetual	Orologog	Ostarad	Vstored	
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	(L/s)	(m^3)			tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	(m^3)	
10	76.81	9.4	9.4	√ - <i>γ</i>	\/			10	178.56	27.3	27.3	\/	(- /	
20	52.03	6.4	6.4					20	119.95	18.3	18.3			
30	40.04	4.9	4.9					30	91.87	14.0	14.0			
40	32.86	4.0	4.0					40	75.15	11.5	11.5			
50	28.04	3.4	3.4					50	63.95	9.8 9.5	9.8			
60 70	24.56	3.0	3.0					60 70	55.89	8.5 7.6	8.5			
70	21.91	2.7	2.7					70	49.79	7.6	7.6			
80	19.83 18 14	2.4	2.4					80	44.99	6.9	6.9 6.3			
90 100	18.14 16.75	2.2 2.0	2.2 2.0					90 100	41.11 37.90	6.3 5.8	6.3 5.8			
100	16.75 15.57	2.0 1.9	2.0 1.9					100	37.90 35.20	5.8 5.4	5.8 5.4			
110	15.57	1.9	1.9					120	35.20 32.89	5.4 5.0	5.4 5.0			
ubdrainage Area				Ur	ncontrolled - I	Non-Tributary	Su	ıbdrainage Area	: UNC-1			U	Incontrolled - N	Non-Tributary
Area (ha): C:						Non moduly		Area (ha) C	: 0.08					
C: tc	0.56	Qactual	Qrelease	Qstored	Vstored			Area (ha) C tc	: 0.08 : 0.70	Qactual	Qrelease (L/s)	Qstored	Vstored	
C tc (min)	0.56 I (2 yr) (mm/hr)	(L/s)	(L/s)					Area (ha) C tc (min)	: 0.08 : 0.70 I (100 yr) (mm/hr)	(L/s)	(L/s)	Qstored (L/s)	Vstored (m^3)	
C: tc (min) 10	0.56 I (2 yr) (mm/hr) 76.81	(L/s) 9.6	(L/s) 9.6	Qstored	Vstored			Area (ha) C tc (min) 10	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56	(L/s) 27.8	(L/s) 27.8			
C: tc (min) 10 20	0.56 I (2 yr) (mm/hr) 76.81 52.03	(L/s) 9.6 6.5	(L/s) 9.6 6.5	Qstored	Vstored			Area (ha) C tc (min) 10 20	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95	(L/s) 27.8 18.7	(L/s) 27.8 18.7			
C: (min) 10 20 30	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04	(L/s) 9.6 6.5 5.0	(L/s) 9.6 6.5 5.0	Qstored	Vstored			Area (ha) C (min) 10 20 30	: 0.08 : 0.70 (mm/hr) 178.56 119.95 91.87	(L/s) 27.8 18.7 14.3	(L/s) 27.8 18.7 14.3			
C: (min) 10 20 30 40	0.56 I (2 yr) (mm/hr) 76.81 52.03	(L/s) 9.6 6.5 5.0 4.1	(L/s) 9.6 6.5 5.0 4.1	Qstored	Vstored			Area (ha) C tc (min) 10 20	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95	(L/s) 27.8 18.7 14.3 11.7	(L/s) 27.8 18.7 14.3 11.7			
C: (min) 10 20 30	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86	(L/s) 9.6 6.5 5.0	(L/s) 9.6 6.5 5.0	Qstored	Vstored			Area (ha) C (min) 10 20 30 40	: 0.08 : 0.70 (mm/hr) 178.56 119.95 91.87 75.15	(L/s) 27.8 18.7 14.3	(L/s) 27.8 18.7 14.3			
C (min) 10 20 30 40 50	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	(L/s) 9.6 6.5 5.0 4.1 3.5	(L/s) 9.6 6.5 5.0 4.1 3.5	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	(L/s) 27.8 18.7 14.3 11.7 10.0	(L/s) 27.8 18.7 14.3 11.7 10.0			
C (min) 10 20 30 40 50 60	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1	Qstored	Vstored			Area (ha) C tc (min) 10 20 30 40 50 60	: 0.08 : 0.70 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7			
C: (min) 10 20 30 40 50 60 70	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7	Qstored	Vstored			Area (ha) C tc (min) 10 20 30 40 50 60 70	: 0.08 : 0.70 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8			
C (min) 10 20 30 40 50 60 70 80 90 100	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9			
tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5			
C (min) 10 20 30 40 50 60 70 80 90 100	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9			
tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5			
tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	Qstored	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5			
tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8	Qstored (L/s)	Vstored			Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1	(L/s)		Vavailable*
tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8	Qstored (L/s)	Vstored (m^3)	Vavailable*	SUMM	Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 T	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1	(L/s)	(m^3)	
tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8	Qstored (L/s)	Vstored (m^3)	Vavailable*		Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 T	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1	(L/s)	(m^3)	Vavailable* 142 n
tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T Total 2yr Fl	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 ributary Area low to Sewer	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 0.800 112.0	Qstored (L/s) ha L/s	Vstored (m^3)	Vavailable*	SUMM	Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Tr Total 100yr FI	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 5.1	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 0.800 r 0.800 r 167.2	(L/s) ha L/s	Vrequired	
C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 MARY TO OUTLE	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T Total 2yr Fl	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 ributary Area low to Sewer	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 0.800 112.0 0.160	Qstored (L/s) ha L/s	Vstored (m^3)	Vavailable*	SUMM	Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Tr Total 100yr FI	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 5.5 5.1	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 0.800 r 167.2 a 0.160	(L/s) ha L/s ha	Vrequired	
C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 NARY TO OUTLE	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T Total 2yr Fl Non-Tr	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 ributary Area low to Sewer ributary Area Uncontrolled	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 0.800 112.0 0.160 19.0	Qstored (L/s)	Vstored (m^3)	Vavailable*	SUMM	Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ET Tr Fotal 100yr FI Non-Tr	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 5.1	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 0.800 r 167.2 a 0.160 d 55.1	(L/s) ha L/s ha L/s	Vrequired	
C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 NARY TO OUTLE	0.56 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 T Total 2yr Flow U	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 ributary Area low to Sewer	(L/s) 9.6 6.5 5.0 4.1 3.5 3.1 2.7 2.5 2.3 2.1 1.9 1.8 0.800 112.0 0.160 19.0 0.960	Qstored (L/s)	Vstored (m^3)	Vavailable*	SUMM	Area (ha) C (min) 10 20 30 40 50 60 70 80 90 100 110 120	: 0.08 : 0.70 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ET Total 100yr Flow U	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 5.5 5.1	(L/s) 27.8 18.7 14.3 11.7 10.0 8.7 7.8 7.0 6.4 5.9 5.5 5.1 0.800 r 167.2 a 0.800 r 167.2 a 0.160 b 55.1 a 0.960	(L/s) ha L/s ha L/s ha	Vrequired	

Project #160401759, 640 Compass Street Block 140 Modified Rational Method Calculations for Storage

C.4 Background Report Excerpts

120 Iber Road, Unit 103 Stittsville, Ontario K2S 1E9 Tel (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

MEMORANDUM

July 26, 2022

Richcraft Group of Companies

2280 Street Laurent Boulevard Ottawa, ON, K1G 4K1

Attention: Alexander Orakwue, M.Eng., E.I.T.

Re: Block 140 – Trails Edge West – Civil Servicing Constraints

The Richcraft Group of Companies (Richcraft) has retained DSEL to prepare a brief summary of the availability of services associated with development of the approximately 3.64ha of property within the Trails Edge West community that is bordered to the north by Brian Coburn Boulevard, the east by Fern Casey Street, the south by Axis Way, and the west by Compass Street (known as 'the site'). Referred to as Block 140 in this memo, the site is shown as Block 135 on Trails Edge west drawings and design sheets. Similarly, Compass Street is shown as Rainrock Crescent.

Refer to the following Trails Edge West subdivision drawings, attached for reference

- Sheet 5 General Plan, Rev 6, 15-01-26
- Sheet 6 General Plan, Rev 6, 15-01-26
- Sheet 14 Sanitary Drainage Plan, Rev 6, 15-01-26
- Sheet 15 Sanitary Drainage Plan, Rev 6, 15-01-26
- Sheet 17 Storm Drainage Plan, Rev 6, 15-01-26
- Sheet 18 Sanitary Drainage Plan, Rev 6, 15-01-26

The 3.64ha mixed use development was contemplated in the servicing studies prepared and submitted in support of the Richcraft – Trails Edge Phase 2 subdivision application. The following studies were referenced in the Trails Edge Phase 2 design brief:

- Design Brief for the Trails Edge West Richcraft City of Ottawa, DSEL, dated January 26, 2015 (Design Brief)
- Stormwater Management Report for the Trails Edge West Subdivision City of Ottawa, JFSA, dated January 2015 (SWM report)
- Trails Edge Watermain Analysis Phase 2 City of Ottawa, WSP, dated December 8, 2014 (Watermain Analysis)

The 3.64ha development is jointly owned by both Richcraft and Minto Communities (Minto). Richcraft currently owns a parcel of the property to the east, flanking and serviced by Fern Casey Street, and a parcel to the west, flanking and serviced by Compass Street. The land between these two properties is owned by Minto and is serviced by Block 136 to Axis Way. See *Fig 1 - Existing Land Ownership*, attached.

A land swap agreement is underway that would simplify the division of lands, resulting in a single 0.96ha block of land owned by Richcraft in the west and a single 2.68ha block of land owned by Minto to the east. See *Fig 2 - Proposed Land Swap*, attached.

The 0.96ha portion to be developed by Richcraft is proposed to be developed as a residential area with stacked townhouse dwellings with a paved parking area. An estimated 60 units results in a forecasted population of 162 people. As the services contemplated for Block 136 in the Trails Edge Phase 2 Servicing Report are only positioned to service the Minto lands, additional services will be required on Compass Street to service the new Richcraft parcel.

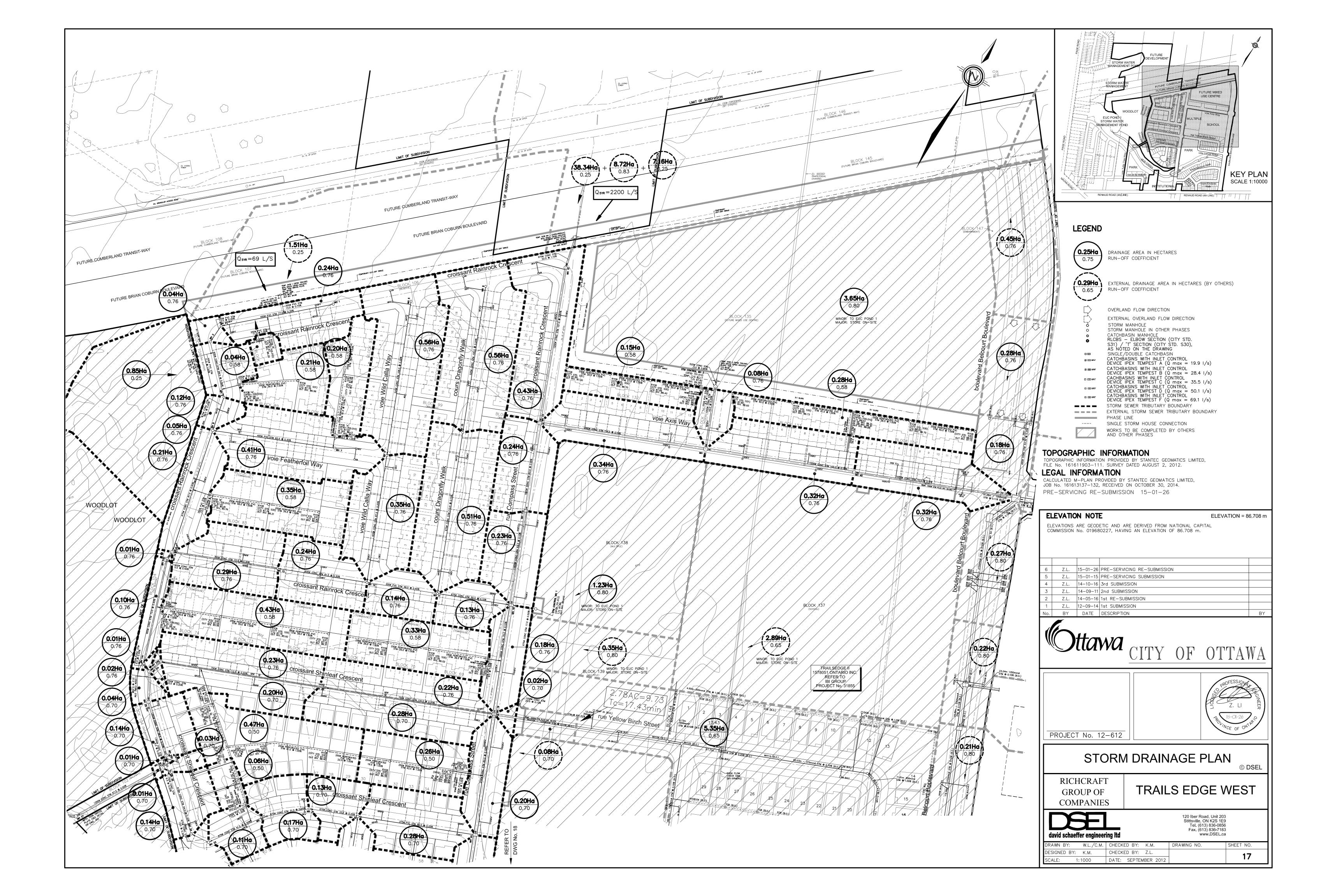
Stormwater / Drainage

The Trails Edge Phase 2 minor system was sized to capture the 5 year storm event for Block 140 and provides an outlet for the site which ultimately discharges to EUC Pond 1. EUC Pond 1 has been sized to accommodate the subject site and provide water quality control. On site storage is required to detain runoff generated by the 100 year storm and is anticipated to be accommodated via depression/sag storage within parking lots and/or beneath the surface using either oversized storm sewers or modular storage systems. The allowable release rate, and storage volumes will need to be established during the detailed design phase.

A decommissioned ditch inlet catch basin in the Brian Coburn Boulevard right of way connects to MH 15 (2400mm diameter), and a 1200 mm diameter sewer main on Compass Street. The DICB previously conveyed 2,200 L/s under the 5 year storm that is now captured and conveyed within in a separate sewer system along Brian Cobourn Boulevard.

The Trails Edge Phase 2 subdivision has a minor system flow allocation of 845.8 L/s for block 140 (see **Appendix 3**) and servicing was to be via a connection to Axis Street through Block 136. Based on the proposed configuration presented in **Figure 2**, a new storm sewer connection will be required to service the Richcraft lands. The new connection is contemplated to connect to the existing storm sewer on Compass Street at MH 15.

The latest design sheets for the existing storm sewer on Compass Street indicate a residual capacity of 2,662.3 L/s and so the sewer is expected to have sufficient capacity to service the subject site. The restrictive length of sewer is between MH 21 and MH 22 which has a residual capacity of 2,098.6 L/s under original conditions which include the planned drainage from the site.


Table 3 of the SWM report shows composite HGL values from the 100 year 3hr Chicago, 100 year 24 hour SCS Type II, and three historical storm events. The max HGL is determined to be 85.137m at MH 15 on Compass Street. Per City guidelines, a 0.3m freeboard will need to be provided between maximum HGL and the underside of footings. This criterion will need to be respected and verified using hydraulic/hydrologic modelling or through a desktop analysis at the detailed design stage.

Wastewater

A sanitary sewer is located within Compass Street, and a service connection can be made at MH 15A. This 1200mm diameter MH is the first in a south bound sewer run that starts with a 200mm diameter sewer. The first run of sewer, 15A-16A, has a residual capacity of 26.79 L/s under original conditions.

Under proposed conditions, sewer run 15A-16A is expected to convey an additional 2.18 L/s from a proposed 200mm diameter service connection to the proposed development. While capacity in this sewer was not allocated to this development, it is not allocated to any other development and exists as excess due to minimum pipe size standards and a need to service the houses along existing Compass Street.

The restrictive lengths of sewer are downstream of MH 19A, these runs reach 88% of capacity under original conditions. The proposed development represents a 1.6% increase to the total flow in these pipes. Therefore, there is anticipated to be capacity for the development's wastewater flows, even with consideration for the originally allocated population of 184 to still occupy the remainder of the block and be serviced through Block 136.

ATTACHMENT 3

Trails Edge Storm Drainage Design Sheet

inning	0.013		Return				IONA																	I block mi		ition			\mathbb{O}	tawo	7
nning	LOCA		Reium	Freque	ncy		AREA	(Ha)				1			FLOW			T .	ICI	D DATA		1	J		unoou		SEWER DA	ATA			-
<u> </u>				R=		R=											Peak Flow	v Na.	Туре		Accum	DESIGN		DIA. (mm)	TYPE		LENGTH	CAPACITY	VELOCITY		RA
ation	From Node		0.25	0.40	0.50	0.58	0.65	0.70	0.73	0.76	0.80	0.83	2.78 AC	2.78 AC	Conc.	Intensity	Q (‼s)			Q (l/s)	Flow		(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	FLOW (min.)	0/0
ock 138 (Acce	55)		· ·														1						,					-	-		1
ntribution Fron	n Block 135 (Fi	ut. Mixed Use	ed Centr	e)							3.65		8.12	8.12	10.00	104.19	845.8	-	<u> </u>			845.8									
						0.15							0.24	8,36				RYCB	A		865.7 885.6							+	·		-
-	Cont 2	41		· · ·	-	0.28				0.08	1		0.62	8.98	10.00	104.19	935.6		A	19.9	905.5	935.6	1050	1050	CONC	0.20	43.0	1221	1.41	0.51	0.
voie Axis Way	/, Pipe 41 - 17										+			8.98	10.51		h		ļ		905.5		ļ					──	──	ļ	
e Axis Way									;																			<u> </u>	+		
m Future Pha	se								1								649.0				649.0		(Flow from 6	75mm Orifice	in Splitte	r MH 39 to I	VIH 40 as pe	r JFSA's cal	culation)		
-	<u> </u>																		D		699.1 719.0							+			
																			ĉ		754.5										Í
	39	40	-							0.32			0.68	0.68	10.00	104.19	719.4		A		774.4		1050	1050	CONC	0,11	111.26	906	1.05	1.77	0
	 	· · · · ·																RYCB	A		794.3 814.2				-			<u>+</u>	+		
																		İ	C	35.5	849.7										-
	40	41								0.32			0.00	4 95	44 77	05.69	778.4		B		878.1	779 4	1200	1200	CONC	0.10	102.0	1233	1.09	1.56	0
tribution Fron	n Block 136 (Ar		2-41							-9.34			0.68 8.98	1.35	11.77 10.51	95.68	(/0.4		A		1803.5	778.4	1200	1200	UNU		102.0	1200	+ 1.09	1.30	
																			¢	35.5	1839.0	1							<u> </u>		ļ
	┼───																		<u>A</u>	19,9	1858.9		<u> </u>				1	┼───	+		-
	41	17								0.34			0.72	11.05	13.33	89.36	1636.5		Ā		1926.9	1636.5	1500	1500	CONC	0,10	114.0	2235	1.26	1.50	0
ue Compass	Street, Pipe 17	- 170							 T					11.05	14.83		649.0		-		1928.9					[1	<u> </u>	+		
s Dragonfly	Walk	1	1		I İ	L											<u> </u>					<u> </u>				├	+	<u> </u>	+		
																			A		19.9						1				
																			A		39.8							<u> </u>			-
																			B C		68.2 103.7							<u> </u>	+		-
	9	10								0.56			1.18	1.18	10.00	104,19	123.3		Ċ.	35.5	139,2	123.3	525	525	CONC	0.20	100.5	192	0.89	1.89	(
																			<u>c</u>		174.7							───	<u> </u>		
	1						···					-								50.1	210.2 260.3							<u> </u>	<u> </u>		
	10	11	Ĺ							0.51			1.08	2.26	11.89	95.19	215.2		D		310.4	215.2	675	675	CONC	.0.15	110.5	326	0.91	2.02	0
croissant Rain	rock Crescent,	, Pipe 11 - 18 I	3				—			·	r			2.26	13.91						310.4								<u> </u>		-
Wild Calls V	Vay																											<u> </u>			
																	·		<u>A</u>		19,9								-		
	- 5	6								0.56			1.18	1.18	10.00	104.19	123.3		D		70.0	123.3	525	525	CONC	0.20	106.0	192	0.89	1.99	0
										0.00						10 / 10			С	35.5	155.6				•=/14		,				
	6									0,35			0.74	4.02	44.00	04.74	182.2				191.1		600	600	CONO	0.20	87.5	275	0.97	1.50	0
croissant Rain	rock Crescent,	12 Pipe 12 - 13	3							0,35			0.74	1.92	11.99 13.49	94.74	182.2	<u> </u>	· C	35.5	226.6 226.6		600	600	CONC	0.20	87.5	275	0.97	1.50	<u> </u>
		L								}																					
e Featherfoil	Way	1								····· 7							· · ·	<u> </u>	E	60.1	69.1							──	───		-
	<u> </u>																	RYCB		19.9								<u> </u>	+		1-
	_			_				-											В	28.4	117.4										
roissant Rain	rock Crescent.	8 Pipe 8 - 14				0.20			1	0.41			1.19	1.19 1.19	10.00	104.19	123.9		C	35.5	152.9	123.9	450	450	PVC	0.30	83.5	156	0.98	1.42	0
														1+10	AT.()					<u> </u>	,										
ssant Rainro	ock Crescent																			100	10.0	<u> </u>						<u> </u>	<u> </u>		1
																			A	19.9		<u> </u>						1	<u> </u>		
																		RYCB	A	19.9	59.7										ľ.
	1	, °				0.03				0.24			0.56	0.56	10.00	104.19	57.9			19.9	79.6 99.5	57.9	450	450	PVC	0.35	77.5	169	1.06	1.22	
	2	3	<u> </u>			0.00				0.24			0.08	0.64	11.22	98.17	62,8			10.0	99.5	62,8	450	450	PVC	0.40	13.0	180	1.13	0.19	0
tribution From			0.85			0.04							0.59	0.59	10.00	104.19	61.6	DVOC		40.0	61.6	61.6	300	300	PVC	1.00	11.0	97	1.37	0.13	
	3	4				0.21	+			0.12			0.59	1.82	11.41	97.30	177.4	RYCB	A		200.9	177.4	600	600	CONC	0.30	38.5	336	1.19	0.54	, (
	4	8	Ļ							0.05			0.11	1.93	11.95	94.92	183.0		B	28.4	229.3	183.0	675	675	CONC	0.20	24.0	376	1.05	0.38	. (
noution From	1 voie Featherf	oll Way, Pipe I	37-8		r				y	- r			1.19		11.42				A		382.2 402.1						·	<u> </u>	+		<u> </u>
											_								A	19,9	422,0							<u>t</u>	1	<u> </u>	
002 445 /	8	14				0.35				0.21			1.01	4.13	12.33	93.31	384.9	RYCB			450.4	384.9	675	675	CONC	0.50	87.0	594	1.66	0.87	(
LUGK 105 (6	im Servicing C	ornaar), Pipe	14 - 14											4.13	13.20					1	450.4					<u> </u>	<u> </u>	 	 .		1
nitions:			· · · · · ·													-					Designe	d;			PROJEC	CT:	-	,	TRAILS ED	GE	
2.78 AIR, who Peak Flow in	ere Litres per seco	and /I /e\												Notes:	Rainfali	itensity Cu	0/A				Checked	4	K.M.		LOCATI	ON:			WEST		
Areas in hect	ares (ha)	ana (ma)													Raman-in elocity ≠ 0.8		140						Z.L.						of Ottawa		
	ity (mm/h)														-					-	g. Refere				File Ref:			Date:		Sheet No.	

Stop PROFESSION RELEASE WCE OF ON

STORM SEWER CALCULATION SHEET	RATIONAL METHOD) (INTERIM B CONDITION)
-------------------------------	--

(Ottawa)

	Manning	0.013		Return Freq	uency																						uaw	<u>A</u>
		LOCA	TION	-		AREA						FLOW		10 1 50			DATA	1	DESIGN					SEWER DA	TA			
	Location	From Node	To Node	<u>R</u> ≈ R= 0.25 0.40	R= R 0 0.50 0.1	= R=	<u>R= R</u> = 0.70 0.7	3 0.76	0.80 0.83	2.78 AC	2 78 AC	Conc	Intensity	Q (i/s)	V NO.	туре	Flow Q (l/s)	Flow	FLOW	DIA. (mm) (actual)	DIA. (mm) (nominal)	TYPE	SLOPE (%)	LENGTH (m)	(I/s)	VELOCITY (m/s)	FLOW (min.)	RATIO
													1		1		<u> </u>			(actually			(70)		(0.5)	(1113)		
		T																										
	Contribution From	n cours Dragon	ifly Walk, Pipe	e 10 - 11						2.26		13.91	ļ					310.4			Į							
		11	18					0.13		0.27	2.54	12.01	87.25	104.0		8 D		338.8	221.2	675	675	COVO	0.15	50.5	326	0.91	0.93	0.68
	To rue Compass		- 19					1 0.10		0.27	2.54		01.20	221.2				388,9	221.2	010	0/3	CONC	V.15	50.5	320	0.91	0.93	0.00
	·	1	ľ –									1	1										· · ·					
	Contribution From	11	12					0.14	L,	0,30	0.30		104.19	30.8					30.8	300	300	PVC	0.40	48.5	61	0.87	0.93	0.50
	Contribution From	s vole wild Cal	la vvay, Pipe	8-12						1.92		13.49				1		226.6			ļ			ļ				
		12	13					0.24	╎╍╸╴┼╴╍	0.51	2.73	13,49	88.78	242.0		A		246.5 282.0	242.0	600	600	CONC	0.30	61.5	336	1.19	0.86	0.72
		<u> </u>						0.21		0.01	2	10,40	00,70			Ĕ		310.4	272.0	000		00110	0.00	01.0		1.10	0.00	0.72
National fills and a fill									Í			Ì.				в	28.4	338.8										
Richcraft lands to																A		358.7										
connect to MH 15.	To BLOCK 105 (13 Im Servicion C	14	14 - 140				0,29	I	0,61	3.34 3.34		85.71	286.1		В	28.4		286.1	750	750	CONC	0.30	72.5	610	1.38	0.88	0.47
vrea = 0.36 ha	13 01001 100 [i ipe			1 1				-	3.34	15.23	-	┼────				387.1								<u> </u>		
R = 0.80																A	19.9	19.9			1							
																С	35,5	55,4										
\longrightarrow	To rue Compass	15 Stract Dine 17	17					0,43		0.91	0.91		104.19	94.7		A	19.9		94.7	1200	1200	CONC	0.50	107.0	2757	2.44	0.73	0.03
	To rue Compass	Street, Pipe 17	- 170	<u> </u>							0.91	10.73						75.3										
	BLOCK 105 (6m	Servicing Cor	ridor)			بالبيد محاجمة		_		-																		
	Contribution From	n croissant Rair	nrock Cresce							4.13		13.20					450.4	450,4										
	Contribution From			nt, Pipe 13 - 1	14			_		3.34	L	15.23					387.1	837.5										
		14	140					0.01		0.02	7.48	15.23	82.83			·			619.9	900	900	CONC		5.5	1145	1.80	0.05	0.54
		140	141 24		0.4	43		0.10	·	0.90	8.39 8.41		82.67 80,60		RYCB	В	28.4		693.5 677.8	900 900	900	CONC	0.40	73.0 6.5	1145 1145	1.80 1.80	0.68	0.61
	To croissant Shir		24 Pipe 24 - 25					0.01	I I	0.02	8.41			0/1.0				865.9	0//.0	900	900	CONC	0.40	0.0	1145	1.60	0.06	0.59
		T									0.11	10.01			ĺ													
	cour des Tourne												•															
		280	28				0.10			0.19	0.19		104.19						20.3	375	375		0.40	16.0	111	1.00	0.27	0.18
		28	29				0.24			0.47	0.66	10.27	102.81	68.0		D	60.1	50.1	68.0	375	375	PVC	0.30	17.5	96	0.87	0.34	0.71
					-ii		<u> </u>						1			D	50.1	100.2										
															RYCB	A		120.1										
															RYCB			148.5										
			00		0.30		0.00	_		0.42		40.00	101.10	000.0				168.4										
	To croissant Shir	29 leaf Crescent	30 Pipe 30 • 31	I I	0.39		0.23			0.99		10.60	101.12	209.2		В	28.4	196.8 196.8	209.2	600	600	CONC	0.25	82.0	307	1.09	1.26	0.68
	To opposizite citi			·····		-r 7					2.07	11.00						190.0			<u></u>							
	rue Compass St																									·		
	Contribution From									11.05		14.83		649.0				1928.9			1			-				
	Contribution From	n croissant Raii	nrock Cresce	nt, Pipe 15 - 1	17					0.91		10.73	I			┝╼┤		2004.2						· · · · · · · · · · · · · · · · · · ·	<u> </u>			
		17	170	<u> </u>		<u> </u>		0.24		0.51	12.47	14.83	84.10	_1697.3		E	100	2073.3	1697.3	1800	1800	CONC	0.10	60.5	3635	1.43	0.71	0.47
				í – † – i							12.71	14.00		1000(.0	· · · -	Â		2113.1	1001.0	1000	1000		0.10			1.40	0.71	V.¶/
								_								С	35.5	2148.6										
		170 -	18					0.23		0.49	12.95	15.54	81.85	1709.1		A	19.9	2168,5	1709.1	1800	1800	CONC	0.10	64.5	3635	1.43	0.75	0.47
	Contribution from	Block 120		├ ─-	+ $+$				0.35	0.78	0.78																	
	Contribution from		itiple)						1.23	2.74	3.51	10.00	104.19	366.1	·		366.1	366.1	366,1	675	675	CONC	0.50	17.0	594	1.66	0.17	0.62
	Contribution From			nt, Pipe 11 - 1	18			,		2.54		14.83					388.9	2923.5			~~~		0.00				<u></u>	5.94
															RYCB		28.4	2951.9										
		L (2)			+ $+$			-		1 0.04	40.04	40.00	70.00	00011		A		2971.8	000 1									
	Contribution From	18 1 rue Yellow Bir	19 rch Street Pir	ne Pluo - 19	0,;	55		0.18		0.91 9.94	19.91	16.29 17.31	1 (9.60	2234,1 297.0		A		2991.7	2234.1	1950	1950	CONC	0.10	75.0	4500	1.51	0.83	0.50
	Comparent for				1 1	1 1	1			3.54	1	11.01	1	231.0			101.0	4022.4		· · · · · · · · · · · · · · · · · · ·								
										1																		
	Definitions:	-		· · · ·						-		-	-					Designed	:			PROJEC	T:			TRAILS ED	GE	
	Q = 2.78 AIR, wh										Notes:							<u> </u>		K.M.					-	WEST		
	Q = Peak Flow in A = Areas in hec		ona (L/s)									l Rainfall-Ir elocity = 0.	ntensity Cu	rve				Checked	;	Z.L.		LOCATIO	DN:			6 0 40		
	IA = Areas in nec II ⇒ Rainfall Intens										∠) win. Vi	aucity = 0.	oo mysec				Dee	q. Refere	псе.	Z.L.		File Ref:			Gity o Date:	f Ottawa	Sheet No.	
	R = Runoff Coeff															Storm			AG, No. 17	to 20		no run.	12-612		Januar	v. 2015	2 of	3
																									200.000			-

:

Appendix D Geotechnical Information

D.1 Geotechnical Investigation Report

Geotechnical Investigation

Proposed Residential Development

640 Compass Street Ottawa, Ontario

Prepared for Richcraft

Report PG6406-1 Revision 1 dated October 10, 2024

Table of Contents

PAGE

1.0	Introduction1
2.0	Proposed Development1
3.0	Method of Investigation2
3.1	Field Investigation
3.2	Field Survey
3.3	Laboratory Testing3
3.4	Analytical Testing4
4.0	Observations5
4.1	Surface Conditions5
4.2	Subsurface Profile5
4.3	Groundwater6
5.0	Discussion8
5.1	Geotechnical Assessment8
5.2	Site Grading and Preparation8
5.3	Foundation Design9
5.4	Design for Earthquakes10
5.5	Slab on Grade Construction 10
5.6	Pavement Structure
6.0	Design and Construction Precautions12
6.1	Foundation Drainage and Backfill12
6.2	Protection of Footings Against Frost Action12
6.3	Excavation Side Slopes12
6.4	Pipe Bedding and Backfill13
6.5	Groundwater Control14
6.6	Winter Construction14
6.7	Corrosion Potential and Sulphate15
6.8	Landscaping Considerations15
7.0	Recommendations18
8.0	Statement of Limitations19

Appendices

- Appendix 1Soil Profiles and Test Data Sheets
Symbols and Terms
Atterberg Limits Test Results
Hydrometer and Grain Size Distribution Test Result
Shrinkage Test Result
Analytical Test Result
- Appendix 2Figure 1 Key PlanDrawing PG6406-1 Test Hole Location PlanDrawing PG6406-2 Permissible Grade Raise Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Richcraft to conduct a geotechnical investigation for the proposed residential development to be located at 640 Compass Street, in the City of Ottawa (refer to Figure 1 - Key Plan in Appendix 2 of this report for the general site location).

The objectives of the geotechnical investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of test holes.
- Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is understood that the proposed development will consist of 6 residential townhouse blocks located around the perimeter of the site, with an amenity area in the central portion of the site. At finished grades, the proposed townhouse blocks will be surrounded by landscaped areas, asphaltpaved access lanes and parking areas, and sidewalks. It is also anticipated that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the geotechnical investigation was carried out on September 9, 2022, and consisted of advancing a total of 4 boreholes (BH 1-22 through BH 4-22) to a maximum depth of 6.7 m below ground surface. Previous investigations carried out by Paterson included a total of 5 test holes within the subject site: borehole BH 4-20 in May 2020, borehole BH 10 in August 2011, hand auger hole HA 5-09 in May 2009, and borehole BH 11-08 and test pit TP 11-08 in August 2008.

The test holes undertaken by Paterson as part of the current investigation were placed in a manner to provide general coverage of the subject site taking into consideration underground utilities, site features, and previous test hole locations. The test hole locations are shown on Drawing PG6406-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were completed using a truck-mounted drill rig operated by a twoperson crew. The test pit was completed using a backhoe. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The testing procedure consisted of augering or excavating to the required depth at the selected locations, and sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered using a 50 mm diameter split-spoon sampler or from the auger flights. The split-spoon and auger samples were classified on-site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are shown as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

A Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was carried out in cohesive soils (silty clays) using a field vane apparatus.

The overburden thickness was evaluated by a dynamic cone penetration test (DCPT) completed at boreholes BH 11-08, BH 10, BH 4-20, and BH 4-22. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1 of this report.

Groundwater

Flexible polyethylene standpipes were installed in all boreholes to allow groundwater level monitoring subsequent to advancing the boreholes. The groundwater level readings were obtained after a suitable stabilization period. The groundwater observations are discussed in Section 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

3.2 Field Survey

The borehole location and ground surface elevation at each borehole location were surveyed by Paterson using a high precision, handheld GPS and referenced to a geodetic datum. The location of the boreholes is presented on Drawing PG6406-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. A total of 4 Atterberg Limits tests, 1 grain size distribution/hydrometer test, and 1 shrinkage test have been performed on the soil samples obtained from the current and previous test holes.

Soil samples from the current investigation will be stored for a period of 1 month after this report is completed, unless we are otherwise directed. Testing results are presented in Appendix 1 and discussed further in Section 4.2.

3.4 Analytical Testing

One (1) soil sample has been submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures, by determining the concentration of sulphate and chloride, the resistivity, and the pH. The results are presented in Appendix 1 and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

The site is currently vacant and generally grass-covered, with a relatively level ground surface at an approximate geodetic elevation of 87 to 88 m. The site is bordered to the east by vacant land, to the north by Brian Coburn Boulevard, to the west by Compass Street, and to the south by residential townhouse blocks.

4.2 Subsurface Profile

Overburden

Generally, the soil profile at the test hole locations consists of topsoil and/or fill underlain by silty clay. The fill material was observed at borehole BH 1-22, extending to an approximate depth of 1.3 m below the existing ground surface, and consists of grey to brown, silty sand to silty clay with varying amounts of gravel and organics.

A deep deposit of silty clay was encountered underlying the topsoil and/or fill. The upper portion of the silty clay deposit, extending to approximate depths of 3 to 4 m, was generally brown in colour and very stiff to stiff, becoming grey and firm below these depths.

Practical refusal of the DCPT was encountered at depths ranging from 24.1 to 25.3 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Date sheets in Appendix 1 for details of the soil profile encountered at each borehole location.

Atterberg Limits Results

The results of the Atterberg Limit tests conducted within the silty clay are presented in Table 1 - Summary of Atterberg Limits Results on the next page, and also in Appendix 1. The tested material was classified as an Inorganic Clay of High Plasticity (CH).

Table 1 - Summary of Atterberg Limits Results (Current Investigation, 2022)											
Sample	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Classification						
BH 1-22 - SS 4	55.6	81	26	55	СН						
BH 3-22 - SS 4	63.9	82	26	56	СН						
BH 4-22 - SS 4	54.6	76	25	41	СН						
Atterberg Limits	Results (Pre	vious Invest	igation, 2020))							
BH 4-20 – SS 3	39.4	72	31	41	СН						
Notes: CH – Inorga	Notes: CH – Inorganic clays of high plasticity										

Grain Size Distribution/Hydrometer Test

One (1) representative soil sample was submitted for grain size distribution analysis, including hydrometer testing. The results are summarized in Table 2 below and are presented on the Grain Size Distribution sheet in Appendix 1.

Table 2 - Summary of Grain Size Distribution Analysis (Current Investigation,2022)										
	Fines Conte									
Sample	Gravel %	Sand %	Silt %	Clay %						
BH 3-22 - SS 3	0.0	0.4	34.6	65.0						

Shrinkage Test

One (1) representative soil sample (BH 1-22, SS3) was submitted for shrinkage test. The shrinkage limit and ratio were found to be 18% and 1.65, respectively.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of interbedded limestone and shale of the Lindsay Formation with an overburden thickness of 25 to 50 m.

4.3 Groundwater

Groundwater levels for the current investigation were measured on September 22, 2022, in the piezometers installed at the borehole locations. The measured groundwater levels noted at that time are presented in Table 3 below.

Table 3 – Summary of Groundwater Levels (Current Investigation, 2022)									
	Ground	Measured Grour							
Test Hole Number	Surface Elevation (m)	Depth (m)	Elevation (m)	Dated Recorded					
BH 1-22	87.78	2.43	85.35						
BH 2-22	86.99	1.83	- September 22, 2022						
BH 3-22	87.32	1.95	1.95 85.37 Septemb						
BH 4-22	87.17	2.00	85.17						
Groundwater Le	evels (Previou	us Investigation, 2	.020)						
BH 4-20	87.57	4.28	83.29	May 29, 2020					
Groundwater Le	evels (Previou	us Investigation, 2	2011)						
BH 10	86.97	2.30	84.37	August 11, 2011					
Groundwater Le	evels (Previou	us Investigation, 2	.008)						
BH 11-08	87.14	0.61	86.53	August 28, 2008					
TP 11-08	87.14	1.00	86.14	August 20, 2000					
Note: The ground surface elevation at each borehole location was surveyed using a handheld GPS and referenced to a geodetic datum.									

It should be noted that surface water can become trapped within a backfilled borehole, which can lead to higher than typical groundwater level observations. Long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples.

Based on these observations, the long-term groundwater table can be expected at an approximate 3 to 4 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed residential development. It is recommended that the proposed buildings be supported on conventional spread footings placed on the undisturbed, stiff silty clay.

Due to the presence of the silty clay deposit, permissible grade raise restrictions have been provided for this site. The permissible grade raise recommendations are discussed in Subsection 5.3.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement-sensitive structures. Care should be taken not to disturb adequate bearing soils below the founding level during site preparation activities. Disturbance of the subgrade may result in having to sub-excavate the disturbed material and the placement of additional suitable fill material.

Fill Placement

Fill placed for grading beneath the proposed building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The imported fill material should be tested and approved prior to delivery. The fill should be placed in a maximum 300 mm thick loose lifts and compacted by suitable compaction equipment. Fill placed beneath the buildings should be compacted to a minimum of 98% of the standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in lifts with a maximum thickness of 300 mm and compacted by the tracks of the spreading equipment to minimize voids. If this material is to be used to build up the subgrade level for areas to be paved, it should be compacted in thin lifts to at least 95% of the material's SPMDD.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay bearing surface, or engineered fill which is placed directly over an undisturbed, stiff silty clay bearing surface, can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. A geotechnical resistance factor of 0.5 is applied to the above noted bearing resistance value at ULS.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen, or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

The bearing resistance value at SLS will be subjected to potential postconstruction total and differential settlements of 25 and 20 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edges of the footing, at a minimum of 1.5H:1V, passes only through in situ soil or engineered fill of the same or higher capacity as that of the bearing medium.

Permissible Grade Raise

Consideration must also be given to potential settlements which could occur due to the presence of the silty clay deposit and the combined loads from the proposed footings, any groundwater lowering effects and grade raise fill. The foundation loads to be considered for the settlement case are the continuously applied loads which consist of the unfactored dead loads and the portion of the unfactored live load that is considered to be continuously applied. For buildings, a minimum value of 50% of the live load is often recommended by Paterson. A post-development groundwater lowering of 0.5 m was assumed.

Our permissible grade raise recommendations for the proposed development are presented in Drawing PG6406-2 – Permissible Grade Raise Plan in Appendix 2.

If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill, and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.

5.4 Design for Earthquakes

For foundations constructed at the subject site, the site class for seismic site response can be taken as **Class E**, according to the Ontario Building Code (OBC) 2012. The soils underlying the subject site are not susceptible to liquefaction.

Reference should be made to the latest revision of the OBC 2012 for a full discussion of the earthquake design requirements.

5.5 Slab on Grade Construction

With the removal of all topsoil and deleterious fill within the footprints of the proposed buildings, the native soils or approved engineered fill pad will be considered an acceptable subgrade upon which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular B Types I or II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slabs (outside the zones of influence of the footings).

For structures with basement slabs, it is recommended that the upper 200 mm of subfloor fill consists of 19 mm clear crushed stone. For any structures with slabon-grade construction, the upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone.

5.6 Pavement Structure

For design purposes, the pavement structure presented in Tables 4 and 5 can be used for the design of car parking areas and access lanes/heavy truck parking areas.

Table 4 - Recommended	Table 4 - Recommended Pavement Structure - Car-Only Parking Areas									
Thickness (mm)	Material Description									
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete									
150	BASE - OPSS Granular A Crushed Stone									
300	SUBBASE - OPSS Granular B Type II									
	·									

SUBGRADE - OPSS Granular B Type I or II material placed over in situ soil or engineered fill

Table 5 - Recommended Pavement Structure – Access Lanes & Local Roadways									
Thickness (mm)	Material Description								
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
450	SUBBASE - OPSS Granular B Type II								
SUBGRADE - OPSS Granular B Type I or II material placed over in situ soil or engineered fill									

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project. The pavement granular base and subbase should be placed in a maximum of 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable compaction equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

Due to the low permeability of the subgrade materials consideration should be given to installing subdrains during the pavement construction, as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below the subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

A perimeter foundation drainage system is recommended for each proposed structure. Each system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated and corrugated plastic pipe which is surrounded by 150 mm of 19 mm clear crushed stone and is placed at the footing level around the exterior perimeter of each structure. Each pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free draining, non-frost susceptible granular materials. The site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as system Miradrain G100N or Delta Drain 6000) connected to a drainage system is provided. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material should otherwise be used for this purpose.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as isolated piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m, or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the overburdened materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is anticipated that sufficient space will be available for the greater part of the excavations to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below the groundwater level.

The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

The pipe bedding for sewer and water pipes placed on a relatively dry, undisturbed subgrade surface should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A or Granular B Type II with a maximum size of 25 mm. The bedding and cover materials should be placed in a maximum of 225 mm thick lifts compacted to 99% of the material's standard Proctor maximum dry density.

It should generally be possible to re-use the upper portion of the dry to moist (not wet) silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay should be given a sufficient drying period to decrease its moisture content to an acceptable level to make compaction possible prior to being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce potential differential frost heaving. The backfill should be placed in a maximum of 225 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce the long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, sub-bedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in a maximum of 225 mm thick loose layers and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

Based on our observations, it is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all subgrades, regardless of the source, to prevent disturbance to the founding medium.

Permit to Take Water

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required <u>if more than 400,000 L/day</u> of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically <u>between 50,000 to 400,000 L/day</u>, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

If a project qualifies for a PTTW based on anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at the founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost into the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions.

6.7 Corrosion Potential and Sulphate

The results of analytical testing on the sample, BH 4-22 – SS3, show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a low to slightly aggressive corrosive environment.

6.8 Landscaping Considerations

Tree Planting Setbacks

In general accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), Paterson completed a soils review of the site to determine applicable tree planting setbacks. Atterberg limits testing and grain size distribution analysis were completed for recovered silty clay samples at selected locations throughout the subject site. The above noted test results were completed between the anticipated underside of footing elevation and a 3.5 m depth below the expected finished grade. The results of our testing are presented in Tables 1 and 2 in Section 4.2 and in Appendix 1.

A medium to high sensitivity clay soil was encountered between the anticipated underside of footing elevations and 3.5 m below anticipated finished grades at the subject site. Based on our Atterberg Limits test results, the plasticity index limit exceeds 40% across the subject site. Therefore, the following tree planting setbacks are recommended for the medium to high-sensitivity areas.

Large trees (mature height over 14 m) can be planted within this area provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). A tree planting setback limit of **7.5 m** is applicable for small (mature tree height up to 7.5 m) and medium size trees (mature tree height 7.5 m to 14 m) provided that the following conditions are met:

- □ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below.
- □ A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surrounding the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Swimming Pools

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed at least 5 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed per the manufacturer`s requirements.

Aboveground Hot Tubs

Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine and can be constructed in accordance with the manufacturer's specifications.

Installation of Decks or Additions

Additional grading around a proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- **D** Review the final grading plan, from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- □ Sampling and testing of the concrete and fill materials.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- □ Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

All excess soils, with the exception of engineered crushed stone fill, generated by construction activities that will be transported on-site or off-site should be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.

8.0 Statement of Limitations

The recommendations provided herein are in accordance with our present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

The soils investigation by others is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations by others, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Richcraft, or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Otillia McLaughlin B.Eng.

Report Distribution:

S. S. DENNIS 100519516 BOUNCE OF ONTARIO

Scott S. Dennis, P.Eng.

- □ Richcraft (e-mail copy)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS SYMBOLS AND TERMS ATTERBERG LIMITS TEST RESULTS GRAIN SIZE DISTRIBUTION ANALYSIS RESULT SHRINKAGE TEST RESULT ANALYTICAL TEST RESULTS

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Residential Development - Trails Edge West Block 140 - Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

					Ы	OCK 140 -	Ottawa,	Untario			
DATUM Geodetic									FILE NO. PG6406	ò	
REMARKS									HOLE NO.		
BORINGS BY CME-55 Low Clearance E	Drill			C	DATE	Septembe	er 9, 202	2	BH 1-22	2	1
SOIL DESCRIPTION	РГОТ		SAN		1	DEPTH (m)	ELEV. (m)		esist. Blov 0 mm Dia.		eter
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	VALUE r RQD		(11)	0 V	/ater Conte	ent %	Piezometer
GROUND SURFACE	ي. ۲		ŭ	REC	N OF			20	40 60	80	<u>م</u>
TOPSOIL0.10	$\times\!\!\times\!\!\times$	/_				0-	-87.78				
FILL: Brown silty sand with gravel and crushed stone, some clay, trace ^{0.76} organics		§ AU ∛ SS	1 2	75	10	1 -	-86.78	0			
FILL: Grey-brown silty clay, trace 1.32 sand, gravel and organics							00110	O			
		∛ ss ⊽	3	83	8	2-	-85.78		Ο	••••••	
/ery stiff to stiff, brown SILTY CLAY		ss	4	88	P	3-	-84.78	<u> </u>	, O		
-		ss	5	83	P						
firm and grey by 3.7m depth						4-	-83.78				
						5-	-82.78	<u> </u>			
						6-	-81.78				
6.71		ss	6	92	Р					0	
GWL @ 2.43m - Sept. 22, 2022)											
								20 Shea	40 60 Ir Strength		00
								▲ Undist		Remoulded	

SOIL PROFILE AND TEST DATA

40

20

▲ Undisturbed

60

Shear Strength (kPa)

80

 \triangle Remoulded

100

Geotechnical Investigation Prop. Residential Development - Trails Edge West Block 140 - Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

יהט	0

DATUM Geodetic									FILE I			
REMARKS									HOLE	NO.		
BORINGS BY CME-55 Low Clearance	Drill	1		D	ATE	Septemb	er 9, 202	2	BH	2-22		1
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)			Blows/0 Dia. Cor		ster ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD		(11)	• V	/ater C	Content of	%	Piezometer Construction
GROUND SURFACE	N.	_ .	N	REC	N OH OH			20	40	60	80	
TOPSOIL0.08		∦ AU	1			0-	-86.99	c	>			
		ss	2	83	7	1-	-85.99		- o			
Very stiff to stiff, brown SILTY CLAY		ss	3	8	Р	2-	-84.99		e	x		
- firm and grey by 2.7m depth		ss	4	88	Р		00.00	1		× 0		
		ss	5	88	Р	3-	-83.99				C	
						4-	-82.99					
						5-	-81.99					
		X G	6			6-	-80.99				0	
6.55	5 							<u> </u>	`````````````````````````````````````			
End of Borehole												
(GWL @ 1.83m - Sept. 22, 2022)												

SOIL PROFILE AND TEST DATA

FILE NO. PG6406

HOLE NO.

Geotechnical Investigation Prop. Residential Development - Trails Edge West Block 140 - Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DAI		

Geodetic ΜΙΤΔΠ

REMARKS

ORINGS BY CME-55 Low Clearance				D	DATE 3	Septembe	er 9, 202	2 BH 3-22	<u> </u>
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	ter
	STRATA I	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	• Water Content %	Piezometer
GROUND SURFACE OPSOIL 0.15		, ·		<u>д</u>		0-	-87.32	20 40 60 80	
		₿ AU	1					o	
		ss	2	83	10	1-	-86.32	φ	
		ss	3	88	Р	2-	-85.32	A 0	
ery stiff to stiff, brown SILTY CLAY		ss	4	83	Р			A	
firm and grey by 3.0m depth		ss	5	83	Р	3-	-84.32	4 0	
						4-	-83.32		
						5-	-82.32	*	
6.55		G	6			6-	-81.32		
nd of Borehole									
GWL @ 1.95m - Sept. 22, 2022)									
								20 40 60 80 10	000

SOIL PROFILE AND TEST DATA

FILE NO.

PG6406

Geotechnical Investigation Prop. Residential Development - Trails Edge West Block 140 - Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

REMARKS	

DATUM Geodetic

REMARKS	D:11			_	(7		HOLE NO.
BORINGS BY CME-55 Low Clearance Drill DATE Set SOIL DESCRIPTION SAMPLE I I						Septembe	er 9, 2022	
SOIL DESCRIPTION						DEPTH (m)	ELEV. (m)	• 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD			Pen. Resist. Blows/0.3m □ ● 50 mm Dia. Cone □ata and and and and and and and and and an
GROUND SURFACE	ST	н	NN	REC	N OL		07.47	20 40 60 80
TOPSOIL0.20	{X/	ž AU	1			0-	-87.17	
		$\overline{\nabla}$				4_	-86.17	
		ss	2	75	11		-00.17	O
		ss	3	92	Р	2-	-85.17	0
Very stiff to stiff, brown SILTY CLAY, trace sand		ss	4	75	Р	_	00117	↓ 0 1 1
		A 33	4	/3	1	3-	-84.17	
- firm and grey by 3.0m depth		ss	5	75	Р			0
						4-	-83.17	
						5-	-82.17	
		_						
		ΧG	6			6-	-81.17	
<u>6.55</u> Dynamic Cone Penetration Test								
commenced at 6.55m depth. Cone pushed to 20.1m depth.						7-	-80.17	
							70.47	
						8-	-79.17	
						0-	-78.17	
						9	70.17	
						10-	-77.17	
							,,,,,,	
						11-	-76.17	
						12-	-75.17	
						13-	-74.17	20 40 60 80 100
								Shear Strength (kPa)
								▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Prop. Residential Development - Trails Edge West Block 140 - Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

DATUM

REMARKO									PG6	6406	
REMARKS									HOLE		
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	Septemb	er 9, 2022	2	BH	4-22	
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.			Blows/0.3m Dia. Cone	ter
	STRATA 1	ТҮРЕ	NUMBER	% RECOVERY	VALUE Pr RQD	(m)	(m)	0	Nater C	Content %	Piezometer Construction
GROUND SURFACE	- ร		n n	REC	N OF			20	40	60 80	
Dynamic Cone Penetration Test commenced at 6.55m depth. Cone pushed to 20.1m depth.						13-	-74.17				
						14-	-73.17				
						15-	-72.17				
						16-	-71.17				
						17-	-70.17				
						18-	-69.17				
						19-	-68.17				
						20-	-67.17				
						21-	-66.17				
						22-	-65.17				
						23-	-64.17				
24.1 End of Borehole	8					24-	-63.17				÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
Practical DCPT refusal at 24.18m depth											
(GWL @ 2.00m - Sept. 22, 2022)								20	40	60 80	100
									ar Stre	ngth (kPa) △ Remoulded	

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

Piezometer Construction

59 lo

Supple nical Investigation 's Edge

154 Colonnade Road South, Ottawa, Ont	ario K	∎ (2E 7J	5		Pr	oposed F	Residenti	al Develo wa, Ontar	pment -		lge
DATUM Geodetic									FILE N	o. PG2	202
REMARKS									HOLE	NO.	
BORINGS BY Track-Mount Power Auge	er			D	ATE	May 7, 20)20	1		BH 4	-20
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.			Blows/0.3ı)ia. Cone	m
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)	0	Water Co	ontent %	
GROUND SURFACE	็ง	F	NC	REC	N V OF			20	40	60 80	
FILL: Brown silty clay, trace organics, gravel and cobbles 0.60		au 🕈	1			0-	-87.57				
Brown SILTY CLAY , trace sand and organics1.52		ss	2	58	9	1-	-86.57	0			
		ss	3	100	7	2-	-85.57		0		
Very stiff to stiff, grey-brown SILTY CLAY		∛ss	4	100	2	3-	-84.57				1
- firm and grey by 3.0m depth						4-	-83.57				
						5-	-82.57			0	
<u>6.40</u>		_				6-	-81.57		X		
Dynamic Cone Penetration Test commenced at 6.40m depth. Cone pushed to 11.3m depth.						7-	-80.57				· · · · · · · · · · · · · · · · · · ·
						8-	-79.57				· · · · · · · · · · · · · · · · · · ·
						9-	-78.57				
						10-	-77.57				· · · · · · · · · · · · · · · · · · ·
						11-	-76.57				

12+75.57

13+74.57

20

▲ Undisturbed

40

60

Shear Strength (kPa)

80

△ Remoulded

100

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation Proposed Residential Development - Trail's Edge Renaud Road, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

FILE NO.	PG2392
----------	--------

HOLE NO. BH 4-20

BORINGS BY Track-Mount Power Aug	1		D	ATE	May 7, 20	_	BH					
SOIL DESCRIPTION	РГОТ		SAN	IPLE	1	DEPTH	ELEV.			lows/0.: ia. Cone		2
	STRATA	ЭЛХРЕ	NUMBER	°% RECOVERY	N VALUE or RQD	(m)	(m)			ontent %		Piezometer
ROUND SURFACE				<u></u>		13-	-74.57	20	40	60 8	80	
						14-	-73.57					-
						15-	-72.57					
										· · · · · · · · · · · · · · · · · · ·		
						16-	-71.57					-
						17-	-70.57			·····		-
						18-	-69.57					
						19-	-68.57					•
						20-	-67.57			· · · · · · · · · · · · · · · · · · ·		•
						01	-66.57					
						22-	-65.57			·····		
						23-	-64.57					
24.1 nd of Borehole	3	+				24-	-63.57					•
ractical DCPT refusal at 24.13m epth.												
GWL @ 4.28m - May 29, 2020)												
								20 Shea ▲ Undistu	r Streng	60 8 gth (kPa △ Remou	a)	00

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Prop. Residential Development-Trails Edge Phase 2 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM	Ground surface provided by Annis, O'Sullivan, Vollebekk Limited.
REMARKS	

PG2392

HOLE NO.

BH10 BORINGS BY CME 55 Power Auger DATE 17 August 2011 SAMPLE Pen. Resist. Blows/0.3m Piezometer Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Water Content % 0 40 80 **GROUND SURFACE** 20 60 0 + 86.97TOPSOIL 0.20 1 AU Brown SILTY CLAY with 0.69 sand, trace gravel 1+85.97 SS 2 92 7 2 + 84.97Very stiff to stiff, brown **SILTY** CLAY 3+83.97 3.30 4+82.97 W 2 5+81.97 τw 3 6 + 80.97Firm, grey SILTY CLAY 7+79.97 8+78.97 9+77.97 9.60 Dynamic Cone Penetration Test 10+76.97 commenced @ 25.27m depth. Cone pushed to 22.7m depth. 11+75.97 12+74.97 13+73.97 14+72.97 15+71.97 40 60 80 100 20 Shear Strength (kPa) Undisturbed △ Remoulded

nat	ersongro		Consulting Engineers	SOIL	- PRO		ND TES	T DATA
	nade Road South, Ottawa, O		-	Geotechnic Prop. Resid	ential De	-Trails Edg	ge Phase 2	
	,, .			Ottawa, On	tario			
DATUM	Ground surface provided by	Annis	s, O'Sullivan, Vollebeł	kk Limited.			FILE NO.	PG2392
REMARKS							HOLE NO.	
BORINGS B	Y CME 55 Power Auger	- -	DAT	E 17 August	2011			BH10
		E	SAMPLE	DEDTU		Pen. R	esist. Blov	vs/0.3m

SOIL DESCRIPTION		PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
		STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m □ ● 50 mm Dia. Cone □ ○ Water Content % □
		STI	L Y	NUN	ECC	N N			
GROUND SURFACE					щ		15-	-71.97	
							16-	-70.97	
							17-	-69.97	
							18-	-68.97	
							19-	-67.97	
							20-	-66.97	
							21-	-65.97	
							22-	-64.97	
							23-	-63.97	
							24-	-62.97	
End of Borehole Practical cone refusal @	25.27						25-	-61.97	
25.27m depth									
(GWL @ 2.3m depth based on field observations)									
									20 40 60 80 100
									Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Proposed Residential Development-Renaud Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATOM												0.	Ρ	G1	160	5	
REMARKS										нс	DLE	NO.			5-	0	 ג
BORINGS BY Hand Auger				D	ATE	11 May 20)09								-0-	03	,
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Per ●	n. Ro 50				ws/ Co		m		neter uction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0	W	/ate	r Co	ont	ent	%			Piezometer Construction
GROUND SURFACE	S		N	RE	z ^o	0-	_	20)	40)	60	i	80)		
TOPSOIL						0-		•••••	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		
Very stiff, brown SILTY CLAY						1-	_			······································		······································					28
) S hea		trer		n (kl)	1(00

Consulting Engineers

natorsonar			Con	sultin	g	SOIL	- PRO	FILE A	ND TE	ST DATA	4
28 Concourse Gate, Unit 1, Ottawa, ON			Eng	ineers	Pr	eotechnic op. Residutawa, Or	dential D	tigation evelopme	ent - Rena	ud Road	
DATUM Ground surface elevations	provi	ded by	Stan	itec Ge					FILE NO.	PG0861	
REMARKS									HOLE NO		
BORINGS BY CME 55 Power Auger	·•····			D	ATE	7 Aug 08				BH11-	18
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		lesist. Blo 0 mm Dia		ction
	STRATA I	TYPE	NUMBER	8 RECOVERY	N VALUE of RQD	(m)	(m)			tent %	Piezometer Construction
GROUND SURFACE	ST	E	10N	REC	N O I			20	40 60	080	щO
TOPSOIL 0.20						- 0-	-87.14				
		ss	1		9	1-	-86.14				
Very stiff to stiff, brown SILTY CLAY						2-	-85.14	1		1	20
- firm and grey by 2.9m depth		тw	2	88		3-	-84.14		1		
						4	- 83.14	4			-
						5	82.14				-
		Тw	3	100		6	- 81.14				
						7	-80.14	4			
						8	- 79.14				
9.60						9	78.14				
Dynamic Cone Penetration Test commenced @ 9.60m depth Inferred SILTY CLAY						10	- 77.14				
						11	- 76.14	20 She ▲ Undis	ar Streng		100

patersong	roi	Ir	Con	sultin	g	SOII	- PRO	FILE A	ND TE	ST DATA	A
28 Concourse Gate, Unit 1, Ottawa,			Eng	ineers	Pr	eotechni op. Resi tawa, O	dential D	stigation Developme	ent - Rena	aud Road	
DATUM Ground surface elevatio	ns provi	ded b	y Star	ntec G					FILE NO.	PG0861	
REMARKS						7 444 09			HOLE NO	BH11-(08
BORINGS BY CME 55 Power Auger	E		SAN		AIE	7 Aug 08		Pen. R	esist. Ble	ows/0.3m	[
SOIL DESCRIPTION	A PLOT			<u> </u>	що	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia	. Cone	meter
	STRATA	алт	NUMBER	8 RECOVERY	VALUE r RQD			• v	Vater Con	itent %	Piezometer
GROUND SURFACE	so VVV	_	X	RE	N N OF	11-	-76.14	20	40 6	0 80	
						12-	-75.14				
						13-	-74.14	•			
					20	14 -	73.14				
								•			
						15	-72.14				
Inferred SILTY CLAY						16-	-71.14	•			
						17-	- 70.14				
					1						
						18 ·	-69.14				
						19-	-68.14	•			
						20-	-67.14				
						21-	-66.14				
						22	-65.14	20 Shea ▲ Undist	40 60 ar Strengt		 00

Inferred SILTY CLAY 22-65.14 23-64.14 23-64.14 1nferred GLACIAL TILL 24-63.14 25-62.14 25-62.14 Practical DCPT refusal @ 25.96	natersonar		Ir	Con	sulting	3	SOI	L PRO	FILE A	ND TI	EST DAT	4		
Datum Cluare, Unano Cluare, Unano Colume, Unano PILE NO PILE NO BORINGS BY CME 55 Power Auger DATE 7 Aug 08 SOIL DESCRIPTION SAMPLE BEPTH BEPTH BETTON SAMPLE BEPTH BETTON SAMPLE BEPTH BETTON SAMPLE BEPTH BETTON SAMPLE BEPTH Cluare Content % 22 40 40 60 80 O Water Content % 22 40 40 60 80 Cluare Content % 24 - 64.14 24 - 63.14 Cluare Content % 24 - 64.14 26 - 62.14 24 - 63.14 24 - 63.14 24 - 63.14 24 - 63.14 24 - 64.14 24 - 64.14 <th <="" colspan="2" td=""><td></td><td>P</td><td colspan="7">Prop. Residential Development - Renaud Road</td></th>	<td></td> <td>P</td> <td colspan="7">Prop. Residential Development - Renaud Road</td>			P	Prop. Residential Development - Renaud Road									
REMARKS PG0851 BORINGS BY CME 55 Power Auger DATE 7 Aug 08 SOIL DESCRIPTION SAMPLE DEPTH (m) Pen. Resist. Blows/0.3m e 50 mm Dia. Cone superiod GROUND SURFACE Sample DEPTH (m) 22 + 65.14 O Water Content % superiod Inferred GLACIAL TILL 22 + 66.14 23 + 64.14 24 + 63.14 24 + 63.14 End of Borenole 25.98 Some days Some days Some days Some days Processed 25.98 Some days Some days Some days Some days CGWL @ 0.61m-Aug. 28/08) Some days Some days Some days Some days Some days	DATUM Ground surface elevations provided by Stantec Geomatics Ltd													
BORINGS BY CME 55 Power Auger DATE: 7 Aug 08 BH11-08 SOIL DESCRIPTION Image: Solut of the second secon	REMARKS PG0861													
SOIL DESCRIPTION SAMPLE DEPTH ELEV. (m) Pen. Resist. Blows/0.3m Bigging Bigging <th< td=""><td colspan="13">HOLE NO. DUIAA OO</td></th<>	HOLE NO. DUIAA OO													
SROUND SURFACE B B B B B B B C O Water Content % D <thd< th=""> D D D</thd<>		E		SAN					Pen. R	esist. E	Blows/0.3m			
GROUND SURFACE Image: Control of the second sec	SOIL DESCRIPTION				2	N	/m)	1	• 5	0 mm D	ia. Cone	mete		
GROUND SURFACE Image: Control of the second sec		RATE	YPE	MBER	°%	UALU ROL			0 V	later Co	ontent %	onstr		
Inferred SILTY CLAY 22.90 Inferred GLACIAL TILL 25.95 End of Borehole Practical DCPT refusal @ 25.95 S9 6m depth (GWL @ 0.61m-Aug. 28/08)	GROUND SURFACE	E S	H	DN I	REC	NO		05.44	20	40	60 80	<u></u> по		
22.90 Inferred GLACIAL TILL End of Borehole Practical DCPT refusal @ 25.96 (GWL @ 0.61m-Aug. 28/08) 20.40.60.80.100 Shear Strength (kPa)							22-	100.14						
23-64.14 24-63.14 25-62.14 End of Borehole Practical DCPT refusal @ 25.95 (GWL @ 0.61m-Aug. 28/08) 20.40 60 80 100 Shear Strength (LPa)														
Inferred GLACIAL TILL 25-62.14 End of Borehole Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08) 20 40 60 80 100 Shear Strength (kPa)							23-	-64.14						
Inferred GLACIAL TILL 25-62.14 End of Borehole Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08) 20 40 60 80 100 Shear Strength (kPa)										7				
25.96 End of Borehole Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08)							24 -	63.14						
End of Borehole Practical DCPT refusal @ 25.96 (GWL @ 0.61m-Aug. 28/08) (GWL @ 0.61m-Aug. 28/08)	Inferred GLACIAL TILL								· · · · · · · · · · · · · · · ·		2			
End of Borehole Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08)							25-	-62.14		•		+		
End of Borehole Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08)														
Practical DCPT refusal @ 25.96m depth (GWL @ 0.61m-Aug. 28/08)	25.96											•		
25.96m depth (GWL @ 0.61m-Aug. 28/08)														
20 40 50 80 100 Shear Strength (kPa)	25.96m depth													
Shear Strength (kPa)	(GWL @ 0.61m-Aug. 28/08)													
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)				-										
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)									20	40	60 80 10	00		
									Shea	r Streng	gth (kPa)			

notorconar	^	In	Cons	ultina		SOIL	. PRO	FILE A	ND TE	ST DAT	4
28 Concourse Gate, Unit 1, Ottawa, ON	Geotechnical Investigation Prop. Residential Development - Renaud Road Ottawa, Ontario										
DATUM Ground surface elevations	provi	ded by	/ Stant	ec Ge					FILE NO	PG0861	
REMARKS									HOLE NO	<u> </u>	
BORINGS BY Hydraulic Shovel				DA	TE 2	28 Aug 08	3				78 T
SOIL DESCRIPTION	PLOT		SAM			DEPTH (m)	ELEV. (m)		lesist. Bl i0 mm Di	ows/0.3m a. Cone	neter uction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE OF ROD			0 V	Vater Co		Piezometer Construction
GROUND SURFACE	03		4	8	zö	0-	-87.14	20	40 6	50 80	
Very stiff to stiff, brown SILTY CLAY							-86.14 -85.14				128 ¥ 128 ¥ 128
- stiff to firm and grey by 2.9m depth End of Test Pit (GWL @ 1.0m-Aug. 28/08)						3	84.14				
								20 She ▲ Undis	ear Stren	60 80 gth (kPa) △ Remoulded	100

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

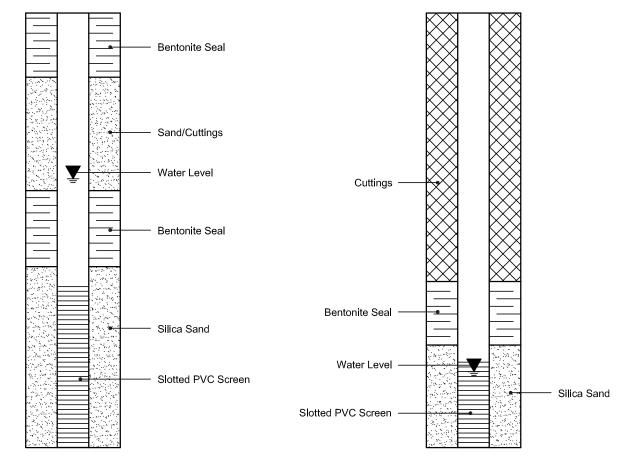
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)									
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size									
D10	-	Grain size at which 10% of the soil is finer (effective grain size)									
D60	-	Grain size at which 60% of the soil is finer									
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$									
Cu	-	Uniformity coefficient = D60 / D10									
Cc and Cu are used to assess the grading of sands and gravels:											

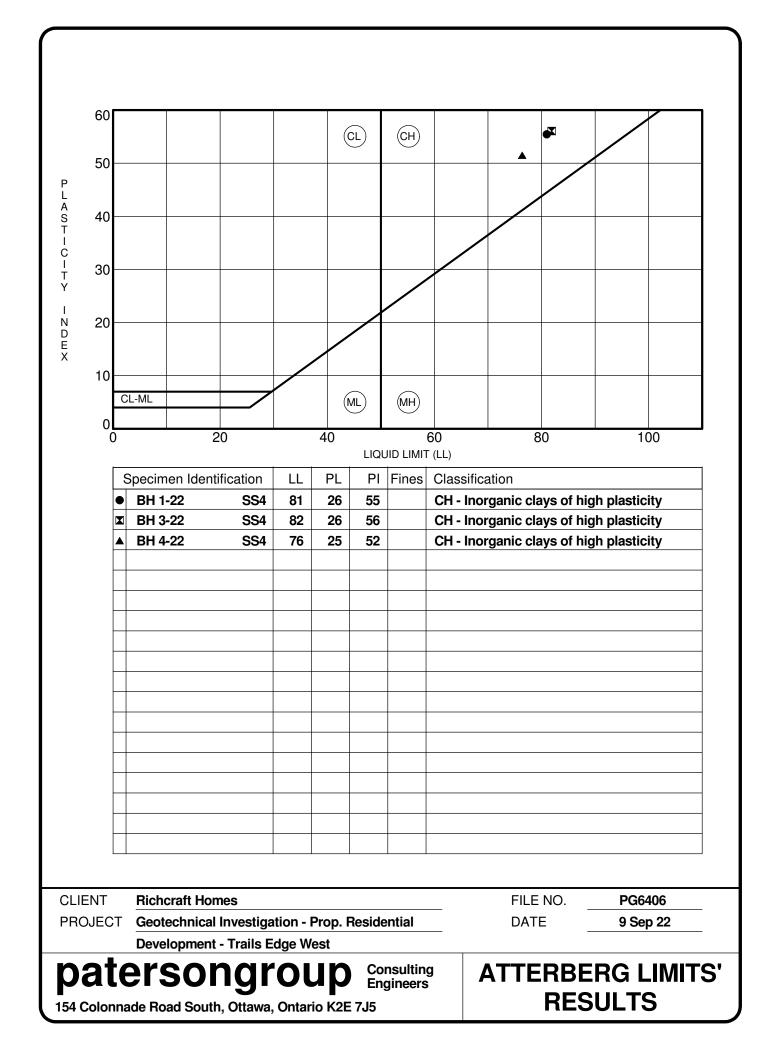
Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

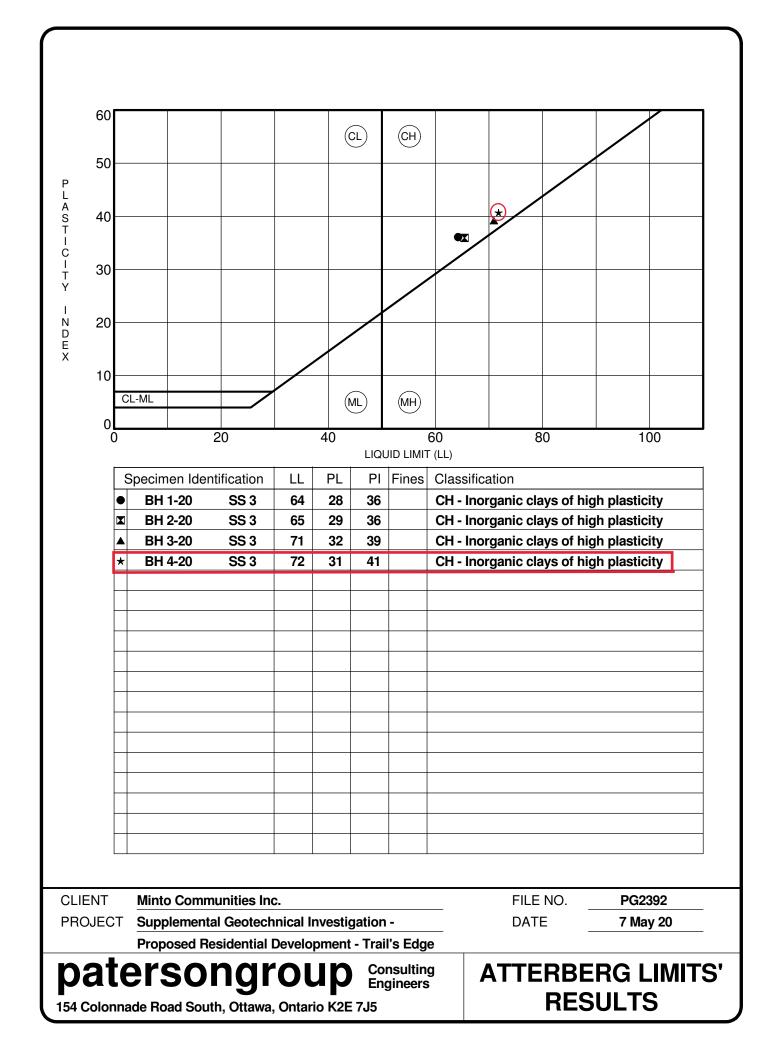
CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.


SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock


MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

\int		HYDROMET		 200 100	U.S. SIEVE 50 30	U.S. SIEVE NUMBERS				U.S. SIEVE OPENING IN INCHES				
100														
90														
80														
P E 7(C E N T 6(
N T 60 F														
N E 50 R														
B Y4(W E I														
Ġ3(Н Т														
20														
1(
	.001	0.01		0.1 GF	RAIN SIZE IN N	1 1 1ILLIMET	ERS	10			100			
		SILT OR CL	_AY	<i>c</i>	SAND				GRAVEL	COBBLES I				
Sr		entification		Class	e me	dium	coarse	e fine MC%		Darse	PI C			
	BH 3-22	SS3	CH - Ino		iys of high p	olasticit	ty							
▲ ★														
	becimen Ide	entification	D100	D60	D30	D	10	%Grave	el %Sa	ind	%Silt	%Clay		
•	BH 3-22	SS3	0.43	0.00				0.0	0.4	1	99	.6		
*		Diabarati	lamas								06400			
	CLIENT PROJECT	Richcraft H	iomes cal Investigat	ion - Pror	Residenti:			FILE	NO. F		G6406 Sep 22			
Ľ			ent - Trails Ed											
			uth, Ottawa,	_		lting ærs					SIZE TIO	N		

paters consulting	ongroup engineers				Linear Sh ASTM D4			
CLIENT:	Richcraft	DEPTH		5'-0" to 7'-0"	FILE NO.:	PG6406		
PROJECT:	Trails Edge West - Block 140	BH OR TP	No:	BH-1 SS3	DATE SAMPLED	9-Sep		
LAB No:	38433	TESTED B	SY:	CP / CS	DATE RECEIVED	13-Sep		
SAMPLED BY:	D.R	DATE REF	PORTED:	27-Sep-22	DATE TESTED	22-Sep		
	LABORAT		RMATION &	TEST RESULTS				
N	loisture No. of Blows	(8)		Calibration	(Two Trials) Tin	NO.(x21)		
Tare	5.09			Tin	4.83	4.84		
Soil Pat Wet + Tare	61.4		Tin	+ Grease	5.12	5.12		
Soil Pat Wet	56.31			Glass	48.97	48.97		
Soil Pat Dry + Tare	35.35		Tin + G	Blass + Water	94.46	91.48		
Soil Pat Dry	30.26		N	/olume	40.37	37.39		
Moisture	86.09		Avera	age Volume	38.8	38.88		
RESULTS:	Soil Pat + Wax + String Soil Pat + Wax + String in Volume Of Pat (Vd	n Water		31.74 11.79 19.95				
	Shrinkage Lim	it		18.07]			
	Shrinkage Rati	•		1.654				
	Volumetric Shrink	age	1′	12.479	4			
	Linear Shrinkaç	ge	2	2.213				
	Curtis Beado	w		J	loe Forsyth, P. Eng.			
REVIEWED BY:		Joe 27-2-2-						

Certificate of Analysis

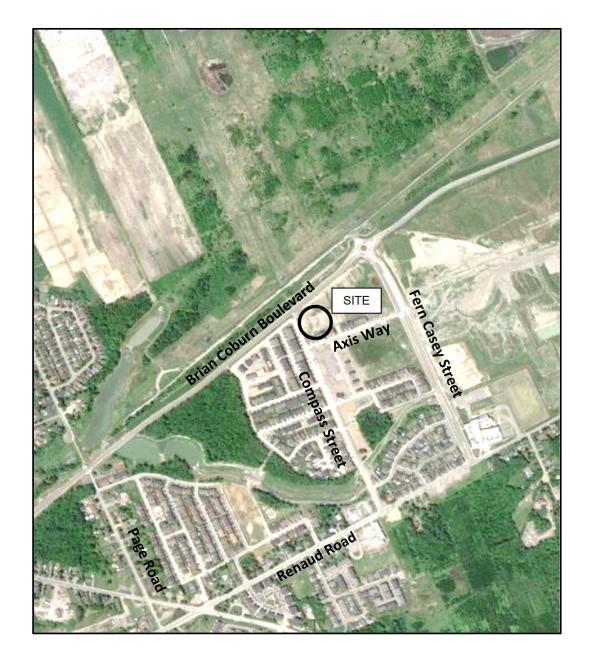
Client: Paterson Group Consulting Engineers

Client PO: 55763

Report Date: 19-Sep-2022

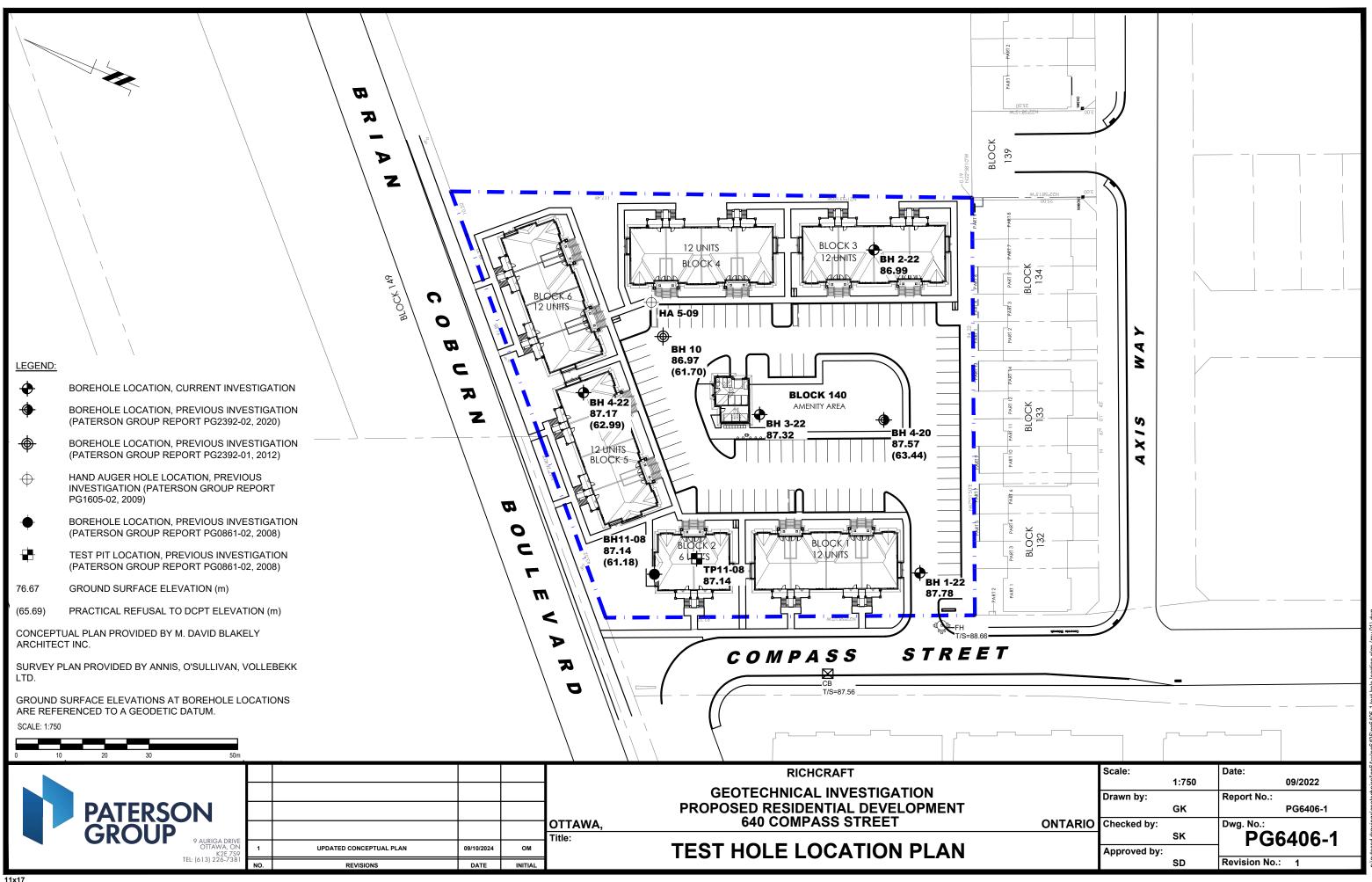
Order Date: 13-Sep-2022

Project Description: PG6406


		BH4-22 SS3					
	Client ID:		-	-	-		
	Sample Date:	09-Sep-22 09:00	-	-	-	-	-
	Sample ID:	2238192-01	-	-	-		
	Matrix:	Soil	-	-	-		
	MDL/Units						
Physical Characteristics	-						
% Solids	0.1 % by Wt.	66.8	-	-	-	-	-
General Inorganics							•
рН	0.05 pH Units	7.43	-	-	-	-	-
Resistivity	0.1 Ohm.m	54.3	-	-	-	-	-
Anions							
Chloride	5 ug/g	<5	-	-	-	-	-
Sulphate	5 ug/g	67	-	-	-	-	-

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

APPENDIX 2


FIGURE 1 – KEY PLAN DRAWING PG6406-1 – TEST HOLE LOCATION PLAN DRAWING PG6406-2 – PERMISSIBLE GRADE RAISE PLAN

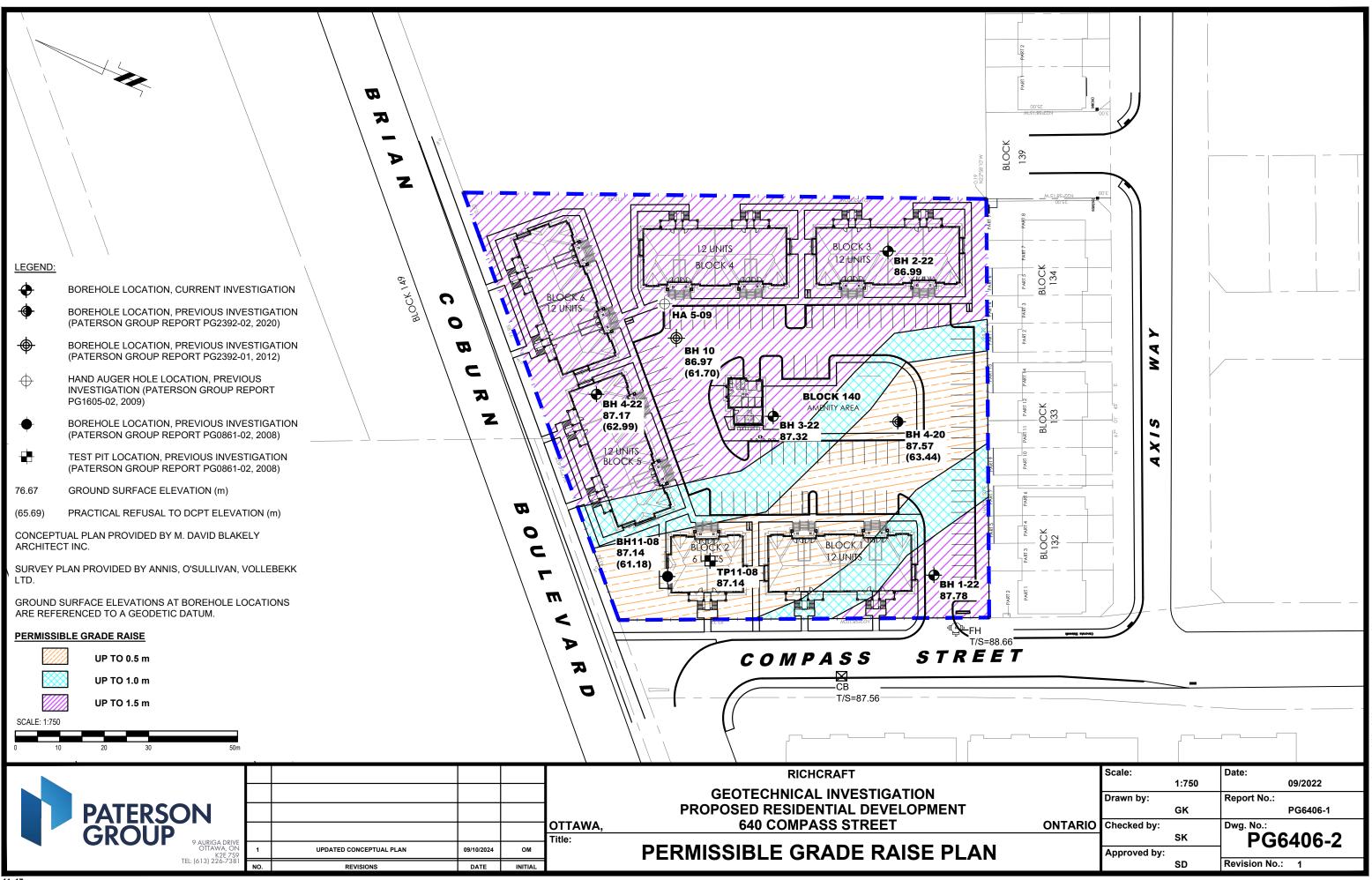
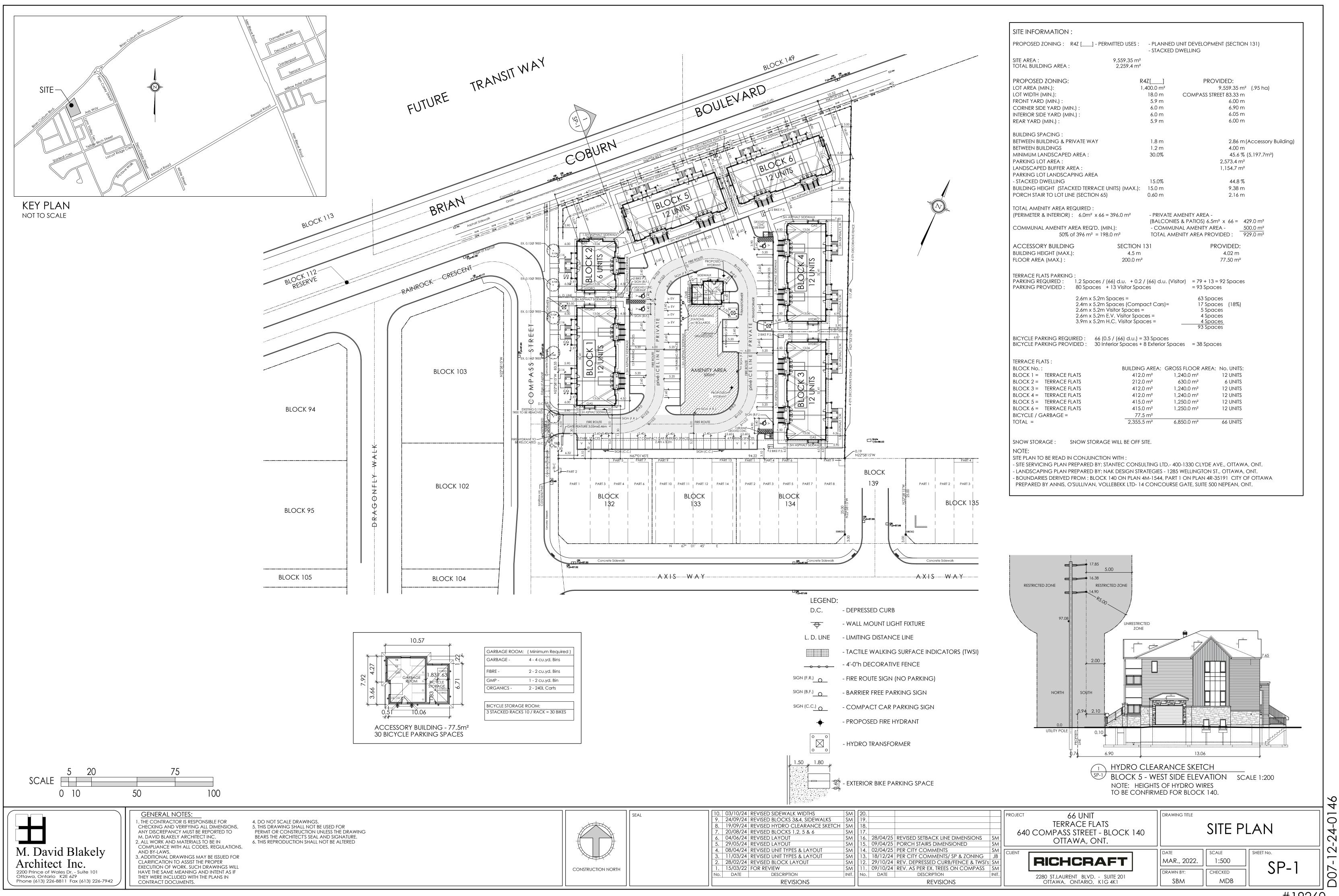


FIGURE 1

KEY PLAN



utocad drawings\geotechnical\pg64xx\pg6406\pg6406\pg6406-1 test hole location plan (rev.01).dw

Appendix E Proposed Site Plan

#19260