

### **Riverside South Block 167**

## - 955 Borbridge Avenue

Servicing and Stormwater Management Report

January 31, 2025

Prepared for:

Richcraft Homes Ltd.

Prepared by:

Stantec Consulting Ltd. 400 – 1331 Clyde Avenue Ottawa ON K2C 3G4

File Number: 160402058

| Revision | Description       | Author | Date     | Quality<br>Check | Date     | Independent Review | Date     |
|----------|-------------------|--------|----------|------------------|----------|--------------------|----------|
| 1        | Servicing and SWM | ZW     | 24.11.05 | DT               | 24.11.08 | SG                 | 24.11.08 |
| 2        | Revised Plan      | ZW     | 25.01.21 | DT               | 25.01.31 | SG                 | 25.01.31 |
|          |                   |        |          |                  |          |                    |          |

# **Limitations and Sign-off**

The conclusions in the report titled Riverside South Block 167 – Servicing and Stormwater Management are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Richcraft Homes Ltd. (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:

Signature

Ziyi Wang Printed Name and Title



Signature

Sheridan Gillis

Printed Name and Title

Reviewed by:

Dustin Thiffault, P.Eng. Printed Name and Title

Signature

Approved by:

# **Table of Contents**

| Limit | ations a     | nd Sign-off                                                                   | i  |
|-------|--------------|-------------------------------------------------------------------------------|----|
| 1     | Intro<br>1.1 | duction<br>Objective                                                          |    |
| 2     | Refer        | ence Documents                                                                | 3  |
| 3     | Potal        | ble Water Servicing                                                           | 4  |
|       | 3.1          | Background                                                                    |    |
|       | 3.2          | Proposed Watermain Sizing and Layout                                          |    |
|       |              | 3.2.1 Connections to Existing Infrastructure                                  |    |
|       |              | 3.2.2 Ground Elevations                                                       |    |
|       |              | 3.2.3 Domestic Water Demands                                                  |    |
|       | 3.3          | Level of Service                                                              |    |
|       |              | 3.3.1 Allowable Pressures                                                     |    |
|       |              | 3.3.2 Fire Flow Demands                                                       |    |
|       | 3.4          | Hydraulic Analysis                                                            |    |
|       |              | 3.4.1 Model Development                                                       | 7  |
| 4     | Wast         | ewater Servicing                                                              | 11 |
| -     | 4.1          | Background                                                                    |    |
|       | 4.2          | Design Criteria                                                               |    |
|       | 4.3          | Sanitary Servicing Design                                                     |    |
| -     | 04.0         |                                                                               |    |
| 5     |              | nwater Management and Storm Servicing                                         |    |
|       | 5.1          | Background                                                                    |    |
|       | 5.2          | Stormwater Management Design<br>5.2.1 Design Criteria and Constraints         |    |
|       | 5.3          | 5.2.1 Design Criteria and Constraints<br>Post-Development Modelling           |    |
|       | 5.5          | 5.3.1 Allowable Release Rate                                                  |    |
|       |              |                                                                               |    |
|       |              | <b>J</b>                                                                      |    |
|       |              | <ul><li>5.3.3 Storage Requirements</li><li>5.3.4 Uncontrolled Areas</li></ul> |    |
|       | 5.4          | Results and Discussion                                                        |    |
|       | -            |                                                                               |    |
| 6     | Geot         | echnical Considerations and Grading                                           | 17 |
|       | 6.1          | Geotechnical Investigation                                                    |    |
|       |              | 6.1.1 Proposed Pavement Structure                                             |    |
|       |              | 6.1.2 Sewer/Watermain Installation                                            |    |
|       | 6.2          | Grading Plan                                                                  | 19 |
| 7     | Utiliti      | es                                                                            | 19 |
| 8     | Appr         | ovals                                                                         | 19 |
| 9     | ••           | on Control                                                                    |    |
|       |              |                                                                               |    |
| 10    |              | lusions and Recommendations                                                   |    |
|       | 10.1         | Potable Water Servicing                                                       |    |
|       | 10.2         | Wastewater Servicing                                                          |    |
|       | 10.3         | Stormwater Management and Servicing                                           |    |
|       | 10.4         | Grading                                                                       |    |
|       | 10.5<br>10.6 | Approvals/Permits<br>Utilities                                                |    |
|       | 10.0         |                                                                               | Z  |

#### List of Tables

| Table 3.1 | Residential Water Demands for 955 Borbridge                              | 6  |
|-----------|--------------------------------------------------------------------------|----|
| Table 3.2 | Fire Flow Calculations Using FUS Methodology                             |    |
| Table 3.3 | Boundary Condtions for Connection Points for 955 Borbridge               | 7  |
| Table 3.4 | C-Factors Applied Based on Watermain Diameter                            | 8  |
| Table 4.1 | Sanitary Peak Flow at Proposed SAN MH 1                                  | 12 |
| Table 5.2 | 2-Year and 100-Year Peak Surface Volume and Controlled Discharge Summary | 15 |
| Table 5.3 | Peak Uncontrolled 2-Year and 100-Year Release Rates                      | 16 |
| Table 5.4 | Storm Event Peak Discharge Rates                                         | 16 |
| Table 6.1 | Recommended Pavement Structure for Local Road                            | 17 |
| Table 6.2 | Recommended Pavement Structure for Driveway and Car-Only Parking Areas   | 18 |

#### **List of Figures**

| Figure | 1.1 | Key Map of Riverside South Subdivision Phase 17-1B Block 167                   | 1  |
|--------|-----|--------------------------------------------------------------------------------|----|
| Figure | 3.1 | Proposed Watermain Layout and Pipe Diameters (mm)                              | 4  |
| Figure | 3.2 | Ground Elevations (m) at Nodes                                                 | 5  |
| Figure | 3.3 |                                                                                |    |
|        |     | Zone Reconfiguration)                                                          | 9  |
| Figure | 3.4 | Minimum Pressures (psi) in Block 167 During PKHR Conditions after SUC Pressure |    |
|        |     | Zone Reconfiguration                                                           | 9  |
| Figure | 3.5 | Available Fire Flows (L/s) in Block 167 During MXDY Conditions after SUC       |    |
|        |     | Pressure Zone Reconfiguration                                                  | 10 |
|        |     |                                                                                |    |

#### List of Appendices

 $\bigcirc$ 

- Appendix B Wastewater Servicing Calculations
- Appendix C Stormwater Management
- Appendix D Geotechnical Information
- Appendix E Proposed Site Plan
- Appendix F Background Report Excerpts

# 1 Introduction

Richcraft Homes Ltd. (Richcraft) has commissioned Stantec Consulting Ltd. (Stantec) to prepare the following Servicing and Stormwater Management Report in support of the Site Plan Application for Block 167 (955 Borbridge Avenue) of the Riverside South Phase 17-1B subdivision. The subject site is within the City of Ottawa, bound by Borbridge Avenue to the north, Ralph Hennessy Avenue to the east, Axis Way to the south, and Compass Street to the west (refer to **Figure 1.1** below).



#### Figure 1.1 Key Map of Riverside South Subdivision Phase 17-1B Block 167

The subject property is currently zoned R4Z (Residential Fourth Density) and occupies 1.45 ha of land. The site is currently undeveloped. The proposed development consists of ninety-three (93) stacked townhouse units as shown in the draft plan included in **Appendix E**.

Servicing and stormwater management constraints for the block were identified as part of the previously approved *Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community* (IBI Group, 2022). Findings from the above noted report are referenced throughout this report.

# $\bigcirc$

# 1.1 Objective

This site servicing and stormwater management (SWM) report has been prepared to present an internal servicing scheme that is free of conflicts, uses existing/approved infrastructure, and meets all design criteria as identified in background documents and City of Ottawa design guidelines.

# 2 **Reference Documents**

The following documents were referenced in the preparation of this report:

- City of Ottawa Sewer Design Guidelines, 2nd Edition, City of Ottawa, October 2012.
- City of Ottawa Design Guidelines Water Distribution, 1st Edition, Infrastructure Services Department, City of Ottawa, July 2010.
- Technical Bulletin ISDTB-2014-02 Revision to Ottawa Design Guidelines Water, City of Ottawa, May 2014.
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016.
- Technical Bulletin ISTB-2018-01 Revision to Ottawa Design Guidelines Sewer, City of Ottawa, March 2018.
- Technical Bulletin ISTB-2018-02 Revision to Ottawa Design Guidelines Water Distribution, City of Ottawa, March 2018.
- Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, March, 2022.
- Geotechnical Investigation: Proposed Residential Development 955 Borbridge Avenue, Ottawa, Ontario, Paterson Group, October 18, 2024.
- Pre-Consultation: Meeting Feedback Proposed Site Plan Control Application 955 Borbridge Avenue, City of Ottawa, September 27, 2024.

# **3** Potable Water Servicing

## 3.1 Background

The proposed development is located within Zone 2W2C of the City of Ottawa's water distribution system. The site will be fed by the 300mm diameter watermain on Borbridge Avenue and the 300mm diameter watermain on Ralph Hennessy Avenue to form a looped system.

# 3.2 Proposed Watermain Sizing and Layout

## 3.2.1 Connections to Existing Infrastructure

The proposed watermain alignment and sizing for the development is demonstrated on **Drawing SSP-1**. A 200mm diameter watermain is proposed to follow the alignment of the private roads within the subject property with a connection to the existing 300mm diameter watermain on Borbrdige Avenue and Ralph Hennessy Avenue at the two entrances to the 955 Borbridge site. **Figure 3.1** shows the location of the two (2) connection points to the existing watermain.



Figure 3.1 Proposed Watermain Layout and Pipe Diameters (mm)

## 3.2.2 Ground Elevations

Proposed ground elevations throughout the site range from approximately 97.28 m to 97.73 m at nodes in the watermain network.



### Figure 3.2 Ground Elevations (m) at Nodes

## 3.2.3 Domestic Water Demands

The proposed site contains a total of ninety-three (93) stacked townhouse units, with an estimated total population of 251 persons. Refer to **Appendix A.1** for detailed domestic water demand calculations.

Water demands for the development were estimated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 280 L/cap/d. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. The calculated residential water consumption is represented in **Table 3.1**.

| Unit Type          | Units | Persons/Unit | Population | AVDY (L/s) | MXDY (L/s) | PKHR (L/s) |
|--------------------|-------|--------------|------------|------------|------------|------------|
| Townhouse<br>Units | 93    | 2.7          | 251        | 0.81       | 2.03       | 4.48       |

#### Table 3.1Residential Water Demands for 955 Borbridge

## 3.3 Level of Service

### 3.3.1 Allowable Pressures

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e., basic day, maximum day, and peak hour) should be in the range of 350 to 552 kPa (50 to 80 psi) and no less than 275 kPa (40 psi) at the ground elevation on the streets (i.e., at hydrant level). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way is 552 kPa (80 psi). As per the Ontario Building Code (OBC) & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated pressure relief measures are required. The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). Under emergency fire flow conditions, the minimum pressure objective in the distribution system is 138 kPa (20 psi).

## 3.3.2 Fire Flow Demands

Fire flow calculations were completed using the Fire Underwriters Survey (FUS) methodology. Refer to **Appendix A.2** for detailed FUS calculations. The results of the fire flow calculations are summarized in **Table 3.2**.

| Unit Type              | Description                                                                         | Required Fire<br>Flow (L/min) | Required Fire<br>Flow (L/s) |  |
|------------------------|-------------------------------------------------------------------------------------|-------------------------------|-----------------------------|--|
| Two-bedroom<br>Terrace | Two-storey building with twelve<br>stacked units (worst case<br>exposures: Block 3) | 11,000                        | 183                         |  |

## 3.4 Hydraulic Analysis

Hydraulic modeling using PCSWMM was built by Stantec using the following boundary conditions:

- 1. Boundary conditions before and after the SUC Pressure Zone Reconfiguration at the Borbridge Avenue watermain across from the northern entrance to the site were provided by City of Ottawa staff.
- 2. Boundary condition before and after the SUC Pressure Zone Reconfiguration at the Ralph Hennessy Avenue watermain across from the eastern entrance to the site were provided by City of Ottawa staff.

The boundary conditions used for the hydraulic analysis are summarized in Table 3.3.

|                                                                        |                                 | SUC Pressur<br>econfiguratio |                                   | After SUC Pressure Zone<br>Reconfiguration |                   |                                   |  |
|------------------------------------------------------------------------|---------------------------------|------------------------------|-----------------------------------|--------------------------------------------|-------------------|-----------------------------------|--|
| Location                                                               | Max. HGL<br>(AVDY),<br>Head (m) | PKHR,<br>Head (m)            | MXDY+FF<br>(183 L/s),<br>Head (m) | Max. HGL<br>(AVDY),<br>Head (m)            | PKHR,<br>Head (m) | MXDY+FF<br>(183 L/s),<br>Head (m) |  |
| 1 – Borbridge<br>Avenue<br>(northern<br>entrance to<br>Block 167)      | 132.3                           | 124.9                        | 123.3                             | 146.8                                      | 143.7             | 140.7                             |  |
| 2 – Ralph<br>Hennessey<br>Street (eastern<br>entrance to<br>Block 167) | 132.3                           | 124.9                        | 123.2                             | 146.8                                      | 143.7             | 140.5                             |  |

#### Table 3.3 Boundary Conditions for Connection Points for 955 Borbridge

The anticipated pressures in this development were assessed to meet minimum servicing requirements (average day and peak hour demands). A fire flow analysis was also performed under maximum day conditions. Detailed results are shown in **Appendix A3**.

## 3.4.1 Model Development

New watermains were added to the hydraulic model to simulate the proposed distribution system. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines (**Table 3.4**).

| Nominal Pipe Diameter (mm) | C-Factor |
|----------------------------|----------|
| 150                        | 100      |
| 200 to 250                 | 110      |
| 300 to 600                 | 120      |
| Over 600                   | 130      |

#### Table 3.4 C-Factors Applied Based on Watermain Diameter

#### 3.4.1.1 Average Day & Peak Hour

The hydraulic model results show that the maximum pressures (AVDY condition) are anticipated to be approximately 339-343 kPa (49.2-49.8 psi) prior to the SUC Pressure Zone Reconfiguration and 480-485 kPa (69.7-70.4 psi) after the SUC Pressure Zone Reconfiguration within the Block 167 site. Minimum pressures during PKHR conditions are anticipated to be approximately 265-270 kPa (38.5-39.3 psi) prior to the SUC Pressure Zone Reconfiguration and 450-455 kPa (65.3-66.0 psi) after the SUC Pressure Zone Reconfiguration and 450-455 kPa (65.3-66.0 psi) after the SUC Pressure Zone Reconfiguration for Block 167. Following the SUC Pressure Zone Reconfiguration, these pressures are below the maximum allowable pressure at the unit of 80 psi, therefore, pressure reducing valves (PRVs) are not required for the development.

**Figure 3.3 and Figure 3.4** below identify the minimum (PKHR) and maximum pressure (AVDY) results for the simulation, respectively.



Figure 3.3 Maximum Pressures in Block 167 (during AVDY Conditions after SUC Pressure Zone Reconfiguration)



Figure 3.4 Minimum Pressures (psi) in Block 167 During PKHR Conditions after SUC Pressure Zone Reconfiguration

#### 3.4.1.2 Maximum Day Plus Fire flow

An analysis was carried out using the hydraulic model to determine if the proposed development, under maximum day demands, can achieve a fire flow of 11,000 L/min (183 L/s) while maintaining a residual pressure of 138 kPa (20 psi). This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of PCSWMM. The available flows are shown in **Figure 3.5**.



#### Figure 3.5 Available Fire Flows (L/s) in Block 167 During MXDY Conditions after SUC Pressure Zone Reconfiguration

Using the proposed pipe layout and sizing, a fire flow of 11,000 L/min (183 L/s) can be achieved while maintaining at least 20 psi residual pressure at all locations upon development.

# 4 Wastewater Servicing

## 4.1 Background

As indicated in Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022), the wastewater from the Riverside South Phase 17-1B development is conveyed to the existing 450mm diameter sanitary sewer on Ralph Hennessy Road via an extended 375mm gravity sewer. Wastewater from the Riverside South Phase 17-1B Development is ultimately conveyed to the River Road Pumping Station.

The design brief identifies MH 907A on Borbridge Avenue as being used to service the proposed site. MH 907A lies within a sewer branch immediately upstream of the connection to the 375mm sewer on Ralph Hennessy Avenue. The brief identified an assumed site area of 1.45ha and a population of 188.5 persons (130 persons/ha) for the development.

## 4.2 Design Criteria

As outlined in the City of Ottawa Sewer Design Guidelines, the following design parameters were used to calculate wastewater flow rates and to size on-site sanitary sewers:

- Minimum full flow velocity 0.6 m/s
- Maximum full flow velocity 3.0 m/s
- Manning's roughness coefficient for all smooth-walled pipes 0.013
- Single family home persons per unit 3.4
- Townhouse persons per unit 2.7
- Extraneous flow allowance 0.33 L/s/ha
- Residential average flows 280 L/cap/day
- Commercial/mixed-use flows 28,000 L/ha/day
- Maintenance hole spacing 120 m for pipes under 450 mm diameter, 150 m for pipes 450 mm diameter and larger
- Minimum cover 2.5 m
- Harmon correction factor 0.8

In addition, a residential peak factor based on Harmon's Equation was used to determine the peak design flows, per the City of Ottawa Sewer Design Guidelines.

Refer to **Appendix B** for the sanitary sewer design sheet for the proposed site.

# 4.3 Sanitary Servicing Design

200mm diameter sanitary sewers are proposed throughout the site. Proposed SAN MH 1 is to be installed into the existing 300 mm sewer main on Borbridge Avenue to suit the proposed site access and serve as the sanitary outlet for the site. Sanitary flows will then be directed eastwards from Borbridge Avenue to Ralph Hennessy Avenue per background reports. The proposed sanitary sewer layout for the subject site is shown in **Drawings SSP-1** and **SA-1**. The sanitary sewer design sheet is included in **Appendix B.1**.

The proposed peak flows from 995 Borbridge are summarized in Table 4.1 below.

 Table 4.1
 Sanitary Peak Flow at Proposed SAN MH 1

| MH ID                               | Total Area (ha) | Population | Peak Flow (L/s) | Sewer Diameter<br>(mm) |
|-------------------------------------|-----------------|------------|-----------------|------------------------|
| SAN MH 1, Block<br>167 contribution | 1.45            | 251        | 3.3             | 200                    |

The Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022) assumes a peak flow generation of 2.7L/s for the sewer segment with discharge from the proposed 955 Borbridge site, with approximately 2.3L/s allotted for the site itself. Background information, including the IBI design brief, sanitary sewer design sheet, and the sanitary flow calculation based on the expected population, are provided in **Appendix F**.

The above table shows a 1.0 L/s increase in the expected sanitary peak flows over the 2.3L/s allotted as a result of higher anticipated population density. The residual capacity noted in the IBI Design Brief for the critical sewer run MH 908A – MH 909A is 13.22L/s, which demonstrates that the downstream sewer system maintains sufficient capacity to accept the relatively small increase in expected site sanitary peak discharge.

# 5 Stormwater Management and Storm Servicing

The proposed development encompasses approximately 1.45 ha of land within Block 167 of the Riverside South Phase 17-1B subdivision. The entire development is residential containing stacked townhouse units. As shown on **Drawing SD-1**, post-development minor system peak flows from the development will be discharged to an existing 1,650 mm diameter storm sewer on Borbridge Avenue. Emergency overland flows during storm events above that of the 100-year design storm event will be directed to Ralph Hennesy Avenue Right-of-Way and Rockmelon Street Right-of-Way, and ultimately discharging to Riverside South Community Pond 5 located northeast of the site. Stormwater quality control (80% TSS removal) is provided by RSC Pond 5, as described in the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022). Refer to **Appendix F** for the storm drainage plan and storm sewer design sheet for the Riverside South Phase 17-1B Subdivision (IBI Group, 2022).

In the existing condition, site runoff sheet flows overland to the east towards Ralph Hennessy Avenue. The site is currently undeveloped.

# 5.1 Background

IBI Group completed the Design Brief of the Riverside South Subdivision Phase 17-1B in March 2022. The design of storm drainage system and sewer network in the site accounted for development within the 955 Borbridge site.

Based on the IBI brief, the site minor system release rate is to be restricted to that of the previously modeled 5-year flow for the area, determined to be 320L/s. On-site quantity control storage is required to retain all runoff from the development from design storms up to and including the 100-year storm.

Flows are to be ultimately conveyed to RSC Pond 5 for quality and quantity control per Stormwater Management Report for the Design Brief for the Riverside South Phase 17-1B, (IBI Group, 2022).

Additional SWM criteria from this report are listed in the proceeding sections.

## 5.2 Stormwater Management Design

### 5.2.1 Design Criteria and Constraints

The design methodology for the SWM component of the development is as follows:

#### General

• Application of the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997, as described in Ottawa's Sewer Design Guidelines.

- Minimum time of concentration values applied for each subcatchment cannot be less than 10 minutes.
- Use of the Modified Rational Method to identify required quantity storage based on restricted minor system release rates (City of Ottawa).
- Quality control has been provided for the site via the existing RSC Pond 5.

### Storm Sewer & Inlet Controls

- Proposed site to discharge to the existing 1650 mm diameter storm sewer on Borbridge Avenue, (Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, 2022).
- Minor system discharge rate from the entirety of Block 167 not to exceed 320 L/s in the 100-year event (Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, 2022).
- Size storm sewers to convey the 2-year storm event under free-flow conditions using 2012 City of Ottawa I-D-F parameters. (City of Ottawa)

### Surface Storage & Overland Flow

- No surface ponding is permitted within the site during the 2-year storm event (City of Ottawa).
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35m for design storm events (i.e., up to 100-year storm) (City of Ottawa).
- Minimum clearance depth of 0.30m to be provided from spill elevations to building envelopes in proximity of overland flow routes or ponding areas (City of Ottawa).
- Provide adequate emergency overflow conveyance off-site (City of Ottawa).

In keeping with the 2-year inlet restriction criterion, inlet control devices (ICDs) or orifice plates are specified for all catch basins to limit the inflow to the minor system. Restricted inlet rates to the sewer are necessary to prevent the hydraulic grade line from surcharging storm sewers into basements during major storms. **Drawing SD-1** outlines the proposed storm sewer alignment and drainage divides.

## 5.3 Post-Development Modelling

## 5.3.1 Allowable Release Rate

The allowable release rate from the 955 Borbridge Avenue site is based on the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, March 2022), and noted as 320L/s for storm events up to and including the 100-year event.

## 5.3.2 Modelling Rationale

The Modified Rational Method was employed to assess the rate of runoff generated during postdevelopment conditions. A time of concentration for the post-development areas (10 minutes) was assigned based on the relatively small site and its proximity to the existing drainage outlet for the site. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). Peak flow rates to sewers have been calculated using the rational method as follows:

$$Q = 2.78(C)(I)(A)$$

Where:

Q = peak flow rate, L/s C = site runoff coefficient I = rainfall intensity,mm/hr (per City of Ottawa IDF curves) A = drainage area, ha

### 5.3.3 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. The use of controlled surface and subsurface storage within a proposed subdrain trench are proposed to reduce site peak outflow to the allowable target release rate. As per City of Ottawa criteria, no surface ponding is permitted within the site during the 2-year storm event. Refer to **Appendix C** for the Modified Rational Method calculations which demonstrate that no surface storage is required in the 2-year event.

It is proposed to detain stormwater on the surface in parking lot areas using inlet control devices (ICDs) in associated catch basins. Additional runoff from storms in excess of the 100-year storm event that exceed available on-site storage will be directed overland towards the Ralph Hennessy Avenue ROW at the east and Rockmelon Street ROW at the southwest boundary of the site.

The Modified Rational Method was employed to determine the peak volume stored in the catch basins and surface storage areas. The site was subdivided into subcatchments (subareas) as defined by the proposed grades and the location, nature, or presence/absence of inlet control devices (ICDs). Each subcatchment was assigned a runoff coefficient based on the proposed finished surface. Further details can be found in Appendix C, while Drawing SD-1 illustrates the proposed subcatchments. The inlet control devices were sized based on the available target release rate from the site during the 2-year storm event. Storage volume and controlled release rates from the on-site catch basins during the 2 and 100-year events are summarized in the table below.

|         | ICD                   | 2-Year Event          |                                            |                                             | 100-Year Event        |                                            |                                             |
|---------|-----------------------|-----------------------|--------------------------------------------|---------------------------------------------|-----------------------|--------------------------------------------|---------------------------------------------|
| Area ID | (Circular<br>Orifice) | Release<br>Rate (L/s) | V <sub>required</sub><br>(m <sup>3</sup> ) | V <sub>available</sub><br>(m <sup>3</sup> ) | Release<br>Rate (L/s) | V <sub>required</sub><br>(m <sup>3</sup> ) | V <sub>available</sub><br>(m <sup>3</sup> ) |
| L103A   | 140 mm                | 43.4                  | 0.0                                        | 49.6                                        | 52.4                  | 44.2                                       | 49.6                                        |
| L104A   | 102 mm                | 23.9                  | 0.2                                        | 33.6                                        | 26.0                  | 26.6                                       | 33.6                                        |
| L106A   | 140 mm                | 45.2                  | 0.0                                        | 83.5                                        | 52.8                  | 47.1                                       | 83.5                                        |
| L107A   | 108 mm                | 26.5                  | 0.0                                        | 50.8                                        | 29.5                  | 28.5                                       | 50.8                                        |
| L107B   | 102 mm                | 15.0                  | 0.0                                        | 19.8                                        | 22.0                  | 13.0                                       | 19.8                                        |

| Table 5.1 | 2-Year and 100-Year Peak Surface Volume and Controlled Discharge Summary |
|-----------|--------------------------------------------------------------------------|
|           |                                                                          |

| L108A | 102 mm | 23.0 | 0.0 | 37.3 | 26.4 | 22.9 | 37.3 |
|-------|--------|------|-----|------|------|------|------|
| L108B | 102 mm | 3.5  | 0.0 | 2.1  | 7.4  | 0.0  | 2.1  |

### 5.3.4 Uncontrolled Areas

Due to grading restrictions, four subcatchment areas have been designed without a storage component. Areas UNC1-3 are located at the perimeter of the site where tie-ins to existing property line grades cannot permit capture of runoff to the minor system. Peak discharges from uncontrolled areas have been considered in the overall SWM plan and have been balanced through overcontrolling ICDs within the proposed site to meet target levels.

Table 5.3 summarizes the 2 and 100-year uncontrolled release rates from the proposed development.

| Storm Return Period | Area ID | Area (ha) | Runoff 'C' | Tc (min) | Q <sub>release</sub> (L/s) |
|---------------------|---------|-----------|------------|----------|----------------------------|
|                     | UNC-1   | 0.07      | 0.53       | 10       | 7.9                        |
| 2-year              | UNC-2   | 0.16      | 0.57       | 10       | 19.5                       |
|                     | UNC-3   | 0.04      | 0.63       | 10       | 5.4                        |
|                     | UNC-1   | 0.07      | 0.66       | 10       | 23.0                       |
| 100-year            | UNC-2   | 0.16      | 0.71       | 10       | 56.6                       |
|                     |         |           |            |          |                            |

Table 5.2 Peak Uncontrolled 2-Year and 100-Year Release Rates

UNC-3

## 5.4 Results and Discussion

The following section summarizes the key analysis results. For detailed calculations please refer to the Modified Rational Method sheet in **Appendix C**.

0.04

0.79

10

15.6

**Table 5.4** summarizes the minor system peak discharge rate from the proposed 955 Borbridge Avenue for the 2 and 100-year storm events.

#### Table 5.3 Storm Event Peak Discharge Rates

|                         | 2-Year Peak Discharge (L/s) | 100-Year Peak Discharge (L/s) |
|-------------------------|-----------------------------|-------------------------------|
| Controlled Discharge    | 184.5                       | 216.7                         |
| Uncontrolled Sheet Flow | 32.8                        | 95.2                          |
| Total                   | 217.3                       | 311.9                         |
| Target                  | 32                          | 20                            |

The total release rate from the proposed 955 Borbridge Avenue site is anticipated to be less than the allowable rate during all storm events up the 100-year storm event.

# 6 Geotechnical Considerations and Grading

# 6.1 Geotechnical Investigation

A geotechnical investigation report for 955 Borbridge Avenue was completed by Paterson Group on October 18, 2024. Field testing consisting of the advancement of four (4) boreholes with a maximum depth of 5.9m throughout the subject site was completed on September 20, 2024. Data from a previous investigation carried out by Paterson including a total of two (2) test pits and three (3) test boreholes with a maximum depth of 5.7m was also taken into consideration. The geotechnical investigation report is included in **Appendix D.1**.

The site is undeveloped with surface covered by gravel and grass. The grade across the site is generally level at an elevation of approximately 96 m. The subsurface profile within Block 167 consisted of 0.3 to 1.1m fill consists of compact brown silty sand, sandy silt and silty clay with gravel and organics, about 3.6 to 4.8m glacial till was encountered underlying the fill consists of compact to very dense brown silty sand to sandy silt with gravel, cobble and boulders.

Groundwater levels were taken at the four (4) boreholes advanced in 2020. The long-term groundwater table is anticipated to be at a 3 to 4 m depth, subject to seasonal fluctuations.

The site is considered suitable for the proposed development from a geotechnical perspective. Conventional shallow foundations placed on undisturbed stiff to firm silty clay, compacted silty sand to sandy silt, or engineered compacted fill, can be used for the proposed buildings.

Since no clay deposit was found on site, there will be no permissible grade raise restriction or geotechnical tree planting setback required for the 955 Borbridge Development

## 6.1.1 Proposed Pavement Structure

Tables 6.1 and 6.2 summarize the recommended pavement structures for the development.

| Thickness (mm) | Material Description                                                                           |
|----------------|------------------------------------------------------------------------------------------------|
| 40             | Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete                                        |
| 50             | Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete                                      |
| 150            | Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD                               |
| 450            | Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD                                  |
| -              | Subgrade – fill in situ soil or.OPSS Granular B Type I or II material placed over in situ soil |

### Table 6.1 Recommended Pavement Structure for Local Road

| Thickness (mm) | Material Description                                                                    |
|----------------|-----------------------------------------------------------------------------------------|
| 50             | Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete                                 |
| 150            | Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD                        |
| 300            | Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD                           |
| -              | Subgrade – OPSS Granular B Type II material placed over in situ soil or engineered fill |

#### Table 6.2 Recommended Pavement Structure for Driveway and Car-Only Parking Areas

### 6.1.2 Sewer/Watermain Installation

The subsurface soils are considered to be Type 2 and 3 according to the Occupational Health and Safety Act and Regulations for Construction Projects. For excavations up to 3 m deep, 1H:1V slopes or shallower are recommended. A shallow slope should be used if the excavation is below the groundwater table. A trench box is required for all steep or vertical side slopes where workers are present.

At least 150mm of OPSS Granular A crushed stone compacted to 95% SPMDD is recommended as bedding for watermains and sewers, up to the springline of the pipes. OPSS Granular A crushed stone is to be used as cover material at least 300mm above the obvert of the pipes and compacted to a minimum of 95% SPMDD.

If the excavation and filling operations are carried out in dry weather, the moist brown silty clay is expected to be suitable as backfill material (above the cover material). Wet silty clay materials will be difficult to reuse without an extensive drying period. The trench backfill material within the frost zone (about 1.8 m below finished grade) should match the existing soils at the trench walls. Clay seals are recommended at no more than 60 m intervals in the service trenches and at strategic locations to reduce long-term lowering of the groundwater level in the site.

A low to moderate volume of groundwater infiltration is expected during excavation and it is anticipated to be sufficient in providing groundwater control by using open sumps and pumps. Contractor should be prepared to direct any water away from all bearing surface and subgrade to avoid disturbance to the founding medium. A temporary Permit to Take Water (PTTW) from the Ontario Ministry of the Environment, Conservation and Parks (MECP) may be required if more than 400,000 L/day of ground and/or surface water need to be pumped during the construction phase (to be determined by the geotechnical consultant). The review/issuance of the permit may take upwards of 4 months. For typical ground/surface water pumping volumes (50,000 L/day to 400,000 L/day), registration on the Environmental Activity and Sector Registry (EASR) will be required. Two to four weeks should be allotted for the completion of this registration and the preparation of a Water Taking and Discharge Plan by a Qualified Person as required under O.Reg. 63/16.

The founding stratum should be protected from freezing temperatures if winter construction is anticipated. The trench excavations should also be completed in a manner that will avoid the introduction of frozen materials into the trenches.

# $\bigcirc$

# 6.2 Grading Plan

Proposed grading for Block 167 is shown on Drawing GP-1. The proposed grading design for the Block 167 site directs the controlled overland flow from east half of the site toward Ralph Hennessy Avenue ROW and the controlled overland flow from the west half of the site toward Rockmelon Street ROW, as the emergency spill out outlet during major storm event that exceeded the 100-year level. A small North, and West portion of the site containing mostly landscape and grassed area drains uncontrolled towards existing Borbridge Avenue ROW. Another small section of mainly landscape area of proposed townhomes front yard drains uncontrolled towards Rockmelon Street ROW. The proposed grading implements sags in the parking areas for surface stormwater detention.

The proposed grading has been developed to match the existing road grades along Borbridge Avenue to the North, Ralph Hennessy Avenue to the East and Rockmelon Street to the South.

All grading, in-filling and backfilling works are to be completed as per the geotechnical recommendations made in Paterson's geotechnical investigation report (summarized above in Section 6.1).

# 7 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

# 8 Approvals

The City of Ottawa will review most development applications as they relate to the provision of water supply, wastewater collection and disposal, and stormwater conveyance and treatment for Site Plan Approval.

An Environmental Compliance Approval (ECA) is not expected to be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed servicing works within the proposed private block so long as part lot control is not pursued for this development (i.e., as long as the property will be held under single ownership). The Rideau Valley Conservation Authority (RVCA) will be circulated on this submission.

An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry (EASR) may be required for the site. The geotechnical consultant shall confirm at the time of application whether a PTTW or EASR registration is required.

No other approval requirements from other regulatory agencies are anticipated.

# $\bigcirc$

# 9 Erosion Control

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- Limit the extent of the exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- Provide sediment traps and basins during dewatering works.
- Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Refer to **Drawing EC/DS-1** for the proposed location of silt fences, straw bales, and other erosion control measures.

# **10** Conclusions and Recommendations

# 10.1 Potable Water Servicing

The proposed watermain network is capable of achieving the level of service required by the City of Ottawa based on the hydraulic analysis. The following conclusions were made:

- The proposed water distribution system in the 955 Borbridge site is recommended to consist of a 200mm diameter watermain connecting to the existing 300mm diameter watermain on Borbridge Avenue and Ralph Hennessy Avenue at two connection points to loop the system.
- The proposed watermain network operates below the maximum pressure objective of 552 kPa (80 psi) in both the average day (AVDY) and peak hour (PKHR) conditions both before and after the SUC Pressure Zone Reconfiguration.
- During maximum day domestic demands with a fire flow demand of 11,000 L/min (183 L/s), the proposed watermain network is capable of providing sufficient fire flow while maintaining a residual pressure of 138 kPa (20 psi) in all areas within the development both before and after the SUC Pressure Zone Reconfiguration.

# 10.2 Wastewater Servicing

Wastewater from the proposed development will be conveyed to the existing sanitary sewer on Borbridge Avenue constructed as part of the Riverside South Phase 17-1B Development. The wastewater will ultimately be directed to the River Road Pumping Station.

200mm diameter sanitary sewers are proposed throughout the site. The capacity of the existing sanitary sewers on Ralph Hennessy Avenue and further downstream was verified with the estimated peak wastewater flows from the site and their relative increase from the estimates made in the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022). The analysis confirmed that there is sufficient capacity within the downstream sanitary sewer system to service the site.

## **10.3 Stormwater Management and Servicing**

The proposed stormwater management plan is in compliance with the requirements outlined in the background documents, the City of Ottawa Sewer Design Guidelines and the Ontario Ministry of the Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual.

Inlet control devices were defined for each subcatchment to restrict inflow rates to the storm sewers to that of the 2-year runoff for the 955 Borbridge Avenue site as per City of Ottawa and background report design criteria. Emergency major system peak flows from the site for storm events above that of the 100-year design storm will be directed to Ralph Hennessy Avenue ROW and Rockmelon Street ROW, except for small uncontrolled areas to the north which will drain to Borbridge Avenue as per existing conditions.

Minor system peak flows will be directed to the existing 1650 mm diameter storm sewer on Borbridge Avenue. Quantity and quality control (80% TSS removal) of stormwater runoff will be provided at the downstream RSC Pond 5.

# 10.4 Grading

Proposed grading for the site directs emergency major system flows from events above that of the 100year design storm event to the surrounding ROWs. The proposed grading implements sags in the parking areas for surface stormwater detention and has been designed to accommodate SWM requirements for the development.

All grading, in-filling and backfilling works are to be completed as per the geotechnical recommendations made in the background geotechnical investigation report (summarized above).

# 10.5 Approvals/Permits

An MECP Environmental Compliance Approval (ECA) may be required for the installation of the proposed storm and sanitary sewers within the private site should part lot control be pursued to sever the property into separate parcels at a later date. A Permit to Take Water or registration on the EASR may be required for dewatering works during sewer/watermain installation, pending confirmation by the geotechnical consultant. The Rideau Valley Conservation Authority (RVCA) will need to be consulted in order to obtain municipal approval for site development. No other approval requirements from other regulatory agencies are anticipated.

# 10.6 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

# Appendices

Appendix A Potable Water Servicing

# A.1 Domestic Water Demand Calculations

#### Riverside South Phase 17 - Block 167, Ottawa, ON - Domestic Water Demand Estimates

| Densities as | per City Guio | delines:        |
|--------------|---------------|-----------------|
| Townho       | use Row Uni   | ts <sup>1</sup> |
| Row          | 2.7           | рри             |
|              |               |                 |



Site Plan provided by M.David Blakely Architect Inc. Rev 7 Project No. 160402058

| Type of Unit | No. of<br>Units |     | Daily Rate of Demand <sup>2</sup><br>(L/cap/day) | Avg I   | Day Demand | Max Day | Demand <sup>3</sup> | Max Hour Demand <sup>3</sup> |       |
|--------------|-----------------|-----|--------------------------------------------------|---------|------------|---------|---------------------|------------------------------|-------|
|              | Units           |     | (L/Cap/uay)                                      | (L/min) | (L/s)      | (L/min) | (L/s)               | (L/min)                      | (L/s) |
| Block 1      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 2      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 3      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 4      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 5      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 6      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Block 7      | 9               | 24  | 280                                              | 4.7     | 0.08       | 11.8    | 0.20                | 26.0                         | 0.43  |
| Block 8      | 12              | 32  | 280                                              | 6.3     | 0.11       | 15.8    | 0.26                | 34.7                         | 0.58  |
| Total Site : | 93              | 251 |                                                  | 48.8    | 0.81       | 122.1   | 2.03                | 268.5                        | 4.48  |

#### Notes:

1 As per Table 4-1 from the City of Ottawa Water Design Guidelines, the persons per unit for Townhouse (row) units is 2.7

2 As per Table 4-2 from the City of Ottawa Water Design Guidelines and Technical Bulletin ISTB-2021-03, the average daily rate of water demand for residential areas: 280 L/cap/day

3 As per Table 4.2 from the City of Ottawa Water Design Guidelines, the water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum daily demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

# A.2 FUS Calculation Sheets

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 1 Description: Block 1 (2-storey residential townhouses c/w basement)

| Step       | Task                                                                                                                                                    |           |                                                                                                    |                       |                             | No                                       | tes                              |                |                  |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|----------------------------------|----------------|------------------|-------|------------|----------------------------|--|
| 1          | Determine Type of<br>Construction                                                                                                                       |           |                                                                                                    | Туре                  | V - Wood Fra                | me / Type I\                             | /-D - Mass Timber Con            | struction      |                  |       | 1.5        | -                          |  |
| 2          | Determine Effective                                                                                                                                     |           | Sum                                                                                                | of All Floor /        | Areas                       |                                          |                                  |                |                  |       | -          | -                          |  |
|            | Floor Area                                                                                                                                              | 313       | 313                                                                                                |                       |                             |                                          |                                  |                |                  |       | 625        | -                          |  |
| 3          | Determine Required<br>Fire Flow                                                                                                                         |           |                                                                                                    |                       | (F = 220 x C                | x A <sup>1/2</sup> ). Rour               | nd to nearest 1000 L/m           | 'n             |                  |       | -          | 8000                       |  |
| 4          | Determine<br>Occupancy Charge                                                                                                                           |           |                                                                                                    |                       |                             | Limited Co                               | ombustible                       |                |                  |       | -15%       | 6800                       |  |
|            |                                                                                                                                                         |           |                                                                                                    |                       |                             | No                                       | ne                               |                |                  |       | 0%         |                            |  |
| 5          | Determine Sprinkler                                                                                                                                     |           |                                                                                                    |                       | Non-                        | Standard Wo                              | iter Supply or N/A               |                |                  |       | 0%         | 0                          |  |
| ľ          | Reduction                                                                                                                                               |           |                                                                                                    |                       | N                           | ot Fully Supe                            | ervised or N/A                   |                |                  |       | 0%         | Ŭ                          |  |
|            |                                                                                                                                                         |           |                                                                                                    |                       | % C                         | -                                        | Sprinkler System                 |                |                  |       | 0%         |                            |  |
|            |                                                                                                                                                         | Direction | Exposure<br>Distance (m)                                                                           | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of Adjacent<br>Wall | Fire           | ewall / Sprinkle | red ? | -          | -                          |  |
|            | Determine Increase                                                                                                                                      | North     | 20.1 to 30                                                                                         | 13                    | 2                           | 21-49                                    | Туре V                           |                | NO               |       | 2%         |                            |  |
| 6          | for Exposures (Max.<br>75%)                                                                                                                             | East      | > 30                                                                                               | 0                     | 0                           | 0-20                                     | Туре V                           |                | NO               |       | 0%         | 1360                       |  |
|            | , 6,6,                                                                                                                                                  | South     | 20.1 to 30                                                                                         | 33                    | 2                           | 61-80                                    | Туре V                           |                | NO               |       | 6%         | 1360                       |  |
|            |                                                                                                                                                         | West      | 10.1 to 20                                                                                         | 25                    | 2                           | 41-60                                    | Туре V                           |                | NO               |       | 12%        |                            |  |
|            |                                                                                                                                                         |           |                                                                                                    |                       | Total Requi                 | red Fire Flow                            | in L/min, Rounded to M           | learest 1000L/ | /min             |       |            | 8000                       |  |
| <b> </b> , | Determine Final                                                                                                                                         |           | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min<br>Total Required Fire Flow in L/s |                       |                             |                                          |                                  |                |                  |       |            |                            |  |
| ľ          | Determine Final<br>Required Fire Flow         Total Required Fire Flow in L/s           Required Fire Flow         Required Duration of Fire Flow (hrs) |           |                                                                                                    |                       |                             |                                          |                                  |                |                  |       |            | 2.00                       |  |
|            |                                                                                                                                                         |           |                                                                                                    |                       |                             | Required                                 | l Volume of Fire Flow (r         | n³)            |                  |       |            | 960                        |  |

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 2 Description: Block 2 (2-storey residential townhouses c/w basement)

| Step     | Task                                                                                                                                                              |           |                                                                                                    |                       |                             | No                                       | tes                       |                        |              |                 |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|---------------------------|------------------------|--------------|-----------------|-------|------------|----------------------------|--|
| 1        | Determine Type of<br>Construction                                                                                                                                 |           |                                                                                                    | Туре                  | V - Wood Fra                | me / Type I\                             | /-D - Mass Timbe          | er Constru             | ction        |                 |       | 1.5        | -                          |  |
| 2        | Determine Effective                                                                                                                                               |           | Sum                                                                                                | of All Floor /        | Areas                       |                                          |                           |                        |              |                 |       | -          | -                          |  |
| 2        | Floor Area                                                                                                                                                        | 412       | 412                                                                                                |                       |                             |                                          |                           |                        |              |                 |       | 824        | -                          |  |
| 3        | Determine Required<br>Fire Flow                                                                                                                                   |           |                                                                                                    |                       | (F = 220 x C                | x A <sup>1/2</sup> ). Rour               | nd to nearest 100         | 00 L/min               |              |                 |       | -          | 9000                       |  |
| 4        | Determine<br>Occupancy Charge                                                                                                                                     |           |                                                                                                    |                       |                             | Limited Co                               | ombustible                |                        |              |                 |       | -15%       | 7650                       |  |
|          |                                                                                                                                                                   |           |                                                                                                    |                       |                             | No                                       | ne                        |                        |              |                 |       | 0%         |                            |  |
| 5        | Determine Sprinkler                                                                                                                                               |           |                                                                                                    |                       | Non-                        | Standard Wo                              | iter Supply or N/         | Ά                      |              |                 |       | 0%         | 0                          |  |
|          | Reduction                                                                                                                                                         |           |                                                                                                    |                       | N                           | ot Fully Supe                            | ervised or N/A            |                        |              |                 |       | 0%         |                            |  |
|          |                                                                                                                                                                   |           |                                                                                                    |                       | % C                         |                                          | Sprinkler System          |                        |              |                 |       | 0%         |                            |  |
|          |                                                                                                                                                                   | Direction | Exposure<br>Distance (m)                                                                           | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of A<br>Wall | Adjacent               | Fire         | wall / Sprinkle | red ? | -          | -                          |  |
|          | Determine Increase                                                                                                                                                | North     | 20.1 to 30                                                                                         | 26                    | 2                           | 41-60                                    | Type V                    |                        |              | NO              |       | 4%         |                            |  |
| 6        | for Exposures (Max.<br>75%)                                                                                                                                       | East      | 10.1 to 20                                                                                         | 13                    | 0                           | 0-20                                     | Туре V                    |                        |              | NO              |       | 10%        | 3060                       |  |
|          | , 6,6,                                                                                                                                                            | South     | 10.1 to 20                                                                                         | 33                    | 2                           | 61-80                                    | Type V                    |                        |              | NO              |       | 13%        | 3080                       |  |
|          |                                                                                                                                                                   | West      | 10.1 to 20                                                                                         | 31                    | 2                           | 61-80                                    | Туре V                    |                        |              | NO              |       | 13%        |                            |  |
|          |                                                                                                                                                                   |           |                                                                                                    |                       | Total Requi                 | red Fire Flow                            | in L/min, Round           | ed to Nec              | arest 1000L/ | min             |       |            | 11000                      |  |
| <b>,</b> | Determine Final                                                                                                                                                   |           | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min<br>Total Required Fire Flow in L/s |                       |                             |                                          |                           |                        |              |                 |       |            |                            |  |
| Ĺ        | 7         Determine Final<br>Required Fire Flow         Total Required Fire Flow in L/s           Required Fire Flow         Required Duration of Fire Flow (hrs) |           |                                                                                                    |                       |                             |                                          |                           |                        |              |                 |       |            | 2.00                       |  |
|          |                                                                                                                                                                   |           |                                                                                                    |                       |                             | Required                                 | I Volume of Fire          | Flow (m <sup>3</sup> ) |              |                 |       |            | 1320                       |  |

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 3 Description: Block 3 (2-storey residential townhouses c/w basement)

| Step | Task                              |           |                                                                                                    |                       |                             | No                                       | tes                |                          |              |                 |       | Value Used | Req'd Fire<br>Flow (L/min)            |  |
|------|-----------------------------------|-----------|----------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|--------------------|--------------------------|--------------|-----------------|-------|------------|---------------------------------------|--|
| 1    | Determine Type of<br>Construction |           |                                                                                                    | Туре                  | V - Wood Fra                | ime / Type I\                            | /-D - Mass Tin     | nber Constr              | uction       |                 |       | 1.5        | -                                     |  |
| 2    | Determine Effective               |           | Sum                                                                                                | of All Floor          | Areas                       |                                          |                    |                          |              |                 |       | -          | -                                     |  |
|      | Floor Area                        | 412       | 412                                                                                                |                       |                             |                                          |                    |                          |              |                 |       | 824        | -                                     |  |
| 3    | Determine Required<br>Fire Flow   |           | (F = 220 x C x $A^{1/2}$ ). Round to nearest 1000 L/min                                            |                       |                             |                                          |                    |                          |              |                 |       |            |                                       |  |
| 4    | Determine<br>Occupancy Charge     |           |                                                                                                    |                       |                             | Limited Co                               | ombustible         |                          |              |                 |       | -15%       | 7650                                  |  |
|      |                                   |           |                                                                                                    |                       |                             | No                                       | ne                 |                          |              |                 |       | 0%         |                                       |  |
| 5    | Determine Sprinkler               |           |                                                                                                    |                       | Non-                        | Standard Wo                              | iter Supply or     | N/A                      |              |                 |       | 0%         | 0                                     |  |
| ľ    | Reduction                         |           |                                                                                                    |                       | N                           | lot Fully Supe                           | ervised or N/A     | A Contraction            |              |                 |       | 0%         | , , , , , , , , , , , , , , , , , , , |  |
|      |                                   |           |                                                                                                    |                       | % C                         | 0                                        | Sprinkler Syste    | əm                       |              |                 |       | 0%         |                                       |  |
|      |                                   | Direction | Exposure<br>Distance (m)                                                                           | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction<br>Wo |                          | Fire         | wall / Sprinkle | red ? | -          | -                                     |  |
|      | Determine Increase                | North     | 10.1 to 20                                                                                         | 33                    | 2                           | 61-80                                    | Туре               | ≥ V                      |              | NO              |       | 13%        |                                       |  |
| 6    | for Exposures (Max.<br>75%)       | East      | 10.1 to 20                                                                                         | 13                    | 2                           | 21-49                                    | Туре               | e V                      |              | NO              |       | 11%        | 3137                                  |  |
|      | , 6,6,                            | South     | 20.1 to 30                                                                                         | 33                    | 2                           | 61-80                                    | Туре               | e V                      |              | NO              |       | 6%         | 5157                                  |  |
|      |                                   | West      | 10.1 to 20                                                                                         | 13                    | 2                           | 21-49                                    | Туре               | e V                      |              | NO              |       | 11%        |                                       |  |
|      |                                   |           |                                                                                                    |                       | Total Requi                 | red Fire Flow                            | in L/min, Rou      | inded to Ne              | arest 1000L/ | min             |       |            | 11000                                 |  |
| 7    | Determine Final                   |           | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min<br>Total Required Fire Flow in L/s |                       |                             |                                          |                    |                          |              |                 |       |            |                                       |  |
| ľ    | Required Fire Flow                |           |                                                                                                    |                       |                             | Required                                 | Duration of F      | ire Flow (hr             | 5)           |                 |       |            | 2.00                                  |  |
|      |                                   |           |                                                                                                    |                       |                             | Required                                 | l Volume of F      | ire Flow (m <sup>3</sup> | )            |                 |       |            | 1320                                  |  |

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 4 Description: Block 4 (2-storey residential townhouses c/w basement)

| Step | Task                              |           |                                                                  |                       |                             | No                                       | tes               |                           |              |                 |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|------|-----------------------------------|-----------|------------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|-------------------|---------------------------|--------------|-----------------|-------|------------|----------------------------|--|
| 1    | Determine Type of<br>Construction |           |                                                                  | Туре                  | V - Wood Fra                | ıme / Type I\                            | /-D - Mass Ti     | mber Constr               | uction       |                 |       | 1.5        | -                          |  |
| 2    | Determine Effective               |           | Sum                                                              | of All Floor /        | Areas                       |                                          |                   |                           |              |                 |       | -          | -                          |  |
| 2    | Floor Area                        | 412       | 412                                                              |                       |                             |                                          |                   |                           |              |                 |       | 824        | -                          |  |
| 3    | Determine Required<br>Fire Flow   |           | (F = 220 x C x A <sup>1/2</sup> ). Round to nearest 1000 L/min - |                       |                             |                                          |                   |                           |              |                 |       |            |                            |  |
| 4    | Determine<br>Occupancy Charge     |           |                                                                  |                       |                             | Limited Co                               | mbustible         |                           |              |                 |       | -15%       | 7650                       |  |
|      |                                   |           |                                                                  |                       |                             | No                                       | ne                |                           |              |                 |       | 0%         |                            |  |
| 5    | Determine Sprinkler               |           |                                                                  |                       | Non-                        | Standard Wo                              | iter Supply o     | r N/A                     |              |                 |       | 0%         | 0                          |  |
| 5    | Reduction                         |           |                                                                  |                       | N                           | lot Fully Supe                           | rvised or N/      | A                         |              |                 |       | 0%         |                            |  |
|      |                                   |           |                                                                  |                       | % C                         | Coverage of                              | Sprinkler Syst    | em                        |              |                 |       | 0%         |                            |  |
|      |                                   | Direction | Exposure<br>Distance (m)                                         | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction<br>W |                           | Fire         | wall / Sprinkle | red ? | -          | -                          |  |
|      | Determine Increase                | North     | 20.1 to 30                                                       | 33                    | 2                           | 61-80                                    | Тур               | e V                       |              | NO              |       | 6%         |                            |  |
| 6    | for Exposures (Max.<br>75%)       | East      | > 30                                                             | 33                    | 2                           | 61-80                                    | Тур               | e V                       |              | NO              |       | 0%         | 1683                       |  |
|      | , 6,6,                            | South     | > 30                                                             | 33                    | 2                           | 61-80                                    | Тур               | e V                       |              | NO              |       | 0%         | 1003                       |  |
|      |                                   | West      | 3.1 to 10                                                        | 13                    | 2                           | 21-49                                    | Тур               | e V                       |              | NO              |       | 16%        |                            |  |
|      |                                   |           |                                                                  |                       | Total Requi                 | red Fire Flow                            | in L/min, Ro      | unded to Ne               | arest 1000L/ | min             |       |            | 9000                       |  |
| 7    | Determine Final                   |           |                                                                  |                       |                             | Total R                                  | equired Fire      | Flow in L/s               |              |                 |       |            | 150.0                      |  |
| ′    | Required Fire Flow                |           |                                                                  |                       |                             | Required                                 | Duration of       | Fire Flow (hrs            | 5)           |                 |       |            | 2.00                       |  |
|      |                                   |           |                                                                  |                       |                             | Required                                 | Volume of I       | Fire Flow (m <sup>3</sup> | )            |                 |       |            | 1080                       |  |

### FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines Stantec

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 5 Description: Block 5 (2-storey residential townhouses c/w basement)

| Step | Task                              |                                      |                                 |                       |                             | No                                       | tes                |                         |              |                 |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|------|-----------------------------------|--------------------------------------|---------------------------------|-----------------------|-----------------------------|------------------------------------------|--------------------|-------------------------|--------------|-----------------|-------|------------|----------------------------|--|
| 1    | Determine Type of<br>Construction |                                      |                                 | Туре                  | V - Wood Fra                | ime / Type I\                            | /-D - Mass Tin     | nber Constr             | uction       |                 |       | 1.5        | -                          |  |
| 2    | Determine Effective               |                                      | Sum                             | of All Floor /        | Areas                       |                                          |                    |                         |              |                 |       | -          | -                          |  |
|      | Floor Area                        | 412                                  | 412                             |                       |                             |                                          |                    |                         |              |                 |       | 824        | -                          |  |
| 3    | Determine Required<br>Fire Flow   |                                      |                                 |                       | (F = 220 x C                | x A <sup>1/2</sup> ). Rour               | nd to nearest      | 1000 L/min              |              |                 |       | -          | 9000                       |  |
| 4    | Determine<br>Occupancy Charge     |                                      | Limited Combustible             |                       |                             |                                          |                    |                         |              |                 |       | -15%       | 7650                       |  |
|      |                                   |                                      | None                            |                       |                             |                                          |                    |                         |              |                 |       | 0%         |                            |  |
| 5    | Determine Sprinkler               |                                      |                                 |                       | Non-                        | Standard Wo                              | iter Supply or     | N/A                     |              |                 |       | 0%         | 0                          |  |
| ľ    | Reduction                         |                                      | Not Fully Supervised or N/A     |                       |                             |                                          |                    |                         |              |                 |       | 0%         | Ū                          |  |
|      |                                   |                                      |                                 |                       | % C                         | 0                                        | Sprinkler Syste    | em                      |              |                 |       | 0%         |                            |  |
|      |                                   | Direction                            | Exposure<br>Distance (m)        | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction<br>Wa |                         | Fire         | wall / Sprinkle | red ? | -          | -                          |  |
|      | Determine Increase                | North                                | > 30                            | 33                    | 2                           | 61-80                                    | Туре               | v                       |              | NO              |       | 0%         |                            |  |
| 6    | for Exposures (Max.<br>75%)       | East                                 | 3.1 to 10                       | 13                    | 2                           | 21-49                                    | Туре               | v                       |              | NO              |       | 16%        | 2219                       |  |
|      | , 6,6,                            | South                                | 20.1 to 30                      | 13                    | 2                           | 21-49                                    | Туре               | v                       |              | NO              |       | 2%         | 2217                       |  |
|      |                                   | West                                 | 10.1 to 20                      | 13                    | 2                           | 21-49                                    | Туре               | v                       |              | NO              |       | 11%        |                            |  |
|      |                                   |                                      |                                 |                       | Total Requi                 | red Fire Flow                            | in L/min, Rou      | nded to Ne              | arest 1000L/ | min             |       |            | 10000                      |  |
| 7    | Determine Final                   |                                      | Total Required Fire Flow in L/s |                       |                             |                                          |                    |                         |              |                 |       |            | 166.7                      |  |
| ľ    | Required Fire Flow                | Required Duration of Fire Flow (hrs) |                                 |                       |                             |                                          |                    |                         |              |                 | 2.00  |            |                            |  |
|      |                                   |                                      |                                 |                       |                             | Required                                 | l Volume of Fi     | re Flow (m <sup>3</sup> | )            |                 |       |            | 1200                       |  |

#### FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 6 Description: Block 6 (2-storey residential townhouses c/w basement)

| Step | Task                              |                                      |                                                                 |                       |                             | No                                       | tes                              |                  |                 |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|------|-----------------------------------|--------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|----------------------------------|------------------|-----------------|-------|------------|----------------------------|--|
| 1    | Determine Type of<br>Construction |                                      |                                                                 | Туре                  | V - Wood Fra                | ıme / Type I\                            | /-D - Mass Timber Cons           | truction         |                 |       | 1.5        | -                          |  |
| 2    | Determine Effective               |                                      | Sum                                                             | of All Floor /        | Areas                       |                                          |                                  |                  |                 |       | -          | -                          |  |
|      | Floor Area                        | 412                                  | 412                                                             |                       |                             |                                          |                                  |                  |                 |       | 824        | -                          |  |
| 3    | Determine Required<br>Fire Flow   |                                      |                                                                 |                       | (F = 220 x C                | x A <sup>1/2</sup> ). Rour               | nd to nearest 1000 L/mir         | n                |                 |       | -          | 9000                       |  |
| 4    | Determine<br>Occupancy Charge     |                                      | Limited Combustible                                             |                       |                             |                                          |                                  |                  |                 |       | -15%       | 7650                       |  |
|      |                                   |                                      | None                                                            |                       |                             |                                          |                                  |                  |                 |       |            |                            |  |
| 5    | Determine Sprinkler               |                                      | Non-Standard Water Supply or N/A                                |                       |                             |                                          |                                  |                  |                 |       |            | 0                          |  |
|      | Reduction                         |                                      | Not Fully Supervised or N/A                                     |                       |                             |                                          |                                  |                  |                 |       | 0%         |                            |  |
|      |                                   |                                      |                                                                 |                       | % C                         |                                          | Sprinkler System                 |                  |                 |       | 0%         |                            |  |
|      |                                   | Direction                            | Exposure<br>Distance (m)                                        | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of Adjacent<br>Wall | Fire             | wall / Sprinkle | red ? | -          | -                          |  |
|      | Determine Increase                | North                                | > 30                                                            | 33                    | 2                           | 61-80                                    | Type V                           |                  | NO              |       | 0%         |                            |  |
| 6    | for Exposures (Max.<br>75%)       | East                                 | > 30                                                            | 13                    | 2                           | 21-49                                    | Type V                           |                  | NO              |       | 0%         | 1377                       |  |
|      | , 6,6,                            | South                                | 20.1 to 30                                                      | 13                    | 2                           | 21-49                                    | Type V                           |                  | NO              |       | 2%         | 15/7                       |  |
|      |                                   | West                                 | 3.1 to 10                                                       | 13                    | 2                           | 21-49                                    | Туре V                           |                  | NO              |       | 16%        |                            |  |
|      |                                   |                                      | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min |                       |                             |                                          |                                  |                  |                 |       |            | 9000                       |  |
| 7    | Determine Final                   |                                      | Total Required Fire Flow in L/s                                 |                       |                             |                                          |                                  |                  |                 |       |            | 150.0                      |  |
| Í    | Required Fire Flow                | Required Duration of Fire Flow (hrs) |                                                                 |                       |                             |                                          |                                  |                  |                 |       | 2.00       |                            |  |
|      |                                   |                                      |                                                                 |                       |                             | Required                                 | l Volume of Fire Flow (m         | 1 <sup>3</sup> ) |                 |       |            | 1080                       |  |



### FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines Stantec

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation # . 7 Description: Block 7 (2-storey residential townhouses c/w basement)

| Step | Task                              |                                      |                                                                 |                       |                             | No                                       | tes            |                           |                |                 |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|------|-----------------------------------|--------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------|----------------|---------------------------|----------------|-----------------|-------|------------|----------------------------|--|
| 1    | Determine Type of<br>Construction |                                      |                                                                 | Туре                  | V - Wood Fra                | ıme / Type I\                            | /-D - Mass Ti  | mber Constr               | uction         |                 |       | 1.5        | -                          |  |
| 2    | Determine Effective               |                                      | Sum                                                             | of All Floor          | Areas                       |                                          |                |                           |                |                 |       | -          | -                          |  |
|      | Floor Area                        | 412                                  | 412                                                             |                       |                             |                                          |                |                           |                |                 |       | 824        | -                          |  |
| 3    | Determine Required<br>Fire Flow   |                                      | (F = 220 x C x $A^{1/2}$ ). Round to nearest 1000 L/min         |                       |                             |                                          |                |                           |                |                 |       | -          | 9000                       |  |
| 4    | Determine<br>Occupancy Charge     |                                      | Limited Combustible                                             |                       |                             |                                          |                |                           |                |                 |       | -15%       | 7650                       |  |
|      |                                   |                                      | None                                                            |                       |                             |                                          |                |                           |                |                 |       | 0%         |                            |  |
| 5    | Determine Sprinkler               |                                      | Non-Standard Water Supply or N/A                                |                       |                             |                                          |                |                           |                |                 |       |            | 0                          |  |
| 5    | Reduction                         | Not Fully Supervised or N/A          |                                                                 |                       |                             |                                          |                |                           |                | 0%              | 0     |            |                            |  |
|      |                                   |                                      |                                                                 |                       | % C                         | Coverage of                              | Sprinkler Syst | tem                       |                |                 |       | 0%         |                            |  |
|      |                                   | Direction                            | Exposure<br>Distance (m)                                        | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) |                | of Adjacent<br>all        | Fire           | wall / Sprinkle | red ? | -          | -                          |  |
|      | Determine Increase                | North                                | 20.1 to 30                                                      | 33                    | 2                           | 61-80                                    | Тур            | e V                       |                | NO              |       | 6%         |                            |  |
| 6    | for Exposures (Max.<br>75%)       | East                                 | > 30                                                            | 0                     | 0                           | 0-20                                     | Тур            | e V                       |                | NO              |       | 0%         | 2142                       |  |
|      | , 6,6,                            | South                                | 3.1 to 10                                                       | 13                    | 2                           | 21-49                                    | Тур            | e V                       |                | NO              |       | 16%        | 2142                       |  |
|      |                                   | West                                 | 20.1 to 30                                                      | 33                    | 2                           | 61-80                                    | Тур            | e V                       |                | NO              |       | 6%         |                            |  |
|      |                                   |                                      | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min |                       |                             |                                          |                |                           |                |                 |       |            | 10000                      |  |
| 7    | Determine Final                   |                                      | Total Required Fire Flow in L/s                                 |                       |                             |                                          |                |                           |                |                 |       |            | 166.7                      |  |
| ľ    | Required Fire Flow                | Required Duration of Fire Flow (hrs) |                                                                 |                       |                             |                                          |                |                           |                |                 | 2.00  |            |                            |  |
|      |                                   |                                      |                                                                 |                       |                             | Required                                 | l Volume of I  | Fire Flow (m <sup>8</sup> | <sup>5</sup> ) |                 |       |            | 1200                       |  |

#### FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 8 Description: Block 8 (2-storey residential townhouses c/w basement)

| Step     | Task                              |                                      |                             |                       |                             | No                                       | tes                              |              |                  |       | Value Used | Req'd Fire<br>Flow (L/min) |  |
|----------|-----------------------------------|--------------------------------------|-----------------------------|-----------------------|-----------------------------|------------------------------------------|----------------------------------|--------------|------------------|-------|------------|----------------------------|--|
| 1        | Determine Type of<br>Construction |                                      |                             | Туре                  | V - Wood Fra                | ıme / Type I\                            | /-D - Mass Timber Const          | ruction      |                  |       | 1.5        | -                          |  |
| 2        | Determine Effective               |                                      | Sum                         | of All Floor /        | Areas                       |                                          |                                  |              |                  |       | -          | -                          |  |
|          | Floor Area                        | 412                                  | 412                         |                       |                             |                                          |                                  |              |                  |       | 824        | -                          |  |
| 3        | Determine Required<br>Fire Flow   |                                      |                             |                       | (F = 220 x C                | x A <sup>1/2</sup> ). Rour               | id to nearest 1000 L/min         |              |                  |       | -          | 9000                       |  |
| 4        | Determine<br>Occupancy Charge     |                                      | Limited Combustible         |                       |                             |                                          |                                  |              |                  |       | -15%       | 7650                       |  |
|          |                                   |                                      | None                        |                       |                             |                                          |                                  |              |                  |       |            |                            |  |
| 5        | Determine Sprinkler               |                                      |                             |                       | Non-                        | Standard Wo                              | ter Supply or N/A                |              |                  |       | 0%         | 0                          |  |
| ľ        | Reduction                         |                                      | Not Fully Supervised or N/A |                       |                             |                                          |                                  |              |                  |       | 0%         | 0                          |  |
|          |                                   |                                      |                             |                       | % C                         | -                                        | Sprinkler System                 |              |                  |       | 0%         |                            |  |
|          |                                   | Direction                            | Exposure<br>Distance (m)    | Exposed<br>Length (m) | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of Adjacent<br>Wall | Fire         | wall / Sprinkler | red ? | -          | -                          |  |
|          | Determine Increase                | North                                | 20.1 to 30                  | 33                    | 2                           | 61-80                                    | Туре V                           |              | NO               |       | 6%         |                            |  |
| 6        | for Exposures (Max.<br>75%)       | East                                 | 20.1 to 30                  | 33                    | 0                           | 0-20                                     | Туре V                           |              | NO               |       | 0%         | 2907                       |  |
|          |                                   | South                                | 3.1 to 10                   | 13                    | 2                           | 21-49                                    | Туре V                           |              | NO               |       | 16%        | 2/0/                       |  |
|          |                                   | West                                 | 3.1 to 10                   | 11                    | 2                           | 21-49                                    | Туре V                           |              | NO               |       | 16%        |                            |  |
|          |                                   |                                      |                             |                       | Total Requi                 | red Fire Flow                            | in L/min, Rounded to Ne          | arest 1000L/ | min              |       |            | 11000                      |  |
| <b>,</b> | Determine Final                   |                                      |                             |                       |                             |                                          |                                  |              |                  |       |            | 183.3                      |  |
| ľ        | Required Fire Flow                | Required Duration of Fire Flow (hrs) |                             |                       |                             |                                          |                                  |              |                  |       | 2.00       |                            |  |
|          |                                   |                                      |                             |                       |                             | Required                                 | Volume of Fire Flow (m           | 3)           |                  |       |            | 1320                       |  |



## A.3 Watermain Hydraulic Analysis Results

Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Basic Day

| ID | Demand (L/s) | Elevation (m) | Head (m) | Pressure (m) | Pressure (psi)2 | Pressure (kPa) |
|----|--------------|---------------|----------|--------------|-----------------|----------------|
| 0  | 0.00         | 97.44         | 132.30   | 34.86        | 49.56           | 341.73         |
| 1  | 0.00         | 97.32         | 132.30   | 34.98        | 49.74           | 342.97         |
| 2  | 0.00         | 97.29         | 132.30   | 35.02        | 49.79           | 343.29         |
| 3  | 0.00         | 97.38         | 132.30   | 34.92        | 49.66           | 342.40         |
| 4  | 0.00         | 97.48         | 132.30   | 34.82        | 49.51           | 341.34         |
| 6  | 0.19         | 97.48         | 132.30   | 34.82        | 49.51           | 341.37         |
| 7  | 0.11         | 97.50         | 132.30   | 34.81        | 49.49           | 341.23         |
| 8  | 0.00         | 97.59         | 132.30   | 34.71        | 49.36           | 340.29         |
| 9  | 0.00         | 97.54         | 132.30   | 34.76        | 49.43           | 340.80         |
| 10 | 0.11         | 97.53         | 132.30   | 34.77        | 49.44           | 340.86         |
| 11 | 0.00         | 97.50         | 132.30   | 34.81        | 49.49           | 341.23         |
| 12 | 0.00         | 97.72         | 132.30   | 34.58        | 49.17           | 339.03         |
| 13 | 0.00         | 97.60         | 132.30   | 34.70        | 49.35           | 340.24         |
| 14 | 0.22         | 97.52         | 132.30   | 34.78        | 49.45           | 340.95         |
| 16 | 0.00         | 97.73         | 132.30   | 34.57        | 49.16           | 338.96         |
| 17 | 0.00         | 97.75         | 132.30   | 34.55        | 49.13           | 338.71         |
| 18 | 0.00         | 97.78         | 132.30   | 34.53        | 49.09           | 338.49         |
| 19 | 0.11         | 97.60         | 132.30   | 34.70        | 49.35           | 340.23         |
| 20 | 0.00         | 97.61         | 132.30   | 34.69        | 49.32           | 340.08         |
| 22 | 0.00         | 97.53         | 132.30   | 34.77        | 49.44           | 340.91         |
| 23 | 0.11         | 97.53         | 132.30   | 34.77        | 49.44           | 340.87         |

#### Link Results - Basic Day

| ID   | FROM           | то            | Length (m) | Diameter (mm) | Roughness | Flow (L/s) | Velocity (m/s) |
|------|----------------|---------------|------------|---------------|-----------|------------|----------------|
| 1000 | 1              | 0             | 19.73      | 204           | 110       | 0.122      | 0.004          |
| 1001 | 2              | 1             | 11.00      | 204           | 110       | 0.122      | 0.004          |
| 1002 | 3              | 2             | 44.75      | 204           | 110       | 0.122      | 0.004          |
| 1003 | 4              | 3             | 42.80      | 204           | 110       | 0.358      | 0.011          |
| 1004 | Ralph_Hennessy | 4             | 6.00       | 204           | 110       | 0.358      | 0.011          |
| 1005 | 6              | 3             | 38.03      | 204           | 110       | -0.236     | 0.007          |
| 1006 | 7              | 6             | 3.00       | 204           | 110       | -0.046     | 0.001          |
| 1007 | 9              | 8             | 3.00       | 204           | 110       | -0.174     | 0.005          |
| 1008 | 10             | 9             | 33.09      | 204           | 110       | -0.174     | 0.005          |
| 1009 | 7              | 10            | 20.20      | 204           | 110       | -0.064     | 0.002          |
| 1010 | 11             | 7             | 23.35      | 204           | 110       | 0.000      | 0.000          |
| 1011 | 13             | 12            | 18.55      | 204           | 110       | -0.272     | 0.008          |
| 1012 | 8              | 13            | 6.34       | 204           | 110       | -0.272     | 0.008          |
| 1013 | 0              | 8             | 30.65      | 204           | 110       | -0.098     | 0.003          |
| 1014 | 14             | 0             | 44.32      | 204           | 110       | -0.220     | 0.007          |
| 1015 | 16             | Borbridge_Ave | 11.05      | 204           | 110       | -0.492     | 0.015          |
| 1016 | 17             | 16            | 9.00       | 204           | 110       | -0.492     | 0.015          |
| 1017 | 12             | 17            | 2.89       | 204           | 110       | -0.492     | 0.015          |
| 1018 | 18             | 12            | 13.44      | 204           | 110       | -0.220     | 0.007          |
| 1019 | 19             | 18            | 18.17      | 204           | 110       | -0.220     | 0.007          |
| 1020 | 20             | 19            | 16.05      | 204           | 110       | 0.000      | 0.000          |
| 1022 | 22             | 19            | 8.65       | 204           | 110       | -0.110     | 0.003          |
| 1023 | 23             | 22            | 34.40      | 204           | 110       | -0.110     | 0.003          |

## Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Peak Hour

| ID | Demand (L/s) | Elevation (m) | Head (m) | Pressure (m) | Pressure (psi)2 | Pressure (kPa) |
|----|--------------|---------------|----------|--------------|-----------------|----------------|
| 0  | 0.00         | 97.44         | 124.90   | 27.45        | 39.04           | 269.16         |
| 1  | 0.00         | 97.32         | 124.90   | 27.58        | 39.22           | 270.40         |
| 2  | 0.00         | 97.29         | 124.90   | 27.61        | 39.26           | 270.72         |
| 3  | 0.00         | 97.38         | 124.90   | 27.52        | 39.14           | 269.83         |
| 4  | 0.00         | 97.48         | 124.90   | 27.42        | 38.98           | 268.79         |
| 6  | 1.01         | 97.48         | 124.90   | 27.42        | 38.99           | 268.80         |
| 7  | 0.58         | 97.50         | 124.90   | 27.40        | 38.97           | 268.66         |
| 8  | 0.00         | 97.59         | 124.90   | 27.31        | 38.83           | 267.72         |
| 9  | 0.00         | 97.54         | 124.90   | 27.36        | 38.90           | 268.23         |
| 10 | 0.58         | 97.53         | 124.90   | 27.37        | 38.91           | 268.29         |
| 11 | 0.00         | 97.50         | 124.90   | 27.40        | 38.97           | 268.66         |
| 12 | 0.00         | 97.72         | 124.90   | 27.18        | 38.65           | 266.46         |
| 13 | 0.00         | 97.60         | 124.90   | 27.30        | 38.82           | 267.67         |
| 14 | 1.16         | 97.52         | 124.90   | 27.37        | 38.92           | 268.37         |
| 16 | 0.00         | 97.73         | 124.90   | 27.17        | 38.64           | 266.40         |
| 17 | 0.00         | 97.75         | 124.90   | 27.15        | 38.60           | 266.15         |
| 18 | 0.00         | 97.78         | 124.90   | 27.12        | 38.57           | 265.92         |
| 19 | 0.58         | 97.60         | 124.90   | 27.30        | 38.82           | 267.66         |
| 20 | 0.00         | 97.61         | 124.90   | 27.29        | 38.80           | 267.51         |
| 22 | 0.00         | 97.53         | 124.90   | 27.37        | 38.92           | 268.34         |
| 23 | 0.58         | 97.53         | 124.90   | 27.37        | 38.91           | 268.30         |

#### Link Results - Peak Hour

| ID   | FROM           | то            | Length (m) | Diameter (mm) | Roughness | Flow (L/s) | Velocity (m/s) |
|------|----------------|---------------|------------|---------------|-----------|------------|----------------|
| 1000 | 1              | 0             | 19.727     | 204           | 110       | 0.642      | 0.020          |
| 1001 | 2              | 1             | 11.000     | 204           | 110       | 0.642      | 0.020          |
| 1002 | 3              | 2             | 44.746     | 204           | 110       | 0.642      | 0.020          |
| 1003 | 4              | 3             | 42.797     | 204           | 110       | 1.892      | 0.058          |
| 1004 | Ralph_Henmessy | 4             | 6.000      | 204           | 110       | 1.892      | 0.058          |
| 1005 | 6              | 3             | 38.034     | 204           | 110       | -1.251     | 0.038          |
| 1006 | 7              | 6             | 3.000      | 204           | 110       | -0.241     | 0.007          |
| 1007 | 9              | 8             | 3.000      | 204           | 110       | -0.919     | 0.028          |
| 1008 | 10             | 9             | 33.089     | 204           | 110       | -0.919     | 0.028          |
| 1009 | 7              | 10            | 20.199     | 204           | 110       | -0.339     | 0.010          |
| 1010 | 11             | 7             | 23.351     | 204           | 110       | 0.000      | 0.000          |
| 1011 | 13             | 12            | 18.546     | 204           | 110       | -1.438     | 0.044          |
| 1012 | 8              | 13            | 6.339      | 204           | 110       | -1.438     | 0.044          |
| 1013 | 0              | 8             | 30.653     | 204           | 110       | -0.518     | 0.016          |
| 1014 | 14             | 0             | 44.323     | 204           | 110       | -1.160     | 0.035          |
| 1015 | 16             | Borbridge_Ave | 11.046     | 204           | 110       | -2.598     | 0.079          |
| 1016 | 17             | 16            | 9.003      | 204           | 110       | -2.598     | 0.079          |
| 1017 | 12             | 17            | 2.892      | 204           | 110       | -2.598     | 0.079          |
| 1018 | 18             | 12            | 13.442     | 204           | 110       | -1.160     | 0.035          |
| 1019 | 19             | 18            | 18.171     | 204           | 110       | -1.160     | 0.035          |
| 1020 | 20             | 19            | 16.053     | 204           | 110       | 0.000      | 0.000          |
| 1022 | 22             | 19            | 8.650      | 204           | 110       | -0.580     | 0.018          |
| 1023 | 23             | 22            | 34.396     | 204           | 110       | -0.580     | 0.018          |

#### Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Fire Flow Results - Max Day + 150 L/s

|    |                     | Static Pressure | Static Pressure | Static Pressure | Static Head | Fire Flow    | Residual     | Residual       | Available  | Available      |
|----|---------------------|-----------------|-----------------|-----------------|-------------|--------------|--------------|----------------|------------|----------------|
| ID | Static Demand (L/s) | (m)             | (psi)           | (kPa)           | (m)         | Demand (L/s) | Pressure (m) | Pressure (psi) | Flow (L/s) | Pressure (psi) |
| 0  | 0.00                | 25.80           | 36.69           | 252.99          | 123.25      | 183.33       | 21.15        | 30.07          | 302.77     | 20             |
| 1  | 0.00                | 25.93           | 36.87           | 254.18          | 123.24      | 183.33       | 20.94        | 29.78          | 293.31     | 20             |
| 2  | 0.00                | 25.96           | 36.91           | 254.49          | 123.24      | 183.33       | 21.02        | 29.89          | 295.13     | 20             |
| 3  | 0.00                | 25.86           | 36.77           | 253.51          | 123.23      | 183.33       | 22.90        | 32.56          | 387.64     | 20             |
| 4  | 0.00                | 25.72           | 36.57           | 252.16          | 123.20      | 183.33       | 24.97        | 35.51          | 803.56     | 20             |
| 6  | 0.46                | 25.76           | 36.63           | 252.54          | 123.24      | 183.33       | 21.06        | 29.95          | 300.58     | 20             |
| 7  | 0.26                | 25.746          | 36.61           | 252.42          | 123.24      | 183.33       | 21.01        | 29.88          | 299.01     | 20             |
| 8  | 0.00                | 25.664          | 36.49           | 251.61          | 123.26      | 183.33       | 22.71        | 32.29          | 385.06     | 20             |
| 9  | 0.00                | 25.715          | 36.57           | 252.11          | 123.25      | 183.33       | 22.52        | 32.02          | 370.00     | 20             |
| 10 | 0.26                | 25.713          | 36.56           | 252.09          | 123.25      | 183.33       | 21.05        | 29.93          | 301.13     | 20             |
| 11 | 0.00                | 25.746          | 36.61           | 252.42          | 123.24      | 183.33       | 16.9         | 24.03          | 213.04     | 20             |
| 12 | 0.00                | 25.557          | 36.34           | 250.56          | 123.28      | 183.33       | 23.48        | 33.39          | 464.98     | 20             |
| 13 | 0.00                | 25.665          | 36.49           | 251.62          | 123.26      | 183.33       | 22.85        | 32.49          | 395.41     | 20             |
| 16 | 0.00                | 25.562          | 36.35           | 250.61          | 123.29      | 183.33       | 24.31        | 34.57          | 612.78     | 20             |
| 17 | 0.00                | 25.528          | 36.30           | 250.28          | 123.28      | 183.33       | 23.62        | 33.59          | 486.49     | 20             |
| 18 | 0.00                | 25.502          | 36.26           | 250.03          | 123.28      | 183.33       | 21.05        | 29.93          | 305.86     | 20             |
| 19 | 0.26                | 25.68           | 36.52           | 251.77          | 123.28      | 183.33       | 18.01        | 25.61          | 229.61     | 20             |
| 20 | 0.00                | 25.664          | 36.49           | 251.61          | 123.28      | 183.33       | 15.17        | 21.57          | 193.52     | 20             |
| 22 | 0.00                | 25.749          | 36.61           | 252.45          | 123.28      | 183.33       | 16.55        | 23.53          | 208.73     | 20             |

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Basic Day

| ID | Demand (L/s) | Elevation (m) | Head (m) | Pressure (m) | Pressure (psi)2 | Pressure (kPa) |
|----|--------------|---------------|----------|--------------|-----------------|----------------|
| 0  | 0.00         | 97.44         | 146.80   | 49.36        | 70.18           | 483.89         |
| 1  | 0.00         | 97.32         | 146.80   | 49.48        | 70.36           | 485.13         |
| 2  | 0.00         | 97.29         | 146.80   | 49.52        | 70.41           | 485.45         |
| 3  | 0.00         | 97.38         | 146.80   | 49.42        | 70.28           | 484.56         |
| 4  | 0.00         | 97.48         | 146.80   | 49.32        | 70.13           | 483.50         |
| 6  | 0.19         | 97.48         | 146.80   | 49.32        | 70.13           | 483.53         |
| 7  | 0.11         | 97.50         | 146.80   | 49.31        | 70.11           | 483.39         |
| 8  | 0.00         | 97.59         | 146.80   | 49.21        | 69.97           | 482.45         |
| 9  | 0.00         | 97.54         | 146.80   | 49.26        | 70.05           | 482.96         |
| 10 | 0.11         | 97.53         | 146.80   | 49.27        | 70.06           | 483.02         |
| 11 | 0.00         | 97.50         | 146.80   | 49.31        | 70.11           | 483.39         |
| 12 | 0.00         | 97.72         | 146.80   | 49.08        | 69.79           | 481.19         |
| 13 | 0.00         | 97.60         | 146.80   | 49.20        | 69.97           | 482.40         |
| 14 | 0.22         | 97.52         | 146.80   | 49.28        | 70.07           | 483.11         |
| 16 | 0.00         | 97.73         | 146.80   | 49.07        | 69.78           | 481.12         |
| 17 | 0.00         | 97.75         | 146.80   | 49.05        | 69.74           | 480.87         |
| 18 | 0.00         | 97.78         | 146.80   | 49.03        | 69.71           | 480.65         |
| 19 | 0.11         | 97.60         | 146.80   | 49.20        | 69.97           | 482.39         |
| 20 | 0.00         | 97.61         | 146.80   | 49.19        | 69.94           | 482.24         |
| 22 | 0.00         | 97.53         | 146.80   | 49.27        | 70.06           | 483.07         |
| 23 | 0.11         | 97.53         | 146.80   | 49.27        | 70.06           | 483.03         |

#### Link Results - Basic Day

| ID   | FROM           | то            | Length (m) | Diameter (mm) | Roughness | Flow (L/s) | Velocity (m/s) |
|------|----------------|---------------|------------|---------------|-----------|------------|----------------|
| 1000 | 1              | 0             | 19.73      | 204           | 110       | 0.122      | 0.004          |
| 1001 | 2              | 1             | 11.00      | 204           | 110       | 0.122      | 0.004          |
| 1002 | 3              | 2             | 44.75      | 204           | 110       | 0.122      | 0.004          |
| 1003 | 4              | 3             | 42.80      | 204           | 110       | 0.358      | 0.011          |
| 1004 | Ralph_Hennessy | 4             | 6.00       | 204           | 110       | 0.358      | 0.011          |
| 1005 | 6              | 3             | 38.03      | 204           | 110       | -0.236     | 0.007          |
| 1006 | 7              | 6             | 3.00       | 204           | 110       | -0.046     | 0.001          |
| 1007 | 9              | 8             | 3.00       | 204           | 110       | -0.174     | 0.005          |
| 1008 | 10             | 9             | 33.09      | 204           | 110       | -0.174     | 0.005          |
| 1009 | 7              | 10            | 20.20      | 204           | 110       | -0.064     | 0.002          |
| 1010 | 11             | 7             | 23.35      | 204           | 110       | 0.000      | 0.000          |
| 1011 | 13             | 12            | 18.55      | 204           | 110       | -0.272     | 0.008          |
| 1012 | 8              | 13            | 6.34       | 204           | 110       | -0.272     | 0.008          |
| 1013 | 0              | 8             | 30.65      | 204           | 110       | -0.098     | 0.003          |
| 1014 | 14             | 0             | 44.32      | 204           | 110       | -0.220     | 0.007          |
| 1015 | 16             | Borbridge_Ave | 11.05      | 204           | 110       | -0.492     | 0.015          |
| 1016 | 17             | 16            | 9.00       | 204           | 110       | -0.492     | 0.015          |
| 1017 | 12             | 17            | 2.89       | 204           | 110       | -0.492     | 0.015          |
| 1018 | 18             | 12            | 13.44      | 204           | 110       | -0.220     | 0.007          |
| 1019 | 19             | 18            | 18.17      | 204           | 110       | -0.220     | 0.007          |
| 1020 | 20             | 19            | 16.05      | 204           | 110       | 0.000      | 0.000          |
| 1022 | 22             | 19            | 8.65       | 204           | 110       | -0.110     | 0.003          |
| 1023 | 23             | 22            | 34.40      | 204           | 110       | -0.110     | 0.003          |

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Peak Hour

| ID | Demand (L/s) | Elevation (m) | Head (m) | Pressure (m) | Pressure (psi)2 | Pressure (kPa) |
|----|--------------|---------------|----------|--------------|-----------------|----------------|
| 0  | 0.00         | 97.44         | 143.70   | 46.25        | 65.77           | 453.48         |
| 1  | 0.00         | 97.32         | 143.70   | 46.38        | 65.95           | 454.72         |
| 2  | 0.00         | 97.29         | 143.70   | 46.41        | 66.00           | 455.04         |
| 3  | 0.00         | 97.38         | 143.70   | 46.32        | 65.87           | 454.15         |
| 4  | 0.00         | 97.48         | 143.70   | 46.22        | 65.72           | 453.11         |
| 6  | 1.01         | 97.48         | 143.70   | 46.22        | 65.72           | 453.12         |
| 7  | 0.58         | 97.50         | 143.70   | 46.20        | 65.70           | 452.98         |
| 8  | 0.00         | 97.59         | 143.70   | 46.11        | 65.56           | 452.04         |
| 9  | 0.00         | 97.54         | 143.70   | 46.16        | 65.64           | 452.55         |
| 10 | 0.58         | 97.53         | 143.70   | 46.17        | 65.65           | 452.61         |
| 11 | 0.00         | 97.50         | 143.70   | 46.20        | 65.70           | 452.98         |
| 12 | 0.00         | 97.72         | 143.70   | 45.98        | 65.38           | 450.77         |
| 13 | 0.00         | 97.60         | 143.70   | 46.10        | 65.56           | 451.99         |
| 14 | 1.16         | 97.52         | 143.70   | 46.17        | 65.66           | 452.69         |
| 16 | 0.00         | 97.73         | 143.70   | 45.97        | 65.37           | 450.72         |
| 17 | 0.00         | 97.75         | 143.70   | 45.95        | 65.34           | 450.47         |
| 18 | 0.00         | 97.78         | 143.70   | 45.92        | 65.30           | 450.24         |
| 19 | 0.58         | 97.60         | 143.70   | 46.10        | 65.55           | 451.98         |
| 20 | 0.00         | 97.61         | 143.70   | 46.09        | 65.53           | 451.82         |
| 22 | 0.00         | 97.53         | 143.70   | 46.17        | 65.65           | 452.66         |
| 23 | 0.58         | 97.53         | 143.70   | 46.17        | 65.65           | 452.62         |

### Link Results - Peak Hour

| ID   | FROM           | то        | Length (m) | Diameter (mm) | Roughness | Flow (L/s) | Velocity (m/s) |
|------|----------------|-----------|------------|---------------|-----------|------------|----------------|
| 1000 | 1              | 0         | 19.727     | 204           | 110       | 0.020      | 0.005          |
| 1001 | 2              | 1         | 11.000     | 204           | 110       | 0.020      | 0.005          |
| 1002 | 3              | 2         | 44.746     | 204           | 110       | 0.020      | 0.005          |
| 1003 | 4              | 3         | 42.797     | 204           | 110       | 0.058      | 0.037          |
| 1004 | Ralph_Hennessy | 4         | 6.000      | 204           | 110       | 0.058      | 0.037          |
| 1005 | 6              | 3         | 38.034     | 204           | 110       | 0.038      | 0.017          |
| 1006 | 7              | 6         | 3.000      | 204           | 110       | 0.007      | 0.000          |
| 1007 | 9              | 8         | 3.000      | 204           | 110       | 0.028      | 0.009          |
| 1008 | 10             | 9         | 33.089     | 204           | 110       | 0.028      | 0.010          |
| 1009 | 7              | 10        | 20.199     | 204           | 110       | 0.010      | 0.001          |
| 1010 | 11             | 7         | 23.351     | 204           | 110       | 0.000      | 0.000          |
| 1011 | 13             | 12        | 18.546     | 204           | 110       | 0.044      | 0.022          |
| 1012 | 8              | 13        | 6.339      | 204           | 110       | 0.044      | 0.022          |
| 1013 | 0              | 8         | 30.653     | 204           | 110       | 0.016      | 0.003          |
| 1014 | 14             | 0         | 44.323     | 204           | 110       | 0.035      | 0.015          |
| 1015 | 16             | Borbridge | 11.046     | 204           | 110       | 0.079      | 0.067          |
| 1016 | 17             | 16        | 9.003      | 204           | 110       | 0.079      | 0.066          |
| 1017 | 12             | 17        | 2.892      | 204           | 110       | 0.079      | 0.068          |
| 1018 | 18             | 12        | 13.442     | 204           | 110       | 0.035      | 0.015          |
| 1019 | 19             | 18        | 18.171     | 204           | 110       | 0.035      | 0.015          |
| 1020 | 20             | 19        | 16.053     | 204           | 110       | 0.000      | 0.000          |
| 1022 | 22             | 19        | 8.650      | 204           | 110       | 0.018      | 0.004          |
| 1023 | 23             | 22        | 34.396     | 204           | 110       | 0.018      | 0.004          |

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Fire Flow Results - Max Day (Dead end pipe upgraded to 200mm dia.)

|    |                     | Static Pressure | Static Pressure | Static Pressure | Static Head | Fire Flow    | Residual     | Residual       | Available  | Available      |
|----|---------------------|-----------------|-----------------|-----------------|-------------|--------------|--------------|----------------|------------|----------------|
| ID | Static Demand (L/s) | (m)             | (psi)           | (kPa)           | (m)         | Demand (L/s) | Pressure (m) | Pressure (psi) | Flow (L/s) | Pressure (psi) |
| 0  | 0.00                | 43.156          | 61.37           | 423.11          | 140.60      | 183.33       | 38.50        | 54.75          | 494.91     | 20             |
| 1  | 0.00                | 43.274          | 61.53           | 424.26          | 140.59      | 183.33       | 38.29        | 54.45          | 477.72     | 20             |
| 2  | 0.00                | 43.303          | 61.58           | 424.55          | 140.59      | 183.33       | 38.37        | 54.56          | 480.25     | 20             |
| 3  | 0.00                | 43.194          | 61.42           | 423.48          | 140.57      | 183.33       | 40.24        | 57.22          | 632.41     | 20             |
| 4  | 0.00                | 43.025          | 61.18           | 421.82          | 140.51      | 183.33       | 42.29        | 60.14          | 1313.96    | 20             |
| 6  | 0.46                | 43.104          | 61.29           | 422.60          | 140.59      | 183.33       | 38.41        | 54.62          | 491.93     | 20             |
| 7  | 0.26                | 43.091          | 61.27           | 422.47          | 140.59      | 183.33       | 38.36        | 54.55          | 489.56     | 20             |
| 8  | 0.00                | 43.023          | 61.18           | 421.80          | 140.61      | 183.33       | 40.06        | 56.96          | 631.97     | 20             |
| 9  | 0.00                | 43.074          | 61.25           | 422.30          | 140.61      | 183.33       | 39.87        | 56.69          | 606.37     | 20             |
| 10 | 0.26                | 43.063          | 61.23           | 422.20          | 140.60      | 183.33       | 38.40        | 54.60          | 493.49     | 20             |
| 11 | 0.00                | 43.091          | 61.27           | 422.47          | 140.59      | 183.33       | 34.24        | 48.69          | 348.66     | 20             |
| 12 | 0.00                | 42.938          | 61.06           | 420.97          | 140.66      | 183.33       | 40.85        | 58.09          | 765.62     | 20             |
| 13 | 0.00                | 43.029          | 61.19           | 421.86          | 140.63      | 183.33       | 40.21        | 57.18          | 648.98     | 20             |
| 16 | 0.00                | 42.953          | 61.08           | 421.12          | 140.68      | 183.33       | 41.69        | 59.28          | 1008.69    | 20             |
| 17 | 0.00                | 42.911          | 61.02           | 420.71          | 140.66      | 183.33       | 40.99        | 58.29          | 801.67     | 20             |
| 18 | 0.00                | 42.882          | 60.98           | 420.42          | 140.66      | 183.33       | 38.42        | 54.63          | 504.40     | 20             |
| 19 | 0.26                | 43.06           | 61.23           | 422.17          | 140.66      | 183.33       | 35.38        | 50.31          | 376.78     | 20             |
| 20 | 0.00                | 43.044          | 61.21           | 422.01          | 140.66      | 183.33       | 32.54        | 46.27          | 317.66     | 20             |
| 22 | 0.00                | 43.129          | 61.33           | 422.84          | 140.66      | 183.33       | 33.92        | 48.23          | 341.86     | 20             |

Appendix B Wastewater Servicing Calculations

## **B.1** Sanitary Sewer Design Sheet

| 5       |      | SUBDIVISI |       | South Blo | ck 167  |         |              |              | DES     | ARY S       | IEET  | २    |        |       |             |               |          |        |         |             |        |       | DESIGN PA |              |         |            |             |            |          |        |       |       |        |       |     |
|---------|------|-----------|-------|-----------|---------|---------|--------------|--------------|---------|-------------|-------|------|--------|-------|-------------|---------------|----------|--------|---------|-------------|--------|-------|-----------|--------------|---------|------------|-------------|------------|----------|--------|-------|-------|--------|-------|-----|
|         |      |           |       |           |         |         |              |              | (C      | ity of Otta | wa)   |      |        |       | MAX PEAK F  | ACTOR (RES.   | )=       | 4.0    |         | AVG. DAILY  |        | ON    | 280       | l/p/day      |         | MINIMUM VE |             |            | 0.60     | m/s    |       |       |        |       |     |
|         |      | DATE:     |       | 1         | /8/2024 |         |              |              |         |             |       |      |        |       | MIN PEAK FA | ACTOR (RES.)  | =        | 2.0    |         | COMMERCIA   |        |       | 28,000    | l/ha/day     |         | MAXIMUM VE | LOCITY      |            | 3.00     | m/s    |       |       |        |       |     |
|         |      | REVISIO   |       |           | 1       |         |              |              |         |             |       |      |        |       |             | CTOR (INDUS   | ,        | 2.4    |         | INDUSTRIAL  | . ,    |       | 55,000    | l/ha/day     |         | MANNINGS n | I           |            | 0.013    |        |       |       |        |       |     |
| Stant   | 00   | DESIGN    |       |           | MJS     | FILE NU | JMBER:       | 16040205     | 8       |             |       |      |        |       | PEAKING FA  | CTOR (ICI >20 | %):      | 1.5    |         | INDUSTRIAL  | ,      |       | 35,000    | l/ha/day     |         | BEDDING CL | ASS         |            | E        |        |       |       |        |       |     |
| Junio   |      | CHECKE    | D BY: |           | -       |         |              |              |         |             |       |      |        |       | PERSONS / S |               |          | 3.4    | ļ.      | INSTITUTION | IAL    |       | 28,000    | l/ha/day     |         | MINIMUM CO | VER         |            | 2.50     | m      |       |       |        |       |     |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       | PERSONS /   | FOWNHOME      |          | 2.7    | ,       | INFILTRATIC | N      |       | 0.33      | l/s/Ha       |         | HARMON CC  | RRECTION FA | ACTOR      | 0.8      |        |       |       |        |       |     |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       | PERSONS / / | APARTMENT     |          | 1.8    | 3       |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
| LOCA    | TION |           |       |           |         |         | TIAL AREA AN | D POPULATION |         |             |       | COMM | ERCIAL | INDUS | TRIAL (L)   | INDUST        | RIAL (H) | INSTIT | UTIONAL | GREEN       | UNUSED | C+I+I |           | INFILTRATION | 1       | TOTAL      |             |            |          | PI     | PE    |       |        |       |     |
| AREA ID | FROM | TO        | ARE   |           | UNITS   |         | POP.         |              | JLATIVE | PEAK        | PEAK  | AREA | ACCU.  | AREA  | ACCU.       | AREA          | ACCU.    | AREA   | ACCU.   | AREA        | ACCU.  | PEAK  | TOTAL     | ACCU.        | INFILT. | FLOW       | LENGTH      | DIA        | MATERIAL | CLASS  | SLOPE | CAP.  | CAP. V | VEL.  | VE  |
| NUMBER  | M.H. | M.H.      |       | SINGL     | TOWN    | APT     |              | AREA         | POP.    | FACT.       | FLOW  |      | AREA   |       | AREA        |               | AREA     |        | AREA    |             | AREA   | FLOW  | AREA      | AREA         | FLOW    |            |             | <i>,</i> , |          |        | (0)   |       |        |       |     |
|         |      |           | (ha   | )         |         |         |              | (ha)         |         |             | (l/s) | (ha) | (ha)   | (ha)  | (ha)        | (ha)          | (ha)     | (ha)   | (ha)    | (ha)        | (ha)   | (l/s) | (ha)      | (ha)         | (l/s)   | (l/s)      | (m)         | (mm)       |          |        | (%)   | (l/s) | (%)    | (m/s) | (m/ |
| R5A     | 5    | 4         | 0.4   | > 0       | 24      | 0       | 65           | 0.42         | 65      | 3.63        | 0.8   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.42      | 0.42         | 0.1     | 0.9        | 42.7        | 200        | PVC      | SDR 35 | 0.65  | 27.0  | 3.34%  | 0.85  | 0.3 |
| G4A     | 4    | 3         | 0.0   |           | 0       | 0       | 0            | 0.42         | 65      | 3.63        | 0.8   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.09      | 0.51         | 0.1     | 0.9        | 39.8        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 4.40%  | 0.67  | 0.2 |
|         |      | -         |       |           |         |         | -            |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
| R8A     | 8    | 7         | 0.22  | 2 0       | 21      | 0       | 57           | 0.22         | 57      | 3.64        | 0.7   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.22      | 0.22         | 0.1     | 0.7        | 37.3        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 3.51%  | 0.67  | 0.2 |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
| R9A     | 9    | 7         | 0.12  | 2 0       | 9       | 0       | 24           | 0.12         | 24      | 3.69        | 0.3   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.12      | 0.12         | 0.0     | 0.3        | 23.2        | 200        | PVC      | SDR 35 | 1.40  | 39.6  | 0.83%  | 1.24  | 0.  |
| R7A     | 7    | 6         | 0.0   | 7 0       | 3       | 0       | 8            | 0.40         | 89      | 3.61        | 1.0   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.07      | 0.40         | 0.1     | 1.2        | 21.8        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 5.55%  | 0.67  | 0.3 |
| R6A     | 6    | 3         | 0.1   |           | 12      | 0       | 32           | 0.56         | 122     | 3.58        | 1.4   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.15      | 0.56         | 0.1     | 1.6        | 41.0        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 7.52%  | 0.67  | 0.3 |
|         | -    | -         |       |           |         |         |              |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
|         | 3    | 2         | 0.0   | ) ()      | 0       | 0       | 0            | 0.97         | 186     | 3.53        | 2.1   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.09   | 0.0   | 0.00      | 1.06         | 0.4     | 2.5        | 26.4        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 11.73% | 0.67  | 0.3 |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
| R10A    | 10   | 11        | 0.10  | 5 O       | 9       | 0       | 24           | 0.16         | 24      | 3.69        | 0.3   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.16      | 0.16         | 0.1     | 0.3        | 27.1        | 200        | PVC      | SDR 35 | 0.65  | 27.0  | 1.28%  | 0.85  | 0.2 |
| R12A    | 12   | 11        | 0.1   | 3 0       | 12      | 0       | 32           | 0.13         | 32      | 3.68        | 0.4   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.13      | 0.13         | 0.0     | 0.4        | 42.7        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 2.03%  | 0.67  | 0.2 |
| 131273  | 12   |           | 0.1   | , ,       | 12      | U       | 52           | 0.10         | 52      | 0.00        | 0.4   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 5.00    | 0.00        | 0.00   | 5.0   | 0.10      | 0.10         | 0.0     | 0.4        | -12.1       | 200        |          | 02/100 | 0.40  | 21.1  | 2.0070 | 0.07  | 0.2 |
| R11A    | 11   | 2         | 0.10  | 0 0       | 3       | 0       | 8            | 0.39         | 65      | 3.63        | 0.8   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.00   | 0.0   | 0.10      | 0.39         | 0.1     | 0.9        | 21.7        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 4.22%  | 0.67  | 0.2 |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             |            |          |        |       |       |        |       |     |
|         | 2    | 1         | 0.0   | ) 0       | 0       | 0       | 0            | 1.36         | 251     | 3.49        | 2.8   | 0.00 | 0.00   | 0.00  | 0.00        | 0.00          | 0.00     | 0.00   | 0.00    | 0.00        | 0.09   | 0.0   | 0.00      | 1.45         | 0.5     | 3.3        | 21.2        | 200        | PVC      | SDR 35 | 0.40  | 21.1  | 15.69% | 0.67  | 0.4 |
|         |      |           |       |           |         |         |              |              |         |             |       |      |        |       |             |               |          |        |         |             |        |       |           |              |         |            |             | 200        |          |        |       |       |        |       |     |

Appendix C Stormwater Management

## C.1 Storm Sewer Design Sheet

| Stantec  |                             | liverside  | South Block | <b>k 167</b><br>24-11-08 |       |              | I            |              | SEWEI        |              |              | <u>DESIGN</u><br>I = a / (t+ | PARAMET<br>b) <sup>c</sup><br>1:2 yr |                | (As per C<br>1:10 yr |                   | wa Guideli<br><b>I</b>          | ines, 2012     | )                   |                |                         |                     |                     |                      |                       |                      |            |                  |              |             |            |          |            |           |              |                  |                  |              |              |              |
|----------|-----------------------------|------------|-------------|--------------------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------|--------------------------------------|----------------|----------------------|-------------------|---------------------------------|----------------|---------------------|----------------|-------------------------|---------------------|---------------------|----------------------|-----------------------|----------------------|------------|------------------|--------------|-------------|------------|----------|------------|-----------|--------------|------------------|------------------|--------------|--------------|--------------|
|          | REVISIC<br>DESIGN<br>CHECKE | ED BY:     |             | 1<br>MJS                 |       | ENUMBI       |              | 16040205     |              |              |              | a =<br>b =<br>c =            |                                      | ,              | ,                    | 1735.688<br>6.014 | MANNING<br>MINIMUM<br>TIME OF E | COVER:         | 0.013<br>2.00<br>10 | m              | BEDDING C               | CLASS =             | В                   |                      |                       |                      |            |                  |              |             |            |          |            |           |              |                  |                  |              |              |              |
| LOCATION |                             |            |             |                          |       |              |              |              |              |              |              |                              |                                      |                | DR                   | AINAGE AF         |                                 |                |                     |                |                         |                     |                     |                      |                       |                      |            |                  |              |             |            |          | F          | IPE SELEC | TION         |                  |                  |              |              |              |
| AREA ID  | FROM                        | то         | AREA        | ARE                      | EA AF | REA          | AREA         | AREA         | С            | С            | С            | С                            | AxC                                  | ACCUM          | AxC                  | ACCUM.            | AxC                             | ACCUM.         | AxC                 | ACCUM.         | T of C                  | I <sub>2-YEAR</sub> | I <sub>5-YEAR</sub> | I <sub>10-YEAR</sub> | I <sub>100-YEAR</sub> | Q <sub>CONTROL</sub> | ACCUM.     | Q <sub>ACT</sub> | LENGTH       | PIPE WIDTH  | PIPE       | PIPE     | MATERIAL   | CLASS     | SLOPE        | Q <sub>CAP</sub> | % FULL           | VEL.         | VEL.         | TIME OF      |
| NUMBER   | M.H.                        | M.H.       | (2-YEAR     | / (-                     | , ,   |              | 100-YEAR)    | (ROOF)       | (2-YEAR)     | (5-YEAR)     | (10-YEAR)    | (100-YEAR)                   | (2-YEAR)                             | AxC (2YR)      | (5-YEAR)             | AxC (5YR)         | ,                               | ,              | (100-YEAR)          | ,              |                         |                     |                     |                      |                       |                      |            | (CIA/360)        |              | OR DIAMETEI |            | SHAPE    |            |           |              | (FULL)           |                  | (FULL)       | (ACT)        | FLOW         |
|          |                             |            | (ha)        | (ha                      | I) (I | (ha)         | (ha)         | (ha)         | (-)          | (-)          | (-)          | (-)                          | (ha)                                 | (ha)           | (ha)                 | (ha)              | (ha)                            | (ha)           | (ha)                | (ha)           | (min)                   | (mm/h)              | (mm/h)              | (mm/h)               | (mm/h)                | (L/s)                | (L/s)      | (L/s)            | (m)          | (mm)        | (mm)       | (-)      | (-)        | (-)       | %            | (L/s)            | (-)              | (m/s)        | (m/s)        | (min)        |
| L108A    | 108                         | 103        | 0.13        | 0.0                      | 0 0   | 0.00         | 0.00         | 0.00         | 0.83         | 0.00         | 0.00         | 0.00                         | 0.106                                | 0.106          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.00<br>10.88          | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0        | 22.6             | 39.7         | 250         | 250        | CIRCULAR | PVC        | -         | 0.50         | 42.7             | 52.88%           | 0.86         | 0.75         | 0.88         |
| L103A    | 103A                        | 103        | 0.30        | 0.0                      | 0 0   | ).00         | 0.00         | 0.00         | 0.67         | 0.00         | 0.00         | 0.00                         | 0.203                                | 0.203          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.00<br>10.29          | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0        | 43.4             | 25.5         | 250         | 250        | CIRCULAR | PVC        | -         | 2.00         | 85.4             | 50.82%           | 1.72         | 1.48         | 0.29         |
| L103B    | 103                         | 102        | 0.08        | 0.0                      | 00    | 0.00         | 0.00         | 0.00         | 0.60         | 0.00         | 0.00         | 0.00                         | 0.048                                | 0.358          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.88<br>11.66          | 73.57               | 99.75               | 116.91               | 170.87                | 0.0                  | 0.0        | 73.1             | 43.6         | 375         | 375        | CIRCULAR | PVC        |           | 0.40         | 104.3            | 70.14%           | 0.99         | 0.94         | 0.77         |
| L106A    | 106                         | 105        | 0.27        | 0.0                      | 0 0   | 0.00         | 0.00         | 0.00         | 0.79         | 0.00         | 0.00         | 0.00                         | 0.211                                | 0.211          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.00<br>10.80          | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0        | 45.1             | 40.1         | 300         | 300        | CIRCULAR | PVC        | -         | 0.40         | 60.8             | 74.20%           | 0.86         | 0.83         | 0.80         |
|          | 109                         | 105        | 0.00        | 0.0                      | 00    | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00                         | 0.000                                | 0.000          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.00<br><b>10.00</b>   | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0        | 0.0              | 20.4         | 250         | 250        | CIRCULAR | PVC        |           | 0.50         | 42.7             | 0.00%            | 0.86         | 0.00         | 0.00         |
| L104A    | 105<br>104                  | 104<br>102 |             | 0.0<br>0.0               | 0 0   | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.79 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00                 | 0.000<br>0.113                       | 0.211<br>0.325 | 0.000<br>0.000       | 0.000<br>0.000    | 0.000<br>0.000                  | 0.000<br>0.000 | 0.000<br>0.000      | 0.000<br>0.000 | 10.80<br>11.24<br>11.89 | 73.85<br>72.35      | 100.13<br>98.06     | 117.36<br>114.92     | 171.53<br>167.95      | 0.0<br>0.0           | 0.0<br>0.0 | 43.4<br>65.3     | 21.5<br>44.4 | 300<br>300  | 300<br>300 | CIRCULAR | PVC<br>PVC | -         | 0.40<br>0.70 | 60.8<br>80.4     | 71.35%<br>81.18% | 0.86<br>1.14 | 0.82<br>1.13 | 0.44<br>0.65 |
|          | 102                         | 101        | 0.00        | 0.0                      | 00    | ).00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00                         | 0.000                                | 0.683          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 11.89<br>12.21          | 70.22               | 95.15               | 111.49               | 162.91                | 0.0                  | 0.0        | 133.2            | 22.2         | 450         | 450        | CIRCULAR | CONCRETE   | -         | 0.50         | 210.3            | 63.32%           | 1.28         | 1.17         | 0.32         |
| L107A    | 107                         | 101        | 0.16        | 0.0                      | 0 0   | 0.00         | 0.00         | 0.00         | 0.77         | 0.00         | 0.00         | 0.00                         | 0.124                                | 0.124          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 10.00<br><b>10.90</b>   | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0        | 26.5             | 46.5         | 250         | 250        | CIRCULAR | PVC        | -         | 0.65         | 48.7             | 54.44%           | 0.98         | 0.86         | 0.90         |
|          | 101                         | 100        | 0.00        | 0.0                      | 00    | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00                         | 0.000                                | 0.807          | 0.000                | 0.000             | 0.000                           | 0.000          | 0.000               | 0.000          | 12.21<br>12.60          | 69.25               | 93.81               | 109.91               | 160.60                | 0.0                  | 0.0        | 155.2            | 28.5         | 450<br>450  | 450<br>450 | CIRCULAR | CONCRETE   | -         | 0.50         | 210.3            | 73.81%           | 1.28         | 1.23         | 0.39         |

## C.2 Runoff Coefficient/Impervious Calculations

| Project   | Block 167 |
|-----------|-----------|
| Desc      | Richcraft |
| 28-Oct-24 |           |

| Sub Catchment ID | Total Area (m²) | Hard Surface (m <sup>2</sup> ) | Soft Surface (m <sup>2</sup> ) | Runoff Coefficient, C |
|------------------|-----------------|--------------------------------|--------------------------------|-----------------------|
| UNC-1            | 681.62          | 320.11                         | 361.51                         | 0.53                  |
| UNC-2            | 1634.57         | 875.59                         | 758.98                         | 0.57                  |
| UNC-3            | 963.56          | 250.20                         | 713.36                         | 0.38                  |
| UNC-4            | 395.08          | 244.15                         | 150.93                         | 0.63                  |
| C107A            | 1613.72         | 1302.99                        | 310.73                         | 0.77                  |
| C103A            | 3036.88         | 2051.29                        | 985.60                         | 0.67                  |
| C103B            | 807.53          | 456.99                         | 350.54                         | 0.60                  |
| C108A            | 1275.38         | 1147.00                        | 128.38                         | 0.83                  |
| C104A            | 1436.52         | 1211.64                        | 224.88                         | 0.79                  |
| C106A            | 2677.14         | 2245.84                        | 431.30                         | 0.79                  |
|                  | 1.00            | 1.00                           | 0.00                           | 0.90                  |

### C.3 Modified Rational Method Calculations

File No: 160402058 Project: 955 Borbridge Avenue Date: 21-Jan-25

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

|                                                                   |                        | Runoff ( | Coefficient Table |       |                    |           |       |                      |
|-------------------------------------------------------------------|------------------------|----------|-------------------|-------|--------------------|-----------|-------|----------------------|
| Sub-catch                                                         |                        |          | Area              |       | Runoff             |           |       | Overall              |
| Area<br>Catchment Type                                            | ID / Description       |          | (ha)<br>"A"       | (     | Coefficient<br>"C" | <b>"A</b> | x C"  | Runoff<br>Coefficien |
| Controlled - Tributary                                            | L108B                  | Hard     | 0.009             |       | 0.9                | 0.008     |       |                      |
| Controlled Tributary                                              | LIGOD                  | Soft     | 0.021             |       | 0.2                | 0.000     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.03  |                    |           | 0.012 | 0.400                |
| Uncontrolled - Non-Tributary                                      | UNC-3                  | Hard     | 0.025             |       | 0.9                | 0.022     |       |                      |
|                                                                   |                        | Soft     | 0.015             |       | 0.2                | 0.003     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.04  |                    |           | 0.025 | 0.630                |
| Uncontrolled - Non-Tributary                                      | UNC-2                  | Hard     | 0.085             |       | 0.9                | 0.076     |       |                      |
|                                                                   |                        | Soft     | 0.075             |       | 0.2                | 0.015     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.16  |                    |           | 0.091 | 0.570                |
| Uncontrolled - Non-Tributary                                      | UNC-1                  | Hard     | 0.033             |       | 0.9                | 0.030     |       |                      |
| -                                                                 |                        | Soft     | 0.037             |       | 0.2                | 0.007     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.07  |                    |           | 0.037 | 0.530                |
| Controlled - Tributary                                            | L103A                  | Hard     | 0.204             |       | 0.9                | 0.183     |       |                      |
|                                                                   |                        | Soft     | 0.100             |       | 0.2                | 0.020     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.30  |                    |           | 0.203 | 0.670                |
| Controlled - Tributary                                            | L106A                  | Hard     | 0.226             |       | 0.9                | 0.203     |       |                      |
|                                                                   |                        | Soft     | 0.042             |       | 0.2                | 0.008     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.27  |                    |           | 0.211 | 0.790                |
| Controlled - Tributary                                            | L104A                  | Hard     | 0.121             |       | 0.9                | 0.109     |       |                      |
|                                                                   |                        | Soft     | 0.023             |       | 0.2                | 0.005     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.14  |                    |           | 0.113 | 0.790                |
| Controlled - Tributary                                            | L108A                  | Hard     | 0.117             |       | 0.9                | 0.105     |       |                      |
|                                                                   |                        | Soft     | 0.013             |       | 0.2                | 0.003     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.13  |                    |           | 0.108 | 0.830                |
| Controlled - Tributary                                            | L107B                  | Hard     | 0.060             |       | 0.9                | 0.054     |       |                      |
|                                                                   |                        | Soft     | 0.081             |       | 0.2                | 0.016     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.14  |                    |           | 0.070 | 0.500                |
| Controlled - Tributary                                            | L107A                  | Hard     | 0.131             |       | 0.9                | 0.118     |       |                      |
|                                                                   |                        | Soft     | 0.030             |       | 0.2                | 0.006     |       |                      |
|                                                                   | S                      | ubtotal  |                   | 0.16  |                    |           | 0.124 | 0.770                |
| Total                                                             |                        |          |                   | 1.450 |                    |           | 0.996 |                      |
| overall Runoff Coefficient= C:                                    |                        |          |                   | -     |                    |           |       | 0.69                 |
| otal Roof Areas                                                   |                        |          | 0.000 ha          |       |                    |           |       |                      |
| otal Tributary Surface Areas (Co<br>otal Tributary Area to Outlet | ntrolled and Uncontrol | lled)    | <u> </u>          |       |                    |           |       |                      |
| -                                                                 | ihutaru)               |          | 0.270 h           |       |                    |           |       |                      |
| otal Uncontrolled Areas (Non-Tri                                  | ibulaiy)               |          | 0.270 ha          | a     |                    |           |       |                      |
| otal Site                                                         |                        |          | 1.450 ha          | a     |                    |           |       |                      |
|                                                                   |                        |          |                   |       |                    |           |       |                      |

| Modified Rational Metho                          | od Calculation     | s for Storag               | е                       |                              |                         | 1 | Modified Rational I                       | Method C              |
|--------------------------------------------------|--------------------|----------------------------|-------------------------|------------------------------|-------------------------|---|-------------------------------------------|-----------------------|
| 2 yr Intensity<br>City of Ottawa                 | I = a/(t + b)      | -                          | 732.951                 | t (min)                      | I (mm/hr)               |   | 100 yr Inte<br>City of Ott                |                       |
| City of Ottawa                                   |                    | b =<br>c =                 | 6.199<br>0.81           | 10<br>20                     | 76.81<br>52.03          |   | City of Ott                               | awa                   |
|                                                  |                    |                            |                         | 30<br>40                     | 40.04<br>32.86          |   |                                           |                       |
|                                                  |                    |                            |                         | 50<br>60                     | 28.04<br>24.56          |   |                                           |                       |
|                                                  |                    |                            |                         | 70<br>80                     | 21.91<br>19.83          |   |                                           |                       |
|                                                  |                    |                            |                         | 90<br>100                    | 18.14                   |   |                                           |                       |
|                                                  |                    |                            |                         | 110                          | 16.75<br>15.57<br>14.56 |   |                                           |                       |
| 2 YFAR Pr                                        | edevelopment T     | arget Releas               | e from Po               | 120                          | 14.56                   | ł | 100 VF                                    | AR Predev             |
| Subdrainage Area: Prede                          | -                  | -                          |                         |                              |                         |   | 10012                                     | -itt i cucv           |
| Area (ha): 1.<br>C:                              | 4500<br>0.70       |                            |                         |                              |                         |   |                                           |                       |
| Typical Time of C                                | concentration      |                            |                         |                              |                         |   |                                           |                       |
| tc I (5<br>(min) (mm                             | n/hr) (L/s)        | ]                          |                         |                              |                         |   |                                           |                       |
| 2 YEAR Modifi                                    | 320.0              | thod for Entir             | ro Sito                 |                              |                         | ļ |                                           | Modified              |
| 2 YEAK MODIT                                     | ied Rational Me    | uiou ior Entir             | 6 216                   |                              |                         |   | 100 YEAH                                  | Modified              |
| Subdrainage Area: L10<br>Area (ha): 0.0          | 03                 |                            |                         | Controll                     | ed - Tributary          |   | Subdrainage Area:<br>Area (ha):           | L108B<br>0.03         |
| C: 0.4                                           |                    |                            |                         | 1.14                         |                         |   | C:                                        | 0.50                  |
| tc I (5<br>(min) (mm                             | n/hr) (L/s)        | Qrelease<br>(L/s)          | Qstored<br>(L/s)        | Vstored<br>(m <sup>3</sup> ) |                         |   | tc<br>(min)                               | l (100 yr)<br>(mm/hr) |
| 5 103<br>10 76                                   |                    | 3.5<br>2.6                 | 0.00                    | 0.00<br>0.00                 |                         |   | 10<br>20                                  | 178.56<br>119.95      |
| 15 61.                                           | .77 2.1            | 2.1                        | 0.00                    | 0.00                         |                         |   | 30                                        | 91.87                 |
| 20 52<br>25 45                                   | .17 1.5            | 1.7<br>1.5                 | 0.00                    | 0.00<br>0.00                 |                         |   | 40<br>50                                  | 75.15<br>63.95        |
| 30 40.<br>35 36                                  | .04 1.3            | 1.3<br>1.2                 | 0.00                    | 0.00<br>0.00                 |                         |   | 60<br>70                                  | 55.89<br>49.79        |
| 40 32                                            | .86 1.1            | 1.1                        | 0.00                    | 0.00                         |                         |   | 80                                        | 44.99                 |
| 45 30.<br>50 28                                  |                    | 1.0<br>0.9                 | 0.00                    | 0.00<br>0.00                 |                         |   | 90<br>100                                 | 41.11<br>37.90        |
| 55 26<br>60 24                                   | .17 0.9            | 0.9                        | 0.00                    | 0.00                         |                         |   | 110<br>120                                | 35.20                 |
|                                                  | .JU U.S            | 0.8                        | 0.00                    | 0.00                         |                         |   |                                           | 32.89                 |
| rage: Above CB<br>Orifice Equation: • CdA        | (2ah)^0.5          | Where C =                  | 0.572                   |                              |                         |   | Storage: Surface Sto<br>Orifice Equation: | O = CdA(20            |
| Orifice Diameter: 102                            | 00 mm              | where C =                  | 0.312                   |                              |                         |   | Orifice Diameter:                         | 102.00                |
| Orifice CL Elevation 95<br>T/G Elevation 96      |                    |                            |                         |                              |                         |   | Orifice CL Elevation<br>T/G Elevation     | 95.63<br>96.96        |
| Max Ponding Depth 0.0                            | 00 m               |                            |                         |                              |                         |   | Max Ponding Depth                         | 0.00                  |
| Downstream W/L 95                                |                    | Diest                      | Mr                      | Verie                        | Value                   |   | Downstream W/L                            | 95.52<br>Store        |
| 5-year Water Level 96.                           | (m)                | Discharge<br>(L/s)<br>23.9 | Vreq<br>(cu. m)<br>0.00 | Vavail<br>(cu. m)<br>0.00    | Volume<br>Check<br>OK   |   | 100-year Water Level                      | Stage<br>96.96        |
| Subdrainage Area: UN                             | <u> </u>           |                            |                         | controlled                   | lan Tributan            | 1 | Subdrainage Area:                         | UNC-3                 |
| Area (ha): 0.0<br>C: 0.0                         | D4                 |                            | Ur                      | icontrolled - I              | Non-Tributary           |   | Subdrainage Area:<br>Area (ha):<br>C:     | 0.04<br>0.79          |
| tc I (2                                          | yr) Qactual        | Qrelease                   | Qstored                 | Vstored                      |                         |   | tc                                        | l (100 yr)            |
| (min) (mm<br>10 76                               | n/hr) (L/s)        | (L/s)<br>5.4               | (L/s)                   | (m^3)                        |                         |   | (min)<br>10                               | (mm/hr)<br>178.56     |
| 20 52                                            | .03 3.6            | 3.6                        |                         |                              |                         |   | 20                                        | 119.95                |
| 30 40<br>40 32                                   |                    | 2.8<br>2.3                 |                         |                              |                         |   | 30<br>40                                  | 91.87<br>75.15        |
| 50 28                                            | .04 2.0            | 2.0                        |                         |                              |                         |   | 50<br>60                                  | 63.95<br>55.89        |
| 70 21                                            | .91 1.5            | 1.5                        |                         |                              |                         |   | 70                                        | 49.79                 |
| 80 19.<br>90 18.                                 |                    | 1.4<br>1.3                 |                         |                              |                         |   | 80<br>90                                  | 44.99<br>41.11        |
| 100 16.                                          | .75 1.2            | 1.2<br>1.1                 |                         |                              |                         |   | 100                                       | 37.90                 |
| 110 15.<br>120 14.                               | .57 1.1<br>.56 1.0 | 1.1<br>1.0                 |                         |                              |                         | 4 | 110<br>120                                | 35.20<br>32.89        |
|                                                  | 16                 |                            | Ur                      | ncontrolled - I              | Non-Tributary           |   | Subdrainage Area:<br>Area (ha):           | UNC-2<br>0.16         |
| C: 0.4                                           |                    | Qrelease                   | Qstored                 | Vstored                      |                         |   | C:<br>tc                                  | 0.71<br>I (100 yr)    |
| (min) (mm                                        | n/hr) (L/s)        | (L/s)                      | (L/s)                   | (m^3)                        |                         |   | (min)                                     | (mm/hr)               |
| 10 76.<br>20 52.                                 | .03 13.2           | 19.5<br>13.2               |                         |                              |                         |   | 10<br>20                                  | 178.56<br>119.95      |
| 30 40.<br>40 32                                  | .04 10.2           | 10.2<br>8.3                |                         |                              |                         |   | 30<br>40                                  | 91.87<br>75.15        |
| 50 28                                            | .04 7.1            | 7.1                        |                         |                              |                         |   | 50                                        | 63.95                 |
| 60 24.<br>70 21.                                 |                    | 6.2<br>5.6                 |                         |                              |                         |   | 60<br>70                                  | 55.89<br>49.79        |
| 80 19.<br>90 18.                                 | .83 5.0            | 5.0<br>4.6                 |                         |                              |                         |   | 80<br>90                                  | 44.99<br>41.11        |
| 100 16                                           | .75 4.2            | 4.2                        |                         |                              |                         |   | 100                                       | 37.90                 |
| 110 15.<br>120 14.                               |                    | 3.9<br>3.7                 |                         |                              |                         |   | 110<br>120                                | 35.20<br>32.89        |
| Publicings Arrest 111                            | C 1                |                            |                         | oontrolled .                 | lan Tributere           | 1 | Cubdro'                                   |                       |
| Subdrainage Area: UN<br>Area (ha): 0.1<br>C: 0.1 | 07                 |                            | Ur                      | icontrolled - I              | Non-Tributary           |   | Subdrainage Area:<br>Area (ha):<br>C:     | UNC-1<br>0.07<br>0.66 |
| C: 0.4                                           |                    | Qrelease                   | Qstored                 | Vstored                      |                         |   | tc                                        | 0.66<br>I (100 yr)    |
| (min) (mm                                        | 1/hr) (L/s)        | (L/s)                      | (L/s)                   | (m^3)                        |                         | 1 | (min)                                     | (mm/hr)               |

Project #160402058 955 Borbridge Avenue

I (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89

Controlled - Tributary

#### L108B 0.03 0.50 l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Qreleas (L/s) Qactual (L/s) 7.4 5.0 3.8 3.1 2.7 2.3 2.1 1.9 1.7 1.6 1.5 1.4 7.4 5.0 3.8 3.1 2.7 2.3 2.1 1.9 1.7 1.6 1.5 1.4 torage Above CB : Q = CdA(2gh)^0.5 : 102.00 mm n 95.63 m n 96.96 m n 0.00 m - 95.52 m Where C = 0.572 Vreq (cu. m) 0.00 Stage Head Discharge Vavail Volume Check (m) 1.3 (L/s) 23.9 (cu. m) 96.96 0.00 UNC-3 0.04 0.79 Uncontrolled - Non-Tributary

|          | C:                                                                                             | 0.79                                                                                                                           |                                                                                               |                                                                                               |                  |                  |               |
|----------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|------------------|---------------|
|          | tc                                                                                             | l (100 yr)                                                                                                                     | Qactual                                                                                       | Qrelease                                                                                      | Qstored          | Vstored          | 1             |
|          | (min)                                                                                          | (mm/hr)                                                                                                                        | (L/s)                                                                                         | (L/s)                                                                                         | (L/s)            | (m^3)            |               |
|          | 10                                                                                             | 178.56                                                                                                                         | 15.6                                                                                          | 15.6                                                                                          |                  |                  | -             |
|          | 20                                                                                             | 119.95                                                                                                                         | 10.5                                                                                          | 10.5                                                                                          |                  |                  |               |
|          | 30                                                                                             | 91.87                                                                                                                          | 8.0                                                                                           | 8.0                                                                                           |                  |                  |               |
|          | 40                                                                                             | 75.15                                                                                                                          | 6.6                                                                                           | 6.6                                                                                           |                  |                  |               |
|          | 50                                                                                             | 63.95                                                                                                                          | 5.6                                                                                           | 5.6                                                                                           |                  |                  |               |
|          | 60                                                                                             | 55.89                                                                                                                          | 4.9                                                                                           | 4.9                                                                                           |                  |                  |               |
|          | 70                                                                                             | 49.79                                                                                                                          | 4.4                                                                                           | 4.4                                                                                           |                  |                  |               |
|          | 80                                                                                             | 44.99                                                                                                                          | 3.9                                                                                           | 3.9                                                                                           |                  |                  |               |
|          | 90                                                                                             | 41.11                                                                                                                          | 3.6                                                                                           | 3.6                                                                                           |                  |                  |               |
|          | 100                                                                                            | 37.90                                                                                                                          | 3.3                                                                                           | 3.3                                                                                           |                  |                  |               |
|          | 110                                                                                            | 35.20                                                                                                                          | 3.1                                                                                           | 3.1                                                                                           |                  |                  |               |
|          | 120                                                                                            | 32.89                                                                                                                          | 2.9                                                                                           | 2.9                                                                                           |                  |                  |               |
|          |                                                                                                |                                                                                                                                |                                                                                               |                                                                                               |                  |                  |               |
| Subdrai  | nage Area:                                                                                     | UNC-2                                                                                                                          |                                                                                               |                                                                                               | Un               | controlled -     | Non-Tributary |
|          | Area (ha):                                                                                     | 0.16                                                                                                                           |                                                                                               |                                                                                               |                  |                  |               |
|          | C:                                                                                             | 0.71                                                                                                                           |                                                                                               |                                                                                               |                  |                  |               |
|          |                                                                                                |                                                                                                                                |                                                                                               |                                                                                               |                  |                  |               |
|          |                                                                                                |                                                                                                                                |                                                                                               |                                                                                               |                  |                  | 1             |
|          | tc                                                                                             | l (100 yr)                                                                                                                     | Qactual                                                                                       | Qrelease                                                                                      | Qstored          | Vstored          |               |
|          | (min)                                                                                          | (mm/hr)                                                                                                                        | (L/s)                                                                                         | (L/s)                                                                                         | Qstored<br>(L/s) | Vstored<br>(m^3) | ]             |
|          | (min)<br>10                                                                                    | (mm/hr)<br>178.56                                                                                                              | (L/s)<br>56.6                                                                                 | (L/s)<br>56.6                                                                                 |                  |                  |               |
|          | (min)<br>10<br>20                                                                              | (mm/hr)<br>178.56<br>119.95                                                                                                    | (L/s)<br>56.6<br>38.0                                                                         | (L/s)<br>56.6<br>38.0                                                                         |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30                                                                        | (mm/hr)<br>178.56<br>119.95<br>91.87                                                                                           | (L/s)<br>56.6<br>38.0<br>29.1                                                                 | (L/s)<br>56.6<br>38.0<br>29.1                                                                 |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30<br>40                                                                  | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15                                                                                  | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8                                                         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8                                                         |                  |                  |               |
|          | (min)<br>10<br>20<br>30<br>40<br>50                                                            | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95                                                                         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3                                                 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3                                                 |                  |                  |               |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60                                                      | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89                                                                | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7                                         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7                                         |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70                                                | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79                                                       | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8                                 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8                                 |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80                                          | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99                                              | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3                         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3                         |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90                                    | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11                                     | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0                 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0                 |                  |                  | ]             |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                             | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90                            | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0         |                  |                  |               |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110                      | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>44.99<br>41.11<br>37.90<br>35.20          | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 |                  |                  |               |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                             | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90                            | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0         | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0         |                  |                  |               |
|          | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120               | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90<br>35.20<br>32.89          | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)            | (m^3)            | ]             |
| Subdraii | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>mage Area: | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90<br>35.20<br>32.89<br>UNC-1 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)            | (m^3)            | Non-Tributary |
| Subdrai  | (min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120               | (mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90<br>35.20<br>32.89          | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)<br>56.6<br>38.0<br>29.1<br>23.8<br>20.3<br>17.7<br>15.8<br>14.3<br>13.0<br>12.0<br>11.2 | (L/s)            | (m^3)            | Non-Tributary |

Qactual (L/s)

Qrelease (L/s)

Qstored (L/s)

Vstored (m^3)

Project #160402058, 955 Borbridge Avenue Method Calculations for Storage  $I = a/(t + b)^{0}$ a = 1735.688 ensity t (min) 10 20 30 40 50 60 70 80 90 100 110 b = c = 6.01 0.82 tawa 120 AR Predevelopment Target Release from Portion of Site R Modified Rational Method for Entire Site

| odified Rational M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | v                                                                                                                                                                  |                                                                                                                                           |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.81<br>52.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.9                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                           |                       |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.03<br>40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4<br>4.1                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                           |                       |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                           |                       |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                           |                       |
| 60<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.56<br>21.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5<br>2.3                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                           |                       |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                           |                       |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                           |                       |
| 100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.75<br>15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7<br>1.6                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                           |                       |
| 110<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.57<br>14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6<br>1.5                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | 0                                                                                                                                         | od Tribute            |
| Subdrainage Area:<br>Area (ha):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L103A<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Controll                                                                                                                                  | ed - Tributary        |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l (2 yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qrelease                                                                                                                                                                                                                                                            | Qstored                                                                                                                                                            | Vstored                                                                                                                                   | 1                     |
| (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (L/s)                                                                                                                                                                                                                                                               | (L/s)                                                                                                                                                              | (m^3)                                                                                                                                     |                       |
| 10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.81<br>52.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.4<br>29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.4<br>29.4                                                                                                                                                                                                                                                        | 0.0<br>0.0                                                                                                                                                         | 0.0<br>0.0                                                                                                                                |                       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.6                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.6                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 50<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.04<br>24.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.9<br>13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.9<br>13.9                                                                                                                                                                                                                                                        | 0.0<br>0.0                                                                                                                                                         | 0.0<br>0.0                                                                                                                                |                       |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.4                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.2                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 90<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.14<br>16.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.3<br>9.5                                                                                                                                                                                                                                                         | 0.0<br>0.0                                                                                                                                                         | 0.0<br>0.0                                                                                                                                |                       |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5<br>8.8                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.2                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| orage: Above CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W/k 0                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                               |                                                                                                                                           |                       |
| Orifice Equation:<br>Orifice Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CdA(2gh)^0 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .5<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Where C =                                                                                                                                                                                                                                                           | 0.61                                                                                                                                                               |                                                                                                                                           |                       |
| Orifice CL Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| T/G Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| Max Ponding Depth<br>Downstream W/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>95.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| Downstream W/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Discharge<br>(L/s)                                                                                                                                                                                                                                                  | Vreq<br>(cu. m)                                                                                                                                                    | Vavail<br>(cu.m)                                                                                                                          | Volume<br>Check       |
| 5-year Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (m)<br>1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (L/S)<br>47.6                                                                                                                                                                                                                                                       | (cu. m)<br>0.0                                                                                                                                                     | (cu. m)<br>49.6                                                                                                                           | OK                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| Subdrainage Area:<br>Area (ha):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L106A<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Controll                                                                                                                                  | ed - Tributary        |
| Area (na):<br>C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
| tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l (2 yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qrelease                                                                                                                                                                                                                                                            | Qstored                                                                                                                                                            | Vstored                                                                                                                                   | ı                     |
| (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (L/s)                                                                                                                                                                                                                                                               | (L/s)                                                                                                                                                              | (m^3)                                                                                                                                     |                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.2                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.03<br>40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.6<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.6<br>23.5                                                                                                                                                                                                                                                        | 0.0<br>0.0                                                                                                                                                         | 0.0<br>0.0                                                                                                                                |                       |
| 30<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.5<br>19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.5                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.5                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 60<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                | 0.0                                                                                                                                       |                       |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4<br>12.9                                                                                                                                                                                                                                                        | 0.0<br>0.0                                                                                                                                                         | 0.0<br>0.0                                                                                                                                |                       |
| 70<br>80<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.56<br>21.91<br>19.83<br>18.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4<br>12.9<br>11.7<br>10.7                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0<br>0.0                                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.0                                                                                                                  |                       |
| 70<br>80<br>90<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.56<br>21.91<br>19.83<br>18.14<br>16.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4<br>12.9<br>11.7<br>10.7<br>9.8                                                                                                                                                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                           |                       |
| 70<br>80<br>90<br>100<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2                                                                                                                                                                                                                          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.56<br>21.91<br>19.83<br>18.14<br>16.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4<br>12.9<br>11.7<br>10.7<br>9.8                                                                                                                                                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                           |                       |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2                                                                                                                                                                                                                          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)^0<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>T/G Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)^0<br>140<br>95.90<br>97.21<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4<br>12.9<br>11.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)^0<br>140<br>95.90<br>97.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    |                       |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>T/G Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)^0<br>140<br>95.90<br>97.21<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =                                                                                                                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                               | Volume                |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)*0<br>140<br>95.90<br>97.21<br>0.00<br>94.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.4<br>12.9<br>11.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                             | Volume<br>Check<br>OK |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>T/G Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>: CdA(2gh) <sup>4</sup> 0<br>95.90<br>97.21<br>0.00<br>94.51<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)                                                                                                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>Vavail<br>(cu. m)                                                                 | Check                 |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice C Elevation<br>T/C Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)^00<br>95.90<br>97.21<br>094.51<br>Stage<br>97.21<br>U104A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)                                                                                                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check                 |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>: CdA(2gh)YO<br>140<br>95.90<br>97.21<br>0.00<br>94.51<br>Stage<br>97.21<br>L104A<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)                                                                                                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orrage: Above CB<br>Orffce Equation:<br>Orffce CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>16.75<br>16.75<br>14.56<br>: CdA(2gh)YO<br>140<br>95.90<br>97.21<br>0.00<br>94.51<br>Stage<br>97.21<br>L104A<br>0.14<br>0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4<br>12.9<br>11.7<br>0.7<br>9.8<br>9.2<br>8.6<br>Where C =                                                                                                                                                                                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice Clameter:<br>Orifice Clameter:<br>Orifice Clevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>14.56<br>14.57<br>14.56<br>14.57<br>14.56<br>14.57<br>14.56<br>14.57<br>14.56<br>14.57<br>14.56<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>15.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>15.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>15.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br><b>Qactual</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>( <i>Us</i> )<br>47.6                                                                                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>: CdA(2gh)YO<br>140<br>95.90<br>97.21<br>0.00<br>94.51<br>Stage<br>97.21<br>L104A<br>0.14<br>0.79<br>I (2 yr)<br>(mm/h)<br>76.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>.31<br>.24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>( <i>L</i> /s)<br>47.6<br><b>Qrelease</b><br>( <i>L</i> /s)<br>23.9                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice Clevation<br>T/G Elevation<br>T/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>C:<br>(min)<br>10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>16.75<br>16.75<br>14.56<br>*<br>CdA(2gh)^00<br>140<br>95.90<br>97.21<br>*<br>CdA(2gh)^0<br>97.21<br>*<br>Stage<br>97.21<br>*<br>L104A<br>0.14<br>0.74<br>0.74<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>.242<br>(L/s)<br>24.2<br>16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br><b>Qrelease</b><br>(L/s)<br>23.9<br>16.4                                                                                                                            | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>(min)<br>10<br>20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>: CdA(2gh)YO<br>140<br>95.90<br>97.21<br>0.00<br>94.51<br>Stage<br>97.21<br>L104A<br>0.14<br>0.79<br>I (2 yr)<br>(mm/h)<br>76.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>M<br>Head<br>(m)<br>1.31<br>1.31<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>Qrelease<br>(L/s)<br>23.9<br>16.4<br>12.6                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>( <u>u,m</u> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>83.5<br>Controll<br>(m^3)<br>0.2<br>0.0<br>0.0<br>0.0                      | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Tr/G Elevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10<br>20<br>30<br>40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>16.75<br>15.57<br>14.56<br>: CdA(2gh)YO<br>140<br>95.90<br>97.21<br>0.00<br>97.21<br>0.00<br>94.51<br>Stage<br>97.21<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.79<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.14<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.20<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>0.29<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20<br>L104A<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br><b>Qrelease</b><br>(L/s)<br>23.9<br>16.4<br>12.6<br>10.4<br>8.8                                                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>83.5<br>Controll<br>(m^3)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice Clevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Tr/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.56<br>21.91<br>21.91<br>8.14<br>16.75<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>5<br>mm<br>m<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>1.31<br>24.2<br>24.2<br>24.2<br>24.4<br>10.4<br>8.8<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(Us)<br>47.6<br>Vhere C =<br>(Us)<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orrage: Above CB<br>Orfifce Equation:<br>Orfifce Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>16.75<br>16.57<br>14.56<br>*<br>CdA(2gh)/00<br>140<br>97.21<br>0.00<br>97.21<br>0.00<br>97.21<br>Stage<br>97.21<br>*<br>L104A<br>0.14<br>0.79<br>1(2 yr)<br>(mm/h)<br>76.81<br>52.03<br>40.04<br>32.86<br>28.04<br>24.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>23.9<br>16.4<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6                                                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Tr/G Elevation<br>Solo<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.56<br>21.91<br>21.91<br>18.14<br>16.75<br>15.57<br>14.55<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Uscharge<br>( <i>Us</i> )<br>47.6<br><b>Qrelease</b><br>( <i>Ls</i> )<br>47.6<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orrage: Above CB<br>Orfifce Equation:<br>Orfifce Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.56<br>21.91<br>21.91<br>18.14<br>16.75<br>15.57<br>14.56<br>40.00<br>97.21<br>97.21<br>20.00<br>94.51<br>21.02<br>97.21<br>21.02<br>16.20<br>97.21<br>10.00<br>94.51<br>21.02<br>10.07<br>97.21<br>21.02<br>10.07<br>97.21<br>10.07<br>97.21<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>5<br>5<br>mm<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>23.9<br>16.4<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6                                                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>tc;<br>10<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>5.3<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(U/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>8.8<br>7.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>4.9                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orrage: Above CB<br>Orifice Equation:<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.56<br>21.91<br>21.91<br>18.14<br>16.75<br>15.57<br>14.56<br>40.00<br>97.21<br>97.21<br>20.00<br>94.51<br>21.02<br>97.21<br>21.02<br>16.20<br>97.21<br>10.00<br>94.51<br>21.02<br>10.07<br>97.21<br>21.02<br>10.07<br>97.21<br>10.07<br>97.21<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79<br>10.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.3<br>5.7<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>5.3                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>tc<br>tc;<br>10<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>14.55<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57<br>15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>5.3<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(U/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>8.8<br>7.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>4.9                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>C<br>T/G Elevation<br>C<br>C<br>C<br>C<br>C | 24.56<br>21.91<br>21.91<br>18.14<br>16.75<br>15.57<br>14.55<br>14.557<br>14.557<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.557<br>14.557<br>14.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>5.3<br>4.9<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(U/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>8.8<br>7.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>4.9                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>T/G Elevation<br>Critice CL<br>te<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>corage: Above CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.56<br>21.91<br>21.91<br>18.14<br>16.75<br>15.57<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.57<br>14.56<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21<br>12.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>5<br>mm<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>5.3<br>4.9<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>4.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>Downstream V/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>C:<br>Downstream V/L<br>10<br>20<br>30<br>40<br>50<br>60<br>60<br>60<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>corage: Above CB<br>Orifice Elevation:<br>Orifice CL Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)/YO<br>140<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>• 94.51<br>• 12.97<br>• (mm/hr)<br>76.81<br>• 52.03<br>• 40.04<br>• 32.86<br>• 28.04<br>• 24.56<br>• 21.91<br>• 19.83<br>• 18.14<br>• 15.57<br>• 14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>m<br>tead<br>(m)<br>1.31<br>1.31<br>24.2<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>1.5<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.5<br>8.8<br>8.8<br>7.2<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>4.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>100<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>T/G Elevation<br>Cc<br>(min)<br>10<br>20<br>30<br>40<br>50<br>60<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.56<br>24.56<br>21.91<br>18.14<br>16.75<br>15.57<br>14.55<br>15.57<br>14.55<br>14.55<br>14.56<br>97.21<br>0.00<br>94.51<br><b>Stage</b><br>97.21<br><b>L104A</b><br>0.79<br><b>97.21</b><br><b>L104A</b><br>0.79<br><b>0.79</b><br><b>1(2 yr)</b><br>(mm/hr)<br>76.81<br>52.03<br>40.04<br>22.86<br>23.86<br>24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br><b>2.57</b><br>14.56<br><b>1.5</b><br>76.81<br>5.03<br>40.04<br>22.03<br>40.04<br>22.03<br>40.04<br>22.03<br>40.04<br>22.03<br>40.07<br>23.03<br>40.04<br>24.56<br>21.91<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.5719.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57<br>19.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>24.2<br>16.4<br>12.6<br>24.2<br>16.4<br>12.9<br>24.2<br>5.5<br>8.6<br>5.5<br>24.2<br>5.5<br>8.6<br>8.6<br>9.5<br>8.6<br>8.6<br>9.5<br>8.6<br>9.5<br>8.6<br>9.5<br>8.6<br>9.5<br>8.6<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>9.5<br>8.6<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5 | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>4.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>Downstream V/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>C:<br>Downstream V/L<br>10<br>20<br>30<br>40<br>50<br>60<br>60<br>60<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>corage: Above CB<br>Orifice Elevation:<br>Orifice CL Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br>• CdA(2gh)/YO<br>140<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>97.21<br>• 0.00<br>• 94.51<br>• 12.97<br>• (mm/hr)<br>76.81<br>• 52.03<br>• 40.04<br>• 32.86<br>• 28.04<br>• 24.56<br>• 21.91<br>• 19.83<br>• 18.14<br>• 15.57<br>• 14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>m<br>m<br>tead<br>(m)<br>1.31<br>1.31<br>24.2<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>1.5<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.7<br>5.3<br>5.5<br>8.8<br>8.8<br>7.2<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                                                                                                                                                                                                                                                                   | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>4.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |
| 70<br>80<br>90<br>110<br>110<br>120<br>orage: Above CB<br>Orifice Equation:<br>Trifice Diameter:<br>Orifice CL Elevation<br>Max Ponding Depth<br>Downstream W/L<br>5-year Water Level<br>Subdrainage Area:<br>Area (ha):<br>C:<br>Citor<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>corage: Above CB<br>Orifice Equation:<br>Orifice Elevation<br>Trifice Diameter:<br>Orifice CL Elevation<br>Trifice Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.56<br>21.91<br>19.83<br>18.14<br>16.75<br>15.57<br>14.56<br><b>CdA(2gh)/00</b><br><b>140</b><br>97.21<br><b>Community</b><br><b>76.81</b><br>52.03<br><b>97.21</b><br><b>10.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.7511.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b>11.75</b><br><b></b> | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>.5<br>mm<br>m<br>m<br>m<br>Head<br>(m)<br>1.31<br>1.31<br>24.2<br>16.4<br>12.6<br>10.4<br>8.8<br>7.7<br>6.9<br>6.3<br>5.7<br>4.9<br>4.6<br>.5<br>5.7<br>5.3<br>4.9<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4<br>12.9<br>11.7<br>10.7<br>9.8<br>9.2<br>8.6<br>Where C =<br>Discharge<br>(L/s)<br>47.6<br>47.6<br>23.9<br>16.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.6<br>10.4<br>12.9<br>4.6 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | Check<br>OK           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56                                                                                                                                                                                                                                                                       | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.0                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.95<br>91.87                                                                                                                                                                                                                                                              | 15.5<br>11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.5<br>11.8                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15                                                                                                                                                                                                                                                                        | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.7                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.95<br>55.89                                                                                                                                                                                                                                                               | 8.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.2<br>7.2                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.79                                                                                                                                                                                                                                                                        | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.99<br>41.11                                                                                                                                                                                                                                                               | 5.8<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.8<br>5.3                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.90<br>35.20                                                                                                                                                                                                                                                               | 4.9<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9<br>4.5                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.89                                                                                                                                                                                                                                                                        | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Area:<br>(ha):<br>C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L103A<br>0.30<br>0.84                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                              | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d - Tributary   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I (100 yr)                                                                                                                                                                                                                                                                   | Qactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qrelease                                                                                                                                                    | Qstored                                                                                                                                      | Vstored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (mm/hr)                                                                                                                                                                                                                                                                      | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (L/s)                                                                                                                                                       | (L/s)                                                                                                                                        | (m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 178.56<br>119.95                                                                                                                                                                                                                                                             | 126.2<br>84.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52.4<br>52.4                                                                                                                                                | 73.7<br>32.3                                                                                                                                 | 44.2<br>38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87                                                                                                                                                                                                                                                                        | 64.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.4                                                                                                                                                        | 12.5                                                                                                                                         | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.15<br>63.95                                                                                                                                                                                                                                                               | 53.1<br>45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.4<br>45.2                                                                                                                                                | 0.7<br>0.0                                                                                                                                   | 1.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.89                                                                                                                                                                                                                                                                        | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39.5                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.79<br>44.99                                                                                                                                                                                                                                                               | 35.2<br>31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.2<br>31.8                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.11                                                                                                                                                                                                                                                                        | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.1                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.90<br>35.20                                                                                                                                                                                                                                                               | 26.8<br>24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.8<br>24.9                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.89                                                                                                                                                                                                                                                                        | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.2                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Storage: Surfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ace Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rage Above                                                                                                                                                                                                                                                                   | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q = CdA(2g                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Where C =                                                                                                                                                   | 0.61                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Orifice Diar<br>Orifice CL Ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ا 140<br>ا 95.88                                                                                                                                                                                                                                                             | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| T/G Ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.19 i                                                                                                                                                                                                                                                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Max Ponding<br>Downstrear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28 i<br>95.30 i                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stage                                                                                                                                                                                                                                                                        | Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discharge                                                                                                                                                   | Vreq                                                                                                                                         | Vavail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume          |
| 100-year Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.47                                                                                                                                                                                                                                                                        | (m)<br>1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (L/s)<br>52.4                                                                                                                                               | (cu. m)<br>44.2                                                                                                                              | (cu. m)<br>49.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check<br>OK     |
| ,00. Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02.T                                                                                                                                                        |                                                                                                                                              | 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| Subdrainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L106A                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                              | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d - Tributary   |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ha):<br>C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.27<br>0.99                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              | 04-4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Orela                                                                                                                                                       | Onter 1                                                                                                                                      | Vet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tc<br>nin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l (100 yr)<br>(mm/hr)                                                                                                                                                                                                                                                        | Qactual<br>(L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qrelease<br>(L/s)                                                                                                                                           | Qstored<br>(L/s)                                                                                                                             | Vstored<br>(m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56                                                                                                                                                                                                                                                                       | 131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52.8                                                                                                                                                        | 78.5                                                                                                                                         | 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.95<br>91.87                                                                                                                                                                                                                                                              | 88.2<br>67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.8<br>52.8                                                                                                                                                | 35.4<br>14.7                                                                                                                                 | 42.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15                                                                                                                                                                                                                                                                        | 55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.8                                                                                                                                                        | 2.5                                                                                                                                          | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.95<br>55.89                                                                                                                                                                                                                                                               | 47.0<br>41.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.0<br>41.1                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.79                                                                                                                                                                                                                                                                        | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.6                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.99<br>41.11                                                                                                                                                                                                                                                               | 33.1<br>30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.1<br>30.2                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.90                                                                                                                                                                                                                                                                        | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.9                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.20                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.9<br>25.9                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              | 27.9<br>25.9<br>24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.9                                                                                                                                                        | 0.0                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| 1<br>1<br>Storage: Surfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>10<br>20<br>ace Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.20<br>32.89                                                                                                                                                                                                                                                               | 27.9<br>25.9<br>24.2<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.9<br>25.9                                                                                                                                                | 0.0<br>0.0                                                                                                                                   | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>10<br>20<br>ace Stor<br>ation: (<br>neter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g)<br>140 r                                                                                                                                                                                                                         | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.9<br>25.9<br>24.2                                                                                                                                        | 0.0<br>0.0<br>0.0                                                                                                                            | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1<br>1<br>Storage: Surfa<br>Orifice Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00<br>10<br>20<br>ace Stor<br>ation: (<br>neter:<br>vation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 r<br>95.90 r<br>97.21 r                                                                                                                                                                                                    | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.9<br>25.9<br>24.2                                                                                                                                        | 0.0<br>0.0<br>0.0                                                                                                                            | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diara<br>Orifice CL Ele<br>T/G Ele<br>Max Ponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10<br>20<br>ace Stor<br>ation: (<br>neter:<br>vation<br>vation<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.20<br>32.89<br>rage Above<br>Q = CdA(2gi<br>140 r<br>95.90 r<br>97.21 r<br>0.30 r                                                                                                                                                                                         | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.9<br>25.9<br>24.2                                                                                                                                        | 0.0<br>0.0<br>0.0                                                                                                                            | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diar<br>Orifice CL Ele<br>T/G Ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10<br>20<br>ace Stor<br>ation: (<br>neter:<br>vation<br>vation<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>0.30 i<br>94.51 i                                                                                                                                                                               | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.9<br>25.9<br>24.2<br>Where C =                                                                                                                           | 0.0<br>0.0<br>0.0                                                                                                                            | 0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diara<br>Orifice CL Ele<br>T/G Ele<br>Max Ponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10<br>20<br>ace Stor<br>ation: (<br>neter:<br>vation<br>vation<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.20<br>32.89<br>rage Above<br>Q = CdA(2gi<br>140 r<br>95.90 r<br>97.21 r<br>0.30 r                                                                                                                                                                                         | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.9<br>25.9<br>24.2                                                                                                                                        | 0.0<br>0.0<br>0.0                                                                                                                            | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume<br>Check |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diara<br>Orifice CL Ele<br>T/G Ele<br>Max Ponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>10<br>20<br>ace Stor<br>ation: 0<br>neter:<br>vation<br>vation<br>Depth<br>n W/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>0.30 i<br>94.51 i                                                                                                                                                                               | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>n<br>Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.9<br>25.9<br>24.2<br>Where C =                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.61                                                                                                                    | 0.0<br>0.0<br>0.0<br>Vavail<br>(cu. m)<br>83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Dia<br>Orifice CL Ele<br>Max Ponding j<br>Downstrear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>10<br>20<br>ace Stor<br>ation: 0<br>neter:<br>vation<br>vation<br>Depth<br>n W/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>1400 i<br>97.21 i<br>0.30 i<br>94.51 i<br>Stage<br>97.51                                                                                                                                                                       | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)                                                                                                     | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br><u>(cu.m)</u><br>83.5<br>36.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diar<br>Orifice CL Eler<br>T/G Ele<br>Max Ponding<br>Downstrear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00<br>10<br>20<br>ace Stor<br>ation: 0<br>neter:<br>vation<br>Depth<br>n W/L<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140<br>95.90<br>97.21<br>0.30<br>94.51<br>Stage<br>97.51<br>L104A<br>0.14                                                                                                                                                      | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)                                                                                                     | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br><u>(cu.m)</u><br>83.5<br>36.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check           |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diar<br>Orifice CL Eler<br>T/G Ele<br>Max Ponding<br>Downstrear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00<br>10<br>20<br>ace Stor<br>ation: 0<br>neter:<br>vation<br>vation<br>Depth<br>n W/L<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>0.30 i<br>94.51 i<br>Stage<br>97.51                                                                                                                                                             | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)                                                                                                     | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br><u>(cu.m)</u><br>83.5<br>36.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice CL Ele<br>T/G Ele<br>Max Ponding<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00<br>10<br>20<br>acce Stol<br>vation: 0<br>vation<br>vation<br>Depth<br>n W/L<br>Level<br>Area:<br>(ha):<br>C:<br>tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>97.21 i<br>94.51 i<br>94.51 i<br>94.51 i<br>0.14<br>0.14<br>0.99<br>1 (100 yr)                                                                                                                                        | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.9<br>26.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8                                                                                             | 0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1                                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u> <u>0.0</u> | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice CL Elee<br>Max Ponding<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00<br>10<br>20<br>acce Stol<br>acce Stol<br>enter:<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>inin)<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 r<br>95.90<br>97.21<br>0.30 r<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>I (100 yr)<br>(mm/hr)<br>178.56                                                                                                       | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b><br>(L/s)<br>70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.9<br>26.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>25.8<br><b>Qrelease</b><br>(L/s)<br>26.0                                                         | 0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>Qstored<br>(L/s)<br>44.4                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u> <u>0.0</u> | Check<br>OK     |
| 1<br>Storage: Suffee Equ<br>Orifice Equ<br>Orifice Caller<br>T/G Ele<br>Max Ponding<br>Downstrear<br>100-year Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00<br>10<br>20<br>acce Stor<br>ation: (i<br>meter:<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>hin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.20<br>32.89<br>rage Above<br>2 = CdA(2g<br>140 1<br>97.21<br>0.30<br>94.51<br>1<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>1(100 yr)<br>(mm/hr)<br>178.56<br>119.95                                                                                                    | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b><br>(L/s)<br>70.4<br>47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(U/s)<br>52.8<br>Qrelease<br>(U/s)<br>26.0<br>26.0                                                        | 0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>Qstored<br>(L/s)<br>44.4<br>21.3                                                            | 0.0<br>0.0<br>0.0<br>0.0<br><u>Vavail</u><br>( <u>cu. m</u> )<br><u>83.5</u><br><u>36.43</u><br><u>Controlle</u><br><u>Vstored</u><br>( <u>m^3</u> )<br><u>26.6</u><br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check<br>OK     |
| 1 Storage: Surfa Orifice Equ Orifice Diar Orifice CL Elee T/G Ele Max Ponding i Downstrear 100-year Water Subdrainage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00<br>10<br>20<br>acce Stor<br>ation: (<br>neter:<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>in<br>10<br>20<br>30<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.20<br>32.89<br>rage Above<br>2 = CdA(2g<br>1400<br>95.90<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.39<br>110.97<br>(mm/hr)<br>178.56<br>91.87<br>75.15                                                                                                             | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>Head<br>(m)<br>1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br>Qrelease<br>(L/s)<br>26.0<br>26.0<br>26.0                                                | 0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>Vavail<br>(cu. m)<br>83.5<br>36.43<br>Controlle<br>Vstored<br>(m^3)<br>26.6<br>(m^3)<br>25.5<br>18.4<br>8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orfice Equ<br>Orfice Diar<br>Orfice CL Eler<br>T/G Eler<br>Max Ponding j<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>10<br>20<br>acce Stor<br>ation: (<br>neter::<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>inin)<br>10<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>.0.30 i<br>94.51 i<br>Stage<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>I (100 yr)<br>(mm/ltri)<br>178.56<br>119.97<br>75.15<br>63.95                                                | 27.9<br>25.9<br>24.2<br>CB<br>n)Y0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br>V0.4<br>(L/s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br><b>Qrelease</b><br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0         | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu.m)<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6<br>0.0                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>83.5<br>36.43<br>Controlle<br>Vstored<br>(m^3)<br>26.6<br>25.5<br>18.4<br>8.7<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check<br>OK     |
| 1<br>1<br>1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Diar<br>Orifice Diar<br>Orifice Diar<br>Orifice Diar<br>Orifice Diar<br>Max Ponding i<br>Downstrear<br>100-year Water<br>100-year Water<br>Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00<br>10<br>20<br>acce Stor<br>ation: (<br>neter:<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>in<br>10<br>20<br>30<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.20<br>32.89<br>rage Above<br>2 = CdA(2g<br>1400<br>95.90<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.39<br>110.97<br>(mm/hr)<br>178.56<br>91.87<br>75.15                                                                                                             | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>Head<br>(m)<br>1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br>Qrelease<br>(L/s)<br>26.0<br>26.0<br>26.0                                                | 0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>Vavail<br>(cu. m)<br>83.5<br>36.43<br>Controlle<br>Vstored<br>(m^3)<br>26.6<br>(m^3)<br>25.5<br>18.4<br>8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice CL Elee<br>Max Ponding<br>Downstrear<br>100-year Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 10 20 acce Stoo action: (     meter:     vation Depth n W/L Level (     ha:     c:     c:     tc     inn) 10 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.20<br>32.89<br>yrage Above<br>Q = CdA(2g<br>140 i<br>97.21<br>0.30 i<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>I (100 yr)<br>(mm/hr)<br>178.56<br>119.95<br>91.87<br>76.15<br>63.95<br>55.89<br>49.79                                                        | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>M<br>Head<br>(m)<br>1.61<br>1.61<br>(L(s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>22.0<br>19.6<br>25.2<br>22.0<br>19.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br><b>Qrelease</b><br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>47.1<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6<br>0.0<br>0.0<br>0.0                     | 0.0<br>0.0<br>0.0<br>0.0<br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice Call<br>TIG Eler<br>Max Ponding<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00<br>10<br>20<br>acce Storio<br>ation: (<br>neter::<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>tc<br>nin<br>10<br>20<br>30<br>40<br>50<br>50<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>                                                                                                                                                                                                | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b><br>(L/s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>22.0<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(U/s)<br>52.8<br>Qrelease<br>(U/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0        | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6<br>0.0<br>0.0                                            | 0.0<br>0.0<br>0.0<br>0.0<br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>83.5</u><br><u>36.43</u><br><u>Controlle</u><br><u>Vstored</u><br><u>(m^3)</u><br><u>26.6</u><br>25.5<br>18.4<br><u>8.7</u><br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |
| 1 Storage: Surfa Orifice Equ Orifice Dar Orifice CL Elee T/G Ele Max Ponding Downstrear 100-year Water  Subdrainage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 10 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>0.30 i<br>94.51 i<br>Stage<br>97.51<br>94.51<br>178.56<br>119.97<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.19<br>41.11<br>37.90<br>35.20                                     | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b><br>(U/s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>22.0<br>19.6<br>17.6<br>16.2<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br>Qrelease<br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0        | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>2.3.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |
| 1 Storage: Surfa Orifice Equ Orifice Tir TiG Ele Max Ponding Downstrear 100-year Water Subdrainage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00 10 20 acce Stou ation:: ( neter:; vation avation n W/L Level Depth n W/L Area:: ((ha): C: tc nin) 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>97.21<br>0.30 i<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>I(100 yr)<br>(mm/hr)<br>(mm/hr)<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90                    | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br>1.61<br>1.61<br>(L(s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>22.0<br>19.6<br>25.2<br>22.0<br>19.6<br>17.7<br>16.2<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>25.8<br><b>Qrelease</b><br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>47.1<br>44.4<br>21.3<br>10.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br><u>0.0</u><br><u>0.0</u><br><u>0.0</u><br><u>83.5</u><br><u>36.43</u><br><u>Controlle</u><br><u><b>Vstored</b><br/>(m<sup>2</sup>3)</u><br><u>85.5</u><br><u>36.43</u><br><u>26.6</u><br><u>25.5</u><br><u>18.4</u><br><u>8.7</u><br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check<br>OK     |
| 1 3torage: Surfa Orifice Equ Orifice Dar Orifice CLEIee T/G Ele Max Ponding i Downstrear 100-year Water  Subdrainage Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 00 10 20 acce Stor acce | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>0.30 i<br>94.51 i<br>Stage<br>97.51<br>94.51<br>178.56<br>119.97<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.19<br>41.11<br>37.90<br>35.20                                     | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br><b>Qactual</b><br>( <b>L's</b> )<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>29.6<br>25.2<br>29.6<br>25.2<br>19.6<br>25.2<br>19.6<br>17.7<br>16.2<br>13.9<br>13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br>Qrelease<br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0        | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>2.3.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orffice Equ<br>Orffice CLE lee<br>TG Eler<br>Max Ponding<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area<br>(<br>(<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>(<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | 00 10 20 acce Stol attion: ( attinue) acce Stol attinue) att | 35.20<br>32.89<br>xrage Above<br>Q = CdA(2g<br>140 i<br>95.90 i<br>97.21 i<br>                                                                                                                                                                                               | 27.9<br>26.9<br>24.2<br>CB<br>n/0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br>(L/s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>29.0<br>19.6<br>17.7<br>13.9<br>13.0<br>CB<br>n)<br>0.5<br>CB<br>n)<br>0.5<br>13.0<br>CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br>Qrelease<br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0        | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>44.4<br>21.3<br>10.2<br>2.3.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |
| 1<br>Storage: Surfa<br>Orifice Equ<br>Orifice CL Elee<br>Max Ponding<br>Downstrear<br>100-year Water<br>Subdrainage<br>Area<br>(1<br>(n<br>(1<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00<br>10<br>20<br>ace Stoi<br>ation: (<br>meter:<br>vation<br>Depth<br>n W/L<br>Level<br>(ha):<br>C:<br>to<br>tinn)<br>10<br>20<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.20<br>32.89<br>rage Above<br>Q = CdA(2g<br>140 r<br>95.90 r<br>97.21 r<br>                                                                                                                                                                                                | 27.9<br>25.9<br>24.2<br>CB<br>n)^0.5<br>nm<br>n<br>n<br>Head<br>(m)<br>1.61<br>(Us)<br>70.4<br>47.3<br>29.6<br>25.2<br>29.6<br>25.2<br>10.6<br>11.6<br>1.61<br>CB<br>13.9<br>13.0<br>CB<br>n)^0.5<br>mm<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br><b>Qrelease</b><br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 10 20 acce Stoi ation: ( neter:: vation Depth n W/L Level Area: (na) 10 20 Area: (na) 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.20<br>32.89<br>yrage Above<br>Q = CdA(2g)<br>1400<br>97.21<br>0.30<br>97.51<br>Stage<br>97.51<br>L104A<br>0.14<br>0.99<br>178.56<br>119.95<br>91.87<br>75.15<br>63.95<br>55.89<br>49.79<br>44.99<br>41.11<br>37.90<br>35.20<br>32.89<br>yrage Above<br>Q = CdA(2g)<br>102 | 27.9<br>25.9<br>24.2<br>CB<br>n/^0.5<br>nm<br>n<br>Head<br>(m)<br>1.61<br>1.61<br>(L/s)<br>70.4<br>47.3<br>36.2<br>29.6<br>25.2<br>22.0<br>19.6<br>25.2<br>22.0<br>19.6<br>25.9<br>17.7<br>16.2<br>14.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9<br>13.9 | 27.9<br>25.9<br>24.2<br>Where C =<br>Discharge<br>(L/s)<br>52.8<br><b>Qrelease</b><br>(L/s)<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 0.0<br>0.0<br>0.0<br>0.61<br>Vreq<br>(cu. m)<br>47.1<br>47.1<br>44.4<br>21.3<br>10.2<br>3.6<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check<br>OK     |

Head (m)

Stage

Discharge (L/s) Vreq (cu. m) Vavail (cu. m) Volume Check

| Area:<br>(ha):<br>C: | L108A                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d - Tributary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 0.13<br>0.83                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| c<br>in)             | l (2 yr)                                                 | Qactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qrelease<br>(L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qstored<br>(L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vstored<br>(m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | (mm/hr)<br>76.81                                         | (L/s)<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20<br>10             | 52.03<br>40.04                                           | 15.6<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.6<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 32.86                                                    | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 28.04                                                    | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 24.56                                                    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 19.83                                                    | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00                   | 16.75                                                    | 5.4<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.4<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                   | 15.57                                                    | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 14.50                                                    | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| e CB                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Where C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| neter:<br>ation      | 102<br>95.88                                             | mm<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ation                | 97.21                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| טפענה<br>1 W/L       | 94.52                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| г                    |                                                          | Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vavail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| J                    |                                                          | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (cu. m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cu. m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Level                | 97.21                                                    | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area:                | L107B                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed - Tributary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ha):                | 0.14                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                                          | On at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Onterret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in)                  | l (2 yr)<br>(mm/hr)                                      | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qstored<br>(L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 76.81                                                    | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                   | 52.03<br>40.04                                           | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 32.86                                                    | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| i0                   |                                                          | 5.5<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 21.91                                                    | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10<br>10             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00                   | 16.75                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                   | 15.57                                                    | 3.0<br>2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ae Wit               | hin Perforate                                            | d Subdrair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h & Stone Trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ation: +<br>neter:   | 102                                                      | .ə<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | where C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ation                | 96.05                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth                | 0.00                                                     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trench Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n W/L                | 95.86                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trench Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ie @ 40% P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orosity =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Г                    | Stage                                                    | Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vreq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vavail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Level                | 97.03                                                    | (m)<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (L/s)<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (cu. m)<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (cu. m)<br>19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check<br>OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Area:                | L107A                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed - Tributary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (na):<br>C:          | 0.16                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| c                    | l (2 yr)                                                 | Qactual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qrelease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qstored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vstored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in)                  | (mm/hr)                                                  | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0<br>20              | 76.81<br>52.03                                           | 26.5<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.5<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 40.04                                                    | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0<br>60              | 32.86<br>28.04                                           | 11.4<br>9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.4<br>9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 24.56                                                    | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 21.91<br>19.83                                           | 7.6<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.6<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                    | 18.14                                                    | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00<br>10             | 16.75<br>15.57                                           | 5.8<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                   | 14.56                                                    | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| e CB                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Where C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| neter:               | 108<br>96.13                                             | mm<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /ation               | 97.45                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Depth                | 0.00                                                     | m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /L                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | -                                                        | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (cu. m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cu. m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume<br>Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level                | 97.45                                                    | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 00         24.56           00         21.91           00         19.83           00         18.14           00         16.75           100         15.57           20         14.56           re CB         station:           ctation:         : CdA(2gh)Y0.           reter:         102           yets         37.21           pepti         0.00           wWL         94.52           Level         97.21           Area:         L107B           (fna):         0.45           C:         0.50           c         12(2yr)           in)         (mmr/hr)           00         52.03           00         28.04           00         28.04           00         28.04           00         28.04           01         15.57           20         14.56           geWithin Perforate           atton:         : CdA(2gh)Y0.           eter:         10           00         18.75           10         15.57           20         14.56 | 00         24.56         7.4           00         24.56         7.4           00         19.83         5.9           00         18.14         5.4           00         18.14         5.4           00         16.75         5.0           10         15.57         4.7           20         14.56         4.4           eCB         ation:         CCA(2gh)*0.5           reter:         102         mm           adion         97.21         m           Depth         0.00         m           V/V         94.52         m           Area:         L107B         (m)           (ha)         0.14         C           C:         0.50         c           c         1.2 yr)         Qactual           (mm/mr)         (Lys)         0           0         52.03         10.2           0         3.286         6.4           0         28.04         5.5           0         24.56         4.8           0         18.14         3.6           0         18.14         3.6      0         18.14 | 00         24:56         7.4         7.4           00         24:56         7.4         7.4           00         19:83         5.9         5.9           00         18:14         5.4         5.4           00         16:75         5.0         5.0           10         15:57         4.7         4.7           20         14:56         4.4         4.4           ecB         ation::         C2A(2gh)Y0.5         Where C =           neter:         102         mm         main           3200         model         model         model           Jundon 97:21         m         23.9         model           Area:         L107B         (Lis)         (Lis)           (mm/hn)         (Lis)         15.0         15.0           0         72.0         1.33         23.9           Area:         L107B         (Lis)         (Lis)           (mm/hn)         (Lis)         15.0         15.0           0         22.03         10.2         10.2           0         42.86         4.8         4.8           0         28.04         5.5         5.5      < | 00         24.56         7.4         7.4         0.0           00         24.56         7.4         7.4         0.0           00         18.14         5.4         5.9         0.0           00         18.14         5.4         5.4         0.0           00         16.75         5.0         5.0         0.0           01         15.57         4.7         4.7         0.0           02         14.56         4.4         4.4         0.0           ec CB         mm         maion         7.21         m           ation:         CCA/(2gh)Y0.5         Where C =         0.572           neter:         102         mm         102         (u.s)           37.21         m         0.0         m           V/V         94.52         m         102         0.0           Area:         L107B         (u.s)         (u.s)         (u.s)           (rea:         0.16         2.97         0.0         0           00         52.03         10.2         10.2         0.0           01         98.28         9.3.9         9.0         0           02.45.66         4.8 <td>00       24.56       7.4       7.4       0.0       0.0         00       21.91       6.6       6.6       0.0       0.0         00       18.41       5.4       5.9       5.0       0.0       0.0         00       16.75       5.0       5.0       0.0       0.0       0.0         20       14.56       4.4       4.4       0.0       0.0         e CB       attain       5.8       m       nation       97.21       mm         attain       97.21       mm       nation       97.21       n.33       23.9       0.0       37.3         Area:       L107B       Controlle         (main)       11.4       10       0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0</td> | 00       24.56       7.4       7.4       0.0       0.0         00       21.91       6.6       6.6       0.0       0.0         00       18.41       5.4       5.9       5.0       0.0       0.0         00       16.75       5.0       5.0       0.0       0.0       0.0         20       14.56       4.4       4.4       0.0       0.0         e CB       attain       5.8       m       nation       97.21       mm         attain       97.21       mm       nation       97.21       n.33       23.9       0.0       37.3         Area:       L107B       Controlle         (main)       11.4       10       0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 |

| 100-year Water                  |                      | 97.58                 | 1.58             | 26.0                         | 26.6             | 33.6<br>6.96     | OK              |
|---------------------------------|----------------------|-----------------------|------------------|------------------------------|------------------|------------------|-----------------|
| Subdrainage                     | Area:                | L108A                 |                  |                              |                  |                  | d - Tributary   |
|                                 | (ha):<br>C:          | 0.13<br>1.00          |                  |                              |                  | Controlle        | outal y         |
|                                 | tc                   | l (100 yr)            | Qactual          | Qrelease                     | Qstored          | Vstored          |                 |
|                                 | <b>nin)</b><br>10    | (mm/hr)<br>178.56     | (L/s)<br>64.5    | (L/s)<br>26.4                | (L/s)<br>38.1    | (m^3)<br>22.9    |                 |
| 2                               | 20                   | 119.95                | 43.4<br>33.2     | 26.4<br>26.4                 | 16.9             | 20.3<br>12.2     |                 |
| 4                               | 40                   | 91.87<br>75.15        | 27.2             | 26.4                         | 6.8<br>0.7       | 1.7              |                 |
|                                 | 50<br>50             | 63.95<br>55.89        | 23.1<br>20.2     | 23.1<br>20.2                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| 7                               | 70<br>30             | 49.79<br>44.99        | 18.0<br>16.3     | 18.0<br>16.3                 | 0.0              | 0.0<br>0.0       |                 |
| 9                               | 90                   | 41.11                 | 14.9             | 14.9                         | 0.0              | 0.0              |                 |
|                                 | 00<br>10             | 37.90<br>35.20        | 13.7<br>12.7     | 13.7<br>12.7                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| 1                               | 20                   | 32.89                 | 11.9             | 11.9                         | 0.0              | 0.0              |                 |
| orage: Surfa                    | ace Sto              | orage Above           | СВ               |                              |                  |                  |                 |
|                                 |                      | Q = CdA(2g            |                  | Where C =                    | 0.572            |                  |                 |
| Orifice Diar<br>Orifice CL Elev |                      | 102<br>95.88          |                  |                              |                  |                  |                 |
| T/G Ele<br>Max Ponding          |                      | 97.21<br>0.30         |                  |                              |                  |                  |                 |
| Downstream                      |                      | 94.52                 |                  |                              |                  |                  |                 |
|                                 | [                    | Stage                 | Head             | Discharge                    | Vreq             | Vavail           | Volume          |
| 100-year Water                  | Level                | 97.51                 | (m)<br>1.63      | (L/s)<br>26.4                | (cu. m)<br>22.9  | (cu. m)<br>37.3  | Check<br>OK     |
|                                 |                      |                       |                  |                              |                  | 14.44            |                 |
| Subdrainage<br>Area             | Area:<br>(ha):<br>C: | L107B<br>0.14<br>0.63 |                  |                              |                  | Controlle        | d - Tributary   |
|                                 | tc                   | l (100 yr)            | Qactual          | Qrelease                     | Qstored          | Vstored          |                 |
|                                 | <b>nin)</b><br>10    | (mm/hr)<br>178.56     | (L/s)<br>43.7    | (L/s)<br>22.0                | (L/s)<br>21.7    | (m^3)<br>13.0    |                 |
|                                 | 20<br>30             | 119.95<br>91.87       | 29.4<br>22.5     | 22.0<br>22.0                 | 7.4<br>0.5       | 8.8<br>0.9       |                 |
| 4                               | 40                   | 75.15                 | 18.4             | 18.4                         | 0.0              | 0.0              |                 |
|                                 | 50<br>50             | 63.95<br>55.89        | 15.7<br>13.7     | 15.7<br>13.7                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
|                                 | 70<br>30             | 49.79<br>44.99        | 12.2<br>11.0     | 12.2<br>11.0                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| ç                               | 90                   | 41.11                 | 10.1             | 10.1                         | 0.0              | 0.0              |                 |
|                                 | 00<br>10             | 37.90<br>35.20        | 9.3<br>8.6       | 9.3<br>8.6                   | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| 1                               | 20                   | 32.89                 | 8.1              | 8.1                          | 0.0              | 0.0              |                 |
| orage: Stora                    | ige Wi               | thin Perforat         | ed Subdrai       | n & Stone Tren               | ch               |                  |                 |
| Orifice Equ<br>Orifice Diar     |                      | Q = CdA(2g<br>102     |                  | Where C =                    | 0.572            |                  |                 |
| Orifice CL Elev                 | vation               | 96.05                 | m                | Subdrain Len                 |                  | 54.8 r<br>0.85 r |                 |
| T/G Ele<br>Max Ponding          | Depth                | 97.03<br>0.15         | m                | Trench Width<br>Trench Depth | n =              | 1.00 r           | n               |
| Downstrear                      | n W/L                | 95.86                 | m                | Trench Volun                 | ne @ 40% P       | orosity =        | 18.6            |
|                                 |                      | Stage                 | Head<br>(m)      | Discharge<br>(L/s)           | Vreq<br>(cu.m)   | Vavail<br>(cu.m) | Volume<br>Check |
| 100-year Water                  | Level                | 97.18                 | 1.13             | 22.0                         | 13.0             | 19.8<br>6.78     | OK              |
| Subdrainage                     | Aroa                 | L107A                 |                  |                              |                  |                  | d - Tributary   |
|                                 | (ha):<br>C:          | 0.16                  |                  |                              |                  | Controlle        | a - moatary     |
|                                 |                      |                       | 0                | 0                            | Orterral         | Matanad          |                 |
| (n                              | tc<br>nin)           | l (100 yr)<br>(mm/hr) | Qactual<br>(L/s) | Qrelease<br>(L/s)            | Qstored<br>(L/s) | Vstored<br>(m^3) |                 |
|                                 | 10<br>20             | 178.56<br>119.95      | 77.1<br>51.8     | 29.5<br>29.5                 | 47.6<br>22.3     | 28.5<br>26.7     |                 |
| 1                               | 30<br>40             | 91.87<br>75.15        | 39.7<br>32.5     | 29.5<br>29.5                 | 10.1<br>2.9      | 18.2<br>7.0      |                 |
| 5                               | 50                   | 63.95                 | 27.6             | 27.6                         | 0.0              | 0.0              |                 |
|                                 | 50<br>70             | 55.89<br>49.79        | 24.1<br>21.5     | 24.1<br>21.5                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| 8                               | 30<br>90             | 44.99<br>41.11        | 19.4<br>17.8     | 19.4<br>17.8                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| 1                               | 00                   | 37.90                 | 16.4             | 16.4                         | 0.0              | 0.0              |                 |
|                                 | 10<br>20             | 35.20<br>32.89        | 15.2<br>14.2     | 15.2<br>14.2                 | 0.0<br>0.0       | 0.0<br>0.0       |                 |
| orage: Surfa                    | ace Sto              | orage Above           | СВ               |                              |                  |                  |                 |
| -                               |                      | Q = CdA(2g            |                  | Where C =                    | 0.572            |                  |                 |
| Orifice Diar<br>Orifice CL Elev | neter:               | 108                   | mm               | -                            |                  |                  |                 |
| T/G Ele                         | vation               | 97.45                 | m                |                              |                  |                  |                 |
| Max Ponding<br>Downstrear       |                      | 0.30<br>94.10         |                  |                              |                  |                  |                 |
|                                 | ſ                    | Stage                 | Head             | Discharge                    | Vreq             | Vavail           | Volume          |
| 100-year Water                  | 0.00                 |                       | (m)<br>1.62      | (L/s)<br>29.5                | (cu. m)<br>28.5  | (cu. m)<br>50.8  | Check<br>OK     |
|                                 | revei                | 91.10                 | 1.02             | 29.0                         | 20.0             | 22.26            | UK              |
|                                 |                      |                       |                  |                              |                  |                  |                 |
|                                 |                      |                       |                  |                              |                  |                  |                 |
| ioo your mator                  |                      |                       |                  |                              |                  |                  |                 |

#### Project #160402058, 955 Borbridge Avenue

| Total 2yr Flow to Sewer     | 184.5 L/s | 0.2 | 274.6 m <sup>3</sup> ( |
|-----------------------------|-----------|-----|------------------------|
| Non-Tributary Area          | 0.27 ha   |     |                        |
| Total 2yr Flow Uncontrolled | 32.8 L/s  |     |                        |
| Total Area                  | 1.45 ha   |     |                        |
| Total 2yr Flow              | 217.3 L/s |     |                        |
| Target                      | 320.0 L/s |     |                        |

#### Project #160402058, 955 Borbridge Avenue Modified Rational Method Calculations for St

| Nodified Rational Method Calculations for | hod Calculations for Storage |       |                         |  |
|-------------------------------------------|------------------------------|-------|-------------------------|--|
| Total 100yr Flow to Sewer                 | 216.7 L/s                    | 182.4 | 274.6 m <sup>3</sup> Ok |  |
| Non-Tributary Area                        | 0.27 ha                      |       |                         |  |
| Total 100yr Flow Uncontrolled             | 95.2 L/s                     |       |                         |  |
| Total Area                                | 1.45 ha                      |       |                         |  |
| Total 100yr Flow                          | 311.9 L/s                    |       |                         |  |
| Target                                    | 320.0 L/s                    |       |                         |  |
|                                           |                              |       |                         |  |

Appendix D Geotechnical Information

## **D.1** Geotechnical Investigation Report Excerpts



# **Geotechnical Investigation**

## **Proposed Residential Development**

955 Borbridge Avenue Ottawa, Ontario

Prepared for Richcraft Homes Ltd.

Report PG7285-1 dated October 18, 2024



## **Table of Contents**

| 1.0 | Introduction                                | PAGE |
|-----|---------------------------------------------|------|
| 2.0 | Proposed Development                        |      |
| 3.0 | Method of Investigation                     |      |
| 3.1 | Field Investigation                         |      |
| 3.2 | Field Survey                                | 3    |
| 3.3 | Laboratory Testing                          | 3    |
| 3.4 | Analytical Testing                          | 3    |
| 4.0 | Observations                                | 4    |
| 4.1 | Surface Conditions                          | 4    |
| 4.2 | Subsurface Profile                          | 4    |
| 4.3 | Groundwater                                 | 4    |
| 5.0 | Discussion                                  | 6    |
| 5.1 | Geotechnical Assessment                     | 6    |
| 5.2 | Site Grading and Preparation                | 6    |
| 5.3 | Foundation Design                           | 7    |
| 5.4 | Design for Earthquakes                      | 7    |
| 5.5 | Floor Slab Construction                     | 7    |
| 5.6 | Pavement Design                             | 8    |
| 6.0 | Design and Construction Precautions         |      |
| 6.1 | Foundation Backfill                         | 10   |
| 6.2 | Protection of Footings Against Frost Action |      |
| 6.3 |                                             |      |
| 6.4 | Pipe Bedding and Backfill                   | 11   |
| 6.5 | Groundwater Control                         | 12   |
| 6.6 | Winter Construction                         | 12   |
| 6.7 | Corrosion Potential and Sulphate            | 13   |
| 6.8 | Tree Planting Restrictions                  | 13   |
| 7.0 | Recommendations                             |      |
| 8.0 | Statement of Limitations                    | 15   |



## Appendices

- Appendix 1Soil Profile and Test Data SheetsSymbols and TermsAnalytical Testing Results
- Appendix 2Figure 1 Key PlanDrawing PG7285-1 Test Hole Location Plan



## **1.0 Introduction**

Paterson Group (Paterson) was commissioned by Richcraft Homes Ltd. to conduct a geotechnical investigation for the proposed residential development to be located at 955 Borbridge Avenue in the City of Ottawa (reference should be made to Figure 1 - Key Plan in Appendix 2 of this report for the general site location).

The objectives of the geotechnical investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of boreholes and to;
- Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating for the presence or potential presence of contamination on the subject property was not part of the scope of work of the present investigation. Therefore, the present report does not address environmental issues.

## 2.0 Proposed Development

Based on the available site plan, it is understood that the proposed development will consist of several townhouse blocks and an accessory building, with associated asphalt-paved access lanes and parking areas. An amenity area is also proposed to the south of accessory building.

It is expected that the proposed development will be municipally serviced.



## 3.0 Method of Investigation

### 3.1 Field Investigation

### **Field Program**

The field program for the current geotechnical investigation was carried out on September 20, 2024, and consisted of advancing a total of 4 boreholes to a maximum depth of 5.9 m below existing ground surface. The approximate borehole locations are shown on Drawing PG7285-1 – Test Hole Location Plan included in Appendix 2.

Previous geotechnical investigations on January 31, 2020, August 10, 2022, and April 8, 2022 included test holes at or within the vicinity of the subject site. These test holes consisted of 3 test pits (TP 3-22, TP 10-22, and TP 11-22) and 2 boreholes (BH 2 and BH 20) advanced to a maximum depth of 5.7 m below the existing ground surface.

The borehole locations were distributed in a manner to provide general coverage of the subject site, taking into consideration underground utilities and site features.

The boreholes were completed using a low clearance auger drill rig operated by a two-person crew. The test pits were advanced with an excavator, and backfilled with the excavated soil upon completion. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The testing procedure consisted of augering to the required depths at the selected locations and sampling the overburden.

### Sampling and In Situ Testing

Soil samples were collected from the boreholes using two different techniques, namely, sampled directly from the auger flights (AU) or collected using a 50 mm diameter split spoon (SS) sampler. All samples were visually inspected and initially classified on-site. The auger and split-spoon samples were placed in sealed plastic bags. All samples were transported to our laboratory for further examination and classification. The depths at which the auger and split spoon samples were recovered from the boreholes are shown as AU, and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.



The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data Sheets in Appendix 1 of this report.

### Groundwater

Flexible standpipe piezometers were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. The groundwater level readings were obtained after a suitable stabilization period subsequent to the completion of the field investigation.

### 3.2 Field Survey

The borehole locations, and ground surface elevation at each borehole location, were surveyed by Paterson using a handheld GPS and referenced to a geodetic datum. The locations of the boreholes, and the ground surface elevation at each borehole location, are presented on Drawing PG7285-1 – Test Hole Location Plan in Appendix 2.

### 3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. The results are discussed in Section 4.2 and are provided in Appendix 1 of this report.

All samples from the current investigation will be stored in the laboratory for a period of 1 month after issuance of this report. They will then be discarded unless we are directed otherwise.

### 3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity, and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Section 6.7.



### 4.0 Observations

### 4.1 Surface Conditions

The subject site is currently vacant with a gravel and grassed surface. The site is bordered by Borbridge Avenue to the north, Ralph Hennessy Avenue to the east, Rockmelon Street to the south, and vacant land to the west. The ground surface across the subject site is relatively flat at approximate geodetic elevation of 96.0 m.

### 4.2 Subsurface Profile

Generally, the subsurface profile at the borehole locations consists of topsoil or fill underlain by glacial till. The fill was generally observed to consist of a compact, brown silty sand, sandy silt, and/or silty clay with varying amounts of gravel and organics.

The glacial till was encountered underlying the fill at approximate depths of 0.3 to 1.1 m below the existing ground surface. The glacial till was generally observed to consist of compact to very dense, brown silty sand to sandy silt with varying amounts of gravel, cobbles, and boulders.

Practical refusal to augering was encountered at depths ranging from about 3.9 to 5.9 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

### Bedrock

Based on available geological mapping, bedrock in the area of the subject site consists of sandstone and dolomite of the March formation with an overburden drift thickness of about 5 to 10 m in depth.

### 4.3 Groundwater

Groundwater levels were measured within the installed piezometers at the time of the investigation. The measured groundwater levels noted at that time are presented in Table 1 on next page, and are also presented in Appendix 1.



| Borehole | Ground Surface   | Measured Gro               | Dated Recorded |                   |  |
|----------|------------------|----------------------------|----------------|-------------------|--|
| Number   | Elevation<br>(m) | Depth Elevation<br>(m) (m) |                |                   |  |
| BH 1-24  | 96.04            | 3.85                       | 92.19          | - October 8, 2024 |  |
| BH 2-24  | 96.65            | 4.43                       | 92.22          |                   |  |
| BH 3-24  | 96.88            | 5.10                       | 91.78          |                   |  |
| BH 4-24  | 96.19            | 4.63                       | 91.56          |                   |  |
| BH 2B-22 | 96.50            | 2.95                       | 93.55          | August 17, 2022   |  |
| BH 20    | 96.34            | 2.30                       | 94.04          | Feb 11, 2020      |  |
| TP 3-22  | 96.47            | DRY                        | -              |                   |  |
| TP 10-22 | 95.98            | DRY                        | -              | April 8, 2022     |  |
| TP 11-22 | 96.26            | 4.9                        | 91.36          |                   |  |

Long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected at approximately 3 to 4 m below ground surface.

However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.



### 5.0 Discussion

### 5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. It is recommended that the proposed structures be founded on conventional spread footings bearing on the undisturbed, compact to very dense glacial till.

As a silty clay deposit was not encountered at this site, the proposed development is not subject to a permissible grade raise restriction or geotechnical tree planting setbacks.

The above and other considerations are discussed in the following sections.

### 5.2 Site Grading and Preparation

### **Stripping Depth**

Topsoil and deleterious fill, such as those containing significant organic materials, should be stripped from under any buildings and other settlement sensitive structures. The existing fill material, free of organic materials, should be reviewed by Paterson personnel at the time of construction to determine if the existing fill can be left in place below paved areas.

### **Fill Placement**

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the proposed building areas should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath exterior parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD.



## 5.3 Foundation Design

#### **Bearing Resistance Values**

Footings supported on the undisturbed, compact to very dense glacial till can be designed using a bearing resistance value at serviceability limit states (SLS) of **200 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **300 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, have been removed prior to the placement of concrete for footings.

Footings placed on an undisturbed, compact to very dense glacial till bearing surface and designed using the bearing resistance values at SLS provided above will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

#### Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Above the groundwater level, adequate lateral support is provided to the insitu bearing medium soils when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in-situ soil.

#### 5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. Soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the Ontario Building Code (OBC) 2012 for a full discussion of the earthquake design requirements.

#### 5.5 Floor Slab Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the undisturbed, compact to very dense glacial till is considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction.



Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

For structures with slab-on-grade construction, the upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone. For structures with basement slabs, it is recommended that the upper 200 mm of sub-floor fill consists of 19 mm clear crushed stone.

All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

### 5.6 Pavement Design

For design purposes, the pavement structures presented in Tables 2 and 3 below are recommended for the design of the driveways, car parking areas, and local roadways.

| Table 2 - Recommended Pavement Structure – Driveways &<br>Car Only parking Areas |                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Thickness Material Description                                                   |                                                                                                   |  |  |  |  |
| 50 Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete                       |                                                                                                   |  |  |  |  |
| 150                                                                              | BASE - OPSS Granular A Crushed Stone                                                              |  |  |  |  |
| 300                                                                              | 300 SUBBASE - OPSS Granular B Type II                                                             |  |  |  |  |
| SUBGRADE - Either fill, in situ                                                  | SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ |  |  |  |  |

**SUBGRADE** - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill.

| Thickness Material Description (mm) |                                                   |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------|--|--|--|--|--|
| 40                                  | Wear Course – Superpave 12.5 Asphaltic Concrete   |  |  |  |  |  |
| 50                                  | Binder Course – Superpave 19.0 Asphaltic Concrete |  |  |  |  |  |
| 150                                 | BASE - OPSS Granular A Crushed Stone              |  |  |  |  |  |
| 450                                 | SUBBASE - OPSS Granular B Type II                 |  |  |  |  |  |



Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable vibratory equipment.



# 6.0 Design and Construction Precautions

# 6.1 Foundation Backfill

#### Foundation Drainage

A perimeter foundation drainage system is recommended for each proposed structure with below-grade space. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated and corrugated plastic pipe which is surrounded on all sides by 150 mm of 19 mm clear crushed stone which is placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

#### Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of freedraining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

# 6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as isolated piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure, and require additional protection, such as soil cover of 2.1 m, or an equivalent combination of soil cover and foundation insulation.

# 6.3 Excavation Side Slopes

The temporary excavation side slopes anticipated should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertake by open-cut methods (i.e. unsupported excavations).



The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides. Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

# 6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent material specifications and standard detail drawings from the department of public works and services, infrastructure services branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on a soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to a minimum of 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 98% of the SPMDD.

It should generally be possible to re-use the moist (not wet) site-generated fill above the cover material if the excavation and filling operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD. All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.



### 6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

#### Groundwater Control for Building Construction

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration.

#### Impacts to Neighbouring Properties

A silty clay deposit was not encountered at this site, therefore no adverse effects to neighbouring properties are expected as a result of dewatering which may occur during construction and due to foundation drainage.

#### 6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities



are to be carried out during freezing conditions. Additional information could be provided, if required.

# 6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (GU – General Use cement) would be appropriate for this site. The chloride content and pH of the sample indicate that they are not a significant factor in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a slightly aggressive to moderate corrosive environment.

### 6.8 Tree Planting Restrictions

As noted above in Section 5.1, a silty clay deposit was not encountered at the subject site. Therefore, tree planting setbacks are not required for the proposed development, from a geotechnical perspective.



# 7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- Review of the finalized Grading Plan and Servicing Plan, from a geotechnical perspective.
- □ Observation of all bearing surfaces prior to the placement of concrete.
- □ Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- □ Observation of all subgrades prior to backfilling.
- □ Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

All excess soil must be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.



# 8.0 Statement of Limitations

The recommendations provided herein are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

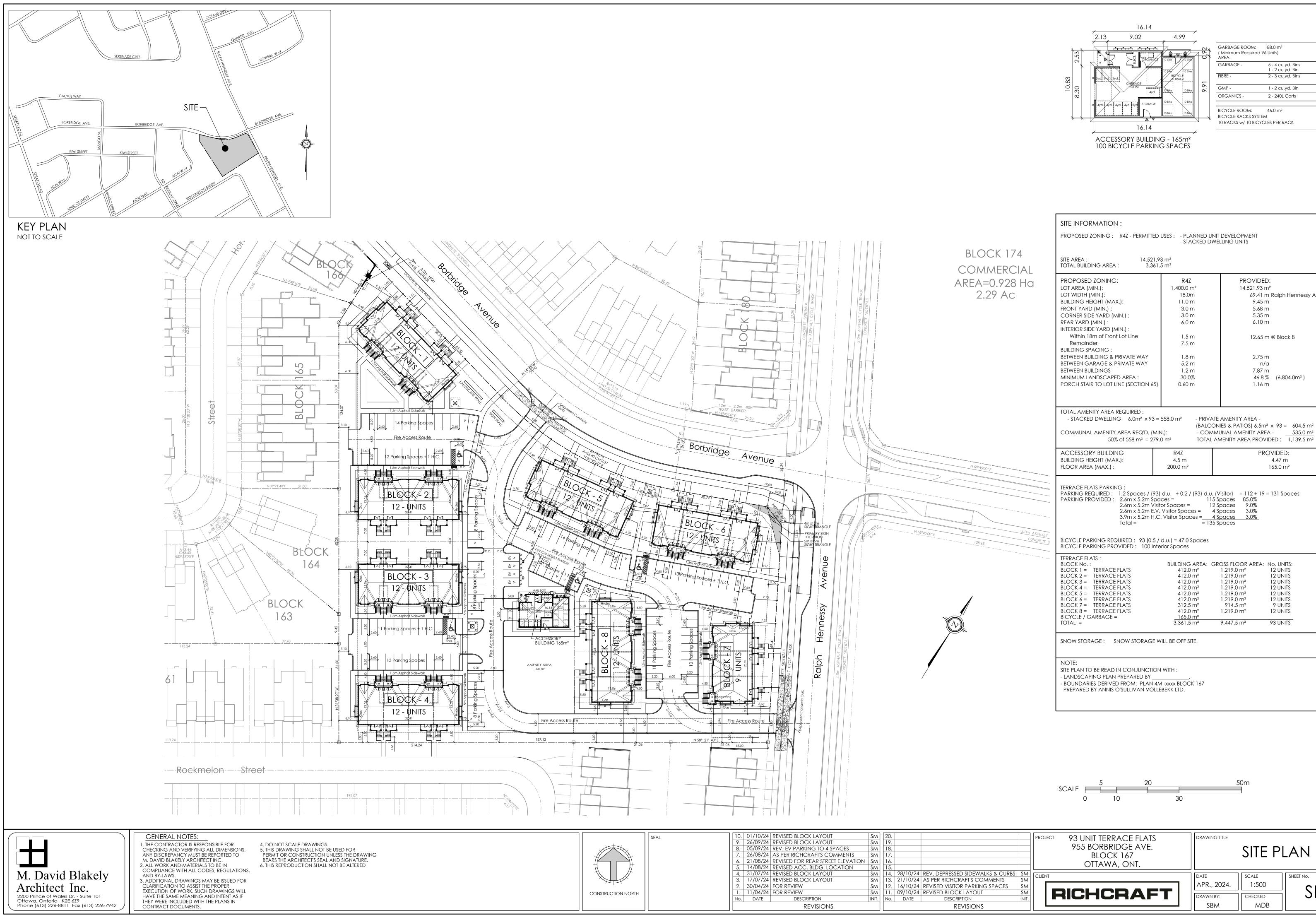
A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

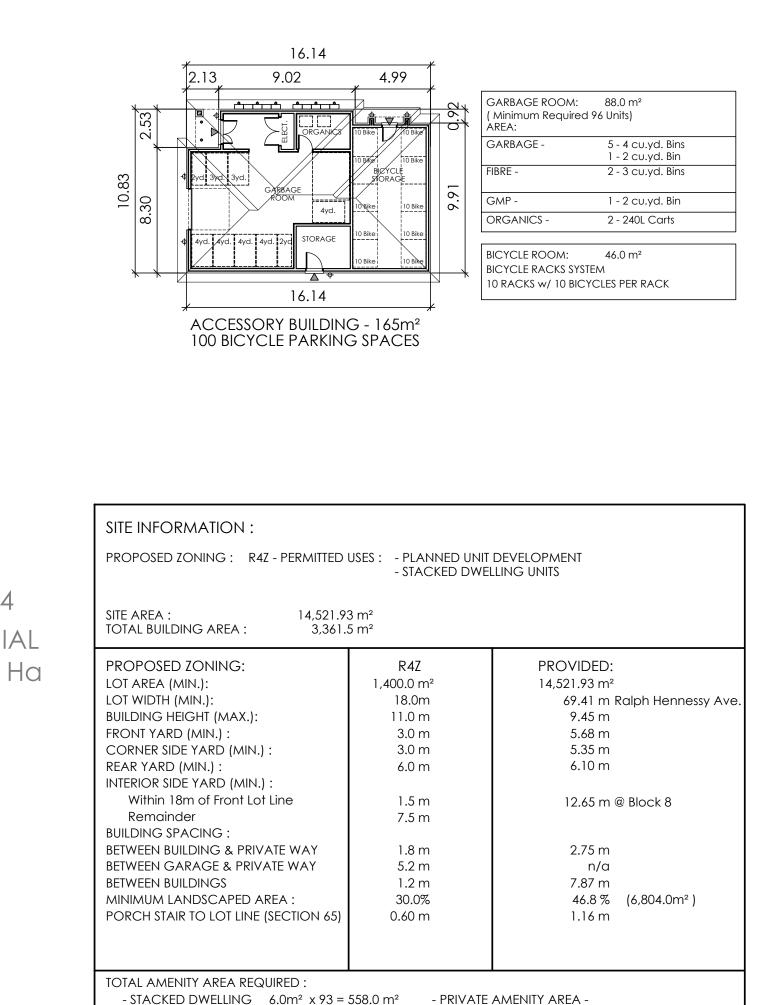
The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Richcraft Homes Ltd., or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

#### Paterson Group Inc.

Kinobe Ssekadde, B. Eng.


#### **Report Distribution:**


- Richcraft Homes Ltd. (e-mail Copy)
- Paterson Group (1 Copy)



Scott S. Dennis, P.Eng.

# Appendix E Proposed Site Plan





|                     |             | PROJECT 93 UNIT TERRACE FLATS<br>955 BORBRIDGE AVE.<br>BLOCK 167<br>OTTAWA, ONT. | DRAWING TITLE | SITE P  | LAN       |
|---------------------|-------------|----------------------------------------------------------------------------------|---------------|---------|-----------|
| D SIDEWALKS & CURBS | SM          | CLIENT                                                                           | DATE          | SCALE   | SHEET NO. |
| R PARKING SPACES    | SM<br>SM    |                                                                                  | APR., 2024.   | 1:500   |           |
| K LAYOUT<br>PTION   | SM<br>INIT. | RICHCRAFT                                                                        | DRAWN BY:     | CHECKED | 3P-1      |
| VISIONS             |             |                                                                                  | SBM           | MDB     | REV.11    |

# Appendix F Background Report Excerpts



REPORT Project: 125581.6.04-03

# DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY



Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC) by IBI GROUP

JANUARY 2022 REVISED: MARCH 2022

# 3 WASTEWATER DISPOSAL

## 3.1 Existing Conditions

Sanitary flows from the majority of the site are routed to the existing 450 mm sanitary sewer on Ralph Hennessy on the RSDC Phase 13 site north of the BRT corridor. A portion of the west side of the site flows through sewers that are currently being constructed in the Phase 17-1A site which is tributary to the Spratt Road/Brian Good sub trunk via existing sewers in the RSDC Phase 15-2 site. **Figure 1.3**, in **Appendix A**, shows the current location of those sewers.

# 3.2 Riverside South Community Infrastructure Servicing Study Update – Rideau River Area (2017 ISSU)

The report provided a macro level servicing plan for the portion of the Riverside South Community that will be tributary to Pond 5, which is referred to as the Rideau River Study Area. The limits of the study area are shown on Figure 1.1 from the study and a copy is included in **Appendix A**. The subject property is located within the Rideau River Drainage Area.

The 2017 ISSU Report recommended that wastewater flows from approximately <sup>3</sup>/<sub>4</sub> of the study area is to be routed to the Spratt Road sewer. For reference, a copy of Drawing SAN-1, Sanitary Drainage Plan from the 2017 study is included in **Appendix C**. The 2017 ISSU study recommended that drainage area 2e be tributary to the Spratt Road sewer. A copy of Figure 4.2, Recommended Sanitary Servicing (2017 Update), from the 2017 ISSU Report, together with a related design sheet are both included in **Appendix C**.

# 3.3 Deviation Report Memorandum Riverside South, Rideau River Drainage Area Sanitary Sewer Design Parameters, IBI Group – 2017 (Deviation Report)

This report, which was accepted by the City of Ottawa in 2017, provided alternative drainage areas for the River Road, Spratt Road and Shoreline Drive collector sewers. This report proposed to expand the drainage area of the River Road collector sewer to better follow the storm sewer flow directions and reduce grade raise challenges associated with the ISSU Spratt Road collector drainage area. The shift of the River Road/Spratt Road drainage area split westward has resulted in additional lands west of Spratt Road being included in the Spratt Road collector drainage area. The deviation memo, supporting figures and sewer design sheets along with City of Ottawa approval emails can all be found in **Appendix C**. The deviation memo and supporting documents confirm that the small portion of the subject lands that was included in the ISSU drainage area 3b which were tributary to the Shoreline Drive collector sewer are now included in the expanded drainage area 2Diii as shown in the deviation report. As such, the western side of the subject lands are tributary to the Spratt Road collector sewer while the remaining is tributary to the Shoreline Drive collector.

#### 3.4 Design Criteria

The estimated wastewater flows from the subject site are based on the revised City of Ottawa design criteria. Among other items, these include:

• Average residential flow = 280 l/c/d

| • | Peak residential flow factor | = (Harmon Formula) x 0.80                  |
|---|------------------------------|--------------------------------------------|
| • | Average commercial flow      | = 28,000 l/s/ha                            |
| • | Average institutional flow   | = 28,000 l/s/ha                            |
| • | Peak ICI flow factor         | = 1.5 if ICI area is $\leq$ 20% total area |
|   |                              | 1.0 if ICI area is > 20% total area        |
| • | Inflow and Infiltration Rate | = 0.33 l/s/ha                              |
| • | Minimum Full Flow Velocity   | = 0.60 m/s                                 |
| • | Maximum Full Flow Velocity   | = 3.0 m/s                                  |
| • | Minimum Pipe Size            | = 200 mm diameter                          |
|   |                              |                                            |

In accordance with the Table 4.2 of the Ottawa Sewer Guidelines, the following density rates are estimated for the subject site:

| ٠ | Single units | = 3.4 |
|---|--------------|-------|
|   |              |       |

| • | Semi units (Duplex) | = 2.3 |
|---|---------------------|-------|
|---|---------------------|-------|

- Townhouse and back to back units = 2.7
- Apartment units = 1.8

Minimum allowable slopes as listed below:

| DIAMETER<br>(mm) | SLOPE<br>(%) |
|------------------|--------------|
| 200              | 0.320        |
| 250              | 0.240        |
| 300              | 0.186        |
| 375              | 0.140        |
| 450              | 0.111        |
| 525 and larger   | 0.100        |

Where practical and where there are less than 10 residential connections, the first lengths of sanitary sewers are designed as 200 mm diameter pipes with a minimum slope of 0.65%.

# 3.5 Proposed Wastewater Plan

The sanitary outlet for the majority of the site is the 450 mm sanitary sewer stub on Ralph Hennessy north of the BRT corridor. The sewer will be extended on Ralph Hennessy through the site with another branch extending west on Borbridge and south on Ed Findlay. A sanitary drainage area plan, and an external sanitary sewer drainage area plan, showing the external drainage areas, and a sanitary sewer design sheet is included in **Appendix C**. The total area from Phase 17 tributary to the Ralph Hennessy sewer at the BRT corridor is 45.28 hectares with a peak

flow of 46.58 l/s, in the ISSU at Node 116 the sanitary drainage area is 48.13 hectares with a total flow of 49.8 l/s. The remainder of the site will drain to the west through stubs on Kiwi, Apricot, Honeydew and Rockmellon Streets in Phase 17-1A and the 4725 Spratt Road site.

An external drainage area plan of lands to the south shows the extension of the Ralph Hennessy sanitary sewer and the extensions of the Ed Findlay and Solarium Avenue sanitary sewers. The sewers are extended using the minimum slopes for the pipe sizes and the inverts are compared with the proposed road grades. At all locations the depths are well in excess of 3 meters allowing normal house construction, the storm sewer are below the sanitary sewers.

During construction, temporary inlet control devices (ICD) will be placed at the first new upstream MH on the sanitary sewers outletting to existing sewers on Ralph Hennessy and on Rockmelon, Honeydew, Apricot and Kiwi Streets in Phase 17-1A and 4725 Spratt Road to prevent excessive groundwater flow into the system which could occur during construction. The ICDs will remain in place until preliminary acceptance at which time it will be removed. Calculations are included in **Appendix C** in which the size of the ICD is calculated based on the design flow of the sewer with the hydraulic head set at the road grade.

#### MINOR STORM SEWERS 4

#### 4.1 Existing Conditions

As noted in Section 1.6 all minor stormwater from this site is routed to Pond 5 which is located west of Rideau Road and is in service. A 2250 mm storm stub on Borbridge Avenue is currently under construction in the 4725 Spratt Road site. Storm sewers in Phase 17-1A are being constructed on Rockmelon, Honeydew, Apricot and Kiwi Streets at the west limit of the Phase 17-1B site. Figure 1.3 shows the current location of those sewers.

#### Riverside South Community Infrastructure Servicing Study 4.2 Update – Rideau River Area (2017 ISSU)

Comparison with the 2017 ISSU report is included in Section 5. Figure 4.1 from the 2020 Assessment of Adequacy of Public Service is included in Appendix D which shows the proposed minor system layout for this area.

#### 4.3 Design Criteria

In accordance with the City of Ottawa Sewer Design Guidelines, the following design criteria was used to size storm sewers using the rational method:

> 1:2 year - local roads 1:5 year - collector roads 1:10 year - arterial roads

10 minutes

0.8 m/s

3.0 m/s

0.013

- Design return period:
- Time of Concentration:
- Minimum velocity:
- Maximum velocity: •
- Manning's roughness coefficient: •
- Minimum allowable slopes listed below: •

| DIAMETER       | SLOPE |
|----------------|-------|
| (MM)           | (%)   |
| 250            | 0.432 |
| 300            | 0.340 |
| 375            | 0.250 |
| 450            | 0.195 |
| 525            | 0.160 |
| 600            | 0.132 |
| 675            | 0.113 |
| 750 and larger | 0.100 |

0.68

- **Runoff Coefficients**
- Townhouses
- 0.44 - Rear Single Family - Front 0.63
  - Rear 0.53

- Front

Detail calculations for runoff coefficients for the residential lots are included in Appendix D.

## 4.4 Proposed Minor Storm Plan

The storm outlet for the majority of site is the 2250 mm stub on Borbridge Avenue, the sewer will be extended on Borbridge and Ralph Hennessy to service lands to the south along with Ed Findlay Street. Phase 17-1A and sewers on Rockmelon, Honeydew, Apricot and Kiwi Streets will also be extended for the west portion of Phase 17-1B.

Similar to the sanitary sewer temporary ICD's will be placed on the first upstream MH on the storm sewer outletting to existing sewers on Borbridge, Rockmelon, Honeydew, Apricot and Kiwi Streets. Calculations are included in **Appendix D** where the size of the ICD is calculated based on the design flow of the sewer with the hydraulic head set at road grade.

A storm sewer design sheet and storm drainage area plan and external storm drainage area plan are provided in **Appendix D**.

The existing surface drainage in this area generally runs south to north, temporary ditches are proposed along the southern boundary to intercept this flow. The existing flows are directed to two temporary DICB's on Ed Findlay and one on the Rockmellon storm stub at Lavender. As the Ed Findlay sewer has a large upstream drainage area, the DICB leads will limit the flow, for the Rockmellon DICB an ICD will be installed to limit the flow to the design 2 year storm for the storm sewer. Temporary DICB's are placed on the Ralph Hennessy storm sewer to temporary drain the school and mid density blocks while temporary drainage from the park block drains to the park CBMH. On the commercial block at the north end of Ralph Hennessy, an existing DICB will be relocated. Along the north boundary the existing drainage flows away from the development.

# 5 STORMWATER MANAGEMENT

#### 5.1 Background

Riverside South Phase 17-1B (subject site) is located within the Rideau River Area of the Riverside South Development Community and is tributary to the Pond 5 Stormwater Facility. The stormwater management strategy for the subject site was outlined in the following reports:

- Riverside South Community Infrastructure Servicing Study Update Rideau River Area (Stantec Consulting Ltd., June 2017), referred henceforth as the 2017 ISSU;
- Assessment of Adequacy of Public Services Claridge Homes Phase 3 Lands 4725 Spratt Road (IBI Group August 2020)
- Assessment of Adequacy of Public Services RSDC Phase 17 Lands 4775 & 4725 Spratt Road – Riverside South Community Rideau River Area (IBI Group, July 2020); and,
- Design Brief Riverside South Phase 15-2, 4 & Spratt Road (IBI Group, August 2019),
- Design Brief Riverside South Phase 17-1A (IBI Group, September 2021)

The property is east of Spratt Road and south and east of the proposed 4725 Spratt Subdivision and south of the future BRT corridor and east of Phase 17-1A. It is expected that the 4725 Spratt Road site will be built in advance or concurrently with this site. In the 2017 ISSU, the minor storm runoff for the Rideau River Area is proposed to be routed to one of four trunk storm sewers. For reference a copy of Drawing STM1, Storm Sewers from the 2017 ISSU study is included in **Appendix E**. One of the trunk sewers are proposed to be located within the subject property and is tributary to the north inlet of Pond 5. This trunk sewer has two branches which run along Borbridge Street and Atrium Ridge, both converging on Brian Good Avenue (**Figure 5-1**).

The minor storm plan for the subject site is proposed to follow the recommendation of the 2017 ISSU report with only minor adjustments to that plan which have been addressed in the 2018 River Road Report. **Appendix E** includes the applicable sections and information from that report.

Details of the subject site parameters, on-site storage available, restricted minor system rates and assumptions for the areas external to the subject site will be discussed in **Section 5.5**.

#### 5.2 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for Riverside South Phase 17-1B development. The design includes the assignment of inlet control devices, maximum depth and velocity of flow on the surface and hydraulic grade line analysis. The evaluation takes into consideration the following City of Ottawa documents:

- Ottawa Sewer Design Guidelines (OSDG) (October 2012);
- February 2014 Technical Bulletin ISDTB-2014-01;
- September 2016 Technical Bulletin PIEDTB-2016-01;
- March 2018 Technical Bulletin ISTB-2018-01; and,

June 2018 Technical Bulletin ISTB-2018-04.

#### 5.3 System Concept

The stormwater management system for the site incorporates standard urban drainage design and stormwater management features that can be summarized as follows:

- a dual drainage concept;
- routing of surface runoff; and,
- an end-of-pipe SWM facility (designed by others).

The stormwater management system has been developed based on the MOE *Stormwater Management Planning and Design Manual* (March 2003) and the *City of Ottawa Sewer Design Guidelines* (OSDG, October 2012), as well as subsequent City of Ottawa Technical Bulletins.

The design of the proposed stormwater management facility (Pond 5) was completed by Stantec Consulting Ltd.

#### 5.3.1 Scope

The evaluation described in the following sections has been completed to support the detail design of Riverside South Phase 17-1B development.

A fully dynamic PCSWMM model was used to evaluate the dual drainage system for the subject site. The River Road model used in the approved August 2018 River Road Report has been used as the base and as detailed design of phases has progressed, the semi-lumped areas were replaced with the detail design information of the corresponding sites. The current development model includes detail design information on River Road, River's Edge Phase 1, River's Edge Phase 2, RSDC PH15-1A, and RSDC PH15-1B, and RSS PH15-3, 4725 Spratt Road, and RSDC PH17-1A developments. As required, adjustments have been made to those drainage boundaries adjacent to Phase 17-1B development. The overall drainage area represented by the PCSWMM model is shown in **Figure 5.1**. The drainage area plans for the subject site are provided on **Drawings 125581-750** in **Appendix E**.

#### 5.4 Dual Drainage Design

The subject site is designed with dual drainage features, accommodating minor and major system flow. During frequent storm events, the effective runoff of a catchment area is directly released via catchbasin inlets to the network of storm sewers, called the minor system. During less frequent storm events, the balance of the flow (in excess of the minor flow) is accommodated by a system of rear yard swales and street segments, called the major system.

All streets within the subject site feature a sawtooth profile with the exception of areas S841B, S906, S908, S933A, and S981A which have a continuous grade profile. The sawtooth profile facilitates surface storage on subdivision streets and is based on maximum 350 mm separation between the low point at the catchbasin and the high overflow point at the downstream end of the segment. **Table 5-3** indicates whether a street segment is continuous or sawtoothed. In accordance with OSDG, rear yard storages have not been accounted for.

Inlet control devices (ICDs) are proposed across the site to maximize the use of available on-site storage and control surcharge of the minor system during infrequent storm events. For those street segments on continuous grade, the inflow to the minor system will be limited by hydraulic characteristic of the catchbasins. As such, the model incorporates the actual flow entering the

minor system on continuous grade based on depth-capture curves derived from the Townsend Curves in the Sewer Design Guidelines. Depth-capture curves on continuous grades was provided by the City of Ottawa and are enclosed in **Appendix E**.

The dual drainage system has been evaluated using the fully dynamic PCSWMM model for both the hydrological and hydraulic analysis. The PCSWMM hydrological evaluation offers single storm event flow generation and routing. The major system evaluation is fully dynamic and based on typical road cross sections and road profiles.

According to the September 2016 Technical Bulletin, local streets are required to provide a 2 year level of service without ponding during the storm event. For the subject site, the following approach was taken:

- 2 year level of service provided for all local streets;
- 5 year level of service provided for all collector roads; and,
- 2 year level of service for rear yards.

ICDs were initially sized based on the 2 or 5 year 3 hour Chicago design storm event. In some instances, the proposed ICD release rates and minor system sewer sizing were optimized to protect lots from surface flooding. This was accomplished by increasing ICD release rates above the 2 or 5 year storm event.

The major system flow from the subject site outlet toward 4725 Spratt Road (Borbridge Ave and Kiwi Street) and Phase 17-1A (Apricot St, Honeydew St, and Rockmellon St) at locations shown on **Drawing 125581-750**. It is intended that the total flow from the subject site not impact the receiving developments. Therefore, in some locations, there may be capture greater than 2 or 5 year flow

The drainage area plans are presented on **Drawings 125581-750**. Model files are enclosed in **Appendix E**.

#### 5.5 Stormwater Evaluation

#### 5.5.1 Hydrological Evaluation

Land use, selected modeling routines, and input parameters are discussed in the following sections for the subject site only. Model files are included in **Appendix E**.

#### Land Use

Riverside South Phase 17-1B development will be developed with a mix of single family units and townhouses. The overall PCSWMM schematic is presented in **Appendix E** and the drainage plan is provided on **Drawings 125581-750**.

#### **Storms and Drainage Area Parameters**

The main hydrological parameters for the subject site are presented in **Table 5-2 and Table 5-3**.

- **Design Storms:** The subject site was evaluated using the following storms:
  - 2, 5 and 100 year 3 hour Chicago storm events (10 minute time step), as per the OSDG and the September 2016 Technical Bulletin;

- 100 year 3 hour Chicago storm event (10 minute time step) with 20% increase for Climate Change consideration, as per the OSDG;
- 25 mm 4 hour Chicago storm event consistent with the 2018 Pond 5 Design Brief; and,
- 100 year 12 hour SCS Type II storm event consistent with the 2018 Pond 5 Design Brief.
- Area: The drainage area was divided into sub-drainage areas based on the proposed minor system network of storm sewers and the rational method spreadsheet with some minor modifications for modeling purposes. See Drawing 125581-750 for the catchment areas used in the detail evaluation of the subject site.
- Imperviousness: PCSWMM provides an opportunity to specify direct and indirect routing to a pervious or impervious area. For this evaluation, all street segments were assumed to be 100% routed to an impervious surface and all rear yards were assumed to be 100% routed to a pervious surface.
- Infiltration: Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: Max. infiltration rate = 76.2 mm/h, Min. infiltration rate = 13.2 mm/h, Decay constant = 4.14 1/hr.
- **Subcatchment Width:** The catchment width was based on the conveyance route length of the drainage area and multiplied by two. The multiplier of two was only used if the drainage area had runoff contribution from both sides of the drainage area. This approach is consistent with the OSDG.
- **Slope:** The average surface slope was based upon the average slope for both impervious and pervious area. An average slope of 1% has been used for subcatchment flow routing. It should be noted that the appropriate longitudinal slope of streets was accounted in PCSWMM using a combination of nodes with inverts corresponding to gutter elevations, and links with corresponding road cross-sections
- Initial Abstraction (Detention Storage): Detention storage depths of 1.57 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.
- **Manning's Roughness:** Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- **Baseflow:** No baseflow components were assumed for any of the areas contributing runoff to the minor system within the PCSWMM model.
- Major System Storage and Routing: The subject site is comprised of both continuous grade and sawtooth road profiles. For drainage areas with sawtoothing, flow is attenuated within low points with potential overflow cascading to the next segment downstream. The total volume at each low point, up to the overflow depth, is the maximum static storage. Ponding plan is presented on Drawing 125581-602 to Drawing 125581-606. Rear yard segments have a sawtooth pattern with some storage available, but the storage is not accounted for as part of the analysis.

For street segments with ponding, minor system capture is set to fully utilize storage during the 100 year design storm, while minimizing ponding during the 2 or 5 year event. Cascading overflow from a low point to a downstream segment utilizes the static storage

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

available plus an additional amount of storage equivalent to the depth required for the flow to cascade over the downstream high point. The attenuation in street sags was evaluated to account for static storage and, if overflow occurs, dynamic storage.

For street segments with continuous grade, simulations were based on the approachcapture characteristics of the catchbasin with the constraint that during the 100 year design storm the maximum cascading flow does not exceed 0.35 m.

For street segments with sawtoothing, simulations were based on the constraint that during the 100 year design storm the maximum depth of ponding (including cascading flow where applicable) does not exceed 0.35 m. The surface storages were modeled in PCSWMM using a combination of nodes with inverts corresponding to gutter elevations, and links with corresponding road cross-sections. The evaluation was undertaken assuming dynamic flow conditions. It should be noted that the visual interpretation of street links in the model, is based on illustrating street nodes along the center of the road. However, the invert elevations are modified to correspond to the gutter (CB grill) elevations as indicated above.

Rear yards were considered independently of street segments. Storage volumes in rear yards were not accounted for as available on-site storage. Therefore, in the PCSWMM model, the sawtooth pattern of rear yard swales was neglected, and it was assumed that there is a continuous slope from the high point to the low point elevation of the swale. Simulations were based on the total interception of runoff by the storm inlets. This was done by specifying a subcatchment outlet in the model at the same node as the rear yard ICD outlet link. Overflow from the rear yards cascades to the next downstream segment and then ultimately to a major system road segment via swales.

Minor system capture: The minor system capture for the subject site is based on the 2 or 5 year storm event depending on the road type (local or collector) and for maximum ponding conditions. ICDs are proposed to protect the minor system from surcharge during infrequent storm events and to utilize on-site storage. The assignment and placement of the ICDs within the subject site were determined as part of this evaluation. The inflow rate for the CBs located at low points within the subject site were increased to maintain the major system flow dynamic depth at 0.35 m, if required.

The City has requested specific ICD sizes to be specified for use on the site. These ICD sizes are documented in City of Ottawa MS-18.4 Inlet Control Devices (ICD's, March 2017). Within the aforementioned document eight (8) ICD sizes are noted. The following table summarizes the ICD sizes assigned to the site including associated flowrate at the maximum allowable ponding depth of 0.35m above top of grate.

| ICD DIAMETER (MM) | ORIFICE AREA (M <sup>2</sup> ) | MAX FLOW RATE AT<br>MAX PONDING DEPTH OF 0.35 M (L/S) |
|-------------------|--------------------------------|-------------------------------------------------------|
| Vortex            | n/a                            | 6                                                     |
| 83                | 0.0054                         | 20.41                                                 |
| 94                | 0.0069                         | 26.18                                                 |
| 102               | 0.0082                         | 30.83                                                 |
| 108               | 0.0092                         | 34.56                                                 |
| 127               | 0.0127                         | 47.80                                                 |

#### Table 5-1: Standard City of Ottawa ICD Sizes

| ICD DIAMETER (MM) | ORIFICE AREA (M <sup>2</sup> ) | MAX FLOW RATE AT<br>MAX PONDING DEPTH OF 0.35 M (L/S) |
|-------------------|--------------------------------|-------------------------------------------------------|
| 152               | 0.0181                         | 68.46                                                 |
| 178               | 0.0249                         | 93.89                                                 |

The standard ICDs were assigned to each CB within the subject site. For the evaluation of the site in PCSWMM, a rating curve for each standard ICD has been created. The rating curve was emulating performance of a particular orifice in question to convey the ICD flow to the minor system. The rating curve was based on an average top of grate (T/G) to the center of CB lead height of 1.3 m for the street segments and 1.4 m for the rear yard segments. The ICD size, head and flow are provided on the CB table presented on **Drawing 125581-010**. Any exemptions to the above noted ICDs assumed are indicated in the CB table presented on **Drawing 125581-010**.

#### **Non-Residential Lands**

In addition to the above noted assumptions with respect to Phase 17-1B, the following assumptions were used to model the minor and major system flow from the non-residential areas which are tributary to and contribute flow (minor and major) to the subject site. A summary of the areas, storages and parameter assumptions are provided in **Table 5-2**.

- Park Site (PCSWMM ID: P931): The minor system capture limit for the park was based on the 2 year modeled flow as provided in **Table 5-3**. It was also assumed the balance of flow up to the 100 year storm event, to be stored on-site with emergency overflow (excess of the 100 year event) to Ralph Hennessy Ave (area S930).
- School Site (PCSWMM ID: SC933): The institutional site was assumed to be restricted to the 2 year modeled flow as provided in **Table 5-3**. It was also assumed that full on-site storage will be provided (all major flow contained on-site up to and including the 100 year event). Emergency overflow will be routed to adjacent streets Ralph Hennessy Ave (area S933B).
- Commercial Site (PCSWMM ID: COM947): The minor system capture limit for the commercial site was based on the 2 year modeled flow as provided in **Table 5-3**. It was also assumed the balance of flow up to the 100 year storm event, to be stored on-site with emergency overflow (excess of the 100 year event) to Ralph Hennessy Ave (area S946).
- Mid Density Site (PCSWMM ID: MD910): The mid density site was assumed to be restricted to the 5 year modeled flow as provided in **Table 5-3**. It was also assumed that full on-site storage will be provided (all major flow contained on-site up to and including the 100 year event). Emergency overflow will be routed to adjacent streets Borbridge Ave (area S910).

A summary of parameters and assumed inflow for non-residential lands are provided in **Table 5-2** and **Table 5-3**. **Drawing 122581-750** presents the area contributing major and minor flow to the subject site including their segment ID.

#### Summary of Modeling Files

For ease of review, the following is a reference list of the computer modeling files enclosed in **Appendix E**.

#### PCSWMM

- o 125581-RSSPH17-1B-REV2-25MM.pcz 25 mm 4 hour Chicago
- o 125581-RSSPH17-1B-REV2-2CH.pcz 2 year 3 hour Chicago
- o 125581-RSSPH17-1B-REV2-5CH.pcz 5 year 3 hour Chicago
- o 125581-RSSPH17-1B-REV2-100CH.pcz 100 year 3 hour Chicago
- o 125581-RSSPH17-1B-REV2-100SCS.pcz 100 year 12 hour SCS Type II
- 125581-RSSPH17-1B-REV2-120CH.pcz 100 year 3 hour Chicago increased by 20%

#### Table 5-2 Hydrological Parameters – Subcatchment Summary Table

| DRAINAGE<br>AREA ID | AREA (HA)       | DOWNSTREAM<br>SEGMENT ID | RECEIVING<br>MH (SEWER<br>NODE) | IMP RATIO | SUBCATCHMENT<br>WIDTH (M) | AVAILABLE<br>STATIC<br>STORAGE<br>(CU-M) <sup>(1)</sup> |  |  |  |
|---------------------|-----------------|--------------------------|---------------------------------|-----------|---------------------------|---------------------------------------------------------|--|--|--|
|                     | Street Segments |                          |                                 |           |                           |                                                         |  |  |  |
| S804                | 0.40            | Phase 17-1A              | MH804                           | 69        | 217                       | 26.65                                                   |  |  |  |
| S805                | 0.22            | S982                     | MH805                           | 69        | 88                        | 21.73                                                   |  |  |  |
| S806                | 0.43            | S982                     | MH806                           | 69        | 170                       | 67.22                                                   |  |  |  |
| S807                | 0.32            | S808                     | MH807                           | 69        | 104                       | 57.29                                                   |  |  |  |
| S808                | 0.26            | S906B                    | MH808                           | 69        | 110                       | 1.48                                                    |  |  |  |
| S822                | 0.42            | Future Phase 17          | MH822                           | 61        | 222                       | 10.15                                                   |  |  |  |
| S825                | 0.29            | S984B                    | MH825                           | 69        | 168                       | 45.88                                                   |  |  |  |
| S826                | 0.47            | S825                     | MH826                           | 69        | 182                       | 70.18                                                   |  |  |  |
| S828A               | 0.17            | S828B                    | MH828                           | 61        | 88                        | 10.86                                                   |  |  |  |
| S828B               | 0.35            | S826                     | MH828                           | 69        | 98                        | 97.70                                                   |  |  |  |
| S835A               | 0.24            | S985A                    | MH835                           | 61        | 150                       | 6.16                                                    |  |  |  |
| S835B               | 0.46            | S835A                    | MH835                           | 61        | 190                       | 52.18                                                   |  |  |  |
| S840                | 0.29            | S986                     | MH840                           | 61        | 170                       | 9.42                                                    |  |  |  |
| S841A               | 0.22            | S841C                    | MH841                           | 61        | 64                        | 49.81                                                   |  |  |  |
| S841B               | 0.29            | S841A                    | MH841                           | 61        | 120                       | n/a                                                     |  |  |  |
| S841C               | 0.25            | S828B                    | MH841                           | 69        | 80                        | 68.34                                                   |  |  |  |
| S905                | 0.36            | 4725 Spratt Rd           | MH905                           | 76        | 158                       | 28.74                                                   |  |  |  |

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

| DRAINAGE<br>AREA ID | AREA (HA) | DOWNSTREAM<br>SEGMENT ID | RECEIVING<br>MH (SEWER<br>NODE) | IMP RATIO | SUBCATCHMENT<br>WIDTH (M) | AVAILABLE<br>STATIC<br>STORAGE<br>(CU-M) <sup>(1)</sup> |
|---------------------|-----------|--------------------------|---------------------------------|-----------|---------------------------|---------------------------------------------------------|
| S906                | 0.17      | S906B                    | MH906                           | 69        | 53                        | n/a                                                     |
| S906B               | 0.31      | S981B                    | MH906                           | 69        | 70                        | 9.03                                                    |
| S908                | 0.26      | S906                     | MH908                           | 69        | 62                        | n/a                                                     |
| S910                | 0.31      | S946                     | MH910                           | 69        | 102                       | 83.03                                                   |
| S911                | 0.11      | S946                     | MH911                           | 61        | 96                        | 2.03                                                    |
| S911A               | 0.25      | S911                     | MH911                           | 61        | 190                       | 46.71                                                   |
| S930                | 0.37      | S946                     | MH930                           | 69        | 127                       | 45.99                                                   |
| S931A               | 0.26      | S931B                    | MH931                           | 69        | 60                        | 13.86                                                   |
| S931B               | 0.24      | S930                     | MH931                           | 69        | 68                        | 29.36                                                   |
| S932                | 0.26      | S841C                    | MH932                           | 69        | 132                       | 42.45                                                   |
| S933A               | 0.21      | S933B                    | MH933                           | 43        | 105                       | n/a                                                     |
| S933B               | 0.27      | S931A                    | MH933                           | 69        | 52                        | 6.73                                                    |
| S943                | 0.25      | S945                     | MH943                           | 69        | 110                       | 7.95                                                    |
| S945                | 0.22      | S947                     | MH945                           | 69        | 73                        | 12.80                                                   |
| S946                | 0.29      | S947                     | MH946                           | 61        | 90                        | 2.60                                                    |
| S947                | 0.24      | OUT                      | MH947                           | 69        | 73                        | 6.47                                                    |
| S961A               | 0.37      | S961B                    | MH961                           | 69        | 86                        | 2.32                                                    |
| S961B               | 0.24      | Phase 17-1A              | MH961                           | 61        | 124                       | 22.02                                                   |
| S963                | 0.27      | Phase 17-1A              | MH963                           | 69        | 168                       | 18.09                                                   |
| S981A               | 0.15      | S961B                    | MH981                           | 69        | 144                       | n/a                                                     |
| S981B               | 0.23      | 4725 Spratt Rd           | MH981                           | 69        | 83                        | 28.96                                                   |
| S982                | 0.32      | S981B                    | MH982                           | 69        | 100                       | 8.25                                                    |
| S984A               | 0.32      | S984B                    | MH984                           | 61        | 114                       | 12.51                                                   |
| S984B               | 0.23      | S805                     | MH984                           | 61        | 81                        | 7.57                                                    |
| S985A               | 0.13      | S985B                    | MH985                           | 61        | 70                        | 8.39                                                    |
| S985B               | 0.17      | S984A                    | MH985                           | 61        | 92                        | 2.98                                                    |

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

| DRAINAGE<br>AREA ID | AREA (HA) | DOWNSTREAM<br>SEGMENT ID | RECEIVING<br>MH (SEWER<br>NODE) | IMP RATIO | SUBCATCHMENT<br>WIDTH (M) | AVAILABLE<br>STATIC<br>STORAGE<br>(CU-M) <sup>(1)</sup> |
|---------------------|-----------|--------------------------|---------------------------------|-----------|---------------------------|---------------------------------------------------------|
| S986                | 0.30      | S985A                    | MH986                           | 61        | 162                       | 4.30                                                    |
|                     |           |                          | Rear Yards                      |           |                           |                                                         |
| R804                | 0.42      | S804                     | MH804                           | 47        | 110                       | n/a                                                     |
| R806A               | 0.26      | R806B                    | MH806                           | 34        | 157                       | n/a                                                     |
| R806B               | 0.26      | S806                     | MH806                           | 34        | 162                       | n/a                                                     |
| R808                | 0.14      | R806A                    | MH808                           | 34        | 92                        | n/a                                                     |
| R822                | 0.34      | S822                     | MH822                           | 47        | 107                       | n/a                                                     |
| R825                | 0.33      | S825                     | MH825                           | 47        | 208                       | n/a                                                     |
| R826                | 0.30      | R825                     | MH826                           | 47        | 190                       | n/a                                                     |
| R828                | 0.34      | S828B                    | MH828                           | 34        | 98                        | n/a                                                     |
| R835                | 0.27      | S835A                    | MH835                           | 47        | 170                       | n/a                                                     |
| R840                | 0.30      | S840                     | MH840                           | 47        | 188                       | n/a                                                     |
| R841A               | 0.30      | S841A                    | MH841                           | 47        | 188                       | n/a                                                     |
| R841B               | 0.33      | S841C                    | MH841                           | 47        | 214                       | n/a                                                     |
| R906B               | 0.17      | S906B                    | MH906                           | 34        | 102                       | n/a                                                     |
| R932A               | 0.37      | OUT                      | MH932                           | 34        | 221                       | n/a                                                     |
| R932B               | 0.20      | S932                     | MH932                           | 34        | 126                       | n/a                                                     |
| R943                | 0.35      | R944                     | MH943                           | 34        | 216                       | n/a                                                     |
| R944                | 0.23      | S945                     | MH944                           | 34        | 131                       | n/a                                                     |
| R947                | 0.22      | S947                     | MH947                           | 34        | 155                       | n/a                                                     |
| R961                | 0.18      | S961A                    | MH961                           | 34        | 116                       | n/a                                                     |
| R963                | 0.47      | S963                     | MH963                           | 34        | 281                       | n/a                                                     |
| R982                | 0.42      | R906B                    | MH982                           | 34        | 184                       | n/a                                                     |
| R984A               | 0.23      | S984A                    | MH984                           | 47        | 158                       | n/a                                                     |
| R984B               | 0.13      | S984B                    | MH984                           | 47        | 80                        | n/a                                                     |
| R981                | 0.23      | n/a                      | n/a                             | 43        | 134                       | n/a                                                     |

| DRAINAGE<br>AREA ID | AREA (HA)             | DOWNSTREAM<br>SEGMENT ID | RECEIVING<br>MH (SEWER<br>NODE) | IMP RATIO | SUBCATCHMENT<br>WIDTH (M) | AVAILABLE<br>STATIC<br>STORAGE<br>(CU-M) <sup>(1)</sup> |  |  |  |  |
|---------------------|-----------------------|--------------------------|---------------------------------|-----------|---------------------------|---------------------------------------------------------|--|--|--|--|
| R986                | 0.23                  | OUT                      | MH986                           | 47        | 148                       | n/a                                                     |  |  |  |  |
|                     | Non-Residential Lands |                          |                                 |           |                           |                                                         |  |  |  |  |
| MD910               | 1.45                  | S910                     | MH910                           | 71        | 326                       | 100yr on-site<br>storage                                |  |  |  |  |
| P931                | 2.36                  | S930                     | MH931                           | 43        | 531                       | 100yr on-site<br>storage                                |  |  |  |  |
| SC933               | 3.12                  | S933B                    | MH933                           | 71        | 702                       | 100yr on-site<br>storage                                |  |  |  |  |
| COM947              | 0.93                  | S946                     | MH947                           | 71        | 209                       | 100yr on-site<br>storage                                |  |  |  |  |

(1) The available on-site static storage is based on Drawing 125581-602 to 125581-606.

#### 5.5.2 Results of Hydrological Evaluation

In PCSWMM, the hydraulic grade line (minor system) and major system are simulated simultaneously. The resulting hydraulic grade line is presented in **Section 5.5.3**. The results of the major system evaluation are summarized in the following sections.

The assigned size of the inlet control devices (ICDs) for the subject site was optimized using PCSWMM. ICDs are incorporated into the stormwater management design to protect the minor system from surcharge during infrequent storm events. The ICDs used for the subject site are provided in the CB table presented on **Drawing 125581-010**. It should be noted that due to the major system flow from the future areas, there were a few instances where the flow restriction into the minor system was increased above the 100 year flow.

| DRAINAGE | CONTINUOU       |                          | MINOR SYSTEM DESIGN<br>TARGET (BASED ON<br>ROAD TYPE) |                                                                      | 100 YEAR<br>CAPTURE | ICD ORIFICE |          |       |  |  |
|----------|-----------------|--------------------------|-------------------------------------------------------|----------------------------------------------------------------------|---------------------|-------------|----------|-------|--|--|
| AREA ID  |                 |                          | MINOR<br>SYSTEM<br>DESIGN<br>STORM                    | GENERATE<br>D FLOW ON<br>INDIVIDUAL<br>SEGMENT<br>SIMULATED<br>(L/S) |                     |             | IM DIA.) | NOTES |  |  |
|          | Street Segments |                          |                                                       |                                                                      |                     |             |          |       |  |  |
| S804     | Sag             | 18m Row,<br>8.5m asphalt | 2                                                     | 57.9                                                                 | 73.5                | 108         | 127      |       |  |  |
| S805     | Sag             | 18m Row,<br>8.5m asphalt | 2                                                     | 32.6                                                                 | 36.8                | 83          | 83       |       |  |  |
| S806     | Sag             | 18m Row,<br>8.5m asphalt | 2                                                     | 62.8                                                                 | 86.6                | 127         | 127      |       |  |  |
| S807     | Sag             | 18m Row,<br>8.5m asphalt | 2                                                     | 46.7                                                                 | 54.2                | 102         | 102      |       |  |  |
| S808     | Sag             | 18m Row,<br>8.5m asphalt | 2                                                     | 38.0                                                                 | 45.4                | 94          | 94       |       |  |  |

Table 5-3 Minor Flow Capture for Riverside South Phase 17-1B Development

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

| DRAINAGE | CONTINUOU            |                          | TARGET                             | STEM DESIGN<br>(BASED ON<br>D TYPE)                                  | 100 YEAR<br>CAPTURE | ICD ORIFICE |          | NOTES |
|----------|----------------------|--------------------------|------------------------------------|----------------------------------------------------------------------|---------------------|-------------|----------|-------|
| AREA ID  | S/SAG <sup>(1)</sup> | ROAD TYPE                | MINOR<br>SYSTEM<br>DESIGN<br>STORM | GENERATE<br>D FLOW ON<br>INDIVIDUAL<br>SEGMENT<br>SIMULATED<br>(L/S) | D FLOW<br>(L/S)     | SIZE (M     | IM DIA.) | NOIES |
| S822     | Sag                  | 20m Row,<br>8.5m asphalt | 2                                  | 55.1                                                                 | 61.1                | 108         | 108      |       |
| S825     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 42.4                                                                 | 47.5                | 94          | 94       |       |
| S826     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 68.6                                                                 | 83.2                | 127         | 127      |       |
| S828A    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 22.3                                                                 | 34.9                | 83          | 83       |       |
| S828B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 51.1                                                                 | 55.3                | 102         | 102      |       |
| S835A    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 31.4                                                                 | 35.9                | 83          | 83       |       |
| S835B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 60.2                                                                 | 72.2                | 108         | 127      |       |
| S840     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 38.0                                                                 | 46.0                | 94          | 94       |       |
| S841A    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 28.8                                                                 | 74.7                | 108         | 127      |       |
| S841B    | Continuous           | 18m Row,<br>8.5m asphalt | 2                                  | 38.0                                                                 | 0.0                 | n/a         | n/a      |       |
| S841C    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 36.5                                                                 | 47.9                | 94          | 94       |       |
| S905     | Sag                  | 26m Row,<br>11m asphalt  | 3                                  | 58.1                                                                 | 104.0               | 127         | 152      |       |
| S906     | Continuous           | 26m Row,<br>11m asphalt  | 5                                  | 32.7                                                                 | 37.5                | n           | /a       |       |
| S906B    | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 60.6                                                                 | 102.8               | 152         | 152      |       |
| S908     | Continuous           | 26m Row,<br>11m asphalt  | 5                                  | 51.5                                                                 | 51.8                | n/a         | n/a      |       |
| S910     | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 61.4                                                                 | 69.8                | 108         | 127      |       |
| S911     | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 19.5                                                                 | 33.3                | 83          | 83       |       |
| S911A    | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 44.4                                                                 | 48.7                | 94          | 102      |       |
| S930     | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 73.3                                                                 | 81.0                | 127         | 127      |       |
| S931A    | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 52.1                                                                 | 58.9                | 108         | 108      |       |
| S931B    | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 46.9                                                                 | 52.4                | 102         | 102      |       |
| S932     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 38.6                                                                 | 55.2                | 102         | 102      |       |
| S933A    | Continuous           | 26m Row,<br>11m asphalt  | 5                                  | 26.1                                                                 | 96.5                | n/a         | n/a      |       |
| S933B    | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 53.9                                                                 | 60.0                | 108         | 127      |       |
| S943     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 36.5                                                                 | 45.1                | 94          | 94       |       |

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

| DRAINAGE | CONTINUOU            |                          | TARGET                             | STEM DESIGN<br>(BASED ON<br>D TYPE)                                  | 100 YEAR<br>CAPTURE | ICD ORIFICE<br>SIZE (MM DIA.) |     |       |
|----------|----------------------|--------------------------|------------------------------------|----------------------------------------------------------------------|---------------------|-------------------------------|-----|-------|
| AREA ID  | S/SAG <sup>(1)</sup> | ROAD TYPE                | MINOR<br>SYSTEM<br>DESIGN<br>STORM | GENERATE<br>D FLOW ON<br>INDIVIDUAL<br>SEGMENT<br>SIMULATED<br>(L/S) | D FLOW<br>(L/S)     |                               |     | NOTES |
| S945     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 32.1                                                                 | 36.0                | 83                            | 83  |       |
| S946     | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 51.5                                                                 | 58.2                | 108                           | 108 |       |
| S947     | Sag                  | 26m Row,<br>11m asphalt  | 5                                  | 47.6                                                                 | 54.7                | 102                           | 102 |       |
| S961A    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 53.9                                                                 | 59.6                | 108                           | 108 |       |
| S961B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 31.4                                                                 | 46.8                | 94                            | 94  |       |
| S963     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 39.6                                                                 | 47.0                | 94                            | 94  |       |
| S981A    | Continuous           | 18m Row,<br>8.5m asphalt | 2                                  | 21.9                                                                 | 24.9                | n                             | /a  |       |
| S981B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 33.6                                                                 | 36.9                | 83                            | 83  |       |
| S982     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 46.7                                                                 | 53.9                | 102                           | 102 |       |
| S984A    | Sag                  | 20m Row,<br>8.5m asphalt | 2                                  | 41.9                                                                 | 46.8                | 94                            | 94  |       |
| S984B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 30.1                                                                 | 37.2                | 83                            | 83  |       |
| S985A    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 16.6                                                                 | 35.9                | 83                            | 83  |       |
| S985B    | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 22.6                                                                 | 35.4                | 83                            | 83  |       |
| S986     | Sag                  | 18m Row,<br>8.5m asphalt | 2                                  | 39.3                                                                 | 46.1                | 94                            | 94  |       |
|          |                      |                          |                                    | Rear Yards                                                           | i                   |                               |     |       |
| R804     | Rear Yard            | Rear Yard                | 2                                  | 23.4                                                                 | 27.5                | 10                            | )2  |       |
| R806A    | Rear Yard            | Rear Yard                | 2                                  | 11.9                                                                 | 18.5                | 8                             | 3   |       |
| R806B    | Rear Yard            | Rear Yard                | 2                                  | 12.1                                                                 | 18.9                | 8                             | 3   |       |
| R808     | Rear Yard            | Rear Yard                | 2                                  | 6.7                                                                  | 18.2                | 8                             | 3   |       |
| R822     | Rear Yard            | Rear Yard                | 2                                  | 21.0                                                                 | 23.3                | 9                             | 4   |       |
| R825     | Rear Yard            | Rear Yard                | 2                                  | 26.8                                                                 | 28.4                | 10                            | )2  |       |
| R826     | Rear Yard            | Rear Yard                | 2                                  | 24.4                                                                 | 28.1                | 10                            | )2  |       |
| R828     | Rear Yard            | Rear Yard                | 2                                  | 10.1                                                                 | 18.2                | 8                             | 3   |       |
| R835     | Rear Yard            | Rear Yard                | 2                                  | 21.9                                                                 | 23.6                | 9                             | 4   |       |
| R840     | Rear Yard            | Rear Yard                | 2                                  | 24.3                                                                 | 29.5                | 10                            | )2  |       |

| DRAINAGE | CONTINUOU            | ROAD TYPE             | TARGET                             | GTEM DESIGN<br>(BASED ON<br>D TYPE)                                  | 100 YEAR<br>CAPTURE | ICD ORIFICE    | NOTES |
|----------|----------------------|-----------------------|------------------------------------|----------------------------------------------------------------------|---------------------|----------------|-------|
| AREA ID  | S/SAG <sup>(1)</sup> | ROAD TITE             | MINOR<br>SYSTEM<br>DESIGN<br>STORM | GENERATE<br>D FLOW ON<br>INDIVIDUAL<br>SEGMENT<br>SIMULATED<br>(L/S) | D FLOW<br>(L/S)     | SIZE (MM DIA.) | NOILS |
| R841A    | Rear Yard            | Rear Yard             | 2                                  | 24.3                                                                 | 29.5                | 102            |       |
| R841B    | Rear Yard            | Rear Yard             | 2                                  | 27.0                                                                 | 27.8                | 102            |       |
| R906B    | Rear Yard            | Rear Yard             | 2                                  | 7.8                                                                  | 18.5                | 83             |       |
| R932A    | Rear Yard            | Rear Yard             | 2                                  | 16.8                                                                 | 18.4                | 83             |       |
| R932B    | Rear Yard            | Rear Yard             | 2                                  | 9.3                                                                  | 18.2                | 83             |       |
| R943     | Rear Yard            | Rear Yard             | 2                                  | 16.2                                                                 | 18.6                | 83             |       |
| R944     | Rear Yard            | Rear Yard             | 2                                  | 10.2                                                                 | 18.8                | 83             |       |
| R947     | Rear Yard            | Rear Yard             | 2                                  | 10.8                                                                 | 18.1                | 83             |       |
| R961     | Rear Yard            | Rear Yard             | 2                                  | 8.5                                                                  | 17.9                | 83             |       |
| R963     | Rear Yard            | Rear Yard             | 2                                  | 21.4                                                                 | 23.4                | 94             |       |
| R982     | Rear Yard            | Rear Yard             | 2                                  | 16.2                                                                 | 18.4                | 83             |       |
| R984A    | Rear Yard            | Rear Yard             | 2                                  | 19.1                                                                 | 23.3                | 94             |       |
| R984B    | Rear Yard            | Rear Yard             | 2                                  | 10.4                                                                 | 18.2                | 83             |       |
| R981     | Rear Yard            | Rear Yard             | 2                                  | 15.4                                                                 | 18.4                | 83             |       |
| R986     | Rear Yard            | Rear Yard             | 2                                  | 18.8                                                                 | 23.2                | 94             |       |
|          |                      |                       | No                                 | on-Residential                                                       | Lands               |                |       |
| MD910    | Rear Yard            | CUSTOM as<br>required | 5                                  | 320                                                                  | 320                 | 320            |       |
| P931     | Rear Yard            | CUSTOM as<br>required | 2                                  | 217                                                                  | 217                 | 217            |       |
| SC933    | Rear Yard            | CUSTOM as<br>required | 2                                  | 475                                                                  | 475                 | 475            |       |
| COM947   | Rear Yard            | CUSTOM as<br>required | 2                                  | 142                                                                  | 142                 | 142            |       |

(1) if required, the minor flow restriction has been increased in sags to allow full capture of overflow from upstream segments on continuous grade during the design storm event without ponding.

(2) From PCSWMM Output "125581-RSSPH17-1B-REV2-100CH.pcz" presented in Appendix E.

The storage available on-site and its maximum depth and the results of the PCSWMM evaluation for the subject site are presented in **Table 5.4**. The ponding plan for the subject site is presented on **Drawing 125581-602** to **Drawing 125581-606**.

| DRAINAGE AREA ID | MINOR SYSTEM<br>DESIGN STORM | AVAILABLE STATIC<br>STORAGE (CU-M) <sup>(1)</sup> | AVAILABLE STATIC<br>DEPTH (M) <sup>(2)</sup> | MAXIMUM DEPTH AT<br>LOW POINT (M) – IF<br>APPLICABLE<br>DURING THE<br>TARGET MINOR<br>SYSTEM DESIGN<br>STORM | OVERFLOW (L/S) |
|------------------|------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|
|                  |                              | Riverside South Phas                              | e 17-1B (Subject site)                       |                                                                                                              |                |
| S804             | Sag                          | 26.7                                              | 0.25                                         | 0                                                                                                            | 0              |
| S805             | Sag                          | 21.7                                              | 0.27                                         | 0                                                                                                            | 0              |
| S806             | Sag                          | 67.2                                              | 0.27                                         | 0                                                                                                            | 0              |
| S807             | Sag                          | 57.3                                              | 0.27                                         | 0                                                                                                            | 0              |
| S808             | Sag                          | 1.5                                               | 0.13                                         | 0                                                                                                            | 0              |
| S822             | Sag                          | 10.2                                              | 0.18                                         | 0                                                                                                            | 0              |
| S825             | Sag                          | 45.9                                              | 0.25                                         | 0                                                                                                            | 0              |
| S826             | Sag                          | 70.2                                              | 0.25                                         | 0                                                                                                            | 0              |
| S828A            | Sag                          | 10.9                                              | 0.19                                         | 0                                                                                                            | 0              |
| S828B            | Sag                          | 97.7                                              | 0.30                                         | 0                                                                                                            | 0              |
| S835A            | Sag                          | 6.2                                               | 0.16                                         | 0                                                                                                            | 0              |
| S835B            | Sag                          | 52.2                                              | 0.25                                         | 0                                                                                                            | 0              |
| S840             | Sag                          | 9.4                                               | 0.15                                         | 0                                                                                                            | 0              |
| S841A            | Sag                          | 49.8                                              | 0.25                                         | 0                                                                                                            | 0              |
| S841B            | Continuous                   | n/a                                               | n/a                                          | 0.06                                                                                                         | 35.3           |
| S841C            | Sag                          | 68.3                                              | 0.30                                         | 0                                                                                                            | 0              |
| S905             | Sag                          | 28.7                                              | 0.21                                         | 0                                                                                                            | 0              |
| S906             | Continuous                   | n/a                                               | n/a                                          | 0.05                                                                                                         | 48.94          |
| S906B            | Sag                          | 9.0                                               | 0.16                                         | 0                                                                                                            | 0              |
| S908             | Continuous                   | n/a                                               | n/a                                          | 0.04                                                                                                         | 32.03          |
| S910             | Sag                          | 83.0                                              | 0.32                                         | 0                                                                                                            | 0              |
| S911             | Sag                          | 2.0                                               | 0.11                                         | 0                                                                                                            | 0              |
| S911A            | Sag                          | 46.7                                              | 0.25                                         | 0                                                                                                            | 0              |

#### Table 5-4 Summary of On-Site Storage during the Target Minor System Design Storm

IBI GROUP REPORT PROJECT: 125581.6.04-03 DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

| DRAINAGE AREA ID | MINOR SYSTEM<br>DESIGN STORM | AVAILABLE STATIC<br>STORAGE (CU-M) <sup>(1)</sup> | AVAILABLE STATIC<br>DEPTH (M) <sup>(2)</sup> | MAXIMUM DEPTH AT<br>LOW POINT (M) – IF<br>APPLICABLE<br>DURING THE<br>TARGET MINOR<br>SYSTEM DESIGN<br>STORM | OVERFLOW (L/S) |
|------------------|------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|
| S930             | Sag                          | 46.0                                              | 0.24                                         | 0                                                                                                            | 0              |
| S931A            | Sag                          | 13.9                                              | 0.15                                         | 0                                                                                                            | 0              |
| S931B            | Sag                          | 29.4                                              | 0.20                                         | 0                                                                                                            | 0              |
| S932             | Sag                          | 42.5                                              | 0.24                                         | 0                                                                                                            | 0              |
| S933A            | Continuous                   | n/a                                               | n/a                                          | 0.03                                                                                                         | 12.46          |
| S933B            | Sag                          | 6.7                                               | 0.15                                         | 0                                                                                                            | 0              |
| S943             | Sag                          | 8.0                                               | 0.11                                         | 0                                                                                                            | 0              |
| S945             | Sag                          | 12.8                                              | 0.18                                         | 0                                                                                                            | 0              |
| S946             | Sag                          | 2.6                                               | 0.14                                         | 0                                                                                                            | 0              |
| S947             | Sag                          | 6.5                                               | 0.15                                         | 0                                                                                                            | 0              |
| S961A            | Sag                          | 2.3                                               | 0.13                                         | 0                                                                                                            | 0              |
| S961B            | Sag                          | 22.0                                              | 0.21                                         | 0                                                                                                            | 0              |
| S963             | Sag                          | 18.1                                              | 0.21                                         | 0                                                                                                            | 0              |
| S981A            | Continuous                   | n/a                                               | n/a                                          | 0.03                                                                                                         | 9.16           |
| S981B            | Sag                          | 29.0                                              | 0.24                                         | 0                                                                                                            | 0              |
| S982             | Sag                          | 8.3                                               | 0.15                                         | 0                                                                                                            | 0              |
| S984A            | Sag                          | 12.5                                              | 0.25                                         | 0                                                                                                            | 0              |
| S984B            | Sag                          | 7.6                                               | 0.17                                         | 0                                                                                                            | 0              |
| S985A            | Sag                          | 8.4                                               | 0.15                                         | 0                                                                                                            | 0              |
| S985B            | Sag                          | 3.0                                               | 0.15                                         | 0                                                                                                            | 0              |
| S986             | Sag                          | 4.3                                               | 0.16                                         | 0                                                                                                            | 0              |
|                  | I                            | Riverside South Phase 17                          | -1A and 4725 Spratt Road                     | 1                                                                                                            | -              |
| S905             | Sag                          | 28.7                                              | 0.21                                         | 0                                                                                                            | 0              |
| S972             | Sag                          | 26.5                                              | 0.18                                         | 0                                                                                                            | 0              |
| S816             | Sag                          | 41.2                                              | 0.25                                         | 0                                                                                                            | 0              |

| DRAINAGE AREA ID | MINOR SYSTEM<br>DESIGN STORM | AVAILABLE STATIC<br>STORAGE (CU-M) <sup>(1)</sup> | AVAILABLE STATIC<br>DEPTH (M) <sup>(2)</sup> | MAXIMUM DEPTH AT<br>LOW POINT (M) – IF<br>APPLICABLE<br>DURING THE<br>TARGET MINOR<br>SYSTEM DESIGN<br>STORM | OVERFLOW (L/S) |
|------------------|------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|
| S803B            | Sag                          | 4.4                                               | 0.13                                         | 0                                                                                                            | 0              |
| S821             | Sag                          | 69.0                                              | 0.25                                         | 0                                                                                                            | 0              |

(1) The available on-site static storage is based on Drawing 125581-602 to Drawing 125581-606.

(2) The available static depth is based on **Drawing 125581-602** to **Drawing 125581-606**.

(3) The resulting storage was simulated in PCSWMM based on road profile and cross sections for that street segment.

The results of the on-site detention analysis show that during the restricted inflow rate of the 2 or 5 year storm event, there is no ponding on the subject site.

**Table 5-5 and Table 5-6** summarize the cascading overflows for each subcatchment on the subject site and the downstream subcatchments on Spratt Road for the 100 year 3 hour Chicago storm event and the 100 year Chicago storm increased by 20%, respectively. The cascading overflow is the flow exiting a drainage area when maximum minor system inflow and maximum available ponding has been utilized. The 18 m, 20 m and 26 m ROW sections, with the corresponding longitudinal profiles, were imported into PCSWMM to determine the depth and velocity of cascading overflow for continuous and sawtooth street segments.

It should be noted that for the purposes of modeling, where there are VPI in the road profile, the vertical curves have been flattened to straight line slopes between the two points. This approach is considered conservative with respect to the model.

| DRAINAGE AREA<br>ID | CONTINUOUS/SAG | AVAILABLE<br>STATIC DEPTH<br>(M) <sup>(1)</sup> | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>– IF APPLICABLE | CASCADING<br>DEPTH (m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M²/S) |
|---------------------|----------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------|----------------|----------------------------|
|                     |                | Riverside Sout                                  | n Phase 17-1B (Subjec                                | ct site)                              |                |                            |
| S804                | Sag            | 0.25                                            | 0.25                                                 | 0.00                                  | 0.00           | 0.00                       |
| S805                | Sag            | 0.27                                            | 0.18                                                 | 0.00                                  | 0.00           | 0.00                       |
| S806                | Sag            | 0.27                                            | 0.31                                                 | 0.04                                  | 0.54           | 0.02                       |
| S807                | Sag            | 0.27                                            | 0.21                                                 | 0.00                                  | 0.00           | 0.00                       |
| S808                | Sag            | 0.13                                            | 0.17                                                 | 0.04                                  | 0.46           | 0.02                       |
| S822                | Sag            | 0.18                                            | 0.22                                                 | 0.04                                  | 0.09           | 0.00                       |
| S825                | Sag            | 0.25                                            | 0.30                                                 | 0.05                                  | 0.76           | 0.04                       |
| S826                | Sag            | 0.25                                            | 0.18                                                 | 0.00                                  | 0.00           | 0.00                       |

Table 5-5 Summary of Velocity x Depth during the 100 Year 3 Hour Chicago Storm

| DRAINAGE AREA<br>ID | CONTINUOUS/SAG | AVAILABLE<br>STATIC DEPTH<br>(M) <sup>(1)</sup> | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>– IF APPLICABLE | CASCADING<br>DEPTH (m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M <sup>2</sup> /S) |
|---------------------|----------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------|----------------|-----------------------------------------|
| S828A               | Sag            | 0.19                                            | 0.13                                                 | 0.01                                  | 0.13           | 0.00                                    |
| S828B               | Sag            | 0.30                                            | 0.28                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S835A               | Sag            | 0.16                                            | 0.21                                                 | 0.05                                  | 0.45           | 0.02                                    |
| S835B               | Sag            | 0.25                                            | 0.20                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S840                | Sag            | 0.15                                            | 0.21                                                 | 0.06                                  | 0.72           | 0.04                                    |
| S841A               | Sag            | 0.25                                            | 0.30                                                 | 0.05                                  | 0.49           | 0.02                                    |
| S841B               | Continuous     | n/a                                             | 0.07                                                 | 0.07                                  | 0.97           | 0.07                                    |
| S841C               | Sag            | 0.30                                            | 0.36                                                 | 0.06                                  | 0.65           | 0.04                                    |
| S905                | Sag            | 0.21                                            | 0.26                                                 | 0.05                                  | 1.37           | 0.07                                    |
| S906                | Continuous     | n/a                                             | 0.06                                                 | 0.06                                  | 1.59           | 0.10                                    |
| S906B               | Sag            | 0.16                                            | 0.24                                                 | 0.07                                  | 0.91           | 0.06                                    |
| S908                | Continuous     | n/a                                             | 0.05                                                 | 0.05                                  | 0.71           | 0.04                                    |
| S910                | Sag            | 0.32                                            | 0.11                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S911                | Sag            | 0.11                                            | 0.01                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S911A               | Sag            | 0.25                                            | 0.13                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S930                | Sag            | 0.24                                            | 0.11                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S931A               | Sag            | 0.15                                            | 0.12                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S931B               | Sag            | 0.20                                            | 0.11                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S932                | Sag            | 0.24                                            | 0.22                                                 | 0.01                                  | 0.07           | 0.00                                    |
| S933A               | Continuous     | n/a                                             | 0.04                                                 | 0.04                                  | 0.85           | 0.03                                    |
| S933B               | Sag            | 0.15                                            | 0.11                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S943                | Sag            | 0.11                                            | 0.14                                                 | 0.03                                  | 0.77           | 0.02                                    |
| S945                | Sag            | 0.18                                            | 0.22                                                 | 0.03                                  | 0.28           | 0.01                                    |
| S946                | Sag            | 0.14                                            | 0.09                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S947                | Sag            | 0.15                                            | 0.23                                                 | 0.08                                  | 0.57           | 0.05                                    |
| S961A               | Sag            | 0.13                                            | 0.18                                                 | 0.05                                  | 0.19           | 0.01                                    |

| DRAINAGE AREA<br>ID | CONTINUOUS/SAG                  | AVAILABLE<br>STATIC DEPTH<br>(M) <sup>(1)</sup> | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>– IF APPLICABLE | CASCADING<br>DEPTH (m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M²/S) |
|---------------------|---------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------|----------------|----------------------------|
| S961B               | Sag                             | 0.21                                            | 0.25                                                 | 0.04                                  | 0.52           | 0.02                       |
| S963                | Sag                             | 0.21                                            | 0.27                                                 | 0.06                                  | 0.63           | 0.04                       |
| S981A               | Continuous                      | n/a                                             | 0.04                                                 | 0.04                                  | 0.58           | 0.02                       |
| S981B               | Sag                             | 0.24                                            | 0.29                                                 | 0.06                                  | 0.59           | 0.04                       |
| S982                | Sag                             | 0.15                                            | 0.18                                                 | 0.03                                  | 0.10           | 0.00                       |
| S984A               | Sag                             | 0.25                                            | 0.28                                                 | 0.03                                  | 0.28           | 0.01                       |
| S984B               | Sag                             | 0.17                                            | 0.23                                                 | 0.06                                  | 0.60           | 0.04                       |
| S985A               | Sag                             | 0.15                                            | 0.19                                                 | 0.04                                  | 0.16           | 0.01                       |
| S985B               | Sag                             | 0.15                                            | 0.19                                                 | 0.04                                  | 0.35           | 0.01                       |
| S986                | Sag                             | 0.16                                            | 0.21                                                 | 0.05                                  | 0.45           | 0.02                       |
|                     |                                 | Riverside South Ph                              | ase 17-1A and 4725 S                                 | pratt Road                            |                |                            |
| S905                | Sag                             | 0.21                                            | 0.26                                                 | 0.05                                  | 1.37           | 0.07                       |
| S972                | Sag                             | 0.18                                            | 0.23                                                 | 0.05                                  | 0.13           | 0.01                       |
| S816                | Sag                             | 0.25                                            | 0.28                                                 | 0.03                                  | 0.00           | 0.00                       |
| S803B               | Sag                             | 0.13                                            | 0.05                                                 | 0.00                                  | 0.00           | 0.00                       |
| S821                | Sag<br>(1) The available static | 0.25                                            | 0.29                                                 | 0.04                                  | 1.53           | 0.06                       |

 (1) The available static depth is based on Drawing 125581-602 to Drawing 125581-606.
 (2) Evaluated at most downstream node within drainage area. From PCSWMM Output "125581-RSSPH17-1B-REV2-100CH.pcz" presented in Appendix E.

#### Table 5-6 Summary of Velocity x Depth during the 100 Year 3 Hour Chicago Storm Increased by 20%

| DRAINAGE AREA<br>ID                        | CONTINUOUS/SAG | AVAILABLE<br>STATIC Depth (M) | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>– IF APPLICABLE | Cascading Depth<br>(m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M <sup>2</sup> /S) |
|--------------------------------------------|----------------|-------------------------------|------------------------------------------------------|---------------------------------------|----------------|-----------------------------------------|
| Riverside South Phase 17-1B (Subject site) |                |                               |                                                      |                                       |                |                                         |
| S804                                       | Sag            | 0.25                          | 0.28                                                 | 0.03                                  | 0.11           | 0.00                                    |
| S805                                       | Sag            | 0.27                          | 0.23                                                 | 0.00                                  | 0.00           | 0.00                                    |

| DRAINAGE AREA<br>ID | CONTINUOUS/SAG | AVAILABLE<br>STATIC Depth (M)<br>(1) | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>- IF APPLICABLE | Cascading Depth<br>(m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M <sup>2</sup> /S) |
|---------------------|----------------|--------------------------------------|------------------------------------------------------|---------------------------------------|----------------|-----------------------------------------|
| S806                | Sag            | 0.27                                 | 0.37                                                 | 0.10                                  | 0.88           | 0.09                                    |
| S807                | Sag            | 0.27                                 | 0.26                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S808                | Sag            | 0.13                                 | 0.18                                                 | 0.04                                  | 0.56           | 0.02                                    |
| S822                | Sag            | 0.18                                 | 0.27                                                 | 0.08                                  | 0.14           | 0.01                                    |
| S825                | Sag            | 0.25                                 | 0.34                                                 | 0.09                                  | 0.83           | 0.07                                    |
| S826                | Sag            | 0.25                                 | 0.27                                                 | 0.02                                  | 0.15           | 0.00                                    |
| S828A               | Sag            | 0.19                                 | 0.24                                                 | 0.05                                  | 0.33           | 0.02                                    |
| S828B               | Sag            | 0.30                                 | 0.38                                                 | 0.07                                  | 0.20           | 0.01                                    |
| S835A               | Sag            | 0.16                                 | 0.23                                                 | 0.07                                  | 0.56           | 0.04                                    |
| S835B               | Sag            | 0.25                                 | 0.26                                                 | 0.01                                  | 0.07           | 0.00                                    |
| S840                | Sag            | 0.15                                 | 0.22                                                 | 0.07                                  | 0.81           | 0.06                                    |
| S841A               | Sag            | 0.25                                 | 0.32                                                 | 0.07                                  | 0.57           | 0.04                                    |
| S841B               | Continuous     | n/a                                  | 0.07                                                 | 0.07                                  | 0.96           | 0.07                                    |
| S841C               | Sag            | 0.30                                 | 0.40                                                 | 0.10                                  | 0.76           | 0.08                                    |
| S905                | Sag            | 0.21                                 | 0.30                                                 | 0.08                                  | 1.50           | 0.12                                    |
| S906                | Continuous     | n/a                                  | 0.07                                                 | 0.07                                  | 1.58           | 0.11                                    |
| S906B               | Sag            | 0.16                                 | 0.26                                                 | 0.09                                  | 1.07           | 0.10                                    |
| S908                | Continuous     | n/a                                  | 0.06                                                 | 0.06                                  | 0.75           | 0.05                                    |
| S910                | Sag            | 0.32                                 | 0.15                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S911                | Sag            | 0.11                                 | 0.06                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S911A               | Sag            | 0.25                                 | 0.18                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S930                | Sag            | 0.24                                 | 0.15                                                 | 0.00                                  | 0.00           | 0.00                                    |
| S931A               | Sag            | 0.15                                 | 0.22                                                 | 0.07                                  | 0.16           | 0.01                                    |
| S931B               | Sag            | 0.20                                 | 0.24                                                 | 0.04                                  | 0.30           | 0.01                                    |
| S932                | Sag            | 0.24                                 | 0.31                                                 | 0.06                                  | 0.14           | 0.01                                    |
| S933A               | Continuous     | n/a                                  | 0.09                                                 | 0.09                                  | 0.85           | 0.08                                    |

| DRAINAGE AREA<br>ID | CONTINUOUS/SAG | AVAILABLE<br>STATIC Depth (M) | MAXIMUM DEPTH<br>AT LOW POINT (M)<br>– IF APPLICABLE | Cascading Depth<br>(m) <sup>(2)</sup> | VELOCITY (M/S) | VELOCITY X<br>DEPTH (M²/S) |
|---------------------|----------------|-------------------------------|------------------------------------------------------|---------------------------------------|----------------|----------------------------|
| S933B               | Sag            | 0.15                          | 0.22                                                 | 0.07                                  | 0.27           | 0.02                       |
| S943                | Sag            | 0.11                          | 0.15                                                 | 0.03                                  | 0.79           | 0.02                       |
| S945                | Sag            | 0.18                          | 0.23                                                 | 0.04                                  | 0.32           | 0.01                       |
| S946                | Sag            | 0.14                          | 0.14                                                 | 0.00                                  | 0.00           | 0.00                       |
| S947                | Sag            | 0.15                          | 0.25                                                 | 0.10                                  | 0.66           | 0.07                       |
| S961A               | Sag            | 0.13                          | 0.19                                                 | 0.06                                  | 0.24           | 0.01                       |
| S961B               | Sag            | 0.21                          | 0.34                                                 | 0.13                                  | 0.73           | 0.09                       |
| S963                | Sag            | 0.21                          | 0.29                                                 | 0.08                                  | 0.72           | 0.06                       |
| S981A               | Continuous     | n/a                           | 0.04                                                 | 0.04                                  | 0.60           | 0.02                       |
| S981B               | Sag            | 0.24                          | 0.35                                                 | 0.11                                  | 0.93           | 0.10                       |
| S982                | Sag            | 0.15                          | 0.24                                                 | 0.08                                  | 0.20           | 0.02                       |
| S984A               | Sag            | 0.25                          | 0.31                                                 | 0.06                                  | 0.57           | 0.03                       |
| S984B               | Sag            | 0.17                          | 0.29                                                 | 0.12                                  | 0.76           | 0.09                       |
| S985A               | Sag            | 0.15                          | 0.22                                                 | 0.07                                  | 0.16           | 0.01                       |
| S985B               | Sag            | 0.15                          | 0.25                                                 | 0.10                                  | 0.37           | 0.04                       |
| S986                | Sag            | 0.16                          | 0.23                                                 | 0.07                                  | 0.56           | 0.04                       |
|                     |                | Riverside South Ph            | ase 17-1A and 4725 S                                 | pratt Road                            |                |                            |
| S905                | Sag            | 0.21                          | 0.30                                                 | 0.08                                  | 1.50           | 0.12                       |
| S972                | Sag            | 0.18                          | 0.25                                                 | 0.07                                  | 0.14           | 0.01                       |
| S816                | Sag            | 0.25                          | 0.39                                                 | 0.14                                  | 0.76           | 0.11                       |
| S803B               | Sag            | 0.13                          | 0.08                                                 | 0.01                                  | 0.03           | 0.00                       |
| S821                | Sag            | 0.25                          | 0.38                                                 | 0.11                                  | 1.77           | 0.19                       |

(1) (2) The available static depth is based on Drawing 125581-602 to Drawing 125581-606

Evaluated at most downstream node within drainage area. From PCSWMM Output "125581-RSSPH17-1B-REV2-120CH.pcz" presented in Appendix E.

The product of velocity x depth (v x d) should be less than 0.6 m<sup>2</sup>/s for street segments during the 100 year storm event as per the 2012 OSDG. For the street segments within the subject site, the product of v x d is less than 0.6 m<sup>2</sup>/s during the 100 year storm event.

Within the subject site under the 100 year Chicago storm event, all street segments have a total ponding depth of less than 0.35 m.

For the 100 year storm event increased by 20%, the v x d results are provided for information purposes. During the 100 year storm event increased by 20%, the total depth of ponding is less than 0.35 m throughout the subject site except at the following locations: S828B, S841C, S981B. These areas are noted in **Table 5-6** in red and bold.

The following table summarizes the extend of ponding, property line elevation and the garage elevations for the street segments where summation of depth of ponding and depth of cascading flow exceeds 0.35 m during the 100 year Chicago design storm event increased by 20%.

# Table 5-7: Critical Ponding Locations during the Stress Test and Adjacent Property Elevations

|                     | TOP OF                    | MAX.<br>DEPTH AT    | (1)                               | (2)<br>ADJACENT CRITICA   |                   |                         |
|---------------------|---------------------------|---------------------|-----------------------------------|---------------------------|-------------------|-------------------------|
| DRAINAGE<br>AREA ID | GRATE<br>ELEVATION<br>(M) | LOW<br>POINT<br>(M) | CORRESPONDING<br>ELEVATION<br>(M) | LOCATION                  | (2) ELEVATION (M) | DIFFERENCE<br>(2) – (1) |
| S828B               | 97.07                     | 0.38                | 97.43                             | Garage                    | 97.75             | 0.32                    |
| S806                | 96.48                     | 0.37                | 96.85                             | Garage                    | 97.35             | 0.5                     |
| S841C               | 97.12                     | 0.40                | 97.52                             | Garage                    | 97.80             | 0.28                    |
|                     |                           | Rive                | erside South Phase 1              | 7-1A and 4725 Spratt Road |                   |                         |
| S816                | 94.87                     | 0.39                | 95.26                             | Garage                    | 95.45             | 0.19                    |
| S821                | 96.42                     | 0.38                | 96.8                              | Garage                    | 96.90             | 0.1                     |

During the 100 year Chicago design storm event increased by 20%, the major system will cascade from each street segment noted in **Table 5-7** but remains below adjacent critical elevation.

#### 5.5.3 Hydraulic Evaluation

The evaluation of the hydraulic grade line (HGL) was completed using PCSWMM. As noted previously, the PCSWMM model has been used to simulate both the hydrology and hydraulics for the subject site. Minor system losses were accounted for in accordance with Appendix 6-B of the 2012 OSDG.

Simulations were performed for various storms to confirm the performance of the downstream Pond 5 SWM facility and the hydraulic grade line (HGL) through the subject site.

#### 5.5.4 Results of Hydraulic Evaluation

The hydraulic grade line (HGL) was analyzed using PCSWMM for the 100 year 3 hour Chicago storm; the governing storm event for the subdivision. The corresponding stress test (100 year 3 hour Chicago storm + 20% increase in intensity) was also simulated. The 100 year 12 hour SCS Type II storm was also simulated to assess the receiving SWM facility.

The HGL elevations are presented in the following **Table 5-8**, along with a comparison of underside of footing (USF) elevations. Where USF elevations are not available, a comparison with existing ground elevations (EG) is provided.

# Table 5-8 Storm Hydraulic Grade Line for Riverside South Phase 17-1B for the 100 Year 3Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

|                           |                                             |                   | STORM HYDRAU              | LIC GRADE LINE  |                           |
|---------------------------|---------------------------------------------|-------------------|---------------------------|-----------------|---------------------------|
| PCSWMM MH<br>(SEWER NODE) | USF / (Existing<br>Ground<br>Elevation) (M) | 100 YEAR 3 H      | OUR CHICAGO               | 100 YEAR 3 HOUR | CHICAGO + 20%             |
|                           |                                             | HGL (M)           | USF-HGL<br>(EG - HGL) (M) | HGL (M)         | USF-HGL<br>(EG - HGL) (M) |
|                           |                                             | Riverside South I | Phase 17-1B (Subject site | )               |                           |
| BLK934                    | 96.57                                       | 95.98             | 0.59                      | 96.21           | 0.36                      |
| MH933                     | 96.57                                       | 95.69             | 0.88                      | 95.91           | 0.66                      |
| MH932                     | 95.69                                       | 95.01             | 0.68                      | 95.17           | 0.52                      |
| MH931                     | 95.79                                       | 94.69             | 1.10                      | 94.82           | 0.97                      |
| MH930B                    | 95.89                                       | 94.17             | 1.72                      | 94.26           | 1.63                      |
| MH910                     | 94.94                                       | 92.44             | 2.50                      | 92.64           | 2.30                      |
| MH946                     | 93.42                                       | 92.61             | 0.81                      | 92.82           | 0.60                      |
| MH947                     | 93.02                                       | 92.67             | 0.35                      | 92.88           | 0.14                      |
| MH943                     | 93.97                                       | 92.96             | 1.01                      | 92.96           | 1.01                      |
| MH944                     | 94.49                                       | 92.65             | 1.84                      | 92.86           | 1.63                      |
| MH945                     | 93.42                                       | 92.63             | 0.79                      | 92.84           | 0.58                      |
| MH911                     | N/A                                         | 95.13             | n/a                       | 95.14           | n/a                       |
| MH909                     | 96.09                                       | 92.24             | 3.85                      | 92.41           | 3.68                      |
| MH908                     | 96.09                                       | 92.19             | 3.90                      | 92.35           | 3.74                      |
| MH907                     | 94.99                                       | 91.99             | 3.00                      | 92.12           | 2.87                      |
| MH906                     | 94.59                                       | 91.95             | 2.64                      | 92.07           | 2.52                      |
| MH905                     | 93.77                                       | 91.68             | 2.09                      | 91.79           | 1.98                      |
| Blk905                    | 93.77                                       | 91.45             | 2.32                      | 91.56           | 2.21                      |
| MH981                     | 94.52                                       | 92.16             | 2.36                      | 92.32           | 2.20                      |
| MH982                     | 94.99                                       | 92.44             | 2.55                      | 92.61           | 2.38                      |
| MH805                     | 94.88                                       | 92.66             | 2.22                      | 92.85           | 2.03                      |

|                           |                                             |              | STORM HYDRAU              | LIC GRADE LINE  |                           |
|---------------------------|---------------------------------------------|--------------|---------------------------|-----------------|---------------------------|
| PCSWMM MH<br>(SEWER NODE) | USF / (Existing<br>Ground<br>Elevation) (M) | 100 YEAR 3 I | HOUR CHICAGO              | 100 YEAR 3 HOUF | R CHICAGO + 20%           |
|                           |                                             | HGL (M)      | USF-HGL<br>(EG - HGL) (M) | HGL (M)         | USF–HGL<br>(EG - HGL) (M) |
| MH984                     | 95.09                                       | 92.93        | 2.16                      | 93.14           | 1.95                      |
| MH985                     | 95.19                                       | 93.36        | 1.83                      | 93.57           | 1.62                      |
| MH986                     | 95.64                                       | 93.75        | 1.89                      | 93.97           | 1.67                      |
| MH987                     | 95.64                                       | 94.03        | 1.61                      | 94.24           | 1.40                      |
| BLK822                    | 95.19                                       | 92.94        | 2.25                      | 92.94           | 2.25                      |
| MH822                     | 96.09                                       | 93.01        | 3.08                      | 93.01           | 3.08                      |
| MH825                     | 95.25                                       | 93.29        | 1.96                      | 93.52           | 1.73                      |
| MH826                     | 95.5                                        | 93.72        | 1.78                      | 93.98           | 1.52                      |
| MH827                     | 95.5                                        | 93.78        | 1.72                      | 94.04           | 1.46                      |
| MH828                     | 95.39                                       | 94.00        | 1.39                      | 94.31           | 1.08                      |
| MH841                     | 95.34                                       | 94.30        | 1.04                      | 94.59           | 0.75                      |
| MH842                     | 95.34                                       | 94.40        | 0.94                      | 94.68           | 0.66                      |
| MH840                     | 95.8                                        | 94.11        | 1.69                      | 94.37           | 1.43                      |
| MH835                     | 95.3                                        | 93.77        | 1.53                      | 93.99           | 1.31                      |
| BLK804                    | 94.64                                       | 92.82        | 1.82                      | 92.82           | 1.82                      |
| MH804                     | 95.54                                       | 92.82        | 2.72                      | 92.82           | 2.72                      |
| MH806                     | 95.49                                       | 93.77        | 1.72                      | 93.77           | 1.72                      |
| MH807                     | 95.14                                       | 93.79        | 1.35                      | 93.79           | 1.35                      |
| MH808                     | 95.19                                       | 93.60        | 1.59                      | 93.60           | 1.59                      |
| BLK960                    | 93.07                                       | 91.23        | 1.84                      | 91.32           | 1.75                      |
| MH961                     | 93.82                                       | 92.76        | 1.06                      | 92.76           | 1.06                      |
| BLK963                    | 94.3                                        | 92.01        | 2.29                      | 92.03           | 2.27                      |
| MH963                     | 94.69                                       | 92.09        | 2.60                      | 92.10           | 2.59                      |
| MH962                     | 94.67                                       | 92.18        | 2.49                      | 92.18           | 2.49                      |

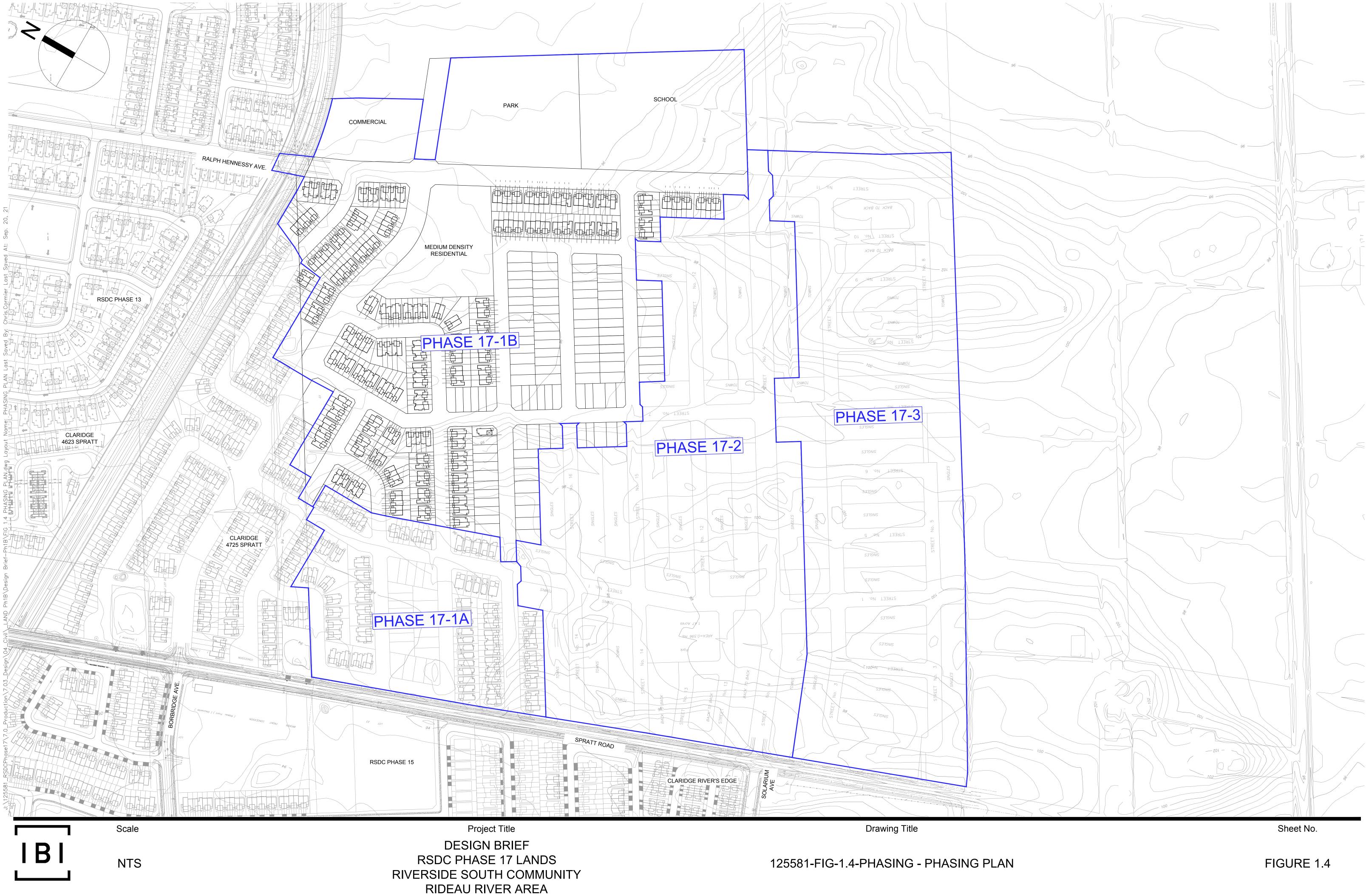
The HGL results presented in **Table 5-8** indicates that the minimum 0.3 m clearance between the USF and HGL is maintained across the subject site during the 100 year 3 hour Chicago and the 100 year 3 hour Chicago increased by 20% storm event, respectively.

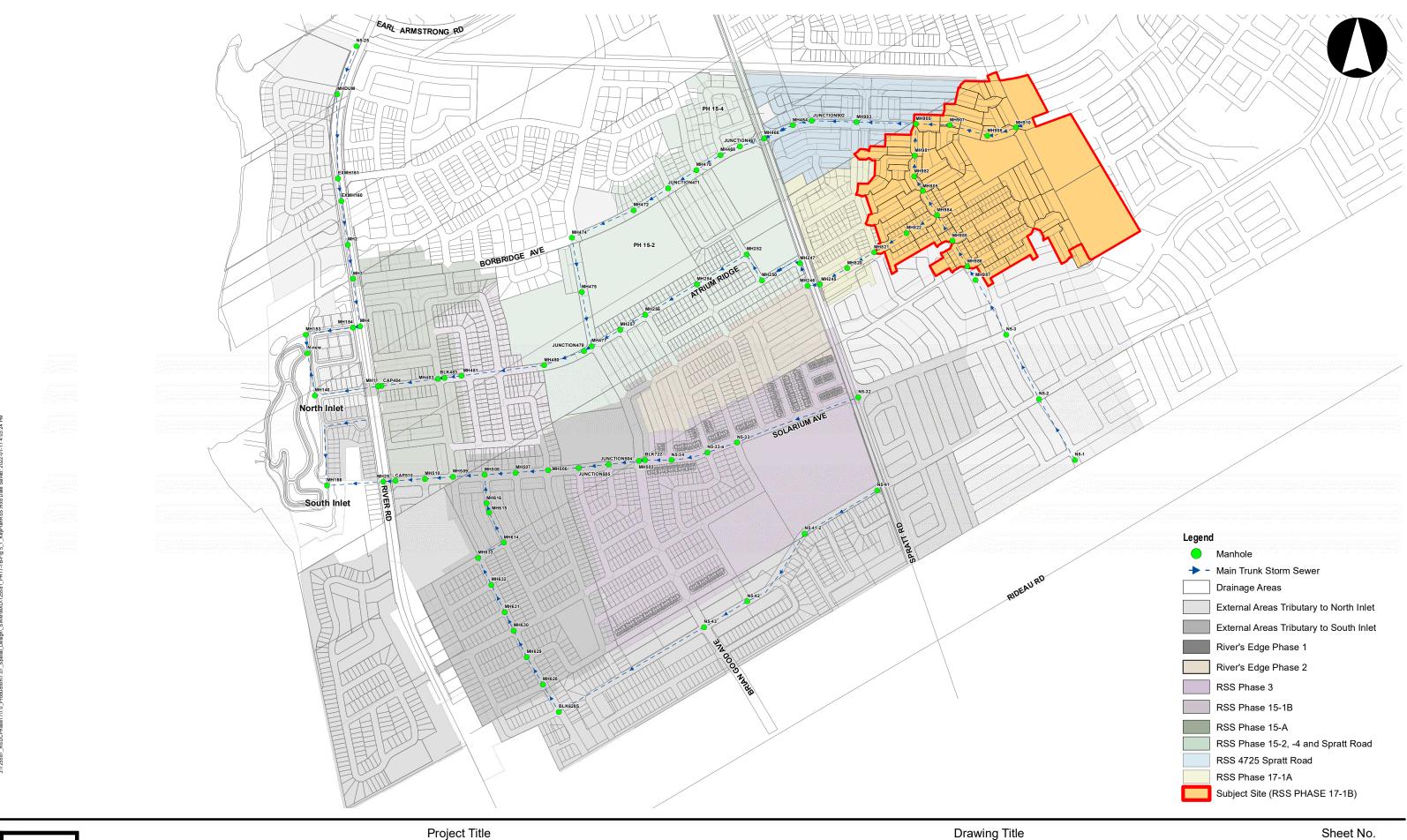
#### 5.6 Performance of Pond 5 Facility

The Pond 5 Facility has been designed and is currently under construction. The design is presented in the reported entitled Riverside South Pond 5 Facility Design Brief (Stantec Consulting Ltd., May 2018). The overall PCSWMM model includes the features of the Pond 5 Facility which provides a dynamic representation of the entire storm system. The hydraulic performance of the stormwater facility is compared and summarized in the following table for those storm events which were used to evaluate the detail design of Riverside South Phase 17-1B.

|                                     |                | Current E      | Evaluation         |          | Fro                           | m May 2018 Fa                 | acility Design E       | rief                 |
|-------------------------------------|----------------|----------------|--------------------|----------|-------------------------------|-------------------------------|------------------------|----------------------|
| Storm Event                         | Peak Pond      | nflow (cms)    | Peak<br>Pond       | Pond W/L | Peak Pond                     | Inflow (cms)                  | Peak Pond<br>Discharge | Pond W/L             |
|                                     | North<br>Inlet | South<br>Inlet | Discharge<br>(cms) | (m)      | North<br>Inlet <sup>(1)</sup> | South<br>Inlet <sup>(1)</sup> | (cms) <sup>(2)</sup>   | (m) <sup>(2)</sup>   |
| Permanent<br>Storage                | n/a            | n/a            | n/a                | 82.60    | n/a                           | n/a                           | n/a                    | 82.60 <sup>(2)</sup> |
| 25 mm 4 hour<br>Chicago             | 7.2            | 7.0            | 3.8                | 83.19    | 6.3                           | 6.9                           | 4.8                    | 83.25                |
| 5 year 3 hour<br>Chicago            | 11.8           | 11.2           | 9.7                | 83.46    | 11.7                          | 11.1                          | 11.4                   | 83.53                |
| 100 year 3<br>hour Chicago          | 13.5           | 12.5           | 18.1               | 83.75    | 15.7                          | 12.7                          | 21.0                   | 83.88                |
| 100 year 12<br>hour SCS<br>Type II  | 12.9           | 12.1           | 19.3               | 83.80    | 15.3                          | 12.6                          | 23.1                   | 83.96                |
| 100 year 3<br>hour Chicago<br>+ 20% | 13.9           | 12.8           | 20.4               | 83.84    | n/a                           | n/a                           | 24.2                   | 84.00                |

Table 5-9 Performance of Pond 5 Facility


(1) From Table 3-1 from 2018 Facility Design Brief.


(2) From Table 3-2 from 2018 Facility Design Brief.

(3) From Table 4-2 from 2018 Facility Design Brief.

Note that the Stantec 2018 Pond 5 model was based on a semi-lumped basis, using the ISSU Horton infiltration parameters which are more conservative than the City guideline (Max. infiltration rate =53 mm/hr & Min. infiltration rate = 0.053 mm/hr). The current Ph 17-1B model uses the City infiltration parameters for both semi-lumped and detailed areas. This change reduces the flow volume in the pond for all storm events. As expected, this results in a lower pond HGL and ultimately lower peak outflow.

Comparison of the results also shows that during frequent storm events (specifically the 25mm and 5 year storms), the current evaluation produces peakier inflow to the pond while the pond HGL is lower than the Stantec 2018 Pond 5 design. Again, this is due to the change of the







Project Title

#### **RIVERSIDE SOUTH DEVELOPMENT** PHASE 17-1B

KEY PLAN - SUBJECT SITE

Sheet No.



FIGURE 5.1



Temporary Sanitary Construction ICDs RSS Phase 17-1B

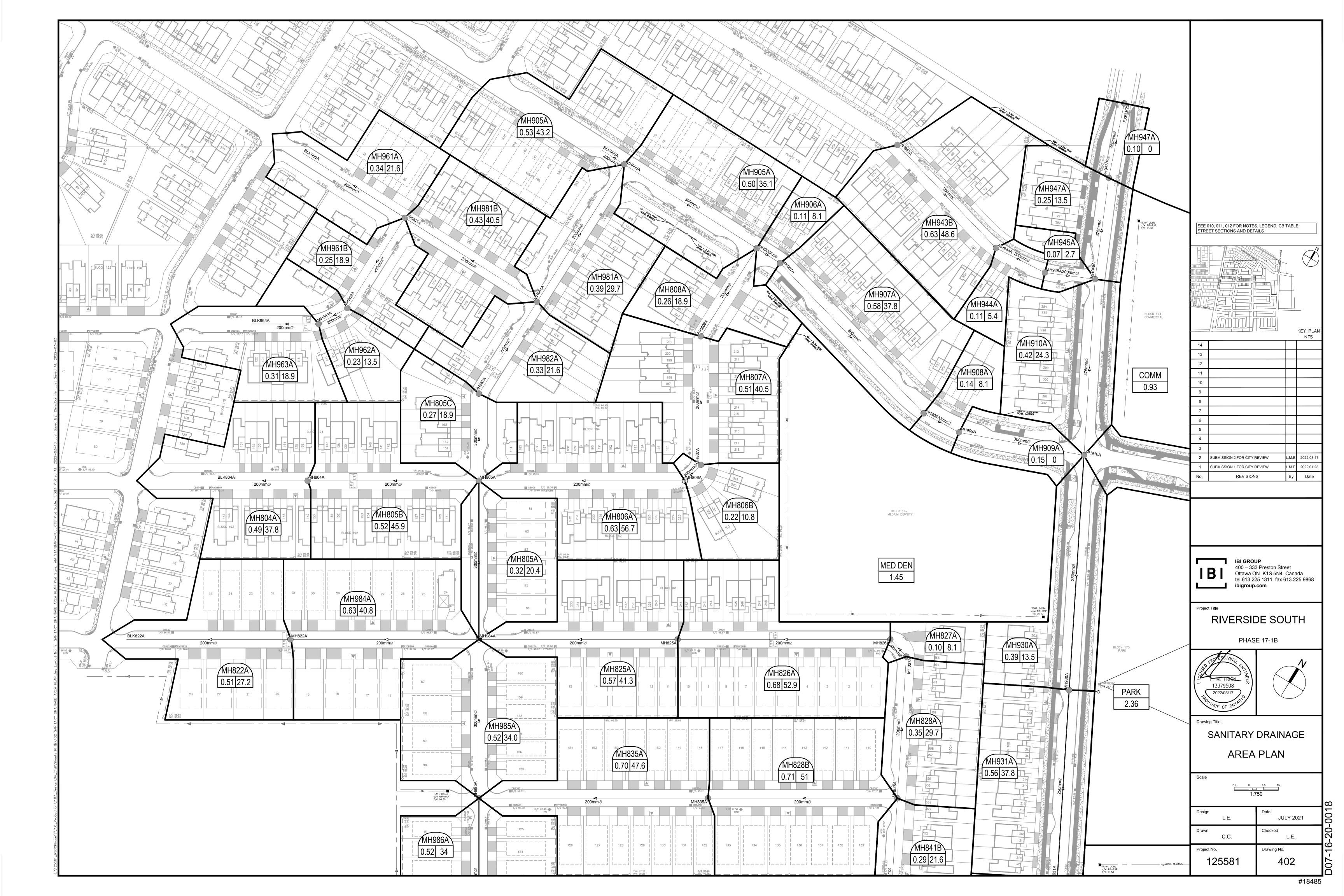
| Structure            | Flow<br>(I/s) | Grade Elev.<br>(m) | Pipe Invert<br>(m) | Pipe Size<br>(m) | Height<br>(m) | Area<br>(Sq m) | Orific<br>Sa.mm | e Size<br>mm dia. |
|----------------------|---------------|--------------------|--------------------|------------------|---------------|----------------|-----------------|-------------------|
| Sanitary             | (#0)          | ()                 | (11)               | (11)             | (111)         | (0911)         | oq. mm          | inin dia.         |
| Ralph Hennesy MH947A | 46.58         | 94.75              | 86.75              | 0.450            | 7.78          | 0.0062         | 79              | 89                |
| Kiwi MH950A          | 0.99          | 95.30              | 89.74              | 0.200            | 5.46          | 0.0002         | 13              | 14                |
| Rockmelon MH821A     | 1.18          | 96.90              | 93.33              | 0.200            | 3.47          | 0.0002         | 15              | 17                |
| Honeydew MH803A      | 1.31          | 96.60              | 93.17              | 0.200            | 3.33          | 0.0003         | 16              | 18                |
| Apricot MH811A       | 0.87          | 95.80              | 92.34              | 0.200            | 3.36          | 0.0002         | 13              | 15                |

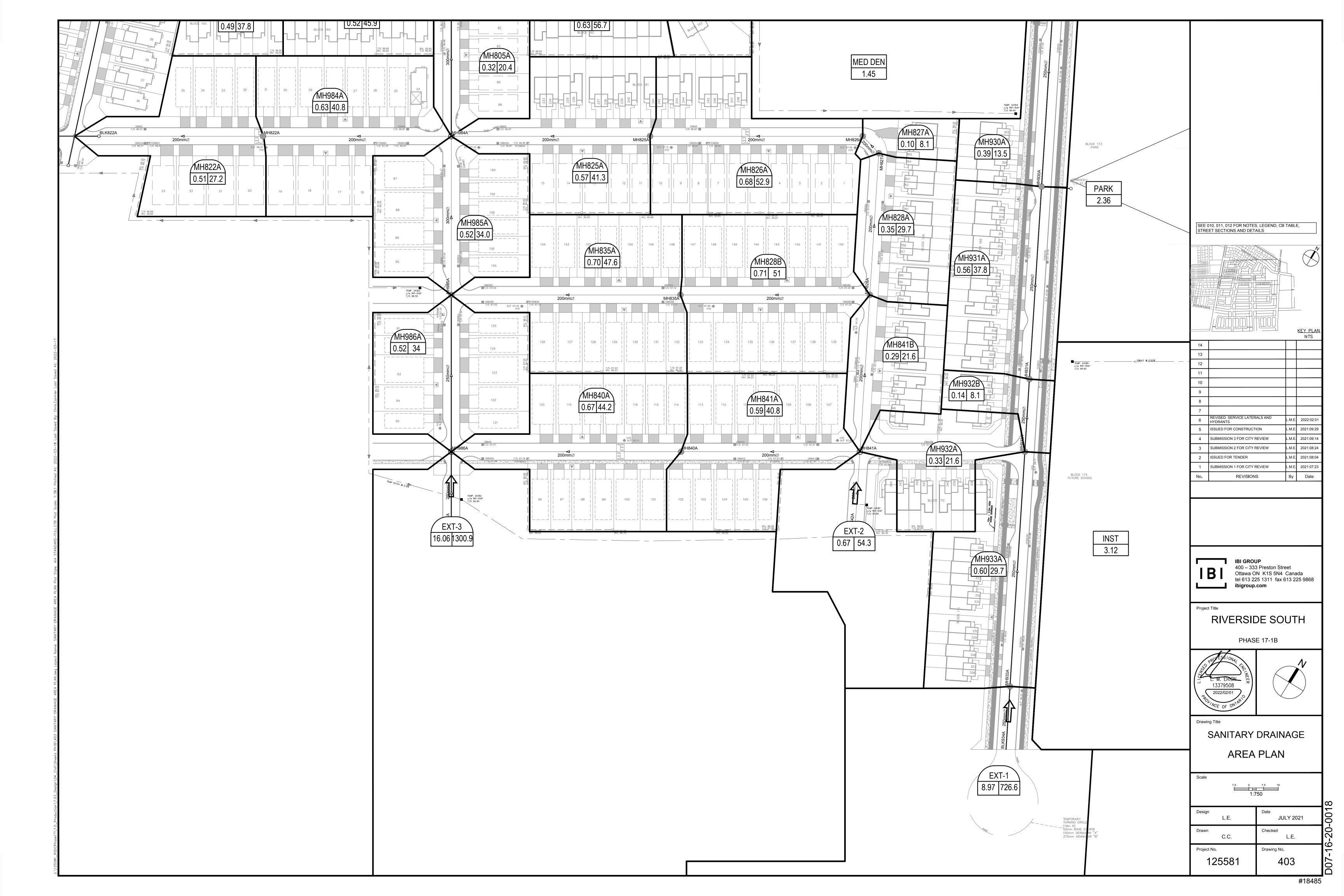
Based On Equation:

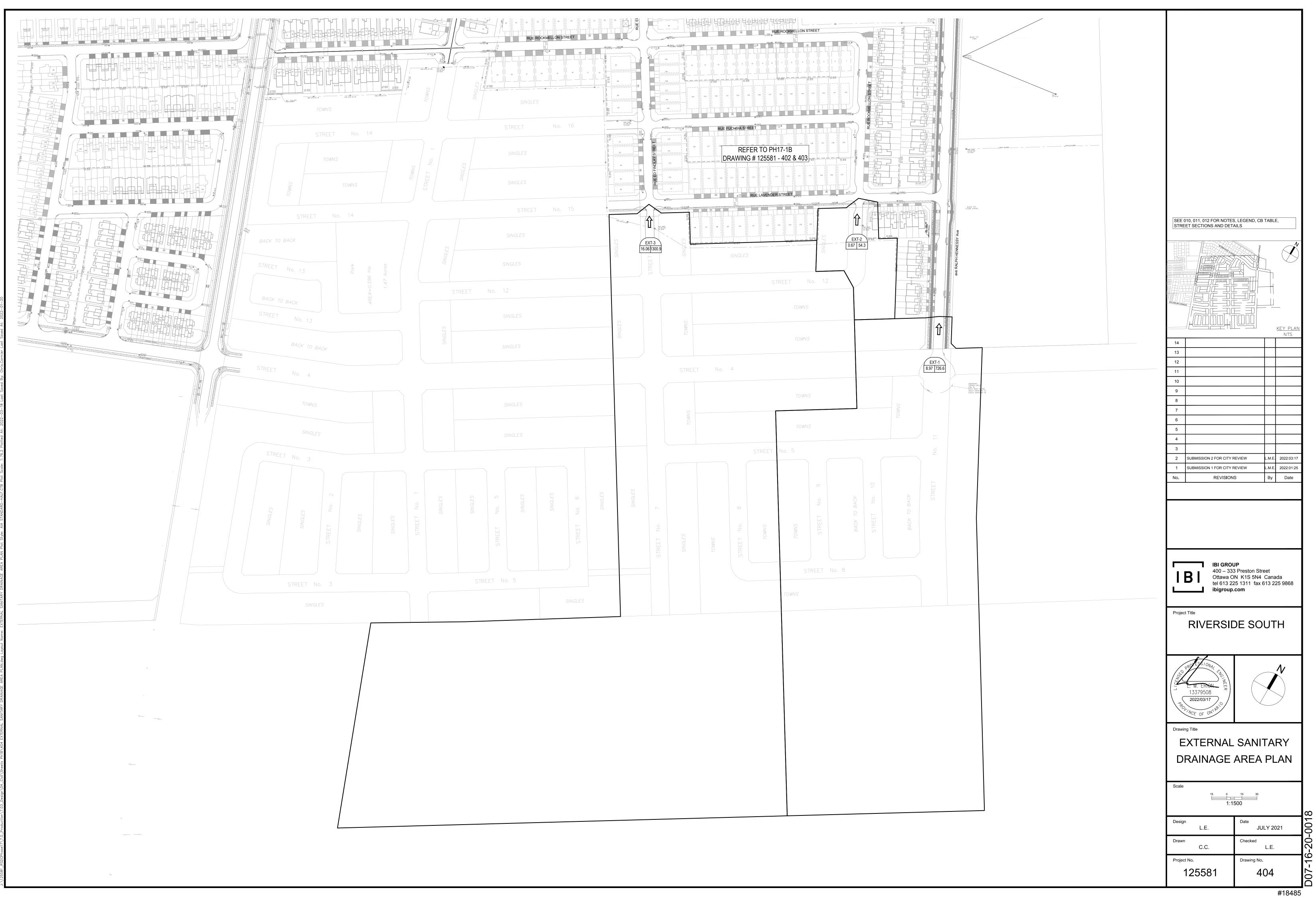
A=(Q/(C\*(2\*g\*h)^.5) C= 0.61 g= 9.81 Where:

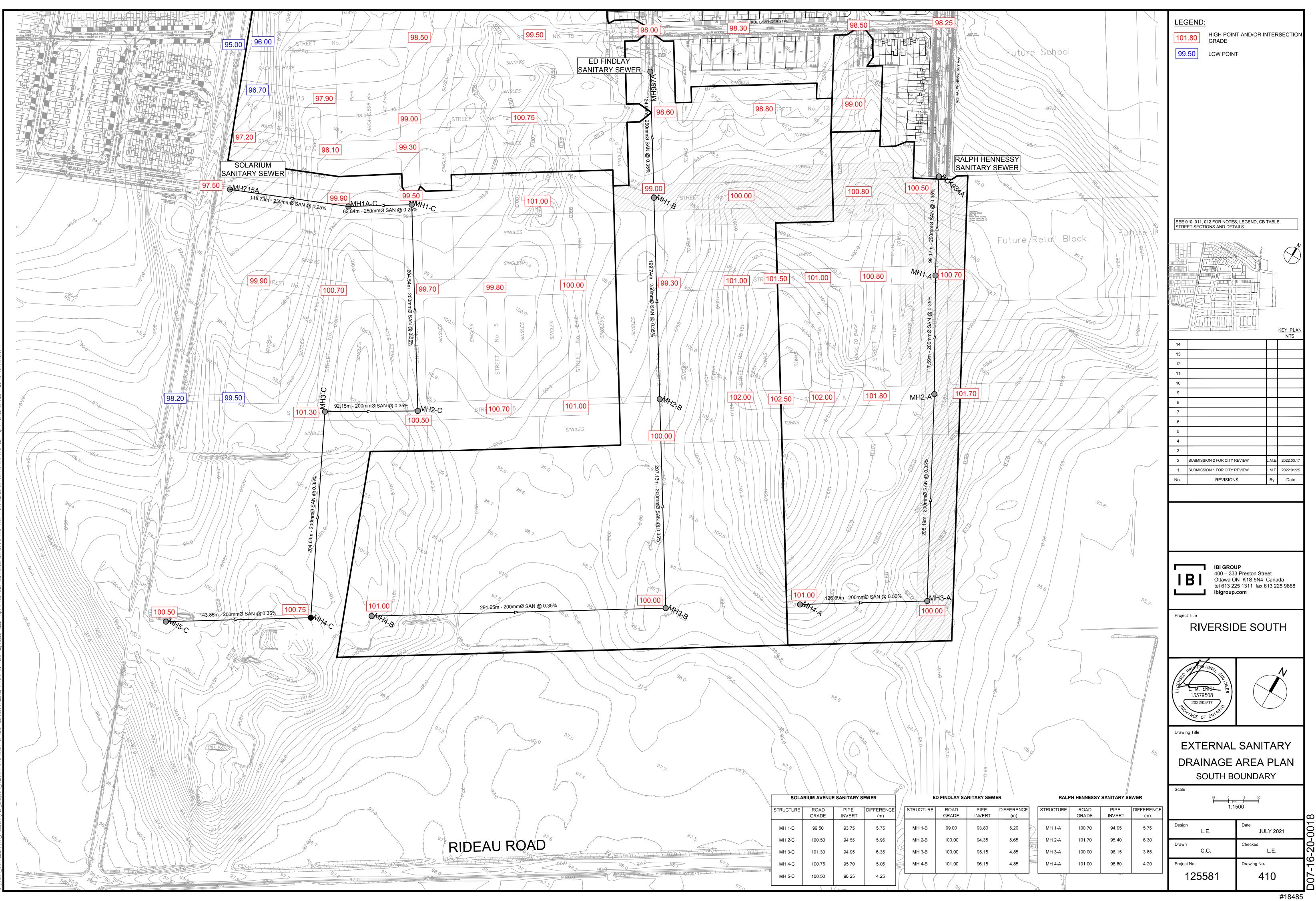
2022-01-25




400-333 Preston Street


tel 613 225 1311 fax 613 225 9868 ibigroup.com


|                                   |                      |                          |                   |                                |              |                         |                   | RESIDE       | NTIAL             |               |                  |              |                |              |              |               |                  | REAS         |       |              |              | INFILTR      |                | OWANCE                        |              |           | TOTAL          | L               |                 | PROPOS            | SED SEWER    | DESIGN             |                |                  |
|-----------------------------------|----------------------|--------------------------|-------------------|--------------------------------|--------------|-------------------------|-------------------|--------------|-------------------|---------------|------------------|--------------|----------------|--------------|--------------|---------------|------------------|--------------|-------|--------------|--------------|--------------|----------------|-------------------------------|--------------|-----------|----------------|-----------------|-----------------|-------------------|--------------|--------------------|----------------|------------------|
| I                                 |                      | FROM                     | то                | AREA<br>w/ Units               |              |                         | -                 |              | AREA<br>w/o Units | POPUL         |                  | RES<br>PEAK  | PEAK<br>FLOW   | INSTITI      | JTIONAL      | AREA<br>COMME |                  |              | TRIAL | ICI<br>PEAK  | PEAK<br>FLOW |              | A (Ha)         | FLOW                          |              | LOW (L/s) | FLOW           | CAPACITY        | LENGTH          | DIA               |              | VELOCITY<br>(full) | AVAIL/<br>CAPA |                  |
| STREET                            | AREA ID              | МН                       | мн                | (Ha)                           | SF           | SD                      | TH                | ΑΡΤ          | (Ha)              | IND           | CUM              | FACTOR       | (L/s)          | IND          | CUM          | IND           | CUM              | IND          | CUM   | FACTOR       | (L/s)        | IND          | CUM            | (L/s)                         | IND          | CUM       | (L/s)          | (L/s)           | (m)             | (mm)              | (%)          | (m/s)              | L/s            |                  |
| Lavender Street                   | MH932A               | MH932A                   | MH841A            | 0.33                           |              |                         | 8                 |              |                   | 21.6          | 21.6             | 3.70         | 0.26           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.33         | 0.33           | 0.11                          | 0.00         | 0.00      | 0.37           | 27.59           | 84.16           | 200               | 0.65         | 0.851              | 27.22          | 98.67%           |
| Rockmellon Street                 | EXT-2                | MH842A                   | MH841A            |                                |              |                         |                   |              | 0.67              | 54.3          | 54.3             | 3.65         | 0.64           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.67         | 0.67           | 0.22                          | 0.00         | 0.00      | 0.86           | 20.24           | 40.08           | 200               | 0.35         | 0.624              | 19.38          | 95.74%           |
| Lavender Street                   | MH841A               | MH841A                   | MH840A            | 0.59                           | 12           |                         |                   |              |                   | 40.8          | 116.7            | 3.58         | 1.35           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.59         | 1.59           | 0.52                          | 0.00         | 0.00      | 1.88           | 20.24           | 91.28           | 200               | 0.35         | 0.624              | 18.36          | 90.72%           |
|                                   | MH840A               | MH840A                   | MH986A            | 0.67                           | 13           |                         |                   |              |                   | 44.2          | 160.9            | 3.54         | 1.85           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.67         | 2.26           | 0.75                          | 0.00         | 0.00      | 2.59           | 20.24           | 117.20          | 200               | 0.35         | 0.624              | 17.65          | 87.19%           |
| Ed Findlay Street                 | EXT-3                | MH987A                   | MH986A            |                                |              |                         |                   |              | 16.06             | 1300.9        | 1300.9           | 3.18         | 13.40          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 16.06        | 16.06          | 5.30                          | 0.00         | 0.00      | 18.70          | 31.02           | 40.00           | 250               | 0.25         | 0.612              | 12.32          | 39.71%           |
| Ed Findlay Street                 | MH986A               | MH986A                   | MH985A            | 0.52                           | 10           |                         |                   |              |                   | 34.0          | 1495.7           | 3.14         | 15.24          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.52         | 18.84          | 6.22                          | 0.00         | 0.00      | 21.46          | 31.02           | 79.99           | 250               | 0.25         | 0.612              | 9.56           | 30.82%           |
| Fuchsia Street                    | MH828A<br>MH835A     | MH828A<br>MH835A         | MH835A<br>MH985A  | 0.71                           | 15<br>14     |                         |                   |              |                   | 51.0<br>47.6  | 51.0<br>98.6     | 3.65         | 0.60           | 0.00         | 0.00         | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.00<br>1.00 | 0.00         | 0.71         | 0.71           | 0.23                          | 0.00         | 0.00      | 0.84<br>1.61   | 27.59<br>20.24  | 96.64<br>116.90 | 200<br>200        | 0.65<br>0.35 | 0.851<br>0.624     | 26.75<br>18.63 | 96.96%<br>92.02% |
| Ed Findlay Street                 | MH985A               | MH985A                   | MH984A            | 0.52                           | 10           |                         |                   |              |                   | 34.0          | 1628.3           | 3.12         | 16.48          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.52         | 20.77          | 6.85                          | 0.00         | 0.00      | 23.33          | 45.12           | 81.00           | 300               | 0.20         | 0.618              | 21.78          | 48.28%           |
| ,                                 |                      |                          |                   |                                | 10           |                         | 0                 |              |                   |               | 04.0             | 0.70         |                |              |              |               |                  |              |       |              |              |              |                | 0.00                          |              |           |                |                 |                 |                   |              |                    |                |                  |
| Rockmellon Street                 | MH841B<br>MH828A     | MH841A<br>MH828A         | MH828A<br>MH827A  | 0.29<br>0.35                   |              |                         | 8<br>11           |              |                   | 21.6<br>29.7  | 51.3             | 3.70         | 0.26           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.29         | 0.29           | 0.10                          | 0.00         | 0.00      | 0.35<br>0.82   | 20.24<br>20.24  | 80.15<br>72.44  | 200<br>200        | 0.35<br>0.35 | 0.624<br>0.624     | 19.89<br>19.42 | 98.25%<br>95.96% |
|                                   | MH827A<br>MH826A     | MH827A<br>MH826A         | MH826A<br>MH825A  | 0.10<br>0.68                   | 10           |                         | 3<br>7            |              |                   | 8.1<br>52.9   | 59.4<br>112.3    | 3.64<br>3.58 | 0.70<br>1.30   | 0.00         | 0.00         | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.00<br>1.00 | 0.00         | 0.10<br>0.68 | 0.74<br>1.42   | 0.24 0.47                     | 0.00         | 0.00      | 0.94<br>1.77   | 20.24<br>20.24  | 11.94<br>108.52 | 200<br>200        | 0.35<br>0.35 | 0.624<br>0.624     | 19.30<br>18.47 | 95.33%<br>91.24% |
|                                   | MH825A               | MH825A                   | MH984A            | 0.57                           | 5            |                         | 9                 |              |                   | 41.3          | 153.6            | 3.55         | 1.77           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.57         | 1.99           | 0.66                          | 0.00         | 0.00      | 2.42           | 20.24           | 101.41          | 200               | 0.35         | 0.624              | 17.82          | 88.03%           |
| Ed Findlay Street                 | MH984A               | MH984A                   | MH805A            | 0.32                           | 6            |                         |                   |              |                   | 20.4          | 1802.3           | 3.10         | 18.09          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.32         | 23.08          | 7.62                          | 0.00         | 0.00      | 25.70          | 45.12           | 81.00           | 300               | 0.20         | 0.618              | 19.41          | 43.03%           |
| Honeydew Street                   | MH806A               | MH806A                   | MH805A            | 0.63                           |              |                         | 21                |              |                   | 56.7          | 56.7             | 3.64         | 0.67           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.63         | 0.63           | 0.21                          | 0.00         | 0.00      | 0.88           | 27.59           | 105.13          | 200               | 0.65         | 0.851              | 26.71          | 96.82%           |
| Ed Findlay Street                 | MH805C<br>MH982A     | MH805A<br>MH982A         | MH982A<br>MH981A  | 0.27                           |              |                         | 7                 |              |                   | 18.9<br>21.6  | 1877.9<br>1899.5 | 3.09         | 18.78<br>18.98 | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.27         | 23.98<br>24.31 | 7.91<br>8.02                  | 0.00         | 0.00      | 26.69<br>27.00 | 45.12<br>45.12  | 44.47 55.50     | 300<br>300        | 0.20<br>0.20 | 0.618<br>0.618     | 18.42<br>18.12 | 40.84%<br>40.16% |
|                                   | MH981A               | MH981A                   | MH905A            | 0.39                           |              |                         | 11                |              |                   | 29.7          | 1929.2           | 3.08         | 19.25          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.39         | 24.70          | 8.15                          | 0.00         | 0.00      | 27.40          | 45.12           | 83.00           | 300               | 0.20         | 0.618              | 17.72          | 39.27%           |
| Borbridge Avenue                  | MH905A               | MH905A                   | MH906A            | 0.50                           |              |                         | 13                |              |                   | 35.1          | 1964.3           | 3.07         | 19.57          | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.50         | 25.20          | 8.32                          | 0.00         | 0.00      | 27.88          | 45.12           | 80.00           | 300               | 0.20         | 0.618              | 17.23          | 38.20%           |
| Honeydew Street                   | MH806B<br>MH807A     | MH806A<br>MH807A         | MH807A<br>MH808A  | 0.63<br>0.22                   |              |                         | 4<br>15           |              |                   | 10.8<br>40.5  | 10.8<br>51.3     | 3.73<br>3.65 | 0.13           | 0.00         | 0.00         | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.00<br>1.00 | 0.00         | 0.63<br>0.22 | 0.63<br>0.85   | 0.21<br>0.28                  | 0.00         | 0.00      | 0.34<br>0.89   | 20.24<br>20.24  | 11.48<br>65.57  | 200<br>200        | 0.35<br>0.35 | 0.624<br>0.624     | 19.90<br>19.36 | 98.33%<br>95.62% |
|                                   | MH808A               | MH808A                   | MH906A            | 0.51                           |              |                         | 7                 |              |                   | 18.9          | 70.2             | 3.63         | 0.82           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.51         | 1.36           | 0.45                          | 0.00         | 0.00      | 1.27           | 34.22           | 53.19           | 200               | 1.00         | 1.055              | 32.94          | 96.28%           |
| Borbridge Avenue                  | MH906A<br>MD MH907A  | MH906A<br>MH907A         | MH907A<br>MH908A  | 0.11<br>0.58                   |              |                         | 3<br>14           |              | 1.45              | 8.1<br>226.3  | 2042.6<br>2268.9 | 3.06<br>3.03 | 20.28<br>22.31 | 0.00         | 0.00         | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.00<br>1.00 | 0.00         | 0.11<br>2.03 | 26.67<br>28.70 | 8.80<br>9.47                  | 0.00 0.00    | 0.00      | 29.08<br>31.78 | 45.12<br>45.12  | 14.10<br>106.09 | 300<br>300        | 0.20<br>0.20 | 0.618<br>0.618     | 16.04<br>13.34 | 35.55%<br>29.56% |
|                                   | MH908A<br>MH909A     | MH908A<br>MH909A         | MH909A<br>MH910A  | 0.14                           |              |                         | 3                 |              |                   | 8.1<br>0.0    | 2277.0<br>2277.0 | 3.03         | 22.38<br>22.38 | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00<br>1.00 | 0.00         | 0.14         | 28.84<br>28.99 | 9.52<br>9.57                  | 0.00         | 0.00      | 31.90<br>31.95 | 45.12<br>59.68  | 20.50<br>64.81  | 300<br>300        | 0.20         | 0.618              | 13.22<br>27.73 | 29.30%<br>46.47% |
| Delak Hernesey Avenue             |                      |                          |                   | 0.15                           |              |                         |                   |              | 0.07              |               | 726.6            | 3.03         |                |              |              |               |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| Ralph Hennessy Avenue             | EXT-1<br>INST MH933A | BLK934A<br>MH933A        | MH933A<br>MH932A  | 0.60                           |              |                         | 11                |              | 8.97              | 726.6<br>29.7 | 726.6            | 3.31<br>3.30 | 7.79<br>8.09   | 0.00 3.12    | 0.00 3.12    | 0.00          | 0.00             | 0.00         | 0.00  | 1.00<br>1.50 | 0.00         | 8.97<br>3.72 | 8.97<br>12.69  | 2.96<br>4.19                  | 0.00         | 0.00      | 10.75<br>13.79 | 31.02<br>31.02  | 32.29<br>120.00 | 250<br>250        | 0.25<br>0.25 | 0.612              | 20.27<br>17.23 | 65.35%<br>55.54% |
|                                   | MH932B<br>MH931A     | MH932A<br>MH931A         | MH931A<br>MH930A  | 0.14<br>0.56                   |              |                         | 3<br>14           |              |                   | 8.1<br>37.8   | 764.4<br>802.2   | 3.30<br>3.29 | 8.17<br>8.55   | 0.00<br>0.00 | 3.12<br>3.12 | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.50<br>1.50 | 1.52<br>1.52 | 0.14<br>0.56 | 12.83<br>13.39 | 4.23<br>4.42                  | 0.00         | 0.00 0.00 | 13.92<br>14.48 | 31.02<br>31.02  | 37.08<br>98.38  | 250<br>250        | 0.25<br>0.25 | 0.612<br>0.612     | 17.10<br>16.54 | 55.13%<br>53.31% |
|                                   |                      | MH931D                   | MH930A            | 2.36                           |              |                         |                   |              |                   | 0.0           | 0.0              | 3.80         | 0.00           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 2.36         | 2.36           | 0.78                          | 0.00         | 0.00      | 0.78           | 34.22           | 15.00           | 200               | 1.00         | 1.055              | 33.44          | 97.72%           |
|                                   | MH930A               | MH930A                   | MH910A            | 0.39                           |              |                         | 5                 |              |                   | 13.5          | 815.7            | 3.28         | 8.68           | 0.00         | 3.12         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 1.01         | 0.39         | 16.14          | 5.33                          | 0.00         | 0.00      | 15.02          | 31.02           | 120.00          | 250               | 0.25         | 0.612              | 16.00          | 51.58%           |
| Ralph Hennessy Avenue             |                      | MH910A                   | MH946A            | 0.42                           |              |                         | 9                 |              |                   | 24.3          | 3117.0           | 2.94         | 29.72          | 0.00         | 3.12         | 0.93          | 0.93             | 0.00         | 0.00  | 1.00         | 1.31         | 1.35         | 46.48          | 15.34                         | 0.00         | 0.00      | 46.38          | 81.80           | 90.05           | 375               | 0.20         | 0.717              | 35.43          | 43.31%           |
| Pomelo Street                     | MH943B               | MH943A                   | MH944A            | 0.63                           |              |                         | 18                |              |                   | 48.6          | 48.6             | 3.65         | 0.58           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.63         | 0.63           | 0.21                          | 0.00         | 0.00      | 0.78           | 27.59           | 72.75           | 200               | 0.65         | 0.851              | 26.80          | 97.16%           |
| r omeio Stieet                    | MH944A               | MH944A                   | MH945A            | 0.11                           |              |                         | 2                 |              |                   | 5.4           | 54.0             | 3.65         | 0.64           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.11         | 0.74           | 0.21                          | 0.00         | 0.00      | 0.88           | 20.24           | 27.95           | 200               | 0.35         | 0.624              | 19.36          | 95.64%           |
|                                   | MH945A               | MH945A                   | MH946A            | 0.07                           |              |                         | -                 |              |                   | 2.7           | 56.7             | 3.64         | 0.67           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.07         | 0.81           | 0.27                          | 0.00         | 0.00      | 0.94           | 41.91           | 25.86           | 200               | 1.50         | 1.292              | 40.97          | 97.76%           |
| Ralph Hennessy Avenue             | MH946A<br>MH947A     | MH946A<br>MH947A         | MH947A<br>EXBLK25 | 0.25<br>0.10                   |              |                         | 5                 |              |                   | 13.5<br>0.0   | 3187.2<br>3187.2 | 2.94<br>2.94 | 30.33<br>30.33 | 0.00<br>0.00 | 3.12<br>3.12 | 0.00          | 0.93<br>0.93     | 0.00         | 0.00  | 1.00<br>1.00 | 1.31<br>1.31 | 0.25<br>0.10 | 47.54<br>47.64 | 15.69<br>15.72                | 0.00<br>0.00 | 0.00 0.00 | 47.33<br>47.36 | 81.80<br>122.63 | 52.18<br>38.82  | 375<br>450        | 0.20<br>0.17 | 0.717<br>0.747     | 34.47<br>75.28 | 42.14%<br>61.38% |
|                                   |                      |                          |                   |                                |              |                         |                   |              |                   |               |                  |              |                |              |              |               |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| Rockmellon Street                 | MH984A               | MH984A                   | MH822A            | 0.63                           | 12           |                         |                   |              |                   | 40.8          | 40.8             | 3.67         | 0.48           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.63         | 0.63           | 0.21                          | 0.00         | 0.00      | 0.69           | 27.59           | 96.12           | 200               | 0.65         | 0.851              | 26.89          | 97.49%           |
|                                   | MH822A               | MH822A                   | BLK822A           | 0.51                           | 8            |                         |                   |              |                   | 27.2          | 68.0             | 3.63         | 0.80           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.51         | 1.14           | 0.38                          | 0.00         | 0.00      | 1.18           | 20.24           | 83.68           | 200               | 0.35         | 0.624              | 19.07          | 94.19%           |
|                                   |                      |                          |                   |                                |              |                         |                   |              |                   |               |                  |              |                |              |              |               |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| Honeydew Street                   | MH805B               | MH805A                   | MH804A            | 0.52                           |              |                         | 17                |              |                   | 45.9          | 45.9             | 3.66         | 0.54           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.52         | 0.52           | 0.17                          | 0.00         | 0.00      | 0.72           | 27.59           | 87.33           | 200               | 0.65         | 0.851              | 26.87          | 97.41%           |
|                                   | MH804A               | MH804A                   | BLK804A           | 0.49                           |              |                         | 14                |              |                   | 37.8          | 83.7             | 3.61         | 0.98           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.49         | 1.01           | 0.33                          | 0.00         | 0.00      | 1.31           | 20.24           | 46.40           | 200               | 0.35         | 0.624              | 18.93          | 93.51%           |
|                                   |                      |                          |                   |                                |              |                         |                   |              |                   |               |                  |              |                |              |              |               |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| Kiwi Street                       | MH981B<br>MH961A     | MH981A<br>MH961A         | MH961A<br>BLK960A | 0.43 0.34                      |              |                         | 15<br>8           |              |                   | 40.5<br>21.6  | 40.5<br>62.1     | 3.67<br>3.64 | 0.48<br>0.73   | 0.00         | 0.00         | 0.00 0.00     | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.43<br>0.34 | 0.43           | 0.14 0.25                     | 0.00         | 0.00      | 0.62<br>0.99   | 34.22<br>60.24  | 79.99<br>62.08  | 200<br>200        | 1.00<br>3.10 | 1.055<br>1.858     | 33.59<br>59.26 | 98.18%<br>98.36% |
|                                   |                      |                          |                   |                                |              |                         |                   |              |                   |               |                  |              |                |              |              |               |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| Apricot Street                    | MH961B               | MH961A                   | MH962A            | 0.25                           |              |                         | 7                 |              |                   | 18.9          | 18.9             | 3 71         | 0.23           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.25         | 0.25           | 0.08                          | 0.00         | 0.00      | 0.31           | 27.59           | 54.55           | 200               | 0.65         | 0.851              | 27.28          | 98.88%           |
|                                   | MH962A<br>MH963A     | MH962A<br>MH963A         | MH963A<br>BLK963A | 0.23                           |              |                         | 5                 |              |                   | 13.5          | 32.4<br>51.3     | 3.68<br>3.65 | 0.39           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.23         | 0.48           | 0.16                          | 0.00         | 0.00      | 0.54           | 20.24           | 16.83<br>34.28  | 200<br>200<br>200 | 0.35         | 0.624              | 19.70<br>19.38 | 97.31%<br>95.71% |
|                                   |                      |                          | DEN903A           | 0.31                           |              |                         | 1                 |              |                   | 18.9          | 51.5             | 3.03         | 0.01           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 1.00         | 0.00         | 0.31         | 0.79           | 0.20                          | 0.00         | 0.00      | 0.07           | 20.24           | 54.20           | 200               | 0.35         | 0.024              | 19.00          | 30.1170          |
| Destroit                          | MUCOSA               |                          | DUKAAS            | 0.50                           |              |                         |                   |              |                   | 10.0          | 40.0             | 0.00         | 0.54           | 0.00         | 0.00         | 0.00          | 0.00             | 0.00         | 0.00  | 4.00         | 0.00         | 0.50         | 0.50           | 0.47                          | 0.00         | 0.00      | 0.00           | 05.00           |                 | 000               | 1.05         |                    |                |                  |
| Borbridge Avenue                  | MH905A               | MH905A                   | BLK905A           |                                |              |                         | 16                |              |                   | 43.2          |                  |              |                |              | 0.00         | 0.00          |                  | 0.00         | 0.00  | 1.00         | 0.00         | 0.53         |                |                               | 0.00         | 0.00      | 0.69           | 35.06           | 13.94           | 200               | 1.05         |                    | 34.37          | 98.04%           |
| Design Parameters:                |                      |                          |                   | <b>Notes:</b><br>1. Mannings   |              | n) =                    |                   | .013         |                   |               |                  | Designed:    |                | LME          |              | ŀ             | <b>No.</b><br>1. |              |       |              |              |              | 1st S          | <b>Revision</b><br>Submission |              |           |                |                 |                 |                   |              | Date<br>2022-01-25 |                |                  |
| Residential<br>SF 3.4 p/p/u       |                      | ICI Areas                |                   | 2. Demand (<br>3. Infiltration | • • •        |                         | 280 L/<br>0.33 L/ | -            | 200               | L/day         |                  | Checked:     |                |              |              | [             | 2.               |              |       |              |              |              | 2nd            | Submission                    |              |           |                |                 |                 |                   |              | 2022-03-17         |                |                  |
| TH/SD 2.7 p/p/u<br>APT 1.8 p/p/u  |                      | ) L/Ha/day<br>) L/Ha/day |                   | 4. Residentia                  | al Peaking F | actor:<br>rmula = 1+(14 |                   |              |                   |               |                  |              |                |              |              | ļ             |                  |              |       |              |              |              |                |                               |              |           |                |                 |                 |                   |              |                    |                |                  |
| MD 130 p/p/Ha<br>Future 81 p/p/Ha | IND 35,000           |                          | MOE Chart         |                                | where K = (  | 0.8 Correction          | n Factor          |              |                   |               |                  | Dwg. Refe    | rence:         | 125581-40    | 1            |               | e:               | ile Referenc | ٥.    |              |              |              |                |                               | Date:        |           |                |                 |                 |                   |              | Sheet No:          |                |                  |
| αταίο στ μιμπτα                   | 17000                | , Linaiday               |                   |                                |              | αστιαί τι σάλ Γ         | 201010 00000      | a on iolaí d | ,                 |               |                  | I            |                |              |              | 1             | FI               |              |       |              |              |              |                |                               | Date.        |           |                |                 |                 |                   |              | Shoot NU.          |                |                  |


### SANITARY SEWER DESIGN SHEET

RSS Phase 17-1B CITY OF OTTAWA Urbandale











400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

|                     | LOCATION                  |                |                 |                | ARE      | A (Ha)   |      |              |      |              |                                                                           |                |                 |                |                | RA             |                  | SIGN FLOW        |                      |                  |                      |   |      |                      |                      |                 | S            | EWER DAT     | A              |                            |
|---------------------|---------------------------|----------------|-----------------|----------------|----------|----------|------|--------------|------|--------------|---------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|----------------|------------------|------------------|----------------------|------------------|----------------------|---|------|----------------------|----------------------|-----------------|--------------|--------------|----------------|----------------------------|
| STREET              | AREA ID                   | FROM           | то              | C= C= C=       | C=       | C=       |      | C=           | C=   |              | CUM IND CUM                                                               | INLET          | TIME<br>IN PIPE | TOTAL          | i (2)          | i (5)          | i (10)           | i (100)          | 2yr PEAK             |                  | 0yr PEAK 100yr PEAK  |   | FLOW |                      |                      |                 | PE SIZE (m   | SLOPE        | VELOCITY       |                            |
|                     |                           |                |                 | 0.63 0.68 0.50 | 0.53     | 0.63     | 0.44 | 0.08         | 0.70 | 2.78AC       | 2.78AC 2.78AC 2.78AC                                                      | (min)          |                 | (min)          | (mm/hr)        | (mm/hr)        | (mm/nr)          | (mm/nr)          | FLOW (L/S)           |                  | LOW (L/s) FLOW (L/s) |   | CUM  | FLOW (L/s)           | (L/s)                | (m)             | DIA          | (%)          | (m/s)          | (L/s) (%)                  |
| Lavender Street     | S932, R932A&B             | MH932          | MH841           |                |          |          | 0.57 | 0.26         |      | 1.19         | 1.19                                                                      | 10.00          | 1.40            | 11.40          | 76.81          | 104.19         | 122.14           | 178.56           | 91.30                |                  |                      |   |      | 91.30                | 108.21               | 79.62           | 375          | 0.35         | 0.949          | 16.91 15.63%               |
| Rockmellon Street   | EXT-2                     | MH842          | MH841           |                |          | 0.45     |      |              |      | 0.79         | 0.79                                                                      | 10.00          | 0.68            | 10.68          | 76.81          | 104.19         | 122.14           | 178.56           | 60.53                |                  |                      |   |      | 60.53                | 108.21               | 38.67           | 375          | 0.35         | 0.949          | 47.68 44.06%               |
| Lavender Street     | S841A&B, R841A            | MH841          | MH840           |                |          | 0.51     |      |              |      | 1.34         |                                                                           | 10.68          | 1.17            | 11.85          | 74.29          | 100.74         | 118.07           | 172.58           | 246.06               |                  |                      |   |      | 246.06               | 378.96               | 91.12           | 600          | 0.35         | 1.298          | 132.90 35.07%              |
|                     | S840, R840                | MH840          | MH986           |                | 0.30     | 0.29     |      |              |      | 0.95         | 4.26                                                                      | 11.85          | 1.49            | 13.33          | 70.37          | 95.35          | 111.72           | 163.26           | 299.91               |                  |                      |   |      | 299.91               | 378.96               | 115.78          | 600          | 0.35         | 1.298          | 79.05 20.86%               |
| Ed Findlay Street   | EXT-3                     | MH987          | MH986           | 0.98           |          | 14.13    |      |              |      | 24.75        | 24.75 1.72 1.72                                                           | 17.84          | 0.40            | 18.24          | 55.78          | 75.37          | 88.23            | 128.77           | 1,380.43             | 129.36           |                      |   |      | 1,509.79             | 1,818.95             | 37.00           | 1200         | 0.20         | 1.558          | 309.16 17.00%              |
| Ed Findlay Street   | S986, R986                | MH986          | MH985           |                | 0.23     | 0.30     |      |              |      | 0.86         | 29.87 0.00 1.72                                                           | 13.33          | 0.85            | 14.19          | 66.00          | 89.35          | 104.67           | 152.90           | 1,971.62             | 153.36           |                      |   |      | 2,124.99             | 2,490.17             | 85.99           | 1350         | 0.20         | 1.685          | 365.18 14.66%              |
| Fushia Street       | S828A                     | MH828          | MH835           |                |          | 0.17     |      |              |      | 0.30         | 0.30                                                                      | 10.00          | 1.64            | 11.64          | 76.81          | 104.19         | 122.14           | 178.56           | 22.87                |                  |                      |   |      | 22.87                | 50.02                | 96.85           | 250          | 0.65         | 0.987          | 27.15 54.28%               |
|                     | S835A&B, R835             | MH835          | MH985           |                | 0.27     | 0.70     |      |              |      | 1.62         | 1.92                                                                      | 11.64          | 1.79            | 13.43          | 71.05          | 96.28          | 112.83           | 164.87           | 136.52               |                  |                      |   |      | 136.52               | 175.96               | 115.29          | 450          | 0.35         | 1.072          | 39.44 22.41%               |
| Ed Findlay Street   | S985A&B                   | MH985          | MH984           |                |          | 0.31     |      |              |      | 0.54         | 32.34 0.00 1.72                                                           | 14.19          | 0.80            | 14.99          | 63.76          | 86.29          | 101.06           | 147.60           | 2,061.86             | 148.10           |                      |   |      | 2,209.96             | 2,490.17             | 81.00           | 1350         | 0.20         | 1.685          | 280.21 11.25%              |
| Rockmellon Street   | S841B, R841B              | MH841          | MH828           |                | 0.33     |          |      | 0.25         |      | 0.96         | 0.96                                                                      | 10.00          | 1.46            | 11.46          | 76.81          | 104.19         | 122.14           | 178.56           | 73.64                |                  |                      |   |      | 73.64                | 108.21               | 83.16           | 375          | 0.35         | 0.949          | 34.57 31.95%               |
|                     | S828B, R828               | MH828<br>MH827 | MH827<br>MH826  |                |          |          | 0.34 | 0.35         |      | 1.08<br>0.00 |                                                                           | 11.46<br>12.58 | 1.12<br>0.19    | 12.58<br>12.77 | 71.62<br>68.13 | 97.06<br>92.28 | 113.75<br>108.11 | 166.23<br>157.96 | 145.84<br>138.74     |                  |                      |   |      | 145.84<br>138.74     | 175.96<br>175.96     | 72.17<br>12.30  | 450<br>450   | 0.35<br>0.35 | 1.072<br>1.072 | 30.1217.12%37.2221.15%     |
|                     | S826, R826                | MH826          | MH825           |                | 0.30     |          |      | 0.47<br>0.29 |      | 1.33<br>1.03 | 3.37                                                                      | 12.77          | 1.51            | 14.29          | 67.58          | 91.52          | 107.21           | 156.64           | 227.52               |                  |                      |   |      | 227.52               | 265.43               | 107.97          | 525          | 0.35         | 1.188          | 37.91 14.28%               |
|                     | S825, R825                |                | MH984           |                |          |          |      | 0.29         |      |              |                                                                           | 14.29          | 1.29            | 15.58          | 63.50          | 85.93          | 100.64           | 146.99           |                      |                  |                      |   |      | 279.48               | 378.96               | 100.31          | 600          | 0.35         | 1.298          |                            |
| Ed Findlay Street   | S984B, R984B              | MH984          | MH805           |                | 0.13     | 0.23     | +    |              |      | 0.59         | 37.33 0.00 1.72                                                           | 14.99          | 0.69            | 15.68          | 61.80          | 83.60          | 97.90            | 142.97           | 2,307.22             | 143.49           |                      |   |      | 2,450.71             | 3,297.98             | 75.00           | 1500         | 0.20         | 1.808          | 847.27 25.69%              |
| Honeydew Street     | S806, R806A&B             | MH806          | MH805           |                |          |          | 0.52 | 0.43         |      | 1.45         | 1.45                                                                      | 10.00          | 1.39            | 11.39          | 76.81          | 104.19         | 122.14           | 178.56           | 111.29               |                  |                      |   |      | 111.29               | 141.68               | 103.47          | 375          | 0.60         | 1.243          | 30.40 21.45%               |
| Ed Findlay Street   |                           |                | MH982           |                |          |          |      |              |      | 0.00         |                                                                           | 15.68          | 0.43            | 16.11          | 60.21          | 81.43          | 95.35            |                  | 2,335.22             |                  |                      |   |      | 2,474.99             | 3,297.98             | 46.60           | 1500         | 0.20         | 1.808          | 822.99 24.95%              |
|                     | S982, R982<br>S981B, R981 | MH982<br>MH981 | MH981<br>MH905  |                |          |          | 0.42 |              |      | 1.12<br>0.72 |                                                                           | 16.11<br>16.62 | 0.52 0.78       | 16.62<br>17.41 | 59.27<br>58.18 | 80.14<br>78.65 | 93.84<br>92.08   | 137.00<br>134.43 | 2,365.03<br>2,363.17 | 137.55<br>134.99 |                      |   |      | 2,502.59<br>2,498.17 | 3,297.98<br>3,297.98 | 56.13<br>85.09  | 1500<br>1500 | 0.20         | 1.808<br>1.808 | 795.4024.12%799.8124.25%   |
| Ralph Hennessy Ave. | EXT-1 S933A               | BI K934        | MH933           | 2 54           |          | 5.70     |      |              |      | 9 98         | 9.98 4.45 4.45                                                            | 14.41          | 0.40            | 14.81          | 63.19          | 85.51          | 100.15           | 146.26           | 630.84               | 380.38           |                      |   |      | 1,011.22             | 1,274.02             | 33.80           | 1050         | 0.20         | 1.425          | 262.80 20.63%              |
|                     | S933A&B, P933             | MH933          | MH932           | 0.48           |          | 0.70     |      |              | 3.12 | 6.07         | 16.05 0.91 5.36                                                           | 14.81          | 1.25            | 16.05          | 62.23          | 84.19          | 98.59            | 143.98           | 999.02               | 450.90           |                      |   |      | 1,449.92             | 1,818.95             | 116.49          | 1200         | 0.20         | 1.558          | 369.04 20.29%              |
|                     | 931A<br>S931B             | MH932<br>MH931 | MH931<br>MH930B | 0.26           |          |          |      |              |      | 0.00         | 16.050.495.8516.050.456.30                                                | 16.05<br>16.64 | 0.59            | 16.64<br>17.57 | 59.39<br>58.14 | 80.30<br>78.60 | 94.02<br>92.02   | 137.28<br>134.34 | 953.46<br>933.43     | 469.56<br>495.25 |                      |   |      | 1,423.02<br>1,428.68 | 1,818.95<br>1,818.95 | 55.23<br>86.41  | 1200<br>1200 | 0.20         | 1.558<br>1.558 | 395.9321.77%390.2721.46%   |
|                     | P931                      | CBMH931C       | MH930B          | 2.36           |          |          |      |              |      | 3.28         | 3 28                                                                      | 10.00          | 0.17            | 10.17          | 76.81          | 104.19         | 122.14           | 178.56           | 251.95               | 0.00             |                      |   |      | 251.95               | 297.43               | 18.00           | 450          | 1.00         | 1.812          | 45.48 15.29%               |
|                     |                           |                |                 | 2.00           |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                |                            |
|                     | S930                      | MH930B         | MH910           | 0.37           |          |          |      |              |      | 0.00         | 19.33 0.70 7.00                                                           | 17.57          | 1.28            | 18.85          | 56.30          | 76.08          | 89.06            | 130.00           | 1,088.61             | 532.63           |                      |   |      | 1,621.25             | 1,818.95             | 120.00          | 1200         | 0.20         | 1.558          | 197.70 10.87%              |
| Ralph Hennessy Ave. | S947, P947, R947          | MH947          | MH946           | 0.24           |          |          | 0.22 |              | 0.93 | 2.08         | 2.08 0.45 0.45                                                            | 10.00          | 0.88            | 10.88          | 76.81          | 104.19         | 122.14           | 178.56           | 159.67               | 47.27            |                      |   |      | 206.94               | 286.47               | 51.72           | 600          | 0.20         | 0.982          | 79.53 27.76%               |
| Pomelo Street       | S943, R943                | MH943<br>MH944 | MH944<br>MH945  |                |          |          |      | 0.25         |      | 0.90         |                                                                           | 10.00          | 0.90            | 10.90          | 76.81          | 104.19         | 122.14           | 178.56           | 69.18<br>86.91       |                  |                      |   |      | 69.18                | 147.47               | 69.62           | 375          | 0.65         | 1.293<br>0.949 | 78.29 53.09%               |
|                     | R944<br>S945              |                | MH945<br>MH946  |                |          |          | 0.23 | 0.22         |      | 0.28<br>0.42 |                                                                           | 10.90<br>11.43 | 0.53<br>0.33    | 11.43<br>11.75 | 73.52<br>71.72 | 99.68<br>97.21 | 116.83<br>113.91 | 170.75<br>166.47 | 114.61               |                  |                      |   |      | 86.91<br>114.61      | 108.21<br>175.96     | 30.28<br>20.98  | 375<br>450   | 0.35<br>0.35 | 1.072          | 21.3019.69%61.3634.87%     |
| Ralph Hennessy Ave. | S946                      | MH946          | MH910           | 0.29           |          |          |      |              |      | 0.00         | 3.68 0.55 1.00                                                            | 11.75          | 1.38            | 13.13          | 70.67          | 95.76          | 112.21           | 163.96           | 259.82               | 95.94            |                      |   |      | 355.76               | 392.18               | 87.77           | 675          | 0.20         | 1.062          | 36.41 9.29%                |
| Borbridge Ave.      | S911, S911A               | MH911          | MH910           | 0.36           |          |          |      |              |      | 0.00         | 0.00 0.68 0.68                                                            | 10.00          | 1.61            | 11.61          | 76.81          | 104.19         | 122.14           | 178.56           | 0.00                 | 70.91            |                      |   |      | 70.91                | 141.68               | 120.00          | 375          | 0.60         | 1.243          | 70.77 49.95%               |
|                     |                           |                |                 |                |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                |                            |
| Borbridge Ave.      | S910, P910                |                | MH909<br>MH908  | 0.31           |          |          |      |              | 1.45 | 2.82<br>0.00 | 25.83         0.59         9.27           25.83         0.00         9.27 | 18.85<br>19.38 | 0.53            | 19.38<br>19.55 | 53.95<br>53.05 | 72.88<br>71.65 | 85.29<br>83.85   | 124.47<br>122.36 | 1,393.83<br>1,370.57 | 675.50<br>664.10 |                      |   |      | 2,069.33<br>2,034.67 | 4,252.35<br>4,252.35 | 60.80<br>19.36  | 1650<br>1650 | 0.20         | 1.927<br>1.927 | 2183.0251.34%2217.6852.15% |
|                     | S908                      | MH908<br>MH907 |                 | 0.26           |          |          |      |              |      |              | 25.830.499.7625.830.009.76                                                | 19.55<br>20.46 | 0.92            | 20.46<br>20.57 | 52.77<br>51.30 | 71.27<br>69.26 | 83.40<br>81.04   | 121.70<br>118.24 | 1,363.34<br>1,325.30 | 695.59<br>675.98 |                      |   |      | 2,058.93<br>2,001.28 | 4,252.35<br>4,252.35 | 105.80<br>12.68 | 1650<br>1650 | 0.20<br>0.20 | 1.927<br>1.927 | 2193.4251.58%2251.0752.94% |
| Hanaydayy Streat    |                           |                | MH807           |                |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                | 50.02 100.00%              |
| Honeydew Street     | S807                      | MH807          | MH808           |                |          |          |      | 0.32         |      | 0.60         | 0.00 0.60                                                                 | 10.20          | 1.34            | 11.53          | 76.05          | 103.16         | 120.92           |                  | 46.01                |                  |                      |   |      | 46.01                | 59.68                | 65.52           | 300          | 0.35         | 0.818          | 13.68 22.91%               |
|                     | S807, R807                | MH808          | MH906           |                |          |          | 0.14 | 0.26         |      | 0.66         | 1.27                                                                      | 11.53          | 1.00            | 12.54          | 71.38          | 96.74          | 113.36           | 165.66           | 90.49                |                  |                      |   |      | 90.49                | 108.21               | 57.14           | 375          | 0.35         | 0.949          | 17.72 16.38%               |
| Borbridge Ave.      | S906&B, R906A&B           | 3 MH906        | MH905           | 0.48           |          |          | 0.39 |              |      | 0.48         | 27.58 0.91 10.67                                                          | 20.57          | 0.68            | 21.25          | 51.13          | 69.02          | 80.77            | 117.84           | 1,410.11             | 736.34           |                      |   |      | 2,146.45             | 4,252.35             | 79.00           | 1650         | 0.20         | 1.927          | 2105.89 49.52%             |
| Borbridge Ave.      |                           | MH905          | BLK905          |                | <u> </u> |          |      |              |      | 0.00         | 68.20         0.00         12.38                                          | 17.41          | 0.13            | 17.53          | 56.61          | 76.50          | 89.56            | 130.73           | 3,860.58             | 947.45           |                      |   |      | 4,808.03             | 8,089.52             | 17.00           | 2100         | 0.20         | 2.263          | 3281.50 40.56%             |
|                     |                           |                |                 |                |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                |                            |
| Rockmellon Street   | S948A, R948A              | MH984          | MH822           |                | 0 23     | 0.32     |      |              |      | 0.90         | 0.90                                                                      | 10.00          | 1.23            | 11.23          | 76.81          | 104.19         | 122.14           | 178.56           | 69.07                | 93.70            |                      |   |      | 69.07                | 147.47               | 95.56           | 375          | 0.65         | 1.293          | 78.39 53.16%               |
|                     | S822, R822                |                | BLK822          |                |          | 0.02     |      |              |      | 1.24         |                                                                           | 11.23          | 1.36            | 12.59          | 72.38          | 98.11          | 114.98           |                  | 154.59               |                  |                      |   |      | 154.59               | 175.96               | 87.24           | 450          | 0.35         | 1.072          | 21.37 12.14%               |
|                     |                           |                |                 |                |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                |                            |
| Honeydew Street     | S805                      | MH805          | MH804           |                |          |          |      | 0.22         |      | 0.42         | 0.42                                                                      | 10.00          | 1.45            | 11.45          | 76.81          | 104.19         | 122.14           | 178.56           | 31.94                | 43.33            |                      |   |      | 31.94                | 50.02                | 85.89           | 250          | 0.65         | 0.987          | 18.07 36.14%               |
|                     | S804, R804                |                | BLK804          |                | 0.43     | 1        |      | 0.39         |      | 1.37         |                                                                           | 11.45          | 0.79            | 12.24          | 71.65          | 97.11          | 113.80           | 166.31           | 128.02               | 173.51           |                      |   |      | 128.02               | 175.96               | 50.85           | 450          | 0.35         | 1.072          | 47.94 27.25%               |
|                     |                           |                |                 |                |          |          |      |              |      |              |                                                                           |                |                 |                |                |                |                  |                  |                      |                  |                      |   |      |                      |                      |                 |              |              |                |                            |
| Kiwi Street         | S981A                     | MH981          | MH961           |                |          |          |      | 0.15         |      | 0.28         | 0.28                                                                      | 10.00          | 1.20            | 11.20          | 76.81          | 104.19         | 122.14           | 178.56           | 21.78                | 29.54            |                      |   |      | 21.78                | 57.20                | 81.49           | 250          | 0.85         | 1.129          | 35.42 61.92%               |
|                     | S961B                     |                | BLK960          |                | <u> </u> | <u> </u> |      | 0.24         |      | 0.45         |                                                                           | 11.20          | 0.48            | 11.68          | 72.47          | 98.24          |                  | 168.26           |                      | 72.43            |                      |   |      | 53.43                | 159.51               | 62.97           | 300          | 2.50         |                | 106.08 66.50%              |
| L                   |                           |                |                 |                |          |          | 1    |              |      |              |                                                                           | 1              |                 | I              |                |                | 1                |                  |                      | <u> </u>         |                      | 1 | 1    | 1                    | <u>I</u>             | <u> </u>        |              |              |                |                            |

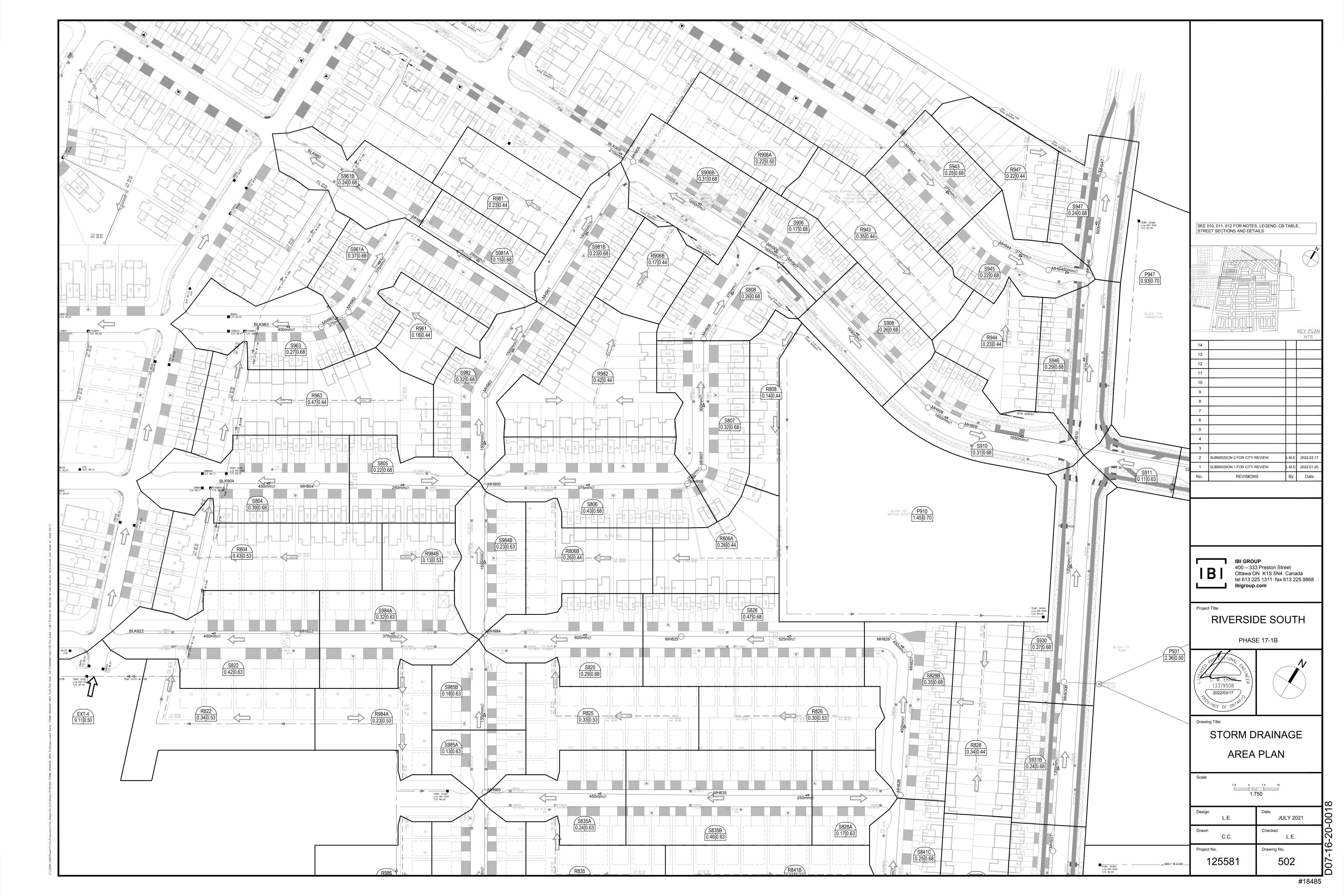
### STORM SEWER DESIGN SHEET

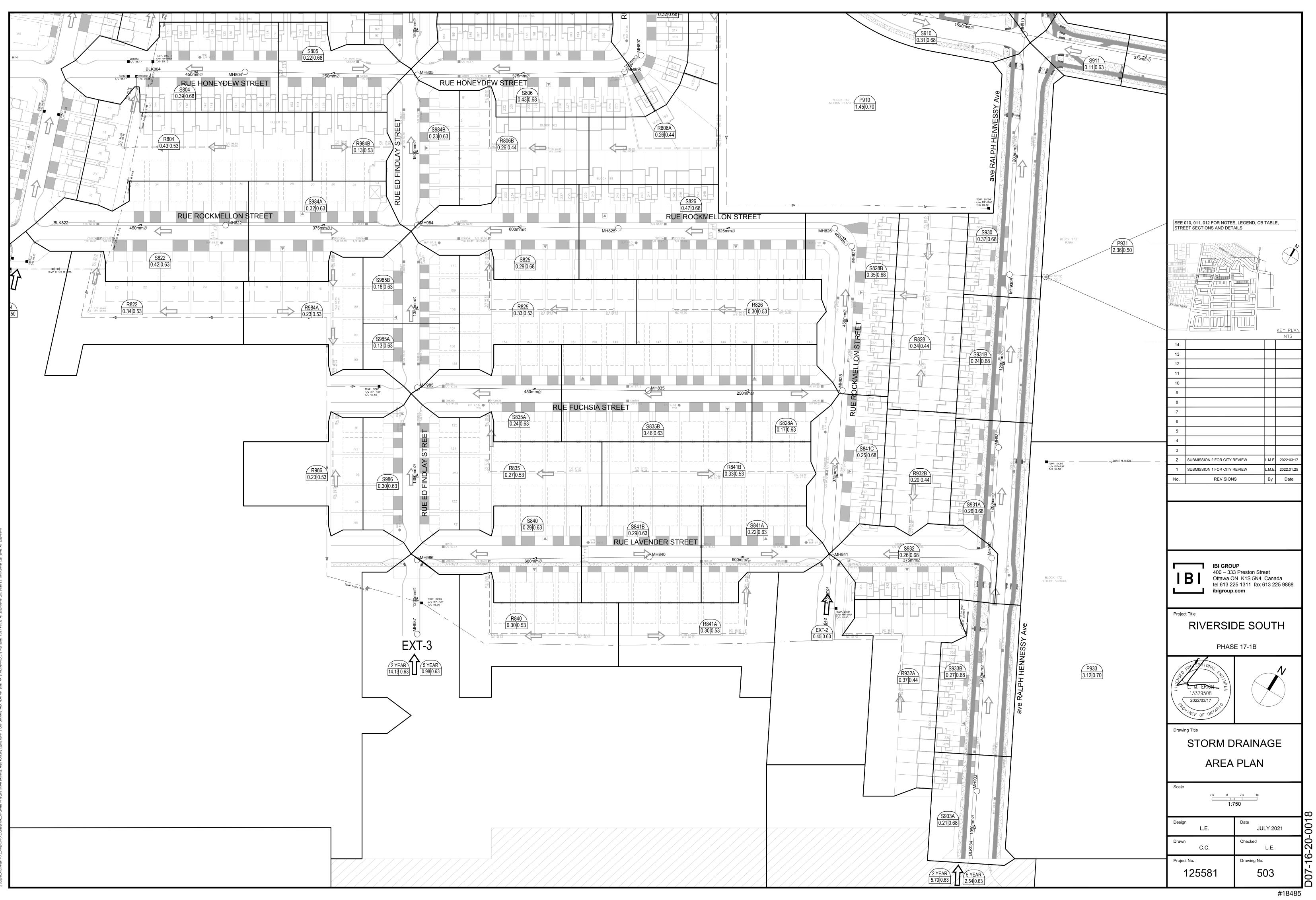
RSS Phase 17-1B City of Ottawa Urbandale

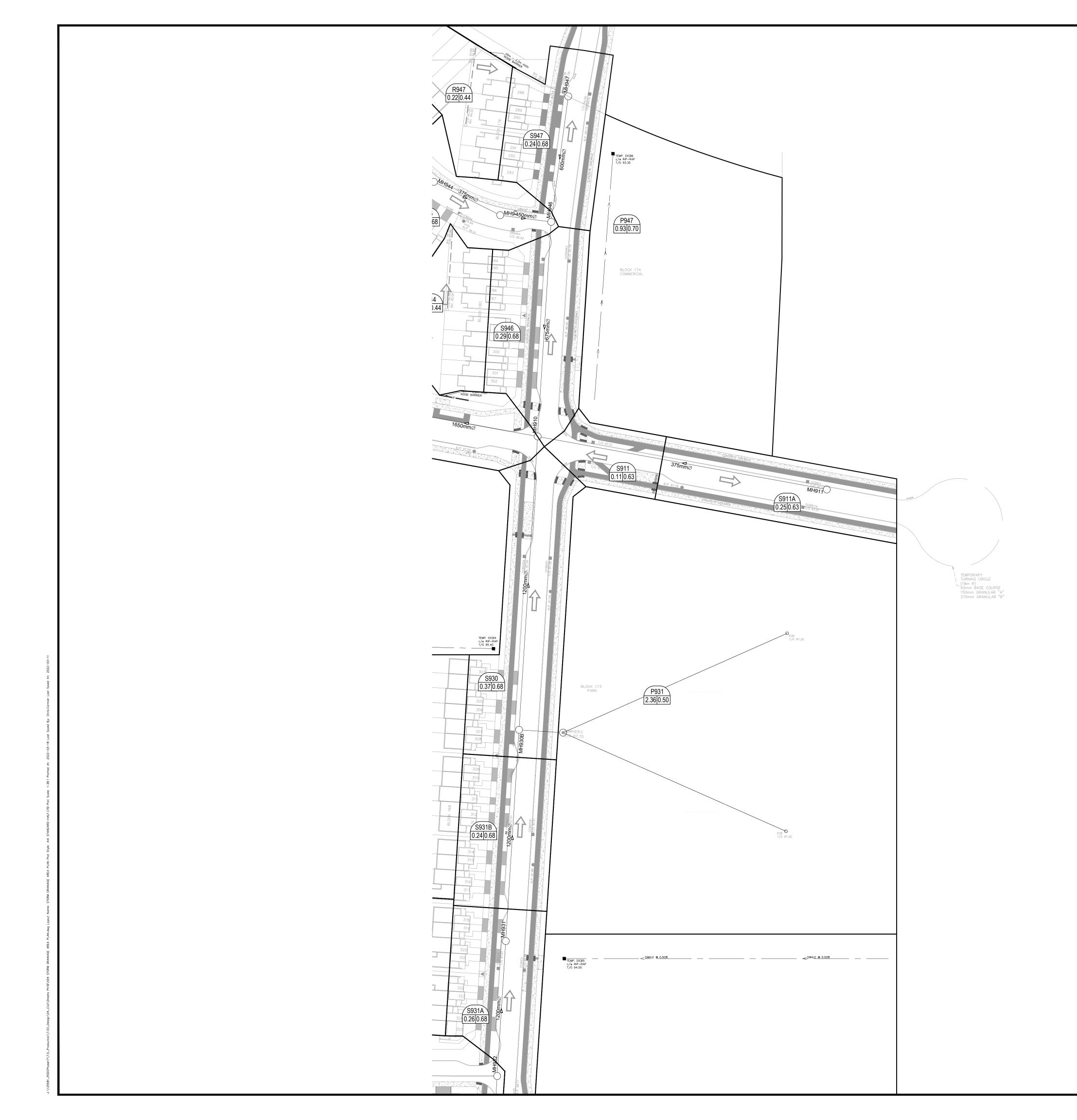


400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

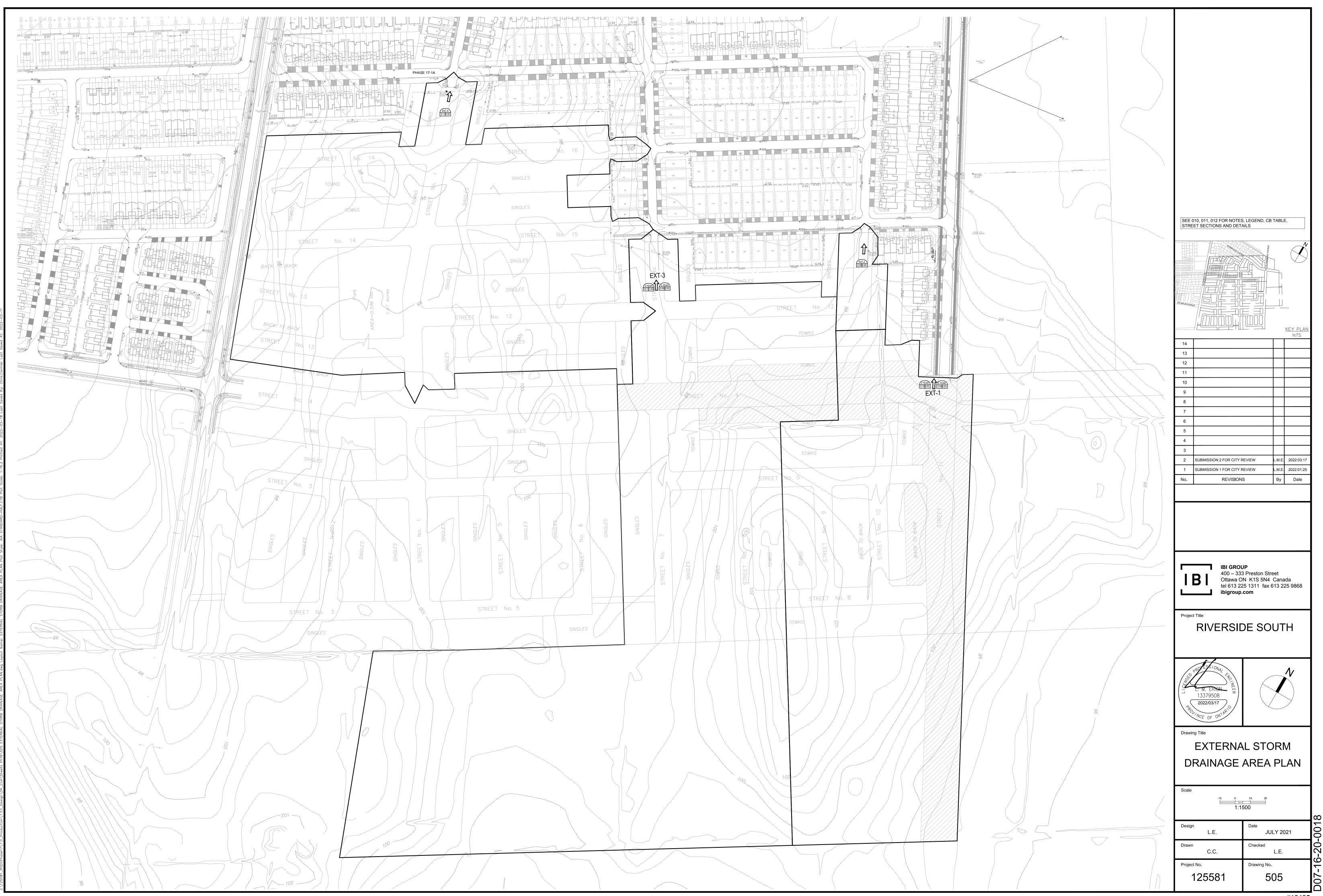
ibigroup.com


|                           | LOCATION                 |          |        |           |              | ARE      | A (Ha) |      |      |      |        |        |               |            |         |           |         | RA      | FIONAL DES | SIGN FLOW | 1         |               |             |               |        |            |            |          |        | 9          | SEWER DA | ГА       |         |           |
|---------------------------|--------------------------|----------|--------|-----------|--------------|----------|--------|------|------|------|--------|--------|---------------|------------|---------|-----------|---------|---------|------------|-----------|-----------|---------------|-------------|---------------|--------|------------|------------|----------|--------|------------|----------|----------|---------|-----------|
| STREET                    | AREA ID                  | FROM     | то     | <b>C=</b> | C= C=        | = C=     | C=     | C=   | C=   | C=   | IND    | CUM    | IND CUM       | INLET      | TIME    | TOTAL     | i (2)   | i (5)   | i (10)     | i (100)   | 2yr PEAK  | 5yr PEAK      | 10yr PEAP   | K 100yr PEAK  | FIXE   | ED FLOW    | DESIGN     | CAPACITY | LENGTH | PE SIZE (m | n SLOPE  | VELOCITY | AVAIL ( | CAP (2yr) |
| SIREEI                    |                          | FROM     | 10     | 0.63 0    | 0.68 0.5     | 0 0.53   | 0.63   | 0.44 | 0.68 | 0.70 | 2.78AC | 2.78AC | 2.78AC 2.78AC | (min)      | IN PIPE | (min)     | (mm/hr) | (mm/hr) | (mm/hr)    | (mm/hr)   | FLOW (L/s | s) FLOW (L/s) | ) FLOW (L/s | s) FLOW (L/s) | IND    | CUM        | FLOW (L/s) | (L/s)    | (m)    | DIA        | (%)      | (m/s)    | (L/s)   | (%)       |
|                           |                          |          |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            |           |           |               |             | -             |        |            |            |          |        |            |          |          |         |           |
| Apricot Street            | S961A, R961              | MH961    | MH962  |           |              |          |        | 0.18 | 0.37 |      | 0.92   | 0.92   |               | 10.00      | 0.57    | 10.57     | 76.81   | 104.19  | 122.14     | 178.56    | 70.63     | 95.82         |             |               |        |            | 70.63      | 191.84   | 57.47  | 375        | 1.10     | 1.683    | 121.21  | 63.18%    |
|                           |                          | MH962    | MH963  |           |              |          |        |      |      |      | 0.00   | 0.92   |               | 10.57      | 0.28    | 10.85     | 74.69   | 101.28  | 118.71     | 173.52    | 68.68     | 93.14         |             |               |        |            | 68.68      | 108.21   | 15.79  | 375        | 0.35     | 0.949    | 39.53   | 36.53%    |
|                           | S963, R963               | MH963    | BLK963 |           |              |          |        | 0.47 | 0.27 |      | 1.09   | 2.00   |               | 10.85      | 0.56    | 11.40     | 73.70   | 99.92   | 117.11     | 171.17    | 147.77    | 200.34        |             |               |        |            | 147.77     | 175.96   | 35.70  | 450        | 0.35     | 1.072    | 28.20   | 16.03%    |
| Definitions:              |                          |          |        | Notes:    |              |          |        |      |      |      |        |        |               | Designed:  |         | LME       |         |         |            | No.       |           |               |             |               |        | Revision   |            |          |        |            |          | Da       | te      |           |
| Q = 2.78CiA, where:       |                          |          |        | 1. Mannin | gs coefficie | ent 0.01 | 3      |      |      |      |        |        |               | •          |         |           |         |         |            | 1.        |           |               |             |               | 1st Si | ubmission  |            |          |        |            |          | 2022-    | 01-25   |           |
| Q = Peak Flow in Litres   | es per Second (L/s)      |          |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            | 2.        |           |               |             |               | 2nd S  | Submission |            |          |        |            |          | 2022-    | 03-17   |           |
| A = Area in Hectares (I   | (Ha)                     |          |        |           |              |          |        |      |      |      |        |        |               | Checked:   |         |           |         |         |            |           |           |               |             |               |        |            |            |          |        |            |          |          |         |           |
| i = Rainfall intensity in | n millimeters per hour ( | nm/hr)   |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            |           |           |               |             |               |        |            |            |          |        |            |          |          |         |           |
| [i = 732.951 / (TC+6.     | 6.199)^0.810]            | 2 YEAR   |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            |           |           |               |             |               |        |            |            |          |        |            |          |          |         |           |
| [i = 998.071 / (TC+6      | 6.053)^0.814]            | 5 YEAR   |        |           |              |          |        |      |      |      |        |        |               | Dwg. Refer | ence:   | 125581-50 | 1       |         |            |           |           |               |             |               |        |            |            |          |        |            |          |          |         |           |
| [i = 1174.184 / (TC+      | +6.014)^0.816]           | 10 YEAR  |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            |           | File F    | Reference:    |             |               |        |            | Date:      |          |        |            |          | Shee     | t No:   |           |
| [i = 1735.688 / (TC+      |                          | 100 YEAR |        |           |              |          |        |      |      |      |        |        |               |            |         |           |         |         |            |           | 125       | 581-6.04      |             |               |        |            | 2022-03-18 |          |        |            |          | 1 c      | f 1     |           |


#### Inlet Time


| External Draiinage | Length of Pipe | Velocity | Travel Time | e Inlet Time |
|--------------------|----------------|----------|-------------|--------------|
| Area               | Upstream (m)   | (m/s)    | (min)       | (min)        |
| EXT-1              | 450            | 1.70     | 4.41        | 14.41        |
| EXT-3              | 800            | 1.70     | 7.84        | 17.84        |

### STORM SEWER DESIGN SHEET


RSS Phase 17-1B City of Ottawa Urbandale







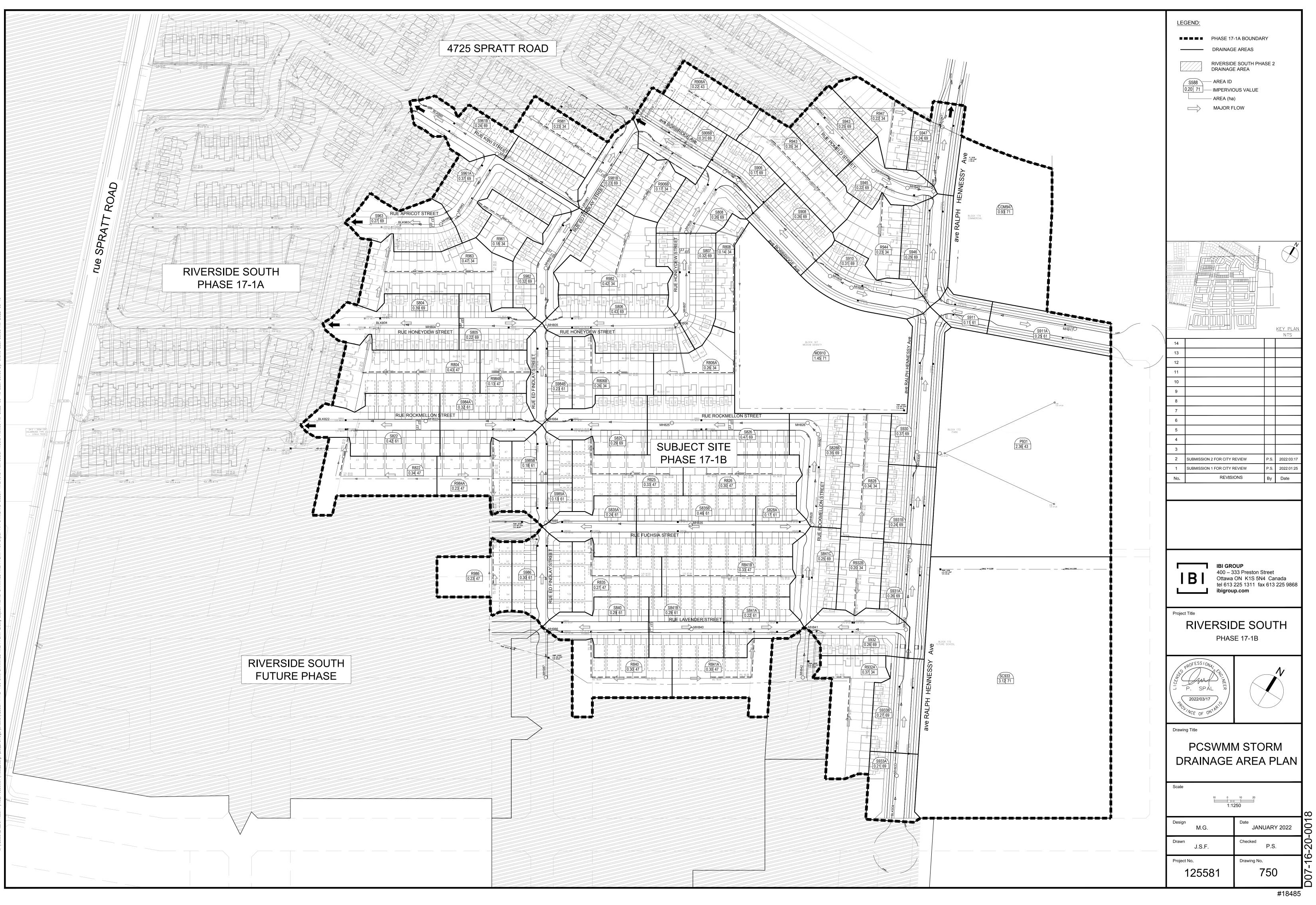
|                                           | 010, 011, 012 FOR NOTES<br>EET SECTIONS AND DETA                                        |                                                                                                                                                  | TABLE                  | Ξ,                               |                |
|-------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|----------------|
|                                           |                                                                                         |                                                                                                                                                  |                        | -                                |                |
| 14<br>13<br>12<br>11<br>10<br>9<br>8<br>7 |                                                                                         |                                                                                                                                                  |                        | KEY PLAN<br>NTS                  |                |
| 6<br>5<br>4<br>3<br>2<br>1<br>No.         | SUBMISSION 2 FOR CITY R<br>SUBMISSION 1 FOR CITY R<br>REVISION                          | EVIEW                                                                                                                                            | L.M.E.<br>L.M.E.<br>By | 2022:03:17<br>2022:01:25<br>Date |                |
|                                           |                                                                                         |                                                                                                                                                  |                        |                                  |                |
|                                           | <b>IBI GROL</b><br>400 – 333<br>Ottawa O                                                | I <b>P</b><br>3 Preston Stre<br>N K1S 5N4                                                                                                        |                        | da                               |                |
| Proje                                     | BI<br>duo – 333<br>Ottawa O<br>tel 613 22<br>ibigroup.<br>ct Title<br>RIVERSIE<br>PHASI | B Preston Stre<br>N K1S 5N4<br>5 1311 fax 6<br>com                                                                                               | Cana<br>13 22          | 25 9868                          |                |
| Proje                                     | 400 – 333<br>Ottawa O<br>tel 613 22<br>ibigroup.                                        | B Preston Strep         N K1S 5N4         25 1311 fax 6         com         DE SOI         E 17-1B                                               | Canaa<br>13 22<br>UT   | ES 9868<br>H                     |                |
| Proje                                     | BI<br>400 – 333<br>Ottawa O<br>tel 613 22<br>ibigroup.                                  | DE SO<br>RAINA<br>RAINA<br>PLAN                                                                                                                  | Canaa<br>13 22<br>UT   | ES 9868<br>H                     |                |
| Proje                                     | BI<br>400 - 333<br>Ottawa O<br>tel 613 22<br>ibigroup.                                  | Preston Stre<br>N K1S 5N4 (<br>5 1311 fax 6<br>Com<br>DE SO<br>E 17-1B<br>RAINA<br>PLAN<br>7.5 15<br>50<br>Date<br>JUL<br>Checked<br>Drawing No. | Canaa<br>13 22<br>UT   | E                                | 007-16-20-0018 |

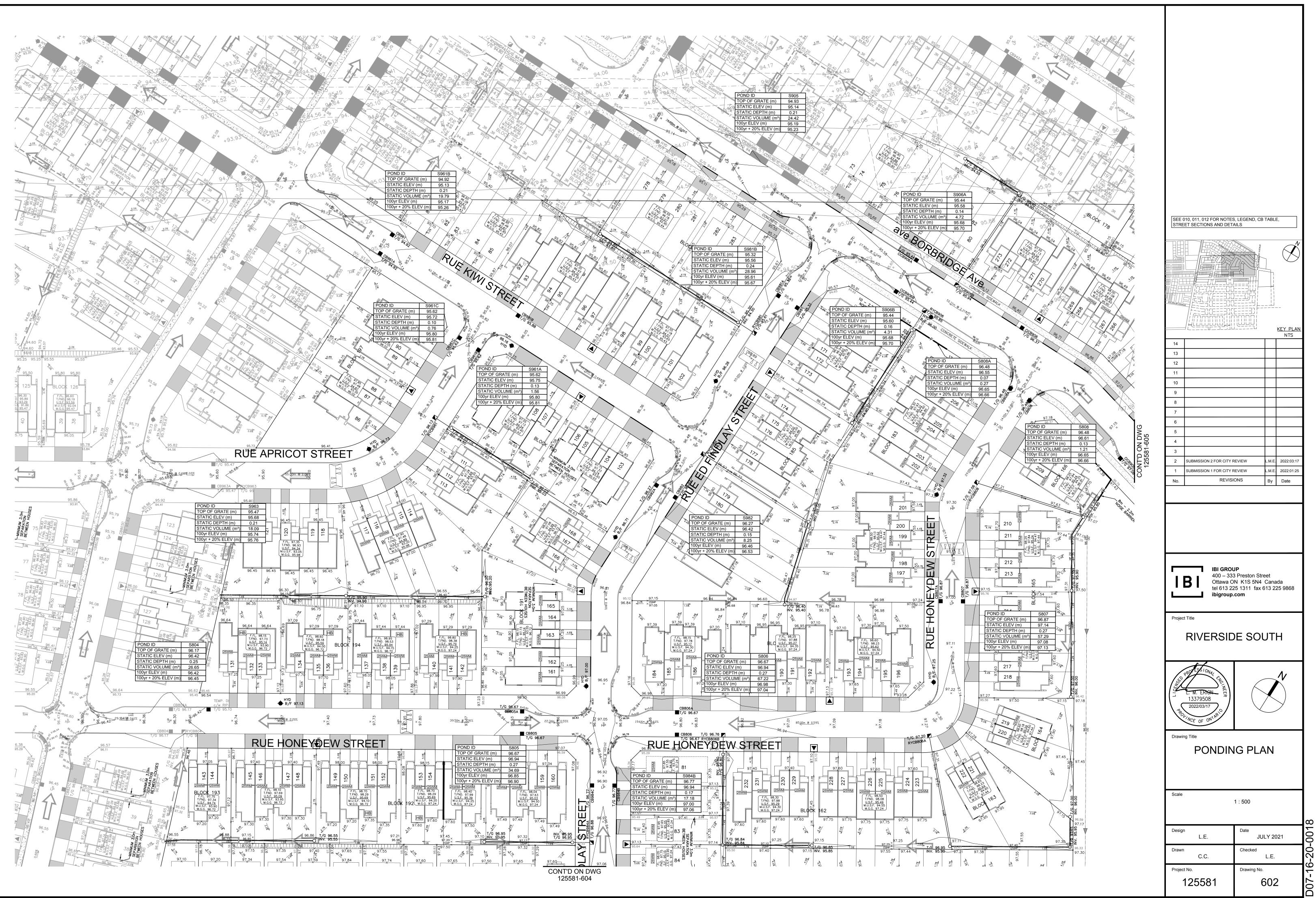


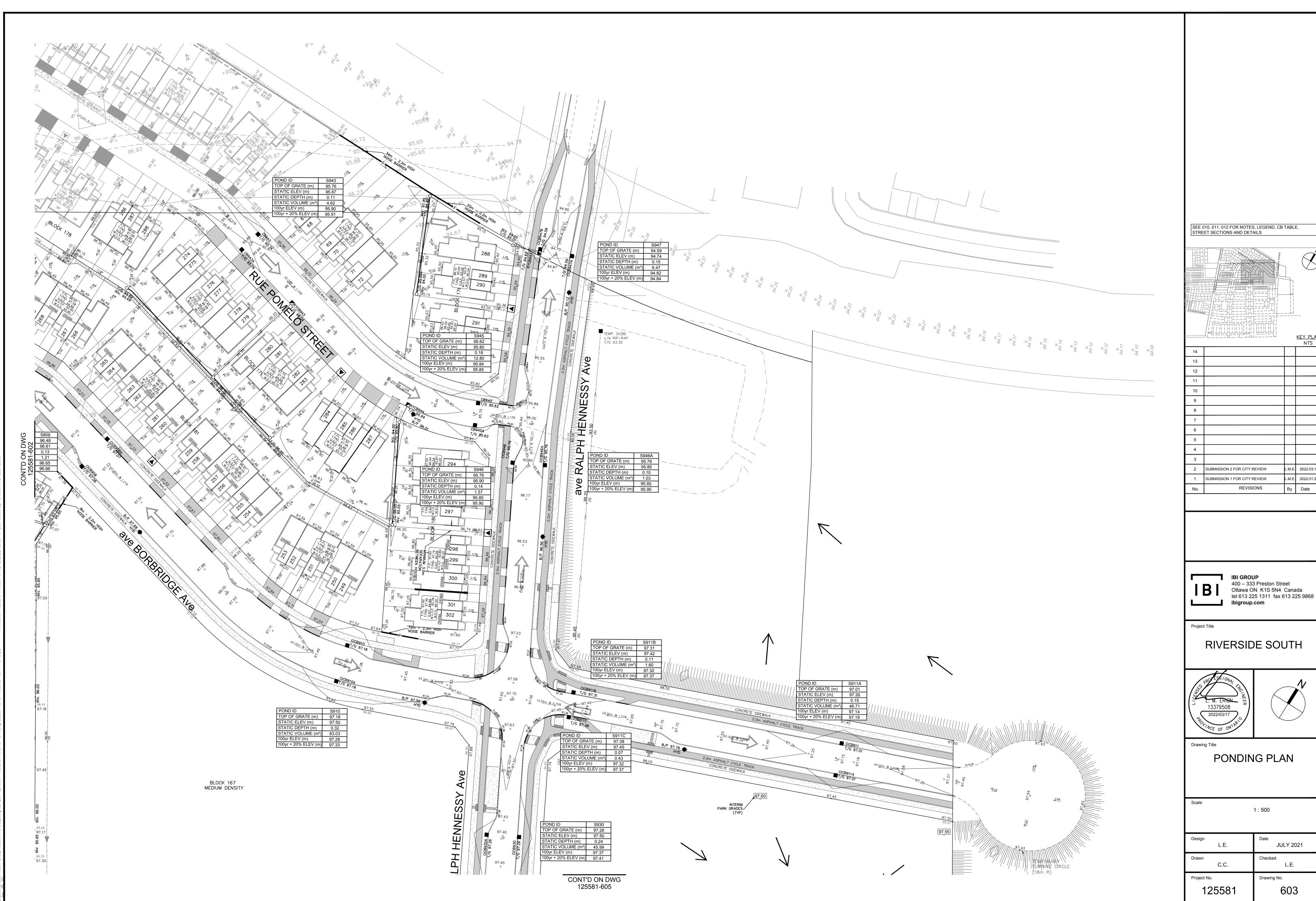
#18485



400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 **ibigroup.com** 


|                                                                                                                                                        | LOCATION                   | N                           |         | AREA (Ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                  |                      |                 | RATION         | AL DESIGN        | FLOW             |                   |                               |                        |        |                                    |                      |                   |          | S                 | EWER DAT     | A                             |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----------------|----------------|------------------|------------------|-------------------|-------------------------------|------------------------|--------|------------------------------------|----------------------|-------------------|----------|-------------------|--------------|-------------------------------|------------------------|
| STREET                                                                                                                                                 | AREA ID                    | FROM                        | то      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Year         5 Year           IND         CUM         IND           2.78AC         2.78AC         2.78AC         2 | CUM IND          | CUM INLET            | TIME<br>IN PIPE | TOTAL<br>(min) | i (2)<br>(mm/hr) | i (5)<br>(mm/hr) | i (10)<br>(mm/hr) | -                             | 5yr PEAK<br>FLOW (L/s) | -      |                                    | DESIGN<br>FLOW (L/s) | CAPACITY<br>(L/s) | LENGTH F | PE SIZE (m<br>DIA | SLOPE<br>(%) | VELOCITY<br>(m/s)             | AVAIL CAP<br>(L/s) (%) |
| North Outlet                                                                                                                                           |                            |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        |                                    |                      |                   |          |                   |              |                               |                        |
| River Road                                                                                                                                             | EXT-1                      |                             | EXMH160 | 5.15         4.44         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 0.00 12.04                                                                                                      | 12.04 3.54       | <b>3.54</b> 12.78    |                 |                | 67.56            | 91.50            | 107.20            | 0.00                          | 1,101.80               | 379.36 |                                    | 1,481.16             |                   |          |                   |              |                               |                        |
| River Road                                                                                                                                             |                            | EXMH160                     | MH2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 0.00 0.00                                                                                                       | 12.04 0.00       | <b>3.54</b> 12.78    | 1.45            | 14.23          | 67.56            | 91.50            | 107.20            | 0.00                          | 1,101.80               | 379.36 |                                    | 1,481.16             | 3,006.86          | 118.40   | 1650              | 0.10         | 1.362                         | 1525.71 50.74%         |
| River Road                                                                                                                                             |                            | MH2                         | MH3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 0.00 0.00                                                                                                       | 12.04 0.00       | <b>3.54</b> 14.23    | 1.15            | 15.37          | 63.66            | 86.14            | 100.89            | 0.00                          | 1,037.30               | 357.06 |                                    | 1,394.35             | 3,006.86          | 93.83    | 1650              | 0.10         | 1.362                         | 1612.51 53.63%         |
| Borbridge Avenue                                                                                                                                       | EXT-2                      | CAP                         | MH3     | 1.86 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.26         3.26         1.05                                                                                       | 1.05 0.00        | 0.00 12.56           | 0.21            | 12.77          | 68.21            | 92.39            | 108.24            | 222.21                        | 97.08                  | 0.00   |                                    | 319.29               | 572.93            | 25.00    | 600               | 0.80         | 1.963                         | 253.64 44.27%          |
| River Road                                                                                                                                             |                            | MH3                         | MH4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 3.26 0.00                                                                                                       | 13.09 0.00       | <b>3.54</b> 15.37    | 1.49            | 16.87          | 60.90            | 82.37            | 96.45             | 198.38                        | 1,078.39               | 341.34 |                                    | 1,618.11             | 3,792.13          | 129.25   | 1800              | 0.10         | 1.444                         | 2174.02 57.33%         |
| Street No. 3                                                                                                                                           | EXT-3                      | CAP                         | MH4     | 8.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.64         14.64         0.00                                                                                     | 0.00 0.00        | 0.00 16.67           | 0.22            | 16.89          | 58.09            | 78.53            | 91.94             | 850.60                        | 0.00                   | 0.00   |                                    | 850.60               | 1,117.30          | 22.89    | 900               | 0.35         | 1.701                         | 266.70 23.87%          |
| Street No. 3 West                                                                                                                                      |                            | MH4                         | MH154   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 17.90 0.00                                                                                                      | 13.09 0.00       | 3.54 16.87           | 0.26            | 17.12          | 57.69            | 77.98            | 91.29             | 1,032.55                      | 1,020.88               | 323.06 |                                    | 2,376.50             | 3,792.13          | 22.11    | 1800              | 0.10         | 1.444                         | 1415.63 37.33%         |
| Street No. 3 West                                                                                                                                      | 154                        | MH154                       | САР     | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.70         21.59         0.00                                                                                      | 13.09 0.00       | 3.54 17.12           | 1.36            | 18.48          | 57.17            | 77.28            | 90.47             | 1,234.68                      | 1,011.72               | 320.15 |                                    | 2,566.55             | 3,792.13          | 117.91   | 1800              | 0.10         | 1.444                         | 1225.58 32.32%         |
| Street No. 5                                                                                                                                           | EXT-4                      | САР                         | MH11    | 103.76 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 181.73         181.73         4.55                                                                                   | 4.55 0.00        | 0.00 33.75           | 0.39            | 34.14          | 36.97            | 49.75            | 58.15             | 6,718.47                      | 226.56                 | 0.00   |                                    | 6,945.03             | 14,807.43         | 47.00    | 3000              | 0.10         | 2.029                         | 7862.40 53.10%         |
| Street No. 1 West                                                                                                                                      | 11                         | MH11                        | CAP     | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.86 183.58 0.00                                                                                                     | 4.55 0.00        | 0.00 34.14           | 1.02            | 33.75          | 36.68            | 49.36            | 57.69             | 6,734.45                      | 224.79                 | 0.00   |                                    | 6,959.24             | 14,807.43         | 124.30   | 3000              | 0.10         | 2.029                         | 7848.20 53.00%         |
| South Outlet                                                                                                                                           |                            |                             |         | Image: selection of the selection |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        |                                    |                      |                   |          |                   |              |                               |                        |
| River Road                                                                                                                                             | EXT-6                      |                             | MH28    | 17.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.44         30.44         0.00                                                                                     | 0.00 0.00        | 0.00 16.67           |                 |                | 58.09            | 78.53            | 91.94             | 1,768.36                      | 0.00                   | 0.00   |                                    | 1,768.36             |                   |          |                   |              |                               |                        |
| River Road                                                                                                                                             |                            | MH28                        | MH29    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 30.44 0.00                                                                                                      | 0.00 0.00        | 0.00 16.67           | 1.05            | 17.72          | 58.09            | 78.53            | 91.94             | 1,768.36                      | 0.00                   | 0.00   |                                    | 1,768.36             | 4,486.91          | 107.73   | 1800              | 0.14         | 1.708                         | 2718.55 60.59%         |
| Street No. 7                                                                                                                                           | EXT-5                      | CAP                         | MH29    | 122.85 2.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 215.16 245.60 4.85                                                                                                   | 4.85 0.00        | 0.00 23.33           | 0.27            | 23.60          | 47.22            | 63.69            | 74.51             | 11,597.38                     | 309.00                 | 0.00   |                                    | 11,906.38            | 14,807.43         | 33.00    | 3000              | 0.10         | 2.029                         | 2901.05 19.59%         |
| River Road                                                                                                                                             |                            | MH30                        | MH29    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 0.00 0.00                                                                                                       | 0.00 0.00        | 0.00 10.00           | 1.65            | 11.65          | 76.81            | 104.19           | 122.14            | 0.00                          | 0.00                   | 0.00   |                                    | 0.00                 | 129.34            | 112.57   | 375               | 0.50         | 1.134                         | 129.34 100.00%         |
|                                                                                                                                                        |                            | MH29                        | САР     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 276.04 0.00                                                                                                     | 4.85 0.00        | 0.00 23.60           | 1.17            | 24.78          | 46.87            | 63.22            | 73.95             | 12,938.66                     | 306.70                 | 0.00   |                                    | 13,245.36            | 14,807.43         | 142.90   | 3000              | 0.10         | 2.029                         | 1562.08 10.55%         |
| Roadside Ditch Conv                                                                                                                                    | eyance                     |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        |                                    |                      |                   |          |                   |              |                               |                        |
| Culvert STA 1+280                                                                                                                                      | A9, A11*                   | MHA                         | Outlet  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        | 325*                               | 325.00               | 2,178.02          | 28.32    | 900               | 1.33         | 3.317                         | 1853.02 85.08%         |
| Culvert STA 1+680                                                                                                                                      | A5, A7*                    | DICB3                       | DICB4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        | 150*                               | 150.00               | 162.91            | 23.00    | 450               | 0.30         | 0.992                         | 12.91 7.93%            |
|                                                                                                                                                        | A6, A8*                    | DICB4                       | MHB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        | 161*                               | 311.00               | 350.85            | 57.40    | 600               | 0.30         | 1.202                         | 39.85 11.36%           |
|                                                                                                                                                        |                            | MHB                         | MHC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        |                                    | 311.00               | 350.85            | 41.32    | 600               | 0.30         | 1.202                         | 39.85 11.36%           |
|                                                                                                                                                        |                            | MHC                         | HW42    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  |                      |                 |                |                  |                  |                   |                               |                        |        |                                    | 311.00               | 350.85            | 22.06    | 600               | 0.30         | 1.202                         | 39.85 11.36%           |
| <b>Definitions:</b><br>Q = 2.78CiA, where:<br>Q = Peak Flow in Litre:<br>A = Area in Hectares (<br>i = Rainfall intensity in $fi = 722.051 / (TC) + 6$ | Ha)<br>millimeters per hou | ur (mm/hr)                  |         | Notes:<br>1. Mannings coefficient (n) = 0.013<br>* Drainage Areas per Figure 4.3 and 100 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | year flows from Table 4.2 of t                                                                                       | the Design Brief | Designed<br>Checked: |                 | LME            |                  |                  | No.<br>1.<br>2.   |                               |                        |        | Revi<br>City submis<br>City submis | ssion No. 1          |                   |          |                   |              | <b>Da</b><br>27-04-<br>03-07- |                        |
| [i = 732.951 / (TC+6<br>[i = 998.071 / (TC+6<br>[i = 1174.184 / (TC+                                                                                   | .053)^0.814]               | 2 YEAR<br>5 YEAR<br>10 YEAR |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                  | Dwg. Refe            | erence:         |                | 114373-500       | )                |                   | File Referenc<br>114373.5.7.1 |                        |        |                                    | <b>Dat</b><br>7/3/20 |                   |          |                   |              | <b>Shee</b><br>1 o            |                        |


#### Inlet Time


| External Draiinage | Length of Pipe | Velocity | Travel Time | Inlet Time |
|--------------------|----------------|----------|-------------|------------|
| Area               | Upstream (m)   | (m/s)    | (min)       | (min)      |
|                    |                |          |             |            |
| EXT-1              | 250            | 1.50     | 2.78        | 12.78      |
| EXT-2              | 230            | 1.50     | 2.56        | 12.56      |
| EXT-3              | 600            | 1.50     | 6.67        | 16.67      |
| EXT-4              | 2,850          | 2.00     | 23.75       | 33.75      |
| EXT-5              | 1,600          | 2.00     | 13.33       | 23.33      |
| EXT-6              | 600            | 1.50     | 6.67        | 16.67      |

### STORM SEWER DESIGN SHEET

River Road City of Ottawa Riverside South Development Corporation







 $\sim$ Q D07

 $\infty$ 

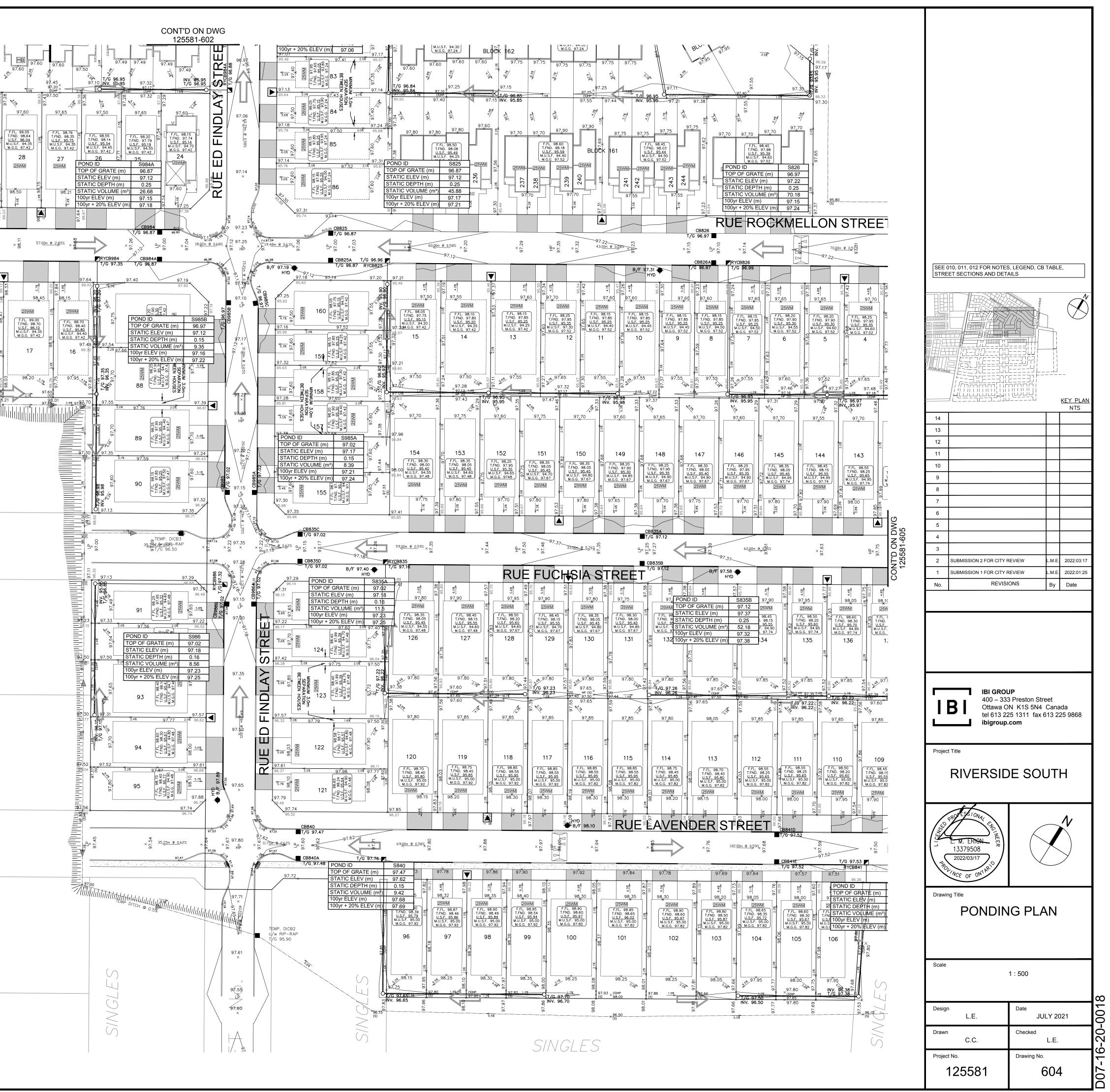
00

Ŕ

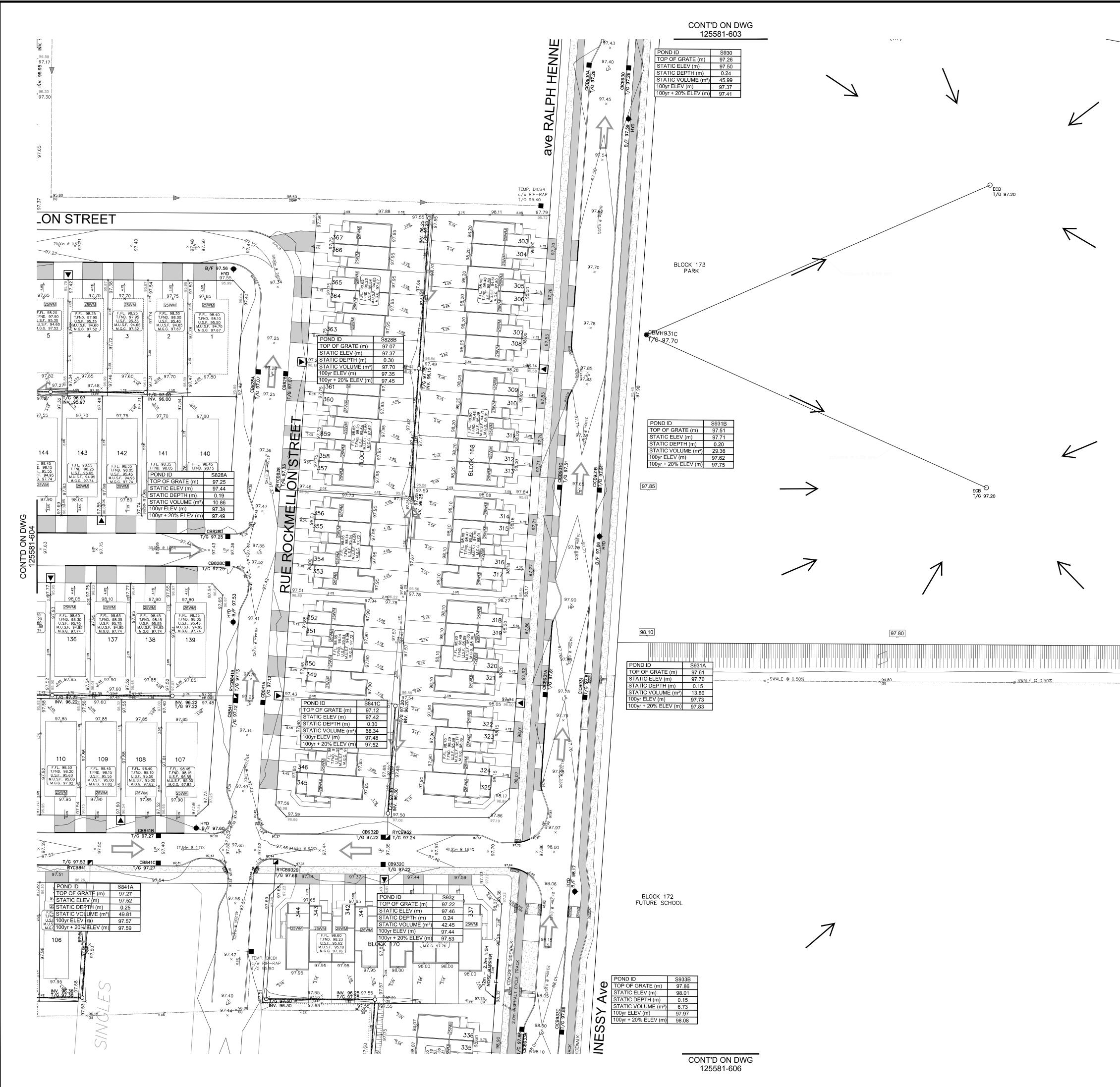
<u>KEY PLAN</u> NTS

2022:03:17

97.20 96.86 T/G 96.55 97.21 96.96 12.20 97.10 × 97.20 × 97.34 97.54<sup>°</sup> 97.59 97.74 96.6 F.FL. 99.33 T.FND. 98.92 <u>U.S.F. 96.32</u> M.U.S.F. 94.28 M.G.G. 97.42 F.FL. 99.35 T.FND. 98.94 <u>U.S.F. 96.34</u> M.U.S.F. 94.25 M.G.G. 97.05 F.FL. 99.15 T.FND. 98.74 U.S.F. 96.14 M.U.S.F. 94.20 M.G.G. 97.05 F.FL. 98.43 T.FND. 98.02 <u>U.S.F. 95.42</u> M.U.S.F. 94.10 <u>M.G.G. 97.05</u> F.FL. 98.20 T.FND. 97.79 U.S.F. 95.19 M.U.S.F. 94.05 M.G.G. 97.05 35 F.FL. 99.05 T.FND. 98.64 U.S.F. 96.04 M.U.S.F. 94.17 F.FL. 98.85 T.FND. 98.44 <u>U.S.F. 95.84</u> M.U.S.F. 94.15 M.G.G. 97.05 M.G.G. 97.05 32 31 30 34 29 25WM 25WM 25WM 25WM 25WM 25WM 25WM POND ID S822 TOP OF GRATE (m) 96.57 
 STATIC ELEV (m)
 96.75

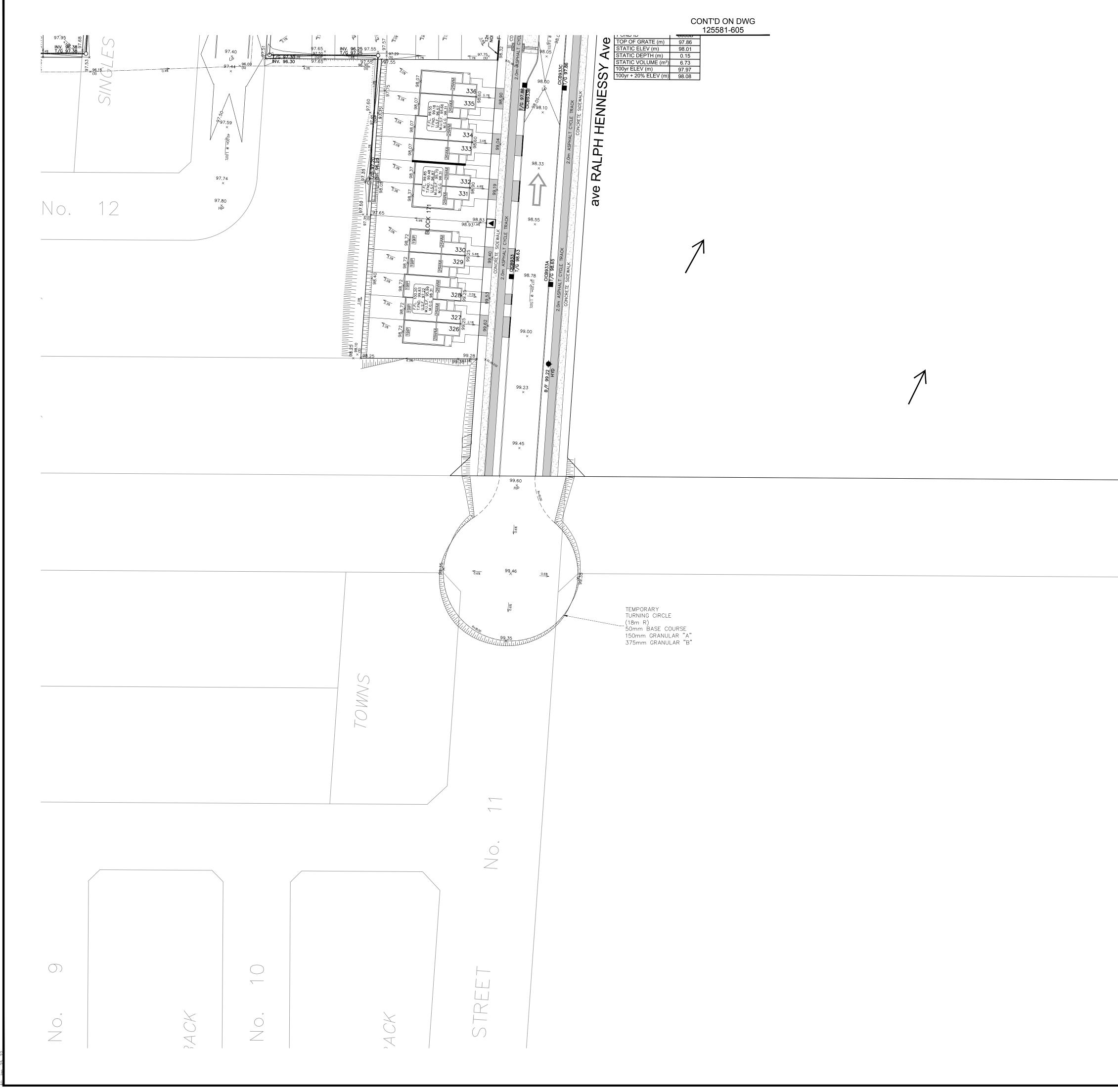

 STATIC DEPTH (m)
 0.18

 STATIC VOLUME (m³)
 10.15


 100yr ELEV (m)
 96.79

 100yr + 20% ELEV (m)
 96.84
 TATIC ELEV (m) 97.65 97.88 98.30 98.50 98.60 98.80 98.78 RUE ROCKMELEON STREET CB822 T/G\_96.57 35.97**A 50%** 56%  $\overline{\underline{\nabla}}$ 98.32 98.43 98.48 98.48 98.48 98.39 98.39 98.39 77.00m @ 2.50% \ 0 ∃× ́k × 97.1 /G 96.57 96.6 B/F 98.37 🔶 HYD 5.8% 5.8% 97.95 56 97.55 \*----97.75 \* 98.30 98.50 99.00 99.00 25WM 25WM 25WM 25WM 25WM 25WM F.FL. 98.10 T.FND. 97.80 U.S.F. 95.20 M.U.S.F. 94.00 F.FL. 98.30 T.FND. 98.00 <u>U.S.F. 95.40</u> M.U.S.F. 94.10 M.G.G. 97.05 F.FL. 98.85 T.FND. 98.55 U.S.F. 95.95 M.U.S.F. 94.10 M.G.G. 97.05 F.FL. 99.55 T.FND. 99.25 U.S.F. 96.65 M.U.S.F. 94.20 M.G.G. 97.05 F.FL. 99.05 T.FND. 98.75 U.S.F. 96.15 M.U.S.F. 94.20 M.G.G. 97.05 F.FL. 99.55 T.FND. 99.25 U.S.F. 96.65 M.U.S.F. 94.30 M.G.G. 97.42 M.G.G. 97.05 20 23 22 18 19 97.50 97.70 98.00 98.30 98.50 98.50 5.5% 45.5% 5.8% 80 4 98.35 98.20 ការបានស្ត្រាស់ហើ 3.3% SINGLES STREET No. 16 SINGLES S SINGL SINGLES STREET No. 15 SINGLES SINGLES

RSDCPhase17/7.0\_Production/7.03\_Design/04\_Civil/Sheets Ph1B\604 PONDING PLAN.dwg Layout Name: PONDING PLAN Plot Style: ---- Plot Scale: 1:2.5849 Plotted At: 3/18/2022 12:06 PM Last Saved By: Chris.Cormier Last Saved Saved By: Chris.Cormier Last Sav




#18485



31\_RSDCPhase17/7.0\_Production/7.03\_Design/04\_Civil/Sheets Ph1B\605 PONDING PLAN.dwg Layout Name: PONDING PLAN Plot Style: ---- Plot Scale: 1:2.5849 Plotted At: 3/18/2022 12:08 PM Last Saved By: Chris.Cormier Last Saved

| 97.55<br>97.55<br>97.55                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 50mm BASE COURSE<br>150mm GRANULAR "A"<br>375mm GRANULAR "B" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |
|                                                              | SEE 010, 011, 012 FOR NOTES<br>STREET SECTIONS AND DET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |
|                                                              | 14       13       12       11       10       9       8       7       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| 97.50                                                        | 5       4       3       2     SUBMISSION 2 FOR CITY F       1     SUBMISSION 1 FOR CITY F       No.     REVISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REVIEW L.M.E. 2022:01:25                                          |
|                                                              | IBI   Ottawa O     tel 613 22     ibigroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 Preston Street<br>0N K1S 5N4 Canada<br>25 1311 fax 613 225 9868 |
|                                                              | PROFESSIONAL<br>T. M. ERNON<br>13379508<br>2022/03/17<br>PROFESSIONAL<br>TRANSPORT<br>2022/03/17<br>PROFESSIONAL<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT<br>TRANSPORT |                                                                   |
|                                                              | Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IG PLAN<br>1 : 500<br>Date                                        |
|                                                              | L.E.<br>Drawn<br>C.C.<br>Project No.<br>125581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JULY 2021<br>Checked<br>L.E.<br>Drawing No.<br>605                |



Phase17/7.0\_Production/7.03\_Design/04\_Civil\Sheets Ph1B\606 PONDING PLAN.dwg Layout Name: PONDING PLAN Plot Style: ---- Plot Scale: 1:2.5849 Plotted At: 3/18/2022 12:09 PM Last Saved By: Chris.Cormier Last

| SEE 010, 011, 012 FOR NOTES<br>STREET SECTIONS AND DET           | S, LEGEND, CB TABLE,<br>AILS                                      |                |
|------------------------------------------------------------------|-------------------------------------------------------------------|----------------|
|                                                                  |                                                                   |                |
|                                                                  | KEY PLAN                                                          |                |
| 14       13       12       11                                    | NTS                                                               |                |
| 11<br>10<br>9<br>8                                               |                                                                   |                |
| 7<br>6<br>5<br>4                                                 |                                                                   |                |
| 3 2 SUBMISSION 2 FOR CITY F 1 SUBMISSION 1 FOR CITY F No. REVISI | REVIEW L.M.E. 2022:01:25                                          |                |
|                                                                  |                                                                   |                |
| IBI GROU                                                         | IP                                                                |                |
| 400 – 333<br>Ottawa O                                            | 3 Preston Street<br>DN K1S 5N4 Canada<br>25 1311 fax 613 225 9868 |                |
| Project Title<br>RIVERSID                                        | DE SOUTH                                                          |                |
| L. M. ERION<br>13379508                                          |                                                                   |                |
| 13379508<br>2022/03/17<br>380<br>14CE OF ONT ARIO                |                                                                   |                |
| Drawing Title<br>PONDIN                                          | IG PLAN                                                           |                |
| Scale                                                            | 1 : 500                                                           |                |
| Design<br>L.E.                                                   | Date<br>JULY 2021                                                 | -0018          |
| Drawn<br>C.C.<br>Project No.                                     | Checked<br>L.E.<br>Drawing No.                                    | D07-16-20-0018 |
| 125581                                                           | 606<br>#18485                                                     |                |

 $\Lambda$ 

#### **Common Curves for Analysis of Existing ROWs, No Gutter, For PCSWMM**

#### **Curves for Catch Basins on a Slope**

| Ottawa Standard |                      |  |  |  |  |
|-----------------|----------------------|--|--|--|--|
|                 | Q <sub>capture</sub> |  |  |  |  |
| Depth (m)       | (m <sup>3</sup> /s)  |  |  |  |  |
| 0.000           | 0.000                |  |  |  |  |
| 0.010           | 0.001                |  |  |  |  |
| 0.015           | 0.003                |  |  |  |  |
| 0.021           | 0.006                |  |  |  |  |
| 0.030           | 0.012                |  |  |  |  |
| 0.040           | 0.020                |  |  |  |  |
| 0.050           | 0.030                |  |  |  |  |
| 0.054           | 0.034                |  |  |  |  |
| 0.060           | 0.040                |  |  |  |  |
| 0.080           | 0.050                |  |  |  |  |
| 1.000           | 0.050                |  |  |  |  |

| of catch basins of    |                      |  |  |  |  |  |
|-----------------------|----------------------|--|--|--|--|--|
|                       |                      |  |  |  |  |  |
| Fish or fishbone Type |                      |  |  |  |  |  |
|                       | Q <sub>capture</sub> |  |  |  |  |  |
| Depth (m)             | (m <sup>3</sup> /s)  |  |  |  |  |  |
| 0.000                 | 0.000                |  |  |  |  |  |
| 0.010                 | 0.001                |  |  |  |  |  |
| 0.015                 | 0.003                |  |  |  |  |  |
| 0.021                 | 0.007                |  |  |  |  |  |
| 0.030                 | 0.014                |  |  |  |  |  |
| 0.040                 | 0.024                |  |  |  |  |  |
| 0.050                 | 0.036                |  |  |  |  |  |
| 0.054                 | 0.041                |  |  |  |  |  |
| 0.060                 | 0.047                |  |  |  |  |  |
| 0.070                 | 0.050                |  |  |  |  |  |
| 1.000                 | 0.050                |  |  |  |  |  |

| Curb Inlets |                      |  |  |  |
|-------------|----------------------|--|--|--|
|             | Q <sub>capture</sub> |  |  |  |
| Depth (m)   | (m <sup>3</sup> /s)  |  |  |  |
| 0.000       | 0.000                |  |  |  |
| 0.010       | 0.001                |  |  |  |
| 0.015       | 0.002                |  |  |  |
| 0.021       | 0.004                |  |  |  |
| 0.030       | 0.006                |  |  |  |
| 0.040       | 0.009                |  |  |  |
| 0.050       | 0.013                |  |  |  |
| 0.054       | 0.014                |  |  |  |
| 0.060       | 0.017                |  |  |  |
| 0.070       | 0.021                |  |  |  |
| 0.080       | 0.026                |  |  |  |
| 0.090       | 0.031                |  |  |  |
| 0.140       | 0.050                |  |  |  |
| 1.000       | 0.050                |  |  |  |

#### **Curves for Catch Basins in a Low Point**

| Sag, Ottawa Standard |                      |  |  |  |  |  |
|----------------------|----------------------|--|--|--|--|--|
|                      | Q <sub>capture</sub> |  |  |  |  |  |
| Depth (m)            | (m <sup>3</sup> /s)  |  |  |  |  |  |
| 0.000                | 0.000                |  |  |  |  |  |
| 0.050                | 0.008                |  |  |  |  |  |
| 0.080                | 0.022                |  |  |  |  |  |
| 0.090                | 0.034                |  |  |  |  |  |
| 0.100                | 0.048                |  |  |  |  |  |
| 0.104                | 0.052                |  |  |  |  |  |
| 0.110                | 0.060                |  |  |  |  |  |
| 0.140                | 0.080                |  |  |  |  |  |
| 0.150                | 0.085                |  |  |  |  |  |
| 0.160                | 0.090                |  |  |  |  |  |
| 0.170                | 0.095                |  |  |  |  |  |
| 0.200                | 0.097                |  |  |  |  |  |
| 0.300                | 0.100                |  |  |  |  |  |
| 1.000                | 0.100                |  |  |  |  |  |

| Sag, fish o |                      |  |
|-------------|----------------------|--|
|             | Q <sub>capture</sub> |  |
| Depth (m)   | (m <sup>3</sup> /s)  |  |
| 0.000       | 0.000                |  |
| 0.050       | 0.010                |  |
| 0.080       | 0.027                |  |
| 0.090       | 0.042                |  |
| 0.100       | 0.060                |  |
| 0.104       | 0.065                |  |
| 0.110       | 0.075                |  |
| 0.120       | 0.082                |  |
| 0.130       | 0.090                |  |
| 0.150       | 0.095                |  |
| 0.200       | 0.097                |  |
| 0.300       | 0.100                |  |
| 1.000       | 0.100                |  |

| Sag, curb inlet |                                             |  |  |  |
|-----------------|---------------------------------------------|--|--|--|
| Depth (m)       | Q <sub>capture</sub><br>(m <sup>3</sup> /s) |  |  |  |
| 0.000           | 0.000                                       |  |  |  |
| 0.018           | 0.002                                       |  |  |  |
| 0.030           | 0.010                                       |  |  |  |
| 0.040           | 0.018                                       |  |  |  |
| 0.050           | 0.030                                       |  |  |  |
| 0.060           | 0.050                                       |  |  |  |
| 0.070           | 0.080                                       |  |  |  |
| 0.100           | 0.093                                       |  |  |  |
| 0.200           | 0.097                                       |  |  |  |
| 0.300           | 0.100                                       |  |  |  |
| 1.000           | 0.100                                       |  |  |  |
|                 |                                             |  |  |  |

#### **General Notes**

- The curves were developed from the Townsend curves in the Sewer Design Guidelines (even though that had a gutter) and a manning's calculation of road geometry to convert to a depth-flow curve

- The curves are depth-flow curves. Caution should be excercised if using these curves for the **head**-flow options in PCSWMM

- All curves were developed using a 2% cross slope

- The curves were simplified from a family of curves (for different road geometries and longitudinal slopes) since they were relatively consistent

- Ottawa "Standard" (rectangular grid) CB curves in a low point were generated from the Percent area difference from fish type curves found in the Sewer Design Guidelines 2012

- Fishbone was assumed to be the same as Fish Type

- Note that the curb inlet curves assume no local depression and a typical cross fall. These were derived from the Sewer Design Guidelines. Use caution with these curves and refer to original sources where necessary.

- All catch basins on a slope were assumed to have a max capture rate of 50 L/s according to Townsend's report from 1981.

 - Catch basins in a low point or "sag" were assumed to have a max capture rate of 100 L/s which was calculated using the orifice equation Q=CdA\*SQRT(2gh) based on the following: C=0.61, diameter of lead is 200 mm, depth from rim of CB to springline of orifice is 1.1 m, depth in major system is 0.3 m.

- The low point curves were capped at ~100 L/s because it was assumed that the orifice behaviour (unlike the orifice equation) would level out in reality.

- There are other types of CB's in the Ottawa area; These curves could be modified to fit that specific type.

- Separate curves for manhole and surcharging may also be required in PCSWMM

Separate curves are required when modelling ICDs

- Separate curves are required for DICBs

Separate curves are required if the ROW has gutters