

Phase Two Environmental Site Assessment 116-118 Carruthers Avenue, Ottawa, Ontario

Client:

MA Precision Holding Inc. 116-118 Carruthers Avenue Ottawa, Ontario K1Y 1N5

Type of Document:

Final

Project Name:

Phase Two Environmental Site Assessment

Project Number:

OTT-24006545-B0

Prepared By: Devin Clouthier, B.Sc.

Scott Lessard, B.Sc.

Reviewed By: Chris Kimmerly, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899

f: +1.613.225.7337

Date Submitted:

November 20, 2024

Legal Notification

This report was prepared by EXP Services Inc. for the account of the MA Precision Holding Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Table of Contents

Legal	Notifica	ation	i			
Execu	tive Sun	mmary	iv			
1.0	Intro	duction	1			
	1.1	Site Description				
	1.2	Property Ownership	1			
	1.3	Current and Proposed Future Use	1			
	1.4	Applicable Site Condition Standards				
2.0		ground Information				
2.0	2.1	Physical Setting				
	2.1	Past Investigations				
2.0		•				
3.0	•	e of the Investigation				
	3.1	Overview of Site Investigation				
	3.2	Scope of Work				
	3.3	Media Investigated	5			
	3.4	Phase One Conceptual Site Model	5			
		3.4.1 Buildings and Structures	6			
		3.4.2 Water Bodies and Groundwater Flow Direction	6			
		3.4.3 Water Bodies and Groundwater Flow Direction	6			
		3.4.4 Water Wells	6			
		3.4.5 Potentially Contaminating Activity	6			
		3.4.6 Areas of Potential Environmental Concern	8			
		3.4.7 Underground Utilities	8			
		3.4.8 Subsurface Stratigraphy	8			
		3.4.9 Uncertainty Analysis	8			
	3.5	Impediments	g			
3	Inves	stigation Method	10			
	3.4	General				
	3.5	Borehole Drilling				
	3.6	Soil Sampling				
	3.7	Field Screening Measurements				
	3.8	Groundwater: Monitoring Well Installation	11			
	3.9	Groundwater: Field Measurement and Water Quality Parameters1				

	3.10	Groundwater: Sampling	12	
	3.11	Analytical Testing	12	
	3.12	Residue Management	12	
	3.13	Elevation Surveying	12	
	3.14	Quality Assurance and Quality Control Measures	12	
4	Review	and Evaluation	14	
	4.4	Geology	14	
	4.5	Soil: Field Screening	14	
	4.6	Soil: Quality	14	
	4.7	Groundwater: Quality	15	
	4.8	Groundwater: Elevations and Flow Direction	15	
	4.9	Groundwater: Hydraulic Gradients	16	
	4.10	Grain Size Analysis	16	
	4.11	Quality Assurance and Quality Control Results	16	
5	Conclu	sions	17	
6	References			
7	General Limitations 1			

List of Figures

Figure 1 – Site Location Plan

Figure 2 – Conceptual Site Model

Figure 3 - Site Plan

Figure 4 – Cross Section Plan

Figure 5 – Soil Analytical Results

Figure 6 – Groundwater Analytical Results

Figure 7 - Cross-section A-A' and B-B' Analytical Results - PAH

Figure 8 - Cross-section A-A' and B-B' Analytical Results - Metals

List of Appendices

Appendix A: Figures

Appendix B: Borehole Logs

Appendix C: Analytical Summary Tables

Appendix D: Laboratory Certificates of Analysis

Executive Summary

EXP Services Inc. (EXP) was retained by MA Precision Holding Inc. to complete a Phase Two Environmental Site Assessment (ESA) for a residential property located at 116-118 Carruthers Avenue in Ottawa, Ontario, hereinafter referred to as the 'Site' or the 'Phase Two property'. At the time of the investigation, the Phase One property was developed with a two-storey, multi-unit residential apartment building with a gravel/paving stone parking lot and attached garage.

The objective of this Phase Two ESA was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP in June 2024. The Phase One ESA identified five (5) potentially contaminating activities (PCA) which contributed to the identification of five (5) APECs on the Phase Two property.

The Phase Two property use is currently residential and the proposed future land use residential. It is understood that the owner plans to construct a 4 storey – 19-unit residential building with a basement on the Phase Two property. It is understood that this report will be used for due diligence purposes in support of a City of Ottawa site plan application. A Record of Site Condition (RSC) is not required as a change in land use is not anticipated.

The Phase Two property has the municipal address of 116-118 Carruthers Avenue in Ottawa, Ontario. The Phase Two property is rectangular in shape and has an area of approximately 0.045 hectare (0.112 acre).

The Phase Two property is located on the west side of Carruthers Avenue, south of the intersection with Lyndale Avenue. The Site is located in an urban residential neighbourhood which is serviced by municipal water and sanitary systems, as well as the electrical supply networks. Natural gas service is not connected to the Site. In accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property. Based on a review of historical information in the Phase One ESA, the Phase Two property has been used as a residential property since 1912 and was used as a grocery store in the early 1900s.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not considered an environmentally sensitive site. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is considered to be a shallow soil property as defined in section 43.1 of O.Reg 153/04, as more than 1/3 of the Phase Two property has less than 2 metres of soil overlying bedrock.

Bedrock in the general area is part of the Ottawa Formation and is comprised of limestone at shallow depths. With respect to surficial geology, beneath any fill, the Phase Two property is underlain by till, sand and/or silt material.

The regional groundwater flow direction is inferred to be in the northwesterly direction towards the Ottawa River, which is located approximately 500 metres northwest of the Site.

The Phase Two ESA investigative activities consisted of drilling four (4) boreholes (BH24-1 to BH24-4) to facilitate the collection of soil samples for visual inspection and chemical analysis. Two (2) of the boreholes were instrumented with monitoring wells (BH/MW 24-1 and BH/MW24-3) to facilitate the collection of groundwater samples. The stratigraphy of the Site consists of granular fill between 0.51 and 0.74 metres in thickness underlain by limestone bedrock.

In accordance with the scope of work, chemical analyses were performed on select soil samples recovered from the boreholes. One worst case soil sample was collected from three (3) of the boreholes (BH24-1, BH24-2 and BH24-3) and one field duplicate were submitted for laboratory analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic compounds (PAH) and metals in the areas of the five (5) APECs on the Phase Two property. All soil samples were considered surficial soil as they were all collected from less than 2 metres below ground surface (mbgs). Exceedances to MECP Table 7 SCS in the soil samples are summarized in the table below.

Table EX-1 – Exceedances in Soil Samples Compared to MECP Table 7 SCS

	Parameters	Provincial
		Sample Which Exceeds MECP Table 7 SCS
0.0 - 1 - 1 -	Barium	BH24-1-S1, DUP (Duplicate of BH24-1-S1)
Metals	Copper	BH24-1-S1, DUP (Duplicate of BH24-1-S1)
	Lead	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-3-S1
	Acenaphthene	BH24-2-S1
	Benzo(a)anthracene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1
	Benzo(a)pyrene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1
PAH	Benzo(b)fluoranthene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1
	Benzo(k)fluoranthene	BH24-2-S1
	Dibenzo(a,h)anthracene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1
	Fluoranthene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1
	Indeno(1,2,3-cd)pyrene	BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1

Two (2) groundwater samples and one (1) field duplicate were submitted for laboratory analysis of PHC, VOC, metals and PAH. In accordance with Regulation 153/04, the results were compared to the MECP Table 7 SCS for residential land use.

All groundwater samples meet the MECP Table 7 SCS with the exception of BH/MW24-1 where chloroform exceeded the MECP Table 7 SCS.

The chloroform exceedance from BH/MW24-1 can be attributed to the use of the municipal water system during bedrock coring. The concentration of chloroform in BH/MW24-1 is possibly sourced from the municipal water supply, as chloroform is often an additive to treated water. Therefore, it is assumed that chloroform is unlikely to be present in the groundwater on the Site at concentrations which exceed the Table 7 SCS.

Based on these results, one or more of the PCAs identified in the Phase One ESA have resulted in soil impacts on the Phase Two property. Soil remediation is recommended during site redevelopment. None of the PCAs have resulted in groundwater impacts on the Phase Two property.

The Qualified Person who oversaw this investigation can confirm that the soil characterization and Phase Two Environmental Site Assessment were conducted per the requirements of Ontario Regulation 406/19, Ontario Regulation 153/04, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

1.0 Introduction

EXP Services Inc. (EXP) was retained by MA Precision Holding Inc. to complete a Phase Two Environmental Site Assessment (ESA) for a residential property located at 116-118 Carruthers Avenue in Ottawa, Ontario, hereinafter referred to as the 'Site' or the 'Phase Two property'. At the time of the investigation, the Phase One property was developed with a two-storey, multi-unit residential apartment building.

The objective of this Phase Two ESA was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP in June 2024. The Phase One ESA identified thirteen (13) potentially contaminating activities (PCA) which led to the identification of five (5) APECs on the Phase Two property.

The Phase Two property use is currently residential and the proposed future land use residential. It is understood that the owner plans to construct a 4 storey – 19-unit residential building with a basement on the Phase Two property. It is understood that this report will be used for due diligence purposes in support of a City of Ottawa site plan application. A Record of Site Condition (RSC) is not required as a change in land use is not anticipated.

This report has been prepared in accordance with Ontario Regulation 153/04, the general requirements outlined in CSA Standard Z769-00 (2013) and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property has the municipal address of 116-118 Carruthers Avenue in Ottawa, Ontario. At the time of the investigation, the Phase Two property was occupied by a two-storey, multi-unit residential apartment building and gravel or paving stone parking areas. The Phase Two property is rectangular in shape and has an area of approximately 0.045 hectare (0.112 acre). The site location is shown in the Site Location Plan as Figure 1 in Appendix A and a Site Plan is provided as Figure 3 in Appendix A.

The legal description of the Phase Two property is LT 15, PL 35, W CARRUTHERS AV; OTTAWA/NEPEAN SUBJECT TO AN EASEMENT AS IN CR684686. The Property Identification Number (PIN) is 040960138. The approximate Universal Transverse Mercator (UTM) coordinates for the Phase One property are Zone 18, 442890 m E and 5028423 m N. The UTM coordinates are based on measurements from Google Earth Pro, published by the Google Limited Liability Company (LLC). The accuracy of the centroid is estimated to be less than 10 m.

Based on a review of historical information in the Phase One ESA, the Phase Two property has been used as a residential property since 1912 and was used as a grocery store in the early 1900s.

1.2 Property Ownership

The owner of the Phase Two property is MA Precision Holding Inc according to Geowarehouse. The Phase Two property was transferred to the current owner in 2022. Authorization to proceed with this investigation was provided by Mr. Majid Ahangaran. Contact information for Mr. Ahangaran is MA Precision Holding Inc., 116-118 Carruthers Avenue, Ottawa, Ontario K2V 0L3.

1.3 Current and Proposed Future Use

The Phase Two property use is residential, and the proposed future use is residential. Since a change in land use is not anticipated, an RSC is not required.

2

MA Precision Holding Inc.
Phase Two Environmental Site Assessment
116-118 Carruthers Ave, Ottawa, Ontario
OTT-24006545-B0
November 20, 2024

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Ministry of the Environment, Conservation and Parks (MECP) Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

For assessment purposes, EXP selected the Table 7 Generic SCS in a non-potable groundwater condition for residential/parkland/institutional property use based on the following factors:

- Bedrock is less than 2 metres below ground surface across more than 1/3 of the Phase Two property;
- The Phase Two property is not located within 30 metres of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- The Phase Two property is serviced by the City of Ottawa's water distribution system and the surrounding properties are municipally serviced;
- The Phase Two property's land use is residential, and the proposed future land use is residential; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property is located on the west side of Carruthers Avenue, south of the intersection with Lyndale Avenue. At the time of the investigation, the Site was improved with a two-storey, multi-tenant building with associated parking lot and attached garage. The Site is found in an urban residential neighbourhood which is serviced by municipal water and sanitary systems, as well as the electrical supply networks. Natural gas service is not connected to the Site. In accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not considered an environmentally sensitive site. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is considered to be a shallow soil property as defined in section 43.1 of O.Reg 153/04, as more than 1/3 of the Phase Two property has less than 2 metres of soil overlying bedrock.

Bedrock in the general area is part of the Ottawa Formation and is comprised of limestone at shallow depths. With respect to surficial geology, beneath any fill, the Phase Two property is underlain by till, sand and/or silt material.

The regional groundwater flow direction is inferred to be in the northwesterly direction towards the Ottawa River, which is located approximately 500 metres northwest of the Site.

2.2 Past Investigations

1. EXP Services Inc. prepared a report entitled *Phase One Environmental Site Assessment, 116-118 Carruthers Avenue, Ottawa, Ontario* dated June 2024.

The Phase One study area included the entire Phase Two property as well as properties within 250 metres of the Phase Two property. Based on the results of the Phase One ESA, EXP identified one (1) PCA on the Phase Two property and twelve (12) PCAs in the Phase One study area. Five (5) of the thirteen (13) PCAs identified were determined to contribute to an APEC on the Phase Two property. A summary is provided below in Table 2.1.

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former rail line Along Scott Street (90 m south)	Southern extent of Phase One property	PCA 2: PCA #46 – Rail yards, tracks and spurs	Off-site	Metals, petroleum hydrocarbons (PHC), volatile organic compounds (VOC)s, polycyclic aromatic compounds (PAH)	Groundwater and soil at water table
2. Current automotive garage located 30 m southwest at 195 Hinchey Ave.	Southwestern extent of the Phase One property	PCA 6: PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-site	Metals, PHC, VOCs	Groundwater and soil at water table

Table 2.1: APECs Identified in the Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
3. Furnace oil spill from AST at 185 Hinchey Ave. 10 m to the west	Western extent of the Phase One property	PCA 10: PCA# Other – Spills, PCA #28 – Gasoline and associated products storage in fixed tanks	Off-site	PHC, benzene, toluene, ethylbenzene and toluene (BTEX)	Groundwater and soil at water table
4. Furnace oil spill from AST at 129 Carruthers Ave. (30 m southeast)	Southeastern extent of the Phase One property	PCA 11: PCA# Other – Spills, PCA #28 – Gasoline and associated products storage in fixed tanks	Off-site	РНС, ВТЕХ	Groundwater and soil at water table
5. Fill of unknown quality	Entire Phase One property	PCA 13: PCA# 30 – Importation of fill of unknown quality	On-site	Metals, PHC, VOC, PAH	Soil and groundwater

The locations of the PCA are shown on Figure 2 in Appendix A. The locations of the APEC are shown on Figure 3 in Appendix A. The Phase One ESA was conducted per the requirements of O.Reg 153/04, as amended, and in accordance with generally accepted professional practices.

2. EXP Services Inc. prepared a report entitled *Geotechnical Investigation – Proposed Residential Development – 116 & 118 Carruthers Avenue, Ottawa, Ontario* dated October 2024.

The geotechnical investigation was completed in conjunction with this Phase Two ESA for 116-118 Carruthers Avenue in Ottawa, Ontario. The geotechnical investigation consisted of drilling four (4) boreholes in conjunction with the Phase Two ESA in the accessible area of the Site to document subsurface conditions of the Site. The subsurface conditions were comprised of granular fill underlain by shallow limestone bedrock contacted at 0.43 to 0.74 metres below ground surface. The borehole logs for the Geotechnical Investigation and this Phase Two ESA are provided in Appendix B.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the APEC identified in the previous Phase One ESA prepared by EXP.

3.2 Scope of Work

The scope of work was as follows:

- Ensuring the work area was free from underground utilities by retaining a third-party professional locater (USL-1);
- Advancing four (4) boreholes (BH24-1 to BH24-4) on the Phase Two property and completing two (2) of them as
 monitoring wells to address the soil and groundwater quality located within the five (5) APECs identified on the
 Phase Two property;
- Collecting one (1) soil sample from boreholes BH24-1, BH24-2 and BH24-3 along with a field duplicate and submitting
 the samples for laboratory analysis of PHC, VOC, metals and PAH in accordance with O.Reg 153/04;
- Collecting one (1) groundwater sample from each monitoring well along with a field duplicate and submitting the samples for laboratory analysis of PHC, VOC, metals and PAH;
- Comparing the results of the soil and groundwater laboratory analysis to applicable criteria, as set out by the Ontario MECP; and
- Preparing a report summarizing the results of the Phase Two ESA.

This report has been prepared in accordance with Ontario Regulation 153/04, the general requirements outlined in CSA Standard Z769-00 (2013) and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater quality on the Phase Two property. There are no waterbodies on the Phase Two property, therefore sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. Figure 2 in Appendix A shows the PCAs within the Phase One study area. The Phase One study area includes all land within a 250-metre radius of the Site.

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activities have occurred within the Phase One study area and may have had aversely affected the Phase Two property. The CSM showing general site features and APECs is provided in Figures 2 and 3 in Appendix A.

3.4.1 Buildings and Structures

A two-storey, multi-tenant residential building covers the majority of the Site. The building has slab-on-grade construction with no basement. An attached, concrete block garage is located on the western portion of the Site. The remainder of the Phase Two property consists of gravel or paving stone parking areas.

3.4.2 Water Bodies and Groundwater Flow Direction

The closest body of water is the Ottawa River located 500 m to the northwest. The regional groundwater flow direction is inferred to be in the northwesterly direction towards this river.

3.4.3 Water Bodies and Groundwater Flow Direction

There are no areas of natural significance (ANSI) within the Phase One study area.

3.4.4 Water Wells

Several records for monitoring wells were identified in the Phase One study area including several at Laroche Park (former landfill) to the east and one each at 52 Carruthers and 55 Carruthers as part of other investigations.

Generally, the overburden consists of sand/gravel fill or silt over limestone bedrock at 0.61 - 1.5 mbgs.

No potable water wells were identified in the Phase One study area. The Phase Two property and surrounding area is serviced by municipal drinking water.

3.4.5 Potentially Contaminating Activity

One (1) PCA was identified on the Phase One property and twelve (12) PCAs were identified in the Phase One study area. Details regarding the PCAs are listed below in Table 3.1.

Table 3.1 - Details of PCAs Identified in the Phase One ESA

EXP PCA#	Location of PCA	Potentially Contaminating Activity (PCA)	Description	Rationale
PCA 1	55 Carruthers Ave. (170 m northeast)	PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Former auto repair garage in operation from 1960s to 2000s. RSC filed in 2017.	Due to the large intervening distance and downgradient direction to the Phase One property, this PCA does not contribute to an APEC.
PCA 2	Along Scott Street (90 m south)	PCA #46 – Rail yards, tracks and spurs	Canadian Pacific Railway in operation from the 1910's – 1960's	Due to upgradient location in relation to the Phase One property and operational status in the early 1900s, this PCA represents an APEC (APEC 1).
PCA 3	90 Bayview Drive (220 m east)	PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems PCA#59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	Lumber yard from from 1900's to 1930s and contractor supply yard from 1940s to present	Due to the large intervening distance, this PCA does not contribute to an APEC.

EXP PCA#	Location of PCA	Potentially Contaminating Activity (PCA)	Description	Rationale
PCA 4	80 Bayview Drive (220 m northeast)	PCA #28 – Gasoline and associated products storage in fixed tanks PCA#34 – Metal fabrication	Metal fabrication in operation during the 1940s to 1950s	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 5	Laroche Park (Scott St.) – 165 m east	PCA #58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Former land fill in operation from 1900s to 1920s	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 6	195 Hinchey Ave. (30 m southwest)	PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Current automotive garage in operation since 1971.	Due to the proximity to the Phase One property, this represents an APEC to the site (APEC 2).
PCA 7	140/150 Hinchey Ave. (180 m northwest)	PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Current automotive garage in operation since at least 1958.	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 8	1426 Scott St. (175 m southeast)	PCA #28 – Gasoline and associated products storage in fixed tanks	Former retail fuel outlets in operation from 1960s to 2000s	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 9	1480-1484 Scott St. (185 m south)	PCA #28 – Gasoline and associated products storage in fixed tanks PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Former retail fuel outlets in operation from 1960s to 2000s Current automotive repair shop in operation sine 1960s	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 10	185 Hinchey Ave.	PCA# Other – Spills PCA #28 – Gasoline and associated products storage in fixed tanks	Furnace oil spill to the earthen basement ground in 1999 due to AST leak. Quantity of spill is unknown.	Due to the proximity to the Phase One property, this represents an APEC to the site (APEC 3).
PCA 11	129 Carruthers Ave.	PCA# Other – Spills PCA #28 – Gasoline and associated products storage in fixed tanks	Furnace oil spill to the earthen basement ground in 1988 due to AST leak. Quantity of spill was 200 L.	Due to the proximity to the Phase One property, this represents an APEC to the site (APEC 4).
PCA 12	Intersection of Stonehurst St. and Scott St.	PCA #46 – Rail yards, tracks and spurs	Former rail yard in operation from at least 1950s to 1970s	Due to the large intervening distance, this PCA does not contribute to an APEC.
PCA 13	Phase One property	PCA # 30 – Importation of fill material of unknown quality	Building was first developed pre-1900	Due to unknown nature of fill, this represents an APEC (APEC 5)

It is possible that the former rail line (PCA 2), current automotive garage (PCA 6), previous nearby furnace oil spills (PCA 10 and 11) and unknown quality of on-site fill material (PCA 13) may have impacted the soil and/or groundwater conditions on the Phase One property and were considered to contribute to APECs.

3.4.6 Areas of Potential Environmental Concern

The details regarding the APECs identified on the Phase Two property are described in Table 3.4.6 below.

Table 3.4.6 - Details of APECs Identified in the Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former rail line Along Scott Street (90 m south)	Southern extent of Phase One property	PCA 2: PCA #46 – Rail yards, tracks and spurs	Off-site	Metals, PHC, VOCs, PAH	Groundwater and soil at water table
2. Current automotive garage located 30 m southwest at 195 Hinchey Ave.	Southwestern extent of the Phase One property	PCA 6: PCA#52 Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems	Off-site	Metals, PHC, VOCs	Groundwater and soil at water table
3. Furnace oil spill from AST at 185 Hinchey Ave. 10 m to thewest)	Western extent of the Phase One property	PCA 10: PCA# Other – Spills, PCA #28 – Gasoline and associated products storage in fixed tanks	Off-site	PHC, benzene, toluene, ethylbenzene and toluene (BTEX)	Groundwater and soil at water table
4. Furnace oil spill from AST at 129 Carruthers Ave. (30 m southeast)	Southeastern extent of the Phase One property	PCA 11: PCA# Other – Spills, PCA #28 – Gasoline and associated products storage in fixed tanks	Off-site	РНС, ВТЕХ	Groundwater and soil at water table
5. Fill of unknown quality	Entire Phase One property	PCA 13: PCA# 30 – Importation of fill of unknown quality	On-site	Metals, PHC, VOC, PAH	Soil and groundwater

3.4.7 Underground Utilities

The Phase One property is serviced by buried municipal sewage and water systems, and overhead electricity. No natural gas service is provided to the Site as the site building is heated via electric baseboards.

3.4.8 Subsurface Stratigraphy

Based on review of the above information, the subject Site is in the physiographic region known as the St. Lawrence Lowlands. The bedrock in the general area is part of the Ottawa Formation and is composed of limestone at shallow depths. With respect to surficial geology, beneath any fill, the Phase One property is underlain by till, sand and/or silt material.

The local topography of the Site relatively flat, while the area has a slight slope down to the north.

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase One study area may have adversely affected the Phase One property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

9

MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0 November 20, 2024

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase One Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Impediments

There were not any impediments encountered that would impact the outcome of this Phase Two ESA.

3 Investigation Method

3.4 General

The current investigation was performed following requirements provided in Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

3.5 Borehole Drilling

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. USL-1, a private utility locating contractor, was also retained to clear the individual borehole locations.

The Phase Two ESA investigative activities consisted of advancing four (4) boreholes (BH24-1 to BH24-4) to facilitate the collection of soil samples for visual inspection and chemical analysis. Two (2) of the boreholes were instrumented with monitoring wells (BH/MW 24-1 and BH/MW24-3) to facilitate the collection of groundwater samples.

The drilling was completed on August 20 and 21, 2024, by Ohlmann Geotechnical Services Inc. (OGS), a licenced well contractor. OGS advanced four (4) boreholes across the Phase Two property, using a manual drilling technique. The boreholes were terminated at depths between 0.43 and 4.5 metres below ground surface (mbgs). Two (2) of the boreholes were completed with monitoring wells.

EXP staff continuously monitored the drilling activities to log the stratigraphy observed, to record the depth of soil sample collection, to record total depths of the boreholes, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix B. Nitrile gloves (i.e., one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during drilling activities.

The locations of boreholes/monitoring wells are shown on Figure 3 in Appendix A.

3.6 Soil Sampling

Soil samples for geologic characterization were collected on a continuous basis in the overburden materials using 3 cm diameter, 1.2 m long, dual-tube sampling system advanced into the subsurface using a weighted hammer. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix B.

Soil samples identified for possible laboratory analysis were collected from the samplers and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Paracel Laboratories Ltd. (Paracel) of Ottawa, Ontario. The samples were transported/submitted within 72 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

3.7 Field Screening Measurements

Soil samples were placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered

in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of petroleum vapour concentrations in the soil samples collected during the drilling investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within ±10% of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than ±10% of the standard gas value then the instrument is re-calibrated prior to use.

The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix B.

Groundwater: Monitoring Well Installation

Monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended). The monitoring wells consisted of a 32 mm diameter Schedule 40 PVC screen that was approximately 1.5 - 3.0 m long and a 32 mm diameter Schedule 40 PVC riser pipe that was approximately 1.5 – 2.5 m long. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with flush-mounted casings.

Following the installation of the monitoring wells they were developed by purging water with a dedicated inertial pump and foot valve until it became clear or the well went dry.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g., riser pipe and well screens) with factory machined threaded flush coupling joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces; and
- Cleaning or disposal of drilling equipment between sampling locations.

Details of the monitoring well installations are shown on the borehole logs provided in Appendix B.

3.9 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.10

EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

3.10 Groundwater: Sampling

Groundwater samples from all monitoring wells were collected via a low flow sampling technique using a Horiba U-52 multi probe water quality meter. The Horiba probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

Two (2) groundwater samples and one (1) field duplicate were collected as part of the groundwater monitoring program that were submitted to Paracel for chemical analysis of PHC, VOC, PAH and metals. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 48 hours of collection with a chain of custody.

3.11 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil samples was Paracel Laboratories Ltd (Paracel). Paracel is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

3.12 Residue Management

The soil cuttings from drilling activities were used to backfill boreholes that were not completed as monitoring wells. The purged water was disposed of to the ground as there was no evidence of contamination in the groundwater.

Water used to clean drilling equipment, including augers and split spoon samplers, as drilling progressed was disposed of by the driller at their facility.

3.13 Elevation Surveying

An elevation survey was conducted by EXP. The top of casing and ground surface elevation of each monitoring well location was surveyed relative to a geodetic benchmark. The Universal Transverse Mercator (UTM) coordinates of each borehole and monitoring well were also recorded so that their locations could be plotted accurately.

3.14 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice prior to and during transportation to the contract laboratory, Paracel Laboratories Ltd. (Paracel). Paracel is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing field duplicate samples to ensure analytical precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody, to ensure the integrity of the samples is maintained.

Paracel's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

Review and Evaluation 4

4.4 Geology

The geology generally consisted of a granular fill layer was contacted at the surface of BH24-1, BH24-3 and BH24-4 and underlying the paving stone at BH24-2. The granular fill layer consisted of silty sand with gravel and was present from ground surface to depths ranging from 0.43 to 0.74 mbgs. The presence of the limestone bedrock was confirmed in BH24-1 and BH24-3 which was present until the boreholes were terminated at depths of 4.2 and 4.5 mbgs, respectively.

The grain size analysis showed that the fill material was coarse grained.

No native material was present on the Phase Two property.

Field observations are documented on the borehole logs provided in Appendix B and the geological cross sections in Figures 7 and 8 provide an overview of the Phase Two property stratigraphy.

4.5 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements while drilling progressed is described in Section 4.4.

Petroleum vapours were non-detectable. Field screening data is presented in the borehole logs in Appendix B.

4.6 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on select soil samples recovered from the boreholes. One soil sample was collected from three (3) of the boreholes (BH24-1, BH24-2 and BH24-3) and were submitted for laboratory analysis of PHC, VOC, PAH and metals in the areas of all five (5) APECs on the Phase Two property. All soil samples were considered surficial soil as they were all collected from less than 2 mbgs.

The three (3) soil samples and one (1) duplicate sample meet the MECP Table 7 SCS for PHC and VOC. Each sample exceeds the MECP Table 7 SCS for metals and/or PAH parameters. The Table 7 SCS exceedances in the soil samples collected are summarised below in Table 5.1.

Provincial Parameters Sample Which Exceeds MECP Table 7 SCS Barium BH24-1-S1, DUP (Duplicate of BH24-1-S1) Metals BH24-1-S1, DUP (Duplicate of BH24-1-S1) Copper Lead BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-3-S1 BH24-2-S1 Acenaphthene Benzo(a)anthracene BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 Benzo(a)pyrene Benzo(b)fluoranthene BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 PAH Benzo(k)fluoranthene BH24-2-S1 Dibenzo(a.h)anthracene BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 Fluoranthene BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 BH24-1-S1, DUP (Duplicate of BH24-1-S1), BH24-2-S1 Indeno(1,2,3-cd)pyrene

Table 5.1: Summary of Soil Exceedances

November 20, 2024

MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0

The analytical results for PHC, VOC, metals and PAH in the soil is provided on Figures 5, 7 and 8 in Appendix A and in Tables 1 to 4 in Appendix C. The laboratory certificate of analysis is provided in Appendix D.

4.7 Groundwater: Quality

Following their installation, BH/MW24-1 and BH/MW24-3 were developed by purging water with an inertial pump and foot valve until the water became clear.

All groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Two (2) groundwater samples and one (1) field duplicate were submitted for laboratory analysis of PHC, VOC, metals and PAH. In accordance with Regulation 153/04, the results were compared to the MECP Table 7 SCS for residential land use.

All groundwater samples meet the MECP Table 7 SCS with the exception of BH/MW24-1 where chloroform exceeded the MECP Table 7 SCS.

The chloroform exceedance from BH/MW24-1 can be attributed to the use of the municipal water system during bedrock coring. The concentration of chloroform in BH/MW24-1 is possibly sourced from the municipal water supply, as chloroform is often an additive to treated water. Therefore, it is assumed that chloroform is unlikely to be present in the groundwater on the Site at concentrations which exceed the Table 7 SCS.

The analytical results for groundwater are provided on Figure 6 in Appendix A and in Tables 5 to 8 in Appendix C. The Certificate of Analysis is provided in Appendix D.

4.8 Groundwater: Elevations and Flow Direction

On August 29 and September 6, 2024, the two (2) monitoring wells were inspected for general physical condition, groundwater depth, the presence of non-aqueous phase liquid and petroleum vapour. An elevation survey was conducted using a geodetic benchmark.

Groundwater monitoring and elevation data are provided below in Table 5.2.

Table 5.2 Groundwater Elevation

Monitoring Well ID	Grade Elevation (m)	Top of Casing Elevation (m)	Screen Depth (mbgs)	Petroleum Vapour (ppmv)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbgs)	Groundwater Elevation (m)
BH/MW24-1	61.88	61.80	2.4 to 4.2	ND	N/A	1.89	59.99
BH/MW24-3	62.52	62.45	1.5 to 4.5	ND	N/A	2.03	60.49

Notes: LNAPL – light non-aqueous phase liquid ppmv – parts per million by volume

ND – non-detectable

m – metres

N/A – not applicable

mbgs - metres below ground surface

Groundwater was only encountered in two (2) of the boreholes. Therefore, groundwater elevation was only obtained for the two (2) monitoring wells installed. Without a third elevation, the groundwater flow direction cannot be determined. However, it is inferred that the groundwater flow direction is to the northwest towards the Ottawa River. Groundwater elevations are shown on Figure 3 in Appendix A.

4.9 **Groundwater: Hydraulic Gradients**

Hydraulic conductivity testing was not conducted during this investigation. The water table is found within the bedrock and not in the surficial soil, so soil is not anticipated to be excavated at water table depth.

4.10 **Grain Size Analysis**

The ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes divides soils into three major categories: coarse grained, fine-grained and highly organic. Visual classification is not sufficiently accurate to provide exact grain sizing.

Grain size analysis was conducted on one (1) composite samples of the granular fill which was combined from all four (4) boreholes to determine the soil classification. Based on the results of the grain size analysis, 87 % of the granular fill was classified as gravel and sand, with 13% being silt and clay. Based on these results, the granular fill is coarse-grained.

The Laboratory Certificates of Analysis detailing the grain size analysis is included in Appendix D.

4.11 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the soil and groundwater at the site. QA/QC measures, included:

- Collection and analysis of field duplicate soil and groundwater samples to ensure sample collection precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and,
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Paracel's QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by Paracel. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Tables 10 through 15 in Appendix D. All of the RPD for soil and groundwater were either not calculable or within the applicable alert limits.

5 Conclusions

EXP Services Inc. (EXP) was retained by MA Precision Holding Inc. to conduct a Phase Two ESA at 116-118 Carruthers Avenue in Ottawa, Ontario. The objective of the Phase Two ESA was to assess the quality of the soil and groundwater conditions within the APEC identified in the previous Phase One ESA prepared by EXP in June 2024.

One soil sample was collected from three (3) of the boreholes (BH24-1, BH24-2, BH24-3 and BH24-4) and were submitted for laboratory analysis of PHC, VOC, PAH and metals in the areas of all five (5) APECs on the Phase Two property. The three (3) soil samples and one (1) duplicate sample meet the MECP Table 7 SCS for PHC and VOC. Each sample exceeds the MECP Table 7 SCS for various metals and/or PAH parameters.

Two (2) groundwater samples and one (1) field duplicate were submitted for laboratory analysis of PHC, VOC, metals and PAH. In accordance with Regulation 153/04, the results were compared to the MECP Table 7 SCS for residential land use. All groundwater samples meet the MECP Table 7 SCS with the exception of BH/MW24-1 where chloroform exceeded the MECP Table 7 SCS.

The chloroform exceedance from BH/MW24-1 can be attributed to the use of the municipal water system during bedrock coring. The concentration of chloroform in BH/MW24-1 is possibly sourced from the municipal water supply, as chloroform is often an additive to treated water. Therefore, it is assumed that chloroform is not present in the groundwater on the Site at concentrations which exceed the Table 7 SCS.

Based on these results, one or more of the PCAs identified in the Phase One ESA have resulted in soil impacts on the Phase Two property. Soil remediation is recommended during site redevelopment. None of the PCAs have resulted in groundwater impacts on the Phase Two property.

The Qualified Person who oversaw this investigation can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, and in accordance with generally accepted professional practices.

Devin Cloutier, B.Sc. Environmental Scientist

Earth and Environment

Chris Kimmerly, M. Sc., P. General PRACTISING MEMBER 0703

Christopher Thomas Kimmerly

Earth and Environment

Scott Lessard, B.Sc.
Project Manager

Earth and Environment

References 6

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Geotechnical Investigation, Proposed Residential Development, 116 & 118 Carruthers Avenue, Ottawa, Ontario, October 2024.
- EXP Services Inc., Phase One Environmental Site Assessment -116-118 Carruthers Avenue, Ottawa, Ontario, June 2024.
- Ontario Ministry of the Environment, Conservation and Parks, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use *Under Part XV.1 of the Environmental Protection Act*, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Rules for Soil Management and Excess Soil Quality Standards, 2020.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario Regulation 406/19, made under the *Environmental Protection Act*, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.

7 **General Limitations**

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or MA Precision Holding Inc. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.


EXP Services Inc.

MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0 November 20, 2024

Appendix A: Figures

116-118-Carruthers-Ave.dwg

PROPERTY BOUNDARY

(61.88)

BOREHOLE / MONITORING WELL NO. AND LOCATION BOREHOLE NO. AND LOCATION

GROUND SURFACE ELEVATION (m)

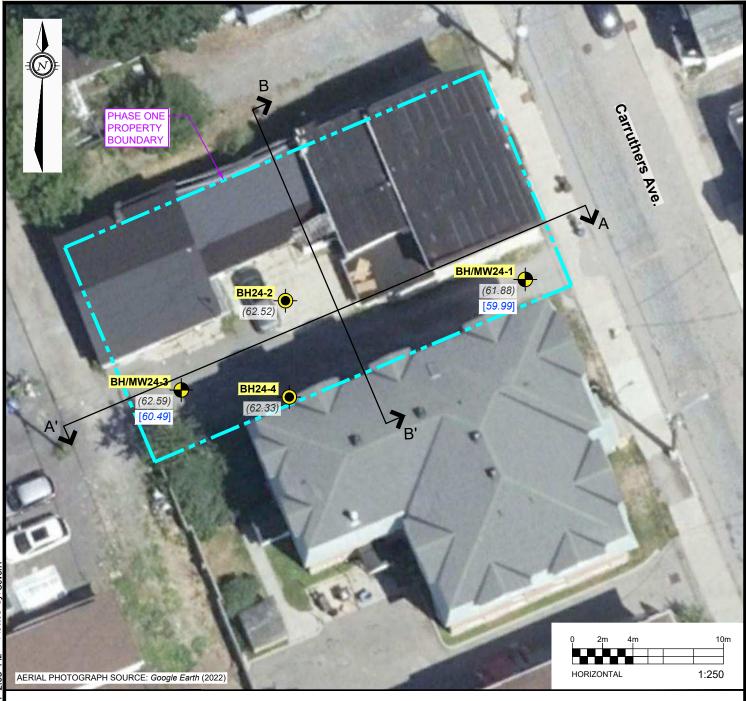
APEC 1 - due to former Rail Line to the South APEC 2 - due to current Automotive Garage located 30 meters South-West.

AREA OF POTENTIAL ENVIRONMENTAL CONCERN

APEC 4 - due to Furnace Oil Spill to the South-East

APEC 5 - Entire Phase One Property

APEC 3 - due to Furnace Oil Spill to the West.


[59.99] GROUNDWATER LEVEL (m)

EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

SEPTEMBER 2024		Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT	OTT-24006545-B0
SL / DC	CHECKED SL	PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT	1:250
DRAWN BY AS		PHASE ONE PROPERTY - SITE PLAN	FIG 3

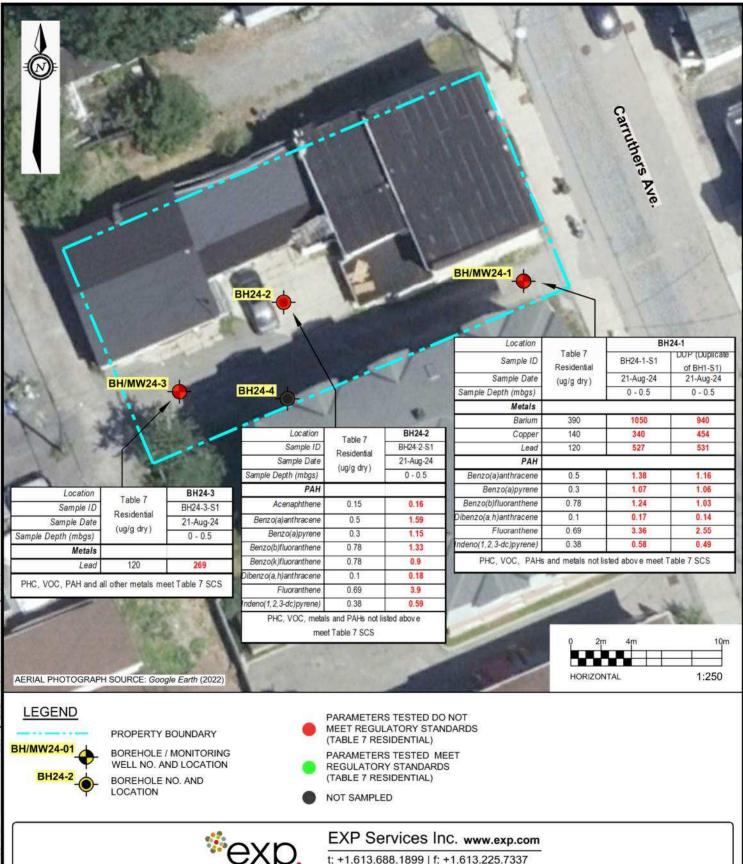
BH24-2

PROPERTY BOUNDARY

BOREHOLE / MONITORING WELL NO. AND LOCATION BOREHOLE NO. AND LOCATION (61.88) GROUND SURFACE ELEVATION (m)

[59.99] GROUNDWATER LEVEL (m)

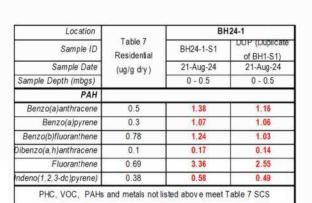
SECTION MARK



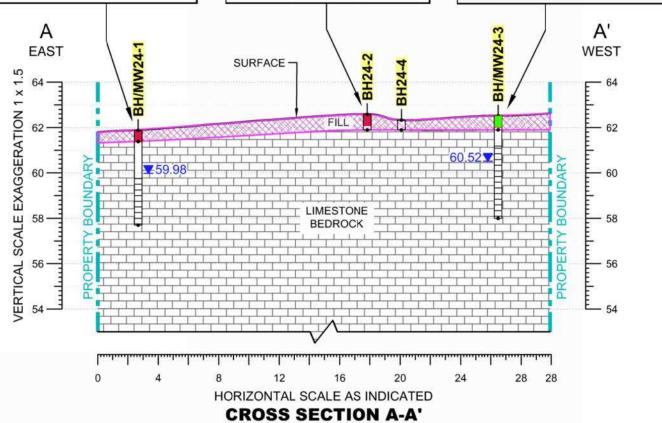
EXP Services Inc. www.exp.com

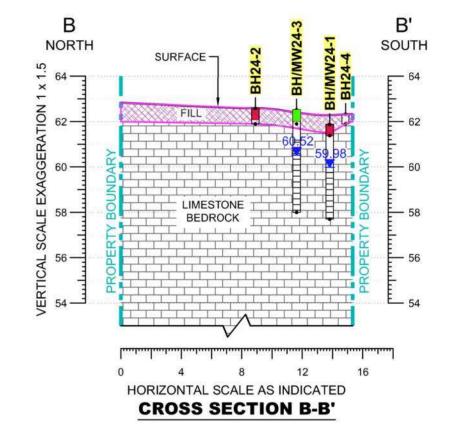
t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

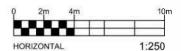
OCTOBER 2024		Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT	OTT-24006545-B0
SL / DC	CHECKED	PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT	1:250
DRAWN BY		CROSS SECTION PLAN	FIG 4


2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

OCTOBER 2024		Client	Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT		
DESIGN SL / DC	CHECKED	PROJECT:	PHASE TWO ENVIRONMENTAL SITE ASSESSMENT	1:250	
DRAWN BY	AS	TITLE: SOI	L ANALYTICAL RESULTS: PHC, VOC, PAH & METALS	FIG 5	


Ph-2_116-118-Carruthers-Ave.dwg Drawings\OTT-24006545-Saved: Oct 1 2024 1:38 PM 10





Location	Table 7 Residential (ug/g dry)	BH24-2
Sample ID		BH24-2-S1
Sample Date		21-Aug-24
Sample Depth (mbgs)		0 - 0.5
PAH		
Acenaphthene	0.15	0.16
Benzo(a)anthracene	0.5	1.59
Benzo(a)pyrene	0.3	1.15
Benzo(b)fluoranthene	0.78	1.33
Benzo(k)fluoranthene	0.78	0.9
Dibenzo(a,h)anthracene	0.1	0.18
Fluoranthene	0.69	3.9
Indeno(1, 2, 3-dc)pyrene)	0.38	0.59

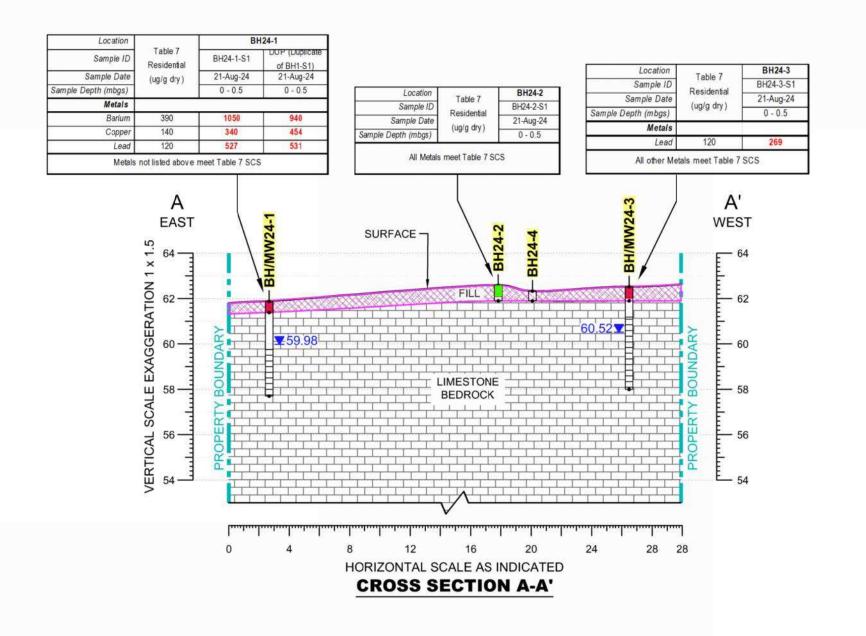
Location	Table 7 Residential (ug/g dry)	BH24-3
Sample ID		BH24-3-S1
Sample Date		21-Aug-24
Sample Depth (mbgs)		0 - 0.5

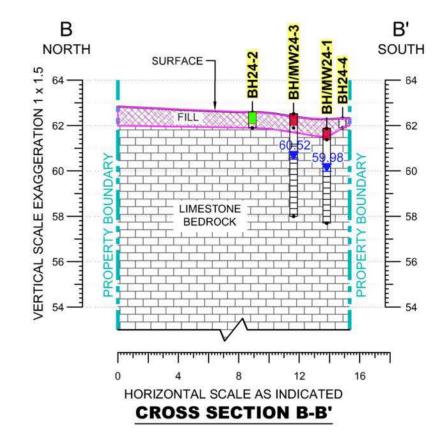
EXP Services Inc. www.exp.com
t: +1.613.688.1899 | f: +1.613.225.7337
2650 Queensview Drive, Suite 100
Ottawa, ON K2B 8H6, Canada

Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT

OCTOBER 2024
SESIGN CHECKED CK
PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

OCTOBER 2024


OCTOBER 2024
Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT
OTT-24006545-B0


SCANN BY
AS

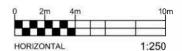
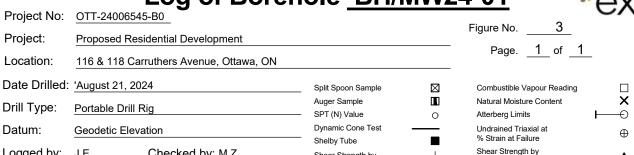
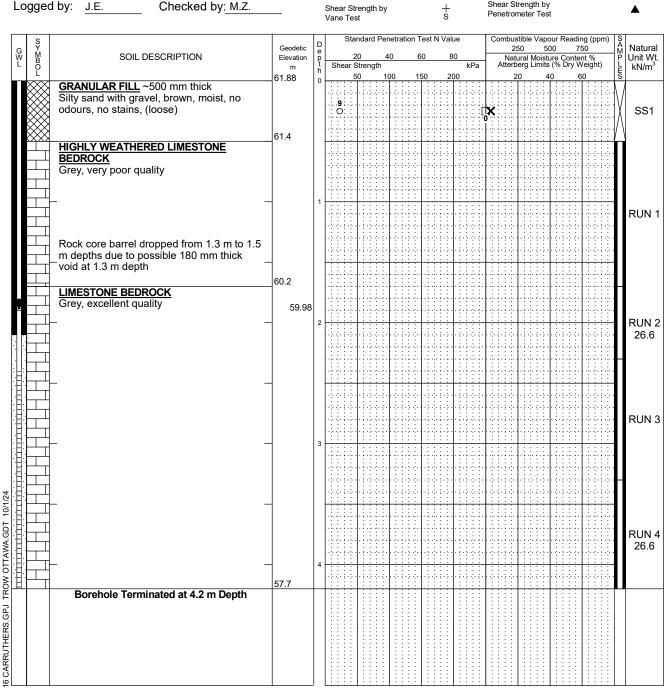

TITLE: CROSS SECTIONS A-A' & B-B', ANALYTICAL RESULTS - PAH

FIG 7

		EXP Services Inc. www.exp.com		
		t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada		
OCTOB	BER 2024	Client: MA Precision Holding Inc.116-118 Carruthers Ave.OTT	project no. OTT-24006545-B0	
SL / DC	CHECKED	PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 1:250		
DRAWN BY AS		TITLE ROSS SECTIONS A-A' & B-B', ANALYTICAL RESULTS - METALS	FIG 8	


EXP Services Inc.


MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0 November 20, 2024

Appendix B: Borehole Logs

Log of Borehole BH/MW24-01

NOTES:

BH LOGS-

- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well was installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- $5. Log\ to\ be\ read\ with\ EXP\ Report\ OTT-24006545-B0$

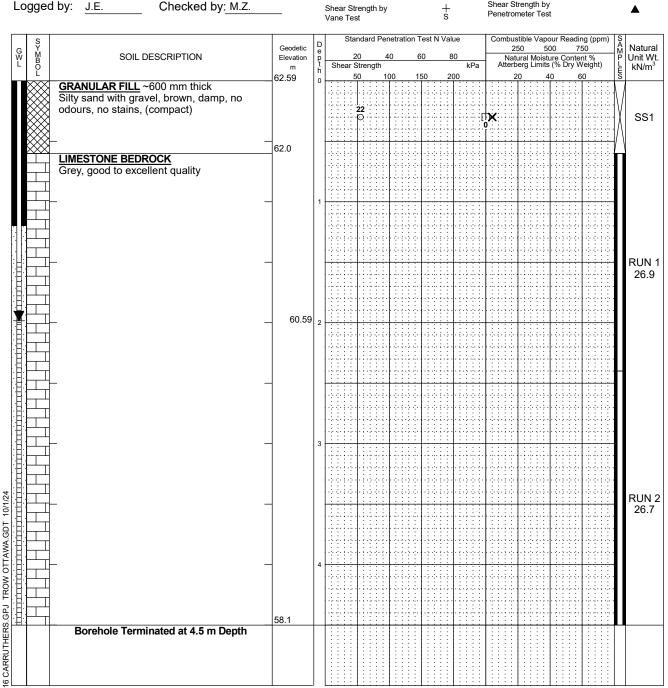
WATER LEVEL RECORDS		
Date	Water Level (m)	Hole Open To (m)
Sept. 6, 2024	1.9	

	CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	0.5 - 1.7	73	0	
2	1.7 - 2.3	96	93	
3	2.3 - 3.3	97	97	
4	3.3 - 4.2	94	94	

Log of Borohola BH21-02

	Log or	Dorellole <u>DHZ4-</u>	<u>02</u>	-X
Project No:	OTT-24006545-B0			
Project:	Proposed Residential Development		Figure No4_	
Location:	116 & 118 Carruthers Avenue, Ottawa,	ON	Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'August 20, 2024	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Portable Drill Rig	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	×
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	J.E. Checked by: M.Z.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•
S		Standard Penetration Test N Value	Combustible Vapour Reading (p	pm) Ş

S		Geodetic	D		Stan	dard P	enet	ration T	est l	N Val	ue		Com	nbus 25	tible Vap	our Read	ing (ppm) 750	S	Natural
S Y M B O L	SOIL DESCRIPTION	Elevation	D e p t h	Cha	20) trength	40	6	0	8	30	kPa		Natu	ıral Mois	ture Conte s (% Dry \	ent %	SAZP-IES	Unit Wt.
5		62.52	h 0	Sne	ar 50	-	100	15	50	2	00	кРа	A	2			60	Ē	kN/m°
	GRANULAR FILL Silty sand with gravel, brown, moist, no odours, no stains, (loose)			6								: : : : : : : : : : : : : : : : : : :) X						SS1
\bowtie		61.8					50 fc	or 127m	ım			÷÷				1		Н	SS2
	Casing Refusal at 0.7 m Depth																		


- NOTES:
 1. Boreh
 use b
 2. The b
 3. Field
 4. See N
 5. Log to Borehole data requires interpretation by EXP before use by others
 - 2. The borehole was backfilled upon completion.
 - 3. Field work supervised by an EXP representative.
 - 4. See Notes on Sample Descriptions
 - 5.Log to be read with EXP Report OTT-24006545-B0

WATER LEVEL RECORDS											
Date	Water Level (m)	Hole Open To (m)									

CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %								

Log of Borehole BH/MW24-03

Project No: OTT-24006545-B0 Figure No. Project: Proposed Residential Development Page. 1 of 1 Location: 116 & 118 Carruthers Avenue, Ottawa, ON Date Drilled: 'August 20, 2024 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: Portable Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by

NOTES:

BH LOGS-

- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well was installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- $5. Log \ to \ be \ read \ with \ EXP \ Report \ OTT-24006545-B0$

WATER LEVEL RECORDS											
Date	Water Level (m)	Hole Open To (m)									
Sept. 6, 2024	2.0										

	CORE DRILLING RECORD Run Depth Rec. RQD %												
Run	Depth	RQD %											
No.	(m)												
1	0.6 - 2.4	100	83										
2	2.4 - 4.5	100	98										

Log of Borehole BH24-04

	Log of Doi				-	ĸ
Project No:	OTT-24006545-B0				0/	•
Project:	Proposed Residential Development			Figure No. 6		
Location:	116 & 118 Carruthers Avenue, Ottawa, ON			Page1_ of _1_	_	
Date Drilled:	'August 20, 2024	Split Spoon Sample		Combustible Vapour Reading]
Drill Type:	Portable Drill Rig	Auger Sample SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	×	(
Datum:	Geodetic Elevation	Dynamic Cone Test — Shelby Tube	_	Undrained Triaxial at % Strain at Failure	•	€
Logged by:	J.E. Checked by: M.Z.	Shear Strength by Vane Test	_ + s	Shear Strength by Penetrometer Test	•	L

	S		Geodetic	D	S	Stanc	lard Per	netra	ation T	Test	N Va	alue		Co				our Readi		S	Notural
G W L	S M B O L	SOIL DESCRIPTION	Elevation	D e p t h		20	4	10	6	30		80			Nat	50 ural M	50 loistu	ure Conte (% Dry V	50 nt %	SAMPLIES	Natural Unit Wt. kN/m ³
	ŏ		m		Shea			00	4	-0		200	kPa	'						Ĕ	kN/m ³
\vdash	$\overline{\times}$	GRANULAR FILL	62.33	0		50	: : : : '	00	1:	50		200		 : :	::2	0		1 : : : :	30 : : : :	\	
	\bowtie	Silty sand with gravel, brown, moist, no			***	-	27	1			444	+:	****			1.7.0			12012	1\/	
[\bowtie	Silty sand with gravel, brown, moist, no odours, no stains, (compact)				: 1	27 O	1:		H		1:	·	İХ	::::					١X١	SS1
[\bowtie		61.9			:		1:	: : :	E	: : :	1:		Ĭ :: :	:::	1111	: : :	7 7 7 7 7	1::::::	V V	
lľ		Casing Refusal at 0.4 m Depth						Ħ		1:	: : :	T		1::	::	1 : :	:::				
					1 : : :	:		:	: : :	1:	: : :	1:	:::	: :	::	1 : :	: :	1111	1::::		
								:		H											
										1				: :							
					1 1 1	:	: : : :	:	: : :	1:	: : :	:	: : :	: :	::	: :	: :	::::	1 : : : :		
								H		H											
					:::	:		:	: : :	1:	: : :	:	: : :	: :	::	: :	: :	::::	1 : : : :		
								H		H		1		: :							
						:		:		1				: :							
								:		1:	: : :	:		: :	::						
								:		1				: :							
					1 1 1	:		:	: : :	1:	: : :	:	: : :	: :	::	: :	: :	::::	1 : : : :		
					:::	:		:	: : :	1:	: : :	:	: : :	: :	::	::	: :	1111	1 : : : :		
										H				: :							
					: : :	:	: : : :	:	: : :	1:	: : :	:	: : :	: :	::	: :	: :	::::	1 : : : :		
										H											
					:::	:	: : : :	:	: : :	1:	: : :	:	:::	: :	::	1 : :	: :	::::	1 : : : :		
								H													
					:::	:		:	: : :	1:	: : :	:	:::	: :	::	1 : :	: :	1111	1 : : : :		
								H		1				: :							
										1				: :	::						
										H				: :							
					1 : : :					1	: : :			: :	: :	1 : :	: :				
					: : :	:		:	: : :	1:	: : :	:	::::	: :	: :	: :	: :	1 1 1 1	: : : :		
										H											
					: : :	:	: : : :	:	: : :	1:	: : :	:	:::	: :	::	1 : :	: :	::::	1 : : : :		
								:						: :							
					1 1 1	:		:	: : :	1:	: : :	:	: : :	: :	::	: :	: :	::::	1 : : : :		
								H													
					1 : : :	:		:	: : :	1:	: : :	:	:::	: :	::	1 : :	: :	1111	1 1 1 1 1		
														: :							
														: :							
					; ; ;			:		1	: : :	:		: :	::	; ;					
								:		1				: :	::						
					: : : :			:		1			:::	: :	::	: :	: :		: : : :		
								:		1	: : :	:		: :	::						
								:		H				: :							
					; ; ;		: : : :	:	: : :	1:	: : :	:	:::	: :	: :	: :	: :		1::::		
								:		H				: :							
ı I				l	1:::	: 1	: : : :	1:	: : :	1 .	: : :	+ :		1					1	ıl	

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24006545-B0

WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DRILLING RECORD Run Depth % Rec. RQD %											
Run No.	Depth (m)	RQD %										
	, ,											

EXP Services Inc.

MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0 November 20, 2024

Appendix C: Analytical Summary Tables

EXP Services Inc. OTT-24006545-B0

Table 1 Soil Analytical Results - PHC 116-118 Carruthers, Ottawa

Parameter (μg/g)	Table 7'		BH24-2-S1	BH24-3-S1	DUP (duplicate of BH24-1- S1)
Sample Date (d/m/y)	Residential	21/08/24	21/08/24	21/08/24	21/08/24
Sample Depth (mbg)	Residential	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
PHC F ₁ (>C ₆ -C ₁₀)	55	<7	<7	<7	<7
PHC F ₂ (>C ₁₀ -C ₁₆)	98	<4	<4	<4	<4
PHC F ₃ (>C ₁₆ -C ₃₄)	300	22	35	50	22
PHC F ₄ (>C ₃₄ -C ₅₀)	2800	<6	<6	26	6

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded Concentration exceeds MECP Table 7 residential soil quality standard.

N/A Not analyzed

Table 2 Soil Analytical Results - VOC 116-118 Carruthers, Ottawa

Parameter (µg/g)	MECP Table 7 ¹	BH24-1-S1	BH24-2-S1	BH24-3-S1	DUP (duplicate of BH24-1-S1)
Sample Date (d/m/y)	D	21/08/24	21/08/24	21/08/24	21/08/24
Sample Depth (mbsg)	Residential	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Acetone	16	<0.5	<0.5	<0.5	<0.5
Benzene	0.21	<0.02	<0.02	0.10	<0.02
Bromodichloromethane	13	<0.05	<0.05	<0.05	<0.05
Bromoform	0.27	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05	<0.05	< 0.05	<0.05	< 0.05
Carbon Tetrachloride	0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	2.4	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	9.4	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	3.4	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	4.8	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.083	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	3.5	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cis-1,2-Dichloroethylene	3.4	< 0.05	< 0.05	< 0.05	< 0.05
Trans-1,2-Dichloroethylene	0.084	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cis-1,3-Dichloropropylene	0.05	< 0.05	< 0.05	< 0.05	<0.05
Trans-1,3-Dichloropropylene		<0.05	< 0.05	< 0.05	<0.05
Ethylbenzene	2	<0.05	< 0.05	<0.05	<0.05
Ethylene Dibromide	0.05	<0.05	<0.05	<0.05	<0.05
Hexane	2.8	<0.05	< 0.05	<0.05	<0.05
Methyl Ethyl Ketone	16	<0.50	< 0.50	< 0.50	<0.50
Methylene Chloride	0.1	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	1.7	<0.50	<0.50	<0.50	<0.50
Methyl-t-Butyl Ether	0.75	<0.05	<0.05	<0.05	<0.05
Styrene	0.7	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.058	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.28	<0.05	<0.05	<0.05	<0.05
Toluene	2.3	<0.05	<0.05	0.35	<0.05
1,1,1-Trichloroethane	0.38	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.061	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	4	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	0.02	<0.02	<0.02	<0.02	<0.02
Total Xylenes	3.1	<0.05	<0.05	0.26	<0.05

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA,

April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded Concentration exceeds MECP Table 7 residential soil quality standard.

NV No Value

Table 3 Soil Analytical Results - Metals 116-118 Carruthers, Ottawa

Parameter (μg/g)	MECP Table 7 ¹	BH24-1-S1	BH24-2-S1	BH24-3-S1	DUP (duplicate of BH24-1-S1)
Sample Date (d/m/y)	Residential	21/08/24	21/08/24	21/08/24	21/08/24
Sample Depth (mbsg)	Residential	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Antimony	7.5	6.7	<1.0	1.2	4.4
Arsenic	18	7.9	2.9	4.5	8.3
Barium	390	1050	120	118	940
Beryllium	4	0.6	<0.5	<0.5	0.6
Boron	120	7.2	7.9	8.4	7.4
Cadmium	1.2	<0.5	<0.5	0.7	0.5
Chromium	160	19.3	13.1	15.4	19.5
Cobalt	22	8.2	4.2	4.1	8.4
Copper	140	340	25	59.5	454
Lead	120	527	90.4	269	531
Molybdenum	6.9	2.1	<1.0	1.8	2.1
Nickel	100	20.6	11.5	12.3	21.8
Selenium	2.4	1.0	<1.0	<1.0	1.1
Silver	20	0.4	<0.3	<0.3	0.4
Thallium	1	<1.0	<1.0	<1.0	<1.0
Uranium	23	<1.0	<1.0	<1.0	<1.0
Vanadium	86	26.1	12.3	21.2	26.5
Zinc	340	247	78.1	96.2	292

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded Concentration exceeds MECP Table 7 residential soil quality standard.

EXP Services Inc. OTT-24006545-B0

Table 4 Soil Analytical Results - PAH 116-118 Carruthers, Ottawa

Parameter (µg/g)	MECP Table 7 ¹	BH24-1-S1	BH24-2-S1	BH24-3-S1	DUP (duplicate of BH24-1-S1)
Sample Date (d/m/y)	Residential	21/08/24	21/08/24	21/08/24	21/08/24
Sample Depth (mbsg)	Residential	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Acenaphthene	7.9	0.14	0.17	ND (0.02)	0.10
Acenaphthylene	0.15	0.11	0.16	0.05	0.14
Anthracene	0.67	0.44	0.58	0.08	0.38
Benzo[a]anthracene	0.5	1.38	1.59	0.25	1.16
Benzo[a]pyrene	0.3	1.07	1.15	0.21	1.06
Benzo[b]fluoranthene	0.78	1.24	1.33	0.27	1.03
Benzo[g,h,i]perylene	6.6	0.61	0.61	0.18	0.51
Benzo[k]fluoranthene	0.78	0.78	0.90	0.16	0.65
Chrysene	7	1.38	1.57	0.24	1.18
Dibenzo[a,h]anthracene	0.1	0.17	0.18	0.04	0.14
Fluoranthene	0.7	3.36	3.90	0.57	2.55
Fluorene	62	0.10	0.20	< 0.02	0.09
Indeno[1,2,3-cd]pyrene	0.38	0.58	0.59	0.14	0.49
1-Methylnaphthalene	0.99	<0.02	0.04	<0.02	<0.02
2-Methylnaphthalene	0.99	< 0.02	0.06	0.02	<0.02
Naphthalene	0.6	0.02	0.21	0.02	0.02
Phenanthrene	6.2	1.75	2.33	0.29	1.35
Pyrene	78	2.86	3.09	0.48	2.29

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded Concentration exceeds MECP Table 7 residential soil quality standard.

Table 5 Groundwater Analytical Results - PHC 116-118 Carruthers, Ottawa

Parameter (µg/L)	MECP	BH/MW24-3	DUP	BH/MW24-1
Sample Date (d/m/y)	Table 7 ¹	29/8/24	29/8/24	6/9/24
PHC F ₁ (C ₆ -C ₁₀)	420	<25	<25	<25
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<171	<100	<100
PHC F ₃ (>C ₁₆ -C ₃₄)	500	<171	<100	<100
PHC F ₄ (>C ₃₄ -C ₅₀)	500	<171	<100	<100

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil

Shaded Concentration exceeds MECP Table 7 groundwater quality standard.

Table 6 Groundwater Analytical Results - VOC 116-118 Carruthers, Ottawa

Parameter (µg/L)	MECP	BH/MW24-3	DUP	BH/MW24-1
Sample Date (d/m/y)	Table 7 ¹	29/8/24	29/8/24	6/9/24
Acetone	100,000	<5.0	<5.0	<5.0
Benzene	0.5	<0.5	<0.5	<0.5
Bromodichloromethane	67,000	<0.5	<0.5	0.5
Bromoform	5	<0.5	0.5	<0.5
Bromomethane	0.89	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.20	<0.2	<0.2	<0.2
Chlorobenzene	140	<0.5	<0.5	<0.5
Chloroform	2	8.0	8.0	9.8
Dibromochloromethane	65,000	<0.5	<0.5	<0.5
Dichlorodifluoromethane	3,500	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	150	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	7,600	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	11	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5	<0.5	<0.5	<0.5
Cis-1,2-Dichloroethylene	1.6	<0.5	<0.5	<0.5
Trans-1,2-Dichloroethylene	1.6	<0.5	<0.5	<0.5
1,2-Dichloropropane	1	<0.5	<0.5	<0.5
Cis-1,3-Dichloropropylene	0.5	<0.5	<0.5	<0.5
Trans-1,3-Dichloropropylene	0.5	\0.5		
Ethylbenzene	54	<0.5	<0.5	<0.5
Ethylene Dibromide	0.20	<0.2	<0.2	<0.2
Hexane	5	<1.0	<1.0	<1.0
Methyl Ethyl Ketone	21,000	<5.0	<5.0	<5.0
Methylene Chloride	5,200	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	15	<5.0	<5.0	<5.0
Methyl-t-Butyl Ether	26	<2.0	<2.0	<2.0
Styrene	43	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	1.1	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5	<0.5	<0.5	<0.5
Toluene	320	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	23	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	2,000	<1.0	<1.0	<1.0
Vinyl Chloride	0.5	<0.5	<0.5	<0.5
Total Xylenes	72	<0.5	<0.5	<0.5

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded Concentration exceeds MECP Table 7 groundwater quality standard.

TABLE 7 Groundwater Analytical Results - Metals 116-118 Carruthers, Ottawa

Parameter (µg/L)	MECP Table 7 ¹	BH/MW24-3	DUP	BH/MW24-1
Sample Date (d/m/y)	Residential	29/8/24	29/8/24	9/6/24
Antimony	16000	1.1	1.1	4.1
Arsenic	1500	<1	<1	1
Barium	23000	274	280	39
Beryllium	53	<0.5	<0.5	<0.5
Boron	36000	137	137	322
Cadmium	2.1	<0.1	<0.1	<0.1
Chromium	640	<1	<1	<1
Cobalt	52	1.7	1.7	22.4
Copper	69	3	2.8	4.7
Lead	20	0.1	0.1	<0.1
Molybdenum	7300	3.8	3.9	7.4
Nickel	390	3	2	1
Selenium	50	<1	<1	12
Silver	1.2	<0.1	<0.1	<0.1
Sodium	1800000	124000	126000	128000
Thallium	400	0.5	0.5	0.1
Uranium	330	1.7	1.7	8.0
Vanadium	200	<0.5	0.5	1.4
Zinc	890	<5	<5	<5

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Shaded

Concentration exceeds MECP Table 7 residential groundwater quality standard.

EXP Services Inc. OTT-24006545-B0

TABLE 8 Groundwater Analytical Results - PAH 116-118 Carruthers, Ottawa

Parameter (µg/g)	MECP Table 7 ¹	BH/MW24-3	DUP	BH/MW24-1
Sample Date (d/m/y)	Residential	29/8/24	29/8/24	6/9/24
Acenaphthene	17	<0.11	<0.11	<0.10
Acenaphthylene	1	<0.11	<0.11	<0.10
Anthracene	1	<0.02	<0.02	<0.02
Benzo[a]anthracene	1.8	<0.02	<0.02	<0.02
Benzo[a]pyrene	0.81	<0.02	<0.02	<0.02
Benzo[b]fluoranthene	0.75	<0.11	<0.11	<0.10
Benzo[g,h,i]perylene	0.2	<0.11	<0.11	<0.10
Benzo[k]fluoranthene	0.4	<0.11	<0.11	<0.10
Chrysene	0.7	<0.11	<0.11	<0.10
Dibenzo[a,h]anthracene	0.4	<0.11	<0.11	<0.10
Fluoranthene	44	<0.02	<0.02	<0.02
Fluorene	290	<0.11	<0.11	<0.10
Indeno[1,2,3-cd]pyrene	0.2	<0.11	<0.11	<0.10
1-Methylnaphthalene	15000	<0.22	<0.22	<0.20
2-Methylnaphthalene	13000	~0.22	~ 0.22	~ 0.20
Naphthalene	7	<0.11	<0.11	<0.10
Phenanthrene	380	<0.11	<0.11	<0.10
Pyrene	5.7	<0.02	<0.02	< 0.02

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

Concentration exceeds MECP Table 7 residential groundwater quality

Shaded standard.

Table 9 Maximum Concentrations in Soil 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Sample Location	Sampling Date	Sampling Depth (mbgs)	Maximum Concentration	MECP Table 7 Residential ¹			
Petroleum Hydrocarbons								
F1 PHC (C6-C10)	All sample locations	21-Aug-24	0 - 0.5	<7	55			
F2 PHC (C10-C16)	All sample locations	21-Aug-24	0 - 0.5	<4	98			
F3 PHC (C16-C34)	BH24-3-S1	21-Aug-24	0 - 0.5	50	300			
F4 PHC (C34-C50)	BH24-3-S1	21-Aug-24	0 - 0.5	26	2800			
Volatile Organic Compour	nds							
Acetone	All sample locations	21-Aug-24	0 - 0.5	<0.50	16			
Benzene	BH24-3-S1	21-Aug-24	0 - 0.5	0.1	0.21			
Bromodichloromethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	13			
Bromoform	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.27			
Bromomethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Carbon Tetrachloride	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Chlorobenzene	All sample locations	21-Aug-24	0 - 0.5	<0.05	2.4			
Chloroform	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Dibromochloromethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	9.4			
Dichlorodifluoromethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	16			
1,2-Dichlorobenzene	All sample locations	21-Aug-24	0 - 0.5	<0.05	3.4			
1,3-Dichlorobenzene	All sample locations	21-Aug-24	0 - 0.5	<0.05	5			
1,4-Dichlorobenzene	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.083			
1,1-Dichloroethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	4			
1,2-Dichloroethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
1,1-Dichloroethylene	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
cis-1,2-Dichloroethylene	All sample locations	21-Aug-24	0 - 0.5	<0.05	3.4			
trans-1,2-Dichloroethylen	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.084			
1,2-Dichloropropane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.050			
1,3-Dichloropropene, tota	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Ethylbenzene	All sample locations	21-Aug-24	0 - 0.5	<0.05	2			
Ethylene dibromide (dibro	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Hexane	All sample locations	21-Aug-24	0 - 0.5	<0.05	3			
Methyl Ethyl Ketone (2-Bı	All sample locations	21-Aug-24	0 - 0.5	<0.50	16			
Methyl Isobutyl Ketone	All sample locations	21-Aug-24	0 - 0.5	<0.50	0.1			
Methyl tert-butyl ether	All sample locations	21-Aug-24	0 - 0.5	<0.05	1.7			
Methylene Chloride	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.75			
Styrene	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.7			
1,1,1,2-Tetrachloroethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.058			
1,1,2,2-Tetrachloroethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.05			
Tetrachloroethylene	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.28			
Toluene	BH24-3-S1	21-Aug-24	0 - 0.5	0.35	2			
1,1,1-Trichloroethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.4			
1,1,2-Trichloroethane	All sample locations	21-Aug-24 21-Aug-24	0 - 0.5	<0.05	0.05			
Trichloroethylene	All sample locations	21-Aug-24	0 - 0.5	<0.05	0.061			
Trichlorofluoromethane	All sample locations	21-Aug-24	0 - 0.5	<0.05	4.0			
Vinyl Chloride	All sample locations	21-Aug-24	0 - 0.5	<0.02	0.020			
Xylenes, total	BH24-3-S1	21-Aug-24	0 - 0.5	0.26	3.1			
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	BH24-2-S1	21-Aug-24	0 - 0.5	0.17	7.9			
Acenaphthylene	BH24-2-S1	21-Aug-24 21-Aug-24	0 - 0.5	0.17	0.15			
Anthracene		21-Aug-24 21-Aug-24	0 - 0.5		0.13			
Anunatene	BH24-2-S1	21-Aug-24	0 - 0.5	0.58	0.07			

Benzo[a]anthracene	BH24-2-S1	21-Aug-24	0 - 0.5	1.59	0.5
Benzo[a]pyrene	BH24-2-S1	21-Aug-24	0 - 0.5	1.15	0.3
Benzo[b/j]fluoranthene	BH24-2-S1	21-Aug-24	24 0 - 0.5 1.33		0.78
Benzo[g,h,i]perylene	BH24-2-S1 and BH24-1-S1	21-Aug-24	0 - 0.5	0.61	6.6
Benzo[k]fluoranthene	BH24-2-S1	21-Aug-24	0 - 0.5	0.9	0.78
Chrysene	BH24-2-S1	21-Aug-24	0 - 0.5	1.57	7
Dibenzo[a,h]anthracene	BH24-2-S1	21-Aug-24	0 - 0.5	0.18	0.1
Fluoranthene	BH24-2-S1	21-Aug-24	0 - 0.5	3.9	0.69
Fluorene	BH24-2-S1	21-Aug-24	0 - 0.5	0.2	62
Indeno[1,2,3-cd]pyrene	BH24-2-S1	21-Aug-24	0 - 0.5	0.59	0.38
1-Methylnaphthalene	BH24-2-S1	21-Aug-24	0 - 0.5	0.04	0.99
2-Methylnaphthalene	BH24-2-S1	21-Aug-24	0 - 0.5	0.06	0.99
Naphthalene	BH24-2-S1	21-Aug-24	0 - 0.5	0.21	0.6
Phenanthrene	BH24-2-S1	21-Aug-24	0 - 0.5	2.33	6.2
Pyrene	BH24-2-S1	21-Aug-24	0 - 0.5	3.09	78
Metals					
Antimony	BH24-1-S1	21-Aug-24	0 - 0.5	6.7	7.5
Arsenic	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	8.3	18
Barium	BH24-1-S1	21-Aug-24	0 - 0.5	1050	390
Beryllium	BH24-1-S1 and DUP	21-Aug-24	0 - 0.5	0.6	4
Boron (Total)	BH24-3-S1	21-Aug-24	0 - 0.5	8.4	120
Cadmium	BH24-3-S1	21-Aug-24	0 - 0.5	0.7	1.2
Chromium (Total)	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	19.5	160
Cobalt	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	8.4	22
Copper	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	454	140
Lead	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	531	120
Molybdenum	BH24-1-S1 and DUP	21-Aug-24	0 - 0.5	2.1	6.9
Nickel	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	21.8	100
Selenium	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	1.1	2.4
Silver	BH24-1-S1 and DUP	21-Aug-24	0 - 0.5	0.4	20
Thallium	All sample locations	21-Aug-24	0 - 0.5	<1.0	1
Uranium	All sample locations	21-Aug-24	0 - 0.5	2.6	23
Vanadium	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	26.5	86
Zinc	DUP (Duplicate of BH24-1-S1)	21-Aug-24	0 - 0.5	292	340

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

NV No Value

Parameter not analyzed

BOLD Concentration Exceeds MECP Table 7 SCS

Table 10 Maximum Concentrations in Groundwater 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Sample Location	Sampling Date	Maximum Concentration	MECP Table 7 Residential ¹
Petroleum Hydrocarbons				
F1 PHC (C6-C10)	All sample locations	21-Aug-24	<25	420
F2 PHC (C10-C16)	All sample locations	21-Aug-24	<100	150
F3 PHC (C16-C34)	All sample locations	21-Aug-24	<100	500
F4 PHC (C34-C50)	All sample locations	21-Aug-24	<100	500
Volatile Organic Compou	nds			
Acetone	All sample locations	21-Aug-24	<5.0	<5.0
Benzene	All sample locations	21-Aug-24	<0.5	<0.5
Bromodichloromethane	All sample locations	21-Aug-24	0.5	1
Bromoform	All sample locations	21-Aug-24	<0.5	<0.5
Bromomethane	All sample locations	21-Aug-24	<0.5	<0.5
Carbon Tetrachloride	All sample locations	21-Aug-24	<0.2	<0.2
Chlorobenzene	All sample locations	21-Aug-24	<0.5	<0.5
Chloroform	BH24-1	21-Aug-24	9.8	2
Dibromochloromethane	All sample locations	21-Aug-24	<0.5	<0.5
Dichlorodifluoromethane	All sample locations	21-Aug-24	<1.0	<1.0
1,2-Dichlorobenzene	All sample locations	21-Aug-24	<0.5	<0.5
1,3-Dichlorobenzene	All sample locations	21-Aug-24	<0.5	<0.5
1,4-Dichlorobenzene	All sample locations	21-Aug-24	<0.5	<0.5
1,1-Dichloroethane	All sample locations	21-Aug-24	<0.5	<0.5
1,2-Dichloroethane	All sample locations	21-Aug-24	<0.5	<0.5
1,1-Dichloroethylene	All sample locations	21-Aug-24	<0.5	<0.5
cis-1,2-Dichloroethylene	All sample locations	21-Aug-24	<0.5	<0.5
trans-1,2-Dichloroethylen	All sample locations	21-Aug-24	<0.5	<0.5
1,2-Dichloropropane	All sample locations	21-Aug-24	<0.5	<0.5
1,3-Dichloropropene, tota	All sample locations	21-Aug-24	<0.5	<0.5
Ethylbenzene	All sample locations	21-Aug-24	<0.40	<0.5
Ethylene dibromide (dibro	All sample locations	21-Aug-24	<0.5	<0.2
Hexane	All sample locations	21-Aug-24	<0.2	<1.0
Methyl Ethyl Ketone (2-Bเ	All sample locations	21-Aug-24	<1.0	<5.0
Methyl Isobutyl Ketone	All sample locations	21-Aug-24	<5.0	<5.0
Methyl tert-butyl ether	All sample locations	21-Aug-24	<5.0	<5.0
Methylene Chloride	All sample locations	21-Aug-24	<5.0	<2.0
Styrene	All sample locations	21-Aug-24	<2.0	<0.5
1,1,1,2-Tetrachloroethane	All sample locations	21-Aug-24	<0.5	<0.5
1,1,2,2-Tetrachloroethane	All sample locations	21-Aug-24	<0.5	<0.5
Tetrachloroethylene	All sample locations	21-Aug-24	<0.5	<0.5
Toluene	All sample locations	21-Aug-24	<0.5	<0.5
1,1,1-Trichloroethane	All sample locations	21-Aug-24	<0.5	<0.5
1,1,2-Trichloroethane	All sample locations	21-Aug-24	<0.5	<0.5
Trichloroethylene	All sample locations	21-Aug-24	<0.5	<0.5
Trichlorofluoromethane	All sample locations	21-Aug-24	<0.5	<1.0
Vinyl Chloride	All sample locations	21-Aug-24	<1.0	<0.5
Xylenes, total	All sample locations	21-Aug-24	<0.5	<0.5
Polycyclic Aromatic Hydro	ocarbons			
Acenaphthene	All sample locations	21-Aug-24	<0.02	17
Acenaphthylene	All sample locations	21-Aug-24	<0.02	1
Anthracene	All sample locations	21-Aug-24	<0.02	1

Benzo[a]anthracene	All sample locations	21-Aug-24	0.02	1.8			
Benzo[a]pyrene	All sample locations	21-Aug-24	0.02	0.81			
Benzo[b/j]fluoranthene	All sample locations	21-Aug-24	0.03	0.75			
Benzo[g,h,i]perylene	All sample locations	21-Aug-24	<0.02	0.2			
Benzo[k]fluoranthene	All sample locations	21-Aug-24	<0.02	0.4			
Chrysene	All sample locations	21-Aug-24	0.02	0.7			
Dibenzo[a,h]anthracene	All sample locations	21-Aug-24	<0.02	0.4			
Fluoranthene	All sample locations	21-Aug-24	0.04	44			
Fluorene	All sample locations	21-Aug-24	<0.02	290			
Indeno[1,2,3-cd]pyrene	All sample locations	21-Aug-24	<0.02	0.2			
1-Methylnaphthalene	All sample locations	21-Aug-24	<0.02	0.99			
2-Methylnaphthalene	All sample locations	21-Aug-24	<0.02	0.99			
Naphthalene	All sample locations	21-Aug-24	<0.10	0.6			
Phenanthrene	All sample locations	21-Aug-24	<0.10	6.2			
Pyrene	All sample locations	21-Aug-24	<0.02	78			
Metals							
Antimony	MW24-1	21-Aug-24	4.1	16000			
Arsenic	MW24-1	21-Aug-24	1	1500			
Barium	DUP (Duplicate of BH24-3)	21-Aug-24	280	23000			
Beryllium	All sample locations	21-Aug-24	<0.5	53			
Boron (Total)	MW24-1	21-Aug-24	322	2.1			
Cadmium	All sample locations	21-Aug-24	<0.1	640			
Chromium (Total)	DUP (Field Duplicate of BH24-3)	21-Aug-24	<1	52			
Cobalt	DUP (Field Duplicate of BH24-3)	21-Aug-24	22.4	69			
Copper	MW24-1	21-Aug-24	4.7	20			
Lead	DUP (Duplicate of BH24-3) and MW24-3	21-Aug-24	0.1	7300			
Molybdenum	MW24-1	21-Aug-24	7.4	390			
Nickel	MW24-3	21-Aug-24	3	50			
Selenium	MW24-1	21-Aug-24	12	1.2			
Silver	All sample locations	21-Aug-24	<0.1	1800000			
Thallium	MW24-3 and DUP	21-Aug-24	0.5	400			
Uranium	MW24-3 and DUP	21-Aug-24	1.7	330			
Vanadium	MW24-1	21-Aug-24	1.4	200			
Zinc	All sample locations	17-May-24	<5	890			

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non potable residential standards, coarse textured soil.

NV No Value

- Parameter not analyzed

BOLD Concentration Exceeds MECP Table 7 SCS

Table 11 Relative Percent Differences - PHC and VOC in Soil 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH24-1	DUP	PDD (0/)
Sampling Date			8/21/2024	8/21/2024	RPD (%)
Petroleum Hydrocarbons					
F1 PHC (C6 - C10) - BTEX	ug/g dry	25	<7	<7	nc
F2 PHC (C10-C16)	ug/g dry	100	<4	<4	nc
F3 PHC (C16-C34)	ug/g dry	100	22	22	nc
F4 PHC (C34-C50)	ug/g dry	100	<6	<6	nc
Volatiles		•		•	
Acetone	ug/g dry	0.5	0.5	0.5	nc
Benzene	ug/g dry	0.02	0.02	0.02	nc
Bromodichloromethane	ug/g dry	0.05	0.05	0.05	nc
Bromoform	ug/g dry	0.05	0.05	0.05	nc
Bromomethane	ug/g dry	0.05	0.05	0.05	nc
Carbon Tetrachloride	ug/g dry	0.05	0.05	0.05	nc
Chlorobenzene	ug/g dry	0.05	0.05	0.05	nc
Chloroform	ug/g dry	0.05	0.05	0.05	nc
Dibromochloromethane	ug/g dry	0.05	0.05	0.05	nc
Dichlorodifluoromethane	ug/g dry	0.05	0.05	0.05	nc
1,2-Dichlorobenzene	ug/g dry	0.05	0.05	0.05	nc
1,3-Dichlorobenzene	ug/g dry	0.05	0.05	0.05	nc
1,4-Dichlorobenzene	ug/g dry	0.05	0.05	0.05	nc
1,1-Dichloroethane	ug/g dry	0.05	0.05	0.05	nc
1,2-Dichloroethane	ug/g dry	0.05	0.05	0.05	nc
1,1-Dichloroethylene	ug/g dry	0.05	0.05	0.05	nc
1,2-Dichloropropane	ug/g dry	0.05	0.05	0.05	nc
cis-1,3-Dichloropropylene	ug/g dry	0.05	0.05	0.05	nc
trans-1,3-Dichloropropyle	ug/g dry	0.05	0.05	0.05	nc
1,3-Dichloropropene, tota	ug/g dry	0.05	0.05	0.05	nc
Ethylbenzene	ug/g dry	0.05	0.05	0.05	nc
Ethylene dibromide (dibro	ug/g dry	0.05	0.05	0.05	nc
Hexane	ug/g dry	0.05	0.05	0.05	nc
Methyl Ethyl Ketone (2-Bi	ug/g dry	0.5	0.5	0.5	nc
Methyl Isobutyl Ketone	ug/g dry	0.5	0.5	0.5	nc
Methyl tert-butyl ether	ug/g dry	0.05	0.05	0.05	nc
Methylene Chloride	ug/g dry	0.05	0.05	0.05	nc
Styrene	ug/g dry	0.05	0.05	0.05	nc
1,1,1,2-Tetrachloroethan	ug/g dry	0.05	0.05	0.05	nc
1,1,2,2-Tetrachloroethan	ug/g dry	0.05	0.05	0.05	nc
Tetrachloroethylene	ug/g dry	0.05	0.05	0.05	nc
Toluene	ug/g dry	0.05	0.05	0.05	nc
1,1,1-Trichloroethane	ug/g dry	0.05	0.05	0.05	nc
1,1,2-Trichloroethane	ug/g dry	0.05	0.05	0.05	nc
Trichloroethylene	ug/g dry	0.05	0.05	0.05	nc
Trichlorofluoromethane	ug/g dry	0.05	0.05	0.05	nc
Vinyl Chloride	ug/g dry	0.02	0.02	0.02	nc
Xylenes, total	ug/g dry	0.05	0.05	0.05	nc

Analysis by Bureau Veritas Laboratories

 $All\ results\ on\ dry\ weight\ basis;\ Non-detectable\ results\ are\ shown\ as\ "<(RDL)"\ where\ RDL\ represents\ the\ reporting\ detection\ limit.$

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL Exceedances of alert limits are shown in **bold**

Table 12 Relative Percent Differences - Metals in Soil 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH24-1	DUP	RPD (%)	Alert Limit (%)		
Sampling Date			8/21/2024	8/21/2024	KFD (70)	Alert Lillit (76)		
Metals Parameters	Metals Parameters							
Antimony	ug/g dry	1	7	4	nc	60		
Arsenic	ug/g dry	1	8	8	5	60		
Barium	ug/g dry	1	1050	940	11	60		
Beryllium	ug/g dry	0.5	1	1	nc	60		
Boron (Available)	ug/g dry	0.5	7	7	nc	60		
Cadmium	ug/g dry	0.5	<0.5	1	nc	60		
Chromium (Total)	ug/g dry	5	19	20	1	60		
Cobalt	ug/g dry	1	8	8	nc	60		
Copper	ug/g dry	5	340	454	29	60		
Lead	ug/g dry	1	527	531	1	60		
Molybdenum	ug/g dry	1	2	2	nc	60		
Nickel	ug/g dry	5	21	22	6	60		
Selenium	ug/g dry	1	1	1	nc	60		
Silver	ug/g dry	0.3	0	0	nc	60		
Thallium	ug/g dry	1	<1.0	<1.0	nc	60		
Uranium	ug/g dry	1	<1.0	<1.0	nc	60		
Vanadium	ug/g dry	10	26	27	2	60		
Zinc	ug/g dry	20	247	292	17	60		

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

⁻ means "not analysed"

Table 13 Relative Percent Differences - PAH in Soil 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH24-1	DUP	RPD (%)	Alert Limit (%)	
Sampling Date	1		8/21/2024	8/21/2024	KPD (%)	Alere Lillie (70)	
Inorganic Parameters							
Acenaphthene	μg/g	96.00	0.14	0.10	33	60	
Acenaphthylene	μg/g	0.2	0.11	0.14	24	60	
Anthracene	μg/g	0.7	0.44	0.38	15	60	
Benzo(a)anthracene	μg/g	1.0	1.38	1.16	17	60	
Benzo(a)pyrene	μg/g	0.30	1.07	1.06	1	60	
Benzo(b)fluoranthene	μg/g	0.96	1.24	1.03	19	60	
Benzo(g,h,i)perylene	μg/g	9.6	0.61	0.51	18	60	
Benzo(k)fluoranthene	μg/g	1.0	0.78	0.65	18	60	
Chrysene	μg/g	10	1.38	1.18	16	60	
Dibenzo(a,h)anthracene	μg/g	0.10	0.17	0.14	19	60	
Fluoranthene	μg/g	10	3.36	2.55	27	60	
Fluorene	μg/g	62	0.10	0.09	11	60	
Indeno(1,2,3,-cd)pyrene	μg/g	0.8	0.58	0.49	17	60	
Methylnaphthalene,1-	μg/g	76	<0.02	<0.02	nc	60	
Methylnaphthalene,2-	μg/g	76	<0.02	<0.02	nc	60	
Naphthalene	μg/g	10	0.02	0.02	nc	60	
Phenanthrene	μg/g	12	1.75	1.35	26	60	
Pyrene	μg/g	96	2.86	2.29	22	60	

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limirans "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 14 Relative Percent Differences - PHC and VOC in Groundwater 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH/MW24-3	DUP	(-1)
Sampling Date			8/21/2024	8/21/2024	RPD (%)
Petroleum Hydrocarbons			-, , -	-, , -	
F1 PHC (C6 - C10) - BTEX	ug/g dry	420	<7	<7	nc
F2 PHC (C10-C16)	ug/g dry	150	<4	<4	nc
F3 PHC (C16-C34)	ug/g dry	500	22	22	nc
F4 PHC (C34-C50)	ug/g dry	500	<6	<6	nc
Volatiles		•			
Acetone	ug/g dry	0.5	<0.5	<0.5	nc
Benzene	ug/g dry	0.02	<0.02	<0.02	nc
Bromodichloromethane	ug/g dry	0.05	<0.05	<0.05	nc
Bromoform	ug/g dry	0.05	<0.05	<0.05	nc
Bromomethane	ug/g dry	0.05	<0.05	<0.05	nc
Carbon Tetrachloride	ug/g dry	0.05	<0.05	<0.05	nc
Chlorobenzene	ug/g dry	0.05	<0.05	<0.05	nc
Chloroform	ug/g dry	0.05	<0.05	<0.05	nc
Dibromochloromethane	ug/g dry	0.05	<0.05	<0.05	nc
Dichlorodifluoromethane	ug/g dry	0.05	<0.05	<0.05	nc
1,2-Dichlorobenzene	ug/g dry	0.05	<0.05	<0.05	nc
1,3-Dichlorobenzene	ug/g dry	0.05	<0.05	<0.05	nc
1,4-Dichlorobenzene	ug/g dry	0.05	<0.05	<0.05	nc
1,1-Dichloroethane	ug/g dry	0.05	<0.05	<0.05	nc
1,2-Dichloroethane	ug/g dry	0.05	<0.05	<0.05	nc
1,1-Dichloroethylene	ug/g dry	0.05	<0.05	<0.05	nc
1,2-Dichloropropane	ug/g dry	0.05	<0.05	<0.05	nc
cis-1,3-Dichloropropylene	ug/g dry	0.05	<0.05	<0.05	nc
trans-1,3-Dichloropropylene	ug/g dry	0.05	<0.05	<0.05	nc
1,3-Dichloropropene, total	ug/g dry	0.05	<0.05	<0.05	nc
Ethylbenzene	ug/g dry	0.05	<0.05	<0.05	nc
Ethylene dibromide (dibrom	ug/g dry	0.05	<0.05	<0.05	nc
Hexane	ug/g dry	0.05	<0.05	<0.05	nc
Methyl Ethyl Ketone (2-Buta	ug/g dry	0.5	<0.5	<0.5	nc
Methyl Isobutyl Ketone	ug/g dry	0.5	<0.5	<0.5	nc
Methyl tert-butyl ether	ug/g dry	0.05	<0.05	<0.05	nc
Methylene Chloride	ug/g dry	0.05	<0.05	<0.05	nc
Styrene	ug/g dry	0.05	<0.05	<0.05	nc
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	<0.05	<0.05	nc
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	<0.05	<0.05	nc
Tetrachloroethylene	ug/g dry	0.05	<0.05	<0.05	nc
Toluene	ug/g dry	0.05	<0.05	<0.05	nc
1,1,1-Trichloroethane	ug/g dry	0.05	<0.05	<0.05	nc
1,1,2-Trichloroethane	ug/g dry	0.05	<0.05	<0.05	nc
Trichloroethylene	ug/g dry	0.05	<0.05	<0.05	nc
Trichlorofluoromethane	ug/g dry	0.05	<0.05	<0.05	nc
Vinyl Chloride	ug/g dry	0.02	<0.02	<0.02	nc
Xylenes, total	ug/g dry	0.05	<0.05	<0.05	nc

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

Table 15 Relative Percent Differences - Metals in Groundwater 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH/MW24-3	DUP	RPD (%)	Alert Limit (%)
Sampling Date			8/21/2024	8/21/2024	KPD (%)	Alert Limit (%)
Metals Parameters						
Antimony	ug/g dry	1	1	1	nc	60
Arsenic	ug/g dry	1	<1	<1	nc	60
Barium	ug/g dry	1	274	280	2	60
Beryllium	ug/g dry	0.5	<0.5	<0.5	nc	60
Boron (Available)	ug/g dry	0.5	137	137	0	60
Cadmium	ug/g dry	0.5	<0.1	<0.1	nc	60
Chromium (Total)	ug/g dry	5	<1	<1	nc	60
Cobalt	ug/g dry	1	2	2	nc	60
Copper	ug/g dry	5	3	3	7	60
Lead	ug/g dry	1	0	0	0 nc	
Molybdenum	ug/g dry	1	4	4	3	60
Nickel	ug/g dry	5	3	2	nc	60
Selenium	ug/g dry	1	<1	<1	nc	60
Silver	ug/g dry	0.3	<0.1	<0.1	nc	60
Sodium	ug/g dry		124000	126000	2	60
Thallium	ug/g dry	1	1	1	0	60
Uranium	ug/g dry	1	2	2	0	60
Vanadium	ug/g dry	10	<0.5	1	nc	60
Zinc	ug/g dry	20	<5	<5	nc	60

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

Table 16 Relative Percent Differences - PAH in Groundwater 116-118 Carruthers Avenue, Ottawa, Ontario

Parameter	Units	RDL	BH/MW24-3	DUP	RPD (%)	Alert Limit (%)
Sampling Date			8/21/2024	8/21/2024	KPD (%)	Alert Lillit (%)
Inorganic Parameters						
Acenaphthene	μg/g	0.11	<0.11	<0.11	nc	60
Acenaphthylene	μg/g	0.11	<0.11	<0.11	nc	60
Anthracene	μg/g	0.02	<0.02	<0.02	nc	60
Benzo(a)anthracene	μg/g	0.02	<0.02	<0.02	nc	60
Benzo(a)pyrene	μg/g	0.02	<0.02	<0.02	nc	60
Benzo(b)fluoranthene	μg/g	0.11	<0.11	<0.11	nc	60
Benzo(g,h,i)perylene	μg/g	0.11	<0.11	<0.11	nc	60
Benzo(k)fluoranthene	μg/g	0.11	<0.11	<0.11	nc	60
Chrysene	μg/g	0.11	<0.11	<0.11	nc	60
Dibenzo(a,h)anthracene	μg/g	0.11	<0.11	<0.11	nc	60
Fluoranthene	μg/g	0.02	<0.02	<0.02	nc	60
Fluorene	μg/g	0.11	<0.11	<0.11	nc	60
Indeno(1,2,3,-cd)pyrene	μg/g	0.11	<0.11	<0.11	nc	60
Methylnaphthalene,1-	μg/g	0.22	<0.22	<0.22	nc	60
Methylnaphthalene,2-	μg/g	0.22	<0.22	<0.22	nc	60
Naphthalene	μg/g	0.11	<0.11	<0.11	nc	60
Phenanthrene	μg/g	0.11	<0.11	<0.11	nc	60
Pyrene	μg/g	0.02	<0.02	<0.02	nc	60

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection lim - means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

EXP Services Inc.

MA Precision Holding Inc. Phase Two Environmental Site Assessment 116-118 Carruthers Ave, Ottawa, Ontario OTT-24006545-B0 November 20, 2024

Appendix D: Laboratory Certificates of Analysis

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr.

Ottawa, ON K2B 8H6

Attn: Scott Lessard

Client PO: 116 Carruthers Ave.

Project: OTT24006545B0

Custody: 74204

Approved By:

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Order #: 2434327

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID				
2434327-01	BH24-1-SS1				
2434327-02	BH24-2-SS1				
2434327-03	BH24-3-SS1				
2434327-05	DUP				

Report Date: 27-Aug-2024 Certificate of Analysis Client: exp Services Inc. (Ottawa)

Order Date: 22-Aug-2024

Client PO: 116 Carruthers Ave. Project Description: OTT24006545B0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	23-Aug-24	23-Aug-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	22-Aug-24	23-Aug-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	23-Aug-24	23-Aug-24
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	24-Aug-24	24-Aug-24
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	23-Aug-24	23-Aug-24
Solids, %	CWS Tier 1 - Gravimetric	23-Aug-24	26-Aug-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

	Client ID:	BH24-1-SS1	BH24-2-SS1	BH24-3-SS1	DUP		
	Sample Date:	21-Aug-24 10:00	20-Aug-24 15:00	20-Aug-24 10:15	21-Aug-24 10:00	-	-
	Sample ID:	2434327-01	2434327-02	2434327-03	2434327-05		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	<u> </u>		•	•	•		
% Solids	0.1 % by Wt.	87.3	92.8	94.9	88.5	-	-
Metals							•
Antimony	1.0 ug/g	6.7	<1.0	1.2	4.4	-	-
Arsenic	1.0 ug/g	7.9	2.9	4.5	8.3	-	-
Barium	1.0 ug/g	1050	102	118	940	-	-
Beryllium	0.5 ug/g	0.6	<0.5	<0.5	0.6	-	-
Boron	5.0 ug/g	7.2	7.9	8.4	7.4	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	0.7	0.5	-	-
Chromium	5.0 ug/g	19.3	13.1	15.4	19.5	-	-
Cobalt	1.0 ug/g	8.2	4.2	4.1	8.4	-	-
Copper	5.0 ug/g	340	25.0	59.5	454	-	-
Lead	1.0 ug/g	527	90.4	269	531	-	-
Molybdenum	1.0 ug/g	2.1	<1.0	1.8	2.1	-	-
Nickel	5.0 ug/g	20.6	11.5	12.3	21.8	-	-
Selenium	1.0 ug/g	1.0	<1.0	<1.0	1.1	-	-
Silver	0.3 ug/g	0.4	<0.3	<0.3	0.4	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	26.1	12.3	21.2	26.5	-	-
Zinc	20.0 ug/g	247	78.1	96.2	292	-	-
Volatiles							
Acetone	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	-	-
Benzene	0.02 ug/g	<0.02	<0.02	0.10	<0.02	-	-
Bromodichloromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Bromoform	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-

Certificate of Analysis

Order #: 2434327

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024 Project Description: OTT24006545B0

	Client ID:	BH24-1-SS1	BH24-2-SS1	BH24-3-SS1	DUP		
	Sample Date:	21-Aug-24 10:00	20-Aug-24 15:00	20-Aug-24 10:15	21-Aug-24 10:00	-	-
	Sample ID:	2434327-01	2434327-02	2434327-03	2434327-05		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles				•	•		
Bromomethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Chloroform	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Dibromochloromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Hexane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	-	
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

	Client ID:	BH24-1-SS1	BH24-2-SS1	BH24-3-SS1	DUP		
	Sample Date: Sample ID:	21-Aug-24 10:00 2434327-01	20-Aug-24 15:00 2434327-02	20-Aug-24 10:15 2434327-03	21-Aug-24 10:00 2434327-05	-	-
	Sample iD: Matrix:	Soil	Soil	Soil	2434327-03 Soil		
	MDL/Units				35		
Volatiles	WIDE/OTHES						
Styrene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	_
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	_	
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05		
Tetrachloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05		<u>-</u>
Toluene	0.05 ug/g	<0.05	<0.05	0.35	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	<u> </u>
1,1,2-Trichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	<u> </u>
Vinyl chloride	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
m,p-Xylenes	0.02 ug/g	<0.02	<0.02	0.16	<0.02	-	-
., ,	0.05 ug/g	<0.05	<0.05	0.10	<0.05	-	-
o-Xylene	0.05 ug/g				<0.05		-
Xylenes, total Toluene-d8	Surrogate	<0.05 112%	<0.05 108%	0.26 106%	112%	-	-
Dibromofluoromethane	Surrogate	87.8%	85.6%	84.0%	87.5%		<u>-</u>
4-Bromofluorobenzene	Surrogate	109%	107%	104%	110%	-	-
Hydrocarbons	<u> </u>				-		
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	22	35	50	22	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	26	6	-	-
Semi-Volatiles	'			<u> </u>	<u> </u>		
Acenaphthene	0.02 ug/g	0.14	0.17	<0.02	0.10	-	-
Acenaphthylene	0.02 ug/g	0.11	0.16	0.05	0.14	-	-
Anthracene	0.02 ug/g	0.44	0.58	0.08	0.38	-	-

Project Description: OTT24006545B0

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

	-		_				
	Client ID:	BH24-1-SS1	BH24-2-SS1	BH24-3-SS1	DUP		
	Sample Date:	21-Aug-24 10:00	20-Aug-24 15:00	20-Aug-24 10:15	21-Aug-24 10:00	-	-
	Sample ID:	2434327-01	2434327-02	2434327-03	2434327-05		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles			-	•			
Benzo [a] anthracene	0.02 ug/g	1.38	1.59	0.25	1.16	-	-
Benzo [a] pyrene	0.02 ug/g	1.07	1.15	0.21	1.06	-	-
Benzo [b] fluoranthene	0.02 ug/g	1.24	1.33	0.27	1.03	-	-
Benzo [g,h,i] perylene	0.02 ug/g	0.61	0.61	0.18	0.51	-	-
Benzo [k] fluoranthene	0.02 ug/g	0.78	0.90	0.16	0.65	-	-
Chrysene	0.02 ug/g	1.38	1.57	0.24	1.18	-	-
Dibenzo [a,h] anthracene	0.02 ug/g	0.17	0.18	0.04	0.14	-	-
Fluoranthene	0.02 ug/g	3.36	3.90	0.57	2.55	-	-
Fluorene	0.02 ug/g	0.10	0.20	<0.02	0.09	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	0.58	0.59	0.14	0.49	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	0.04	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	0.06	0.02	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	0.10	<0.04	<0.04	-	-
Naphthalene	0.01 ug/g	0.02	0.21	0.02	0.02	-	-
Phenanthrene	0.02 ug/g	1.75	2.33	0.29	1.35	-	-
Pyrene	0.02 ug/g	2.86	3.09	0.48	2.29	-	-
2-Fluorobiphenyl	Surrogate	62.6%	63.5%	58.0%	56.2%	-	-
Terphenyl-d14	Surrogate	98.9%	101%	93.6%	100%	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Semi-Volatiles			0.0					
Acenaphthene	ND	0.02	ug/g					
Acenaphthylene	ND	0.02	ug/g					
Anthracene	ND	0.02	ug/g					
Benzo [a] anthracene	ND	0.02	ug/g					
Benzo [a] pyrene	ND	0.02	ug/g					
Benzo [b] fluoranthene	ND	0.02	ug/g					
Benzo [g,h,i] perylene	ND	0.02	ug/g					
Benzo [k] fluoranthene	ND	0.02	ug/g					

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Chrysene	ND	0.02	ug/g					
Dibenzo [a,h] anthracene	ND	0.02	ug/g					
Fluoranthene	ND	0.02	ug/g					
Fluorene	ND	0.02	ug/g					
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g					
1-Methylnaphthalene	ND	0.02	ug/g					
2-Methylnaphthalene	ND	0.02	ug/g					
Methylnaphthalene (1&2)	ND	0.04	ug/g					
Naphthalene	ND	0.01	ug/g					
Phenanthrene	ND	0.02	ug/g					
Pyrene	ND	0.02	ug/g					
Surrogate: 2-Fluorobiphenyl	0.750		%	56.2	50-140			
Surrogate: Terphenyl-d14	1.30		%	97.7	50-140			
Volatiles								
Acetone	ND	0.50	ug/g					
Benzene	ND	0.02	ug/g					
Bromodichloromethane	ND	0.05	ug/g					
Bromoform	ND	0.05	ug/g					
Bromomethane	ND	0.05	ug/g					
Carbon Tetrachloride	ND	0.05	ug/g					
Chlorobenzene	ND	0.05	ug/g					
Chloroform	ND	0.05	ug/g					
Dibromochloromethane	ND	0.05	ug/g					
Dichlorodifluoromethane	ND	0.05	ug/g					
1,2-Dichlorobenzene	ND	0.05	ug/g					
1,3-Dichlorobenzene	ND	0.05	ug/g					
1,4-Dichlorobenzene	ND	0.05	ug/g					
1,1-Dichloroethane	ND	0.05	ug/g					
1,2-Dichloroethane	ND	0.05	ug/g					
1,1-Dichloroethylene	ND	0.05	ug/g					
cis-1,2-Dichloroethylene	ND	0.05	ug/g					
trans-1,2-Dichloroethylene	ND	0.05	ug/g					

Report Date: 27-Aug-2024 Certificate of Analysis Client: exp Services Inc. (Ottawa)

Order Date: 22-Aug-2024

Client PO: 116 Carruthers Ave. Project Description: OTT24006545B0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloropropane	ND	0.05	ug/g					
cis-1,3-Dichloropropylene	ND	0.05	ug/g					
trans-1,3-Dichloropropylene	ND	0.05	ug/g					
1,3-Dichloropropene, total	ND	0.05	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g					
Hexane	ND	0.05	ug/g					
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g					
Methyl Isobutyl Ketone	ND	0.50	ug/g					
Methyl tert-butyl ether	ND	0.05	ug/g					
Methylene Chloride	ND	0.05	ug/g					
Styrene	ND	0.05	ug/g					
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g					
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g					
Tetrachloroethylene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
1,1,1-Trichloroethane	ND	0.05	ug/g					
1,1,2-Trichloroethane	ND	0.05	ug/g					
Trichloroethylene	ND	0.05	ug/g					
Trichlorofluoromethane	ND	0.05	ug/g					
Vinyl chloride	ND	0.02	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: 4-Bromofluorobenzene	8.09		%	101	50-140			
Surrogate: Dibromofluoromethane	6.35		%	79.4	50-140			
Surrogate: Toluene-d8	8.62		%	108	50-140			

Certificate of Analysis

Order #: 2434327

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Client: exp Services Inc. (Ottawa) Client PO: 116 Carruthers Ave. Project Description: OTT24006545B0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons		_	,	ND			NO	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	7.1	1.0	ug/g	7.2			1.3	30	
Barium	78.6	1.0	ug/g	67.6			15.1	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron	7.1	5.0	ug/g	7.2			8.0	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium	13.2	5.0	ug/g	13.7			4.2	30	
Cobalt	5.1	1.0	ug/g	5.1			0.5	30	
Copper	16.7	5.0	ug/g	17.0			2.1	30	
Lead	15.0	1.0	ug/g	14.9			0.5	30	
Molybdenum	1.9	1.0	ug/g	1.9			0.2	30	
Nickel	14.6	5.0	ug/g	14.9			2.1	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	1.1			NC	30	
Vanadium	23.6	10.0	ug/g	24.4			3.3	30	
Zinc	61.8	20.0	ug/g	61.1			1.3	30	
Physical Characteristics									
% Solids	86.3	0.1	% by Wt.	87.3			1.2	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024 Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	0.850		%		60.6	50-140			
Surrogate: Terphenyl-d14	1.27		%		90.9	50-140			
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client: exp Services Inc. (Ottawa) Client PO: 116 Carruthers Ave.

Method Quality Control: Dunlicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	10.3		%		110	50-140			
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	7.98 10.6		% %		84.9 113	50-140 50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 27-Aug-2024 Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	190	7	ug/g	ND	95.2	85-115			
F2 PHCs (C10-C16)	121	4	ug/g	ND	121	60-140			
F3 PHCs (C16-C34)	304	8	ug/g	ND	124	60-140			
F4 PHCs (C34-C50)	151	6	ug/g	ND	97.5	60-140			
Metals									
Arsenic	51.1	1.0	ug/g	2.9	96.4	70-130			
Barium	75.3	1.0	ug/g	27.0	96.5	70-130			
Beryllium	53.1	0.5	ug/g	ND	106	70-130			
Boron	52.9	5.0	ug/g	ND	100	70-130			
Cadmium	44.9	0.5	ug/g	ND	89.6	70-130			
Chromium	59.6	5.0	ug/g	5.5	108	70-130			
Cobalt	51.9	1.0	ug/g	2.0	99.6	70-130			
Copper	54.2	5.0	ug/g	6.8	94.8	70-130			
Lead	50.2	1.0	ug/g	6.0	88.6	70-130			
Molybdenum	48.7	1.0	ug/g	ND	95.9	70-130			
Nickel	55.0	5.0	ug/g	6.0	98.2	70-130			
Selenium	46.2	1.0	ug/g	ND	92.1	70-130			
Silver	39.5	0.3	ug/g	ND	79.0	70-130			
Thallium	45.0	1.0	ug/g	ND	89.8	70-130			
Uranium	48.5	1.0	ug/g	ND	96.2	70-130			
Vanadium	63.7	10.0	ug/g	ND	108	70-130			
Zinc	69.8	20.0	ug/g	24.4	90.8	70-130			
Semi-Volatiles									
Acenaphthene	0.156	0.02	ug/g	ND	89.0	50-140			
Acenaphthylene	0.160	0.02	ug/g	ND	91.1	50-140			
Anthracene	0.147	0.02	ug/g	ND	83.9	50-140			
Benzo [a] anthracene	0.121	0.02	ug/g	ND	69.0	50-140			
Benzo [a] pyrene	0.131	0.02	ug/g	ND	74.9	50-140			
Benzo [b] fluoranthene	0.104	0.02	ug/g	ND	59.3	50-140			
Benzo [g,h,i] perylene	0.130	0.02	ug/g	ND	73.9	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Report Date: 27-Aug-2024 Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [k] fluoranthene	0.107	0.02	ug/g	ND	61.3	50-140			
Chrysene	0.143	0.02	ug/g	ND	81.8	50-140			
Dibenzo [a,h] anthracene	0.125	0.02	ug/g	ND	71.5	50-140			
Fluoranthene	0.149	0.02	ug/g	ND	84.9	50-140			
Fluorene	0.148	0.02	ug/g	ND	84.7	50-140			
Indeno [1,2,3-cd] pyrene	0.133	0.02	ug/g	ND	76.1	50-140			
1-Methylnaphthalene	0.132	0.02	ug/g	ND	75.2	50-140			
2-Methylnaphthalene	0.142	0.02	ug/g	ND	81.3	50-140			
Naphthalene	0.154	0.01	ug/g	ND	87.7	50-140			
Phenanthrene	0.162	0.02	ug/g	ND	92.4	50-140			
Pyrene	0.156	0.02	ug/g	ND	89.1	50-140			
Surrogate: 2-Fluorobiphenyl	0.836		%		59.6	50-140			
Surrogate: Terphenyl-d14	1.26		%		90.0	50-140			
Volatiles									
Acetone	6.89	0.50	ug/g	ND	68.9	50-140			
Benzene	3.49	0.02	ug/g	ND	87.3	60-130			
Bromodichloromethane	2.61	0.05	ug/g	ND	65.1	60-130			
Bromoform	3.12	0.05	ug/g	ND	78.1	60-130			
Bromomethane	4.02	0.05	ug/g	ND	100	50-140			
Carbon Tetrachloride	2.75	0.05	ug/g	ND	68.8	60-130			
Chlorobenzene	3.79	0.05	ug/g	ND	94.8	60-130			
Chloroform	3.32	0.05	ug/g	ND	83.0	60-130			
Dibromochloromethane	2.60	0.05	ug/g	ND	65.0	60-130			
Dichlorodifluoromethane	4.47	0.05	ug/g	ND	112	50-140			
1,2-Dichlorobenzene	3.77	0.05	ug/g	ND	94.3	60-130			
1,3-Dichlorobenzene	3.82	0.05	ug/g	ND	95.5	60-130			
1,4-Dichlorobenzene	3.79	0.05	ug/g	ND	94.9	60-130			
1,1-Dichloroethane	3.74	0.05	ug/g	ND	93.6	60-130			
1,2-Dichloroethane	3.15	0.05	ug/g	ND	78.7	60-130			
1,1-Dichloroethylene	3.48	0.05	ug/g	ND	86.9	60-130			
cis-1,2-Dichloroethylene	3.27	0.05	ug/g	ND	81.8	60-130			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Project Description: OTT24006545B0

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
trans-1,2-Dichloroethylene	3.23	0.05	ug/g	ND	80.9	60-130			
1,2-Dichloropropane	3.11	0.05	ug/g	ND	77.7	60-130			
cis-1,3-Dichloropropylene	2.61	0.05	ug/g	ND	65.3	60-130			
trans-1,3-Dichloropropylene	2.97	0.05	ug/g	ND	74.3	60-130			
Ethylbenzene	3.82	0.05	ug/g	ND	95.4	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	2.60	0.05	ug/g	ND	65.1	60-130			
Hexane	4.17	0.05	ug/g	ND	104	60-130			
Methyl Ethyl Ketone (2-Butanone)	6.17	0.50	ug/g	ND	61.7	50-140			
Methyl Isobutyl Ketone	6.28	0.50	ug/g	ND	62.8	50-140			
Methyl tert-butyl ether	6.22	0.05	ug/g	ND	62.2	50-140			
Methylene Chloride	3.67	0.05	ug/g	ND	91.7	60-130			
Styrene	3.50	0.05	ug/g	ND	87.4	60-130			
1,1,1,2-Tetrachloroethane	2.73	0.05	ug/g	ND	68.2	60-130			
1,1,2,2-Tetrachloroethane	2.73	0.05	ug/g	ND	68.1	60-130			
Tetrachloroethylene	3.91	0.05	ug/g	ND	97.7	60-130			
Toluene	3.85	0.05	ug/g	ND	96.3	60-130			
1,1,1-Trichloroethane	2.71	0.05	ug/g	ND	67.8	60-130			
1,1,2-Trichloroethane	3.00	0.05	ug/g	ND	74.9	60-130			
Trichloroethylene	3.46	0.05	ug/g	ND	86.6	60-130			
Trichlorofluoromethane	4.17	0.05	ug/g	ND	104	50-140			
Vinyl chloride	3.55	0.02	ug/g	ND	88.9	50-140			
m,p-Xylenes	7.49	0.05	ug/g	ND	93.7	60-130			
o-Xylene	3.75	0.05	ug/g	ND	93.7	60-130			
Surrogate: 4-Bromofluorobenzene	8.13		%		102	50-140			
Surrogate: Dibromofluoromethane	6.39		%		79.9	50-140			
Surrogate: Toluene-d8	8.20		%		102	50-140			

Report Date: 27-Aug-2024

Order Date: 22-Aug-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client PO: 116 Carruthers Ave.

Client: exp Services Inc. (Ottawa)

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

0	PARA LABORATORI				Para	acel	ID:	2434327 		Par	Paracel Order Number (Lab Use Only)			NS	Chain Of Custody (Lab Use Only) 74204		
Client Name	EXP Services	Inc.			Proje	ct Ref;	116	Carrut	hers Aue.						Pa	age 1	of _L
Contact Nar	ne: Scott Lessar	9			Quote	e #:									Turn	around	Time
Address:	2650 Queensvie	w Dr.			PO#: E-mai	OT	7-	24006	5545-B()				-	□ 1 day □ 3 day		
Telephone:	613 688 1899								ext@exp.					0.0000000	z day Required:		Regul
REG 1			Regulation		Matriy 1	Tuna	\$ /5ail	Sod V EW IC	round Wated		UE S				1.5		
☐ Table 1	Res/Park	☐ REG 558	□ PWQ0	1 .	Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)					Re				Analysis			
	☐ Ind/Comm ☐ Coarse	☐ CCME	☐ MISA			P (Paint)	A(Air) O(Oth	ner)	_							
Table 3	☐ Agri/Other	SU-Sani Mun:	□ SU-Storm		ie.	of Containers		Sample	Taken	7.77	()	metals					
For R	SC: 🗆 Yes 🕷 No	Other:		×	SC 188 180 1				PHC	VGC	net	PAH					
	Sample ID/Location	on Name		Matrix	Air	12		Date	Time		_	C					
1	BH24-1-9	551		S		2	24	108/21	1000	1	7	8	8				
2	BH24-1-5	51		5		2	24	108/20	1500	1							
3	BH24-3-55	51		S		2	24	108/20	1015	1							
4	BH24-4-55	1		5		2		108/20	1530								
5	DUP			5		2		108/21	1000	V	V	V	V				
6										1							
7																	
8																П	
9																	
10																	
Comments:		ž						-		6			Me	thod of Deli	very:	2~	-
Relinquished	1100		Received at De	pot:	0				Received 355:				Ver	Ified B	act .	المالة	
Relinquished Date/Time:	Deremy	Eckert 16:00	Date/Time: Temperature:	A	_	2/2	4	8:44	Dat 22 A	9 2	4	094	57 Dat	22 . Verified: [Aug 2	24	0948
Chain of Cus	tody (Blank) xisx	5.00			1.4	19	F	levision 5.0	4.	0		-	15.				

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr.

Ottawa, ON K2B 8H6
Attn: Scott Lessard

Client PO:

Project: OTT24006545B0

Custody: 74232

Report Date: 6-Sep-2024

Order Date: 29-Aug-2024

Order #: 2435508

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2435508-01 BH/MW24-3

2435508-02 DUP

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Creatificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: Project Description: OTT24006545B0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	30-Aug-24	3-Sep-24
PHC F1	CWS Tier 1 - P&T GC-FID	3-Sep-24	3-Sep-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	3-Sep-24	3-Sep-24
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	4-Sep-24	5-Sep-24
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	3-Sep-24	3-Sep-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

	Client ID:	BH/MW24-3	DUP	-	-		
	Sample Date:	29-Aug-24 11:15	29-Aug-24 11:15	-	-	-	-
	Sample ID:	2435508-01	2435508-02	-	-		
	Matrix:	Ground Water	Ground Water	-	-		
	MDL/Units						
Metals			•	•	•		•
Antimony	0.5 ug/L	1.1	1.1	-	-	-	-
Arsenic	1 ug/L	<1	<1	-	-	-	-
Barium	1 ug/L	274	280	-	-	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	-	-	-	-
Boron	10 ug/L	137	137	-	-	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	-	-	-	-
Chromium	1 ug/L	<1	<1	-	-	-	-
Cobalt	0.5 ug/L	1.7	1.7	-	-	-	-
Copper	0.5 ug/L	3.0	2.8	-	-	-	-
Lead	0.1 ug/L	0.1	0.1	-	-	-	-
Molybdenum	0.5 ug/L	3.8	3.9	-	-	-	-
Nickel	1 ug/L	3	2	-	-	-	-
Selenium	1 ug/L	<1	<1	-	-	-	-
Silver	0.1 ug/L	<0.1	<0.1	-	-	-	-
Sodium	200 ug/L	126000	128000	-	-	-	-
Thallium	0.1 ug/L	0.5	0.5	-	-	-	-
Uranium	0.1 ug/L	1.7	1.7	-	-	-	-
Vanadium	0.5 ug/L	<0.5	0.5	-	-	-	-
Zinc	5 ug/L	<5	<5	-	-	-	-
Volatiles							
Acetone	5.0 ug/L	<5.0	<5.0	-	-	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

	Client ID:	BH/MW24-3	DUP	-	-		
	Sample Date:	29-Aug-24 11:15	29-Aug-24 11:15	-	-	-	-
	Sample ID:	2435508-01	2435508-02	-	-		
	Matrix:	Ground Water	Ground Water	-	-		
	MDL/Units						
Volatiles	-		•				-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Chloroform	0.5 ug/L	0.8	0.8	-	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	<0.2	-	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

	Client ID:	BH/MW24-3	DUP	-	-		
	Sample Date:	29-Aug-24 11:15	29-Aug-24 11:15	-	_	_	-
	Sample ID:	2435508-01	2435508-02	-	-		
	Matrix:	Ground Water	Ground Water	-	-		
	MDL/Units						
Volatiles	!			!	!		
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-	-	-
Dibromofluoromethane	Surrogate	110%	114%	-	-	-	-
4-Bromofluorobenzene	Surrogate	124%	123%	-	-	-	-
Toluene-d8	Surrogate	101%	103%	-	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<171 [1]	<100	-	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<171 [1]	<100	-	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<171 [1]	<100	-	-	-	-
Semi-Volatiles	·						
Acenaphthene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Acenaphthylene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Anthracene	0.01 ug/L	<0.02 [1]	<0.02 [1]	-	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.02 [1]	<0.02 [1]	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

	Client ID:	BH/MW24-3	DUP	-	-		
	Sample Date:	29-Aug-24 11:15	29-Aug-24 11:15	-	-	-	-
	Sample ID:	2435508-01	2435508-02	-	-		
	Matrix:	Ground Water	Ground Water	-	-		
	MDL/Units						
Semi-Volatiles							
Benzo [a] pyrene	0.01 ug/L	<0.02 [1]	<0.02 [1]	-	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Chrysene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Fluoranthene	0.01 ug/L	<0.02 [1]	<0.02 [1]	-	-	-	-
Fluorene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.22 [1]	<0.22 [1]	-	-	-	-
Naphthalene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Phenanthrene	0.05 ug/L	<0.11 [1]	<0.11 [1]	-	-	-	-
Pyrene	0.01 ug/L	<0.02 [1]	<0.02 [1]	-	-	-	-
2-Fluorobiphenyl	Surrogate	68.9% [1]	64.7% [1]	-	-	-	-
Terphenyl-d14	Surrogate	94.7% [1]	93.1% [1]	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	25	ug/L					
F2 PHCs (C10-C16)	ND	100	ug/L					
F3 PHCs (C16-C34)	ND	100	ug/L					
F4 PHCs (C34-C50)	ND	100	ug/L					
Metals								
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Lead	ND	0.1	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Thallium	ND	0.1	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
Semi-Volatiles			· ·					
Acenaphthene	ND	0.05	ug/L					
Acenaphthylene	ND	0.05	ug/L					
Anthracene	ND	0.01	ug/L					
Benzo [a] anthracene	ND	0.01	ug/L					
Benzo [a] pyrene	ND	0.01	ug/L					
Benzo [b] fluoranthene	ND	0.05	ug/L					
Benzo [g,h,i] perylene	ND	0.05	ug/L					

Certificate of Analysis

Order #: 2435508

Report Date: 06-Sep-2024

Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Client: exp Services Inc. (Ottawa)

Client PO:

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [k] fluoranthene	ND	0.05	ug/L					
Chrysene	ND	0.05	ug/L					
Dibenzo [a,h] anthracene	ND	0.05	ug/L					
Fluoranthene	ND	0.01	ug/L					
Fluorene	ND	0.05	ug/L					
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L					
1-Methylnaphthalene	ND	0.05	ug/L					
2-Methylnaphthalene	ND	0.05	ug/L					
Methylnaphthalene (1&2)	ND	0.10	ug/L					
Naphthalene	ND	0.05	ug/L					
Phenanthrene	ND	0.05	ug/L					
Pyrene	ND	0.01	ug/L					
Surrogate: 2-Fluorobiphenyl	12.8		%	64.2	50-140			
Surrogate: Terphenyl-d14	17.6		%	87.8	50-140			
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					

Report Date: 06-Sep-2024

Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client: exp Services Inc. (Ottawa) Client PO:

Analyte	Result	Reporting	Units	%REC	%REC	RPD	RPD	Notes
·		Limit			Limit		Limit	
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	98.8		%	124	50-140			
Surrogate: Dibromofluoromethane	90.9		%	114	50-140			
Surrogate: Toluene-d8	82.2		%	103	50-140			
	UL. L		/0	.00	•			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals	110	20	3/-						
Antimony	0.99	0.5	ug/L	1.13			13.3	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	275	1	ug/L	274			0.3	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	137	10	ug/L	137			0.0	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	1.73	0.5	ug/L	1.73			0.3	20	
Copper	3.04	0.5	ug/L	3.04			0.3	20	
Lead	0.18	0.1	ug/L	0.14			NC	20	
Molybdenum	3.73	0.5	ug/L	3.85			3.0	20	
Nickel	2.6	1	ug/L	2.6			0.1	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	128000	200	ug/L	126000			1.1	20	
Thallium	0.54	0.1	ug/L	0.52			2.6	20	
Uranium	2.0	0.1	ug/L	1.7			15.0	20	
Vanadium	0.51	0.5	ug/L	ND			NC	20	
Zinc	ND	5	ug/L	ND			NC	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	

Report Date: 06-Sep-2024

Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client: exp Services Inc. (Ottawa) Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
L Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	16.8	0.5	ug/L	16.4			1.9	30	
trans-1,2-Dichloroethylene	0.90	0.5	ug/L	0.90			0.0	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	37.7	0.5	ug/L	37.4			8.0	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	11.0	0.5	ug/L	11.0			0.0	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	98.2		%		123	50-140			
Surrogate: Dibromofluoromethane	92.7		%		116	50-140			
Surrogate: Toluene-d8	82.2		%		103	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Client PO:

Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1900	25	ug/L	ND	111	85-115			
F2 PHCs (C10-C16)	1520	100	ug/L	ND	95.1	60-140			
F3 PHCs (C16-C34)	3950	100	ug/L	ND	101	60-140			
F4 PHCs (C34-C50)	2260	100	ug/L	ND	91.1	60-140			
Metals									
Arsenic	50.2	1	ug/L	ND	99.8	80-120			
Barium	307	1	ug/L	274	65.7	80-120			QM-07
Beryllium	48.8	0.5	ug/L	ND	97.5	80-120			
Boron	169	10	ug/L	137	64.2	80-120			QM-07
Cadmium	46.2	0.1	ug/L	ND	92.4	80-120			
Chromium	54.1	1	ug/L	ND	108	80-120			
Cobalt	52.3	0.5	ug/L	1.73	101	80-120			
Copper	48.9	0.5	ug/L	3.04	91.7	80-120			
Lead	40.9	0.1	ug/L	0.14	81.4	80-120			
Molybdenum	50.8	0.5	ug/L	3.85	93.9	80-120			
Nickel	50.4	1	ug/L	2.6	95.7	80-120			
Selenium	44.1	1	ug/L	ND	86.3	80-120			
Silver	43.5	0.1	ug/L	ND	87.1	80-120			
Sodium	9850	200	ug/L	ND	98.5	80-120			
Thallium	45.4	0.1	ug/L	0.52	89.8	80-120			
Uranium	45.4	0.1	ug/L	1.7	87.3	80-120			
Vanadium	56.1	0.5	ug/L	0.50	111	80-120			
Zinc	43	5	ug/L	ND	83.1	80-120			
Semi-Volatiles									
Acenaphthene	3.66	0.05	ug/L	ND	73.2	50-140			
Acenaphthylene	3.69	0.05	ug/L	ND	73.7	50-140			
Anthracene	3.22	0.01	ug/L	ND	64.3	50-140			
Benzo [a] anthracene	3.55	0.01	ug/L	ND	70.9	50-140			
Benzo [a] pyrene	3.83	0.01	ug/L	ND	76.5	50-140			
Benzo [b] fluoranthene	3.40	0.05	ug/L	ND	68.0	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Client PO:

Method	Quality	Control:	Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [g,h,i] perylene	3.99	0.05	ug/L	ND	79.8	50-140			
Benzo [k] fluoranthene	3.60	0.05	ug/L	ND	72.0	50-140			
Chrysene	3.45	0.05	ug/L	ND	69.0	50-140			
Dibenzo [a,h] anthracene	4.26	0.05	ug/L	ND	85.3	50-140			
Fluoranthene	3.34	0.01	ug/L	ND	66.7	50-140			
Fluorene	3.18	0.05	ug/L	ND	63.6	50-140			
Indeno [1,2,3-cd] pyrene	4.08	0.05	ug/L	ND	81.6	50-140			
1-Methylnaphthalene	3.71	0.05	ug/L	ND	74.2	50-140			
2-Methylnaphthalene	3.64	0.05	ug/L	ND	72.8	50-140			
Naphthalene	3.99	0.05	ug/L	ND	79.7	50-140			
Phenanthrene	3.67	0.05	ug/L	ND	73.3	50-140			
Pyrene	3.19	0.01	ug/L	ND	63.7	50-140			
Surrogate: 2-Fluorobiphenyl	12.6		%		63.2	50-140			
Surrogate: Terphenyl-d14	15.3		%		76.7	50-140			
Volatiles									
Acetone	99.9	5.0	ug/L	ND	99.9	50-140			
Benzene	41.7	0.5	ug/L	ND	104	60-130			
Bromodichloromethane	42.6	0.5	ug/L	ND	107	60-130			
Bromoform	34.6	0.5	ug/L	ND	86.4	60-130			
Bromomethane	49.8	0.5	ug/L	ND	124	50-140			
Carbon Tetrachloride	38.9	0.2	ug/L	ND	97.3	60-130			
Chlorobenzene	39.5	0.5	ug/L	ND	98.8	60-130			
Chloroform	43.2	0.5	ug/L	ND	108	60-130			
Dibromochloromethane	39.2	0.5	ug/L	ND	98.1	60-130			
Dichlorodifluoromethane	36.6	1.0	ug/L	ND	91.5	50-140			
1,2-Dichlorobenzene	37.1	0.5	ug/L	ND	92.8	60-130			
1,3-Dichlorobenzene	39.9	0.5	ug/L	ND	99.8	60-130			
1,4-Dichlorobenzene	38.5	0.5	ug/L	ND	96.2	60-130			
1,1-Dichloroethane	45.1	0.5	ug/L	ND	113	60-130			
1,2-Dichloroethane	45.0	0.5	ug/L	ND	112	60-130			
1,1-Dichloroethylene	45.8	0.5	ug/L	ND	115	60-130			

Certificate of Analysis

Client PO:

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024 Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,2-Dichloroethylene	42.4	0.5	ug/L	ND	106	60-130			
trans-1,2-Dichloroethylene	46.8	0.5	ug/L	ND	117	60-130			
1,2-Dichloropropane	40.8	0.5	ug/L	ND	102	60-130			
cis-1,3-Dichloropropylene	44.6	0.5	ug/L	ND	112	60-130			
trans-1,3-Dichloropropylene	42.8	0.5	ug/L	ND	107	60-130			
Ethylbenzene	35.4	0.5	ug/L	ND	88.5	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	42.3	0.2	ug/L	ND	106	60-130			
Hexane	35.3	1.0	ug/L	ND	88.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	103	5.0	ug/L	ND	103	50-140			
Methyl Isobutyl Ketone	105	5.0	ug/L	ND	105	50-140			
Methyl tert-butyl ether	91.0	2.0	ug/L	ND	91.0	50-140			
Methylene Chloride	47.3	5.0	ug/L	ND	118	60-130			
Styrene	35.8	0.5	ug/L	ND	89.4	60-130			
1,1,1,2-Tetrachloroethane	36.6	0.5	ug/L	ND	91.4	60-130			
1,1,2,2-Tetrachloroethane	40.5	0.5	ug/L	ND	101	60-130			
Tetrachloroethylene	33.5	0.5	ug/L	ND	83.8	60-130			
Toluene	39.0	0.5	ug/L	ND	97.5	60-130			
1,1,1-Trichloroethane	39.3	0.5	ug/L	ND	98.3	60-130			
1,1,2-Trichloroethane	45.9	0.5	ug/L	ND	115	60-130			
Trichloroethylene	37.8	0.5	ug/L	ND	94.4	60-130			
Trichlorofluoromethane	48.9	1.0	ug/L	ND	122	60-130			
Vinyl chloride	30.7	0.5	ug/L	ND	76.7	50-140			
m,p-Xylenes	74.4	0.5	ug/L	ND	93.0	60-130			
o-Xylene	36.4	0.5	ug/L	ND	91.0	60-130			
Surrogate: 4-Bromofluorobenzene	85.8		%		107	50-140			
Surrogate: Dibromofluoromethane	91.8		%		115	50-140			
Surrogate: Toluene-d8	78.0		%		97.5	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 06-Sep-2024

Order Date: 29-Aug-2024

Project Description: OTT24006545B0

Qualifier Notes:

Client PO:

Sample Qualifiers:

1: Elevated Reporting Limits due to limited sample volume.

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

GPARAC LABORATORIES	PARACE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				Blvd. 4J8				Lab Use Only)			Chain Of Custody (Lab Use Only) No 74232			
Client Name: Exp Sovices	s Inc.		Project Ref: 0TT-24006545-B0								Page 1 of /				
Contact Name: Exp Somices Contact Name: Accounts Pay	able		Quote	2 #:									Turr	naround	Time
Address: 2650 Queensu	icw Dr.		E-mail: Scott, lessard @ exp.com							10000	L day 2 day		☐ 3 day Regular		
Telephone: 613-688-189	79				eremy-ec				n			Date F	Required	·	
REG 153/04 REG 406/19	Other Regulation	Τ,	Vlatrix 1	Type:	S (Soil/Sed.) GW (G	round Water)					Po	nuirad	Analysis		111111-24-3
Programmer of Brown ages of Grant ages 100	☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO ☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA			rface V	Nater) SS (Storm/Sa Paint) A (Air) O (Oth	nitary Sewer)			- S		Samle	quii eu	Pandiy 313		
Table Mu	SU - Sani SU - Storn in: Other:	Matrix	Air Volume	of Containers	Sample	Taken	PHC FI-FY	VOC	ICP Metal	PAH	imthosa				
Sample ID/Location Na	Sample ID/Location Name		Air	# of	Date	Time	74	>	10	0	-				
1 BH/MW24	-3	5		5	24/08/29	11:15	L	×	\times	\searrow	\times				
2 DUP		5		5	24/08/19	11:15	X	X	X	X	X				
3					VV.										
4															
5		_													
6		-											\perp	\perp	
7		-					_						_	\perp	
8		_					_						_		
9		-					+					_		$\perp \perp$	
Comments:											Metho	d of Deli			
Relinquished By (STEAT)	Received at I	Depot:	d)		Received at Lab	2				Verifie	d By:	oc/k	11	
Relinquished By (Print): Seremy ECK Date/Time: 24/08/29 15	Date/Time:	A.	3 2	9/20	u 41,01	Date/Pine A Temperature:	192	4	111; °C	4	Date/T pH Ver	ime: /		, 202 V So	4 11.50an

Chain of Custody (Blank) xlsx

Revision 5.0

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Scott Lessard

Client PO: 116 Carruthers Ave.

Project: OTT24006545B0

Custody: 121581

Order Date: 6-Sep-2024

Revised Report

Order #: 2436394

Report Date: 12-Sep-2024

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2436394-01 MW24-1

Approved By:

Mark Foto

Mark Foto, M.Sc.

Lab Supervisor

Client PO: 116 Carruthers Ave.

Certificate of Analysis

Order #: 2436394

Report Date: 12-Sep-2024

Client: exp Services Inc. (Ottawa)

Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	10-Sep-24	10-Sep-24
PHC F1	CWS Tier 1 - P&T GC-FID	6-Sep-24	9-Sep-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	9-Sep-24	9-Sep-24
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	11-Sep-24	11-Sep-24
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	6-Sep-24	9-Sep-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

	Client ID:	MW24-1	-	-	-		
	Sample Date:	06-Sep-24 11:00	-	-	-	-	-
	Sample ID:	2436394-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Metals					•		•
Antimony	0.5 ug/L	4.1	-	-	-	-	-
Arsenic	1 ug/L	1	-	-	-	-	-
Barium	1 ug/L	39	-	-	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-	-	-
Boron	10 ug/L	322	-	-	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-	-	-
Chromium	1 ug/L	<1	-	-	-	-	-
Cobalt	0.5 ug/L	22.4	-	-	-	-	-
Copper	0.5 ug/L	4.7	-	-	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-	-	-
Molybdenum	0.5 ug/L	7.4	-	-	-	-	-
Nickel	1 ug/L	1	-	-	-	-	-
Selenium	1 ug/L	12	-	-	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-	-	-
Sodium	200 ug/L	124000	-	-	-	-	-
Thallium	0.1 ug/L	0.1	-	-	-	-	-
Uranium	0.1 ug/L	0.8	-	-	-	-	-
Vanadium	0.5 ug/L	1.4	-	-	-	-	-
Zinc	5 ug/L	<5	-	-	-	-	-
Volatiles				•			<u> </u>
Acetone	5.0 ug/L	<5.0	-	-	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-	-	-
Bromodichloromethane	0.5 ug/L	0.5	-	-	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

	Client ID:	MW24-1	-	-	-		
	Sample Date:	06-Sep-24 11:00	-	-	-	-	-
	Sample ID:	2436394-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Volatiles	-				•		•
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
Chloroform	0.5 ug/L	9.8	-	-	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	-	-	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Client PO: 116 Carruthers Ave.

Project Description: OTT24006545B0

	Client ID:	MW24-1	-	-	-		
	Sample Date:	06-Sep-24 11:00	-	-	-	-	
	Sample ID:	2436394-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Volatiles		•		•	•		•
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-	-	-
Dibromofluoromethane	Surrogate	114%	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	122%	-	-	-	-	-
Toluene-d8	Surrogate	105%	-	-	-	-	-
Hydrocarbons		<u>.</u>					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-	-	-
Semi-Volatiles		•		•			
Acenaphthene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Acenaphthylene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Anthracene	0.01 ug/L	<0.02 [1]	-	-	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.02 [1]	-	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Client PO: 116 Carruthers Ave. Project Description: OTT24006545B0

	Client ID:	MW24-1	-	-	-		
	Sample Date:	06-Sep-24 11:00	-	-	-	-	-
	Sample ID:	2436394-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Semi-Volatiles							•
Benzo [a] pyrene	0.01 ug/L	<0.02 [1]	-	-	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Chrysene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Fluoranthene	0.01 ug/L	<0.02 [1]	-	-	-	-	-
Fluorene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.20 [1]	-	-	-	-	-
Naphthalene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Phenanthrene	0.05 ug/L	<0.10 [1]	-	-	-	-	-
Pyrene	0.01 ug/L	<0.02 [1]	-	-	-	-	-
2-Fluorobiphenyl	Surrogate	60.8% [1]	-	-	-	-	-
Terphenyl-d14	Surrogate	80.7% [1]	-	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	25	ug/L					
F2 PHCs (C10-C16)	ND	100	ug/L					
F3 PHCs (C16-C34)	ND	100	ug/L					
F4 PHCs (C34-C50)	ND	100	ug/L					
Metals								
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Lead	ND	0.1	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Thallium	ND	0.1	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
Semi-Volatiles			3					
Acenaphthene	ND	0.05	ug/L					
Acenaphthylene	ND	0.05	ug/L					
Anthracene	ND	0.01	ug/L					
Benzo [a] anthracene	ND	0.01	ug/L					
Benzo [a] pyrene	ND	0.01	ug/L					
Benzo [b] fluoranthene	ND	0.05	ug/L					
Benzo [g,h,i] perylene	ND	0.05	ug/L					

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Order #: 2436394

Certificate of Analysis

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [k] fluoranthene	ND	0.05	ug/L					
Chrysene	ND	0.05	ug/L					
Dibenzo [a,h] anthracene	ND	0.05	ug/L					
Fluoranthene	ND	0.01	ug/L					
Fluorene	ND	0.05	ug/L					
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L					
1-Methylnaphthalene	ND	0.05	ug/L					
2-Methylnaphthalene	ND	0.05	ug/L					
Methylnaphthalene (1&2)	ND	0.10	ug/L					
Naphthalene	ND	0.05	ug/L					
Phenanthrene	ND	0.05	ug/L					
Pyrene	ND	0.01	ug/L					
Surrogate: 2-Fluorobiphenyl	10.8		%	53.8	50-140			
Surrogate: Terphenyl-d14	14.9		%	74.5	50-140			
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					

Report Date: 12-Sep-2024

Project Description: OTT24006545B0

Order Date: 6-Sep-2024

Certificate of Analysis

Client: exp Services Inc. (Ottawa) Client PO: 116 Carruthers Ave.

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	96.2		%	120	50-140			
Surrogate: Dibromofluoromethane	86.4		%	108	50-140			
Surrogate: Toluene-d8	84.2		%	105	50-140			

Client: exp Services Inc. (Ottawa)

Order #: 2436394

Certificate of Analysis

Order Date: 6-Sep-2024

Client PO: 116 Carruthers Ave.

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Antimony	3.93	0.5	ug/L	4.08			3.8	20	
Arsenic	1.2	1	ug/L	1.2			1.1	20	
Barium	37.2	1	ug/L	38.8			4.1	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	333	10	ug/L	322			3.5	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	22.6	0.5	ug/L	22.4			0.7	20	
Copper	4.70	0.5	ug/L	4.67			0.7	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Molybdenum	7.45	0.5	ug/L	7.38			1.0	20	
Nickel	1.1	1	ug/L	1.1			1.3	20	
Selenium	11.8	1	ug/L	12.0			1.5	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	129000	200	ug/L	124000			3.5	20	
Thallium	0.12	0.1	ug/L	0.12			2.2	20	
Uranium	0.8	0.1	ug/L	0.8			1.7	20	
Vanadium	1.39	0.5	ug/L	1.41			1.3	20	
Zinc	ND	5	ug/L	ND			NC	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
L Dibromochloromethane	ND	0.5	ug/L	ND		Lilling	NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	

Order Date: 6-Sep-2024

Report Date: 12-Sep-2024

Certificate of Analysis Client: exp Services Inc. (Ottawa)

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

Method Quality Control: Duplicate

, i									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	96.7		%		121	50-140			
Surrogate: Dibromofluoromethane	87.4		%		109	50-140			
Surrogate: Toluene-d8	83.8		%		105	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024 Order Date: 6-Sep-2024

Client PO: 116 Carruthers Ave. Project Description: OTT24006545B0

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1930	25	ug/L	ND	112	85-115			
F2 PHCs (C10-C16)	1520	100	ug/L	ND	95.1	60-140			
F3 PHCs (C16-C34)	3120	100	ug/L	ND	79.6	60-140			
F4 PHCs (C34-C50)	2410	100	ug/L	ND	97.1	60-140			
Metals									
Arsenic	49.6	1	ug/L	1.2	96.8	80-120			
Barium	86.1	1	ug/L	38.8	94.5	80-120			
Beryllium	49.4	0.5	ug/L	ND	98.7	80-120			
Boron	49	10	ug/L	ND	97.8	80-120			
Cadmium	43.9	0.1	ug/L	ND	87.9	80-120			
Chromium	48.8	1	ug/L	ND	96.9	80-120			
Cobalt	67.5	0.5	ug/L	22.4	90.3	80-120			
Copper	47.6	0.5	ug/L	4.67	85.9	80-120			
Lead	40.9	0.1	ug/L	ND	81.7	80-120			
Molybdenum	52.1	0.5	ug/L	7.38	89.4	80-120			
Nickel	44.9	1	ug/L	1.1	87.7	80-120			
Selenium	57.0	1	ug/L	12.0	90.1	80-120			
Silver	42.7	0.1	ug/L	ND	85.4	80-120			
Sodium	133000	200	ug/L	124000	92.7	80-120			
Thallium	45.5	0.1	ug/L	0.12	90.8	80-120			
Uranium	47.8	0.1	ug/L	0.8	94.1	80-120			
Vanadium	51.6	0.5	ug/L	1.41	100	80-120			
Zinc	42	5	ug/L	ND	81.8	80-120			
Semi-Volatiles									
Acenaphthene	3.75	0.05	ug/L	ND	74.9	50-140			
Acenaphthylene	3.73	0.05	ug/L	ND	74.5	50-140			
Anthracene	3.21	0.01	ug/L	ND	64.2	50-140			
Benzo [a] anthracene	3.84	0.01	ug/L	ND	76.9	50-140			
Benzo [a] pyrene	3.94	0.01	ug/L	ND	78.8	50-140			
Benzo [b] fluoranthene	3.54	0.05	ug/L	ND	70.8	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 12-Sep-2024

Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Client PO: 116 Carruthers Ave.

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [g,h,i] perylene	3.86	0.05	ug/L	ND	77.1	50-140			
Benzo [k] fluoranthene	3.45	0.05	ug/L	ND	68.9	50-140			
Chrysene	3.78	0.05	ug/L	ND	75.6	50-140			
Dibenzo [a,h] anthracene	4.11	0.05	ug/L	ND	82.3	50-140			
Fluoranthene	3.57	0.01	ug/L	ND	71.4	50-140			
Fluorene	3.32	0.05	ug/L	ND	66.3	50-140			
Indeno [1,2,3-cd] pyrene	4.26	0.05	ug/L	ND	85.3	50-140			
1-Methylnaphthalene	3.26	0.05	ug/L	ND	65.3	50-140			
2-Methylnaphthalene	3.34	0.05	ug/L	ND	66.8	50-140			
Naphthalene	3.59	0.05	ug/L	ND	71.8	50-140			
Phenanthrene	3.57	0.05	ug/L	ND	71.4	50-140			
Pyrene	3.44	0.01	ug/L	ND	68.8	50-140			
Surrogate: 2-Fluorobiphenyl	13.4		%		66.8	50-140			
Surrogate: Terphenyl-d14	17.4		%		87.1	50-140			
/olatiles									
Acetone	113	5.0	ug/L	ND	113	50-140			
Benzene	46.3	0.5	ug/L	ND	116	60-130			
Bromodichloromethane	45.2	0.5	ug/L	ND	113	60-130			
Bromoform	38.5	0.5	ug/L	ND	96.3	60-130			
Bromomethane	39.3	0.5	ug/L	ND	98.2	50-140			
Carbon Tetrachloride	39.3	0.2	ug/L	ND	98.2	60-130			
Chlorobenzene	44.1	0.5	ug/L	ND	110	60-130			
Chloroform	45.9	0.5	ug/L	ND	115	60-130			
Dibromochloromethane	43.1	0.5	ug/L	ND	108	60-130			
Dichlorodifluoromethane	48.1	1.0	ug/L	ND	120	50-140			
1,2-Dichlorobenzene	42.9	0.5	ug/L	ND	107	60-130			
1,3-Dichlorobenzene	45.2	0.5	ug/L	ND	113	60-130			
1,4-Dichlorobenzene	43.7	0.5	ug/L	ND	109	60-130			
1,1-Dichloroethane	43.0	0.5	ug/L	ND	108	60-130			
1,2-Dichloroethane	48.8	0.5	ug/L	ND	122	60-130			
1,1-Dichloroethylene	48.2	0.5	ug/L	ND	121	60-130			

Report Date: 12-Sep-2024

Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Analyte	Docult	Reporting	Linita	Source	0/ DEC	%REC	RPD	RPD	Notes
	Result	Limit	Units	Result	%REC	Limit	- INI D	Limit	Notes
cis-1,2-Dichloroethylene	45.9	0.5	ug/L	ND	115	60-130			
trans-1,2-Dichloroethylene	49.6	0.5	ug/L	ND	124	60-130			
1,2-Dichloropropane	45.2	0.5	ug/L	ND	113	60-130			
cis-1,3-Dichloropropylene	47.6	0.5	ug/L	ND	119	60-130			
trans-1,3-Dichloropropylene	46.5	0.5	ug/L	ND	116	60-130			
Ethylbenzene	40.0	0.5	ug/L	ND	100	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	47.6	0.2	ug/L	ND	119	60-130			
Hexane	33.8	1.0	ug/L	ND	84.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	121	5.0	ug/L	ND	121	50-140			
Methyl Isobutyl Ketone	121	5.0	ug/L	ND	121	50-140			
Methyl tert-butyl ether	106	2.0	ug/L	ND	106	50-140			
Methylene Chloride	50.4	5.0	ug/L	ND	126	60-130			
Styrene	40.8	0.5	ug/L	ND	102	60-130			
1,1,1,2-Tetrachloroethane	39.7	0.5	ug/L	ND	99.3	60-130			
1,1,2,2-Tetrachloroethane	45.6	0.5	ug/L	ND	114	60-130			
Tetrachloroethylene	35.5	0.5	ug/L	ND	88.8	60-130			
Toluene	44.6	0.5	ug/L	ND	112	60-130			
1,1,1-Trichloroethane	41.4	0.5	ug/L	ND	104	60-130			
1,1,2-Trichloroethane	49.8	0.5	ug/L	ND	124	60-130			
Trichloroethylene	40.6	0.5	ug/L	ND	102	60-130			
Trichlorofluoromethane	47.4	1.0	ug/L	ND	119	60-130			
Vinyl chloride	35.1	0.5	ug/L	ND	87.8	50-140			
m,p-Xylenes	84.3	0.5	ug/L	ND	105	60-130			
o-Xylene	41.4	0.5	ug/L	ND	104	60-130			
Surrogate: 4-Bromofluorobenzene	82.3		%		103	50-140			
Surrogate: Dibromofluoromethane	87.4		%		109	50-140			
Surrogate: Toluene-d8	80.9		%		101	50-140			

Report Date: 12-Sep-2024

Order Date: 6-Sep-2024

Project Description: OTT24006545B0

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Client PO: 116 Carruthers Ave.

Qualifier Notes:

Sample Qualifiers:

1: Elevated Reporting Limits due to limited sample volume.

Applies to Samples: MW24-1

Sample Data Revisions:

None

Work Order Revisions / Comments:

Revision 1 - This report includes updated PAH Reporting Limits.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

0	D	٨	DΛ	Γ	Г	ı
	Γ	Н	KA	r		L

TRUSTE RESPO

t. Laurent Blvd. ario K1G 4J8 9-1947 Chain of Custody
(Lab Use Only)
NO 121581

RELIAB paracellabs.com LABORATORIES LTD. Page ___ of ___ Project Reference: 116 Carruthers Ave. EXP Senies Inc. Turnaround Time: Contact Name: □ I Day □3 Day Address: Email Address: Scott-lessard @exp.com Jenemy.edlert @exp.com 2650 Queensview Dr. Regular □ 2 Day Telephone: 613 688 1899 Date Required: Criteria: 40. Reg. 153/04 (As Amended) Table 3 RSC Filing 0. Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: ☐ Other: Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses Samp Paracel Order Number: # of Containers Air Volume Sample Taken 1: mited: Matrix Sample ID/Location Name Time Date 24/09/06/11:00 aw MW24-2 3 4 5 6 7 8 9 Comments: Matex drilling fluid in well & Received by Driver Depot: Received at Lpb; Sept6, 2014 12:351 Date/Time: Date/Time: Date/Time: Temperature: Temperature pH Verified I/ By