

December 11, 2024

# PREPARED FOR

2668867 Ontario Inc. 4836 Bank Street Ottawa, ON K1X 1G6

### PREPARED BY

Justin Denne, M.A.Sc, Junior Wind Scientist David Huitema, M.Eng, P.Eng., CFD Lead Engineer



# **EXECUTIVE SUMMARY**

This report describes a pedestrian level wind (PLW) study undertaken to satisfy Site Plan Control application submission requirements for the proposed mixed-use residential development located at 155 Dun Skipper Drive in Ottawa, Ontario (hereinafter referred to as "subject site" or "proposed development"). Our mandate within this study is to investigate pedestrian wind conditions within and surrounding the subject site, and to identify areas where wind conditions may interfere with certain pedestrian activities so that mitigation measures may be considered, where required.

The study involves simulation of wind speeds for selected wind directions in a three-dimensional (3D) computer model using the computational fluid dynamics (CFD) technique, combined with meteorological data integration, to assess pedestrian wind comfort and safety within and surrounding the subject site according to City of Ottawa wind comfort and safety criteria. The results and recommendations derived from these considerations are detailed in the main body of the report (Section 5), illustrated in Figures 3A-9, and summarized as follows:

- 1) Most grade-level areas within and surrounding the subject site are predicted to experience conditions that are considered acceptable for the intended pedestrian uses throughout the year. Specifically, conditions over surrounding sidewalks, transit stops, drop-off areas, neighbouring existing and proposed surface parking lots and drive aisles, walkways, and in the vicinity of building access points, are considered acceptable.
  - a. Depending on programming, conditions within the proposed pedestrian plaza to the northeast may be considered acceptable. Specifically, if the north area of the space will not include designated seating areas or programmed sedentary uses, the conditions within the space may be considered as acceptable.
- 2) Regarding the common amenity terrace serving the proposed development at Level 9, conditions during the typical use period (May to October, inclusive) are predicted to be suitable for sitting, which is considered acceptable.





3) The foregoing statements and conclusions apply to common weather systems, during which no dangerous wind conditions, as defined in Section 4.4, are expected anywhere over the subject site. During extreme weather events, (for example, thunderstorms, tornadoes, and downbursts), pedestrian safety is the main concern. However, these events are generally short-lived and infrequent and there is often sufficient warning for pedestrians to take appropriate cover.



# **TABLE OF CONTENTS**

| 1.    | INTRODUCTION                                                 | . 1 |
|-------|--------------------------------------------------------------|-----|
| 2.    | TERMS OF REFERENCE                                           | . 1 |
| 3.    | OBJECTIVES                                                   | . 2 |
| 4.    | METHODOLOGY                                                  | . 3 |
| 4.1   | Computer-Based Context Modelling                             | 3   |
| 4.2   | Wind Speed Measurements                                      | 3   |
| 4.3   | Historical Wind Speed and Direction Data                     | 4   |
| 4.4   | Pedestrian Wind Comfort and Safety Criteria – City of Ottawa | 6   |
| 5.    | RESULTS AND DISCUSSION                                       | . 8 |
| 5.1   | Wind Comfort Conditions – Grade Level                        | 9   |
| 5.2   | Wind Comfort Conditions – Level 9 Common Amenity Terrace     | 11  |
| 5.3   | Wind Safety                                                  | 11  |
| 5.4   | Applicability of Results                                     | 11  |
| 6.    | CONCLUSIONS AND RECOMMENDATIONS                              | 11  |
| FIGUE | RES                                                          |     |

**APPENDICES** 

Appendix A – Simulation of the Atmospheric Boundary Layer



# 1. INTRODUCTION

Gradient Wind Engineering Inc. (Gradient Wind) was retained by 2668867 Ontario Inc. to undertake a pedestrian level wind (PLW) study to satisfy Site Plan Control application submission requirements for the proposed mixed-use residential development located at 155 Dun Skipper Drive in Ottawa, Ontario (hereinafter referred to as "subject site" or "proposed development"). Our mandate within the current study is to investigate pedestrian wind conditions within and surrounding the subject site, and to identify areas where wind conditions may interfere with certain pedestrian activities so that mitigation measures may be considered, where required.

Our work is based on industry standard computer simulations using the computational fluid dynamics (CFD) technique and data analysis procedures, City of Ottawa wind comfort and safety criteria, architectural drawings prepared by Alexander Wilson Architect Inc in August 2024, surrounding street layouts and existing and approved future building massing information obtained from the City of Ottawa, as well as recent satellite imagery.

# 2. TERMS OF REFERENCE

The subject site is located at 155 Dun Skipper Drive in Ottawa, situated to the southwest at the intersection of Dun Skipper Drive and Bank Street on a parcel of land bordered by Dun Skipper Drive to the north, Bank Street to the east, an existing drive aisle to the south, and low-rise commercial buildings with an existing drive aisle and surface parking to the west. The proposed development comprises an "L"-shaped 9-storey seniors apartment building that is oriented parallel with Dun Skipper Drive and Bank Street and topped with a mechanical penthouse (MPH).

Above two underground parking levels, the ground floor of the proposed development includes shared residential spaces within the north wing fronting Dun Skipper Drive and commercial space within the east wing fronting Bank Street. The residential wing includes a primary access point from Dun Skipper Drive that is located centrally along the north elevation, a primary access point at the interior southeast corner of the level fronting a proposed drop-off area, an underground parking ramp at the southwest corner, and residential amenities throughout the remainder of the north wing with secondary access points along the south elevation. The commercial wing comprises access points along the east elevation fronting Bank Street and the west elevation fronting the proposed drop-off area.



The proposed drop-off area and the surface parking occupying the west and southwest portion of the subject site are accessible via proposed drive aisles extending from the existing drive aisles to the west and south of the subject site. Pedestrian walkways extend along the west façade to Dun Skipper Drive and along the east façade to a pedestrian plaza at the intersection of Dun Skipper Drive and Bank Street.

Levels 2-8 of the proposed development are reserved for residential occupancy, while Level 9 includes indoor amenity spaces and residential units. The building steps back from the east elevation at Level 2, from the northeast corner at Level 6, and from the south (east wing) and west (north wing) elevations at Level 9, accommodating private terraces. An additional setback at the northeast corner of Level 9 accommodates a common amenity terrace.

The near-field surroundings (defined as an area within 200 metres (m) of the subject site) comprise green spaces and vacant lots from the northwest clockwise to the southeast, the Hindu Temple of Ottawa-Carleton to the east-northeast, low-rise commercial buildings with surface parking lots from the south-southeast clockwise to the west-southwest, and low-rise residential dwellings in the remaining directions. The far-field surroundings (defined as an area beyond the near-field but within a 2-kilometre (km) radius of the subject site) are characterized by a mix of suburban massing and green spaces from the west-southwest clockwise to the north-northeast, a quarry and low-rise commercial and industrial buildings from the east clockwise to the south-southeast, and a mix of mostly green spaces and dense forest in the remaining directions.

Site plans for the proposed and existing massing scenarios are illustrated in Figures 1A and 1B, while Figures 2A-2H illustrate the computational models used to conduct the study. The existing massing scenario includes the existing massing and any developments which have been approved by the City of Ottawa.

# 3. OBJECTIVES

The principal objectives of this study are to (i) determine pedestrian level wind conditions at key areas within and surrounding the development site; (ii) identify areas where wind conditions may interfere with the intended uses of outdoor spaces; and (iii) recommend suitable mitigation measures, where required.



#### 4. **METHODOLOGY**

The approach followed to quantify pedestrian wind conditions over the site is based on CFD simulations of wind speeds across the subject site within a virtual environment, meteorological analysis of the Ottawa area wind climate, and synthesis of computational data with City of Ottawa wind comfort and safety criteria<sup>1</sup>. The following sections describe the analysis procedures, including a discussion of the noted pedestrian wind criteria.

#### 4.1 **Computer-Based Context Modelling**

A computer based PLW study was performed to determine the influence of the wind environment on pedestrian comfort over the proposed development site. Pedestrian comfort predictions, based on the mechanical effects of wind, were determined by combining measured wind speed data from CFD simulations with statistical weather data obtained from Ottawa Macdonald-Cartier International Airport. The general concept and approach to CFD modelling is to represent building and topographic details in the immediate vicinity of the subject site on the surrounding model, and to create suitable atmospheric wind profiles at the model boundary. The wind profiles are designed to have similar mean and turbulent wind properties consistent with actual site exposures.

An industry standard practice is to omit trees, vegetation, and other existing and planned landscape elements from the model due to the difficulty of providing accurate seasonal representation of vegetation. The omission of trees and other landscaping elements produces slightly stronger wind speeds.

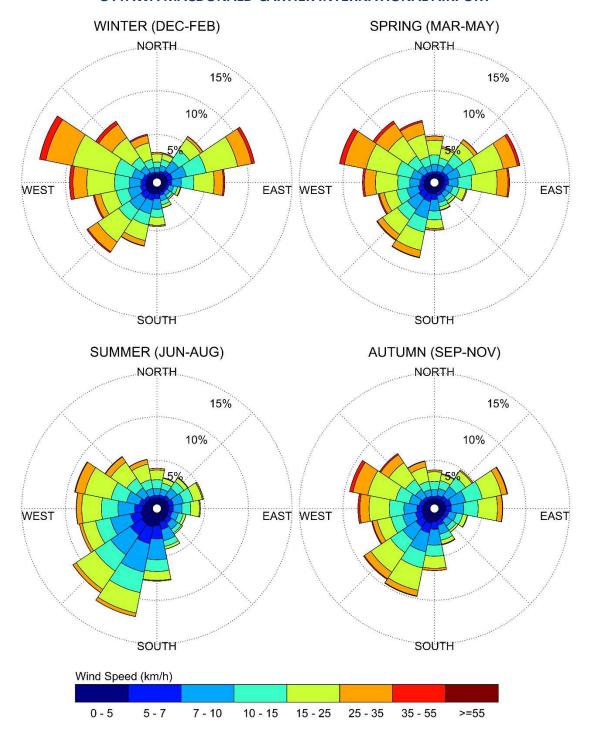
#### 4.2 **Wind Speed Measurements**

The PLW analysis was performed by simulating wind flows and gathering velocity data over a CFD model of the site for 16 wind directions. The CFD simulation model was centered on the proposed development, complete with surrounding massing within a radius of 480 m. The process was performed for two context massing scenarios, as noted in Section 2.

<sup>&</sup>lt;sup>1</sup> City of Ottawa Terms of References: Wind Analysis https://documents.ottawa.ca/sites/documents/files/wind analysis tor en.pdf



Mean and peak wind speed data obtained over the subject site for each wind direction were interpolated to 36 wind directions at 10° intervals, representing the full compass azimuth. Measured wind speeds approximately 1.5 m above local grade and over the Level 9 common amenity terrace serving the proposed development were referenced to the wind speed at gradient height to generate mean and peak velocity ratios, which were used to calculate full-scale values. Gradient height represents the theoretical depth of the boundary layer of the earth's atmosphere, above which the mean wind speed remains constant. Further details of the wind flow simulation technique are presented in Appendix A.


# 4.3 Historical Wind Speed and Direction Data

A statistical model for winds in Ottawa was developed from approximately 40 years of hourly meteorological wind data recorded at Ottawa Macdonald-Cartier International Airport and obtained from Environment and Climate Change Canada. Wind speed and direction data were analyzed during the appropriate hours of pedestrian usage (that is, between 06:00 and 23:00) and divided into four distinct seasons, as stipulated in the wind criteria. Specifically, the spring season is defined as March through May, the summer season is defined as June through August, the autumn season is defined as September through November, and the winter season is defined as December through February, inclusive.

The statistical model of the Ottawa area wind climate, which indicates the directional character of local winds on a seasonal basis, is illustrated on the following page. The plots illustrate seasonal distribution of measured wind speeds and directions in kilometers per hour (km/h). Probabilities of occurrence of different wind speeds are represented as stacked polar bars in sixteen azimuth divisions. The radial direction represents the percentage of time for various wind speed ranges per wind direction during the measurement period. The prominent wind speeds and directions can be identified by the longer length of the bars. For Ottawa, the most common winds occur for westerly wind directions, followed by those from the east, while the most common wind speeds are below 36 km/h. The directional prominence and relative magnitude of wind speed changes somewhat from season to season.



# SEASONAL DISTRIBUTION OF WIND OTTAWA MACDONALD-CARTIER INTERNATIONAL AIRPORT



# **Notes:**

- 1. Radial distances indicate percentage of time of wind events.
- 2. Wind speeds are mean hourly in km/h, measured at 10 m above the ground.



# 4.4 Pedestrian Wind Comfort and Safety Criteria – City of Ottawa

Pedestrian wind comfort and safety criteria are based on the mechanical effects of wind without consideration of other meteorological conditions (that is, temperature and relative humidity). The comfort criteria assume that pedestrians are appropriately dressed for a specified outdoor activity during any given season. Five pedestrian comfort classes based on 20% non-exceedance mean wind speed ranges are used to assess pedestrian comfort: (1) Sitting; (2) Standing; (3) Strolling; (4) Walking; and (5) Uncomfortable. The gust speeds, and equivalent mean speeds, are selected based on the Beaufort scale, which describes the effects of forces produced by varying wind speed levels on objects. Wind conditions suitable for sitting are represented by the colour blue, standing by green, strolling by yellow, and walking by orange; uncomfortable conditions are represented by the colour magenta. Specifically, the comfort classes, associated wind speed ranges, and limiting criteria are summarized as follows:

### PEDESTRIAN WIND COMFORT CLASS DEFINITIONS

| Wind Comfort Class | Mean<br>Speed<br>(km/h) | Description                                                                                                                                                                                                          |
|--------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITTING            | ≤ 10                    | Mean wind speeds no greater than 10 km/h occurring at least 80% of the time. The equivalent gust wind speed is approximately 16 km/h.                                                                                |
| STANDING           | ≤ 14                    | Mean wind speeds no greater than 14 km/h occurring at least 80% of the time. The equivalent gust wind speed is approximately 22 km/h.                                                                                |
| STROLLING          | ≤ 17                    | Mean wind speeds no greater than 17 km/h occurring at least 80% of the time. The equivalent gust wind speed is approximately 27 km/h.                                                                                |
| WALKING            | ≤ 20                    | Mean wind speeds no greater than 20 km/h occurring at least 80% of the time. The equivalent gust wind speed is approximately 32 km/h.                                                                                |
| UNCOMFORTABLE      | > 20                    | Uncomfortable conditions are characterized by predicted values that fall below the 80% target for walking. Brisk walking and exercise, such as jogging, would be acceptable for moderate excesses of this criterion. |



Regarding wind safety, the pedestrian safety wind speed criterion is based on the approximate threshold that would cause a vulnerable member of the population to fall. A 0.1% exceedance gust wind speed of 90 km/h is classified as dangerous. From calculations of stability, it can be shown that gust wind speeds of 90 km/h would be the approximate threshold wind speed that would cause an average elderly person in good health to fall. Notably, pedestrians tend to be more sensitive to wind gusts than to steady winds for lower wind speed ranges. For strong winds approaching dangerous levels, this effect is less important because the mean wind can also create problems for pedestrians.

Experience and research on people's perception of mechanical wind effects has shown that if the wind speed levels are exceeded for more than 20% of the time, the activity level would be judged to be uncomfortable by most people. For instance, if a mean wind speed of 10 km/h (equivalent gust wind speed of approximately 16 km/h) were exceeded for more than 20% of the time most pedestrians would judge that location to be too windy for sitting. Similarly, if mean wind speed of 20 km/h (equivalent gust wind speed of approximately 32 km/h) at a location were exceeded for more than 20% of the time, walking or less vigorous activities would be considered uncomfortable. As these criteria are based on subjective reactions of a population to wind forces, their application is partly based on experience and judgment.

Once the pedestrian wind speed predictions have been established throughout the subject site, the assessment of pedestrian comfort involves determining the suitability of the predicted wind conditions for discrete regions within and surrounding the subject site. This step involves comparing the predicted comfort classes to the target comfort classes, which are dictated by the location type for each region (that is, a sidewalk, building entrance, amenity space, or other). An overview of common pedestrian location types and their typical windiest target comfort classes are summarized on the following page. Depending on the programming of a space, the desired comfort class may differ from this table.



# TARGET PEDESTRIAN WIND COMFORT CLASSES FOR VARIOUS LOCATION TYPES

| Location Types                  | Target Comfort Classes |
|---------------------------------|------------------------|
| Primary Building Entrance       | Standing               |
| Secondary Building Access Point | Walking                |
| Public Sidewalk / Bicycle Path  | Walking                |
| Outdoor Amenity Space           | Sitting / Standing     |
| Café / Patio / Bench / Garden   | Sitting / Standing     |
| Transit Stop (Without Shelter)  | Standing               |
| Transit Stop (With Shelter)     | Walking                |
| Public Park / Plaza             | Sitting / Standing     |
| Garage / Service Entrance       | Walking                |
| Parking Lot                     | Walking                |
| Vehicular Drop-Off Zone         | Walking                |

# 5. RESULTS AND DISCUSSION

The following discussion of the predicted pedestrian wind conditions for the subject site is accompanied by Figures 3A-6B, which illustrate wind conditions at grade level for the proposed and existing massing scenarios, and by Figures 8A-D, which illustrate conditions over the common amenity terrace serving the proposed development at Level 9. Conditions are presented as continuous contours of wind comfort throughout the subject site and correspond to the comfort classes presented in Section 4.4.

Wind comfort conditions are also reported for the typical use period, which is defined as May to October, inclusive. Figures 7 and 9 illustrate wind comfort conditions at grade level and within the noted amenity terrace serving the proposed development, respectively, consistent with the comfort classes illustrated in Section 4.4.

The details of these conditions are summarized in the following pages for each area of interest.



# 5.1 Wind Comfort Conditions – Grade Level

**Sidewalks along Dun Skipper Drive:** Following the introduction of the proposed development, wind comfort conditions over the nearby public sidewalks along Dun Skipper Drive are predicted to be suitable for mostly standing during the spring, autumn, and winter with strolling conditions in the vicinity of the intersection of Dun Skipper Drive and Bank Street and to the northwest of the proposed development. During the summer, conditions over Dun Skipper Drive are predicted to be suitable for a mix of sitting and standing. The noted conditions are considered acceptable.

Under the existing massing prior to the introduction of the proposed development, conditions over the sidewalks along Dun Skipper Drive are predicted to be suitable for a mix of standing and strolling in the spring and winter and suitable for mostly standing during the summer and autumn with strolling conditions during the autumn near Bank Street. Notably, the introduction of the proposed development is predicted to improve the comfort level over some areas along Dun Skipper Drive as compared to existing conditions and wind conditions with the proposed development are nevertheless considered acceptable for public sidewalks.

**Sidewalks along Bank Street:** Following the introduction of the proposed development, conditions over the proposed nearby public sidewalks along Bank Street are predicted to be suitable for a mix of sitting and standing during the summer, becoming suitable for a mix of sitting, standing, and strolling during the autumn and strolling, or better, during the spring and winter. The noted conditions are considered acceptable.

Under the existing massing, conditions along Bank Street are predicted to be suitable for standing during the summer, becoming suitable for strolling, or better, during the remaining seasons. The introduction of the proposed development is predicted to improve comfort levels along Bank Street, and conditions with the proposed development are considered acceptable for public sidewalks.

**Transit Stop along Bank Street:** Following the introduction of the proposed development, wind comfort conditions over the nearby northbound transit stop along Bank Street to the east-southeast of the subject site are predicted to be suitable for strolling during the spring, standing during the summer, a mix of standing and strolling during autumn, and mostly strolling during the winter.



Prior to the introduction of the proposed development, conditions over the noted transit stop are predicted to be suitable for strolling during the spring and winter, standing during the summer, and mostly strolling during autumn. While conditions over the noted transit stop are predicted to be windier, as the introduction of the proposed development is predicted to improve the comfort level over the transit stop, the noted conditions with the proposed development may be considered acceptable.

**Neighbouring Existing Surface Parking Lots:** Wind conditions over the northern region of the existing commercial surface parking lot to the immediate southwest of the subject site are predicted to be suitable for mostly sitting during the summer and mostly standing during the spring, autumn, and winter, prior to and following the introduction of the proposed development. The noted conditions are considered acceptable.

Drop-off Area, Drive Aisles, Surface Parking, and Walkways within the Subject Site: Wind conditions over the rear drop-off area bordered by the proposed developments' north and east wings are predicted to be suitable for sitting throughout the year. Conditions over the drive aisles and surface parking within the west and southwest areas of the subject site are predicted to be suitable for standing, or better, throughout the year with strolling conditions predicted over the south drive aisle during the spring and winter. Conditions over the pedestrian walkway along the west façade are predicted to be suitable for mostly standing throughout the year with strolling conditions near Dun Skipper Drive. Conditions over the walkways along the east elevation, at the main residential entrance, and at the rear of the subject site are predicted to be suitable for mostly sitting in the summer and autumn seasons, becoming suitable for a mix of sitting and standing in the spring and winter. The noted conditions are considered acceptable.

During the typical use period, conditions over the pedestrian plaza are predicted to be suitable for standing to the north and sitting to the south. Depending on the programming of the space, the noted conditions may be considered acceptable. Specifically, if the windier areas to the north will not accommodate seating or lounging activities, the noted conditions may be considered acceptable without mitigation.

**Building Access Points:** Owing to the protection of the building façade, conditions in the vicinity of primary and secondary access points serving the proposed development are predicted to be suitable for standing, or better, throughout the year, which is considered acceptable.



# **5.2** Wind Comfort Conditions – Level 9 Common Amenity Terrace

As illustrated in Figure 9, wind comfort conditions within the common amenity terrace serving the proposed development at Level 9 are predicted to be suitable for sitting during the typical use period. The noted conditions are considered acceptable.

# **5.3** Wind Safety

Within the context of typical weather patterns, which exclude anomalous localized storm events such as tornadoes and downbursts, no pedestrian areas within or surrounding the subject site are expected to experience conditions that could be considered dangerous, as defined in Section 4.4.

# **5.4** Applicability of Results

Pedestrian wind comfort and safety have been quantified for the specific configuration of existing and foreseeable construction around the subject site. Future changes (that is, construction or demolition) of these surroundings may cause changes to the wind effects in two ways, namely: (i) changes beyond the immediate vicinity of the subject site would alter the wind profile approaching the subject site; and (ii) development in proximity to the subject site would cause changes to local flow patterns.

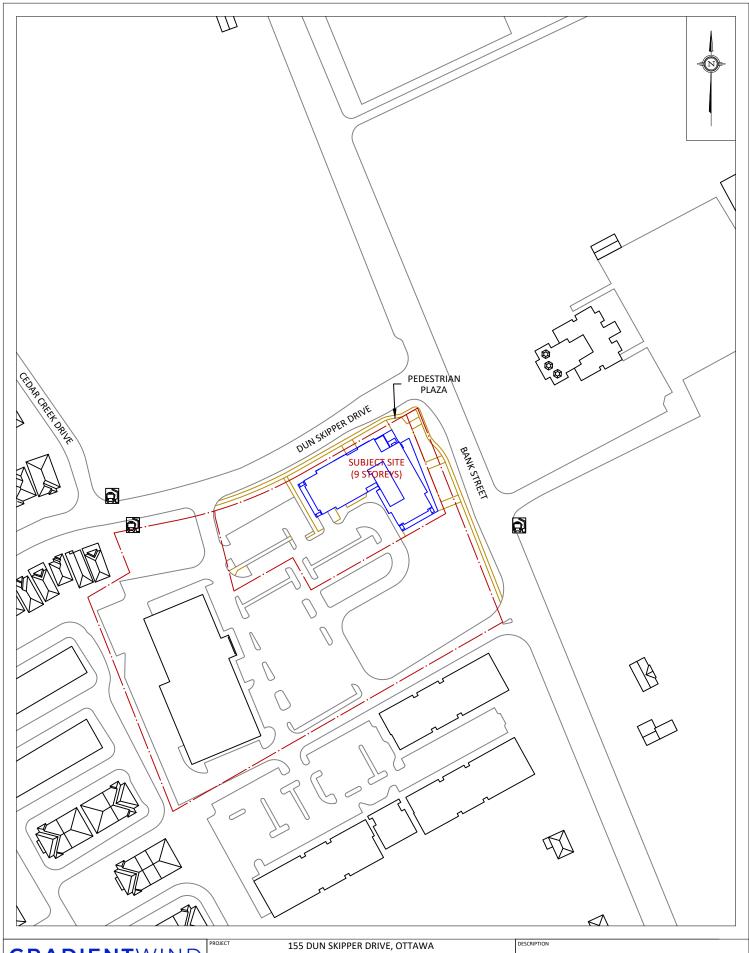
# 6. CONCLUSIONS AND RECOMMENDATIONS

A complete summary of the predicted wind conditions is provided in Section 5 and illustrated in Figures 3A-9. Based on computer simulations using the CFD technique, meteorological data analysis of the Ottawa wind climate, City of Ottawa wind comfort and safety criteria, and experience with numerous similar developments, the study concludes the following:

1) Most grade-level areas within and surrounding the subject site are predicted to experience conditions that are considered acceptable for the intended pedestrian uses throughout the year. Specifically, conditions over surrounding sidewalks, transit stops, drop-off areas, neighbouring existing and proposed surface parking lots and drive aisles, walkways, and in the vicinity of building access points, are considered acceptable.



- a. Depending on programming, conditions within the proposed pedestrian plaza to the northeast may be considered acceptable. Specifically, if the north area of the space will not include designated seating areas or programmed sedentary uses, the conditions within the space may be considered as acceptable.
- 2) Regarding the common amenity terrace serving the proposed development at Level 9, conditions during the typical use period (May to October, inclusive) are predicted to be suitable for sitting, which is considered acceptable.
- 3) The foregoing statements and conclusions apply to common weather systems, during which no dangerous wind conditions, as defined in Section 4.4, are expected anywhere over the subject site. During extreme weather events, (for example, thunderstorms, tornadoes, and downbursts), pedestrian safety is the main concern. However, these events are generally short-lived and infrequent and there is often sufficient warning for pedestrians to take appropriate cover.


Sincerely,

**Gradient Wind Engineering Inc.** 

Justin Denne, M.A.Sc. Junior Wind Scientist D. T. HUITEMA 100561777

December 11, 2024

David Huitema, M.Eng., P.Eng. CFD Lead Engineer



# **GRADIENT**WIND

127 WALGREEN ROAD, OTTAWA, ON 613 836 0934 • GRADIENTWIND.COM

| PEDESTRIAN LEVEL WIND STUDY |                   |             |               |
|-----------------------------|-------------------|-------------|---------------|
| SCALE                       | 1:2000            | DRAWING NO. | 24-142-PLW-1A |
| DATE                        | SEPTEMBER 9, 2024 | DRAWN BY    | S.K.          |

FIGURE 1A:
PROPOSED SITE PLAN AND SURROUNDING CONTEXT



# **GRADIENT**WIND

127 WALGREEN ROAD, OTTAWA, ON 613 836 0934 • GRADIENTWIND.COM

| SCALE   | 1:2000  | DRAWING NO.                   |  |  |
|---------|---------|-------------------------------|--|--|
|         | PEDEST  | RIAN LEVEL WIND STUDY         |  |  |
| PROJECT | 155 DUN | 155 DUN SKIPPER DRIVE, OTTAWA |  |  |

24-142-PLW-1B SEPTEMBER 9, 2024 S.K.

FIGURE 1B: EXISTING SITE PLAN AND SURROUNDING CONTEXT



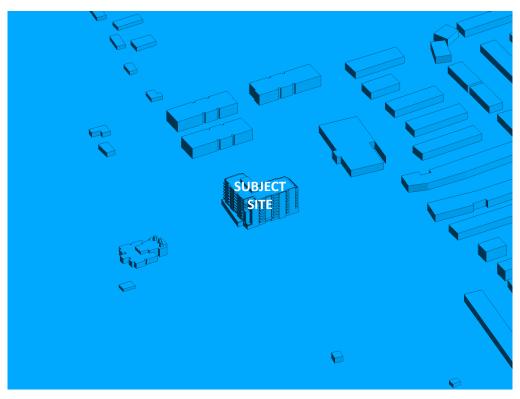



FIGURE 2A: COMPUTATIONAL MODEL, PROPOSED MASSING, NORTH PERSPECTIVE

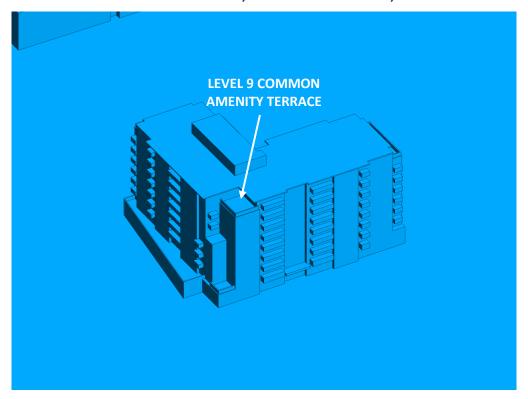



FIGURE 2B: CLOSE UP OF FIGURE 2A



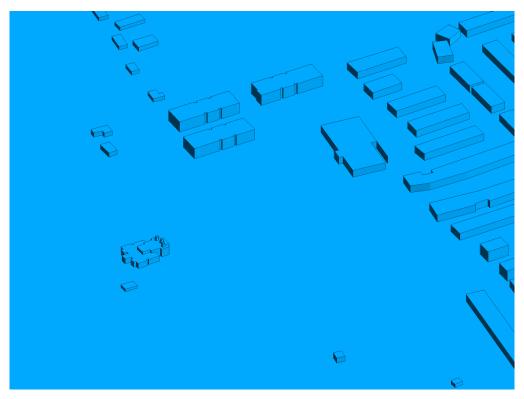



FIGURE 2C: COMPUTATIONAL MODEL, EXISTING MASSING, NORTH PERSPECTIVE



FIGURE 2D: CLOSE UP OF FIGURE 2C





FIGURE 2E: COMPUTATIONAL MODEL, PROPOSED MASSING, SOUTH PERSPECTIVE

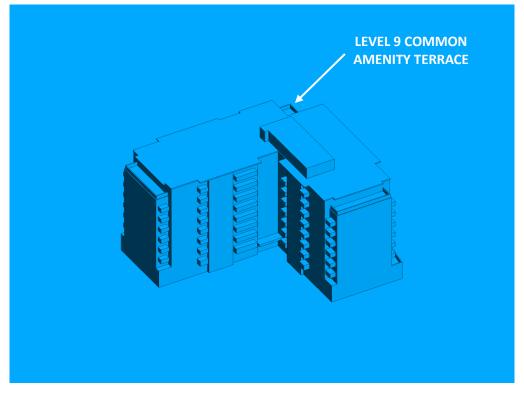



FIGURE 2F: CLOSE UP OF FIGURE 2E



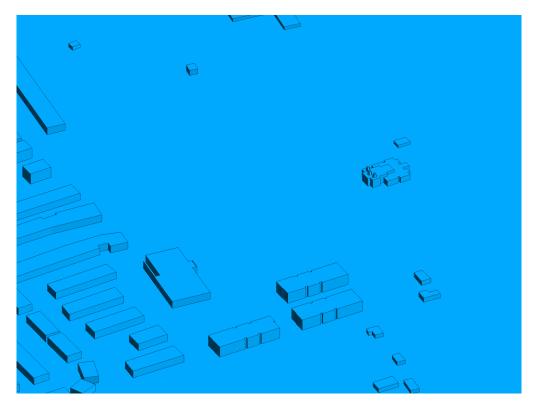



FIGURE 2G: COMPUTATIONAL MODEL, EXISTING MASSING, SOUTH PERSPECTIVE



FIGURE 2H: CLOSE UP OF FIGURE 2G





FIGURE 3A: SPRING – WIND COMFORT, GRADE LEVEL – PROPOSED MASSING

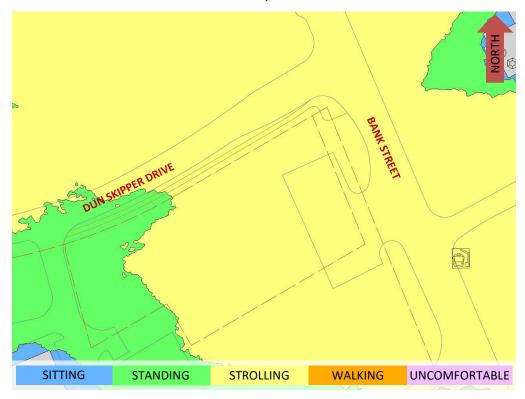



FIGURE 3B: SPRING - WIND COMFORT, GRADE LEVEL- EXISTING MASSING






FIGURE 4A: SUMMER - WIND COMFORT, GRADE LEVEL - PROPOSED MASSING

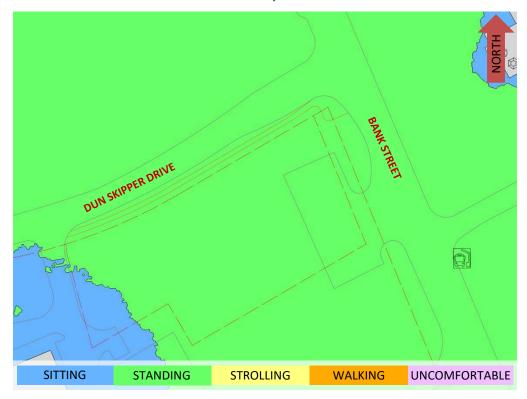



FIGURE 4B: SUMMER - WIND COMFORT, GRADE LEVEL- EXISTING MASSING



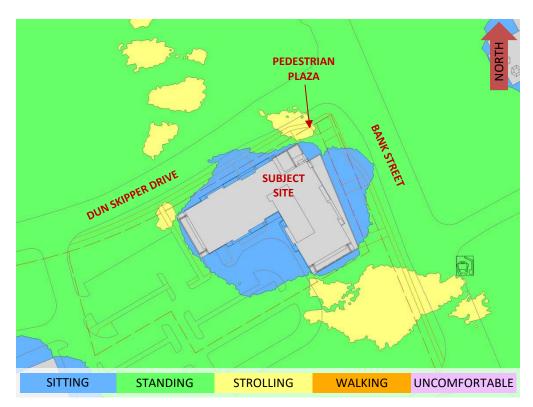



FIGURE 5A: AUTUMN - WIND COMFORT, GRADE LEVEL - PROPOSED MASSING

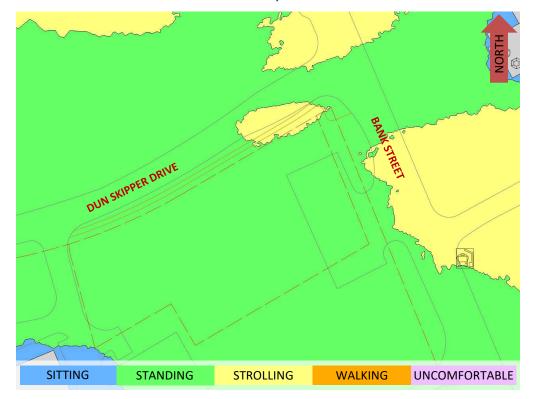



FIGURE 5B: AUTUMN – WIND COMFORT, GRADE LEVEL– EXISTING MASSING



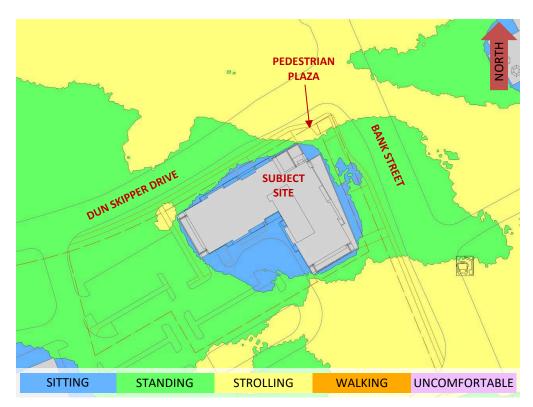



FIGURE 6A: WINTER - WIND COMFORT, GRADE LEVEL - PROPOSED MASSING

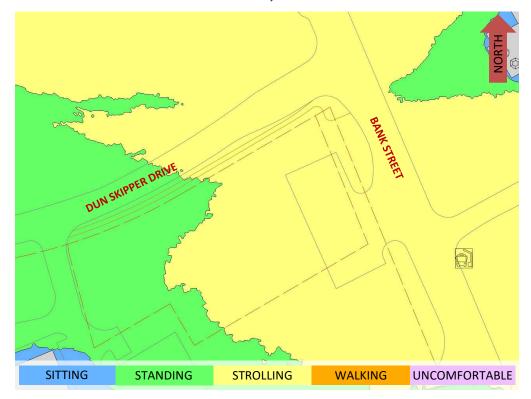



FIGURE 6B: WINTER - WIND COMFORT, GRADE LEVEL- EXISTING MASSING






FIGURE 7: TYPICAL USE PERIOD – WIND COMFORT, GRADE LEVEL – PROPOSED MASSING





FIGURE 8A: SPRING – WIND COMFORT, LEVEL 9 COMMON AMENITY TERRACE



FIGURE 8B: SUMMER – WIND COMFORT, LEVEL 9 COMMON AMENITY TERRACE





FIGURE 8C: AUTUMN - WIND COMFORT, LEVEL 9 COMMON AMENITY TERRACE



FIGURE 8D: WINTER – WIND COMFORT, LEVEL 9 COMMON AMENITY TERRACE





FIGURE 9: TYPICAL USE PERIOD – LEVEL 9 COMMON AMENITY TERRACE



# **APPENDIX A**

SIMULATION OF THE ATMOSPHERIC BOUNDARY LAYER



# SIMULATION OF THE ATMOSPHERIC BOUNDARY LAYER

The atmospheric boundary layer (ABL) is defined by the velocity and turbulence profiles according to industry standard practices. The mean wind profile can be represented, to a good approximation, by a power law relation, Equation (1), giving height above ground versus wind speed (1), (2).

$$U = U_g \left(\frac{Z}{Z_g}\right)^{\alpha}$$
 Equation (1)

where, U = mean wind speed,  $U_g$  = gradient wind speed, Z = height above ground,  $Z_g$  = depth of the boundary layer (gradient height), and  $\alpha$  is the power law exponent.

For the model,  $U_g$  is set to 6.5 metres per second (m/s), which approximately corresponds to the 60% mean wind speed for Ottawa based on historical climate data and statistical analyses. When the results are normalized by this velocity, they are relatively insensitive to the selection of gradient wind speed.

 $Z_g$  is set to 540 m. The selection of gradient height is relatively unimportant, so long as it exceeds the building heights surrounding the subject site. The value has been selected to correspond to our physical wind tunnel reference value.

 $\alpha$  is determined based on the upstream exposure of the far-field surroundings (that is, the area that it not captured within the simulation model).



Table 1 presents the values of  $\alpha$  used in this study, while Table 2 presents several reference values of  $\alpha$ . When the upstream exposure of the far-field surroundings is a mixture of multiple types of terrain, the  $\alpha$  values are a weighted average with terrain that is closer to the subject site given greater weight.

TABLE 1: UPSTREAM EXPOSURE (ALPHA VALUE) VS TRUE WIND DIRECTION

| Wind Direction<br>(Degrees True) | Alpha Value<br>(α) |
|----------------------------------|--------------------|
| 0                                | 0.21               |
| 22.5                             | 0.20               |
| 45                               | 0.19               |
| 67.5                             | 0.19               |
| 90                               | 0.19               |
| 112.5                            | 0.20               |
| 135                              | 0.20               |
| 157.5                            | 0.20               |
| 180                              | 0.20               |
| 202.5                            | 0.19               |
| 225                              | 0.21               |
| 247.5                            | 0.22               |
| 270                              | 0.23               |
| 292.5                            | 0.23               |
| 315                              | 0.23               |
| 337.5                            | 0.23               |



**TABLE 2: DEFINITION OF UPSTREAM EXPOSURE (ALPHA VALUE)** 

| Upstream<br>Exposure Type | Alpha Value<br>(α) |
|---------------------------|--------------------|
| Open Water                | 0.14-0.15          |
| Open Field                | 0.16-0.19          |
| Light Suburban            | 0.21-0.24          |
| Heavy Suburban            | 0.24-0.27          |
| Light Urban               | 0.28-0.30          |
| Heavy Urban               | 0.31-0.33          |

The turbulence model in the computational fluid dynamics (CFD) simulations is a two-equation shear-stress transport (SST) model, and thus the ABL turbulence profile requires that two parameters be defined at the inlet of the domain. The turbulence profile is defined following the recommendations of the Architectural Institute of Japan for flat terrain (3).

$$I(Z) = \begin{cases} 0.1 \left(\frac{Z}{Z_g}\right)^{-\alpha - 0.05}, & Z > 10 \text{ m} \\ 0.1 \left(\frac{10}{Z_g}\right)^{-\alpha - 0.05}, & Z \le 10 \text{ m} \end{cases}$$
 Equation (2)

$$L_t(Z) = \begin{cases} 100 \text{ m} \sqrt{\frac{Z}{30}}, & Z > 30 \text{ m} \\ 100 \text{ m}, & Z \le 30 \text{ m} \end{cases}$$
 Equation (3)

where, I = turbulence intensity,  $L_t$  = turbulence length scale, Z = height above ground, and  $\alpha$  is the power law exponent used for the velocity profile in Equation (1).

Boundary conditions on all other domain boundaries are defined as follows: the ground is a no-slip surface; the side walls of the domain have a symmetry boundary condition; the top of the domain has a specified shear, which maintains a constant wind speed at gradient height; and the outlet has a static pressure boundary condition.



# **REFERENCES**

- [1] P. Arya, "Chapter 10: Near-neutral Boundary Layers," in *Introduction to Micrometeorology*, San Diego, California, Academic Press, 2001.
- [2] S. A. Hsu, E. A. Meindl and D. B. Gilhousen, "Determining the Power-Law Wind Profile Exponent under Near-neutral Stability Conditions at Sea," vol. 33, no. 6, 1994.
- [3] Y. Tamura, H. Kawai, Y. Uematsu, K. Kondo and T. Okhuma, "Revision of AIJ Recommendations for Wind Loads on Buildings," in *The International Wind Engineering Symposium, IWES 2003*, Taiwan, 2003.