

STORMWATER MANAGEMENT AND SERVICEABILITY REPORT

110 O'CONNOR STREET
OTTAWA

CITY OF OTTAWA, ONTARIO

135, boul. de Sainte-Adèle,
Sainte-Adèle (Qc)
J8B 0J4

531, boul. Manseau
Joliette (Qc)
J6E 3E3

495, rue Frontenac
Mont-Laurier (Qc)
J9L 2L3

T 450 227-1857
info@equipelarence.ca
equipelarence.ca

Sainte-Adèle
Boisbriand
Joliette
Mont-Laurier
Gatineau
Sorel-Tracy

ÉQUIPE LAURENCE INC.

File: 60.09.01

November 2024

PROJECT: 110 O'CONNOR STREET – City of Ottawa
Stormwater Management and Serviceability Report

FILE: 60.09.01

PREPARED BY:

Valérie Mercier

Valérie Mercier, ing.
Équipe Laurence inc.

VERIFIED BY :

Benoit Bray

Benoit Bray, P.Eng., ing.
Équipe Laurence inc.

PRESENTED TO:

Édifice 110 O'Connor Inc.
630, rue St-Paul Ouest
Montréal, QC
H3C 1L9, Canada

ISSUE: November 1st, 2024,

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	STORMWATER MANAGEMENT	1
2.1	CALCULATION OF PRE-DEVELOPMENT FLOWS	2
2.2	DESIGN CRITERIA FOR POST-DEVELOPMENT FLOWS	2
2.3	CATCH BASIN SUB-AREAS	2
2.4	POST-DEVELOPMENT: UNCONTROLLED FLOWS	3
2.5	POST-DEVELOPMENT: CONTROLLED FLOWS AND STORAGE REQUIREMENTS	3
2.6	EROSION AND SEDIMENT CONTROL	5
3.0	SANITARY SEWER DESIGN FLOWS	5
3.1	POPULATION DENSITY	6
3.2	AVERAGE WASTEWATER FLOWS AND PEAKING FACTORS	6
3.3	EXTRANEOUS FLOWS	7
3.4	TOTAL SANITARY SEWER DESIGN FLOW	7
4.0	DOMESTIC WATER DEMAND	7
4.1	BOUNDARY CONDITIONS	8
5.0	REQUIRED FIRE DEMAND	10
6.0	REFERENCES	11

APPENDICES

APPENDIX A: CIVIL ENGINEERING DRAWINGS

APPENDIX B: BACKGROUND DOCUMENTS

APPENDIX C: SANITARY SEWER DESIGN FLOWS – DETAILED CALCULATIONS

APPENDIX D: DOMESTIC WATER DEMAND – DETAILED CALCULATIONS

APPENDIX E: REQUIRED FIRE DEMAND – DETAILED CALCULATIONS

1.0 INTRODUCTION

This project consists of the residential development located at 110 O'Connor Street in the city of Ottawa. Équipe Laurence Inc. was mandated to carry out the design of the drinking water, storm and sanitary sewer systems that serve the proposed building as well as the stormwater management report. The preliminary civil engineering plans depicting the general features of the site, such as the sewer structures and landscaping is attached to this report in Appendix A.

In this report, the design and calculations of the sanitary sewer, domestic water and stormwater management systems will be discussed. The design was completed in accordance with the following design guidelines and regulations:

- Ottawa Sewer Design Guidelines (October 2012)
- *Pre-Consultation Preliminary Assessment* written by Jean-Charles Renaud, Planner III, Development Review- Central. File No. PC2023-0282
- Ottawa Design Guidelines – Water Distribution (July 2010)
- Ottawa Technical Bulletin ISTB-2018-02 (March 2018)
- Water Supply for Public Fire Protection, *Fire Underwriters Survey* (2020)

2.0 STORMWATER MANAGEMENT

As part of the stormwater management system, the flow of water will be controlled on-site and discharged through a 250 mm diameter service connection. This pipe will be connected to the existing 450 mm diameter storm sewer below O'Connor Street as shown on the attached plans.

According to a complementary land survey completed by *Annis, O'Sullivan, Vollebekk Ltd.* on July 18th, 2023, attached in Appendix B, the subject site is primarily occupied by an existing 14 storey precast building and a ramp to an underground parking garage.

For the design of the stormwater management system, the calculations were done to ensure that the 2-year post-development flows are equivalent to or lesser than the pre-development overland flow. Hence, the stormwater flows for the developed site as well as the storage requirements will be explored in the following sections.

2.1 Calculation of Pre-development Flows

The pre-development overland flow was determined using the criteria outlined in the *Ottawa Sewer Design Guidelines (2012)* as well as the following site information:

- The proposed site area of 0.21 hectare.
- The Rational Method for the calculation of flow as indicated in Section 5.4.4.1 of the design guideline.
- The IDF curves and equations as indicated in Section 5.4.2 of the design guideline.
- The runoff coefficients as shown in Table 5.7 of the design guideline.

The time concentration used for the calculations of the 2-yr storm event of the pre-developed site flow is 10 minutes. The runoff coefficient was determined to be 0.5. These specifications were calculated as described in the *Ottawa Design Guidelines*.

Using these values, the pre-development overland flow is 21.3 L/s for the 2-yr storm events. The detailed calculations are attached in Appendix C.

2.2 Design Criteria for Post-Development Flows

According to the *Pre-Consultation Preliminary Assessment*, the allowable release rate to the minor system for the proposed site will be equivalent to the pre-development flow of the 2-year storm event. As mentioned in the previous section, the pre-development flow for the 2-year storm is 21.3 L/s. Moreover, it is mentioned that flows in excess of the 2-yr storm allowable release rate, up to and including the 100-yr storm event, must be retained on site. Hence, these storm events must be considered for the post-development flow calculations.

In addition, to account for the effects of climate change, a 20% increase will be added to the rainfall intensities of the 100-yr storm event, as per the *Ottawa Sewer Design Guideline*, section 8.3.12.

2.3 Catch Basin Sub-Areas

The catch basins sub-areas are used to collect the stormwater from its associated area. The areas of impervious and pervious surfaces are determined for each catch basin. The catch basin sub-areas are depicted in Appendix C.

The runoff coefficient used for the post-development flow calculations of the 100-year storm event for concrete and roof areas is 1.00. The 100-year runoff coefficient is determined by increasing the minor system coefficient by 25%, as per the *Ottawa Sewer Design Guideline*.

Using this information, the average runoff coefficient corresponding to a 100-yr storm event is calculated. The results are shown in Table 1 and the detailed calculations are presented in Appendix C.

Table 1: Average Runoff Coefficients for the Various Catch Basin Sub-Areas

Drainage area	Total area (m ²)	100-year runoff coefficient
CB-01 (covered by roof)	56.8	1.0
CB-02	80.5	1.0
CB-03	80.5	1.0
CB-04	80.5	1.0
CB-05	44.0	1.0
CB-06	44.0	1.0
CB-07	67.7	1.0
Building	1530	1.0
UNR-01	39.1	1.0

2.4 Post-Development: Uncontrolled Flows

For the proposed stormwater management system, there is an uncontrolled flow on the side of the building – i.e. on the surfaces parallel to the O'Connor Street and Slater Street. The total uncontrolled surface is of 39.1 m², and the calculated time of concentration is of 10 minutes. Therefore, the uncontrolled flows for the 100-year storm events are 2.3 L/s, from the concrete sidewalks area. The detailed calculations are described in the Appendix C.

The uncontrolled flow will be subtracted to the pre-development flowrate for 2-year event to determine the allowable flowrate for the design recurrence.

2.5 Post-Development: Controlled Flows and Storage Requirements

The controlled flow for the developed site as well as the required storage were calculated using the Rational Method. The outflow to the storm sewers will be the subtraction of the 100-year uncontrolled flow to the 2-year pre-development flow, resulting in a maximum allowable flowrate of 18.8 L/s for the whole site.

Therefore, the project will have a maximum flowrate of 18.8 L/s and a total retention requirement of 81.4 m³. This is the maximum requirement including the 20% increase for the climate change as required by the city and using the average release rate and a 10% increase to the volume to apply a safety factor. The detailed calculations are found in Appendix C.

Water collected from the roof drains will be directed to an underground concrete tank equipped with an inlet control device (ICD) at the end of the basin, which will control a maximum flow rate of 15.3 L/s. It is important to note that there will be no roof controlled flow drains. In addition, another concrete tank will collect water from the remainder of the project, regulated by a separate ICD to maintain a maximum flow rate of 3.5 L/s.

According to the pre-consultation memo, the City of Ottawa requires an average release rate equal to 50% of the peak allowable rate to estimate the necessary storage volume. Alternatively, two submersible pumps can be used to ensure constant release rates, of 15.3 L/s and 3.5 L/s, respectively. As a result, the required storage will be retained in the two underground concrete tanks, with both submersible pumps conveying water to the proposed manhole outside the building through two 250 mm diameter pipes, as detailed in the Appendix C.

Furthermore, two overflow pipes will be incorporated into each underground tank with an invert at the water retention elevation, directing excess water into the same manhole. The proposed stormwater storage distribution is illustrated in Table 2.

Table 2: Proposed Stormwater Storage - 110 O'Connor Street

Parameters	Values	Units
100-year required storage of the project ^{1,2}	81.5	m ³
Volume retained in underground concrete tank #1 (from roof drainage)	63.5	m ³
Volume retained in underground concrete tank #2 (from surface water)	19.5	m ³
Total storage volume available	83.0	m³

1 - A 10% increase was included in the volume requirement as an extra safety measure

2 - A 20% increase to rainfall was included for the climate change effects

The following item related to rooftop drainage will need to be completed by the mechanical and structural engineer responsible for the design:

- Design of the underground concrete tank. See appendix C.

2.6 Erosion and Sediment Control

Prior to, during and after construction, the following erosion and sediment control measures should be implemented to avoid the sediment transfer to existing streams and storm sewer systems.

Pre-Construction

- Installation of a silt fence (geotextile)
- Installation of inserts inside all existing manholes adjacent to construction zone
- Control measures to be inspected once installed
- Installation of a mud mat at the site access point

Construction

- Minimize the extent of disturbed areas
- Protect disturbed areas of runoff
- Provide cover if disturbed areas will not be reinstated within a reasonable period.
- Inspect silt fence regularly during construction. Clean and repair, as required.
- Control dust during construction

After Construction

- Provide permanent cover to disturbed areas (i.e. topsoil and seed)
- Remove all temporary erosion and sediment control items (silt fence and filter cloths) once disturbed areas have been reinstated

Inspections

- Erosion and sediment control measures will be inspected upon completion
- Control measures are to be inspected weekly

All control measures are to be inspected once installed as well as during construction.

3.0 SANITARY SEWER DESIGN FLOWS

The proposed sanitary sewer service connections for the new building is 250 mm in diameter and made of PVC. The pipe will be connected on the existing 450 mm diameter municipal sewer pipe under O'Connor Street.

The proposed sanitary system is designed in accordance with the City of Ottawa's Sewer Design Guidelines. The calculations for the proposed development flows are shown in the following sections.

3.1 Population Density

The population density of the proposed development is calculated using the number and type of housing units within this development. The detailed calculations are shown in Table 4 below and in the Appendix D.

Table 4: Population Density Calculation

Unit Types	Number of Units	Persons Per Unit	Population Density
Studio	128	1.4	179
1-bedroom	183	1.4	256
2-bedroom	80	2.1	168
3-bedroom	22	3.1	68
<i>Total</i>			672

Using the values in Table 4.2 of the Sewer Design Guidelines for per unit populations, the population density of the proposed development is found to be 672 persons. This value will be used in the following sections to determine the sewer design flows.

3.2 Average Wastewater Flows and Peaking Factors

The average wastewater flow coefficient for residential developments is 280 L/c/d according to the Sewer Design Guidelines. The new building will also include 488 m² of commercial areas, therefore the average wastewater flow coefficient for commercial use is 28,000 L/gross ha/d. Using this information, the total average wastewater flow for the proposed development is calculated below.

Average wastewater flow per capita for residential use: 280 L/c/d

Average wastewater flow for residential use: 188 048 L/d

Average wastewater flow for commercial use: 28,000 L/gross ha/d

Commercial areas: 488 m² 1 368 L/d

The Harmon equation is then used to calculate the residential peak factor. Moreover, a peak factor of 1.50 is used for commercial areas.

$$P.F. = 1 + \left(\frac{14}{4 + \left(\frac{P}{1000} \right)^{1/2}} \right) \times K, \quad \text{where } K = 1$$

Hence, the peak factor for residential use is of 3.9.

3.3 Extraneous Flows

In accordance with Article 4.4.1.4 of the Sewer Design Guidelines, an allowance for flows from extraneous sources must be considered in the calculation of the peak design flow.

The average infiltration allowance is of 0.28 L/s/gross ha for wet-weather inflow into the manholes and pipes. Therefore, with a total site area of 2.092 ha, the infiltration flow is 0.59 L/s.

3.4 Total Sanitary Sewer Design Flow

Combining the results from the above calculations, the total sanitary sewer design flow is calculated as follows:

$$Q_{design} = [(3.90 \times 188\,048 \text{ L/d}) + (1.50 \times 1\,368 \text{ L/d})] \times \frac{1}{86\,400 \text{ sec/d}} + 0.59 \text{ L/s}$$

$$Q_{design} = 9.11 \text{ L/s}$$

The summary of this calculation is shown in Appendix D.

4.0 DOMESTIC WATER DEMAND

The proposed water service connection for the new building will consist of two separate branch connections: one on O'Connor Street and one on Slater Street. Each connection will be 200 mm in diameter and made of PVC. The first connection will be connected to the existing 406 mm diameter municipal watermain on O'Connor Street, while the second on the existing 381 mm diameter municipal watermain on Slater Street. Two shutoff valves will be installed at the property line for each connection as per the City guidelines. Additionally, both connections will be looped at the service entry inside the building, and an isolation valve will be placed between the two water service connections.

The proposed water system is designed in accordance with the City of Ottawa's Design Guidelines for water distribution. The calculations for the proposed water demand are shown in the following sections.

We can determine the average day demand for the proposed development using the values found in Table 4.2 of the Design Guidelines as the population density of the development was determined to be 672 people in Section 2.1. Hence, average day demands of 280 L/c/d and 28,000 L/gross ha/d are used for the residential and commercial spaces, respectively.

Average day demand per capita for residential use: 280 L/c/d
Average day demand for residential use: 188 048 L/d

Average day demand for other commercial use: 28,000 L/gross ha/d
Commercial Area: 488 m² 1 368 L/d

Therefore, the total average day demand is:

$$Q_{avg,day} = \left(188 048 \frac{L}{d} + 1 368 L/d \right) \times \frac{1}{86,400} sec/d = 2.19 L/s$$

The maximum daily demand and the maximum hour demand are calculated using the factors found in Table 4.2 of the Design Guidelines.

$$Q_{max,day} = \left(2.5 \times 188 048 \frac{L}{d} + 1.5 \times 1 368 L/d \right) \times \frac{1}{86,400} sec/d = 5.46 L/s$$

$$Q_{max,hr} = \left(2.2 \times 2.5 \times 188 048 \frac{L}{d} + 1.8 \times 1.5 \times 1 368 L/d \right) \times \frac{1}{86,400} sec/d$$

$$Q_{max,hr} = 12.01 L/s$$

The detailed calculations for domestic water demand are found in Appendix E.

4.1 Boundary Conditions

This section presents the existing boundary conditions for the water distribution system for the connection sites. Note, this information is based on current operation of the city's water distribution system. See the boundary conditions received from the city of Ottawa in table 5.



Figure 1: Service connection locations for the water distribution system (City of Ottawa)

Table 5: Boundary conditions received from the City of Ottawa

Demand Scenario	Head (m)
Maximum HGL	115.5
Minimum HGL	106.8
Max Day + Fire Demand (100 L/s)	109.6

The pressure at the service points on O'Connor Street and Slater Street has been calculated, with detailed calculations provided in Appendix E of this report.

It must be noted that the static pressure at any fixture shall not exceed 552 kPa (80 psi) according to the Ontario Building Code for areas that may be occupied. Hence, the following pressure control measures shall be considered:

1. If possible, the systems are to be designed to residual pressures 345 to 552 kPa (50 to 80 psi) for all occupied areas outside of the public right-of-way without special pressure control equipment.

2. Pressure reducing valves are to be installed immediately downstream of the isolation valve in the building, located downstream of the meter so that it is maintained by the owner.

These pressure control measures are presented in order of preference.

5.0 REQUIRED FIRE DEMAND

The flow rates required for fire protection vary according to the zoning, the type of units, the fire resistivity of the construction materials, the ground floor area as well as many other factors. The method described in *Water Supply for Public Fire Protection*, written by the Fire Underwriters Survey (FUS) (2020) is used to estimate the fire demand required for fire protection, as per the City Guidelines.

Essentially, the required flow rate (F), expressed in liters per minute, is calculated based on the floor area of the building (A) in square meters and the type of construction (C), using the following equation.

$$F = 220 \times C\sqrt{A}$$

The value of C used is 0.6 for a fire resistive construction. According to the FUS, a fire resistive construction is "any structure having all structural members including walls, columns, piers, beams, girders, trusses, floors and roofs made of non-combustible material and constructed with a minimum 2-hour fire resistance rating." In this case, the building will be full non-combustible construction both for the construction type and exterior cladding.

The value of A represents the gross floor area of the building, that is, the sum of the surface area of all floors. See in the table below that surface area of each floor. The effective area is to be calculated as per the 2020 regulations for the Water Supply for Public Fire Protection in Canada, the total effective area is to be calculated as the largest floor with the addition of 25% of the next 2 adjacent floors.

Table 6: Gross Floor Area for the Proposed Development

Floor	Surface Area Per Floor (m ²)	Number of Floors	Floor Area (m ²)
Ground Floor	1216	1	1216
Level 2	1460	1	1460
Levels 3-6	1471	4	5882
Levels 7-25	967	19	18 366
Roof	479	1	479
<i>Total</i>			27 403

Finally, according to the FUS method, certain reductions and increases may be applied depending on a variety of factors such as the combustibility of the occupying materials or furniture, the presence of automatic sprinklers systems as well as the development's distance from neighbouring buildings. For example, for buildings protected by automatic sprinklers designed in accordance with the NFPA 13, the flow rate required for fire protection, F, can be reduced by 50%.

Using this method, the total fire demand was determined to be 6000 L/min. Moreover, for a duration of water supply of 2 hours, the required volume of water is 720 m³. The details of the fire flow calculations are shown in the Appendix F.

6.0 REFERENCES

W.R. Newell, P. Eng., Sewer Design Guidelines, Second Edition (2012), City of Ottawa.

W.R. Newell, P. Eng., Ottawa Design Guidelines – Water distribution, First Edition (2010), City of Ottawa.

Fire Underwriters Survey, Water Supply for Public Fire Protection – A guide to recommended practice in Canada (2020).

APPENDIX A

Civil Engineering Plans

ÉDIFICE 110 O'CONNOR INC.

PROJECT:

110 O'CONNOR STREET
OTTAWA

PROJECT NO:

600901

DATE:

2024-10-29

LIST OF PLANS

C-201	TECHNICAL AND GENERAL SPECIFICATIONS,	LEGEND AND NOTES	LOCATION
C-202	PLAN VIEW	EXISTING ITEMS AND DEMOLITION	
C-203	PLAN VIEW	SITE GRADING AND DRAINAGE PLAN	
C-204	PLAN VIEW	SITE SERVICING PLANS AND DRAINAGE AREA	
C-205	STANDARD SECTIONS AND DETAILS		
C-206	FIRE HYDRANT COVERAGE MAP		

117, avenue Lépine, unité 202, Gatineau (Québec) J8L 3G1
T 819 303 2700
info@equipelaurence.ca | equipelaurence.ca

TECHNICAL AND GENERAL SPECIFICATIONS

1.0 GENERAL SPECIFICATIONS

All work shall conform with Ontario building code, latest edition as well as local regulation and bylaws.

Contractor to verify all dimensions and report any discrepancies to the engineer immediately to get design confirmation before proceeding with construction.

Refer to the City of Ottawa for regulations and standards (supersedes provincial standards).

Refer to Ontario Provincial Standards for Roads and Public Works - Volume 3 for details.

Ontario provincial standards for roads and public works must also be respected.

Work to be performed in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects.

All materials shall meet all current applicable standards set by the American Water Works Association ("AWWA"), Canadian Standards Association ("CSA"), the American National Standards Institute ("ANSI") safety criteria standards, American Society for Testing and Materials (ASTM), NSF/14, NSF/60 and NSF/61.

The Contractor will get approval for all materials selection from the Civil Engineer prior to delivery to the site.

BUILDING OWNER: ÉDIFICE 110 O'CONNOR INC.

CONSULTING CIVIL ENGINEER: ÉQUIPE LAURENCE INC.

2.0 GENERAL INFORMATIONS

2.1 UNDERGROUND SERVICES

The plans show certain underground installations for the sole purpose to highlight the existence of cables, pipelines and underground structures. In the sectors where work must be performed, the contractor is responsible to verify himself with the competent authorities the existence and actual location of all cables, pipelines and existing underground structures that may affect the works.

Before beginning excavations, the contractor must thus contact the Ontario One Call (www.on1call.com), the municipal authorities and all other stakeholders in order to identify on the field all existing underground structures whether they are shown on the plans or not.

He is responsible for damages to cables, pipelines and underground structures. No cost variation resulting from underground structures not shown or poorly located on the plans can be claimed against the building owner. Following the review of the plans and specifications, the contractor must notify the engineer of any error, omission or discrepancy noted by him before starting work.

2.2 EXISTING WATERMAIN AND SEWER CONDUITS

The location of the watermain and sewer pipes is approximate. The contractor must verify and validate the position and depth of the pipes by the means of meticulous excavations. Should discrepancies be observed, they must be provided to the engineer without delay in order that the required modifications are made to the construction plans. The contractor will have to coordinate with the city the connecting works to the existing networks (watermain and sewers). No service interruption shall take place without the building owner's authorization or the relevant authorities.

2.3 PROTECTION AGAINST EROSION

As per "Erosion and sediment control guideline for urban construction". In all areas of the building site where there is a risk of erosion, the ground must be stabilized. Runoff water must be intercepted and routed to stabilized areas and this, throughout the construction period. The contractor must use the recognized methods to prevent the transport of sediments.

- Sediment barrier
- Mud mat
- Sedimentation pond
- Filtering berm and sediment trap
- Straw bale filter

Any intervention on the building site which may cause the transfer of sediments must be simultaneously accompanied by sediment capture measures.

2.4 DRAINING OF THE EXCAVATIONS

The contractor shall take all necessary precautions to prevent the penetration of surface waters and to evacuate surface, underground or sewer waters. Waste waters must be directed towards a combined sewer or a sanitary sewer and the surface and underground waters towards a storm sewer, a combined sewer or a ditch. In all cases, the diversion site must be submitted for approval.

The contractor must assume all required pumping and cleaning costs.

2.5 PAVEMENT PROTECTION

At all times, the movement of machinery and metal tracked vehicles is prohibited on paved surfaces unless plywood sheets with a 20mm normal thickness or rubber with a 12.5mm thickness are used in order to avoid damaging pavement. All repairs or complete replacements of pavement is the contractor's responsibility, who will have to pay all the costs.

2.6 CLEANING OF SITE

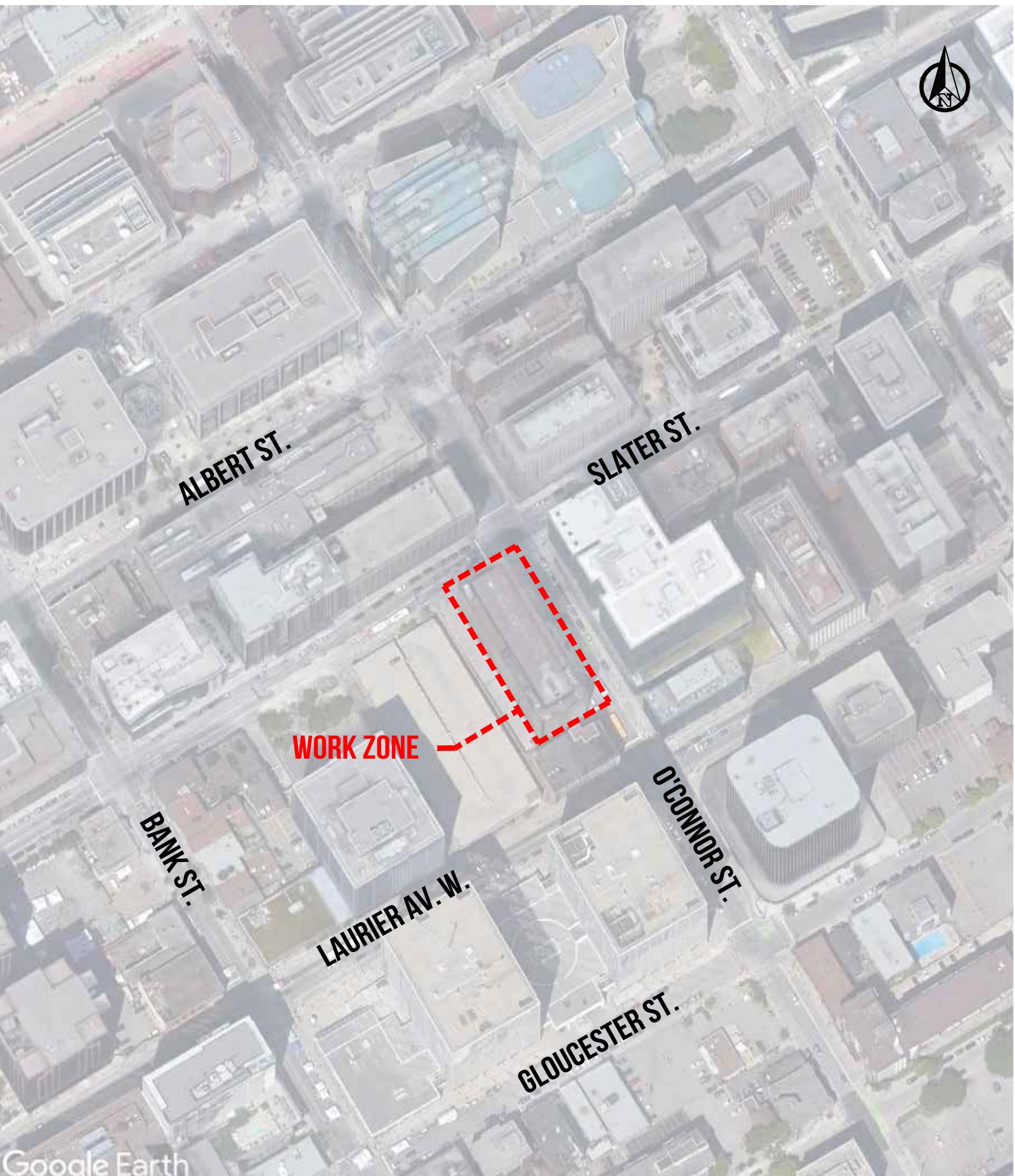
At the end of the construction works and as often as requested by the project superintendent, the contractor must clean and eliminate all construction generated debris and restore all construction affected areas. The cleaning of the construction site is included in the global market unit prices.

3.0 SITE GRADING

Surface topsoil layer stripping required.

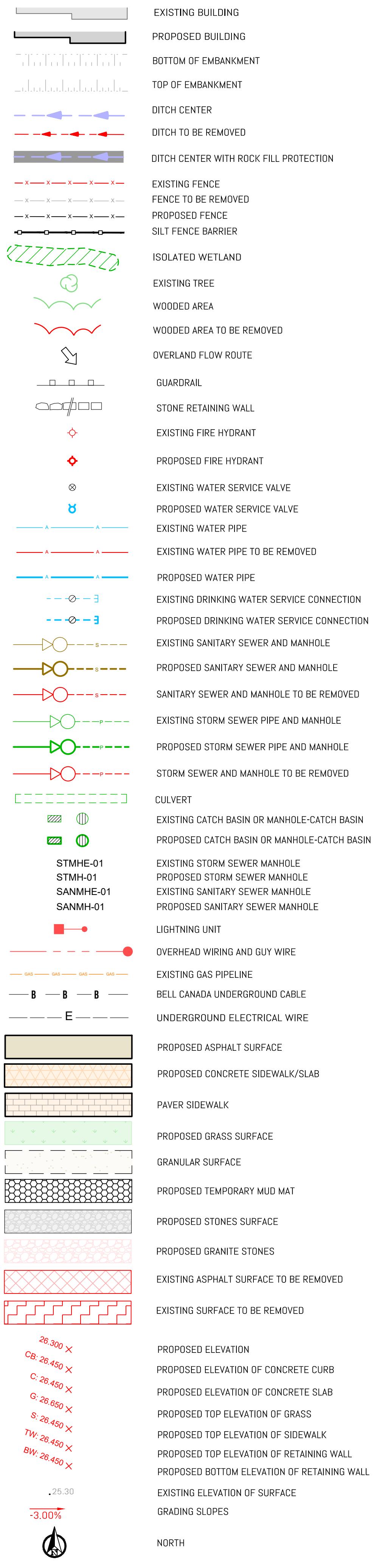
Low-lying areas may be filled by utilising soil cut from higher areas and by importing suitable fill materials.

The approved subgrade may be raised to design subgrade level with approved compactable on-site soil, providing it is placed in maximum 300 mm thick lifts and each lift is compacted to at least 95% of the material's SPMD. As an alternative to subexcavation, a woven geotextile separator, such as Terratrack 24-15, Amoco 2002, Mirafi 500XL or equivalent, may be placed over spongy areas prior to placing the Granular 'B' sub-base layer.


4.0 CONCRETE WORKS

All weather exposed concrete shall have 5 to 8% air entrainment or as otherwise specified in Tables 2 and 4 of CSA A23.1.

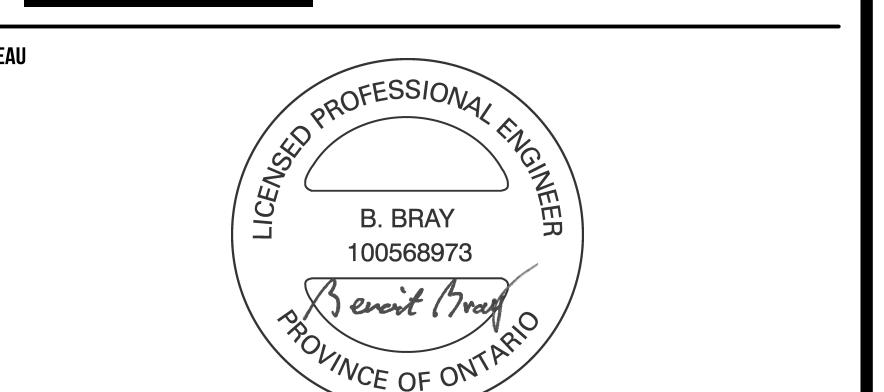
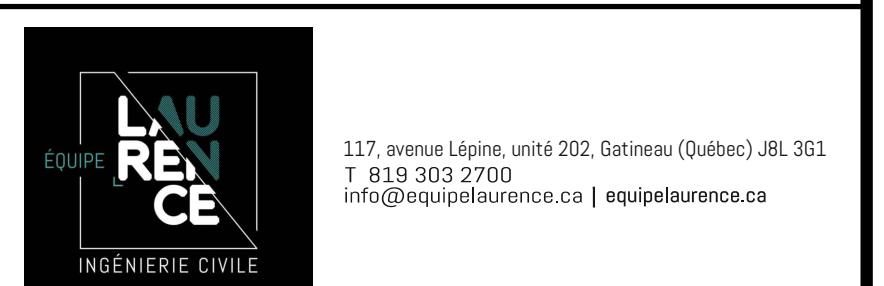
Concrete sidewalk as per DPSD 310.010. Foundation consist of 150 mm minimum of granular 'A' material. Sidewalk concrete thickness shall be 200 mm.


Concrete barrier curb as per DPSD 600.110. Foundation consist of 150 mm minimum of granular 'A' material.

PROJECT LOCATION

NO SCALE

CIVIL ENGINEERING LEGEND

THIS DOCUMENT MUST
NOT BE USED FOR
CONSTRUCTION

C	FOR SITE PLAN APPLICATION	B.B. 2024-10-29
B	FOR COORDINATION	B.B. 2024-10-22
A	FOR UDRP	B.B. 2024-04-17
REV	DESCRIPTION	PAR DATE

CLIENT ÉDIFICE 110 O'CONNOR INC.
630, RUE ST-PAUL OUEST, MONTREAL
MONTRÉAL, (QC) H3C 1L9

PROJET 110 O'CONNOR STREET
OTTAWA

TITRE DU PLAN
TECHNICAL AND GENERAL SPECIFICATIONS,
LEGEND AND NOTES
LOCATION

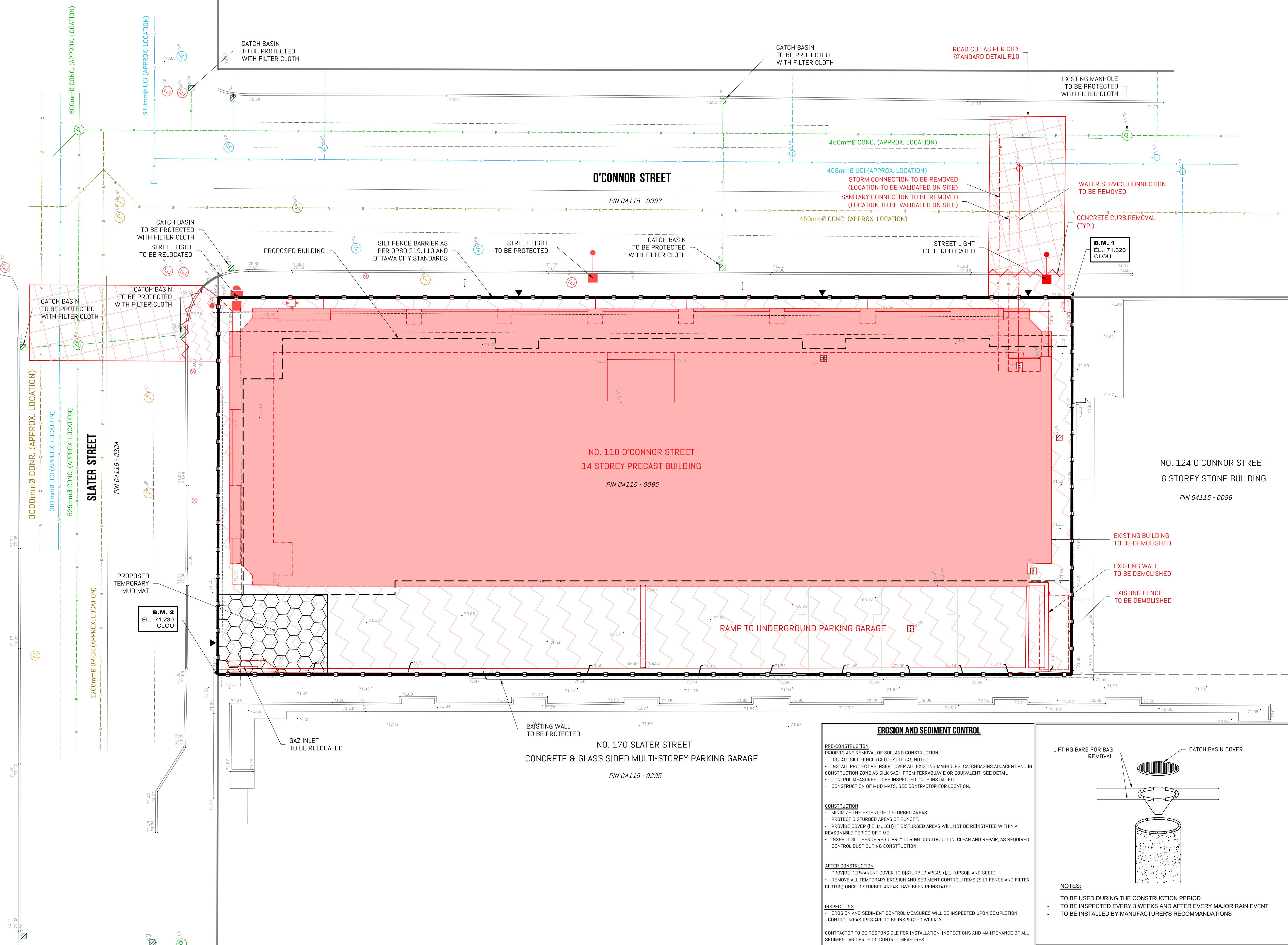
ÉCHELLE
AUCUNE ÉCHELLE

ÉQUIPE DE PROJET
C. SAINT-MARTIN, tech.
V. MERCIER, ing.
B. BRAY, ing.
DOSSIER NO
600901
FICHER
C-201.dwg

PRÉPARE PAR
B. BRAY, ing.
NORTH

C-201

NOTE:


THE EXISTING AND PROPOSED SUBDIVISION WILL HAVE TO BE
VALIDATED BY THE SURVEYOR-GEOMETER ON FILE.

SURVEY AND LOTS INFORMATION PROVIDED BY
ANNIS, O'SULLIVAN, VOLLEBEKK LTD.
DATE: JULY 18 2023
FILE NO.: V-53839
PLANIMETRIC REFERENCE SYSTEM: MTM NAD 83 ZONE 9
ALTIMETRIC REFERENCE SYSTEM: CGVD28 HT20

SITE PLAN PREPARED BY
GEIGER HUOT ARCHITECTS
DATE: MARCH 21 2024
PROJECT: 24412-23

THE CONTRACTOR MUST NOTIFY ÉQUIPE LAURENCE,
THE CONSULTANT, IF HE Notices ANY DISCREPANCIES
BETWEEN THE INFORMATION PRESENTED ON THE
PLANS AND THE MEASUREMENTS TAKEN ON SITE SO
THAT ADJUSTMENTS CAN BE MADE.
WHEN APPLICABLE, HE MUST ALSO VERIFY THE
ELEVATIONS OF EXISTING SEWERS BEFORE STARTING
CONSTRUCTION AND MUST PROVIDE THE INFORMATION
TO THE CONSULTANT.

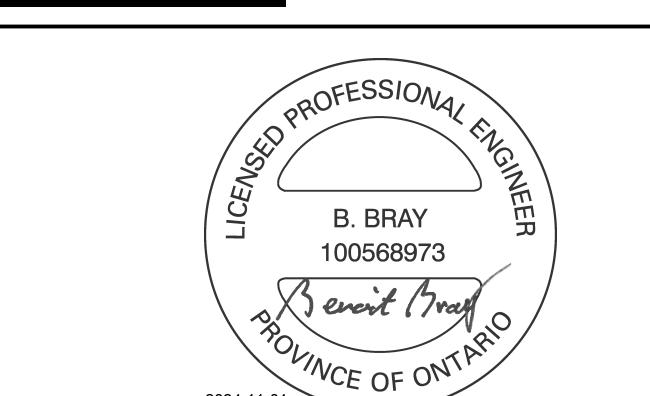
**THIS DOCUMENT MUST
NOT BE USED FOR
CONSTRUCTION**

NOTE:

THE EXISTING AND PROPOSED SUBDIVISION WILL HAVE TO BE
VALIDATED BY THE SURVEYOR-GEOMETER ON FILE.

SURVEY AND LOTS INFORMATION PROVIDED BY
ANNIS, O'SULLIVAN, VOLLEBEKK LTD.
DATE: JULY 18 2023
FILE NO.: V-53839
PLANIMETRIC REFERENCE SYSTEM: MTM NAD 83 ZONE 9
ALTIMETRIC REFERENCE SYSTEM: CGVD28 HT2.0

SITE PLAN PREPARED BY
GEIGER HUOT ARCHITECTS
DATE: MARCH 21 2024
PROJECT: 24412-23

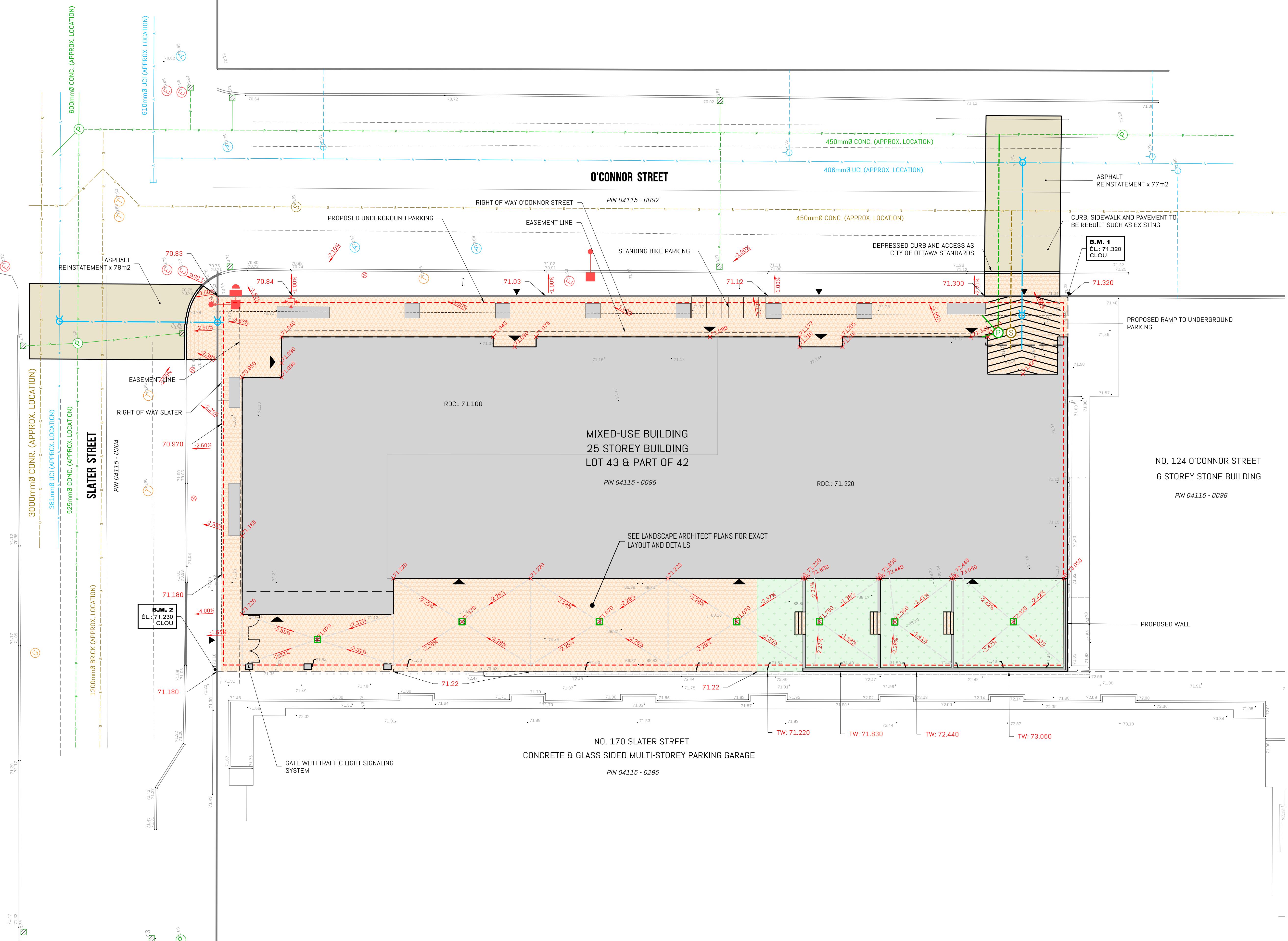

THE CONTRACTOR MUST NOTIFY ÉQUIPE LAURENCE,
THE CONSULTANT, IF HE Notices ANY DISCREPANCIES
BETWEEN THE INFORMATION PRESENTED ON THE
PLANS AND THE MEASUREMENTS TAKEN ON SITE SO
THAT ADJUSTMENTS CAN BE MADE.
WHEN APPLICABLE, HE MUST ALSO VERIFY THE
ELEVATIONS OF EXISTING SEWERS BEFORE STARTING
CONSTRUCTION AND MUST PROVIDE THE INFORMATION
TO THE CONSULTANT.

**THIS DOCUMENT MUST
NOT BE USED FOR
CONSTRUCTION**

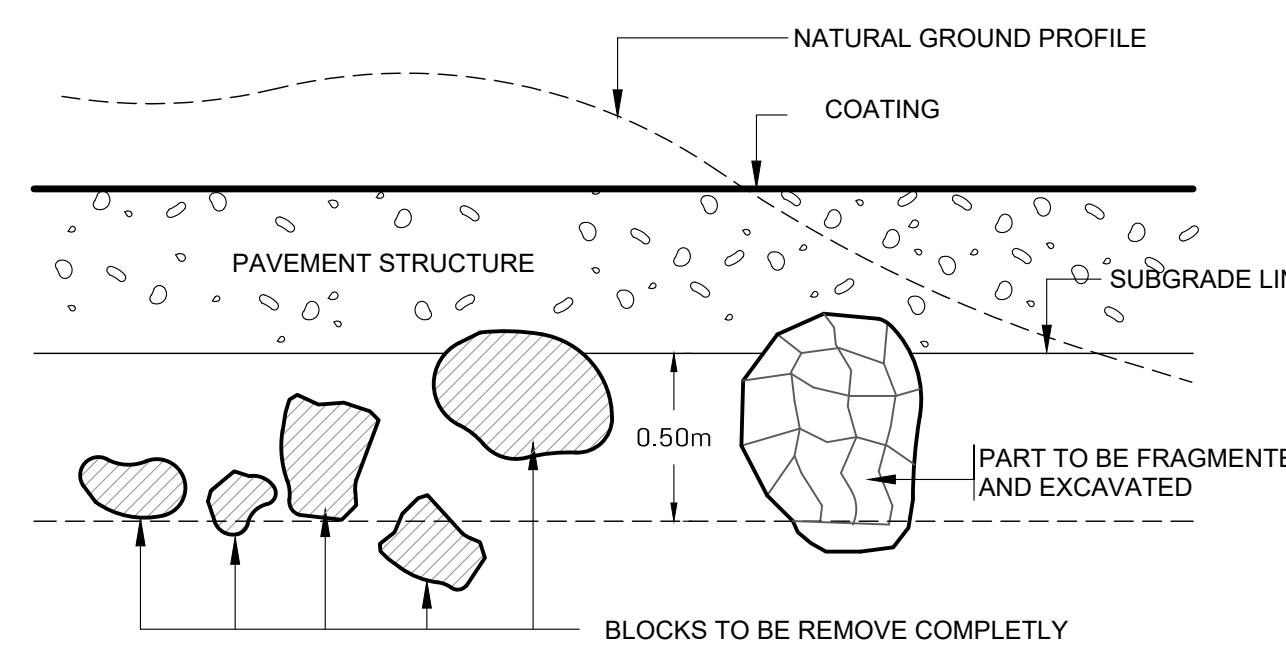
C	FOR SITE PLAN APPLICATION	B.B.	2024-10-29
B	FOR COORDINATION	B.B.	2024-10-22
A	FOR UDRP	B.B.	2024-04-17
REV	DESCRIPTION	PAR	DATE

CLIENT
ÉDIFICE 110 O'CONNOR INC.
630, RUE ST-PAUL OUEST, MONTREAL
MONTRÉAL, (QC) H3C 1L9

PROJET
110 O'CONNOR STREET
OTTAWA

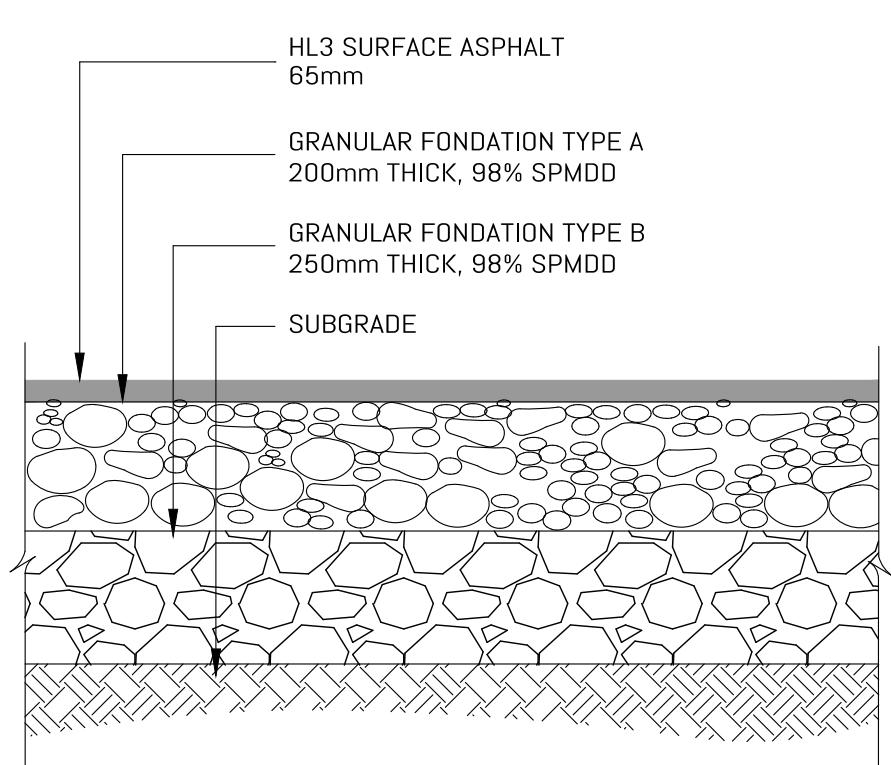


TITRE DU PLAN
PLAN VIEW
SITE GRADING AND DRAINAGE PLAN


ÉCHELLE Horizontale 1:150 0 1.5 3 7.5m

ÉQUIPE DE PROJET
C. SAINT-MARTIN, tech.
V. MERCIER, ing.
B. BRAY, ing.
FICHIER
C-203.dwg

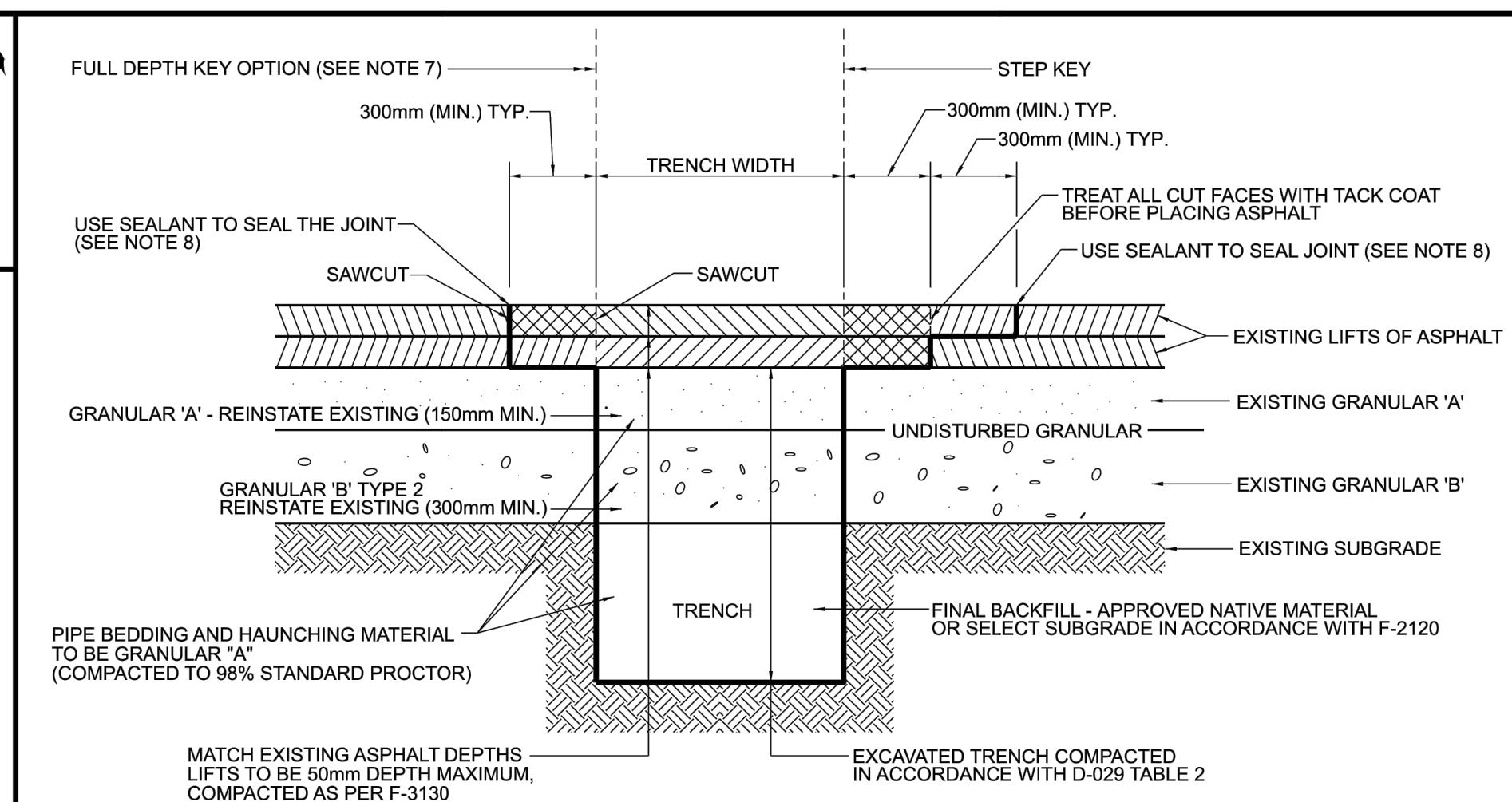
PRÉPARÉ PAR
B. BRAY, ing.
C-203



NOTES:

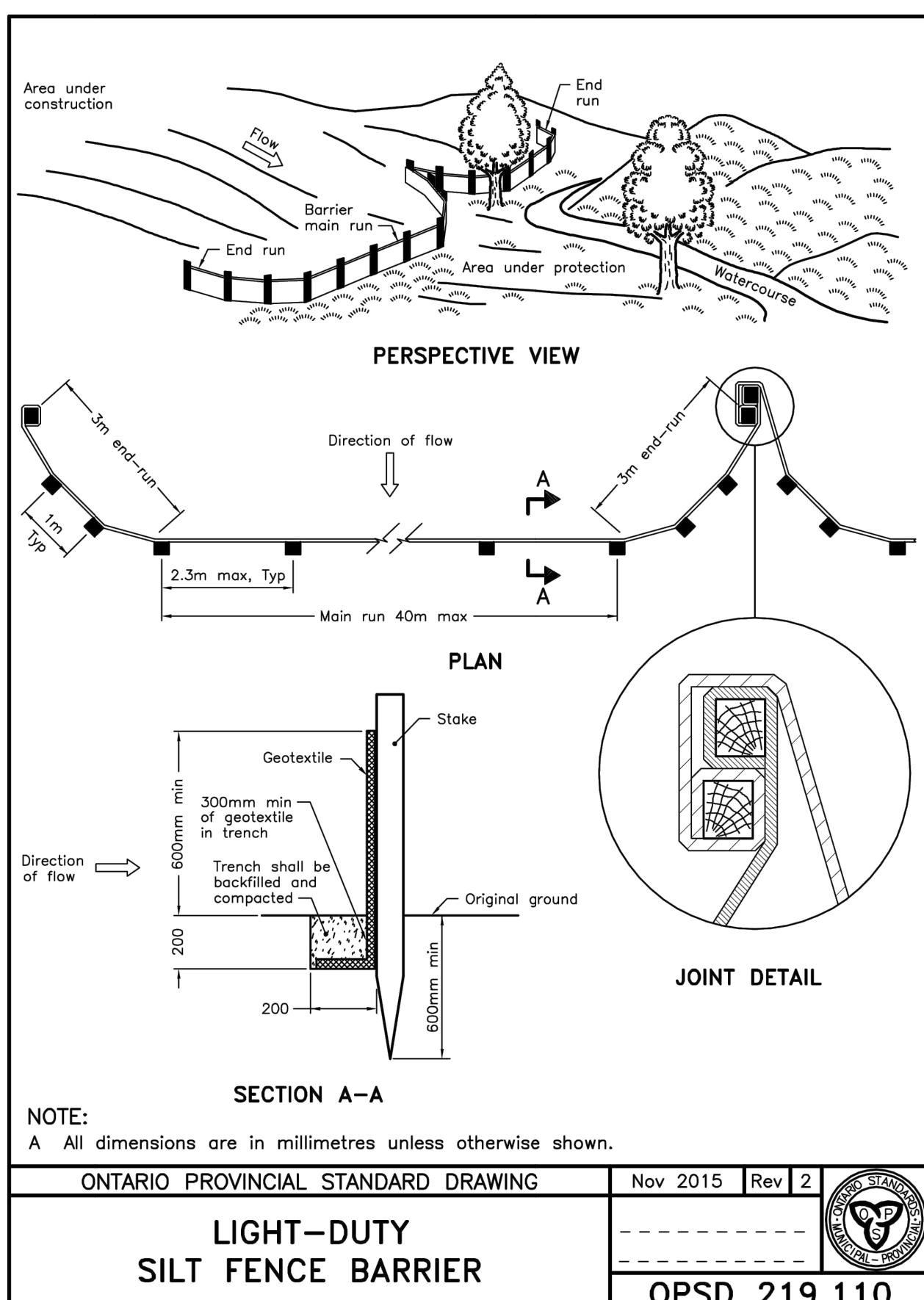
- ALL BLOCKS OVER 250mm DIAMETER PRESENT IN THE FIRST 500 mm UNDER INFRASTRUCTURE LINE MUST BE REMOVED, FRAGMENTED AND EXCAVATED TO 500 mm DEPT.
- AFTER REMOVING BLOCKS, THE EXCAVATIONS HAVE TO BE RAISED TO DESIGN SUBGRADE LEVELS WITH APPROVED COMPACTABLE ON SITE SOIL.
- LIFTS OF 300mm THICK, COMPACTED AT 95% MSPDD
- AS AN ALTERNATIVE TO SUBEXCAVATION, A WOVEN GEOTEXTILE SEPARATOR, SUCH AS TERRATRACK 24-15, AMOCO 2002, MIRAFI 500XL OR EQUIVALENT, MAY BE PLACED OVER SPONGY AREAS PRIOR TO PLACING THE GRANULAR "B" SUB-BASE LAYER.

PARKING AND ACCESS FOUNDATION ASPHALT SURFACE

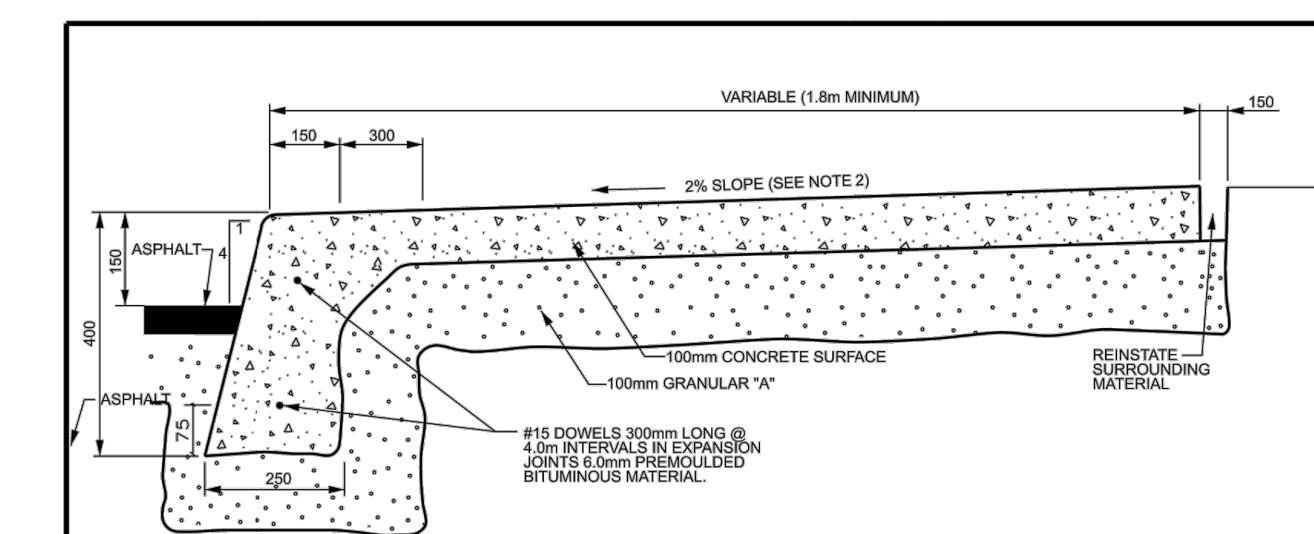

(TO BE VERIFIED BY GEOTECHNICAL ENGINEER)

SUBGRADE PREPARATION DETAIL

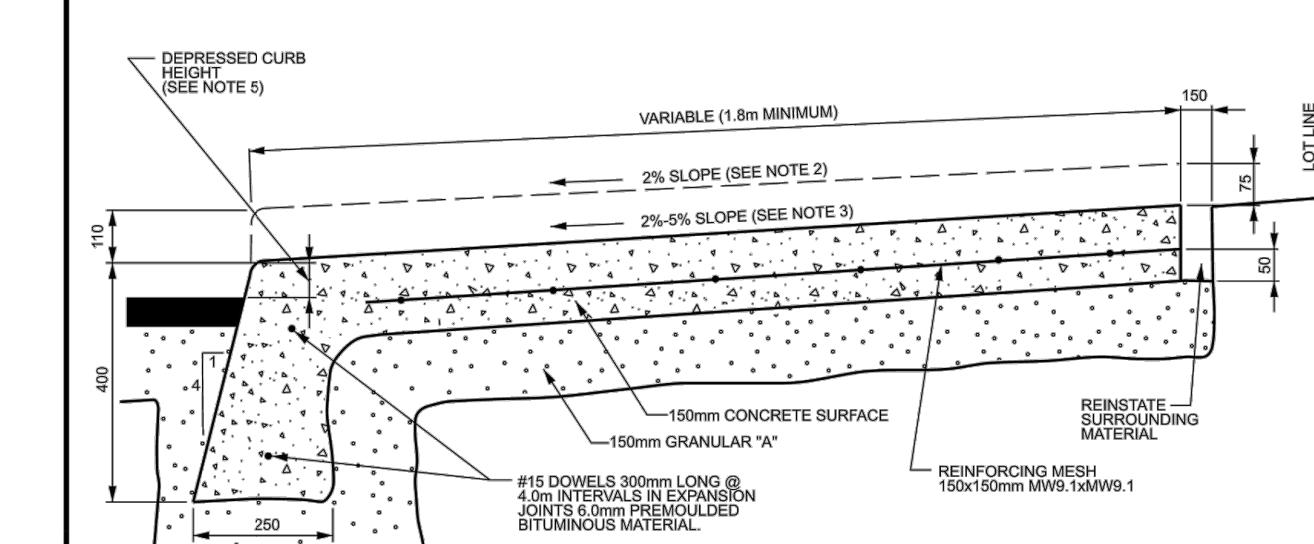
STANDARD TRENCH REINSTATEMENT IN PAVED SURFACE


DATE: MAY 2021
REF. NO.: 100568973
REV. NO.: 0
DWG. NO.: R10
N.T.S.

NOTES:


- ALL EXISTING ASPHALT TO BE SAW CUT.
- UNLESS SPECIFIED ELSEWHERE, SURFACE COURSE ASPHALT SUPERPAVE 12.5mm AND 19.00mm LEVEL B (PG58-34) IS TO BE USED.
- UNLESS SPECIFIED ELSEWHERE, ASPHALT MIX SHALL BE LEVEL B (PG58-34) FOR NON-BUS LOCAL ROADS, AND LEVEL D (PG 64-34) FOR ALL OTHER ROADS.
- UNLESS SPECIFIED ELSEWHERE, WHERE EXISTING PAVEMENT STRUCTURE EXCEEDS 150mm IN DEPTH, ASPHALT SUPERPAVE 19.00mm LEVEL B (PG58-34) SHALL BE USED. FOR ALL OTHER ROADS, THE EXISTING PAVEMENT SHALL BE 150mm OR LESS IN DEPTH. IN THESE CASES, THE EXISTING PAVEMENT SHALL BE REMOVED AND A NEW PAVEMENT LAYER OF ASPHALT SUPERPAVE 19.00mm LEVEL B (PG58-34) SHALL BE PLACED IN LIFTS.
- UNLESS SPECIFIED ELSEWHERE, WHERE AN UNDERLYING LAYER OF CONCRETE PAVEMENT EXISTS, REINSTATEMENT SHALL CONSIST OF 150mm OF SUPERPAVE 19.00mm LEVEL B (PG58-34) COMPACTED IN LIFTS.
- STEP KEY REINSTATEMENT TO BE IMPLEMENTED UNLESS FULL DEPTH KEY OPTION APPROVED BY THE CITY.
- ALL EDGES TO BE ROUTED AND SEALED WITH A BEAD OF HOT RUBBERIZED ASPHALT JOINT SEALING COMPOUND.

THIS DOCUMENT MUST
NOT BE USED FOR
CONSTRUCTION



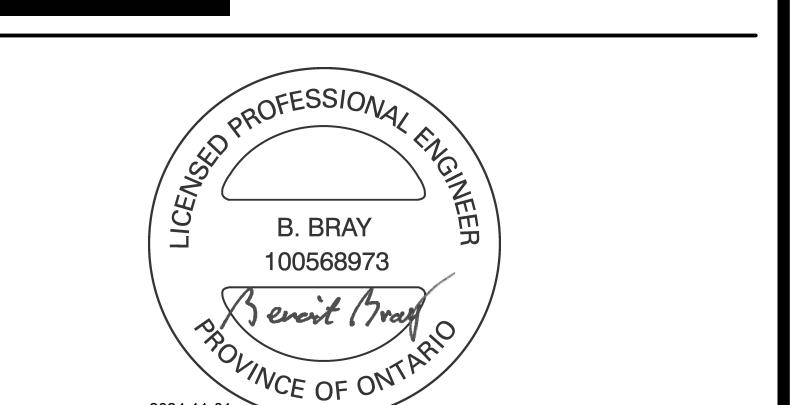
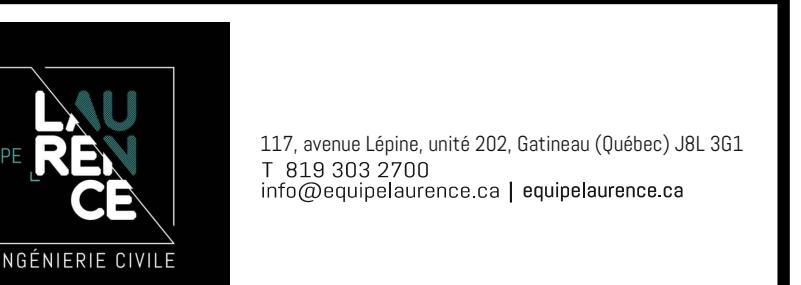
NOTE:
A All dimensions are in millimetres unless otherwise shown.

ONTARIO PROVINCIAL STANDARD DRAWING	Nov 2015	Rev 2	
LIGHT-DUTY SILT FENCE BARRIER			
OPSD 219.110			

TYPICAL SIDEWALK SECTION

SECTION AT PRIVATE ENTRANCE AND PEDESTRIAN RAMPS

NOTES:

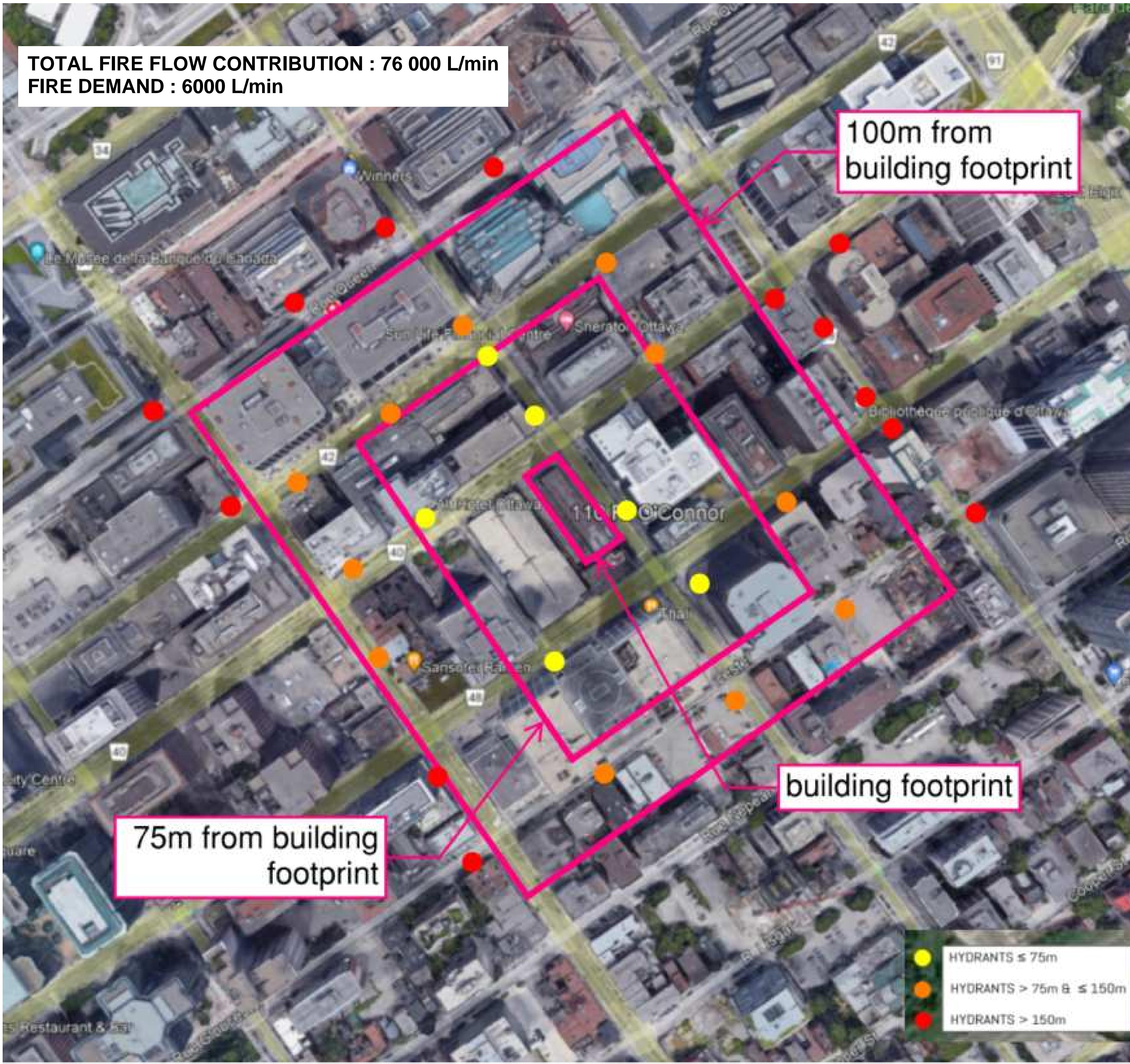


- ALL DIMENSIONS ARE IN MILLIMETRES UNLESS SHOWN OTHERWISE.
- THE MAXIMUM SLOPE IS NOT TO EXCEED 2%.
- FOR CURB RAMPS, SLOPE OF 2% TO 5%, MAXIMUM 8%.
- EXPANSION AND DUMMY JOINTS AS PER SCS.
- DEPRESSED CURB HEIGHT - FOR PEDESTRIAN CURB RAMPS 0 TO 6 mm AND FOR PRIVATE ENTRANCES 0 TO 13 mm.

N.T.S.
 MONOLITHIC CONCRETE CURB
AND SIDEWALK
DWG. NO.: SC2

C	FOR SITE PLAN APPLICATION	B.B.	2024-10-29
B	FOR COORDINATION	B.B.	2024-10-22
A	FOR UDRP	B.B.	2024-04-17
REV	DESCRIPTION	PAR	DATE

CLIENT
ÉDIFICE 110 O'CONNOR INC.
630, RUE ST-PAUL OUEST, MONTREAL
MONTRÉAL, (0c) H3C 1L9

PROJET
110 O'CONNOR STREET
OTTAWA


TITRE DU PLAN STANDARD SECTIONS AND DETAILS

ÉCHELLE	AUCUNE ÉCHELLE
ÉQUIPE DE PROJET	C. SAINT-MARTIN, tech. V. MERCIER, ing. B. BRAY, ing.
DOSSIER NO	600901

FICHIER	C-206.dwg
---------	-----------

PRÉPARÉ PAR	B. BRAY, ing.
-------------	---------------

C-205



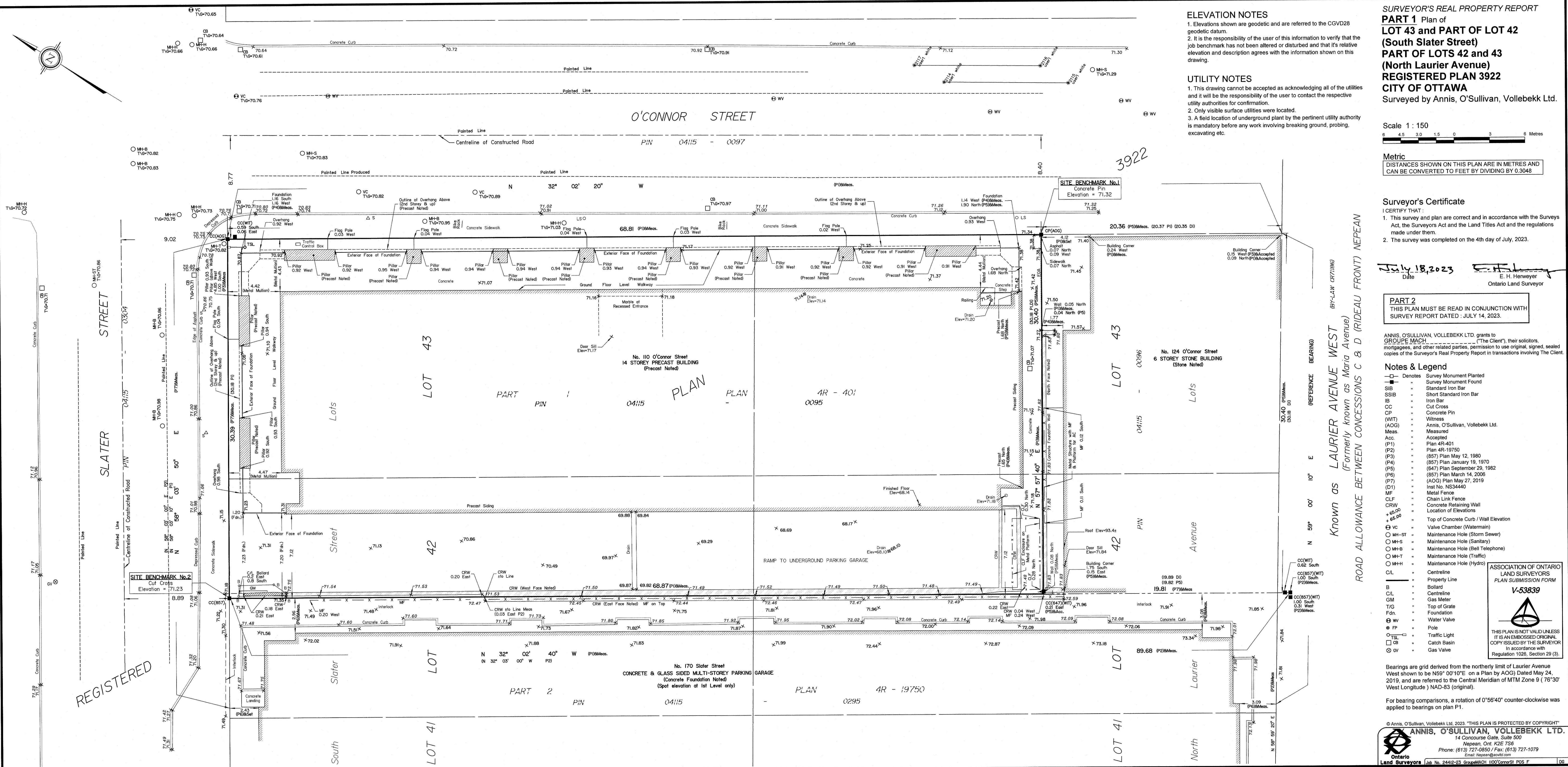
THIS DOCUMENT MUST
NOT BE USED FOR
CONSTRUCTION

C	FOR SITE PLAN APPLICATION	B.B.	2024-10-29
B	FOR COORDINATION	B.B.	2024-10-22
A	FOR UDRP	B.B.	2024-04-17
REV	DESCRIPTION	PAR	DATE

CLIENT
ÉDIFICE 110 O'CONNOR INC.
 630, RUE ST-PAUL OUEST, MONTREAL
 MONTREAL, (Qc) H3C 1L9

PROJET
110 O'CONNOR STREET
 OTTAWA

TITRE DU PLAN
FIRE HYDRANT COVERAGE MAP


ÉCHELLE
 AUCUNE ÉCHELLE

ÉQUIPE DE PROJET C. SAINT-MARTIN, tech. V. MERCIER, ing. B. BRAY, ing.	DOSSIER NO 600901
	FICHIER C-207.dwg

PRÉPARÉ PAR B. BRAY, ing.	C-206
------------------------------	-------

APPENDIX B

Land Survey by Annis, O'Sullivan, Vollebekk Ltd. on July 18th, 2023

APPENDIX C

Stormwater Flows and Storage Requirements

Detailed calculations

Storage tank drawing

STORMWATER CALCULATIONS

IDF CURVES FOR THE CITY OF OTTAWA

IDF curve equations (Intensity in mm/hr)

100 year Intensity	$= 1735.688 / (\text{Time in min} + 6.014)^{0.820}$
50 year Intensity	$= 1569.580 / (\text{Time in min} + 6.014)^{0.820}$
25 year Intensity	$= 1402.884 / (\text{Time in min} + 6.018)^{0.819}$
10 year Intensity	$= 1174.184 / (\text{Time in min} + 6.014)^{0.816}$
5 year Intensity	$= 998.071 / (\text{Time in min} + 6.053)^{0.814}$
2 year Intensity	$= 732.951 / (\text{Time in min} + 6.199)^{0.810}$

WATERSHED

The watersheds of the project are as displayed in the drawing below. The red zones represent the areas that are considered uncontrolled flow as the water will leave the site without control. The other watersheds are named based on the catch basin numbers associated.

HYPOTHESE

- The roof is a part of the drainage areas draining downstream of one of the underground tank.

Here are the calculations for the pre-development flowrate as asked by the city. The IDF curves provided above and a runoff coefficient of 0.50 were used.

TABLE 1 - 2-YEAR PRE-DEVELOPMENT

Time of concentration (min)	Intensity (mm/hr)	Flowrate (L/s)
5.0	103.57	0.029
10.0	76.81	0.021
15.0	61.77	0.017
20.0	52.03	0.014

*The IDF curves were taken from the city of Ottawa sewer design guidelines and C=0.50.

*The total area of the project is 1975m²

TABLE 2 – PROPOSED POST-DEVELOPMENT CATCHMENT AREAS

Drainage area	Total area (m ²)	Impervious surfaces		Grass surfaces		100-year runoff coefficient
		Area (m ²)	Runoff coefficient	Area (m ²)	Runoff coefficient	
CB-01 (covered by roof)	56.8	56.8	0.9	0	-	1.0
CB-02	80.5	80.5	0.9	0	-	1.0
CB-03	80.5	80.5	0.9	0	-	1.0
CB-04	80.5	80.5	0.9	0	-	1.0
CB-05	44.0	44.0	0.9	0	-	1.0
CB-06	44.0	44.0	0.9	0	-	1.0
CB-07	67.7	67.7	0.9	0	-	1.0
Building	1530	1530	0.9	0	-	1.0
Total Regulated	1975	1975	-	0	-	1.0
UNR-01	39.1	39.1	0.9	0	-	1.0
Total Unregulated	39.1	39.1	-	0	-	1.0

RUNOFF COEFFICIENT CALCULATION

$$C = \frac{\sum(A_i \times C_i)}{\sum A}$$

Where A_i is the Area of a certain material type

C_i is the runoff coefficient of a certain material type

Example:

$$C_{CB-04} = \frac{698 \times 0.900 + 186 \times 0.250}{698 + 186} = 0.763$$

TABLE 3 - PROPOSED UNCONTROLLED FLOW

Parameters	Values	Units
Impervious surfaces	39.1	m ²
Grass surfaces	0	m ²
Total area	39.1	m ²
100-year Runoff coefficient	1.0	-
Time of concentration	10	min
Uncontrolled 100-year flow	2.3	ℓ/s

* The 100-year runoff coefficients are determined by increasing the 2-year runoff coefficients by 25% as per the city of Ottawa sewer design guidelines.

TABLE 4 - PROPOSED CONTROLLED FLOW

Parameters	Values	Units
2-year pre-development flow	21.1	ℓ/s
100-year uncontrolled flow	2.3	ℓ/s
Allowable release rate / Controlled flow	18.8	ℓ/s
Average release rate for calculations	18.8	ℓ/s
Release rate controlled by ICD 1 (submersible pump)	15.3	ℓ/s
Release rate controlled by ICD 2 (submersible pump)	3.5	ℓ/s
100-year storage requirement *	81.3	m ³

*Storage requirement calculations includes a 20% increase in rainfall

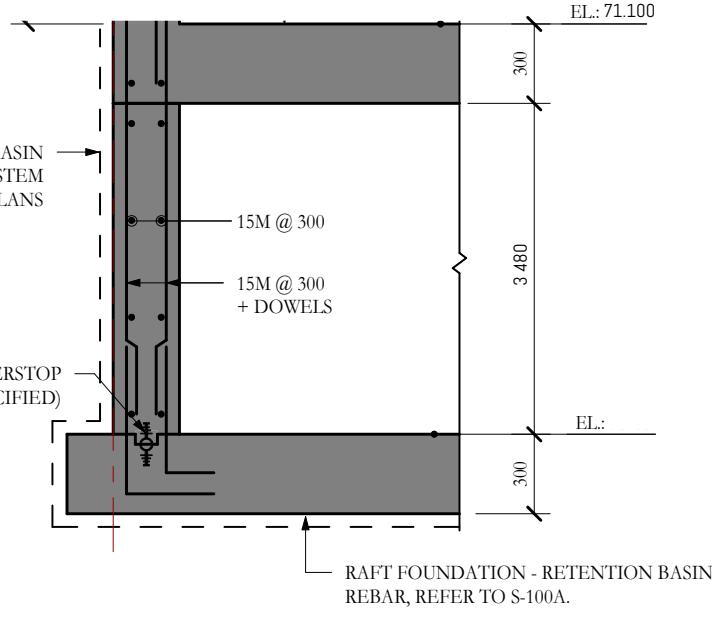
*Storage requirement calculations includes a 10% increase in volume

TABLE 5 - PROPOSED STORMWATER STORAGE

Parameters	Values	Units
100-year required storage ^{1,2}	81.3	m ³
Volume retained in underground concrete tank #1	63	m ³
Volume retained in underground concrete tank #2	18.3	m ³
Total storage volume available	81.3	m ³

1 - A 10% increase was included in the volume requirement as an extra safety measure

2 - A 20% increase to rainfall was included for the climate change effects


TABLE 6 – INLET CONTROL DEVICE (ICD)

Zone	Pipe	Flowrate (L/s)	Water level	Invert (m)	Water head (m)	Type *
1	250 mm PVC	15.3	70.120	68.940	1.180	Submersible pump
2	250 mm PVC	3.5	70.120	68.940	1.180	Submersible pump

*The type of ICD and specifications has to be validated with the manufacturer and mechanical engineer

Concrete Tank Design

Detail is from the structural plans S-200.

TANK #1

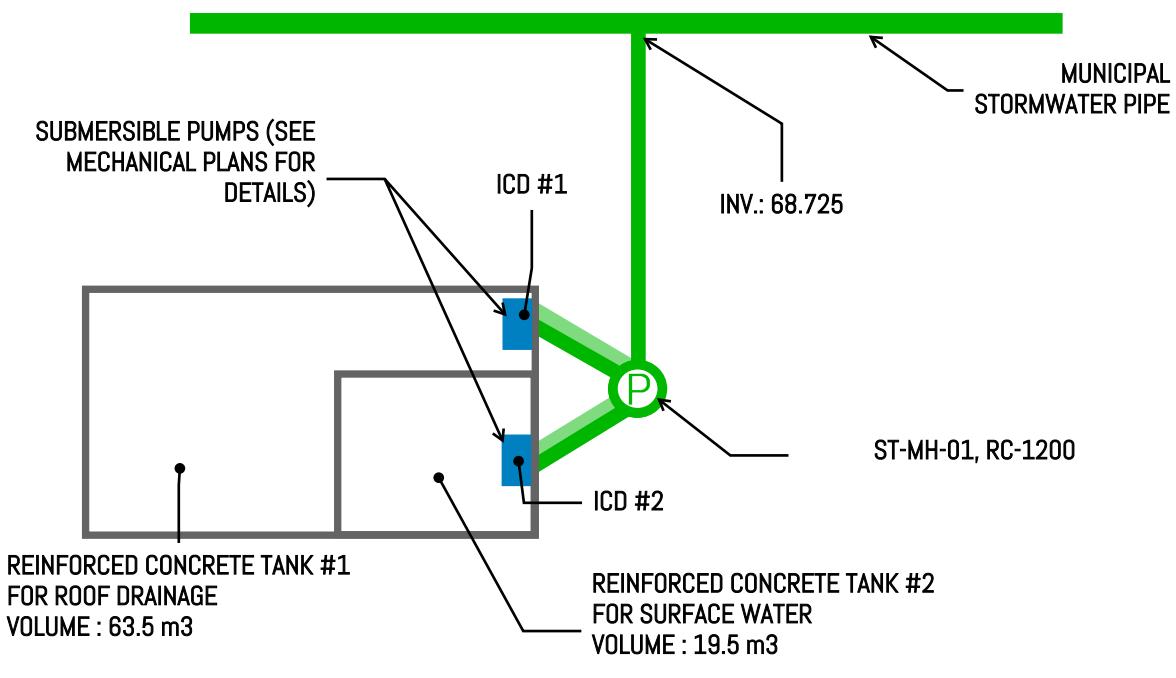
MAXIMUM WATER LEVEL : 70.120

HEIGHT : 3.48 m

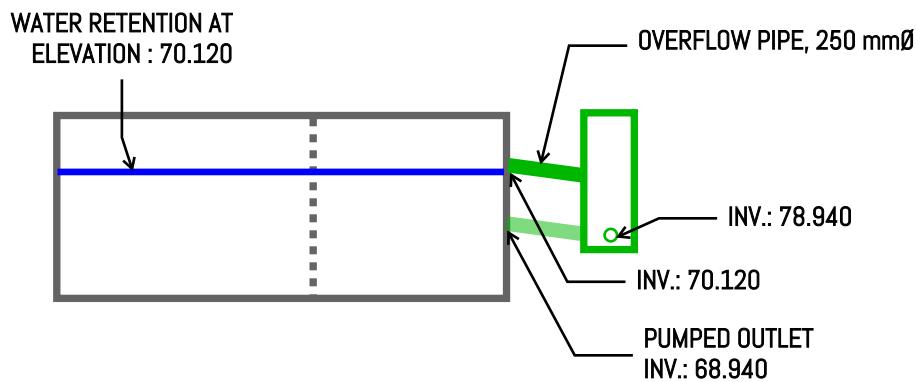
MAXIMUM VOLUME : 63.5 m³

CONCRETE TANK INVERT : 68.940

TANK #2


MAXIMUM WATER LEVEL : 70.120

HEIGHT : 3.48 m


MAXIMUM VOLUME : 19.5 m³

CONCRETE TANK INVERT : 68.940

UNDERGROUND CONCRETE TANK DETAILS

PLAN VIEW

PROFIL VIEW

APPENDIX D

Sanitary Sewer Design Flows

Detailed Calculations

SANITARY SEWER CALCULATION SHEET

Manning's $n = 0,013$

SANITARY SEWER DESIGN FLOWS - 110 O'Connor

Reference : Ottawa Sewer Design Guidelines, *Infrastructure Services Department*, October 2012

A. Population Density

(Article 4.3, Table 4.2)	Number of units	Persons Per Unit	Population Density
Studio	128	1,4	179
1-bedroom	183	1,4	256
2-bedroom	80	2,1	168
3-bedroom	22	3,1	68
			Total population density: 671,6

B. Average Wastewater Flows

(Article 4.4.1, Figure 4.3)

Average wastewater flow per capita for residential use: 280 L/c/d

Average wastewater flow for residential use: 188 048 L/d

Average wastewater flow for commercial use: 28 000 L/gross ha/d

Commercial Areas: 488 m² 1 368 L/d

C. Peaking Factors

(Article 4.4.1, Figure 4.3)

Residential peak factor: Harmon Equation

K=1

$$P.F. = 1 + \left(\frac{14}{4 + \left(\frac{P}{1000} \right)^{1/2}} \right) \times K$$

Residential peak factor: 3,90

Commercial peak factor: 1,50

D. Extraneous Flows

(Article 4.4.1.4)

Infiltration allowance: 0,28 L/s/effective gross ha for 2.092 ha

Infiltration flow: 0,59 L/s

F. Total Wastewater Design Flow

$$Q_{\text{design}} = [(3.90 \times 188 048 \text{ L/d}) + (1.50 \times 1 368 \text{ L/d})] \times 1/86 400 \text{ sec/d} + 0.59 \text{ L/s}$$

$$Q_{\text{design}} = 9,11 \text{ L/s}$$

APPENDIX E

Domestic Water Demand

Detailed Calculations

Watermain Pressure

1. Data and hypothesis

Maximum flow

Fire flow	6000 L/min	=	0,1	m^3/s
Max daily demand	5,5 L/s	=	0,0055	m^3/s
Max total flow	0,1055	m^3/s		

*The max flow rate will be used for both service points pressure loss calculations. The calculated pressure drops will be conservative and will assume that both service points can handle the full fire flow if the other service point is not in use.

Piping between the O'Connor Street service point and the water main valve

Pipe nominal diameter	200	mm
Pipe material	PVC DR-18	
Pipe inside diameter	204	mm
Pipe length	12,36	m

Piping between the Slater Street service point and the water main valve

Pipe nominal diameter	200	mm
Pipe material	PVC DR-18	
Pipe inside diameter	204	mm
Pipe length	12,79	m

Pressure data

Minimum HGL	106,8	m
Maximum HGL	115,5	m

*The HGL value is taken from a computer model simulation of the network and is the same for both service points

O'Connor Street service point elevation	71,32	m
Slater Street service point elevation	70,86	m

2.0 Street service point pressure

2.1 Pressure at the O'Connor street service point (ground level)

Maximum flow pressure	35,48 m	=	50,42	psi
Minimum flow pressure	44,18 m	=	62,78	psi

2.2 Pressure at the Slater street service point (ground level)

Maximum flow pressure	35,94 m	=	51,07	psi
Minimum flow pressure	44,64 m	=	63,43	psi

3.0 Pressure loss between the street service point and the water main valve

3.1 Pressure at the building water main valve on O'Connor Street (ground level)

Dynamic pressure loss

Hazen-Williams equation $Hf = 10,654 \times \left(\frac{Q}{C}\right)^{0,54} \times \left(\frac{1}{D^{4,87}}\right) \times L$

Équation de Hazen-Williams :

Q = Flow rate (m ³ /s)	0,1055 (m ³ /s)
C = Hazen-Williams coefficient	130 *Hypothesis, new PVC pipe
D = Pipe internal diameter	0,204 m
L = Pipe length	12,36 m
Hf = Friction pressure loss	0,57 m
Security factor	10%
Hf = Friction pressure loss	0,90 psi

Static pressure loss

Ground elevation at the street service point 71,32 m

Ground elevation at the water main valve 71,38 m

Static pressure loss 0,06 m = 0,085 psi

Result

Dynamic pressure at the water main valve 49,4 psi
 Static pressure at the water main valve 61,8 psi

3.2 Pressure at the building water main valve on Slater Street (ground level)

Dynamic pressure loss

Hazen-Williams equation

$$H_f = 10,654 \times \left(\frac{Q}{C}\right)^{0,54} \times \left(\frac{1}{D^{4,87}}\right) \times L$$

Équation de Hazen-Williams :

Q = Flow rate (m ³ /s)	0,1055 (m ³ /s)
C = Hazen-Williams coefficient	130 *Hypothesis, new PVC pipe
D = Pipe internal diameter	0,204 m
L = Pipe length	12,79 m
H _f = Friction pressure loss	0,59 m
Security factor	10%
H _f = Friction pressure loss	0,93 psi

Static pressure loss

Ground elevation at the street service point	70,86	m
Ground elevation at the water main valve	70,87	m

$$\text{Static pressure loss} \quad 0,01 \quad \text{m} \quad = \quad 0,014 \quad \text{psi}$$

Result

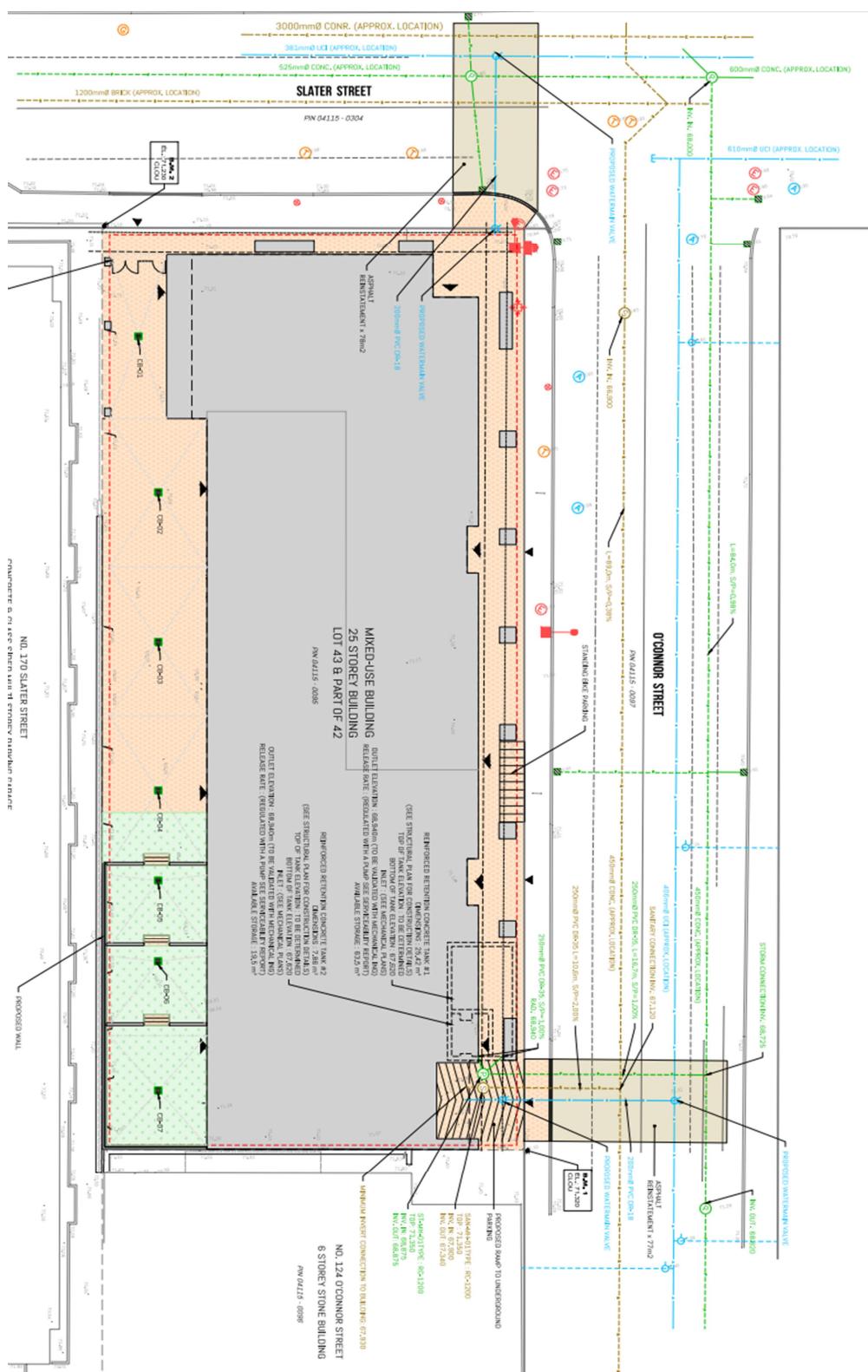
Dynamic pressure at the water main valve	50,1 psi
Static pressure at the water main valve	62,5 psi

Conclusion

According to the Design Guideline for Drinking-Water Systems, chapter 10, the minimum pressure under maximum day demand plus fire flow is 20 psi and the minimum pressure in normal operation is 40 psi.

O'Connor Street service point

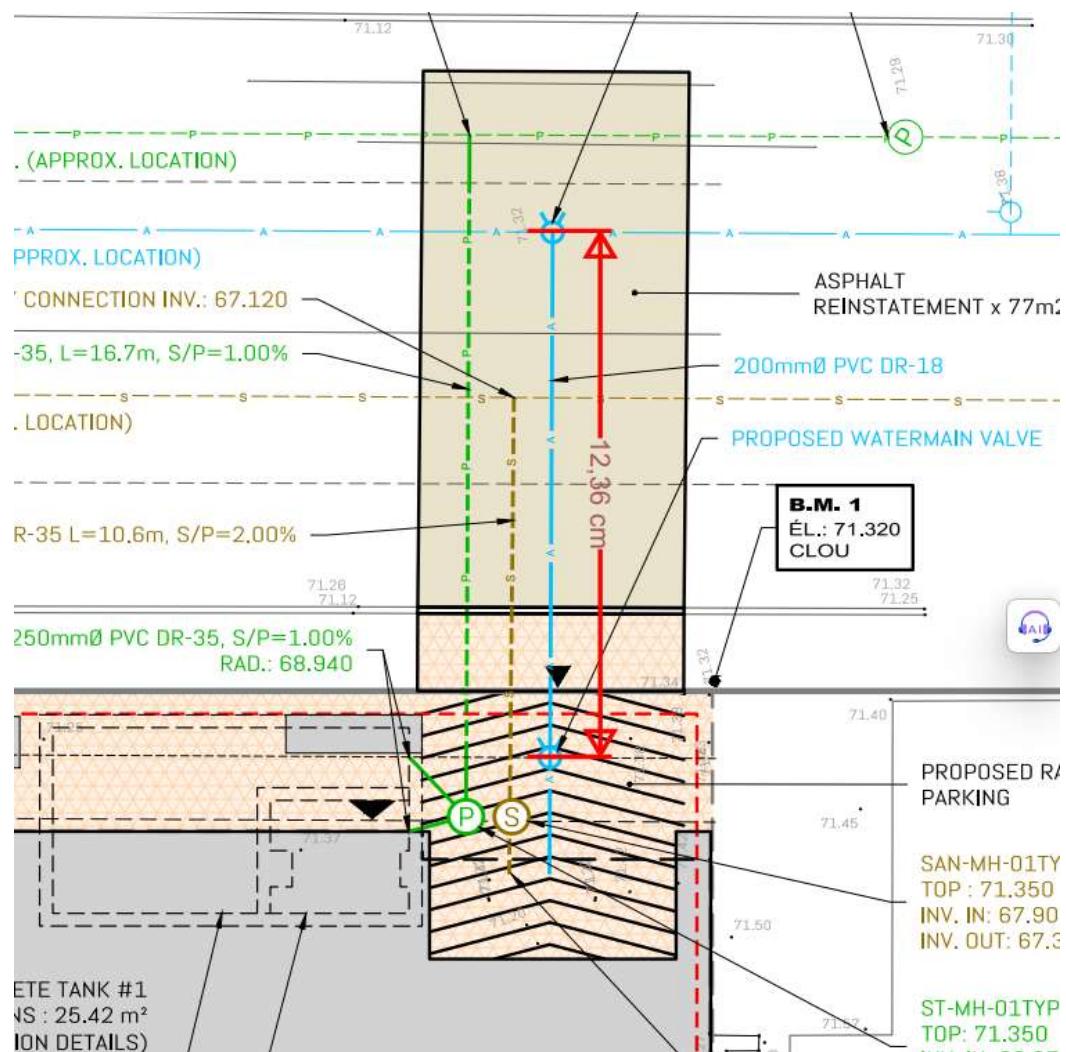
For the O'Connor Street service point, the calculated dynamic pressure (49,4 psi) is greater than the minimum of 20 psi and the calculated static pressure (61,8 psi) is greater than the minimum of 40 psi.


The pressure on the O'Connor Street service point is therefore compliant to the Design guideline for Drinking-Water Systems.

Slater Street service point

As for the Slater street service point, the calculated dynamic pressure (50,2 psi) is greater than the minimum of 20 psi and the calculated static pressure (62,5 psi) is greater than the minimum of 40 psi.

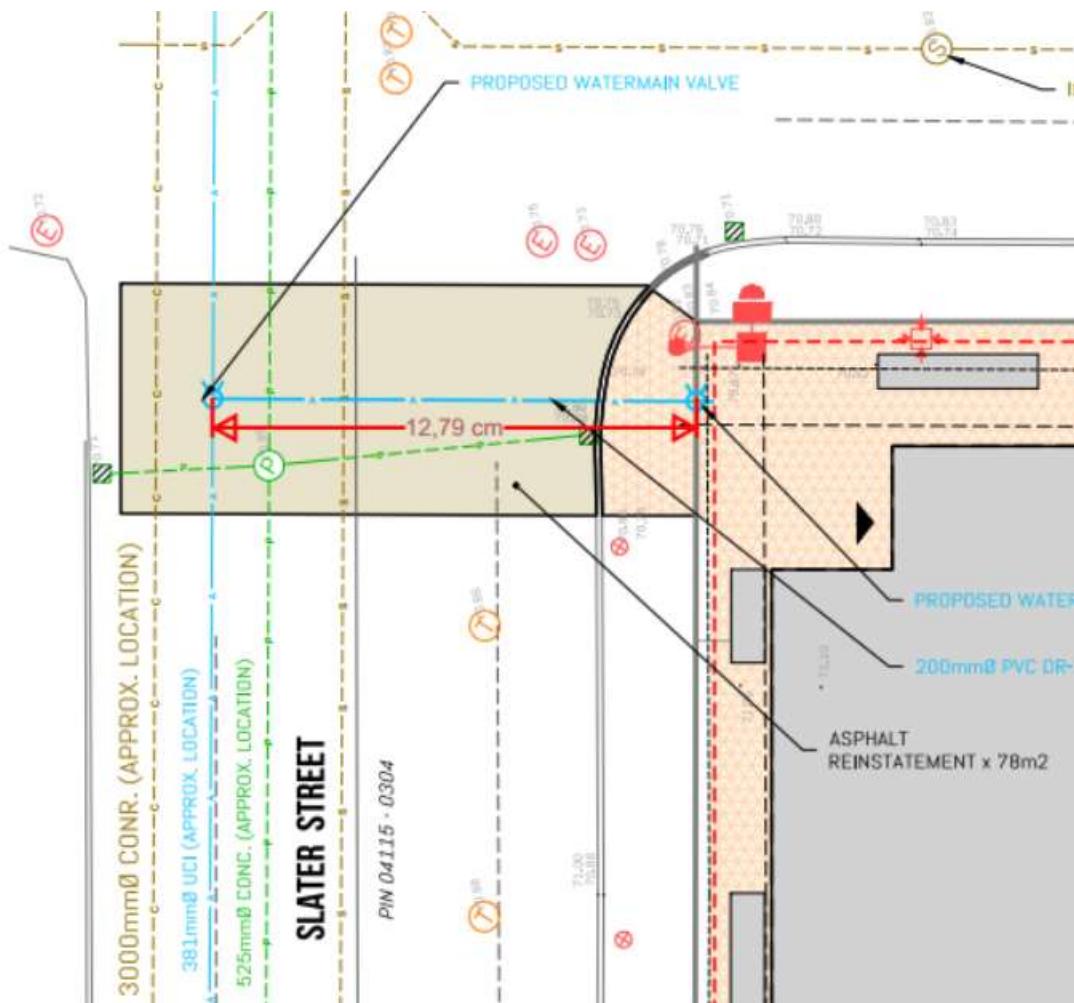
The pressure on the Slater Street service point is therefore compliant to the Design guideline for Drinking-Water Systems.



Taken from the plans 110 O'CONNOR STREET, OTTAWA, PLAN VIEW, SITE SERVICING PLAN AND DRAINAGE AREA, issued for SITE PLAN APPLICATION on november 29th 2024, by Équipe Laurence

Prepared, under supervision, by : Simon Boisvenu, CPI
Verified by : Benoit Bray, ing. Signature :

Signature : 2024-11-01



O'Connor street service point, taken from the plans 110 O'CONNOR STREET, OTTAWA, PLAN VIEW, SITE SERVICING PLAN AND DRAINAGE AREA, issued for SITE PLAN APPLICATION on november 29th 2024, by Équipe Laurence

Prepared, under supervision, by : Simon Boisvenu, CPI
Verified by : Benoit Brav, ing. Signature :

Signature :

Slater Street service point, taken from the plans 110 O'CONNOR STREET, OTTAWA, PLAN VIEW, SITE SERVICING PLAN AND DRAINAGE AREA, issued for SITE PLAN APPLICATION on november 29th 2024, by Équipe Laurence

DOMESTIC WATER DEMAND CALCULATION

Reference : Ottawa Design Guidelines - Water Distribution, *Infrastructure Services department*, July 2010

A. Population Density

(Article 4.2.8, Table 4.1)	Number of units	Persons Per Unit	Population Density
Studio	128	1,4	179,2
1-bedroom	183	1,4	256,2
2-bedroom	80	2,1	168
3-bedroom	22	3,1	68,2
			Total population density: 672

B. Average Day Demand

(Article 4.2.8, Table 4.2)

Average day demand per capita for residential use:	280 L/c/d
Average day demand for residential use:	188 048 L/d
Average day demand for other commercial use:	28 000 L/gross ha/d
Commercial Areas: 488 m ²	1 368 L/d
Total average day demand:	189 416 L/d = 2,19 L/s

C. Maximum Daily Demand

(Article 4.2.8, Table 4.2)

$$\begin{aligned}
 \text{Maximum daily demand} &= 2.5 \times 234\,920 \text{ L/d} + 1.5 \times 1\,613 \text{ L/d} \\
 &= 587\,300 \text{ L/d} + 2\,19,5 \text{ L/d} \\
 &= 472\,171 \text{ L/d} \\
 &= 5,46 \text{ L/s}
 \end{aligned}$$

D. Maximum Hour Demand

(Article 4.2.8, Table 4.2 and Technical Bulletin ISD-2010-2)

$$\begin{aligned}
 \text{Maximum hour demand} &= 2.2 \times (\text{Max Day}_{\text{res}}) \text{ L/d} + 1.8 \times (\text{Max Day}_{\text{com}}) \text{ L/d} \\
 \text{Maximum hour demand} &= 2.2 \times 442,330 \text{ L/d} + 1.8 \times 3,444 \text{ L/d} \\
 &= 1\,037\,957 \text{ L/d} \\
 &= 12,01 \text{ L/s}
 \end{aligned}$$

F. Results

Population density =	672	people
Average day demand =	2,19	L/s
Maximum daily demand =	5,46	L/s
Maximum hour demand =	12,01	L/s

APPENDIX F

Required Fire Demand

Detailed Calculations

REQUIRED FIRE DEMAND CALCULATION

References : Ottawa Technical Bulletin ISTB-2018-02, March 2018
 Water Supply for Public Fire Protection, *Fire Underwriters Survey*, 2020

A. Type of construction

Fire Resistive Construction (Class 6): $C = 0,6$

B. Total Effective Area

	Surface Area Per Floor	Number of Floors	Floor Area
Ground Floor	1 216 m ²	1	1 216 m ²
Levels 2	1 460 m ²	1	1 460 m ²
Levels 3-6	1 471 m ²	4	5 882 m ²
Levels 7-25	967 m ²	19	18 366 m ²
Roof	479 m ²	1	479 m ²

$A = \text{Largest floor area} + 25\% \text{ of each of the two immediately adjoining floors}$

$$A = 1 471 \text{m}^2 + 25\% * 1 460 \text{m}^2 + 25\% * 1 471 \text{m}^2$$

$$A = 2203 \text{ m}^2$$

D. Base Fire Flow

$$F = 220 \times C\sqrt{A} = 6 196 \text{ L/min}$$

The base fire flow must be rounded to the nearest 1,000 L/min, hence : $F = 6 000 \text{ L/min}$

E. Fire Flow Adjustments

E.1 Building occupancy (adjustments to the value obtained in D)

1

Occupancy : Limited Combustible -15% $F = 5 100 \text{ L/min}$

E.2 Automatic sprinkler system (adjustments to the value obtained in E.1)

NPFA 13 Designed system: Yes -30%
 Standard water supply: Yes -10%
 Fully supervised system: Yes -10%

E.3 Exposure surcharge (adjustments to the value obtained in E.1)

Length-Height Factors (no impact on exposure surcharge calculations since distances > 30m)

North side $L (121\text{m}) * H (22 \text{ storeys}) = 2662$
 East side $L (69.3\text{m}) * H (18 \text{ storeys}) = 1139$
 South side $L (40.4\text{m}) * H (6 \text{ storeys}) = 242$

West side $L (85.5m) * H (3 \text{ storeys}) = 257$

North side	21.7 m (20.1 to 30 m)	8%
East side	23.4m (20.1 to 30 m)	10%
South side	1.7 m (0 to 3 m)	20%
West side	3 m (0 to 3 m)	25%

Reductions from E.2 = -50% = -2 550 L/min 2

Increases from E.3 = 63% = 3 213 L/min 3

$$\textcircled{1} + \textcircled{2} + \textcircled{3} \quad F = 5 763 \text{ L/min}$$

The fire flow must be rounded to the nearest 1,000 L/min, hence : $F = 6 000 \text{ L/min}$

F. volume of Water Required During the Fire

The duration of water supply for a fire is: 2 hours

Required Volume = 720 000 L = 720 m³

Fire Demand = 6 000 L/min		Required Volume = 720 m ³
---------------------------	--	--------------------------------------