

Phase Two Environmental Site Assessment

110 O'Connor Street, Ottawa, Ontario
G2S25042B

Groupe Mach Inc.
630 Saint-Paul Street West, Suite 600
Montreal, Quebec
H3C 1L9

Executive Summary

G2S Consulting Inc. (G2S) was retained by Groupe Mach Inc. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) for the property located at 110 O'Connor Street in Ottawa, Ontario (hereinafter referred to as the 'Site'). Refer to Drawing 1 in Appendix A for the Site Location Plan. Authorization to proceed with the Phase One ESA was provided by Mohamad Kheir Hassoun of Groupe Mach Inc.

The rectangular shaped Site is located on the west side of O'Connor Street, located at the southwest corner of the intersection with Slater Street and O'Connor Street, and covers an approximate area of 0.21 ha (0.51 ac.). The Study Area consists of residential and commercial land use, and the Rideau Canal is located approximately 565 m northeast of the Site.

Based on information from the records review, the first developed use of the Site was prior to 1875, and was developed with seven residential dwellings. The Site was then developed with eight dwellings in the early 1900s. A grocery store and bakery were developed within the northern portion of the Site in 1912, as well as the central portion of the Site was occupied by a dry cleaner. The northern portion of the Site was redeveloped into a dry cleaner in the 1920s, with the central portion of the Site was developed with a residential dwelling, and the southern portion of the Site was occupied by an apartment building and a tailor. A dry cleaner was located within the central and southern portions of the Site in the 1940s to the 1950s, with the remaining Site being occupied by residential land use. The previously mentioned buildings were demolished in the 1960s, and the Site was redeveloped with an apartment building within the northern portion of the Site, and commercial buildings were developed within the southern portion of the Site. The present building configuration was developed within the 1970s and was occupied by various commercial tenants. The Site has been vacant since 2022 and is presently in the early stages of being prepared for demolition.

G2S understands the Client requires a Phase Two ESA to support an application for Record of Site Condition (RSC) related to the redevelopment of the Site for residential purposes. The Site was most recently used for commercial purposes (vacant) and is proposed to be used for residential use. Since there is a change in property use planned (commercial to residential), a RSC is required under O. Reg. 153/04, as amended, prior to redevelopment. This Phase Two ESA was completed in accordance with Schedule D. of O. Reg. 153/04

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04 (as amended) requirements, to investigate potential contamination within Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified Potentially Contaminating Activities (PCAs) and APECs for the Site.

The field work for this investigation was completed from May to June 2025 and included the advancement of seven boreholes, all of which were installed as groundwater monitoring wells. Refer to Drawing 3 for the borehole and monitoring well locations.

The findings of this assignment are summarized as follows:

1. In general, the subsurface conditions of the building exterior included a pavement structure comprising approximately 140 millimeters of concrete, underlain by crushed gravel and limestone, underlain by sand and gravel fill materials (approximately 0.1 to 2.4 m below ground surface (bgs)). The building interior comprised 115 to 190 mm of concrete

underlain by sand and gravel and clear stone fill materials to an approximate depth of 0.1 to 0.6 m bgs. Shale bedrock was encountered at depths ranging from approximately 0.1 to 0.6 m bgs within the building exterior. Refer to the borehole logs in Appendix B.

2. Groundwater was found in the monitoring wells during the most recent round of sampling on June 9, 2025, between depths of 0.82 and 6.57 m bgs.
3. Soil samples were submitted for laboratory analysis of petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and other regulated parameters (ORPs), polychlorinated biphenyls (PCBs). The concentrations of the tested parameters in the submitted samples were below the Ministry of Environment, Conservation, and Parks (MECP) Table 3 Site Condition Standards (SCS) for Residential/Parkland/Institutional (RPI) Property Use, with the exception of the following:
 - Sample BH102 S1 – Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impact would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

4. Groundwater samples from the monitoring wells were submitted for laboratory analysis of PHCs F1-F4 including BTEX, VOCs, PAHs, metals and ORPs, and PCBs. The concentrations of the tested parameters in the submitted samples were below the MECP Table 3 SCS, with the exception of the following:
 - Sample BH1 (collected on May 8, 2025) – Chloride (4,670,000 µg/L) exceeded the SCS of 2,300,000 µg/L.
 - Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) – Chloride (4,560,000 µg/L) exceeded the SCS of 2,300,000 µg/L, and sodium (2,450,000 µg/L) exceeded the SCS of 2,300,000 µg/L.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Based on the results of the Phase Two ESA, the Site soil meets the applicable MECP Table 3 RPI SCS. The groundwater quality on-Site meets the applicable SCS in the samples tested.

It is important to note that for the purposes of the full depth site cleanup, as compared with the SCS, given the heterogeneous nature of the fill on Site, the soil contamination is presumed to extend from ‘clean’ borehole to ‘clean’ borehole or to the property line.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use.

Table of Contents

Executive Summary	ii
1. Introduction	1
1.1 Site Description	1
1.2 Property Ownership and Information	1
1.3 Current and Proposed Future Land Uses	2
1.4 Applicable Site Condition Standards.....	2
2. Background Information	4
2.1 Physical Setting	4
2.2 Past Investigations	4
3. Scope of the investigation	7
3.1 Overview of Site Investigation.....	7
3.2 Scope of Work.....	7
4. Investigation method	8
4.1 General	8
4.2 Media Investigated	8
4.3 Phase One Conceptual Site Model.....	8
4.4 Deviations from Sampling and Analysis Plan.....	8
4.5 Impediments.....	8
4.6 Drilling	8
4.7 Soil Sampling	9
4.8 Field Screening Measurements	9
4.9 Groundwater Monitoring Well Installation.....	9
4.10 Elevation Surveying.....	10
4.11 Groundwater Sampling	10
4.12 Analytical Testing	11
4.13 Residue Management Procedures.....	13
5. Review and Evaluation	14
5.1 Geology	14
5.2 Groundwater Elevation and Flow Direction	14
5.3 Groundwater Hydraulic Gradient	16
5.4 Soil Texture	16
5.5 Soil Field Screening.....	16

5.6 Analytical Findings – Soil.....	16
5.6.1 <i>Petroleum Hydrocarbons Fractions F1 to F4 (PHC F1 to F4) including Benzene, Toluene, Ethylbenzene, and Xylene (BTEX).....</i>	<i>16</i>
5.6.2 <i>Volatile Organic Compounds (VOCs).....</i>	<i>16</i>
5.6.3 <i>Polycyclic Aromatic Hydrocarbons (PAHs).....</i>	<i>16</i>
5.6.4 <i>Metals and Other Regulated Parameters (ORPs).....</i>	<i>17</i>
5.6.5 <i>Polychlorinated Biphenyls (PCBs).....</i>	<i>17</i>
5.7 Analytical Findings – Groundwater	17
5.7.1 <i>PHC F1 to F4 and BTEX.....</i>	<i>17</i>
5.7.2 <i>VOCs.....</i>	<i>17</i>
5.7.3 <i>PAHs</i>	<i>17</i>
5.7.4 <i>Metals and ORPs</i>	<i>17</i>
5.7.5 <i>Polychlorinated Biphenyls (PCBs)</i>	<i>18</i>
5.7.6 <i>LNAPLs and DNAPLs</i>	<i>18</i>
5.8 Quality Assurance/Quality Control (QA/QC) Results.....	18
5.9 Summary of Contamination	21
6. Conclusions and Recommendations.....	22
7. Qualifications of the Assessors.....	24
8. References and Supporting Documentation.....	25
9. Limitations.....	26
10. Closing Remarks.....	27

Appendices

- Appendix A: Drawings
- Appendix B: Borehole Logs
- Appendix C: Analytical Results Tables
- Appendix D: Certificates of Analysis

List of Drawings

- Drawing 1: Site Location Plan
- Drawing 2: Potentially Contaminating Activities (PCAs)
- Drawing 3: Areas of Potential Environmental Concern (APECs)
- Drawing 4: Borehole and Monitoring Well Location Plan
- Drawing 5: Groundwater Contour Plan – June 9, 2025
- Drawing 6A: Soil Analytical Results – PHCs Fractions F1 to F4
- Drawing 6B: Soil Analytical Results – VOCs
- Drawing 6C: Soil Analytical Results – PAHs
- Drawing 6D: Soil Analytical Results – Metals and ORPs
- Drawing 6E: Soil Analytical Results – EC and SAR
- Drawing 6F: Soil Analytical Results – PCBs
- Drawing 7A: Groundwater Analytical Results – PHCs Fractions F1 to F4

Drawing 7B: Groundwater Analytical Results – VOCs
Drawing 7C: Groundwater Analytical Results – PAHs
Drawing 7D: Groundwater Analytical Results – Metals and ORPs
Drawing 7E: Groundwater Analytical Results – Sodium and Chloride
Drawing 7F: Groundwater Analytical Results – PCBs
Drawing 8A: Cross Section A – A' – Soil Analytical Results – EC & SAR
Drawing 8B: Cross Section A – A' – Groundwater Analytical Results – Sodium & Chloride
Drawing 9A: Cross Section B – B' – Soil Analytical Results - EC & SAR

1. Introduction

G2S Consulting Inc. (G2S) was retained by Groupe Mach Inc. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) for the property located at 110 O'Connor Street in Ottawa, Ontario, hereinafter referred to as the 'Site'. Refer to Drawing 1 in Appendix A for the Site Location Plan. Authorization to proceed with the Phase Two ESA was provided by Mohamad Kheir Hassoun of Groupe Mach Inc.

G2S understands the Client requires a Phase Two ESA to support an application for Record of Site Condition (RSC) related to the redevelopment of the Site for residential purposes. The Site was most recently used for commercial purposes (vacant) and is proposed to be used for residential use. Since there is a change in property use planned (commercial to residential), a RSC is required under O. Reg. 153/04, as amended. This Phase Two ESA was completed in accordance with Schedule D. of O. Reg. 153/04.

Drawing 1 in Appendix A illustrates the location of the Site involved in the study.

1.1 Site Description

The 'Study Area', which is defined as being the area including the Site and lands within approximately 250 m of the Site, consists of residential, institutional, and commercial land use.

The Site is currently developed with a vacant commercial building. The Site first developed use of the Site was prior to 1875 and was developed with seven residential dwellings. The Site was then developed with eight dwellings in the early 1900s. A grocery store and bakery were developed within the northern portion of the Site in 1912, as well as the central portion of the Site was occupied by a dry cleaner. The northern portion of the Site was redeveloped into a dry cleaner in the 1920s, with the central portion of the Site was developed with a residential dwelling, and the southern portion of the Site was occupied by an apartment building and a tailor. A dry cleaner was located within the central and southern portions of the Site in the 1940s to the 1950s, with the remaining Site being occupied by residential land use. The previously mentioned buildings were demolished in the 1960s, and the Site was redeveloped with an apartment building within the northern portion of the Site, and commercial buildings were developed within the southern portion of the Site. The present building configuration was developed within the 1970s and was occupied by various commercial tenants. The Site has been vacant since 2022 and is presently in the early stages of being prepared for demolition.

1.2 Property Ownership and Information

Table 1: General Site Details

Municipal Address:	110 O'Connor Street, Ottawa, Ontario
General Site Location:	West side of O'Connor Street, southwest of the intersection with Slater Street and O'Connor Street
Approximate Plan Area:	Approximate plan area of 0.21 hectares (0.51 acres) with frontage of approximately 66 m on O'Connor Street and a depth of approximately 29 m.
Property Identification Number (PIN):	04115-0095 (LT)

Legal Description:	PCL 42-1, SEC 3922 ; PT LT 42 & LT 43, PL 3922 , S SLATER ST ; PT LTS 42 & 43, PL 3922 , N LAURIER ST, BEING PT 1, 4R401 ; OTTAWA
Current Site Owner and Contact Information:	Édifice 110 O'Connor Inc. / 110 O'Connor Building
Current Site Occupant:	Vacant (fourteen-storey office building with mechanical penthouse and three basement levels)

1.3 Current and Proposed Future Land Uses

G2S understands the Client requires the Phase Two ESA for due diligence purposes related to the proposed acquisition of the Site and redevelopment for residential purposes. Since there is a change in property use planned (commercial to residential), an RSC is required under O. Reg. 153/04, as amended, prior to re-development.

In accordance with the current regulatory requirements, the environmental site assessment work was carried out under the supervision of a Qualified Person as defined in O. Reg. 153/04, as amended.

1.4 Applicable Site Condition Standards

The assessment criteria applicable to a given site in Ontario are provided in the Ministry of Environment, Conservation, and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," dated April 15, 2011.

Standards are provided in Tables 1 to 9 in the document. These standards are based on site sensitivity, groundwater use, property use, soil type and restoration depth.

For this investigation, G2S has selected the Full Depth Generic Table 3 Site Condition Standards (SCS) in a Non-Potable Groundwater Condition and Residential/Parkland/Institutional (RPI) Property Use, with coarse textured soils. The selection of this category is based on the following factors:

- There is no intention to carry out stratified restoration at the Site.
- Based on field observations and grain size analysis, the predominant soil type on the Site is coarse textured.
- The use of the Site is commercial with a proposed change in land use to residential.
- The Site is not located within 30 metres of a water body.
- The Site is not considered a sensitive site based on:
 - The Site is not within an area of natural significance or includes or is adjacent to such an area or part of such an area.
 - The pH values are within the recommended range of 5 to 9 for surface soil (<1.5 m) and within 5 to 11 for subsurface soil (>1.5 m).

- The non-potable groundwater condition applies to the Site based on:
 - The Site, and/or properties, in whole or in part, within 250 metres of the boundaries of the Site, are located within the City of Ottawa, which obtains drinking water from the Ottawa River.
- Based on the findings from the Phase Two ESA, the following can be confirmed with respect to Sections 41 and 43.1 of O.Reg. 153/04:
 - The Site is not a shallow soil property, as defined in Section 43.1 of O.Reg. 153/04.
 - The Site is not an environmentally sensitive site as defined in Section 41 of O.Reg. 153/04.

2. Background Information

2.1 Physical Setting

No water bodies or areas of natural significance were located on-Site or within the Study Area. The nearest water body is the Ottawa River, which is located approximately 570 m north of the Site, and the Rideau Canal is located approximately 565 m northeast of the Site.

The Site is located approximately 68 m above sea level. Based on our observations and review, the expected direction of groundwater flow is to the north/northeast, following surface topography towards the Rideau Canal. Local variations in groundwater flow patterns, however, can be expected due to buried utility infrastructures and buildings.

G2S reviewed the Soil Associations of Southern Ontario map which indicated the Site and Study Area is dominantly Lincoln (D.G.G.) Haldimand clay, formed on till or lacustrine sediments. Additionally, the Palaeozoic Geology of Southern Ontario, Map 2254, Ontario Division of Mines, was reviewed which indicated the Site is underlain by grey and black shale of the Upper Ordovician Georgian Bay (Whitby (Eastview and Billings)) Formation.

2.2 Past Investigations

The following previous environmental report was completed for the Site by others and provided to G2S for review.

Table 2: Summary of Previous Environmental Report

Report Details	Findings and Conclusions
Title: Phase I Environmental Site Assessment 110 O'Connor Street, Ottawa, Ontario	<ul style="list-style-type: none">At the time of the investigation, the Site was developed with a fourteen-storey commercial building with a two-storey mechanical penthouse, and three levels of underground parking.Running Room and a hair salon occupied the ground floor of the building, with the remaining floors being vacant.The present configuration of the Site building was developed within the 1970s with extensive renovations completed in 1999 and 2011.Three diesel fired emergency generators are present within the Site, with one located within the underground parking garage, and two are located within the mechanical penthouse.The previous Site occupant included the Department of National Defense and occupied the remaining floors.Previous Site occupants included several dry cleaners, residential and various commercial uses.
Date of Report: November 12, 2021	
Author of the Report: Le Groupe Gesfor Poirier, Pinchin	<ul style="list-style-type: none">Two single walled 1,500 L diesel aboveground storage tanks (ASTs) were identified within the underground parking garage, and two single walled 1,500 L diesel ASTs were identified within the mechanical penthouse.Three diesel-fired emergency generators were located within the underground parking garage, and an emergency generator is located within the mechanical penthouse.The Phase One ESA did not recommend a Phase Two ESA.
Title:	<ul style="list-style-type: none">The proposed use of the Site was to demolish the existing building with

Report Details	Findings and Conclusions
<p>Geotechnical Subsoil Investigation Report</p> <p>Date of Report: August 25, 2023</p> <p>Author of the Report: Solroc Inc.</p>	<p>the exception of the foundation walls and the basement levels and construct additional 22 levels.</p> <ul style="list-style-type: none">Three boreholes were advanced within the third level of underground parking levels, as well as two boreholes located within the exterior.Borehole BH-5 was advanced off the Site due to limited space within the alleyway.Five test pits were excavated to reveal the existing building foundations and to observe the underlying soils.The bedrock was encountered within the underground levels at a depth of 0.67 and 1.52 m below ground surface (bgs). The bedrock encountered within the exterior boreholes at depths of 4.67 and 5.74 m bgs.Fill materials were identified within the boreholes to depths between 0.67 and 5.33 m bgs.Groundwater was identified within the bottom of the test pits, no depth was noted.Groundwater was identified within the third level of underground parking at a depth of 1.28 m bgs, and groundwater was identified within the exterior location at a depth of 5.36 m bgs.The native soil encountered within the subsurface soil was identified as silty sand with some gravel.

G2S also completed a Phase One ESA for the Site, entitled:

"Phase One Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," dated April 23, 2025.

The Phase One ESA identified nine on-Site and several off-Site PCAs which were assessed based on observations of the operations, their location relative to the Site with respect to the inferred groundwater flow direction, their tenure, expected chemical storage amounts, etc. Based on review and evaluation of the information gathered, the following APECs were identified on-Site:

APEC 1: West central portion of Site – Current and historical presence of three diesel aboveground storage tanks (ASTs) located within the underground parking levels. Presence of fill and vent pipes associated with the ASTs.

APEC 2: Entire Site – A geotechnical report by others identified fill material present beneath the Site to a depth of 5.33 m below ground surface (bgs).

APEC 3A: Northeastern portion of Site – Historical presence of a dry cleaner from the years 1912 – 1922.

APEC 3B: East central portion of Site – Historical presence of a dry cleaner in 1912.

APEC 3C: Southeastern portion of Site – Historical presence of a dry cleaner from the years 1948 – 1955.

APEC 3D: Northwestern portion of Site – Historical use of 174 Slater Street as a dry cleaner from the years 1912 – 1922.

APEC 4: Central portion of Site – Current and historical presence of a transformer vault within the central portion of the Site.

APEC 5: Western portion of Site – Historical use of de-icing salt located on paved portions of the Site.

APEC 6: Southern portion of Site – Historical presence of a dry cleaner located at 124 O'Connor Street (south adjacent) from the years 1922 – 1941.

APEC 7A: Western portion of Site – Historical use of 170 Slater Street (west adjacent) as an autobody shop, from the years 1948 – 1966.

APEC 7B: Northwest portion of Site – Historical presence two underground storage tanks (USTs) in the 1940 - 1960 located along the northeastern portion of 170 Slater Street (west adjacent).

APEC 7C: Western portion of Site – Historical use of 170 Slater Street (west adjacent) for metal plating in the 1930s.

APEC 7D: Western portion of Site – Historical use of 170 Slater Street (west adjacent) as a metal fabricator in the 1970s.

Regarding APEC 5 (de-icing salt use), per Section 49.1 of O. Reg 153/04, assessment of this APEC is not required. Under the Regulations, where a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, the applicable standard is deemed not to be exceeded. In this regard, further assessment of this APEC is not required.

Based on the findings of the Phase One ESA, a Phase Two ESA was recommended to investigate the potential for contamination related to the above-noted APECs.

3. Scope of the investigation

3.1 Overview of Site Investigation

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04, as amended requirements, to investigate potential contamination within APECs identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified PCAs and APECs for the Site.

3.2 Scope of Work

The scope of work for this investigation included the following:

- Review of previous reports;
- The locating and marking of underground utilities by public and private utility locators;
- Attendance at the Site to complete boreholes and install groundwater monitoring wells;
- Soil and groundwater sampling;
- Laboratory analysis of soil and groundwater samples;
- Data compilation and evaluation of the information gathered, and
- Preparation of this report, discussing the information compiled and the corresponding conclusions and recommendations.

4. Investigation method

4.1 General

The locations of underground utilities were identified and marked by public locating companies as well as a private utility locating contractor.

4.2 Media Investigated

Based on the Phase One ESA, the media potentially impacted at the Site included soil and groundwater which were investigated as part of this Phase Two ESA. No sediment or surface water was present.

4.3 Phase One Conceptual Site Model

Based on the review, interpretation and evaluation of the data compiled, a Phase One Conceptual Site Model (CSM) of the Phase One ESA property was prepared and is included in the G2S Phase One ESA report completed in April 2025. The additional information acquired as part of this Phase Two ESA was used to prepare the Phase Two CSM, which will be finalized during the RSC.

4.4 Deviations from Sampling and Analysis Plan

No soil was encountered in boreholes BH104, BH105 and BH107. No other deviations from the sampling and analysis plan were encountered during this assignment.

4.5 Impediments

There were no impediments during completion of this Phase Two ESA.

4.6 Drilling

The field work for this investigation was completed in May 2025, and included the advancement of seven boreholes on-Site (labelled as BH101 to BH107) by Ohlmann Geotechnical Services Inc. (OGS), a licensed well contractor, under the supervision of G2S staff. All of the boreholes (BH101, BH102, BH103, BH104, BH105, BH106 and BH107) were completed as groundwater monitoring wells (labelled BH/MW101, BH/MW102, BH/MW103, BH/MW104, BH/MW105, BH/MW106 and BH/MW107, respectively). A handheld Hilti Core drill rig was used to advance the boreholes and to collect the soil samples. Monitoring well BH/MW103 was completed outside the building envelope and underground parking footprint, with the remaining boreholes/groundwater monitoring wells completed within the third level of underground.

Appropriate precautions were taken, and equipment and sampling tool decontamination was carried out during field work to minimize potential cross-contamination between samples and boreholes. Petroleum-based greases and/or solvents were not used during drilling activities. The boreholes were sampled to a maximum depth of approximately 0.6 m bgs upon auger refusal on bedrock. Six of the boreholes (BH101, BH102, BH104, BH105, BH106 and BH107) were extended into bedrock to a maximum depth of approximately 4.62 m bgs for monitoring well installation.

The borehole and monitoring well locations were established in the field by G2S as shown on Drawing 4 in Appendix A.

4.7 Soil Sampling

During field work, soil samples in the boreholes were collected with split spoon samplers using standard penetration methods. G2S staff continually monitored the field activities to log the recovered soil cores/samples, to record the depth of soil sample collection and total depths of the boreholes. Field observations were recorded on borehole logs and are included in Appendix B.

The soil samples were field logged and placed in laboratory provided glass jars with Teflon™ lined lids and/or methanol vials (pre-filled and weighed with 10 mL purge & trap grade methanol). Sample cores for analysis of volatiles were collected using a 5-gram Eze-Core Soil Sampler. Disposable nitrile gloves (one per sample) were used during sample collection. The jars and vials were then sealed and stored in an insulated cooler with ice for transportation to the laboratory for additional examination. The remaining soil samples were placed in a sealed plastic bag for vapour screening for the presence of organic vapours. Particular attention was applied to visual and olfactory evidence of potential contamination such as odour and staining during field work.

No soil was encountered in boreholes BH104, BH105 and BH107.

The soil sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.8 Field Screening Measurements

Organic vapour readings were recorded using an RKI Eagle 2 gas detector, equipped with a Photo Ionization Detector (PID) sensor, calibrated to isobutylene (IBL) and a catalytic combustible gas sensor, calibrated to hexane (HEX). The PID sensor detects low level volatile organic compounds (VOCs) in parts per million (ppm) and the catalytic combustible gas sensor detects petroleum hydrocarbons (PHCs) in ppm or lower explosive limit (LEL). Accuracy of the gas monitor varies with the type of gas being measured.

The correlation between combustible vapour concentrations and PHCs in soil is highly dependent on the soil type, moisture content, and characteristics of the contaminant of concern. The results of the screening are used as a tool in establishing relative soil vapour concentrations, and aid in the selection of soil samples for chemical analysis among samples and borehole locations.

The organic vapour readings were measured by inserting the instrument's probe into the headspace of the plastic bag and manipulating the soil samples by hand. There are no regulatory criteria for soil vapours; however, organic vapour readings provide a general indication of the relative concentration of organic vapours encountered in the soil samples during drilling.

4.9 Groundwater Monitoring Well Installation

Groundwater monitoring wells were installed in boreholes BH101, BH102, BH103, BH104, BH105, BH106, and BH107, identified as BH/MW101, BH/MW102, BH/MW103, BH/MW105, BH/MW106 and BH/MW107, respectively. The monitoring wells were installed in accordance with the Ontario Water Resources Act – R.R.O. 1990, Regulation 903, as amended to O. Reg. 128/03, and were installed by a licensed well contractor (OGS).

The monitoring wells were installed to depths between 3.14 and 4.62 m bgs. The monitoring wells were constructed using 50-millimetre (mm) diameter, number 10 slot Schedule 40 PVC screen and PVC riser pipe, completed with a 1.5 m long screen, and sealed at the base with PVC end cap and an appropriate length of riser pipe extending to just below the flushmount casings. All pipe connections were threaded flush joints with no lubricants or adhesives used in the construction of the monitoring wells. Details of the completion of the monitoring wells are provided on the borehole logs in Appendix B. The annular space around the well screen in the wells were backfilled with silica sand to an approximate height of 0.3 m above the top of the screen. The sand pack was extended above the screens to allow for compaction of the sand pack and expansion of the overlying well seal. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to approximately 0.15 m below the ground surface. The monitoring wells were completed with flushmount protective steel casings cemented in place.

The Site owner is considered to be the owner of the monitoring wells installed by Davis ("well owner" Section 1.0, Regulation 903). When the monitoring wells are no longer required, it is the owner's responsibility to arrange for abandonment in accordance with Ontario Water Resources Act–R.R.O. 1990, Regulation 903, as amended to O. Reg. 128/03.

4.10 Elevation Surveying

The borehole/monitoring well locations were selected and established in the field by G2S and ground surface elevations were determined by G2S. The following temporary benchmark was used for vertical reference:

BM: Concrete pin at southeast corner of the Site building.
Geodetic Elevation: 71.32 m (metric, assigned)

4.11 Groundwater Sampling

On May 6 to May 8, 2025, G2S attended the Site to record the groundwater levels, develop and purge the groundwater in the monitoring wells, and to collect groundwater samples for chemical testing.

G2S returned to the Site on June 9, 2025, to record the groundwater levels, develop and purge the groundwater in the monitoring wells, and resample MW107 to confirm groundwater results of the previous May 8, 2025, sampling event.

G2S returned to the Site on June 13, 2025, to collect a second round of groundwater re-samples to confirm the results of previous sampling events, and to satisfy the requirements of O.Reg. 153/04, as amended for determining groundwater quality.

An electronic water level meter was used to record the depth of groundwater in the monitoring wells. Dedicated bailers were installed in the monitoring wells for purging and dedicated low-density polyethylene (LDPE) tubing was installed in the monitoring wells for sample collection with a low flow peristaltic pump. Well development included the removal of a minimum of three casing volumes or until the wells were dry, in accordance with fixed volume and well evacuation purging procedures as outlined in ASTM D6452 99 (2012). The electric water level meter was rinsed with a mild detergent, distilled water, and methanol to prevent cross contamination between wells.

The groundwater samples were field logged and placed in clean, laboratory provided bottles and stored in an insulated cooler on ice. Samples were then taken to the G2S laboratory where the

samples were temporarily preserved in a refrigerator to maintain a cool environment or were delivered directly to the laboratory for analysis. Particular attention was applied to visual and olfactory evidence of potential contamination such as odours and/or sheen during field work.

The groundwater sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.12 Analytical Testing

Selected soil and groundwater samples were submitted for chemical analysis under chain of custody protocols to AGAT Laboratories (AGAT), a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory.

The rationale for soil sample selection was based on visual and/or olfactory evidence of potential contamination and assessment of the APECs identified in the 2025 Phase One ESA. Soil samples from the boreholes were analyzed for potential contaminants of concern (COCs), including petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzenes, and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals and other regulated parameters (ORPs), and polychlorinated biphenyls (PCBs). The table below indicates the soil samples selected for laboratory analysis.

Table 3: Soil Samples Submitted for Laboratory Analysis

Sample ID	Depths (m bgs)	Date Sampled	Chemical Analysis						Rationale
			PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	
BH101 S1	0.1 – 0.3	May 5, 2025			✓				Investigate APECs 2 and 3C to confirm soil quality
BH102 S1	0.2 – 0.4	May 7, 2025	✓	✓	✓	✓	✓	✓	Investigate APECs 2, 7A, 7C, and 7D to confirm soil quality
BH103 S1	0.8 – 1.5	May 8, 2025			✓				Investigate APECs 2, 3C and 6 to confirm soil quality
BH103 S2	1.5 – 2.3		✓	✓		✓	✓		Investigate APECs 2, 3C and 6 to confirm soil quality
BH106 S1	0.2 – 0.6	May 6, 2025	✓	✓	✓	✓	✓		Investigate APECs 2 and 3B to confirm soil quality
BH108 S1	Duplicate of BH106 S1		✓	✓	✓	✓	✓		QA/QC
BH109 S1	Duplicate of BH102 S1	May 7, 2025						✓	

Notes: PHCs – Petroleum Hydrocarbons Fractions F1-F4
PAHs – Polycyclic Aromatic Hydrocarbons
M/ORPs – Metals and Other Regulated Parameters*
ORPs include boron-hot water soluble (HWS), free cyanide (CN-), chromium hexavalent (CrVI), mercury (Hg), pH, electrical conductivity (EC), and sodium adsorption ratio (SAR)
PCBs – Polychlorinated Biphenyls
BTEX – Benzene, Toluene, Ethylbenzene, Xylenes
VOCs – Volatile Organic Compounds

The rationale for groundwater sample selection was based on visual and/or olfactory evidence of potential contamination and the identified APECs. Groundwater samples from the monitoring wells were analyzed for potential COCs including PHCs F1 to F4, BTEX, VOCs, PAHs, metals and ORPs, and polychlorinated biphenyls (PCBs). The table below provides details of the groundwater samples collected and the chemical analyses performed.

Table 4: Groundwater Samples Submitted for Laboratory Analysis

Sample ID	Monitoring Well ID	Date Sampled	Chemical Analysis						Rationale
			PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	
BH1		May 8, 2025	✓	✓	✓	✓	✓		Investigate APECs 2 and 3A to confirm groundwater quality
BH4		May 9, 2025	✓	✓	✓				Investigate APECs 2, 3C and 6 to confirm groundwater quality
MW101	BH/MW101	May 8, 2025			✓				Investigate APEC 2, 3C and 6 to confirm groundwater quality
MW102	BH/MW102		✓	✓	✓			✓	Investigate APECs 2, 7A, 7C, and 7D to confirm groundwater quality
MW104	BH/MW104	May 9, 2025			✓				Investigate APECs 2, 3A, 3D and 7B to confirm groundwater quality
		June 13, 2025	✓	✓					
MW105	BH/MW105	May 8, 2025	✓	✓	✓				Investigate APEC 2 to confirm groundwater quality

Sample ID	Monitoring Well ID	Date Sampled	Chemical Analysis						Rationale
			PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	
MW106	BH/MW106	May 8, 2025	✓	✓	✓		✓		Investigate APEC 2 and 3B to confirm groundwater quality
MW107	BH/MW107	May 8, 2025	✓	✓	✓	✓	✓		Investigate APEC 2 to confirm groundwater quality
		June 9, 2025					✓		Re-sample to confirm groundwater quality
		June 13, 2025					✓		
MW109	Duplicate of BH1	May 8, 2025	✓	✓	✓	✓	✓		QA/QC
MW110	Duplicate of BH102							✓	
Trip Blank		May 1, 2025			✓				

Notes: ORPs include free cyanide (CN-), chromium hexavalent (CrVI), mercury (Hg), pH, and chloride (Cl-).

4.13 Residue Management Procedures

Soil cuttings generated during drilling and purged groundwater from the monitoring wells were stored on-Site in sealed steel drums, pending the results of chemical testing. The drums can be removed off Site by a licenced waste disposal subcontractor once no longer required, or during redevelopment of the Site.

5. Review and Evaluation

5.1 Geology

Reference is made to the appended drawings in Appendix A and borehole logs in Appendix B for details of the field work including sampling locations, visual soil classification, inferred stratigraphy, groundwater observations, and monitoring well installation details. Borehole logs for borehole/monitoring wells completed by others in 2023 are also included in Appendix B, and their approximate locations are shown on the appended drawings.

The boundaries indicated on the borehole logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A description of the soil stratigraphy encountered on the Site, in order of depth, is summarized in the sections below.

Pavement Structure

A layer of concrete was encountered in boreholes BH101 to BH107, approximately 115 to 190 mm in thickness.

Fill Materials

Fill materials were encountered beneath the pavement structure in each of the boreholes. Brown sand and gravel with trace silt was encountered within boreholes BH101, BH102, BH106 and BH107, extended to depths between 0.1 to 0.6 m below ground surface (bgs). Clear stone gravel was encountered within boreholes BH104, and BH105 and extended to depths between 0.2 and 0.6 m bgs.

Beneath the exterior borehole BH103, grey crushed limestone and gravel was encountered beneath the pavement structure to a depth of 0.5 m bgs with the fill material transitioned to brown sand and gravel with trace silt to a depth of 2.4 m bgs. A void was present within borehole BH103 from depths 0.5 to 0.8 bgs.

A layer of concrete was encountered within borehole BH103 at a depth of 2.4 to 3.1 m bgs, and within borehole BH105 at a depth from 0.6 to 1.1 m bgs.

Bedrock

Shale bedrock was encountered below the fill material in boreholes BH101, BH102, BH104 to BH107 at depths ranging from approximately 0.1 to 1.1 m bgs.

5.2 Groundwater Elevation and Flow Direction

Groundwater levels were measured in the wells on May 6, May 7, May 8, May 9 and June 9, 2025, respectively. The arbitrary elevation of the ground surface was determined in the field, and groundwater level measurements were taken by measuring to the surface of the groundwater from the ground surface and from the top of the well casing with the necessary corrections made to establish depths below grade if required.

The following table summarizes the monitoring well installation details and groundwater observations.

Table 5: Summary of Groundwater Levels

Monitoring Well I.D.	Ground Surface Elevation	Well Depth from Ground Surface (m)	Screened Interval Elevation (m) and Depth (m bgs)	Groundwater Elevation and Depth (m bgs)				
				May 6, 2025	May 7, 2025	May 8, 2025	May 9, 2025	June 9, 2025
BH/MW101	62.73	4.62	59.61 – 58.11 (3.12 – 4.62)	52.73 (1.00)	-	-	-	61.65 (1.08)
BH/MW102	62.73	3.18	61.05 – 59.55 (1.68 – 3.18)	-	-	61.85 (0.88)	-	61.58 (1.15)
BH/MW103	71.43	3.14	69.79 – 68.28 (1.64 – 3.14)	-	-	-	68.65 (2.78)	(Dry)
BH/MW104	62.73	4.51	59.72 – 58.22 (3.01 – 4.51)	-	-	-	61.56 (1.17)	60.15 (2.58)
BH/MW105	62.73	3.85	60.38 – 58.88 (2.35 – 3.85)	-	-	61.78 (0.95)	-	61.42 (1.31)
BH/MW106	62.73	4.42	59.81 – 58.31 (2.92 – 4.42)	-	61.76 (0.97)	-	-	61.52 (1.21)
BH/MW107	62.73	3.21	61.02 – 59.52 (1.71 – 3.21)	62.12 (0.61)	-	-	-	61.91 (0.82)
BH1***	62.73	4.16	58.87 – 58.57 (3.86 – 4.16)	-	61.47 (1.26)	-	-	**
BH4***	71.4	13.31	58.39 – 58.09 (13.01 – 13.31)	-	67.59 (3.81)	-	-	64.83 (6.57)

Note: Monitoring wells were surveyed for elevation relative to a geodetic benchmark.

Monitoring wells BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107, and BH1 are located within the third level of underground.

mbgs – meters below ground surface

- water level not taken

**inaccessible at time of sampling

***Screen depths reported by others do not match the field measurements, therefore screen depths adjusted accordingly, and current field measurements were utilized.

Based on the measured groundwater elevation data, local groundwater flow at the Site appears to be towards the northwest. The expected direction of groundwater flow in the Study Area is to the north/northeast, following surface topography towards the Ottawa River, which is located approximately 570 m north of the Site, and the Rideau Canal is located approximately 565 m northeast of the Site.

The groundwater levels were found at depths between 0.82 and 6.57 m bgs during the most recent round of measurements on June 9, 2025. Groundwater levels are subject to seasonal fluctuations and variations in precipitation; however, the effects of seasonal variation at the Site are not anticipated to significantly affect the groundwater conditions of the Site from an environmental viewpoint. Due to the depth of groundwater, utilities are not expected to impact the flow of groundwater or affect the migration of contaminants.

5.3 Groundwater Hydraulic Gradient

Groundwater level contours for the monitoring wells on-Site are shown on Drawing 5, which also shows the monitoring well locations and measured water levels. Table 5 above provides a summary of the water levels between May and June 2025.

Based on G2Ss' Site observations and short-term water level measurements, the groundwater table underlying the Site has a horizontal gradient of approximately 0.03 (3%) towards the northwest.

Vertical hydraulic gradient was not determined as part of the investigation since the COCs in groundwater met the applicable MECP Table 3 SCS.

5.4 Soil Texture

The subsurface stratigraphy in the boreholes typically comprised of fill materials. Grain size analysis of representative samples collected during the Phase Two ESA were completed by G2S and indicated 92.1% by mass of particles were 75 µm or larger in mean diameter, thus indicating coarse textured soils as defined in O. Reg. 153/04.

5.5 Soil Field Screening

Measured soil vapour concentrations on the headspace of recovered soil samples were identified between 0 and 10 ppm for the catalytic gas sensor and between 0 and 2 ppm for the photoionization detector at the time of sampling. Complete soil field screening measurements are presented on the borehole logs in Appendix B.

5.6 Analytical Findings – Soil

Tables summarizing the analytical results are included in Appendix C and the laboratory Certificates of Analysis for the soil samples submitted for analysis are included in Appendix D.

The laboratory reported detection limits (RDLs) were below the MECP Table 3 RPI SCS for the parameters analyzed.

5.6.1 Petroleum Hydrocarbons Fractions F1 to F4 (PHC F1 to F4) including Benzene, Toluene, Ethylbenzene, and Xylene (BTEX)

Petroleum hydrocarbons F1 to F4 and BTEX were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 1 in Appendix C.

5.6.2 Volatile Organic Compounds (VOCs)

Volatile organic compounds were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 2 in Appendix C.

5.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 3 in Appendix C.

5.6.4 Metals and Other Regulated Parameters (ORPs)

Metals and ORPs were not detected or were detected as concentrations below the Table 3 RPI SCS in the submitted soil samples, with the exception of the following:

- Sample BH102 S1 – Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC and SAR are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC and SAR impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Table 4 in Appendix A.

5.6.5 Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 5 in Appendix C.

5.7 Analytical Findings – Groundwater

Tables summarizing the analytical results are included in Appendix C and the laboratory Certificates of Analysis for the groundwater samples submitted for analysis are included in Appendix D.

The laboratory RDLs were below the MECP Table 3 SCS for the parameters analyzed.

5.7.1 PHC F1 to F4 and BTEX

Petroleum hydrocarbons F1 to F4 and BTEX were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 6 in Appendix C.

5.7.2 VOCs

Volatile organic compounds were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 7 in Appendix C.

5.7.3 PAHs

Polycyclic aromatic hydrocarbons were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 8 in Appendix C.

5.7.4 Metals and ORPs

Metals and ORPs were not detected or were detected as concentrations below the Table 3 SCS in the submitted groundwater samples, with the exception of the following:

- Sample BH1 (collected on May 8, 2025) – Chloride (4,670,000 µg/L) exceeded the SCS of 2,300,000 µg/L.
- Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) – Chloride (4,560,000 µg/L) exceeded the SCS of 2,300,000 µg/L, and sodium (2,450,000 µg/L) exceeded the SCS of 2,300,000 µg/L.
- Sample BH107 (collected on May 8, 2025) – Cobalt (94.1 µg/L) exceeded the SCS of 66 µg/L, and chloride (2,490,000 µg/L) exceeded the SCS of 2,300,000 µg/L.
 - Additional groundwater samples (MW107) were collected from BH/MW107 during subsequent rounds of sampling conducted on June 9 and June 13, 2025; the tested metal parameters (including cobalt) were not detected in the submitted groundwater samples. As such, the original May 8 sample was judged to not be representative of site conditions.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Table 9 in Appendix C.

5.7.5 *Polychlorinated Biphenyls (PCBs)*

Polychlorinated biphenyls were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 10 in Appendix C.

5.7.6 *LNAPLs and DNAPLs*

No sheen or hydrocarbon odours were observed in the purged groundwater from the monitoring wells.

5.8 Quality Assurance/Quality Control (QA/QC) Results

AGAT Laboratories (AGAT) is accredited by the Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:2017 – “General Requirements for the Competence of Testing and Calibration Laboratories” for the analysis of all parameters for all samples in the scope of work for which SCS have been established under O. Reg. 153/04.

The chemical analyses conducted by AGAT were in accordance with the O. Reg. 153/04 Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act dated March 9, 2004, amended as of July 1, 2011.

Soil and groundwater samples were analysed by using standard reference methods and the testing methods were referenced in the Paracel Certificates of Analysis, as required by the MECP's protocol. Laboratory Quality Assurance/Quality Control (QA/QC) data is included with the Certificates of Analysis, which are appended. Method blank, spiked method blank, laboratory spiked, and duplicate soil samples were analysed by the laboratory with each batch of samples.

The results of chemical analysis of method blank sample indicated that the detected levels were within the acceptable range. The chemical test data for spiked method blank and laboratory spike samples indicated that the recovery ranges were within the statistically determined control limits.

Trip blank and spike samples as well as blind field duplicates were obtained by G2S during the field work and submitted to Paracel as summarized in the following table:

Table 6: Trip Blank, Spike & Duplicate Sample Submissions

Sample I.D.	Date	Matrix	Rationale for Submission	Analysis
BH108 S1	05/06/25	Soil	Field duplicate of BH106 S1	PHCs, BTEX, VOCs, PAHs, M/ORPs
BH102 S1	05/06/25	Soil	Field duplicate of BH109 S1	PCBs
MW109	05/08/25	GW	Field duplicate of BH1	PHCs, BTEX, VOCs, PAHs, M/ORPs
MW120	06/09/25	GW	Field duplicate of MW107	M/ORPs
Trip Blank	05/01/25	GW	Laboratory Quality Assurance	VOCs

Note: GW – Groundwater

As a means of determining the reproducibility or variability related to analytical procedures of a homogenous sample, the relative percentage differences (RPD) between analyzed values for original and duplicate samples were calculated.

For sample reproducibility calculations, maximum RPD values were calculated using the following formula:

$$RPD = \frac{\text{Difference between duplicate results}}{\text{Average of duplicate results}} \times 100\%$$

The maximum RPD values for a metal parameter calculated was above the acceptable statistical variation of 40% in soil sample BH106 S1 and duplicate sample BH108 S1. A summary of the data is presented in the following table. It is noted this soil sample comprised heterogeneous fill.

Table 7: QA/QC Samples Submitted of Laboratory Analysis – Soil

Parameter	Sample ID	Analytical Result (µg/g)	RPD (%)
Silver	BH106 S1	16.5	41.75
	BH108 S1	10.8	

The maximum RPD for some metal parameters in the duplicate groundwater samples was outside of the acceptable statistical variation of 30 to 40% in samples BH1 and MW109, and MW107 and duplicate MW120. The data is summarized in the following table:

Table 8: QA/QC Samples Submitted of Laboratory Analysis – Groundwater

Parameter	Sample ID	Analytical Result (ug/g)	RPD (%)
Molybdenum	BH1	0.91	129.5
	MW109	4.26	
Zinc	MW107	9.8	51.28
	MW120	5.8	

Per O. Reg. 153/04, as amended protocol, the RPD acceptance criteria only applies if the average value of the sample and duplicate is greater or equal to 5 times reported detection limit (RDL).

- The RDL of zinc 0.5 µg/g and the molybdenum value for sample MW107 and MW120 (Duplicate of MW107) are 9.8 µg/L and 5.8 µg/L, respectively. The average value of the two groundwater samples is 7.8 µg/L, which is less than 5 times the RDL (25 µg/L).

The RPD acceptance criteria does not apply in the above instances. The rationale behind this is that as the measured result approaches the MDL, the uncertainty associated with the value increases dramatically, thus the duplicate acceptance limits (RPD acceptance criteria) apply only where the average of the two duplicates is greater than 5 times the RDL.

- The RDL of silver is 0.5 µg/g and the silver value for sample BH106 S1 and BH108 S1 (Duplicate of BH106 S1) are 16.5 µg/g and 10.8 µg/g, respectively. The average value of the two soil samples is 13.65 µg/g, which is greater than 5 times the RDL (2.5 µg/g).
- The RDL of molybdenum is 0.5 µg/g and the molybdenum value for sample BH1 and MW109 (Duplicate of BH1) are 0.91 µg/g and 4.26 µg/g, respectively. The average value of the two groundwater samples is 2.585 µg/L, which is greater than 5 times the RDL (2.5 µg/L).

Regarding silver and molybdenum the MECP does allow for larger limits with respect to field duplicates as the MECP recognizes the increased variability in sampling and subsequent elevated uncertainty.

The RPDs outlined by the MECP (as generally less than or equal to 40%), refer to laboratory duplicates from homogenous samples. Field samples are heterogeneous and thus, subject to both laboratory and sampling variability. As such, RPD control limits are generally larger than those defined in the Environmental Protection Act (EPA) and/or the MECP guidelines which outline sample duplicates of homogeneous samples and do not specify specific criteria for field duplicates. MECP documentation does however allow for larger limits with respect to field duplicates as the MECP recognizes the increased variability in sampling and subsequent elevated uncertainty.

The results of laboratory duplicate sampling performed by AGAT as part of their in-house QA/QC yielded acceptable data. The overall quality of the field data from the investigation with respect

to the data quality objectives demonstrated that the overall objectives of the investigation and the assessment were met.

Trip Blank – VOCs were not detected in the trip blank.

Trip Spike – Percent recovery of the trip spike parameters ranged from 31% to 120%, within acceptable recovery levels.

With respect to subsection 47 (3) of the regulation, we confirm that:

- A. All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3)
- B. A certificate of analysis or analytical report has been received for each sample submitted for analysis, and
- C. All certificates of analysis or analytical reports received have been included in full in an appendix to the phase two environmental site assessment report.

5.9 Summary of Contamination

Tables summarizing the analytical results are included in Appendix C – Tables 1 to 5 for soil and Tables 6 to 10 for groundwater.

The soil quality on-Site met the Table 3 SCS in the soil tested, with the exception of EC present within the fill material on-Site. The elevated EC is attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

The groundwater quality on-Site met the Table 3 SCS in the groundwater tested, with the exception of cobalt within BH/MW107, and sodium and chloride within BH1. Additional groundwater samples were collected from BH/MW107 during subsequent rounds of sampling conducted on June 9 and June 13, 2025; the tested metal parameters (including cobalt) were detected below the Table 3 SCS in the submitted groundwater samples. In this regard, the initial results are not believed to be representative of the groundwater quality.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Drawings 6A to 6F and Drawings 8A and 9A in Appendix A for plan views and cross-sections of the soil analytical data. The groundwater quality on-Site met the Table 3 SCS in the monitoring wells tested. Refer to Drawings 7A to 7F and Drawings 8B in Appendix A for plan views and cross-sections of the groundwater analytical data.

6. Conclusions and Recommendations

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04 (as amended) requirements, to investigate potential contamination within Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs) for the Site.

G2S understands the Client requires the Phase Two ESA for due diligence purposes related to the proposed acquisition of the Site and redevelopment for residential purposes. Since there is a change in property use planned (commercial to residential), a Record of Site Condition (RSC) is required under O. Reg. 153/04, as amended, prior to re-development.

The field work for this investigation was completed from May to June 2025 and included the advancement of seven boreholes, all of which were installed as groundwater monitoring wells. Refer to Drawing 4 for the borehole and monitoring well locations.

The findings of this assignment are summarized as follows:

1. In general, the subsurface conditions of the building exterior included a pavement structure comprising approximately 140 millimeters of concrete, underlain by crushed gravel and limestone, underlain by sand and gravel fill materials (approximately 0.1 to 2.4 m below ground surface (bgs)). The building interior comprised 115 to 190 mm of concrete underlain by sand and gravel and clear stone fill materials to an approximate depth of 0.1 to 0.6 m bgs. Shale bedrock was encountered at depths ranging from approximately 0.1 to 0.6 m bgs within the building exterior. Refer to the borehole logs in Appendix B.
2. Groundwater was found in the monitoring wells during the most recent round of sampling on June 9, 2025, between depths of 0.82 and 6.57 m bgs.
3. Soil samples were submitted for laboratory analysis of petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and other regulated parameters (ORPs), polychlorinated biphenyls (PCBs). The concentrations of the tested parameters in the submitted samples were below the Ministry of Environment, Conservation, and Parks (MECP) Table 3 Site Condition Standards (SCS) for Residential/Parkland/Institutional (RPI) Property Use, with the exception of the following:
 - Sample BH102 S1 – Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impact would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

4. Groundwater samples from the monitoring wells were submitted for laboratory analysis of PHCs F1-F4 including BTEX, VOCs, PAHs, metals and ORPs, and PCBs. The concentrations of the tested parameters in the submitted samples were below the MECP Table 3 SCS, with the exception of the following:

- Sample BH1 (collected on May 8, 2025) – Chloride (4,670,000 µg/L) exceeded the SCS of 2,300,000 µg/L.
- Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) – Chloride (4,560,000 µg/L) exceeded the SCS of 2,300,000 µg/L, and sodium (2,450,000 µg/L) exceeded the SCS of 2,300,000 µg/L.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered “contamination”. Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Based on the results of the Phase Two ESA, the Site soil meets the applicable MECP Table 3 RPI SCS. The groundwater quality on-Site meets the applicable SCS in the samples tested.

It is important to note that for the purposes of the full depth site cleanup, as compared with the SCS, given the heterogeneous nature of the fill on Site, the soil contamination is presumed to extend from ‘clean’ borehole to ‘clean’ borehole or to the property line.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use.

7. Qualifications of the Assessors

This Phase Two ESA was conducted by Hailey Perras, B.Sc. Ms. Perras is responsible for the successful completion of field work and reporting. Ms. Perras has completed numerous projects on behalf of private and public sector clients for industrial, commercial, and residential sites.

This Phase Two ESA was reviewed by Ms. Stephanie Lewis, B.A. Ms. Lewis has been trained to conduct Phase One and Two ESAs in accordance with the CSA and O. Reg 153/04, as amended. She is a senior project manager with over 10 years of professional experience specializing in environmental investigations and project management. Her main areas of expertise include Phase One and Phase Two ESAs, project management, site cleanup/remediation, UST and AST removals, and site remediation. She has completed numerous projects on behalf of private and public-sector clients for industrial, commercial, and residential sites.

This Phase Two ESA was reviewed by Mr. Steve Campbell, P. Geo. Mr. Campbell has over 20 years of environmental consulting experience, including Phase One and Two ESAs, hazardous materials management, contaminant hydrogeology, air quality, environmental monitoring and remediation of contaminated sites. Mr. Campbell is responsible for the overall management of projects, QA/QC, and health and safety, as well as acting as a technical lead on projects. Mr. Campbell is a Qualified Person as defined in Ontario Regulation 153/04 for signing off on Phase One and Two ESAs, remediation reports and Records of Site Condition (RSCs). Mr. Campbell has managed numerous asbestos, designated substances and mould assessments, as well as remediation programs.

8. References and Supporting Documentation

- a) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" Ministry of the Environment of Ontario, December 1996.
- b) "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011.
- c) The Ontario Water Resources Act – R.R.O. 1990, Regulation 903 – Amended to O. Reg. 128/03, August 2003.0.8
- d) "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act", March 2004.
- e) Ontario Regulation 153/04 (made under the Environmental Protection Act), May 2004, as amended.
- f) "Z769-00, Phase II Environmental Site Assessment," Canadian Standard Association, March 2000.
- g) Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- h) Singer SN, Cheng CK, Scafe MG. (2003). *The Hydrogeology of Southern Ontario, Second Edition*, Report from the Ontario Ministry of the Environment.
- i) "Phase I Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," prepared by Le Groupe Gesfor Poirier, Pinchin for Groupe Mach Inc., dated November 12, 2021.
- j) "Geotechnical Subsoil Investigation Report, 110 O'Connor Street, Ottawa, Ontario," prepared by Solroc Inc. for Groupe Mach Inc., dated August 23, 2023.
- k) "Phase One Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," prepared by G2S Consulting Inc. for Groupe Mach Inc., dated April 23, 2025 (revised October 2025).

9. Limitations

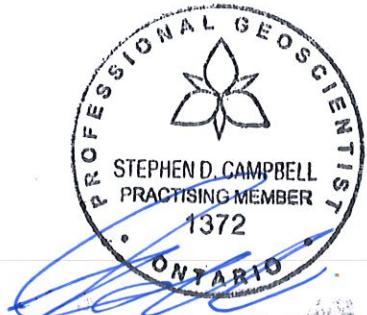
This report has been prepared for the sole benefit of Groupe Mach Inc. (the Client) and is intended to provide limited information on the subsurface environmental conditions at the Site. The report may not be used by any other person or entity without the expressed written consent of the Client and G2S Consulting Inc. (G2S). Any use which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. G2S accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

If Site conditions or applicable standards change or if any additional information becomes available at a future date, changes to the findings, conclusions and recommendations in this report may be necessary.

The conclusions and recommendations detailed in this report are based upon the information available and Site conditions at the time of this investigation as described herein. No investigative method eliminates the possibility of obtaining imprecise or incomplete information. Professional judgement was exercised in gathering and analyzing the information obtained and in the formulation of our conclusions and recommendations. Conclusions presented in this report should not be construed as legal advice.

The nature of the sampling work makes it possible that contrary conditions may be identified in locations which were not sampled. However, it does suggest that the conditions will be localized and not extensive. The soil boundaries indicated on the borehole logs are inferred from sampling and observations made during drilling and therefore should not be interpreted as exact planes of geological change.

10. Closing Remarks

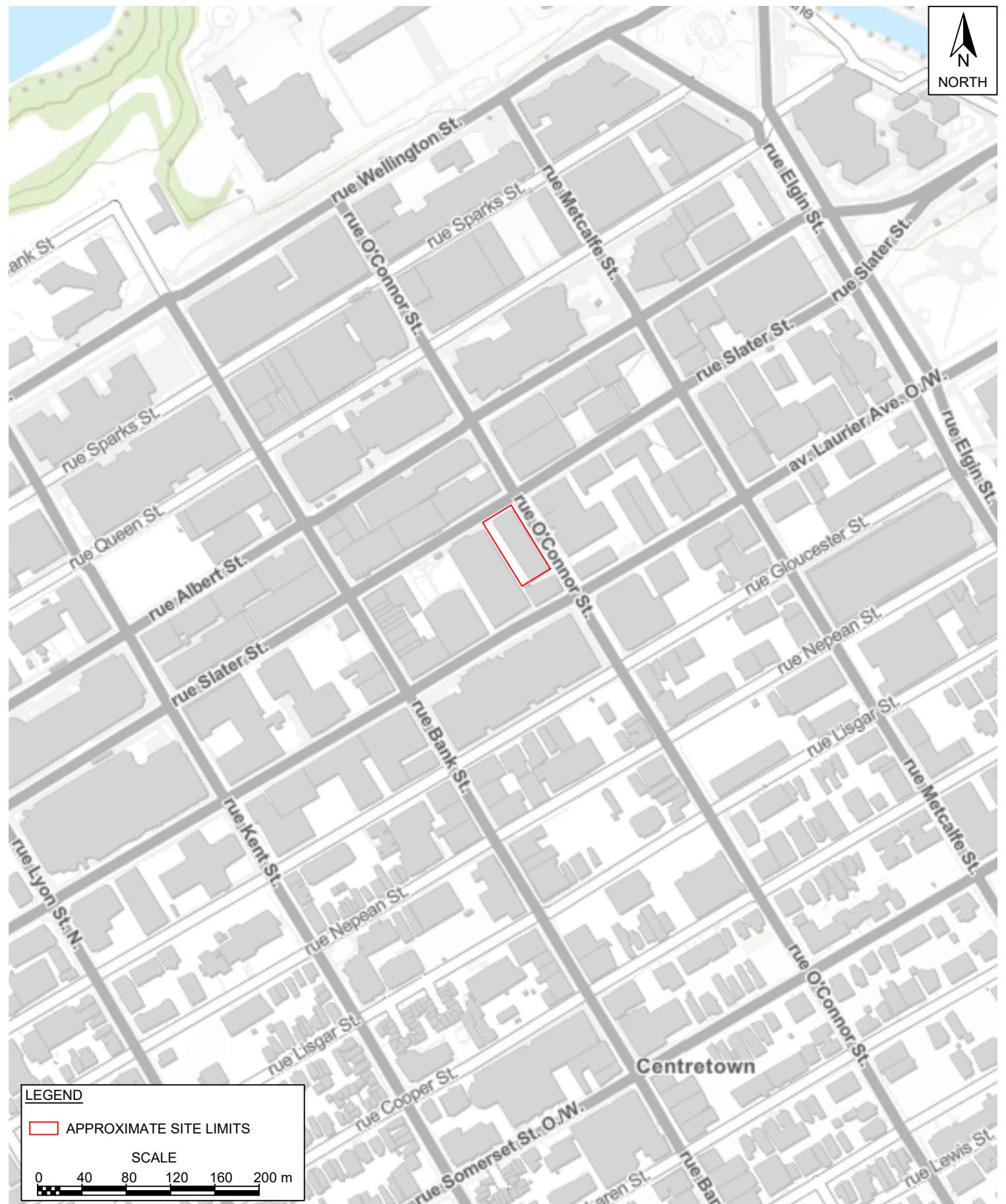

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

G2S Consulting Inc.

Hailey Perras

Hailey Perras, B.Sc.
Environmental Technician



Steve Campbell, P. Geo.
Senior Geoscientist

Stephanie Lewis

Stephanie Lewis, B.A. (Env)
Senior Project Manager

Appendix A: Drawings

Scale: AS SHOWN
 Project No.: G2S25042B
 Date: OCTOBER 2025
 Drawn by: HP
 File name: G2S25042.dwg

OTTAWA

SITE LOCATION PLAN
110 O'CONNOR STREET

ONTARIO

Drawing No.
1

POTENTIALLY CONTAMINATING ACTIVITIES AS DEFINED IN O. REG.

153/04

#2

#6 BATTERY MANUFACTURING, RECYCLING AND BULK STORAGE

#10 COMMERCIAL AUTOBODY SHOP

#17 DYE MANUFACTURING, PROCESSING AND BULK STORAGE

#18 ELECTRICITY GENERATION, TRANSFORMATION AND POWER STATIONS

#28 GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS

#30 IMPORTATION OF FILL MATERIAL OF UNKNOWN QUALITY

#31 INK MANUFACTURING, PROCESSING AND BULK STORAGE

#32 IRON AND STEEL MANUFACTURING AND PROCESSING

#33 METAL TREATMENT, COATING, PLATING AND FINISHING

#34 METAL FABRICATION

#37 OPERATION OF DRY CLEANING EQUIPMENT (WHERE CHEMICALS ARE USED)

#39 PAINTS MANUFACTURING, PROCESSING AND BULK STORAGE

#43 PLASTICS (INCLUDING FIBREGLASS) MANUFACTURING AND PROCESSING

#45 PULP, PAPER AND PAPERBOARD MANUFACTURING AND PROCESSING

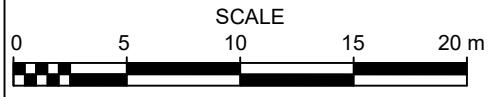
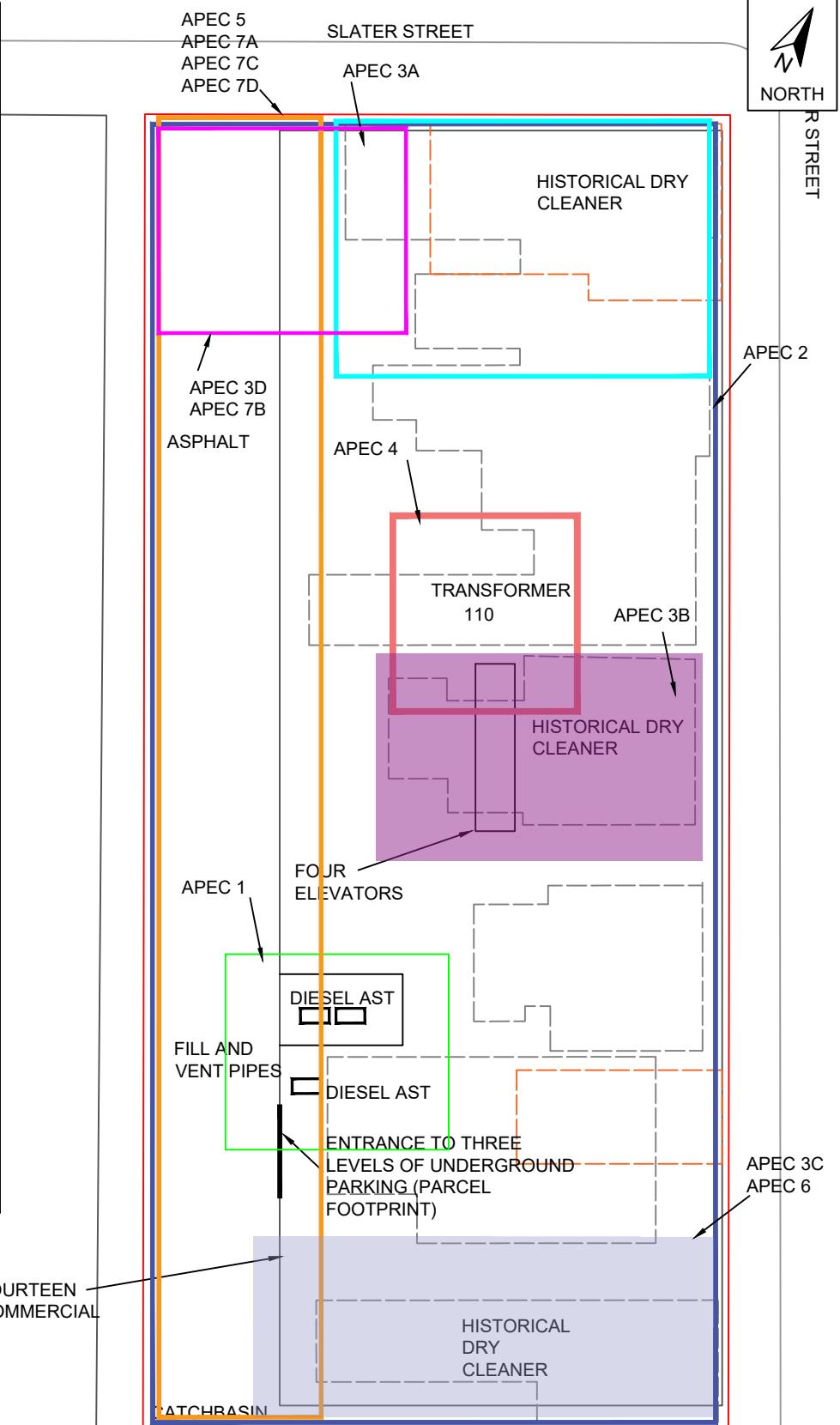
#47 RUBBER MANUFACTURING AND PROCESSING

#55 TRANSFORMER MANUFACTURING, PROCESSING AND USE

PCA OTHER 1 KNOWN CONTAMINATION

PCA OTHER 2 USE OF DE-ICING SALT

SCALE
0 20 40 60 80 100 m

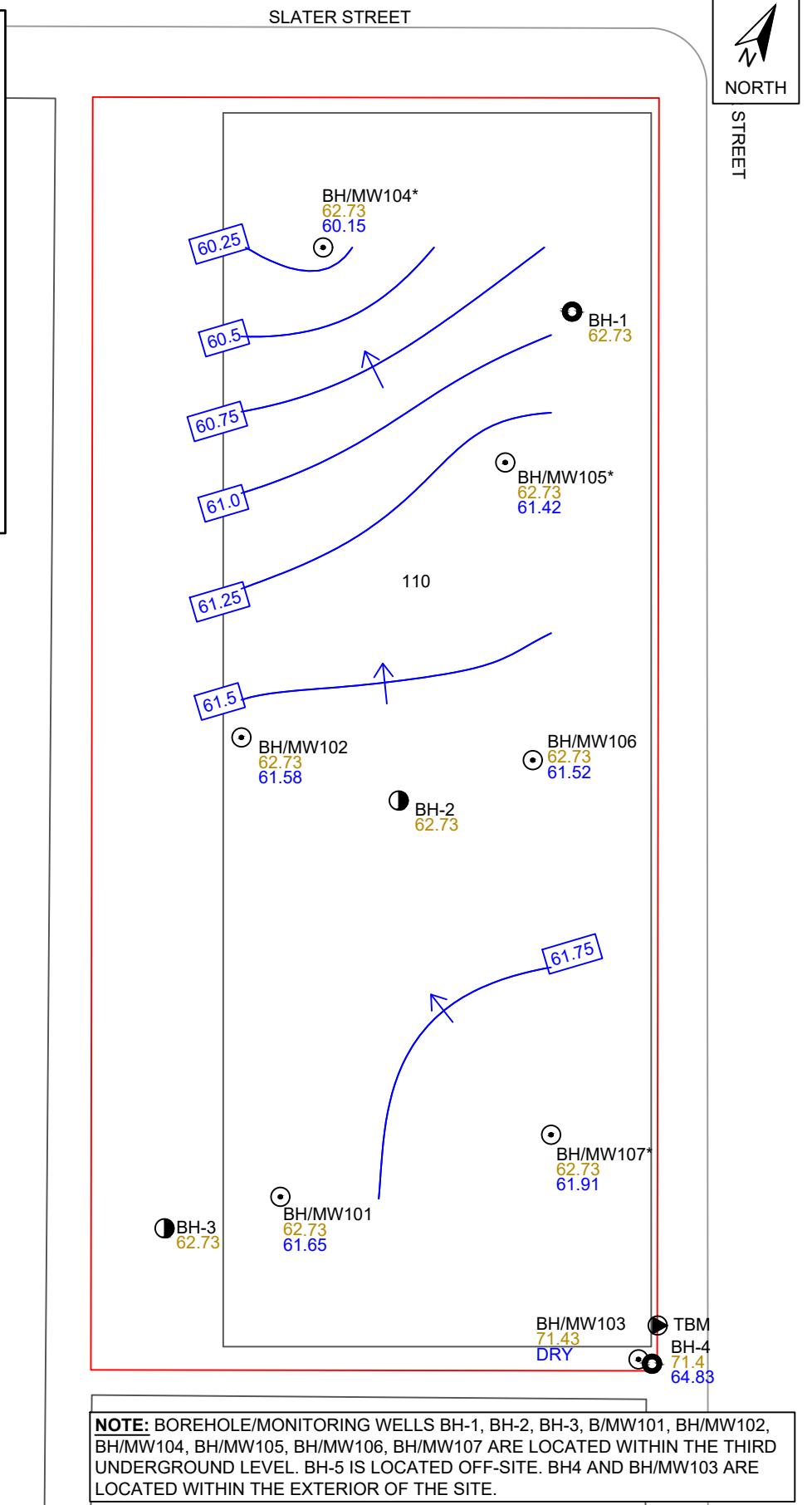
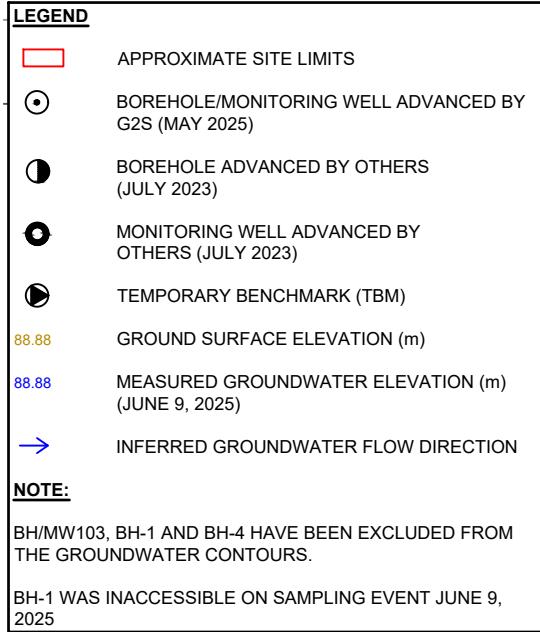


Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25044.dwg

POTENTIALLY CONTAMINATING ACTIVITIES
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
2

LEGEND	
	APPROXIMATE SITE BOUNDARY
	1878 - 1955 HISTORICAL BUILDING FOOTPRINT
	1963 HISTORICAL BUILDING FOOTPRINT
	ABOVEGROUND STORAGE TANK (AST)
AREAS OF POTENTIALLY ENVIRONMENTAL CONCERN	
	APEC 1 WEST CENTRAL PORTION OF SITE - CURRENT AND HISTORICAL PRESENCE OF THREE DIESEL ABOVE GROUND STORAGE TANKS (ASTs) LOCATED WITHIN THE UNDERGROUNDD PARKING LEVELS.
	APEC 2 ENTIRE SITE - A GEOTECHNICAL REPORT BY OTHERS IDENTIFIED FILL MATERIAL PRESENT BENEATH THE SITE TO A DEPTH OF 5.33 m BELOW GROUND SURFACE
	APEC 3A NORTHEASTERN PORTION OF SITE - HISTORICAL PRESENCE OF A DRY CLEANER FROM THE YEARS 1912 - 1922.
	APEC 3B EAST CENTRAL PORTION OF SITE - HISTORICAL PRESENCE OF A DRY CLEANER IN 1912.
	APEC 3C SOUTHEASTERN PORTION OF SITE - HISTORICAL PRESENCE OF A DRY CLEANER FROM THE YEARS 1948 - 1955.
	APEC 3D NORTH WESTERN PORTION OF SITE - HISTORICAL USE OF 174 SLATER STREET AS A DRY CLEANER FROM THE YEARS 1912 - 1922.
	APEC 4 CENTRAL PORTION OF SITE - CURRENT AND HISTORICAL PRESENCE OF A TRANSFORMER VAULT WITHIN THE CENTRAL PORTION OF THE SITE.
	APEC 5 WESTERN PORTION OF SITE - HISTORICAL USE OF DE-ICING SALT LOCATED ON PAVED PORTIONS OF THE SITE.
	APEC 6 SOUTHERN PORTION OF SITE - HISTORICAL PRESENCE OF A DRY CLEANER LOCATED AT 124 O'CONNOR STREET (SOUTH ADJACENT) FROM THE YEARS 1922 - 1941.
	APEC 7A WESTERN PORTION OF SITE - HISTORICAL USE OF 170 SLATER STREET (WEST ADJACENT) AS AN AUTOBODY SHOP, FROM THE YEARS 1948 - 1966.
	APEC 7B: NORTHWEST PORTION OF SITE - HISTORICAL PRESENCE TWO UNDERGROUNDD STORAGE TANKS (USTs) IN THE YEARS 1940 - 1960 LOCATED ALONG THE NORTHEASTERN PORTION OF 170 SLATER STREET (WEST ADJACENT).
	APEC 7C: WESTERN PORTION OF SITE - HISTORICAL USE OF 170 SLATER STREET (WEST ADJACENT) FOR METAL PLATING IN THE 1930S.
	APEC 7D: WESTERN PORTION OF SITE - HISTORICAL USE OF 170 SLATER STREET (WEST ADJACENT) AS A METAL FABRICATOR IN THE 1970S.

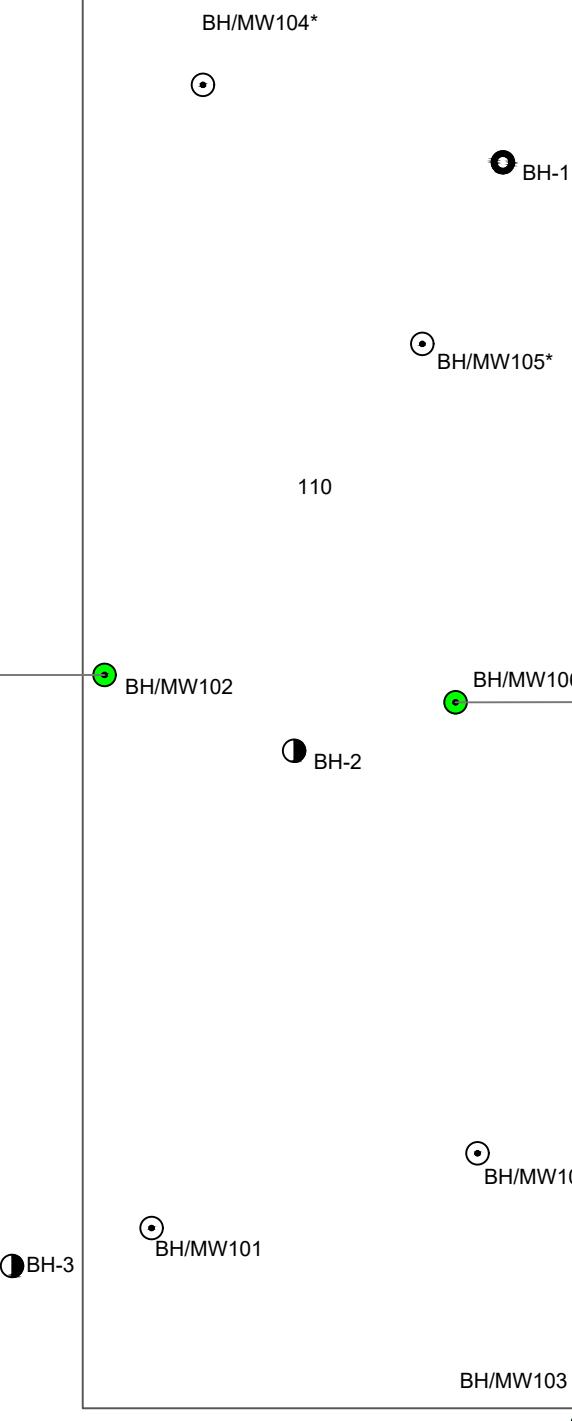
NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE LOCATED WITHIN THE EXTERIOR OF THE SITE.



Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

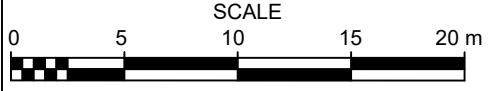
AREAS OF POTENTIAL ENVIRONMENTAL CONCERN
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No. 3

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
SCS	SITE CONDITION STANDARDS
PHC	PETROLEUM HYDROCARBONS
BTEX	BENZENE, TOLUENE, ETHYLBENZENE, XYLEMES


SLATER STREET

O'CONNOR STREET


BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	PHCs & BTEX
0.2 - 0.4	MEETS SCS

BH106	DATE SAMPLED: 2025/05/06
DEPTH (mbgs)	PHCs & BTEX
0.2 - 0.6	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

SOIL ANALYTICAL RESULTS - PHC/BTEX
110 O'CONNOR STREET

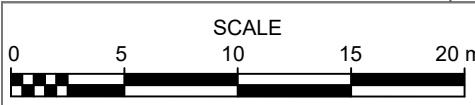
ONTARIO

Drawing No.
6A

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
SCS	SITE CONDITION STANDARDS
VOC	VOLATILE ORGANIC COMPOUNDS

SLATER STREET

O'CONNOR STREET



BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	VOCs
0.2 - 0.4	MEETS SCS

BH106	DATE SAMPLED: 2025/05/06
DEPTH (mbgs)	VOCs
0.2 - 0.6	MEETS SCS
0.2 - 0.6 (DUP)	MEETS SCS

BH101	DATE SAMPLED: 2025/05/05
DEPTH (mbgs)	VOCs
0.1 - 0.3	MEETS SCS

BH103	DATE SAMPLED: 2025/05/08
DEPTH (mbgs)	VOCs
0.8 - 1.5	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

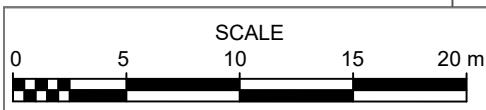
SOIL ANALYTICAL RESULTS - VOCs
110 O'CONNOR STREET

ONTARIO

Drawing No.
6B

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
SCS	SITE CONDITION STANDARDS
PAH	POLYCYCLIC AROMATIC HYDROCARBONS

SLATER STREET


O'CONNOR STREET

BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	PAHs
0.2 - 0.4	MEETS SCS

BH106	DATE SAMPLED: 2025/05/06
DEPTH (mbgs)	PAHs
0.2 - 0.6	MEETS SCS
0.2 - 0.6 (DUP)	MEETS SCS

BH103	DATE SAMPLED: 2025/05/08
DEPTH (mbgs)	PAHs
1.5 - 2.3	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

SOIL ANALYTICAL RESULTS - PAHs
110 O'CONNOR STREET

ONTARIO

Drawing No.
6C

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
SCS	SITE CONDITION STANDARDS
ORPs	OTHER REGULATORY PARAMETERS

SLATER STREET

O'CONNOR STREET

BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	METALS & ORPs
0.2 - 0.4	MEETS SCS

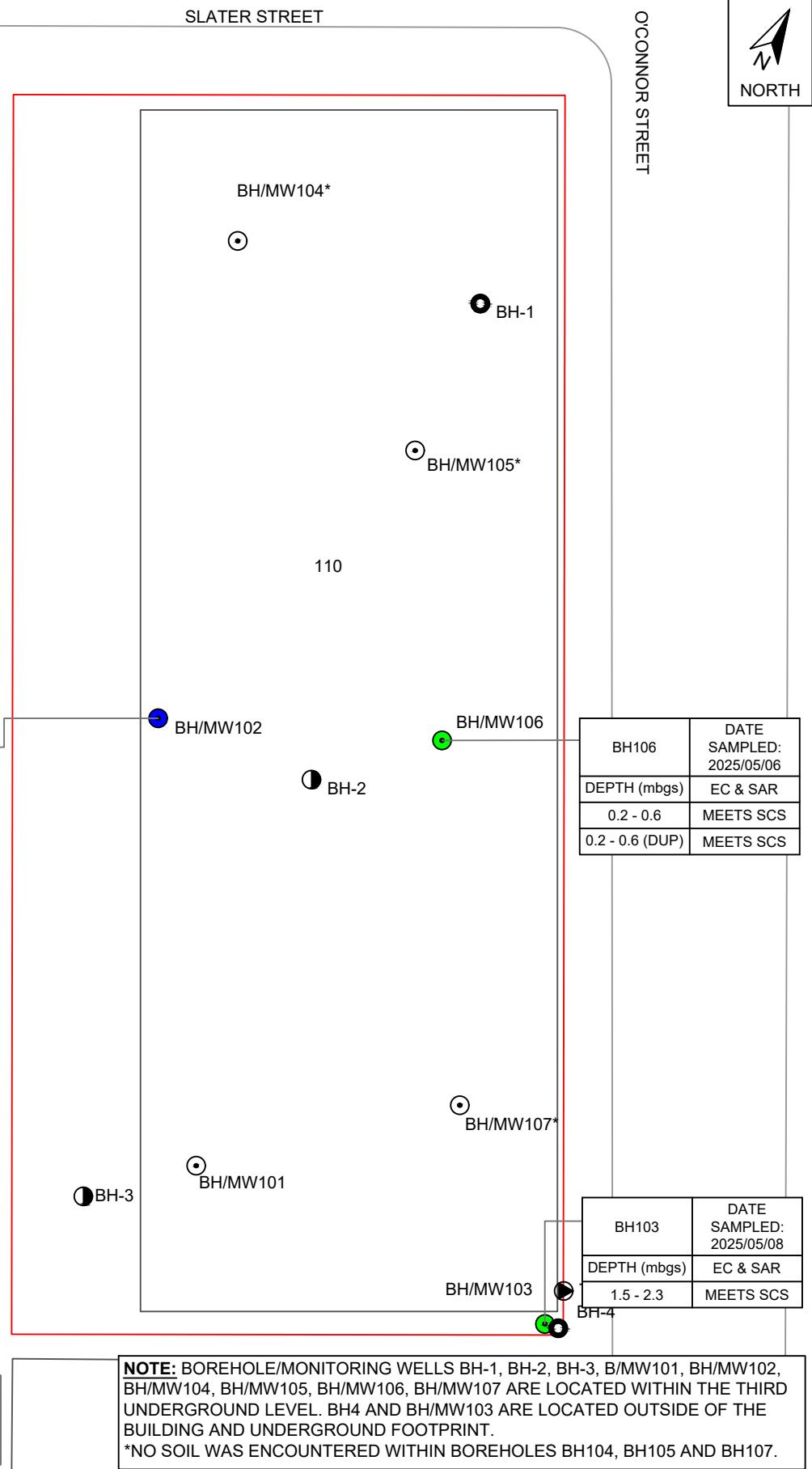
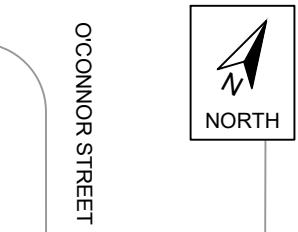
BH106	DATE SAMPLED: 2025/05/06
DEPTH (mbgs)	METALS & ORPs
0.2 - 0.6	MEETS SCS
0.2 - 0.6 (DUP)	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

SOIL ANALYTICAL RESULTS - METALS & ORPs
110 O'CONNOR STREET
OTTAWA

ONTARIO

Drawing No.
6D

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
	SAMPLE EXEMPT *SEE NOTE
SCS	SITE CONDITION STANDARDS
EC	ELECTRICAL CONDUCTIVITY
SAR	SODIUM ADSORPTION RATIO

*NOTE:
UNDER ONTARIO REGULATION (O.REG.)
153/04, AS AMENDED, WHERE A SITE
CONDITION STANDARD (SCS) IS EXCEEDED
SOLELY BECAUSE A SUBSTANCE HAS BEEN
APPLIED TO THE SURFACE FOR THE SAFETY
OF VEHICULAR OR PEDESTRIAN TRAFFIC
UNDER CONDITIONS OF SNOW OR ICE OR
BOTH, THE APPLICABLE SCS IS DEEMED NOT
TO BE EXCEEDED. REFERENCE IS MADE TO
O.REG 153/04, AS AMENDED, s 49.1 FOR A
FULL OUTLINE OF THE REGULATION
REGARDING SOIL IMPACTED BY DE-ICING
SALT.

BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	EC
0.2 - 0.4	<u>0.727</u>
	SAR
	3.1

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

SOIL ANALYTICAL RESULTS - EC & SAR
110 O'CONNOR STREET

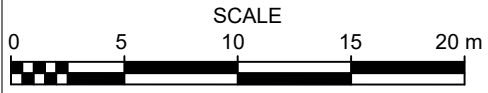
ONTARIO

 Drawing No. 6E

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
SCS	SITE CONDITION STANDARDS
PCBs	POLYCHLORINATED BIPHENYLS

SLATER STREET

O'CONNOR STREET



BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	PCBs
0.2 - 0.4	MEETS SCS
0.2 - 0.4 (DUP)	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

SOIL ANALYTICAL RESULTS - PCBs
110 O'CONNOR STREET

ONTARIO

Drawing No.
6F

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
PHC	PETROLEUM HYDROCARBONS
BTEX	BENZENE, TOLUENE, ETHYLBENZENE, XYLEMES

SLATER STREET

O'CONNOR STREET

MW104	Screen Depth 3.0 - 4.5 mbgs
DATE	PHCs & BTEX
2025/06/13	MEETS SCS

MW102	Screen Depth 1.7 - 3.2 mbgs
DATE	PHCs & BTEX
2025/05/08	MEETS SCS

110

BH/MW104*
62.73
60.15

BH-1
62.73

BH/MW105*
62.73
61.42

BH1	Screen Depth 3.8 - 4.1 mbgs
DATE	PHCs & BTEX
2025/05/08	MEETS SCS
2025/05/08 (DUP)	MEETS SCS

MW105	Screen Depth 2.3 - 3.8 mbgs
DATE	PHCs & BTEX
2025/05/08	MEETS SCS

BH/MW102
62.73
61.58

BH/MW106
62.73
61.52

MW106	Screen Depth 2.9 - 4.4 mbgs
DATE	PHCs & BTEX
2025/05/08	MEETS SCS

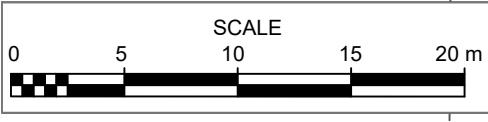
BH-2
62.73

BH/MW101
62.73
61.65

BH/MW107*
62.73
61.91

MW107	Screen Depth 1.7 - 3.2 mbgs
DATE	PHCs & BTEX
2025/05/08	MEETS SCS

BH/MW103
71.43
DRY


BH4	Screen Depth 13.0 - 13.3 mbgs
DATE	PHCs & BTEX
2025/05/09	MEETS SCS

BH4	Screen Depth 13.0 - 13.3 mbgs
DATE	PHCs & BTEX
2025/05/09	MEETS SCS

TBM	Screen Depth 13.0 - 13.3 mbgs
DATE	PHCs & BTEX
2025/05/09	MEETS SCS

BH-4	Screen Depth 13.0 - 13.3 mbgs
DATE	PHCs & BTEX
2025/05/09	MEETS SCS

BH-4	Screen Depth 13.0 - 13.3 mbgs
DATE	PHCs & BTEX
2025/05/09	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

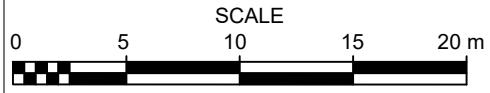
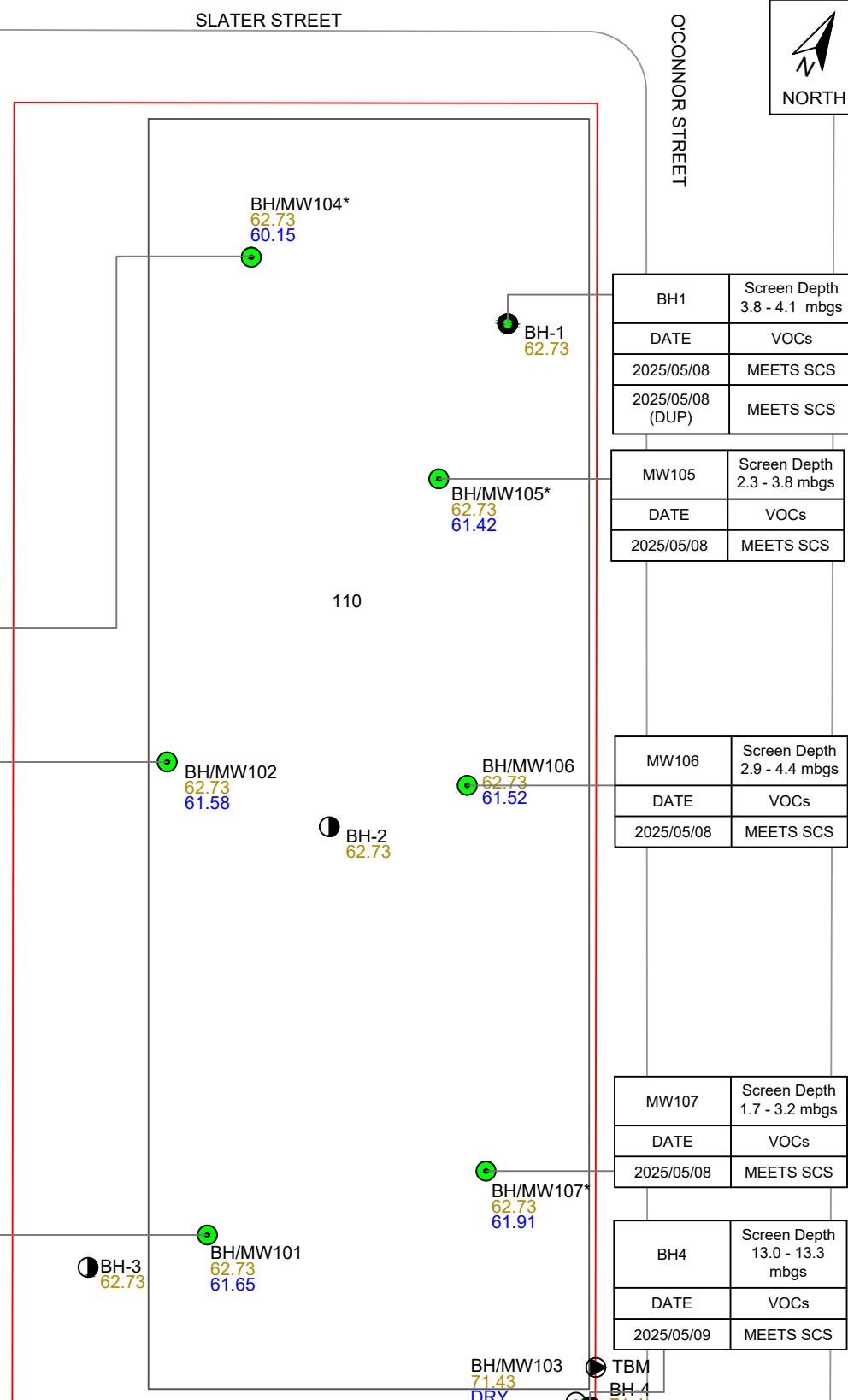
Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

GROUNDWATER ANALYTICAL RESULTS -
PHC/BTEX
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
7A

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
VOCs	VOLATILE ORGANIC COMPOUNDS

SLATER STREET



O'CONNOR STREET

MW104	Screen Depth 3.0 - 4.5 mbgs
DATE	VOCs
2025/05/09	MEETS SCS

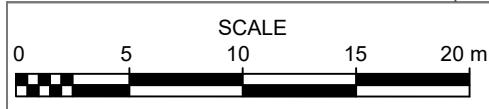
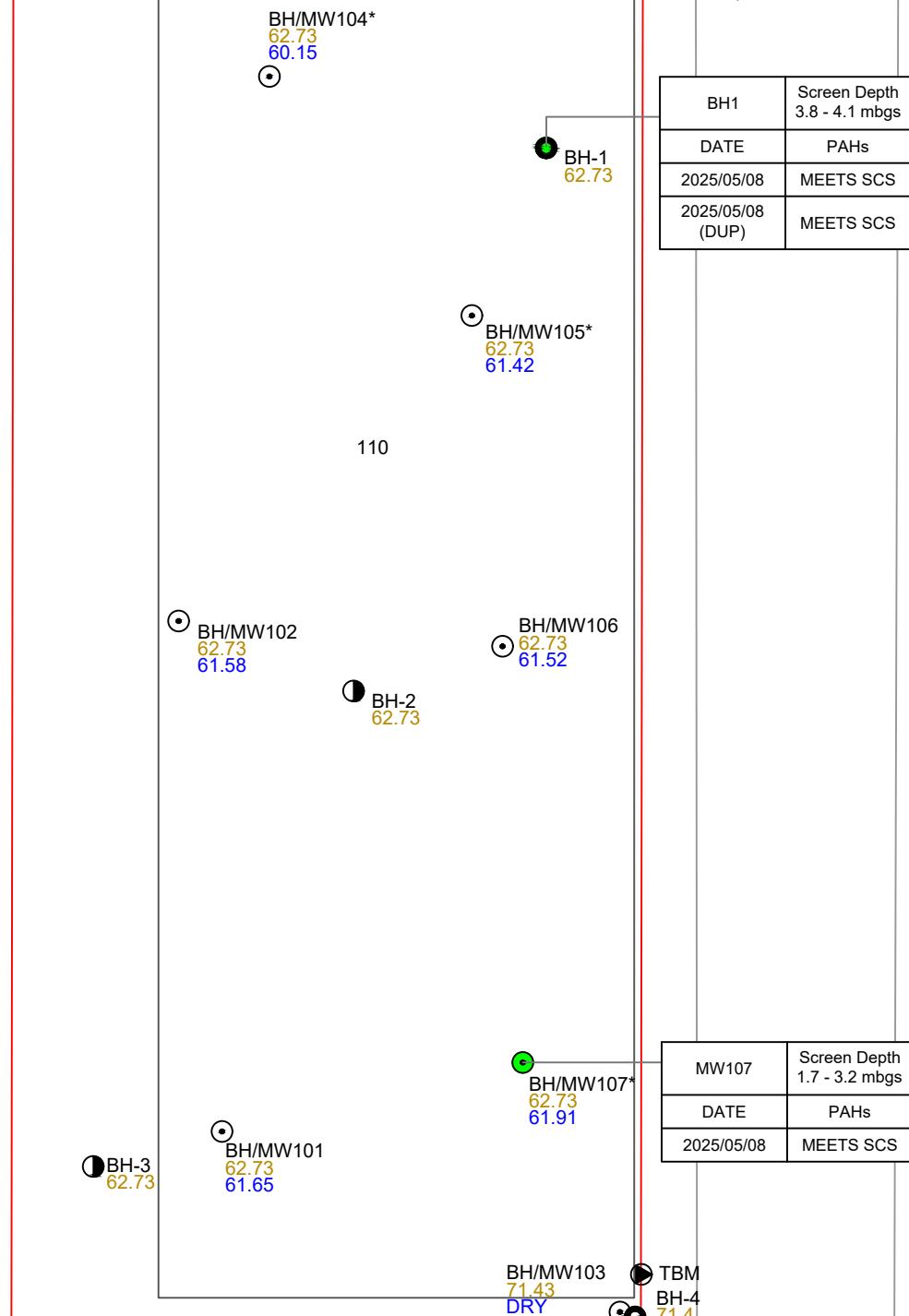
MW102	Screen Depth 1.7 - 3.2 mbgs
DATE	VOCs
2025/05/08	MEETS SCS

MW101	Screen Depth 3.1 - 4.6 mbgs
DATE	VOCs
2025/05/08	MEETS SCS

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

GROUNDWATER ANALYTICAL RESULTS - VOCs
110 O'CONNOR STREET
OTTAWA
ONTARIO

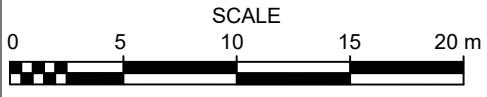
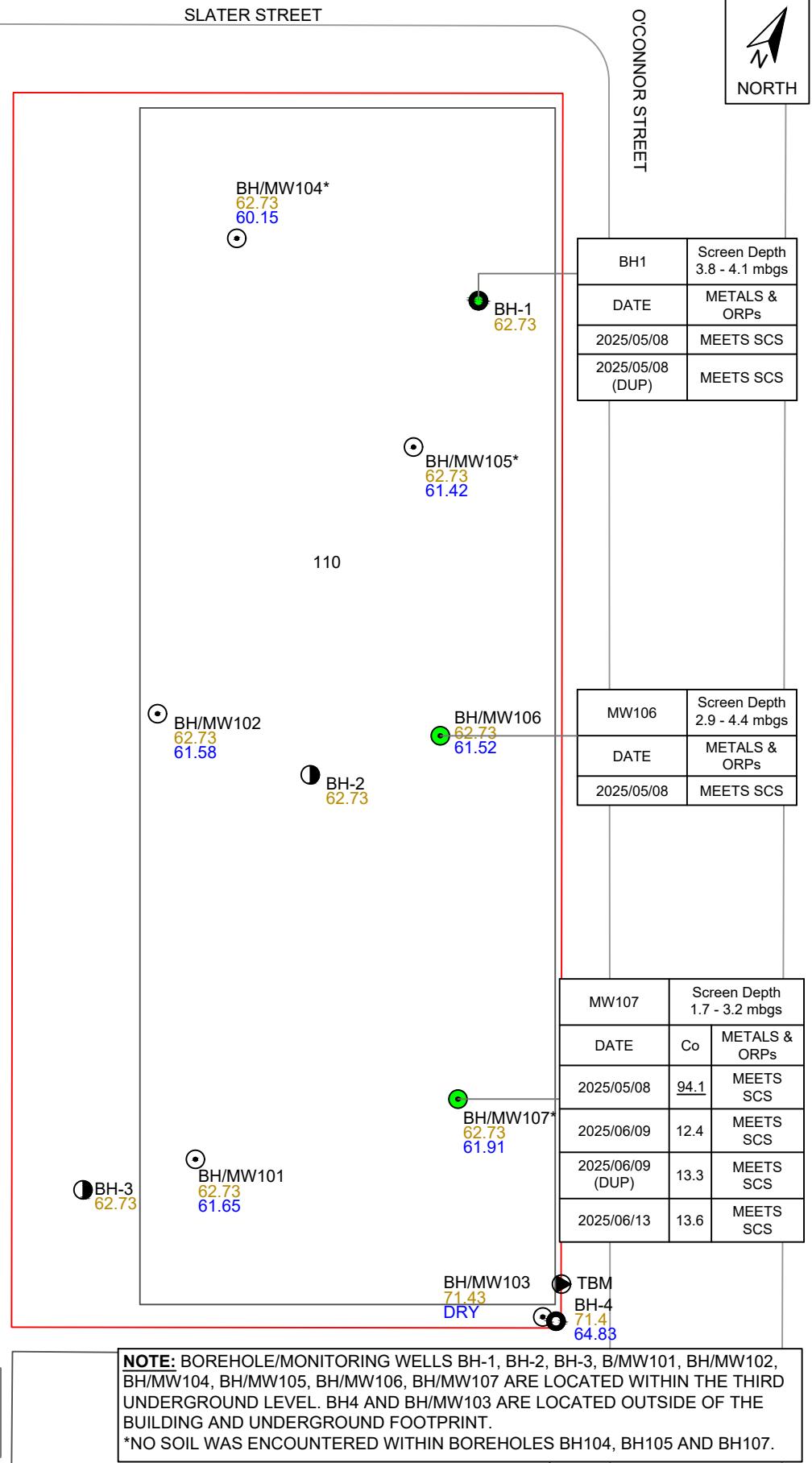
Drawing No.
7B

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
PAHs	POLYCYCLIC AROMATIC HYDROCARBONS

SLATER STREET

O'CONNOR STREET

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg



GROUNDWATER ANALYTICAL RESULTS - PAHs
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
7C

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
ORPs	OTHER REGULATORY PARAMETERS

PARAMETER	TABLE 3 SCS	UNITS
Co	COBALT	66 $\mu\text{g/L}$

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

GROUNDWATER ANALYTICAL RESULTS -
METALS & ORPs
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
7D

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
	SAMPLE EXEMPT *SEE NOTE
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
Na	SODIUM
Cl	CHLORIDE
*NOTE: UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT TO BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING SOIL IMPACTED BY DE-ICING SALT.	

PARAMETER	TABLE 3 SCS	UNITS
Cl	CHLORIDE	2,300,000 $\mu\text{g/L}$
Na	SODIUM	2,300,000 $\mu\text{g/L}$

SLATER STREET

O'CONNOR STREET

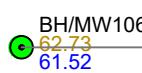
BH/MW104*
62.73
60.15

BH-1
62.73

BH1	Screen Depth 3.8 - 4.1 mbgs	
DATE	Na	Cl
2025/05/08	2,280,000	4,670,000
2025/05/08 (DUP)	2,450,000	4,560,000

BH/MW105*
62.73
61.42

110


BH/MW102
62.73
61.58

BH-2
62.73

BH/MW106
62.73
61.52

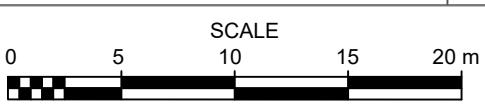
MW106	Screen Depth 2.9 - 4.4 mbgs	
DATE	Na & Cl	
2025/05/08	MEETS SCS	

BH/MW101
62.73
61.65

BH/MW107*
62.73
61.91

MW107	Screen Depth 1.7 - 3.2 mbgs	
DATE	Na	Cl
2025/05/08	1,440,000	2,490,000
2025/06/09	1,250,000	2,920,000
2025/06/09 (DUP)	1,170,000	3,020,000
2025/06/13	1,180,000	2,970,000

BH/MW103
71.43
DRY

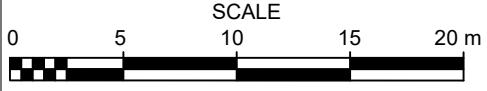
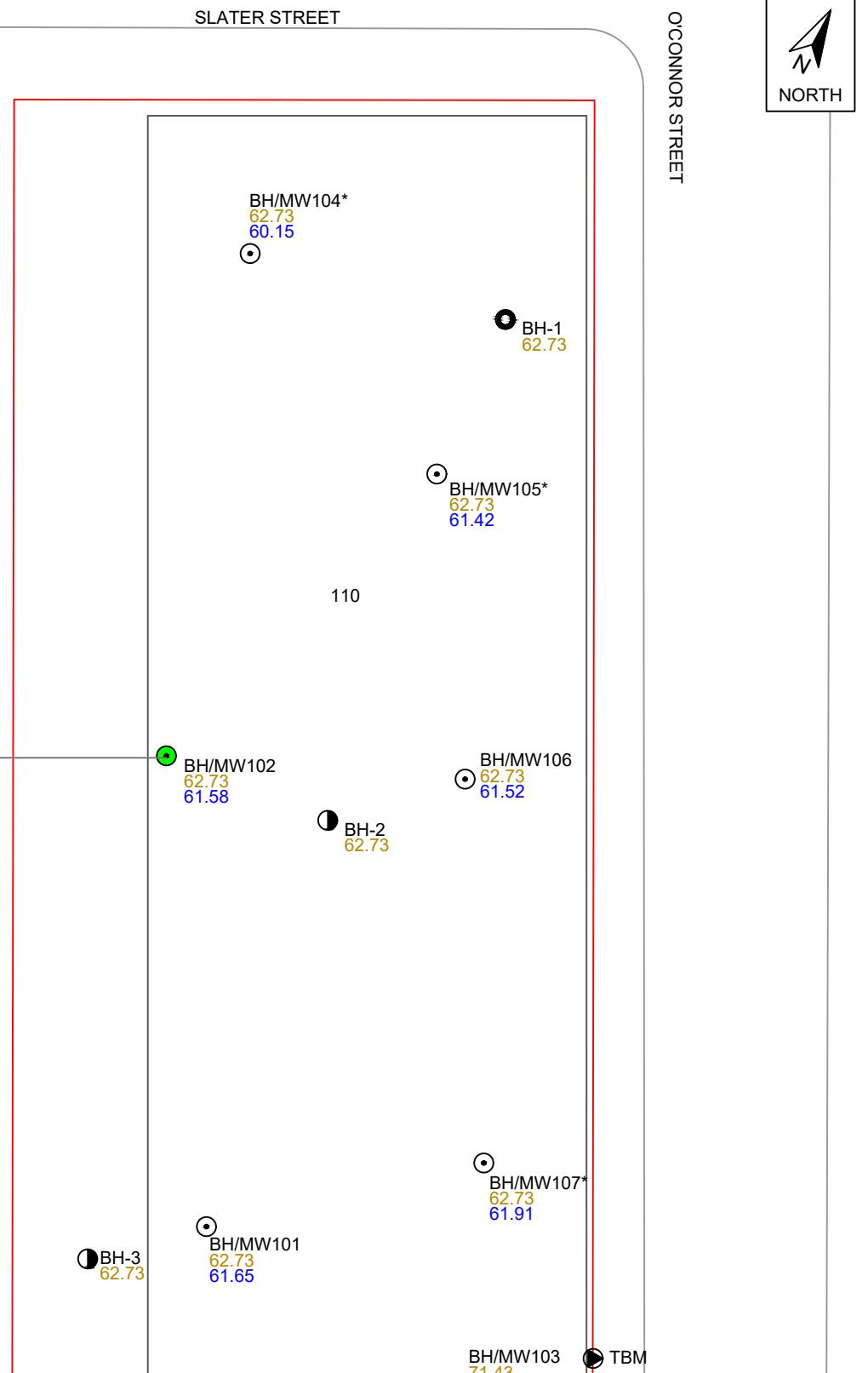


TBM
BH-4
71.4
64.83

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

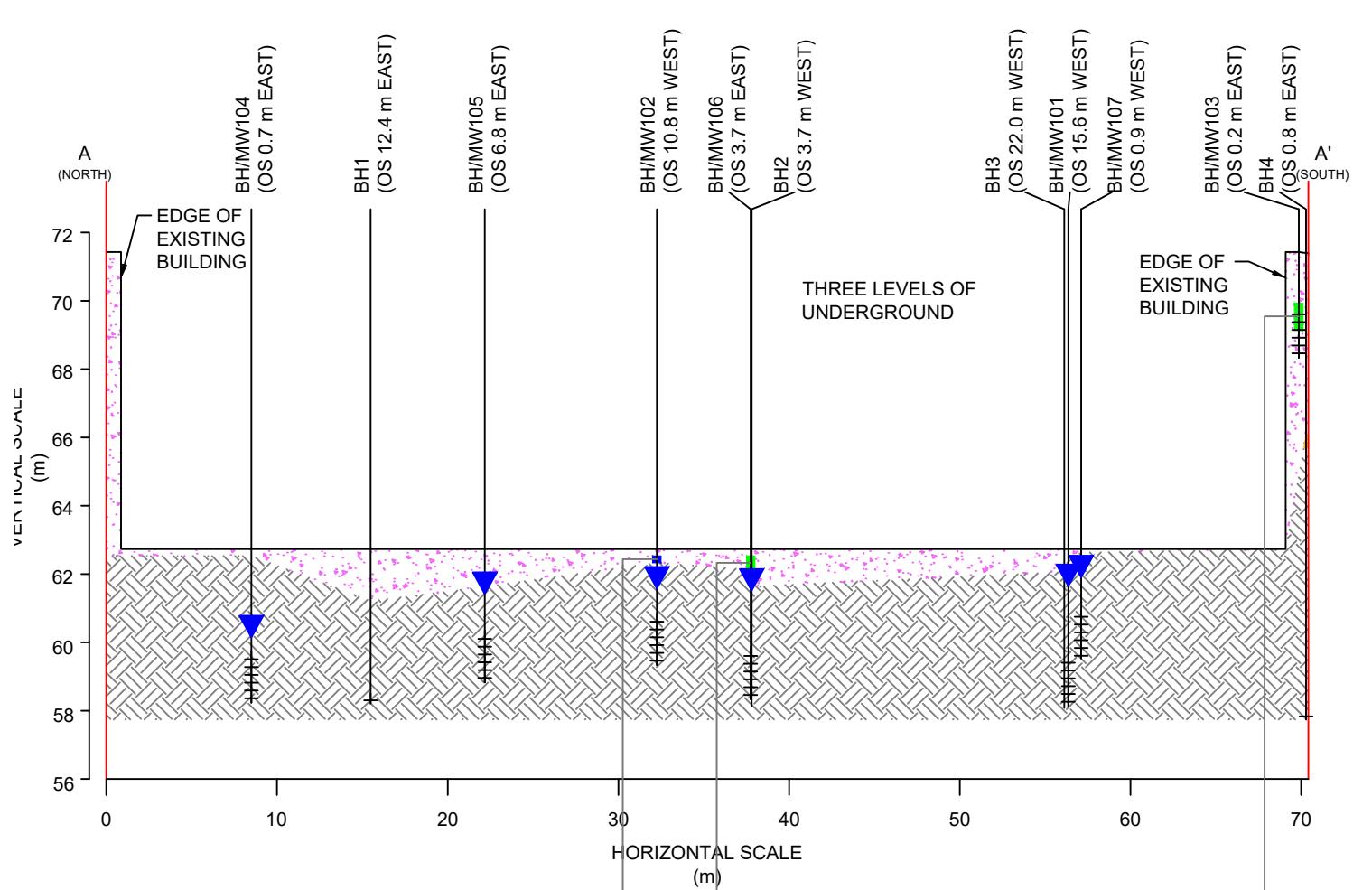
Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg



GROUNDWATER ANALYTICAL RESULTS -
SODIUM & CHLORIDE
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
7E

LEGEND	
	APPROXIMATE SITE LIMITS
	BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025)
	BOREHOLE ADVANCED BY OTHERS (JULY 2023)
	MONITORING WELL ADVANCED BY OTHERS (JULY 2023)
	TEMPORARY BENCHMARK (TBM)
	SAMPLE MEETS MECP TABLE 3 SCS
88.88	GROUND SURFACE ELEVATION (m)
88.88	MEASURED GROUNDWATER ELEVATION (m) (JUNE 9, 2025)
SCS	SITE CONDITION STANDARDS
PCBs	POLYCHLORINATED BIPHENYLS

MW102	Screen Depth 1.7 - 3.2 mbgs
DATE	PCBs
2025/05/08	MEETS SCS
2025/05/08 (DUP)	MEETS SCS



NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2025
Drawn by: HP
File name: G2S25042.dwg

GROUNDWATER ANALYTICAL RESULTS -
PCBs
110 O'CONNOR STREET
OTTAWA
ONTARIO

Drawing No.
7F

BH102	DATE SAMPLED: 2025/05/07
DEPTH (mbgs)	EC
0.2 - 0.4	<u>0.727</u>

BH106	DATE SAMPLED: 2025/05/06
DEPTH (mbgs)	EC & SAR
0.2 - 0.6	MEETS SCS
0.2 - 0.6 (DUP)	MEETS SCS

BH103	DATE SAMPLED: 2025/05/08
DEPTH (mbgs)	EC & SAR
1.5 - 2.3	MEETS SCS

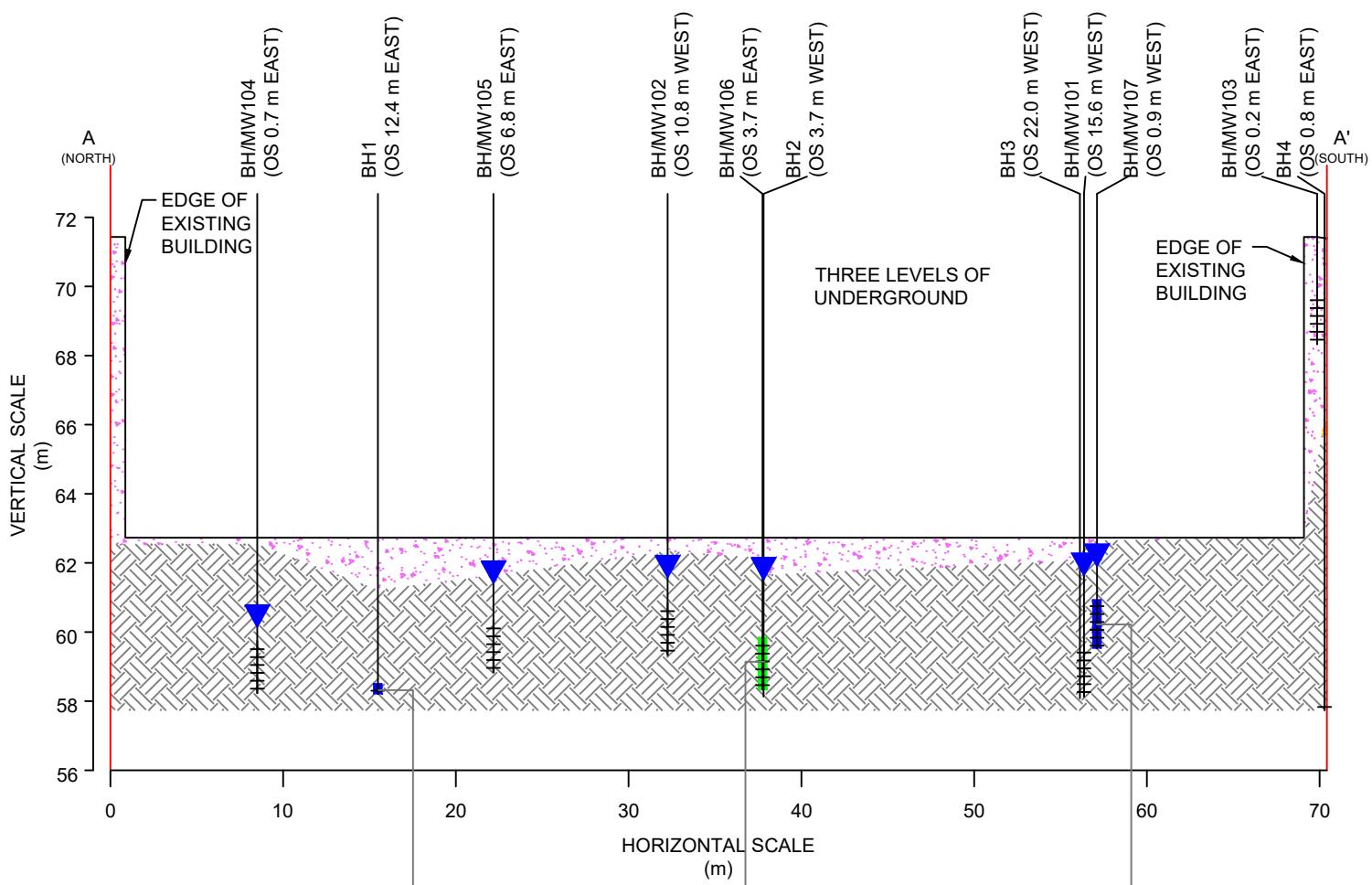
PARAMETER	TABLE 3 SCS	UNITS
EC	ELECTRICAL CONDUCTIVITY	0.7

LEGEND

	FILL MATERIALS
	BEDROCK (SHALE)
	GROUNDWATER LEVEL
OS	OFFSET
mbgs	METRES BELOW GROUND SURFACE
SCS	SITE CONDITION STANDARDS
	SAMPLE MEETS MECP TABLE 3 SCS
	SAMPLE EXEMPT SEE *NOTE
EC	ELECTRICAL CONDUCTIVITY
SAR	SODIUM ADSORPTION RATIO

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS.
BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9, 2025


*UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT TO BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING SOIL IMPACTED BY DE-ICING SALT.

Scale: AS SHOWN
Project No.: G2S25042B
Date: OCTOBER 2022
Drawn by: HP
File name: G2S25042.dwg

CROSS SECTION A-A' - SOIL ANALYTICAL
RESULTS - EC & SAR

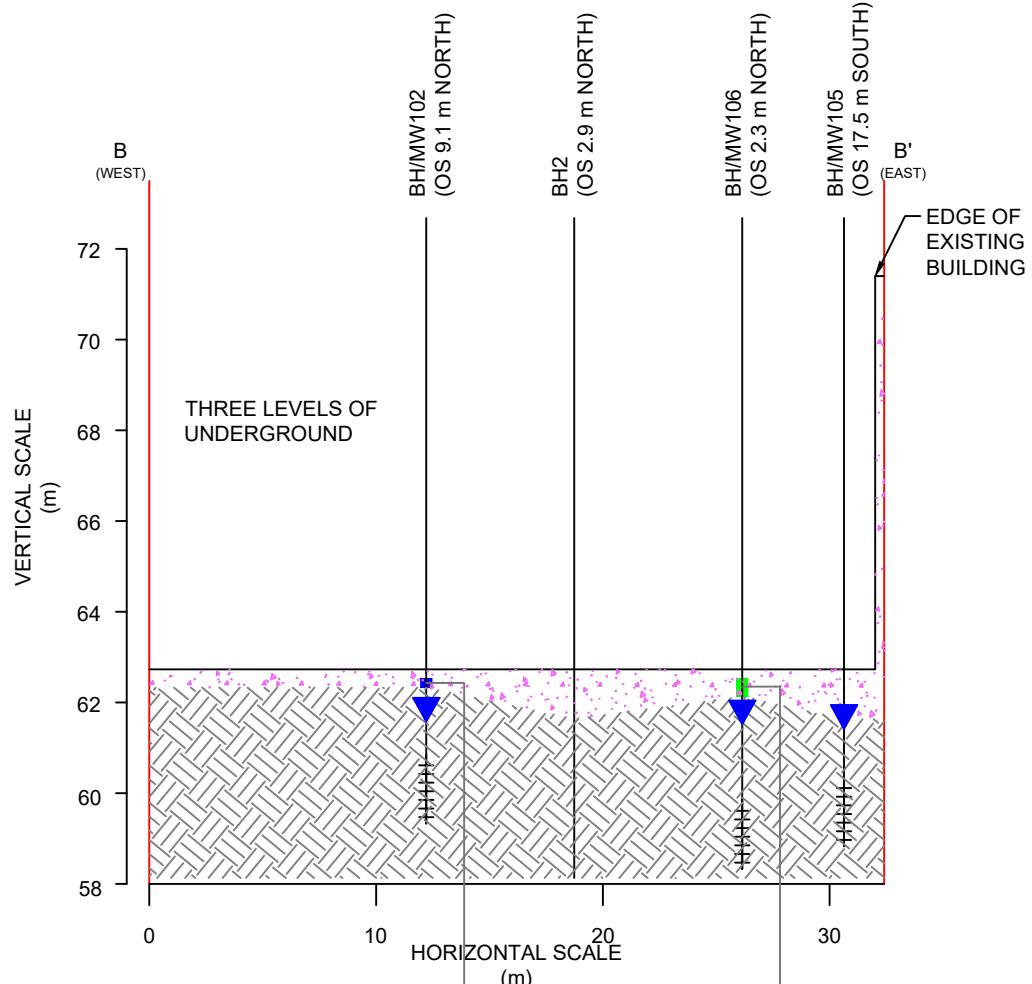
Drawing No.

BH1		Screen Depth 3.86 - 4.1 mbgs	
DATE	Na	Cl	
2025/05/08	2,280,000	4,670,000	
2025/05/08 (DUP)	2,450,000	4,560,000	

MW106		Screen Depth 2.9 - 4.4 mbgs	
DATE	Na & Cl		
2025/05/08	MEETS SCS		

MW107		Screen Depth 1.7 - 3.2 mbgs	
DATE	Na	Cl	
2025/05/08	1,440,000	2,490,000	
2025/06/09	1,250,000	2,920,000	
2025/06/09 (DUP)	1,170,000	3,020,000	
2025/06/13	1,180,000	2,970,000	

PARAMETER	TABLE 3 SCS	UNITS
Cl	CHLORIDE	2,300,000 $\mu\text{g/L}$
Na	SODIUM	2,300,000 $\mu\text{g/L}$


LEGEND

	FILL MATERIALS
	BEDROCK (SHALE)
	GROUNDWATER LEVEL
OS	OFFSET
mbgs	METRES BELOW GROUND SURFACE
SCS	SITE CONDITION STANDARDS
	SAMPLE MEETS MECP TABLE 3 SCS
	SAMPLE EXEMPT SEE *NOTE
EC	ELECTRICAL CONDUCTIVITY
SAR	SODIUM ADSORPTION RATIO

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS. BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9, 2025

*UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT TO BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING GROUNDWATER IMPACTED BY DE-ICING SALT.

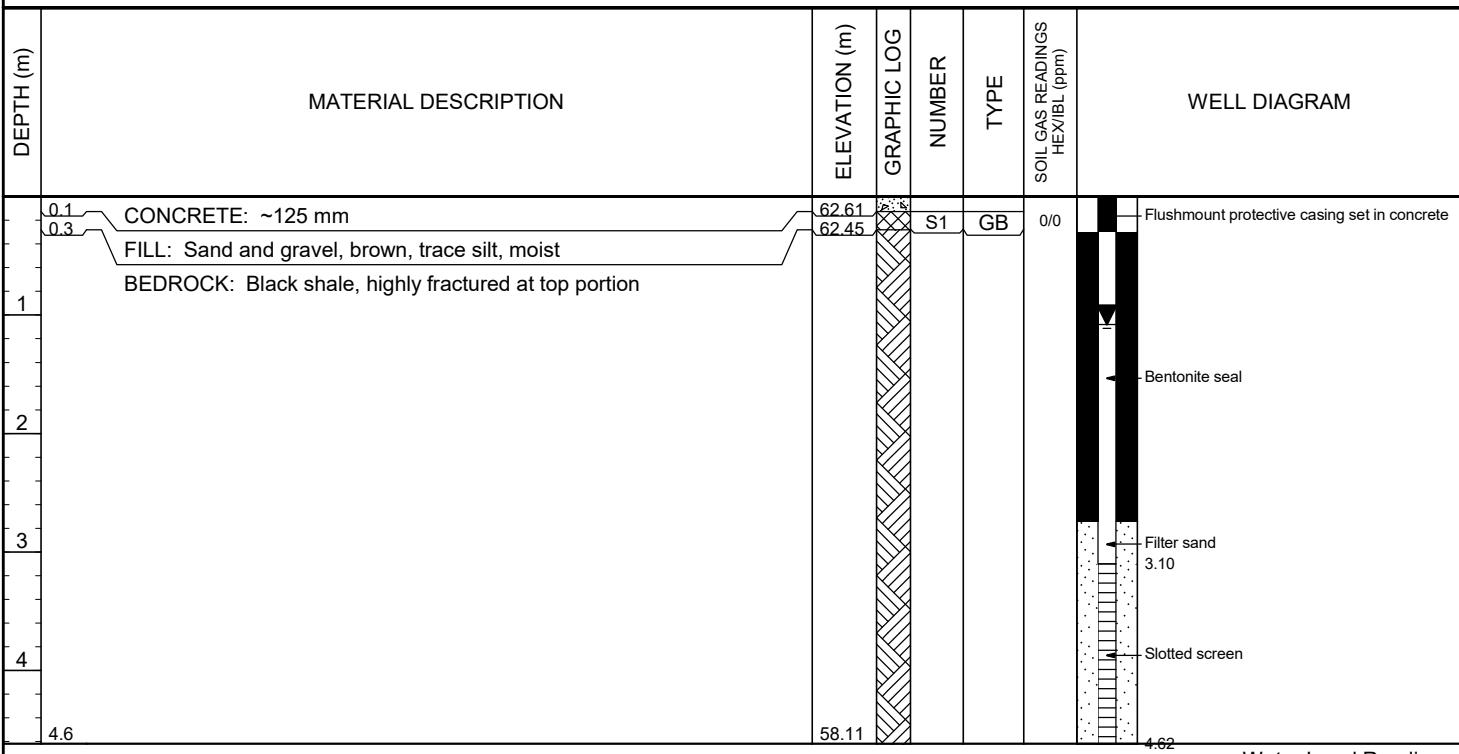
BH102	DATE SAMPLED: 2025/05/07	
DEPTH (mbgs)	EC	SAR
0.2 - 0.4	0.727	3.1

BH106	DATE SAMPLED: 2025/05/06	
DEPTH (mbgs)	EC & SAR	
0.2 - 0.6	MEETS SCS	
0.2 - 0.6 (DUP)	MEETS SCS	

PARAMETER	TABLE 3 SCS	UNITS
EC	ELECTRICAL CONDUCTIVITY	0.7 $\mu\text{g/g}$

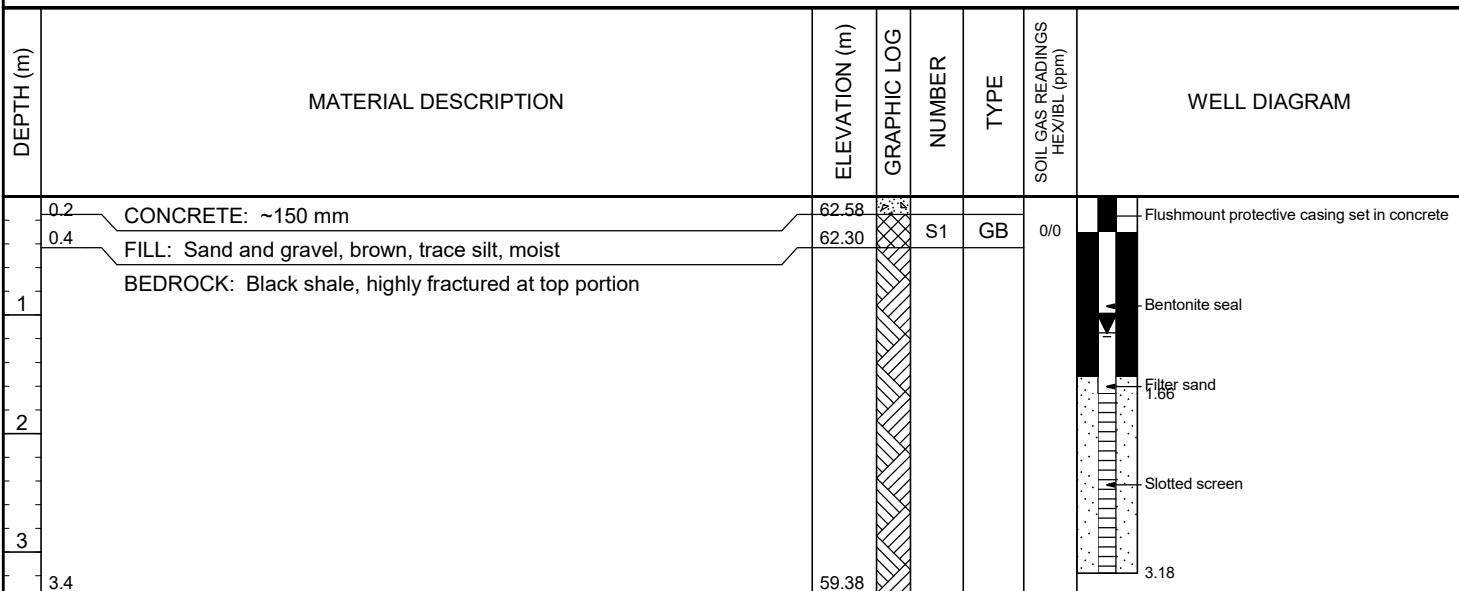
LEGEND

	FILL MATERIALS
	BEDROCK (SHALE)
	GROUNDWATER LEVEL
OS	OFFSET
mbgs	METRES BELOW GROUND SURFACE
SCS	SITE CONDITION STANDARDS
	SAMPLE MEETS MECP TABLE 3 SCS
	SAMPLE EXEMPT SEE *NOTE
EC	ELECTRICAL CONDUCTIVITY
SAR	SODIUM ADSORPTION RATIO


NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH-4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

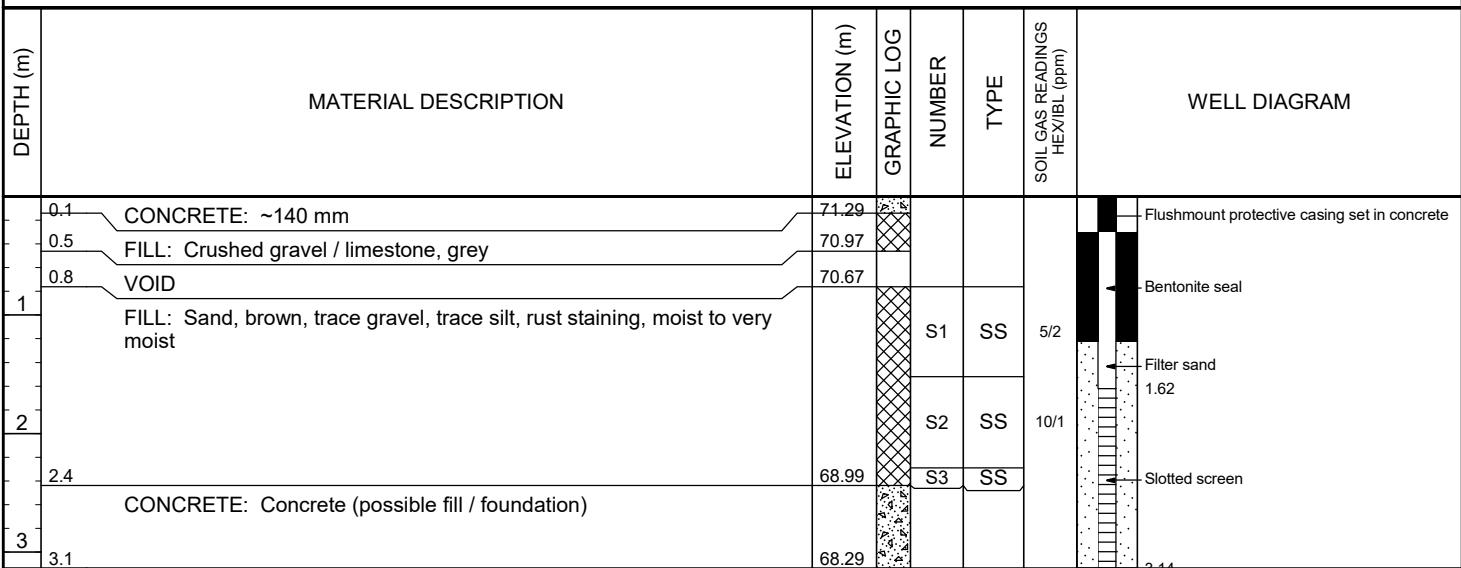
BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS. BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9, 2025

*UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT TO BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING SOIL IMPACTED BY DE-ICING SALT.


Appendix B: Borehole Logs

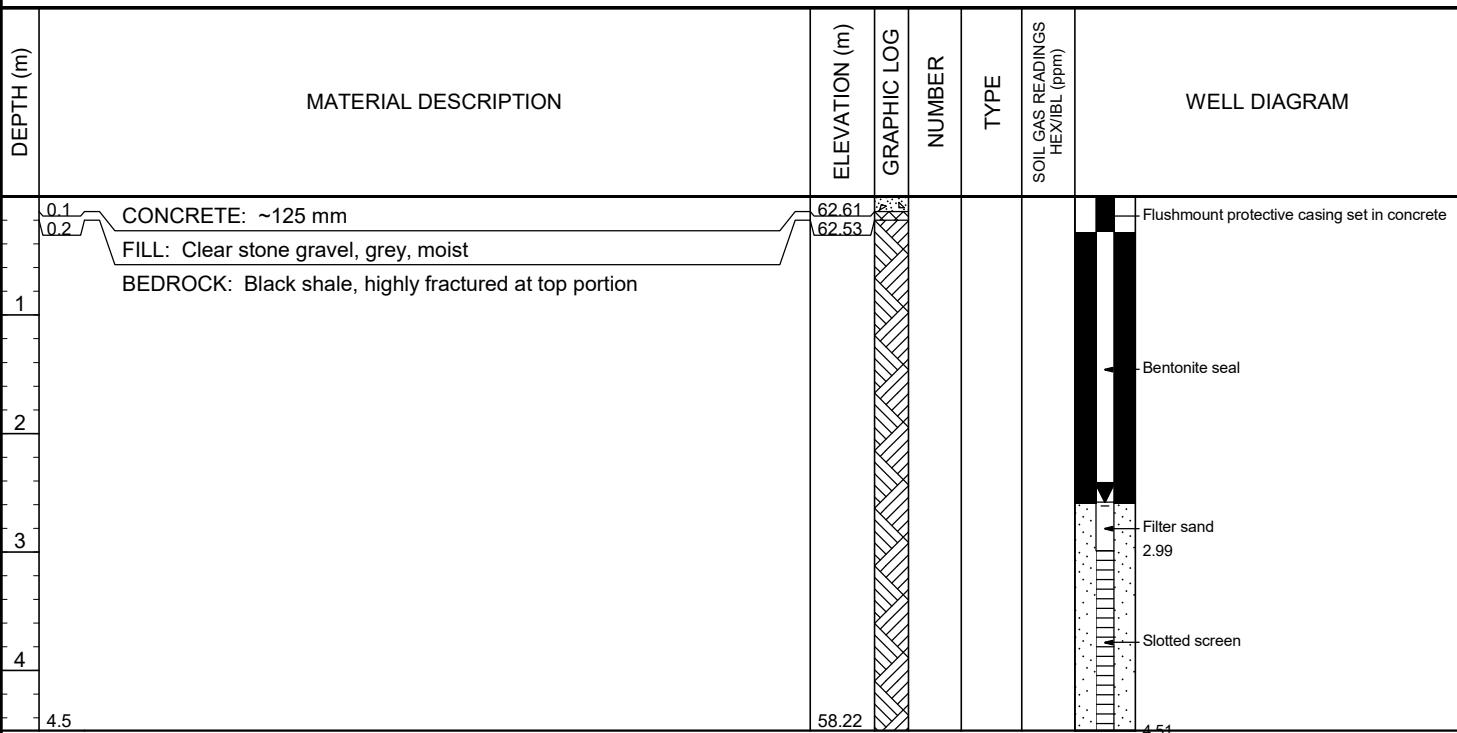
CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-5 **COMPLETED** 25-5-5 **GROUND ELEVATION** 62.73 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** Located within the third level of underground parking

Water Level Readings:
 Date Depth (m) Elev. (m)
 2025-05-06 1.00 61.73
 2025-06-09 1.08 61.65

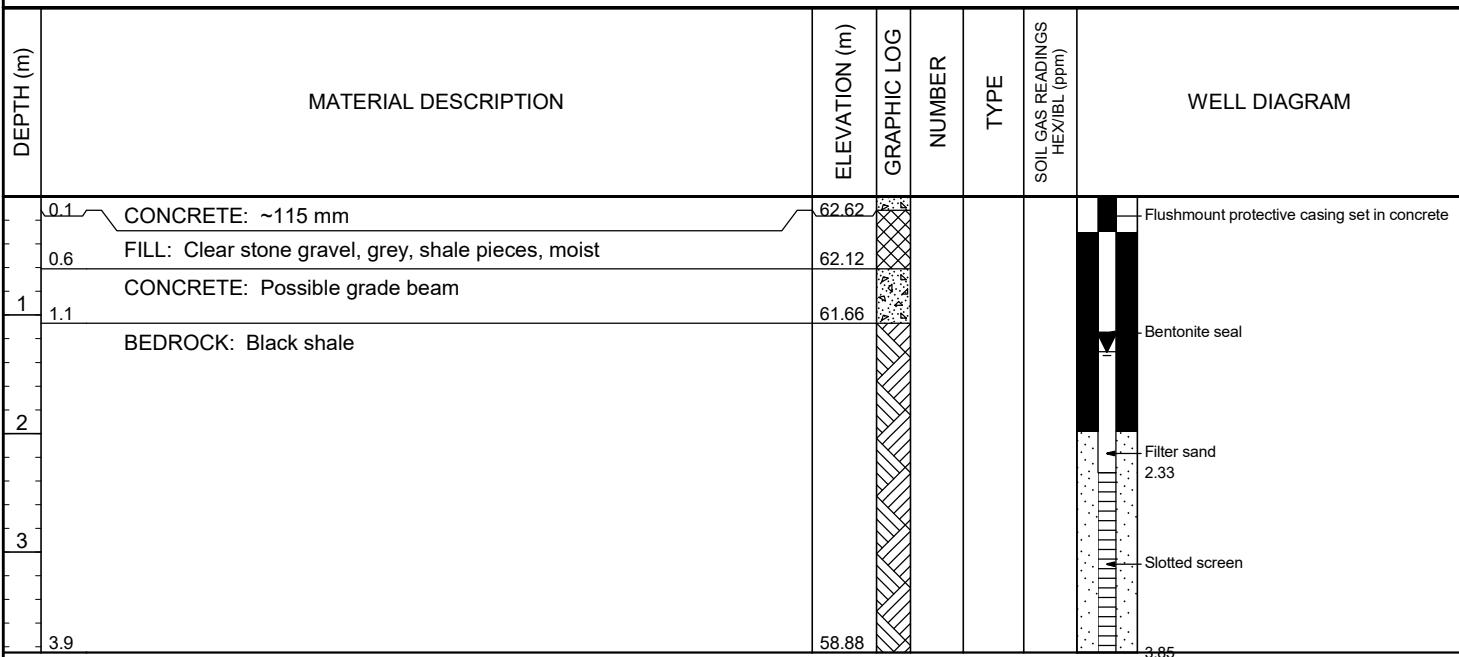

CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-7 **COMPLETED** 25-5-7 **GROUND ELEVATION** 62.73 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** Located within the third level of underground parking

Water Level Readings:

Date	Depth (m)	Elev. (m)
2025-05-08	0.88	61.85
2025-06-09	1.15	61.58

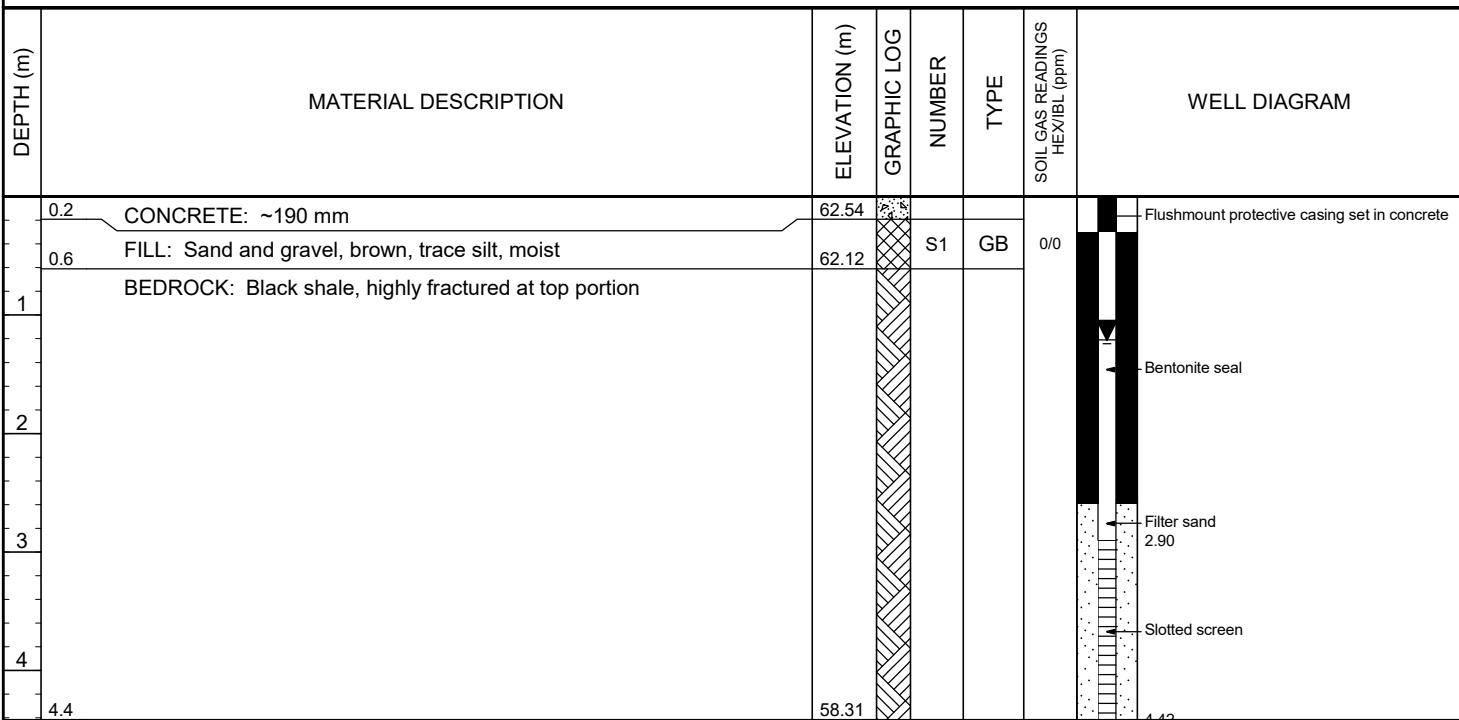

CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-8 **COMPLETED** 25-5-8 **GROUND ELEVATION** 71.43 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** May 9, 2025 water level measurement from slurry of coring

Borehole terminated at 3.1 m.


Water Level Readings:		
Date	Depth (m)	Elev. (m)
2025-05-09	2.78	68.65
2025-06-09	Dry	--

CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-8 **COMPLETED** 25-5-8 **GROUND ELEVATION** 62.73 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** Located within the third level of underground parking

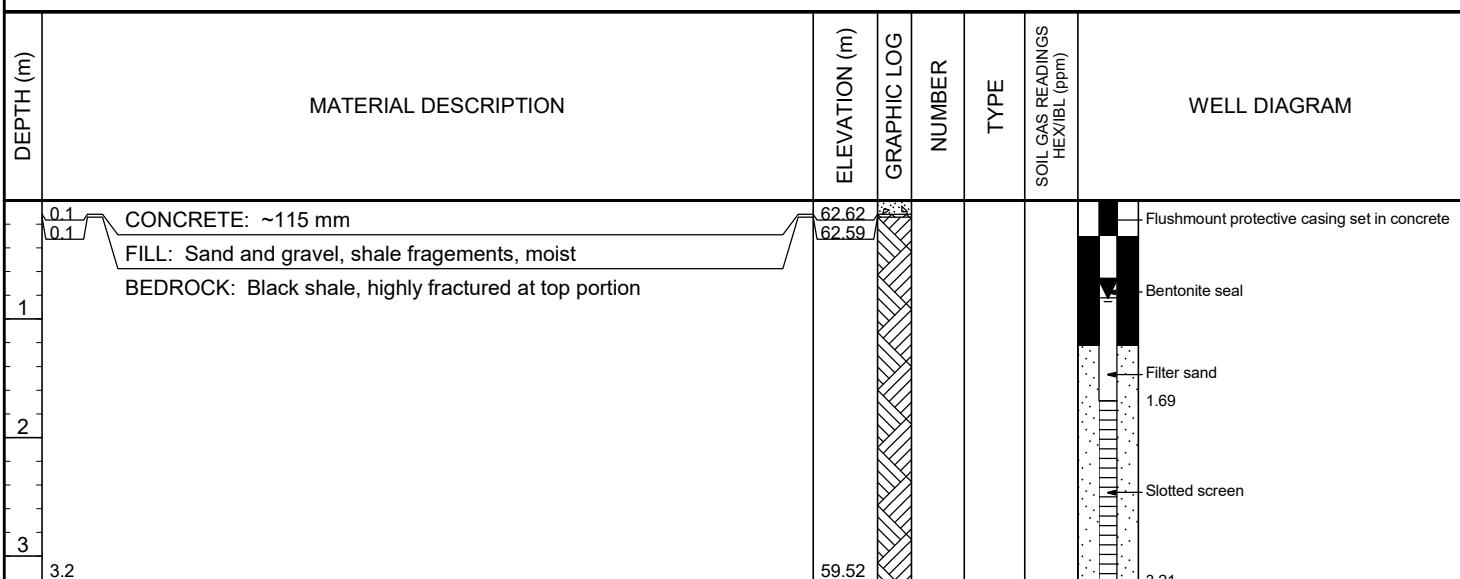
Water Level Readings:
 Date Depth (m) Elev. (m)
 2025-05-09 1.17 61.56
 2025-06-09 2.58 60.15


CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-7 **COMPLETED** 25-5-7 **GROUND ELEVATION** 62.73 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** Located within the third level of underground parking

Borehole terminated at 3.9 m.

Water Level Readings:		
Date	Depth (m)	Elev. (m)
2025-05-08	0.95	61.78
2025-06-09	1.31	61.42

CLIENT Groupe Mach Inc. **PROJECT NAME** DRAFT Phase Two ESA
PROJECT NUMBER G2S25042 **PROJECT LOCATION** 110 O'Connor Street, Ottawa, ON
DATE STARTED 25-5-6 **COMPLETED** 25-5-7 **GROUND ELEVATION** 62.73 m
DRILLING CONTRACTOR OGS Inc. **LOGGED BY** DB **CHECKED BY** SL
DRILLING METHOD Hilti Core Drill - NQ **NOTES** Located within the third level of underground parking



Water Level Readings:

Date	Depth (m)	Elev. (m)
2025-05-07	0.97	61.76
2025-06-09	1.21	61.52

CLIENT Groupe Mach Inc.
PROJECT NUMBER G2S25042
DATE STARTED 25-5-5 **COMPLETED** 25-5-6
DRILLING CONTRACTOR OGS Inc.
DRILLING METHOD Hilti Core Drill - NQ

PROJECT NAME DRAFT Phase Two ESA
PROJECT LOCATION 110 O'Connor Street, Ottawa, ON
GROUND ELEVATION 62.73 m
LOGGED BY DB **CHECKED BY** SL
NOTES Located within the third level of underground parking

CLIENT : Édifice 110 O'Connor Inc.
 PROJECT : Geotechnical investigation
 SITE : 110 O'Connor Street, Ottawa, Ontario

Sheet 1 / 1
 Annex No. : 6
 BOREHOLE No. : 1

MADE BY :	F. C.	DATE :	24-07-2023	Ø Borehole (mm) :	NW	GEODETIC COORDINATES
VERIFIED BY :	G. G.	DRILLING COMPANY :	Fusion Drilling	Ø Screen (mm) :	19	Y : X : Z (Elevation) : 62,82 m
APPROVED BY :	G. G.	DRILL TYPE :	Manual	Drilling method:	Diamond core	
<u>SAMPLE STATE</u>		<u>SAMPLE TYPE</u>				
INTACT		GP : geoprobe/seeddrill/manual				
REMOUDED		SS : split spoon				
LOST		AS : auger				
OR NOT SAMPLED		RC : coring				
<u>STRATIGRAPHY</u>			<u>SAMPLE</u>	<u>ORGANOLEPTIC SIGNS</u>	<u>WELL LAYOUT</u>	
ELEVATION (m)	DEPTH (m)	SOIL DESCRIPTION	SAMPLE	ORGANOLEPTIC SIGNS	WELL LAYOUT	
62,82	0,00	Ground surface	SYMBOL	TYPE SAMPLE and No.	WATER LEVEL	
62,64	0,18	178mm concrete slab.	RC-A	SUB-SAMPLE	RECUP. %	DETAILS
		Fill: Compact crushed stone followed by grey and black humic silt.			Z or RQD	DESCRIPTION
1					BLOWS/15cm	
61,54	1,28		SS-1		N	
61,30	1,52	Bedrock: Black calcareous shale; Fractured zone from 1,52 to 1,98m.	SS-2		S	
2			RC-3		M	
60,51	2,31	----- Addition of passages of grey fossiliferous limestone.	RC-4		P	
3			RC-4			
59,92	2,90	----- Alternating beds of black calcareous shale and grey fossiliferous limestone.	RC-5	100/100		
59,52	3,30	----- Black calcareous shale with passages of grey fossiliferous limestone.		99	96	
4						
58,99	3,83	----- Alternating beds of black calcareous shale and grey fossiliferous limestone.	RC-6	100/100		
58,30	4,52	End of borehole.				
5						
6						

Note(s):

CLIENT : Édifice 110 O'Connor Inc.
PROJECT : Geotechnical Investigation

Édifice 110 O'Connor Inc.
Geotechnical investigation

Sheet
1 / 1

		CLIENT : Édifice 110 O'Connor Inc. PROJECT : Geotechnical investigation SITE : 110 O'Connor Street, Ottawa, Ontario		Annex No. : 7 BOREHOLE No. : 2
MADE BY : F. C. VERIFIED BY : G. G. APPROVED BY : G. G.		DATE : 25-07-2023 DRILLING COMPANY : Fusion Drilling DRILL TYPE : Manual	Ø Borehole (mm) : NW Ø Screen (mm) : Ø Drilling method: Diamond core	GEODETIC COORDINATES Y: X Z (Elevation): 62,82 m
SAMPLE STATE INTACT REMOULDED LOST OR NOT SAMPLED		SAMPLE TYPE GP : geoprobe/seddrill/manual SS : split spoon AS : auger RC : coring	ORGANOOLEPTIC SIGNS N : none S : slight M : medium P : pronounced	Groundwater level:

STRATIGRAPHY		SAMPLE		ORGANOLEPTIC SIGNS		WELL LAYOUT	
ELEVATION (m)	DEPTH (E)	SOIL DESCRIPTION	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	WATER LEVEL
62.82	0.00	Ground surface				RECUP. %	DETAILS
62.65	0.17	165mm concrete slab. Fill: Dense brown and black humic sand.	████████	RC-A	SS-4	100	N
62.21	0.61	Becoming dense black sand with fragments of rock.					
1	1.09	Boulders.		SS-2			
	1.17	Bedrock: Fractured black shale.		RC-3			
	1.27	Black shale with occasional calcite recrystallisations; Fractured zone from 2.08 to 2.17m.		RC-4			
2	2.17	Black calcareous shale; Passages of grey fossiliferous limestone at 2.66m, at 2.78m and at 2.88m.		RC-5	60	R	1
	60.65				53	29	60-54-30-100 /2cm 84-42(N)
3	59.90	Alternating beds of black calcareous shale and grey fossiliferous limestone.		RC-6	100	93	2
	2.92			RC-6	100	98	3
4	58.22	RC-7					4
	4.60	RC-8					5
		End of borehole.					6

Note(s):

CLIENT : Édifice 110 O'Connor Inc.
PROJECT : Geotechnical Investigation

1100-1101

BOREHOLE No. : 8 Annex No. : 1 / 1 Sheet 1 / 1

Project No.:		Reference No.:		CLIENT:		Édifice 110 O'Connor Inc.		Sheet 1 / 1	
						PROJECT:			
MADE BY:		F. C.		DATE:		26-07-2023		GEODETIC COORDINATES	
VERIFIED BY:		G. G.		DRILLING COMPANY:		Fusion Drilling		Y: X: Z (Elevation):	
APPROVED BY:		G. G.		DRILL TYPE:		Manual		Drilling method: Diamond core	
<p>SAMPLE STATE</p> <p><input checked="" type="checkbox"/> INTACT</p> <p><input type="checkbox"/> REMOULDED</p> <p><input type="checkbox"/> LOST</p> <p><input type="checkbox"/> OR NOT SAMPLED</p>				<p>SAMPLE TYPE</p> <p>GP : geoprobe/sedictill/manual</p> <p>SS : split spoon</p> <p>AS : auger</p> <p>RC : coring</p>				<p>ORGANOOLEPTIC SIGNS</p> <p>N : none</p> <p>S : slight</p> <p>M : medium</p> <p>P : pronounced</p>	
								Groundwater level:	
								3	
								BOREHOLE No.:	
								Annex No.:	
								8	

		SAMPLE		WELL LAYOUT	
STRATIGRAPHY		ORGANOGENIC SIGNS			
ELEVATION (m)	DEPTH (m)	SOIL DESCRIPTION	SYMBOL	TYPE SAMPLE and No.	WATER LEVEL
				SUB-SAMPLE	DETAILS
				STATE	DESCRIPTION
				RECUP. %	
				N or RQD	
				BLOWS/30cm	
				N	
				S	
				M	
				P	
62.82	0.00	Ground surface			
62.73	0.09	90mm concrete slab.			
62.44	0.38	Fill: Crushed stone with brown and black humid sand and pieces of concrete.			
62.15	0.67	Boulders.			
61.30	1.52	Bedrock: Fractured black shale.			
60.10	2.72	Black shale with calcite recrystallisations.			
3.29m.		Slightly fractured black shale; Fractured zones from 2,83 to 2,92m, from 3,07 to 3,12m and at 3,29m.			
4.01					
4.10m.					
4.65					
5.81					
5.817					
5.817	4.65	Black shale; Fractured zone from 4,05 to 4,10m.	RC-5	100 86	
5		End of borehole.			
6					

Note(s):

CLIENT : Édifice 110 O'Connor Inc.
 PROJECT : Geotechnical investigation
 SITE : 110 O'Connor Street, Ottawa, Ontario

Sheet 1 / 2
 Annex No. : 9
 BOREHOLE No. : 4

MADE BY :	S. P.	DATE :	24-07-2023	Ø Borehole (mm) :	NW	GEOGRAPHIC COORDINATES
VERIFIED BY :	G. G.	DRILLING COMPANY :	Dowling	Ø Screen (mm) :	19	Y : X : Z (Elevation) : 71,42 m
APPROVED BY :	G. G.	DRILL TYPE :	CME-55 LC	Drilling method:	Diamond core	4
Project No. : GT01.23.0064		Reference No. : See drawing No. GT01.23.0064-1				
SAMPLE STATE		ORGANOLOPHTIC SIGNS				
INTACT		N : none				
REMOULDED		S : slight				
LOST		M : medium				
OR NOT SAMPLED		P : pronounced				
SAMPLE TYPE		ORGANOLOPHTIC SIGNS				
GP : geoprobe/seeddrill/manual		WELL LAYOUT				
SS : split spoon		WATER LEVEL				
AS : auger		DETAILS				
RC : coring		DESCRIPTION				
STRATIGRAPHY		SAMPLE				
ELEVATION (m)		ORGANOLOPHTIC SIGNS				
DEPTH (m)		SAMPLE				
71,42		ORGANOLOPHTIC SIGNS				
0,00		SAMPLE				
71,37		ORGANOLOPHTIC SIGNS				
0,05		SAMPLE				
71,27		ORGANOLOPHTIC SIGNS				
0,15		SAMPLE				
51mm layer of asphalt.		ORGANOLOPHTIC SIGNS				
Void.		SAMPLE				
Fill: Very loose humid gravel with a little grey		ORGANOLOPHTIC SIGNS				
sand and traces of silt.		SAMPLE				
70,66		ORGANOLOPHTIC SIGNS				
0,76		SAMPLE				
-- Becoming very loose grey humid silty sand with a little gravel and traces of clay.		ORGANOLOPHTIC SIGNS				
1-		SAMPLE				
69,90		ORGANOLOPHTIC SIGNS				
1,52		SAMPLE				
-- Becoming loose.		ORGANOLOPHTIC SIGNS				
2-		SAMPLE				
69,13		ORGANOLOPHTIC SIGNS				
2,29		SAMPLE				
-- Becoming compact grey and black humid gravelly sand with a little silt and traces of clay.		ORGANOLOPHTIC SIGNS				
3-		SAMPLE				
68,37		ORGANOLOPHTIC SIGNS				
3,05		SAMPLE				
-- Becoming very loose humid to saturated silty sand with a little gravel and traces of clay.		ORGANOLOPHTIC SIGNS				
4-		SAMPLE				
67,61		ORGANOLOPHTIC SIGNS				
3,81		SAMPLE				
-- Becoming with traces of pieces of concrete.		ORGANOLOPHTIC SIGNS				
5-		SAMPLE				
66,85		ORGANOLOPHTIC SIGNS				
4,57		SAMPLE				
-- Becoming compact grey and black humid sand and gravel with a little silt.		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
66,09		ORGANOLOPHTIC SIGNS				
5,33		SAMPLE				
66,06		ORGANOLOPHTIC SIGNS				
5,74		SAMPLE				
Bedrock: Slightly calcareous black shale with occasional calcite recrystallisations.		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
65,68		ORGANOLOPHTIC SIGNS				
5,74		SAMPLE				
--		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-		SAMPLE				
6-		ORGANOLOPHTIC SIGNS				
6-						

CLIENT: Edifice 110 O'Connor Inc.
PROJECT: Geotechnical investigation
SITE: 110 O'Connor Street, Ottawa

Project No. : GT01.23.0064
Reference No. : LOCATION : See drawing No. GT01.23.0064-1

MADE BY:		S. P.	DATE:	24-07-2023	Ø Borehole (mm):	NW	GEODETIC COORDINATES			
VERIFIED BY:		G. G.	DRILLING COMPANY:	Downing	Ø Screen (mm):	19	Y: X: Z (Elevation): 71,42 m			
APPROVED BY:		G. G.	DRILL TYPE:	CME-55 LC	Drilling method:	Diamond core	WELL LAYOUT			
ELEVATION (m)	DEPTH (m)	SOIL DESCRIPTION		SAMPLE	ORGANOLEPTIC SIGNS	WATER LEVEL DETAILS				DESCRIPTION
		SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm N	N S M P	
								BLOWS/30cm N		
63,90	7,52	Slightly calcareous black shale with occasional calcite recrystallisations. Fractured zones from 8,40 to 8,49m and from 8,72 and 8,77m.				RC-10	99	94		
62,28	9,14	Slightly calcareous black shale with occasional calcite recrystallisations. Shattered zone from 9,14 to 9,32m.				RC-11	98	90		
60,82	10,60	Slightly calcareous black shale with occasional calcite recrystallisations. Shattered zones from 10,67 to 10,75m and from 11,13 to 11,25m.				RC-12	99	87		
58,95	12,47	Black calcareous shale				RC-13	100	91		
58,51	12,91	Black calcareous shale with passages of grey fossiliferous limestone.				RC-14	91	85		
57,76	13,66	End of borehole.								

CLIENT :
Édifice 110 O'Connor Inc.
PROJECT :
Geotechnical investigation
SITE :
110 O'Connor Street, Ottawa, Ontario

Sheet
1 / 2
Annex No. :
10
BOREHOLE No. :
5

Project No.: GT01.23.0064

Reference No.: GT01.23.0064-1

MADE BY : S. P. DATE : 25-07-2023 Ø Borehole (mm) : NW GEOGRAPHIC COORDINATES
Y :
VERIFIED BY : G. G. DRILLING COMPANY : Downing Ø Screen (mm) :
X :
APPROVED BY : G. G. DRILL TYPE : CME-55 LC Drilling method: Diamond core Z (Elevation) : 71,53 m

SAMPLE STATE
INTACT
REMOULDED
LOST
OR NOT SAMPLED

SAMPLE TYPE
GP : geoprobe/seeddrill/manual
SS : split spoon
AS : auger
RC : coring

ORGANOLOPHTIC SIGNS
N : none
S : slight
M : medium
P : pronounced

Groundwater level:
▼ Groundwater level:

ELEVATION (m)	DEPTH (m)	STRATIGRAPHY		SAMPLE	ORGANOLOPHTIC SIGNS	WELL LAYOUT									
		SOIL DESCRIPTION	SYMBOL			TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	BLOWS/15cm N N	N	S	M	P	WATER LEVEL DETAILS
71,53	0,00	Ground surface													
71,43	0,10	Fill: Loose brown fine sand with a little silt and the presence of organics. Becoming loose humid 0 - 20mm crushed stone with traces of pieces of concrete.	SS-1	SS-1	SS-1	58	7	2-2-5-5	*						
70,01	1,52	Compact grey and black humid sandy silt with a little gravel.	SS-2	SS-2	SS-2	58	14	2-8-6-7	*						
68,48	3,05	Compact grey and black humid silty sand with a little gravel.	SS-3	SS-3	SS-3	100	28	7-12-16-12	*						
66,96	4,57	No sample recovered.	SS-4	SS-4	SS-4	0	0	50/5cm							
66,86	4,67	Bedrock: Black slightly calcareous black shale.	RC-5	RC-5	RC-5	100	100								
66,65	4,88	Black slightly calcareous black shale.													
65,64	5,89	Black slightly calcareous black shale; Shattered zones from 6,04 to 6,19m, at 6,50m and from 7,35 to 7,47m.	RC-6	RC-6	RC-6	100	97								

Note(s):

CLIENT: Edifice 110 O'Connor Inc.
PROJECT: Geotechnical investigation
SITE: 110 O'Connor Street, Ottawa, ON

110 O'Connor Street, Ottawa, Ontario

2 / 2

REF. No.: GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

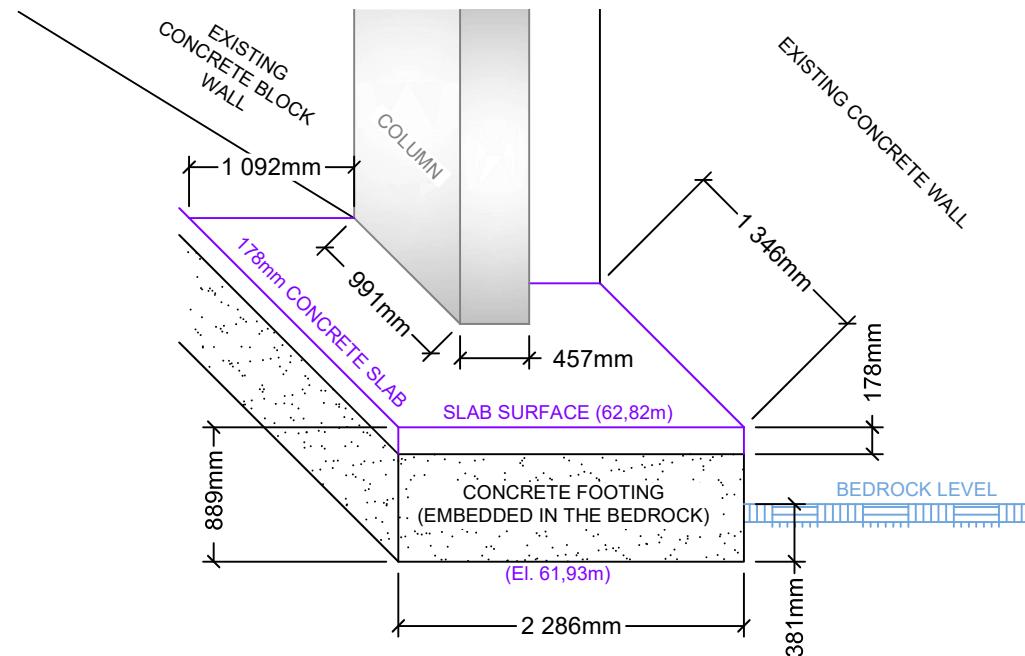
ANNEX NO.: 1

PROJ.: Geotechnical investigation

SITE: 110 O'Conner Street, Ottawa, Ontario

TEST PIT NO.

1


TEST: LOCATION: See drawing no. GT01.23.0064-1

DATE: July 26, 2023

TECH.: F. C.

SUPER.: G. G.

DEPTH (ELEV.) OF THE LAYER	DEPTH	SYMBOL	SOIL DESCRIPTION	WATER LEVEL	PENETROMETER (KPa)	VANE SHEAR STRENGTH RESISTANCE (KPa)	SAMPLE DEPTH	REMARKS, SAMPLE NO. AND LOCATION	CHEMICAL ANALYSES				
									C ₁₀ -C ₅₀	HAP	MTX	COV	Other
0,00(62,82m)			GROUND SURFACE										
0,18(62,64m)			178mm concrete slab. Fractured black bedrock.					TR1-1					
0,89(61,93m)	1,00		End of test pit.					Concrete Footing	0,71m	0,18m			
	2,00												
	3,00												
	4,00												

REF. No.: GT01.23.0064

CLIENT : Édifice 110 O'Connor Inc.

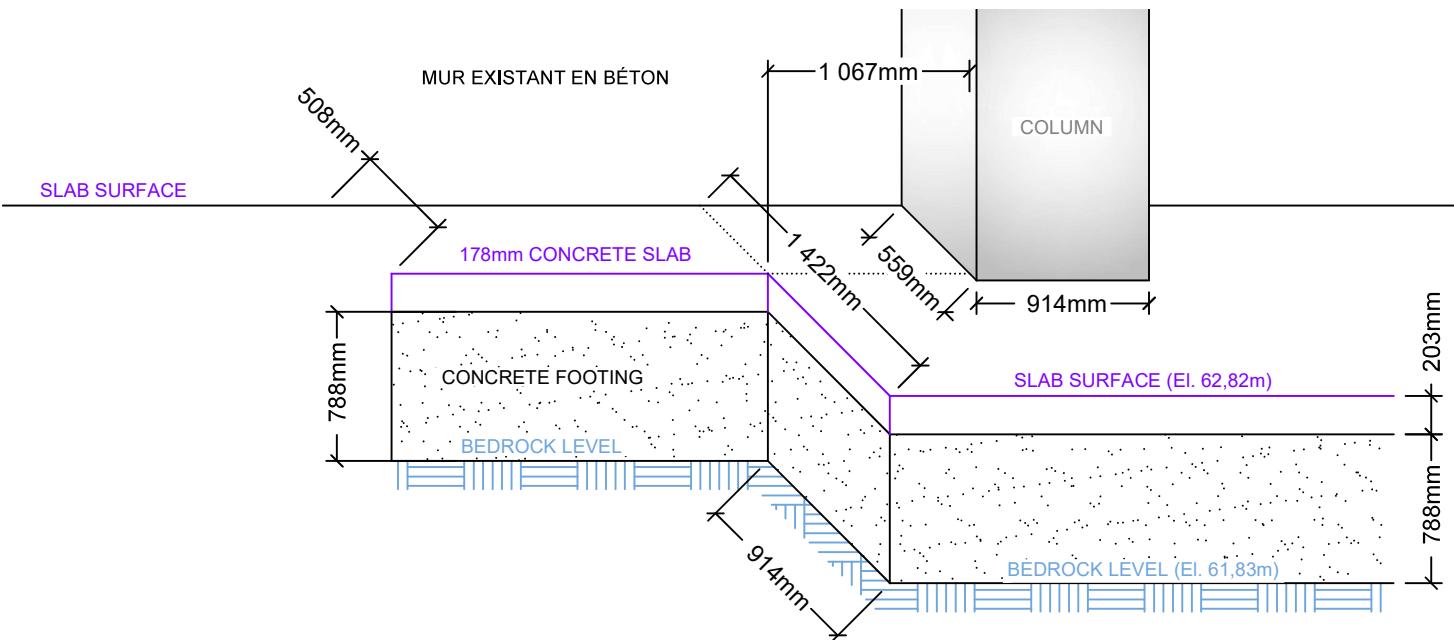
ANNEX NO.: 2

PROJ.: Geotechnical investigation

SITE: 110 O'Conner Street, Ottawa, Ontario

TEST PIT NO.

2


TEST: LOCATION: See drawing no. GT01.23.0064-1

DATE: July 26, 2023

TECH.: F. C.

SUPER.: G. G.

DEPTH (ELEV.) OF THE LAYER	DEPTH	SYMBOL	SOIL DESCRIPTION	WATER LEVEL	PENETROMETER (kPa)	VANE SHEAR STRENGTH RESISTANCE (kPa)	SAMPLE DEPTH	REMARKS, SAMPLE NO. AND LOCATION	CHEMICAL ANALYSES				
									C ₁₀ -C ₅₀	HAP	MTX	COV	Other
0,00(62,82m)			GROUND SURFACE										
0,20(62,62m)			203mm concrete slab.										
0,25(62,57m)			Fill: Crushed stone.										
			Fractured black bedrock.										
0,99(61,83m)	1,00		End of test pit.						TR2-1	TR2-2			
	2,00												
	3,00												
	4,00												

REF. No.: GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

ANNEX NO.: 3

PROJ.: Geotechnical investigation

SITE: 110 O'Conner Street, Ottawa, Ontario

TEST PIT NO.

3

TEST: LOCATION: See drawing no. GT01.23.0064-1

DATE: July 26, 2023

TECH.: F. C.

SUPER.: G. G.

DEPTH (ELEV.) OF THE LAYER	DEPTH	SYMBOL	SOIL DESCRIPTION	WATER LEVEL	PENETROMETER (kPa)	VANE SHEAR STRENGTH RESISTANCE (kPa)	SAMPLE DEPTH	REMARKS, SAMPLE NO. AND LOCATION	CHEMICAL ANALYSES				
									C ₁₀ -C ₅₀	HAP	MTX	COV	Other
0,00(62,82m)			GROUND SURFACE										
0,10(62,72m)			102mm concrete slab. Fractured black bedrock.					TR3-1	0,81m	0,10m			
0,91(61,91m)	1,00		End of test pit..					Concrete Footing					
	2,00												
	3,00												
	4,00												

REF. No.: GT01.23.0064

CLIENT : Édifice 110 O'Connor Inc.

ANNEX NO.: 4

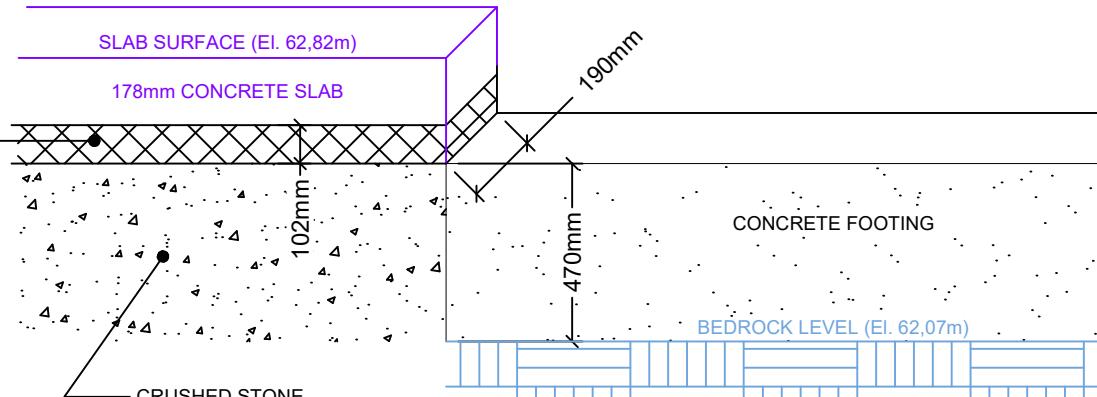
PROJ.: Geotechnical investigation

SITE: 110 O'Conner Street, Ottawa, Ontario

TEST PIT NO.

4

TEST: LOCATION: See drawing no. GT01.23.0064-1


DATE: July 26, 2023

TECH.: F. C.

SUPER.: G. G.

DEPTH (ELEV.) OF THE LAYER	DEPTH	SYMBOL	SOIL DESCRIPTION	WATER LEVEL	PENETROMETER (KPa)	VANE SHEAR STRENGTH RESISTANCE (KPa)	SAMPLE DEPTH	REMARKS, SAMPLE NO. AND LOCATION	CHEMICAL ANALYSES				
									C ₁₀ -C ₅₀	HAP	MTX	COV	Other
0,00(62,82m)			GROUND SURFACE										
0,18(62,64m)			178mm concrete slab.										
0,28(62,52m)			Fill: Black sand and gravel with traces of pieces of brick.										
0,75(62,07m)	1,00		Becoming crushed stone.						TR4-1				
	2,00		End of test pit.						TR4-2				
	3,00								Concrete Footing				
	4,00									0,47m	0,28m		

FILL: BLACK SAND AND GRAVEL WITH TRACES OF PIECES OF BRICK.

REF. No.: GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

ANNEX NO.: 5

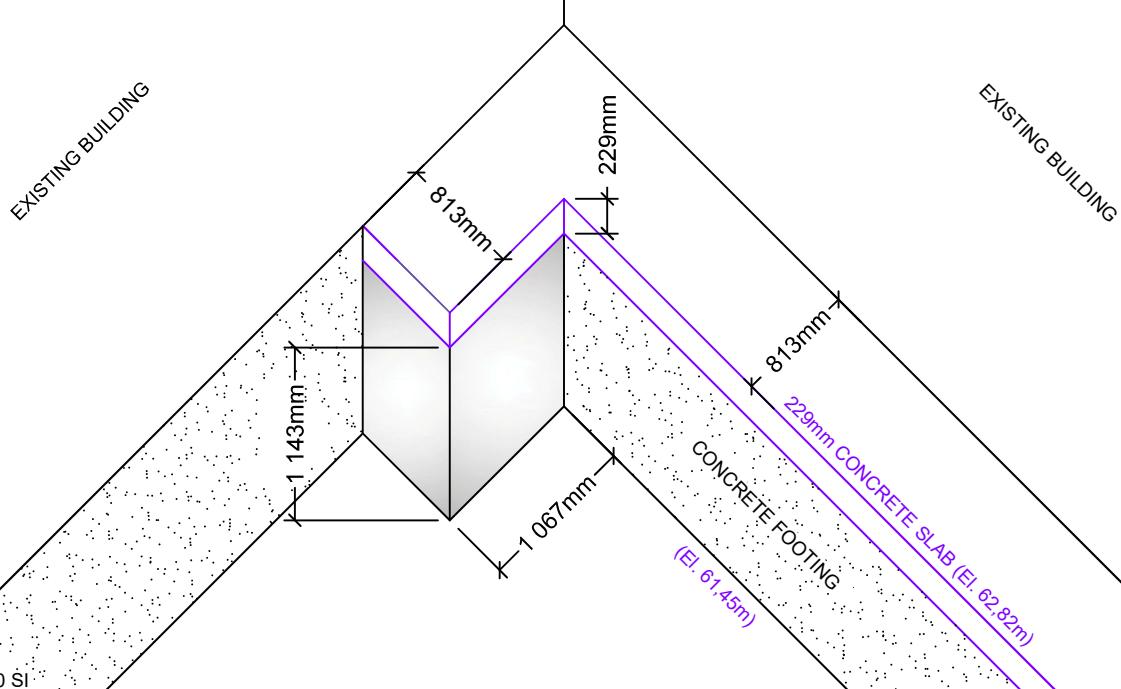
solroc

PROJ.: Geotechnical investigation

SITE: 110 O'Conner Street, Ottawa, Ontario

TEST PIT NO.

5


TEST: LOCATION: See drawing no. GT01.23.0064-1

DATE: July 26, 2023

TECH.: F. C.

SUPER.: G. G.

DEPTH (ELEV.) OF THE LAYER	DEPTH	SYMBOL	SOIL DESCRIPTION	WATER LEVEL	PENETROMETER (kPa)	VANE SHEAR STRENGTH RESISTANCE (kPa)	SAMPLE DEPTH	REMARKS, SAMPLE NO. AND LOCATION	CHEMICAL ANALYSES				
									C ₁₀ -C ₅₀	HAP	MTX	COV	Other
0,00(62,82m)			GROUND SURFACE										
0,23(62,59m)			229mm concrete slab.										
0,63(62,19m)			Fill: Crushed stone.										
1,00			Fractured black bedrock.										
1,37(61,45m)			End of test pit										
2,00													
3,00													
4,00													

**Appendix C:
Analytical Results Tables**

Table 1: Soil Quality Results
Petroleum Hydrocarbons (F1-F4) and BTEX

Parameter	Unit	*Table 3 RPI SCS Coarse	Sample Identification			
			**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05
Xylenes	µg/g	3.1	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons F1	µg/g	55	<5	<5	<5	<5
Petroleum Hydrocarbons F2	µg/g	98	<10	<10	<10	<10
Petroleum Hydrocarbons F3	µg/g	300	<50	<50	<50	<50
Petroleum Hydrocarbons F4	µg/g	2800	<50	<50	<50	<50

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

**mbcf - meters below concrete floor

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 2: Soil Quality Results
Volatile Organic Compounds (VOCs)

Parameter	Unit	*Table 3 RPI SCS Coarse	Sample Identification				
			**BH101 S1 0.1 - 0.3	**BH102 S1 0.2 - 0.4	BH103 S1 0.8 - 1.5	**BH106 S1 0.2 - 0.6	**BH108 S1 (Duplicate of BH106 S1) 0.2 - 0.6
Date Sampled	-	-	5-May-25	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.1 - 0.3	0.2 - 0.4	0.8 - 1.5	0.2 - 0.6	0.2 - 0.6
Dichlorodifluoromethane	µg/g	16	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	µg/g	4	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	µg/g	16	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	µg/g	0.1	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	µg/g	0.084	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	µg/g	0.75	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	µg/g	3.5	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	µg/g	16	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	µg/g	3.4	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	µg/g	0.05	<0.03	<0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	µg/g	0.38	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	µg/g	0.05	<0.03	<0.03	<0.03	<0.03	<0.03
Trichloroethylene	µg/g	0.061	<0.03	<0.03	<0.03	<0.03	<0.03
Bromodichloromethane	µg/g	13	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	µg/g	1.7	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	µg/g	9.4	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	µg/g	0.28	0.07	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	µg/g	0.058	<0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	µg/g	2.4	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	µg/g	0.27	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	µg/g	0.7	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	µg/g	4.8	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	µg/g	0.083	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	µg/g	3.4	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	µg/g	3.1	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	<0.04	<0.05	<0.04	<0.05	<0.05
n-Hexane	µg/g	2.8	<0.05	<0.05	<0.05	<0.05	<0.05

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection

**mbcf - meters below concrete floor

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 3: Soil Quality Results
Polycyclic Aromatic Hydrocarbons (PAHs)

Parameter	Unit	*Table 3 RPI SCS Coarse	Sample Identification			
			**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6
Naphthalene	µg/g	0.6	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9	<0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	62	<0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	6.2	<0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.67	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	<0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78	<0.05	<0.05	<0.05	<0.05
Benzo(a)anthracene	µg/g	0.5	<0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	µg/g	0.38	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6	<0.05	<0.05	<0.05	<0.05
2-and 1-methyl Naphthalene	µg/g	0.99	<0.05	<0.05	<0.05	<0.05

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act , dated April 2011.

**mbcf - meters below concrete floor

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 4: Soil Quality Results
Metals and Other Regulatory Parameters (ORPs)

Parameter	Unit	*Table 3 RPI SCS Coarse	Sample Identification			
			**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6
Antimony	µg/g	7.5	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	2	3	2	2
Barium	µg/g	390	51.9	57.5	49.3	54.2
Beryllium	µg/g	4	<0.5	<0.5	<0.5	<0.5
Boron	µg/g	120	20	22	20	20
Boron (Hot Water Soluble)	µg/g	1.5	0.26	0.24	0.22	0.23
Cadmium	µg/g	1.2	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	8	13	9	8
Cobalt	µg/g	22	5.9	6.6	5.5	4.9
Copper	µg/g	140	11.2	16.3	16.5	10.8
Lead	µg/g	120	6	8	5	5
Molybdenum	µg/g	6.9	0.8	1.0	0.7	0.7
Nickel	µg/g	100	10	13	9	8
Selenium	µg/g	2.4	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.64	0.59	0.76	0.61
Vanadium	µg/g	86	16.8	20.4	17.4	17.9
Zinc	µg/g	340	15	26	16	15
Chromium, Hexavalent	µg/g	8	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.7	0.727	0.203	0.470	0.509
Sodium Adsorption Ratio	-	5	3.1	2.4	1.4	1.4
pH	***see note	-	6.92	6.77	6.82	6.84

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act , dated April 2011.

**mbcf - meters below concrete floor

***pH 5 to 9 for surface soils; pH 5 to 11 for subsurface soil

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

ORPs include Boron (HWS), Cyanide (CN-), Chromium (VI) (CrVI), Mercury (Hg), pH, Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR)

The elevated EC in soil are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O.Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed to not be exceeded. Reference is made to O.Reg. 153/04, as amended, S. 49(1).

Table 5: Soil Quality Results
Polychlorinated Biphenyls (PCBs)

Parameter	Unit	*Table 3 RPI SCS Coarse	Sample Identification	
			**BH102 S1	**BH109 S1 (Duplicate of BH102 S1)
Date Sampled			7-May-25	7-May-25
Depth	mbgs		0.2 - 0.4	0.2 - 0.4
PCBs, total	µg/g	0.35	<0.1	<0.1

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act , dated April 2011.

**mbcf - meters below concrete floor of the third level of undergroun parking

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

**Table 6: Groundwater Quality Results
Petroleum Hydrocarbons (F1-F4) and BTEX**

Parameter	Unit	*Table 3 SCS	Sample Identification							
			BH1	MW109 (Duplicate of BH1)	BH4	MW102	MW104	MW105	MW106	MW107
Date Sampled	-	-	8-May-25	8-May-25	9-May-25	8-May-25	13-Jun-25	8-May-25	8-May-25	8-May-25
Benzene	µg/L	44	<0.20	<0.20	<0.20	0.92	<0.20	0.24	0.27	0.31
Ethylbenzene	µg/L	2300	<0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10
Toluene	µg/L	18000	<0.20	<0.20	0.72	5.17	0.24	0.86	0.92	1.14
Xylenes (total)	µg/L	4200	<0.20	<0.20	<0.20	6.04	0.47	2.32	0.98	1.26
Petroleum Hydrocarbons F1 (C6-C10)	µg/L	750	<25	<25	<25	27	<25	<25	<25	<25
Petroleum Hydrocarbons F2 (C10-C16)	µg/L	150	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	µg/L	500	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F4 (C34-C50)	µg/L	500	<100	<100	<100	<100	<100	<100	<100	<100

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standard

Table 7: Groundwater Quality Results
Volatile Organic Compounds (VOCs)

Parameter	Unit	*Table 3 SCS	Sample Identification									
			BH1	MW109 (Duplicate of BH1)	BH4	MW101	MW102	MW104	MW105	MW106	MW107	
Date Sampled	-	-	8-May-25	8-May-25	9-May-25	8-May-25	8-May-25	9-May-25	8-May-25	8-May-25	8-May-25	
Dichlorodifluoromethane	µg/L	4400	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	µg/L	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methylene Chloride	µg/L	610	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	320	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	µg/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	44	<0.20	<0.20	<0.20	0.76	0.92	<0.20	0.24	0.27	0.31	
1,2-Dichloropropane	µg/L	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	85000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	18000	<0.20	<0.20	0.72	4.42	5.17	1.72	0.86	0.92	1.14	
Dibromochloromethane	µg/L	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,2,2-Tetrachloroethane	µg/L	3.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	µg/L	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	µg/L	2300	<0.10	<0.10	<0.10	0.28	0.35	0.33	<0.10	<0.10	<0.10	
Bromoform	µg/L	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	µg/L	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	µg/L	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	<0.30	<0.30	<0.30	4.66	6.04	5.98	2.32	0.98	1.26	
Xylenes (Total)	µg/L	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	µg/L	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standard

**Table 8: Groundwater Quality Results
Polycyclic Aromatic Hydrocarbons (PAHs)**

Parameter	Unit	*Table 3 SCS	Sample Identification		
			BH1	MW109 (Duplicate of BH1)	MW107
Date Sampled	-	-	8-May-25	8-May-25	8-May-25
Naphthalene	µg/L	1400	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1.8	<0.20	<0.20	<0.20
Acenaphthene	µg/L	600	<0.20	<0.20	<0.20
Fluorene	µg/L	400	<0.20	<0.20	<0.20
Phenanthrene	µg/L	580	<0.10	<0.10	<0.10
Anthracene	µg/L	2.4	<0.10	<0.10	<0.10
Fluoranthene	µg/L	130	<0.20	<0.20	<0.20
Pyrene	µg/L	68	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	4.7	<0.20	<0.20	<0.20
Chrysene	µg/L	1	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.2	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.52	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	µg/L	1800	<0.20	<0.20	<0.20

*MECP Soil, Ground Water and Sediment Standards for Use Under
Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

Table 9: Groundwater Quality Results
Metals and Other Regulatory Parameters (ORPs)

Parameter	Unit	*Table 3 SCS	Sample Identification						
			BH1	MW109 (Duplicate of BH1)	MW106	MW107		MW120 (Duplicate of MW107)	MW107
Date Sampled	-	-	8-May-25	8-May-25	8-May-25	8-May-25	9-Jun-25	9-Jun-25	13-Jun-25
Antimony	µg/L	20000	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<1.0
Arsenic	µg/L	1900	<1.0	<1.0	1.9	1.2	<1.0	<1.0	<1.0
Barium	µg/L	29000	29.2	28.1	460	230	78.1	77.0	86.7
Beryllium	µg/L	67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Boron	µg/L	45000	252	307	279	133	145	142	137
Cadmium	µg/L	2.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chromium	µg/L	810	<2.0	<2.0	<2.0	2.4	<2.0	<2.0	<2.0
Cobalt	µg/L	66	1.51	1.90	<0.50	94.1	12.4	13.3	13.6
Copper	µg/L	87	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8
Lead	µg/L	25	0.51	<0.50	1.42	1.24	0.56	<0.50	<0.50
Molybdenum	µg/L	9200	0.91	4.26	3.37	17.7	16.6	16.4	13.6
Nickel	µg/L	490	8.6	10.8	<1.0	60.6	17.5	16.4	22.6
Selenium	µg/L	63	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	1.9
Silver	µg/L	1.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	µg/L	510	<0.30	<0.30	<0.30	0.44	<0.30	<0.30	<0.30
Uranium	µg/L	420	14.4	13.0	1.81	26.0	21.7	20.8	18.7
Vanadium	µg/L	250	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Zinc	µg/L	1100	<5.0	<5.0	18.1	10.7	9.8	5.8	11.2
Mercury	µg/L	0.29	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium VI	µg/L	140	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000
Cyanide, WAD	µg/L	66	<2	<2	<2	<2	<2	<2	<2
Sodium	µg/L	2300000	2280000	2450000	854000	1440000	1250000	1170000	1180000
Chloride	µg/L	2300000	4670000	4560000	827000	2490000	2920000	3020000	2970000
pH	-	-	7.50	7.46	7.51	7.46	7.16	7.35	7.29

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

ORPs include Arsenic (As), Antimony (Sb), Selenium (Se), Cyanide (CN-), Mercury (Hg), Chromium VI (CrVI), Sodium (Na), and Chloride (Cl).

Values shaded and in bold exceed the Table 3 SCS

The elevated sodium and chloride in groundwater are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed to not be exceeded. Reference is made to O. Reg. 153/04, as amended, S. 49(1).

**Table 10: Groundwater Quality Results
Polychlorinated Biphenyls (PCBs)**

Parameter	Unit	*Table 3 SCS	Sample Identification	
			MW102	MW110 (Duplicate of MW102)
Date Sampled	-	-	8-May-25	8-May-25
PCBs	µg/L	7.8	<0.1	<0.1

*MECP Soil, Ground Water and Sediment Standards for Use Under
Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

**Appendix D:
Certificates of Analysis**

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291319

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Lab Operation Manager

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 23

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH102 S1	BH103 S2	BH106 S1	BH108 S1
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		G / S	RDL	2025-05-07	2025-05-08	2025-05-06	2025-05-06
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	2	3	2	2
Barium	µg/g	390	2.0	51.9	57.5	49.3	54.2
Beryllium	µg/g	4	0.5	<0.5	<0.5	<0.5	<0.5
Boron	µg/g	120	5	20	22	20	20
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.26	0.24	0.22	0.23
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	8	13	9	8
Cobalt	µg/g	22	0.8	5.9	6.6	5.5	4.9
Copper	µg/g	140	1.0	11.2	16.3	16.5	10.8
Lead	µg/g	120	1	6	8	5	5
Molybdenum	µg/g	6.9	0.5	0.8	1.0	0.7	0.7
Nickel	µg/g	100	1	10	13	9	8
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.50	0.64	0.59	0.76	0.61
Vanadium	µg/g	86	2.0	16.8	20.4	17.4	17.9
Zinc	µg/g	340	5	15	26	16	15
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.727	0.203	0.470	0.509
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	3.1	2.4	1.4	1.4
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	6.92	6.77	6.82	6.84

Certified By:

 Amanjot Bhella

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
6738931-6738939 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl₂ extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Amanjot Bhella
AMANJOT BHELLA
CHARTERED
CHEMIST
ANALYST
MEMBER OF THE
CHEMICAL PROFESSION
OF CANADA

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH102 S1	BH103 S2	BH106 S1	BH108 S1
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		G / S	RDL	2025-05-07	2025-05-08	2025-05-06	2025-05-06
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	µg/g	78	0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	µg/g	7	0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3- <i>cd</i>)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	8.3	7.1	11.0	11.1
Surrogate	Unit	Acceptable Limits					
Naphthalene-d8	%	50-140	95	105	90	75	
Acridine-d9	%	50-140	90	85	110	100	
Terphenyl-d14	%	50-140	115	75	70	70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

AGAT

Laboratories

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

SAMPLE DESCRIPTION:			BH102 S1	BH109 S1
Parameter	Unit	SAMPLE TYPE:	Soil	Soil
		DATE SAMPLED:	2025-05-07	2025-05-07
		G / S	RDL	6738931
Polychlorinated Biphenyls	µg/g	0.35	0.1	<0.1
Moisture Content	%		0.1	8.3
Surrogate	Unit	Acceptable Limits		
Decachlorobiphenyl	%	50-140	108	116

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738940 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

AGAT

Labs

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH102 S1	BH106 S1	BH108 S1
		SAMPLE TYPE:		Soil	Soil	Soil
		G / S	RDL	2025-05-07	2025-05-06	2025-05-06
F1 (C6 to C10)	µg/g	55	5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA
Moisture Content	%		0.1	8.3	11.0	11.1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140		117	85	84
Terphenyl	%	60-140		64	87	93

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319
PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras
SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH103 S2
		SAMPLE TYPE:		Soil
		G / S	DATE SAMPLED:	2025-05-08
Benzene	µg/g	0.21	0.02	<0.02
Toluene	µg/g	2.3	0.05	<0.05
Ethylbenzene	µg/g	2	0.05	<0.05
m & p-Xylene	µg/g		0.05	<0.05
o-Xylene	µg/g		0.05	<0.05
Xylenes (Total)	µg/g	3.1	0.05	<0.05
F1 (C6 to C10)	µg/g	55	5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5
F2 (C10 to C16)	µg/g	98	10	<10
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10
F3 (C16 to C34)	µg/g	300	50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50
F4 (C34 to C50)	µg/g	2800	50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA
Moisture Content	%		0.1	7.1
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	60-140	88	
Terphenyl	%	60-140	90	

Certified By:

R. Chakraborty

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319
PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras
SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738936 Results are based on sample dry weight.
The C6-C10 fraction is calculated using toluene response factor.
Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.
Total C6 - C50 results are corrected for BTEX and PAH contributions.
C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.
C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).
This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.
nC10, nC16 and nC34 response factors are within 10% of their average.
C50 response factor is within 70% of nC10 + nC16 + nC34 average.
Linearity is within 15%.
Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319
PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras
SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH101 S1	BH103 S1
		SAMPLE TYPE:		Soil	Soil
		G / S	RDL	2025-05-05	2025-05-08
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05
Acetone	ug/g	16	0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04
Toluene	ug/g	2.3	0.05	<0.05	<0.05
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28	0.05	0.07	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05
m & p-Xylene	ug/g	0.05	<0.05	<0.05	

Certified By:

R. Chakraborty

AGAT

Labs

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

SAMPLE DESCRIPTION:				BH101 S1	BH103 S1
Parameter	Unit	SAMPLE TYPE:	DATE SAMPLED:	Soil	Soil
		G / S	RDL	6738925	6738935
Bromoform	ug/g	0.27	0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	<0.04	<0.04
n-Hexane	μg/g	2.8	0.05	<0.05	<0.05
Moisture Content	%		0.1	10.5	6.2
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140		84	101
4-Bromofluorobenzene	% Recovery	50-140		96	82

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738925-6738935 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

AGAT

Labs

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH102 S1	BH106 S1	BH108 S1
		SAMPLE TYPE:		Soil	Soil	Soil
		G / S	RDL	2025-05-07	2025-05-06	2025-05-06
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	<0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04
Toluene	ug/g	2.3	0.05	<0.05	<0.05	<0.05
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05

Certified By:

R. Chakraborty

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH102 S1	BH106 S1	BH108 S1
		SAMPLE TYPE:		Soil	Soil	Soil
		DATE SAMPLED:	6738931	2025-05-07	6738938	2025-05-06
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	ug/g	0.05	0.05	<0.05	<0.05	<0.05
n-Hexane	ug/g	2.8	0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	8.3	11.0	11.1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	50-140		117	85	84
4-Bromofluorobenzene	% Recovery	50-140		88	74	88

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

Exceedance Summary

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738931	BH102 S1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.727

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Soil Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony	6735264	<0.8	<0.8	NA	< 0.8	118%	70%	130%	98%	80%	120%	123%	70%	130%
Arsenic	6735264	5	5	0.0%	< 1	101%	70%	130%	90%	80%	120%	95%	70%	130%
Barium	6735264	138	139	0.7%	< 2.0	106%	70%	130%	105%	80%	120%	108%	70%	130%
Beryllium	6735264	0.8	0.8	NA	< 0.5	78%	70%	130%	84%	80%	120%	83%	70%	130%
Boron	6735264	24	24	NA	< 5	130%	70%	130%	115%	80%	120%	75%	70%	130%
Boron (Hot Water Soluble)	6735264	0.65	0.68	4.5%	< 0.10	119%	60%	140%	106%	70%	130%	115%	60%	140%
Cadmium	6735264	<0.5	<0.5	NA	< 0.5	107%	70%	130%	98%	80%	120%	106%	70%	130%
Chromium	6735264	27	28	3.6%	< 5	95%	70%	130%	97%	80%	120%	NA	70%	130%
Cobalt	6735264	10.6	11.2	5.5%	< 0.8	91%	70%	130%	99%	80%	120%	102%	70%	130%
Copper	6735264	21.2	22.1	4.2%	< 1.0	89%	70%	130%	102%	80%	120%	105%	70%	130%
Lead	6735264	17	17	0.0%	< 1	103%	70%	130%	107%	80%	120%	107%	70%	130%
Molybdenum	6735264	<0.5	<0.5	NA	< 0.5	99%	70%	130%	99%	80%	120%	103%	70%	130%
Nickel	6735264	22	23	4.4%	< 1	92%	70%	130%	98%	80%	120%	93%	70%	130%
Selenium	6735264	0.9	1.1	NA	< 0.8	97%	70%	130%	113%	80%	120%	114%	70%	130%
Silver	6735264	<0.5	<0.5	NA	< 0.5	97%	70%	130%	98%	80%	120%	103%	70%	130%
Thallium	6735264	<0.5	<0.5	NA	< 0.5	106%	70%	130%	102%	80%	120%	106%	70%	130%
Uranium	6735264	<0.50	0.52	NA	< 0.50	107%	70%	130%	102%	80%	120%	109%	70%	130%
Vanadium	6735264	37.0	37.5	1.3%	< 2.0	94%	70%	130%	95%	80%	120%	108%	70%	130%
Zinc	6735264	81	86	6.0%	< 5	99%	70%	130%	98%	80%	120%	NA	70%	130%
Chromium, Hexavalent	6745488	<0.2	<0.2	NA	< 0.2	103%	70%	130%	94%	80%	120%	85%	70%	130%
Cyanide, WAD	6735258	<0.040	<0.040	NA	< 0.040	98%	70%	130%	96%	80%	120%	110%	70%	130%
Mercury	6735264	<0.10	<0.10	NA	< 0.10	101%	70%	130%	101%	80%	120%	106%	70%	130%
Electrical Conductivity (2:1)	6738931	6738931	0.727	0.722	0.7%	< 0.005	98%	80%	120%	NA		NA		
Sodium Adsorption Ratio (2:1) (Calc.)	6738931	6738931	3.1	3.1	0.0%	N/A	NA		NA			NA		
pH, 2:1 CaCl ₂ Extraction	6745705		6.14	6.36	3.5%	NA	97%	80%	120%	NA		NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Amanjot Bhella
AMANJOT BHELLA
CHARTERED CHEMIST
THE CHEMICAL PROCESS
INDUSTRIES OF CANADA LTD.

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	
O. Reg. 153(511) - VOCs (Soil)																
Dichlorodifluoromethane	6459448		<0.05	<0.05	NA	< 0.05	70%	50%	140%	83%	50%	140%	85%	50%	140%	
Vinyl Chloride	6459448		<0.02	<0.02	NA	< 0.02	107%	50%	140%	109%	50%	140%	127%	50%	140%	
Bromomethane	6459448		<0.05	<0.05	NA	< 0.05	93%	50%	140%	99%	50%	140%	102%	50%	140%	
Trichlorofluoromethane	6459448		<0.05	<0.05	NA	< 0.05	82%	50%	140%	80%	50%	140%	90%	50%	140%	
Acetone	6459448		<0.50	<0.50	NA	< 0.50	95%	50%	140%	88%	50%	140%	91%	50%	140%	
1,1-Dichloroethylene	6459448		<0.05	<0.05	NA	< 0.05	62%	50%	140%	84%	60%	130%	99%	50%	140%	
Methylene Chloride	6459448		<0.05	<0.05	NA	< 0.05	92%	50%	140%	96%	60%	130%	102%	50%	140%	
Trans- 1,2-Dichloroethylene	6459448		<0.05	<0.05	NA	< 0.05	67%	50%	140%	92%	60%	130%	113%	50%	140%	
Methyl tert-butyl Ether	6459448		<0.05	<0.05	NA	< 0.05	68%	50%	140%	74%	60%	130%	87%	50%	140%	
1,1-Dichloroethane	6459448		<0.02	<0.02	NA	< 0.02	73%	50%	140%	78%	60%	130%	93%	50%	140%	
Methyl Ethyl Ketone	6459448		<0.50	<0.50	NA	< 0.50	99%	50%	140%	133%	50%	140%	86%	50%	140%	
Cis- 1,2-Dichloroethylene	6459448		<0.02	<0.02	NA	< 0.02	110%	50%	140%	97%	60%	130%	97%	50%	140%	
Chloroform	6459448		<0.04	<0.04	NA	< 0.04	91%	50%	140%	77%	60%	130%	104%	50%	140%	
1,2-Dichloroethane	6459448		<0.03	<0.03	NA	< 0.03	137%	50%	140%	108%	60%	130%	100%	50%	140%	
1,1,1-Trichloroethane	6459448		<0.05	<0.05	NA	< 0.05	98%	50%	140%	98%	60%	130%	89%	50%	140%	
Carbon Tetrachloride	6459448		<0.05	<0.05	NA	< 0.05	92%	50%	140%	100%	60%	130%	92%	50%	140%	
Benzene	6459448		<0.02	<0.02	NA	< 0.02	91%	50%	140%	98%	60%	130%	85%	50%	140%	
1,1-Dichloropropane	6459448		<0.03	<0.03	NA	< 0.03	111%	50%	140%	93%	60%	130%	77%	50%	140%	
Trichloroethylene	6459448		<0.03	<0.03	NA	< 0.03	101%	50%	140%	103%	60%	130%	109%	50%	140%	
Bromodichloromethane	6459448		<0.05	<0.05	NA	< 0.05	103%	50%	140%	87%	60%	130%	80%	50%	140%	
Methyl Isobutyl Ketone	6459448		<0.50	<0.50	NA	< 0.50	99%	50%	140%	91%	50%	140%	93%	50%	140%	
1,1,2-Trichloroethane	6459448		<0.04	<0.04	NA	< 0.04	90%	50%	140%	106%	60%	130%	94%	50%	140%	
Toluene	6459448		<0.05	<0.05	NA	< 0.05	68%	50%	140%	92%	60%	130%	107%	50%	140%	
Dibromochloromethane	6459448		<0.05	<0.05	NA	< 0.05	96%	50%	140%	101%	60%	130%	75%	50%	140%	
Ethylene Dibromide	6459448		<0.04	<0.04	NA	< 0.04	83%	50%	140%	91%	60%	130%	72%	50%	140%	
Tetrachloroethylene	6459448		<0.05	<0.05	NA	< 0.05	78%	50%	140%	99%	60%	130%	78%	50%	140%	
1,1,1,2-Tetrachloroethane	6459448		<0.04	<0.04	NA	< 0.04	85%	50%	140%	96%	60%	130%	75%	50%	140%	
Chlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	85%	50%	140%	93%	60%	130%	94%	50%	140%	
Ethylbenzene	6459448		<0.05	<0.05	NA	< 0.05	64%	50%	140%	83%	60%	130%	78%	50%	140%	
m & p-Xylene	6459448		<0.05	<0.05	NA	< 0.05	77%	50%	140%	93%	60%	130%	101%	50%	140%	
Bromoform	6459448		<0.05	<0.05	NA	< 0.05	87%	50%	140%	96%	60%	130%	60%	50%	140%	
Styrene	6459448		<0.05	<0.05	NA	< 0.05	82%	50%	140%	95%	60%	130%	105%	50%	140%	
1,1,2,2-Tetrachloroethane	6459448		<0.05	<0.05	NA	< 0.05	84%	50%	140%	84%	60%	130%	75%	50%	140%	
o-Xylene	6459448		<0.05	<0.05	NA	< 0.05	83%	50%	140%	95%	60%	130%	105%	50%	140%	
1,3-Dichlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	89%	50%	140%	91%	60%	130%	110%	50%	140%	
1,4-Dichlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	94%	50%	140%	92%	60%	130%	109%	50%	140%	
1,2-Dichlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	99%	50%	140%	91%	60%	130%	109%	50%	140%	
n-Hexane	6459448		<0.05	<0.05	NA	< 0.05	67%	50%	140%	96%	60%	130%	78%	50%	140%	

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis (Continued)

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits	Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)															
F1 (C6 to C10)	6726786		<5	<5	NA	< 5	102%	60% 140%	106%	60% 140%	90%	60%	140%		
F2 (C10 to C16)	6737439		< 10	< 10	NA	< 10	91%	60% 140%	96%	60% 140%	109%	60%	140%		
F3 (C16 to C34)	6737439		< 50	< 50	NA	< 50	99%	60% 140%	95%	60% 140%	114%	60%	140%		
F4 (C34 to C50)	6737439		< 50	< 50	NA	< 50	92%	60% 140%	87%	60% 140%	105%	60%	140%		
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6735914		<0.05	<0.05	NA	< 0.05	131%	50% 140%	90%	50% 140%	93%	50%	140%		
Acenaphthylene	6735914		<0.05	<0.05	NA	< 0.05	119%	50% 140%	88%	50% 140%	88%	50%	140%		
Acenaphthene	6735914		<0.05	<0.05	NA	< 0.05	101%	50% 140%	98%	50% 140%	88%	50%	140%		
Fluorene	6735914		<0.05	<0.05	NA	< 0.05	93%	50% 140%	90%	50% 140%	95%	50%	140%		
Phenanthrene	6735914		<0.05	<0.05	NA	< 0.05	87%	50% 140%	90%	50% 140%	88%	50%	140%		
Anthracene	6735914		<0.05	<0.05	NA	< 0.05	84%	50% 140%	93%	50% 140%	93%	50%	140%		
Fluoranthene	6735914		<0.05	<0.05	NA	< 0.05	88%	50% 140%	98%	50% 140%	90%	50%	140%		
Pyrene	6735914		<0.05	<0.05	NA	< 0.05	82%	50% 140%	90%	50% 140%	98%	50%	140%		
Benzo(a)anthracene	6735914		<0.05	<0.05	NA	< 0.05	91%	50% 140%	90%	50% 140%	90%	50%	140%		
Chrysene	6735914		<0.05	<0.05	NA	< 0.05	108%	50% 140%	95%	50% 140%	90%	50%	140%		
Benzo(b)fluoranthene	6735914		<0.05	<0.05	NA	< 0.05	84%	50% 140%	90%	50% 140%	90%	50%	140%		
Benzo(k)fluoranthene	6735914		<0.05	<0.05	NA	< 0.05	138%	50% 140%	95%	50% 140%	88%	50%	140%		
Benzo(a)pyrene	6735914		<0.05	<0.05	NA	< 0.05	85%	50% 140%	90%	50% 140%	88%	50%	140%		
Indeno(1,2,3-cd)pyrene	6735914		<0.05	<0.05	NA	< 0.05	81%	50% 140%	90%	50% 140%	90%	50%	140%		
Dibenz(a,h)anthracene	6735914		<0.05	<0.05	NA	< 0.05	70%	50% 140%	95%	50% 140%	88%	50%	140%		
Benzo(g,h,i)perylene	6735914		<0.05	<0.05	NA	< 0.05	102%	50% 140%	88%	50% 140%	88%	50%	140%		
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	6745782		< 0.1	< 0.1	NA	< 0.1	102%	50% 140%	100%	50% 140%	98%	50%	140%		
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)															
Benzene	6736028		<0.02	<0.02	NA	< 0.02	68%	60% 140%	90%	60% 140%	85%	60%	140%		
Toluene	6736028		<0.05	<0.05	NA	< 0.05	73%	60% 140%	93%	60% 140%	84%	60%	140%		
Ethylbenzene	6736028		<0.05	<0.05	NA	< 0.05	69%	60% 140%	90%	60% 140%	78%	60%	140%		
m & p-Xylene	6736028		<0.05	<0.05	NA	< 0.05	86%	60% 140%	84%	60% 140%	98%	60%	140%		
o-Xylene	6736028		<0.05	<0.05	NA	< 0.05	62%	60% 140%	88%	60% 140%	79%	60%	140%		
F1 (C6 to C10)	6736028		<5	<5	NA	< 5	88%	60% 140%	82%	60% 140%	104%	60%	140%		

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

R. Chakraborty

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl ₂ Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

SAMPLING SITE: Ottawa

AGAT WORK ORDER: 25T291319

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue, Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122

5623 McAdam Road, Mississauga, ON L4Z 1N9

1686 Woodward Drive, Ottawa, ON, K2C 3R8

webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: **G2S**
 Contact: **Hailey Perras**
 Address: **4361 Harvester Rd - Unit 12**
 Burlington ON
 Phone: **905 220 8587** Fax:
 Reports to be sent to:
 1. Email: **hailey@g2sconsulting.com**
 2. Email: **stephanie@g2sconsulting.com**

Project Information:

Project: **02575042B**
 Site Location: **OTTAWA**
 Sampled By: **DB**
 AGAT Quote #: **Standing Offer** PO:
 Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company: _____
 Contact: _____
 Address: _____
 Email: _____

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. BH101 S1	05/05/25	AM PM	3	S		
2. BH102 S1	05/07/25	AM PM	4	S		
3. BH103 S1	05/08/25	AM PM	3	S		
4. BH103 S2	↓	AM PM	4	S		
5. BH106 S1	05/04/25	AM PM	4	S		
6. BH108 S1	↓	AM PM	4	S		
7. BH109 S1	05/07/25	AM PM	1	S		
8.		AM PM				
9.		AM PM				
10.		AM PM				
11.		AM PM				

Samples Relinquished By (Print Name and Sign):

Hailey Perras + Hailey

Date: **05/14/25** Time: **2:00 pm**

Samples Received By (Print Name and Sign):

Andy Jura

Date: **May 14, 2025** Time: **3:58 pm**

Page **1** of **1**

Samples Relinquished By (Print Name and Sign):

Date: _____ Time: _____

Samples Received By (Print Name and Sign):

Date: _____ Time: _____

Nº: _____

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04 Table **3+7**

Ind/Com Res/Park Agriculture

Ind/Com Res/Park Agriculture

Regulation 558

CCME

Sewer Use Sanitary Storm

Region

Prov. Water Quality Objectives (PWQO)

Other

Indicate One

Is this submission for a Record of Site Condition (RSC)?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Legal Sample

Sample Matrix Legend

GW Ground Water SD Sediment
 O Oil SW Surface Water
 P Paint R Rock/Shale
 S Soil

Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153		O. Reg 406		O. Reg 558	
	Metals & Inorganics	Metals - CrVI, Hg, HWSB	BTEX, F1-F4 PHCs	VOC	PAHs	PCBs: Aroclors
Regulation 406 Characterization Package						
Hg, Metals, BTEX, F1-F4						
EC, SAR						
Regulation 406 SP/LP Rainwater Leach						
SP/LP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> OC						
Landfill Disposal Characterization TCLP:						
TCLP: <input type="checkbox"/> M&P <input type="checkbox"/> VOCs <input type="checkbox"/> ABPs <input type="checkbox"/> B(a)P <input type="checkbox"/> PCPs						
Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide						
PFAS Water: <input type="checkbox"/> PFAS Soil: <input type="checkbox"/>						

Potentially Hazardous or High Concentration (Y/N)

Laboratory Use Only

Work Order #: **25T291319**

1 mech

Arrival Temperatures: **8.3 7.6 7.1**

Depot Temperatures:

Custody Seal Intact: Yes No N/A

Notes: **loose ice**

Turnaround Time (TAT) Required:

Regular TAT 5 to 7 Business Days

Rush TAT (Rush Surcharges May Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291322

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 21

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW1	MW107	MW109
		SAMPLE TYPE:		Water	Water	Water
		G / S	RDL	2025-05-08	2025-05-08	2025-05-08
Naphthalene	µg/L	7	0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1	0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	17	0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	290	0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	380	0.10	<0.10	<0.10	<0.10
Anthracene	µg/L	1	0.10	<0.10	<0.10	<0.10
Fluoranthene	µg/L	44	0.20	<0.20	<0.20	<0.20
Pyrene	µg/L	5.7	0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	1.8	0.20	<0.20	<0.20	<0.20
Chrysene	µg/L	0.7	0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3- <i>cd</i>)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.4	0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
2- and 1-methyl Naphthalene	µg/L	1500	0.20	<0.20	<0.20	<0.20
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140	113	117	117	
Acridine-d9	%	50-140	83	91	112	
Terphenyl-d14	%	50-140	96	100	99	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(i)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PCBs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

		SAMPLE DESCRIPTION:		MW102	MW110
		SAMPLE TYPE:		Water	Water
		DATE SAMPLED:		2025-05-08	2025-05-08
Parameter	Unit	G / S	RDL	6738806	6738821
Polychlorinated Biphenyls Surrogate	µg/L	0.2	0.1	<0.1	<0.1
Decachlorobiphenyl	%	60-140		85	94

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738806-6738821 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By: N Popovikof

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW1	MW107	MW109
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-08
F1 (C6 to C10)	µg/L			25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L			100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L			100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L			500	NA	NA
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140		97	99	98
Terphenyl	% Recovery	60-140		111	106	85

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW4	MW102	MW105	MW106
		G / S	RDL	Water	Water	Water	Water
				DATE SAMPLED:	2025-05-09	2025-05-08	2025-05-08
F1 (C6 to C10)	µg/L		25	<25	27	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA	NA
Sediment				1	3	3	3
Surrogate	Unit	Acceptable Limits					
Toluene-d8	%	50-140		99	96	98	98
Terphenyl	% Recovery	60-140		75	111	99	69

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738799-6738815 The C6-C10 fraction is calculated using Toluene response factor.
Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW101	MW104	TRIP BLANK
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-09
Dichlorodifluoromethane	µg/L	3500	0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2000	0.40	<0.40	<0.40	<0.40
Acetone	µg/L	100000	1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	26	0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	11	0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	21000	1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2	0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	23	0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Benzene	µg/L	0.5	0.20	0.76	<0.20	<0.20
1,2-Dichloropropane	µg/L	0.58	0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	67000	0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	5200	1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20
Toluene	µg/L	320	0.20	4.42	1.72	<0.20
Dibromochloromethane	µg/L	65000	0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	140	0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	54	0.10	0.28	0.33	<0.10
m & p-Xylene	µg/L		0.20	3.43	4.45	<0.20

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW101	MW104	TRIP BLANK
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-09
Bromoform	µg/L	5	0.10	<0.10	<0.10	<0.10
Styrene	µg/L	43	0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	1.23	1.53	<0.10
1,3-Dichlorobenzene	µg/L	7600	0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	150	0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	72	0.20	4.66	5.98	<0.20
n-Hexane	µg/L	5	0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	50-140	99	97	96	
4-Bromofluorobenzene	% Recovery	50-140	110	113	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738803-6738823 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW1	MW4	MW102	MW105	MW106	MW107	MW109
		SAMPLE TYPE:		Water	Water	Water	Water	Water	Water	Water
		G / S	RDL	DATE SAMPLED:	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08	2025-05-08
Dichlorodifluoromethane	µg/L	3500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorodifluoromethane	µg/L	2000	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	26	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	11	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	23	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	0.5	0.20	<0.20	<0.20	0.92	0.24	0.27	0.31	<0.20
1,2-Dichloropropane	µg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	320	0.20	<0.20	0.72	5.17	0.86	0.92	1.14	<0.20
Dibromochloromethane	µg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	54	0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	µg/L		0.20	<0.20	<0.20	4.47	1.61	0.67	0.88	<0.20

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW1	MW4	MW102	MW105	MW106	MW107	MW109
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water	Water	Water	Water	Water
				G / S	RDL	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08
Bromoform	µg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L	0.10	0.10	<0.10	<0.10	1.57	0.71	0.31	0.38	<0.10
1,3-Dichlorobenzene	µg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	72	0.20	<0.20	<0.20	6.04	2.32	0.98	1.26	<0.20
n-Hexane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits								
Toluene-d8	% Recovery	50-140	97	99	96	98	98	99	98	
4-Bromofluorobenzene	% Recovery	50-140	117	112	111	112	112	110	114	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		G / S	RDL	MW1	MW106	MW107	MW109		
		SAMPLE TYPE:	DATE SAMPLED:			Water	Water	Water	Water		
						2025-05-08	6738796	2025-05-08	6738815	2025-05-08	6738818
Dissolved Antimony	µg/L	16000	1.0	<1.0	1.0	1.0	<1.0	1.0	2.0	<1.0	
Dissolved Arsenic	µg/L	1500	1.0	<1.0	1.0	1.0	1.9	1.0	1.2	<1.0	
Dissolved Barium	µg/L	23000	2.0	29.2	2.0	460	2.0	230	28.1		
Dissolved Beryllium	µg/L	53	0.50	<0.50	0.50	<0.50	0.50	<0.50	<0.50		
Dissolved Boron	µg/L	36000	10.0	252	10.0	279	10.0	133	307		
Dissolved Cadmium	µg/L	2.1	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20		
Dissolved Chromium	µg/L	640	2.0	<2.0	2.0	<2.0	2.0	2.4	<2.0		
Dissolved Cobalt	µg/L	52	0.50	1.51	0.50	<0.50	0.50	94.1	1.90		
Dissolved Copper	µg/L	69	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0		
Dissolved Lead	µg/L	20	0.50	0.51	0.50	1.42	0.50	1.24	<0.50		
Dissolved Molybdenum	µg/L	7300	0.50	0.91	0.50	3.37	0.50	17.7	4.26		
Dissolved Nickel	µg/L	390	1.0	8.6	1.0	<1.0	1.0	60.6	10.8		
Dissolved Selenium	µg/L	50	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0		
Dissolved Silver	µg/L	1.2	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20		
Dissolved Thallium	µg/L	400	0.30	<0.30	0.30	<0.30	0.30	0.44	<0.30		
Dissolved Uranium	µg/L	330	0.50	14.4	0.50	1.81	0.50	26.0	13.0		
Dissolved Vanadium	µg/L	200	0.40	<0.40	0.40	<0.40	0.40	<0.40	<0.40		
Dissolved Zinc	µg/L	890	5.0	<5.0	5.0	18.1	5.0	10.7	<5.0		
Mercury	µg/L	0.1	0.02	<0.02	0.02	<0.02	0.02	<0.02	<0.02		
Chromium VI	µg/L	110	2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000		
Cyanide, WAD	µg/L	52	2	<2	2	<2	2	<2	<2		
Dissolved Sodium	µg/L	1800000	500	2280000	500	854000	500	1440000	2450000		
Chloride	µg/L	1800000	244	4670000	122	827000	244	2490000	4560000		
pH	pH Units		NA	7.50	NA	7.51	NA	7.46	7.46		

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

A handwritten signature in black ink that reads "Iris Verastegui". The signature is written in a cursive, flowing style.

AGAT

Laboratories

Exceedance Summary

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738796	MW1	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	4670000
6738796	MW1	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	µg/L	1800000	2280000
6738803	MW101	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Benzene	µg/L	0.5	0.76
6738806	MW102	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)	Benzene	µg/L	0.5	0.92
6738806	MW102	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	µg/L	0.5	0.92
6738818	MW107	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	2490000
6738818	MW107	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Cobalt	µg/L	52	94.1
6738819	MW109	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	4560000
6738819	MW109	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	µg/L	1800000	2450000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

F1 (C6 to C10)	6737084	<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6737225	< 100	< 100	NA	< 100	90%	60%	140%	77%	60%	140%	71%	60%	140%
F3 (C16 to C34)	6737225	< 100	< 100	NA	< 100	102%	60%	140%	77%	60%	140%	71%	60%	140%
F4 (C34 to C50)	6737225	< 100	< 100	NA	< 100	65%	60%	140%	82%	60%	140%	90%	60%	140%

O. Reg. 153(511) - PAHs (Water)

Naphthalene	6738824	<0.20	<0.20	NA	< 0.20	115%	50%	140%	80%	50%	140%	72%	50%	140%
Acenaphthylene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	72%	50%	140%	76%	50%	140%
Acenaphthene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	75%	50%	140%	76%	50%	140%
Fluorene	6738824	<0.20	<0.20	NA	< 0.20	101%	50%	140%	76%	50%	140%	71%	50%	140%
Phenanthrene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	78%	50%	140%	72%	50%	140%
Anthracene	6738824	<0.10	<0.10	NA	< 0.10	77%	50%	140%	80%	50%	140%	81%	50%	140%
Fluoranthene	6738824	<0.20	<0.20	NA	< 0.20	103%	50%	140%	78%	50%	140%	75%	50%	140%
Pyrene	6738824	<0.20	<0.20	NA	< 0.20	102%	50%	140%	78%	50%	140%	81%	50%	140%
Benzo(a)anthracene	6738824	<0.20	<0.20	NA	< 0.20	79%	50%	140%	95%	50%	140%	84%	50%	140%
Chrysene	6738824	<0.10	<0.10	NA	< 0.10	111%	50%	140%	94%	50%	140%	74%	50%	140%
Benzo(b)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	83%	50%	140%	74%	50%	140%	70%	50%	140%
Benzo(k)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	86%	50%	140%	99%	50%	140%
Benzo(a)pyrene	6738824	<0.01	<0.01	NA	< 0.01	76%	50%	140%	88%	50%	140%	95%	50%	140%
Indeno(1,2,3-cd)pyrene	6738824	<0.20	<0.20	NA	< 0.20	74%	50%	140%	82%	50%	140%	103%	50%	140%
Dibenz(a,h)anthracene	6738824	<0.20	<0.20	NA	< 0.20	75%	50%	140%	76%	50%	140%	71%	50%	140%
Benzo(g,h,i)perylene	6738824	<0.20	<0.20	NA	< 0.20	84%	50%	140%	82%	50%	140%	91%	50%	140%

O. Reg. 153(511) - VOCs (with PHC) (Water)

Dichlorodifluoromethane	6737084	<0.40	<0.40	NA	< 0.40	103%	50%	140%	98%	50%	140%	87%	50%	140%
Vinyl Chloride	6737084	<0.17	<0.17	NA	< 0.17	74%	50%	140%	93%	50%	140%	80%	50%	140%
Bromomethane	6737084	<0.20	<0.20	NA	< 0.20	127%	50%	140%	89%	50%	140%	66%	50%	140%
Trichlorofluoromethane	6737084	<0.40	<0.40	NA	< 0.40	80%	50%	140%	71%	50%	140%	64%	50%	140%
Acetone	6737084	<1.0	<1.0	NA	< 1.0	89%	50%	140%	116%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	6737084	<0.30	<0.30	NA	< 0.30	79%	50%	140%	80%	60%	130%	77%	50%	140%
Methylene Chloride	6737084	<0.30	<0.30	NA	< 0.30	77%	50%	140%	127%	60%	130%	64%	50%	140%
trans- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	86%	50%	140%	68%	60%	130%	70%	50%	140%
Methyl tert-butyl ether	6737084	<0.20	<0.20	NA	< 0.20	95%	50%	140%	90%	60%	130%	72%	50%	140%
1,1-Dichloroethane	6737084	<0.30	<0.30	NA	< 0.30	76%	50%	140%	92%	60%	130%	73%	50%	140%
Methyl Ethyl Ketone	6737084	<1.0	<1.0	NA	< 1.0	93%	50%	140%	80%	50%	140%	67%	50%	140%
cis- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	93%	50%	140%	71%	60%	130%	69%	50%	140%
Chloroform	6737084	<0.20	<0.20	NA	< 0.20	74%	50%	140%	72%	60%	130%	70%	50%	140%
1,2-Dichloroethane	6737084	<0.20	<0.20	NA	< 0.20	79%	50%	140%	79%	60%	130%	78%	50%	140%
1,1,1-Trichloroethane	6737084	<0.30	<0.30	NA	< 0.30	73%	50%	140%	112%	60%	130%	110%	50%	140%
Carbon Tetrachloride	6737084	<0.20	<0.20	NA	< 0.20	73%	50%	140%	114%	60%	130%	98%	50%	140%

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis (Continued)																
RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Benzene	6737084		<0.20	<0.20	NA	< 0.20	75%	50%	140%	71%	60%	130%	68%	50%	140%	
1,2-Dichloropropane	6737084		<0.20	<0.20	NA	< 0.20	76%	50%	140%	74%	60%	130%	71%	50%	140%	
Trichloroethylene	6737084		<0.20	<0.20	NA	< 0.20	64%	50%	140%	76%	60%	130%	75%	50%	140%	
Bromodichloromethane	6737084		<0.20	<0.20	NA	< 0.20	95%	50%	140%	68%	60%	130%	66%	50%	140%	
Methyl Isobutyl Ketone	6737084		<1.0	<1.0	NA	< 1.0	80%	50%	140%	105%	50%	140%	69%	50%	140%	
1,1,2-Trichloroethane	6737084		<0.20	<0.20	NA	< 0.20	93%	50%	140%	84%	60%	130%	85%	50%	140%	
Toluene	6737084		<0.20	<0.20	NA	< 0.20	115%	50%	140%	81%	60%	130%	78%	50%	140%	
Dibromochloromethane	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	82%	60%	130%	85%	50%	140%	
Ethylene Dibromide	6737084		<0.10	<0.10	NA	< 0.10	87%	50%	140%	75%	60%	130%	77%	50%	140%	
Tetrachloroethylene	6737084		<0.20	<0.20	NA	< 0.20	58%	50%	140%	90%	60%	130%	81%	50%	140%	
1,1,1,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	69%	50%	140%	71%	60%	130%	79%	50%	140%	
Chlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	65%	50%	140%	86%	60%	130%	83%	50%	140%	
Ethylbenzene	6737084		<0.10	<0.10	NA	< 0.10	110%	50%	140%	82%	60%	130%	79%	50%	140%	
m & p-Xylene	6737084		<0.20	<0.20	NA	< 0.20	60%	50%	140%	85%	60%	130%	82%	50%	140%	
Bromoform	6737084		<0.10	<0.10	NA	< 0.10	93%	50%	140%	87%	60%	130%	106%	50%	140%	
Styrene	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	83%	60%	130%	83%	50%	140%	
1,1,2,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	86%	50%	140%	89%	60%	130%	91%	50%	140%	
o-Xylene	6737084		<0.10	<0.10	NA	< 0.10	70%	50%	140%	86%	60%	130%	84%	50%	140%	
1,3-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	74%	50%	140%	87%	60%	130%	89%	50%	140%	
1,4-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	81%	50%	140%	95%	60%	130%	98%	50%	140%	
1,2-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	84%	50%	140%	96%	60%	130%	100%	50%	140%	
n-Hexane	6737084		<0.20	<0.20	NA	< 0.20	99%	50%	140%	93%	60%	130%	66%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

F1 (C6 to C10)	6737084	<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	99%	60%	140%
----------------	---------	-----	-----	----	------	-----	-----	------	-----	-----	------	-----	-----	------

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls	6738821	6738821	< 0.1	< 0.1	NA	< 0.1	106%	50%	140%	91%	50%	140%	95%	50%	140%
---------------------------	---------	---------	-------	-------	----	-------	------	-----	------	-----	-----	------	-----	-----	------

Certified By:

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Water Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inorganics (Water)																
Dissolved Antimony	6738615		1.9	1.9	NA	< 1.0	100%	70%	130%	98%	80%	120%	97%	70%	130%	
Dissolved Arsenic	6738615		4.4	4.1	NA	< 1.0	93%	70%	130%	91%	80%	120%	101%	70%	130%	
Dissolved Barium	6738615		97.9	101	3.1%	< 2.0	95%	70%	130%	93%	80%	120%	93%	70%	130%	
Dissolved Beryllium	6738615		<0.50	<0.50	NA	< 0.50	105%	70%	130%	100%	80%	120%	101%	70%	130%	
Dissolved Boron	6738615		160	151	5.8%	< 10.0	99%	70%	130%	98%	80%	120%	98%	70%	130%	
Dissolved Cadmium	6738615		<0.20	<0.20	NA	< 0.20	100%	70%	130%	97%	80%	120%	96%	70%	130%	
Dissolved Chromium	6738615		<2.0	<2.0	NA	< 2.0	95%	70%	130%	100%	80%	120%	93%	70%	130%	
Dissolved Cobalt	6738615		0.87	0.77	NA	< 0.50	93%	70%	130%	102%	80%	120%	95%	70%	130%	
Dissolved Copper	6738615		1.5	2.2	NA	< 1.0	98%	70%	130%	101%	80%	120%	94%	70%	130%	
Dissolved Lead	6738615		<0.50	<0.50	NA	< 0.50	91%	70%	130%	94%	80%	120%	92%	70%	130%	
Dissolved Molybdenum	6738615		10.2	11.1	8.5%	< 0.50	104%	70%	130%	114%	80%	120%	106%	70%	130%	
Dissolved Nickel	6738615		2.3	3.9	NA	< 1.0	92%	70%	130%	105%	80%	120%	96%	70%	130%	
Dissolved Selenium	6738615		<1.0	<1.0	NA	< 1.0	97%	70%	130%	97%	80%	120%	98%	70%	130%	
Dissolved Silver	6738615		<0.20	<0.20	NA	< 0.20	102%	70%	130%	101%	80%	120%	99%	70%	130%	
Dissolved Thallium	6738615		<0.30	<0.30	NA	< 0.30	94%	70%	130%	99%	80%	120%	95%	70%	130%	
Dissolved Uranium	6738615		5.08	4.97	2.2%	< 0.50	95%	70%	130%	99%	80%	120%	97%	70%	130%	
Dissolved Vanadium	6738615		<0.40	0.91	NA	< 0.40	99%	70%	130%	104%	80%	120%	104%	70%	130%	
Dissolved Zinc	6738615		<5.0	<5.0	NA	< 5.0	96%	70%	130%	94%	80%	120%	96%	70%	130%	
Mercury	6740989		<0.02	<0.02	NA	< 0.02	103%	70%	130%	97%	80%	120%	95%	70%	130%	
Chromium VI	6737246		<2.000	<2.000	NA	< 2	102%	70%	130%	102%	80%	120%	104%	70%	130%	
Cyanide, WAD	6744990		<2	<2	NA	< 2	90%	70%	130%	NA	80%	120%	102%	70%	130%	
Dissolved Sodium	6738615		57000	47700	17.8%	< 50	112%	70%	130%	105%	80%	120%	107%	70%	130%	
Chloride	6737247		75400	75400	0.0%	< 100	98%	70%	130%	105%	80%	120%	105%	70%	130%	
pH	6719189		7.35	7.32	0.5%	NA	100%	90%	110%							

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Yris Verastegui

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

SAMPLING SITE: Ottawa

AGAT WORK ORDER: 25T291322

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Stephanie Lewis

PROJECT: 25042

AGAT WORK ORDER: 25T307983

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Jun 11, 2025

PAGES (INCLUDING COVER): 7

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T307983

PROJECT: 25042

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: 110 O'Connor St

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Stephanie Lewis

SAMPLED BY: D BRUCE

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-10

DATE REPORTED: 2025-06-11

Parameter	Unit	SAMPLE DESCRIPTION:		MW107	MW120
		G / S	RDL	Water	Water
				DATE SAMPLED:	2025-06-09 12:00
Dissolved Antimony	µg/L	20000	1.0	<1.0	<1.0
Dissolved Arsenic	µg/L	1900	1.0	<1.0	<1.0
Dissolved Barium	µg/L	29000	2.0	78.1	77.0
Dissolved Beryllium	µg/L	67	0.50	<0.50	<0.50
Dissolved Boron	µg/L	45000	10.0	145	142
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20
Dissolved Chromium	µg/L	810	2.0	<2.0	<2.0
Dissolved Cobalt	µg/L	66	0.50	12.4	13.3
Dissolved Copper	µg/L	87	1.0	<1.0	<1.0
Dissolved Lead	µg/L	25	0.50	0.56	<0.50
Dissolved Molybdenum	µg/L	9200	0.50	16.6	16.4
Dissolved Nickel	µg/L	490	1.0	17.5	16.4
Dissolved Selenium	µg/L	63	1.0	3.1	<1.0
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20
Dissolved Thallium	µg/L	510	0.30	<0.30	<0.30
Dissolved Uranium	µg/L	420	0.50	21.7	20.8
Dissolved Vanadium	µg/L	250	0.40	<0.40	<0.40
Dissolved Zinc	µg/L	1100	5.0	9.8	5.8
Mercury	µg/L	0.29	0.02	<0.02	<0.02
Chromium VI	µg/L	140	2.000	<2.000	<2.000
Cyanide, WAD	µg/L	66	2	<2	<2
Dissolved Sodium	µg/L	2300000	500	1250000	1170000
Chloride	µg/L	2300000	244	2920000	3020000
pH	pH Units		NA	7.16	7.35

Certified By:

Mary Bruce

AGAT

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T307983

PROJECT: 25042

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:110 O'Connor St

ATTENTION TO: Stephanie Lewis

SAMPLED BY:D BRUCE

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-10

DATE REPORTED: 2025-06-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6806115-6806123 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Alvin Basile

Exceedance Summary

AGAT WORK ORDER: 25T307983

PROJECT: 25042

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Stephanie Lewis

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6806115	MW107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	2920000
6806123	MW120	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	3020000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T307983

PROJECT: 25042

ATTENTION TO: Stephanie Lewis

SAMPLING SITE: 110 O'Connor St

SAMPLED BY: D BRUCE

Water Analysis

RPT Date: Jun 11, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Water)

Dissolved Antimony	6806115	6806115	<1.0	<1.0	NA	< 1.0	100%	70%	130%	103%	80%	120%	99%	70%	130%
Dissolved Arsenic	6806115	6806115	<1.0	<1.0	NA	< 1.0	101%	70%	130%	97%	80%	120%	103%	70%	130%
Dissolved Barium	6806115	6806115	78.1	76.1	2.6%	< 2.0	100%	70%	130%	96%	80%	120%	93%	70%	130%
Dissolved Beryllium	6806115	6806115	<0.50	<0.50	NA	< 0.50	100%	70%	130%	116%	80%	120%	112%	70%	130%
Dissolved Boron	6806115	6806115	145	144	0.7%	< 10.0	96%	70%	130%	108%	80%	120%	108%	70%	130%
Dissolved Cadmium	6806115	6806115	<0.20	<0.20	NA	< 0.20	95%	70%	130%	99%	80%	120%	93%	70%	130%
Dissolved Chromium	6806115	6806115	<2.0	<2.0	NA	< 2.0	98%	70%	130%	104%	80%	120%	109%	70%	130%
Dissolved Cobalt	6806115	6806115	12.4	12.6	1.6%	< 0.50	96%	70%	130%	102%	80%	120%	105%	70%	130%
Dissolved Copper	6806115	6806115	<1.0	1.0	NA	< 1.0	94%	70%	130%	100%	80%	120%	96%	70%	130%
Dissolved Lead	6806115	6806115	0.56	0.51	NA	< 0.50	97%	70%	130%	96%	80%	120%	88%	70%	130%
Dissolved Molybdenum	6806115	6806115	16.6	17.1	3.0%	< 0.50	103%	70%	130%	106%	80%	120%	117%	70%	130%
Dissolved Nickel	6806115	6806115	17.5	17.6	0.6%	< 1.0	95%	70%	130%	102%	80%	120%	100%	70%	130%
Dissolved Selenium	6806115	6806115	3.1	2.9	NA	< 1.0	94%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Silver	6806115	6806115	<0.20	<0.20	NA	< 0.20	99%	70%	130%	100%	80%	120%	95%	70%	130%
Dissolved Thallium	6806115	6806115	<0.30	<0.30	NA	< 0.30	97%	70%	130%	96%	80%	120%	89%	70%	130%
Dissolved Uranium	6806115	6806115	21.7	20.8	4.2%	< 0.50	95%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Vanadium	6806115	6806115	<0.40	<0.40	NA	< 0.40	99%	70%	130%	105%	80%	120%	113%	70%	130%
Dissolved Zinc	6806115	6806115	9.8	7.2	NA	< 5.0	98%	70%	130%	97%	80%	120%	95%	70%	130%
Mercury	6806115	6806115	<0.02	<0.02	NA	< 0.02	100%	70%	130%	101%	80%	120%	95%	70%	130%
Chromium VI	6806115	6806115	<2.000	<2.000	NA	< 2	99%	70%	130%	93%	80%	120%	92%	70%	130%
Cyanide, WAD	6806115	6806115	<2	<2	NA	< 2	101%	70%	130%	96%	80%	120%	92%	70%	130%
Dissolved Sodium	6806115	6806115	1250000	1220000	2.4%	< 50	104%	70%	130%	102%	80%	120%	NA	70%	130%
Chloride	6803735		43400	44400	2.3%	< 100	100%	70%	130%	106%	80%	120%	106%	70%	130%
pH	6805810		6.81	7.00	2.8%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Nivine Basily

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: 25042

SAMPLING SITE: 110 O'Connor St

AGAT WORK ORDER: 25T307983

ATTENTION TO: Stephanie Lewis

SAMPLED BY: D BRUCE

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Have feedback?
Scan here for a quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webarth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: G25 CONSULTING INC
Contact: STEPHANIE LEWIS
Address: 4361 HAWESTER RD, SUITE 12
Phone: BURL. ONT L7L 5M4
Fax:
Reports to be sent to:
1. Email: stephanie1@g25consulting.com
2. Email: dylumb@g25consulting.com

Project Information:

Project: 25042
Site Location: 110 O'Connor ST
Sampled By: D Bruce
AGAT Quote #: PO:

Invoice Information:

Bill To Same: Yes No
Company:
Contact:
Address:
Email:

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N	Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153	O. Reg 406	O. Reg 558	Potentially Hazardous or High Concentration (Y/N)
1. <u>BH107</u>	<u>25/6/10</u>	<u>PM</u>	<u>9</u>	<u>GW</u>		<u>Y</u>	<input checked="" type="checkbox"/> Metals & Inorganics	<input type="checkbox"/> Metals - CrVI, <input type="checkbox"/> Hg, <input checked="" type="checkbox"/> HWSB	<input type="checkbox"/> Regulation 406 Characterization Package	<input type="checkbox"/> pH, Metals, BTEX, F1-F4	
2. <u>BH120</u>	<u>25/6/10</u>	<u>AM</u>	<u>9</u>	<u>GW</u>		<u>Y</u>	<input checked="" type="checkbox"/> VOC	<input type="checkbox"/> BTEX, F1-F4 PHCs	<input type="checkbox"/> EC, SAR	<input type="checkbox"/> Rainwater Leach	
3.							<input type="checkbox"/> PAHs		<input type="checkbox"/> msPLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs <input type="checkbox"/> DOC	<input type="checkbox"/> Landfill Disposal Characterization TCP: <input type="checkbox"/> TCLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> ABNS <input type="checkbox"/> BiPAs <input type="checkbox"/> PCBs	
4.							<input type="checkbox"/> PCBs: Aroclors		<input type="checkbox"/> Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide		
5.											
6.											
7.											
8.											
9.											
10.											
11.											

Samples Relinquished By (Print Name and Sign): <u>D Bruce</u>	Date: <u>25/6/10</u>	Time: <u>1300</u>	Samples Received By (Print Name and Sign): <u>THA</u>	Date: <u>June 10</u>	Time: <u>12:51 p</u>	Page: <u>1</u> of <u>1</u>
Samples Relinquished By (Print Name and Sign):	Date:	Time:	Samples Received By (Print Name and Sign):	Date:	Time:	
Samples Relinquished By (Print Name and Sign):	Date:	Time:	Samples Received By (Print Name and Sign):	Date:	Time:	

Laboratory Use Only

Work Order #: 25T307983
Cooler Quantity: 1 Large
Arrival Temperatures: 9.2 9.5 9.1
Depot Temperatures:
Custody Seal Intact: Yes No N/A
Notes: Bagged in

Turnaround Time (TAT) Required:

Regular TAT 5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

2025/06/11 [End of Day]
Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B

AGAT WORK ORDER: 25T310240

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Jun 19, 2025

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:HP

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2025-06-16

DATE REPORTED: 2025-06-19

SAMPLE DESCRIPTION: MW104				
SAMPLE TYPE: Water				
DATE SAMPLED: 2025-06-13 15:55				
Parameter	Unit	G / S	RDL	6817123
Benzene	µg/L	44	0.20	<0.20
Toluene	µg/L	18000	0.20	0.24
Ethylbenzene	µg/L	2300	0.10	<0.10
m & p-Xylene	µg/L		0.20	0.35
o-Xylene	µg/L		0.10	0.12
Xylenes (Total)	µg/L	4200	0.20	0.47
F1 (C6 to C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA
Sediment				1
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	60-140	89	
Terphenyl	% Recovery	60-140	94	

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:HP

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2025-06-16

DATE REPORTED: 2025-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6817123

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

A handwritten signature in blue ink that reads "Hailey Perras".

Certified By:

AGAT Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perras

SAMPLED BY:HP

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-16

DATE REPORTED: 2025-06-19

Parameter	Unit	G / S	RDL	
Dissolved Antimony	µg/L	20000	1.0	<1.0
Dissolved Arsenic	µg/L	1900	1.0	<1.0
Dissolved Barium	µg/L	29000	2.0	86.7
Dissolved Beryllium	µg/L	67	0.50	<0.50
Dissolved Boron	µg/L	45000	10.0	137
Dissolved Cadmium	µg/L	2.7	0.20	<0.20
Dissolved Chromium	µg/L	810	2.0	<2.0
Dissolved Cobalt	µg/L	66	0.50	13.6
Dissolved Copper	µg/L	87	1.0	1.8
Dissolved Lead	µg/L	25	0.50	<0.50
Dissolved Molybdenum	µg/L	9200	0.50	13.6
Dissolved Nickel	µg/L	490	1.0	22.6
Dissolved Selenium	µg/L	63	1.0	1.9
Dissolved Silver	µg/L	1.5	0.20	<0.20
Dissolved Thallium	µg/L	510	0.30	<0.30
Dissolved Uranium	µg/L	420	0.50	18.7
Dissolved Vanadium	µg/L	250	0.40	<0.40
Dissolved Zinc	µg/L	1100	5.0	11.2
Mercury	µg/L	0.29	0.02	<0.02
Chromium VI	µg/L	140	2.000	<2.000
Cyanide, WAD	µg/L	66	2	<2
Dissolved Sodium	µg/L	2300000	500	1180000
Chloride	µg/L	2300000	244	2970000
pH	pH Units	NA	7.29	

Certified By:

Yris Verastegui

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:HP

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-16

DATE REPORTED: 2025-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6817122

Metals analysis completed on a filtered sample.
pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results
Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

A handwritten signature in black ink that reads "Iris Verastegui". The signature is written in a cursive, flowing style.

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

Exceedance Summary

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6817122	MW107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	2970000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:HP

Trace Organics Analysis

RPT Date: Jun 19, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							Lower	Upper	Lower		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - PHCs F1 - F4 (Water)

Benzene	6815772	< 0.20	< 0.20	0.0%	< 0.20	89%	60%	140%	99%	60%	140%	99%	60%	140%
Toluene	6815772	< 0.20	< 0.20	0.0%	< 0.20	95%	60%	140%	102%	60%	140%	82%	60%	140%
Ethylbenzene	6815772	< 0.10	< 0.10	0.0%	< 0.10	86%	60%	140%	78%	60%	140%	75%	60%	140%
m & p-Xylene	6815772	< 0.20	< 0.20	0.0%	< 0.20	91%	60%	140%	83%	60%	140%	100%	60%	140%
o-Xylene	6815772	< 0.10	< 0.10	0.0%	< 0.10	104%	60%	140%	104%	60%	140%	101%	60%	140%
F2 (C10 to C16)	6807791	< 100	< 100	NA	< 100	99%	60%	140%	61%	60%	140%	67%	60%	140%
F3 (C16 to C34)	6807791	< 100	< 100	NA	< 100	108%	60%	140%	60%	60%	140%	65%	60%	140%
F4 (C34 to C50)	6807791	< 100	< 100	NA	< 100	89%	60%	140%	61%	60%	140%	83%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:HP

Water Analysis

RPT Date: Jun 19, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inorganics (Water)																
Dissolved Antimony	6817122	6817122	<1.0	<1.0	NA	< 1.0	104%	70%	130%	101%	80%	120%	103%	70%	130%	
Dissolved Arsenic	6817122	6817122	<1.0	<1.0	NA	< 1.0	100%	70%	130%	98%	80%	120%	100%	70%	130%	
Dissolved Barium	6817122	6817122	86.7	88.4	1.9%	< 2.0	100%	70%	130%	101%	80%	120%	100%	70%	130%	
Dissolved Beryllium	6817122	6817122	<0.50	<0.50	NA	< 0.50	101%	70%	130%	102%	80%	120%	88%	70%	130%	
Dissolved Boron	6817122	6817122	137	138	0.7%	< 10.0	98%	70%	130%	101%	80%	120%	86%	70%	130%	
Dissolved Cadmium	6817122	6817122	<0.20	<0.20	NA	< 0.20	103%	70%	130%	100%	80%	120%	97%	70%	130%	
Dissolved Chromium	6817122	6817122	<2.0	<2.0	NA	< 2.0	101%	70%	130%	100%	80%	120%	106%	70%	130%	
Dissolved Cobalt	6817122	6817122	13.6	15.0	9.8%	< 0.50	102%	70%	130%	98%	80%	120%	104%	70%	130%	
Dissolved Copper	6817122	6817122	1.8	2.7	NA	< 1.0	101%	70%	130%	98%	80%	120%	92%	70%	130%	
Dissolved Lead	6817122	6817122	<0.50	<0.50	NA	< 0.50	101%	70%	130%	97%	80%	120%	82%	70%	130%	
Dissolved Molybdenum	6817122	6817122	13.6	15.2	11.1%	< 0.50	103%	70%	130%	104%	80%	120%	111%	70%	130%	
Dissolved Nickel	6817122	6817122	22.6	23.5	3.9%	< 1.0	103%	70%	130%	97%	80%	120%	99%	70%	130%	
Dissolved Selenium	6817122	6817122	1.9	2.7	NA	< 1.0	104%	70%	130%	97%	80%	120%	105%	70%	130%	
Dissolved Silver	6817122	6817122	<0.20	<0.20	NA	< 0.20	101%	70%	130%	100%	80%	120%	95%	70%	130%	
Dissolved Thallium	6817122	6817122	<0.30	<0.30	NA	< 0.30	97%	70%	130%	97%	80%	120%	86%	70%	130%	
Dissolved Uranium	6817122	6817122	18.7	19.1	2.1%	< 0.50	101%	70%	130%	99%	80%	120%	95%	70%	130%	
Dissolved Vanadium	6817122	6817122	<0.40	<0.40	NA	< 0.40	103%	70%	130%	103%	80%	120%	115%	70%	130%	
Dissolved Zinc	6817122	6817122	11.2	14.0	NA	< 5.0	102%	70%	130%	98%	80%	120%	89%	70%	130%	
Mercury	6817122	6817122	<0.02	<0.02	NA	< 0.02	101%	70%	130%	100%	80%	120%	96%	70%	130%	
Chromium VI	6811299		<2.000	<2.000	NA	< 2	100%	70%	130%	99%	80%	120%	105%	70%	130%	
Cyanide, WAD	6811299		<2	<2	NA	< 2	98%	70%	130%	83%	80%	120%	106%	70%	130%	
Dissolved Sodium	6817122	6817122	1180000	1200000	1.7%	< 50	107%	70%	130%	111%	80%	120%	NA	70%	130%	
Chloride	6815892		1410000	1370000	2.9%	< 100	93%	70%	130%	101%	80%	120%	NA	70%	130%	
pH	6819362		6.77	6.88	1.6%	NA	99%	90%	110%							

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Yris Verastegui

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY: HP

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Toluene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL - 5010	MOE E3421	(P&T)GC/MS
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Sediment			N/A

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

SAMPLING SITE: Ottawa

AGAT WORK ORDER: 25T310240

ATTENTION TO: Hailey Perras

SAMPLED BY:HP

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Have feedback?

Scan here for a quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Report Information:

Company: **G2S**
 Contact: **Hailey Ferras**
 Address: **4361 Hanover Rd**
Unit 12 Burlington
 Phone: **9052208507** Fax:
 Reports to be sent to:
 1. Email: **stephanie@g2consulting.com**
 2. Email: **haileypp@**

Project Information:

Project: **G2S25042B**
 Site Location: **Ottawa**
 Sampled By: **HP**
 AGAT Quote #: **Standing offer** PO:
 Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company:
 Contact:
 Address:
 Email:

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04
 Table **3** Ind/Com
 Res/Park
 Agriculture

Regulation 406
 Table Ind/Com
 Res/Park
 Agriculture

Sewer Use
 Sanitary Storm
 Region

Prov. Water Quality Objectives (PWQO)

Other
 Indicate One

Regulation 558
 CCME

Is this submission for a Record of Site Condition (RSC)?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Legal Sample

Sample Matrix Legend

GW	Ground Water	SD	Sediment
O	Oil	SW	Surface Water
P	Paint	R	Rock/Shale
S	Soil		

Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153	O. Reg 406	O. Reg 558	Potentially Hazardous or High Concentration (Y/N)
<input type="checkbox"/> Metals & Inorganics	<input type="checkbox"/> Metals - □ CrVI, □ Hg, □ HWSB	<input type="checkbox"/> PCBs: Aroclors	<input type="checkbox"/> Regulation 406 Characterization Package	
	<input type="checkbox"/> BTEX, F1-F4 PHCs	<input type="checkbox"/> VOC	<input type="checkbox"/> pH, Metals, BTEX, F1-F4	
		<input type="checkbox"/> PAHs	<input type="checkbox"/> EC, SAR	
			<input type="checkbox"/> Regulation 406 SPLP Rainwater Leach mSPLP: □ Metals □ VOCs □ SVOCs □ DOC	
			<input type="checkbox"/> Landfill Disposal Characterization TCLP: TCLP: □ Metals □ VOCs □ SVOCs □ DOC	
			<input type="checkbox"/> Corrosivity: □ Moisture □ Sulfide	

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. BH102	5/16/25	1:30 AM	6	GW	please hold	<input checked="" type="checkbox"/>
2. BH130		1:35 AM	6		please hold	<input checked="" type="checkbox"/>
3. B MW107		3:45 AM	6			<input checked="" type="checkbox"/>
4. BH104		3:55 AM	5			<input checked="" type="checkbox"/>
5.	AM	PM				
6.	AM	PM				
7.	AM	PM				
8.	AM	PM				
9.	AM	PM				
10.	AM	PM				
11.	AM	PM				

Samples Relinquished By (Print Name and Sign): Hailey Ferras	Date: 05/16/25	Time: 8:50 AM	Samples Received By (Print Name and Sign): Momone Goto	Date: Jun 16.25	Time: 8:20	Page 1 of 1
Samples Relinquished By (Print Name and Sign): Hailey Ferras	Date:	Time:	Samples Received By (Print Name and Sign):	Date:	Time:	
Samples Relinquished By (Print Name and Sign):	Date:	Time:	Samples Received By (Print Name and Sign):	Date:	Time:	

Laboratory Use Only

Work Order #: **25T310240**

Cooler Quantity: **1S**

Arrival Temperatures: **7.5 6.6 5.4**

Depot Temperatures:

Custody Seal Intact: Yes No N/A

Notes: **loose ice**

Turnaround Time (TAT) Required:

Regular TAT

5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291322

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 20

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH107	BH109
		G / S	RDL	Water	Water	Water
					DATE SAMPLED:	2025-05-08
Naphthalene	µg/L	1400	0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1.8	0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	600	0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	400	0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	580	0.10	<0.10	<0.10	<0.10
Anthracene	µg/L	2.4	0.10	<0.10	<0.10	<0.10
Fluoranthene	µg/L	130	0.20	<0.20	<0.20	<0.20
Pyrene	µg/L	68	0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20	<0.20
Chrysene	µg/L	1	0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3- <i>cd</i>)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	µg/L	1800	0.20	<0.20	<0.20	<0.20
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140	113	117	117	
Acridine-d9	%	50-140	83	91	112	
Terphenyl-d14	%	50-140	96	100	99	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PCBs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

		SAMPLE DESCRIPTION:		BH102	BH110
		SAMPLE TYPE:		Water	Water
		DATE SAMPLED:		2025-05-08	2025-05-08
Parameter	Unit	G / S	RDL	6738806	6738821
Polychlorinated Biphenyls Surrogate	µg/L	7.8	0.1	<0.1	<0.1
Decachlorobiphenyl	%	60-140		85	94

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738806-6738821 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH107	BH109
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-08
F1 (C6 to C10)	µg/L	750	25	<25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L		100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140		97	99	98
Terphenyl	% Recovery	60-140		111	106	85

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
6738796-6738819 The C6-C10 fraction is calculated using toluene response factor.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.
Total C6 - C50 results are corrected for BTEX and PAH contributions.
C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.
C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).
This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.
nC10, nC16 and nC34 response factors are within 10% of their average.
C50 response factor is within 70% of nC10 + nC16 + nC34 average.
Linearity is within 15%.
Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH4	BH102	BH105	BH106
		G / S	RDL	Water	Water	Water	Water
					DATE SAMPLED:	2025-05-09	2025-05-08
F1 (C6 to C10)	µg/L	750	25	<25	27	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA	NA
Sediment				1	3	3	3
Surrogate	Unit	Acceptable Limits					
Toluene-d8	%	50-140		99	96	98	98
Terphenyl	% Recovery	60-140		75	111	99	69

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT
 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
 6738799-6738815 The C6-C10 fraction is calculated using Toluene response factor.
 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
 C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.
 The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.
 The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.
 Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.
 The chromatogram has returned to baseline by the retention time of nC50.
 Total C6-C50 results are corrected for BTEX contribution.
 This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.
 nC6 and nC10 response factors are within 30% of Toluene response factor.
 nC10, nC16 and nC34 response factors are within 10% of their average.
 C50 response factor is within 70% of nC10 + nC16 nC34 average.
 Linearity is within 15%.
 Extraction and holding times were met for this sample.
 Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.
 NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH101	BH104	TRIP BLANK
		SAMPLE TYPE:		Water	Water	Water
		G / S	RDL	2025-05-08	2025-05-09	2025-05-01
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	<0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2.4	0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20	<0.20
Benzene	µg/L	44	0.20	0.76	<0.20	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	4.42	1.72	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	0.28	0.33	<0.10
m & p-Xylene	µg/L		0.20	3.43	4.45	<0.20

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH101	BH104	TRIP BLANK
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water
Bromoform	µg/L	380	0.10	<0.10	<0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	1.23	1.53	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	4.66	5.98	<0.20
n-Hexane	µg/L	51	0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	50-140	99	97	96	
4-Bromofluorobenzene	% Recovery	50-140	110	113	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738803-6738823 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

 5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH4	BH102	BH105	BH106	BH107	BH109
		SAMPLE TYPE:		Water						
		G / S	RDL	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08	2025-05-08	2025-05-08
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorodifluoromethane	µg/L	2500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	44	0.20	<0.20	<0.20	0.92	0.24	0.27	0.31	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20	0.72	5.17	0.86	0.92	1.14	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	µg/L		0.20	<0.20	<0.20	4.47	1.61	0.67	0.88	<0.20

 Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH4	BH102	BH105	BH106	BH107	BH109
		SAMPLE TYPE:		Water						
		G / S	RDL	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08	2025-05-08	2025-05-08
Bromoform	µg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	<0.10	1.57	0.71	0.31	0.38	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20	<0.20	6.04	2.32	0.98	1.26	<0.20
n-Hexane	µg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits								
Toluene-d8	% Recovery	50-140	97	99	96	98	98	99	98	
4-Bromofluorobenzene	% Recovery	50-140	117	112	111	112	112	110	114	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1		BH106		BH107		BH109					
		SAMPLE TYPE:	G / S	DATE SAMPLED:	2025-05-08	RDL	6738796	RDL	6738815	2025-05-08	RDL	6738818	2025-05-08	RDL	6738819
Dissolved Antimony	µg/L	20000	1.0	<1.0	1.0	<1.0	1.0	1.0	<1.0	1.0	2.0	<1.0			
Dissolved Arsenic	µg/L	1900	1.0	<1.0	1.0	1.0	1.9	1.0	1.0	1.0	1.2	<1.0			
Dissolved Barium	µg/L	29000	2.0	29.2	2.0	460	2.0	2.0	2.0	2.0	230	28.1			
Dissolved Beryllium	µg/L	67	0.50	<0.50	0.50	<0.50	0.50	0.50	<0.50	0.50	<0.50	<0.50			
Dissolved Boron	µg/L	45000	10.0	252	10.0	279	10.0	10.0	10.0	10.0	133	307			
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	0.20	<0.20	0.20	0.20	<0.20	0.20	<0.20	<0.20			
Dissolved Chromium	µg/L	810	2.0	<2.0	2.0	<2.0	2.0	2.0	<2.0	2.0	2.4	<2.0			
Dissolved Cobalt	µg/L	66	0.50	1.51	0.50	<0.50	0.50	0.50	0.50	0.50	94.1	1.90			
Dissolved Copper	µg/L	87	1.0	<1.0	1.0	<1.0	1.0	1.0	<1.0	1.0	<1.0	<1.0			
Dissolved Lead	µg/L	25	0.50	0.51	0.50	1.42	0.50	0.50	1.42	0.50	1.24	<0.50			
Dissolved Molybdenum	µg/L	9200	0.50	0.91	0.50	3.37	0.50	0.50	3.37	0.50	17.7	4.26			
Dissolved Nickel	µg/L	490	1.0	8.6	1.0	<1.0	1.0	1.0	<1.0	1.0	60.6	10.8			
Dissolved Selenium	µg/L	63	1.0	<1.0	1.0	<1.0	1.0	1.0	<1.0	1.0	<1.0	<1.0			
Dissolved Silver	µg/L	1.5	0.20	<0.20	0.20	<0.20	0.20	0.20	<0.20	0.20	<0.20	<0.20			
Dissolved Thallium	µg/L	510	0.30	<0.30	0.30	<0.30	0.30	0.30	<0.30	0.30	0.44	<0.30			
Dissolved Uranium	µg/L	420	0.50	14.4	0.50	1.81	0.50	0.50	1.81	0.50	26.0	13.0			
Dissolved Vanadium	µg/L	250	0.40	<0.40	0.40	<0.40	0.40	0.40	<0.40	0.40	<0.40	<0.40			
Dissolved Zinc	µg/L	1100	5.0	<5.0	5.0	18.1	5.0	5.0	18.1	5.0	10.7	<5.0			
Mercury	µg/L	0.29	0.02	<0.02	0.02	<0.02	0.02	0.02	<0.02	0.02	<0.02	<0.02			
Chromium VI	µg/L	140	2.000	<2.000	2.000	<2.000	2.000	2.000	<2.000	2.000	<2.000	<2.000			
Cyanide, WAD	µg/L	66	2	<2	2	<2	2	2	<2	2	<2	<2			
Dissolved Sodium	µg/L	2300000	500	2280000	500	854000	500	1440000	500	1440000	2450000				
Chloride	µg/L	2300000	244	4670000	122	827000	244	2490000	244	2490000	4560000				
pH	pH Units		NA	7.50	NA	7.51	NA	7.46	7.51	NA	7.46	7.46			

Certified By:

AGAT Laboratories

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
6738796-6738819 Metals analysis completed on a filtered sample.
pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results
Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Yris Verastegui

Exceedance Summary

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738796	BH1	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	4670000
6738818	BH107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	2490000
6738818	BH107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Cobalt	µg/L	66	94.1
6738819	BH109	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	4560000
6738819	BH109	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	µg/L	2300000	2450000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

F1 (C6 to C10)	6737084	<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6737225	< 100	< 100	NA	< 100	90%	60%	140%	77%	60%	140%	71%	60%	140%
F3 (C16 to C34)	6737225	< 100	< 100	NA	< 100	102%	60%	140%	77%	60%	140%	71%	60%	140%
F4 (C34 to C50)	6737225	< 100	< 100	NA	< 100	65%	60%	140%	82%	60%	140%	90%	60%	140%

O. Reg. 153(511) - PAHs (Water)

Naphthalene	6738824	<0.20	<0.20	NA	< 0.20	115%	50%	140%	80%	50%	140%	72%	50%	140%
Acenaphthylene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	72%	50%	140%	76%	50%	140%
Acenaphthene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	75%	50%	140%	76%	50%	140%
Fluorene	6738824	<0.20	<0.20	NA	< 0.20	101%	50%	140%	76%	50%	140%	71%	50%	140%
Phenanthrene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	78%	50%	140%	72%	50%	140%
Anthracene	6738824	<0.10	<0.10	NA	< 0.10	77%	50%	140%	80%	50%	140%	81%	50%	140%
Fluoranthene	6738824	<0.20	<0.20	NA	< 0.20	103%	50%	140%	78%	50%	140%	75%	50%	140%
Pyrene	6738824	<0.20	<0.20	NA	< 0.20	102%	50%	140%	78%	50%	140%	81%	50%	140%
Benzo(a)anthracene	6738824	<0.20	<0.20	NA	< 0.20	79%	50%	140%	95%	50%	140%	84%	50%	140%
Chrysene	6738824	<0.10	<0.10	NA	< 0.10	111%	50%	140%	94%	50%	140%	74%	50%	140%
Benzo(b)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	83%	50%	140%	74%	50%	140%	70%	50%	140%
Benzo(k)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	86%	50%	140%	99%	50%	140%
Benzo(a)pyrene	6738824	<0.01	<0.01	NA	< 0.01	76%	50%	140%	88%	50%	140%	95%	50%	140%
Indeno(1,2,3-cd)pyrene	6738824	<0.20	<0.20	NA	< 0.20	74%	50%	140%	82%	50%	140%	103%	50%	140%
Dibenz(a,h)anthracene	6738824	<0.20	<0.20	NA	< 0.20	75%	50%	140%	76%	50%	140%	71%	50%	140%
Benzo(g,h,i)perylene	6738824	<0.20	<0.20	NA	< 0.20	84%	50%	140%	82%	50%	140%	91%	50%	140%

O. Reg. 153(511) - VOCs (with PHC) (Water)

Dichlorodifluoromethane	6737084	<0.40	<0.40	NA	< 0.40	103%	50%	140%	98%	50%	140%	87%	50%	140%
Vinyl Chloride	6737084	<0.17	<0.17	NA	< 0.17	74%	50%	140%	93%	50%	140%	80%	50%	140%
Bromomethane	6737084	<0.20	<0.20	NA	< 0.20	127%	50%	140%	89%	50%	140%	66%	50%	140%
Trichlorofluoromethane	6737084	<0.40	<0.40	NA	< 0.40	80%	50%	140%	71%	50%	140%	64%	50%	140%
Acetone	6737084	<1.0	<1.0	NA	< 1.0	89%	50%	140%	116%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	6737084	<0.30	<0.30	NA	< 0.30	79%	50%	140%	80%	60%	130%	77%	50%	140%
Methylene Chloride	6737084	<0.30	<0.30	NA	< 0.30	77%	50%	140%	127%	60%	130%	64%	50%	140%
trans- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	86%	50%	140%	68%	60%	130%	70%	50%	140%
Methyl tert-butyl ether	6737084	<0.20	<0.20	NA	< 0.20	95%	50%	140%	90%	60%	130%	72%	50%	140%
1,1-Dichloroethane	6737084	<0.30	<0.30	NA	< 0.30	76%	50%	140%	92%	60%	130%	73%	50%	140%
Methyl Ethyl Ketone	6737084	<1.0	<1.0	NA	< 1.0	93%	50%	140%	80%	50%	140%	67%	50%	140%
cis- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	93%	50%	140%	71%	60%	130%	69%	50%	140%
Chloroform	6737084	<0.20	<0.20	NA	< 0.20	74%	50%	140%	72%	60%	130%	70%	50%	140%
1,2-Dichloroethane	6737084	<0.20	<0.20	NA	< 0.20	79%	50%	140%	79%	60%	130%	78%	50%	140%
1,1,1-Trichloroethane	6737084	<0.30	<0.30	NA	< 0.30	73%	50%	140%	112%	60%	130%	110%	50%	140%
Carbon Tetrachloride	6737084	<0.20	<0.20	NA	< 0.20	73%	50%	140%	114%	60%	130%	98%	50%	140%

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis (Continued)																
RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Benzene	6737084		<0.20	<0.20	NA	< 0.20	75%	50%	140%	71%	60%	130%	68%	50%	140%	
1,2-Dichloropropane	6737084		<0.20	<0.20	NA	< 0.20	76%	50%	140%	74%	60%	130%	71%	50%	140%	
Trichloroethylene	6737084		<0.20	<0.20	NA	< 0.20	64%	50%	140%	76%	60%	130%	75%	50%	140%	
Bromodichloromethane	6737084		<0.20	<0.20	NA	< 0.20	95%	50%	140%	68%	60%	130%	66%	50%	140%	
Methyl Isobutyl Ketone	6737084		<1.0	<1.0	NA	< 1.0	80%	50%	140%	105%	50%	140%	69%	50%	140%	
1,1,2-Trichloroethane	6737084		<0.20	<0.20	NA	< 0.20	93%	50%	140%	84%	60%	130%	85%	50%	140%	
Toluene	6737084		<0.20	<0.20	NA	< 0.20	115%	50%	140%	81%	60%	130%	78%	50%	140%	
Dibromochloromethane	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	82%	60%	130%	85%	50%	140%	
Ethylene Dibromide	6737084		<0.10	<0.10	NA	< 0.10	87%	50%	140%	75%	60%	130%	77%	50%	140%	
Tetrachloroethylene	6737084		<0.20	<0.20	NA	< 0.20	58%	50%	140%	90%	60%	130%	81%	50%	140%	
1,1,1,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	69%	50%	140%	71%	60%	130%	79%	50%	140%	
Chlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	65%	50%	140%	86%	60%	130%	83%	50%	140%	
Ethylbenzene	6737084		<0.10	<0.10	NA	< 0.10	110%	50%	140%	82%	60%	130%	79%	50%	140%	
m & p-Xylene	6737084		<0.20	<0.20	NA	< 0.20	60%	50%	140%	85%	60%	130%	82%	50%	140%	
Bromoform	6737084		<0.10	<0.10	NA	< 0.10	93%	50%	140%	87%	60%	130%	106%	50%	140%	
Styrene	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	83%	60%	130%	83%	50%	140%	
1,1,2,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	86%	50%	140%	89%	60%	130%	91%	50%	140%	
o-Xylene	6737084		<0.10	<0.10	NA	< 0.10	70%	50%	140%	86%	60%	130%	84%	50%	140%	
1,3-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	74%	50%	140%	87%	60%	130%	89%	50%	140%	
1,4-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	81%	50%	140%	95%	60%	130%	98%	50%	140%	
1,2-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	84%	50%	140%	96%	60%	130%	100%	50%	140%	
n-Hexane	6737084		<0.20	<0.20	NA	< 0.20	99%	50%	140%	93%	60%	130%	66%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

F1 (C6 to C10)	6737084	<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	99%	60%	140%
----------------	---------	-----	-----	----	------	-----	-----	------	-----	-----	------	-----	-----	------

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls	6738821	6738821	< 0.1	< 0.1	NA	< 0.1	106%	50%	140%	91%	50%	140%	95%	50%	140%
---------------------------	---------	---------	-------	-------	----	-------	------	-----	------	-----	-----	------	-----	-----	------

Certified By:

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Water Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inorganics (Water)																
Dissolved Antimony	6738615		1.9	1.9	NA	< 1.0	100%	70%	130%	98%	80%	120%	97%	70%	130%	
Dissolved Arsenic	6738615		4.4	4.1	NA	< 1.0	93%	70%	130%	91%	80%	120%	101%	70%	130%	
Dissolved Barium	6738615		97.9	101	3.1%	< 2.0	95%	70%	130%	93%	80%	120%	93%	70%	130%	
Dissolved Beryllium	6738615		<0.50	<0.50	NA	< 0.50	105%	70%	130%	100%	80%	120%	101%	70%	130%	
Dissolved Boron	6738615		160	151	5.8%	< 10.0	99%	70%	130%	98%	80%	120%	98%	70%	130%	
Dissolved Cadmium	6738615		<0.20	<0.20	NA	< 0.20	100%	70%	130%	97%	80%	120%	96%	70%	130%	
Dissolved Chromium	6738615		<2.0	<2.0	NA	< 2.0	95%	70%	130%	100%	80%	120%	93%	70%	130%	
Dissolved Cobalt	6738615		0.87	0.77	NA	< 0.50	93%	70%	130%	102%	80%	120%	95%	70%	130%	
Dissolved Copper	6738615		1.5	2.2	NA	< 1.0	98%	70%	130%	101%	80%	120%	94%	70%	130%	
Dissolved Lead	6738615		<0.50	<0.50	NA	< 0.50	91%	70%	130%	94%	80%	120%	92%	70%	130%	
Dissolved Molybdenum	6738615		10.2	11.1	8.5%	< 0.50	104%	70%	130%	114%	80%	120%	106%	70%	130%	
Dissolved Nickel	6738615		2.3	3.9	NA	< 1.0	92%	70%	130%	105%	80%	120%	96%	70%	130%	
Dissolved Selenium	6738615		<1.0	<1.0	NA	< 1.0	97%	70%	130%	97%	80%	120%	98%	70%	130%	
Dissolved Silver	6738615		<0.20	<0.20	NA	< 0.20	102%	70%	130%	101%	80%	120%	99%	70%	130%	
Dissolved Thallium	6738615		<0.30	<0.30	NA	< 0.30	94%	70%	130%	99%	80%	120%	95%	70%	130%	
Dissolved Uranium	6738615		5.08	4.97	2.2%	< 0.50	95%	70%	130%	99%	80%	120%	97%	70%	130%	
Dissolved Vanadium	6738615		<0.40	0.91	NA	< 0.40	99%	70%	130%	104%	80%	120%	104%	70%	130%	
Dissolved Zinc	6738615		<5.0	<5.0	NA	< 5.0	96%	70%	130%	94%	80%	120%	96%	70%	130%	
Mercury	6740989		<0.02	<0.02	NA	< 0.02	103%	70%	130%	97%	80%	120%	95%	70%	130%	
Chromium VI	6737246		<2.000	<2.000	NA	< 2	102%	70%	130%	102%	80%	120%	104%	70%	130%	
Cyanide, WAD	6744990		<2	<2	NA	< 2	90%	70%	130%	NA	80%	120%	102%	70%	130%	
Dissolved Sodium	6738615		57000	47700	17.8%	< 50	112%	70%	130%	105%	80%	120%	107%	70%	130%	
Chloride	6737247		75400	75400	0.0%	< 100	98%	70%	130%	105%	80%	120%	105%	70%	130%	
pH	6719189		7.35	7.32	0.5%	NA	100%	90%	110%							

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Yris Verastegui

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

SAMPLING SITE: Ottawa

AGAT WORK ORDER: 25T291322

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Have feedback?
 Scan here for a
 quick survey!

 5835 Coopers Avenue, Mississauga, Ontario L4Z 1Y2
 Ph: 905.712.5100 Fax: 905.712.5122
 5623 McAdam Road, Mississauga, ON L4Z 1N9
 1686 Woodward Drive, Ottawa, ON, K2C 3R8
 webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

 Company: G2S
 Contact: Hailey Perras
 Address: 4361 Harvester Rd - Unit 12
 Burlington ON
 Phone: 905 220 8587 Fax: _____
 Reports to be sent to:
 1. Email: haileyp@g2sconsulting.com
 2. Email: stephanie@g2sconsulting.com
Project Information:

 Project: G2S25042B
 Site Location: OTTAWA
 Sampled By: DB
 AGAT Quote #: Standing offer PO: _____

Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

 Company: _____
 Contact: _____
 Address: _____
 Email: _____

 Bill To Same: Yes No

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Field Filtered - Metals, Hg, CrVI, DOC	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PAHs	FCBs, Aroclors	Regulation 406 Characterization Package	Regulation 406	O. Reg 558
1. BH1	05/08/25	AM PM	13	GW		Y	X	X	X				pH, Metals, BTEX, F1-F4 EC, SAR		
2. BH4	05/09/25	AM PM	5	GW					X				Regulation 406 SPLP Rainwater Leach		
3. BH101	05/08/25	AM PM	3	GW					X				Regulation 406 SPLP Rainwater Leach		
4. BH102	05/08/25	AM PM	7	GW					X	X			Regulation 406 SPLP Rainwater Leach		
5. BH104	05/09/25	AM PM	3	GW					X	X			Regulation 406 SPLP Rainwater Leach		
6. BH105	05/08/25	AM PM	5	GW					X	X			Regulation 406 SPLP Rainwater Leach		
7. BH106	05/08/25	AM PM	11	GW					X	X			Regulation 406 SPLP Rainwater Leach		
8. BH107	05/08/25	AM PM	13	GW					Y	X	X		Regulation 406 SPLP Rainwater Leach		
9. BH109	05/08/25	AM PM	13	GW					Y	X	X		Regulation 406 SPLP Rainwater Leach		
10. BH110	05/08/25	AM PM	2	GW					Y	X	X		Regulation 406 SPLP Rainwater Leach		
11. TRIP BLANK	05/01/25	AM PM	3	GW									Regulation 406 SPLP Rainwater Leach		

Samples Relinquished By (Print Name and Sign):

Hailey Perras

Date

05/14/25

Time

2:00 PM

Samples Relinquished By (Print Name and Sign):

Hailey Perras

Samples Received By (Print Name and Sign):

Anely Jr

Date

May 14, 2025

Time

3:59 PM

Page

1

of 1

Samples Relinquished By (Print Name and Sign):

Hailey Perras

Date

05/14/25

Time

2:00 PM

Samples Received By (Print Name and Sign):

Hailey Perras

Samples Received By (Print Name and Sign):

Anely Jr

Date

May 14, 2025

Time

3:59 PM

Page

1

of 1

Laboratory Use Only

 Work Order #: 25T291322

 Cooler Quantity: 1 large

 Arrival Temperatures: 9.5 8.7 8.1

 Depot Temperatures:

 Custody Seal Intact: Yes No N/A

 Notes: 100 Seals
Regulatory Requirements:

(Please check all applicable boxes)

 Regulation 153/04

3+7

 Table Indicate One
 Ind/Com

 Res/Park

 Agriculture

 Regulation 406

 Table Indicate One
 Ind/Com

 Res/Park

 Agriculture

 Region

 Prov. Water Quality Objectives (PWQO)

 Other

Indicate One
 CCME

 Sewer Use

 Sanitary

 Storm

 5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

 3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
4361 HARVESTERROAD, UNIT 12
BURLINGTON, ON L7L 5M4
(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291322

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 21

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	MW107	MW109
		SAMPLE TYPE:		Water	Water	Water
		G / S	RDL	2025-05-08	2025-05-08	2025-05-08
Naphthalene	µg/L	7	0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1	0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	17	0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	290	0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	380	0.10	<0.10	<0.10	<0.10
Anthracene	µg/L	1	0.10	<0.10	<0.10	<0.10
Fluoranthene	µg/L	44	0.20	<0.20	<0.20	<0.20
Pyrene	µg/L	5.7	0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	1.8	0.20	<0.20	<0.20	<0.20
Chrysene	µg/L	0.7	0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3- <i>cd</i>)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.4	0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
2- and 1-methyl Naphthalene	µg/L	1500	0.20	<0.20	<0.20	<0.20
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140	113	117	117	
Acridine-d9	%	50-140	83	91	112	
Terphenyl-d14	%	50-140	96	100	99	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(i)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PCBs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

		SAMPLE DESCRIPTION:		MW102	MW110
		SAMPLE TYPE:		Water	Water
		DATE SAMPLED:		2025-05-08	2025-05-08
Parameter	Unit	G / S	RDL	6738806	6738821
Polychlorinated Biphenyls Surrogate	µg/L	0.2	0.1	<0.1	<0.1
Decachlorobiphenyl	%	60-140		85	94

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738806-6738821 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By: N Popovskol

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	MW107	MW109
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water
				G / S	RDL	2025-05-08
F1 (C6 to C10)	µg/L			25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L			100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L			100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L			500	NA	NA
Sediment				1	1	1
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140	97	99	98	
Terphenyl	% Recovery	60-140	111	106	85	

Certified By: N Popovikof

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH4	MW102	MW105	MW106
		G / S	RDL	Water	Water	Water	Water
					DATE SAMPLED:	2025-05-09	2025-05-08
F1 (C6 to C10)	µg/L		25	<25	27	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA	NA
Sediment				1	3	3	3
Surrogate	Unit	Acceptable Limits					
Toluene-d8	%	50-140		99	96	98	98
Terphenyl	% Recovery	60-140		75	111	99	69

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738799-6738815 The C6-C10 fraction is calculated using Toluene response factor.
Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW101	MW104	TRIP BLANK
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-09
Dichlorodifluoromethane	µg/L	3500	0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2000	0.40	<0.40	<0.40	<0.40
Acetone	µg/L	100000	1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	26	0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	11	0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	21000	1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2	0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	23	0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Benzene	µg/L	0.5	0.20	0.76	<0.20	<0.20
1,2-Dichloropropane	µg/L	0.58	0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	67000	0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	5200	1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20
Toluene	µg/L	320	0.20	4.42	1.72	<0.20
Dibromochloromethane	µg/L	65000	0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	140	0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	54	0.10	0.28	0.33	<0.10
m & p-Xylene	µg/L		0.20	3.43	4.45	<0.20

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		MW101	MW104	TRIP BLANK
		G / S	RDL	SAMPLE TYPE:	Water	Water
				DATE SAMPLED:	2025-05-08	2025-05-09
Bromoform	µg/L	5	0.10	<0.10	<0.10	<0.10
Styrene	µg/L	43	0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	1.23	1.53	<0.10
1,3-Dichlorobenzene	µg/L	7600	0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	150	0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	72	0.20	4.66	5.98	<0.20
n-Hexane	µg/L	5	0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	50-140	99	97	96	
4-Bromofluorobenzene	% Recovery	50-140	110	113	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738803-6738823 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH4	MW102	MW105	MW106	MW107	MW109
		SAMPLE TYPE:		Water	Water	Water	Water	Water	Water	Water
		G / S	RDL	DATE SAMPLED:	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08	2025-05-08
Dichlorodifluoromethane	µg/L	3500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorodifluoromethane	µg/L	2000	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	26	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	11	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	23	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	0.5	0.20	<0.20	<0.20	0.92	0.24	0.27	0.31	<0.20
1,2-Dichloropropane	µg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	320	0.20	<0.20	0.72	5.17	0.86	0.92	1.14	<0.20
Dibromochloromethane	µg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	54	0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	µg/L		0.20	<0.20	<0.20	4.47	1.61	0.67	0.88	<0.20

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		BH1	BH4	MW102	MW105	MW106	MW107	MW109
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water	Water	Water	Water	Water
				G / S	RDL	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08
Bromoform	µg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L	0.10	0.10	<0.10	<0.10	1.57	0.71	0.31	0.38	<0.10
1,3-Dichlorobenzene	µg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	72	0.20	<0.20	<0.20	6.04	2.32	0.98	1.26	<0.20
n-Hexane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits								
Toluene-d8	% Recovery	50-140	97	99	96	98	98	99	98	
4-Bromofluorobenzene	% Recovery	50-140	117	112	111	112	112	110	114	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

ATTENTION TO: Hailey Perris

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Parameter	Unit	SAMPLE DESCRIPTION:		RDL	6738796	BH1	MW106	MW107	MW109		
		SAMPLE TYPE:	G / S			Water	Water	Water	Water		
						DATE SAMPLED:	2025-05-08	2025-05-08	2025-05-08		
Dissolved Antimony	µg/L	16000	1.0	<1.0	1.0	1.0	<1.0	1.0	2.0		
Dissolved Arsenic	µg/L	1500	1.0	<1.0	1.0	1.9	1.0	1.0	<1.0		
Dissolved Barium	µg/L	23000	2.0	29.2	2.0	460	2.0	230	28.1		
Dissolved Beryllium	µg/L	53	0.50	<0.50	0.50	<0.50	0.50	<0.50	<0.50		
Dissolved Boron	µg/L	36000	10.0	252	10.0	279	10.0	133	307		
Dissolved Cadmium	µg/L	2.1	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20		
Dissolved Chromium	µg/L	640	2.0	<2.0	2.0	<2.0	2.0	2.4	<2.0		
Dissolved Cobalt	µg/L	52	0.50	1.51	0.50	<0.50	0.50	94.1	1.90		
Dissolved Copper	µg/L	69	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0		
Dissolved Lead	µg/L	20	0.50	0.51	0.50	1.42	0.50	1.24	<0.50		
Dissolved Molybdenum	µg/L	7300	0.50	0.91	0.50	3.37	0.50	17.7	4.26		
Dissolved Nickel	µg/L	390	1.0	8.6	1.0	<1.0	1.0	60.6	10.8		
Dissolved Selenium	µg/L	50	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0		
Dissolved Silver	µg/L	1.2	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20		
Dissolved Thallium	µg/L	400	0.30	<0.30	0.30	<0.30	0.30	0.44	<0.30		
Dissolved Uranium	µg/L	330	0.50	14.4	0.50	1.81	0.50	26.0	13.0		
Dissolved Vanadium	µg/L	200	0.40	<0.40	0.40	<0.40	0.40	<0.40	<0.40		
Dissolved Zinc	µg/L	890	5.0	<5.0	5.0	18.1	5.0	10.7	<5.0		
Mercury	µg/L	0.1	0.02	<0.02	0.02	<0.02	0.02	<0.02	<0.02		
Chromium VI	µg/L	110	2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000		
Cyanide, WAD	µg/L	52	2	<2	2	<2	2	<2	<2		
Dissolved Sodium	µg/L	1800000	500	2280000	500	854000	500	1440000	2450000		
Chloride	µg/L	1800000	244	4670000	122	827000	244	2490000	4560000		
pH	pH Units		NA	7.50	NA	7.51	NA	7.46	7.46		

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14

DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

A handwritten signature in black ink that reads "Iris Verastegui". The signature is written in a cursive, flowing style.

Exceedance Summary

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738796	BH1	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	4670000
6738796	BH1	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	µg/L	1800000	2280000
6738803	MW101	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Benzene	µg/L	0.5	0.76
6738806	MW102	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)	Benzene	µg/L	0.5	0.92
6738806	MW102	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	µg/L	0.5	0.92
6738818	MW107	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	2490000
6738818	MW107	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Cobalt	µg/L	52	94.1
6738819	MW109	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	1800000	4560000
6738819	MW109	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	µg/L	1800000	2450000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

F1 (C6 to C10)	6737084	<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6737225	< 100	< 100	NA	< 100	90%	60%	140%	77%	60%	140%	71%	60%	140%
F3 (C16 to C34)	6737225	< 100	< 100	NA	< 100	102%	60%	140%	77%	60%	140%	71%	60%	140%
F4 (C34 to C50)	6737225	< 100	< 100	NA	< 100	65%	60%	140%	82%	60%	140%	90%	60%	140%

O. Reg. 153(511) - PAHs (Water)

Naphthalene	6738824	<0.20	<0.20	NA	< 0.20	115%	50%	140%	80%	50%	140%	72%	50%	140%
Acenaphthylene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	72%	50%	140%	76%	50%	140%
Acenaphthene	6738824	<0.20	<0.20	NA	< 0.20	104%	50%	140%	75%	50%	140%	76%	50%	140%
Fluorene	6738824	<0.20	<0.20	NA	< 0.20	101%	50%	140%	76%	50%	140%	71%	50%	140%
Phenanthrene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	78%	50%	140%	72%	50%	140%
Anthracene	6738824	<0.10	<0.10	NA	< 0.10	77%	50%	140%	80%	50%	140%	81%	50%	140%
Fluoranthene	6738824	<0.20	<0.20	NA	< 0.20	103%	50%	140%	78%	50%	140%	75%	50%	140%
Pyrene	6738824	<0.20	<0.20	NA	< 0.20	102%	50%	140%	78%	50%	140%	81%	50%	140%
Benzo(a)anthracene	6738824	<0.20	<0.20	NA	< 0.20	79%	50%	140%	95%	50%	140%	84%	50%	140%
Chrysene	6738824	<0.10	<0.10	NA	< 0.10	111%	50%	140%	94%	50%	140%	74%	50%	140%
Benzo(b)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	83%	50%	140%	74%	50%	140%	70%	50%	140%
Benzo(k)fluoranthene	6738824	<0.10	<0.10	NA	< 0.10	106%	50%	140%	86%	50%	140%	99%	50%	140%
Benzo(a)pyrene	6738824	<0.01	<0.01	NA	< 0.01	76%	50%	140%	88%	50%	140%	95%	50%	140%
Indeno(1,2,3-cd)pyrene	6738824	<0.20	<0.20	NA	< 0.20	74%	50%	140%	82%	50%	140%	103%	50%	140%
Dibenz(a,h)anthracene	6738824	<0.20	<0.20	NA	< 0.20	75%	50%	140%	76%	50%	140%	71%	50%	140%
Benzo(g,h,i)perylene	6738824	<0.20	<0.20	NA	< 0.20	84%	50%	140%	82%	50%	140%	91%	50%	140%

O. Reg. 153(511) - VOCs (with PHC) (Water)

Dichlorodifluoromethane	6737084	<0.40	<0.40	NA	< 0.40	103%	50%	140%	98%	50%	140%	87%	50%	140%
Vinyl Chloride	6737084	<0.17	<0.17	NA	< 0.17	74%	50%	140%	93%	50%	140%	80%	50%	140%
Bromomethane	6737084	<0.20	<0.20	NA	< 0.20	127%	50%	140%	89%	50%	140%	66%	50%	140%
Trichlorofluoromethane	6737084	<0.40	<0.40	NA	< 0.40	80%	50%	140%	71%	50%	140%	64%	50%	140%
Acetone	6737084	<1.0	<1.0	NA	< 1.0	89%	50%	140%	116%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	6737084	<0.30	<0.30	NA	< 0.30	79%	50%	140%	80%	60%	130%	77%	50%	140%
Methylene Chloride	6737084	<0.30	<0.30	NA	< 0.30	77%	50%	140%	127%	60%	130%	64%	50%	140%
trans- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	86%	50%	140%	68%	60%	130%	70%	50%	140%
Methyl tert-butyl ether	6737084	<0.20	<0.20	NA	< 0.20	95%	50%	140%	90%	60%	130%	72%	50%	140%
1,1-Dichloroethane	6737084	<0.30	<0.30	NA	< 0.30	76%	50%	140%	92%	60%	130%	73%	50%	140%
Methyl Ethyl Ketone	6737084	<1.0	<1.0	NA	< 1.0	93%	50%	140%	80%	50%	140%	67%	50%	140%
cis- 1,2-Dichloroethylene	6737084	<0.20	<0.20	NA	< 0.20	93%	50%	140%	71%	60%	130%	69%	50%	140%
Chloroform	6737084	<0.20	<0.20	NA	< 0.20	74%	50%	140%	72%	60%	130%	70%	50%	140%
1,2-Dichloroethane	6737084	<0.20	<0.20	NA	< 0.20	79%	50%	140%	79%	60%	130%	78%	50%	140%
1,1,1-Trichloroethane	6737084	<0.30	<0.30	NA	< 0.30	73%	50%	140%	112%	60%	130%	110%	50%	140%
Carbon Tetrachloride	6737084	<0.20	<0.20	NA	< 0.20	73%	50%	140%	114%	60%	130%	98%	50%	140%

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Trace Organics Analysis (Continued)																
RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Benzene	6737084		<0.20	<0.20	NA	< 0.20	75%	50%	140%	71%	60%	130%	68%	50%	140%	
1,2-Dichloropropane	6737084		<0.20	<0.20	NA	< 0.20	76%	50%	140%	74%	60%	130%	71%	50%	140%	
Trichloroethylene	6737084		<0.20	<0.20	NA	< 0.20	64%	50%	140%	76%	60%	130%	75%	50%	140%	
Bromodichloromethane	6737084		<0.20	<0.20	NA	< 0.20	95%	50%	140%	68%	60%	130%	66%	50%	140%	
Methyl Isobutyl Ketone	6737084		<1.0	<1.0	NA	< 1.0	80%	50%	140%	105%	50%	140%	69%	50%	140%	
1,1,2-Trichloroethane	6737084		<0.20	<0.20	NA	< 0.20	93%	50%	140%	84%	60%	130%	85%	50%	140%	
Toluene	6737084		<0.20	<0.20	NA	< 0.20	115%	50%	140%	81%	60%	130%	78%	50%	140%	
Dibromochloromethane	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	82%	60%	130%	85%	50%	140%	
Ethylene Dibromide	6737084		<0.10	<0.10	NA	< 0.10	87%	50%	140%	75%	60%	130%	77%	50%	140%	
Tetrachloroethylene	6737084		<0.20	<0.20	NA	< 0.20	58%	50%	140%	90%	60%	130%	81%	50%	140%	
1,1,1,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	69%	50%	140%	71%	60%	130%	79%	50%	140%	
Chlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	65%	50%	140%	86%	60%	130%	83%	50%	140%	
Ethylbenzene	6737084		<0.10	<0.10	NA	< 0.10	110%	50%	140%	82%	60%	130%	79%	50%	140%	
m & p-Xylene	6737084		<0.20	<0.20	NA	< 0.20	60%	50%	140%	85%	60%	130%	82%	50%	140%	
Bromoform	6737084		<0.10	<0.10	NA	< 0.10	93%	50%	140%	87%	60%	130%	106%	50%	140%	
Styrene	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	83%	60%	130%	83%	50%	140%	
1,1,2,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	86%	50%	140%	89%	60%	130%	91%	50%	140%	
o-Xylene	6737084		<0.10	<0.10	NA	< 0.10	70%	50%	140%	86%	60%	130%	84%	50%	140%	
1,3-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	74%	50%	140%	87%	60%	130%	89%	50%	140%	
1,4-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	81%	50%	140%	95%	60%	130%	98%	50%	140%	
1,2-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	84%	50%	140%	96%	60%	130%	100%	50%	140%	
n-Hexane	6737084		<0.20	<0.20	NA	< 0.20	99%	50%	140%	93%	60%	130%	66%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

F1 (C6 to C10) 6737084 <25 <25 NA < 25 77% 60% 140% 81% 60% 140% 99% 60% 140%

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls 6738821 6738821 < 0.1 < 0.1 NA < 0.1 106% 50% 140% 91% 50% 140% 95% 50% 140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 21

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

Water Analysis

RPT Date: May 26, 2025			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Water)

Dissolved Antimony	6738615	1.9	1.9	NA	< 1.0	100%	70%	130%	98%	80%	120%	97%	70%	130%
Dissolved Arsenic	6738615	4.4	4.1	NA	< 1.0	93%	70%	130%	91%	80%	120%	101%	70%	130%
Dissolved Barium	6738615	97.9	101	3.1%	< 2.0	95%	70%	130%	93%	80%	120%	93%	70%	130%
Dissolved Beryllium	6738615	<0.50	<0.50	NA	< 0.50	105%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Boron	6738615	160	151	5.8%	< 10.0	99%	70%	130%	98%	80%	120%	98%	70%	130%
Dissolved Cadmium	6738615	<0.20	<0.20	NA	< 0.20	100%	70%	130%	97%	80%	120%	96%	70%	130%
Dissolved Chromium	6738615	<2.0	<2.0	NA	< 2.0	95%	70%	130%	100%	80%	120%	93%	70%	130%
Dissolved Cobalt	6738615	0.87	0.77	NA	< 0.50	93%	70%	130%	102%	80%	120%	95%	70%	130%
Dissolved Copper	6738615	1.5	2.2	NA	< 1.0	98%	70%	130%	101%	80%	120%	94%	70%	130%
Dissolved Lead	6738615	<0.50	<0.50	NA	< 0.50	91%	70%	130%	94%	80%	120%	92%	70%	130%
Dissolved Molybdenum	6738615	10.2	11.1	8.5%	< 0.50	104%	70%	130%	114%	80%	120%	106%	70%	130%
Dissolved Nickel	6738615	2.3	3.9	NA	< 1.0	92%	70%	130%	105%	80%	120%	96%	70%	130%
Dissolved Selenium	6738615	<1.0	<1.0	NA	< 1.0	97%	70%	130%	97%	80%	120%	98%	70%	130%
Dissolved Silver	6738615	<0.20	<0.20	NA	< 0.20	102%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Thallium	6738615	<0.30	<0.30	NA	< 0.30	94%	70%	130%	99%	80%	120%	95%	70%	130%
Dissolved Uranium	6738615	5.08	4.97	2.2%	< 0.50	95%	70%	130%	99%	80%	120%	97%	70%	130%
Dissolved Vanadium	6738615	<0.40	0.91	NA	< 0.40	99%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Zinc	6738615	<5.0	<5.0	NA	< 5.0	96%	70%	130%	94%	80%	120%	96%	70%	130%
Mercury	6740989	<0.02	<0.02	NA	< 0.02	103%	70%	130%	97%	80%	120%	95%	70%	130%
Chromium VI	6737246	<2.000	<2.000	NA	< 2	102%	70%	130%	102%	80%	120%	104%	70%	130%
Cyanide, WAD	6744990	<2	<2	NA	< 2	90%	70%	130%	NA	80%	120%	102%	70%	130%
Dissolved Sodium	6738615	57000	47700	17.8%	< 50	112%	70%	130%	105%	80%	120%	107%	70%	130%
Chloride	6737247	75400	75400	0.0%	< 100	98%	70%	130%	105%	80%	120%	105%	70%	130%
pH	6719189	7.35	7.32	0.5%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Yris Verastegui

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE: Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa

SAMPLED BY:DB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Have feedback?
 Scan here for a
 quick survey!

 5835 Coopers Avenue, Mississauga, Ontario L4Z 1Y2
 Ph: 905.712.5100 Fax: 905.712.5122
 5623 McAdam Road, Mississauga, ON L4Z 1N9
 1686 Woodward Drive, Ottawa, ON, K2C 3R8
 webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

 Company: G2S
 Contact: Hailey Perras
 Address: 4361 Harvester Rd - Unit 12
 Burlington ON
 Phone: 905 220 8587 Fax: _____
 Reports to be sent to:
 1. Email: haileyp@g2sconsulting.com
 2. Email: stephanie@g2sconsulting.com
Project Information:

 Project: G2S25042B
 Site Location: OTTAWA
 Sampled By: DB
 AGAT Quote #: Standing offer PO: _____

Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

 Company: _____
 Contact: _____
 Address: _____
 Email: _____

 Bill To Same: Yes No

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Field Filtered - Metals, Hg, CrVI, DOC	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PAHs	FCBs, Aroclors	Regulation 406 Characterization Package	Regulation 406	O. Reg 558
1. BH1	05/08/25	AM PM	13	GW		Y	X	X	X				PH, Metals, BTEX, F1-F4 EC, SAR		
2. BH4	05/09/25	AM PM	5	GW					X				Regulation 406 SPLP Rainwater Leach		
3. BH101	05/08/25	AM PM	3	GW					X				Regulation 406 SPLP Rainwater Leach		
4. BH102	05/08/25	AM PM	7	GW					X	X			Landfill Disposal Characterization TCLP: SPLP, Metals, VOCs, SVOCs, PCBs		
5. BH104	05/09/25	AM PM	3	GW					X	X			Landfill Disposal Characterization TCLP: SPLP, Metals, VOCs, SVOCs, PCBs		
6. BH105	05/08/25	AM PM	5	GW					X	X			Corrosivity: Moisture, Sulphide		
7. BH106	05/08/25	AM PM	11	GW					X	X			PFAS Water: PFAS Soil:		
8. BH107	05/08/25	AM PM	13	GW					X	X	X				
9. BH109	05/08/25	AM PM	13	GW					X	X	X				
10. BH110	05/08/25	AM PM	2	GW							X				
11. TRIP BLANK	05/01/25	AM PM	3	GW							X				

Samples Relinquished By (Print Name and Sign):

Hailey Perras

Date

05/14/25

Time

2:00 PM

Samples Received By (Print Name and Sign):

Anely Jr

Date

May 14, 2025

Time

3:59 PM

Page

1 of 1

Samples Relinquished By (Print Name and Sign):

Date

Time

Samples Received By (Print Name and Sign):

Date

Time

Page

Laboratory Use Only

 Work Order #: 25T291322

 Cooler Quantity: 1 large

 Arrival Temperatures: 9.5 8.7 8.1

 Depot Temperatures:

 Custody Seal Intact: Yes No N/A

 Notes: 100 Seals
Regulatory Requirements:

(Please check all applicable boxes)

 Regulation 153/04

3+7

 Table Indicate One
 Ind/Com

 Res/Park

 Agriculture

 Regulation 406

 Table Indicate One
 Ind/Com

 Res/Park

 Agriculture

 Region

 Prov. Water Quality Objectives (PWQO)

 Other

Indicate One
 CCME

Soil Texture (Check One)

 Coarse

 Fine

Is this submission for a Record of Site Condition (RSC)?

 Yes No

Report Guideline on Certificate of Analysis

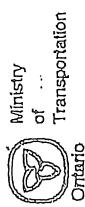
 Yes No

Legal Sample
Sample Matrix Legend

 GW* Ground Water SD Sediment
 O Oil SW Surface Water
 P Paint R Rock/Shale
 S Soil

Potentially Hazardous or High Concentration (Y/N)

Please provide prior notification for rush TAT


*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CSR

Gr 250 1/2 B
Bl 103 - 52

LOSS BY WASHING - COARSE AGGREGATE

Ministry of Transportation, Ontario Laboratory Testing Manual

Test Method LS-601
Date: 15 02 17

Rev. No. 29
Page 3 of 3

LAB. NO.	INITIAL MASS	MASS AFTER WASHING (g)	LOSS BY WASHING (g)	% LOSS
13060	165.2	92.1	13.6	112.97

PH-CC-373 73-06

DATE

OPERATOR

COMPUTED BY

Figure 1 Loss By Washing Data Card