

Geotechnical Investigation

Proposed Medical Building
5580 Manotick Main Street
Ottawa, Ontario

Prepared for:

Abdulla Real Estate Holdings Inc.
PO Box 819
Manotick, ON
K4M 1A7

LRL File No.: 230464

May 2024

TABLE OF CONTENTS

1	INTRODUCTION	1
2	SITE AND PROJECT DESCRIPTION	1
3	PROCEDURE.....	1
4	SUBSURFACE SOIL AND GROUNDWATER CONDITIONS	2
4.1	General	2
4.2	Pavement Structure.....	2
4.3	Fill	2
4.4	Glacial Till.....	3
4.5	Laboratory Analysis	3
4.6	Groundwater Conditions	3
5	GEOTECHNICAL CONSIDERATIONS	3
5.1	Foundations	3
5.2	Shallow Foundation.....	4
5.3	Structural Fill.....	4
5.4	Lateral Earth Pressure.....	4
5.5	Settlement	5
5.6	Liquefaction Potential	5
5.7	Seismic	5
5.8	Frost Protection	5
5.9	Foundation Drainage	6
5.10	Foundation Walls Backfill (Shallow Foundations).....	6
5.11	Slab-on-grade Construction.....	6
5.12	Corrosion Potential and Cement Type	7
5.13	Tree Planting	7
6	EXCAVATION AND BACKFILLING REQUIREMENTS	7
6.1	Excavation.....	7
6.2	Groundwater Control.....	7
6.3	Pipe Bedding Requirements	8
6.4	Trench Backfill	8
7	REUSE OF ON-SITE SOILS.....	9

8 RECOMMENDED PAVEMENT STRUCTURE.....	9
8.1 Paved Areas & Subgrade Preparation.....	10
9 INSPECTION SERVICES	10
10 REPORT CONDITIONS AND LIMITATIONS	11

LIST OF TABLES

Table 1 – Gradation Analysis Summary.....	3
Table 2 – Material and Earth Pressure Properties.....	5
Table 3 – Results of Chemical Analysis.....	7
Table 4 – Recommended Pavement Structure.....	10

APPENDICES

Appendix A	Site and Borehole Location Plans
Appendix B	Borehole Logs
Appendix C	Symbols and Terms Used in Borehole Logs
Appendix D	Lab Results

1 INTRODUCTION

LRL Associates Ltd. (LRL) was retained by Abdulla Real Estate Holdings Inc. to perform a geotechnical investigation for a proposed medical building, to be located at 5580 Manotick Main Street, Ottawa, Ontario.

The purpose of the investigation was to identify the subsurface conditions across the site by the completion of a borehole drilling program. Based on the visual and factual information obtained, this report will provide guidelines on the geotechnical engineering aspects of the design of the project, including construction considerations.

This report has been prepared in consideration of the terms and conditions noted above. Should there be any changes in the design features, which may relate to the geotechnical recommendations provided in the report, LRL should be advised in order to review the report recommendations.

2 SITE AND PROJECT DESCRIPTION

The site under investigation is located at 5580 Manotick Main Street, Ottawa, ON. Currently the site has an abandoned single-family dwelling, with multiple "shed-like" structures. The site is bound by Manotick Main Street to the east, 5576 Manotick Main Street to the north, 5582 Manotick Main Street to the south, and 1160 Beaverwood Road to the west. The topography of the site is sloping downwards from front to rear. The site is accessible from Manotick Main Street. The site location is presented in Figure 1 included in **Appendix A**.

At the time of generating this report, it is understood the development will consist of demolition of all structures onsite, and construction of a two-storey medical office building, with on-grade parking.

3 PROCEDURE

The fieldwork for this investigation was carried out on April 10, 2024. Prior to the fieldwork, the site was cleared for the presence of any underground services and utilities. A total of two (2) boreholes, labelled BH1 and BH2, were drilled onsite, where possible to do so. It shall be noted, drilling locations were limited due to existing structures and site features. The approximate locations of the boreholes are shown in Figure 2 included in **Appendix A**.

The boreholes were advanced using a Geoprobe drill rig equipped with 200 mm diameter continuous flight hollow stem auger supplied and operated by George Downing Estate Drilling Ltd. A "two man" crew experienced with geotechnical drilling operated the drill rig and equipment.

Sampling of the overburden materials encountered in the boreholes was carried out at regular depth intervals using a 50.8 mm diameter drive open conventional spoon sampler in conjunction with standard penetration testing (SPT) "N" values. The SPT were conducted following the method **ASTM D1586** and the results of SPT, in terms of the number of blows per 0.3 m of split-spoon sampler penetration after first 0.15 m designated as "N" value.

The boreholes were advanced to auger refusal, at depths of 5.18 and 3.00 m below (existing) ground surface (bgs) in BH1 and BH2 respectively. Upon completion, the boreholes were backfilled using the overburden cuttings.

The fieldwork was supervised throughout by a member of our engineering staff who oversaw the drilling activities, cared for the samples obtained and logged the subsurface conditions encountered within each of the boreholes. All soil samples collected from the boreholes were placed and sealed in plastic bags to prevent moisture loss. The recovered soil samples collected from the boreholes were classified based on visual examination of the materials recovered and the results of the in-situ testing.

Furthermore, all boreholes were located using a Garmin Etrex Legend GPS (Global Positioning System) receiver using NAD 83 datum (North American Datum). LRL's field personnel determined the existing grade elevations at the borehole locations through a topographic survey carried out using the Site Benchmark. Ground surface elevations of the boring locations are shown on their respective borehole logs.

4 SUBSURFACE SOIL AND GROUNDWATER CONDITIONS

4.1 General

A review of local surficial geology maps provided by the Department of Energy, Mines and Resources Canada suggest that the surficial geology for this area consists of till material. The till consists of a heterogeneous mixture of material ranging from clay to large boulders, generally sandy, grades downwards into unmodified till.

The subsurface conditions encountered in the boreholes were classified based on visual and tactile examination of the materials recovered from the boreholes and the results of in-situ laboratory testing. The soil descriptions presented in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil were conducted according to the procedure **ASTM D2487** and judgement, and LRL does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

The subsurface soil conditions encountered at the boreholes are given in their respective logs presented in **Appendix B**. A greater explanation of the information presented in the borehole logs can be found in **Appendix C** of this report. These logs indicate the subsurface conditions encountered at a specific test location only. Boundaries between zones on the logs are often not distinct, but are rather transitional and have been interpreted as such.

4.2 Pavement Structure

At the surface of BH1, a pavement structure was encountered. This consisted of 50 mm of asphalt overlying 50 mm of crushed stone.

4.3 Fill

At the surface of BH2, a layer of fill material was encountered and extended to a depth of 0.90 m bgs. This material was comprised of silt-sand, mixed with some gravel, dark brown, and moist. SPTs were carried out in the fill material and the "N" value was found to be 4, indicating the material is loose. The natural moisture content was found to be 6%.

4.4 Glacial Till

Underlying the pavement structure in BH1, and the fill material in BH2, a deposit of glacial till was encountered and extended until refusal depth of 5.18 and 3.00 m bgs respectively in BH1 and BH2. The material can be described as a mixture of silt-sand, some gravel sized stone, trace clay, greyish brown, and moist. The “N” values were found to range between 9 and 50+ indicating the material is loose to very dense. The natural moisture contents were found to range between 5 and 15%.

4.5 Laboratory Analysis

Two (2) soil samples were collected for laboratory gradation analyses. The gradation analyses comprised of sieve and hydrometer were conducted following the procedure **ASTM D422**. Details of laboratory analyses are reflected in **Table 1**.

Table 1: Gradation Analysis Summary

Sample Location	Depth (m)	Percent for Each Soil Gradation							Estimated Hydraulic Conductivity K (m/s)	
		Gravel		Sand			Silt (%)	Clay (%)		
		Coarse (%)	Fine (%)	Coarse (%)	Medium (%)	Fine (%)				
BH1	4.6-5.2	0.0	12.7	10.3	12.4	18.9	37.3	8.4	5×10^{-6}	
BH2	1.2-1.8	0.0	12.0	7.0	10.6	21.5	42.1	6.8	5×10^{-6}	

The laboratory reports can be found in **Appendix D** of this report.

4.6 Groundwater Conditions

A piezometer was installed in BH2 to measure the static groundwater level. The piezometer consisted of a 19 mm diameter PVC pipe with a slotted bottom to allow for groundwater infiltration, backfilled with silica sand, and sealed with bentonite. The water was measured on April 12 and April 25, 2024 and found to be at 1.90 and 2.00 m bgs respectively.

It should be noted that groundwater levels could fluctuate with seasonal weather conditions, (i.e.: rainfall, droughts, spring thawing) and due to construction activities at or near the vicinity of the site.

5 GEOTECHNICAL CONSIDERATIONS

This section of the report provides general geotechnical recommendations for the design aspect of the project based on our interpretation of the information gathered from the boreholes performed at this site and from the project requirements.

This section will detail design parameters for the specific requirements and limitations with regard to allowable foundation bearing pressure and depth, grade raise and size of the footings.

5.1 Foundations

Based on the subsurface soil conditions established at this site, it is recommended that the footings for the proposed building be founded on the native glacial till, beneath the frost penetration depth.

5.2 Shallow Foundation

Conventional strip and column footings founded over the undisturbed native glacial till may be designed using a maximum allowable bearing pressure of **150 kPa** for serviceability limit state (**SLS**) and **225 kPa** for ultimate limit state (**ULS**) factored bearing resistance. The factored ULS value includes the geotechnical resistance factor of 0.5. There are no maximum footing width nor grade raise restrictions for this site.

In-situ field testing is required to check the strength and stability of the footings subgrade. Any incompetent subgrade areas as identified from in-situ testing must be sub-excavated and backfilled with approved structural fill. Similarly, any soft or wet areas should also be sub-excavated and backfilled with approved structural fill only. Prior to placing any approved structural fill, the subgrade should be inspected and approved by geotechnical engineer or qualified geotechnical personnel. The bearing pressure is contingent on the water level being 0.3 m below the underside footing elevation in order to have a stable and dry subgrade during construction.

Prior to pouring footings concrete, the subgrade should be inspected and approved by a geotechnical engineer or a representative of geotechnical engineer.

5.3 Structural Fill

For foundations set over undisturbed native soil and where excavation below the underside of the footings is performed in order to reach a suitable founding stratum, consideration should also be given to support the footings on structural fill. The structural fill should be placed over undisturbed native soils in layers not exceeding 300 mm and compacted to 98% of its Standard Proctor Maximum Dry Density (SPMDD) within $\pm 2\%$ of its optimum moisture content. In order to allow the spread of load beneath the footings and to prevent undermining during construction, the structural fill should extend minimum 1.0 m beyond the outside edges of the footings and then outward and downward at 1 horizontal to 1 vertical profile (or flatter) over a distance equal to the depth of the structural fill below the footing. Furthermore, the structural fill must be tested to ensure that the specified compaction level is achieved.

5.4 Lateral Earth Pressure

The following equation should be used to estimate the intensity of the lateral earth pressure against any earth retaining structure/foundation walls.

$$P = K (\gamma h + q)$$

Where;

P = Earth pressure at depth h;

K = Appropriate coefficient of earth pressure;

γ = Unit weight of compacted backfill, adjacent to the wall;

h = Depth (below adjacent to the highest grade) at which P is calculated;

q = Intensity of any surcharge distributed uniformly over the backfill surface (usually surcharge from traffic, equipment or soil stockpiled and typically considered 10 kPa).

The coefficient of earth pressure at rest (K_0) should be used in the calculation of the earth pressure on the storm water manhole/basement walls, which are expected to be rather rigid and not to deflect.

The above expression assumes that perimeter drainage system prevents the build-up of any hydrostatic pressure behind the foundation wall.

Table 2 below provides various material types and their respective earth pressure properties.

Table 2: Material and Earth Pressure Properties

Type of Material	Bulk Density (kN/m ³)	Friction Angle (Φ)	Pressure Coefficient		
			At Rest (K_0)	Active (K_A)	Passive (K_P)
Granular A	23.0	34	0.44	0.28	3.53
Granular B Type I	20.0	31	0.49	0.32	3.12
Granular B Type II	23.0	32	0.47	0.31	3.25
Glacial Till	20.5	31	0.49	0.32	3.12

5.5 Settlement

The estimated total settlement of the shallow foundations, designed using the recommended serviceability limit state capacity value, as well as other recommendations given above, will be less than 25 mm. The differential settlement between adjacent column footings is anticipated to be 15 mm or less.

5.6 Liquefaction Potential

For foundations constructed on glacial till, **liquefaction is not a concern**.

5.7 Seismic

Based on the results of this geotechnical investigation and in accordance with the Ontario Building Code 2012 (table 4.1.8.4.A.) and Canadian Foundation Engineering Manual (4th edition), the site can be classified as **Class “D”** as per the Site Classification for Seismic Site Response.

It should be noted that a greater seismic site response class may be obtained by conducting seismic velocity testing using a multichannel analysis of surface waves (MASW).

The above classifications were recommended based on conventional method exercised for Site Classification for Seismic Site Response and in accordance with the generally accepted geotechnical engineering practice.

5.8 Frost Protection

All exterior footings for any heated structure exposed to frost conditions should have a minimum of 1.5 m of earth cover. Footings for any unheated structures, signage or lighting, and where snow will be cleared, 1.8 m of earth cover is required. Alternatively, the required frost protection could be provided using a combination of earth cover and

extruded polystyrene insulation. Detailed guidelines for footing insulation frost protection can be provided upon request.

In the event that foundations are to be constructed during winter months, the foundation soils are required to be protected from freezing temperatures using suitable construction techniques. The base of all excavations should be insulated from freezing temperatures immediately upon exposure, until heat can be supplied to the building interior and the footings have sufficient soil cover to prevent freezing of the subgrade soils.

5.9 Foundation Drainage

Permanent perimeter drainage is only required for buildings where basements or whenever any open spaces located below the finish ground are being considered. If basements are present, foundation drainage consisting of 100 mm diameter weeping tile wrapped in a sock should be placed adjacent to exterior footings, and connected to a suitable outlet (ie: sump pit or ditches)

In order to minimize ponding of water adjacent to the foundation walls, roof water should be controlled by a roof drainage system that directs water away from the building to prevent ponding of water adjacent to the foundation wall.

5.10 Foundation Walls Backfill (Shallow Foundations)

To prevent possible foundation frost jacking and lateral loading, the backfill material against any foundation walls, grade beams, isolated walls, or piers should consist of free draining, non-frost susceptible material such as sand or sand and gravel meeting OPSS Granular B Type II or I, or a Select Subgrade Material (SSM).

The foundation wall backfill should be compacted to minimum 95% of its SPMDD using light compaction equipment, where no loads will be set over top. The compaction shall be increased to 98% of its SPMDD under walkways, slabs or paved areas close to the foundation or retaining walls. Backfilling against foundation walls should be carried out on both sides of the wall at the same time where applicable.

5.11 Slab-on-grade Construction

All organic or otherwise deleterious material shall be removed from the proposed building's footprint. The exposed subgrade should then be inspected and approved by a qualified geotechnical personnel.

Any underfloor fill needed to raise the general floor grade shall consist of OPSS Granular B Type II or I, SSM or approved on-site earth borrow, compacted to 98% of its SPMDD. A 200 mm Granular A meeting the **OPSS 1010** shall be placed underneath the slab and compacted to 98% of its SPMDD. Alternatively, if wet condition persists, 200 mm thickness of 19 mm clear stone meeting the **OPSS 1004** requirements shall be used instead of Granular A.

It is also recommended that the area of extensive exterior slab-on-grade (sidewalks, ramp etc.) shall be constructed using Granular A base of thickness 150 mm with incorporating subdrain facilities. The modulus of subgrade reaction (ks) for the design of the slabs set over competent native soil/structural fill is **18 MPa/m**.

In order to further minimize and control cracking, the floor slab shall be provided with wire or fibre mesh reinforcement and construction or control joints. The construction or control

joints should be spaced equal distance in both directions and should not exceed 4.5 m. The wire or fibre mesh reinforcement shall be carried out through the joints.

5.12 Corrosion Potential and Cement Type

A soil sample was submitted to Paracel Laboratories Ltd. for chemical testing. The following **Table 3** below summarizes the results.

Table 3: Results of Chemical Analysis

Sample Location	Depth (m)	pH	Sulphate (µg/g)	Chloride (µg/g)	Resistivity (Ohm.cm)
BH1	1.5 – 2.1	7.44	<10	10	7,920

Based on the CAN/CSA-A23.1 standards (Concrete Materials and Methods of Concrete Construction), a sulphate concentration of less than 1000 µg/g falls within the negligible category for sulphate attack on buried concrete. The test result from soil sample was below the noted threshold. As such, buried concrete for footings and foundations walls will not require any special additive to resist sulphate attack and the use of normal Portland cement is acceptable.

The pH, resistivity and chloride concentration provide an indication of the degree of corrosiveness of the sub-surface environment. Based on the above results, the soil resistivity falls within the moderate corrosive range.

5.13 Tree Planting

No sensitive marine clay soils were encountered onsite, trees being planted onsite do not have to follow the “Tree Planting in Sensitive Marine Clay Soils – 2017 Guidelines” document.

6 EXCAVATION AND BACKFILLING REQUIREMENTS

6.1 Excavation

It is anticipated that any depth of excavation onsite will not be extend below about 1.8 – 2.4 m bgs. Excavation must be carried out in accordance with Occupational Health and Safety Act and Regulations for construction Projects.

According to the Ontario’s Occupational Health and Safety Act (OHSA), O. Reg. 213/91 and its amendments, the surficial overburden expected to be excavated into at this site can be classified as Type 3. Therefore, shallow temporary excavations can be cut at 1 horizontal to 1 vertical (1H: 1V) for a fully drained excavation starting at the base of the excavation and as per requirements of the OHSA regulations.

Any excavated material stockpiled near an excavation or trench should be stored at a distance equal to or greater than the depth of the excavation/trench and construction equipment, traffic should be limited near open excavation.

6.2 Groundwater Control

Based on the subsurface conditions encountered at this site, some minor groundwater seepage or infiltration from the native soils into the shallow temporary excavations during construction is expected. However, it is anticipated that pumping from open sumps should

be sufficient to control groundwater inflow. Any groundwater seepage or infiltration entering the excavation should be removed from the excavation by pumping from sumps within the excavations. Surface water runoff into the excavation should be minimized and diverted away from the excavation if possible.

A permit to take water (PTTW) is required from Ministry of Environment and Climate Change (MOECC), Ontario Reg. 387/04, if more than 400,000 litres per day of groundwater will be pumped during a construction period less than 30 days. Registration in the Environmental Activity and Sector Registry (EASR) is required when the takings of ground water and storm water for the purpose of dewatering construction projects range between 50,000 and 400,000 litres per day.

The actual amount of groundwater inflow into open excavations will depend on several factors such as the contractor's schedule, rate of excavation, the size of excavation, depth below the groundwater level, and at the time of year which the excavation is executed. It is expected that pumping rates will be less than 50,000 litres per day. As such, EASR registration is not required for the construction at this site.

6.3 Pipe Bedding Requirements

It is anticipated that the subgrade material for any underground services required as part of this project will be founded over the glacial till material. Any sub-excavation of disturbed soil should be removed and replaced with a Granular A, Granular B Type II or I or approved equivalent, laid in loose lifts of thickness not exceeding 300 mm and compacted to 95% of its SPMDD. Bedding, thickness of cover material and compaction requirements for any pipes should conform to the manufacturers design requirements and to the detailed installations outlined in the Ontario Provincial Standard Specifications (OPSS) and any applicable standards or requirements. At minimum, a 150 mm thick layer of Granular A shall be used as pipe bedding, at the springline of the pipe, and a 300 mm thick layer above the obvert of the pipe.

If sewers are required to be founded below the groundwater table the native materials may be sensitive to disturbances. Therefore, special precautions should be taken in these areas to stabilize and confine the base of the excavation such as using recompression (thicker bedding) and/or dewatering methods (pumping). In order to properly compact the bedding, the water table should be kept at least 300 mm below the base of the excavation at all time during the installation of any sewers and structures.

As an alternative to Granular A bedding and only where wet conditions are encountered, the use of "clear stone" bedding, such as 19 mm clear stone, **OPSS 1004**, may be considered only in conjunction with a suitable geotextile filter (such as terrafix 270R or approved equivalent). Without proper filtering, there may be entry of fines from native soils and trench backfill into the bedding, which could result in loss of support to the pipes and possible surface settlements. The sub-bedding, bedding and cover materials should be compacted in maximum 300 mm thick lifts to at least 95% of its SPMDD within $\pm 2\%$ of its optimum moisture content using suitable vibratory compaction equipment.

6.4 Trench Backfill

All service trenches should be backfilled using compactable material, free of organics, debris and large cobbles or boulders. Acceptable native materials (if encountered and where possible) should be used as backfill between the roadway subgrade level and the depth of seasonal frost penetrations (i.e. 1.8 m below finished grade) in order to reduce

the potential for differential frost heaving between the new excavated trench and the adjacent section of roadway. Where native backfill is used, it should match the native materials exposed on the trench walls. Backfill below the zone of seasonal frost penetration could consist of either acceptable native material or imported granular material conforming to OPSS Granular B Type II or I. Any boulders larger than 150 mm in size should not be used as trench backfill.

To minimize future settlement of the backfill and achieve an acceptable subgrade for the roadway, the trench should be compacted in maximum 300 mm thick lifts to at least 95% of its SPMDD. The specified density may be reduced where the trench backfill is not located within or in close proximity to existing roadways or any other structures.

For trenches carried out in existing paved areas, transitions should be constructed to ensure that proper compaction is achieved between any new pavement structure and the existing pavement structure to minimize potential future differential settlement between the existing and new pavement structure. The transition should start at the subgrade level and extend to the underside of the asphaltic concrete level (if any) at a 1 horizontal to 1 vertical slope. This is especially important where trench boxes are used and where no side slopes are provided to the excavation. Where asphaltic concrete is present, it should be cut back to a minimum of 150 mm from the edge of the excavation to allow for proper compaction between the new and existing pavement structures.

7 REUSE OF ON-SITE SOILS

The existing surficial overburden soils consist mostly of glacial till. This material is considered to be frost susceptible and should not be used as backfill material, except for landscaping purposes where no loads will be applied.

It should be noted that the adequacy of any material for reuse as backfill will depend on its water content at the time of its use and on the weather conditions prevailing prior to and during that time. Therefore, all excavated materials to be reused shall be stockpiled in a manner that will prevent any significant changes in their moisture content, especially during wet conditions. Any excavated materials proposed for reuse should be stockpiled in a manner to promote drying and should be inspected and approved for reuse by a geotechnical engineer.

Any imported material shall conform to OPSS Granular B – Type II or I, SSM, or an approved equivalent.

8 RECOMMENDED PAVEMENT STRUCTURE

It is anticipated that the subgrade soils for the new parking areas/access lanes will consist of glacial till.

The following **Table 4** presents the recommended pavement structures to be constructed over a stable subgrade along the proposed parking areas and access lanes as part of this project.

Table 4: Recommended Pavement Structure

Course	Material	Thickness (mm)	
		Light Duty Parking Area (mm)	Heavy Duty Parking Area (Access Roads, Fire Routes and Trucks) (mm)
Surface	HL3/SP12.5 A/C	50	40
Binder	HL8/SP19.0 A/C	-	50
Base course	Granular A	150	150
Sub base	Granular B Type II	300	450
Total:		500	690

Performance Graded Asphaltic Cement (PGAC) **58-34** is recommended for this project.

The base and subbase granular materials shall conform to **OPSS 1010** material specifications. Any proposed materials shall be tested and approved by a geotechnical engineer prior to delivery to the site and shall be compacted to 98% of its SPMDD. Asphaltic concrete shall conform to **OPSS 1150** and be placed and compacted to at least 93% of the Marshall Density. The mix and its constituents shall be reviewed, tested and approved by a geotechnical engineer prior to delivery to the site.

8.1 Paved Areas & Subgrade Preparation

The access lanes and parking areas shall be stripped of vegetation, debris and other obvious objectionable material. Following the backfilling and satisfactory compaction of any underground service trenches up to the subgrade level, the subgrade shall be shaped, crowned and proof-rolled. A loaded Tandem axle, dual wheel dump truck or approved equivalent heavy duty smooth drum roller shall be used for proof-rolling. Any resulting loose/soft areas should be sub-excavated down to an adequate bearing layer and replaced with approved backfill.

The preparation of subgrade shall be scheduled and carried out in manner so that a protective cover of overlying granular material (if required) is placed as quickly as possible in order to avoid unnecessary circulation by heavy equipment, except on unexcavated or protected surfaces. Frost protection of the surface shall be implemented if works are carried out during the winter season.

The performance of the pavement structure is highly dependent on the subsurface groundwater conditions and maintaining the subgrade and pavement structure in a dry condition. The surface of the pavement should be properly graded to direct runoff water towards suitable drainage features. It is recommended that the lateral extent of the subbase and base layers not be terminated vertically immediately behind the curb/edge of pavement line but be extended beyond the curb.

9 INSPECTION SERVICES

The engagement of the services of the geotechnical consultant during construction is recommended to confirm that the subsurface conditions throughout the proposed site do not materially differ from those given in the report and that the construction activities do not adversely affect the intent of the design.

All footing areas and any structural fill areas for the proposed structures should be inspected by LRL to ensure that a suitable subgrade has been reached and properly prepared. The placing and compaction of any granular materials beneath the foundations and slab-on-grade should be inspected to ensure that the materials used conform to the grading and compaction specifications.

The subgrade for the pavement areas and underground services should be inspected and approved by geotechnical personnel. In-situ density testing should be carried out on the pavement granular materials, pipe bedding and backfill to ensure the materials meet the specifications for required compaction.

If footings are to be constructed during winter season, the footing subgrade should be protected from freezing temperatures using suitable construction techniques.

10 REPORT CONDITIONS AND LIMITATIONS

It is stressed that the information presented in this report is provided for the guidance of the designers and is intended for this project only. The use of this report as a construction document or its use by a third party beyond the client specifically listed in the report is neither intended nor authorized by LRL Associates Ltd. Contractors bidding on or undertaking the works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of the factual data as it affects their construction techniques, schedule, safety and equipment capabilities.

The professional services for this project include only the geotechnical aspects of the subsurface conditions at this site. The presence or implications of possible contamination resulting from previous uses or activities at this site or adjacent properties, and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this report.

The recommendations provided in this report are based on subsurface data obtained at the specific boring locations only. Boundaries between zones presented on the borehole are often not distinct but transitional and were interpreted. Experience indicates that the subsurface soil and groundwater conditions can vary significantly between and beyond the test locations. For this reason, the recommendations given in this report are subject to a field verification of the subsurface soil conditions at the time of construction.

The recommendations are applicable only to the project described in this report. Any changes to the project will require a review by LRL Associates Ltd., to ensure compatibility with the recommendations contained in this project.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report or if we may be of further services to you, please do not hesitate to contact the undersigned.

Yours truly,
LRL Associates Ltd.

Brad Johnson, P.Eng.
Geotechnical Engineer

W:\FILES 2023\230464\05 Geotechnical\01 Investigation\05 Reports\230464_Geotechnical Investigation_Proposed Medical Building_5580 Manotick Main St_Ottawa.docx

APPENDIX A
Site and Borehole Location Plan

LRL

5430 Canotek Road | Ottawa, ON, K1J 9G2
www.lrl.ca | (613) 842-3434

PROJECT

GEOTECHNICAL INVESTIGATION
PROPOSED MEDICAL BUILDING
5580 MANOTICK MAIN STREET
OTTAWA ONTARIO

DRAWING TITLE

SITE LOCATION
SOURCE: GEOOTTAWA

CLIENT

ABDULLAH REAL ESTATE HOLDINGS

DATE

APRIL 2024

PROJECT

230464

FIGURE 1

LRl

5430 Canotek Road | Ottawa, ON, K1J 9G2
www.lrl.ca | (613) 842-3434

PROJECT

GEOTECHNICAL INVESTIGATION
PROPOSED MEDICAL BUILDING
5580 MANOTICK MAIN STREET
OTTAWA ONTARIO

DRAWING TITLE

BOREHOLE LOCATION
SOURCE: GOOGLE AERIAL VIEW

CLIENT

ABDULLAH REAL ESTATE HOLDINGS

DATE

APRIL 2024

PROJECT

230464

FIGURE 2

APPENDIX B
Borehole Logs

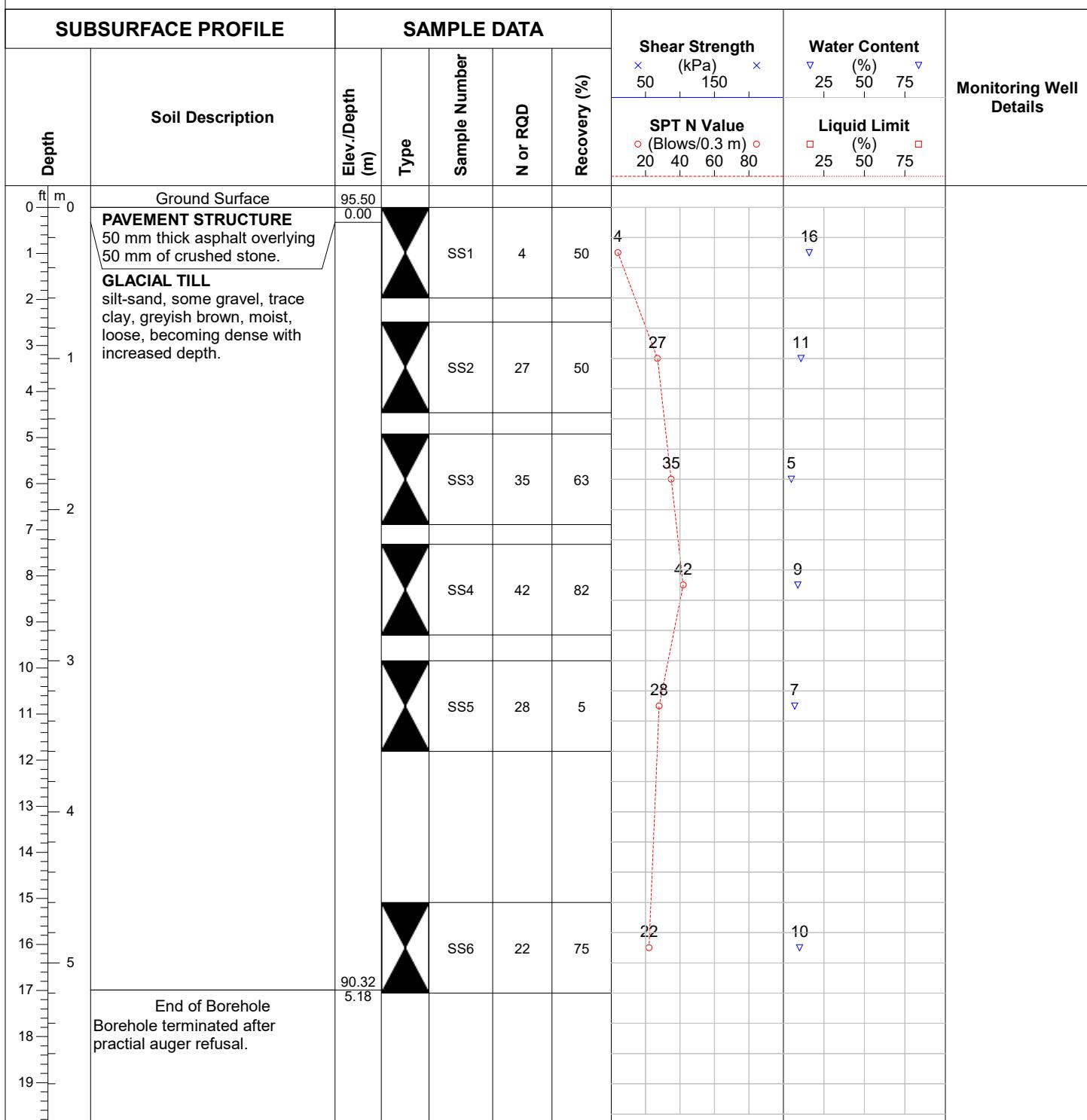
Project No.: 230464

Client: Abdullah Real Estate Holdings

Date: April 10, 2024

Driller: George Downing Estate Drilling

Drilling Equipment: Geoprobe


Borehole Log: BH1

Project: Geotechnical Investigation

Location: 5580 Manotick Main Street, Ottawa ON

Field Personnel: KB

Drilling Method: Hollow Stem Auger

Easting: 446497 m

Northing: 5007971 m

NOTES:

Site Datum: Site Benchmark - "Nail in Pole"

Groundsurface Elevation: 95.50 m

Top of Riser Elev.: NA

Hole Diameter: 200 mm

Monitoring Well Diameter: N/A

Project No.: 230464

Client: Abdullah Real Estate Holdings

Date: April 10, 2024

Driller: George Downing Estate Drilling

Drilling Equipment: Geoprobe

Borehole Log: BH2

Project: Geotechnical Investigation

Location: 5580 Manotick Main Street, Ottawa ON

Field Personnel: KB

Drilling Method: Hollow Stem Auger

SUBSURFACE PROFILE		SAMPLE DATA				Shear Strength (kPa)		Water Content (%)		Monitoring Well Details		
Depth	Soil Description	Elev./Depth (m)	Type	Sample Number	N or RQD	Recovery (%)	50	150	25		50	75
		(m)										
0 ft 0 m	Ground Surface	94.75 0.00										
1	FILL MATERIAL silt-sand, some gravel, dark brown, moist, loose.	93.85 0.90	SS1	4	33	4	40	150	25	50	75	
2			SS2	9	50	9	40		6	15		
3	GLACIAL TILL silt-sand, some gravel, trace clay, greyish brown, moist, loose, becoming very dense with increased depth.	93.85 0.90	SS3	41	33	41	60		8			
4			SS4	50+	50	50+	80		6			
5			SS5	50+	25	50+	50+		7			
6												
7												
8												
9												
10												
11	End of Borehole Borehole terminated after practical auger refusal.	91.75 3.00										
12												
13												
14												
15												
16												
17												
18												
19												

Shear Strength (kPa): 50, 150
SPT N Value (Blows/0.3 m): 20, 40, 60, 80
Liquid Limit (%): 25, 50, 75

Monitoring Well Details: 2.0 m bgs - April 25, 2024
1.9 m bgs - April 12, 2024

Easting: 446489 m

Northing: 5007969 m

NOTES:

Site Datum: Site Benchmark - "Nail in Pole"

Groundsurface Elevation: 94.75 m

Top of Riser Elev.: NA

Hole Diameter: 200 mm

Monitoring Well Diameter: N/A

APPENDIX C
Symbols and Terms used in Borehole Logs

Symbols and Terms Used on Borehole and Test Pit Logs

1. Soil Description

The soil descriptions presented in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves some judgement and LRL Associates Ltd. does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice. Boundaries between zones on the logs are often not distinct but transitional and were interpreted.

a. Proportion

The proportion of each constituent part, as defined by the grain size distribution, is denoted by the following terms:

Term	Proportions
“trace”	1% to 10%
“some”	10% to 20%
prefix (i.e. “sandy” silt)	20% to 35%
“and” (i.e. sand “and” gravel)	35% to 50%

b. Compactness and Consistency

The state of compactness of granular soils is defined on the basis of the Standard Penetration Number (N) as per ASTM D-1586. It corresponds to the number of blows required to drive 300 mm of the split spoon sampler using a metal drop hammer that has a weight of 62.5 kg and free fall distance of 760 mm. For a 600 mm long split spoon, the blow counts are recorded for every 150 mm. The “N” value is obtained by adding the number of blows from the 2nd and 3rd count. Technical refusal indicates a number of blows greater than 50.

The consistency of clayey or cohesive soils is based on the shear strength of the soil, as determined by field vane tests and by a visual and tactile assessment of the soil strength.

The state of compactness of granular soils is defined by the following terms:

State of Compactness Granular Soils	Standard Penetration Number “N”	Relative Density (%)
Very loose	0 – 4	<15
Loose	4 – 10	15 – 35
Compact	10 - 30	35 – 65
Dense	30 - 50	65 - 85
Very dense	> 50	> 85

The consistency of cohesive soils is defined by the following terms:

Consistency Cohesive Soils	Undrained Shear Strength (C_u) (kPa)	Standard Penetration Number “N”
Very soft	<12.5	<2
Soft	12.5 - 25	2 - 4
Firm	25 - 50	4 - 8
Stiff	50 - 100	8 - 15
Very stiff	100 - 200	15 - 30
Hard	>200	>30

c. Field Moisture Condition

Description (ASTM D2488)	Criteria
Dry	Absence of moisture, dusty, dry to touch.
Moist	Damp, but not visible water.
Wet	Visible, free water, usually soil is below water table.

2. Sample Data

a. Elevation depth

This is a reference to the geodesic elevation of the soil or to a benchmark of an arbitrary elevation at the location of the borehole or test pit. The depth of geological boundaries is measured from ground surface.

b. Type

Symbol	Type	Letter Code
	Auger	AU
■	Split Spoon	SS
	Shelby Tube	ST
	Rock Core	RC

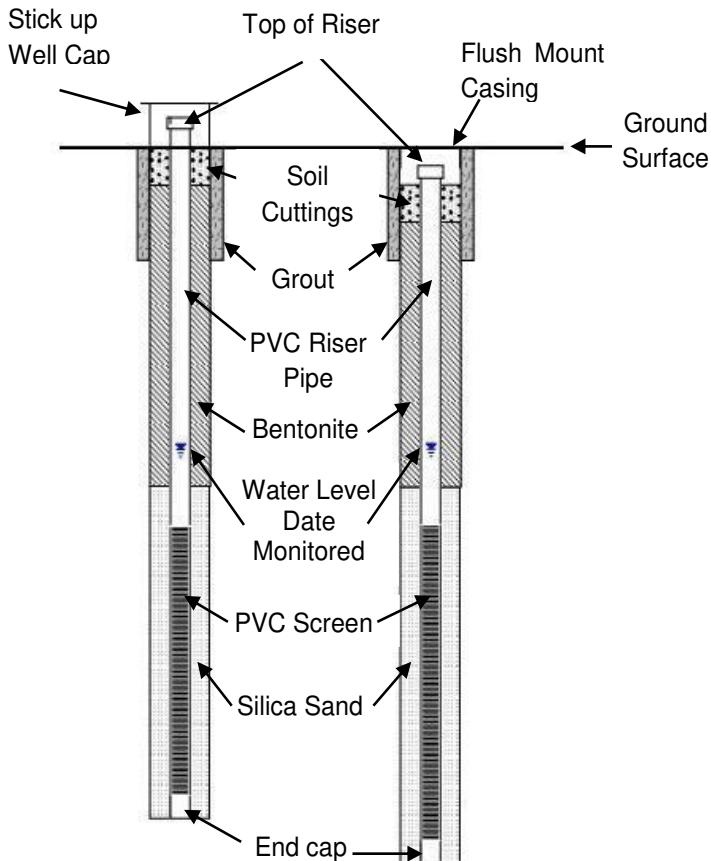
c. Sample Number

Each sample taken from the borehole is numbered in the field as shown in this column.

LETTER CODE (as above) – Sample Number.

d. Recovery (%)

For soil samples this is the percentage of the recovered sample obtained versus the length sampled. In the case of rock, the percentage is the length of rock core recovered compared to the length of the drill run.


3. Rock Description

Rock Quality Designation (RQD) is a rough measure of the degree of jointing or fracture in a rock mass. The RQD is calculated as the cumulative length of rock pieces recovered having lengths of 100 mm or more divided by the length of coring. The qualitative description of the bedrock based on RQD is given below.

Rock Quality Designation (RQD) (%)	Description of Rock Quality
0 – 25	Very poor
25 – 50	Poor
50 – 75	Fair
75 – 90	Good
90 – 100	Excellent

Strength classification of rock is presented below.

Strength Classification	Range of Unconfined Compressive Strength (MPa)
Extremely weak	< 1
Very weak	1 – 5
Weak	5 – 25
Medium strong	25 – 50
Strong	50 – 100
Very strong	100 – 250
Extremely strong	> 250

4. General Monitoring Well Data

5. Classification of Soils for Engineering Purposes (ASTM D2487) (United Soil Classification System)

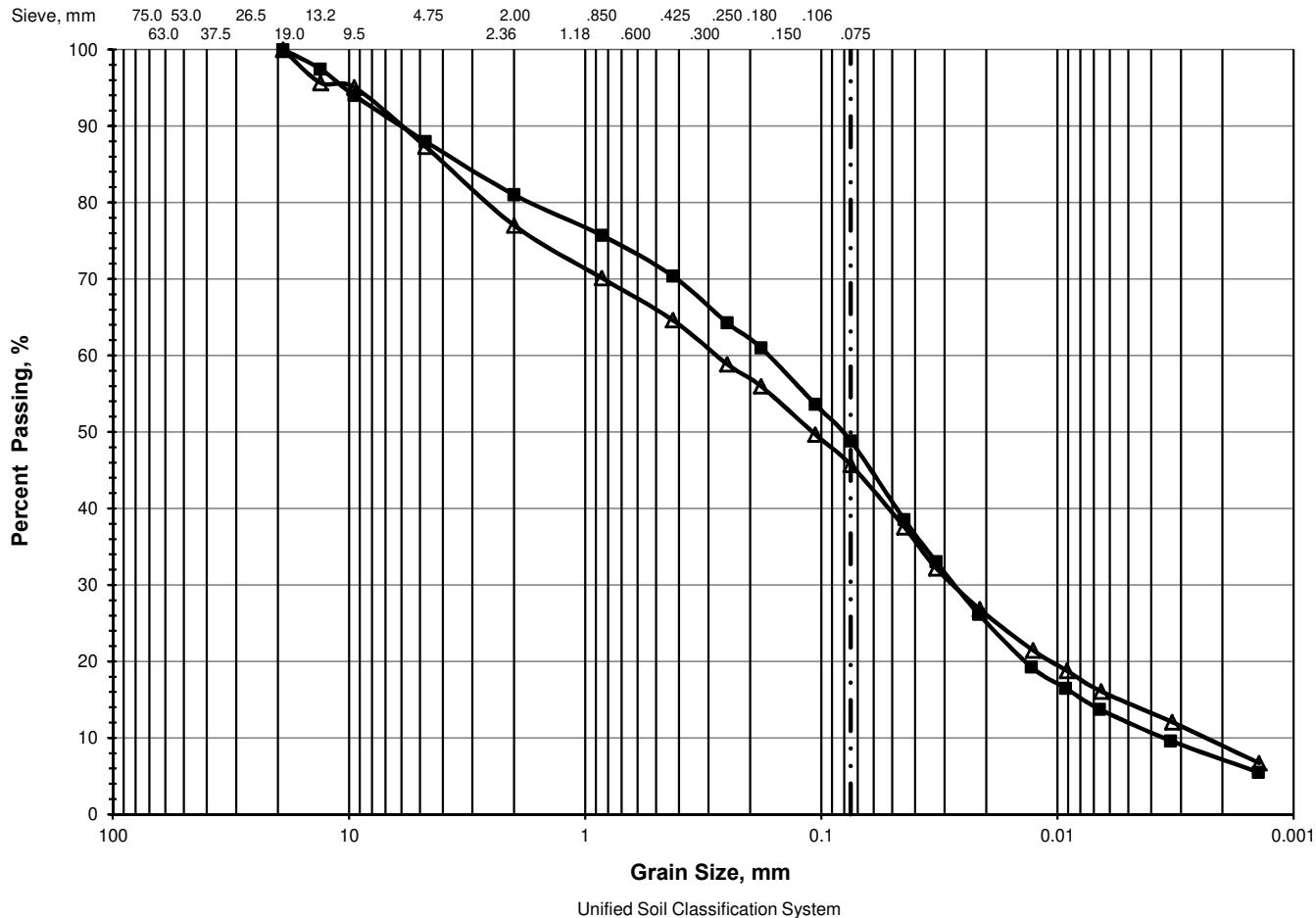
APPENDIX D
Laboratory Results

Particle Size Analysis

ASTM D 422 / LS-702

Client:

Abdulla Real Estate Holdings Inc.


File No.: 230464

Geotechnical Investigation

Report No.: 1

5580 Manotick Main Street, Manotick, ON.

Date: April 10, 2024

> 75 mm	% GRAVEL		% SAND			% FINES	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
△	0.0	0.0	12.7	10.3	12.4	37.3	8.4
■	0.0	0.0	12.0	7.0	10.6	21.5	6.8

Location	Sample	Depth, m	D ₆₀	D ₅₀	D ₃₀	D ₁₅	D ₁₀	C _c	C _u	
△	BH 1	SS-6	4.57 - 5.18	0.2847	0.1097	0.0280	0.0056	0.0025	1.1	113.9
■	BH 2	SS-3	1.22 - 1.83	0.1700	0.0826	0.0260	0.0078	0.0036	1.1	47.2

TRUSTED.
RESPONSIVE.
RELIABLE.

300 - 2319 St. Laurent Blvd
Ottawa, ON, K1G 4J8
1-800-749-1947
www.paracellabs.com

Certificate of Analysis

LRL Associates Ltd.

5430 Canotek Road
Ottawa, ON K1J 9G2
Attn: Brad Johnson

Client PO:
Project: 230464
Custody: 143850

Report Date: 17-Apr-2024
Order Date: 11-Apr-2024

Order #: 2415343

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2415343-01	BH1 5-7' SS3

Approved By:

A handwritten signature in black ink that reads 'Mark Foto'.

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	15-Apr-24	15-Apr-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	15-Apr-24	15-Apr-24
Resistivity	EPA 120.1 - probe, water extraction	16-Apr-24	16-Apr-24
Solids, %	CWS Tier 1 - Gravimetric	16-Apr-24	17-Apr-24

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Client ID:	BH1 5-7' SS3	-	-	-	-	-
Sample Date:	10-Apr-24 09:00	-	-	-	-	-
Sample ID:	2415343-01	-	-	-	-	-
Matrix:	Soil	-	-	-	-	-
MDL/Units						

Physical Characteristics

% Solids	0.1 % by Wt.	93.6	-	-	-	-	-
----------	--------------	------	---	---	---	---	---

General Inorganics

pH	0.05 pH Units	7.44	-	-	-	-	-
----	---------------	------	---	---	---	---	---

Resistivity

	0.1 Ohm.m	79.2	-	-	-	-	-
--	-----------	------	---	---	---	---	---

Anions

Chloride	10 ug/g	10	-	-	-	-	-
----------	---------	----	---	---	---	---	---

Sulphate

	10 ug/g	<10	-	-	-	-	-
--	---------	-----	---	---	---	---	---

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	10	ug/g					
Sulphate	ND	10	ug/g					
General Inorganics								
Resistivity	ND	0.1	Ohm.m					

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	10.1	10	ug/g	10.1			0.3	35	
Sulphate	ND	10	ug/g	ND			NC	35	
General Inorganics									
pH	7.32	0.05	pH Units	7.29			0.4	2.3	
Resistivity	44.5	0.1	Ohm.m	44.5			0.2	20	
Physical Characteristics									
% Solids	95.3	0.1	% by Wt.	95.0			0.3	25	

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	110	10	ug/g	10.1	99.4	82-118			
Sulphate	106	10	ug/g	ND	106	80-120			

Certificate of Analysis

Report Date: 17-Apr-2024

Client: LRL Associates Ltd.

Order Date: 11-Apr-2024

Client PO:

Project Description: 230464

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unless otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.