ARCHITECTURE 49

CEPEO LEITRIM ELEMENTARY SCHOOL 3955 KELLY FARM DRIVE, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT

FEBRUARY 28, 2025

ARCHITECTURE 49

CEPEO LEITRIM ELEMENTARY SCHOOL 3955 KELLY FARM DR, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT ARCHITECTURE49

SITE PLAN APPLICATION

PROJECT NO.: CA0040067.4396 DATE: FEBRUARY 28, 2025

WSP CANADA INC. 2611 QUEESVIEW DRIVE, SUITE 300 OTTAWA, ON, CANADA, K2B 8K2

TEL.: +1 613-829-2800

WSP.COM

SIGNATURES

PREPARED BY:

Devang Maratha, E.I.T. Civil Designer

REVIEWED BY:

Ding Bang (Winston) Yang, P.Eng Senior Engineer

This report was prepared by WSP Canada Inc. for the account of Architecture 49 on behalf of the Conseil des écoles publiques de l'est de l'Ontario (CEPEO), in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

vsp

TABLE OF CONTENTS

1	GENERAL	.12
1.1	Executive summary	.12
1.2	Date and Revision Number	. 13
1.3	Location Map and Plan	. 13
1.4	Adherence to zoning and related requirements	.14
1.5	Pre-Consultation meetings	.14
1.6	Higher level studies	.14
1.7	Statement of objectives and servicing criteria	. 15
1.8	Available existing and proposed infrastructure	. 15
1.9	Environmentally significant areas, watercourses and municIpal drains	
1.10	Concept level master grading plan	. 15
1.11	Impacts on private services	.16
1.12	Development phasing	.16
1.13	Geotechnical study	.16
1.14	Drawing requirement	.16
2	WATER DISTRIBUTION	17
2.1	Consistency with master servicing study and availability of public infrastructure	. 17
2.2	System constraints and boundary conditions	.17
2.3	Confirmation of adequate domestic supply and pressure	.17
2.4	Confirmation of adequate fire flow protection	.18
2.5	Check of high pressure	.19
2.6	Phasing constraints	.19
2.7	Reliability requirements	.19

wsp

2.8	Need for pressure zone boundary modification
2.9	Capability of major infrastructure to supply sufficient water
2.10	Description of proposed water distribution network. 19
2.11	Off-site requirements19
2.12	Calculation of water demands 19
3	WASTEWATER DISPOSAL
3.1	Design Criteria 20
3.2	Consistency with master servicing study
3.3	Review of Soil conditions 20
3.4	Description of existing sanitary sewer21
3.5	Verification of available capacity in downstream sewer21
3.6	Calculations for New sanitary sewEr21
3.7	Description of proposed sewer network21
3.8	Environmental constraints21
3.9	Pumping requirements21
3.10	Forcemains21
3.11	Emergency overflows from sanitary pumping stations21
3.12	Special considerations22
4	SITE STORM SERVICING
4.1	Existing condition23
4.2	Analysis of availabLe capacity in public infrastructure23
4.3	Drainage drawing23
4.4	Water quantity control objective23
4.5	Water quality control objective
4.6	Design criteria24

wsp

4.7	Proposed minor system24	4
4.8	Stormwater management24	4
4.9	Inlet Controls	5
4.10	On-site detention	6
4.11	Watercourses	6
4.12	Pre and Post development peak flow rates2	6
4.13	Diversion of drainage catchment areas	6
4.14	Downstream capacity where quanTity control is not proposed	6
4.15	Impacts to receiving watercourses2	7
4.16	Municipal drains and related approvals2	7
4.17	Means of conveyance and storage capacity2	7
4.18	Hydraulic analysis2	7
4.19	Identification of floodplains2	7
4.20	Fill constraints2	7
5	SEDIMENT AND EROSION CONTROL	8
5.1	General2	8
6	APPROVAL AND PERMIT REQUIREMENTS29	9
6.1	General2	9
7	CONCLUSION CHECKLIST	0
7.1	Conclusions and recommendations3	0
7.2	Comments received from review agencies	0

CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa, ON Servicing and Stormwater Management Report Project No. CA0040067.4396 Architecture49

vsp

TABLES

TABLE 2-1:	BOUNDARY CONDITIONS AT	
	CONNECTION 1	17
TABLE 4-1:	ICD INFORMATION	25
TABLE 4-2:	STORMWATER MANAGEMENT RELEASE	
	RATES AND STORAGE SUMMARY	26

FIGURES

FIGURE 1-1 SITE LOCATION	, t
--------------------------	--------

APPENDICES

Α

- PRE-CONSULTATION MEETING NOTES
- ARCHITECTURAL SITE PLAN
- TOPOGRAPHICAL SURVEY PLAN
- IBI GROUP DESIGN BRIEF (EXCERPTS ATTACHED)
- IBI GROUP GRADING PLAN FOR BARRETT LANDS PHASE 1

В

- FIRE UNDERWRITERS SURVEY FIRE FLOW CALCULATION FOR BUILDING
- FIRE UNDERWRITERS SURVEY FIRE FLOW CALCULATION FOR PORTABLE CLASSROOM
- WATER DEMAND CALCULATION
- BOUNDARY CONDITION REQUEST

С

- STORM SEWER DESIGN SHEET
- STORM DRAINAGE AREA PLAN C06
- ROOF DRAINAGE AREA PLAN C07

vsp

- STORMWATER MANAGEMENT CALCULATIONS
- OGS DETAILS
- DWG C03 GRADING PLAN
- DWG C04 SERVICING PLAN
- D
- DWG C05 EROSION AND SEDIMENTATION CONTROL PLAN

Е

SUBMISSION CHECK LIST

1 GENERAL

1.1 EXECUTIVE SUMMARY

WSP has been retained by Architecture 49 on behalf of the Conseil des écoles publiques de l'est de l'Ontario (CEPEO) to deliver comprehensive servicing, grading, and stormwater management design services for a new elementary school development at 3955 Kelly Farm Drive, Ottawa. The 2.07-hectare site, currently vacant and primarily grass-covered, lies within a residential area, providing an ideal setting for community access and engagement. Entry to the site will be from both Kelly Farm Drive and Barrett Farm Drive, allowing ease of access for pedestrians and vehicles.

The site is characterized by relatively flat terrain with minor elevation variations, as detailed in a topographic survey completed by Callon Dietz Incorporated on August 15, 2024. Based on guidelines from a pre-consultation meeting held on September 13, 2024, the allowable release rate for stormwater from the site is limited to 224 L/s as per Design Brief – Barrett Lands – Phase 1 – 4660 Bank Street – Leitrim Development Area – Dated May 2018 by IBI Group, a requirement that will guide the stormwater management approach for the development.

The proposed development will feature a two-storey elementary school, outdoor baseball court, soccer field, and parking area, with additional provisions made for future portable classrooms. Additionally, space for a potential parking lot expansion has been integrated into the grading plan to accommodate future growth without requiring substantial redesign.

Stormwater servicing for the site will connect to an existing 2700mm concrete trunk sewer along Kelly Farm Drive. The controlled roof drainage system will be conveyed through an existing 675mm storm stub on Barrett Farm Drive. Sanitary servicing for the school will connect to the existing 200mm sanitary stub on Barrett Farm Drive. Although an existing watermain stub is available on Barrett Farm Drive, the position of the water entry room within the school makes it more efficient to connect via two service connections from the 300mm watermain on Kelly Farm Drive. These connections provide redundancy for a reliable water supply, meeting both domestic and fire protection requirements.

The grading design for the school site supports effective stormwater drainage, directing surface runoff toward a series of catch basins that convey water to the main trunk sewer on Kelly Farm Drive. Space for future parking lot expansion has been accounted for, with grading adjustments that will allow additional paved areas to be integrated seamlessly into the existing layout.

This detailed design provides a robust servicing, grading, and stormwater management framework for the proposed elementary school at 3955 Kelly Farm Drive, supporting regulatory compliance, efficient drainage, and community accessibility while contributing to a resilient and functional school site.

Design of a drainage and stormwater management system in this development must be prepared in accordance with the following documents:

- Sewer Design Guidelines, City of Ottawa, October 2012;
- Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003; and
- Stormwater Management Facility Design Guidelines, City of Ottawa, April 2012

This report was prepared utilizing servicing design criteria obtained from the City of Ottawa and outlines the design for water, sanitary wastewater, and stormwater facilities, including stormwater management.

The format of this report matches that of the servicing study checklist found in Section 4 of the City of Ottawa's Servicing Study Guidelines for Development Applications, November 2009.

The following municipal services are available as recorded from GeoOttawa. Kelly Farm Drive:

- 2700mm storm trunk sewer
- 375mm sanitary sewer
- 300mm watermain

Barrett Farm Drive:

- 675mm storm sewer stub
- 200mm sanitary sewer stub
- 200mm watermain stub

It is proposed that:

- On-site stormwater management systems, employing surface storage and roof storage will be provided to attenuate flow rates leaving the site area to be redeveloped. Existing drainage patterns, previously established controlled flow rates and storm sewers will be maintained.

1.2 DATE AND REVISION NUMBER

This version of the report is the first issue, dated February 28th, 2025.

1.3 LOCATION MAP AND PLAN

The proposed institutional development is located at 3955 Kelly Farm Drive, Ottawa at the location shown in Figure 1-1 below.

Figure 1-1 Site Location

1.4 ADHERENCE TO ZONING AND RELATED REQUIREMENTS

The proposed property use will be in conformance with related requirements and is understood to be zoning-compliant

1.5 PRE-CONSULTATION MEETINGS

A pre-consultation meeting was held with the City of Ottawa on September 13, 2024. Notes from this meeting are provided in Appendix A.

1.6 HIGHER LEVEL STUDIES

The review for servicing has been undertaken in conformance with, and utilizing information from, the following documents: - Ottawa Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa including:

- Technical Bulletin ISDTB-2012-4 (20 June 2012)
- Technical Bulletin ISDTB-2014-01 (05 February 2014)
- Technical Bulletin PIEDTB-2016-01 (September 6, 2018)
- Technical Bulletin ISDTB-2018-01 (21 March 2018)
- Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:

WSP Page 14

- Technical Bulletin ISDTB-2014-02 (May 27, 2014)
- Technical Bulletin ISTB-2018-02 (21 March 2018)

- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).

- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).

- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 2020.

1.7 STATEMENT OF OBJECTIVES AND SERVICING CRITERIA

The objective of the site servicing is to meet the requirements for the proposed site while adhering to the stipulations of the applicable higher-level studies and City of Ottawa servicing design guidelines. The site plan includes a new school building, a new parking area, baseball court, football/soccer field, future portable classrooms and future parking extension.

1.8 AVAILABLE EXISTING AND PROPOSED INFRASTRUCTURE

An existing 2700mm diameter concrete trunk storm sewer is located along Kelly Farm Drive on the west side of the proposed elementary school site at 3955 Kelly Farm Drive. The stormwater services for the new school will connect to this trunk sewer. Additionally, there is a 675mm storm stub and a 200mm sanitary stub along Barrett Farm Drive, which will be extended as needed to connect with the school's storm and sanitary systems. Water servicing will utilize an existing watermain stub; however, due to the location of the water entry room, two connections are planned from the 300mm watermain on Kelly Farm Drive to ensure reliable service.

The primary site access points from Kelly Farm Drive and Barrett Farm Drive will serve the school, including potential expansions and additional facilities in the future.

1.9 ENVIRONMENTALLY SIGNIFICANT AREAS, WATERCOURSES AND MUNICIPAL DRAINS

There are no watercourses, municipal drains or environmentally significant areas on the site. The proposed changes to the site will not require any additional approvals or amendments to approvals pertaining to environmentally significant areas, watercourses or municipal drains.

1.10 CONCEPT LEVEL MASTER GRADING PLAN

As the design is being submitted for site plan approval, the grading plan has been developed to the final design level. The existing and proposed grading are shown on Drawings CO3. Existing grading information is based on a topographic survey of the site completed in August 2024. No changes in grading are proposed beyond the redevelopment area boundaries except the minor modification within the ROW to accommodate the proposed lay-by. The proposed grading plan confirms the feasibility of the proposed stormwater management system, drainage, soil removal and fills. The geotechnical investigation was completed in February 2025 by Cambium Inc. The grading along the study area boundary is proposed to meet the existing grade.

1.11 IMPACTS ON PRIVATE SERVICES

There are no existing domestic private services (septic system and well) located on the site. There are no neighbouring properties using private services.

1.12 DEVELOPMENT PHASING

There are no development phasing considerations for the site.

1.13 GEOTECHNICAL STUDY

A geotechnical investigation report was previously prepared by Cambium Inc. on February 07, 2025. No additional geotechnical information was required for the design of the modified site services, including paving. This geotechnical report will be included with the contract documents to be issued for construction, and the recommendations of the reports will be referenced in the construction specifications. The geotechnical study does, however, recommend a grade raise restriction of at most 1.0m.

1.14 DRAWING REQUIREMENT

The engineering plans submitted for site plan approval will be in compliance with City requirements.

CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa Servicing and Stormwater Management Report Project No. CA0040067.4396 Architecture49

WSP

2 WATER DISTRIBUTION

2.1 CONSISTENCY WITH MASTER SERVICING STUDY AND AVAILABILITY OF PUBLIC INFRASTRUCTURE

The new elementary school at 3955 Kelly Farm Drive will be serviced by the 300mm watermain on Kelly Farm Drive, utilizing two separate service connections of 200mm diameter to meet both domestic and fire protection needs. The dual 200mm diameter private water services will provide redundancy for the school building. An automatic sprinkler system will provide fire protection within the building, with the fire department connection strategically located near the main entrance. It is 45m away from the existing municipal fire hydrant on Kelly Farm Drive. No additional changes to the City's water distribution system are necessary.

2.2 SYSTEM CONSTRAINTS AND BOUNDARY CONDITIONS

A boundary service request was submitted to the City of Ottawa and boundary conditions have been received and summarized below. A fire flow of 7,000 l/min (117 l/s) was estimated for the proposed elementary school.

Table 2-1: Boundary Conditions at Connection 1

Boundary Condition Co	onnection 1 – Barrett Farm D	Drive (@ 94.3m)
SCENARIO	Hydraulic Pressure	Head (m)
SCENARIO	(kPa / PSI)	nead (m)
Basic Day (MAX HGL)	520.6 / 75.5	147.4
Peak Hour (MIN HGL)	506.8 / 73.5	146.0
Max Day + Fire Flow	484.7 / 70.3	143.8

2.3 CONFIRMATION OF ADEQUATE DOMESTIC SUPPLY AND PRESSURE

Water demands are based on Table 4.2 of the Ottawa Design Guidelines – Water Distribution. As previously noted, the development is considered as institutional development. A water demand calculation sheet is included in Appendix B, and the total water demands are summarized as follows:

	Proposed and Existing
Average Day	1.96 l/s
Maximum Day	2.94 l/s
Peak Hour	5.29 l/s

The 2010 City of Ottawa Water Distribution Guidelines stated that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi)

Page 17

Fire Flow During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point the distribution system shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

Water pressure at municipal connections check:

Min. HGL @ Connection - Pavement elevation = 146.0m - 95.27m = 50.73m = 497.39 kPa

Water pressure at building connection (at average day) check:

Max. HGL @ Connection - Finished floor elevation = 147.4m - 96.25 = 51.15m = 501.48 kPa

Water pressure at building connection (at max. hour demand) check:

Min. HGL @ Connection - Finished floor elevation = 146.0m-96.25m = 49.75m = 487.76 kPa

Water pressure at building connection (at max. day + fire demand):

(Max Day + Fire) HGL @ Connection - Finished floor elevation = 143.8m-96.25m = 47.55m = 466.19 kPa

The minimum water pressure inside the building at the connection is determined with the minimum HGL condition, resulting in a pressure of 487.76 kPa which exceed the minimum requirement of 276 kPa per the guidelines.

2.4 CONFIRMATION OF ADEQUATE FIRE FLOW PROTECTION

The fire flow for the proposed building and portable classrooms has been calculated using the Fire Underwriters Survey (FUS) method. The method takes into account the type of building construction, the building occupancy, the use of sprinklers and the exposures to adjacent structures.

Assuming non-combustible construction and a fully supervised sprinkler system, a fire flow demand of 7,000 l/min (117 l/s) for the new school has been calculated. A copy of the FUS calculations is included in Appendix B.

The demand of 7,000 l/min for the school can be delivered through four existing fire hydrants within the Kelly Farm Drive ROW west to the site and Barret Farm Drive ROW north to the site. Both of the hydrants along Barret Farm Drive are within 45 m of the FDC. As per above, the two existing hydrants can provide up to 95 l/s with a combined total of 190 l/s which is greater than the FUS demand.

The fire flow demand of 7,000 l/min (117 l/s) has also been calculated for the portable classrooms. The portable classrooms are located close to the Kelly Farm Drive ROW. The required fire flow could also be met through the combination of two existing public hydrants on Kelly Farm Drive. The distances between the classrooms and hydrants are between 45m to 90m.

The boundary condition for Maximum Day and Fire Flow results in a pressure of 466.19 kPa at the ground floor level. In the guidelines, a minimum residual pressure of 140 kPa must be maintained in the distribution system for a fire flow and maximum day event. As a pressure of 466.19 kPa is achieved, the fire flow requirement is exceeded.

Therefore, the existing watermain system has adequate capacity to service the proposed building and the new addition.

2.5 CHECK OF HIGH PRESSURE

High pressure is not a concern. The maximum water pressure inside the building at the connection is determined with the maximum HGL condition, resulting in a pressure of 501.48 kPa which is less than the 552 kPa threshold in the guideline in which pressure control is required. Based on this result, pressure control is not required for this building.

2.6 PHASING CONSTRAINTS

Phasing constraints for development have not been detailed in this report for the site

2.7 RELIABILITY REQUIREMENTS

Shut off valves are provided for the two proposed watermain services at the property line. Existing water valve at the connection will provide reliability.

2.8 NEED FOR PRESSURE ZONE BOUNDARY MODIFICATION

A pressure zone boundary modification is not required.

2.9 CAPABILITY OF MAJOR INFRASTRUCTURE TO SUPPLY SUFFICIENT WATER

The major infrastructure is capable of supplying sufficient water.

2.10 DESCRIPTION OF PROPOSED WATER DISTRIBUTION NETWORK

The proposed watermain system consists of two 200mm dia. service connections branching off the 300mm dia. watermain located in the Kelly Farm Drive right-of-way.

2.11 OFF-SITE REQUIREMENTS

No off-site improvements to watermains, feedermains, pumping stations, or other water infrastructure are required to maintain existing conditions and service the adjacent developments.

2.12 CALCULATION OF WATER DEMANDS

Water demands were calculated as described in Sections 2.3 and 2.4 above.

3 WASTEWATER DISPOSAL

3.1 DESIGN CRITERIA

In accordance with the City of Ottawa's Sewer Design Guidelines, the following design criteria have been utilized in order to predict wastewater flows generated by the subject site and complete the sewer design:

٠	Minimum Velocity	0.6 m/s
•	Maximum Velocity	3.0 m/s
٠	Manning Roughness Coefficient	0.013
٠	Total est. Hectares institutional use	2.07
٠	Average sanitary flow for institutional use	28,000 L/Ha/day
٠	Commercial/Institutional Peaking Factor	1.5
٠	Infiltration Allowance (Total)	0.33 L/Ha/s
•	Minimum Sewer Slopes – 200 mm diameter	0.50%

The area of 2.07 ha represents the total area for the site. This is the sanitary collection area that is being considered to contribute to the proposed 200mm sanitary service connection to the municipal sanitary sewer.

3.2 CONSISTENCY WITH MASTER SERVICING STUDY

The sanitary connection for the new elementary school will be provided by extending into the existing 200mm sanitary stub on Barrett Farm Drive. The Ottawa Sewer Design Guidelines provide estimates of sewage flows based on institutional development.

The criteria to determine anticipated actual peak flow based on site used as described in Ottawa Sewer Design Guidelines Appendix 4-A are as follows;

- Institutional: 28000 L/Ha/day = 0.324 L/Ha/s
- Peak flow = (0.324 L/Ha/s x 2.07 ha x 1.5 peaking factor) + 0.33 l/Ha/s x 2.07 ha = 1.69 L/s

The on-site sanitary sewer network has been designed in accordance with 1.69 L/s as described above.

3.3 REVIEW OF SOIL CONDITIONS

There are no specific subsurface conditions at this site that indicate a need for an increased extraneous flow allowance. Soil conditions have been assessed by Cambium Inc., and bedding and backfill will be provided as recommended. Conventional sewer materials will be used, and dewatering will be carried out as necessary, following the geotechnical recommendations and in response to conditions encountered on-site.

As groundwater measurements taken on October 3, 2024, indicated a static level around 3 mbgs with perched water likely on overlying silts and clayey deposits, dewatering may be required for excavations extending into these layers. All dewatering activities will be conducted in line with MECP regulations and the geotechnical recommendations, maintaining the groundwater level at least 1.0m below the base of excavations.

Page 20

3.4 DESCRIPTION OF EXISTING SANITARY SEWER

The proposed sanitary service for the new elementary school will extend into the existing 200mm sanitary stub on Barrett Farm Drive and connect to the existing 300mm sanitary sewer within the Barrett Farm Drive right-of-way.

3.5 VERIFICATION OF AVAILABLE CAPACITY IN DOWNSTREAM SEWER

The existing sanitary sewer within Barrett Farm Drive right-of-way is a 300 mm diameter sewer at a slope of 0.30%. This size and slope of sewer provides a capacity of 53.0 L/s.

Since the flow from the study area is only 1.69 l/s, the additional flow should have negligible impact on the capacity of the existing sewer system.

3.6 CALCULATIONS FOR NEW SANITARY SEWER

The new sanitary service from the site is a 200 mm diameter sewer at a slope of 1.0%. This size and slope of sewer provides a capacity of 32.8 L/s.

For the 2.07 ha study area, the sanitary peak flow is calculated at 1.01 l/s with an infiltration flow of 0.68 l/s (based on a peak extraneous flow of 0.33 l/s/ha) for a total flow of 1.69 l/s. Both the proposed sanitary on-site and municipal sewers have adequate capacity to convey this flow.

3.7 DESCRIPTION OF PROPOSED SEWER NETWORK

The proposed on-site sanitary sewer network will include a 200mm sanitary service line connected to a new 1200mm maintenance hole. This maintenance hole will replace the existing stub cap, providing improved access and functionality for the sanitary system.

3.8 ENVIRONMENTAL CONSTRAINTS

There are no previously identified environmental constraints that impact the sanitary servicing design in order to preserve the physical condition of watercourses, vegetation, or soil cover, or to manage water quantity or quality.

3.9 PUMPING REQUIREMENTS

The proposed development will have no impact on existing pumping stations and will not require new pumping facilities.

3.10 FORCEMAINS

There are no sanitary forcemains proposed on this site.

3.11 EMERGENCY OVERFLOWS FROM SANITARY PUMPING STATIONS

No sanitary pumping stations are proposed on this site.

Page 21

3.12 SPECIAL CONSIDERATIONS

There is no known need for special considerations for sanitary sewer design related to existing site conditions.

4 SITE STORM SERVICING

4.1 EXISTING CONDITION

The subject site, located at 3955 Kelly Farm Drive, is part of Barrett Lands Subdivision development. The pre-development release rate from the 2.07 ha study area has been assigned to be 224 L/s for the 100-year event as per the IBI Design Brief 2018. The existing storm network within the Barrett Farm Drive and Kelly Farm Drive ROW consists of concrete trunk sewers, stormwater runoff from the site is conveyed via a 2700mm concrete trunk sewer along Barrett Farm Drive and Kelly Farm Drive, which ultimately discharges into the designated stormwater management pond for quantity and quality control and treatment.

4.2 ANALYSIS OF AVAILABLE CAPACITY IN PUBLIC INFRASTRUCTURE

Based on the higher-level studies and plan, the allowable release rate for the site was allocated to be 224 L/s and remains unchanged, there are no concerns related to the adequacy and available capacity of the downstream network. Capacity in the minor system is not a concern.

4.3 DRAINAGE DRAWING

Drawing C04 shows the detailed site sewer network. Drawings C03 provides proposed grading and drainage and include existing grading information. Drawing C06 and C07 provides a post-construction drainage sub-area plan, including both site and roof information. Site sub-area information is also provided on the storm sewer design sheet attached in Appendix C. An overall grading plan and Servicing plan have also been attached to Appendix C for reference.

4.4 WATER QUANTITY CONTROL OBJECTIVE

The water quantity objective for the site is to limit the flow release to 224.0 l/s. Excess flows above this limit for the school site up to those generated by the 100-year storm event from drainage on the school site are temporarily stored on site.

No provision is required on the school's site to accommodate any flow from the adjacent lands. All flows exceeding the defined minor system capacity and on-site storage capability will enter the major system, with overflow to the City right of way, on the west and south boundaries of the site.

The maximum overland runoff spill elevation for this site is 95.74, and one 175 mm dia. circular plate ICDs is proposed to be used on the outlet inside STMH109 to restrict the flow rate leaving the site to 122.54 l/s at 3.67 m head, based on the maximum spill elevation of 95.74. In theory, the runoff water will be detained on site up to the 100-yr rainfall event, and for those scenarios exceeding 100-yr rainfall event, the runoff water will be discharged offsite once all the available storage areas have reached their maximum capacities. The school site can provide a total of 233.77 m³ of surface storage volume, but the required storage for 100-yr will be only 217.38 m³. The ponded water will not reach the spill elevation under 100 year and lesser events. The site has more storage capacity than required because of the grading design. This will allow extra detention of water on the site during extreme events and will reduce stress on the downstream stormwater management pond. If rain falls at a rate higher than the soccer field soil can absorb, then there will be surface ponding at the designated locations shown on the drawings. If the soccer field and landscaped areas allow for infiltration, the available surface storage volume will be further increased. In theory, the use of lower runoff coefficients for landscaped surfaces already accounts for a certain degree of absorption in these areas.

4.5 WATER QUALITY CONTROL OBJECTIVE

The on-site quality control objective is to provide enhanced protection (minimum 80% TSS removal) prior to releasing flows from the site's paved areas. For this site, an OGS unit (EFO5) has been sized to meet the quality control requirements. See Appendix C for OGS details. Water quality objectives are achieved at stormwater management pond 2 as noted in the preconsultation notes.

4.6 DESIGN CRITERIA

The stormwater system was designed following the principles of dual drainage, making accommodation for both major and minor flow.

Some of the key criteria include the following:

/	0	
•	Design Storm (minor system)	1:2-year return (Ottawa)
•	Rational Method Sewer Sizing	
•	Initial Time of Concentration	10 minutes
•	Runoff Coefficients	
	Landscaped Areas	C = 0.20
	Asphalt/Concrete	C = 0.90
	Traditional Roof	C = 0.90
•	Pipe Velocities	0.80 m/s to 6.0 m/s
•	Minimum Pipe Size	250 mm diameter
		(200 mm CB Leads and service pipes)

4.7 PROPOSED MINOR SYSTEM

The new drainage system consists of a series of manholes, catchbasins and storm sewers leading to the outlet manhole STMH109 discharging controlled flows into STMH110 (OGS Unit) at the west of the site before out letting into the existing system within the Kelly Farm Road ROW. All drainage areas on the site are collected in the site piped drainage system.

It is also customary for larger buildings to be provided with piped storm services for roof drainage. The roof drainage storm service is connected to the existing 675 mm diameter storm stub located north of the building with a new 1200 mm diameter maintenance hole, ensuring an unobstructed flow for these areas.

Using the above noted criteria, the existing on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated post development storm sewer drainage area plan are included in Appendix C.

4.8 STORMWATER MANAGEMENT

The study area is proposed to be limited to a total post-development release rate of 224.0 l/s (allowable release rate was determined to be 122.54 l/s), which is achieved through an inlet control device (located within STMH109) and controlled roof drains.

Flows generated that are in excess of the site's allowable release rate will be stored on site in surface storage areas or by the use of roof top storage and gradually released into the minor system so as not to exceed the site's allocation.

WSP

Page 24

The maximum surface retention depth of the developed areas will be limited to maximum 350mm during a 1:100 year event. The maximum ponding elevation has been designed to be 95.74m as determined by the overland flow elevation, which is well below the building ground floor level of 96.25m.

No surface ponding will occur during a 2-year event.

Overland flow routes will be provided in the grading to permit emergency overland flow from the site. The overflow routes will eliminate any increase in ponding depth for events exceeding 100 years.

At certain locations within the study area, the opportunity to store runoff is limited due to grading constraints. These locations are located at the perimeter of the site where it is necessary to tie into existing grades, and it is not always feasible to capture or store stormwater runoff. The runoff from these areas will be uncontrolled and be released as direct runoff.

The site grading and ponding has been designed to control water generated during the 1:100-year event, with no overflow leaving the site at this control level. Please refer to the SWM Calculations in Appendix C.

4.9 INLET CONTROLS

As noted in Section 4.8, there is one inlet control device (ICD) located in STMH109. While the majority of the site is controlled by this ICD, a portion of the site consisting of catchment area A-15, A-16, A-17 and A-18 will drain directly to the existing onsite storm network uncontrolled. The rooftop of the school addition will be controlled to a release rate of 29.48 l/s, the rooftop release rate has been assumed based on 34 roof drains at ¼ exposure with maximum 0.15m ponding.

Therefore, the release from the study area that is not controlled by an ICD has been determined in the Stormwater Management Calculations, the total uncontrolled flows generated from the site are 55.30 L/s.

The ICD located in STMH109 controls the release rate from the remainder of the study area (catchment areas A-1 to A-14) to 122.54 L/s. Flow restrictions will cause the on-site catchbasin and catchbasin manholes to surcharge, generating surface ponding in the parking and landscaped areas. Ponding locations and elevations are summarized on the grading and drainage area plans. The proposed ICD dimensions are determined as:

Table 4-1: ICD Information

Structure	Head (m)	Flow Rate (I/s)	Orifice Type
STMH109	3.67	122.54	Orifice plate 175mm

Therefore, the total release rate from the study area is calculated to be 206.75 l/s and is within the limits of the maximum allowable release rate of 224.0 l/s from the site.

 \mathbf{Q} (release) = \mathbf{Q} (uncontrolled) + \mathbf{Q} (controlled) + \mathbf{Q} (roof)

= 55.30 l/s + 122.54 l/s + 29.48 l/s

= 207.32 L/s

The controlled and uncontrolled areas can be summarized in the following table.

	Catchment Area	Release Rate (I/s)	Required Ponding Volume (m ³)	Provided Ponding Volume (m ³)
Uncontrolled	A-15, A-16, A-17, A- 18	55.30	N/A	N/A
Controlled	A-1 to A-14	122.54	217.38	233.77
Roof	R-1	29.48	108.30	118.88
	Total	207.32 l/s		
Maxim	num allowable flow rate	224.0 l/s		

Table 4-2: Stormwater Management Release Rates and Storage Summary

4.10 ON-SITE DETENTION

Any excess storm water up to the 100-year event is to be stored on-site to prevent surcharging of the downstream municipal storm sewer system. Detention will be provided in parking and landscape areas and building rooftops, where feasible. As previously noted, the volume of storage is dependent on the characteristics of each individual drainage area. It should be noted that greater than 0.30 m of vertical separation has been provided from all maximum ponding elevations to lowest building openings.

For the catchment areas where stormwater ponding is controlled by the ICD located in STMH109, a total of 217.38m3 of storage is required and 233.77m3 of storage is provided. The rooftop of the school addition will be controlled to a release rate of 29.48 l/s, the rooftop release rate has been assumed based on 34 roof drains at ¼ exposure with maximum 0.15m ponding. The required roof storage is calculated to be 108.30 m3, and the provided roof storage is 118.88 m3. In all instances the required storage is met via surface ponding which retain the stormwater and discharge at the restricted flow rate to the sewer system. Refer to the grading plan for storage information.

4.11 WATERCOURSES

There will be no modification to watercourses as a result of the proposed development.

4.12 PRE AND POST DEVELOPMENT PEAK FLOW RATES

The study area has an allowable release rate of 224.0 l/s. The post-development 100-year peak flow rate has been designed to be 207.32 l/s which has been achieved through roof controls and on-site surface ponding.

4.13 DIVERSION OF DRAINAGE CATCHMENT AREAS

There will be no diversion of existing drainage catchment areas arising from the proposed work described in this report.

4.14 DOWNSTREAM CAPACITY WHERE QUANTITY CONTROL IS NOT PROPOSED

This checklist item is not applicable to this development as quantity control is provided.

4.15 IMPACTS TO RECEIVING WATERCOURSES

No significant negative impact is anticipated to downstream receiving watercourses due to proposed quantity and quality control measures

4.16 MUNICIPAL DRAINS AND RELATED APPROVALS

There are no municipal drains on the site or associated with the drainage from the site.

4.17 MEANS OF CONVEYANCE AND STORAGE CAPACITY

The means of flow conveyance and storage capacity are described in Sections 4.7, 4.8, 4.9 and 4.10 above.

4.18 HYDRAULIC ANALYSIS

Hydraulic calculations for the site storm sewers are provided in the storm sewer design sheet.

4.19 IDENTIFICATION OF FLOODPLAINS

There are no designated floodplains on the site of this development.

4.20 FILL CONSTRAINTS

There are no known fill constraints applicable to this site related to any floodplain. The site is generally being graded to be within 0.5m relative to existing conditions.

5 SEDIMENT AND EROSION CONTROL

5.1 GENERAL

During construction, existing storm sewer system can be exposed to sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings will be used including;

- Silt sacks will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use;
- Installation of silt fence, where applicable, around the perimeter of the proposed work area;
- The installation of straw bales within existing drainage features surround the site;
- Bulkhead barriers will be installed in the outlet pipes;

During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal.

All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed, these structures will be covered to prevent sediment from entering the minor storm sewer system. These measures will stay in place and be maintained during construction and build-out until it is appropriate to remove them.

During construction of any development both imported and native soils are placed in stockpiles. Mitigative measures and proper management to prevent these materials entering the sewer system are needed.

During construction of the deeper watermains and sewers, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally placed before any catchbasins are installed.

Refer to the Erosion and Sedimentation Control Plan C05 provided in Appendix D.

6 APPROVAL AND PERMIT REQUIREMENTS

6.1 GENERAL

The proposed development is subject to site plan approval and building permit approval.

No approvals related to municipal drains are required.

No permits or approvals are anticipated to be required from the Ontario Ministry of Transportation, National Capital Commission, Parks Canada, Public Works and Government Services Canada, or any other provincial or federal regulatory agency.

7 CONCLUSION CHECKLIST

7.1 CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the proposed development can meet all provided servicing constraints and associated requirements. It is recommended that this report be submitted to the City of Ottawa in support of the application for site plan approval.

7.2 COMMENTS RECEIVED FROM REVIEW AGENCIES

No comments yet received. This is the $1^{\mbox{\scriptsize st}}$ version of the report.

CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa Servicing and Stormwater Management Report Project No. CA0040067.4396 Architecture49

WSP

APPENDIX

- PRE-CONSULTATION MEETING NOTES
- ARCHITECTURAL SITE PLAN
- TOPOGRAPHICAL SURVEY PLAN
- IBI GROUP DESIGN BRIEF (EXCERPTS
 - ATTACHED)
 - IBI GROUP GRADING PLAN FOR BARRETT LANDS – PHASE 1

September 13, 2024

Jill MacDonald WSP Canada Inc. Via email: Jill.MacDonald@wsp.com

Subject: Pre-Consultation: Meeting Feedback Proposed Site Plan Control Application – 3955 Kelly Farm Drive

Please find below information regarding next steps as well as consolidated comments from the above-noted pre-consultation meeting held on September 9, 2024.

Pre-Consultation Preliminary Assessment

|--|

One (1) indicates that considerable major revisions are required while five (5) suggests that the proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

Next Steps

A review of the proposal and materials submitted for the above-noted pre-consultation has been undertaken. A second pre-consultation can be submitted if the development proposal changes significantly in scope or design. When prepared, please proceed to make the <u>formal application</u> in accordance with direction provided online.

 In your subsequent pre-consultation submission or formal submission, please ensure that all comments or issues detailed herein are addressed. A detailed cover letter stating how each issue has been addressed must be included with the submission materials. Please coordinate the numbering of your responses within the cover letter with the comment number(s) herein.

Supporting Information and Material Requirements

- 1. The attached **Study and Plan Identification List** outlines the information and material that has been identified, during this phase of pre-consultation, as either required (R) or advised (A) as part of a future complete application submission.
 - a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on <u>Ottawa.ca</u>. These ToR and Guidelines outline

the specific requirements that must be met for each plan or study to be deemed adequate.

Consultation with Technical Agencies

1. You are encouraged to consult with technical agencies early in the development process and throughout the development of your project concept. A list of technical agencies and their contact information is enclosed.

<u>Planning</u>

Comments:

- 1. Applicant is expecting the proposal to be zoning compliant.
- 2. Confirmed that the school yard will be available to the public after hours.
- 3. Staff have concerns regarding safety and security of the site, especially after hours, in the middle area of the "L" shape of the building. Please consider other building footprints to increase visibility. Please refer to Section 10.4 in the Official Plan speaks to enhancing personal security through design.
- 4. Please provide a walkway that leads from Lavatera Street to the school, and ensure that there are clear sightlines from this street to the school. Landscaping along this street frontage is encouraged, but while keeping the need for clear sightlines into the site.
- 5. Please consider designs that better frame the intersection. There are policies supporting two+ storey schools, which might also better preserve some of the outdoor amenity area during expansion.
- 6. Staff have concerns regarding the driveway and parking situated next to residential, impacting a number of properties. Please consider an alternative location, perhaps along Kelly Farm. If the driveway is kept on Barrett Farm, please ensure there is a significant buffer and be cautious of lighting location.
- 7. Please provide turning radii for garbage trucks and other large vehicles that may enter the site.
- 8. Please ensure that bicycle parking is located in a visible area and is covered.
- 9. Please indicate on the site plan where snow storage will be located.
- 10. What will the school be doing to encourage students and staff to walk or bike to school to decrease the amount of private cars?

11. Please contact the local community association and Councillor Steve Desroches to make them aware of the proposal prior to formal application.

<u>Urban Design</u>

Comments:

- 12. As part of a complete application, staff require detailed architectural plans (including Building Elevations) and a Landscape Plan. An Urban Design Brief is not required.
- 13. If possible, increase visibility to outdoor play areas from the street(s) so that they can be used by the public after school hours and during the summer months.
- 14. Provide a planted landscape buffer between the surface parking areas and the adjacent residential properties.
- 15. Explore additional tree planting opportunities, particularly along the three public street frontages.

Engineering

Comments:

- 16. The Stormwater Management Criteria, for the subject site, is to be based on the following:
 - a. Demonstrate the servicing strategy is consistent with higher-level studies and plans. Excerpts from relevant higher-level studies and plans will need to be discussed and provided in the Appendix of the Site Servicing and SWM report as supporting documentation to the design. Any deviations will require an update or addendum to the subdivision level MSS to support any changes at the discretion of the City. The following studies apply: (Design Brief – Barrett Lands – Phase 1 – 4660 Bank Street – Leitrim Development Area – Dated May 2018 and Memo – Dated August 2018).
 - b. Approved drainage patterns shall be respected as part of the proposed SWM solution otherwise an update or addendum to the subdivision level MSS will be required to support the project.
 - c. HGL Analysis to be completed and included as part of the Site Servicing and SWM report if basement levels are contemplated.
 - d. Water Quality Control: provided at Pond 2.
 - e. **Water Quantity Control**: Based on the, the allowable release rate for the subject site is 224 l/s. There is a minimum on-site storage requirement of

230m3. Please control post-development runoff from the subject site, for all storm events up to and including the 100-year storm event.

- f. Please provide a Pre-Development Drainage Area Plan to define the predevelopment drainage areas/patterns. Existing drainage patterns shall be maintained and discussed as part of the proposed SWM solution.
- g. Ponding Notes:
 - i. 100-year spill elevation must be 300mm lower than any building opening or ramp.
 - ii. Demonstrate that the stress test spill elevation (100-year +20% event) does not spill onto any permanent structures.
 - iii. The maximum permissible ponding depth for the 100-year storm event is 350mm. No spilling to adjacent sites.
 - iv. Please note that as per Technical Bulletin PIEDTB-2016-01 section 8.3.11.1 (p.12 of 14) there shall be no surface ponding on private parking areas during the 2-year storm rainfall event. 100-year spill elevation must be 300mm lower than any building opening or ramp
- h. Document how any foundation drainage system will be integrated into the servicing design and show the positive outlet on the plan. Foundation drainage is to be independently connected to sewer main unless being pumped with appropriate back up power, sufficient sized pump and back flow prevention. It is recommended that the foundation drainage system be drained by a sump pump connection to the storm sewer to minimize risk of basement flooding as it will provide the best protection from the uncontrolled sewer system compared to relying on the backwater valve.
- i. Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s in order to reduce the likelihood of plugging.
- j. If rooftop control and storage is proposed as part of the SWM solutions, sufficient details (Cl. 8.3.8.4) shall be discussed and documented in the report and on the plans. Roof drains are to be connected downstream of any incorporated ICDs within the SWM system and not to the foundation drain system. Provide a Roof Drain Plan as part of the submission.
- k. Dry ponds are only to be functional for events that are greater than the 2year storm event, a freeboard of 0.3m between the 100-year HWL elevation and the emergency overflow elevation and to be designed with a maximum depth of 1.5m with 3:1 side slopes. An emergency overland flow route to an appropriate outlet (Rideau River) from the SWM facility needs to be designed.

- I. Underground Storage: Please note that the Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e. parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.
 - When underground storage is used, the release rate fluctuates from i. a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate equal to 50% of the peak allowable rate shall be applied to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate. In the event that there is a disagreement from the designer regarding the required storage, The City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modelers in the Water Resources Group. Regarding all proposed UG storage, ground water levels (and in particular HGW levels) will need to be reviewed to ensure that the proposed system does not become surcharged and thereby ineffective.
 - ii. Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self-cleansing), chart of storage values, length, width and height, capacity, entry ports (maintenance) etc. UG storage to provide actual 5- and 100-year event storage requirements.

17. General Servicing

- a. Provide existing servicing information and the recommended location for the proposed connections. Services should ideally be grouped in a common trench to minimize the number of road cuts.
- b. CCTV sewer inspection of city infrastructure is required to record pre and post construction conditions and ensure there is no damage to City Assets.
- c. It is the sole responsibility of the consultant to investigate the location of existing underground utilities in the proposed servicing area and submit a request for locates to avoid conflict(s). The location of existing utilities and services shall be documented on an Existing Conditions Plan.

- d. Any easements on the subject site shall be identified and respected by any development proposal and shall adhere to the conditions identified in the easement agreement. A legal survey plan shall be provided, and all easements shall be shown on the engineering plans.
- e. All underground and above ground building footprints and permanent walls need to be shown on the plans to confirm that any permanent structure does not extend either above or below into the existing property lines and sight triangles.

18. Storm Sewer

- a. A 675mm dia. concrete storm sewer (2019) stub is available at Nepeta Crescent off Barrett Farm Drive.
- b. A storm sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) Monitoring Devices.

19. Sanitary Sewer

- a. A 200 mm dia. PVC Sanitary sewer (2019) is available at Nepeta Crescent off Barrett Farm Drive.
- b. Please provide the new Sanitary sewer discharge and we will confirm if sanitary sewer main has the capacity. The allowable sanitary release rate based on the Design Brief – Barrett Lands – Phase 1 – 4660 Bank Street – Leitrim Development Area – Dated May 2018 and Memo – Dated August 2018, is 2.38l/s.
- c. Include correspondence from the Architect within the Appendix of the report confirming the number of residential units per building and a unit type breakdown for each of the buildings to support the calculated building populations.
- d. Please apply the wastewater design flow parameters in Technical Bulletin PIEDTB-2018-01.
- e. Sanitary sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) Monitoring Devices.
- f. The proposed wastewater servicing design shall be consistent with higherlevel studies and plans (Design Brief – Barrett Lands – Phase 1 – 4660 Bank Street – Leitrim Development Area – Dated May 2018 and Memo – Dated August 2018).

20. Water:

- a. A 200 mm dia. PVC watermain (2019) is available at Nepeta Crescent off Barrett Farm Drive.
- b. Water Supply Redundancy: Residential buildings with a basic day demand greater than 50m3/day (0.57 L/s) or with 50+ units are required to be connected to a minimum of two water services, with each their own meter, separated by an isolation valve to avoid a vulnerable service area.
- c. Water Boundary condition requests must include the location of the service (map or plan with connection location(s) indicated) and the expected loads required by the proposed development, including calculations. Please provide the following information:
 - i. Plan showing the proposed location of service(s).
 - ii. Type of development and the amount of fire flow required (L/min). Note: The OBC method can be used if the fire demand for the private property is less than 9,000 L/min. If the OBC fire demand reaches 9000 L/min, then the FUS method is to be used.
 - iii. Average daily demand: __L/s.
 - iv. Maximum daily demand: __L/s.
 - v. Maximum hourly daily demand: __L/s.
 - vi. Note: Use Table 3-3 of the MOE Design Guidelines for Drinking-Water System to determine Maximum Day and Maximum Hour peaking factors for 0 to 500 persons and use Table 4.2 of the Ottawa Design Guidelines, Water Distribution for 501 to 3,000 persons.
- d. Please review Technical Bulletin ISTB-2018-02, maximum fire flow hydrant capacity is provided in Section 3 Table 1 of Appendix I. A hydrant coverage figure shall be provided and demonstrate there is adequate fire protection for the proposal.
- e. A Water Data Card will have to be submitted to size the water meter.
- f. Any proposed emergency route is to be to the satisfaction of Fire Services.
- 21. Grading and Erosion
 - a. Post-development site grading shall match existing property line grades in order to minimize disruption to the adjacent residential properties. A topographical plan of survey shall be provided as part of the submission and a note provided on the plans.

- b. Erosion and sediment control plan must be provided.
- c. Any portion of the subject property which is intended to be used for permanent or temporary snow storage shall be as shown on the approved site plan and grading plan. Snow storage shall not interfere with approved grading and drainage patters or servicing. Snow storage areas shall be setback from the property lines, foundations, fencing or landscaping a minimum of 1.5m. Snow storage areas shall not occupy driveways, aisles, required parking spaces or any portion of a road allowance. If snow is to be removed from the site, please indicate this on the plan(s).
- d. Street catch basins are not to be located at any proposed entrances.
- e. Depressed driveways are discouraged and are not allowed in sag locations. For other locations, the builder must ensure that the maximum depth of flow on the street during the 100-year and stress test events will not spill onto the depressed driveway.
- f. If Window wells are proposed, they are to be indirectly connected to the footing drains. A detail of window well with indirect connection is required, as is a note at window well location speaking to indirect connection.

22. Environmental

a. The Phase One ESA will need to be updated in a letter format (i.e. not a full report) due to the report being published more than 18 months ago. The update shall review all the information re a potential for occurrence of contamination impacting the site since the original phase one ESA was done. The phase one ESA shall be updated as per the requirements of Section 28 of the O. Reg. 153/04. Based on the recommendations of the updated Phase One ESA letter, an updated Phase Two ESA may be required.

23. Geotechnical

- a. A Geotechnical Study/Investigation shall be prepared in support of this development proposal.
- b. Reducing the groundwater level in this area can lead to potential damages to surrounding structures due to excessive differential settlements of the ground. The impact of groundwater lowering on adjacent properties needs to be discussed and investigated to ensure there will be no short term and long-term damages associated with lowering the groundwater in this area.
- c. Geotechnical Study shall be consistent with the Geotechnical Investigation and Reporting Guidelines for Development Applications. <u>Geotechnical</u> <u>Investigation and Reporting (ottawa.ca)</u>

- d. If Sensitive marine clay soils are present in this area that are susceptible to soil shrinkage that can lead to foundation and building damages. All six (6) conditions listed in the Tree Planting in Sensitive Marine Clay Soils-2017 Guidelines are required to be satisfied. Note that if the plasticity index of the soil is determined to be less than 40% a minimum separation between a street tree and the proposed building foundations of 4.5m will need to be achieved. A memorandum addressing the Tree in Clay Soil Guidelines prepared by a geotechnical engineer is required to be provided to the City. Tree Planting in Sensitive Marine Clay Soils 2017 Guidelines (ottawa.ca)
- 24. Regarding Quantity Estimates
 - a. Please note that external Garbage and/or bicycle storage structures are to be added to QE under Landscaping as it is subject to securities. In addition, sump pumps for Sanitary and Storm laterals and/or cisterns are to be added to QE under Hard items as it is subject to securities, even though it is internal and is spoken to under SWM and Site Servicing Report and Plan.
- 25. Gas pressure regulating stations: A gas pressure regulating station may be required depending on HVAC needs (typically for 12+ units). Be sure to include this on the Grading, Site Servicing, SWM and Landscape plans. This is to ensure that there are no barriers for overland flow routes (SWM) or conflicts with any proposed grading or landscape features with installed structures and has nothing to do with supply and demand of any product.

Please refer to the City of Ottawa Guide to Preparing Studies and Plans [Engineering]: <u>Planning application submission information and materials</u>. The guide outlines the requirement for a statement to be provided on the plan about where the property boundaries have been derived from.

As-builts can be requested through the Geoinformation Centre at the e-mail below:

geoinformation@ottawa.ca

613-580-2424 ext 44455

We recommend that you purchase the above noted studies through the Geoinformation Centre to confirm the release rates noted.

Feel free to contact Anton Chetrar, Project Manager, for follow-up questions at <u>anton.chetrar@ottawa.ca</u>.

<u>Noise</u>

Comments:

26. A road noise study is required.

Feel free to contact Mike Giampa, TPM, for follow-up questions.

Transportation

Comments:

- 27. Corner Sight Triangle required as per the following: Arterial/Local: 3m x 9m with the longer dimension along the arterial road.
- 28. TIA submission required- please proceed to scoping (TIA Step 2). The application will not be deemed complete until the submission of the draft step 2-3, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable). Although a full review of the TIA Strategy report (Step 3) is not required prior to an application, it is strongly recommended.
- 29. Synchro files are required at Step 3.
- 30. Ensure that sidewalks are continuous and depressed through all private approaches.

Feel free to contact **Mike Giampa**, Transportation Project Manager, for follow-up questions.

Forestry

Comments:

- 31. The site was cleared through the plan of subdivision process. A tree removal permit is not required.
- 32. A Landscape Plan and Tree Conservation Report are submission requirements of the Site Plan Control application.
- 33. Trees were planted along the right of way through the plan of subdivision. Prioritize retention of existing trees over removal and replacement as directed through section 4.8.2 of the Official Plan. Consolidate infrastructure, drive isles, utilities...etc. to have minimum impact on existing trees. Where permitted by the Planning Forester, compensation for the removal of City trees will be in the form of 1:1 replacement. Transplanting options can be discussed if desired.
- 34. Locate the bike rack, shown on the concept plan along Kelly Farm Dr., without impacting existing trees.
- 35. A robust landscape plan is expected. The Official Plan has a section dedicated to trees on school sites. This is section 4.10.3 called 'make trees an important component of a school's outdoor space'. There are additional open areas where trees can be planted throughout the site. Please strive towards at least meeting a 40% canopy cover for this large site, in line with the City wide target.

- 36. Planning Forestry is happy to see trees incorporated along the parking lot. Section 4.1.4 of the Official Plan directs developments to regularly incorporate space for trees within surface parking lots. If conifers are planted along the northern property boundary, please consider the future spread of these trees and account for management needs.
- 37. Include a note on the Landscape Plan indicating it was prepared in conjunction with the Geotechnical Report (include date, version, and author of the plan).

38. Tree Conservation Report requirements. The following Tree Conservation Report (TCR) requirements have been adapted from the Schedule E of the Urban Tree Protection Guidelines – for more information on these requirements please contact <u>hayley.murray@ottawa.ca</u>

- A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
- Any tree 10 cm in diameter or greater and City-owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 – 340); the permit will be based on an approved TCR and made available at or near plan approval.
- The TCR must contain 2 separate plans/maps:
 - i. Plan/Map 1 show existing conditions with tree cover information.
 - ii. Plan/Map 2 show proposed development with tree cover information.
- The TCR must list all trees on site, as well as off-site trees if the CRZ (critical root zone) extends into the developed area, by species, diameter, and health condition. Please note that averages can be used if there are forested areas.
- Please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line)
- If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained.
- The removal of trees on a property line will require the permission of both property owners.
- All retained trees must be shown, and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca
- The city encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- Removal of a City tree is not permitted unless justified. If justified, monetary compensation for the value of the tree must be paid before a tree removal permit is issued.

39. Landscape Plan (LP) requirements.

• Landscape Plan Terms of Reference must be adhered to for all tree planting: <u>Click Here.</u> For more information on these requirements please contact hayley.murray@ottawa.ca

40. Additional Elements for Tree Planting in the Right of Way:

- Please ensure any retained trees are shown on the LP
- Sensitive Marine Clay Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines.
- Soil Volume Please demonstrate as per the Landscape Plan Terms of Reference that the available soil volumes for new plantings will meet or exceed the minimum soil volumes requested.
- The city requests that consideration be given to planting native species wherever there is a high probability of survival to maturity.
- Efforts shall be made to provide as much future canopy cover as possible at a site level, through tree planting and tree retention. The Landscape Plan shall show/document that the proposed tree planting and retention will contribute to the City's overall canopy cover over time. Please provide a projection of the future canopy cover for the site to 40 years
- Minimum Setbacks
 - Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
 - Maintain 2.5m from curb
 - Coniferous species require a minimum 4.5m setback from curb, sidewalk, or MUP/cycle track/pathway.
 - Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas.
 - Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.
- Tree specifications
 - Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
 - Maximize the use of large deciduous species wherever possible to maximize future canopy coverage.
 - Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and if possible, include watering and warranty as described in the specification.
 - No root barriers, dead-man anchor systems, or planters are permitted.

- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)
- Hard surface planting
 - If there are hard surface plantings, a planting detail must be provided.
 - Curb style planters are highly recommended.
 - No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.

Feel free to contact Hayley Murray, Planning Forester, for follow-up questions.

Parkland

Comments:

41. The proposed site plan application is exempt from parkland dedication as per subsection 14(2)(f) of Parkland Dedication By-law No. 2022-280. This subsection exempts a school from parkland dedication where the school provides for the students' outdoor recreational needs on-site at the time of development.

Feel free to contact Burl Walker, Planner 3, for follow-up questions.

<u>Other</u>

- 42. The High Performance Development Standard (HPDS) is a collection of voluntary and required standards that raise the performance of new building projects to achieve sustainable and resilient design and will be applicable to Site Plan Control and Plan of Subdivision applications.
 - a. The HPDS was passed by Council on April 13, 2022, but is not in effect at this time, as Council has referred the 2023 HPDS Update Report back to staff with the direction to bring forward an updated report to Committee at a later date. Please be advised that this is expected to occur in Q3 2024.
 - b. Please refer to the HPDS information at ottawa.ca/HPDS for more information.

Submission Requirements and Fees

- 1. Site Plan Control Complex application.
 - a. Additional information regarding fees related to planning applications can be found <u>here</u>.
- 2. The attached **Study and Plan Identification List** outlines the information and material that has been identified as either required (R) or advised (A) as part of a future complete application submission.

- a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on <u>Ottawa.ca</u>. These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.
- 3. <u>All</u> of the above comments or issues should be addressed to ensure the effectiveness of the application submission review.

Should there be any questions, please do not hesitate to contact myself or the contact identified for the above areas / disciplines.

Regards, Margot Linker

c.c. Wendy Tse Vincent Duquette Anton Chetrar Mike Giampa Hayley Murray Nader Kadri Matthew Steeves

SUPPLEMENTARY DEVELOPMENT INFORMATION

The following details have been compiled to provide additional information on matters for consideration throughout the application approval and development process. Please note, this document is updated from time to time and should be reviewed for each project proposed to be undertaken.

<u>General</u>

- Refer to <u>Planning application submission information and materials</u> and <u>fees</u> for further information on preparing for application submission. Be aware that other fees and permits may be required, outside of the development review process.
- Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>.
- You may obtain background drawings by contacting geoinformation@ottawa.ca.
- Plans are to be standard A1 size (594 mm x 841 mm) or Arch D size (609.6 mm x 914.4 mm) sheets, dimensioned in metric and utilizing an appropriate Metric scale (1:200, 1:250, 1:300, 1:400 or 1:500).
- All PDF submitted documents are to be unlocked, flattened and not saved as a portfolio file.
- Where private roads are proposed:
 - Submit a Private Roadway Street Naming application to Building Code Services Branch for any internal private road network.
 - Applications are available at all Client Service Centres and the private roadway approval process takes three months.

Servicing and Site Works

Servicing and site works shall be in accordance with the following documents:

- Ottawa Sewer Design Guidelines (October 2012)
- Ottawa Design Guidelines Water Distribution (2010)
- Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
- City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
- City of Ottawa Environmental Noise Control Guidelines (January, 2016)
- City of Ottawa Park and Pathway Development Manual (2012)
- City of Ottawa Accessibility Design Standards (2012)
- Ottawa Standard Tender Documents (latest version)
- Ontario Provincial Standards for Roads & Public Works (2013)

Exterior Site Lighting

Where proposed, requires certification by an acceptable professional engineer, licensed in the Province of Ontario, which states that the exterior site lighting has been designed to meet the following criteria:

- It uses only fixtures that meet the criteria for Full Cut-Off (Sharp cut-off) classification, as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and
- It results in minimal light spillage onto adjacent properties. As a guideline, 0.5 foot-candle is normally the maximum allowable spillage.

The location of the fixtures, fixture type (make, model, part number and the mounting height) must be shown on one of the approved plans.

City Surveyor Direction

- The determination of property boundaries, minimum setbacks and other regulatory constraints are a critical component of development. An Ontario Land Surveyor (O.L.S.) needs to be consulted at the outset of a project to ensure properties are properly defined and can be used as the geospatial framework for the development.
- Topographic details may also be required for a project and should be either carried out by the O.L.S. that has provided the Legal Survey or done in consultation with the O.L.S. to ensure that the project is integrated to the appropriate control network.

Questions regarding the above requirements can be directed to the City's Surveyor, Andre Roy, at <u>Andre.Roy1@ottawa.ca</u>.

Waste Management

- New multi-unit residential development, defined as containing six (6) or more units, intending to
 receive City waste collection services will be required, as of June 1, 2022, to participate in the
 City's Green Bin program in accordance with Council's approval of the <u>multi-residential waste
 diversion strategy</u>. The development must include adequate facilities for the proper storage of
 allocated garbage, recycling, and green bin containers and such facilities built in accordance with
 the approved site design. Questions regarding this change and requirements can be directed to
 <u>Andre.Laplante@ottawa.ca</u>.
- For sites containing:
 - One or more buildings with a total GFA greater than 2000 square metres;
 - Retail shopping complexes with a total GFA greater than 10,000 square metres;
 - Sites containing office buildings with total GFA greater than 10,000 square metres;
 - Hotels and motels with more than 75 units;
 - Hospitals (human);
 - Educational institutions with more than 350 students; or
 - Manufacturing establishments working more than 16,000 person-hours in a month

A Waste Reduction Workplan Summary is required for the construction project as required by O.Reg. 102/94, being "Waste Audits and Waste Reduction Work Plans" made under the Environmental Protection Act, RSO 1990, c E.19, as amended.

Fire Routes

• Fire routes are required to be designated by By-law for Fire Services to establish them as a legal fire route. Where a development proposes to establish a fire route, an Application for Fire Route

Designation is to be made. Questions regarding the designation of fire routes and required process can be directed to <u>fireroutes@ottawa.ca</u>.

Dewatering Activities

• Project contractors and/or your engineers are required to contact the Sewer Use Program to arrange for the proper agreements or approvals to allow for the discharge of water from construction dewatering activities to the City's sanitary or storm sewer system. Please contact the Sewer Use Duty Officer at 613-580-2424 ext. 23326 and/or supple@ottawa.ca.

Backflow Prevention Devices for Premise Isolation

 Buildings or facilities installing a backflow preventer for premise isolation of the drinking water system must register with the City's Backflow Prevention Program where a moderate or severe hazard may be caused in accordance with CSA B64.10 "Selection and Installation of Backflow Preventers". Please contact the Backflow Prevention Program at 613-580-2424 ext. 22299 or backflow@ottawa.ca to submit a Premise Isolation Survey.

Energy Considerations

- Are you considering harvesting thermal energy from the wastewater infrastructure or harvesting geothermal energy?
 - Additional information can be found on the City <u>website</u> or by contacting <u>Melissa Jort-</u> <u>Conway</u>.

Flood Plain Mapping and Climate Change

• An interactive map, for informational purposes only, showing the results of on-going flood plain mapping work completed by the Conservation Authorities in partnership with the City is now available. This mapping may be used to identify known riverine flood hazards for a property or area. The map and additional related information can be found on <u>Ottawa.ca</u>.

<u>Blasting</u>

- Where blasting may take place:
 - Blasting activities will be required to conform to the City's Standard S.P. No. F-1201 entitled Use of Explosives, as amended.
 - To avoid future delays in process, including the Municipal Consent process for shoring, ensure communication with necessary entities, including utilities, is undertaken early.
- Blasting and pile driving activities in the vicinity of Enbridge Gas Distribution and Storage (GDS) facilities require prior approval by GDS. The Blasting and Pile Driving Form, referenced in Enbridge's <u>Third Party Requirements in the Vicinity of Natural Gas Facilities Standard</u>, must be provided to <u>mark-ups@enbridge.com</u> by the Owner of the proposed work for all blasting and pile driving operations. In addition, a licensed blasting consultant's stamped validation report must be submitted to GDS for review if blasting is to occur within thirty (30) metres of GDS facilities. The request must be submitted a minimum of four weeks prior to the beginning of work to allow sufficient time for review.

Archaeological

- Archaeological Resources
 - Should potential archaeological resources be encountered during excavation activities, all Work in the area must stop immediately and the Owner shall contact a provincially licensed archaeologist.
 - If during the process of development deeply buried/undetected archaeological remains are uncovered, the Owner shall immediately notify the Archaeology Section of the Ontario Ministry of Tourism, Culture and Sport.
 - In the event that human remains are encountered during construction, the Owner shall immediately contact the police, the Ministry of Tourism, Culture and Sport and the Registrar of Cemeteries, Cemeteries Regulation Unit, Ministry of Consumer and Business Services, Consumer Protection Branch.

<u>Trees</u>

• The City's Tree Protection Bylaw, being By-Law No. 2020-340, as amended, requires that any trees to be removed shall be removed in accordance with an approved Tree Permit and Tree Conservation Report and that all retained trees will be protected in accordance with an approved Tree Conservation Report.

Limiting Distance and Parks

• A Limiting Distance Agreement may be required by Building Code Services before building permit(s) can be issued with respect to the proximity of the building to a park block. The City will consider entering into a Limiting Distance Agreement with the Owner with such Agreement to be confirmed through the City's Reality Initiatives & Development Branch. A Limiting Distance Agreement is at the expense of the Owner.

Development Constructability

How a development is constructed, its constructability, is being looked at earlier in the development review process to raise awareness of potential impacts to the City's right of way and facilitate earlier issue resolution with stakeholders. Where a construction management plan is required as part of the site plan or subdivision application approval, conditions will be included that set out the specific parameters to be addressed for the specific project. However, please note the following construction and traffic management requirements and considerations in the development of your project.

• Open Lane (includes all vehicular lanes, transit lanes and cycling lanes) Requirements

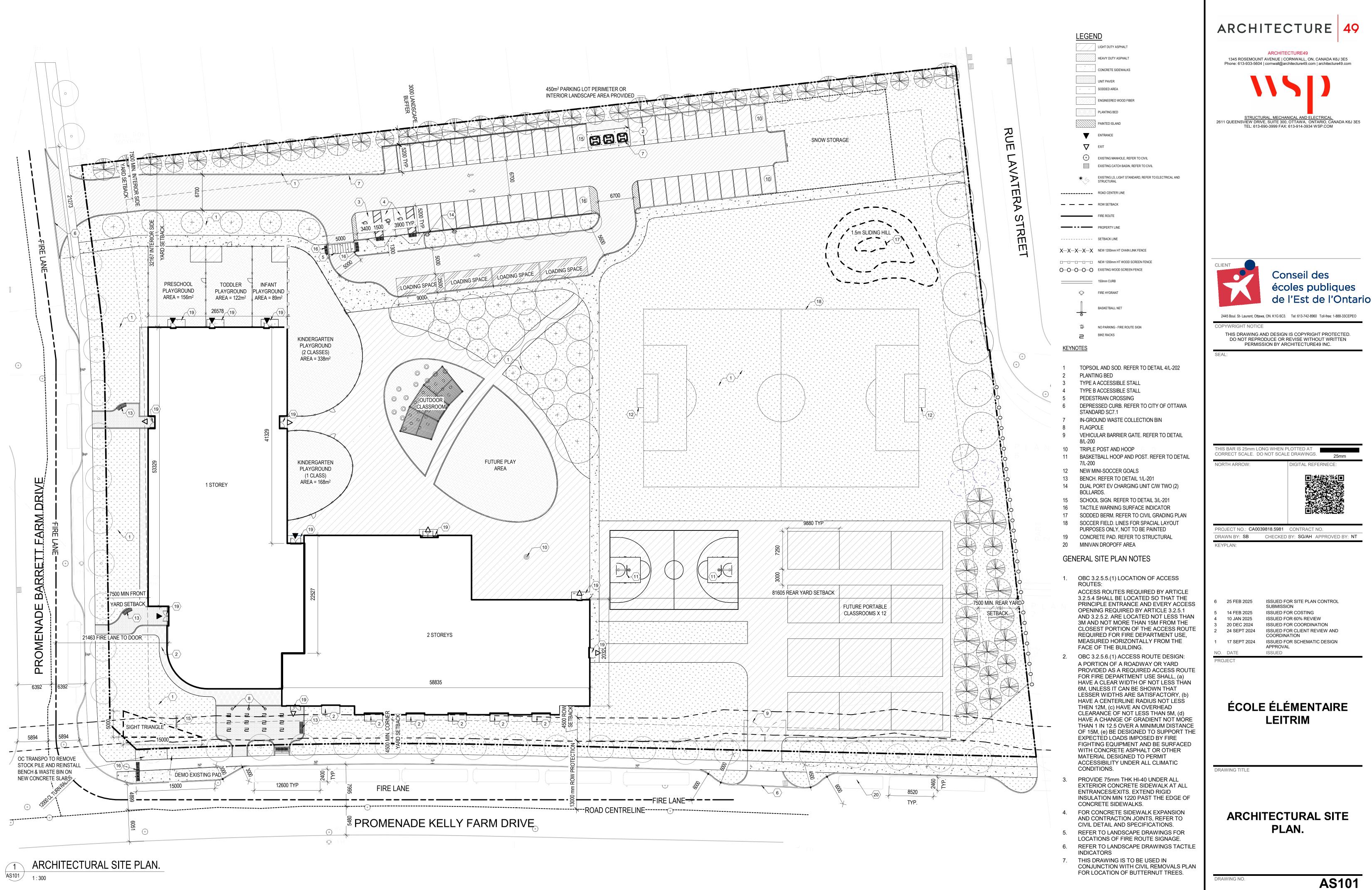
- Unless specified in the site-specific conditions to be provided by City of Ottawa Traffic Management at the time of approval, the following requirements must be adhered to and accommodated as part of any proposed encroachments and construction management plan. The standard requirements outlined in this section shall further apply to cycling facilities and Transit.
 - All lanes are to function uninterrupted at all times.
 - No interruption or blockage of traffic is permitted.
 - No loading or unloading from an open lane is permitted.
 - All vehicular travel lanes are to be a minimum of 3.5 metres in width.

• All cycling lanes are to be a minimum of 1.5 metres.

• Pedestrian Requirements

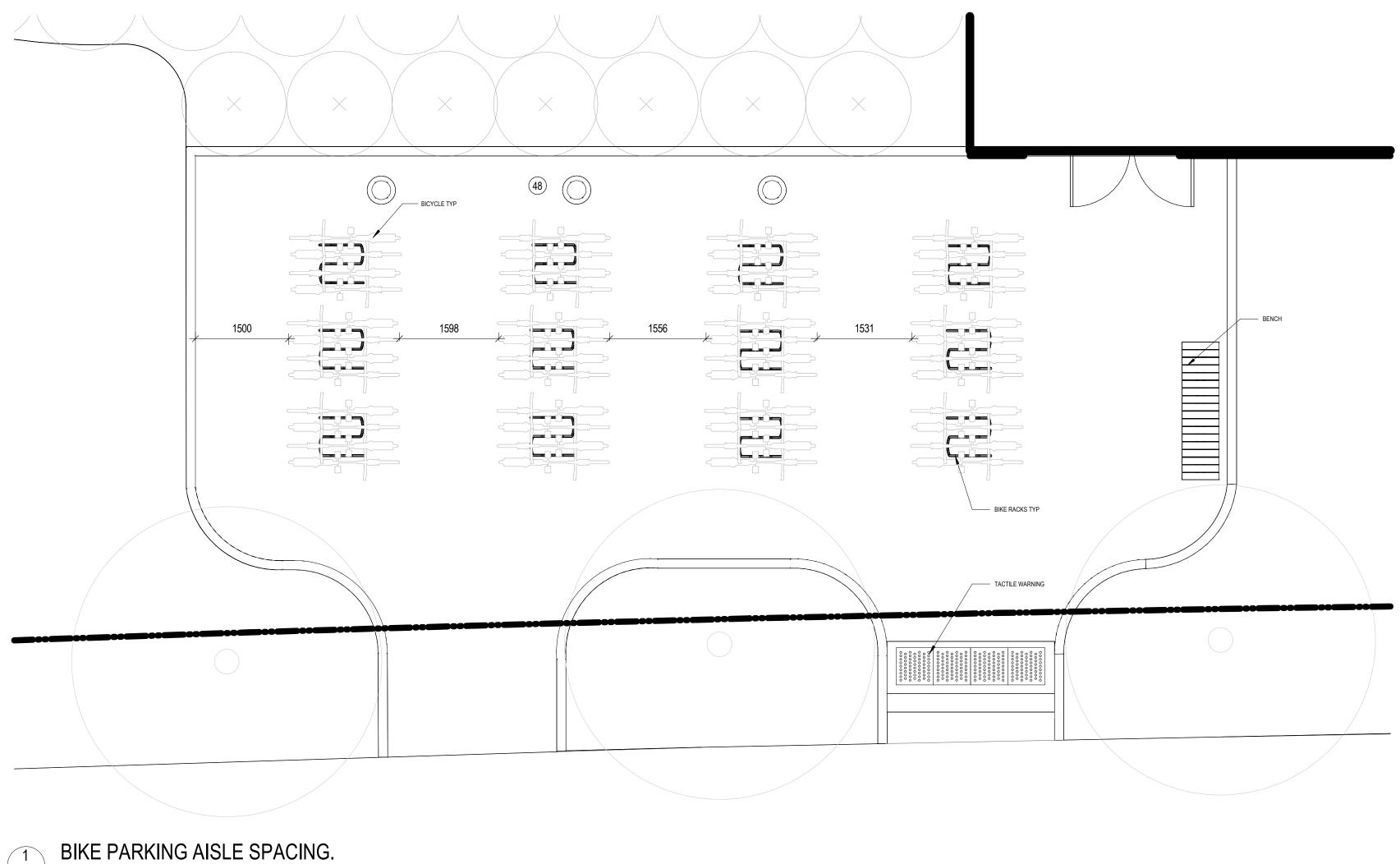
- Unless specified in the site-specific conditions provided by City of Ottawa Traffic Management at the time of approval, the contractor is required to maintain a minimum width of 1.5 metres for a pedestrian facility on one side of the corridor at all times; even in instances where a pedestrian facility was not present prior to construction.
- The facility shall include a free and unobstructed hard surface acceptable for the use of all pedestrians including those with accessibility challenges and shall maintain access to all buildings and street crossings.
- The facility must always be maintained in a clean condition and in a good state of repair to the satisfaction of the City.
- Any change of level which is over 13 millimetres in height is to be provided with a smooth non-tripping transition.
- Any temporary barriers or fencing shall include a cane detectable boundary protection with edge or barrier at least 75 millimetres high above the ground surface.
- o If works overhead are required, a 2.1 metre minimum clear headroom must be provided.
- If overhead protection is required above the pedestrian facility, it is to be offset a minimum of 600 millimetres from any travel lane.

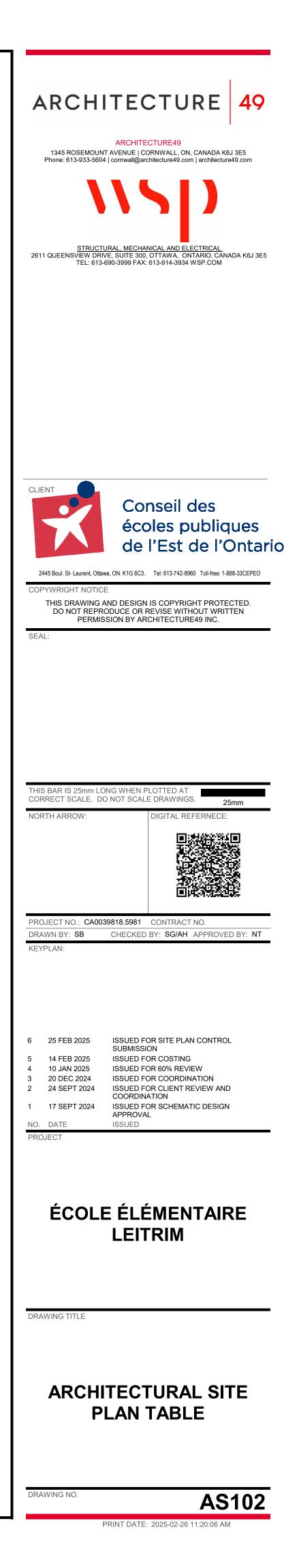
• Transit Requirements

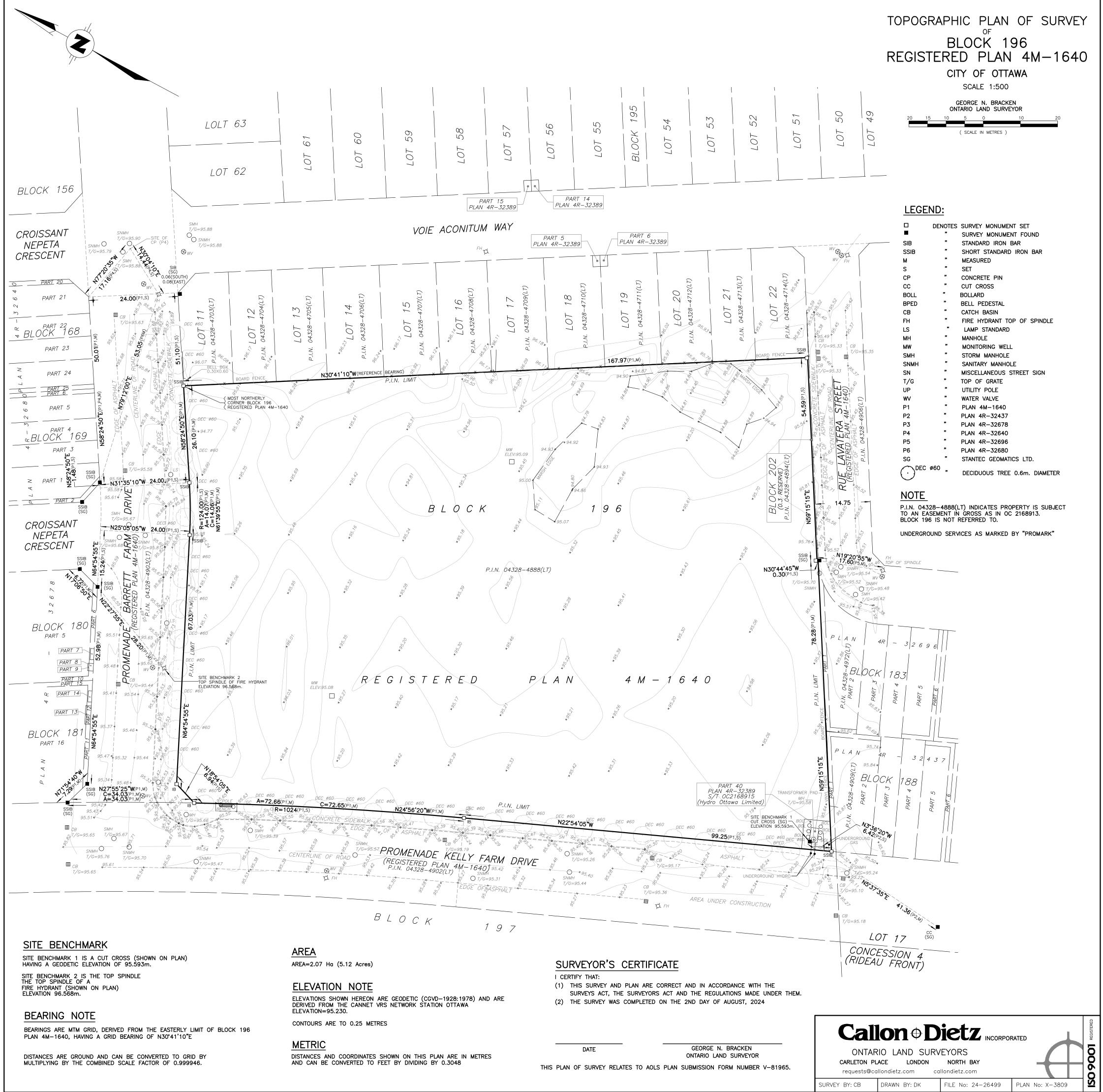

- Travel lanes accommodating OC Transpo must be a minimum of 3.5 metres in width and have a minimum 4.5 metre vertical clearance at all times.
- Should access to a bus stop be impacted, the developer will be required to email <u>TOPConstructionandDetours@ottawa.ca</u> a minimum of 20 working days prior to work commencing to coordinate any site-specific conditions as part of the work. This includes temporary relocation of transit stops, removal of bus shelters or stops and transit detour routes.
- The contractor may be required to relocate and provide a suitable alternative to OC Transpo's bus stop to the satisfaction of OC Transpo
- The Contractor shall provide OC Transpo with a minimum of ten (10) working days' notice to coordinate temporary relocation of bus stops. When a bus stop and/or shelter must be temporarily relocated, the contractor may be required to provide stop infrastructure (i.e. bench, bus and/or shelter pads), to the satisfaction of OC Transpo.
- All temporary stop locations including infrastructure are to be fully accessible in accordance with City of Ottawa <u>Accessibility Design Standards</u> and to the satisfaction of the OC Transpo.
- Temporary bus stops are to be constructed and ready for use prior to the start of any works that would impact the regular bus stop location(s).

Public Consultation

- May include, but not be limited to, proponent lead public meeting(s), letter notification(s) and information dissemination via print, electronic means or social media, to impacted properties above and beyond the notification requirements specified in the Road Activity By-law.
- General Considerations for all Applications


- A comprehensive construction management plan should include and consider the following:
 - The proposed stages of construction and the anticipated durations of each stage and any impact to existing travel lanes, pedestrian facilities, cycling facilities and/or transit facilities. Any proposed encroachment should be identified and dimensioned on the site plan for review of feasibility.
 - The proposed constructability methods being used as part of the proposed development (ie: fly forming, Peri forming etc.) and any additional traffic impacts/interruptions anticipated with proposed methods. If a crane is being placed on site, the location should be identified, and show the overhead impacts of the crane.
 - Consideration that any tie-backs and/or shoring within the City of Ottawa Right of Way are subject to Municipal Consent in advance of commencement of the project. Approval for encroachments is not guaranteed if impacts to transportation facilities cannot be addressed to the City's satisfaction.
 - Identify any truck hauling routes to and from the proposed development site and any proposed accesses. Designated heavy truck routes are to be followed at all times, however, if a deviation is required from the existing heavy truck route network, then a structural review may be required as part of an <u>Over-dimensional</u> <u>Vehicle Project Permit</u>.
 - Identify the location of any site trailers and the location. Note, if placing a site trailer above any walk-through scaffolding or on the second floor (or above), an engineering drawing must be submitted to building code services for review. More information can be found on the <u>Building Permit Approval process</u>.
 - Identify equipment and/or materials storage locations as required. Storage is not permitted on the road or the roadway shoulders or boulevards, unless the storage areas are identified in the traffic control plan and appropriate traffic control devices protect the equipment or materials.
- Any work as part of the development that requires a road cut, road closure or encroachment will be subject to the <u>Road Activity By-law</u> and potential site-specific conditions identified at site plan or subdivision approval which will be noted on the subsequent Permit(s). Information about <u>construction in the right-of-way</u> including applying for permits and associated fees can be found on the City's website.




ARCHITECTURAL SITE

25mm

	SITE AND PA	RKING INFO	RMATION	
SITE DESCRIPTION	BUILDING AREA		FIRE ACCESS REQUIREMENTS	CHILD OCCUPANCY REQUIREMENTS
TYPE OF BUILDING OR USE: SCHOOL (GROUP A-2 OCCUPANCY) LEGAL DESCRIPTION: BLOCK, REGISTERED PLAN 4M-1640 MUNICIPAL ADDRESS: 3955 KELLY FARM DRIVE PARCEL IDENTIFICATION NUMBER: 04328-4888(LT) EASEMENTS: SUBJECT TO EASEMENT IN GROSS AS IN OC2168913	FIRST FLOOR = 3,002.3 m ² (EXC <u>DAYCARE = 413.2 m²</u> TOTAL BUILDING FOOTPRINT = <u>+ SECOND FLOOR = 1,121.6 m²</u> TOTAL AREA = 4,537.1 m ²		FIRE TRUCK ACCESS ROUTE IS FROM MUNICIPAL COPE DRIVE AND SHALL CONFORM TO OBC 2012 - 3.2.5.4, 3.2.5.5 AND 3.2.5.6	PER ONT CHILD CARE LICENSING MANUAL REQ. OUTDOOR PLAY AREA / CHILD = 5.6m ² PROVIDED OUTDOOR PLAY AREA / CHILD: - PRESCHOOL = 24 X 5.6 = 134.4m ² / 156m ² PROVIDED - TODDLERS = 15 X 5.6 = 84m ² / 122m ² PROVIDED - INFANTS = 15 X 5.6 = 84m ² / 86m ² PROVIDED - KINDERGARTEN = 90 X 5.6 = 504m ² / 506m ² PROVIDED
ZONING	REQUIREMENT (I1A)	PROPOSED	PARKING PROVISIONS	
ZONING = 11A/R3Z - MINOR INSTITUTIONAL ZONE, SUBZONE A / RESIDENTIAL THIRD DENSITY, SUBZONE Z			MINIMUM REQUIRED PARKING FOR NEW ELEMENTARY SCHOOL: SEC. 101, TABLE 101,	15 CLASSROOMS X 1.5 = 23 2 PER 100m ² OF DAYCARE GROSS FLOOR AREA (413m ²) = 8 12 PORTABLES X 1.5 = 18
MINIMUM LOT AREA: SEC. 170, TABLE 170A (b)	400m ²	20, 729m ²	N81	PARKING REQ. = 49 / PARKING PROVIDED = 50
MINIMUM LOT WIDTH: SEC. 170, TABLE 170A (a)	15.0m	± 113.94m	MINIMUM NUMBER OF BARRIER-FREE	BARRIER-FREE PARKING SPACES REQ. = 2 (1 TYPE 1 & 1 TYPE 2) BARRIER-FREE PARKING SPACES PROVIDED = 3 (1 TYPE 1 AND 2 TYPE 2)
MINIMUM FRONT YARD: SEC. 170, TABLE 170A (c)	7.5m	7.5m	PARKING SPACES: BY-LAW NO. 2017-301, SECTION 111	TOTAL SITE PARKING PROVIDED = 53
MINIMUM REAR YARD: SEC. 170, TABLE 170A (d)	7.5m	± 81.605m	MINIMUM REQ. WIDTH OF A LANDSCAPED	REQ.= 3m
MINIMUM INTERIOR SIDE YARD: SEC. 170, TABLE 170A (e)	7.5m	± 32.167m	BUFFER FOR PARKING LOT: SEC. 110, TABLE 110(a)	PROVIDED= 3m
MINIMUM CORNER SIDE YARD: SEC. 170, TABLE 170A (f)	4.5m	4.5m	MINIMUM REQUIRED PERIMETER OR INTERIOR LANDSCAPE AREA WITHIN	PARKING AREA = 1248m ² REQ. = 15% AREA OF PARKING = 187.2m ²
MINIMUM LANDSCAPED OPEN SPACE	NO REQUIREMENT	5.3% WITH PARKING LOT	PARKING LOT (SEC. 110)	PROVIDED = 450m ²
MAXIMUM LOT COVERAGE	NO REQUIREMENT	12.8% LOT COVERAGE		
PERCENTAGE OF TOTAL SITE OCCUPIED BY VEGETATION AND LANDSCAPING	NO REQUIREMENT	77% SITE OCCUPIED	MINIMUM NUMBER OF BICYCLE PARKING SPACES: SEC. 111, TABLE 111A (d)	SCHOOL: 1 PER 100m ² OF GFA OFFICE: 4537 /100 = 45.4 ROUNDED TO 46 DAY CARE: 1 PER 250m ² OF GFA = 360 /250 = 1.44 ROUNDED TO 2 TOTAL: 48
MAXIMUM BUILDING HEIGHT: SEC. 170, TABLE 170A (g)	15.0m	8.7m	BICYCLE PARKING DIMENSIONS: SEC. 111, TABLE 11B	HORIZONTAL: 0.6m by 1.8m

0:\Projects\2024\24-26499 CEPEO - 3 Schools\Drawings\Kelly Farm Drive\24-26499 KELLY FARM C3D TOPO.dwg September 24, 2024

IBI GROUP REPORT PROJECT: 34731-5.2.2 DESIGN BRIEF BARRETT LANDS - PHASE 1 4660 BANK STREET LEITRIM DEVELOPMENT AREA Prepared for BARRETT CO-TENANCY

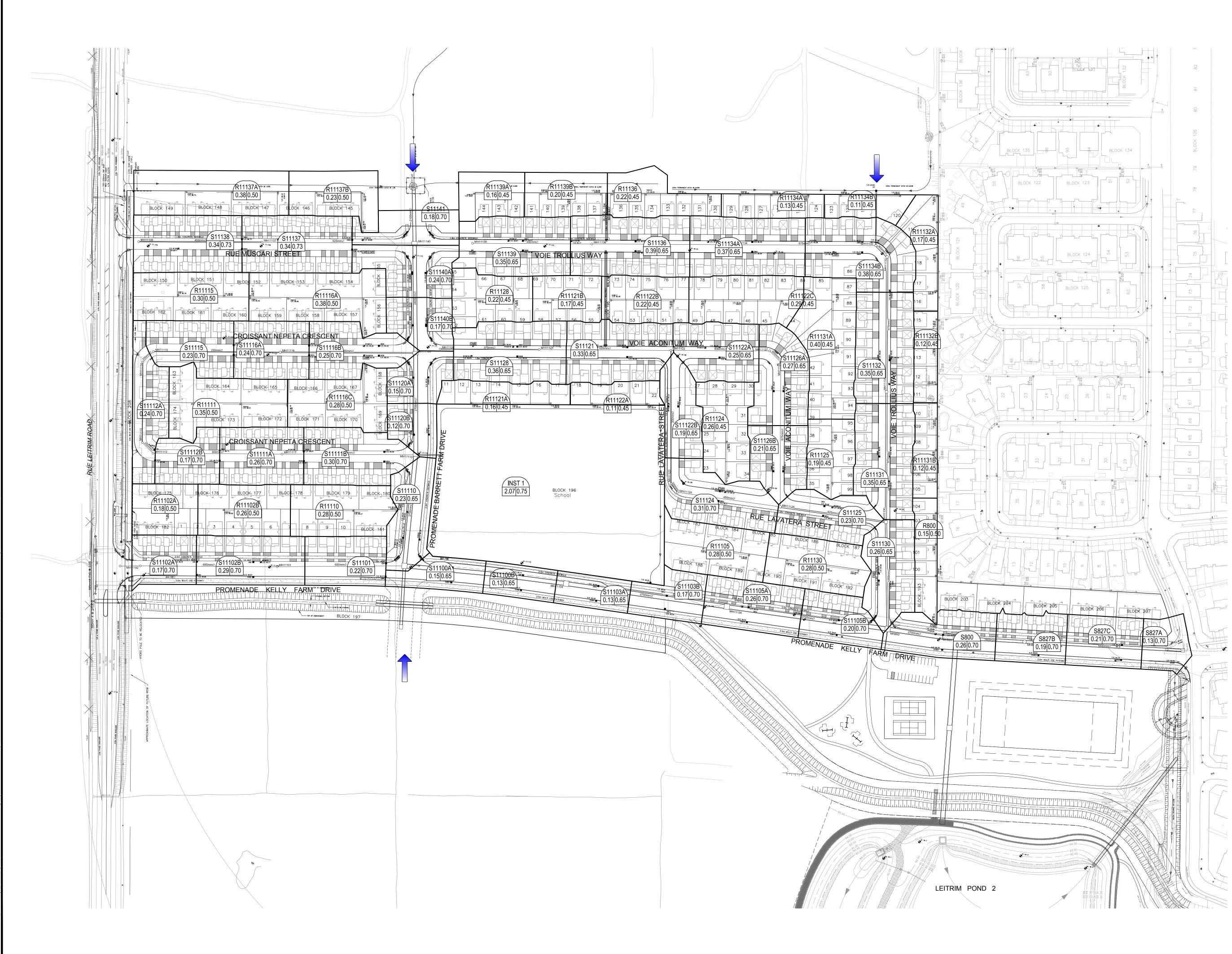
Drainage	Area						Road	Max.	Minor S	ystem Restri	ction
Segment ID	Area (ha)	Downstream Segment ID	XPSWMM Node ID	IMP Ratio (%)	Segment Length (m)	Subcatchment Width (m)	ROW Cross Section	Max. Storage Available (m ³)	2 Year Modeled Flow (l/s)*	5 Year Modeled Flow (l/s)*	ICD Flow (I/s)*
			1	Fotal Flo	w from Str	eet and Rear Ya	rd Segme	nts –Barret	t Lands Ph	ase 1 (l/s)	4177
			·	Ex	ternal Area	s to Phase 1*	·	r			
INST1	<mark>2.07</mark>	S11103B	BLK11110S	<mark>43</mark>	<mark>233</mark>	<mark>466</mark>	0	<mark>230</mark>	<mark>161</mark>	<mark>224</mark>	<mark>227</mark>
LR2	0.37	S11138	BLK11138	86	83	83	40	2	47	65	101
LR3	0.36	S11102A	BLK11102	86	81	81	40	2	52	72	98
				1	Future Exte	rnal Areas†		-			
FCOM1	6.17	FR11D	S1155	86	694	1388	0	660	883.5	1234.9	1247
FJAVA	1.28	F11D	S1155	86	144	288	0	153	185.1	258.0	258
F11D	0.64	F11CG	S1155	71	269	269	24		19.5	27.2	60
FR11D	1.59	F11CG	S1155	71	179	358	18		54.0	78.9	140
F11CA	2.7	F11CJ	S1145	71	319	638	18		89.6	127.4	225
F11CB	1.14	F11CL	S1150	71	148	296	18		38.4	53.4	100
F11CC	0.79	F11CD	S1145	71	82	164	18		25.9	37.4	65
F11CD	0.79	F11CF	S1145	74	145	145	18		67.7	88.1	160
F11CE	0.76	F11CD	S1145	74	98	196	18		26.3	40.1	80
F11CF	0.9	F11CJ	S1145	74	106	212	18	29	266.8	379.2	758
F11CG	0.86	F11CL	S1150	73	101	202	24		56.1	66.7	100
F11CH	1.26	F11CJ	S1140	71	162	324	18		76.7	99.4	110
F11CI	1.41	F11BB	S1135	74	234	361	18	45	175.8	245.4	479
F11CJ	1.03	F11BB	S1140	74	117	234	24		125.1	146.9	200
F11CK	0.89	F11BB	S1135	74	115	230	18		31.9	45.5	85
F11CL	1.06	F11CJ	S1150	73	126	252	24		70.2	83.7	120
F11CM	0.43	F11CJ	S1140	74	55	110	18	14	54.5	75.9	146
F11BA	1.66	F11BB	S1130	74	271	465	18		63.9	87.9	150
F11BB	0.77	F11BF	S1130	74	147	147	24	25	1109.7	1626.2	1657
FP11B	2.41	F1BB	S1130	28	271	542	0	286	127.5	177.5	178
F11BC	1.33	F11BF	S1120	74	230	407	18	43	169.2	236.0	461
F11BD	0.92	F11BF	S1125	74	118	236	18		32.1	44.7	86
F11BE	1.42	F11BF	S1120	74	277	476	18		52.2	72.6	142
F11BF	1.35	PH1	S1125	74	139	278	24		92.4	110.7	297
LRE1	1.22	F11CH	S1140	79	137	275	40		22.9	32.0	310
otoc: *		· · · · ·		·		A output file 2473				<u> </u>	

Notes: * Barrett Lands Phase 1 modeled flow is from the DDSWMM output file 34731-PH1-3CHI2.out, 34731-PH1-3CHI5.out and 34731-PH1-3CHI100.out which are all presented on the CD in **Appendix F**.

† Future External Areas modeled flow is from the DDSWMM output file 34731-FUT-3CHI2.out, 34731-FUT-3CHI5.out and 34731-FUT-3CHI100.out which are all presented on the CD in **Appendix F**.

The assigned size of the inlet control devices (ICDs) for the subject site was optimized using DDSWMM. ICDs are incorporated into the stormwater management design to protect the minor system from surcharge during major storm events. The ICDs used for Phase 1 are provided on **Drawing 100**. It should be noted that due to the major system flow from the future areas, there were a few instances where the flow restriction into the minor system was the capacity of the CB inlet. These include DDSWMM IDs three CBs on S11140A, one CB on S11140B and one CB on S11116B (indicated in bold in **Table 6.2**). Calculations demonstrating the capacity of the CBs within a road sag is presented in **Appendix F**.

DE	REVIEV	VED BY W SERVICE	ES BR	ANCH	
Signed					
Date Plan N	umber			2017	
	GEND :				
	135A ARE/ 3 30.6 POP	A NUMBER ULATION			
		N HECTARES	6		
	FUTURE	MINOR FLOV	V DIRE	ECTION	
14 13					
12 11			$\left \right $		
10					
9 8					
0 7					
6					
5	REVISED PER NEW LEGAL	2018-04-09	J.I.M.	2018:04:16	
3	SUBMISSION NO. 3 FOR CI		J.I.M.	2018:01:17	
2	SUBMISSION NO. 2 FOR CI	TY REVIEW	J.I.M.	2017:09:22	
1 No.	SUBMISSION NO. 1 FOR CI		J.I.M. By	2017:04:28 Date	
┝					
	CO-TE BI BI GRO 400 - 3 Ottawa	DUP 33 Preston S ON K1S 5N 225 1311 fa:	CY Street 4 Car		
Projec	ct Title				
	BARRET	T LAN	ID3	S	~
	лци	ASE 1			
┣—					
,4	PROFESSION A				ā
-CENS	J. I. MOFFATT			\frown	>
	2018/04/16			\searrow	C
PRO	2010/04/10 DLINCE OF ONTAR		\checkmark		
				~ -	č
	SANITARY	UKAII	NA(٤	<u>D07-16-13-0023</u>
	AREA	PLAN			ر م
		\\ \			
Scale		1.4050			17
	HSCALE VSCALE	1:1250			
	VOUALE				
Desig	n K.H.	Date MAF	RCH 2	2017	Z
Drawr		Checked			
	M.M.		J.I.M.		
Projec		Drawing No.			>
1	34731	5	01		



400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

 	LOCATION							RESIDE	ENTIAL							ICI	AREAS				INFILT	RATION ALLC	WANCE	TOTAL			PROPO	SED SEWER	DESIGN		
		FROM	то	AREA w/ Units			TYPES		AREA w/o Units		ATION	PEAK FACTOR	PEAK FLOW	INSTITUTIO	DNAL C	AREA (H		INDUST	RIAL	PEAK FLOW		A (Ha)	FLOW	FLOW	CAPACITY		DIA	SLOPE	VELOCITY (full)	AVAILABL CAPACIT	
STREET	AREA ID	МН	мн	(Ha)	SF	SD	тн	APT	(Ha)	IND	CUM	TABLE I	(L/s)		-	-	CUM	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)		(%)
MUSCARI STREET	11138A	MH11138A	MH11137A	0.74			27			64.8	64.8	4.00	1.05		0.00		0.00		0.00	0.00	0.74	0.74	0.21	1.26	34.22	90.85	200	1.00	1.055		96.33%
MUSCARI STREET MUSCARI STREET	11137A	MH11137A MH11142A	MH11142A MH11140A	0.66			22			52.8 0.0	117.6 117.6	4.00 4.00	1.91 1.91		0.00		0.00		0.00	0.00	0.66	1.40	0.39	2.30 2.30	26.50 55.26	106.56 7.00	200 300	0.60	0.817 0.757		91.33% 95.84%
BARRETT FARM DRIVE	COM1, RES1, HD, CEM, PARK	BLK11141A	MH11140A	27.44	238		264	84		1546.4	1546.4	3.67	22.99		0.00 8.	86	8.86		0.00	7.69	36.30	36.30	10.16	40.84	50.44	45.00	300	0.25	0.691	9.60 19	19.02%
BARRETT FARM DRIVE	11140A	MH11140A	MH11120A	0.30	4					12.8	1676.8	3.64	24.75		0.00		8.86		0.00	7.69	0.30	38.00	10.64	43.08	48.38	78.04	300	0.23	0.663	5.30 10	10.95%
NEPETA CRESCENT NEPETA CRESCENT	11114Aa 11115A	MH11114A MH11115A	MH11115A MH11116A	0.07			2 24			4.8 57.6	4.8 62.4	4.00 4.00	0.08		0.00		0.00		0.00	0.00	0.07 0.67	0.07	0.02	0.10	45.26 46.54	11.39 96.49	200 200	1.75 1.85	1.396 1.435		99.78% 97.38%
NEPETA CRESCENT	11116A	MH11116A	-	0.51			16			38.4	100.8	4.00	1.63		0.00		0.00		0.00	0.00	0.51	1.25	0.35	1.98	20.24	93.95	200	0.35	0.624		90.20%
BARRETT FARM DRIVE	11117A	MH11117A	MH11119A	0.19			7			16.8	16.8	4.00	0.27		0.00		0.00		0.00	0.00	0.19	0.19	0.05	0.33	41.91	93.95	200	1.50	1.292	41.58 99	9.22%
BARRETT FARM DRIVE	11118A	MH11118A	MH11119A	0.19			7			16.8	16.8	4.00	0.27		0.00		0.00		0.00	0.00	0.19	0.19	0.05	0.33	27.59	93.95	200	0.65	0.851	27.26 98	98.82%
NEPETA CRESCENT		MH11119A	MH11120A							0.0	134.4	4.00	2.18		0.00		0.00		0.00	0.00	0.00	1.63	0.46	2.63	50.44	7.00	300	0.25	0.691	47.81 94	94.78%
	111000			0.40																											
BARRETT FARM DRIVE	11120A	MH11120A	MH11110A	0.13						0.0	1811.2	3.62	26.55		0.00		8.86		0.00	7.69	0.13	39.76	11.13	45.38	50.44	78.01	300	0.25	0.691	5.07 10	10.04%
NEPETA CRESCENT NEPETA CRESCENT	11114Ab 11113A	MH11114A MH11113A	MH11113A MH11112A	0.27			8			19.2 4.8	19.2 24.0	4.00 4.00	0.31 0.39		0.00		0.00		0.00	0.00	0.27	0.27	0.08	0.39	24.19 40.49	61.85 11.45	200 200	0.50	0.746		98.40% 98.80%
NEPETA CRESCENT	11112A 11111A	MH111112A	MH11111A MH11118A	0.67			24 21			57.6 50.4	81.6 132.0	4.00 4.00	1.32 2.14		0.00		0.00		0.00	0.00	0.67 0.62	1.02	0.29	1.61 2.60	40.49 24.19	97.92 93.00	200 200	1.40 0.50	1.248 0.746		96.03% 39.26%
NEPETA CRESCENT	IIIIA		MH11110A MH11110A	0.62			21			0.0	132.0	4.00	2.14		0.00		0.00		0.00	0.00	0.02	1.64	0.46	2.60	55.26	7.00	300	0.30	0.757		95.30%
SCHOOL BLOCK	INST	BLK11110AS	MH11110A							0.0	0.0	4.00	0.00	2.07	2.07		0.00		0.00	1.80	2.07	2.07	0.58	2.38	24.19	19.00	200	0.50	0.746	21.82 90	0.18%
BARRETT FARM DRIVE	11110A	MH11110A	MH11100A	0.18			_			0.0	1943.2	3.60	28.30		2.07		8.86		0.00	9.49	0.18	43.65	12.22	50.01	55.26	84.55	300	0.30	0.757		9.49%
KELLY FARM DRIVE		MH11102A			6		4																			104.28					
KELLY FARM DRIVE	11102A 11101A	MH11101A	MH11107A	0.61 0.49	4		4			28.8 22.4	28.8 51.2	4.00 4.00	0.47 0.83		0.00		0.00 0.00		0.00 0.00	0.00 0.00	0.61 0.49	0.61	0.17 0.31	0.64	27.59 27.59	87.12	200 200	0.65	0.851 0.851	26.45 95	97.69% 95.88%
KELLY FARM DRIVE		MH11107A	MH11100A							0.0	51.2	4.00	0.83		0.00		0.00		0.00	0.00	0.00	1.10	0.31	1.14	55.26	7.00	300	0.30	0.757	54.12 97	97.94%
KELLY FARM DRIVE	COM2, RES2	BLK11100A	MH11100A						9.96	597.6	597.6	3.93	9.52		0.00 9.	35	9.35		0.00	8.12	19.31	19.31	5.41	23.04	50.44	45.00	300	0.25	0.691	27.40 54	54.31%
KELLY FARM DRIVE	11100A	MH11100A		0.14						0.0	2592.0	3.50	36.70		2.07		18.21		0.00	17.60	0.14	64.20	17.98	72.28	77.60	61.00	375	0.18	0.681		6.85%
KELLY FARM DRIVE KELLY FARM DRIVE	11103A 11104A	MH11103A MH11104A	MH11104A MH11105A	0.14 0.26						0.0	2592.0 2592.0	3.50 3.50	36.70 36.70		2.07		18.21 18.21		0.00	17.60 17.60	0.14 0.26	64.34 64.60	18.02 18.09	72.32 72.40	77.60 77.60	56.74 119.35	375 375	0.18	0.681		6.80% 6.71%
KELLY FARM DRIVE	11105A	MH11105A	MH800A	0.21						0.0	2592.0	3.50	36.70		2.07		18.21		0.00	17.60	0.21	64.81	18.15	72.45	77.60	116.30	375	0.18	0.681	5.15 6	6.63%
TROLLIUS WAY	11139A	MH11139A	MH11136A	0.75	14					44.8	44.8	4.00	0.73		0.00		0.00		0.00	0.00	0.75	0.75	0.21	0.94	20.24	87.77	200	0.35	0.624		95.38%
TROLLIUS WAY TROLLIUS WAY	11136A 11134A	MH11136A MH11134A	MH11134A MH11133A	0.84 0.67	17 13					54.4 41.6	99.2 140.8	4.00 4.00	1.61 2.28		0.00		0.00		0.00	0.00	0.84	1.59 2.26	0.45 0.63	2.05 2.91	20.24 20.24	103.59 102.36	200 200	0.35	0.624		39.86% 35.60%
TROLLIUS WAY TROLLIUS WAY	11133A 11132A	MH11133A MH11132A		0.26	3 13					9.6 41.6	150.4 192.0	4.00 4.00	2.44 3.11		0.00		0.00		0.00	0.00	0.26	2.52 3.20	0.71	3.14 4.01	20.24 20.24	11.51 96.21	200 200	0.35	0.624		34.48% 30.20%
TROLLIUS WAY	11131A	MH11131A		0.76	16					51.2	243.2	4.00	3.94		0.00		0.00		0.00	0.00	0.76	3.96	1.11	5.05	20.24	96.00	200	0.35	0.624		75.06%
ACONITUM WAY	11128A	MH11128A		0.57	10					32.0	32.0	4.00	0.52		0.00		0.00		0.00	0.00	0.57	0.57	0.16	0.68	20.24	72.95	200	0.35	0.624		96.65%
ACONITUM WAY ACONITUM WAY	11121A 11122Aa	MH11121A MH11122A	MH11122A MH11127A	0.69	13 10					41.6 32.0	73.6 105.6	4.00 4.00	1.19 1.71		0.00		0.00		0.00	0.00	0.69	1.26	0.35	1.55 2.21	20.24 20.24	97.14 69.40	200 200	0.35	0.624		92.37% 39.07%
ACONITUM WAY ACONITUM WAY	11127A 11126A		MH11126A MH11125A	0.19 0.67	2 12					6.4 38.4	112.0 150.4	4.00 4.00	1.81 2.44		0.00 0.00		0.00		0.00	0.00	0.19 0.67	1.98 2.65	0.55 0.74	2.37 3.18	20.24 20.24	11.52 103.51	200 200	0.35	0.624		38.30% 34.30%
			-																												
LAVATERA STREET LAVATERA STREET	11122Ab 11123A		MH11123A MH11124A	0.30	4		1			12.8 2.4	86.4 88.8	4.00 4.00	1.40 1.44		0.00		0.00		0.00	0.00	0.30	0.30	0.08	1.48 1.54	20.24 20.24	95.52 7.97	200 200	0.35	0.624		92.67% 92.39%
LAVATERA STREET	11124A	MH11124A	MH11125A	0.33			10			24.0	112.8	4.00	1.83		0.00		0.00		0.00	0.00	0.33	0.69	0.19	2.02	20.24	73.24	200	0.35	0.624	18.22 90	90.02%
LAVATERA STREET	11125A	MH11125A	MH11130A	0.36			10			24.0	287.2	4.00	4.65		0.00		0.00		0.00	0.00	0.36	3.70	1.04	5.69	20.24	78.74	200	0.35	0.624	14.55 71	1.89%
TROLLIUS WAY	11130A	MH11130A	MH801A	0.33	3		4			19.2	549.6	3.95	8.80		0.00		0.00		0.00	0.00	0.33	7.99	2.24	11.04	20.24	77.22	200	0.35	0.624	9.21 45	15.47%
KELLY FARM DRIVE	11190A	MH11190A	MH11192A	0.34			12			28.8	28.8	4.00	0.47		0.00		0.00		0.00	0.00	0.34	0.34	0.10	0.56	27.59	81.96	200	0.65	0.851		97.96%
KELLY FARM DRIVE	11192A	MH11192A	MH801A	0.26			9			21.6	95.2	4.00	1.54		0.00		0.00		0.00	0.00	0.26	0.60	0.17	1.71	24.19	77.50	200	0.50	0.746	22.48 92	92.93%
KELLY FARM DRIVE		MH801A	MH800A							0.0	644.8	3.91	10.23		0.00		0.00		0.00	0.00	0.00	8.59	2.41	12.63	55.26	6.56	300	0.30	0.757	42.62 77	77.14%
KELLY FARM DRIVE	800A	MH800A	MH820A	0.09	1					0.0	3236.8	3.41	44.77		2.07		18.21		0.00	17.60	0.09	73.49	20.58	82.95	89.61	38.82	375	0.24	0.786		7.43%
KELLY FARM DRIVE KELLY FARM DRIVE	820A 826A	MH820A MH826A	MH826A MH827A	0.11 0.19						0.0	3236.8 3236.8	3.41 3.41	44.77 44.77		2.07 2.07		18.21 18.21		0.00	17.60 17.60	0.11 0.19	73.60 73.79	20.61 20.66	82.98 83.03	89.61 89.61	97.38 70.00	375 375	0.24 0.24	0.786 0.786		7.40% 7.34%
KELLY FARM DRIVE	812A	MH812A	MH814A	0.37			14			33.6	33.6	4.00	0.54		0.00		0.00		0.00	0.00	0.37	0.37	0.10	0.65	27.59	96.38	200	0.65	0.851	26.94 97	97.65%
KELLY FARM DRIVE	814A	MH814A MH816A	MH816A MH827A	0.27			10			24.0	57.6 57.6	4.00	0.93		0.00		0.00		0.00	0.00	0.27	0.64	0.18	1.11	27.59	69.26 6.01	200	0.65	0.851	26.47 95	95.97% 94.50%
KELLY FARM DRIVE		MH827A	EXBLK825A							0.0	3294.4	3.41	45.47		2.07		18.21		0.00	17.60	0.00	74.43	20.84	83.92	89.61	3.48	375	0.24	0.786	5.69 6	6.35%
Design Parameters:		1				Notes:			1				Designed:	K.H	H., W.Y.		No.					Revision		L				<u> </u>	Date		
Residential		ICI Area	3	1			ngs coefficier nd (per capita			0.013 L/day	300	L/day	_				1 2					City Submission City Submission							2017-04-28 2017-09-22		
	NOT		Peak Factor			Infiltration	tion allowanc	e:		L/day L/s/Ha	300	Lody	Checked:	J.I.	М.		3				C	City Submission	n No. 3						2018-01-17		
SF 3.2 p/p/u TH/SD 2.4 p/p/u	COM 50,00	0 L/Ha/day 0 L/Ha/day	1.5 1.5			4. Reside		ormula = 1+	(14/(4+P^0.5								4				Revised	Per New Leg	ai 2018-04-09	9					2018-04-16		
APT 1.8 p/p/u Other 60 p/p/Ha	IND 35,00	0 L/Ha/day	MOE Chart]			where P =	population	in thousands	;			Dwg. Refe	rence: 34	731-501		File	e Reference	:				Date:						Sheet No:		
54.0. 00 p/p/11a																		4731.5.7.1					2018-04-16	6					1 of 1		

SANITARY SEWER DESIGN SHEET

Barrett Lands CITY OF OTTAWA Tartan Land Corporation

Boertetettohas D. M. Monakibasivits would from OBSTIMENE. ONG Annuale State: SUD STANDARD-HALA INTE TAN DStale-HASTSCTBitterb. Ht Sdale6/2068. B: FROM Edge M/2006) (B: 2000) (B: 200) (B: 2000) (B:

REVIEN DEVELOPMENT REVIE	WED BY EW SERVICES B	RANCH
Signed		2017
Date Plan Number		
LEGEND :		
ARE		NT
	I OFF COEFFICIE	IN I
	MINOR FLOW DI	RECTION
	LEITRIM ROAD	
Hond		
ABION ROAD		
		BANK
	ALL	
FNDAN		
14		/
13		
12 11		
10 9		
8		
6		
5 4 REVISED PER NEW LEGAL	_ 2018-04-09 J.I.N	И. 2018:04:16
3 SUBMISSION NO. 3 FOR C 2 SUBMISSION NO. 2 FOR C		
1 SUBMISSION NO. 1 FOR C	ITY REVIEW J.I.M	И. 2017:04:28
No. REVIS	IONS By	Date
	RETT ENANCY	,
IBI GR		
IBI Ottawa tel 613	333 Preston Stree ON K1S 5N4 C 225 1311 fax 61	anada
ibigrou	ıp.com	
BARREI		5
	ASE 1	
SPOFESSION AND STREET	\	
J. I. MOFFATT		$\langle \rangle$
2018/04/16 PROLINCE OF ONTAR		\nearrow
Drawing Title	RAINAG	θE
	PLAN	
AREA	FLAN	
Scale HSCALE	1:1250	
VSCALE		
Design K.H.	Date MARCH	1 2017
Drawn M.M.	Checked J.I.I	
M.M. Project No.	J.I.I Drawing No.	vi.
34731	500)

D07-16-13-0023 CITY PLAN No.

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

 LEGEND

 Black text
 2 year event curve design

 Blue text
 5 year event curve design (Kelly Farm Drive, Barrett Farm Drive)

 Red text
 10 year event curve design (Leitrim Road)

 Green Text
 100 year design curve

	LOCATION				AR	REA (Ha)								RATIO	NAL DESIG	N FLOW								SEWER DATA	Á			
STREET	AREA ID	FROM	то			C= C= C= 0.65 0.70 0.75				TIME IN PIPE	TOTAL (min) (I		i (5) (mm/hr)					10yr PEAK 100yr PEAK FLOW (L/s) FLOW (L/s)				LENGTH (m)	PII DIA	PE SIZE (mm) W H	SLOPE (%)	VELOCITY (m/s)	AVAIL C (L/s)	
				5.20 0.30		RVICEABILITY REPORT	0.00				1.2m/s = 11.94		(()	(. 2017 (2/3)	0.1 (23)		J T (L/J) T LOW (L/S)		(=/3)	(11)			1/3/	(1173)	(=,3)	(%)
MUSCARI STREET		DL K11100	MU111100					0.00	11.04	0.04	10.00	70.00	04.05	111.00	100.50	0.00				01.55	115.00	01.00	075		0.40	1.015	04.10	00.000
MUSCARI STREET MUSCARI STREET	LR2	BLK11138 BLK11138					0.37	0.00 0.0		0.34		70.08 70.08	94.95 94.95	111.26 111.26	162.58 162.58	0.00		91.55		91.55 91.55	115.68 115.68	21.00 21.00	375 375		0.40	1.015 1.015	24.13 24.13	20.86%
MUSCARI STREET	S11138, R1115	MH11138	MH11137		0.30		0.34	1.11 1.1		0.84		69.02	93.50		160.06	76.40				167.96	297.43	90.78	450		1.00	1.812		43.53%
MUSCARI STREET	011107 0111074 0	MH11138	MH11137		0.01		0.04	0.00 0.8		0.84	-	70.08	94.95	111.26	162.58	170.10		91.55		167.96	297.43	90.78	450		1.00	1.812	129.48	
MUSCARI STREET MUSCARI STREET	S11137, R11137A-B	MH11137 MH11137	MH11140 MH11140		0.61		0.34	1.54 2.6 0.00 0.8		1.20		66.59 67.57	90.17 91.51	105.63 107.21	154.31 156.63	176.13		88.22		264.35 264.35	347.53 347.53	112.42 112.42	525 525		0.60 0.60	1.555 1.555	83.18 83.18	
								0.00 0.0	.2 12.70	1.20	.0.00	01.01	01.01		100.00			00.22		201.00	011.00		020					
					2016 UPDATED SE	RVICEABILITY REPORT			entration = 20.										Future Design Flow = 404								·'	
ARRETT FARM DRIVE ARRETT FARM DRIVE	S11141, EXT1 LR1	BLK11141 BLK11141				0.18	1.22	0.35 0.3 2.71 2.7		0.34		51.82 51.82	69.97 69.97	81.88 81.88	119.46 119.46		24.51	222.15	4,049.98 4,049.98	4,296.64	7,005.73		2100 2100		0.15	1.959 1.959	2709.09	
	LNI	DLN11141					1.22	2./1 2./	1 20.13	0.34	20.47	21.02	09.97	01.00	119.40			222.15		4,290.04	7,005.73	40.00	2100		0.15	1.959	2709.09	30.07%
ARRETT FARM DRIVE		MH11140	MH11120					0.00 2.6	4 20.47	0.74	21.21	51.29	69.24	81.02	118.20	135.65				4,551.61	8,565.43	80.96	2400		0.11	1.834	4013.82	46.86%
ARRETT FARM DRIVE	S11140A, S11140B					0.41		0.80 1.1		0.74		51.29	69.24	81.02	118.20		79.49		4,049.98	4,551.61	8,565.43		2400		0.11	1.834	4013.82	
ARRETT FARM DRIVE		MH11140	MH11120					0.00 3.5	20.47	0.74	21.21	51.29	69.24	81.02	118.20			286.49		4,551.61	8,565.43	80.96	2400		0.11	1.834	4013.82	46.86%
NEPETA CRESCENT		MH11114	MH11115					0.00 0.0	0 10.00	0.11	10.11	76.81	104.19	122.14	178.56	0.00			0.00	0.00	82.07	11.15	250		1.75	1.620	82.07	100.00%
NEPETA CRESCENT	S11115	MH11115				0.23		0.45 0.4		0.96	11.08	76.37	103.59	121.43		34.18			0.00	34.18	82.07	93.33	250		1.75	1.620		
NEPETA CRESCENT	S11116A, R11116A-C	MH11116	MH11120		0.66	0.49		1.87 2.3	2 11.08	1.96	13.03	72.91	98.84	115.83	169.29	169.04			0.00	169.04	248.09	99.76	600		0.15	0.850	79.05	31.86%
ARRETT FARM DRIVE		MH11120	MH11110					0.00 4.9	6 21.21	0.63	21.84	50.17	67.71	79.23	115.58	249.01				4,692.46	11,726.17	74.98	2700		0.11	1.984	7033 70	59.98%
ARRETT FARM DRIVE	S11120A, S11120B					0.27		0.53 1.6		0.63		50.17	67.71	79.23	115.58	210.01	113.32		4,049.98	4,692.46	11,726.17	74.98	2700		0.11	1.984	7033.70	
ARRETT FARM DRIVE		MH11120						0.00 3.5	4 21.21	0.63			67.71		115.58			280.16		4,692.46	11,726.17	74.98	2700		0.11	1.984	7033.70	59.98%
			MUTITIO					0.00 0.0	10.00	1.14		70.01	104.10	100.14	170.50	0.00			0.00	0.00	40.07	50.10	050		0.50	0.000	40.07	100.000
IEPETA CRESCENT		MH11114 MH11113		<u>├ </u>			+ +	0.00 0.0				76.81 72.69	104.19 98.54	122.14 115.48	178.56 168.77	0.00			0.00	0.00	43.87 73.41	59.19 11.21	250 250		0.50	0.866		100.00%
EPETA CRESCENT	S11112A, S11112B	MH11112				0.41		0.80 0.8		0.13			97.94		167.74	57.65			0.00	57.65	119.37	95.05	300		1.40	1.636		
IEPETA CRESCENT S	S11111A, S11111B, R1111				0.35	0.56		1.58 2.3		1.28			93.70	109.78	160.41	164.21			0.00	164.21	210.32	98.54	450		0.50	1.281		21.92%
	INCT	DI K111100	MUIIIA			0.07	<u> </u>	4.00 4.0	10.00	0.10	10.10	76.91	104.10	100.14	170.50	001.40				001 40	600.00	10.00	675		0.50	1.070	000.00	40.540
SCHOOL BLOCK	INST	BLK11110S	IVIH I 1110	<u>├</u>		2.07	<u> </u>	4.32 4.3	2 10.00	0.19	10.19	76.81	104.19	122.14	178.56	331.49				331.49	620.09	19.00	675		0.50	1.679	∠88.6U	46.54%
RRETT FARM DRIVE		MH11110	MH11100				+ +	0.00 11.6	65 21.84	0.69	22.53	49.25	66.46	77.76	113.43	573.98				5,072.07	11,726.17	82.26	2700		0.11	1.984	6654.10	56.75%
RRETT FARM DRIVE	S11110, R11110, INST	MH11110			0.28	0.30		0.93 2.6	0 21.84	0.69	22.53	49.25	66.46	77.76	113.43		173.13		4,049.98	5,072.07	11,726.17	82.26	2700		0.11	1.984	6654.10	
RRETT FARM DRIVE		MH11110	MH11100					0.00 3.5	4 21.84	0.69	22.53	49.25	66.46	77.76	113.43			274.98		5,072.07	11,726.17	82.26	2700		0.11	1.984	6654.10	56.75%
					2016 LIPDATED SE	RVICEABILITY REPORT		Time of Conce	entration – 10	0min + 170m	/1.2m/s = 12.36	Smin														ł	'	
ELLY FARM DRIVE		BLK11102	MH11102		2010 OF DATED SE			0.00 0.0					93.19	109.18	159.52		0.00		0.00	87.41	162.91	21.00	450		0.30	0.992	75.50	46.34%
ELLY FARM DRIVE	LR3	BLK11102	MH11102				0.36	0.80 0.8	0 12.36	0.35	12.71	68.79	93.19	109.18	159.52			87.41		87.41	162.91	21.00	450		0.30	0.992	75.50	46.34%
																											L	
TRIM RD DRAINAGE		DICB 2	STM PIPE			0.40		0.72 0.7	2 55.93	0.07	56.00	25.85	34.69	40.50	58.89			29.27	29.27	29.27	124.08	10.00	250		4.00	2.449	94.80	76.41%
ELLY FARM DRIVE	S11102A-B, R11102A-B	MH11102	MH11101		0.44	0.46		1.51 2.2	3 12.71	1.40	14.11	67.75	91.76	107.50	157.06		204.58		0.00	290.65	350.85	100.71	600		0.30	1.202	60.20	17.16%
ELLY FARM DRIVE	LR3	-	MH11101					0.00 0.8		1.40			91.76	107.50	157.06			86.07		290.65	350.85	100.71	600		0.30	1.202		
KELLY FARM DRIVE	S11101					0.22		0.43 2.6		1.30			86.55	101.37	148.06		230.02		0.00	311.19	350.85	93.82	600		0.30	1.202	39.66	11.30%
ELLY FARM DRIVE		MH11101	MH11100					0.00 0.8	0 14.11	1.30	15.41	63.95	86.55	101.37	148.06			81.16		311.19	350.85	93.82	600		0.30	1.202	39.66	11.30%
					2016 UPDATED SE	RVICEABILITY REPORT		Time of Conce	entration = 14.	83min																	'	
	EXT 2	BLK11100	MH11100		2010 01 2/1122 02			33.42 33.4			15.30	62.17	84.11	98.50	143.85	2,077.74			0.00	2,077.74	4,154.07	45.00	1800		0.12	1.581	2076.33	49.98%
																											· · · · · ·	
ELLY FARM DRIVE	S11100A, S11100B	MH11100				0.28		0.00 45.0		0.96			65.15 65.15	76.22 76.22		2,176.66	342.87		4,049.98	6,900.07 6,900.07	12,247.58		2700 2700				5347.51 5347.51	43.66%
ELLY FARM DRIVE	STITUUA, STITUUB	MH11100				0.20		0.00 4.3		0.96		48.29	65.15	76.22	111.17		342.07	330.56	4,049.90	6,900.07	12,247.58	119.92	2700		0.12	2.072	5347.51	
ELLY FARM DRIVE		MH11104						0.00 45.0		0.96		47.02	63.42	74.18		2,119.21				6,860.51	12,247.58		2700		0.12	2.072		43.98%
	S11103A, S11103B					0.13 0.17		0.57 5.8		0.96			63.42	74.18	108.18		369.60		4,049.98	6,860.51	12,247.58	119.60	2700		0.12	2.072		43.98%
ELLY FARM DRIVE		MH11104	MH11105					0.00 4.3	4 23.49	0.96	24.45	47.02	63.42	74.18	108.18			321.71		6,860.51	12,247.58	119.60	2700		0.12	2.072	5387.07	43.98%
SCHOOL BLOCK		DI 3	STM PIPE	1.28				0.71 0.7	1 59.19	0.06	59.25	24.80	33.28	38.84	56.46			40.18		40.18	124.08	9.36	250		4.00	2.449	83.89	67.61%
																			1									
ELLY FARM DRIVE		MH11105							78 24.45			45.82			105.37	2,097.79	10.5			6,900.61		119.60	2700			2.072		
ELLY FARM DRIVE	S11105A-B, R11105	MH11105 MH11105		- -	0.28	0.46	+	1.28 7.1						72.27	105.37		439.44	212.40	4,049.98	6,900.61	12,247.58					2.072	5346.98	
		IVIF111105	IVIMOUU				+ +	0.00 4.3	4 24.45	0.96	25.41	+0.62	01./0	12.21	105.37			313.40		6,900.61	12,247.58	119.60	2700		0.12	2.072	5546.98	43.66%
TROLLIUS WAY					0.36	0.35		1.08 1.0							178.56				0.00	83.17		87.93	450		0.25			44.08%
TROLLIUS WAY	S11136, R11136				0.22	0.39			6 11.62	2.04	13.66	71.11	96.36	112.92	165.01	146.67			0.00	146.67	248.09	104.08	600		0.15	0.850	101.41	40.88%
TROLLIUS WAY	S11134A-B, R11134A-B	MH11134	MH11133		0.24	0.75	<u> </u>	1.66 3.7	2 13.66	1.91	15.57	65.13	88.16	103.26	150.84	242.16			0.00	242.16	339.63	105.19	675		0.15	0.919	97.48	28.70%
EMETERY LANDS		DI 1	MH11133				+ +	0.00 0.0	0 50.76	0.37	51.13	27.74	37.24	43.49	63.25				390.00* 390.00	390.00	535.93	40.39	600		0.70	1.836	145.93	27.23%
							1 1	0.00 0.0	50.70	0.07	00		0.127						230.00 000.00	000.00	000.00				00			
TROLLIUS WAY		MH11133						0.00 3.7			15.74				139.82				390.00	614.82	731.45	11.75	900				116.62	
	S11132, R11132A-B				0.29	0.35	<u> </u>	1.00 4.7					81.24	95.12		283.15			390.00	673.15	905.48	99.51	975		0.15		232.34	
TROLLIUS WAY	S11131, R11131A-B	MH11131	WH11130		0.52	0.35	+	1.28 6.0	0 17.15	1.36	18.51	57.11	//.19	90.37	131.91	342.48			390.00	732.48	905.48	95.85	975		0.15	1.175	173.01	19.11%
ACONITUM WAY	S11128, R11128	MH11128	MH11121		0.22	0.36	+ +	0.93 0.9	3 10.00	1.52	11.52	76.81	104.19	122.14	178.56	71.10			0.00	71.10	91.46	72.95	375		0.25	0.802	20.35	22.26%
ACONITUM WAY	S11121, R11121A-B	MH11121	MH11122		0.33	0.33		1.01 1.9	3 11.52	1.80	13.32	71.44	96.82	113.45	165.80	138.22			0.00	138.22	200.65	97.13	525		0.20	0.898	62.42	31.11%
	S11122A, R11122B-C				0.51	0.25	<u> </u>	1.09 3.0		1.43		66.04			153.01				0.00	199.76	248.09	72.81	600					19.48%
ACONITUM WAY ACONITUM WAY	S11126A S11126B	MH11127 MH11126		<u>├</u>	+ + - +	0.48	+	0.00 3.0	14.75 9 14.97		14.97 16.91				144.32 143.05				0.00	188.66 240.66	248.09 339.63	11.52 106.65	600 675			0.850		23.96%
	2201, 0111200						1 1	0.07 0.0	- 14.07	1.00			55.00	57.00	. 10.00	L 10.00			0.00	240.00	200.00		0,0		0.10	0.010		/
																											'	
initions:					Notes:				Designed	:	K.H., W.Y.				No.				Revis							Date		
= 2.78CiA, where: = Peak Flow in Litres p	per Second (L/o)				1. Mannings coeffici	ient (n) = 0.013								ŀ	1 2				City Submission No City Submission No							2017-04-28 2017-09-22		
= Peak Flow in Litres p = Area in Hectares (Ha									Checked:		J.I.M.				2				City Submission No							2017-09-22		
= Rainfall intensity in m		m/hr)							Sheeked.					ŀ	4				Revised Per New Legal 2							2018-04-16		
[i = 732.951 / (TC+6.19	99)^0.810]	2 YEAR																	- 3 ** =									
	53)^0.814]	5 YEAR							Dwg. Refe	erence:	34731-500, 50	AO																
[i = 998.071 / (TC+6.05	A 1 1 1 A A 1 A															File Ref	erence:			Date	:					Sheet No:		
[i = 998.071 / (TC+6.05 [i = 1174.184 / (TC+6.05 [i = 1735.688 / (TC+6.05)]		10 YEAR 100 YEAR														0.170	.5.7.1			2018-04	110					1 of 2		

STORM SEWER DESIGN SHEET

Barrett Lands City of Ottawa Tartan Land Corporation

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

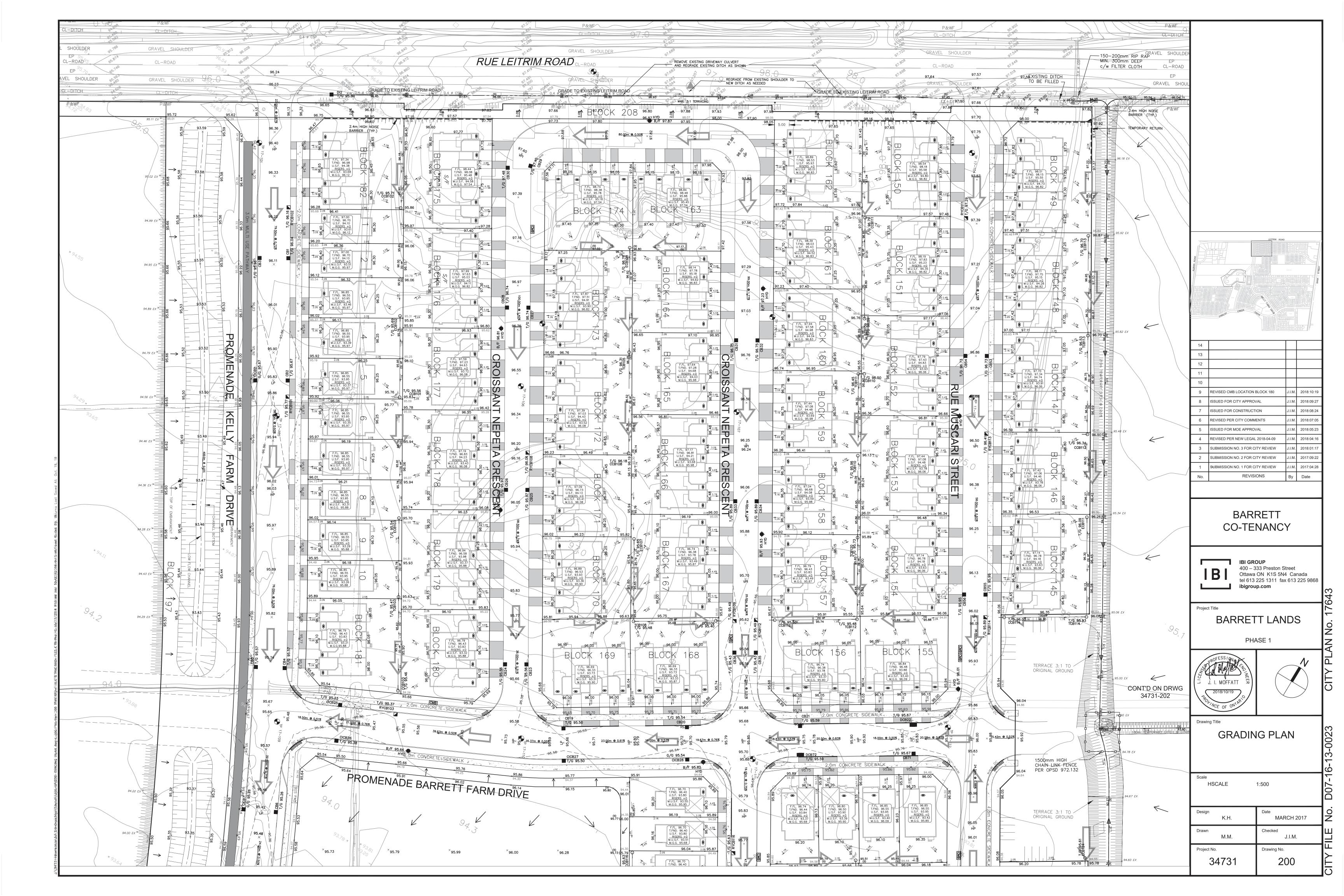
LEGEND Black text 2 year event curve design Blue text5 year event curve design (Kelly Farm Drive, Barrett Farm Drive)Red text10 year event curve design (Leitrim Road) Green Text 100 year design curve

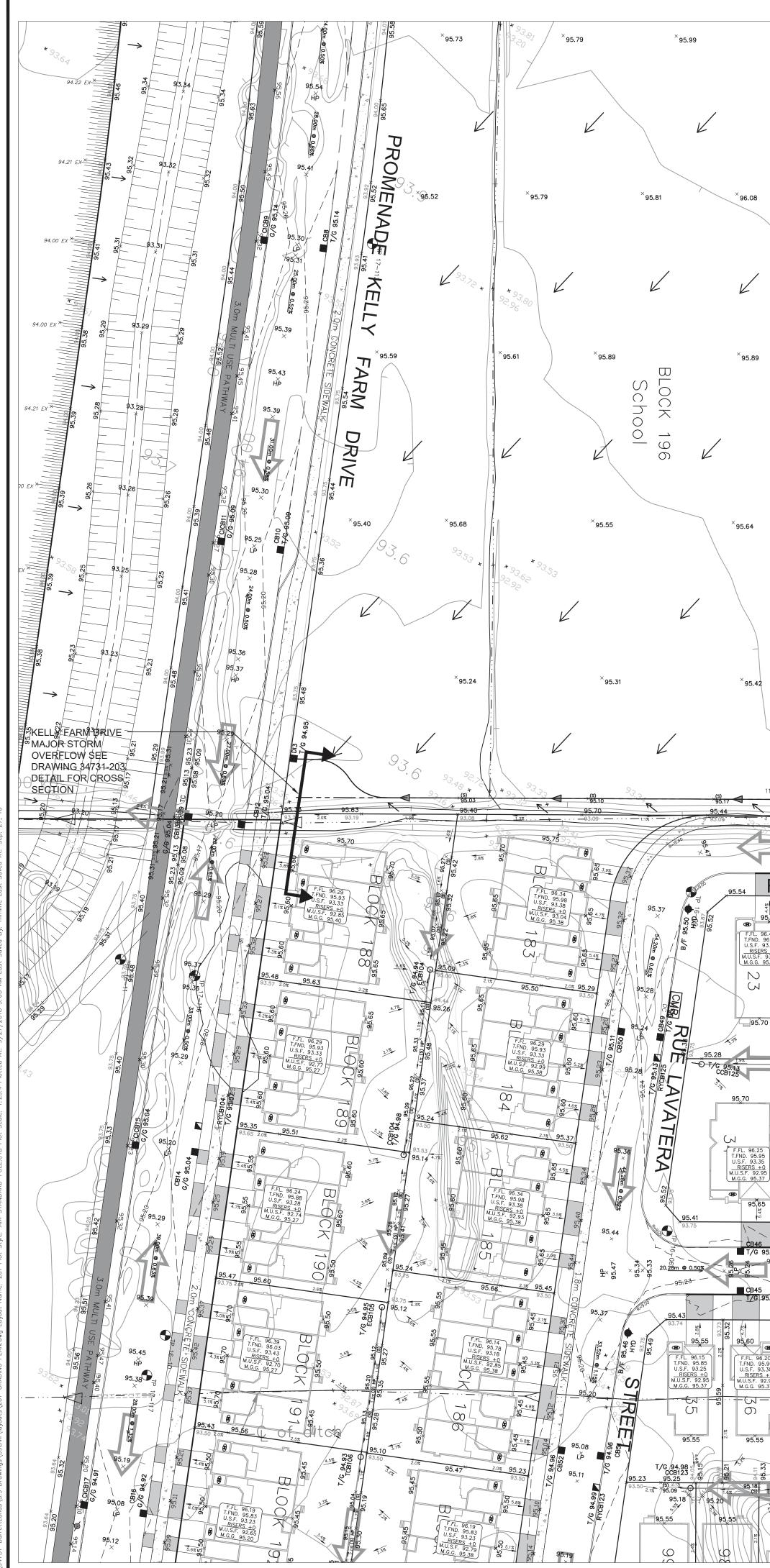
																							T	
LAVATERA STREET LAVATERA STREET	S11122B, R11122A MH11122	MH11123 MH11124	0.11 0.19			0.48 0.48 0.00 0.48		2.37	12.37	76.81	104.19	122.14		36.94		0.00	36.94 33.07	50.44 50.44		300	0.25	0.691		26.77% 34.44%
	S11124, R11124 MH11124		0.26 0.31			0.00 0.48					93.14 92.36	109.13 108.21		33.07 96.12		0.00	96.12	133.02			0.25	0.691 0.810		27.74%
LAVATERA STREET	S11125, R11125 MH11125	MU11120	0.19 0.23			0.69 5.99	16.01	1.25	10.15	57.61	77 97	01.16	133.08	344.88		0.00	344.88	570.09	78.72	825	0.15	1.051	235.10	40.54%
TROLLIUS WAY	S11130, R11130 MH11130	MH800	0.28 0.26			0.86 12.84	18.51	0.75	19.27	54.55	73.69	86.26	125.88	700.60		390.00	1,090.60	1,560.35	5 78.85	1050	0.30	1.746	469.75	30.11%
KELLY FARM DRIVE		MH820				0.00 58.63							102.72				7,836.85		8 50.98		0.12	2.072	4410.73	
KELLY FARM DRIVE	S800, R800 MH800 MH800	MH820 MH820	0.15 0.26			0.71 7.83 0.00 4.34				44.69	60.24 60.24			471.52	305.55	4,439.98	7,836.85 7,836.85		8 50.98 8 50.98		0.12	2.072 2.072	4410.73 4410.73	
		NII IOEO				0.00 4.04		0.41	20.00	44.00	00.24	10.40	102.72				7,000.00	12,247.0	00.00	2700	0.12	2.072	4410.70	00.0170
KELLY FARM DRIVE	EX MH827	7 MH826				0.00 0.00	31.59 31.59	1.35	32.94	38.67	52.07	60.86	88.67	0.00	2,69	0.00	2,743.70	3,792,13	3 116.86	1800	0.10	1.444	1048.43	27.65%
KELLY FARM DRIVE	S827A-C, EXT5 EX MH827	7 MH826	0.53			1.03 1.03	31.59	1.35	32.94	38.67	52.07	60.86	88.67	53.70	2,69	0.00 2,690.00	2,743.70	3,792.13	116.86	1800	0.10	1.444	1048.43	27.65%
KELLY FARM DRIVE KELLY FARM DRIVE	MH826 MH826	MH820 MH820				0.00 0.00 0.00 1.03					50.59 50.59		86.14 86.14	0.00 52.18		2,690.00			3 50.44 3 50.44		0.10	1.444	1049.95 1049.95	
POND 2 POND 2	MH820 MH820	MH821 MH821				0.00 58.63 0.00 8.86							85.10 85.10	2,177.55 442.82		7,129.98	10,003.73		7 66.51 7 66.51	3000 3000	0.11	2.128 2.128	5526.44 5526.44	
POND 2	MH820	MH821				0.00 4.34						58.42		0.454.70	253.38		10,003.73		7 66.51	3000	0.11	2.128		35.59%
POND 2 POND 2	MH821 MH821	MH822 MH822				0.00 58.63 0.00 8.86				36.75 36.75		57.80 57.80		2,154.70 438.13		7,129.98	9,973.49 9,973.49		7 69.18 7 69.18		0.11	2.128 2.128	5556.68 5556.68	35.78% 35.78%
POND 2	MH821	MH822				0.00 4.34					49.46		84.19		250.68		9,973.49		7 69.18		0.11	2.128		35.78%
																						'		
																						'		
																						'		
																						'		
																					· · · · · · · · · · · · · · · · · · ·	<u> </u> '		
																						'		
																						<u> </u> '		
																						<u> </u> '		
																						<u> </u>		
																						'		
				+	—								-				+	-				<u> </u> !	+	
										1								1				 		
				+					-				+				+	+				<u> </u> !	+	
																		1				 	1	
																						<u> </u>		
											-												+	
																		_						
																						+	+	
Definitions: Q = 2.78CiA, where:			Notes: 1. Mannings coefficient (n) = 0.013				Designed:		K.H., W.Y.				No.			Rev City Submission	ision					Date 2017-04-28	8	
Q = Peak Flow in Litres			1. mannings coefficient (n) = 0.013										2			City Submission	No. 2					2017-09-22	2	
A = Area in Hectares (Ha	a) nillimeters per hour (mm/hr)						Checked:		J.I.M.				3		Davia	City Submission	No. 3					2018-01-17 2018-04-16		
[i = 732.951 / (TC+6.1	99)^0.810] 2 YEAR												4		Revis	un en new Legal	2010-04-09					2010-04-16	<u>, </u>	
[i = 998.071 / (TC+6.0	053)^0.814] 5 YEAR						Dwg. Refer	rence:	34731-500	, 500A				File Reference:			Date					Sheet No.		
[i = 1174.184 / (TC+6. [i = 1735.688 / (TC+6.														34731.5.7.1			2018-0					Sheet No: 2 of 2		
· · · · · · · · · · · · · · · · · · ·							•														· · · · · · · · · · · · · · · · · · ·			

STORM SEWER DESIGN SHEET

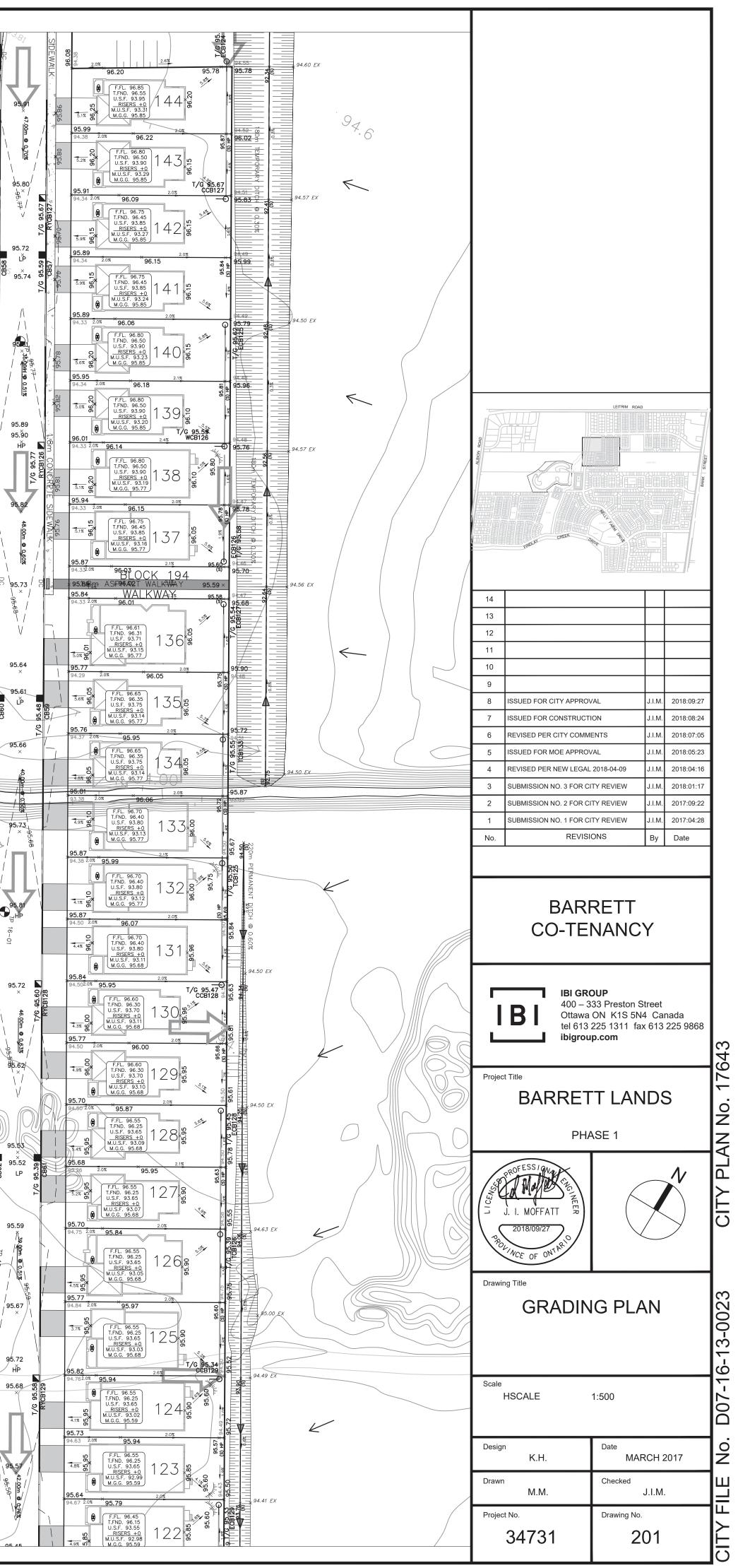
Barrett Lands City of Ottawa Tartan Land Corporation

IBI GROUP	IBI Group 400-333 Pres Ottawa, Onta K1S 5N4																																											S	PROJE	ECT: LEITRIN ON: CITY OF	I DEVELOPMEN	IGN SHEET T HGL
	LOCAT	TION									RESIDENTI	AL												ICI A	AREAS						I	NFILTRATIO	N ALLOWA	NCE	то	TAL		Storm inflow	Total Flow	Total Fl into				PROF	POSED SEWE	ER DESIGN		
						UNIT TYP	PE		AREA			PEAK	PEAK		Р	OPULATION	AKING FACTO	AK PEAK		IN CASE	UTIONAL			EA (Ha)		INDUS	-		EAK MO			AREA (Ha)	1	FLOV	w	sa	rough ni MH	through sani MH	XPSWMM Sani	XPSWN Sani	мм	CITY	LENGTH	DIA	SLOPE			AVAILABLE
STREET	AREA IE	D	ROM MH	то мн	Single	Semi	тн	ΑΡΤ	(Ha)	IND	СЛМ	FACTOR	FLOW (L/s)	(Ha)		o cu		TOR FLOW (L/s)	IND			DD. CUM I		MERCIAL CUM MOD	D. CUM INC					FLOW (L/s)	PARK	IND	CUM				overs otion 2	covers Option 1	Option 2	Option	1 (L/	/s)	(m)	(mm)	(%)	(ful (m/		CAPACITY (%)
			535 538 532	538 532 533				_		0.0 0.0 0.0	0.0	4.00 4.00 4.00	0.00	0.61	26. 16.	3 26 4 16 1 43	i.3 1.9 i.4 1.9	00 0.16 00 0.10 00 0.27										0	.00	0.00		0.61 0.38 1.00	0.61	0.17	7 0. 1 0. 8 0.	.21			0.33 0.21 0.55	0.33 0.21 0.55	29.4	43	87.00 81.10 78.50	200 200 250	0.72	0.89	08 29.2	0 98.85% 3 99.30% 7 98.24%
			533 520	520 523						0.0	0.0	4.00	0.00	2.76	119	0 119	9.0 1.9	90 0.73										0	.00	0.00	0.83	15.50	15.50	0.28	4 8	.51 .23			1.51 8.23	1.51 8.23	31.0	63 02	154.88 241.46	250	0.26	0.62	24 30.1	3 95.24% 9 73.46%
			527	524 527 594						0.0	0.0	4.00 4.00 4.00	0.00	2.38 2.58	148 102 111	7 148 6 102 2 111	8.7 1.9 2.6 1.9 1.2 1.9	0 3.89 0 0.92 0 0.63 0 0.68 0 0.47 0 0.53 0 0.56										0	.00 0 .00 0 .00 0	0.00 0.00 0.00	E 00	0.56	0.56	0.97 0.67 2.40 0.49	7 1. 7 1. 0 3.	.30			1.88 1.30 3.08	1.88 1.30 3.08	49. 55. 34.	42 26 95	81.91 104.52 90.60	300 300 300	0.24 0.30 0.12	0.67	77 47.5 57 53.9 79 31.8	4 96.19% 6 97.65% 7 91.18%
			594 584	584 583 599						0.0	0.0	4.00	0.00	1.76 2.00 2.10	75. 86.	9 75 2 86 5 90	5.9 1.9 5.2 1.9 5.5 1.9	00 0.47 00 0.53										0	.00	0.00		2.00 2.10	1.76 2.00 2.10	0.49 0.56 0.59	9 0. 6 1. 9 1.	.96 (.09	0.51	0.51	1.47 1.09 1.15	1.47 1.09	37.	75 12 26	88.10 89.00 75.85	300 300 300	0.14 0.20 0.30	0.51	17 36.7 18 44.0	7 91.18% 9 97.46% 2 97.58% 1 97.93%
				908 909						187.5 187.5								0000 0000 0000											.00					2.67			0.10	0.10	5.80									4 71.81% 5 88.40%
			909 910	910 923				_	4.35 3.13 2.08 0.29	187.5 134.9 89.6	187.5 134.9 89.6	4.00 4.00 4.00	3.04 2.19 1.45	_	0.0	0.	.0 1.9	90 0.00					7.89 17					0	5.53	0.00 0.00		4.35 3.13 19.97	4.35 3.13 19.97	1.22 0.88 5.59 7.20	2 4. 8 3. 9 22	.06	0.57	0.57	4.26 3.06 23.14	4.26 3.06 23.14	36. 36. 1 36.	70 70 70	218.00 172.00 413.00	250 250 250	0.35	0.72	24 32.4 24 33.6 24 14.1	5 88.40% 4 91.66% 3 38.50% 3 50.65%
			923	1270				_							0.0			90 0.00 90 0.00					.41 25	3.35					.91	0.00							0.35	0.35	29.81 3.92	3 97	20		569.00 181.00	300	0.35			3 50.65% 0 81.00%
			1210 1220	1220 1230						0.0	0.0	4.00	0.00		0.0	0.	0 1.9	0.00 0 0.00				2	.92 2. .18 6.	2.92 5.18				2	.53	0.00		2.92 6.18	2.92 6.18	0.94	2 3. 3 7.	.35			3.35 7.09	3.35	20.	24 24	117.00 257.00	200 200	0.35	0.62	24 16.8 24 13.1	9 83.44% 5 64.95%
			1230 1250 1260									4.00 4.00 4.00						90 0.00 90 0.00 90 0.00					.18 5. .97 1. 1.64 11						.50 .71 0.10			1.97	1.97	1.45 0.55 3.26	5 2.		0.18	0.18	6.13 2.26 13.36				177.00 91.00 290.00					0 70.62% 8 88.83% 8 33.98%
				599				_				4.00						90 0.00					.98 21				_		9.08					6.15).79	0.79			3 141.							64 82.21%
			599 450 401	450 401 411						0.0	0.0	4.00 4.00 4.00	0.00		0.0	0.	0 1.9	00 0.00 00 0.00 00 0.05										0	.00	0.00		0.00	0.00	0.00	0 0. 0 0.				0.00	0.00	202. 248.	.56	80.10 85.10	600 600	0.10	0.65	202.5 0 248.0	i6 100.00% 09 100.00% 00 99.96%
			411	825						0.0	0.0	4.00	0.00	0.16	6.9	6.	.9 1.9	90 0.04										0	.00	0.00				0.05					0.10 0.09	0.10	221.	.45	87.00	600	0.11	0.72	28 212.	99.96%
			1140	1140 1135 1125					16.07 4.33 2.26 2.70	692.6 186.6	692.6 186.6	3.90 4.00	10.93 3.02		0.0	0.	.0 1.9	0.00 0 0.00				7.	.55 7.	7.55				0	.55	0.00	2.42	6.75	6.75	6.61 1.89	9 4.	.91	0.33	0.33	24.43 4.91 2.21	4.91	3 108. 112.	.75	156.00	375	0.38	0.98	39 107.8	1 77.73% 24 95.64%
		1	1135 1125 1140A	11120A					2.70 3.47	116.4 149.6	116.4 149.6	4.00 4.00	1.55 1.89 2.42		0.0	0.	.0 1.9	00000000000000000000000000000000000000										0	.00	0.00		3.47	3.47	0.63	7 3.	.64 .39 (0.33	0.33	2.64 3.73	2.64	91.4 91.4 100.	46	78.00 78.00 78.00	375 375	0.25	0.80	02 88.8 79 96.7	4 97.58% 1 97.11% 9 96.61%
			1120A 1110A 1100A					_	2.87 1.27 2.06	149.6 123.7 54.7 88.8	123.7 54.7 88.8	4.00 4.00 4.00	2.00 0.89 1.44		0.0	0. 0. 0.	0 1.9 0 1.9 0 1.9	00000000000000000000000000000000000000	2.09	9 2.	.09	15	0.44 19	9.44		_	_	0 1 16	.00 0 .81 0 5.88 0	0.00 0.00 0.00		2.87	2.87	0.80	0 2. 4 3.	.64).21	0.21	2.81 3.64 24.55	2.81 3.64 24.55	100. 153. 5 81.0	.18 .03 80	78.00 85.00 193.00	375 375 375	0.30	0.87	79 97.3 12 149.3 17 57.4	9 96.61% 8 97.20% 19 97.62% 7 70.25%
		1	1105A 820A	820A					6.03 1.00	88.8 259.9 43.1	259.9 43.1	4.00 4.00	4.21 0.70		0.0	0.	0 1.9	90 0.00 90 0.00 90 0.00										0	5.88 1.00 1.00	0.00				6.02 1.69 0.28		.90 .98			5.90 0.98									7 70.25% 0 92.79% 2 98.80%
			887 880 879	880 879						0.0 0.0	0.0	4.00 4.00 4.00	0.00	1.55 1.92	66. 82.	8 66 8 82	.8 1.9 1.8 1.9	00 0.41 90 0.51 90 0.36				0	.72	0	0.72			0	.00	0.14 0.00		2.27 1.92	2.27 1.92	0.64 0.54 0.38	4 1. 4 1. 8 0.				1.19 1.05	1.19	59. 56.	85 22	75.61 76.30	200 200	3.06 2.70	1.84	16 58.6 14 55.1	7 98.01% 8 98.14% 8 98.39%
			879 873 872	873 872 863				_		0.0 0.0 0.0	0.0 0.0 0.0	4.00 4.00 4.00	0.00	1.37 1.15 2.23	59. 49. 96.	5 59 5 49 1 96	0.0 1.9 0.6 1.9 0.1 1.9	00 0.36 00 0.31 00 0.59	_								_	0	.00 0	0.00		1.37 1.15 2.23	1.37 1.15 2.23	0.38	8 0. 2 0. 2 1.	.63	1.03	1.03	0.75 0.63 2.24	0.75	46.4 31.0 31.0	43 02 02	76.77 76.37 81.21	250 250 250	0.56 0.25 0.25	0.91	16 45.6 12 30.3 12 29.8	8 98.39% 9 97.98% 0 96.08%
			863 861	861 860						0.0	0.0	4.00	0.00	1.04	44.	3 44	1.8 1.9	0.28										0	.00	0.00		1.04 0.41	1.04 0.41	0.29	9 0. 1 0.	.22	2.54	4.10	0.57	0.22	29.	10	70.23	250	0.22	0.57	74 <u>28.5</u> 18 52.2	3 98.05% 0 99.57%
			860 853 851	851						0.0	0.0	4.00	0.00	1.80	41.	5 38 8 41 5 77	.8 1.9 .6 1.9	00 0.11 00 0.24 00 0.26 00 0.48										0	.00	0.00	0.61	0.97	0.97	0.42 0.27 0.50	2 0. 7 0. 0 0.	.53	0.51	4.10	1.18 0.53 0.98	0.98	49.4	42 38	119.47 78.80	300 300 300	0.23	0.67	77 48.8 12 52.4	2 98.63% 9 98.93% 0 98.16%
			845 840 836	836				_		0.0	0.0	4.00	0.00	1.30	56.	D 56 3 76	i.0 1.9	90 0.34 90 0.47									_	0	.00	0.00		1.30 1.77 1.31	1.77	0.36	0 0.	.97			0.71 0.97 0.71	0.71	50.4	33	76.68	300	0.25	0.69	01 49.7 15 53.3	3 98.59% 6 98.22%
			836 830 828							0.0 0.0	0.0	4.00 4.00	0.00	1.62	69. 0.0	8 69 0.	0.8 1.9 .0 1.9	90 0.35 90 0.43 90 0.00										0	.00 i .00 i	0.00		1.62 0.00	1.62 0.00	0.37 0.45 0.00	5 0. 0 0.	.88 (0.51	4.10	1.40 0.00	4.98 0.00	55. 50.	26 44	60.09 37.50	300 300	0.30	0.75	57 54.3 01 50.4	6 98.38% 7 98.40% 4 100.00%
			825A 22	22 21						0.0	0.0	4.00 4.00	0.00		0.0	0.	.0 1.9	00 0.00 00 0.00										0	.00	0.00		0.00	0.00	0.00	0 0.	.00	0.05	0.05	0.05	0.05	307	20	27.30 54.30	600	0.23	1.05	3 307.2	17 100.00% 20 100.00%
			21 20 19	20 19 17				_		0.0 0.0 0.0	0.0	4.00 4.00 4.00	0.00	1.42	0.0	0. 0. 0. 2 61	0 1.9	00000000000000000000000000000000000000										0	.00	0.00		0.00 0.00 1.42	0.00	0.00	0 0. 0 0. 0 0.	.00 .00 .77			0.00 0.00 0.77	0.00	279. 248. 286.	.21 .09 .47	38.00 49.60 62.00	600 600 600	0.19 0.15 0.20	0.95	7 279.2 0 248.0 2 285.0	1 100.00% 19 100.00%
			17	16 15 14						0.0	0.0	4.00 4.00 4.00	0.00	47.70	0.0	0.	0 1.9	90 0.00 90 0.00 90 4.72	2.0			2.94						0	.00	0.00		0.00	0.00	0.00	0 0.	.00	2.57	20.50	0.00 0.00 13.43	0.00	264. 256.	.11	46.40 46.30	600 600	0.17	0.90	264.2 78 256.2	1 100.00% 2 100.00% 2 95.62%
			14 13	13 12				_		0.0	0.0	4.00 4.00	0.00	5.06	218	1 218	8.1 1.9 9 1.9	90 4.72 90 1.34 90 0.04 90 0.06	2.34								_	0	.00	0.00		5.06 0.16	5.06 0.16	1.42 0.04 0.89	2 2. 4 0.			16.40	4.81	19.16	5 248. 5 271. 279.	.77	94.50 81.30	600 600	0.13	0.93	237.2 31 269.0 37 279.1	3 93.62% 01 98.98% 13 99.97% 01 99.58%
	_		12	11				_		0.0	0.0	4.00	0.00	0.21	9.1	9.	.1 1.9	90 0.06	2.98	8		2.98						0	.00	0.34		3.19	3.19	0.89	9 1.	29			1.29	1.29	307.	.20	111.00	600	0.23	1.05	3 305.9	99.58%
																																		-														
								[
																															_																	
			_																				-			_	_				_				\square								_	-				
																																		_														
		_	_	_			_									_	_	_		_						_	_				_			_	=							_				_		
Design Parameters:		Residential		Augener		ICI Areas	Peak Fact	N	lotes:	1. Manning	s coefficient	t (n) =		0.013			•	Designe	d:	Р.К.			·		No. 1.				•					Revisio	on .										·	Dat	e	
	TH	2.4	p/p/u p/p/u	INST	10,000	MOE 1 50,000	Mod. 1.0	MOE 1.5	Ľ	2. Average I	Demand (pe	er capita):	3	E Criteria 50 (L/c/d)		nitored Crite 280 (L/c/d 0.28 (L/s/h		Checked	1:																													
	APT Other	1.9	p/p/u /p/Ha	COM	17,000 10,000	50,000	1.0	1.5 1.5	Ē	 Infiltratio Residenti 	on allowance ial Peaking F	e:	0.	28 (L/s/ha) Iarmon		0.28 (L/s/h	a)	Dwg. Re	ference:																													
										where P = po			· ·													le Reference 34738.5.7.1										Date: 4/08/2014										Sheet 1 of		


SANITARY SEWER DESIGN SHEET


IBI Group 400-333 Presto Ottawa, Ontari K15 SN4																															S#		SEWER EITRIM DEVELO	OPMENT HGL	SHEET
						RES	SIDENTIAL		Т							IC	CIAREAS				INFILTRATION	ALLOWANCE		TOTAL	Storm inflow	Storm inflow	Total Flow into	Total Flow into			PROPO	SED SEWER DE	SIGN		
LOCATIO	DN		UNIT TYPE	AR	REA		PEAKING FACT		PEAK	AREA	POPULA	D PEAKING F	ACTOR PEAK	PEAK		AREA (Ha)		PEAK	MOD. PEA	AK	AREA (Ha)		FLOW	FLOW	through sani MH	through sani MH	XPSWMM Sani		CAPACITY	LENGTH	DIA		VELOCITY	AVAILA	BLE
STREET AREA ID	FROM MH	TO MH	Single Semi TH	APT (H	Ha)	IND	CUM FA		LOW (L/s)	(Ha)	IND	сим		FLOW INSTITUTIONAL (L/s) IND CUM MOD.	UM IND	COMMERCIAL CUM MO	INDUS OD. CUM IND CU	FLOW 1 (L/s)		PARK	IND	СЛМ	(L/s)	(L/s)	covers Option 2	covers Option 1	Option 2	Option 1	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAPAC L/s	
	603	608		5.3	.33	229.7	229.7	4.00	3.72		0.0	0.0	1.90	0.00				0.00			5.33	5.33 4.72	1.49	5.21	0.10	0.10	5.31	5.31		124.00		1.30	1.203		86.63%
	609			13.	3.49	581.4	581.4	3.94	9.28		0.0	0.0	1.90	0.00				0.00	0.00	2.85	16.34	16.34	4.58	13.85	0.09 0.30	0.30		14.16	78 14	91.00	200 300	0.60	1.071	15.62 64.29	82.27%
	620 630	630 6171		2.	.55	109.9 74.6	109.9 74.6	4.00	1.78 1.21		0.0	0.0 0.0	1.90 1.90	0.00 0.00				0.00	0.00		2.55	2.55 1.73	0.71	2.49		0.05		1.72	45.12	82.00 247.00	300	0.20 0.20	0.618	42.62 43.42	96.25%
	6183	6183 6175A		1.4	.85	79.7	95.3	4.00	0.00		0.0	0.0	1.90	0.00				0.00	0.00		1.85	3.03	0.52	0.52	0.06	0.06	0.55	2.45 0.55	45.12	194.00 86.00	300 300 300	0.20	0.618	42.72	94.70% 98.85%
	6175A	6106				100.0		4.00					1.90					0.00				2.32		0.65	0.04	0.04	0.69	0.69							
	6106	647 647					223.3						1.90						0.00			5.18				0.10		5.16			300 200			14.63	
	6156	6115					81.5						1.90						0.00			1.89			0.03	0.03		1.88	36.70	88.00		0.35		34.85	
	6115 6101	6101 647		12.	2.58	542.2	542.2 172.8	3.96	8.69		0.0	0.0	1.90	0.00 2.55 2.55	7.13	7.13		6.19	0.00		19.71	19.71	5.52	20.40	0.36	0.36	20.76	20.76	36.70	88.00 374.00	250 250	0.35	0.724	16.31 27.44	44.43%
	647	755											1.90						0.00			0.29				0.01		0.29			375				
	755 745	745 730		2.	.30 .27	99.1 11.6	12.5 99.1 11.6	4.00 4.00	1.61 0.19		0.0	0.0	1.90 1.90	0.00				0.00	0.00		2.30	2.30 1.49	0.64	2.25 0.61	0.04	0.04	2.25 0.65	2.25	91.46 91.46	74.00 74.00	375 375	0.25	0.802 0.802	89.21 90.85	97.54% 99.34%
	790	780					150.4 77.6				0.0	0.0	1.90	0.00	3.42	3.42		2.97	0.00		6.91	6.91	1.93	7.34		0.04	7.38	7.38	20.24	103.00	200	0.35	0.624	12.90	63.74%
	780	770									0.0	0.0	1.90	0.00					0.00		1.80	1.80	0.50	1.76				1.76	20.24	83.00	200	0.35	0.624	18.48	91.30%
	771	770					81.0						1.90									1.88		1.84				1.84			200			18.40	
	775	770					170.7						1.90						0.00			3.96			0.12	0.12		3.87		155.00		0.35		16.37	
	770 760 750	760 750 740		1.1	.87	80.6	11.6 80.6 103.0	4.00	1.31		0.0	0.0	1.90 1.90 1.90	0.00				0.00	0.00 0.00 0.00	_	1.87	0.27 1.87 2.39	0.52	1.83	0.06	0.06	1.89	1.89	31.02 31.02 31.02	81.00 81.00	250	0.25	0.612	29.19	94.10%
	740	730		2.	.39	0.0	0.0	4.00	0.00		0.0	0.0	1.90	0.00				0.00	0.00		0.00	0.00	0.00	0.00	0.10	0.10	0.10	0.10	31.02	121.00	250	0.25	0.612	31.02	100.00%
	730 710	710 700					176.7 123.3						1.90 1.90						0.00			4.10 2.86							101.84 125.40						
	700	333		1.8	.80	77.6	77.6	4.00	1.26		0.0	0.0	1.90	0.00					0.00		1.80	1.80	0.50	1.76	0.03	0.03	1.79	1.79	115.68	179.20	375	0.40	1.015	113.92	98.48%
	363 362	362 361				0.0	0.0	4.00	0.00	0.39	16.8	16.8	1.90	0.10				0.00	0.00		0.39	1.28 0.39	0.11	0.70	0.06	0.06	0.27	0.70 0.27	20.24	80.00	200 200	0.35	0.624	20.03	98.95%
	361 355	355 353				0.0	0.0	4.00 4.00	0.00 0.00	1.56 0.80	67.2 34.5	67.2 34.5	1.90 1.90	0.41 0.21				0.00	0.00		1.56 0.80	1.56 0.80	0.44 0.22	0.85 0.44			0.85	0.85	20.24 20.24	167.02 92.48	200 200	0.35	0.624	19.39 19.81	95.80% 97.84%
	353 350	350 333					0.0												0.00			0.64		0.35	0.09	0.09		0.35 1.14	20.24 55.26	106.57 74.93	200 300	0.35 0.30	0.624 0.757	19.89 54.21	98.28% 98.10%
	333	11				0.0	0.0	4.00	0.00	2.50	107.8	107.8	1.90	0.66				 0.00	0.00		2.50	2.50	0.70	1.36	0.01	0.07	1.37	1.43	126.72	157.70	375	0.48	1.112	125.36	98.92%
	11	110				0.0	0.0	4.00	0.00		0.0	0.0	1.90	0.00				0.00			0.00	0.00	0.00	0.00			0.00	0.00	384.34	6.50	600	0.36	1.317	384.34	100.00%
	110 150	150 130				0.0	0.0 4 0.0 4 0.0 4	4.00	0.00	1.48 9.29	63.8 400.4	63.8 400.4	1.90 1.90	0.39 2.47				0.00	0.00	0.83	10.12	1.48 10.12	2.83	0.81	1.03	8.20 32.80	6.33	0.81 13.50	373.51	163.00	600 600	0.34	1.280	372.70 368.21	98.58%
	130	120				0.0	0.0	4.00	0.00	15.26	657.7	657.7	1.90	4.05				0.00	0.00	1.40	16.66	16.66	4.66	8.71	4.11	32.80	12.82	41.51	466.33	130.90	600	0.53	1.598	457.62	98.13%
						<u> </u>																													
							<u> </u>																												
	_					_	_											1																	=
						$=\pm$	$\equiv \pm$																												
						=	=											1																	
					_																														
						_	_																		_										
Design Parameters:	esidential		ICI Areas	Notes	s: 1.	. Mannings coe	efficient (n) =		0.0	013			D	P.K.		H	No. 1.	 		·			Revision										Date		
SF/SD	3.2 p/p/u		Peak Fac Mod. MOE Mod.	MOE					MOE Crit	eria	Monitored	Criteria	c	hecked:		—————E		-				-		-				-		-		-	-		
TH APT	2.4 p/p/u 1.9 p/p/u	INST COM	10,000 50,000 1.0 17,000 50,000 1.0	1.5 1.5	3.	 Infiltration al 			350 (L) 0.28 (L)	/c/d) /s/ha)		_/c/d) _/s/ha)																							
Other	43.1 p/p/Ha	IND	10,000 35,000 1.0	1.5	На	larmon Formule	Peaking Factor: Ila = 1+(14/(4+)	+P^0.5))	Harmo	n	1.90)	D	wg. Reference:		F																	Chart C:		
					wh	iere r = popul	ulation in thous	sunas									File Reference 34738.5.7.1							Date: 14/08/20									Sheet No: 2 of 3		

SANITARY SEWER DESIGN SHEET


	IBI Group 400-333 Preston S Ottawa, Ontario K1S 5N4	Street																													SA		SEWER I	PMENT HGL	SHEET
	LOCATION							RESIDENTIA	L								ICI AREA	s			INFILTRATION A	ALLOWANCE		S	torm inflow		Total Flow	Total Flow into			PROPO	OSED SEWER DE	SIGN		
		FROM	TO		ІТ ТҮРЕ	AREA	POPU	ION PEAKING	PEAK		AREA PO		FACTOR PEAK FACTOR	PEAK FLOW	INSTITUTIONAL	AREA	(Ha)		PEAK MOD. PEA INDUSTRIAL FLOW FLOW		AREA (Ha)		FLOW	FLOW	through sani MH covers	through sani MH covers	XPSWMM Sani	XPSWMM Sani		LENGTH	DIA		VELOCITY (full)	AVAILA	BLE
STREET	AREA ID	МН	мн	Single Semi	TH APT	(Ha)	IND			(L/s) (D CUM		(L/s)	IND CUM MO	D. CUM IND CU		IM IND	CUM MOD. CUM (L/s) (L/s)	PARK	IND	CUM	(L/s)	(L/s)	Option 2	Option 1	Option 2	Option 1	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
		104 105 107	105 107 110A				0.0	0.0	4.00 4.00 4.00	0.00 1 0.00 0 0.00 1	1.31 56.5 0.89 38.4 1.83 78.9	5 56.5 4 38.4 9 78.9	1.90 1.90 1.90	0.35 0.24 0.49	0.60	0.60	2.77		0.00 0.76 0.00 0.00 0.00 0.07		5.97 0.89 2.43	5.97 0.89 2.43	1.67 0.25 0.68	2.78 0.49 1.24	0.51	0.51	3.30 0.49 1.24	3.30 0.49 1.24	22.70 24.91 28.63	76.12 76.90 78.07	200 200 200	0.44 0.53 0.70	0.700 0.768 0.883	24 42	87.74% 98.05% 95.68%
		1104	114				0.0	0.0	4.00 4.00	0.00 1 0.00 1	1.60 69.0 1.49 64.2	4 58.4 9 78.9 0 69.0 2 64.2 8 57.8 4 53.4	1.90 1.90	0.42					0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00		1.60	1.60	0.45	1.24 0.87 0.81			0.87 0.81 0.73					0.70 0.78 1.45		40.39	98.03%
		121	121 126 127 128			2.26	0.0 97.4	0.0 97.4		1.58	1.34 57.8 1.24 53.4 0.0	8 57.8 4 53.4 0 0.0	1.90 1.90 1.90	0.36					0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.99	1.34 1.24 11.25	11.25	3.15	0.73 0.68 4.73			0.68 4.73	0.73 0.68 4.73	42.05 38.71 64.47	77.89 80.00 73.30	200 200 250	1.51 1.28 1.08	1.194	41.32 38.04 59.74	98.25% 92.67%
		127 128 129	128 129 133			1.26 1.75 0.17			4.00 4.00 4.00		0.0	4 33.4 0 0.0 0 0.0 0 0.0 0 0.0	1.90 1.90 1.90	0.00					0.00 0.00 0.00 0.00 0.00 0.00		1.26 1.75 0.17	1.26 1.75 0.17	0.35 0.49 0.05	1.23 1.71 0.17			1.23 1.71 0.17	1.23 1.71 0.17	65.66 66.53 62.96	78.12 103.71 29.16	250 250 250	1.08 1.12 1.15 1.03	1.296 1.313 1.243	64.42 64.82 62.80	98.12% 97.43% 99.74%
			131 132						4.00			0.0							0.00 0.00 0.00	1.75	8.35 1.01			6.95 0.99								1.22 1.16			
		132	133			0.15	6.5	6.5	4.00	0.10	0.0	0.0	1.90	0.00					0.00 0.00		0.15	0.15	0.04	0.15			0.15	0.15	37.22	32.43	250	0.36	0.735	37.08	99.61%
		133 134 135	134 135			0.14 0.67 3.59	6.0 28.9	6.0 28.9	4.00 4.00	0.10 0.47 2.51	0.0	0.0	1.90 1.90	0.00					0.00 0.00 0.00 0.00 0.00 0.00		0.14 0.67	0.14 0.67	0.04 0.19 1.01	0.14 0.66 3.51			0.14 0.66 3.51	0.14	105.07 89.61	27.59 109.10	375 375	0.33 0.24 0.17 0.28 0.21 0.24	0.922	104.94 88.95 71.90	99.87% 99.27%
		136 138	136 138 139			0.54	23.3	23.3	4.00 4.00 4.00	0.38	0.0	0 0.0 0 0.0 0 0.0	1.90	0.00					0.00 0.00	0.87	3.59 0.87 0.54	0.54	0.15	0.24			0.24 0.53	0.24 0.53	96.79 83.82	179.00 92.60	375 375 375	0.28	0.849	96.54 83.29	99.75% 99.37%
		139 141	141 207 206						4.00 4.00 3.78			0 0.0 0 0.0 0 0.0				5.08 5.0	18		0.00 0.00 0.00 0.00 4.41 0.00	0.40	2.20 0.00 30.51	0.00	0.00	2.15 0.00 29.47			0.00	0.00	87.72	61.40	375	0.24 0.23 0.25	0.769	87.72	100.00%
		1338	1339 1340						4.00 4.00			0.0				4.42 4.4			3.84 0.00 0.00 0.00			4.67 1.32			0.09	0.09	5.41					0.35			
		1340	1340 1341 1342 1343			0.81	34.9	34.9	4.00 4.00 4.00 4.00	0.57	0.0	0 0.0 0 0.0 0 0.0 0 0.0	1.90	0.00	2.25 2.25				0.00 0.00 0.00 0.00 1.95 0.00 0.00 0.00		0.81 3.53	0.81	0.37 0.23 0.99 0.47	0.79	0.02 0.01 0.07 0.03	0.02 0.01 0.07 0.03	1.32 0.81 3.90	0.81 3.90	20.24	78.00 78.00 78.00 78.00	200	0.35	0.624	19.45 16.41	96.09% 81.05%
		1342 1343 1344	1343 1344 1345			1.69 1.71 1.71	72.8	72.8	4.00 4.00 4.00	1.18 1.19 1.19	0.0	0 0.0 0 0.0 0 0.0	1.90 1.90 1.90	0.00					0.00 0.00 0.00 0.00 0.00 0.00		1.69 1.71 1.71	1.69 1.71 1.71	0.47 0.48 0.48	1.65 1.67 1.67	0.03 0.03 0.03	0.03 0.03 0.03	1.68 1.70 1.70	1.68 1.70 1.70	20.24 20.24 20.24	78.00 78.00 78.00	200 200 200	0.35 0.35 0.35	0.624	18.59 18.57 18.57	91.83% 91.74% 91.74%
		1345	206			0.33	14.2	14.2	4.00	0.23	0.0	0.0	1.90	0.00					0.00 0.00		0.33	0.33	0.09	0.32	0.01	0.01	0.33	0.33	36.70	165.00	250	0.35	0.724	36.38	99.12%
		1365A 1357 141C	1357 141C 141B			0.39	16.8 23.3	67.7 16.8 23.3	4.00 4.00 4.00	1.10 0.27 0.38	0.0	0 0.0 0 0.0 0 0.0	1.90 1.90 1.90	0.00					0.00 0.00 0.00 0.00 0.00 0.00	3.13	1.57 0.39 3.67	1.57 0.39 3.67	0.44 0.11 1.03	0.38		0.03 0.01 0.07	1.57 0.39 1.47	1.57 0.39 1.47							
			1345						4.00			0.0							0.00 0.00		0.86	0.86			0.02	0.02	0.86	0.86				 			
		1356 1355	1355 1345			0.34 4.96	14.7 213.8	14.7 213.8	4.00 4.00	0.24 3.46	0.0	0.0 0.0 0.0	1.90 1.90	0.00					0.00 0.00 0.00 0.00	0.40	0.34 5.36	0.34 5.36	0.10	0.33 4.96	0.01 0.10	0.01 0.10	0.34 5.06	0.34 5.06							
			204						4.00			0.0							0.00 0.00			1.40			0.03	0.03	1.40	1.40	83.82	239.46	375	0.21	0.735	81.90	97.71%
		204 202	202 201 200				0.0	0.0	4.00 4.00 4.00	0.00	0.0	0 0.0 0 0.0 0 0.0	1.90 1.90	0.00					0.00 0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00	0.00	0.00	0.00 0.00 0.00			0.00 0.00 0.00	0.00	91.46	241.53	375	0.25 0.18 0.23	0.802	91.46 77.60 87.72	100.00%
		200 100	100 110				0.0	0.0	4.00 4.00	0.00 0	0.0	0 0.0	1.90 1.90	0.00					0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00			0.00	0.00	158.41 105.07	61.60 95.30	375 375	0.75 0.33	1.389 0.922	158.41 104.89	100.00% 99.83%
			120 P. Station				0.0	0.0	4.00	0.00 5	5.81 250	.4 250.4	1.90			11.78	11.78		0.00 2.32		0.00	0.00	4.93 0.00	8.78			8.78	8.78	452.94	52.50	375	0.50		120.55 452.94	
																			Image: Constraint of the second sec																
							_																									ł			
																																 			
																																 			
																																_	=		
																																=	$=\mp$		
Design Parameters:	Resid	lential		ICI Areas	· · ·	Notes:	1. Manning	gs coefficient	(n) =	0.01	.3	I		Designed:	Р.К.		No. 1.			I		R	Revision							I			Date		
	SF/SD 3.2 TH 2.4	2 p/p/u	Averag	e Flows (L/ha/day) Mod. MOE 10,000 50,000	Mod. MOE					MOE Criteri 350 (L/c/	ia Mon	nitored Criteria 280 (L/c/d)		Checked:						-			-					-							
	APT 1.9 Other 43.	9 p/p/u	COM	10,000 50,000 17,000 50,000 10,000 35,000	1.0 1.5		 Infiltration Resident 	Demand (per on allowance tial Peaking Fi	ictor:	0.28 (L/s/	/ha)	0.28 (L/s/ha)		Dwg. Refer	rence:																				
								rmula = 1+(14 population in		Harmon		1.90							ference: 8.5.7.1					Date: 14/08/2014	1								Sheet No: 3 of 3		
L																		54/3	did the					14/00/2014									2013		

SANITARY SEWER DESIGN SHEET

			M.G.G. 95.68	6 9 ×		90.20	90.10	,nu, Ster		- <u>-</u>
[×] 96.00	[×] 96.28	95,73 (5,79) 95,73 (5,79) (6,00) (6,00) (6,00) (7,1	96.04 2.0% 95.8 0% 94. (F.FL. 96.70 T.FND. 96.40 U.S.F. 93.80 RISERS +0		DO BB:96 9:96 9:96 9:97 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.07 94.56 95.74 95.97 95.89 95.89	2.1% 95.66 95.66 95.66 95.66	<u>^96.04</u>	2.0% 96.18 80 67 6 96.61 96	
	,	() () () () () () () () () () () () () (M.U.S.F. 93.49 M.G.G. 95.68 96.13 × 2.22 95.7 94.4	299 26 29 29 26 26 25 26 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	/	F.F.L. 96.70 T.FND. 96.40 U.S.F. 93.80 M.U.S.F. 93.48 M.U.S.F. 93.48	96.10 96.10 17/G 95.4899 1.62 95.68 95.66 95.66	*.02 0 0 0 0 0 0 0 0 0 0 0 0 0	55 5 31 55 9 31 55 50 9 50 9 50 9 50 50 50 50 50 50 50 50 50 50 50 50 50	
V	Ĩ		F.FL. 96.70 U.S.F. 93.80	0 1926 1926 1926	95.77	96.06 ×	2.0% 2.0% 0 94.5 95.6 95.6 95.6 95.6 95.6	90 2.1%	2.1% 95.98 94.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
	[×] 96.20	(5) 94.20 95.65 g5.73	M.U.S.F. 93.45 M.G.G. 95.68 95.95 <u>2.22</u> 95.	71	776 95.45	F.F.L. 96.65 T.F.ND. 96.35 U.S.F. 93.75 RISERS +0 M.U.S.F. 93.44 M.G.G. 95.68	96.05 95.70 95.70	S S S S S S S S S S S S S S S S S S S		ĝ
		T/G 95.56 T/C 25.56 T/C 25.56 T/C 25.56 15 96.15	F.FL. 96.60 T.FND. 96.30 U.S.F. 93.70 RISERS +0	95.56	95.73 94.41 ^{2.08}	*95.89 F.FL. 96.60 T.FND. 96.30	7/G 95.45 94.45 95.6 95.6 94.45 94.45 94.45	2.3% 7.FNL 96.70 T.FND 96.4 U.S.F. 95.70 U.S.F. 93.8 RISERS +		g
	\mathbf{X}	94.15 95.97 2.0%	M.G.G. 95.68 07 × 2.1% 95.7 94.3	2 V V V V V V V V V V V V V V V V V V V	9 5.27 % 95.73	M.U.S.F. 93.70 M.U.S.F. 93.42 M.C.G. 95.68	2.0% 25.8 2.0% 25.8 2.0% 25.8	8 <u>M.G.G. 95.8</u> 96.15 2.0%	5 v v v 4.38 v v v 8 v v	5
K	*	6 10 10 10 10 10 10 10 10 10 10 10 10 10	F.FL. 96.60 T.FND. 96.30 U.S.F. 93.70 <u>RISERS +0</u> M.U.S.F. 93.38 M.G.G. 95.68	95.82 95.58 95.87 95.58 2050 @ W003		2.0% 96.02 F.F.L. 96.70 T.F.ND. 96.40 U.S.F. 93.80 M.U.S.F. 93.39 OO	× 4 94.33 × 6 19 × 6 19 95.7	8 8 8 8 28 7 28 7 28 7 28 7 28 7 28 7 2	0 0 6 6 6 6 6 6 6 6 6 6	
)	×96.00	(5) 94.07 95.56 95.69 0 2.0 95.56 95.69 0 2.0	2.0% 95.7 95.96 94.2		95.80 94.27 ^{2.0%}	M.G.G. 95.68		0 2.1% F.FL. 96.75 T.FND. 96.4 U.FC 0.38		9
	A. OP	95.75	F.F.L. 96.75 T.F.ND. 96.45 U.S.F. 93.85 RISERS +0 M.U.S.F. 93.37 M.G.G. 95.68	· _ /	ACO	F.FL. 96.70 T.F.ND. 96.40 U.S.F. 93.80 M.U.S.F. 93.36 M.G.G. 95.68	95.7 95.7 94.26	0 96.17	22 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	İ
	Z	94.00 95.93 × 2.07	2.0% 95.8 96.09 94.1 94.1		N 95.85 94.232.0%	U.S.F. 93.80	95.7 995.7 995.7 995.7 995.7 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98	6 6 6 6 6 6 6 6 6 6 6 6 6 6		9
		96.05 96.05	F.F.L. 96.70 T.FND. 96.40 U.S.F. 93.80 <u>RISERS +0</u> M.U.S.F. 93.34		95.79 94.20 ^{2.0%}	<u>8.6.6.95.58</u> <u>2.0%</u> <u>95.98</u>	<u> </u>	2.3%	2.1% 95.96	9
	[×] 95.80	(\$) 95.47 95.47 95.47 95.47 95.47 95.64 95.47 95.64 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95		ने है।		M.U.S.F. 93.33 M.G.G. 95.58	95.95 53	50 50 50 50 50 50 50 50 50 50 50 50 50 5		
	. 0 .	£ 06	T.FND. 96.35 U.S.F. 93.75 M.U.S.F. 93.32 M.G.G. 95.58 G 4.9%		95.71 94.17 2.07 95.69 95.68	« × / -	95.40 ²² 95.5 Sm ASPHAL∓964¢	₹KWAY <u>-</u> 96.03×	2.0% 95.85 94 66 2.0% 95.85 2.0% 95.85	9
K	X.o	93.94 (Dis 95.87 2.0% 99 2.0% 99 2.0% 99 2.0% 99	2.02 95.6 5.99 94.0 F.FL 96.50 U.S.F. 93.60 5.32		94.15 2.08	^{\$} 95.88	94.25	2.3% F.FL. 96.60 T.FND. 96.3 U.S.F. 93.7 K.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S		-95.00
	x	93.88 000 95.38 \$5.59	RISERS +0 M.U.S.F. 93.29 M.G.G. 95.58 2.0% 95.82 95.82		95.64	2.0% ¥95.93	2.0% 95.74 2.0% 99.25 26 80		2.0% 95:77	95
	×95.60	21×	F.FL. 96.50 T.F.MD. 96.20 U.S.F. 93.60 <u>RISERS +0</u> M.U.S.F. 93.28 M.G.G. 95.58		95.66	F.FL. 96.55 T.F.ND. 96.25 U.S.F. 93.65 <u>RISERS +0</u> M.G.G. 95.58 <u>X</u>	95.5	3 95.96	0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9
X	Ĺ	95.45	2.095.57 0% 95.67 94.00 T.F.ND. 96.20 U.S.F. 93.60 G	95.57	94.05 2.0%	95.81 F.FL. 96.55 U.S.F. 93.65 <u>RISERS +0</u> M.U.S.F. 93.27 M.G.G. 95.58	95:30 95:55 95:55 95:35 1708117 1008117	(F.FL, 96.60		95
110m TEMPORARY DITCH @ 0.50 (S) 95.22 95.63	0% (s) 95.56 95.47		M.U.S.F. 93.26 M.G.G. 95.58		95.71	2.12	65 55 65 56	2.0%	2.0% 95-80 T @	
		L/G 95.22 RYGB117 33 CB48 776 95.23 RYGB117 33 RYGB117 35 RYGB117 35 Sefer	93.96 95.48 0 0.51% + 19 + 16	95.65 27 95.66 × 27 HP	95.77	U.S.F. 93.65 <u>RISERS +0</u> M.U.S.F. 93.25 M.G.G. 95.58 95.88	0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			95
RUE LAVA		CB47 05	B/F 95.59 + HYD 94.12 95.53	Si L		F.FL. 96.55 T.FND. 96.25 U.S.F. 93.65 <u>RISERS +0</u> M.U.S.F. 93.23 M.G.G. 95.58	94.25 94.25 96.95 96.95 94.25		94.25	ĺ
95,85 96.45 96.15 93.55 95,800	95.80 95.80 F.F.L. 96.40 Γ.F.N. 96.10 Stress Stress Stres	96.40 0. 96.10 0. 96.10	F.FL. 96.35 T.F.ND. 96.05 U.S.F. 93.45	95.58 ×	95.71 94.25 2.0%		gr. at 94.37 Sr. at 95.63 Sr. at 94.43	M.G.C. 95.77	2.0% 95.91 94.36	9 TP 16-0
CBS +0 RSERS +0 R F. 93.10 M.U.S.F. 93.13 R M.G.G. 95.42 R S S S <td><u></u></td> <td></td> <td>RISERS ±0 M.U.S.F. 93.21 M.G.G. 95.42 95.84 2.0% 95.62</td> <td>2.590 @ m98.74</td> <td>6 9 9 9 9 9 9 1 9 1 9 1 1 1 1 1 1 1 1 1 1</td> <td>M.U.S.F. 93.20 M.G.G. 95.55 2.0%</td> <td>XE.</td> <td>50 50 50 50 50 50 50 50 50 50</td> <td>8<u>3.7%</u></td> <td>11</td>	<u></u>		RISERS ±0 M.U.S.F. 93.21 M.G.G. 95.42 95.84 2.0% 95.62	2.590 @ m98.74	6 9 9 9 9 9 9 1 9 1 9 1 1 1 1 1 1 1 1 1 1	M.U.S.F. 93.20 M.G.G. 95.55 2.0%	XE.	50 50 50 50 50 50 50 50 50 50	8 <u>3.7%</u>	11
		5.75	94.06 F.FL. 96.35 T.F.ND. 96.05 U.S.F. 93.45 M.U.S.F. 93.17 M.G.G. 95.55	95.49 95.49 × 1 1 1 1 1 1 1 1 1 1 1 1 1	5.9% 6	F.F.L. 96.50 T.F.ND. 96.20 U.S.F. 93.60 M.U.S.F. 93.19 M.G.G. 95.55		2.2%	2.0% 95.82 94.50 06 4.3%	95
G G G G G G G G G G G G G G	(s) (s)	.59 95.37 HP 93.80 O T/G 95.22 24 ECB123 C ECB123 C	95.75 2.0% 95.59	□ 1/6 95.32 1/6 95.32	95.60 94.23 2. 5.8% 6	2.0 95.86 F.FL. 96.50 T.FND. 96.20 U.S.F. 93.60 RISERS +0	23 € 94.78	2.03 0 0 0 0 0 0 0 0 0 0 0 0 0		05.505
5 ⁵	95,70 95,70 95,70	75 25 25 25 25 25 25 25 25 25 25 25 25 25	F.FL. 96.35 T.FND. 96.05 U.S.F. 93.45 <u>RISERS +0</u> M.U.S.F. 93.16 M.G.G. 95.55	95.50 / ×2.965.4 / 1995.4 / 1995.4 / 1995.4 / 1995.4	95.63 94.31 ^{2.0%}	M.U.S.F. 93.15 M.G.G. 95.55	95.53 94.87	F.FL. 96.55 T.FND. 96.25 U.S.F. 93.65 		1
25 .95 .35 .95	Image: Constraint of the second sec	6.45 96.15	95,90 2.1% 95.66 93.99 F.F.L. 96.40 T.FND. 96.10	/ [jg] /	95.69	U.S.F. 93.60 <u>RISERS +0</u> M.U.S.F. 93.14 <u>M.G.G. 95.55</u> 2.0%	නි ගි ම ද ලූද් 95.50 - 94.89 ඉද	2/0% F.FL. 96.50 U.S.F. 93.60	2/0z /95.67 94.75) 95
+0 2.95 37 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RISERS + 0 Model RISERS + 0 M.U.S.F. 92.99 M.U.S.F. M.U.S.F. M.G.G. 95.37 M.G.G. M.G.G. 95.85 M.G.G. 95.85	93.02	U.S.F. 93.50 <u>RISERS +0</u> <u>M.U.S.F. 93.12</u> <u>M.G.G. 95.51</u>	- <u>F</u>	94.252.0%	F.FL. 96.50 T.FND. 96.20 U.S.F. 93.60 RISERS +0 M.U.S.F. 93.11 M.G.C. 95.51	94.89 35 ¹ - × <u>94.90</u> 98,96 95,65 95,65	2.0%		95
6	93.575 4.5%	ະສິ່ງຜີ HYD ● B/F 95.57	844 //6 95.27	95.55	95.69 94.09 ^{2.07}	95.82	95.52 56 94.81	55%	0	95.
5 95.11 95.23 × kg 33.50m ● 0.8 5 VOIE /	[₽] Z [®] × ⁶ ³ / ₂ ↓ <u> ACONITUM</u>	25.50m • 0.513 47 - 4 47 - 47 - 4 47 - 4 4	× vi B43	5 7 7		F.F.L. 96.50 F.F.D. 96.20 S.F. 93.60 RISTRS +0 C. 93.51 S.S.F. 93.51 S.S.F. 93.51 S.S.F. 93.51 S.S.F. 95.51	5.9% O S S S S S S S S S S S S S S S S S S	95.88 2.0% F.FL. 96.50 T.FND. 96.20 U.S.F. 93.60 W.U.S.F. 93.00 M.U.S.F. 93.04 M.G.G. 95.68	2.95.73 94.97 06, 4.12 08, 4.12 08, 4.12 08, 4.12	141
93.75 95.43 93.75 93.75		83.75 6.57 6.57 6.57 6.57 6.57 6.57 6.55 7.5 7.5 7.5 7.5 7.5 7.5 7.5	G 95.27	07 109-03 0-0		20051) \$6	ECB119 ECB119	5.3% 8 	2.0x95.80	95.
96.20 95.90 93.30 U.S.F. 93.40 gg	5,75 F.FL. 96.35 T.FND. 96.05 U.S.F. 93.45 M.U.S.F. 93.00 M.U.S.F. 93.00 M.U.S.F. 95.37 G M.U.S.F. 95.37		95.80 95.80	8 96.10 93.50 93.06	1.1.96.64.15 1.1.96.96.15 1.1.5.1.94.5.96 1.1.5.1.94.5.96 1.1.5.1.94.5.96 1.1.5.1.94.5.96 1.1.5.1.94 1.1.5.			€ 6 6 6 6 6 6 7.FL. 96.55 U.S.F. 93.65 <u>RISERS +0</u> M.U.S.F. 93.03 <u>M.G.G. 95.59</u>		95. F
		95.37) 0 M.G.G. 95.51 0	M.G.G. 95.51 4 4 8 8 6 8 6 8 7 8 8 6 8 7 8 8 7 8 8 7 8	95.51	95.15		° 6) 6 95.49 95.49 95.49 95.49 95.44	20% 95.94	9 2.0x 95.79 94.92	95.
55 ¥ 95.60	95.60 95.60 95.60 95.60 95.60	5.60 5.00 5.00 5.00 5.00 5.00 5.00 5.00	95.60 95.65 95.65		95			F.FL. 96.55 T.FND. 96.25 U.S.F. 93.65 <u>RISERS +0</u> M.G.G. 95.59 M.G.G. 95.59	8124 1324 1324 1324 1324 1324 1324 1324 1	
	95.15 (S) 95.05 (S) 95.00 7CB123 (S) 95.00 7CB123 (S) 95.00 95.00 95.00 95.00 7CB123 (S) 95.00 95.00 95.05 95.05 95.15 95.30 95.45	80 95.23 T/G 95.03 ECB122 95.18 1 1 95.22 95.18	R. 63 53	95.20 95.21 95.21 95.29 ECB124 95.29 ECB124 95.29 ECB124 95.29 ECB124 95.29 ECB124 95.29 ECB124	95.11 1.8%	(5) HP 95.38 1.5 95.18 1.5 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1	95.32 95.26	(S).86 95.23 2.8% 95.01 (S)	95.21 95.69 95.69 95.69 95.69 95.69 95.69 95.63 17(6 95.43 17(6 95.43	15.
		95,60			95,65	95,70 95,70	95,70 200 ki	95.75 95.75 00 00		
			II.	— III						<u>ح</u>

0 Ž

APPENDIX

B

- FIRE UNDERWRITERS SURVEY FIRE FLOW CALCULATION FOR BUILDING
- FIRE UNDERWRITERS SURVEY FIRE FLOW CALCULATION FOR PORTABLE CLASSROOM
- WATER DEMAND CALCULATION
- BOUNDARY CONDITION REQUEST

Fire Flow Design Sheet (FUS) 3955 Promenade Kelly Farm, Ontario Ottawa, Ontario CA0040067.4396 2024-10-10 Date: Mostafa Sayed Input By: Reviewed By: Winston Yang

CEPEO Leitrim Elementary School Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

To estimate the amount of water required to confine and control a fire, FUS uses the following base formula:

F = 220 x **C** x \sqrt{A}

- F = Required Fire Flow in litres per minute С
 - = Construction Coefficient related to the type of construction of the building
- Α = Total Effective Floor Area in square meters of the building

	1. Construction	on Material				Input	Coefficient	Value Used
С	Type V Type IV-A Type IV-B Type IV-C Type IV-D Type II Type II Type I	Wood Frame Mass Timber Mass Timber Mass Timber Ordinary Cor Non-combus Fire Resistive	Construct Construct Construct Construct Struction tible Const	ction ction ction ction ction	n	Yes	1.5 0.8 0.9 1.0 1.5 1.0 0.8 0.6	0.8
	2. Floor Area					Input		Value Used
A	Building Footp Number of Flo Protected Ope Total Effective * Single larges immediately av	oors enings (1-hr) e Floor Area (m st floor area + 2	,	ach of t	he two	3,416 2 Yes 3,698		3,698
	3. Base fire fl	ow without an	liustmen	ts				
F	F = 220 x C x		•		L/min			
	4. Occupancy	and Content	s Adjusti	ment F	actor	FUS Table 3	Adjustment	Value Used
(1)	Non-combusti Limited combu Combustible Free Burning Rapid Burning	ustible				Yes	-25% -15% +0% +15% +25%	-15%
	Adjustment of	F due to Occu	ipancy an	d Cont	ents =	9,350	L/min	
	5. Automatic	Sprinkler Pro	tection			FUS Table 4	Adjustment	Value Used
(2)	% of Sprinkler Adequately De Standard Wate Fully Supervis	esigned Syster er Supply	n (NFPA	13)		100% Yes Yes	-30% -10% -10%	-40%
	Credit for Auto	omatic Spinkle	r Protectio	on =		-3,740	L/min	
	6. Exposure S	Surcharge				Separation	FUS Table 5	Value Used
(3)	North Exposur East Exposure South Exposu West Exposur	e (m) re (m)				25.65 25.1 83 0	+10% +10% +0% +0%	+20%
	Surcharge for	Exposure =				+1,870	L/min	
F	7. Total Requ	ired Fire Flow	,					
-	F = (1) + (2) +	(3) =	or or	117	L/min L/sec GPM (US)			

Fire Flow Design Sheet (FUS) 3955 Promenade Kelly Farm, Ontario Ottawa, Ontario CA0040067.4396 2024-10-10 Date: Mostafa Sayed Input By:

Reviewed By: Winston Yang

CEPEO Leitrim Elementary School (12 Future Portable Classrooms) Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

To estimate the amount of water required to confine and control a fire, FUS uses the following base formula:

F = 220 x **C** x \sqrt{A}

- F = Required Fire Flow in litres per minute С
 - = Construction Coefficient related to the type of construction of the building
- Α = Total Effective Floor Area in square meters of the building

	1. Constructi	on Material				Input	Coefficient	Value Used
С	Type V Type IV-A Type IV-B Type IV-C Type IV-D Type II Type I Type I	Wood Frame Mass Timber Mass Timber Mass Timber Ordinary Cor Non-combus Fire Resistive	r Constructi r Constructi r Constructi r Constructi nstruction stible Constr	on on on on ructio	n	Yes	1.5 0.8 0.9 1.0 1.5 1.0 0.8 0.6	1.5
	2. Floor Area					Input		Value Used
A	Building Footp Number of Flo Protected Ope Total Effective	oors enings (1-hr)	n²) *			215 0 Yes 215		215
	* 100% of all F	Floor Areas are	e considere	d				
F	3. Base fire fl	ow without a	djustments	5				
F	F = 220 x C x	√ A =	5	,000,	L/min			
	4. Occupancy	y and Content	ts Adjustm	ent F	actor	FUS Table 3	Adjustment	Value Used
(1)	Non-combusti Limited combu Combustible Free Burning Rapid Burning	ustible				Yes	-25% -15% +0% +15% +25%	-15%
	Adjustment of	F due to Occu	upancy and	Cont	ents =	4,250	L/min	
	5. Automatic	Sprinkler Pro	tection			FUS Table 4	Adjustment	Value Used
(2)	% of Sprinkler Adequately De Standard Wat Fully Supervis	esigned Syster er Supply	m (NFPA 13	3)		0% No No	-30% -10% -10%	+0%
	Credit for Auto	omatic Spinkle	r Protection	=		0	L/min	
	6. Exposure S	Surcharge				Separation	FUS Table 5	Value Used
(3)	North Exposur East Exposure South Exposu West Exposur	e (m) re (m)				32.98 3 20 3	+0% +25% +15% +25%	+65%
	Surcharge for	Exposure =				+2,763	L/min	
F	7. Total Requ	ired Fire Flow	v					
-	F = (1) + (2) +	(3) =	or	117	L/min L/sec GPM (US)			

Based on method described in: "Water Supply for Public Fire Protection - A Guide to Recommended Practice", 2020 by Fire Underwriters Survey

Water Demand Calculation Sheet

Project:	CEPEO Leitrim Elementary School	Date:	2024-10-03
Location:	3955 Promenade Kelly Farm, Ontario	Design:	MS
WSP Project No.	CA0040067.4396	Page:	1 of 1

		Residential		School		Non-Residentia	al	Av	/g Day			Max Day			Peak Hou	-	Fire
Proposed Buildings		Units		Students+Staff	Industrial	Institutional	Commercial	Dem	and (L/s)		Demand (L/s)		Demand (L/	Demand			
	SF	APT	ST	Students+Staff	(ha)	(ha)	(ha)	Res.	Non-Res.	Total	Res.	Non-Res.	Total	Res.	Non-Res.	Total	(L/min)
New School				377					0.73	0.73		1.10	1.10		1.98	1.98	
Daycare				58					0.11	0.11		0.17	0.17		0.30	0.30	7,000
Future Addition (25% of the total demand)				284					0.55	0.55		0.83	0.83		1.49	1.49	
Portables				288					0.56	0.56		0.84	0.84		1.51	1.51	7,000
Total				1007					1.96	1.96		2.94	2.94		5.29	5.29	14,000

Population Densities		Avg Day Deman	d	Max Day Demand		Peak Hour Dema	n
Single Family	3.4 person/unit	Residential	280 L/cap/day	Residential	2.5 x avg. day	Residential	
Semi-Detached	2.7 person/unit	Light Industrial	35000 L/ha/day	Industrial	1.5 x avg. day	Industrial	
Duplex	2.3 person/unit	Institutional	28000 L/ha/day	Institutional	1.5 x avg. day	Institutional	
Townhome (Row)	2.7 person/unit	Commercial	28000 L/ha/day	Commercial	1.5 x avg. day	Commercial	
Bachelor Apartment	1.4 person/unit						
1 Bedroom Apartment	1.4 person/unit	School	70 L/day/person	assume 10h/day			
2 Bedroom Apartment	2.1 person/unit						
3 Bedroom Apartment	3.1 person/unit	Notes:	* Existing student and staff	count as per	References: Ot	tawa Water Distributio	วท
4 Bedroom Apartment	4.1 person/unit		Genivar Servicing & SWM R	eport 2013	202	20 Fire Underwriters Su	ur
Avg. Apartment	1.8 person/unit						

and

2.2 x max. day

1.8 x max. day

1.8 x max. day

1.8 x max. day


ion Design Guidelines - Section 4 Survey

Boundary Conditions 3955 Kelly Farm Drive

Provided Information

Scenario	Dem	nand
Scenario	L/min	L/s
Average Daily Demand	106	1.76
Maximum Daily Demand	158	2.64
Peak Hour	284	4.74
Fire Flow Demand #1	7,000	116.67

Location

Results

Existing Conditions

Connection 1 – Barrett Farm Drive

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.7	85.8
Peak Hour	144.3	71.1
Max Day plus Fire Flow #1	131.5	52.9
	101.0	02.0

Future SUC

Connection 1 – Barrett Farm Drive

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.4	75.5
Peak Hour	146.0	73.5
Max Day plus Fire Flow #1	143.8	70.3
¹ Ground Elevation =	94.3	m

<u>Notes</u>

- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

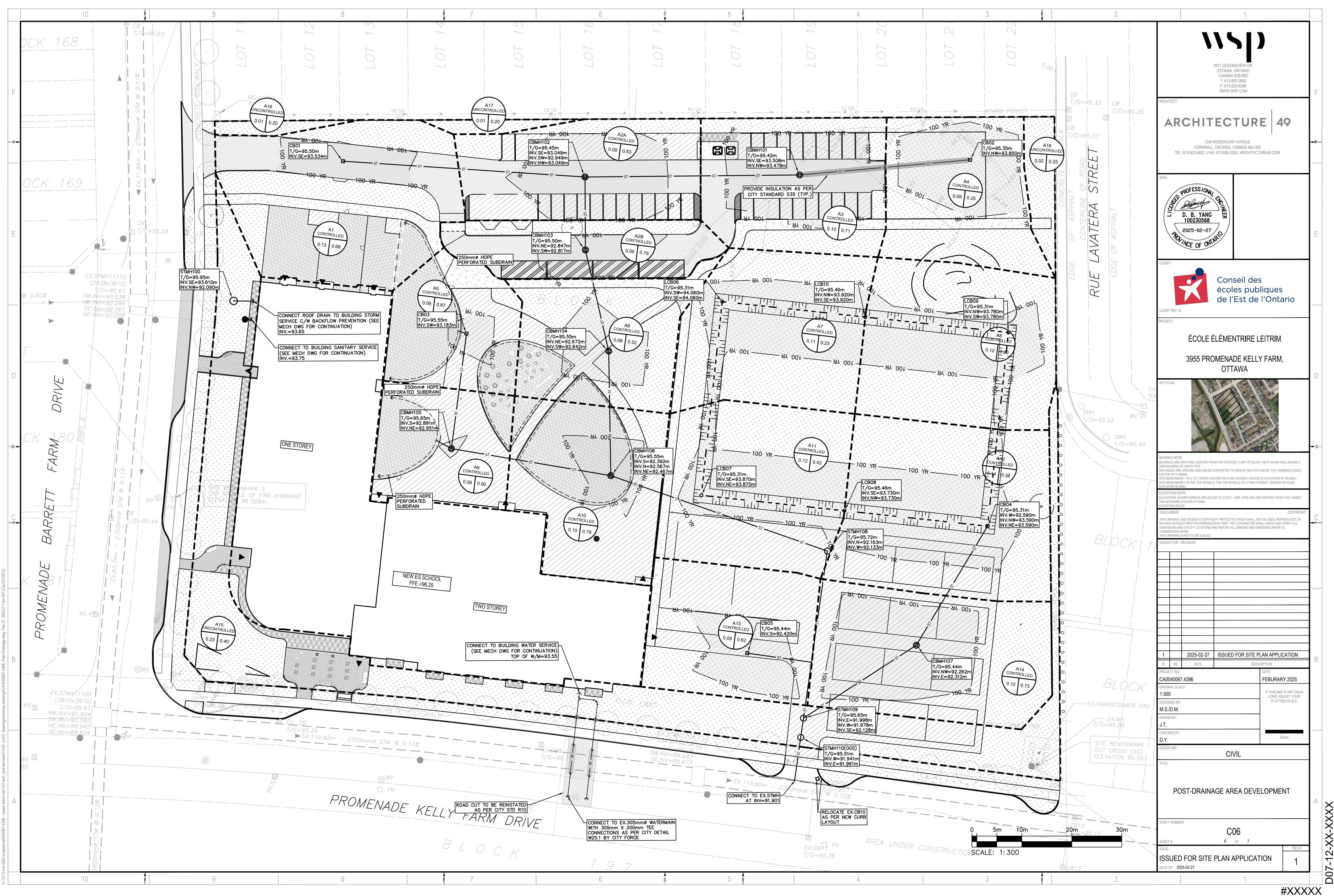
Disclaimer

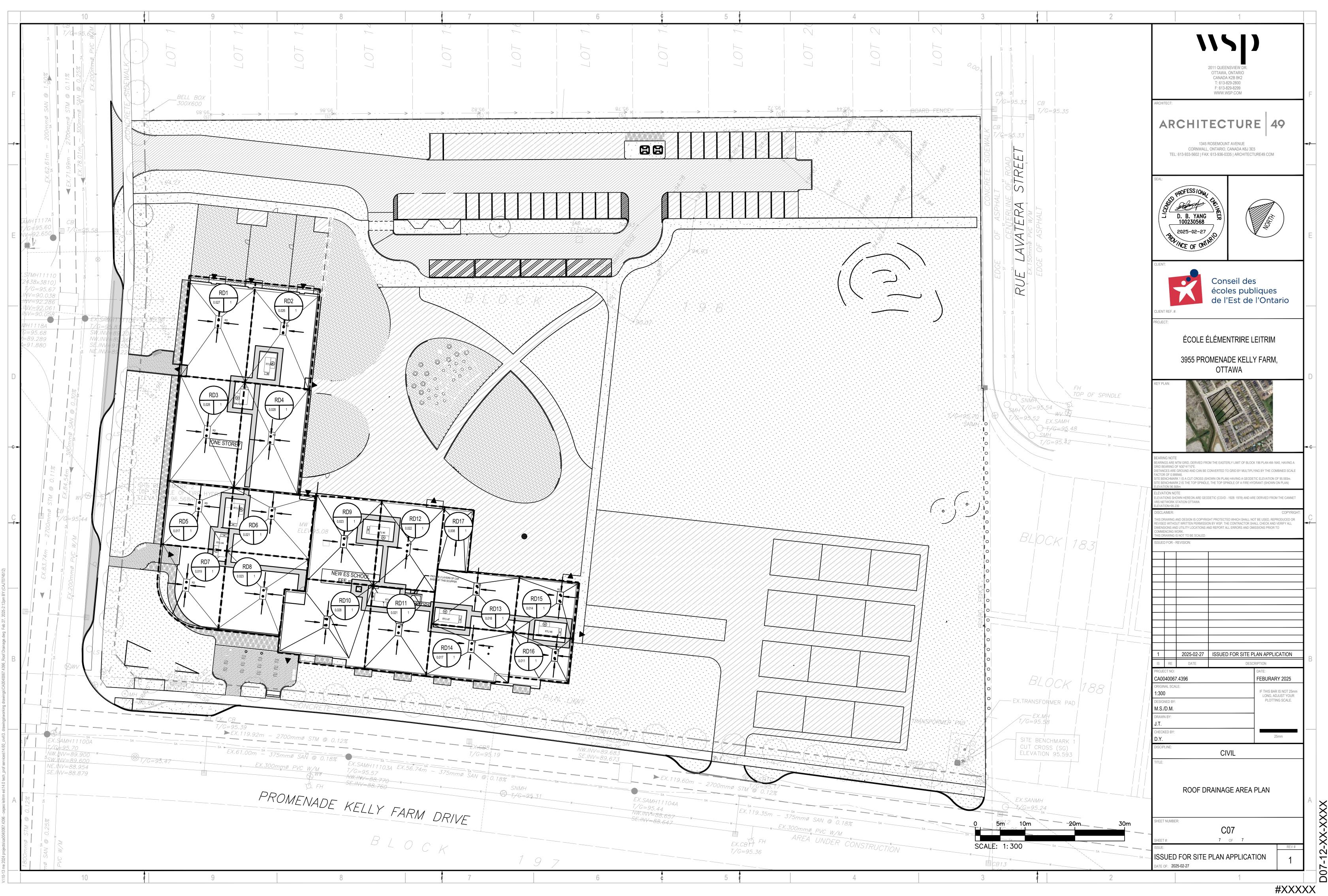
The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

APPENDIX

- STORM SEWER DESIGN SHEET
- STORM DRAINAGE AREA PLAN CO6
- ROOF DRAINAGE AREA PLAN C07
- STORMWATER MANAGEMENT CALCULATIONS
- OGS DETAILS

С


- DWG C03 GRADING PLAN
- DWG C04 SERVICING PLAN


STORM SEWER DESIGN SHEET


CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa Project: CA0040067.4396 Date: November 2024

LOCA	ATION				AR	EA (Ha)									RATIONAL DESI	GN FLOW							PR	OPSOED SEWE	R DATA		
STREET AREA ID	FROM	то	C=	C=	C=	C=	C=	C=	IND			TOTAL	i (2)	i (5)	i (100)	2yr PEAK			CONTROLLED	DESIGN	MATERIAL	SIZE SLC	PE LENGTH	CAPACITY			AVAIL CAP (5yr)
	1 Itom		0.20	0.35	0.40	0.70	0.80	0.90	2.78AC	2.78 AC	(min)	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	PIPE	(mm) (%) (m)	(l/s)	(m/s)	IN PIPE	(L/s) (%)
												L	OST-DEVELO														
													OST-DEVELO	PIVIEINI													
																					1					· · · · ·	
A-1	CB01	CBMH102	0.048					0.087	0.245	0.245	10.00	10.77	76.81	104.19	178.56	18.85				18.85	PVC DR-35	200 1.0	48.50	32.83	1.04	0.77	13.98 42.58%
A-4	CB02	CBMH101	0.087						0.048	0.048	10.00	10.55	76.81	104.19	178.56	3.70				3.70	PVC DR-35			32.83	1.04		29.13 88.73%
A-3	CBMH101	CBMH102	0.026					0.070	0.189	0.237	10.55	11.23	74.77	101.39	173.71	17.72				17.72	PVC DR-35	200 1.0	0 42.93	32.83	1.04	0.69	15.11 46.02%
A-2a	CBMH102	CBMH103	0.009				_	0.084	0.215	0.698	11.23	11.44	72.38	98.11	168.03	50.52				50.52	PVC DR-35	200 0	0 14.60	80.99	1.14	0.21	30.47 37.63%
A-2a A-2b	CBMH102 CBMH103	CBMH103 CBMH104	0.009				-	0.084		0.698	11.23	11.44	72.30	97.14	166.35	55.54		+		55.54	PVC DR-35 PVC DR-35			80.99	1.14	0.21	25.45 31.43%
A-6	CBMH103 CBMH104	CBMH104 CBMH106	0.012					0.026	0.122		11.44		71.67	97.14	166.35	64.31				64.31	PVC DR-35			80.99	1.14	0.36	16.68 20.59%
	CB.III.TO T	021111100	0.000					0.000	0.122	0.001				0	100.00	01.01				01.01	1 TO DICOU		2	00.00		0.00	20.007
A-5	CB03	CBMH105	0.011					0.056	0.146	0.146	10.00	10.37	76.81	104.19	178.56	11.22				11.22	PVC DR-35	200 1.0	0 23.22	32.83	1.04	0.37	21.61 65.82%
A-9	CBMH105	CBMH106						0.060	0.150	0.296	10.37	10.89	75.41	102.27	175.24	22.34				22.34	PVC DR-35	200 1.0	0 32.35	32.83	1.04	0.52	10.49 31.96%
A-10	CBMH106	STMH108	0.015					0.081	0.212	1.406	11.81	12.49	70.50	95.53	163.57	99.10				99.10	PVC DR-35	375 0.5	0 45.86	124.10	1.12	0.68	25.00 20.15%
	CB05	STMH108-STMH109	0.036					0.050	0.450	0.450	40.00	10.01	70.04	104.19	178.56					44.40	D) (0 DD 05		0 12.97		1.04		04.04
A-13	STMH108	STMH108-STMH109 STMH109	0.036					0.052	0.150	0.150	10.00 12.49	10.21 12.99	76.81 68.41	92.66	178.56	11.49				11.49 106.40	PVC DR-35 PVC DR-35			32.83 180.50	1.04	0.21	21.34 65.00% 74.10 41.05%
	311/11/0	3101109							0.000	1.000	12.49	12.99	00.41	92.00	156.02	100.40				100.40	FVC DR-35	450 0.2	33.79	180.50	1.13	0.50	74.10 41.05%
A-7, A-8, A-11, A-12	CB04	CBMH107	0.416					0.078	0.428	0.428	10.00	10.38	76.81	104.19	178.56	32.84		1		32.84	PVC DR-35	250 1.0	0 27.79	59.53	1.21	0.38	26.68 44.83%
	0201								0.120	0.120	10.00	10.00	10.01			02.01					1 TO DITOO	200 11	21.10	00.00		0.00	20.00 11.00 //
A-14	CBMH107	STMH109	0.029					0.089	0.240	0.667	10.38	10.85	75.37	102.22	175.14	50.30				50.30	PVC DR-35	300 0.5	0 26.89	68.45	0.97	0.46	18.15 26.52%
	STMH109	STMH110 (OGS)									12.99			90.69	155.21	148.86				148.86	PVC DR-35			191.45	1.20		42.59 22.25%
	STMH111 (OGS)	EX STMH 104	_						0.000	2.223	13.04	13.16	66.82	90.48	154.85	148.52				148.52	PVC DR-35	450 0.4	5 8.80	191.45	1.20	0.12	42.93 22.42%
ROOF	Building	STMH100	0.000					0.347	0.060	0 969	10.00	10.05	76.81	104.19	178.56	66.68				66.68	PVC DR-35	200 1 (2.06	96.80	1.37	0.05	30.12 31.11%
Definition:	Building	3101100	Notes:					0.347	0.000	0.000	10.00	10.05	/0.01	104.19	Designed:	D.M.		No.		00.00	Revis		0 3.90	90.80	1.37	Dat	
Q=2.78CiA, where:				s coefficie	nt (n) =	0.013	3	Time-of-Co	oncentratio	n in the Sv	ale				Designed.	D.W.		1			City Submiss					2024-1	
Q = Peak Flow in Litres per Second (L/s)								FAA Equati				5 / S^.33]															
A = Area in Hectares (Ha)								Where: Lo	ngest Wate	rcourse Le	ngth, L (m).	. S (%)			Checked:	D.B.Y.											
i = Rainfall Intensity in millimeters per hour (m									No.	L (m)	S %	С	Tc (min)													-	
i = 732.951/(TC+6.199)^0.810		2 Year							1				#DIV/0!														
i = 1174.184/(TC+6.014)^0.816		5 Year							2				#DIV/0!	4	Dwg. Reference	C05											
i = 1735.688/(TC+6.014)^0.820		100 Year							3				#DIV/0!	4					File Reference	e:			ate:			Sheet	
									4				#DIV/0!									202	-11-22			1 of	1

TABLE 2 - Uncontrolled Flow (Area A-16)

Post Dev run-off Coefficient "C"

			2 & 5 Year Event 100 Year Ev		vent	
Area	Surface	На	"C"	C _{avg}	"C"+25%	*C _{avg}
Total	Gravel	0.000	0.70		0.88	
0.006	Asphalt	0.000	0.90	0.20	0.99	0.25
	Soft	0.006	0.20		0.25	

Post Dev Free Flow

5 Year Event								
Pre Dev.	С	Intensity	Area					
5 Year	0.20	104.19	0.006					
2.78CIA= 0.35								
0.40	L/S							

**Use a 10 minute time of concentration for 5 year

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

 $C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

*Runoff coefficients increased by 25% up to a maximum value of 1.0 for the 100-Year event

100 Year Event

Pre Dev.	С	Intensity	Area			
100 Year	0.25	178.56	0.006			
2.78CIA= 0.76						
0.80	L/S					

**Use a 10 minute time of concentration for 100 year

TABLE 2 - Uncontrolled Flow (Area A-17)

Post Dev run-off Coefficient "C"

			2 & 5	2 & 5 Year Event 100 Year Event		vent
Area	Surface	На	"C"	C _{avg}	"C"+25%	*C _{avg}
Total	Gravel	0.000	0.70		0.88	
0.006	Asphalt	0.000	0.90	0.20	1.00	0.25
	Soft	0.006	0.20		0.25	

Post Dev Free Flow

5 Year Event								
Pre Dev.	С	Intensity	Area					
5 Year	0.20	104.19	0.006					
2.78CIA= 0.36								
0.40	L/S							

**Use a 10 minute time of concentration for 5 year

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

 $C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

*Runoff coefficients increased by 25% up to a maximum value of 1.0 for the 100-Year event

100 Year Event

Pre Dev.	С	Intensity	Area			
100 Year	0.25	178.56	0.006			
2.78CIA= 0.76						
0.80	L/S					

**Use a 10 minute time of concentration for 100 year

TABLE 2 - Uncontrolled Flow (Area A-18)

Post Dev run-off Coefficient "C"

			2 & 5 Year Event		100 Year Event	
Area	Surface	На	"C"	C _{avg}	"C"+25%	*C _{avg}
Total	Gravel	0.000	0.70		0.88	
0.015	Asphalt	0.001	0.90	0.25	1.00	0.30
	Soft	0.014	0.20		0.25	

Post Dev Free Flow

5 Year Ever	nt		
Pre Dev.	С	Intensity	Area
5 Year	0.25	104.19	0.015
2.78CIA=	1.10		
1.10	L/S		

**Use a 10 minute time of concentration for 5 year

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

 $C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

*Runoff coefficients increased by 25% up to a maximum value of 1.0 for the 100-Year event

100 Year Event

Pre Dev.	С	Intensity	Area			
100 Year	0.30	178.56	0.015			
2.78CIA= 2.27						
2.30 L/S						

**Use a 10 minute time of concentration for 100 year

CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa Project: CA0040067.4396 Date: October 2024

TABLE 3 - Controlled Flow (Areas A-1 to A-14)

Maximum Allowable Release Rate for the Site	224.00 l/s
Roof Drains Release Rate	29.48 l/s
Uncontrolled Release Rate	55.30 l/s
Maximum Allowable Release Rate to Municipal Sewer:	139.22 l/s
Proposed release rate:	122.54 l/s

Post Dev run-off Coefficient "C"

			2 & 5 Year Event		100 Year Event	
Area	Surface	Ha	"C" C _{avg}		"C" x 1.25	C _{100 avg}
Total	Gravel	0.000	0.70		0.88	
1.469	Asphalt	0.729	0.90	0.55	1.00	0.62
	Grass	0.740	0.20		0.25	

*Areas are approximate based on Architectural site plan and Storm Drainage Area Plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

- 1.469 = Area(ha)
- 0.55 = C

139.2 I/s = max allowable release rate

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³	Avail m ³
	10	104.19	234.01	121.03	112.99	67.79	233.77
	20	70.25	157.78	121.03	36.75	44.10	233.77
	30	53.93	121.12	121.03	0.09	0.17	233.77
5 YEAR	40	44.18	99.24	121.03	-21.79	-52.30	233.77
	50	37.65	84.57	121.03	-36.46	-109.38	233.77
	60	32.94	73.99	121.03	-47.04	-169.33	233.77

QUANTITY STORAGE REQUIREMENTS - 100 Year

1.469 = Area(ha)

- 0.62 = *C
- 139.2 I/s = max allowable release rate

Return	Time	Intensity	Flow	Controlled	Net Runoff To	Storage	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd m ³	Avail m ³
	10	178.56	452.08	122.54	329.54	197.72	233.77
	15	142.89	361.78	122.54	239.24	215.32	233.77
100 YEAR	20	119.95	303.69	122.54	181.15	217.38	233.77
	25	103.85	262.92	122.54	140.38	210.57	233.77
	30	91.87	232.59	122.54	110.05	198.10	233.77
	35	82.58	209.07	122.54	86.54	181.72	233.77
	40	75.15	190.25	122.54	67.72	162.52	233.77

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

$$\begin{split} C &= (A_{hard} \ x \ 0.9 \ + \ A_{soft} \ x \ 0.2 \) / A_{tot} \\ &^*C &= (A_{hard} \ x \ 1.0 \ + \ A_{soft} \ x \ 0.25) / A_{tot} \end{split}$$

*Runoff coefficients increased by 25% up to a maximum value of 1.0 for the 100-Year event

Orifice Sizing

Event	Flow (L/s)	Head (m)	ORIFICE AREA(m ²)	SQUARE (1-side mm)	CIRC (mmØ)
5 Year	121.03	3.58	0.024	155	175
100 Year	122.54	3.67	0.024	155	175

Orifice Control Sizing

Q = 0.6 x A x (2gh)1/2

Where:

Q is the release rate in m³/s

A is the orifice area in $\ensuremath{\mathsf{m}}^2$

g is the acceleration due to gravity, 9.81m/s^2 h is the head of water above the orifice centre in m

d is the diameter of the orifice in m

Orifice Invert =	91.978 m
Ponding Elevation @ 100 year=	95.740 m
Top of grate elevation	95.650 m

CEPEO Leitrim Elementary School 3955 Kelly Farm Drive, Ottawa Project: CA0040067.4396 Date: October 2024

TABLE 4 - Proposed Roof Drains

Allowable Release Rate

0.351	Ha		
0.351	m²		
0.127	m		
Drain will be	=	13.750	
		0.867	
f Roof Drains	=	34.00	
	0.351 0.127 Drain will be	0.351 m ²	0.351 m ² 0.127 m Drain will be = 13.750 0.867

Total flow rate =

34.00 29.48 gpm L/s

TABLE 1. Adjustable Accutrol Flow Rate Settings

Wein On minn	1"	1" 2" 3" 4" 5							
Weir Opening Exposed	Flow Rate (gallons per minute)								
Fully Exposed	5	10	15	20	25	30			
3/4	5	10	13.75	17.5	21.25	25			
1/2	5	10	12.5	15	17.5	20			
1/4	5	10	11.25	12.5	13.75	15			
Closed	5	5	5	5	5	5			

Post Dev run-off Coefficient "C"

				Year Event	100 Year	Event
Area	Surface	На	"C"	C _{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt		0.90		1.00	
0.351	Roof	0.351	0.90	0.90	1.00	1.00
	Grass		0.20		0.25	

*Areas are approximate based on Architectural site plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

0.351 = Area(ha)

0.90	= C						
Return	Time	Intensity	Flow	Allowable	Net Runoff To	Storage	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd (m ³)	Available* (m ³)
	10	104.19	91.50	29.48	62.02	37.21	118.88
	20	70.25	61.69	29.48	32.22	38.66	118.88
5 YEAR	30	53.93	47.36	29.48	17.88	32.19	118.88
	40	44.18	38.80	29.48	9.32	22.38	118.88
	50	37.65	33.07	29.48	3.59	10.77	118.88

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.351 = Area(ha)

1.00	= *C						
Return	Time	Intensity	Flow	Allowable	Net Runoff To	Storage	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd (m ³)	Available (m ³)
	0	398.62	388.96	29.48	359.49	0.00	118.88
	10	178.56	174.23	29.48	144.76	86.85	118.88
100 YEAR	20	119.95	117.05	29.48	87.57	105.08	118.88
	30	91.87	89.64	29.48	60.17	108.30	118.88
	40	75.15	73.33	29.48	43.85	105.23	118.88
	50	63.95	62.41	29.48	32.93	98.78	118.88
	60	55.89	54.54	29.48	25.06	90.23	118.88
	70	49.79	48.58	29.48	19.11	80.24	118.88

*Storage available is calculated using roof ponding area multiplied by the maximum ponding depth, divided by 3 for a conical pond, reduced by 20% to account for roof top equipment

**Refer to roof drains area and storage volume table on DWG C08 for details

Equations:

Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient

I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area

Runoff Coefficient Equation

$$\begin{split} C &= (A_{hard} \ x \ 0.9 + A_{soft} \ x \ 0.2 \) / A_{tot} \\ ^*C &= (A_{hard} \ x \ 1.0 + A_{soft} \ x \ 0.25) / A_{tot} \end{split}$$

*Runoff coefficients increased by 25% up to a maximum value of 1.0 for the 100-Year event

Roof Drain	Roof ID	Area (m²)	Depth (m)	Theoretical Rooftop Storage Volume (m ³)	Storage Volume (m ³)	Max Flow Rate (L/s)
1	RD1	135.18	0.127	5.7	4.6	0.87
2	RD1	135.18	0.127	5.7	4.6	0.87
3	RD2	131.96	0.127	5.6	4.5	0.87
4	RD2	131.96	0.127	5.6	4.5	0.87
5	RD3	142.08	0.127	6.0	4.8	0.87
6	RD3	142.08	0.127	6.0	4.8	0.87
7	RD4	139.69	0.127	5.9	4.7	0.87
8	RD4	139.69	0.127	5.9	4.7	0.87
9	RD5	85.10	0.127	3.6	2.9	0.87
10	RD5	85.10	0.127	3.6	2.9	0.87
11	RD6	105.47	0.127	4.5	3.6	0.87
12	RD6	105.47	0.127	4.5	3.6	0.87
13	RD7	96.74	0.127	4.1	3.3	0.87
14	RD7	96.74	0.127	4.1	3.3	0.87
15	RD8	112.83	0.127	4.8	3.8	0.87
16	RD8	112.83	0.127	4.8	3.8	0.87
17	RD9	114.39	0.127	4.8	3.9	0.87
18	RD9	114.39	0.127	4.8	3.9	0.87
19	RD10	140.16	0.127	5.9	4.7	0.87
20	RD10	140.16	0.127	5.9	4.7	0.87
21	RD11	105.31	0.127	4.5	3.6	0.87
22	RD11	105.31	0.127	4.5	3.6	0.87
23	RD12	108.48	0.127	4.6	3.7	0.87
24	RD12	108.48	0.127	4.6	3.7	0.87
25	RD13	92.40	0.127	3.9	3.1	0.87
26	RD13	92.40	0.127	3.9	3.1	0.87
27	RD14	86.44	0.127	3.7	2.9	0.87
28	RD14	86.44	0.127	3.7	2.9	0.87
29	RD15	68.08	0.127	2.9	2.3	0.87
30	RD15	68.08	0.127	2.9	2.3	0.87
31	RD16	53.30	0.127	2.3	1.8	0.87
32	RD16	53.30	0.127	2.3	1.8	0.87
33	RD17	37.55	0.127	1.6	1.3	0.87
34	RD17	37.55	0.127	1.6	1.3	0.87
Total		3510.3			118.9	29.48

rovince:	Ontario		Project Name:	CEPEO Leitrim ES	
ity:	Ottawa		Project Number:	CA0040067.4396	
Vearest Rainfall Station:	OTTAWA CDA RCS		Designer Name:	Devang Maratha	
limate Station Id:	6105978		Designer Company:	WSP Canada	
ears of Rainfall Data:	20		Designer Email:	devang.maratha@v	wsp.com
			Designer Phone:	613-265-6409	
ite Name:			EOR Name:		
Drainage Area (ha):	1.469		EOR Company:		
% Imperviousness:	49.60		EOR Email:		
Runoff Co	befficient 'c': 0.59	-	EOR Phone:		
article Size Distribution:	Fine				
				Net Annua	
arget TSS Removal (%):	80.0			(TSS) Load	ummary
Required Water Quality Runot		90.00			-
stimated Water Quality Flow	Rate (L/s):	28.33		Stormceptor Model	TSS Removal
Dil / Fuel Spill Risk Site?		Yes			Provided (%)
Jpstream Flow Control?		No		EFO4	74
Peak Conveyance (maximum)	Flow Rate (L/s):			EFO5	81
nfluent TSS Concentration (m	g/L):	200		EFO6	86
stimated Average Annual Sec	liment Load (kg/yr):	803		EFO8	92
Estimated Average Annual Sec	liment Volume (L/yr):	653		EFO10	95
				EFO12	97
			Recommended S	tormceptor EFO	Model: EF
	Estima	ated Net Ai	nnual Sediment (T	-	
		۱۸	Vater Quality Run	off Volume Cont	ure (%): >

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

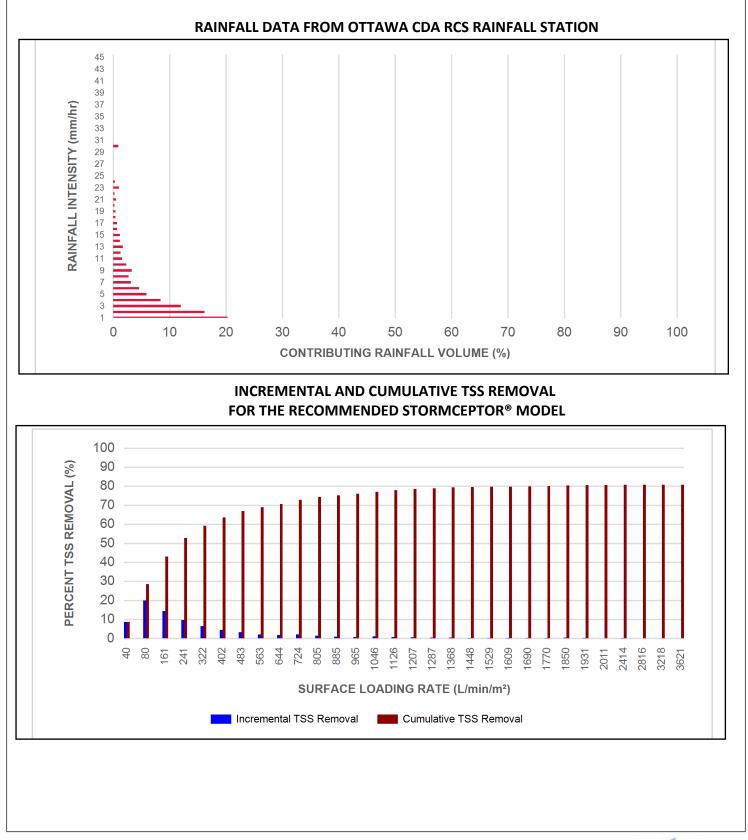
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent	
Size (µm)	Than	Fraction (µm)	Percent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	8.6	8.6	1.22	73.0	40.0	100	8.6	8.6
1.00	20.3	29.0	2.44	146.0	80.0	98	20.0	28.6
2.00	16.2	45.2	4.88	293.0	161.0	88	14.3	43.0
3.00	12.0	57.2	7.32	439.0	241.0	81	9.7	52.7
4.00	8.4	65.6	9.76	586.0	322.0	78	6.5	59.2
5.00	5.9	71.6	12.20	732.0	402.0	74	4.4	63.6
6.00	4.6	76.2	14.64	879.0	483.0	70	3.3	66.9
7.00	3.1	79.3	17.08	1025.0	563.0	66	2.0	68.9
8.00	2.7	82.0	19.52	1171.0	644.0	64	1.8	70.7
9.00	3.3	85.3	21.96	1318.0	724.0	64	2.1	72.8
10.00	2.3	87.6	24.40	1464.0	805.0	63	1.4	74.3
11.00	1.6	89.2	26.85	1611.0	885.0	62	1.0	75.2
12.00	1.3	90.5	29.29	1757.0	965.0	62	0.8	76.0
13.00	1.7	92.2	31.73	1904.0	1046.0	61	1.0	77.1
14.00	1.2	93.5	34.17	2050.0	1126.0	59	0.7	77.8
15.00	1.2	94.6	36.61	2196.0	1207.0	57	0.7	78.5
16.00	0.7	95.3	39.05	2343.0	1287.0	55	0.4	78.9
17.00	0.7	96.1	41.49	2489.0	1368.0	53	0.4	79.3
18.00	0.4	96.5	43.93	2636.0	1448.0	51	0.2	79.5
19.00	0.4	96.9	46.37	2782.0	1529.0	48	0.2	79.7
20.00	0.2	97.1	48.81	2929.0	1609.0	45	0.1	79.7
21.00	0.5	97.5	51.25	3075.0	1690.0	43	0.2	79.9
22.00	0.2	97.8	53.69	3221.0	1770.0	41	0.1	80.1
23.00	1.0	98.8	56.13	3368.0	1850.0	40	0.4	80.4
24.00	0.3	99.1	58.57	3514.0	1931.0	38	0.1	80.6
25.00	0.0	99.1	61.01	3661.0	2011.0	36	0.0	80.6
30.00	0.9	100.0	73.21	4393.0	2414.0	30	0.3	80.8
35.00	0.0	100.0	85.42	5125.0	2816.0	26	0.0	80.8
40.00	0.0	100.0	97.62	5857.0	3218.0	23	0.0	80.8
45.00	0.0	100.0	109.82	6589.0	3621.0	20	0.0	80.8
		•	Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	81 %

Climate Station ID: 6105978 Years of Rainfall Data: 20

Stormceptor[®] EF Sizing Report

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	•	Max Out Diame	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF5 / EFO5	1.5	5	90	762	30	762	30	710	25		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

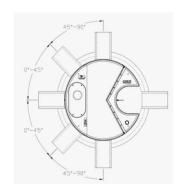
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Foliatant Capacity												
Stormceptor EF / EFO	Moo Diam		Depth Pipe In Sump		Oil Volume Ma		Recommended Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF5 / EFO5	1.5	5	1.62	5.3	420	111	305	10	2124	75	2612	5758
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREAMENT DEVICE

PART 1 - GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
 - 5 ft (1524 mm) Diameter OGS Units: 6 ft (1829 mm) Diameter OGS Units: 8 ft (2438 mm) Diameter OGS Units: 10 ft (3048 mm) Diameter OGS Units:

12 ft (3657 mm) Diameter OGS Units:

PART 3 – PERFORMANCE & DESIGN

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 1.95 \ m^{3} \ sediment \ / \ 420 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

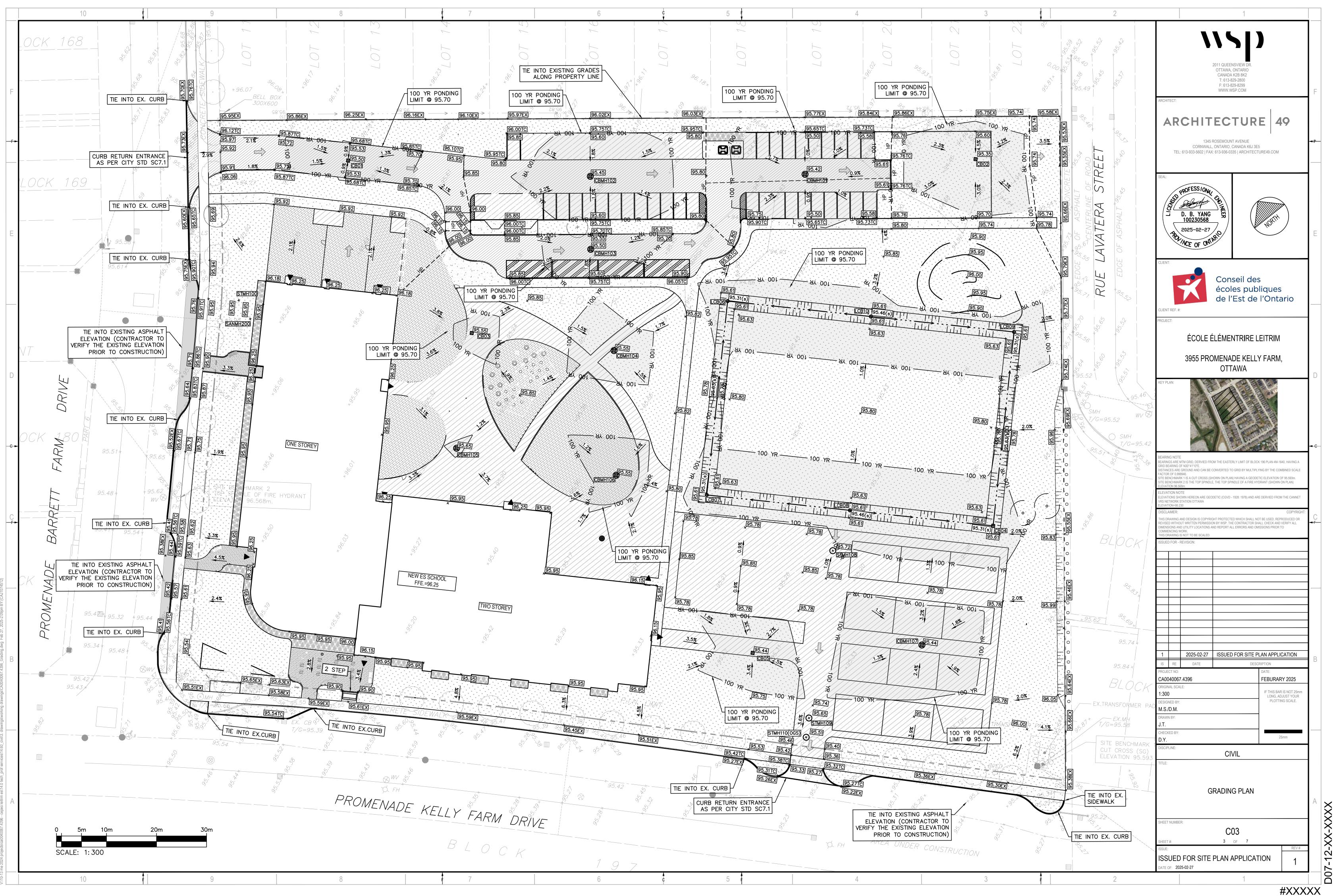
3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

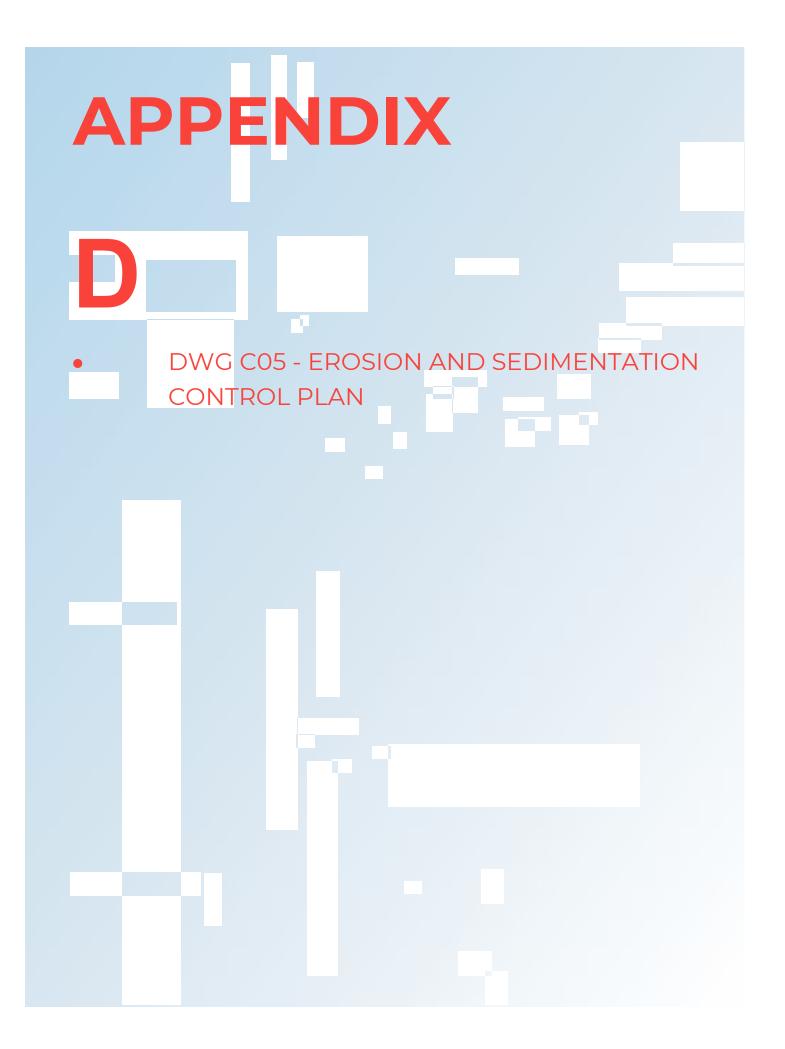
The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

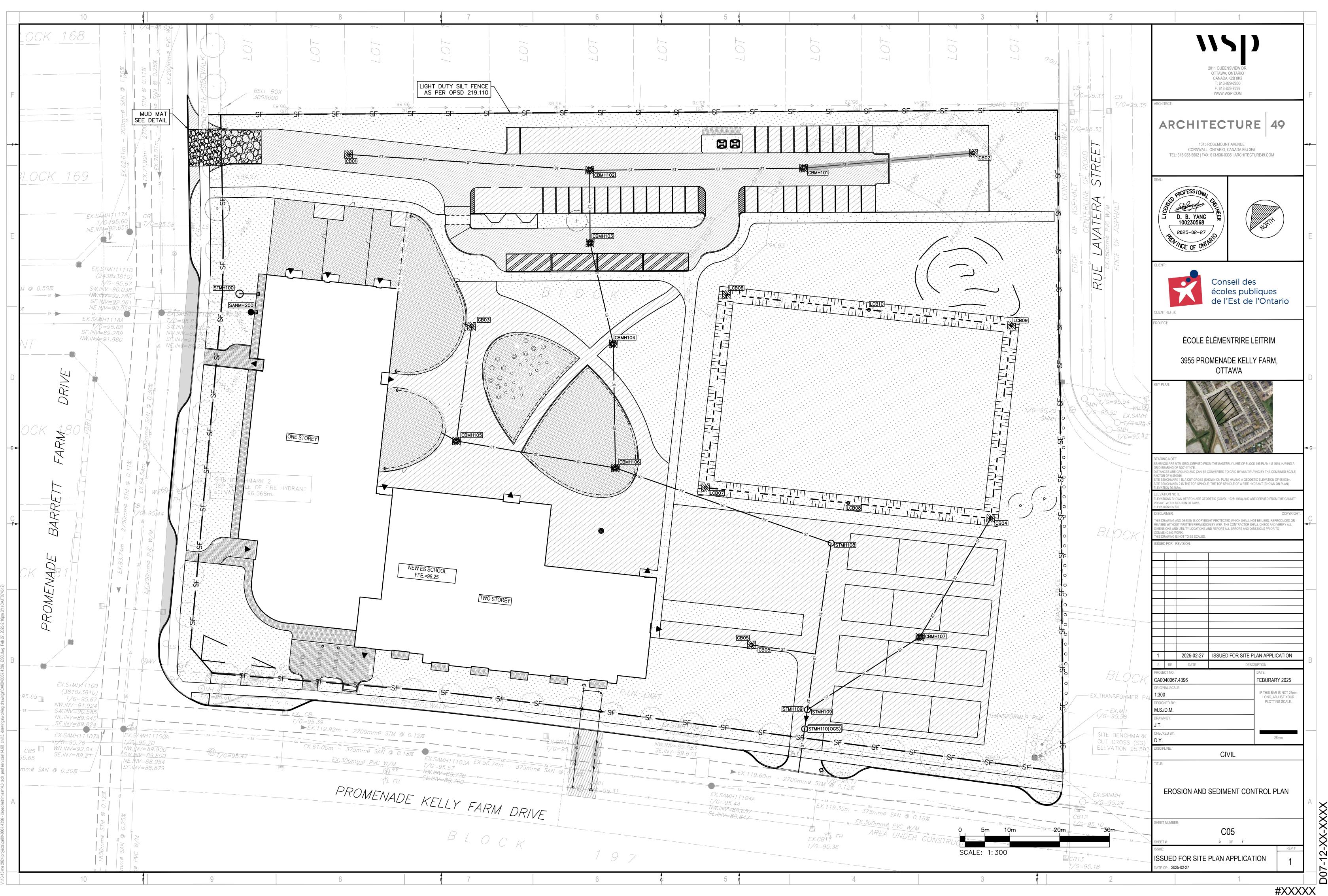
3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid




Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.


3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

1. Accessible Parking Spaces

The terms Type A and Type B Parking Spaces have the same meaning as within O. Reg 191/11 This section applies to:

1) Parking garages and related structures

- 2) Surface parking
- 3) On-street parking

Standard Ref.	Requirements	Compliance	Comments
3.1.1.	Provision: 1 Type A accessible parking space must be provided where there are 12 or fewer spaces (see Table 3 for a complete list)	Y N N/A	
3.1.2	Provision: 4% of the total number of parking spaces should be accessible	Y N N/A	
3.1.2	Provision: if the total number of spaces is greater than 1001, provide 11 accessible parking spaces plus an addition 1% of the total number of spaces	Y N N/A	
3.1.3	Access Aisle: minimum of 1.5 m (see Figure 25)	Y N N/A	
3.1.3	Location: a maximum of 30 m from nearest accessible entrance	Y N N/A	
3.1.3	Surface: firm, stable and slip resistant	Y N N/A	
3.1.3	Running slope: maximum of 1:50 (2%)	Y N N/A	
3.1.3	Cross slope: maximum of 1:50 (2%)	Y N N/A	
3.1.3	Type A spaces: Length 5.2 m Width 3.4 m Type B spaces Length: 5.2 m Width: 2.4 m	Y N N/A	
3.1.3	Overhead clearance: minimum of 2.1 m	Y N N/A	
3.1.3	Access Aisle: minimum of 1.5 m. Must be clearly marked and adjacent to accessible parking space	Y N N/A	
3.1.4.1	Vertical Signage: Width: 0.3 m Height: 0.6 m (minimums)	Y N N/A	

Note – this Checklist must be read in conjunction with the City of Ottawa's Accessible Design Standards Document, 2015. All figures referenced in this document can be found in the City's Accessible Design Standards document.

	Mounted: 1.5 m to 2.0 m high at centre		
	Marked with International Symbol of Accessibility (see Figure 25)		
3.1.4.2	 Pavement Markings Marked with the International Symbol of Accessibility 15.25 m wide by 15.25 m deep Locate near the back of the space for 90 degree or angled parking spaces Locate in the centre for parallel parking spaces (see Figure 27) 	Y N N/A	

2. Passenger Loading Zone				
Standard Ref.	Requirements	Compliance	Comments	
3.2.1	Location: maximum of 30 m from nearest accessible entrance	Y N N/A		
3.2.1	Side Access Aisle Length: 7.4 m Width: 2.4 m (minimums) (see Figure 28)	Y N N/A		
3.2.1	Vertical Clearance: 3.6 m	Y N N/A		
3.2.1	Path of Travel: minimum of 1.8 m wide to nearest accessible entrance	Y N N/A		
3.2.1.1	Vertical Signage Width: 0.3 m by 0.6 m Mount: 1.5 m to 2.0 m high at centre (see Figure 29)	Y N N/A		

	ar Datha of Traval	This section applies to:			
3. Exter	ior Paths of Travel		 Pedestrian routes that serve facility entrances Pedestrian routes that serve 		
Exterior rout	s are located on an accessible te or walkway, an alternative route is to be provided immediately		as a connection between a site boundary and entrance into the site		
adjacent to a			 Public Rights-of-Way Ramps and Curb Ramps 		
Standard Ref.	Requirements	Compliance	Comments		
3.3.1	Surface: firm, stable and slip resistant	Y N N/A			
3.3.1	Lighting: Provide in accordance with Section 5.7 (Lighting)	Y N N/A			
3.3.2	Path of travel: minimum 1.8 m wide	Y N N/A			
3.3.3.1	Running Slope: 1:20 (5%) (maximum)	Y N N/A			
3.3.3.2	Cross Slope: 1:20 (2%) (maximum) where surface is concrete or asphalt. 1:10 (10%) in all other cases.	Y N N/A			
3.3.1	Rest Area: If width is less than 1.8 m, provided every 30 m along path of travel. Rest area to be 1.8 m by 1.8 m (minimums)	Y N N/A			
3.3.4	Guards: Provide when change in level is more than 0.6 m	Y N N/A			
2.1.4	Gratings or Openings: 13 mm (maximum) wide in direction of travel. Longest side, if rectangular, must be perpendicular with the direction of travel	Y N N/A			

4. Curb Ramps

A curb ramp provides a transition where there is a change in level between exterior path of travel and adjacent vehicular route

- This section applies to:
 - 1) Pedestrian crossings at intersections
 - 2) Parking spaces, passenger loading zones and related access aisles

3) Any other exterior route where there is a grade change.

Standard Ref.	Requirements	Compliance	Comments
3.4.1	Surface: firm, stable and slip resistant	Y N N/A	
3.4.2	Clear width: 1.5 m (minimum), exclusive of flares	Y N N/A	
3.4.3	Running Slope: 1:12 (8.33%) (maximum)	Y N N/A	
3.4.3	Cross Slope: 1:50 (2%) (maximum) (see Figure 33b)	Y N N/A	
3.4.6	Tactile Surface Walking Indicators (TWSI): minimum depth of 610mm, at 150 mm to 200 mm from edge of curb (see 33b)	Y N N/A	
3.4.2.2	Flared Side: 1m wide; slope 1:15 to 1:10.	Y N N/A	

5. Ramps

Ramps are provided when the slope of a path of travel exceeds a gradient of 1:20 (5%) Refer to the Ontario Building Code for all applied requirements for ramps.

For all ramp standards, see Figure 3

Standard Ref.	Requirements	Compliance	Comments
2.2.1.1	Running Slope: 1:15 (6.67%)	Y N N/A	
2.2.1.2	Cross-Slope: 1:50 (2%)	Y N N/A	
2.2.1	Surface: firm, stable and slip- resistant	Y N N/A	
2.2.1	Clear Width: 1.1 m (minimum)	Y N N/A	
2.2.1.4	Colour Contrasting Strip: to be provided at slope changes. 50 mm wide colour-contrasted and slip resistant strip equal to the width of the ramp	Y N N/A	
2.2.1	Lighting: provide in accordance with Section 5.7 (Lighting)	Y N N/A	
2.2.2	Length: 9 m, or less, or provide landing	Y N N/A	
2.2.2	Landing: to be provided at top, bottom or intermediate level, or where there is directional change. (see Figure 5)	Y N N/A	
2.2.3.1	Handrail: 865 to 965 mm high on both sides.	Y N N/A	
	Clear width : 1.1 m between handrails (see Figure 8)		

6. Stairs

This section applies to stairs provided for exterior or interior environments Refer to the Ontario Building Code for all applied requirements for stairs.

For all stair standards, see Figure 10

Standard Ref.	Requirements	Compliance	Comments
2.3	Stairs: where provided, an alternative accessible route is to be provided immediately adjacent, and may include a ramp or other accessible means of negotiating grade change	Y N N/A	Note which alternative to stairs is provided.
2.3.1	Surface: firm, stable and slip- resistant	Y N N/A	
2.3.1.1	Tread: 280 mm to 355 mm deep	Y N N/A	
2.3.1.1	Riser: 125 mm to 180 mm high	Y N N/A	
2.3.1	Open Riser: not permitted	Y N N/A	
2.3.1.2	Nosing Projection: 38 mm (maximum) (see Figure 10)	Y N N/A	
2.3.1.2	Nosing Strip: 50 mm deep, colour contrasted, at leading edge of tread and extending the full length of the tread	Y N N/A	
2.3.1.3	Tactile Surface Walking Indicators (TWSI): minimum of 610 mm deep, one tread back (see Figure 11)	Y N N/A	
2.3.1	Lighting: to be provided in accordance with Section 5.7	Y N N/A	
2.3.2.2	Handrail: 865 mm to 965 mm high on both sides. (see Figure 12)	Y N N/A	

7. Buildi	ng Entrance	This section does not apply	
Standard Ref	Requirements	Compliance	Comments
4.1.1	Provision: at least one (1) accessible entrance 50% of the total number of building entrances (see Figure 36)	Y N N/A	
4.1.1	Provision: 50% of the total number of building entrances must be accessible (see Figure 36)	Y N N/A	
4.1.1	Provision: 30 m or less from nearest accessible parking space, or passenger loading or drop off zones	Y N N/A	

8. Benches and Seats

This section applies to 1) Rest areas and accessible routes 2) Outdoor public use eating areas 3) Waiting areas

Standard Ref	Requirements	Compliance	Comments
2.10.1	Seat height between 450 mm and 500 mm above finished floor (see Figure 23)	Y N N/A	
2.10.1	Seat depth between 330 mm and 510 mm	Y N N/A	
2.10.1	Back support extending 320 mm (minimum) above seat surface	Y N N/A	
2.10.1	Provide at least one (1) armrest at a height between 220 mm and 300 mm from the seat for additional support	Y N N/A	