SEPTIC IMPACT ASSESSMENT 145 WALGREEN ROAD, CARP, ON

Project No: CCO-25-1370

Prepared for:

Miller Waste Systems 112 Bales Drive East East Gwillimbury, Ontario

Prepared by:

Egis Canada Ltd 115 Walgreen Road Carp, ON K0A 1L0

March 11, 2025

Table of Contents

1.0	INTI	RODUCTION	4
1.1	Сог	nsultation	4
2.0	BAC	KGROUND	5
2.1	Site	e Setting	5
2.2	Ne	ghbouring Properties and Land Uses	5
2.3	Нус	drology	5
2.4	Вас	kground Geology and Hydrogeology	6
2	.4.1	Recharge and Discharge Areas	6
2	.4.2	Potential Sources of Contamination and Potential Impacts to Hydrogeological Conditions	7
2	.4.3	Water Well Record Review	7
3.0	TER	RAIN ANALYSIS	7
3.1	On	-Site Investigation	7
3.2	Site	e Evaluation	8
3	.2.1	Overburden Depth	8
3	.2.2	Overburden Characterization	8
3	.2.3	Soil Classification for Private Sanitary Servicing	. 10
3	.2.4	Groundwater	. 10
4.0	SEP	FIC IMPACT ASSESSMENT	.11
4.1	Gu	deline	. 11
4.2	Exis	sting and Proposed Sanitary Flows and Approvals	. 11
4	.2.1	Existing Sanitary Flows and Approval	. 11
4	.2.2	Proposed Sanitary Flows and Approval	. 11
4.3	Imp	pact Assessment	. 11
5.0	REC	OMMENDATIONS	.12
5.1	Wa	stewater Servicing	. 12

115 Walgreen Road, R.R.3. Carp, ON K0A 1L0 | T. 613-836-2184 | F. 613-836-3742 info.north-america@egis-group.com | www.egis-group.com

6.0	LIMITATIONS	13
7.0	CLOSURE	15
8.0	REFERENCES	16

TABLES

Table 3-1Groundwater Level Readings in Installed Monitoring Wells (In text)

 Table 2
 Summary of Laboratory Water Quality Results

FIGURES

Figure 1	Site Location
Figure 2	Site Layout (Site Grading, Drainage, Erosion & Sediment Control & Servicing Plan, C101)
Figure 3	MECP Water Well Information System Summary
Figure 4	Shallow Groundwater Flow Direction

APPENDICES

- Appendix A MECP Well Records
- Appendix B Well Record (TW1)
- Appendix C Geotechnical Investigation Report
- Appendix D Historical Permit for Existing Sewage System Permit
- Appenidx E New Permit for Existing Sewage System Permit
- Appendix F Shallow Groundwater Flow Direction for Hydrogeological Study at 137 Walgreen Rd

1.0 INTRODUCTION

Egis Canada Ltd ('Egis') was retained by Miller Waste ('the Client') to conduct a Septic Impact Assessment in support of a Site Plan Application located at 145 Walgreen Road, Carp Ontario ('the Site'). As part of pre-consultation with the City of Ottawa, it was identified that a Septic Impact Assessment was required to ensure that the proposed septic systems do not impact the groundwater should it be used as a source of drinking water in the surrounding area.

This work was conducted in general accordance with the City of Ottawa's guidance document; City of Ottawa - Hydrogeological and Terrain Analysis Guidelines (March 2021).

The following report describes the terrain analysis and associated Sewage System Impact Assessment that was undertaken. This Septic Impact Assessment addresses the following:

- General Site setting information;
- Geological and hydrogeological background;
- Site-specific conditions; and
- Existing and proposed water and wastewater infrastructure (on-site and off-site).

1.1 Consultation

On August 7, 2024, Egis completed a pre-consultation with the City of Ottawa Peer Reviewer to outline the subject investigation's methodology, and to discuss any known hydrogeological issues for the investigation area. Groundwater quality within the area was discussed, as it is our understanding that the groundwater may be mineralized due to elevated chlorides from either salt-related or naturally occurring impacts.

Following the receipt of the analytical results from the pumping test completed on August 28, 2024 a follow up meeting was completed with the City of Ottawa Peer Reviewer on September 15, 2024 to discuss the mineralized groundwater on-Site. At this meeting, the City of Ottawa noted that the MECP's consent to utilize a mineralized well may be required at this Site.

Further to this, a follow-up consultation took place with the City of Ottawa Peer Reviewer on December 20, 2024 to discuss the scope of the Septic Impact Assessment in the context of the proposed development having been determined to not resulting in an increase to the daily sanitary flow compared to existing conditions and therefore being proposed to continue to be serviced by the approve existing sewage system currently in place.

2.0 BACKGROUND

2.1 Site Setting

The Site is located within the City of Ottawa (Figure 1). The Site building consists of a two-storey office building and an existing slab on grade shop which services Miller Waste garbage trucks. Grassed landscape is located to the north of the Site building, fronting on Walgreen Road. A mixed paved and gravel parking area is located to the west of the Site building.

Based on a review of background documents, it appears that the existing Site Building has been present since at least 2009. It is Egis' understanding that groundwater is not used for potable purposes at the Site.

2.2 Neighbouring Properties and Land Uses

Land uses within 500 m of the proposed severances consists primarily of industrial and commercial properties. Wooded lands are observed to the southeast of the Site. The Site has frontage on Walgreen Road, located to the north.

While MECP Water Well Information System (WWIS) records for the area do not provide the detailed locations of most wells, it appears there is a mix of privately serviced properties, and properties connected to municipal services. The municipal water supply network terminates approximately 200 meters to the east of the subject site and partially services the Oz Dome facility to the north. All properties immediately adjacent to the subject site and further west/north/south of the existing fire hydrant located approximately 200m east of the subject site are privately serviced with wells. Additionally, there are no available municipal sanitary sewers in the vicinity of the site and therefore all neighbouring properties are expected to be serviced with private sewage systems.

Figure 3 (MECP Wells Record Summary) presents the MECP Well Tag numbers and approximate well locations, where available, for wells within approximately 500 m of the Site.

2.3 Hydrology

Topography was reviewed based on the site-specific geodetic topographic survey conducted for the site. Ground surface at the Site is generally flat, with the site elevations varying from 126 to 129 metres (geodetic), with the majority of the site being at an elevation of approximately 127 metres.

Ground surface at the Site is generally relatively flat. Regional relief appears to slope to the east-northeast except in areas affected by quarrying operations, which are considerably lower. Ground surface elevation at the Site varies from 126-129 m (geodetic). Surface drainage at the Site appears to be largely controlled by the roadside ditch along with a ditch in the drainage easement that runs along the eastern and southern boundary of the yard and discharges to the south of the property an eventually towards

Feedmill Creek. Regional groundwater is interpreted to flow east/northeast, toward Highway 417 and the quarry located at the northeastern corner of the intersection of Carp Road and Hwy 417.

On a regional scale, groundwater is inferred to flow northeast towards the Ottawa River. It is noted that the Site is located within the Carp River Watershed.

2.4 Background Geology and Hydrogeology

Geological maps of the area classify the overburden at the Site as organic deposits consisting of peat, muck and marl.

On-Site bedrock is generally characterized as limestone, dolostone, shale, arkose and sandstone, of the Ottawa Group, Simcoe Group and Shadow Lake Formation. Based on well records within 500 m of the Site, the depth to bedrock is approximately 3.5 m on average.

Review of a map on karst topography indicates that the Site is located within an area identified as potential karst formation. No karst topography was observed on-site at the time of site visits.

Based on surrounding topography, regional bedrock groundwater flow is interpreted to have a northeastern component, towards the Ottawa River.

2.4.1 Recharge and Discharge Areas

Based on a review of topographic data, geological maps, and Site visits, the property is generally flat. The entirety of the Site is mapped as an unnamed, unevaluated wetland, however the operational areas of the property would not be reasonably classified as a wetland. A wetland area is located immediately south of the Site, within the wooded area.

Based on a review of the subsurface soil presented in Egis' Geotechnical Investigation for the Site, the majority of the subsurface is predominantly silt. Limestone bedrock was encountered 1.4 - 3.56 m bgs. Additionally, based on the well record at the Site, the driller reported that 0 - 1.52 m bgs consisted of sand/clay, underlain by clay/till to a depth of 5.49 m where limestone or shale bedrock was encountered. Given the low permeability of overburden materials, the underlying aquifer is considered to be reasonably protected.

The closest water body to the Site is located 450 m north of the Site, at the Westbrook Snow Dump. It is noted that this is an artificial body of water (presumably with a liner), with controlled discharge to a nearby local watercourse.

2.4.2 Potential Sources of Contamination and Potential Impacts to Hydrogeological Conditions

A windshield survey of the surrounding area was conducted in combination with a site walkthrough and review of maps and zoning information. The Site is located in a predominantly commercial and industrial area. The current industrial use of the property usage does not appear to pose any significant environmental risk to the proposed addition. The nearby Westbrook Snow Dump is considered a potentially source of salt contamination, however it is a relatively new facility with a controlled meltwater discharge system, and is unlikely to pose a significant environmental risk to the proposed addition.

Although the Site is not connected to municipal services, many properties in the vicinity of the Site are municipally connected to water services. However, due to the fact that there are no municipal sanitary services near the area, it is expected that all developed properties in the vicinity of the subject site are serviced by private sewage systems.

2.4.3 Water Well Record Review

The MECP's WWIS database indicated 58 water wells that are located within 500 m of the Site. Thirtynine (39) of these wells are listed for domestic purposes, one (1) for livestock, nine (9) test holes/monitoring wells, six (6) for commercial, one (1) as an injection well, one (1) for irrigation, and one (1) industrial. MECP WWIS records are shown on Figure 3, and data are summarized in Appendix A.

All water supply wells were completed in bedrock at final depths ranging from 6.1 (the industrial well) – 198.1 m below ground surface (bgs). The average depth to bedrock was reported to be 3.5 m bgs. Driller-reported static groundwater levels ranged from 0.9 – 16.8 m bgs.

Well yields reported on Well Records ranged from 15.14 – 204.41 L/min.

TW1, located at 145 Walgreen Road, was used as part of the water supply assessment conducted as part of the Hydrogeological Assessment report. Based on the Well Record, TW1 was constructed with 6.41 m of casing, with a total well depth of 28.08 m. The depth to bedrock was reported as 5.49 m. The well yield was reported as 54 L/min.

3.0 TERRAIN ANALYSIS

3.1 On-Site Investigation

As part of a geotechnical investigation conducted by Egis, boreholes were advanced via drilling at various locations throughout the Site to assess its geology and subsurface conditions, including properties of the on-site overburden. In total, 9 boreholes were advanced.

The boreholes were drilled using a CME-55 truck-mounted drilling rig, outfitted with hollow stem augers. Soil samples were obtained at 0.76 m intervals in boreholes using a 51 mm outside diameter split spoon sampler in accordance with the Standard Penetration Test (SPT) procedure. The drilling was terminated at planned drilling depths. The bedrock was cored and sampled to approximately 3.58 and 3.68m depth from the top of the encountered bedrock surface in boreholes 24-1 and 24-2, respectively. Additionally, a 25 mm diameter standpipe piezometer was installed in borehole BH24-2 for temporary groundwater monitoring within the proposed building addition area.

Three (3) 51 mm diameter, monitoring wells were installed in borehole BH24-4 MW, BH24-7 MW and BH24-8 MW. The wells were protected in traffic rated flush-mount caps. For further details, please refer to the Geotechnical Investigation Report (Appendix C).

3.2 Site Evaluation

3.2.1 Overburden Depth

Auger refusal was encountered in all boreholes except for BH24-4 MW on inferred bedrock at depth ranging from 1.40 to 3.56 m below existing ground surface. The bedrock was encountered and cored in the foundation area boreholes in BH24-1 and BH24-2 below the sandy silt till/silty sand till layer between 1.40 and 1.94 m bgs which corresponds to elevations El. 125.91 and El. 125.18 m.

3.2.2 Overburden Characterization

The site stratigraphy typically consists of five distinct layers. The layers were identified as Asphalt, Fill, Silt/Sandy Silt, Sandy Silt Till/Silty Sand Till and Limestone Bedrock. For classification purposes, the pavement structure, fill materials, and surficial soils encountered at this site can be divided into five (5) general layers:

- 1. Asphalt
- 2. Fill
- 3. Silt/Sandy Silt
- 4. Sandy Silt Till/Silty Sand Till
- 5. Bedrock/Refusal

The fills and soils encountered during the course of investigation, together with the field and laboratory test results are shown on the borehole records included in Appendix C. Geotechnical laboratory test results are also included in Appendix C. Description of the strata encountered are given below.

3.2.2.1 Asphalt

Two boreholes were advanced within the existing paved section, asphalt was measured to be at approximately 100 mm in the investigated boreholes BH24-6 and BH24-8 MW.

3.2.2.2 Fill

The fill layer was encountered at the surface or below the pavement in all boreholes and extended to a depth ranging from 0.45 m to 0.91 m bgs. The fill layer is composed mainly of granular fill, silty sand and gravelly sand to sand and gravel, trace to pockets of organics and trace of rootlets. This grey, brown, dark brown and dark grey fill layer was found to be in a moist to very moist state. In borehole BH24-9, a 50 mm topsoil/organic soil layer was encountered at the surface.

One (1) representative sample from the fill layer was subjected to grain-size analysis and the layer was observed to contain on average 18% of Gravel, 51% of Sand and 31% of Fines. The laboratory test results of the grain size analysis are shown in Appendix C.

The SPT N-Value within the fill layer ranged from approximately 10 to 40 which indicated a compact to dense relative density.

3.2.2.3 Silt/Sandy Silt

A layer of silt/sandy silt was encountered below the fill layer in all boreholes except for BH 24-5, observed to extend to depths ranging approximately from 1.26 to 3.05 m bgs. In general, this layer is comprised of silt to sandy silt with trace to some clay, trace of sand and trace of rootlets encountered in the upper zone of the layer below the fill layer in most of the boreholes. The natural moisture content for this greyish brown layer was observed to be approximately 16%.

Two (2) representative samples from the silt/sandy silt layer were subjected to grain-size "Hydrometer" analysis and the layer was observed to contain on average 2% gravel, 20% sand, and 69% silt and 9% clay. The laboratory test results of grain size analysis of the silt/sandy silt are included in Appendix C.

The SPT N-value for this layer ranged range from 10 to 50 blows/75 mm, which indicate a relative density of compact to very dense according to CFEM (2006).

3.2.2.4 Sandy Silt Till/Silty Sand Till

A till layer of sandy silt till/silty sand till was encountered below the fill and/or silt/sandy silt layer in all the boreholes. In general, the till layer is comprised of sandy silt till/silty sand till. The natural moisture content for this greyish brown and grey layer ranged from 7% to 13%.

Four (4) representative samples from the sandy silt till/silty sand till were subjected to grain-size analysis and the layer was observed to contain on average 13% gravel, 34% sand, 50% silt and 7% clay. The laboratory test results of grain size analysis of the till are included in Appendix C.

3.2.3 Soil Classification for Private Sanitary Servicing

Comparison of the soil classification for the Unified Soil Classification as provided in the Ministry of Municipal Affairs and Housing (MMAH) Supplementary Standard SB-6: Time and Soil Descriptions, reveals that the main shallow horizon native soil assessed on-site into which any private sewage system would discharge consists of the following:

- ML: Silt/Sandy Silt
 - According to Table 2 of SB-6, the ML group of soils have a coefficient of permeability (K) of 10⁻⁵ to 10⁻⁶ cm/sec and a percolation time (T) of 20 to 50 min/cm. This soil type has a medium to low permeability and is deemed acceptable as the native receiving soil for a proposed Class 4 sewage system.

Based on the above-noted soil classifications, it is proposed the development be serviced with a Class 4 sewage system with a leaching bed constructed to discharge onto the native silt/sandy silt deposits present throughout to the Site. Further, the leaching bed is recommended to be constructed as fully-raised bed using clean imported sand fill overlaying the silt/sandy silt deposit present at the Site.

3.2.4 Groundwater

Groundwater was observed in four (4) monitoring wells instrumented at the Site during the geotechnical investigation completed by Egis. At the time of investigation on August 29, 2024, the depth of the groundwater ranged between El. 125.90 m to El. 127.09 m. The depth and level of groundwater in the four monitoring wells are summarized in Table 3-1 below. Based on the measured water table elevations, it can be established that shallow groundwater flow on-site is generally to the south/south-east (see Figure 4). Note that the shallow groundwater levels may be expected to fluctuate due to seasonal changes.

BH/MW ID	Measuring	Screen Interval	Groundwater Depth (m bgs)	Water Table El. (m)
	Date	Depth (m bgs)	Groundwater Deptil (in bgs)	Water Table El. (III)
BH24-2 SP*	2024-08-29	1.24 – 1.85	0.86	126.26
BH24-4 MW	2024-08-29	1.52 – 3.05	1.20	125.90
BH24-7 MW	2024-08-29	1.52 – 3.05	1.37	127.09
BH24-8 MW	2024-08-29	1.52 – 3.05	0.81	126.83

Table 3-1: Groundwater Level Readings in Installed Monitoring Wells

* A Standpipe (SP) was installed in BH24-02 to measure the water level at the proposed building addition.

4.0 SEPTIC IMPACT ASSESSMENT

4.1 Guideline

As part of the development application process, the City of Ottawa requires that a septic impact assessment be completed as per the City's Hydrogeological and Terrain Analysis Guidelines. The City's guidelines as part of Site Plan application for Impact Risk Assessments where the design flow is 10,000 L/day or less, requires that sufficient information is provided to assess the likelihood that the operation of the on-site sewage system will not adversely impact the well(s) to be construction on the subject property or existing wells on surrounding properties.

4.2 Existing and Proposed Sanitary Flows and Approvals

4.2.1 Existing Sanitary Flows and Approval

As part of the servicing review for the proposed redevelopment of subject site, it was established that the site is currently serviced by a private Class 4 sewage system with a rated capacity of 3,750 L/day, which incorporates advanced treatment capable of tertiary treatment (now referred to as Level IV treatment in the Ontario Building Code) and was approved in 2008 per Ottawa Septic System Office (OSSO) permit no. 08-681 (refer to Appendix D).

4.2.2 Proposed Sanitary Flows and Approval

The proposed internal retrofits to the existing building, along with the physical building expansion were reviewed to establish their possible impact the daily sanitary flow for the facility. Following an OBC review, it was established that the daily sanitary design flow for the proposed renovated building would be 3,675 L/day, which is less than the rated capacity of the existing approved sewage system of 3,750 L/day. To this end, Egis submitted a Part 10/11 renovation permit application in December 2024 to the OSSO for the re-use of the existing approved Class 4 sewage system to service the proposed re-development of the property, including interior retrofits within the existing building and a building expansion. The OSSO issued Part 10/11 Change of Use/Renovation permit no. B-24-086 for the existing sewage system on December 20, 2024 (see Appendix E).

4.3 Impact Assessment

Given that there are no proposed changes to the sanitary infrastructure which has been in operation onsite since 2009, including no proposed changes to the quantity or quality of the wastewater being generated for the facility which has been in operation since 2008 or 2009, it was established through pre-consultation with the City of Ottawa Peer Reviewer that reviewing empirical data would be an appropriate way to evaluate the existing sewage system's possible impact to the groundwater resource. It was discussed wit the Peer Reviewer that groundwater quality from on an on-site well, should it be

determined to be downgradient (from a groundwater flow perspective) from the existing sewage system's leaching bed would be representative of any long-term impact to the groundwater from the existing and proposed continued use of the facility.

As outlined in Section 3.2.4 above, shallow groundwater flow direction on-site is expected to be south/south-east. This southerly groundwater flow direction is supported by similar observations made in 2020 during a Hydrogeological and Septic Impact Assessment conducted at a neighbouring property (137 Walgreen Rd), which is located approximately 30m to the east of subject property. In that study, it was observed that shallow groundwater flow was to the south based on static water levels taken from shallow monitoring wells (see Appendix F). Based on this, it is established that the on-site water supply well (TW1) at 145 Walgreen Road is located downgradient of the existing sewage system leaching bed. This signifies that the on-site well (TW1) can be used to empirically verify if the existing sewage system is currently impacting the local groundwater quality since the existing sewage system and on-site well have been both in steady-state operation since 2009, and both are schedule to continue to be used in a similar way as part of the proposed redevelopment of the subject site.

A review of the groundwater quality results from samples collected from the on-site well (TW1) show that key septic impact parameters, namely E.Coli, Fecal Coliforms and Nitrate/Nitrites were either below the laboratory's method detection limit or not detected (see Table 2). It is important to note these findings are in agreement with the findings that the local groundwater supply aquifer does not appear to be impacted by the local individual private sewage systems present in the area based on a review of key indicator parameters, based on similar groundwater quality results observed for samples collected from five (5) private neighbouring wells, all located within 180m of the subject site, as part of a Hydrogeological and Septic Impact Assessment report conducted as part of a severance application for the property at 137 Walgreen Road (McIntosh Perry, 2022).

Based on the above-noted discussion, the proposed development is not expected to affect any existing or potential drinking water supply aquifer and therefore it is recommended that the review agency accept that this septic impact assessment provides sufficient information to assess the likelihood that the operation of the on-site sewage system will not adversely impact the well(s) to be construction on the subject property or existing wells on surrounding properties.

5.0 **RECOMMENDATIONS**

5.1 Wastewater Servicing

Private Sewage Systems

• Approval for on-site septic treatment is governed by the OBC as it is understood that the Daily Design Flow proposed commercial building will be approximately 3,675 L/day (i.e. less than 10,000 litres per day).

- The Daily Design Flow of 3,675 L/day for the proposed redeveloped commercial building is also less than the rated capacity of the existing approved sewage system of 3,750 L/day. To this end, a Part 10/11 renovation permit application was filed in December 2024 to the OSSO for the reuse of the existing approved Class 4 sewage system to service the proposed re-development of the property, including interior retrofits within the existing building and a building expansion. The OSSO issued Part 10/11 Change of Use/Renovation permit no. B-24-086 for the existing sewage system on December 20, 2024. It is therefore recommended that the proposed redevelopment be serviced by the existing Class 4 sewage system.
- Any changes to the on-site sewage system must be constructed with all appropriate setbacks, treatment units and stipulations as per applicable Ontario Regulations.

Servicing Layout

• The proposed development and associated existing Class 4 sewage system should follow the layout included in the Site Plan application.

6.0 LIMITATIONS

This report has been prepared, and the work referred to in this report has been undertaken by Egis for the Client. It is intended for the sole, and exclusive use of the Client with respect to the stated purpose of the work carried out by Egis.

The report may not be relied upon by any other person or entity without the express written consent of Egis. Any use which a third party makes of this report, or any reliance on decisions made based on it, without a Reliance Letter, are the responsibility of such third parties. Egis accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report or the information contained within it.

The investigation undertaken by Egis with respect to this report and any conclusions or recommendations made in this report reflect Egis's judgment based on the Site conditions observed at the time of the Site investigations, inspections, and/or sampling on the date(s) set out in this report, and on information available at the time of the preparation of this report. Conditions such as ground cover, weather, physical obstructions, etc. may influence conclusions or recommendations made in this report. Egis does not certify or warrant the environmental status of the property.

This report has been prepared for specific application to this Site and it may be based, in part, upon visual observation of the Site, subsurface investigation at discrete locations and depths, and/or specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Site which were unavailable for direct investigation, Site locations, subsurface

or otherwise, which were not investigated directly, or chemical parameters, materials, or analysis which were not addressed or performed. Substances other than those addressed by the investigation described in this report may exist at the Site, substances addressed by the investigation may exist in areas of the Site not investigated, and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which samples were taken.

If Site conditions or applicable standards change, or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

7.0 CLOSURE

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully submitted,

Egis

Patrick Leblanc, P.Eng. Senior Environmental Engineer patrick.leblanc@egis-group.com

Ref.: U:\Ottawa\01 Project - Proposals\2025 Jobs\CCO\CCO-25-1370-01 White Owl Group_SPC Amendment_145 Walgreen Road\Septic\CCO-25-1370 - 145 Walgreen Rd - Septic Impact Assessment.Mar.11.2025.docx

8.0 **REFERENCES**

City of Ottawa, 2021. Hydrogeological and Terrain Analysis Guidelines.

Egis, 2024. Geotechnical Investigation of the Proposed Building Addition and Site Development – 145 Walgreen Road, Ottawa.

McIntosh Perry, 2022. Hydrogeological and Septic Impact Assessment (Rev. 3) - 137 Walgreen Road.

MECP, 1995. Procedure D-5-4 Technical Guideline for Individual On-site Sewage Systems: Water Quality Impact Risk Assessment.

MECP, 1996. Procedure D-5-5 Technical Guideline for Private Wells: Water Supply Assessment.

MECP, 2021. Water Supply Wells: Requirements and Best Practices. (online)

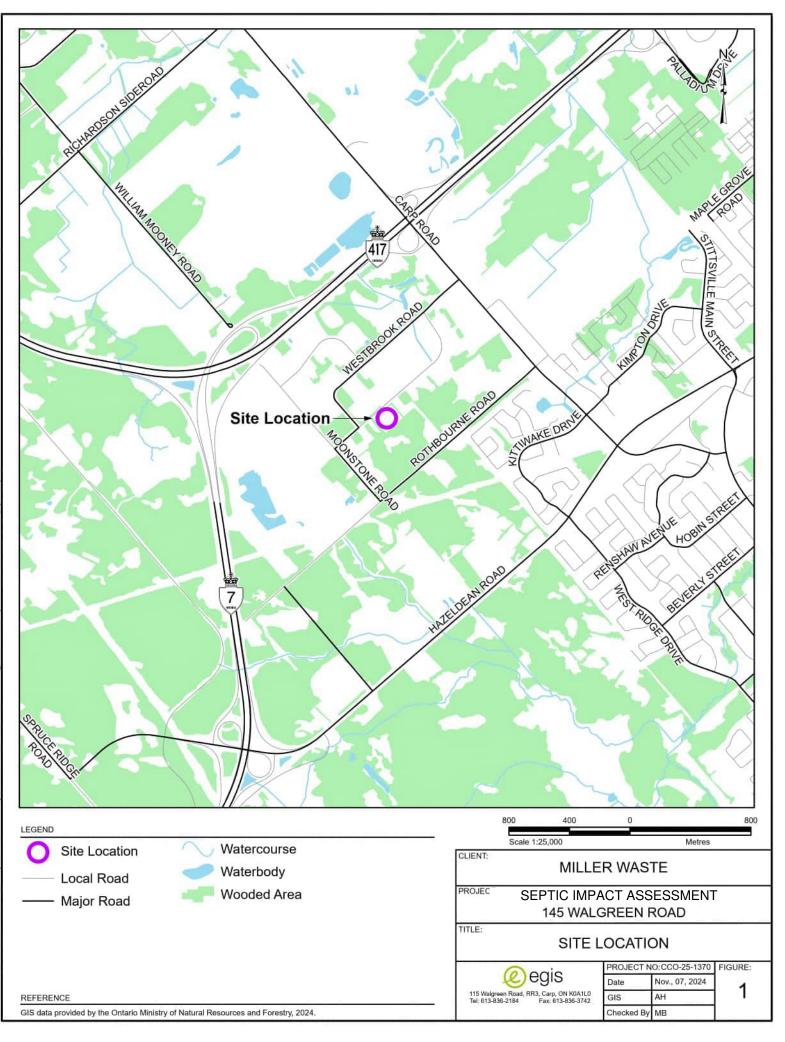
MECP (Ontario Ministry of the Environment, Conservation and Parks). 2023. MECP Water Well Record Database (queried July 2024).

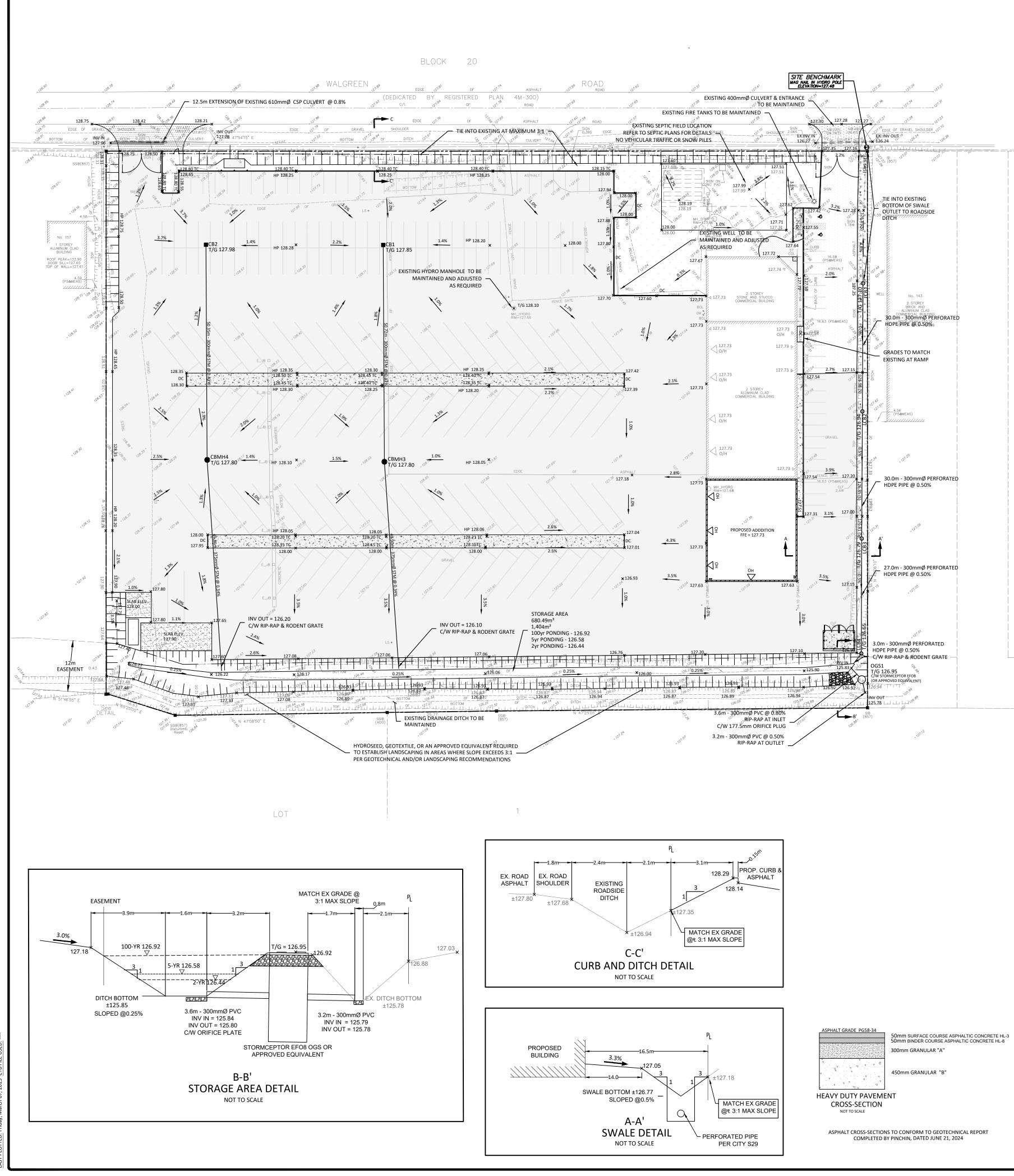
OGS Earth, 2019. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Overburden classification data for Eastern Ontario.

OGS Earth, 2010. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Bedrock classification data for Eastern Ontario.

OGS Earth, 2021. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Karst Study for Southern Ontario.

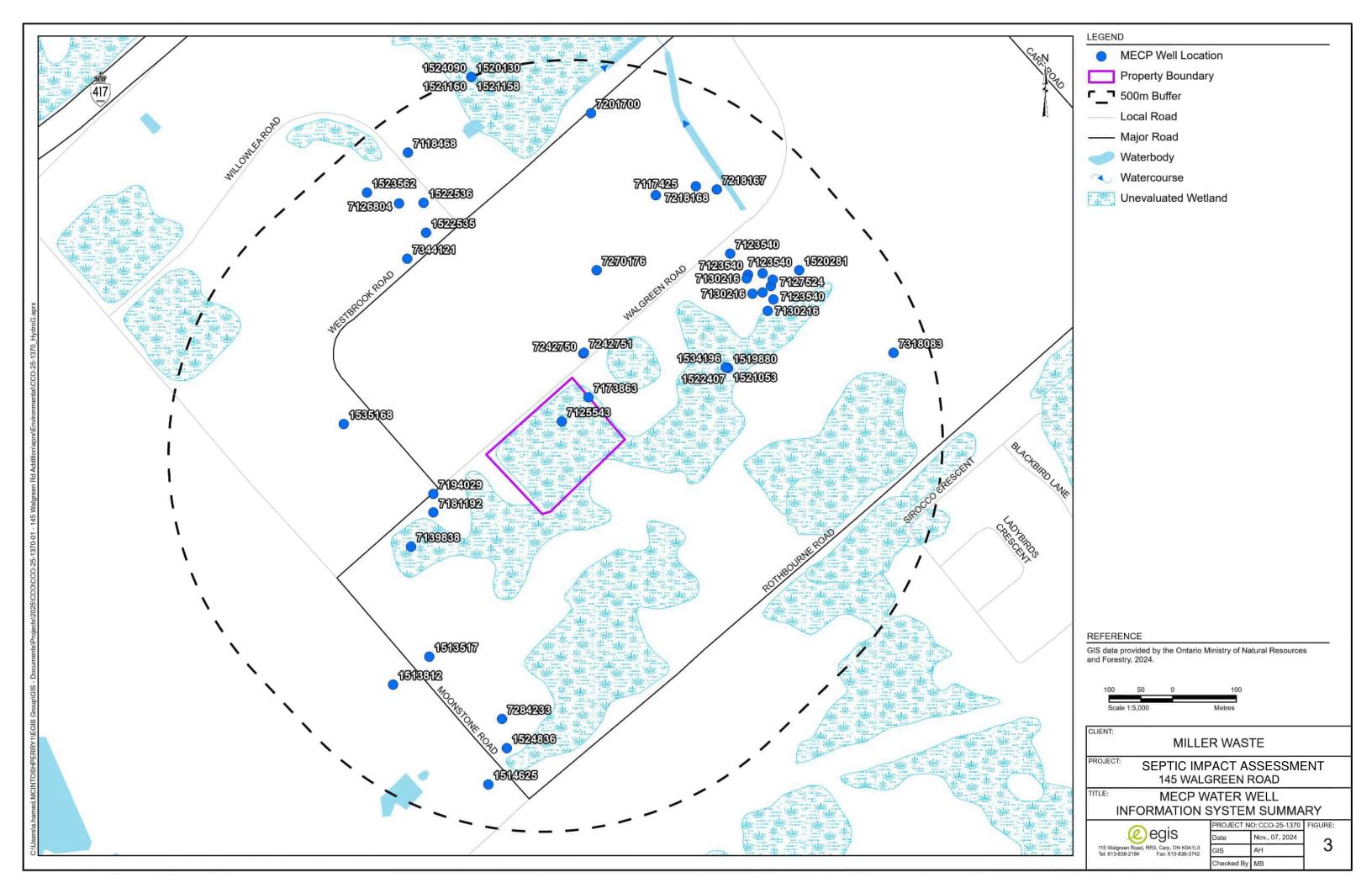
TABLES

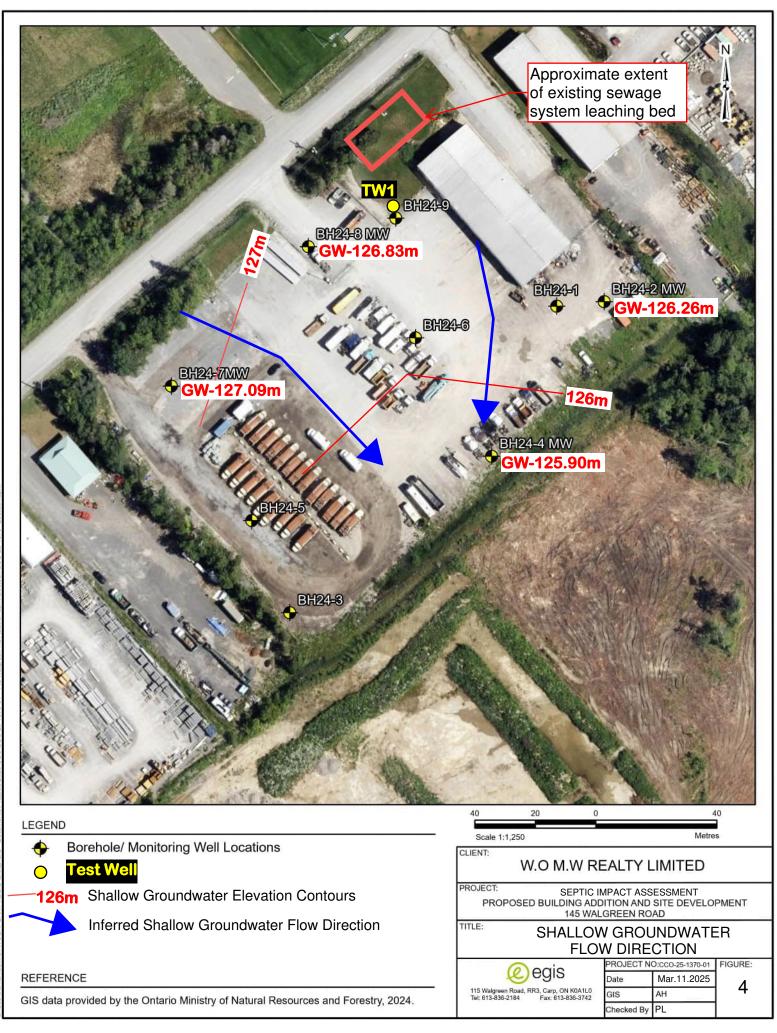



Table 2 Summary of Laboratory Water Quality Results

Sample ID Sample Date Location	Units	MDL	ODWSOG	Canadian Drinking Water Guideline	Limit Type	TW1-1 24-Au		TW1-3 11-Dec-24	TW1-4 27-Jan-25	TW1- 03-Feb-
Parameter: Microbiological Parameters	1						145	Walgreen Ro	vaŭ	
E Coli	ct/100mL	0	0	-	MAC	0	0	0	0	0
Fecal Coliforms Total Coliforms	ct/100mL ct/100mL	0	- 0	- 0	- MAC	0	0	0	0	0
General Inorganics		5	30-500			330	328	337		
Alkalinity, total Ammonia as N	mg/L mg/L	0.02	-	-	OG -	0.311	0.338	0.441		-
Dissolved Organic Carbon Colour	mg/L TCU	0.5	5	-	AO AO	3.6	3.3	3.4 10	-	-
Conductivity	uS/cm	5	80-100	-	- OG	4490 1240	4490 1290	4840 1250	-	-
Hardness pH	mg/L pH Units	1	6.5-8.5	-	-	7.64	7.59	7.51	-	-
Phenolics Total Dissolved Solids	mg/L mg/L	0.001	- 500	-	- AO	< 0.001	< 0.001 2920	< 0.001 3150	-	-
Sulphide	mg/L	0.01	0.05		AO	- <0.05	< 0.01	< 0.01	-	-
Tannin & Lignin	mg/L	0.1	-	-	-	0.2	0.3	0.3		-
Total Kjeldahl Nitrogen Turbidity	mg/L NTU	0.1	- 5	-	- AO	0.516	0.373	0.622	-	-
Anions			250	1	AO			1.440		T
Chloride Ruoride	mg/L mg/L	1 0.1	1.5	-	MAC	1200 0.56	1190 0.57	0.58	-	
Nitrate as N Nitrite as N	mg/L mg/L	2.5	10	- 1	MAC	<2.5	<2.5	<0.10 <0.10	-	-
Sulphate Metals	mg/L	1	500	-	AO 500	187	180	212	-	-
Mercury	mg/L	0.0001	0.001	-	MAC	< 0.0001	< 0.0001	< 0.0001	-	-
Aluminum Antimony	mg/L mg/L	0.01	0.10	-	OG MAC	<0.01 <0.0005	<0.01 <0.0005	<0.01 <0.0005	-	-
Arsenic	mg/L	0.001	0.01	-	IMAC	< 0.001	< 0.001	< 0.001	-	-
Barium Beryllium	mg/L mg/L	0.01	1.00	-	MAC -	0.11 <0.0005	0.12 <0.0005	0.11 <0.0005	-	-
Boron Cadmium	mg/L mg/L	0.01	5.00 0.01	-	IMAC MAC	0.16 <0.0001	0.17 <0.0001	0.19 <0.0001	-	-
Calcium	mg/L	1	-	-	-	297	312	304	-	-
Dhromium Cobalt	mg/L mg/L	0.001	0.05	-	MAC	<0.001 <0.0002	<0.001 <0.0002	<0.001 <0.0002		-
Copper ron	mg/L mg/L	0.001	1.00	-	AO AO	0.003	< 0.001	0.011	-	-
ead	mg/L	0.001	0.30		MAC	< 0.001	< 0.001	0.001	-	-
Magnesium Manganese	mg/L mg/L	1	- 0.05	- 0.02	- AO	122	124 0.06	119 0.06	-	-
Manganese Molvbdenum	mg/L mg/L	0.01	0.05	0.12	MAC	< 0.005	< 0.005	< 0.005	-	-
Nickel	mg/L	0.005	-	-	-	0.005	0.005	0.001		-
Potassium Selenium	mg/L mg/L	1 0.001	- 0.05	-	- MAC	13 <0.001	13 <0.001	13 <0.001	-	-
Silver	mg/L	0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	-	-
Bodium Brontium	mg/L mg/L	1 0.002	- 20	-	AO -	4/9	482	20.7	-	-
Thallium	mg/L	0.0001	-	7	MAC	< 0.0001	< 0.0001	< 0.0001		
Tin	mg/L	0.01	-	-	-	< 0.01	< 0.01	< 0.01	-	-
Fitanium Fungsten	mg/L mg/L	0.01	-	-		<0.01 <0.002	<0.01 <0.002	<0.01 <0.002	-	-
Jranium /anadium	mg/L mg/L	0.001	0.02	-	MAC	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	-	-
Zinc	mg/L	0.001	5	-	AO	< 0.01	< 0.001	< 0.01		-
Volatile Organic Compounds 1,1,1,2-tetrachloroethane	ug/L	0.5	-	-	-	< 0.5	< 0.5	-	-	-
1,1,1-trichloroethane	ug/L	0.4	-	-	-	<0.4	<0.4	-	-	-
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	ug/L ug/L	0.4	-			< 0.4	< 0.4		-	-
1,1-dichloroethane 1,1-dichloroethylene	ug/L ug/L	0.4	- 14 (0.014 mg/L)	-	- MAC	<0.4 <0.5	< 0.4	-	-	-
1,2-dichlorobenzene	ug/L	0.4	200 (0.2 mg/L)	-	MAC	< 0.4	< 0.4	-	-	-
1,2-dichloroethane 1,2-dichloropropane	ug/L ug/L	0.5	5	-	IMAC	<0.5 <0.5	<0.5 <0.5	-	-	-
1,3,5-trimethylbenzene 1,3-dichlorobenzene	ug/L	0.3	-	-		<0.3 <0.4	<0.3	-	-	
1,3-Dichloropropylene (cis+trans)	ug/L ug/L	0.5	-	-	-	< 0.5	< 0.5	-	-	-
1,4-dichlorobenzene Acetone	ug/L ug/L	0.4	5 (0.005 mg/L)	-	MAC	<0.4 <5	<0.4 <5			-
Benzene	ug/L	0.5	1 (0.001 mg/L)	-	MAC	< 0.5	<0.5 <0.3	-	-	-
Bromodichloromethane Bromoform	ug/L ug/L	0.4	-	-	-	< 0.4	< 0.4	-	-	-
Bromomethane > 1,2-Dichloroethylene	ug/L ug/L	0.5		-	-	<0.5 <0.4	<0.5 <0.4	-	-	-
>1,3-Dichloropropylene	ug/L	0.5	-	-	-	< 0.5	< 0.5	-	-	-
Carbon Tetrachloride Chloroethane	ug/L ug/L	0.2	2 (0.002 mg/L) -	-	MAC -	<0.2 <0.5	< 0.2	-		-
Chloroform	ug/L	0.5		-	-	< 0.5	< 0.5	-	-	-
Dibromochloromethane Dichlorodifluoromethane	ug/L ug/L	0.3 0.5		-	-	<0.3 <0.5	<0.3 <0.5	-	-	-
Dichloromethane Bhylbenzene	ug/L ug/L	4 0.5	50 (0.05 mg/L) 150 (0.15 mg/L)	-	MAC MAC	<4.0 <0.5	<4.0 <0.5	-	-	-
thylene Dibromide	ug/L	0.2		-	-	< 0.2	< 0.2			-
Hexane n/p-xylene	ug/L ug/L	5 0.4	-	-		<5 <0.4	<5 <0.4	-		-
Methyl Ehyl Ketone (MBK) Methyl Isobutyl Ketone (MIBK)	ug/L	2	-	-	-	<2 <5	<2	-	-	-
Methyl Tert Butyl Ether (MTBE)	ug/L ug/L	2	- 15 (0.015 mg/L)	-	- AO	<2	<2	-		-
Monochlorobenzene o-xylene	ug/L ug/L	0.5 0.4	80 (0.080 mg/L)	-	MAC -	<0.5 <0.4	<0.5 <0.4			-
Styrene	ug/L	0.5	-	-		< 0.5	< 0.5			-
-1,2-Dichloroethylene -1,3-Dichloropropylene	ug/L ug/L	0.4	-	-		<0.4 <0.5	<0.4 <0.5		-	-
Tetrachloroethylene Toluene	ug/L ug/L	0.3	10 (0.01 mg/L) 60 (0.06 mg/L)	-	MAC MAC	<0.3 <0.4	<0.3 <0.4		-	-
Trichloroethylene	ug/L	0.3	5 (0.005 mg/L)	-	MAC	< 0.3	< 0.3	-		-
Frichlorofluoromethane /inyl Chloride	ug/L ug/L	0.5 0.2	- 1 (0.001 mg/L)	-	- MAC	<0.5 <0.2	<0.5 <0.2	-	-	-
Kylene; total	ug/L	0.5	90 (0.090 mg/L)	-	MAC	< 0.5	< 0.5	-	-	-
lotes:										
			g Water Standards, Obje limit for sodium (20, 00							
	Exceeds a M	aximum Allo	wable Concentration (A							
MDL	Method Det		Denderde Ottention		0000		-01)			
DDW9OG AO	Ontario Drir Aesthetic Ol		erandards, Objectives, a	nd Guidelines (MOECC,	2003 rev. 200	ло; PIBs 4449	eu1)			
MAC	Maximum A	llowable Cor	ncentration (Health-Rela	ated Parameter)						
DG MAC	Operational Interim Max		table Concentration							
ND	Non detecta	ble (below N	IDL)							
ıg/L ng/L	Micrograms Milligrams p									
TCU	True Colour	Units	atar							
iS'cm	Microsemer	is per centim tric Turbidity								
UTU	Nebueioune	the fulbidity	Units							

FIGURES




GENERAL NOTES	
 THE ORIGINAL TOPOGRAPHY, GROUND ELEVATION AND SURVEY DATA SHOWN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY, AND IMPLY NO GUARANTEE OF ACCURACY. IT SHALL BE THE RESPONSIBILITY (CONTRACTOR TO VERIFY ALL INFORMATION SHOWN. PER THE PROVIDED SURVEY ELEVATIONS ARE GEODETIC AND ARE REFERRED TO CITY OF OTTAWA BENCHMARK POINT 0011968U118 HAVING A PUBLISHED ELEVATION OF 126.18 METRES (CGVD28:78) 	OF THE
2. THIS PLAN IS NOT A CADASTRAL SURVEY SHOWING LEGAL PROPERTY BOUNDARIES AND EASEMENTS. THE PROPERTY BOUNDARIES SHOWN HEREON HAVE BEEN DERIVED INFORMATION SUPPLIED BY (OR SHOWI REGISTERED PLAN 4M-300 PREPARED BY JD BARNES DATED APRIL 5, 2024 AND CANNOT BE RELIED UPON TO BE ACCURATE OR COMPLETE. THE PRECISE LOCATION OF THE CURRENT PROPERTY BOUNDARIES AND	
EASEMENTS CAN ONLY BE DETERMINED BY AN UP-TO-DATE LAND TITLES SEARCH AND A SUBSEQUENT CADASTRAL SURVEY PERFORMED AND CERTIFIED BY AN ONTARIO LAND SURVEYOR. 3. THE CONTRACTOR IS TO OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY BEFORE COMMENCING CONSTRUCTION.	
4. THE CONTRACTOR IS RESPONSIBLE FOR ALL LAYOUT.	
5. THE CONTRACTOR IS TO DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME ALL RESPONSIBILITY FO EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS. IF THERE IS ANY DISCREPANCY THE CONTRACTOR IS TO NOTIFY THE ENGINEER PROMPTLY.	DR SUBJECT
 RESTORE ALL TRENCHES AND SURFACES OF PUBLIC ROAD ALLOWANCES TO CONDITION EQUAL OR BETTER THAN ORIGINAL CONDITION AND TO THE SATISFACTION OF THE CITY AUTHORITIES. EXCAVATE AND DISPOSE OF ALL EXCESS EXCAVATED MATERIAL, SUCH AS ASPHALT, CURBING AND DEBRIS, OFF SITE AS DIRECTED BY THE ENGINEER AND THE CITY. 	
8. TOPSOIL TO BE STRIPPED AND STOCKPILED FOR REHABILITATION. CLEAN FILL TO BE PLACED IN FILL AREAS AND COMPACTED TO 95% STANDARD PROCTOR DENSITY.	
 CONTRACTOR TO MINIMIZE THE ACTUAL LIMITS OF REMOVALS AND REINSTATEMENT WHEREVER POSSIBLE, AND SHALL MAKE THEIR OWN JUDGEMENT AND ACCOUNT FOR ALL MATERIAL AND LABOUR REQUIR ADEQUATELY REINSTATING THE AREA TO PRE-CONSTRUCTION CONDITIONS OR BETTER, AND BEAR THE COST OF THE SAME. NO ADDITIONAL PAYMENT WILL BE MADE FOR REINSTATEMENT WORK NOT SHOWN CONTRACT DRAWING AS A DIRECT RESULT FROM CONSTRUCTION. 	
10. ALL DISTURBED AREAS TO BE RESTORED TO ORIGINAL CONDITION OR BETTER UNLESS OTHERWISE SPECIFIED.	
11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TRAFFIC CONTROL AND SAFETY MEASURES DURING THE CONSTRUCTION PERIOD, INCLUDING THE SUPPLY, INSTALLATION, AND REMOVAL OF ALL NECESSARY S DELINEATORS, MARKERS AND BARRIERS.	SIGNAGE, LEGAL BOUNDARY
 DO NOT ALTER GRADING OF THE SITE WITHOUT PRIOR APPROVAL OF THE ENGINEER/CITY. ALL ROADWAY, PARKING LOT, AND GRADING WORKS TO BE UNDERTAKEN IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS. THE CONTRACTOR IS TO PROVIDE POSITIVE DRAINAGE AWAY FROM THIS 	EXISTING STORM STRUCTURE
BUILDING. 14. CONTACT THE CITY FOR INSPECTION OF ROUGH GRADING OF PARKING LOTS, ROADWAYS AND LANDSCAPED AREAS PRIOR TO PLACEMENT OF ASPHALT AND TOPSOIL. ALL DEFICIENCIES NOTED SHALL BE RECTIFIE	
THE CITY'S SATISFACTION PRIOR TO PLACEMENT OF ANY ASPHALT, TOPSOIL, SEED & MULCH AND/OR SOD. 15. ALL DIMENSIONS AND INVERTS MUST BE VERIFIED PRIOR TO CONSTRUCTION, IF THERE IS ANY DISCREPANCY THE CONTRACTOR IS TO NOTIFY THE ENGINEER PROMPTLY.	
16. ELECTRICAL, GAS, TELEPHONE AND TELEVISION SERVICE LOCATIONS ARE SUBJECT TO THE INDIVIDUAL AGENCY: • ELECTRICAL SERVICE - HYDRO ONE, • CASE SERVICE - HYDRO ONE,	EXISTING VALVE & VALVE BOX
• GAS SERVICE - ENBRIDGE, • TELEPHONE SERVICE - BELL CANADA, • TELEVISION SERVICE - ROGERS.	EXISTING HYDRO
16. INSTALLATION TO BE IN ACCORDANCE WITH CURRENT CODES AND STANDARDS OF APPROVAL AGENCIES HYDRO ONE, BELL AND THE CITY.	EXISTING UTILITIES
18. FOR GEOTECHNICAL INFORMATION, REFER TO THE GEOTECHNICAL REPORT FOR 145 WALGREEN ROAD, PREPARED BY PINCHIN, DATED JUNE 21, 2024.	PROPOSED STORM MANHOLE
19. ALL PROPOSED CURB TO BE CONCRETE BARRIER CURB UNLESS OTHERWISE SPECIFIED.	
 EROSION AND SEDIMENT CONTROL 1. THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. 	
INCLUDES LIMITING THE AMOUNT OF EXPOSED SOIL, TEMPORARY SEDIMENT CONTROL (GEOSOCK INSERTS WITH AN OVERFLOW UNDER GRATE OR COVER) TO BE IMPLEMENTED DURING CONSTRUCTION ON ALL PROPOSED ROAD CATCHBASINS, REARYARD CATCHBASINS AND CATCHBASIN MANHOLES AND OTHER SEDIMENT TRAPS. NO RECYCLED GEOSOCK MATERIAL SHALL BE PERMITTED FOR USE ON SITE. THE CONTRAL ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY.	CTOR PROPOSED FINISHED GROUND ELEVATION x99.00
2. AT THE DISCRETION OF THE PROJECT MANAGER OR MUNICIPAL STAFF, ADDITIONAL SILT CONTROL DEVICES SHALL BE INSTALLED AT DESIGNATED LOCATIONS.	PROPOSED TOP OF CURB ELEVATION×99.00TCPROPOSED TOP OF WALL ELEVATION×99.00TWPROPOSED BOTTOM OF WALL ELEVATION×99.00BW
 FOR SILT FENCE BARRIER, USE OPSD 219.110. GEOTEXTILE FOR SILT FENCE AS PER OPSS 1860, TABLE 3. EXCEPT AS PROVIDED IN PARAGRAPHS 4.1., and 4.2. BELOW, STABILIZATION MEASURES SHALL BE INITIATED AS SOON AS FEASIBLE IN PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITIES HAVE TEMPORAR 	PROPOSED DITCH ELEVATION x99.00(D)
PERMANENTLY CEASED, BUT IN NO CASE MORE THAN 14 DAYS AFTER THE CONSTRUCTION ACTIVITY HAS TEMPORARILY OR PERMANENTLY CEASED. 4.1. WHERE THE INITIATION OF STABILIZATION MEASURES BY THE 14TH DAY AFTER CONSTRUCTION ACTIVITY TEMPORARILY OR PERMANENTLY CEASE IS PRECLUDED BY SNOW COVER, STABILIZATION MEASURES INITIATED AS SOON AS FEASIBLE.	S SHALL BE PROPOSED SLOPE
4.2. WHERE CONSTRUCTION ACTIVITY WILL RESUME ON A PORTION OF THE SITE WITHIN 21 DAYS FROM WHEN ACTIVITIES CEASED, (E.G. THE TOTAL TIME PERIOD THAT CONSTRUCTION ACTIVITY IS TEMPORARIL IS LESS THAN 21 DAYS) THEN STABILIZATION MEASURES DO NOT HAVE TO BE INITIATED ON THAT PORTION OF SITE BY THE 14TH DAY AFTER CONSTRUCTION ACTIVITY TEMPORARILY CEASED.	PROPOSED BARRIER CURB
5. SEDIMENT THAT IS ACCUMULATED BY THE TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REMOVED IN A MANNER THAT AVOIDS ESCAPE OF THE SEDIMENT TO THE DOWNSTREAM SIDE CONTROL MEASURE AND AVOIDS DAMAGE TO THE CONTROL MEASURE. SEDIMENT SHALL BE REMOVED TO THE LEVEL OF THE GRADE EXISTING AT THE TIME THE CONTROL MEASURE WAS CONSTRUCTED AND B	PROPOSED DRAINAGE SWALE
ACCORDING TO THE FOLLOWING: 5.1. FOR LIGHT-DUTY SEDIMENT BARRIERS, ACCUMULATED SEDIMENT SHALL BE REMOVED ONCE IT REACHES THE LESSER OF THE FOLLOWING: 5.1.1. A DEPTH OF ONE-HALF THE EFFECTIVE HEIGHT OF THE CONTROL MEASURE.	PROPOSED CONCRETE SIDEWALK
 5.1.2. A DEPTH OF 300 MM IMMEDIATELY UPSTREAM OF THE CONTROL MEASURE. 5.2. FOR ALL CONTROL MEASURES, ACCUMULATED SEDIMENT SHALL BE REMOVED AS NECESSARY TO PERFORM MAINTENANCE REPAIRS. 5.3. ACCUMULATED SEDIMENT SHALL BE REMOVED AND THE REMOVAL OF THE CONTROL MEASURE. 5.4. ACCUMULATED SEDIMENT IS TO BE REMOVED AND DISPOSED OF AS PER OPSS 180. 	BF = BARRIER FREE 1R = ONE RISER, OH = OVERHEAD DOOR BF,1R, OH MAIN,L1 FFE=74.40
 ACCONDUCTED SEDIMENT IS TO BE REMOVED AND DISPOSED OF AS PER OF33 180. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THEY ARE IN EFFECTIVE WORKING ORDER. THEY ARE IN EFFECTIVE WORK	
 DUST CONTROL MEASURES SHOULD BE CONSIDERED PRIOR TO CLEARING AND GRADING. THE USE OF WATER, CALCIUM CHLORIDE FLAKES/SOLUTION OR MAGNESIUM CHLORIDE FLAKES/SOLUTION SHALL BE US DUST SUPPRESSANTS AS PER OPSS 506. THIS IS TO LIMIT WIND EROSION OF SOILS WHICH MAY TRANSPORT SEDIMENTS OFFSITE, WHERE THEY MAY BE WASHED INTO THE RECEIVING WATER BY THE NEXT RAINST 	
 ALL 'GREEN AREAS' TO BE TREATED WITH 150mm TOPSOIL AND SOD AS SOON AS FEASIBLE, AS PER OPSS 570. 	
 ALL DISTURBED AREAS TO BE RESTORED TO ORIGINAL CONDITION OR BETTER UNLESS OTHERWISE SPECIFIED. STOCKPILED MATERIAL IS TO BE STORED AWAY FROM POTENTIAL RECEIVERS (E.G. STORM CATCHBASINS, MANHOLES), AND BE SURROUNDED BY EROSION CONTROL MEASURES WHERE MATERIAL IS LEFT IN PLA 	
 STOCKPIELD MATERIAL IS TO BE STOKED AWAT FROM FOTENTIAL RECEIVERS (E.G. STOKIN CATCHBASINS, MANHOLES), AND BE SORROUNDED BY EROSION CONTROL MEASURES WHERE MATERIAL IS TELEVING EXCESS OF 14 DAYS. IF REQUIRED, DEWATERING/SETTLING BASINS SHALL BE CONSTRUCTED AS PER OPSD 219.240 AND LOCATED ON FLAT GRADE UPSTREAM OF OTHER EXISTING MITIGATION MEASURES, WATERCOURSES SHALL NO 	
DIVERTED, OF BLOCKED, AND TEMPORARY WATERCOURSES CROSSINGS SHALL NOT BE CONSTRUCTED OR UTILIZED, UNLESS OTHERWISE SPECIFIED IN THE CONTRACT. IF CLOSURE OF ANY PERMANENT WATER P NECESSARY, THE CONTRACTOR SHALL RELEASE ANY STRANDED FISH TO THE OPEN PORTION OF THE WATERCOURSE WITHOUT HARM.	
12. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL CONFORM TO OPSS 577	
14. ALL SETTLING/FILTRATION BASINS SHALL BE EQUIPPED WITH TERRAFIX 270R GEOTEXTILE (OR APPROVED EQUIVALENT) AND SHALL BE CLEANED AND REPLACED AS REQUIRED.	
SEWER NOTES:	1 FOR REVIEW 12.18.2024
 CONSTRUCT ALL SEWERS, CATCH BASINS, MANHOLES AND APPURTENANCES IN ACCORDANCE WITH OPSD STANDARDS AND SPECIFICATIONS, AS WELL AS CITY. SEWER TRENCHING AND BEDDING SHALL CONFORM TO OPSD 802.010 AND 802.013 UNLESS NOTED OTHERWISE. 	No. Revisions Date Check and verify all dimensions Denot coole drawing
 2.1. BEDDING SHALL BE A MINIMUM 150mm OF GRANULAR "A", COMPACTED TO MINIMUM 95% STANDARD PROCTOR DRY DENSITY. CLEAR STONE BEDDING SHALL NOT BE PERMITTED. 2.2. SUB-BEDDING, IF REQUIRED SHALL CONSIST OF 450mm OF COMPACTED GRANULAR "B" TYPE 1. 2.3. BACKFILL TO AT LEAST 300mm ABOVE TOP OF PIPE WITH GRANULAR "A" OR GRANULAR "B" TYPE 1. 	before proceeding with the work Do not scale drawing
2.4. TO MINIMIZE DIFFERENTIAL FROST HEAVING, TRENCH BACKFILL (FROM PAVEMENT SUBGRADE TO 2.0 METRES BELOW FINISHED GRADE) SHALL MATCH EXISTING SOIL CONDITIONS.	SCALE 1:500
 SANITARY SEWERS AND CONNECTIONS 150mmØ AND SMALLER TO BE PVC SDR-28. SEWERS AND CONNECTIONS 200mmØ AND LARGER TO BE PVC SDR-35. BEDDING TO BE TYPE "B" EXCEPT AT RISERS, UNLESS NOTED OTHERWISE. 	0 10 20 30 40 50 Metre
5. SEWERS AND WATERMAINS LOCATED PARALLEL TO EACH OTHER SHOULD BE CONSTRUCTED IN SEPARATE TRENCHES. WHEN IT IS IMPOSSIBLE OR NOT PRACTICAL TO MAINTAIN VERTICAL AND/OR HORIZONTAL SEPARATION PER MECP STANDARDS, ALL SEWERS SHOULD BE CONSTRUCTED OF WATERMAIN QUALITY PIPE, PRESSURE TESTED IN PLACE AT A PRESSURE OF 350 kPa (50 psi) WITHOUT LEAKAGE USING THE TEST	ING
METHODOLOGY IN ONTARIO PROVINCIAL STANDARD SPECIFICATION 701 (OPSS 701) OF THE OPS. 6. INSULATE ALL STORM AND SANITARY SEWERS/SERVICES THAT HAVE LESS THAN 2.0m OF COVER WITH THERMAL INSULATION AS PER CITY DETAIL S35, OPTION A.	-
7. SEWER CONNECTIONS ARE TO BE MADE ABOVE THE SPRINGLINE OF THE SEWERMAIN AS PER CITY OF OTTAWA STANDARD DRAWING \$11, \$11.1 & \$11.2.	
 SUPPLY AND INSTALL ALL PIPING AND APPURTENANCES AS SHOWN AND DETAILED TO WITHIN 1.0m OF BUILDING. ALL ENDS OF SERVICES TO BE PROPERLY CAPPED AND LOCATED WITH 2"x4"X8' LONG MARKER. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS ON SITE, OUTLET CONNECTION TO THE MAIN AND PIPES 150mmø OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CONTRACT, 	
 CONTRACTOR TO TELEVISE (COTV) ALL TROPOSED SEWERS ON SITE, COTTELE CONNECTION TO THE MAIN AND THE ESTIMATION TO DAGE COORSE AST MACH. OF ON CONNECTION OF CONTRACT, CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES. 10. DYE TESTING IS TO BE COMPLETED ON SANITARY SERVICE TO CONFIRM PROPER CONNECTION TO SANITARY SEWER MAIN. 	Stamp:
STM STRUCTURE TABLE	Client:
NAME ELEV. INVERTIN INVERTIOUT DESCRIPTION	MILLER WASTE SYSTEMS
CB1 127.85 SE126.490 FRAME: CITY S19 STR.: OPSD 705.010 STR.: OPSD 705.010 STR.: OPSD 705.010	112 BALES DRIVE EAST EAST GWILLIMBURY, ON
COVER: CITY S19	
STR.: OPSD 705.010	Project:
CBMH3 127.80 NW126.270 SE126.265 FRAME: CITY S28.1 STR. OPSD 701.010 STR. OPSD 701.010 STR. OPSD 701.010	PROPOSED ADDITION
COVER: CITY S28.1	145 WALGREEN ROAD CARP, ON
CBMH4 127.80 NW126.370 SE126.365 FRAME: CITY S25 STR. OPSD 701.010 STR. OPSD 701.010	, -
LCB1 127.10 SE126.315 PER CITY STANDARD S31	Drawing Title:
LCB2 126.94 NW126.164 SE126.159 PER CITY STANDARD S30	SITE GRADING, DRAINAGE, EROSION &
LCB3 126.79 NW126.010 SE126.005 PER CITY STANDARD S30	SEDIMENT CONTROL & SERVICING PLAN
LCB4 126.65 NW125.870 S125.865 PER CITY STANDARD S30	Scale: Project Number:
STORMCEPTOR EF08	1:500
OGS1 126.95 W125.801 SE125.792 CORAPPROVED EQUIVALENT) FRAME & COVER: OPSD 401.040/B	Drawn By: RP CO-25-1370
	Checked By: Drawing Number:
	Designed By:

GENERAL NOTES	
 THE ORIGINAL TOPOGRAPHY, GROUND ELEVATION AND SURVEY DATA SHOWN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY, AND IMPLY NO GUARANTEE OF ACCURACY. IT SHALL BE THE RESPONSIBILITY OF CONTRACTOR TO VERIFY ALL INFORMATION SHOWN. PER THE PROVIDED SURVEY ELEVATIONS ARE GEODETIC AND ARE REFERRED TO CITY OF OTTAWA BENCHMARK POINT 0011968U118 HAVING A PUBLISHED ELEVATION OF 126.18 METRES (CGVD28:78) 	
 THIS PLAN IS NOT A CADASTRAL SURVEY SHOWING LEGAL PROPERTY BOUNDARIES AND EASEMENTS. THE PROPERTY BOUNDARIES SHOWN HEREON HAVE BEEN DERIVED INFORMATION SUPPLIED BY (OR SHOWN OF REGISTERED PLAN 4M-300 PREPARED BY JD BARNES DATED APRIL 5, 2024 AND CANNOT BE RELIED UPON TO BE ACCURATE OR COMPLETE. THE PRECISE LOCATION OF THE CURRENT PROPERTY BOUNDARIES AND 	N)
EASEMENTS CAN ONLY BE DETERMINED BY AN UP-TO-DATE LAND TITLES SEARCH AND A SUBSEQUENT CADASTRAL SURVEY PERFORMED AND CERTIFIED BY AN ONTARIO LAND SURVEYOR. 3. THE CONTRACTOR IS TO OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY BEFORE COMMENCING CONSTRUCTION.	
 THE CONTRACTOR IS RESPONSIBLE FOR ALL LAYOUT. THE CONTRACTOR IS TO DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME ALL RESPONSIBILITY FOR 	
EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS. IF THERE IS ANY DISCREPANCY THE CONTRACTOR IS TO NOTIFY THE ENGINEER PROMPTLY. 6. RESTORE ALL TRENCHES AND SURFACES OF PUBLIC ROAD ALLOWANCES TO CONDITION EQUAL OR BETTER THAN ORIGINAL CONDITION AND TO THE SATISFACTION OF THE CITY AUTHORITIES.	BUILDING UNDER
 EXCAVATE AND DISPOSE OF ALL EXCESS EXCAVATED MATERIAL, SUCH AS ASPHALT, CURBING AND DEBRIS, OFF SITE AS DIRECTED BY THE ENGINEER AND THE CITY. TOPSOIL TO BE STRIPPED AND STOCKPILED FOR REHABILITATION. CLEAN FILL TO BE PLACED IN FILL AREAS AND COMPACTED TO 95% STANDARD PROCTOR DENSITY. 	
9. CONTRACTOR TO MINIMIZE THE ACTUAL LIMITS OF REMOVALS AND REINSTATEMENT WHEREVER POSSIBLE, AND SHALL MAKE THEIR OWN JUDGEMENT AND ACCOUNT FOR ALL MATERIAL AND LABOUR REQUIRED F ADEQUATELY REINSTATING THE AREA TO PRE-CONSTRUCTION CONDITIONS OR BETTER, AND BEAR THE COST OF THE SAME. NO ADDITIONAL PAYMENT WILL BE MADE FOR REINSTATEMENT WORK NOT SHOWN ON	
CONTRACT DRAWING AS A DIRECT RESULT FROM CONSTRUCTION. 10. ALL DISTURBED AREAS TO BE RESTORED TO ORIGINAL CONDITION OR BETTER UNLESS OTHERWISE SPECIFIED.	LEGEND
11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TRAFFIC CONTROL AND SAFETY MEASURES DURING THE CONSTRUCTION PERIOD, INCLUDING THE SUPPLY, INSTALLATION, AND REMOVAL OF ALL NECESSARY SIGN DELINEATORS, MARKERS AND BARRIERS.	NAGE, LEGAL BOUNDARY
 DO NOT ALTER GRADING OF THE SITE WITHOUT PRIOR APPROVAL OF THE ENGINEER/CITY. ALL ROADWAY, PARKING LOT, AND GRADING WORKS TO BE UNDERTAKEN IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS. THE CONTRACTOR IS TO PROVIDE POSITIVE DRAINAGE AWAY FROM THE 	EXISTING STORM STRUCTURE
BUILDING. 14. CONTACT THE CITY FOR INSPECTION OF ROUGH GRADING OF PARKING LOTS, ROADWAYS AND LANDSCAPED AREAS PRIOR TO PLACEMENT OF ASPHALT AND TOPSOIL. ALL DEFICIENCIES NOTED SHALL BE RECTIFIED T THE CITY'S SATISFACTION PRIOR TO PLACEMENT OF ANY ASPHALT, TOPSOIL, SEED & MULCH AND/OR SOD.	TO EXISTING SANITARY STRUCTURE
15. ALL DIMENSIONS AND INVERTS MUST BE VERIFIED PRIOR TO CONSTRUCTION, IF THERE IS ANY DISCREPANCY THE CONTRACTOR IS TO NOTIFY THE ENGINEER PROMPTLY.	EXISTING FIRE HYDRANT
 16. ELECTRICAL, GAS, TELEPHONE AND TELEVISION SERVICE LOCATIONS ARE SUBJECT TO THE INDIVIDUAL AGENCY: ELECTRICAL SERVICE - HYDRO ONE, GAS SERVICE - ENBRIDGE, TELEPHONE SERVICE - BELL CANADA. 	EXISTING HYDRO POLE O H.P.
• TELEVISION SERVICE - ROGERS. 16. INSTALLATION TO BE IN ACCORDANCE WITH CURRENT CODES AND STANDARDS OF APPROVAL AGENCIES HYDRO ONE, BELL AND THE CITY.	EXISTING HYDRO
17. CONTRACTOR TO ENSURE ALL APPLICABLE OPS SPECIFICATIONS ARE FOLLOWED DURING CONSTRUCTION 18. FOR GEOTECHNICAL INFORMATION, REFER TO THE GEOTECHNICAL REPORT FOR 145 WALGREEN ROAD, PREPARED BY PINCHIN, DATED JUNE 21, 2024.	EXISTING ELEVATION ×99.00 PROPOSED STORM MANHOLE
19. ALL PROPOSED CURB TO BE CONCRETE BARRIER CURB UNLESS OTHERWISE SPECIFIED.	PROPOSED STORM MANHOLE
EROSION AND SEDIMENT CONTROL 1. THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THI	PROPOSED SANITARY STRUCTURE
 THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THI INCLUDES LIMITING THE AMOUNT OF EXPOSED SOIL, TEMPORARY SEDIMENT CONTROL (GEOSOCK INSERTS WITH AN OVERFLOW UNDER GRATE OR COVER) TO BE IMPLEMENTED DURING CONSTRUCTION ON ALL PROPOSED ROAD CATCHBASINS, REARYARD CATCHBASINS AND CATCHBASIN MANHOLES AND OTHER SEDIMENT TRAPS. NO RECYCLED GEOSOCK MATERIAL SHALL BE PERMITTED FOR USE ON SITE. THE CONTRACTOF ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY. 	RPROPOSED FINISHED GROUND ELEVATION* •x99.00
2. AT THE DISCRETION OF THE PROJECT MANAGER OR MUNICIPAL STAFF, ADDITIONAL SILT CONTROL DEVICES SHALL BE INSTALLED AT DESIGNATED LOCATIONS.	PROPOSED TOP OF CURB ELEVATION ×99.00TC PROPOSED TOP OF WALL ELEVATION ×99.00TW PROPOSED BOTTOM OF WALL ELEVATION ×99.00BW
 FOR SILT FENCE BARRIER, USE OPSD 219.110. GEOTEXTILE FOR SILT FENCE AS PER OPSS 1860, TABLE 3. EXCEPT AS PROVIDED IN PARAGRAPHS 4.1., and 4.2. BELOW, STABILIZATION MEASURES SHALL BE INITIATED AS SOON AS FEASIBLE IN PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITIES HAVE TEMPORARILY CRASED. 	PROPOSED BOTTOM OF WALL ELEVATION ×99.00BW PROPOSED DITCH ELEVATION ×99.00(D) OR PROPOSED SWALE ELEVATION ×99.00(S)
 PERMANENTLY CEASED, BUT IN NO CASE MORE THAN 14 DAYS AFTER THE CONSTRUCTION ACTIVITY HAS TEMPORARILY OR PERMANENTLY CEASED. 4.1. WHERE THE INITIATION OF STABILIZATION MEASURES BY THE 14TH DAY AFTER CONSTRUCTION ACTIVITY TEMPORARILY OR PERMANENTLY CEASE IS PRECLUDED BY SNOW COVER, STABILIZATION MEASURES SH/ INITIATED AS SOON AS FEASIBLE. 4.2. WHERE CONSTRUCTION ACTIVITY WILL RESUME ON A PORTION OF THE SITE WITHIN 21 DAYS FROM WHEN ACTIVITIES CEASED, (E.G. THE TOTAL TIME PERIOD THAT CONSTRUCTION ACTIVITY IS TEMPORARILY CEASED. 	ALL BE PROPOSED SLOPE <u>1.0%</u>
IS LESS THAN 21 DAYS) THEN STABILIZATION MEASURES DO NOT HAVE TO BE INITIATED ON THAT PORTION OF SITE BY THE 14TH DAY AFTER CONSTRUCTION ACTIVITY TEMPORARILY CEASED.	PROPOSED BARRIER CURB PROPOSED RETAINING WALL
 SEDIMENT THAT IS ACCUMULATED BY THE TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REMOVED IN A MANNER THAT AVOIDS ESCAPE OF THE SEDIMENT TO THE DOWNSTREAM SIDE OF THE CONTROL MEASURE AND AVOIDS DAMAGE TO THE CONTROL MEASURE. SEDIMENT SHALL BE REMOVED TO THE LEVEL OF THE GRADE EXISTING AT THE TIME THE CONTROL MEASURE WAS CONSTRUCTED AND BE ACCORDING TO THE FOLLOWING: 5.1. FOR LIGHT-DUTY SEDIMENT BARRIERS, ACCUMULATED SEDIMENT SHALL BE REMOVED ONCE IT REACHES THE LESSER OF THE FOLLOWING: 	PROPOSED DRAINAGE SWALE
 5.1.1. A DEPTH OF ONE-HALF THE EFFECTIVE HEIGHT OF THE CONTROL MEASURE. 5.1.2. A DEPTH OF 300 MM IMMEDIATELY UPSTREAM OF THE CONTROL MEASURE. 5.2. FOR ALL CONTROL MEASURES, ACCUMULATED SEDIMENT SHALL BE REMOVED AS NECESSARY TO PERFORM MAINTENANCE REPAIRS. 	ENTRY/EXIT LOCATION, ELEVATION & LEVEL BF = BARRIER FREE
 ACCUMULATED SEDIMENT SHALL BE REMOVED PRIOR TO THE REMOVAL OF THE CONTROL MEASURE. ACCUMULATED SEDIMENT IS TO BE REMOVED AND DISPOSED OF AS PER OPSS 180. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE MONITORED TO ENSURE THEY ARE IN EFFECTIVE WORKING ORDER. THE CONDITION OF THE CONTROL MEASURES SHALL BE MONITORED PR 	IR = ONE RISER, OH = OVERHEAD DOOR FFE=74.40
TO ANY FORECAST STORM EVENT AND FOLLOWING A STORM EVENT. 7. DUST CONTROL MEASURES SHOULD BE CONSIDERED PRIOR TO CLEARING AND GRADING. THE USE OF WATER, CALCIUM CHLORIDE FLAKES/SOLUTION OR MAGNESIUM CHLORIDE FLAKES/SOLUTION SHALL BE USED A	
DUST SUPPRESSANTS AS PER OPSS 506. THIS IS TO LIMIT WIND EROSION OF SOILS WHICH MAY TRANSPORT SEDIMENTS OFFSITE, WHERE THEY MAY BE WASHED INTO THE RECEIVING WATER BY THE NEXT RAINSTORN 8. ALL 'GREEN AREAS' TO BE TREATED WITH 150mm TOPSOIL AND SOD AS SOON AS FEASIBLE, AS PER OPSS 570.	M.
 ALL DISTURBED AREAS TO BE RESTORED TO ORIGINAL CONDITION OR BETTER UNLESS OTHERWISE SPECIFIED. STOCKPILED MATERIAL IS TO BE STORED AWAY FROM POTENTIAL RECEIVERS (E.G. STORM CATCHBASINS, MANHOLES), AND BE SURROUNDED BY EROSION CONTROL MEASURES WHERE MATERIAL IS LEFT IN PLACE II 	N
EXCESS OF 14 DAYS. 11. IF REQUIRED, DEWATERING/SETTLING BASINS SHALL BE CONSTRUCTED AS PER OPSD 219.240 AND LOCATED ON FLAT GRADE UPSTREAM OF OTHER EXISTING MITIGATION MEASURES. WATERCOURSES SHALL NOT BE	
DIVERTED, OR BLOCKED, AND TEMPORARY WATERCOURSES CROSSINGS SHALL NOT BE CONSTRUCTED OR UTILIZED, UNLESS OTHERWISE SPECIFIED IN THE CONTRACT. IF CLOSURE OF ANY PERMANENT WATER PASS/ NECESSARY, THE CONTRACTOR SHALL RELEASE ANY STRANDED FISH TO THE OPEN PORTION OF THE WATERCOURSE WITHOUT HARM. 12. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL CONFORM TO OPSS 577	AGE IS 3 ISSUED FOR RESUBMISSION 3.6.2025
13. WHERE DEWATERING IS REQUIRED, THE DISCHARGED WATER SHALL BE CONTROLLED IN ACCORDANCE WITH OPSS 518.	2 ISSUED FOR SITE PLAN CONTROL 12.20.2024
14. ALL SETTLING/FILTRATION BASINS SHALL BE EQUIPPED WITH TERRAFIX 270R GEOTEXTILE (OR APPROVED EQUIVALENT) AND SHALL BE CLEANED AND REPLACED AS REQUIRED.	1 FOR REVIEW 12.18.2024
1. CONSTRUCT ALL SEWERS, CATCH BASINS, MANHOLES AND APPURTENANCES IN ACCORDANCE WITH OPSD STANDARDS AND SPECIFICATIONS, AS WELL AS CITY.	No. Revisions Date
 SEWER TRENCHING AND BEDDING SHALL CONFORM TO OPSD 802.010 AND 802.013 UNLESS NOTED OTHERWISE. BEDDING SHALL BE A MINIMUM 150mm OF GRANULAR "A", COMPACTED TO MINIMUM 95% STANDARD PROCTOR DRY DENSITY. CLEAR STONE BEDDING SHALL NOT BE PERMITTED. SUB-BEDDING, IF REQUIRED SHALL CONSIST OF 450mm OF COMPACTED GRANULAR "B" TYPE 1. BACKFILL TO AT LEAST 300mm ABOVE TOP OF PIPE WITH GRANULAR "A" OR GRANULAR "B" TYPE 1. 	Check and verify all dimensions before proceeding with the work Do not scale drawings
 2.5. BACKFILL TO AT LEAST SUGNITION ABOVE TOP OF PIPE WITH GRANULAR A OK GRANULAR B TIPE 1. 2.4. TO MINIMIZE DIFFERENTIAL FROST HEAVING, TRENCH BACKFILL (FROM PAVEMENT SUBGRADE TO 2.0 METRES BELOW FINISHED GRADE) SHALL MATCH EXISTING SOIL CONDITIONS. 3. SANITARY SEWERS AND CONNECTIONS 150mmØ AND SMALLER TO BE PVC SDR-28. 	SCALE 1:500
 SEWERS AND CONNECTIONS 200mmØ AND LARGER TO BE PVC SDR-35. BEDDING TO BE TYPE "B" EXCEPT AT RISERS, UNLESS NOTED OTHERWISE. 	0 10 20 30 40 50 Metre
5. SEWERS AND WATERMAINS LOCATED PARALLEL TO EACH OTHER SHOULD BE CONSTRUCTED IN SEPARATE TRENCHES. WHEN IT IS IMPOSSIBLE OR NOT PRACTICAL TO MAINTAIN VERTICAL AND/OR HORIZONTAL SEPARATION PER MECP STANDARDS, ALL SEWERS SHOULD BE CONSTRUCTED OF WATERMAIN QUALITY PIPE, PRESSURE TESTED IN PLACE AT A PRESSURE OF 350 kPa (50 psi) WITHOUT LEAKAGE USING THE TESTING METHODOLOGY IN ONTARIO PROVINCIAL STANDARD SPECIFICATION 701 (OPSS 701) OF THE OPS.	-
6. INSULATE ALL STORM AND SANITARY SEWERS/SERVICES THAT HAVE LESS THAN 2.0m OF COVER WITH THERMAL INSULATION AS PER CITY DETAIL \$35, OPTION A.	
 SEWER CONNECTIONS ARE TO BE MADE ABOVE THE SPRINGLINE OF THE SEWERMAIN AS PER CITY OF OTTAWA STANDARD DRAWING \$11, \$11.1 & \$11.2. SUPPLY AND INSTALL ALL PIPING AND APPURTENANCES AS SHOWN AND DETAILED TO WITHIN 1.0m OF BUILDING. ALL ENDS OF SERVICES TO BE PROPERLY CAPPED AND LOCATED WITH 2"x4"X8' LONG MARKER. 	
9. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS ON SITE, OUTLET CONNECTION TO THE MAIN AND PIPES 150mmØ OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES.	Stamp:
10. DYE TESTING IS TO BE COMPLETED ON SANITARY SERVICE TO CONFIRM PROPER CONNECTION TO SANITARY SEWER MAIN.	
STM STRUCTURE TABLE	
NAME RIM ELEV. INVERT IN INVERT OUT DESCRIPTION	Client:
CB1 127.85 SE126.490 COVER: CITY S19 FRAME: CITY S19	MILLER WASTE SYSTEMS 112 BALES DRIVE EAST
STR.: OPSD 705.010 COVER: CITY S19	EAST GWILLIMBURY, ON
CB2 127.98 SE126.585 FRAME: CITY S19 STR.: OPSD 705.010 STR.: OPSD 705.010	Project:
CBMH3 127.80 NW126.270 SE126.265 FRAME: CITY S28.1 STR. OPSD 701.010	PROPOSED ADDITION
CBMH4 127.80 NW126.370 SE126.365 FRAME: CITY S28.1	145 WALGREEN ROAD CARP, ON
STR. OPSD 701.010 PER CITY STANDARD	
LCBI 127.10 SEI26.315 S31	Drawing Title:
LCB2 126.94 NW126.164 SE126.159 S30	SITE GRADING, DRAINAGE, EROSION & SEDIMENT CONTROL & SERVICING PLAN
LCB3 126.79 NW126.010 SE126.005 S30	SEDIIVIENT CONTROL & SERVICING PLAN
LCB4 126.65 NW125.870 S125.865 PER CITY STANDARD S30 STORMCEPTOR EF08 STORMCEPTOR EF08	Scale: Project Number: 1:500
OGS1 126.95 W125.801 SE125.792 FOUIVALENT)	Drawn By: RP CO-25-1370
FRAME & COVER: OPSD 401.040/B	Checked By: Drawing Number:
	Designed By:

	STM STRUCTURE TABLE											
NAME	RIM ELEV.	INVERT IN	INVERT OUT	DESCRIPTION								
CB1	127.85		SE126.490	COVER: CITY S19 FRAME: CITY S19 STR.: OPSD 705.010								
CB2	127.98		SE126.585	COVER: CITY S19 FRAME: CITY S19 STR.: OPSD 705.010								
СВМНЗ	127.80	NW126.270	SE126.265	COVER: CITY S28.1 FRAME: CITY S25 STR. OPSD 701.010								
СВМН4	127.80	NW126.370	SE126.365	COVER: CITY S28.1 FRAME: CITY S25 STR. OPSD 701.010								
LCB1	127.10		SE126.315	PER CITY STANDARD S31								
LCB2	126.94	NW126.164	SE126.159	PER CITY STANDARD S30								
LCB3	126.79	NW126.010	SE126.005	PER CITY STANDARD S30								
LCB4	126.65	NW125.870	S125.865	PER CITY STANDARD S30								
OGS1	126.95	W125.801	SE125.792	STORMCEPTOR EF08 (OR APPROVED EQUIVALENT) FRAME & COVER: OPSD 401.040/B								

C101 👌 #XXXXX

APPENDICES

APPENDIX A - MECP WELL RECORDS

WELL_ID	COMPLETED	WELLDEPTH (m)	STATICWATERLEVEL (m)	DEPTH TO BEDROOK (m)	FINALSTATUS	USE1	GEOLOGY	COLOR	FORMATION TOP DEPTH	FORMATION END DEPTH	UNITSOFMEASUREMENT
1513812	25-Aug-73 25-Aug-73	29 29	1.8 1.8	0.6	Water Supply Water Supply	Domestic	LIMESTONE, ROCK SAND.	GREY BROWN	1		ONTIGO WERGONEWENT
1513812 1513812	25-Aug-73 25-Aug-73	29 29	1.8	0.6	Water Supply Water Supply	Domestic Domestic	SAND, STONES, LIMESTONE, SAND,	BROWN GREY	8	0 2 ft	
1513517 1513517	10-Sep-73 10-Sep-73	29 29	5.2	0.9	Water Supply Water Supply	Domestic Domestic	SAND,, LIMESTONE,	GREY GREY	7	9 95 ft 3 8 ft	
1513517 1513517	10-Sep-73 10-Sep-73	29 29	5.2	0.9	Water Supply Water Supply	Domestic Domestic	LIMESTONE, SAND, STONES,	GREY BROWN		8 79 ft 0 3 ft	
1514625 1514625	25-Apr-75 25-Apr-75	35.7 35.7	0.9	3	Water Supply Water Supply	Domestic Domestic	SANDSTONE, LIMESTONE,	GREY GREY	3	0 40 ft 0 115 ft	
1514625 1514625	25-Apr-75 25-Apr-75	35.7 35.7	0.9	3	Water Supply Water Supply	Domestic Domestic	LIMESTONE, SAND, BOULDERS, PACKED	GREY GREY	1	0 30 ft 0 10 ft	
1514625 1519880	25-Apr-75 18-Jul-85	35.7 53.3	0.9	3 6.7	Water Supply Water Supply	Domestic Domestic	LIMESTONE, SAND, LIGHT-COLOURED,	GREY BROWN	11		
1519680 1519680	18-Jul-85 18-Jul-85	53.3 53.3	6.1	6.7	Water Supply Water Supply	Domestic Domestic	SAND, STONES, LIMESTONE,	GREY GREY	1	2 22 ft	
1520130 1520130	10-Aug-85 10-Aug-85	12.2 12.2	1.2	6.4	Water Supply Water Supply	Domestic Domestic	CLAY, PACKED, STONES, SILT, PACKED	GREY		0 5 ft 5 11 ft	
1520130 1520130	10-Aug-85 10-Aug-85	12.2	1.2	6.4	Water Supply Water Supply	Domestic Domestic	GRAVEL, SILT, PACKED STONES, SILT, PACKED	GREY	1		
1520130 1520130	10-Aug-85 10-Aug-85	12.2	1.2	6.4 6.4	Water Supply Water Supply Water Supply	Domestic Domestic	GRAVE, SILT, DENSE LIMESTONE, HARD,	GREY GREY	1	5 21 ft	
1520189	18-Oct-85 18-Oct-85	9.1	1.5	5.5	Water Supply Water Supply	Domestic	GRAVEL, LOOSE, UMESTONE SOFT.	GREY	1	5 18 ft 8 30 ft	
1520189	18-Oct-85 18-Oct-85	9.1	1.5	5.5	Water Supply Water Supply	Domestic	SAND, LOOSE, CLAY, STONES, PACKED	BROWN		0 3 ft 3 15 ft	
1520281	04-Sep-85	21.9	3	9.1 9.1	Water Supply	Domestic Domestic	SAND, GRAVEL, BOULDERS HARDPAN	BROWN		0 8 ft	
1520281	04-Sep-85 04-Sep-85	21.9	3	9.1	Water Supply Water Supply	Domestic	GRAINED.SOFT	GREY	3		
1520281	04-Sep-85	21.9	3	9.1	Water Supply	Domestic	LIMESTONE, FRACTURED,	GREY	5		
1520287 1520287	06-Sep-85 06-Sep-85	22.9	3.7	8.8	Water Supply Water Supply	Commerical Commerical	SAND, GRAVEL, PACKED LIMESTONE, MEDIUM-GRAINED,	GREY	2	7 29 ft 9 75 ft	
1520287	06-Sep-85	22.9	3.7	8.8	Water Supply	Commerical	SAND, PACKED,	BROWN		0 7 ft	
1520296 1520296	17-Dec-85 17-Dec-85	45.7 45.7	9.1 9.1	4.6 4.6	Water Supply Water Supply	Domestic Domestic	SAND, WATER-BEARING, SAND, ,	BROWN GREY		3 10 ft 0 15 ft	
1520296	17-Dec-85	45.7	9.1	4.6	Water Supply	Domestic	LIMESTONE, MEDIUM-GRAINED,			5 150 ft	
1520296 1520299	17-Dec-85 20-Dec-85	45.7 53.3	9.1 9.1	4.6 4.9	Water Supply Water Supply	Domestic Domestic	TOPSOIL, STONES, FILL CLAY, SANDY, BOULDERS	BROWN		0 3 ft 1 13 ft	
1520299 1520299	20-Dec-85 20-Dec-85	53.3 53.3	9.1 9.1	4.9 4.9	Water Supply Water Supply	Domestic Domestic	GRAVEL, PACKED, STONES,	GREY		0 1 ft	
1520299 1520803	20-Dec-85 17-Mar-85	53.3 30.5	9.1 3.7	4.9 6.1	Water Supply Water Supply	Domestic Domestic	LIMESTONE, SAND, PACKED,	GREY BROWN		6 175 ft 0 9 ft	
1520803 1520803	17-Mar-85 17-Mar-85	30.5 30.5	3.7 3.7	6.1	Water Supply	Domestic Domestic	SAND, GRAVEL, PACKED LIMESTONE, MEDIUM-GRAINED,	BROWN	2	9 20 ft	
1520803 1521053	17-Mar-85 08-Oct-86	30.5 11.6	3.7 3.4	6.1 0	Water Supply Water Supply	Domestic Domestic	UMESTONE, MEDIUM-GRAINED, TOPSOIL, SAND, PACKED	BROWN		0 100 ft 0 1 ft	
1521053 1521053	08-Oct-86 08-Oct-86	11.6	3.4	0	Water Supply Water Supply	Domestic Domestic	CLAY, PACKED, SAND, GPAVEL, LOOSE	GREY BROWN	1	1 16 ft	
1521158	25-Nov-86	30.5	3	4.9	Water Supply	Domestic	SAND, GRAVEL, WATER- BEARING	BROWN		0 8 ft	
1521158	25-Nov-86	30.5	3	4.9	Water Supply	Domestic	HARDPAN, BOULDERS,	BROWN		8 16 ft	
1521158	25-Nov-86	30.5	3	4.9	Water Supply	Domestic	LIMESTONE, MEDIUM-GRAINED, TOPSOIL STONES, WATER-		1		
1521160	30-Sep-86	45.7	4.6	4.6	Water Supply	Commerical	BEARING	BROWN		0 6 ft	
1521160	30-Sep-86 30-Sep-86	45.7 45.7	4.6	4.6	Water Supply Water Supply	Commerical	LIMESTONE, MEDIUM-GRAINED, CLAY, SANDY	GREY		5 150 ft	
1522407 1522407	19-Dec-87 19-Dec-87	45.7 56.4 56.4		4.6 3.7 3.7	Water Supply Water Supply Water Supply	Commerical Commerical	SAND, GRAVEL, PACKED HARDPAN,	BROWN		0 9 ft 9 12 ft	
1522407 1522407 1522407	19-Dec-87 19-Dec-87 19-Dec-87	56.4 56.4		3.7 3.7 3.7	Water Supply	Commerical Commerical	HAHDPAN,, LIMESTONE, MUCK, SOFT LIMESTONE, QUARTZ, MUCK	GREY GREY	1	2 100 ft	
1522407 1522535 1522536	19-Dec-87 19-Jul-88 18-Jul-88	56.4 45.1 45.1	6.7 6.7	3.7 0 0	Water Supply Recharge Well Water Supply	Commerical Cooling And A/C Commerical	LIMESTONE, QUARTZ, MUCK LIMESTONE, SHALE, LIMESTONE, SHALE, SILT	GREY GREY GREY		0 148 ft	
1522536 1522745	18-Jul-88 07-Sep-88	45.1 45.7	6.7 9.1	0	Water Supply Water Supply	Commerical Domestic	LIMESTONE, SOFT, MEDIUM-	GREY		0 148 ft 0 150 ft	
1523329	23-Dec-88	45.7	9.1	0	Water Supply	Domestic	GRAINED STONES, FRACTURED, ROCK			0 3 ft	
1523329	23-Dec-88	45.7	9.1	0	Water Supply	Domestic	LIMESTONE, MEDIUM GRAVEL, SOFT	GREY		3 150 ft	
1523365 1523365	31-Mar-89 31-Mar-89	68.6 68.6	6.1 6.1	0.6	Water Supply Water Supply	Domestic Domestic	UMESTONE,, TOPSOIL,	GREY BROWN		2 225 ft 0 2 ft	
1523388 1523388	28-Apr-89 28-Apr-89	68.6 68.6	4.9 4.9	2.7	Water Supply Water Supply	Domestic Domestic	SAND, GPAVEL, LIMESTONE, SOFT, MEDIUM-	BROWN GREY		0 9 ft 9 225 ft	
1523562	05-Jun-89	42.7	5.5	1.8	Water Supply	Domestic	GRAINED LIMESTONE, POROUS,	GREY		0 140 ft	
1523562 1523562	05-Jun-89 05-Jun-89	42.7 42.7	5.5	1.8	Water Supply Water Supply	Domestic Domestic	SAND, STONES, LOOSE LIMESTONE, HARD,	GREY GREY		0 6 ft 6 90 ft	
1523782	18-Aug-89	45.7	4.9	0.9	Water Supply	Domestic	GRAVEL, SANDY, FILL	BROWN		0 3 ft	
1523782	18-Aug-89 09-Nov-89	45.7 198.1	4.9	0.9	Water Supply Water Supply	Domestic Domestic	LIMESTONE, MEDIUM-GRAINED, SAND, GRAVEL, BOULDERS	BROWN		3 150 ft 0 14 ft	
1524090	09-Nov-89	198.1	3	4.3	Water Supply	Domestic	LIMESTONE, MEDIUM-GRAINED,	GREY	1		
1524090	09-Nov-89	198.1	3	4.3	Water Supply	Domestic	SANDSTONE, HARD, MEDIUM- GRAINED	GREY	58	0 630 ft	
1524090	09-Nov-89	198.1	3	4.3	Water Supply	Domestic	GRANITE, HARD, MEDIUM- GRAINED	WHITE	63	0 650 ft	
1524091 1524091	08-Nov-89 08-Nov-89	74.7 74.7	6.1 6.1	0.3	Water Supply Water Supply	Domestic Domestic	SAND, STONES, LIMESTONE,	BROWN GREY		0 1 ft 1 245 ft	
1524836	22-Aug-90	43.6	6.1	2.1	Water Supply	Domestic	CLAY, GRAVEL,	GREY		0 7 ft	
1524836 1525623	22-Aug-90 30-Jul-91	43.6 61	6.1 9.8	0	Water Supply Water Supply	Domestic	UMESTONE, UMESTONE,FRACTURED,	GREY		7 143 ft 0 9 ft	
1525623	30-Jul-91	61	9.8	0	Water Supply	Domestic	LIMESTONE, MEDIUM-GRAINED,			9 200 ft	
1525624	02-Jul-91 02-Jul-91	47.2 47.2	16.8 16.8	2.1	Water Supply Water Supply	Domestic Domestic	SAND, STONES, LIMESTONE, MEDIUM-GRAINED,	BROWN		0 7 ft 7 155 ft	
1528205	07-Sep-94	22.9	4	2.4	Water Supply	Domestic	TOPSOIL, STONES,	BROWN		0 8 ft	
1528205	07-Sep-94	22.9	4	2.4	Water Supply	Domestic	LIMESTONE, MEDIUM-GRAINED,			8 75 ft	
1528504 1528504	10-May-85 10-May-85	22.9 22.9	1.5 1.5	5.2 5.2	Water Supply Water Supply	Domestic Domestic	TOPSOIL, STONES, CLAY, SANDY, STONES	BROWN		0 5 ft 5 17 ft	
1528504 1529618	10-May-85 11-Sep-97	22.9 76.2	1.5 1.5	5.2 2.7	Water Supply Water Supply	Domestic Commerical	LIMESTONE, TOPSOIL, SANDY, STONES	GREY BROWN		7 75 ft 0 9 ft	
1529618 1530339	11-Sep-97 27-Oct-98	76.2 42.7	1.5 7.6	2.7 2.1	Water Supply Observation Wells	Commerical Livestock	LIMESTONE, LAYERED, HARD TOPSOIL, STONES, PACKED	GREY BROWN		9 250 ft 0 7 ft	
1530339 1530489	27-Oct-98 24-Feb-99	42.7 43.3	7.6	2.1 0	Observation Wells Water Supply	Livestock Domestic	LIMESTONE, LIMESTONE, LAYERED,	GREY GREY		7 140 ft 0 132 ft	
1530489 1530489	24-Feb-99 24-Feb-99	43.3 43.3	11.6 11.6	0	Water Supply Water Supply	Domestic Domestic	LIMESTONE, HARD, LIMESTONE, LAYERED,	WHITE GREY	13	8 142 ft	
1531069 1531069	17-Mar-00 17-Mar-00	45.7 45.7	8.2 8.2	1.2	Water Supply Water Supply	Domestic Domestic	TOPSOIL, STONES, LIMESTONE, HARD,	BROWN GREY		0 4 ft 4 150 ft	
1531133 1531133	25-Apr-00 25-Apr-00	6.1		1.2	Observation Wells Observation Wells	Industrial	TOPSOIL, STONES, LIMESTONE, HARD,	BROWN GREY		0 4 ft 4 20 ft	
1531138	05-May-00 05-May-00	30.5	2.4 2.4	6.7	Water Supply Water Supply	Domestic	SAND,, CLAY,SANDY,	BROWN		0 4 ft 4 13 ft	
1531138 1531138	05-May-00 05-May-00	30.5 30.5	2.4	6.7	Water Supply Water Supply Water Supply	Domestic Domestic	SAND, GRAVEL, BOULDERS LIMESTONE,	GREY GREY		3 22 ft	
1534196 1534196	09-Sep-03 09-Sep-03	83.2 83.2	3.7 3.7	6.7	Water Supply Water Supply Water Supply	Domestic Domestic	TOPSOIL, SANDY, STONES HARDPAN,	BROWN GREY		0 12 ft 2 22 ft	
1534196	09-Sep-03 21-Oct-04	83.2 91.4	3.7	6.7	Water Supply Water Supply Water Supply	Domestic	UMESTONE, FILL.	GREY	2	2 273 ft 0 0.609 m	
1535168 1535168 7118468	21-Oct-04 21-Oct-04 05-Nov-08	91.4 91.4 67.1	15 15 4.6	0.6	Water Supply Water Supply Water Supply	Domestic Domestic	HLL, UMESTONE, SAND.	GREY	0.60		
7118468 7118468 7139838	05-Nov-08 05-Nov-08 19-Nov-09	67.1 45.1	4.6 4.6 4.7	1.83 1.83 1.52	Water Supply	Domestic Domestic	SAND,, LIMESTONE, TOPSOIL STONES.	GREY BROWN		0 6 ft 6 220 ft 0 1.52 m	
7139838 7139838	19-Nov-09	45.1	4.7	1.52	Water Supply Water Supply	Domestic	UMESTONE, MEDIUM-GRAINED		1.5		
7173863	28-Oct-11	18.6	3.7	6.1	Water Supply	Domestic	CLAY, GRAVEL, SANDY			0 20 ft	
7173863 7173863 7472000	28-Oct-11 28-Oct-11	18.6 18.6	3.7 3.7	6.1 6.1	Water Supply Water Supply	Domestic Domestic	UMESTONE, UMESTONE,	GREY GREY	2	7 48 ft	
7173863 7181192	28-Oct-11 28-Mar-12	18.6 61	3.7 7.1	6.1 3.05	Water Supply Water Supply	Domestic Domestic	LIMESTONE, SAND, CLAY,	GREY		0 10 ft	
7181192 7181192 7101100	28-Mar-12 28-Mar-12	61	7.1	3.05	Water Supply Water Supply	Domestic Domestic	UMESTONE, UMESTONE,	GREY GREY	12	0 121 ft 1 144 ft	
7181192 7181192	28-Mar-12 28-Mar-12	61	7.1	3.05	Water Supply Water Supply	Domestic Domestic	UMESTONE, UMESTONE,	BLACK GREY	14	7 200 ft	
7194029 7194029	21-Nov-12 21-Nov-12	24.4 24.4	14.9 14.9	2.44 2.44	Water Supply Water Supply	Domestic Domestic	SAND, GRAVEL, LIMESTONE,	GREY		0 8 ft 8 65 ft	
7194029 7194029	21-Nov-12 21-Nov-12	24.4 24.4	14.9 14.9	2.44 2.44	Water Supply Water Supply	Domestic Domestic	LIMESTONE,	GREY GREY	6	9 80 ft	
7270176 7270176	01-Jun-16 01-Jun-16	83.8 83.8	6.3 6.3	1.82	Water Supply Water Supply	Irrigation Irrigation	TOPSOIL, ROCK, FRACTURED UMESTONE,	BROWN GREY	1.8	2 48.76 m	
7270176 7284233	01-Jun-16 21-Mar-17	83.8 33.5	6.3 4.5	1.82 2.44	Water Supply Water Supply	Irrigation Domestic	SHALE, SAND, CLAY, STONES	GREY GREY	48.7	6 83.81 m 0 8 ft	

7284233	21-Mar-17	33.5	4.5	2.44	Water Supply	Domestic	LIMESTONE,	GREY	8	110 ft	
7318083	29-Jun-18	61.9	3.3	9.14	Water Supply	Domestic	SAND, CLAY, GRAVEL		0	30 ft	
7318083	29-Jun-18	61.9	3.3	9.14	Water Supply	Domestic	LIMESTONE,	GREY	30	203 ft	
7344121	10-Sep-19	54.9	11.2	2.13	Water Supply	Domestic	SAND, BOULDERS,		0	7 ft	
7344121	10-Sep-19	54.9	11.2	2.13	Water Supply	Domestic	LIMESTONE,	GREY	7	120 ft	
7344121	10-Sep-19	54.9	11.2	2.13	Water Supply	Domestic	LIMESTONE,	GREY	120	174 ft	
7344121	10-Sep-19	54.9	11.2	2.13	Water Supply	Domestic	LIMESTONE,	GREY	174	180 ft	
	MAX	198.1	16.8	9.144							
				9.144							
	MIN.	6.1	0.9	0							
	AVG.	46.1	5.5	3.5							

CCO-25-1370

APPENDIX B - WELL RECORD (TW1)

De On Measuremen	itario		vironment		Tag No. A	08	0995	Regulation	V 903 Ontario V Pag	Vater Reso	ecord
Well Owner	ISCH	er a	ast Name / Orga	nization	IC. (MEYKA	ECHT		E CONTRA	Toestal	Long Land	constructed II Owner
19 W	AGRE	t Number/Nam			Municipality	11111111	Province	KOA /	C (B)	831-3	3232
Well Locati Address of W		on (Street Num	nber/Name)	9423431311	Township HUN	ITLE	r	Lot Z	Concess	ion 3	
County/Distri	ict/Munici	- CARL		ng	City/Town/Village	7			Province Ontario Other	Postal	Code
NAD 8		drock Materia	als/Abandonm	ent Sealing Re	cord (see instruction	is on the b	back of this form)				
General Cold		Most Comm			Other Materials			eneral Description		From	th (<i>m/ft</i>) To
BRUN CHUY	2	an /TI		Bau	ars, CARAN	r				152	5.49
GRET		INIESTON		SHALE		*	HCHLY FR (20, 7)	ACTURES /	Barro ¥).	5,49	B.C
Death Cat	at (mAR)	RIADUR	Annular Spo Type of Sealant		Volume Pla	heo	After test of well y	and the second se	Draw Down	and the second se	ecovery
From		Rock	(Material and T		(m³/ft³)		Clear and sa Other, speci	and free	(min) (m/ft) (min)	Water Level (m/ft)
0,00	0,71	String	ma nu	pingga	9 0.10		If pumping discon	tinued, give reason:	Static Level 257	۲.	201
		and					Pump intake set	at (m/ft)	1 / tC 2 2 74	2	301
							2.21	n (40)	3 275	3	293
Metho		Diamond	I Public	Well	Use mercial Not	used	Pumping rate (Vr	- [-] -]	4 2.F	4	291
Rotary (Co	onventiona		Domes	stic 🗌 Mur	icipal 🗌 Dew	vatering	Duration of pum		5 2.80	5	2.88
Boring		Digging	Irrigatio		ling & Air Conditioning	,		and of pumping (m/R	10 2.90) 10	2.00
Other, spe		natruction P	ecord - Casing		Status of V	Well	If flowing give ta	te (l/min-/ GPM)	15 1.10	15	X.A
Inside Diameter	Open Ho	le OR Material ed, Fibreglass,	Wall Thickness	Depth (m/ft)	Water Suppl	ly	Recommended	pump depth (m/ft)	20 29	20	270
(cm/in)		, Plastic, Steel)		From To	Test Hole Recharge W		Recommended	pump rate	30 3 0	30	2 110
Ditt	Sper	1207	V.40 T	05 6.4	Dewatering Observation	Well	Well production	Hpm (Rga)	40 3.10	40	2.14
					Monitoring H		Disinfected?	Hom	50 3.12	50	263
				E/	(Constructio Abandoned Insufficient S		Yes No		60 3, A	60	262
Outside			ecord - Screen	NA . Depth (m/ft)	Abandoned, Water Quali	Poor	dease provide a	Map of V map below following	Vell Location	he back.	
Diameter (cm/in)		Material alvanized, Steel)	Slot No.	From To	Abandoned specify		ST-	- and	veen 7	SHILBUIL	e-
					Hole Diameter		X		reen /	,	
			r: Fresh	Untested Fro	Depth (m/ft) Di	iameter (cm/in)	pic				
	//t) Gas d at Depti		ecify er:Fresh		BUG B.	.74	- A				
Water found			er: Fresh	Untested					Delagen		HSilapun
Business Na			the second s	echnician Info	mation Well Contractor's Lice	ence No.		N	My L	1	
579	NTON	DRILL	WE INC	- Dente	48F		Commente:				T NOV
DOX 21 Province	9, 157	Postal Code	Business E	mail Address	THRENT	7					
ON	ne No. (inc	COA 2X area code) N SCZZ	O Sterle	ndille	re, First Name)		information package delivered	Date Package Delive	Sco Audit N	^{Inistry Us}	e Only
Well Technicia		e No. Signatur	Ullin	ind/offentracto	Date Submitted	BO	Yes No	Letgos	30. JU	L141	2009
0506E (12/200)7)	P	100		Ministry's	Copy			©Qu	een's Printer	for Ontario, 2007

APPENDIX C - GEOTECHNICAL INVESTIGATION REPORT

GEOTECHNICAL INVESTIGATION OF THE PROPOSED BUILDING ADDITION AND SITE DEVELOPEMENT 145 WALGREEN ROAD OTTAWA, ON

Project No.: CCO-25-1370-01

Prepared for:

W.O. - M.W. Realty Limited

Prepared by:

Egis Canada Ltd. 104-215 Menten Place Ottawa, ON K2H 9C1

December 2024

Table	e of Content	
1.0	INTRODUCTION	1
2.0	PROJECT UNDERSTANDING	1
3.0	SITE DESCRIPTION	1
3.1	Existing Site Conditions	
3.2	Site Geology	
4.0	FIELD PROCEEDURES	2
5.0	LABORATORY TEST PROCEEDURES	
6.0	SUBSURFACE CONDITIONS	4
6.1	General	
6	5.1.1 Asphalt	
6	5.1.2 Fill	5
6	5.1.3 Silt/Sandy Silt	5
6	5.1.4 Sandy Silt Till/Silty Sand Till	
6	5.1.5 Bedrock/Refusal	7
6.2	Groundwater	
6.3	Chemical Analysis	
7.0	DISCUSSION AND RECOMMENDATIONS	
7.1	General	
7.2	Overview	
7.3	Foundations	
7.	7.3.1 Shallow Foundation on Native Soil	
7.	7.3.2 Shallow Foundation on Bedrock	
7.	7.3.3 Frost Protection	
7.4	Seismic Site Classification	
7.5	Engineered Fill	
7.6	Slabs-on-Grade	
7.7	Lateral Earth Pressure	

115 Walgreen Road, R.R.3. Carp, ON K0A 1L0 | T. 613-836-2184 | F. 613-836-3742

GEOTECHNICAL INVESTIGATION OF THE PROPOSED BUILDING ADDITION AND SITE DEVELOPEMENT 145 WALGREEN ROAD OTTAWA, ON

7.8	Cement Type and Corrosion Potential	15
7.9	Flexible Pavement	15
8.0	CONSTRUCTION CONSIDERATIONS	16
9.0	GROUNDWATER	17
10.0	SITE SERVICES	8
10.1	Excavation and Trenching	18
10.2		
10.3	Trench Backfill	19
11.0	CLOSURE	20
12.0	REFERENCES	21

APPENDICES

Appendix A – Limitations of Report

Appendix B – Site and Borehole Location Plans

Appendix C – Borehole Logs

- Appendix D Laboratory Test Results
- Appendix E Additional Drawings

1.0 INTRODUCTION

Egis Group Ltd. (Egis) was retained by W.O. M.W. Realty Limited (the Client) to perform a geotechnical investigation and provide design recommendations for the proposed building addition of 145 Walgreen Road (the project) located in the Ottawa, ON.

The foundation design recommendations and construction considerations will be developed based on factual findings from a geotechnical investigation performed at the above-mentioned site by Egis Canada Ltd.

The purpose of the investigation was to explore the subsurface conditions at nine (9) boreholes, BH24-1 to BH24-9, and to provide borehole location plans, record of borehole logs, and laboratory test results. This report provides anticipated geotechnical conditions influencing the design and construction of the proposed one-storey commercial building addition with a mezzanine, as well as recommendations for construction of proposed CNG compressor concrete pad.

This report is prepared for the sole use of client. The use of this report, or any reliance on it by any third party, is the responsibility of such a third party. This report is subject to the limitations as shown in Appendix A. It is understood that the project will be performed in accordance with all applicable codes and standards present within its jurisdiction.

2.0 PROJECT UNDERSTANDING

It is understood that The Client intends to construct a commercial building addition, approximately 517 square meters, and concrete pad for a CNG compressor at the southwest corner of the property located at 145 Walgreen Road, Ottawa, ON. The proposed structure addition is a one-story building with a mezzanine, slab-on-grade and with no basement or underground parking. Included are the access roads, parking spaces nearby and a planned area for a CNG compressor.

3.0 SITE DESCRIPTION

3.1 Existing Site Conditions

The property under consideration for the proposed development is located in an urban area with commercial properties around it. The current site is situated on the south side of the Walgreen Road, with a two-storey office building at the front followed by an existing slab on grade shop at the rear (south) end of the property. Existing commercial buildings are located to the east and west, a sports field and associated facilities are located to the north, and an empty woodland lot is located to the south.

3.2 Site Geology

Based on published physiography maps of the area (Ontario Geological Survey, OGS), the site is located in an area that is a boundary with the Ottawa Valley Clay Plains to the north, and the Smiths Falls Limestone Plain to the south.

Surficial geology maps of Southern Ontario indicate the site is situated in an area with Organic Deposits comprising of peat, muck and marl, and the northwest edge of the site is shown as shallow Paleozoic bedrock. The bedrock within the area is identified to be comprised of limestone, dolostone and sandstone of the Ottawa Group and the Shadow Lake formation.

4.0 FIELD PROCEEDURES

Egis conducted a site visit prior to the planned drilling date and marked the proposed borehole locations. In addition, Egis cleared the site of Public and Private buried utilities before the commencement of geotechnical drilling. Utility clearance requisitions were submitted to Ontario One Call (ON1Call) to obtain Public utility locates. The fieldwork was coordinated with the client. A third-party private utility locator was retained to locate any utilities not covered within the Ontario One Call Public locate system.

The fieldwork was conducted on August 14 and 15, 2024 and consisted of drilling nine (9) boreholes that were advanced to drilling depths ranging from 1.40 to 5.62 m bgs. The boreholes were drilled using a CME-55 truck-mounted drilling rig, outfitted with hollow stem augers. The equipment used for drilling was owned and operated by George Downing Estate Drilling Ltd. Of Grenville, Quebec. Soil samples were obtained at 0.76 m intervals in boreholes using a 51 mm outside diameter split spoon sampler in accordance with the Standard Penetration Test (SPT) procedure. The drilling was terminated at planned drilling depths. The bedrock was cored and sampled to approximately 3.58 and 3.68m depth from the top of the encountered bedrock surface in boreholes 24-1 and 24-2, respectively. Additionally, a 25 mm diameter standpipe piezometer was installed in borehole BH24-2 for temporary groundwater monitoring within the proposed building addition area.

Three (3) 51 mm diameter, monitoring wells were installed in borehole BH24-4 MW, BH24-7 MW and BH24-8 MW. The wells were protected in traffic rated flush-mount caps. Details and location information of the wells are provided in Section 6.2 and summarized in Table 7.

Boreholes and monitoring wells were backfilled with auger cuttings and bentonite hole-plug and restored to the existing ground level as per Regulation 903 requirements. A summary of borehole locations and drilling depths is shown in Table 1. The borehole locations are shown on Figure 2, Included in Appendix B.

		Coc	ordinates (Geodetic	Borehole Depth		
Borehole ID	Drilled Date	UTM Zone 18 T Easting	UTM Zone 18 T Northing	Surface El. (m asl)	Depth (m bgs)	Bottom El. (m asl)
BH24-1	August 14, 2024	424860.028	5013333.663	127.31	4.98	122.33
BH24-2	August 14, 2024	424875.725	5013335.166	127.12	5.62	121.50
BH24-3	August 14, 2024	424771.810	5013232.316	127.73	1.70	126.03
BH24-4 MW	August 15, 2024	424838.524	5013284.046	127.10	3.63	123.47
BH24-5	August 14, 2024	424759.248	5013262.774	128.24	2.79	125.45
BH24-6	August 14, 2024	424813.379	5013323.206	127.76	3.56	124.20
BH24-7 MW	August 15, 2024	424732.700	5013307.240	128.46	3.45	125.01
BH24-8 MW	August 15, 2024	424777.960	5013353.352	127.64	3.05	124.59
BH24-9	August 14, 2024	424813.379	5013323.206	127.22	3.33	123.89

Table 1: Borehole Information

The fieldwork was supervised by an Egis representative and the subsurface stratigraphy encountered at the borehole locations was recorded based on the recovered samples, and samples were submitted to the Egis Geotechnical Laboratory for further visual examination and testing. The boreholes were surveyed with a Trimble R2 GPS unit to record their locations and geodetic elevations.

5.0 LABORATORY TEST PROCEDURES

Geotechnical Laboratory testing on representative soil samples was performed at the Egis Geotechnical Laboratory and included determination of natural moisture content, sieve and hydrometer grain-size analysis,

and Atterberg Limits testing. The Laboratory tests were performed in accordance with American Society for Testing Materials (ASTM) test procedures.

The rock core samples returned to the laboratory were subjected to detailed visual examination and additional classification by a geotechnical engineer. Unconfined compressive strength tests were completed on selected bedrock samples. The results are discussed in this report and provided in Appendix D.

Parcel Laboratories Ltd., Ontario carried out chemical testing on a representative soil sample to determine the potential susceptibility to corrosion of ductile iron pipes and concrete attack parameters. The tested chemical parameters consisted of pH, chloride, sulphate and resistivity. Laboratory test results are included in Appendix D.

The rest of the soil samples recovered will be stored in Egis storage facility for a period of three (3) months after submission of the final report. Samples will be disposed after this period of time unless otherwise requested in writing by the client.

6.0 SUBSURFACE CONDITIONS

6.1 General

The site stratigraphy typically consists of five distinct layers. The layers were identified as Asphalt, Fill, Silt/Sandy Silt, Sandy Silt Till/Silty Sand Till and Limestone Bedrock. For classification purposes, the pavement structure, fill materials, and surficial soils encountered at this site can be divided into five (5) general layers:

- 1. Asphalt
- 2. Fill
- 3. Silt/Sandy Silt
- 4. Sandy Silt Till/Silty Sand Till
- 5. Bedrock/Refusal

The fills and soils encountered during the course of investigation, together with the field and laboratory test results are shown on the borehole records included in Appendix C. Laboratory test results are included in Appendix D. Description of the strata encountered are given below.

6.1.1 Asphalt

Two boreholes were advanced within the existing paved section, asphalt was measured to be at approximately 100 mm in the investigated boreholes BH24-6 and BH24-8 MW.

6.1.2 Fill

The fill layer was encountered at the surface or below the pavement in all boreholes and extended to a depth ranging from 0.45 m to 0.91 m bgs. The fill layer is composed mainly of granular fill, silty sand and gravelly sand to sand and gravel, trace to pockets of organics and trace of rootlets. This grey, brown, dark brown and dark grey fill layer was found to be in a moist to very moist state. In borehole BH24-9, a 50 mm topsoil/organic soil layer was encountered at the surface.

One (1) representative sample from the fill layer was subjected to grain-size analysis and the layer was observed to contain on average 18% of Gravel, 51% of Sand and 31% of Fines. The fill grain-size analysis summary is shown in Table 2, and the laboratory test results of the grain size analysis are shown in Appendix D.

Borebole ID	Sample	Constituent Material in percent weight				
Borehole ID	Sample	Gravel (%)	Sand (%)	Fines		
BH 24-7 MW	SS-1	18.1	51.2	30.7		

Table 2: Grain-size Analysis Summary of the Fill Layer

The SPT N-Value within the fill layer ranged from approximately 10 to 40 which indicated a compact to dense relative density.

6.1.3 Silt/Sandy Silt

A layer of silt/sandy silt was encountered below the fill layer in all boreholes except for BH 24-5, observed to extend to depths ranging approximately from 1.26 to 3.05 m bgs. In general, this layer is comprised of silt to sandy silt with trace to some clay, trace of sand and trace of rootlets encountered in the upper zone of the layer below the fill layer in most of the boreholes. The natural moisture content for this greyish brown layer was observed to be approximately 16%.

Two (2) representative samples from the silt/sandy silt layer were subjected to grain-size "Hydrometer" analysis and the layer was observed to contain on average 2% gravel, 20% sand, and 69% silt and 9% clay. The silt/sandy silt grain-size analysis summary is shown in Table 3, and the laboratory test results of grain size analysis are included in Appendix D.

Perebala ID	Somelo	Cons	stituent Material ir	percent weigh	t
Borehole ID	Sample	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH 24-3	SS-2	0.7	8.2	79.4	11.7
BH24-8 MW	SS-2	3.7	31.8	58.2	6.3

Table 3: Grain-Size Analysis Summary of Silt/Sandy Silt Layer

The SPT N-value for this layer ranged range from 10 to 50 blows/75 mm, which indicate a relative density of compact to very dense according to CFEM (2006).

6.1.4 Sandy Silt Till/Silty Sand Till

A till layer of sandy silt till/silty sand till was encountered below the fill and/or silt/sandy silt layer in all the boreholes. In general, the till layer is comprised of sandy silt till/silty sand till. The natural moisture content for this greyish brown and grey layer ranged from 7% to 13%.

Four (4) representative samples from the sandy silt till/silty sand till were subjected to grain-size analysis and the layer was observed to contain on average 13% gravel, 34% sand, 50% silt and 7% clay. The till grain-size analysis summary is shown in Table 4, and the laboratory test results of grain size analysis are included in Appendix D.

		Constituent Material in percent weight						
Borehole ID	Sample	Sample	Sample	Sample	Gravel (%)	Sand (%)	Fines (%)	
				Silt (%)	Clay (%)			
BH24-2	SS-3	20.1	37.2	42.7				
BH24-4 MW	SS-4	12.3	20.2	58.5				
БП24-4 IVI VV	55-4	12.3	29.2	52.5	6.0			
BH24-7 MW	SS-3	14.4	48.2	37.4				

Table 4: Grain-Size Analysis Summary of Sandy Silt Till/Silty Sand Till Layer

CCO-25-1370-01

				29.8	7.6
BH24-9	SS-3	5.3	21.4	73.3	
				66.9 6.4	

The SPT N-value for this layer ranged range from 26 to 50 blows/25 mm, which indicate a relative density of compact to very dense according to CFEM (2006).

6.1.5 Bedrock/Refusal

Auger refusal was encountered in all boreholes except for BH24-4 MW on inferred bedrock at depth ranging from 1.40 to 3.56 m below existing ground surface. The bedrock was encountered and cored in the foundation area boreholes in BH24-1 and BH24-2 below the sandy silt till/silty sand till layer between 1.40 and 1.94 m bgs which corresponds to elevations El. 125.91 and El. 125.18 m. The bedrock was cored and sampled to depths 4.98 m and 5.62 m bgs in boreholes BH24-1 and BH24-2, respectively.

Based on the retrieved rock cores from boreholes within the proposed building addition footprint, the bedrock was identified as limestone and was observed to be strong to very strong, grey to dark grey, slightly weathered, thinly bedded and has fair to excellent quality based on RQD values (65 % to 96%).

The rock core (RC) samples recovered from bedrock were accurately recorded based on the length of each run and the samples encountered were evaluated for Total Core Recovery (TCR), and Rock Quality Designation (RQD). Four (4) samples of bedrock core were tested for unconfined compressive strength at the Egis Geotech laboratory. The laboratory results and bedrock core photographs are summarized in Table 5 and included in Appendix D.

Borehole ID	Rock Core	Core Depth (m bgs)	Core El. (m asl)	TCR (%)	RQD (%)	UCS (MPa)
BH24-1	RC-3	1.40 – 2.58	125.91 – 124.73	100	67	93.2
BH24-1	RC-5	4.09 – 4.98	123.22 – 122.33	100	74	119.6
BH24-2	RC-5	2.58 – 4.10	124.54 – 123.02	100	92	103.4

Table 5: Rock-Core Summary

CCO-25-1370-01

BH24-2	RC-6	4.10 – 5.62	123.02– 121.50	100	68	70.6
--------	------	-------------	----------------	-----	----	------

6.2 Groundwater

At the time of investigation, groundwater level observations were made during and immediately upon completion of drilling. The results are summarized in Table 6.

Table 6: Groundwater Observations Upon Completion of Drilling

	Boreho	ole Depth	Cave-in		Groundwater	
Borehole ID	Depth (m bgs)	Elevation (m asl)	Depth (m bgs)	Elevation (m asl)	Depth (m bgs)	Elevation (m asl)
BH24-1	4.98	122.33	1.00	126.31	1.00	Wet at the bottom
BH24-2	5.62	121.50	-	-	Dry	Dry
BH24-3	1.70	126.03	0.76	126.97	0.76	Wet at the bottom
BH24-4 MW	3.63	123.47	-	-	1.75	125.35
BH24-5	2.79	125.45	1.98	126.26	Dry	Dry
BH24-6	3.56	124.20	2.74	125.02	Dry	Dry
BH24-7 MW	3.45	125.01	-	-	Dry	Dry
BH24-8 MW	3.05	124.59	-	-	Dry	Dry
BH24-9	3.33	123.89	2.61	124.61	Dry	Dry

Monitoring wells were installed in BH24-04 MW, BH24-07 MW and BH24-08 MW, for the purpose of hydrogeological investigation and groundwater monitoring. A standpipe piezometer was installed in BH24-02 to

obtain a water level measurement in the proposed building area. A subsequent groundwater level measurement was completed on August 29, 2024, and groundwater observations are presented in the following Table 7.

BH/MW	Screen Interval	Water I			
ID	Depth (m bgs)	Date	Depth (m bgs)	Elev. (m asl)	Remarks
BH24-2 SP*	1.24 – 1.85	August 29, 2024	0.86	126.26	
BH24-4 MW	1.52 - 3.05	August 29, 2024	1.20	125.90	
BH24-7 MW	1.52 - 3.05	August 29, 2024	1.37	127.09	
BH24-8 MW	1.52 – 3.05	August 29, 2024	0.81	126.83	

Table 7: Monitoring Wells Summary

* A Standpipe (SP) was installed in BH24-02 to measure the water level at the proposed building addition.

Groundwater levels may be expected to fluctuate due to extreme weather events and seasonal changes.

6.3 Chemical Analysis

Chemical analysis was conduced by Paracel Laboratories in Ottawa, ON, to determine the resistivity, pH, sulphate and chloride content of a representative soil sample collected from BH24-4 MW and BH24-8 MW. The sample was chosen from within the estimated infrastructure and foundation depths. A summary of chemical analysis results is shown in Table 8 and the laboratory results are shown in Appendix D.

Table 8: Chemical Analysis Summary

		Depth		Chemical	Analysis	
Borehole ID	Sample	(m bgs)	pH (pH units)	Resistivity (ohm.cm)	Chloride (ppm)	Sulphate (ppm)
BH24-4 MW	SS-3	1.52 - 2.13	7.33	8440	11	26
BH24-8 MW	SS-4	2.29 - 2.70	7.37	1260	422	70

7.0 DISCUSSION AND RECOMMENDATIONS

7.1 General

This section of the report provides engineering recommendations on the geotechnical design aspects of the project based on the project requirements and our interpretation of the subsurface soils information. The discussions and recommendations presented are intended to provide sufficient information to the designer of the proposed building to select the suitable type of foundation to support the structure.

The foundation design recommendations presented in this section have been developed following Part 4 of the 2015 National Building Code of Canada (NBCC) and 2012 Ontario Building Code (OBC) extending the Limit State Design approach. The recommendations presented herein are subject to the limitations noted in Appendix A "Limitations of Report" which forms an integral part of this document.

7.2 Overview

It is understood that the proposed building addition is a one-storey structure with a mezzanine, without basement or underground parking. It is also understood that the finished floor elevation for the proposed building addition will be at the same finish floor elevation of the existing slab-on-grade at approximately El. 127.70 m. The finished floor elevation was interpolated from the Surveyor's Real Property Report, Part 1, included in Appendix E.

For the current project, the following list summarizes some key geotechnical details that were considered in the suggested geotechnical recommendations:

- The existing fill and any loose or disturbed soil is required to be cleared from the footprint of the footings of the proposed building.
- Considering the structural loads expected at the foundation level, the provision of conventional spread and strip footings is adequate. The footings shall be bearing on the silt/sandy silt, sandy silt till/silty sand till or the bedrock surface. Footings are expected to be buried to resist overturning, sliding, and to provide protection against frost action.
- The proposed structure can be designed using a seismic Site Class C.
- Excavation for foundations will be advanced below the existing ground level through the fill, silt/sandy silt and sandy silt till/silty sand till. The silt/sandy silt and sandy silt till/silty sand till can be classified as Type 3 soil above the water table and below the water table as Type 4 soil per the Occupational Health and Safety Act (OHSA). Therefore, excavation sides shall be sloped from its bottom at a minimum gradient of 3H:1V. For trench excavation that is deeper than 1.2 m or a worker is required to enter, excavation shall be carried out within trench boxes, which is fully braced to resist lateral earth pressure.

• A subgrade reaction modulus of 20,000 kN/m2/m can be used for the design of the slab-on-grade constructed on compacted Granular A bedding. This value shall not be used for the native subgrade.

7.3 Foundations

In general, the subsurface conditions at the site of the proposed building addition consist of asphalt, fill material, silt/sandy silt and sandy silt till/silty sand till to the bedrock surface. The silt/sandy silt and sandy silt till/silty sand till were observed to be in compact to very dense state of relative density. Limestone bedrock was encountered within the proposed addition footprint and was observed to be strong to very strong, grey to dark grey, thinly bedded, and has fair to excellent quality based on RQD values (65% to 96%).

Two main design possibilities were considered in this report. It is up to the structural designer to choose the most suitable option, or a combination of the two options.

- Ultimate geotechnical resistance for bearing of shallow footings on native soil.
- Ultimate geotechnical resistance for bearing of shallow footings on bedrock.

7.3.1 Shallow Foundation on Native Soil

The proposed building addition structure can be supported on a shallow conventional strip/spread footing system bearing on the silt/sandy silt or sandy silt till/silty sand till founding subgrade soil at or below the elevation of 126.06 m if recommended capacities are adequate. The size of the selected footing shall be determined using geotechnical resistance at Serviceability Limit State (SLS) of 200 kPa for 25 mm of settlement and a factored bearing resistance of 300 kPa under Ultimate Limit States (ULS).

Excavation for the construction of the footings will proceed through the asphalt, fill, native silt/sandy silt and sandy silt till/silty sand till deposits. Excavation of overburden soil shall be performed using conventional hydraulic excavating equipment.

Excavations shall be kept reasonably free of water. If groundwater is encountered at a shallow depth, the groundwater table shall be lowered to a minimum 0.5 m below the excavation depth using an appropriate dewatering system. Recommendations for appropriate dewatering measures beyond conventional sump pump techniques such as a positive dewatering system (e.g., well points or other specialized methods) to effectively lower the static groundwater level shall be provided by a specialized dewatering contractor.

The Occupational Health and Safety Act (OHSA) of Ontario indicates that side slopes in the silt/silty sand above the water table could be classified as Type 3 soil and below the water table as Type 4 soil and sloped no steeper than 3H:1V or be shored. If space restrictions exist, the excavations of depth greater than 1.2 m can be carried out within trench boxes, which are fully braced to resist lateral earth pressure.

Footings should be placed on undisturbed native inorganic soil. The subgrade should be reviewed and approved by a geotechnical engineer. If encountered, compressible soils, organic matter, or soft or loose areas within the

native subgrade should be sub-excavated and replaced with granular A conforming to OPSS 1010 compacted in 300mm maximum loose lifts to a minimum of 100% SPMDD which shall be used for grade raise or to level any over excavation below the foundation level.

If the native subgrade is disturbed during excavation, the subgrade shall be proof rolled before constructing the spread footings. Granular A conforming to OPSS 1010 compacted in 300mm loose lifts to minimum of 100% SPMDD shall be used for grade raise or to level any over excavation below the foundation level.

7.3.2 Shallow Foundation on Bedrock

The ULS factored bearing resistance was estimated using the Rock Mass Rating (RMR) method by Bieniawski (1989). RMR method was utilized to determine the required parameters for bearing capacity resistance at ULS conditions for the bedrock.

The proposed building addition structure can be supported on a shallow conventional strip/spread footing system bearing on the surface of the bedrock. The size of the selected footing shall be determined using a factored bearing resistance of 500 kPa under Ultimate Limit States (ULS).

The provided factored bearing resistance at ULS is based on the uniaxial compressive strength of rock. The size of the selected footing shall be determined by a structural engineer. The selected size of the footing shall have adequate compressive strength to provide resistance to the structural loads from the building and to avoid failure in concrete material under the applied pressure. Shallow footings shall comply with the minimum widths recommended by the Ontario Building Code (OBC) (2012).

The ultimate bearing capacity will govern the design. Serviceability limit state as defined by allowable settlements is not applicable for this project on rock subgrade.

Provided the bedrock surface is properly cleaned of soil and weathered material at the time of construction, the settlement of footings using the above factored bearing resistance should be negligible. The bearing capacities are calculated for a flat subgrade.

Highly weathered or fractured bedrock, which includes bedrock that can be excavated using hydraulic excavating equipment with only moderate effort, is required to be removed. Therefore, depending on the subgrade condition, subgrade grouting or poured mud slabs may be required. The mud slabs shall provide a minimum of 15 MPa compressive strength at 28 days testing.

The rock bearing surface should be inspected by qualified geotechnical personnel to confirm that the surface has been acceptably cleaned of soil, and that weathered, or excessively fractured bedrock has been removed.

7.3.3 Frost Protection

Based on the freezing index for Ottawa, Ontario Region provided for this site, the frost penetration depth is expected at 1.8 m below the ground surface. Frost penetration depth is estimated based on the OPSD 3090.101, Foundation Frost Penetration Depths for Southern Ontario.

All perimeter and exterior foundation elements, or interior foundation elements in unheated areas should be provided with a minimum of 1.8 m of earth cover above the underside of the footing or equivalent thermal rigid insulation for frost protection purposes.

7.4 Seismic Site Classification

Seismic site classification is completed based on NBCC (2015) and OBC (2012) Section 4.1.8.4 and Table 4.1.8.4.A. This classification system is based on the average soil properties in the upper 30 m and accounts for site-specific shear wave velocity of soil and rock, standard penetration resistance, and plasticity parameters of cohesive soils.

Based on the investigation results the site can be classified as Seismic Site Class (C). According to OBC (2012) Section 4.1.8.4 and Table 4.1.8.4.A, the average shear wave velocity (Vs) for Site Class C ranged between 360 to 760 m/s.

7.5 Engineered Fill

Footings shall be installed on native silt/sandy silt, sandy silt till/silty sand till or the bedrock surface. Any over excavation shall be leveled by granular A conforming to OPSS 1010 for native soil and lean concrete of minimum 15 MPa at 28 days strength for the bedrock.

The proposed engineered fill, beyond the footings influence zone, can be any material conforming to granular criteria as outlined in OPSS 1010. Material conforming to 'Granular' criteria are considered free draining and compactable and can be utilized as the engineered fill. This can apply to the backfill beyond foundation walls. The engineered fill shall be compacted to a minimum of 98% SPMDD.

All fills should be placed in horizontal lifts of uniform thickness of no more than 300 mm before compaction at appropriate moisture content determined by the Proctor test. The requirement for fill material and compaction may be addressed with a note on the structural drawing for foundation or grading drawing, and with a Non-Standard Special Provision (NSSP). Any topsoil, organics, or loose sand should be removed before placing engineered fill material.

7.6 Slabs-on-Grade

Excavation for the construction of the slab-on-grades will proceed through the asphalt and/or fill to to expose a competent native undisturbed subgrade. The exposed subgrade must be kept dry at all times to minimize the

disturbance of the subgrade. The native subgrade shall be proof rolled before the placement of granular bedding. The exposed native subgrade should be examined and approved by the Geotechnical Engineer.

Slab-on-grades are considered free-floating (not attached to the foundation walls). The interior slab-on-grade should be supported on a minimum of 200 mm of Granular A bedding compacted to 100% SPMDD. The rest of the fill, above the native soil and below the slab shall be Granular B Type II and compacted to a minimum of 100% SPMDD. It is recommended that compaction efforts are approved under the supervision of a geotechnical representative.

No perimeter drainage will be required, where the finished floor elevation is at least 150 mm above the exterior grades, which are sloped away from the structure a minimum of 2 percent gradient.

If for the design of any portions of the slab-on-grade, the modulus of subgrade reaction (k) is required, the following recommendation can be used for structural modeling. Modulus of subgrade reaction is a multi-function complex correlation that varies with the subgrade material, grade-raise fill material, and the flexural stiffness of the structural slab. However, simplified assumptions were made to estimate the spring modulus for slab-on-grade on compacted Granular A. To estimate the modulus of subgrade reaction, through a simplistic approach, a 2 m square section of the concrete slab-on-grade under the applied loads. Since the modulus of subgrade reaction is needed for the ultimate failure design of the slab, it is assumed the failure can occur at a 25 mm deformation. Considering these assumptions, a subgrade reaction modulus of 20,000 kN/m2/m can be used for the design of the slab-on-grade. This k-value is only valid for the construction of slab-on-grade on compacted Granular A bedding. This value shall not be used for the native subgrade.

For exterior slab-on-grade, a subgrade reaction modulus of 20,000 kN/m²/m is recommended for design. The slab should be supported on a minimum of 150 mm of Granular A bedding and 450 mm Granular B Type II and compacted to a minimum of 100% SPMDD. Any additional fill required above the native soil should Granular B Type II and compacted to a minimum of 100% SPMDD. The designer should provision an adequate slope and incorporating subdrains to provide appropriate runoff discharge and rapid drainage to mitigate the effects of frost heaving. Expansion, construction, and dummy joints should be spaced as required by the applicable standards.

7.7 Lateral Earth Pressure

Free draining material should be used as backfill material for foundation walls. If proper drainage is provided, "at rest" condition may be assumed for calculation of earth pressure on foundation walls. The following parameters shown in Table 9 are recommended for the granular backfill.

CCO-25-1370-01

	Expected Value				
Pressure Parameter	Granular A	Granular B	Other OPSS. MUNI 1010 'Granular"		
Unit Weight (γ) KN/M3	22.5	21.7	20.0		
Cohesion (c)					
Angle of Internal Friction (φ)	35°	32°	31°		
Coefficient of Active Earth Pressure (k _a)	0.27	0.31	0.32		
Coefficient of Passive Earth Pressure (k_p)	3.69	3.25	3.12		
Coefficient of Earth Pressure at Rest (k_o)	0.43	0.47	0.48		

Table 9: Lateral Earth Pressure Parameters for Granular A and B and Horizontal Backfill

7.8 Cement Type and Corrosion Potential

Two soil samples were submitted to Paracel laboratories for testing of chemical properties relevant to exposure of concrete elements to sulphate attacks as well as potential soil corrosivity effects on buried metallic structural elements. Test results are presented in Table 8.

The concentration of sulphate in the tested samples are considered negligible, and the potential for sulphate attack on concrete structures is low. Therefore, Type GU Portland cement may be adequate to protect buried concrete elements.

Based on electrical resistivity results and chloride content, the corrosion potential for buried steel elements ranges from medium to elevated potential for corrosion of the buried ferrous metals, which should be taken into consideration in the design of buried steel elements.

7.9 Flexible Pavement

For most of the site, the pavement structure is most likely to be placed on engineered fill material overlaying the native soil. All fill and organic material shall be removed from the proposed pavement site and replaced with

engineered fill. The existing silt/sandy silt soil or sandy silt till/silty sand till below the fill material can act as the pavement subgrade if verified by visual confirmation and proof rolling.

Where engineered fill is required, it should consist of Granular B Type I or SSM in accordance with OPSS 1010, should be used and compacted to 95% of the Standard Proctor Maximum Dry Density (SPMDD), with the upper 600 mm of the fill should be compacted to 98% SPMDD to serve as subbase.

The pavement structure proposed in this design, considers the accommodation of heavy-weight commercial vehicles. Based on the heavy vehicle usage a heavy-duty pavement structure design is recommended for driveways and parking areas of the site. The heavy-duty pavement structure design specifications are given in Table .

	Materials	Thickness (mm)		
		Parking Areas	Driveways	
Surface	Superpave 12.5 mm, Design Category B, PG 58-34, or 50 mm HL-3 (OPSS 1150)	50	50	
Binder	Superpave 19.0 mm, Design Category B, PG 58-34, or 50 mm HL-8 (OPSS 1150)	50	80	
Base	OPSS Granular A	300	300	
Subbase	OPSS Granular B Type II	450	450	

Table 10: Heavy Duty Pavement Structures

8.0 CONSTRUCTION CONSIDERATIONS

Any organic material, existing fill or loose soil of any kind should be removed from the footprint of the footings and all structurally load-bearing elements. The Structural Fill, if directly supporting the load of the structure, should be free from any recycled or deleterious material, it should not be placed in lifts thicker than 300 mm and should be compacted to 100% SPMDD. Site preparation and requirements of engineered fill placement are noted in through previous sections. Refer to relevant sections for material and compaction requirements.

For excavation for foundations purposes, the silt/sandy silt and sandy silt till/silty sand till layers can be classified as Type 3 soil above the water table and below the water table as Type 4 soil per the Occupational Health and

Safety Act (OHSA). Excavation sides shall be sloped from its bottom at a minimum gradient of 3H:1V. For trench excavation that is deeper than 1.2 m or a worker is required to enter, excavation shall be carried out within trench boxes, which is fully braced to resist lateral earth pressure.

All backfilling shall comply with the OPSS.MUNI 501 and the City of Ottawa Special Provision General No. D-029 for compaction requirements, unless the design recommendations included in this report exceed provisions of OPSS.MUNI 501 and D-029.

Foundation walls should be backfilled with free-draining material with granular material conforming to OPSS 1010 Granular criteria. The native soils are not a suitable material for backfilling. Sub-drains with positive drainage to the City sewer should be provided at foundation level if the floor slab is not at least 150 mm above the exterior grades, which sloped away from the structure a minimum of 2 percent gradient.

A geotechnical engineer or technician should attend the site to confirm the native subgrade, type of fill material, and level of compaction. All bearing surfaces should be inspected by experienced geotechnical personnel prior to placing the footings to ensure the excavated subgrade is at the reported and recommended condition.

9.0 **GROUNDWATER**

No groundwater was encountered upon completion of boreholes except in boreholes BH24-1, BH24-3 and BH24-4 MW, the water elevations ranged from El. 125.35 to 126.97 m. The measured groundwater in the installed monitoring wells at the time of site investigation were at elevations approximately El.125.90 to 127.09 m asl. Therefore, we expect the observed water was mainly seepage water resulting from the (localized) perched water within the fill layer and the cohesionless silt/sandy silt and sandy silt till/silty sand till layers.

However, surface runoff seepage will need to be adequately controlled and water quantities will depend on seasonal conditions, depths of excavations, and the duration that excavations are left open. Recommendations for appropriate dewatering measures beyond conventional sump pump techniques such as a positive dewatering system (e.g., well points or other specialized methods) to effectively lower the static groundwater level shall be provided by a specialized dewatering contractor. Dewatering shall extend to a minimum 0.5 m below the proposed depth of excavation.

The excavations are expected to proceed through multiple fill and soil layers including the road and grading fill, silt/sandy silt and silty sand/sandy silt till. The hydraulic conductivity (k) value of the fills is expected to be high (i.e., $k > 1x10^{-3}$ cm/sec) and for the silt/sandy silt and sandy silt till/silty sand till layers is expected to be in the range of $1x10^{-3}$ to less than $1x10^{-6}$ cm/sec. These are typical hydraulic conductivity values estimated based on soil gradations. These hydraulic conductivity values are provided as a reference only.

A Permit to Take Water (PTTW) from the Ontario Ministry of the Environment, Conservation and Parks (MECP) will be required if the quantity of water to be pumped from the Site exceeds 400,000 L/day. For expected groundwater extraction between 50,000 and 400,000 L/day, an Environmental Activity and Sector Registry (EASR) permit is adequate. Based on observations made during the site investigation and observed water levels in the

monitoring wells on August 29, 2024, and other available information to date, it is expected that PTTW is not required. An EASR permit may be adequate for this Project. However, if excavation is advanced below the groundwater, the volume of pumped water per day will be a function of the length of the excavated trench and the dewatered zone. The contractor shall decide on the proper application process based on groundwater elevations at the time of construction.

10.0 SITE SERVICES

10.1 Excavation and Trenching

It is understood that open trench excavation is the preferred construction and installation method. Overburden excavation is expected to be conducted without unusual problems using conventional hydraulic powered equipment. Based on our understanding of the Project, we anticipate that the excavations will extend to a depth approximately 2.4 m bgs. The excavations will extend through the pavement structure, fill, silt/sandy silt and sandy silt till/silty sand till.

All excavations must be undertaken in accordance with the requirements of the Occupational Health and Safety Act of Ontario (OHSA), Regulations for Construction O.Reg. 213/91, with specific reference to acceptable size slopes and stabilization requirements. The general stratigraphy outlined herein can be considered an OHSA Type 3 Soil above groundwater and Type 4 Soil below groundwater. Above the groundwater level, the soils are considered Type 3 Soil and the excavation for utilities should be conducted through a minimum 1H:1V or a flatter slope from the excavations bottom. Below the groundwater level, the soils are considered to be Type 4 Soil and the excavation side slopes must be sloped from its bottom cut back at 3H:1V. For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. No surface surcharges should be placed closer to the edge of the excavation than a distance equal to twice the depth of the excavation unless an excavation support system has been designed to accommodate such a surcharge.

Alternatively, if the minimum slope requirement cannot be achieved due to space restrictions, the excavations of depth greater than 1.2 m can be carried out within a fully braced, steel trench box for worker and public safety. Unprotected excavation is not recommended. The protection system for excavations should be designed following OPSS.MUNI 539, Construction Specification for Temporary Protection Systems, and OPSS.MUNI 902, Construction Specifications for Excavating and Backfilling – Structures. The contractor should retain a professional engineer to provide detailed drawings for excavation and temporary support of the excavation walls during construction. Trench box shop drawings shall be stamped by a professional engineer.

Surface runoff seepage is expected in the excavations and will need to be adequately controlled. Water quantities will depend on seasonal conditions, depths of excavations, and the duration that excavations are left open. Groundwater will travel easily through the fill material, silt/sandy silt and sandy silt till/silty sand till. Existing utility trenches which join or intersect the excavations may act as a drain and supply off-Site water into the excavations. Recommendations for appropriate dewatering measures beyond conventional sump pump techniques such as a

positive dewatering system (e.g., well points or other specialized methods) to effectively lower the static groundwater level shall be provided by a specialized dewatering contractor.

Dewatering, if required, shall extend to a minimum 0.5 m below the proposed depth of excavation at each segment, otherwise, the specified compaction may not be achieved for the pipe bedding.

10.2 Pipe Bedding and Cover

Bedding material should be placed on undisturbed native inorganic soil. The subgrade should be reviewed and approved by a geotechnical engineer. If encountered, compressible soils, organic matter, or soft or loose areas within the native subgrade should be sub-excavated and replaced to the bottom of the bedding layer using Engineered Fill.

Utilities bedding and cover material should be in accordance with Ontario Provincial Standard Drawing OPSD 802.010 and OPSD 802.013 for flexible pipes and OPSD 802.031 and OPSD 802.033 for rigid pipes. Utilities should be supported on a minimum of 150 mm bedding of Granular A (OPSS 1010). The bedding should be compacted and shaped to receive the bottom of the pipe. The Engineered Fill should extend a minimum of 0.3 m beyond the edge of the pipe and then downward at a 1H:1V to the undisturbed native subgrade.

To extend the life of buried utilities, it is recommended utility bedding and backfill to be separated from the native soil by filter geotextile.

If the native subgrade below the bedding was disturbed or unstable due to construction activities, it may be necessary to place a sub-bedding layer consisting of 300 mm of Granular B Type II beneath the Granular A or the Granular A layer could be thickened. The use of clear stone as a bedding layer is not recommended on this project since fine particles from native soil could potentially migrate into the voids in the clear crushed stone, but if necessary due to groundwater inflow or the failure to maintain the groundwater level below the excavation, 19 mm clear stone bedding can be used in accordance with Ontario Provincial Standard Drawing OPSS 1004. Clear stone bedding materials shall be fully wrapped in non-woven geotextile filter fabric to avoid any native soil migration.

Utility cover material should be from bedding level to at least 300 mm above the top of pipe. The cover material can be Granular A or Granular B type II compacted to 98% SPMDD. All covers are to be compacted to 100% SPMDD if they are intersecting structural elements. The engineer designing utilities shall ensure the proposed utility pipes can tolerate compaction loads. The cover material should be placed on each side of the pipe and should be completed simultaneously.

10.3 Trench Backfill

All backfill materials should conform to OPSS 401. The backfill material shall be Granular A or B, Type I, II, or III, unshrinkable fill, or native material. Trench backfill materials above the pipe cover material may consist of approved excavated materials such as the existing fill and native materials other than clay soils. The backfill

materials should be free from frozen lumps, organic matter, rocks and boulders over 150mm in diameter or deleterious materials. Imported fill, if required to make up the balance of trench backfill, it should consist of compactable and inorganic earth borrow as per OPSS 206 and 212, or selected subgrade material (SSM) as per OPSS 1010.

At the subject site, the burial depth of water-bearing utility lines is typically 2.4 m below the ground surface. If this depth is not achievable, equivalent thermal insulation should be provided. The contractor should retain a professional engineer to provide detailed drawings for excavation and temporary support of the excavation walls during construction.

Regardless of the type of material used as backfill, it should be placed in lifts not exceeding 300 mm in thickness in loose measurement and should be compacted to a minimum of 98% of SPMDD using suitable vibratory compaction equipment.

11.0 CLOSURE

We trust this geotechnical investigation and design recommendation report meets the requirements of your project. The "Limitations of Report" presented in Appendix A are an integral part of this report. Please contact the undersigned should you have any questions or concerns.

Egis Group Ltd.

CCO-25-1370-01

12.0 REFERENCES

- [1] Ontario Geological Survey, The Physiography of Southern Ontario, 3rd Edition, 1984.
- [2] Ontario Ministry of Natural Resources (OMNR), Ontario Geological Survey, Special Volume 2, "The Physiography of Southern Ontario", 3rd Edition, 1984.
- [3] "Google Earth Pro," Google LLC, 2021. [Online]. [Accessed 15 July 2024].
- [4] Ministry of Transportation, Ontario, *Temporary conditions Book 7*, St. Catharines: Queen's Printer for Ontario, 2014.
- [5] Canadian Geotechnical Society 2006, *Canadian Foundation Engineering Manual; 5th Edition,* Calgary, 2023.
- [6] Government of Ontario, "Occupational Health and Safety Act," Queen's Printer for Ontario, Toronto, 2021.
- [7] Ontario Provincial Standard, OPSS, 2024.
- [8] Canadian Standards Association (CSA), Concrete Materials and Methods of Concrete Construction, A23.1, 2009.
- [9] Ministry of Transpotation Ontario, *Pavement Design and Rehabilitation Manual, 2nd Edition,* Downsview: Materials Engineering and Research Office, 2013.

APPENDIX A: LIMITATIONS OF REPORT

LIMITATIONS OF REPORT

Egis Canada Ltd. (Egis) carried out the field work and prepared the report. This document is an integral part of the Foundation Investigation and Design report presented.

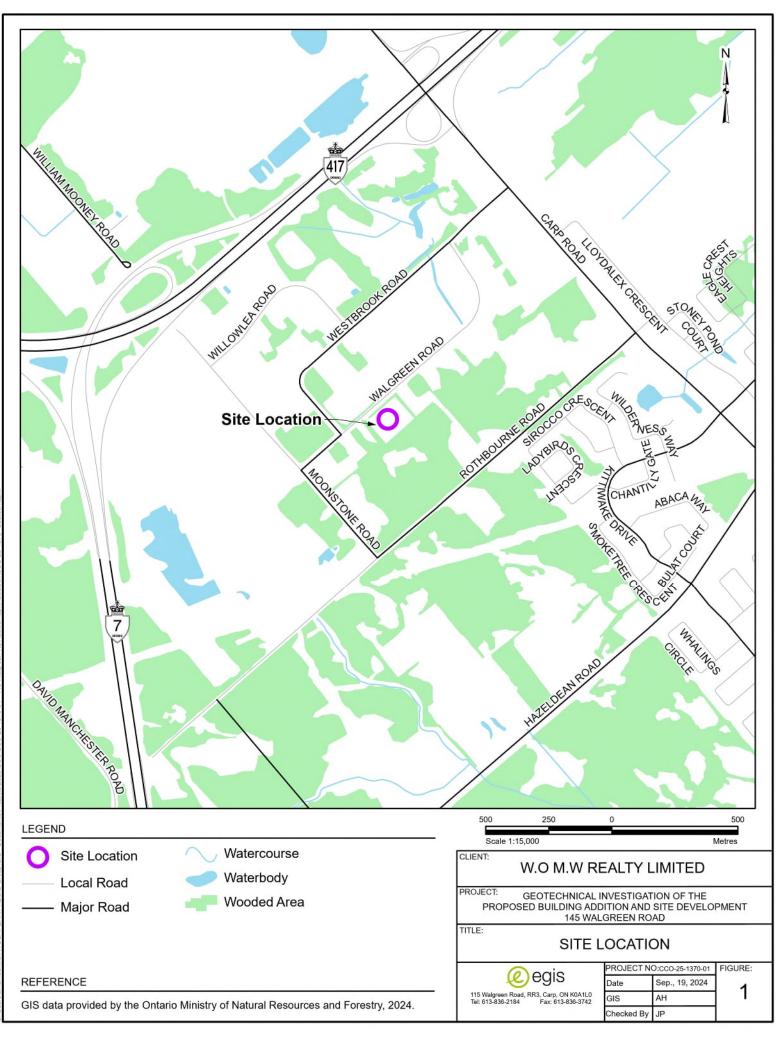
The conclusions and recommendations provided in this report are based on the information obtained at the borehole locations where the tests were conducted. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the specific locations where tests were conducted and conditions may become apparent during construction, which were not detected and could not be anticipated at the time of the site investigation. The benchmark level used and borehole elevations presented in this report are primarily to establish relative differenced in elevations between the borehole locations and should not be used for other purposes such as to establish elevations for grading, depth of excavations or for planning construction.

The recommendations presented in this report for design are applicable only to the intended structure and the project described in the scope of the work, and if constructed in accordance with the details outlined in the report. Unless otherwise noted, the information contained in this report does not reflect on any environmental aspects of either the site or the subsurface conditions.

The comments or recommendation provided in this report on potential construction problems and possible construction methods are intended only to guide the designer. The number of boreholes advanced at this site may not be sufficient or adequate to reveal all the subsurface information or factors that may affect the method and cost of construction. The contractors who are undertaking the construction shall make their own interpretation of the factual data presented in this report and make their conclusions, as to how the subsurface conditions of the site may affect their construction work.

The boundaries between soil strata presented in the report are based on information obtained at the borehole locations. The boundaries of the soil strata between borehole locations are assumed from geological evidences. If differing site conditions are encountered, or if the Client becomes aware of any additional information that differs from or is relevant to the Egis findings, the Client agrees to immediately advise Egis so that the conclusions presented in this report may be re-evaluated.

Under no circumstances shall the liability of Egis for any claim in contract or in tort, related to the services provided and/or the content and recommendations in this report, exceed the extent that such liability is covered by such professional liability insurance from time to time in effect including the deductible therein, and which is available to indemnify Egis. Such errors and omissions policies are available for inspection by the Client at all times upon request, and if the Client desires to obtain further insurance to protect it against any risks beyond the coverage provided by such policies, Egis will co-operate with the Client to obtain such insurance.


Egis prepared this report for the exclusive use of the Client. Any use which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. Egis accepts no responsibility and will not be liable for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

115 Walgreen Road, R.R.3. Carp, ON K0A 1L0 | T. 613-836-2184 | F. 613-836-3742 info@.north-america@egis-group.com | www.egis-group.com

APPENDIX B: SITE AND BOREHOLE LOCATION PLANS

APPENDIX C: BOREHOLE LOGS

EXPLANATION OF TERMS USED IN REPORT

N-VALUE: THE STANDARD PENETRATION TEST (SPT) N-VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD 51mm O.D SPLIT BARREL SAMPLER TO PENETRATE 0.3m INTO UNDISTURBED GROUND IN A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 6.3.5 kg, FALLING FRELY A DISTANCE OF 0.76m. FOR PENETRATIONS OF LESS THAN 0.3m N-VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. AVERAGE N-VALUE IS DENOTED THUS N.

DYNAMIC CONE PENETRATION TEST: CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (51mm O.D. 60° CONE ANGLE) DRIVEN BY 475J IMPACT ENERGY ON A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH (cu) AS FOLLOWS:

C _u (kPa)	0 - 12	12 - 25	25 - 50	50 - 100	100 - 200	>200
	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD

DENSENESS: COHESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS:

N (BLOWS/0.3m)	0-5	5 – 10	10 - 30	30 - 50	>50
	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSION AND STRUCUTRAL FEATURES AND/OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (RQD), FOR MODIFIED RECOVERY IS:

RQD (%)	0 - 25	25 - 50	50 – 75	75 – 90	90 - 100
	VERY POOR	POOR	FAIR	GOOD	EXCELLENT

JOINT AND BEDDING:

SS

ST

BS

CS

u,

r_u

σ

σ

τ

E

G

μ

SPACING	50mm	50 – 300mm	0.3m – 1m	1m – 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

MECHANICALL PROPERTIES OF SOIL

ABBREVIATIONS AND SYMBOLS

FIELD SAMPLING

SPLIT SPOON TP THINWALL PISTON kPa. COEFFICIENT OF VOLUME CHANGE m, OSTERBERG SAMPLE WS WASH SAMPLE COMPRESSION INDEX OS C SLOTTED TUBE SAMPLE RC ROCK CORE SWELLING INDEX Cs 1 BLOCK SAMPLE PH TW ADVANCED HYDRAULICALLY RATE OF SECONDARY CONSOLIDATION Ca CHUNK SAMPLE TW ADVANCED MANUALLY m²/s COEFFICIENT OF CONSOLIDATION PM C_v H TW THINWALL OPEN FS FOIL SAMPLE DRAINAGE PATH m GRAB SAMPLE T_v TIME FACTOR GS U % DEGREE OF CONSOLIDATION STRESS AND STRAIN EFFECTIVE OVERBURDEN PRESSURE kPa PORE WATER PRESSURE kPa σ'νο PORE PRESSURE RATIO PRECONSOLIDATION PRESSURE kPa σ'_p 1 TOTAL NORMAL STRESS kPa SHEAR STRENGTH kPa τ_{f} EFFECTIVE NORMAL STRESS EFFECTIVE COHESION INTERCEPT kPa C kPa kPa SHEAR STRESS φ. EFFECTIVE ANGLE OF INTERNAL FRICTION kPa PRINCIPAL STRESSES kPa APPARENT COHESION INTERCEPT Cu σ1, σ2, σ3 % LINEAR STRAIN Φ APPARENT ANGLE OF INTERNAL FRICTION % PRINCIPAL STRAINS kPa RESIDUAL SHEAR STRENGTH 81, 82, 83 τ_{R} kPa MODULUS OF LINEAR DEFORMATION REMOULDED SHEAR STRENGTH kPa Tr St kPa MODULUS OF SHEAR DEFORMATION SENSITIVITY = c_u / τ_r 1 COEFFICIENT OF FRICTION 1

PHYSICAL PROPERTIES OF SOIL

Ps	kg/m ³	DENSITY OF SOLID PARTICLES	е	1,%	VOID RATIO	emin	1,%	VOID RATIO IN DENSEST STATE
$\gamma_{\rm s}$	kN/m ³	UNIT WEIGHT OF SOLID PARTICLES	n	1,%	POROSITY	ID	1	DENSITY INDEX = $\frac{e_{max} - e}{e_{max} - e_{min}}$
Pw	kg/m ³	DENSITY OF WATER	w	1,%	WATER CONTENT	D	mm	GRAIN DIAMETER
Y'w	kN/m ³	UNIT WEIGHT OF WATER	Sr	%	DEGREE OF SATURATION	Dn	mm	N PERCENT – DIAMETER
P	kg/m ³	DENSITY OF SOIL	WL	%	LIQUID LIMIT	Cu	1	UNIFORMITY COEFFICIENT
r	kN/m ³	UNIT WEIGHT OF SOIL	Wp	%	PLASTIC LIMIT	h	m	HYDRAULIC HEAD OR POTENTIAL
Pd	kg/m ³	DENSITY OF DRY SOIL	Ws	%	SHRINKAGE LIMIT	q	m ³ /s	RATE OF DISCHARGE
ra	kN/m ³	UNIT WEIGHT OF DRY SOIL	I _P	%	PLASTICITY INDEX = $(W_L - W_L)$	v	m/s	DISCHARGE VELOCITY
Peat	kg/m ³	DENSITY OF SATURATED SOIL	IL.	1	LIQUIDITY INDEX = $(W - W_P)/I_P$	i	1	HYDAULIC GRADIENT
Y'sat	kN/m ³	UNIT WEIGHT OF SATURATED SOIL	I _c	1	CONSISTENCY INDEX = (WL - W) / 1p	k	m/s	HYDRAULIC CONDUCTIVITY
P'	kg/m ³	DENSITY OF SUBMERED SOIL	e max	1,%	VOID RATIO IN LOOSEST STATE	i	kN/m ³	SEEPAGE FORCE
r	kN/m ³	UNIT WEIGHT OF SUBMERGED SOIL						

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013333.663; E 424860.028 Drilling Equipment: CME 55

BH No: 24-1

Drilling Method: Hollow Stem Augers, NQ Core

Remarks: GPS Coordinate System UTM NAD 83

Datum: Geodetic Elevation: 127.31 m Compiled by: JF

Checked by: NG

	SOIL PROFILE			SAN	MPLES		ц			DYNAI RESIS	MIC CO TANCE	NE PEN		ION	PLA	STIC	N	IATURA OISTUR	L	LIQUID LIMIT	Remarks
<u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" BLOWS/0.3 m RQD (%)	RECOVERY (%) TCR (%)	GROUNDWATER CONDITIONS	DEPTH (m)	ELEVATION (m)	21 SH Fie Poo	D 4 EAR S Id. Shear V sket Penel iick Triaxia	0 6 TREN Vane (x) 8 trometer	GTH (k Sensitivity Uncon	30 (Pa) ((s)	LIN W _F	WA			т ENT (%	w∟ 	and Grain Size Distribution (%) Unit Weight (kN/m ³) Pocket Penetro. (kP
127.31 0.00	FILL: granular fill, grey, dense, moist.	\bigotimes						<u>0.0</u> - -		2	0 4	06	3 0	30		20 3) 50 6 	60 70 8		GR SA SI C
12 <u>6.96</u> 0.35	silty sand, trace to pockets of organics and trace rootlets in the upper zone, brown.	\bigotimes	1	SS	40	63%		- 1 - -	12Z - -												-
126.55		\bigotimes						-	-								¦				
0.76	SILT/SANDY SILT: trace to some clay, trace gravel, greyish brown, very dense, moist.		2	SS	50/ 75mm	62%		- - 1.0													
1 26.05	SANDY SILT TILL/SILTY SAND							- ,	- 126												
1.26 125.91 1.40	TILL: greyish brown, very dense moist. LIMESTONE BEDROCK: slightly weathered, grey to dark grey, thinly bedded, strong to very strong, fair to excellent quality based on RQD.							-													
			3	RC	67	100%		2.0 - -									 				UCS = 93.2
								- 1	125								 				Мра
			4	RC	65	100%		- 3.0 - - - -	- - - 124 - - -												
								- <u>4</u> .0	-												
									- 123								 				-
122.33			5	RC	74	100%		-													UCS = 119.6 Mpa
4.98	END OF BOREHOLE -Upon completion of drilling and before coring, the borehole was open to 1.00 m bgs (El. 126.31 m asl) and wet at the bottom.																				
						GRAP				per valu							 				

30 Upper value = Field Vane Shear Strength O **8**=3% 3 Lower value = Vane Sensitivity Strain at Failure

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013335.166; E 424875.725 Drilling Equipment: CME 55

BH No: 24-2 Datum: Geodetic

Drilling Method: Hollow Stem Augers, NQ Core

Remarks: GPS Coordinate System UTM NAD 83

Elevation: 127.12 m Compiled by: JF

Checked by: NG

								Ren					M NAD 8		Checked by	J: NG
	SOIL PROFILE			SAI	MPLES		ËR	Ê	RESI				PLASTIC LIMIT	MATU MOIS CONT	IRAL LIQUI TURE LIQUI	D Remarks
ELEV DEPTH		STRATA PLOT	~		"N" BLOWS/0.3 m RQD (%)	RECOVERY (%) TCR (%)	GROUNDWATER CONDITIONS	DEPTH (m) ELEVATION (m)	S	1		60 80 GTH (kPa)	W _P	CON	ENI	Grain Size Distribution
DEPIN	DESCRIPTION	RATA	NUMBER	ш	"N" BLOW: RQD (%)	SOVE (%)		DEPTH (m) ELEVATION	F		Vane (x) 8	Sensitivity (s)	+	c		(%) Unit Weight (kN/m³) Pocket Penetro. (kPa)
107.40		STR	NUN	TYPE	"N D	TCF	GR CO		•	Quick Triaxi	al C	D Unconfined			NTENT (%) 0 60 70 80 90	
<u>127.12</u> 0.00	FILL: granular fill, grey, compact,	\boxtimes						0.0	-	1					+ + + +	GR SA SI CL
	moist.	\bigotimes							-							
12 <u>6.74</u> 0.38	silty sand, trace to pockets of	\bigotimes	1	SS	21	79%	onite	-	-					i li		
	organics and trace rootlets in the upper zone, brown.	\bigotimes					Bent	-	1					i i		
126.36	· · · ·	\bigotimes						-	-							
0.76	SILT/SANDY SILT: trace to some clay, trace gravel, greyish brown,							W. L. 1 Aug 29	126.26 9, 24					i i		
	dense, moist.		2	SS	31	75%	Riser	1.0 126	-							
								-	-					11		
125.60							Sand	ŀ	1							
1.52	SANDY SILT TILL/SILTY SAND	• •		<u>.</u>				F 	1							
	TILL: greyish brown, very dense, moist.	44	3	SS	50/ 100mn	81%	Scree	ł	1				7.1 이			20.1 37.2 (42.7)
125.18 1.94	LIMESTONE BEDROCK: slightly	ijij					. • . •	2.0	-							
1.94	weathered, grey to dark grey, thinly	\bigotimes						_ 125	5							_
	bedded, strong to very strong, fair to excellent quality based on RQD.	K	4	RC	96	100%		-								
		\bigcirc						-	-							
		\mathbb{N}							-				i	_i i		
		K						-	-							
		\bigotimes						_ 3.0	-							
		\mathbb{N}						_ 124	-				+			_
		Ŵ	5	RC	92	100%		-	1							UCS = 103.4 Mpa
/2		\bigotimes	Ū					-	_				i	_i i	<u>i</u> i	mpu
24/12		\mathbb{N}					nite		-							
							Bento	-	-							
ONS.O		\bigotimes						4.0						i i		
		\mathbb{K}						_ 123	3							-
								-	-							
¥ V		Ŵ						=	-							
MAL		\mathbb{K}														
			6	RC	68	100%		-	_					i li		
		\bigotimes						5.0 122	,					i i		
AL.G		\mathbb{K}						- 124	1							1
		$\langle \rangle$						İ.	1							UCS = 70.6
0 121.50		Ŵ						-	-							Мра
1MP SOIL LOG 145 WALGREEN GINT LOGS FINAL.GPJ MP_OTTAWA_FOUNDATIONS.GDT 24/12/5 915 0516	END OF BOREHOLE							_	_				┃╎ ̄			
	- Upon completion of drilling, no															
CGRI	water was observed in the installed standpipe.															
A	- On August 29, 2024, the water level in the installed standpipe was															
14	measured at 0.86 m bgs (El.															
	126.26 m asl). -Standpipe was installed at 1.85 m															
soll	bgs (El. 125.27 m asl).															
4MF																
								30								

egis

30 Upper value = Field Vane Shear Strength O **8**=3% 3 Lower value = Vane Sensitivity Strain at Failure

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013232.316; E 424771.81 Drilling Equipment: CME 55

Remarks: GPS Coordinate System UTM NAD 83

Drilling Method: Hollow Stem Augers

BH No: 24-3 Datum: Geodetic

Elevation: 127.73 m Compiled by: JF

Checked by: NG

	SOIL PROFILE			SAI	MPLES	6	~		DYNA				NC	PLA		NATURAL MOISTURE	LIQUI	Remarks
ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	щ	"N" BLOWS/0.3 m RQD (%)	RECOVERY (%) TCR (%)	GROUNDWATER CONDITIONS	DEPTH (m) ELEVATION (m)	Sh	HEAR S HEAR S eld. Shear pocket Pene	TREN Vane (x) &	0 80 GTH (kF Sensitivity) Pa)		1IT	CONTENT W O	WL	Grain Size Distribution (%) Unit Weight (kN/m ³) Pocket Penetro. (kF
27.73	FILL: silty sand, trace to some gravel, trace organics and rootlets, dark brown, compact, moist.	SIT	INN	TYPE	"N" "N	TCI	GR CO		• c	Quick Triaxia 20 4	al C	Unconfii 0 80		10 		ER CONTEI 40 50 60	NT (%) 70 80 90 	GR SA SI (
2 <u>7.27</u>).46	brown, very moist.	X	1	SS	12	67%		-	-									
26.97			}					127										_
0.76	SILT/SANDY SILT: trace to some clay, trace gravel, greyish brown, compact, moist to very moist.		2	SS	18	79%		- 1.0 - 	-						6 5			0.7 8.2 79.4
26.21 1.52 26.03	SANDY SILT TILL/SILTY SAND TILL: greyish brown, very dense, moist to very moist.	 	3	SS	50/ 25mm	71%		-	-									
1.70	END OF BOREHOLE																	
	- The borehole was terminated after encountering auger refusal at 1.70 m bgs (El. 126.03 m asl). - Upon completion of drilling, the borehole was open to 0.76 m bgs (El. 126.97 m asl) and was wet at the bottom.																	

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/15/2024 - Aug/15/2024 BH Location: N 5013284.046; E 424838.524 Drilling Equipment: CME 55

Remarks: GPS Coordinate System UTM NAD 83

Drilling Method: Hollow Stem Augers

BH No: 24-4 MW Datum: Geodetic Elevation: 127.10 m Compiled by: JF

Checked by: NG

			1									-		T				Cnec	Keu b	7. 190	
	SOIL PROFILE			SAI	MPLES		ËR	ŝ	RES	AMIC CC				PLA	STIC	1 N	NATURA IOISTUR	NL RE	LIQUI LIMIT		narks nd
ELEV		STRATA PLOT			"N" BLOWS/0.3 m RQD (%)	RECOVERY (%) TCR (%)		DEPTH (m)		20 4 HEAR S	I	I	80 	w		C	W	1	WL	Grair	i Size bution
DEPTH	DESCRIPTION	ATA	NUMBER	ш	"N" BLOW RQD (%)	OVE (%)		TH (r		Field. Shear Pocket Pene	Vane (x) &	& Sensitivi		+			-0-			(*	%)
107.00		STR	NUN	ТҮРЕ	"N" ROF	RECC	GROUNDWATER CONDITIONS		≝ • `	Quick Triaxi	al () Unco	nfined 80	10					%) 80 90		nt (kN/m ³) netro. (kPa)
<u>127.10</u> 0.00	FILL: gravel and sand, some silt,	\rightarrow	+					0.0 12	7			1	+	+ i	+	1		++	++	GR SA	SI CL
	dark brown, dense, moist.	\otimes	}					- '2	-							1					
		\otimes	1	SS	33	75%		-	-					Ιį		ļ		Ιį			
126.65 0.45	SILT/SANDY SILT: trace to some	- M A	1					-	1												
	clay, trace gravel, greyish brown, dense to compact, moist.						- ntonite	-	-							Ì					
	dense to compact, moist.						B	t i	1												
								-	-												
			2	SS	21	71%		1.0 12	-					li		i		l i			
125.83							V	W. L.	125.90												
1.27	layer of very moist sand and						ser .	Aug 2	9, 24					Ιį		į.	ļ	Ιį	ļį		
125.58	gravel.							Ē	1												
1.52	SANDY SILT TILL/SILTY SAND TILL: grey, compact, moist to very	6 6					[: <u> </u>]∶	:-	-												
	moist.	4		~~~	26	200/		W.L. Aug 1	125.35												
		66	3	SS	26	29%	Sand		-												
							:目:	2.0 _ 12	5												
124.81								.[-												
2.29	very dense.							-	-					Ιį		Ì		1 į	ļį		
							[:目:	Ē.	1					12	5						
			4	SS	56	88%	een .	-	-						,					12.3 29.3	2 52.5 6.0
							Scr		1												
			1				1:目:	-	-												
/12/5			-					3.0 _ 12	4					Li		i	Ĺ	i	ĺ		
T 24		4	4				Ð	-	-												
S.GD		6	5	SS	73	88%	entonit		1												
Z 123.60	Trace stone fragements.	+					ă	-	-												
123.47 123.47 3.63								-	-					+	+			+			
WA_FOUNDATIONS.GDT 24/12/5 2015 2015 240109 240109 240109 240109 240109 240109 240109 240109 240109 240109 240100 24/12/5	END OF BOREHOLE													Ιi		i	ĺ	Ιį	ĺ		
WA	- Upon completion of drilling, the																				
DTTO	water level in the installed well was measured at 1.75 m bgs (El.													Ιį		į.	[Ιį	ļį		
MP I	125.35 m asl). - On August 29, 2024, the water																				
Ldg	level in the installed well was measured at 1.20 m bgs (El.																				
IAL.0	125.90 m asl).																				
SFIN																					
LOG																					
UID																					
N N H H																Ì					
LGRE																					
2 WAI																					
145																					
LOG																					
1MP SOIL LOG 145 WALGREEN GINT LOGS FINAL GPJ MP_OTTA																					
1MP																					
6						GRAP	Н	, <u>3</u> 0 ∟	lpper va	lue = Fiel	d Vane	Shear \$	Strength	0 8	=3%	5					

30 Upper value = Field Vane Shear Strength O **s**=3% 3 Lower value = Vane Sensitivity Strain at Failure

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013262.774; E 424759.248 Drilling Equipment: CME 55

Drilling Method: Hollow Stem Augers

BH No: 24-5 Datum: Geodetic Elevation: 128.24 m

Compiled by: JF Checked by: NG

PROJ	ECT LOCATION: 145 Walgreen Road,	Otta	wa, (JN				Rem	arks: G	PS Co	ordinat	e Syste	em UTI	/ NAI	D 83			Chec	ked l	by:	NG
	SOIL PROFILE			SA	MPLE		К		DYNA RESIS	MIC CO STANCE			ION	PLAS	STIC	NA MO	ATURA	۹L RE	LIQU	JID	Remarks
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS/0.3 m RQD (%)	RECOVERY (%) TCR (%)	GROUNDWATER CONDITIONS	DEPTH (m) ELEVATION (m)	SH Fie Po	IEAR S eld. Shear cket Pene uick Triaxia	TREN Vane (x) & trometer	L GTH (k Sensitivity K O Uncon	(s)	LIM W _P 	WA	CC TER C		TENT (%		L	and Grain Size Distribution (%) Unit Weight (kN/m ³) Pocket Penetro. (kPa) GR SA SI CL
0.00	FILL: gravelly sand, some silt, brown, moist.		1	GS				0.0 - 128 													
127.48	SANDY SILT TILL/SILTY SAND TILL: trace rootlets and organics in the upper ±80 mm, greyish brown, compact, moist.		2	SS	27	33%	-	 1.0 - - 12Z													
126.72 1.52	grading more sandy, very dense.		3	SS	58	75%	-	2.0 													
<u>125.64</u> 2.60 125.45	trace stone fragments.		4	SS	50/ 100mr	m ^{75%}	-														
2.79	END OF BOREHOLE • The borehole was terminated after encountering auger refusal at 2.79 m bgs (El. 125.45 m asl). • Upon completion of drilling, the borehole was open to 1.98 m bgs (El. 126.26 m asl) and dry.																				

30 Upper value = Field Vane Shear Strength O **8**=3% 3 Lower value = Vane Sensitivity Strain at Failure

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013323.206; E 424813.379 Drilling Equipment: CME 55

BH No: 24-6 Datum: Geodetic Elevation: 127.76 m

Drilling Method: Hollow Stem Augers Remarks: GPS Coordinate System UTM NAD 83 Compiled by: JF

Checked by: NG

	SOIL PROFILE			SAI	MPLE		к	1	~	DYNA RESIS	MIC CC	NE PE		TION	PLAS	TIC	N/ MC	ATURAL	L	LIQUID	Remarks
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS/0.3 m	RECOVERY (%) TCR (%)	GROUNDWATER CONDITIONS	O DEPTH (m)	ELEVATION (m)	2 SH Fie Po	IEAR S IEAR S Idd. Shear cket Pene uick Triaxi	40 STREN Vane (x) etrometer al	60 IGTH & Sensitiv	80 (kPa) ^{/ity} (s)	- W _P	IT WA			ENT (%		and Grain Size Distribution (%) Unit Weight (kN/m ³ Pocket Penetro. (ki GR SA SI (
27.06	ASPHALT ±100 mm.							-	-						t i	+	i	i	i	t i	-
0.10	FILL: granular fill, grey, compact, moist.		1	GS			-	-	- - - - 127_												
26.85 0.91	SILT/SANDY SILT: trace to some clay, trace gravel, greyish brown, compact, moist to very moist.		2	SS	21	63%		- 1.0 - -	-												
2 <u>6.24</u> 1.52	dense, moist.		3	SS	47	83%	-	- - - 2.0	- - 126_ -												-
1 <u>25.47</u> 2.29	very dense.		4	SS	96	100%	- - D		- - - - 125												
<u>24.71</u> 3.05	SANDY SILT TILL/SILTY SAND TILL: greyish brown, very dense, moist to very moist.		4 5	SS	50/	65%	-	- 3.0 - -	- - - - -												-
24.31 24.20 3.56	trace limestone fragments.				50mr	n		-	-												
	 The borehole was terminated after encountering auger refusal at 3.56 m bgs (El. 124.20 m asl). Upon completion of drilling, the borehole was open to 2.74 m bgs (El. 125.02 m asl) and dry. 																				
						GRAP								Strength							

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/15/2024 - Aug/15/2024 BH Location: N 5013307.24; E 424732.7 Drilling Equipment: CME 55 Drilling Method: Hollow Stem Augers

Remarks: GPS Coordinate System UTM NAD 83

BH No: 24-7 MW Datum: Geodetic Elevation: 128.46 m Compiled by: JF

Checked by: NG

ELEV DEPTH DESCRIPTION Image: stand				-						kem				-			08				еске	ed by:	NG
1/26.40 FILL: silty sand, some gravel, trace clay and rootlets, brown, dense, moist. 1 SS 38 75% 7.8 1		SOIL PROFILE	1		SAI			IER		Ê	RESI					PLA	STIC	; ,	NATUR MOISTU	AL JRE	L	.iquid Limit	Remarks and
128.49 0.00 bit decide day and noticets, brown, dense, moist. 1 SS 38 75% 1	DEPTH	DESCRIPTION	STRATA PLO	NUMBER	TYPE	"N" BLOWS/0.3 RQD (%)	RECOVERY (° TCR (%)	GROUNDWA CONDITIONS	DEPTH (m)	ELEVATION (SI F P	HEAR ield. Shea ocket Pen Quick Triax	STREN Vane (x) etrometer	IGTH & Sensitiv X O Unce	(kPa) ity (s)	+	w	ATEF	w — 0 – R CON	TENT	· /	-	Grain Size Distribution (%) Unit Weight (kN/m ³ Pocket Penetro. (k
0.38 sandy silt trace organics and rootlets, dark grey, darks to compact. 1	0.00	trace clay and rootlets, brown,	×	1	SS	38			<u>0.0</u> - -	-					Ť	7.8		 					18.1 51.2 (30.
0.84 SILT/5ANDY SILT: trace organics and rootles in the upper ±300 mm, greyish brown, compact, moist. 1 2 SS 10 75% 10 75% 10		rootlets, dark grey, dense to	×	2 2 2				- Bentonite	-	128 - -								 			 		-
26.94 1 <td></td> <td>organics and rootlets in the upper ±300 mm, greyish brown,</td> <td></td> <td>2</td> <td>SS</td> <td>10</td> <td>75%</td> <td></td> <td>- 1.0 - -</td> <td>- - - - -</td> <td></td>		organics and rootlets in the upper ±300 mm, greyish brown,		2	SS	10	75%		- 1.0 - -	- - - - -													
2.29 layer of weathered limestone, very dense. 5 4 / 4 SS 50/ mm 126 1 </td <td></td> <td>TILL: greyish brown, dense, moist</td> <td>4</td> <td>3</td> <td>SS</td> <td>38</td> <td>100%</td> <td>Sand</td> <td>Aug</td> <td>9.<u>29</u> - - -</td> <td>, 24</td> <td></td> <td>14.4 48.2 29.8</td>		TILL: greyish brown, dense, moist	4	3	SS	38	100%	Sand	Aug	9. <u>29</u> - - -	, 24												14.4 48.2 29.8
4.45 END OF BOREHOLE 5 SS 50/ mm 50/ mm 100 mm 1.45 END OF BOREHOLE 1 1 1 1 1 1.45 END OF BOREHOLE 1 1 1 1.45 Completion of drilling, no water was observed in the installed well. 1 1 1 1.45 On August 29, 2024, the water level in the installed well was measured at 1.37 m bgs (El. 1 1 1	.29	dense.		4	SS	100	50%			- - 126													-
END OF BOREHOLE - The borehole terminated after encountering auger refusal at 3.45 m bgs (El. 125.01 m asl). - Upon completion of drilling, no water was observed in the installed well. - On August 29, 2024, the water level in the installed well was measured at 1.37 m bgs (El.					SS	100		Bentonite		-													
		 The borehole terminated after encountering auger refusal at 3.45 m bgs (El. 125.01 m asl). Upon completion of drilling, no water was observed in the installed well. On August 29, 2024, the water level in the installed well was measured at 1.37 m bgs (El. 	<u>-</u>																				

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

Drilling Date: Aug/15/2024 - Aug/15/2024 BH Location: N 5013353.352; E 424777.96 Drilling Equipment: CME 55 Drilling Method: Hollow Stem Augers

BH No: 24-8 MW Datum: Geodetic Elevation: 127.64 m

Compiled by: JF Checked by: NG

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON									narks: GPS Coordinate System UTM					D 83	; C	Checked by:		NG
SOIL PROFILE SAMPLES							ъ		RESI	MIC CO	NE PEN		PLA	STIC	NATURAL MOISTURE	. LI	QUID	Remarks
<u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS/0.3 m ROD (%)	RECOVERY (%) TCR (%)	TCR (%) GROUNDWATER CONDITIONS	DEPTH (m) ELEVATION (m)	SH Fi Po	20 4 HEAR S eld. Shear pocket Pene Quick Triaxia	0 60 80 TRENGTH (kPa) /ane (x) & Sensitivity (s) rometer 🗙		LIMIT W _P 		MOISTORE CONTENT LIMIT W W_L O 1 TER CONTENT (%) 0 0 40 50 60 70 80 90		.IMIT W∟ ⊣	and Grain Size Distribution (%) Unit Weight (kN/m³) Pocket Penetro. (kPa
127.64 197094	ASPHALT ±100 mm.							0.0	4	20 4				20 3		10 80	90	GR SA SI C
1 0710 9 0.15	FILL: sand and gravel, some silt, — brown, moist. sandy silt, trace organics and gravel.		1	GS			I entonite	 - 12Z										
1 <u>26.88</u> 0.76	SILT/SANDY SILT: trace gravel and clay, trace rootlets in the upper ±80 mm, greyish browm, compact, moist.		2	SS	15	63%	er F	W. L. 1 Aug 29 1.0	26.83					5.2				3.7 31.8 58.2 6.
126.12 1.52	SANDY SILT TILL/SILTY SAND TILL: greyish browm, dense, moist.		3	SS	40	92%	i∵⊟ĭ	 - 126 										
1 <u>25.35</u> 2.29	grading more sandy, very dense.		4	SS	50/ 100 mm	67%	Screen	 - 125										
124.59 3.05	END OF BOREHOLE	• • •						<u>3</u> .0									 	
	 The borehole was terminated after encountering auger refusal at 3.05 m bgs (EI. 124.59 m asl). Upon completion of drilling, no water was observed in the installed well. On August 29, 2024, the water level in the installed well was measured at 0.81 m bgs (EI. 126.83 m asl). 																	

30 Upper value = Field Vane Shear Strength O **s**=3% 3 Lower value = Vane Sensitivity Strain at Failure

PROJECT: Geotechnical Investigation - Proposed Addition and Site Works

CLIENT: W.O M.W Realty Limited

ELEV

DEPTH

127.22

0.00

0.76

124.77

2.45

<u>124.04</u>

3.18 123.89

3.33

PROJECT LOCATION: 145 Walgreen Road, Ottawa, ON

Drilling Date: Aug/14/2024 - Aug/14/2024 BH Location: N 5013323.206; E 424813.379 Drilling Equipment: CME 55

BH No: 24-9 Datum: Geodetic Elevation: 127.22 m

Compiled by: JF

Checked by: NG

Drilling Method: Hollow Stem Augers Remarks: GPS Coordinate System UTM NAD 83

DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE NATURAL MOISTURE CONTENT PLASTIC LIMIT LIQUID LIMIT Remarks GROUNDWATER CONDITIONS RECOVERY (%) TCR (%) and Grain Size Distribution Ξ ۶ 20 40 60 80 STRATA PLOT "N" BLOWS/0.3 ELEVATION Ē w WL SHEAR STRENGTH (kPa) Wp RQD (%) NUMBER 0 (%) **DEPTH** (Field. Shear Vane (x) & Sensitivity (s) Pocket Penetrometer DESCRIPTION Jnit Weight (kN/m³) Pocket Penetro. (kPa) TYPE WATER CONTENT (%) • Quick Triaxial O Unconfined 20 40 60 10 20 30 40 50 60 70 80 90 80 GR SA SI CL 0 (FILL: ±50 mm of topsoil/organic \bigotimes soil followed br sand and gravel, trace to some silt, trace organics 127 and rootlets, grey, compact, moist. 29% SS 10 1 126.46 SILT/SANDY SILT: trace to some clay, trace gravel, greyish brown, dense, moist. 1.0 2 SS 30 67% 126 3 SS 47 75% 5.3 21.4 66.9 6.4 2.0 125 SANDY SILT TILL/SILTY SAND TILL: grey, very dense, moist. 92% SS 4 64 <u>3</u>.0 55/ 5 SS 82% 124 <u></u> trace limestone fragments. 25mn END OF BOREHOLE - The borehole was terminated after encountering auger refusal at 3.33 m bgs (El. 123.89 m asl). - Upon completion of drilling, the borehole was open to 2.61 m bgs (El. 124.61 m asl) and dry.

OTTAWA_FOUNDATIONS.GDT 24/12/5 1MP SOIL LOG 145 WALGREEN GINT LOGS FINAL.GPJ MP_

APPENDIX D: LABORATORY TEST RESULTS

Unconfined Compressive Strength of Intact Rock Cores

ASTM D7012 Method C

Project No.:		CCO-2	25-1370-01			Date Issu	ied:	Septemb	er 9,2024		
Lab No.:		OL-24	031			Report N	o.:	1 of 2	of 2		
Project Nam	e:	145 W	/algreen Road								
Core No.:			1	Moisture Co	ition:		Dry	as received			
Borehole Loc	atio	n:	BH24-1	Run/RC:	3		D	epth (ft):	7'2"-7'7"		
Date Sampled: Aug 14,2024			Received:	Au	g 29,2024	l Te	sted:	Sept 9,2024			
Core No.: 2			Moisture Co	ondi	ition:		Dry	as received			
Borehole Location: BH24-1			Run/RC:	5		Depth (ft):		15'6"-16'0"			
Date Sampled: Aug 14,2024		Received: Aug 2		g 29,2024	ι Τe	sted:	Sept 9,2024				
Core No.:	3			Moisture Condition				Dry	as received		
Borehole Loc	atio	n:	BH24-2	Run/RC: 5			D	epth (ft):	10'5"-11'2"		
Date Sample	d:		Aug 14,2024	Received:	Au	g 29,2024	29,2024 Te		Sept 9,2024		
Core No. :				1			2		3		
Diameter (m	m)			47.4			47.4		47.4		
Thickness/H	eigh	t (mm))	96.6			99.5		97.4		
Density (Kg/	m³)			2683			2698		2697		
Compressive Strength (Mpa)			(Mpa)	93.2			119.6		103.4		
Mass of Core (g)			457.4			473.7		463.5			
Description o	of Fa	ilure		Type 1			Type 4/2		Type 1		

Remarks: Core#2 Diagonal fracture with some columnar vertical cracking through top end. No well formed

Cones on ether end.

Core# 1&3 Relatively well-formed cone on one end, vertical cracks running through end, no well

formed cone on other end.

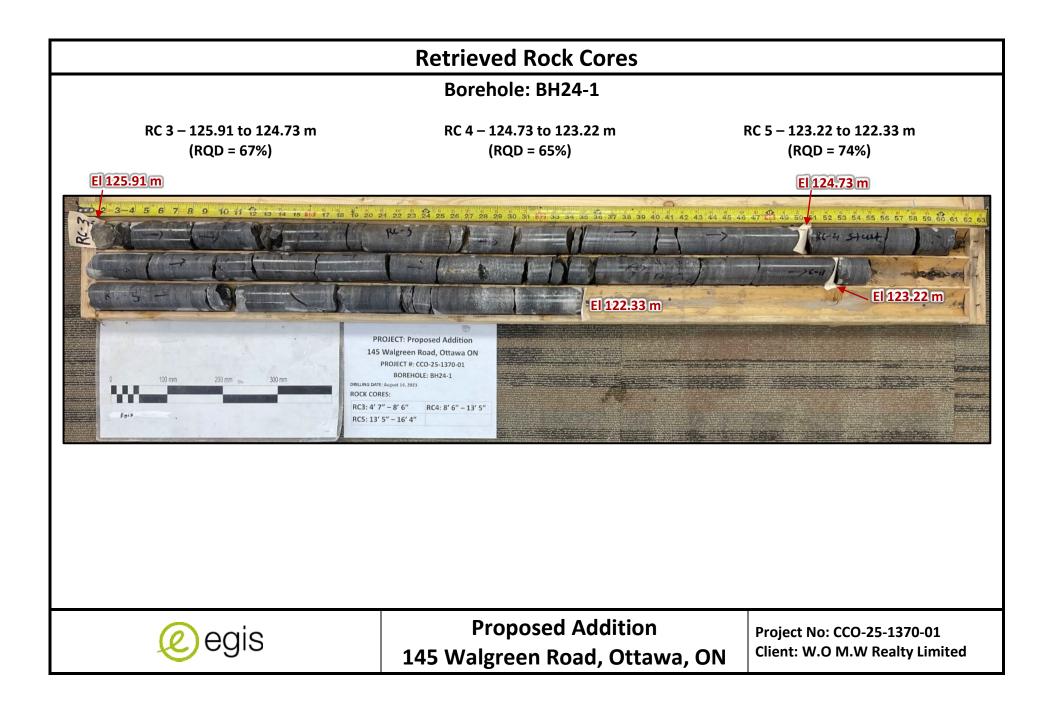
Reviewed By:	Julije	Date:	
	Jason Hopwood-Jones Laboratory Manager		

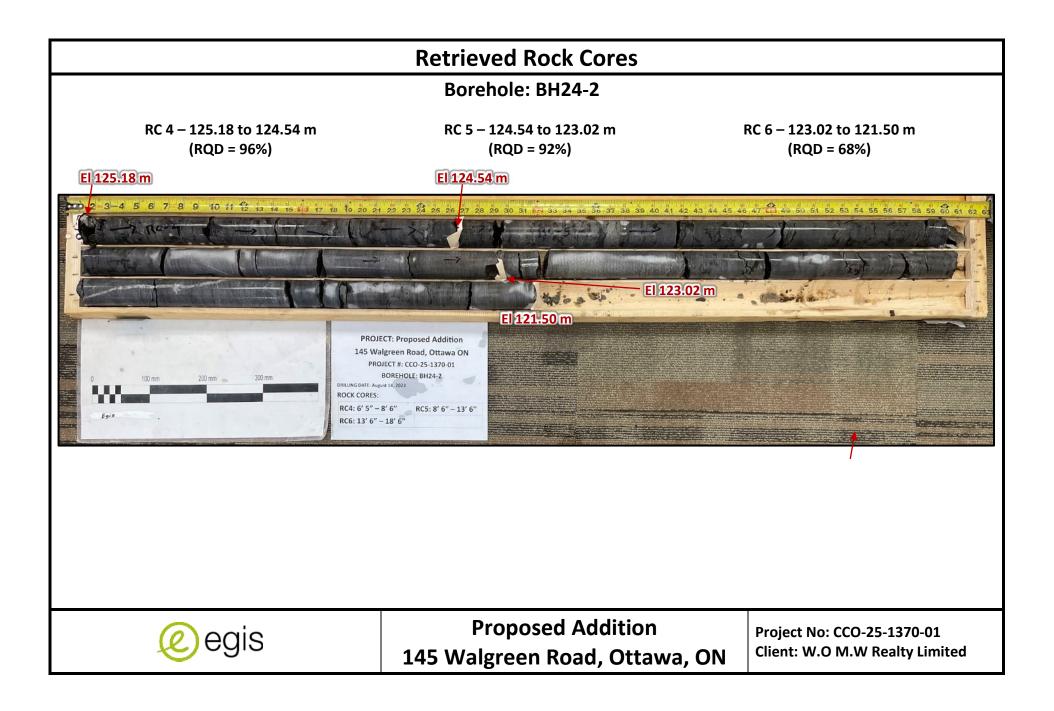
Unconfined Compressive Strength of Intact Rock Cores

ASTM D7012 Method C

Project No.:	CCO-2	5-1370-01		Date Iss	ued:	Septemb	er ,2024			
Lab No.:	OL-24	031		Report No						
Project Name:	: 145 W	/algreen Road								
Core No.:		4	Moisture Co	Moisture Condition:			as received			
Borehole Loca	Borehole Location: BH24-1		Run/RC:	6	De	epth (ft):	17'6"-18';0"			
Date Sampled	Date Sampled: Aug 14,2024		Received:	Aug 29,202	4 Te	sted:	Sept 9,2024			
Core No.:			Moisture Co	ondition:		Dry	as received			
Borehole Location:			Run:		De	epth (ft):				
Date Sampled:		Received:		Те	sted:					
Core No.:	Core No.:			ondition:						
Borehole Loca	tion:		Run:			epth (ft):				
Date Sampled	:		Received:	Received:		sted:				
Core No. :			4		5					
Diameter (mm	ו)		47.4							
Thickness/Hei	ght (mm))	102.8							
Density (Kg/m	1 ³)		2692							
Compressive Strength (Mpa)		70.6								
Mass of Core (g)		488.4								
Description of	Failure		4							

Remarks: Core#4 Diagonal fracture with some columnar vertical cracking through top end. No well formed


Cones on ether end.


Reviewed By:

Date:

Jason Hopwood-Jones Laboratory Manager

McIntosh Perry 104-215 Menten Place Nepean, ON K2H 9C1 Ph.: 613-453-0751 email: j.hopwood-jones@mcintoshperry.com

215 Menten Place, Unit 104 Nepean, ON K2H 9C1	
Attn: Jeff Forrester	
	Report Date: 4-Sep-2024
Client PO: CCO-25-1370-01	Order Date: 27-Aug-2024
Project: CCO-25-1370-01 (145 Walgreen Rd)	Onder # 0405407
Custody: 70629	Order #: 2435197

 Paracel ID
 Client ID

 2435197-01
 BH 24-4 SS-3

2435197-02 BH 24-8 SS-4

Approved By:

Mark Foto

Mark Foto, M.Sc.

Lab Supervisor

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Analysis Summary Table

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024

Project Description: CCO-25-1370-01 (145 Walgreen Rd)

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	4-Sep-24	4-Sep-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	30-Aug-24	30-Aug-24
Resistivity	EPA 120.1 - probe, water extraction	29-Aug-24	29-Aug-24
Solids, %	CWS Tier 1 - Gravimetric	28-Aug-24	29-Aug-24

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

PARACEL

Certificate of Analysis

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Order #: 2435197

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024

Project Description: CCO-25-1370-01 (145 Walgreen Rd)

	Client ID:	BH 24-4 SS-3	BH 24-8 SS-4	-	-		
	Sample Date:	15-Aug-24 09:00	15-Aug-24 10:30	-	-	-	-
	Sample ID:	2435197-01	2435197-02	-	-		
	Matrix:	Soil	Soil	-	-		
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	89.2	93.9	-	-	-	-
General Inorganics							
рН	0.05 pH Units	7.33	7.37	-	-	-	-
Resistivity	0.1 Ohm.m	84.4	12.6	-	-	-	-
Anions							
Chloride	10 ug/g	11	422	-	-	-	-
Sulphate	10 ug/g	26	70	-	-	-	-

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	10	ug/g					
Sulphate	ND	10	ug/g					
General Inorganics								
Resistivity	ND	0.1	Ohm.m					

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024

Project Description: CCO-25-1370-01 (145 Walgreen Rd)

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Method Quality Control: Duplicate

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024

Project Description: CCO-25-1370-01 (145 Walgreen Rd)

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	12.0	10	ug/g	11.4			4.9	35	
Sulphate	27.4	10	ug/g	26.5			3.6	35	
General Inorganics									
рН	7.16	0.05	pH Units	7.15			0.1	2.3	
Resistivity	12.5	0.1	Ohm.m	12.7			1.7	20	
Physical Characteristics % Solids	82.7	0.1	% by Wt.	83.8			1.3	25	

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Method Quality Control: Spike

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024

Project Description: CCO-25-1370-01 (145 Walgreen Rd)

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Chloride	108	10	ug/g	11.4	97.1	82-118			
Sulphate	123	10	ug/g	26.5	96.4	80-120			

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: Egis Canada Ltd. (Nepean)

Client PO: CCO-25-1370-01

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments: Received at temperature > 25C

-

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

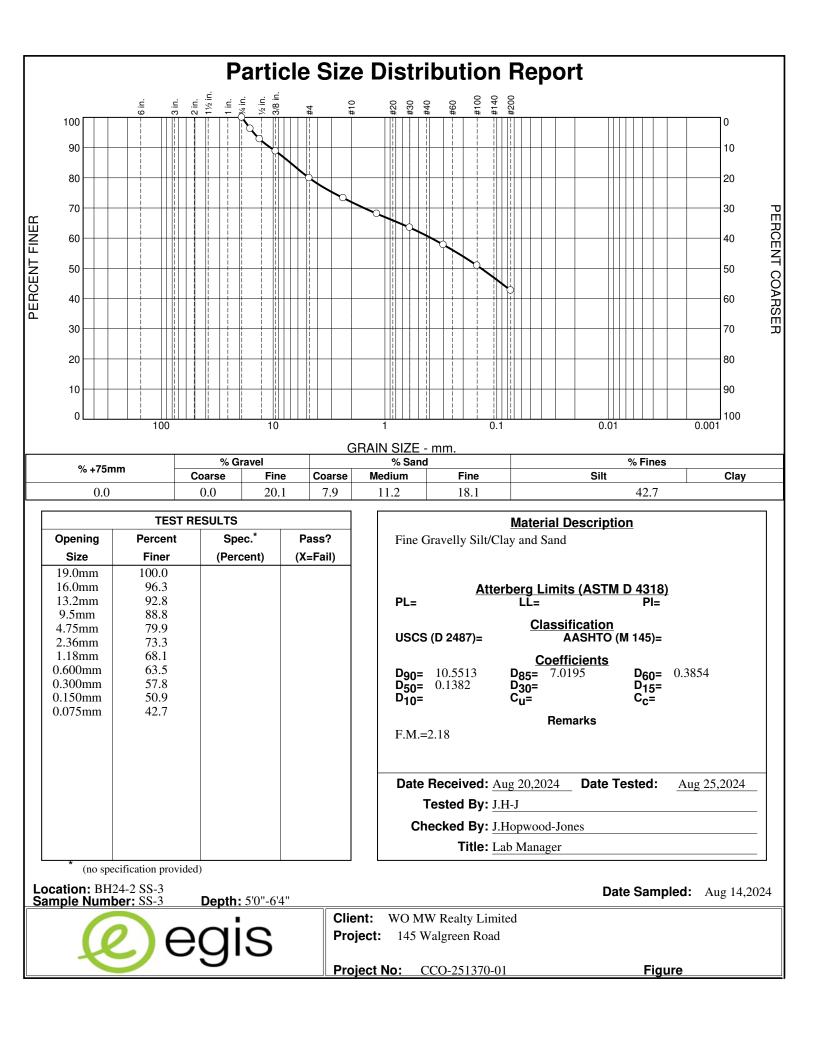
Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2435197

Report Date: 04-Sep-2024

Order Date: 27-Aug-2024


Project Description: CCO-25-1370-01 (145 Walgreen Rd)

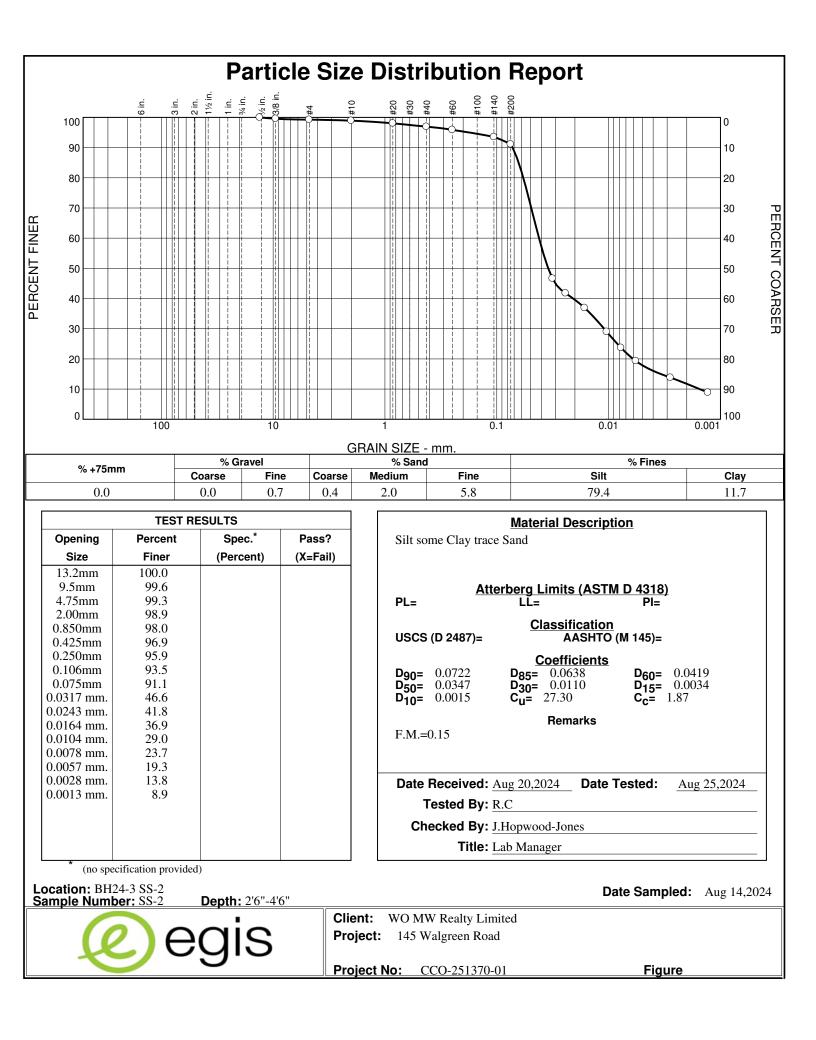
C PARAC LABORATORIES	el ID				rent Blvd. K1G 4J8 7 sellabs.com .com		racel Order Numb (Lab Use Only)		A	(Lab Use	Custody ^{Only)} 70629	
Client Name: Egis Canada Ud		Projec	ct Ref:	(0 - 25 - 1370)	Page 1_ of 1_						
Telfrey fuseed ca			e #;	-				,	Tu	rnaroun	d Time	
215 Menten Place, Unit 104		PO #:	((0 -	- 25 - 1370 -	- 0				🗆 1 day		🗆 3 da	ay
relephone:		E-mail	Jeffs	et. fosseste	5@egis-98	oup.	com		🗆 2 day		L Reg	gula
ereprione:		ce!	Jay	Putel @ 09	is - group. (m	-		Date Require	d:		
REG 153/04 REG 406/19 Other Regulation	n	/atrix 1	Type: S	(Soil/Sed.) GW (G	iround Water)					Alternation		1
Table 1 Res/Park Med/Fine REG 558 PWQ0			rface W	/ater) SS (Storm/Sa	initary Sewer)	100	R	Re	equired Analys	ils		
Table 2 Ind/Comm Coarse CCME MISA			P (P)	aint) A (Air) O (Ot	her)		- In					
Table 3 Agri/Other SU - Sani SU - Storm Table Mun:			ners			10: *	p p p					
Table For RSC: Yes No Other:		nme	Containers	Sample	e Taken	ivis Vivi	المام عليام					
Sample ID/Location Name	Matrix	Air Volume	of C	Date	Time	0640	لملين لغان					
1 BH 24-4 55-3	S	-	, 22 			3	24	-				
² BH 24-8 55-4	5	0		08/15/24	_9:00 AM			+				
3	5	.0	1	08/15/24	10:30 AM			-				
4	-	-				-		-		_		
5	-											
6	-					-		-				_
7	-	-										
8										_		_
9		-										
10	-											
omments:	I											
Test for Courseined Testinge	$\int c$		Je.	of dil	ul a	. 1	11)	Metho	d of Delivery:	Itin		
telinguished By (Sign):	river/D	epot:	Te,	pri, chi	Side Re Received at Lab:	2124	IVITZ J	Verifie	Nd By:	ir al		_
elinquished By (Print):			4	a tra na Pr	SO				25	S	11155	
ate/Time: A Temperature:	A,	25	271	24 3:16	Pria	27,2	2024 4.55p	Date/1	Time 28 Au	924	0039	Ĩ
August 27, 2024			Ľ	7 · °C Revision 4.0	Temperature:	9	°C	pH Ve	rified: 🔲	Β γ:		

WATER CONTENT DETERMINATION

Test Method Utilized		MTO LS-701		ASTM D 2216	A	ASHTO T-265	
Project No.: CCO-25-1370-	-01-05-03				Date Rece	ived: August 2	0,2024
Project Name/Location: Ge	eotech Invest :	145 Walgreen Ro	oad.		Date Teste	ed: August 21,	2024
Material Type: Soils					Lab Sampl	e No.: OL-240	31
Borehole No.	Depth Sample Taken (ft ')	Sample Container I.D.	Wet Sample + Tare (A)	Dry Sample + Tare (B)	Tare (C)	Mass of Sample (D) (B-C)	% Moisture (A-B)/Dx100
BH24-2 SS-3	5'0"-6'4"	P.86	760.19	718.26	130.26	588.00	7.1
BH24-3 SS-2	2'6"-4'6"	P.98	601.15	536.05	129.43	406.62	16.0
BH24-4 SS-4	7'6"-9'5"	P.96	690.69	630.36	148.02	482.34	12.5
BH24-7 SS-1	0'0"-2'0"	P.35	1054.04	990.83	184.74	806.09	7.8
BH24-8 SS-2	2'6"-4'6"	P.100	581.30	522.00	156.68	365.32	16.2
Non-Comformance's from	n Test Procedure	: N/A					
Comments:							
Checked by: J.H-J				Signature:	J-1J-	2	

Client: WO MW Realty Limited Project: 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-2 SS-3 Depth: 5'0"-6'4" Material Description: Fine Gravelly Silt/Clay and Sand Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Tested By: J.H-J Checked By: J.Hopwood-Jones Test Date: Aug 25,2024 Title: Lab Manager

			Sieve Te	est Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
588.00	0.00	0.00	19.0mm	0.00	100.0	0.0	
			16.0mm	21.96	96.3	3.7	
			13.2mm	42.25	92.8	7.2	
			9.5mm	65.70	88.8	11.2	
			4.75mm	117.98	79.9	20.1	
			2.36mm	156.94	73.3	26.7	
			1.18mm	187.62	68.1	31.9	
			0.600mm	214.64	63.5	36.5	
			0.300mm	248.12	57.8	42.2	
			0.150mm	288.63	50.9	49.1	
			0.075mm	337.07	42.7	57.3	
			Fractional C	omponents			


Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	20.1	20.1	7.9	11.2	18.1	37.2			42.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1382	0.3854	4.7759	7.0195	10.5513	15.0032

Fineness

Modulus

2.18

epth: 2'6"-4 laterial Dese ample Date ate Receive	cription: Silt Aug 14,202 d: Aug 20,20		ace Sand		nple Numb				
ested By: R hecked By:	.C J.Hopwood-	Jones			t Date: Aug : Lab Man				
			Siev	ve Test I	Data				
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Siev Open Sizo	ve ing I	umulative Weight Retained (grams)	Percent Finer	Percent Retained		
406.62	0.00	0.00	13.2r	nm	0.00	100.0	0.0		
			9.5r	nm	1.71	99.6	0.4		
			4.75r	nm	3.01	99.3	0.7		
			2.00r	nm	4.38	98.9	1.1		
109.35	0.00	0.00	0.850r	nm	0.97	98.0	2.0		
			0.425r	nm	2.19	96.9	3.1		
			0.250r	nm	3.38	95.9	4.1		
			0.106r	nm	5.94	93.5	6.5		
			0.1001	11111		,	0.5		
			0.075r		8.65	91.1	8.9		
		rial passing #	0.075r Hydror 10	nm neter Te					
ercent passin leight of hydr utomatic tem Composite eniscus corr pecific gravit ydrometer ty Hydrometer	ng #10 based rometer samp perature corr correction (flu ection only = y of solids = 2 pe = 152H effective dep	upon comple ole =109.35 rection iid density an -1.0 2.775 th equation: I	0.075r Hydror 10 te sample = 98 d meniscus he _ = 16.6007 - 0	nm neter Te 9.9 9.9 9.9 at 2	st Data 20 deg. C = -	91.1	8.9		
ercent passin leight of hydr utomatic tem Composite o eniscus corr pecific gravit ydrometer ty	ng #10 based rometer samp operature corr correction (flu ection only = y of solids = 1 pe = 152H	upon comple ble =109.35 rection iid density an -1.0 2.775	0.075r Hydror 10 te sample = 98 d meniscus he	nm neter Te 9.9 9.9 9.9 at 2	st Data 20 deg. C = -	91.1		Percent Finer	Perce Retain
ercent passin leight of hydr utomatic tem Composite o eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed	ng #10 based rometer samp perature corr correction (flu ection only = y of solids = pe = 152H effective dep Temp.	upon comple ble =109.35 rection iid density an -1.0 2.775 th equation: I Actual	0.075r Hydror 10 te sample = 98 d meniscus he - = 16.6007 - 0 Corrected	nm neter Te 3.9 sight) at 2 .187 x Rr	st Data 20 deg. C = - m Rm	91.1 -4.5 Eff.	8.9 Diameter		
ercent passin leight of hydr utomatic tem Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.)	ng #10 based rometer samp perature corr correction (flu ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.)	upon comple ole =109.35 rection iid density an -1.0 2.775 th equation: I Actual Reading	0.075r Hydror 10 te sample = 98 d meniscus he - = 16.6007 - 0 Corrected Reading	nm neter Te 9.9 eight) at 2 .187 x Rr K	st Data 20 deg. C = - m Rm 56.0	91.1 -4.5 Eff. Depth	8.9 Diameter (mm.)	Finer	Retain
ercent passin leight of hydr utomatic tem Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00	ng #10 based rometer samp perature correction (flu- ection only = y of solids = 1 pe = 152H effective dep Temp. (deg. C.) 22.1	upon comple ble =109.35 rection iid density an -1.0 2.775 th equation: I Actual Reading 57.0	0.075r Hydror 10 te sample = 98 d meniscus he - = 16.6007 - 0 Corrected Reading 52.9	nm neter Te 3.9 sight) at 2 .187 x Rr K 0.0128	st Data 20 deg. C = - m Rm 56.0 50.5	91.1 -4.5 Eff. Depth 6.1	8.9 Diameter (mm.) 0.0317	Finer 46.6	Retain 53.4 58.2
ercent passin leight of hydr utomatic tem Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00	ng #10 based rometer samp perature correction (flu- ection only = y of solids = 2 pe = 152H effective dep Temp. (deg. C.) 22.1 22.1	upon comple ble =109.35 rection iid density an -1.0 2.775 th equation: I Actual Reading 57.0 51.5	0.075r $Hydror$ 10 te sample = 98 d meniscus he $- = 16.6007 - 0$ Corrected Reading 52.9 47.4	nm neter Te 9.9 eight) at 2 .187 x Rr K 0.0128 0.0128	st Data 20 deg. C = - m 56.0 50.5 45.0	91.1 -4.5 Eff. Depth 6.1 7.2	8.9 Diameter (mm.) 0.0317 0.0243	Finer 46.6 41.8	Retain 53.4 58.2 63.1
ercent passin leight of hydr utomatic terr Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00	ng #10 based rometer samp perature correction (flu- ection only = y of solids = 1 pe = 152H effective dep Temp. (deg. C.) 22.1 22.1 22.1	upon comple ble =109.35 rection iid density an -1.0 2.775 th equation: I Actual Reading 57.0 51.5 46.0	0.075r Hydror Hydror te sample = 98 d meniscus he = 16.6007 - 0 Corrected Reading 52.9 47.4 41.9	nm neter Te 3.9 eight) at 2 .187 x Rr K 0.0128 0.0128 0.0128	st Data 20 deg. C = - m 56.0 50.5 45.0 36.0	91.1 -4.5 Eff. Depth 6.1 7.2 8.2	8.9 Diameter (mm.) 0.0317 0.0243 0.0164	Finer 46.6 41.8 36.9	Retain 53.4 58.2 63.1 71.0
ercent passin leight of hydr utomatic terr Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00	ng #10 based rometer samp perature correction (flu- ection only = y of solids = 152H effective dep Temp. (deg. C.) 22.1 22.1 22.1 22.1	upon comple ble =109.35 rection sid density an -1.0 2.775 th equation: I Actual Reading 57.0 51.5 46.0 37.0	0.075r Hydror 10 te sample = 98 d meniscus he - = 16.6007 - 0 Corrected Reading 52.9 47.4 41.9 32.9	nm neter Te 5.9 eight) at 2 .187 x Rr K 0.0128 0.0128 0.0128 0.0128	st Data 20 deg. C = - m 56.0 50.5 45.0 36.0 30.0	91.1 -4.5 Eff. Depth 6.1 7.2 8.2 9.9	8.9 Diameter (mm.) 0.0317 0.0243 0.0164 0.0104	Finer 46.6 41.8 36.9 29.0	Retain 53.4 58.2 63.1 71.0 76.3
ercent passin leight of hydr utomatic terr Composite of eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00	ng #10 based rometer samp perature correction (flu- ection only = y of solids = 1 pe = 152H effective dep Temp. (deg. C.) 22.1 22.1 22.1 22.1 22.1	upon comple ble =109.35 rection .iid density an -1.0 2.775 th equation: I Actual Reading 57.0 51.5 46.0 37.0 31.0	0.075r Hydror Hydror te sample = 98 d meniscus he = 16.6007 - 0 Corrected Reading 52.9 47.4 41.9 32.9 26.9	nm neter Te 3.9 eight) at 2 .187 x Rr K 0.0128 0.0128 0.0128 0.0128 0.0128	st Data 20 deg. C = - m 56.0 50.5 45.0 36.0 30.0 25.0	91.1 -4.5 Eff. Depth 6.1 7.2 8.2 9.9 11.0	8.9 Diameter (mm.) 0.0317 0.0243 0.0164 0.0104 0.0078	Finer 46.6 41.8 36.9 29.0 23.7	Retain 53.4

Fractional Co	mponents

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse Fine Total		Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.7	0.7	0.4	2.0	5.8	8.2	79.4	11.7	91.1

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0015	0.0034	0.0060	0.0110	0.0208	0.0347	0.0419	0.0580	0.0638	0.0722	0.1758

Fineness Modulus		Cc
0.15	27.30	1.87

Client: WO MW Realty Limited Project: 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-4 SS-4 Depth: 7'6"-9'5" Sample Number: SS-4 Material Description: Sandy Silt some Gravel trace Clay Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Tested By: R.C Test Date: Aug 25,2024 Title: Lab Manager Siove Test Date

		Sieve le	st Data		
Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
0.00	0.00	37.5mm	0.00	100.0	0.0
		26.5mm	37.70	92.2	7.8
		19.0mm	37.70	92.2	7.8
		16.0mm	37.70	92.2	7.8
		13.2mm	37.70	92.2	7.8
		9.5mm	44.97	90.7	9.3
		4.75mm	59.53	87.7	12.3
		2.00mm	74.39	84.6	15.4
0.00	0.00	0.850mm	3.87	81.6	18.4
		0.425mm	8.38	78.1	21.9
		0.250mm	14.11	73.7	26.3
		0.106mm	25.28	65.2	34.8
		0.075mm	33.97	58.5	41.5
	(grams) 0.00	Pan Tare Tare Weight (grams) (grams) 0.00 0.00	Cumulative Pan Tare Weight (grams)Sieve Opening Size0.000.0037.5mm 26.5mm 19.0mm 16.0mm 13.2mm 9.5mm 4.75mm 2.00mm0.000.000.850mm 0.425mm 0.106mm	Pan (grams) Sieve (grams) Weight Retained (grams) 0.00 0.00 37.5mm 0.00 0.00 0.00 37.5mm 0.00 26.5mm 37.70 19.0mm 37.70 19.0mm 37.70 13.2mm 37.70 13.2mm 37.70 13.2mm 37.70 9.5mm 44.97 4.75mm 59.53 2.00mm 74.39 3.87 0.425mm 8.38 0.250mm 14.11 0.106mm 25.28	Cumulative Pan Tare Weight (grams)Cumulative Sieve Opening SizeCumulative Weight Retained (grams)Percent Finer0.000.0037.5mm0.00100.026.5mm37.7092.219.0mm37.7092.219.0mm37.7092.216.0mm37.7092.213.2mm37.7092.29.5mm44.9790.74.75mm59.5387.72.00mm74.3984.60.000.000.850mm3.8781.60.425mm8.3878.10.250mm14.1173.70.106mm25.2865.2

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 84.6

Weight of hydrometer sample =110.12

Automatic temperature correction

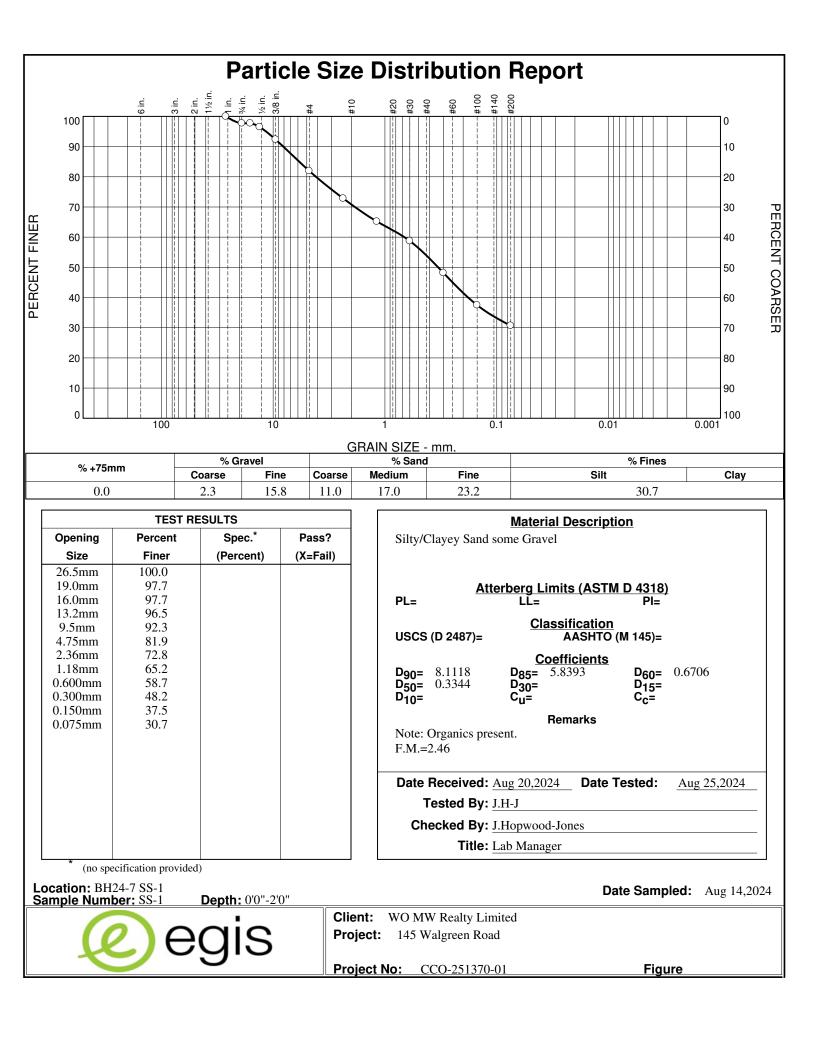
Composite correction (fluid density and meniscus height) at 20 deg. C = -4.5

Meniscus correction only = -1.0

Specific gravity of solids = 2.775

Hydrometer type = 152H

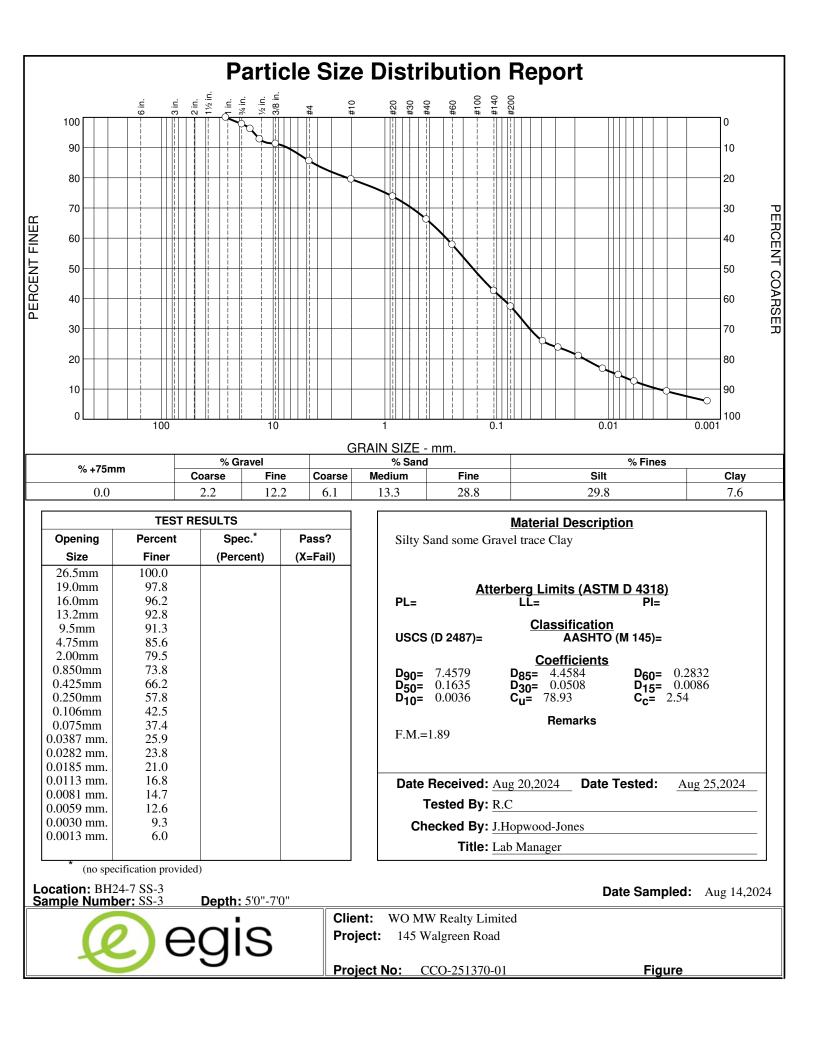
Hydrometer effective depth equation: L = 16.6007 - 0.187 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.1	46.0	41.9	0.0128	45.0	8.2	0.0367	31.4	68.6
2.00	22.1	39.0	34.9	0.0128	38.0	9.5	0.0279	26.1	73.9
5.00	22.1	30.0	25.9	0.0128	29.0	11.2	0.0192	19.4	80.6
15.00	22.1	23.0	18.9	0.0128	22.0	12.5	0.0117	14.2	85.8
30.00	22.1	20.0	15.9	0.0128	19.0	13.0	0.0085	11.9	88.1
60.00	22.1	18.0	13.9	0.0128	17.0	13.4	0.0061	10.4	89.6
275.00	21.1	14.0	9.7	0.0130	13.0	14.2	0.0029	7.3	92.7
1440.00	20.5	11.0	6.6	0.0131	10.0	14.7	0.0013	4.9	95.1

Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	7.8	4.5	12.3	3.1	6.5	19.6	29.2	52.5	6.0	58.5

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0014	0.0055	0.0130	0.0199	0.0347	0.0470	0.0595	0.0793	0.5824	2.2614	8.3700	31.1651


Fineness Modulus		Cc		
1.37	14.41	2.76		

Client: WO MW Realty Limited **Project:** 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-7 SS-1 **Depth:** 0'0"-2'0" Sample Number: SS-1 Material Description: Silty/Clayey Sand some Gravel Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Testing Remarks: Note: Organics present. Tested By: J.H-J **Test Date:** Aug 25,2024 Checked By: J.Hopwood-Jones Title: Lab Manager Sieve Test Data Cumulative Cumulative Dry Sample Sieve Weight Pan and Tare Tare Tare Weight Opening Retained Percent Percent (grams) (grams) (grams) Size (grams) Finer Retained 806.09 0.00 0.00 26.5mm 0.00 100.0 0.0 19.0mm 18.31 97.7 2.3 16.0mm 18.31 97.7 2.3 96.5 13.2mm 28.36 3.5 61.82 92.3 7.7 9.5mm 81.9 4.75mm 145.56 18.1 2.36mm 218.99 72.8 27.2 65.2 34.8 1.18mm 280.56 0.600mm 332.55 58.7 41.3 0.300mm 48.2 51.8 417.76 0.150mm 503.97 37.5 62.5 0.075mm 558.91 30.7 69.3 Fractional Components

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	2.3	15.8	18.1	11.0	17.0	23.2	51.2			30.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1804	0.3344	0.6706	4.1366	5.8393	8.1118	11.5636
Fineness Modulus 2.46											
					Egis Car	nada Ltd	•				

Client: WO MW Realty Limited Project: 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-7 SS-3 Depth: 5'0"-7'0" Sample Number: SS-3 Material Description: Silty Sand some Gravel trace Clay Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Tested By: R.C Test Date: Aug 25,2024 Checked By: J.Hopwood-Jones Title: Lab Manager Sieve Test Data Dry Cumulative Cumulative

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
616.54	0.00	0.00	26.5mm	0.00	100.0	0.0	
			19.0mm	13.62	97.8	2.2	
			16.0mm	23.34	96.2	3.8	
			13.2mm	44.37	92.8	7.2	
			9.5mm	53.64	91.3	8.7	
			4.75mm	88.82	85.6	14.4	
			2.00mm	126.38	79.5	20.5	
110.36	0.00	0.00	0.850mm	7.92	73.8	26.2	
			0.425mm	18.44	66.2	33.8	
			0.250mm	30.07	57.8	42.2	
			0.106mm	51.30	42.5	57.5	
			0.075mm	58.50	37.4	62.6	
			Hydromete	r Test Data			

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 79.5

Weight of hydrometer sample =110.36

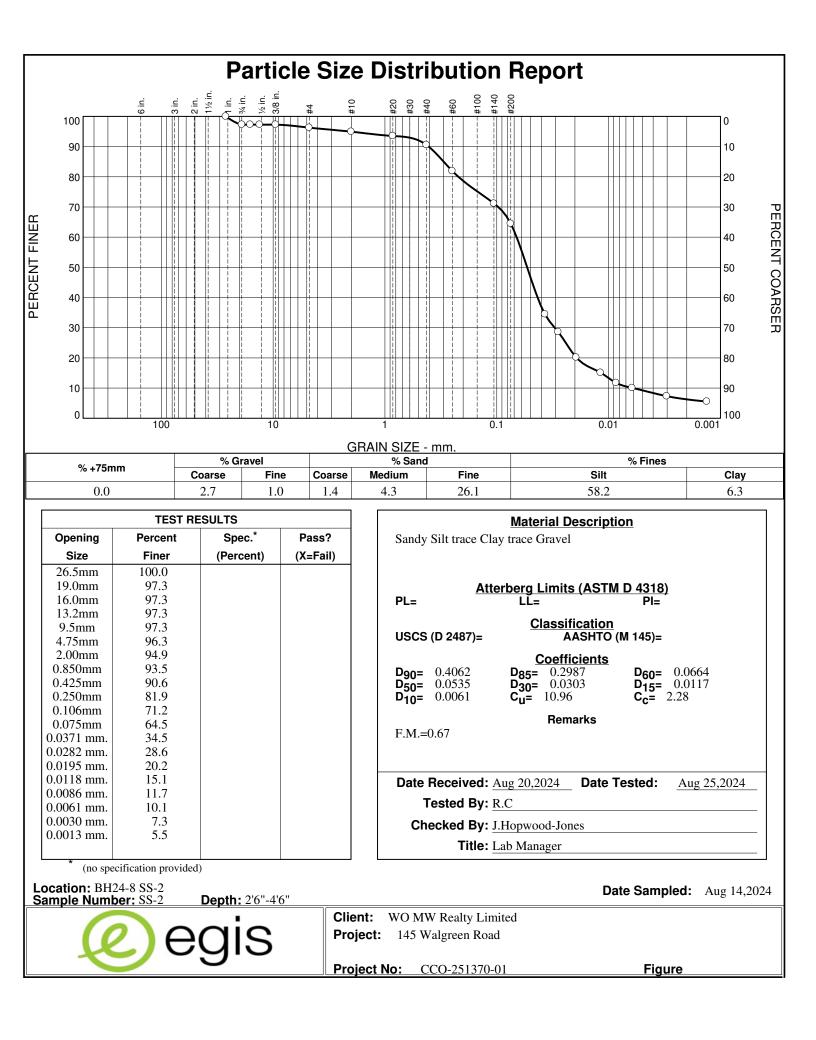
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4.5

Meniscus correction only = -1.0

Specific gravity of solids = 2.775

Hydrometer type = 152H


Hydrometer effective depth equation: L = 16.6007 - 0.187 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.1	41.0	36.9	0.0128	40.0	9.1	0.0387	25.9	74.1
2.00	22.1	38.0	33.9	0.0128	37.0	9.7	0.0282	23.8	76.2
5.00	22.1	34.0	29.9	0.0128	33.0	10.4	0.0185	21.0	79.0
15.00	22.1	28.0	23.9	0.0128	27.0	11.6	0.0113	16.8	83.2
30.00	22.1	25.0	20.9	0.0128	24.0	12.1	0.0081	14.7	85.3

	Hydrometer Test Data (continued)												
Elapsed Time (min.	Tem .) (deg.	•	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained			
60.00	22.	1	22.0	17.9	0.0128	21.0	12.7	0.0059	12.6	87.4			
250.00	21.	1	17.5	13.2	0.0130	16.5	13.5	0.0030	9.3	90.7			
1440.00	20.	.5	13.0	8.6	0.0131	12.0	14.4	0.0013	6.0	94.0			
				Fractio	nal Comp	onents							
		Grave	1		Sa	nd			Fines				
Cobbles	Coarse	Fine	Tota	Coarse	Medium	Fine	Total	Silt	Clay	Total			
0.0	2.2	12.2	14.4	6.1	13.3	28.8	48.2	29.8	7.6	37.4			

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0036	0.0086	0.0165	0.0508	0.0890	0.1635	0.2832	2.1807	4.4584	7.4579	14.9175

Fineness Modulus		Cc
1.89	78.93	2.54

Client: WO MW Realty Limited **Project:** 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-8 SS-2 **Depth:** 2'6"-4'6" Sample Number: SS-2 Material Description: Sandy Silt trace Clay trace Gravel Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Tested By: R.C **Test Date:** Aug 25,2024 Checked By: J.Hopwood-Jones Title: Lab Manager Sieve Test Data Cumulative Cumulative Drv Sample Pan Sieve Weight and Tare Tare Tare Weight Opening Retained Percent Percent (grams) (grams) (grams) Size (grams) Finer Retained 365.32 0.00 0.00 26.5mm 0.00 100.0 0.0 97.3 19.0mm 9.93 2.7 97.3 2.7 16.0mm 9.93 97.3 13.2mm 9.93 2.7 9.5mm 9.93 97.3 2.7 4.75mm 13.57 96.3 3.7 2.00mm 18.47 94.9 5.1 109.71 0.00 0.00 0.850mm 1.64 93.5 6.5 0.425mm 5.06 90.6 9.4 0.250mm 15.04 81.9 18.1 0.106mm 27.49 71.2 28.8 0.075mm 35.5 35.20 64.5

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 94.9

Weight of hydrometer sample =109.71

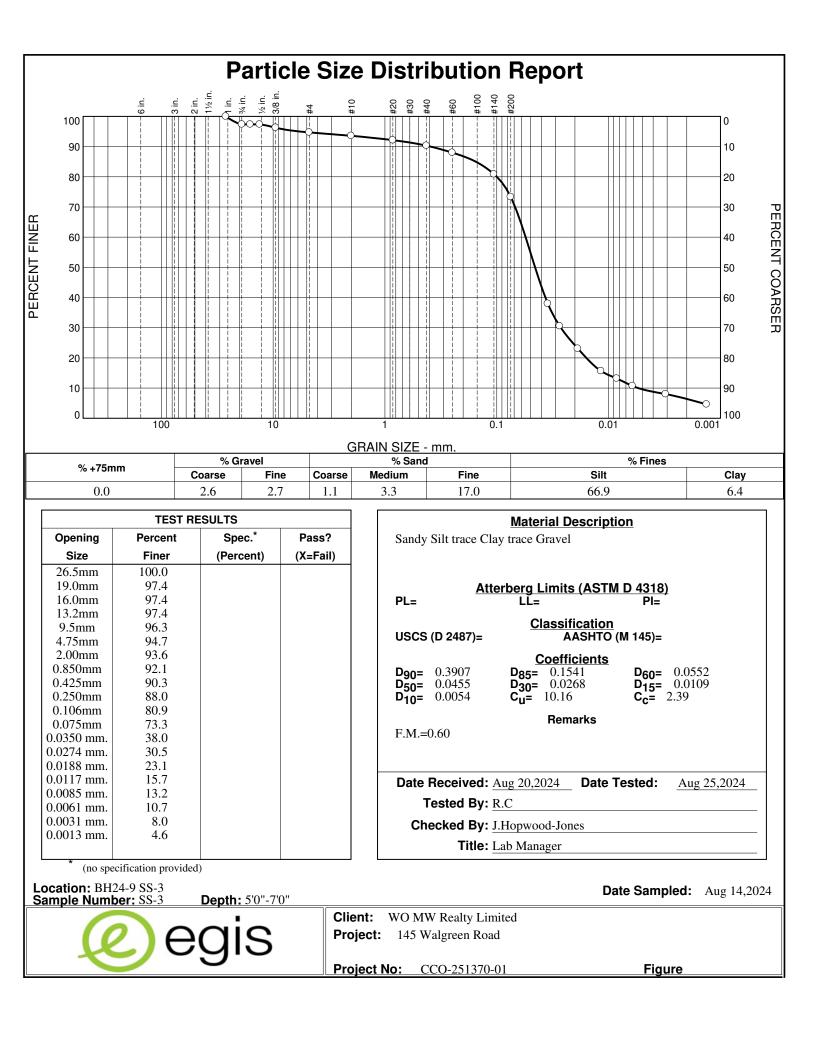
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -4.5

Meniscus correction only = -1.0Specific gravity of solids = 2.775

Hydrometer type = 152H

nydrometer type = 132n


Hydrometer effective depth equation: L = 16.6007 - 0.187 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.1	45.0	40.9	0.0128	44.0	8.4	0.0371	34.5	65.5
2.00	22.1	38.0	33.9	0.0128	37.0	9.7	0.0282	28.6	71.4
5.00	22.1	28.0	23.9	0.0128	27.0	11.6	0.0195	20.2	79.8
15.00	22.1	22.0	17.9	0.0128	21.0	12.7	0.0118	15.1	84.9
30.00	22.1	18.0	13.9	0.0128	17.0	13.4	0.0086	11.7	88.3

	Hydrometer Test Data (continued)											
Elapsed Time (min.	Tem .) (deg.		Actual leading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained		
60.00	22.	1	16.0	11.9	0.0128	15.0	13.8	0.0061	10.1	89.9		
265.00	21.	1	13.0	8.7	0.0130	12.0	14.4	0.0030	7.3	92.7		
1440.00	20.	5	11.0	6.6	0.0131	10.0	14.7	0.0013	5.5	94.5		
				Fractio	nal Comp	onents						
Ochhian	Gravel				Sa	nd			Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0.0	2.7	1.0	3.7	1.4	4.3	26.1	31.8	58.2	6.3	64.5		

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0061	0.0117	0.0193	0.0303	0.0432	0.0535	0.0664	0.2203	0.2987	0.4062	2.0669

Fineness Modulus		Cc
0.67	10.96	2.28

Client: WO MW Realty Limited **Project:** 145 Walgreen Road Project Number: CCO-251370-01 Location: BH24-9 SS-3 **Depth:** 5'0"-7'0" Sample Number: SS-3 Material Description: Sandy Silt trace Clay trace Gravel Sample Date: Aug 14,2024 Date Received: Aug 20,2024 Tested By: R.C **Test Date:** Aug 25,2024 Checked By: J.Hopwood-Jones Title: Lab Manager Sieve Test Data Cumulative Cumulative Drv Sample Pan Sieve Weight and Tare Tare Tare Weight Opening Retained Percent Percent (grams) (grams) (grams) Size (grams) Finer Retained 506.63 0.00 0.00 26.5mm 0.00 100.0 0.0 2.6 19.0mm 13.37 97.4 97.4 2.6 16.0mm 13.37 13.2mm 97.4 2.6 13.37 9.5mm 18.95 96.3 3.7 4.75mm 26.80 94.7 5.3 2.00mm 32.56 93.6 6.4 110.16 0.00 0.00 0.850mm 1.69 92.1 7.9 0.425mm 3.84 90.3 9.7 0.250mm 6.55 88.0 12.0 0.106mm 14.96 80.9 19.1 0.075mm 26.723.83 73.3 Hydrometer Test Data Hydrometer test uses material passing #10 Percent passing #10 based upon complete sample = 93.6 Weight of hydrometer sample =110.16Automatic temperature correction Composite correction (fluid density and meniscus height) at 20 deg. C = -4.5

Meniscus correction only = -1.0

Specific gravity of solids = 2.775

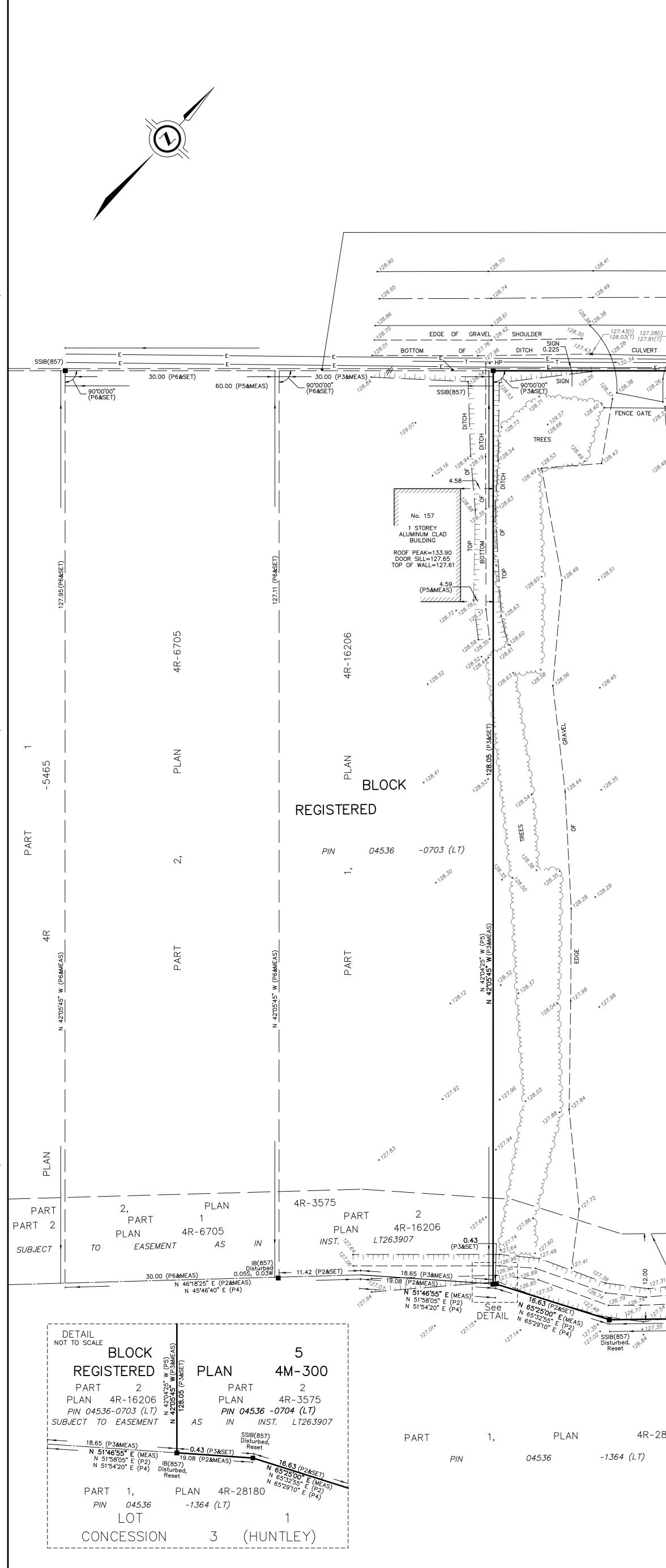
Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.6007 - 0.187 x Rm

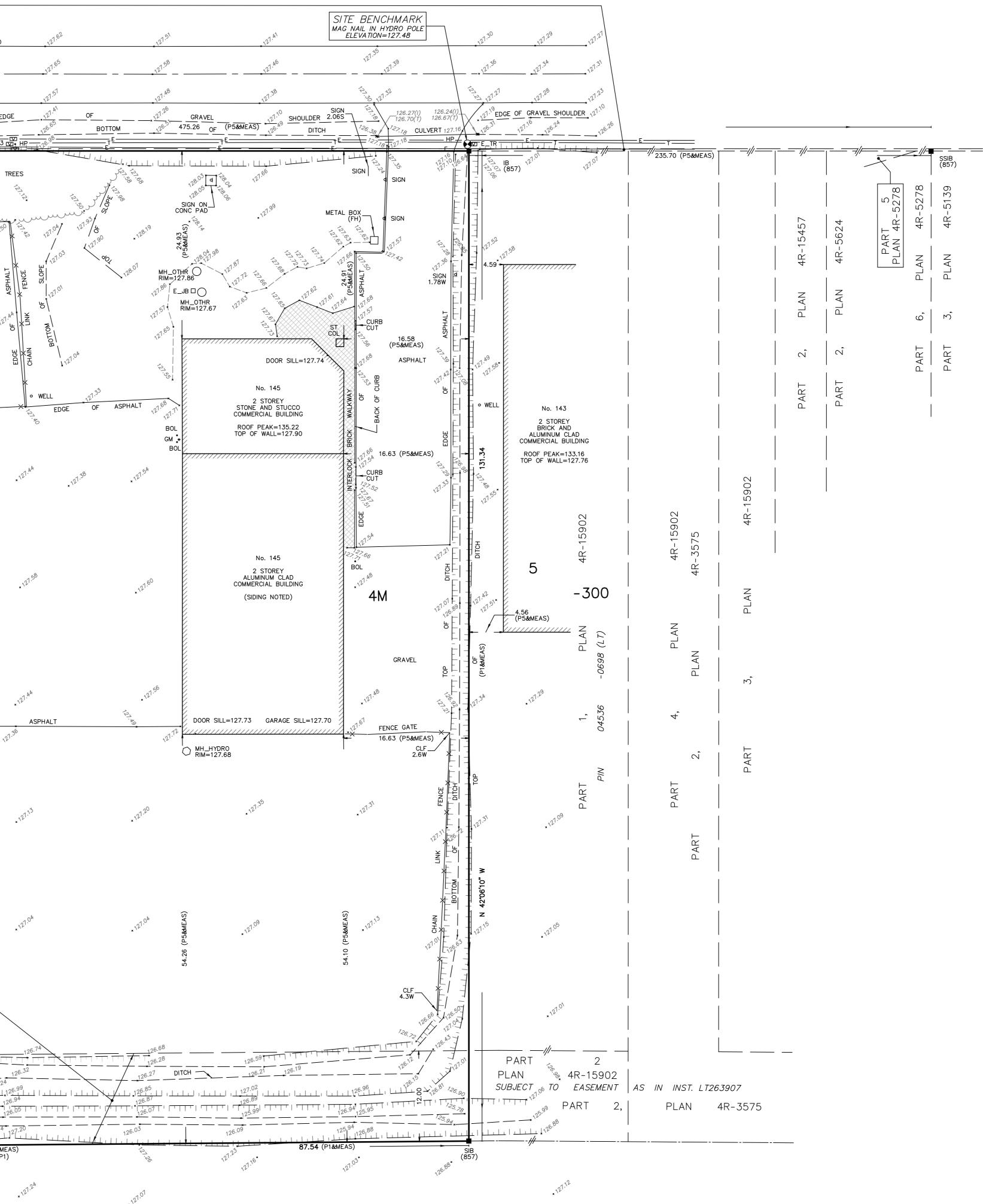
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	22.1	50.0	45.9	0.0128	49.0	7.4	0.0350	38.0	62.0
2.00	22.1	41.0	36.9	0.0128	40.0	9.1	0.0274	30.5	69.5
5.00	22.1	32.0	27.9	0.0128	31.0	10.8	0.0188	23.1	76.9
15.00	22.1	23.0	18.9	0.0128	22.0	12.5	0.0117	15.7	84.3
30.00	22.1	20.0	15.9	0.0128	19.0	13.0	0.0085	13.2	86.8

Egis Canada Ltd. _____

				Hydrometer	Test Data	(continu	led)			
Elapsed Time (min			Actual eading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
60.00	22.	.1	17.0	12.9	0.0128	16.0	13.6	0.0061	10.7	89.3
250.00	21.	.1	14.0	9.7	0.0130	13.0	14.2	0.0031	8.0	92.0
1440.00	20.	0.5 10.0		5.6	0.0131	9.0	14.9	0.0013	4.6	95.4
	Fractional Components									
		Gravel			60	nd			Fines	
Cobbles	PS		Total	Coarse	Medium	Fine	Total	Cilt		Total
	Coarse	Fine	Total	Coarse	weatum	гле	rotar	Silt	Clay	Total
0.0	2.6	2.7	5.3	1.1	3.3	17.0	21.4	66.9	6.4	73.3


D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0015	0.0054	0.0109	0.0158	0.0268	0.0368	0.0455	0.0552	0.1001	0.1541	0.3907	5.7715

Fineness Modulus		Cc
0.60	10.16	2.39


GEOTECHNICAL INVESTIGATION OF THE PROPOSED BUILDING ADDITION AND SITE DEVELOPMENT 145 WALGREEN RD, OTTAWA, ON

APPENDIX E: ADDITIONAL DRAWINGS

							BY-LAW	D AS PUBLIC '66-86, INST	. LT472442	BY 📃		
	128.20		-	1.96 WALGRE	~^2 ¹ .	DEDICATE	$\frac{\text{EDGE}}{\text{EDGE}} \frac{\sqrt{2^{1.8^{1}}}}{\text{EDGE}}$	04536 -03 0F EGISTERED	PLAN	 asph/ 4M-300)	
	128.23		2	3.0 ³	~	<u>C/L</u>	EDGE v ^{21,16}	OF 	121.18 12.1.65	ROAD) <u>^\¹,6</u>	.60 1,21.59 ROAD
() - 20 () - 2	128.06	— —	EDGE 12	19	AVEL	SHOULDER			121.58 126.1	_ 126.75(I) 127.20(T)	126.71(1) 127.17(1) RT ⁷ 2>.54	
T [⊥] 1,28,36 (1,28,36 (1,28	1°,22,19	121.31 x ^{121.72}		1.5 ¹	* HP	1,21.9 ^k				179.56 (P5&	121.51 121.22 121.22	SIGN
	<u> </u>		ر» سيسين *رژ OF		<u>121.15</u>		<u>1</u> 27.6 ^h	121.52	52	121.61	150	v21.5
2 [°] 12 ^{8.3}	* ^{1/28,51}		~OF		LS•	ASPHALT	- ^{121.93}		* ^{121,69}	CHAIN LINK C FENCE	* 121.70	ASPHALT EDGE
	* 12 ^{8.45}	E_JB □ \1 ^{28,25}	* 128.42		* 128. ³¹	Ъ 1 ^{28.28}	* 12 ^{8.15}		LS 12 ¹ * ^{12^{1,90}}		FENCE GATE	
	* 12 ^{8.25}	E_JB	* ^{128.17}		* 12 ^{8.21}	EDGE	۰ ^{۷۵,30} PLA	N	-12 ^{8.08}		ASPHALT	
		E_JB	2		PIN		C	04536			-0704 (LT)	
	×1 ^{28.11}	E_JB	11 * 1 ^{28.05}		* 128.0 ⁵	e,	*1 ^{28.10}		12 ^{1.81}	EDGE	1,21.69* 	DF
	* ^{12^{.91}}	E_JB	(C/L ^{-1,-1} ^{1,0} ^{1,0}		* ^{121.11}		12 ^{1,15}		1 ^{21,51}		12. * 121.32	
		E_JB □	Å T				GRA	VEL				
	* ^{121.16}	E_JB	* ^{121.60}		* ^{121,52}		* 12 ^{1.52}		× 12 ^{1,40}		* 127.22	
		127.66				2, <i>JBJECT TO</i>	EASEMENT AS	PLAN IN INST. LT20		3575		
31	27.51 $127.30127.30127.30127.33126.71126.71126.71127.39127.39127.39127.39$	*	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	BOTTOM	26.44 126.46 127.08		$\begin{array}{c} 126.50\\ 126.31\\ 126.31\\ 126.33\\$	TOP T	$\begin{array}{c} 12^{6} \\ 12^{6} \\ 12^{6} \\ 12^{6} \\ 12^{7$		$- \underbrace{- \underbrace{-126.15}_{126.15}}_{126.14} \mathbf{D}$	ТСН <u>126.14</u> ITCH <u>126.14</u> ITCH <u>126.14</u> ITCH <u>126.14</u> N 47°23′15″ Е (М N 47°23′15″ Е (Р
5 *	* [*] ²⁻¹ N 47 *** N 4	*08'50" E (P4&MI 7*07'25" E (P2)	50.01 (P4&SET) EAS) 속	127.04	SSIB (AOG)	75.78 (P4 75.86	**************************************		* ¹⁰³		* 12 ^{1.10}	N 47°23′15" E (P
28180	СС	L()NCESSI	ЭТ ОN					3		1 (HUNTL	_EY)	

-1365 (LT) 04536 PIN

SURVEYOR'S REAL PROPERTY REPORT WITH TOPOGRAPHIC DETAILS PART 1 - PLAN SHOWING
PART OF BLOCK 5 REGISTERED PLAN 4M-300 CITY OF OTTAWA
J.D. BARNES LIMITED © COPYRIGHT 2024 SCALE 1 : 300
5 0 5 10 20 metres

METRIC DISTANCES AND/OR COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048. <u>NOTES</u>

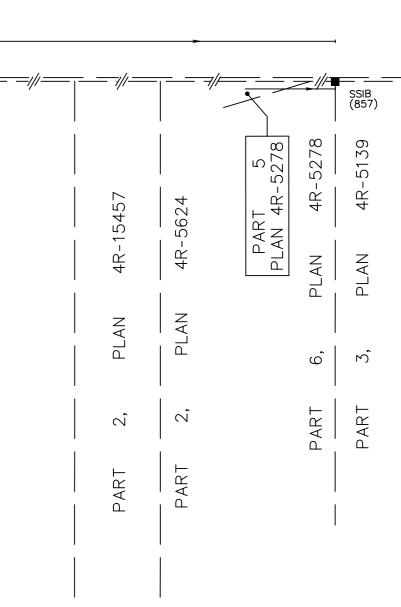
BEARINGS ARE MTM GRID, AND DERIVED FROM GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) BY REAL TIME NETWORK (RTN) OBSERVATIONS, MTM ZONE 9, NAD 83, (CSRS) (2010.0).

FOR BEARING COMPARISONS, A COUNTER-CLOCKWISE ROTATION OF 0°21'45" WAS APPLIED TO BEARINGS ON PLANS 4R-3575, 4R-6705, 4R-15902 AND 4R-16206 DISTANCES ARE GROUND.

ALL BUILDING TIES ARE TAKEN TO CONCRETE FOUNDATION UNLESS OTHERWISE NOTED. COMPLIANCE WITH ONTARIO BUILDING CODE SETBACK REQUIREMENTS ARE NOT VERIFIED BY THIS SURVEY.

PART 2 - SURVEY REPORT

- DESCRIPTION PART OF BLOCK 5 REGISTERED PLAN 4M-300, BEING ALL OF PIN 04536 -0704 (LT), IN THE CITY OF OTTAWA
- REGISTERED EASEMENTS AND/OR RIGHTS-OF-WAY SUBJECT TO AN EASEMENT OVER PART 2, PLAN 4R-3575 AS IN INST. LT263907
- BOUNDARY FEATURES NOTE LOCATION OF THE DITCH ALONG THE WESTERLY LIMIT OF THE SUBJECT PROPERTY
- NOTE LOCATION OF THE DITCHES ALONG THE SOUTHERLY LIMIT OF THE SUBJECT PROPERTY
- NOTE LOCATION OF THE DITCH, THE CHAIN LINK FENCE AND THE SIGN ALONG THE EASTERLY LIMIT OF THE SUBJECT PROPERTY
- NOTE LOCATION OF THE OVERHEAD UTILITY CABLES, THE HYDRO POLES, THE CULVERTS AND THE DITCHES ALONG THE NORTHERLY LIMIT OF THE SUBJECT PROPERTY


<u>LEGEND</u>

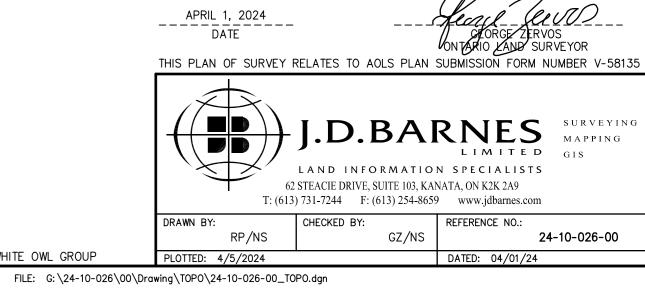
	_	
SIB DEI SSIB DEI IB DEI MEAS DEI WIT DEI Acc DEI RP DEI	NOTES S NOTES S NOTES IF NOTES M NOTES W NOTES A NOTES R	URVEY MONUMENT FOUND TANDARD IRON BAR HORT STANDARD IRON BAR RON BAR IEASURED ITNESS CCEPT EGISTERED PLAN 4M-300 LAN 4R-15902
P2 DEI	NOTES P	LAN 4R-3575 LAN 4R-16206
	10120 1	I AN 4R-28180
		URVEYOR'S REAL PROPERTY REPORT BY FAIRHALL, MOFFATT
P5 DEI		WOODLAND LIMITED DATED DECEMBER 16, 2015
P6 DEI		LAN 4R-6705
		NNIS, O'SULLIVAN, VOLLEBEKK LTD. AIRHALL, MOFFATT & WOODLAND LIMITED
		ROPERTY LINE

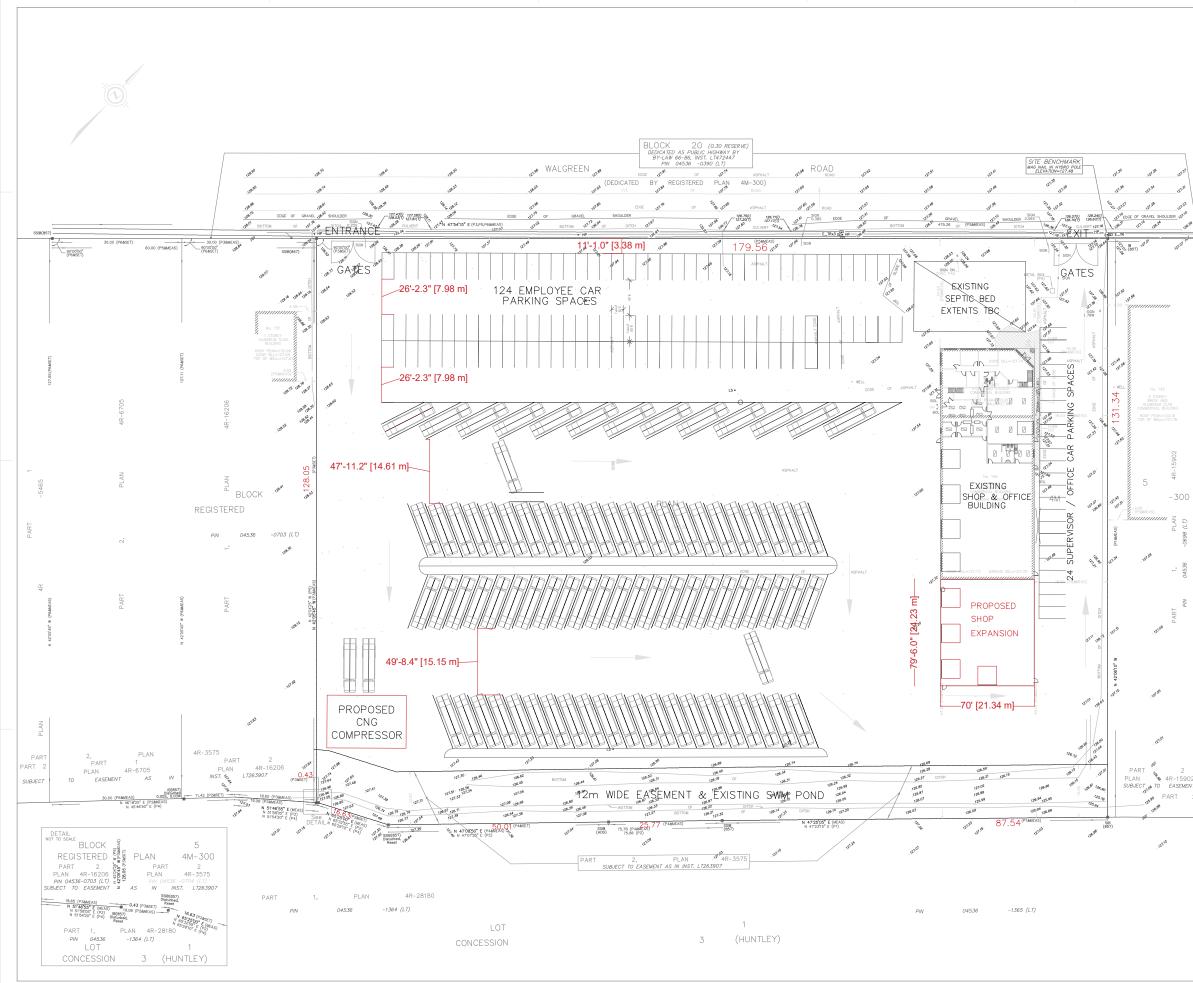
N=NORTH / S=SOUTH / E=EAST / W=WEST

TOPOGRAPHIC LEGEND

FDN	DENOTES FOUNDATION
CONC	DENOTES CONCRETE
ALUM	DENOTES ALUMINUM
C/L	DENOTES CENTERLINE
ST C	DENOTES STONE COLUMN
CLF	DENOTES CHAIN LINK FENCE
(T)	DENOTES TOP
(I)	DENOTES INVERT
• BOL	DENOTES BOLLARD
• HP	DENOTES HYDRO POLE
• LS	DENOTES LIGHT STANDARD
* GM	DENOTES GAS METER
🗆 E_JB	DENOTES HYDRO JUNCTION BOX
⊠ E_TR	DENOTES HYDRO TRANSFORMER
MH_HYDRO	DENOTES HYDRO MANHOLE
—— E ——	DENOTES OVERHEAD HYDRO CABLE
— т —	DENOTES OVERHEAD TELEPHONE CABLE

ELEVATION NOTE:


PREPARED FOR: WHITE OWL GROUP


1. IT IS THE RESPONSIBILITY OF THE USER OF THIS INFORMATION TO VERIFY THAT THE SITE BENCHMARKS HAVE NOT BEEN ALTERED OR DISTURBED AND THAT ITS RELATIVE ELEVATION AND DESCRIPTION AGREES WITH THE INFORMATION SHOWN ON THIS DRAWING. 2. ELEVATIONS ARE GEODETIC AND ARE REFERRED TO CITY OF OTTAWA BENCHMAR POINT 0011968U118 HAVING A PUBLISHED ELEVATION OF 126.18 METRES (CGVD28:78).

SURVEYOR'S CERTIFICATE

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE REGULATIONS MADE UNDER THEM.

2. THE SURVEY WAS COMPLETED ON MARCH 21, 2024.

	4						PART 1 - PLAN SHOWING PART OF BLOCK 5 REGISTERED PLAN 4M-300 CITY OF OTTAWA SCALE 1 : 300 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
— ⁴⁴ 236.70 (РБАНЕ)	(5) "	PLAN 4R-15457	PLAN 4R-5624	PART 5 PLAN 4R-5278	6, PLAN 4R-5278	3, PLAN 4R-5139 (128) 855	CROTES SURVEY WOUNDENT FOUND Son Devotes Survey woundent found Son Devotes Survey Survey foundent found Son Devotes Website Son Devotes Parallel Son Devotes Parallel
		PART 2, F	PART 2,		PART 6	PART 3	(231908.45 sq.ft) - (5.32 Ac.) PHASE 1- BUILDING AREA = 1764.31 sq.m. (18990.87sq.ft) - (8.18%) ASPHALT AREA = 577.05 sq.m. (6211.31sq.ft.) - (2.67%)
4R-15902 4R-3575	4R-15902						CONCRETE AREA = 109.5sq.m. (1178.65sq.ft.) - (0.47%) LANDSCAPED AREA = 7204.67sq.m. (77550.42sq.ft) - (33.43%) GRAVEL AREA = 11904.1sq.m. (128134.66sq.ft) - (55.25%)
PLAN PLAN	З, PLAN						148 Employee car parking spaces Total Truck Parking Spots : 80 (12ft wide) Existing Office: 486.61 sq.m Existing Office Level 2: 188.4sq.m
PART 4,	PART						Existing Shop: 624.87 sq.m Proposed Shop Expansion: 519.60 sq.m
PART							
IS IN INST. L							
PLAN	4R-3575						DRAWNO TITLE Miller Waste Systems 145 WALGREEN RD. SITE PLAN PROJECT NO. SCALE: 1: 300 DATE: 2022-06-25 DESIGNED BY: SP-1

APPENDIX D - HISTORICAL PERMIT FOR EXISTING SEWAGE SYSTEM PERMIT

Engineering

R.V.C.A. RECEIVEI

NOV 14 2008

REFER TO:

Houle Houle Chevrier Engineering Ltd. 180 Wescar Lane R.R. 2 Carp, Ontario K0A 1L0 Tel.: (613) 836-1422 SEPTIC Fax (613) 836-9731 www.hceng.ca

08 - 681

REQUIOUR ref: 08-

November 13, 2008

Baird Construction Management Ltd. 151 Tansley Road Carp, Ontario K0A 1L0

Attention: Mr. K. Riley

RE: DESIGN BRIEF FOR PROPOSED SEPTIC SYSTEM PROPOSED COMMERCIAL BUILDING 145 WALGREEN ROAD CARP, ONTARIO

Dear Sir:

This letter provides our design brief for a septic disposal system to service the proposed facility to be located at 145 Walgreen Road in Carp, Ontario.

BACKGROUND

It is understand that a proposed commercial building is to be constructed on a vacant lot located at 145 Walgreen Road in, Ontario.

As per plans provided to our office, there are two (2) buildings planned for construction. At the present time, one (1) building (Phase 1 and 2) will be constructed and referred to herein as Building A. The second building (Phase 3) will be referred to as Building B. Building A will serve both as main office area and a warehouse. It has been indicated to us that Building B may not be constructed and that in the future the land may be severed. As such the septic plan will be designed for Building A only.

It has also been indicated to us that the proposed septic system will receive wastewater solely from domestic type sources within the proposed facility, such as typical washroom fixtures. That is, we understand that no industrial process waste water will be discharged to the septic system. We are also not aware of any process water use for this facility.

SEPTIC SYSTEM DESIGN

Design Flow Rates

The Ontario Building Code (OBC) provides information regarding daily sewage flows for office and warehouse establishments.

	R.V.C.A. RECEIVED	
Report to: Baird Construction Management Ltd.	-2- NOV 1 / 2008	November 13, 2008 08-536
Baild Conoracion Managomon Eta.	NOV 1 4 2008	REQUIRED FOR ALL

In terms of Building A, the design daily flow rate for 372 square metres of office space with three (3) water closets, three (3) hand sinks and three (3) kitchenette sinks and a maximum of 10 employees, combined with warehouse space having a maximum of five (5) loading bays, one (1) service sink and a maximum of 4 employees, is 3750 litres per day.

Based on information received by our office, two (2) floor drains each with an oil/water separator will be installed in Building A. It is understood that there will not be any waste water introduced into these drains (such as vehicle wash water). The floor drains will drain by gravity directly to the Storm Water Detention Pond at the rear of the property.

Septic System Design Requirements for Current Site Usage

Several test pits were advanced by backhoe on September 26, 2008, at various locations across the subject site. The soil observed within the test pits in the area of the proposed septic leaching field consists of a surficial layer of topsoil over dark brown silty sand and organic material (fill) over compact grey brown fine to coarse sand to silty sand, followed by a layer of dense grey brown silty fine sand trace gravel.

The native soils observed within the test pits at the proposed area of the septic leaching bed are considered to have a percolation rate (T-Time) which is not suitable for use in the construction of the proposed septic leaching bed. As such, the proposed system will be a fully raised Class IV system constructed with a sand mantle extending from the south end of the tile bed.

Area Bed

For the proposed area bed, the total required contact area was determined using

A = <u>QT</u> 850	where	 A = Footprint area required (contact area) Q = Daily effluent volume T = Percolation time of underlying soil.
= <u>3750 x 50</u> 850	-	r – Percolation time of underlying soil.
= 221 square	metres	

Area provided in design is 245 square metres.

For the proposed area bed, the minimum area of the stone layer shall be such that the loading rate on the surface of the stone layer does not exceed 50 litres per square metre per day. Therefore the minimum required stone layer area is 75 square metres (3750L/50).

Septic Tank

When incorporating the use of tertiary treatment units within a septic system, the septic tank is considered a 'trash tank'. As such, the OBC guidelines do not apply in regards to sizing of the tank. The required volume of the 'trash tank' is typically based on recommendations provided by the treatment unit manufacturer. Clearstream recommends the trash tank have a working volume of no less than the equivalent daily effluent capacity of the treatment units. The proposed system will therefore require a minimum septic tank volume of 3750 litres.

Report to: Baird Construction Management Ltd.	R.V.C.A. RECEIVED	November 43, 2008 TION 08-536
Pumping Station		08-6 81
Due to the proposed construction alo	REFER TO:	REQUIRED FOR ALL

Due to the proposed construction elevation of the building, it will not be possible to discharge the effluent by gravity to the septic leaching bed. As such, we have allowed for a pump chamber and pump.

In accordance wit the OBC, the quantity of effluent discharged from the pumping chamber should not be less than 75 percent of the total interior volume of the distribution pipe in the septic tile field during a maximum 15 minute pumping cycle.

- Length of distribution pipe = 72.0 metres
- Volume of distribution pipe = $\frac{\pi D^2 \times 72.0}{4}$ = 0.318 m³ = 318 litres
- Minimum dosing volume = 0.75 x 318 = 238.5 litres

Therefore, 238.5 litres of effluent must be pumped from the pumping chamber with each pumping cycle.

Pump

The pump will discharge effluent from the chamber for not more than 15 minutes per cycle. Fifteen minutes per pump cycle is selected for design purposes.

Minimum pumping rate = 238.5 litres = 16 litres per minute 15

Alarms, sensors, and floats will be installed as per OBC and manufacturer requirements.

Forcemain

The diameter of the forcemain will be 38 mm (or as required by the manufacturer of the selected pump). The forcemain should be insulated from frost by utilizing heat tracing wire, burial depth, and/or insulation (See Figure 2).

Sewage System Management/Monitoring

Maintenance of the septic system will be the responsibility of the building owner currently known as Lischer Holdings. As a minimum, it is suggested that the maintenance include the following;

- annual inspection of the septic system including pumps, controls and alarms,
- inspection/cleaning of the effluent filter as per manufacturer's recommendations,
- annual inspection of the septic tanks; pumping of tanks when determined to be necessary,
- Inspection/maintenance of Clearstream units as required.

Report to: Baird Construction Management Ltd.	R.V.C.A. RECEIVED	November 13, 2008 SEPTIC APP08-536 (C)
Additional Considerations	NOV 1 4 2008	08-681

As indicated, a layer of silty sand and organic material (fill) exists in the area of the proposed leaching bed. The leaching bed can be constructed on the fill once all topsoil and organics are removed from the surface. As such, it is our opinion that mounding will not occur within the proposed leaching bed if installed and operated as proposed.

We trust that this letter is sufficient for your purposes. If you have any questions or require additional information, please call.

Yours truly,

HOULE CHEVRIER ENGINEERING LTD.

Kener Ru

Renee Burt Engineering Technologist

A.C. Heule

A.C. Houle, M.Eng, P.Eng. Principal

Attachments

R.V.C.A. RECEIVED NOV 14 2008

REFER TO:

2

1 1

SEPTIC APPLICATION

08-681 REQUIRED FOR ALL INQUIRIES

ATTACHMENTS

APPLICATION FOR PERMIT TO CONSTRUCT RECORD OF TEST PIT SHEETS FIGURE 1 – SITE PLAN FIGURE 2 – FORCEMAIN INSULATION DETAIL FIGURE 3 – GRAIN SIZE ANALYSIS

SEPTIC APPLICATION

R.V.C.A.: LCEIVED NOV 14 2008 Application for a Permit to Construct or Demolish This form is authorized under the Building Code Sentence 2.4.1.1A.(2). NOU I 4 2008 Application for a Permit to Construct or Demolish This form is authorized under the Building Code Sentence 2.4.1.1A.(2).

	FOR TO: For use by	Principal Authority
Application number:	REFER IU.	Permit number (if different):
Date received:		Roll number:

Application submitted to: Ottawa Septic Systems Office

(Name of municipality, upper-tier municipality, board of health or conservation authority)

A. Project information	化油油 化拉丁二乙酸盐			
Building number, street name 145 Walgr	een Road		Unit number	Lot/con.
Municipality	Postal code	Plan number/othe	er description	ana ang ang ang ang ang ang ang ang ang
Carp Project value est. \$		Area of work (m ²)		
B. Applicant Applicant is:	Owner or	Authorized ag	ent of owner	
Last name	First name	Corporation or pa Baird Construct	rtnership tion Management Ltd	
Street address 151 Tansley Road		Dana Conorado	Unit number	Lot/con.
Municipality Carp	Postal code K0A 1L0	Province Ontario	E-mail	
Telephone number (613) 831-7044	Fax (613) 831-63	44	Cell number	
C. Owner (if different from applica	the second s			
Last name	First name	Corporation or pa		
Street address		Listificit Holding	Unit number	Lot/con.
Municipality	Postal code	Province	E-mail	
Telephone number	Fax		Cell number	
D. Builder (optional)				
Last name	First name	Corporation or par	rtnership (if applicable)	
Street address			Unit number	Lot/con.
Municipality	Postal code	Province	E-mail	
Telephone number	Fax ()		Cell number	
E. Purpose of application	计成为 计图案 计		是由我们的时候,但我们	计关闭上的中国 的建立
✓ New construction Add	dition to an sting building	Alteration/repair	Demolition	Conditional Permit
Proposed use of building Office / Warehouse		use of building		
Description of proposed work				
Construction of on-site wastewater m	angement system to se	ervice commercial build	ling.	
	3			
E Traine Warrents Comparation (0	ntaria Now Homa War	ranty Program)		
F. Tarion Warranty Corporation (O i. Is proposed construction for a net			Yes	No
Warranties Plan Act? If no, go to ii. Is registration required under the	section G.		Yes	
iii If yes to (ii) provide registration n				

SEPTIC APPLICATION

3.	Attachn	ents 00 - 0 0 1
	i. Attac	n documents establishing compliance with applicable law as set out in Article 1.1.3.3. REQUIRED FUR ALL
	ii. Attao	n Schedule 1 for each individual who reviews and takes responsibility for design activities.
		Schedule 2 where application is to construct on site, install or repair a sewage system.
	by-la	n types and quantities of plans and specifications for the proposed construction or demolition that are prescribed by t v, resolution, or regulation of the municipality, upper-tier municipality, board of health or conservation authority to wh
_	unsa	pplication is made.
		ion of applicant
		ion of applicant
•	Declara	(print name) formation contained in this application, attached schedules, attached plans and specifications, and other attached nentation is true to the best of my knowledge.
	Declara	certify that: (print name) nformation contained in this application, attached schedules, attached plans and specifications, and other attached

TOTITI

Personal information contained in this form and schedules is collected under the authority of subsection 8(1.1) of the Building Code Act, 1992, and will be used in the administration and enforcement of the Building Code Act, 1992. Questions about the collection of personal information may be addressed to: a) the Chief Building Official of the municipality or upper-tier municipality to which this application is being made, or, b) the inspector having the powers and duties of a chief building official in relation to sewage systems or plumbing for an upper-tier municipality, board of health or conservation authority to whom this application is made, or, c) Director, Building and Development Branch, Ministry of Municipal Affairs and Housing 777 Bay St., 2nd Floor. Toronto, M5G 2E5 (416) 585-6666.

.V.C.A. RECEIVED

SEPTIC APPLICATION

08 - 681

NOV 14 2008 Schedule 1: Designer Information

Use one form for each individual who revie	ws and takes re	esponsibility for design activ	vities with respect to t	he project.
	RFFFR	TO:	17%中外在1705年1月	naminaco
Building number, street name 145 Walgreen Road	(b) Charling of the other states and the second se second second sec	NAN YER - THE AREA AND REPORTED AND R	Unit no.	Lot/con.
Municipality Carp	Postal code	Plan number/ other des	cription	
B. Individual who reviews and takes	s responsibi	ity for design activities		
Name		Firm Houle Chevrier Eng		
Street address 180 Wescar Lane			Unit no.	Lot/con.
Municipality Carp	Postal code K0A 1L0	Province Ontario	E-mail	
Telephone number	Fax number		Cell number	
(613) 836-1422	(613)836		()	
C. Design activities undertaken by i	ndividual ide	entified in Section B. [B	Building Code Tab	le 2.20.2.1]
House		C – House	Building	Structural
Small Buildings		ng Services		– House
Large Buildings		tion, Lighting and Power		 All Buildings
Complex Buildings Description of designer's work	Fire P	rotection	On-site S	ewage Systems
Design of on-site wastewater mangem				
			ang.	
D. Declaration of Designer				
1			declare that (choose	one as appropriate):
(print name	e)			
I review and take responsibility Building Code. I am qualified, a Individual BCIN:	and the firm is a	registered, in the appropriat	jistered under subser e classes/categories.	ction 2.17.4. of the
Firm BCIN:				
I review and take responsibility designer" under subsection 2.1 Individual BCIN:	for the design 7.5. of the Buil	work and am qualified in the ding Code.	e appropriate catego	ry as an "other
Basis for exemption from	registration:			
The design work is exempt from Basis for exemption from r			nents of the Building	Code.
I certify that:	egisuadon and	qualification.		
	hodulo is true t	a the heat of my linearly to		
 The information contained in this sc I have authority to bind the corporat 				
 I have authority to bind the corporat 	ion or partners	nip (il applicable).		
Date	129	Signature of Designer		
		J		

'For the purposes of this form, "individual" means the "person" referred to in Clause 2.17.4.7.(1)(d), Article 2.17.5.1. and all other persons who are exempt from qualification under Subsections 2.17.4. and 2.17.5.

NOTE:

- 1. Firm and Individual BCIN numbers are not required for building permit applications submitted prior to January 1, 2006
- 2. Schedule 1 does not need to be completed by architects, or holders of a Certificate of Practice or a Temporary License under the Architects Act.

	R.V.C.A.R	ECEIVED		CPTIC APPLICATIO
				08 - 681
	N0\Sdr	eddie 2: Sewage	e System Ins	taller Informatio
A. Project Information				INCLUMES
Building number, street name 145 Walgreen Road	REFER TO	0	Unit number	Lot/con.
Municipality Carp	Postal code	Plan number/ other des	scription	
B. Sewage system installer			全处 化分子 网络新	
Is the installer of the sewage system emptying sewage systems, in acco Yes (Continue to Section of	rdance with Building Co		✓ Installe	servicing, cleaning or r unknown at time of tion (Continue to Section E
C. Registered installer inform	nation (where answ	er to B is "Yes")		
Name			BCIN	
Street address			Unit number	Lot/con.
Municipality	Postal code	Province	E-mail	
Felephone number	Fax ()		Cell number	
D. Qualified supervisor inform	mation (where answ	ver to section B is "Yes	") see . et andelet	
Name of qualified supervisor(s)		Building Code Identification	on Number (BCIN)	
E. Declaration of Applicant:				
. Declaration of Applicant:				declars that
E. Declaration of Applicant:	me)			declare that:
(print nar I am the applicant for the p submit a new Schedule 2 p	ermit to construct the s		ler is unknown at tim	
(print nar	ermit to construct the s prior to construction whe	en the installer is known;		e of application, I shall
 (print nar I am the applicant for the p submit a new Schedule 2 p OR I am the holder of the perm known. 	ermit to construct the s prior to construction whe	en the installer is known;		e of application, I shall
 (print nar I am the applicant for the p submit a new Schedule 2 p OR I am the holder of the perm known. 	ermit to construct the s prior to construction whe	en the installer is known; age system, and am submitt	ing a new Schedule	e of application, I shall
(print nar I am the applicant for the p submit a new Schedule 2 p <u>OR</u> I am the holder of the perm known. certify that:	ermit to construct the s prior to construction whe hit to construct the sewa in this schedule is true	en the installer is known; age system, and am submitt to the best of my knowledge	ing a new Schedule	e of application, I shall
 (print nar I am the applicant for the p submit a new Schedule 2 p OR I am the holder of the perm known. certify that: The information contained in 	ermit to construct the s prior to construction whe hit to construct the sewa in this schedule is true	en the installer is known; age system, and am submitt to the best of my knowledge	ing a new Schedule	e of application, I shall

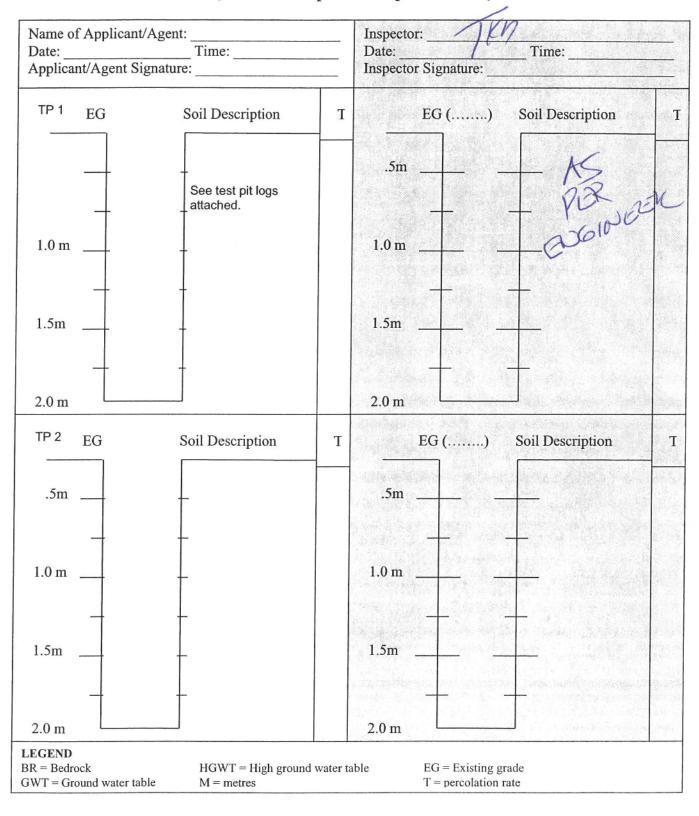
SEPTIC APPLICATION

	R.V.C.A.	RECEIVED	SEPTIC APPLICATION
Ottawa Septic System Office Bureau des systèmes septiques d'Ottawa	NOV REF ERET	1 4 2008	Do Not Complete Permit No 08 - 681 Revision No UIRED FOR ALL Date
	Proposed	Services	INCONTRECT
1. Engineered		2. Water supply	
Yes No		Proposed	
3. Type of work proposed		4. Type of Well	
✓ New Installation		Dug/bored/S	Sandpoint well
Replacement		✓ Drilled well	
Alteration		Municipal	
		Other	
5. Residential Sewage Design Flow BedroomsnaHouse (floor area)naPeoplenaTotal Fixture Units Residential Flowna	v Info. m_ (Schedule 8) L/day	6. Sewage Design I Design Flow <u>3750</u> Detailed sewage flo	Flow for Other Occupancies L/day w calculations:
7. Type of System			
Treatment Unit		Class 4 – Ar	ea Bed
Class 2 – Leaching Pit		٩	Fully raised
Class 3 – Cesspool		E	Partially raised
Class 4 – Shallow Buried Tr	ench		In-ground
Class 4 – Trench		Class 4 – Ae	robic with Trench
Fully raised			Fully raised
Partially raise	ed	L	Partially raised
In-ground		\Box Class 4 – Aet	In-ground robic with Filter Media
Class 4 – Filter Media			Fully raised
Fully raised	-		Partially raised
Partially raise	d] In-ground
In-ground		Class 5 – Hol	=

, i	R.V.C.A.	RECEIVED		
) Dttawa Septic Bureau des systèmes ystem Office septiques d'Ottawa	NOV	1 4 2008	Do Not Complete Permit No Revision No	C APPLICATI
	REFERE		Date	IDED FOR AL
	Sewage Sys	tem Details		NQUIRIES
Type of System Class IV - Area	Bed		(Schee	lule 4)
Septic/Holding Tank 3750 (min.	<u> </u>			
Septic Tank Effluent Filter Requ	uired as per OBC			
Treatment Unit – Make & Mode	Clearstream 50	00N		
Number of Uni	ts_2			
Refer to Typical Drawing C				
Mantle Information:				
Native or imported =15m	in <u>1</u> direc	ction(s)		
Slope subgrade1	% sl	ope		
Northeast	dire	ction(s)		
Site to be Scarified (If in clay)	YES / NO	2		
Clay Seal Required (If in bedrock	() TYES / NO	2		
🗹 Trench		Shallow I	Buried Trench	
Distribution Pipe Length	m	Pipe Leng	,th	m
Loading Area	m ²			
Type of Chamber		🔲 Filter Me	dia Bed	
Length of Chamber	m	Stone		m^2
🗌 Area Bed		Extended	Base	_ m ²
Stone 80	m ²	Pipe		m
Sand245	m ²		Filter Media	
Dund				2
Pipe 72	m	Loading A	area	_ m²

.

Version 01/06


Ottawa Septic Bureau des systèmes System Office septiques d'Ottawa R.V.C.A. RECEIVED

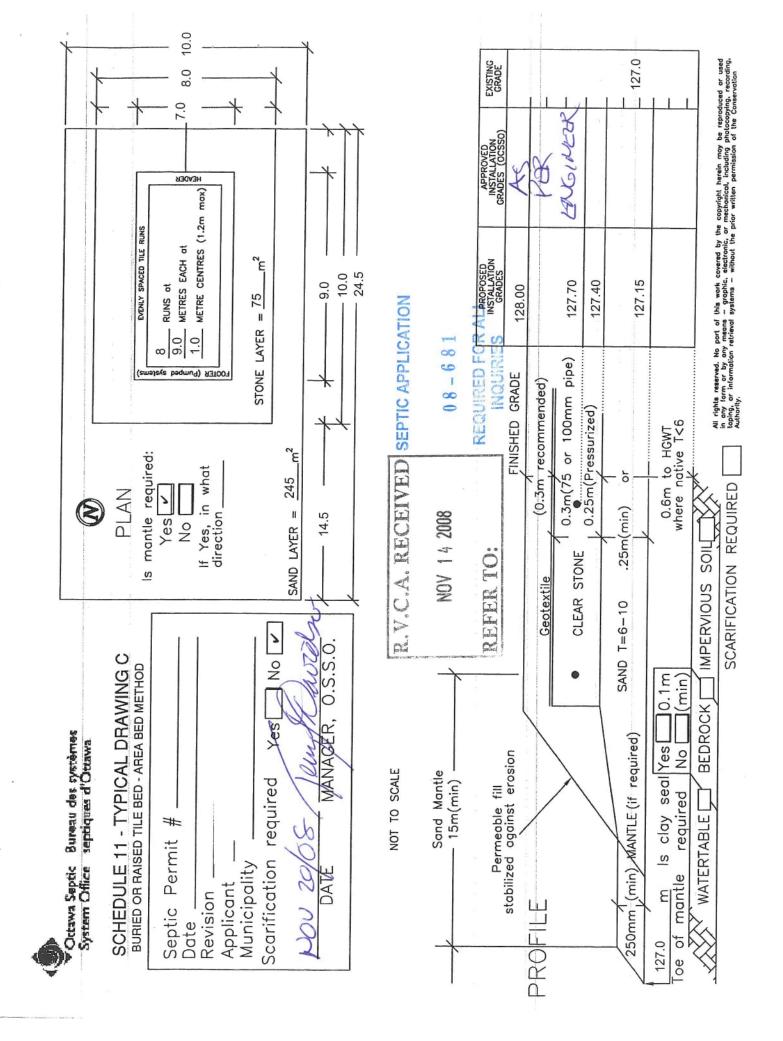
SEPTIC APPLICATION Do Not Complete Permit No Revision No 08 - 681

Date

NOV 1 4 2008 Schedule 6

Soil and Water Table Information (Minimum depth of test pit: 2-metres)

Ottawa Septic Bureau des systèmes System Office septiques d'Ottawa Scale: 1Block = N Please see attached - Figure						R.V.C.A. RECEIVED NOV 14 2008 Schedule 7									Do Not Complete Permit No Revision No Date							
Scale: 1Block =		REavour Section							CO. SALAR	D	ale		F	REC		ED) F(
				1		N- Yosherinan			Current and	100025 / 2191				-		-		-		IN	QUI	RI
N	Diagon		achad	Eia			410 0	Cra	dina	Dier	1		÷					6				
	Flease	see all	acheu	- Fig	ure	i Set		Grad	ung	Fiai	I											
																				4		<u>e</u>
																				-		
																				<u></u>		
																						·
			-								2						1					-
																					-	1
																-	-					
								1													-1	
																ļ	· ······		÷		Ennour	
												-										
			0.00		un nita																	içinan.
																				4 	<u></u>	
_Dug Wel	Drillad	Well	Neigh	how	ring	Hom		Reno	hm	ark			roi	naar		Dro	nor	V I	ine	1	8	1
			reigi	1000	ing	11010	CS VI	Benc	mii													
Elevations	(metric or	nly)												tior	ns ir	n pro	opo	sed	syst	em a	irea	£
B.M B.M Desci	iption	m										atter			0	X2						
										X_3						X_4						
Except L and	tion									X .						Y.						


Ottawa Septic Bureau des systèmes System Office septiques d'Ottawa	.C.A. R NOV 1 Schedu	4 2 1e 8	008 3	And a second as an orthogonal second as a second	Do Not Co Permit No Revision N Date		08-681 URED FOR ALL
Fixtures	# Existing	; + <i>‡</i>	# Proposed	X	unit count	=	Fixture Count_
Bathroom							
Bathroom group (toilet, sink and tub or shower) with flush tank		+		x	6	=	
Bathtub with/without overhead shower		+		X	1.5	=	
Shower stall		+		x	1.5	=	
Wash basin (1_inch trap)		+		х	1.5	=	
Watercloset (toilet) tank operated		+		Х	4	=	
Bidet		+		X	1	=	
Kitchen							
Dishwasher		+		Х	1	=	
Sink with/without garbage grinder(s), domestic and other small type single, double or 2 single with a common trap		+		X	1.5	=	
Other							
Domestic washing machine		+		X	1.5	=	
Combination sink and laundry tray single or double (Installed on 1_ trap)		+		x	1.5	=	

Total:

Insert the TOTAL in section 5 of Schedule 4 (0.Reb.403/97 Table 7.4.9.3)

- Sump pumps and floor drains are not to be connected to the sewage system. Connection of such fixtures to a sewage system may lead to a hydraulic failure of the said system. The above mentioned fixtures should be discharged separately to an approved Class 2 (leaching pit) sewage system.
- 2. Where laundry waste is not more than 20% of the total daily design sanitary sewage flow, it may discharge to a sewage system (Part 8, OBC, 8.1.3.1(2)).

Agent/Owner signature

L	ROJECT: 08-536 R.V.C.A DCATION: Refer to Site Plan, Figure 2 ATE OF EXCAVATION: September 26, 2008 NOV			evrd	OF TEST PIT	DATUM: No	
DEPTH SCALE METRES	SOIL PROFILE REFER T DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - + Remoulded. V - ⊕ 40 60 80	WATER CONTENT (PERCENT) Wp - 0 W 1 WI 20 40 60 80	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
	Ground Surface Dark brown silty sand (TOPSOIL) Compact grey brown fine to coarse SAND with trace to some silt and trace gravel Dense grey brown SILTY fine SAND, trace gravel and rounded cobbles, pocket of fine to coarse SAND End of test pit		0.28	1		SEPTIC APPLICATION 0 8 - 6 8 1 REQUIRED Force INQUIRES	M See Fig 3
DEP 1 to	TH SCALE	Hou	ıle C	hevrie	r Engineering L	td.	LOGGED: B.W. CHECKED: S S

			R.V.C		E	CEIVED		-	
1		ROJECT: 08-536	,	R	ECO	ORD OF TEST PIT	2 SHEET 1 OF	1	
		OCATION: Refer to Site Plan, Figure 2 ATE OF EXCAVATION: September 26, 200	۱.	IOV 1	4 2	008	DATUM: No		
	-						TYPE OF EX	JAVATO	R: Backhoe
	TLE	SOIL PROFIL	REFE	<u>r to</u>	ABER	SHEAR STRENGTH,	WATER CONTENT	Ś.	WATER LEVEL IN
	DEPTH SCALE METRES	DECODIDION		ELEV.	SAMPLE NUMB	SHEAR STRENGTH, Cu (kPa) Natural. V - +	(PERCENT)	ADDITIONAL LAB. TESTING	OPEN TEST PIT OR STANDPIPE
	DEP	DESCRIPTION		DEPTH (m)	AMPL	Remoulded. V - ⊕ 20 40 60 80	Wp - W WI 20 40 60 80	ADD LAB.	INSTALLATION
	-	Ground Surface		°	1.				
	- 0	Dark brown silty sand and organic mai some metal and wire (FILL)	terial,	8	1				1 [
	Ē	some metal and wire (FILL)		8					-
	1	e e		8					-
	E.	*							-
	-			8					-
	ŀ	Compact oney brown fine to coarse SA	ND with	0.48					-
	-	Compact grey brown fine to coarse SA trace to some silt and trace gravel							-
	ni. Ni ni			0.71					-
	- 19	Dense grey brown SILTY fine SAND, tr gravel	race						-
	-								-
	- 1								
		*							
	-								
	- 	End of test pit		1.50					۔ لــــــا او
	-							ir	roundwater nflow bserved at
									me of xcavation.
									1
ł	•								-
	- 2								-
ŀ									-
-									
2/08							SEPTIC APPLIC	CATI	ON _
10/2								_	-
CT.GD							08-68		
MHEG	-						REQUIRED FO	RA	
S.GPJ							INQUIRIE	S	
P LOG									
536 TI									1
RD 08-									1
TESTPIT_RECORD 08-536 TP LOGS.GPJ MHECL.GDT 10/22/08	3								
TIPIT		TH SCALE	Н	oule C	he	vrier Engineering Lt	[d .	GGED:	
TES	1 to	15					CI	IECKED	· Northern

	ATE OF EXCAVATION: September 26, 2008 SOIL PROFILE	N			2008	TYPE OF E		R: Backhoe
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural, V - + Remoulded, V - ⊕ 20 40 60 80	WATER CONTENT (PERCENT) Wp ├────────────────────────────────────	ADDITIONAL LAB. TESTING	WATER L OPEN TI OI STANI INSTALI
- 0	Ground Surface Dark brown peat (TOPSOIL)	<u>314</u> 1/2 - 32-1/2 -	0.18					
	Compact grey brown fine to coarse SAND with trace to some silt and trace gravel							
	Dense grey brown SILTY fine SAND, trace gravel		0.58					
- 1								
а. 1								
- 2	Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL)		2.10			SEPTIC APPLICA 0 8 - 6 8 1	TION	
	End of test pit		2.60			08-681 Required for Inquiries	No	oundwater
3							infi ob: tim	low low served at le of cavation.

LO	COJECT: 08-536 CATION: Refer to Site Plan, Figure 2 TE OF EXCAVATION: September 26, 2008	N. N. T. B. Martin C. W. T. Barren and S. Barran and S	NO		4 2							C	Sheet 1 C DATUM: No YPE OF ED	ot Applica	ble)R: Backhoe
	SOIL PROFILE	-		1~				-							
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER).		R STREN 5 (kPa) ral. V - pulded. V 0 60	+ - ⊕		Wp 20		CONTEN CENT) Ə W 60	л — W1 80	ADDITIONAL LAB. TESTING	WATER LEV OPEN TES OR STANDPI INSTALLAT
- 0	Ground Surface								-+		1	1		+	
-	Dark brown silty sand (TOPSOIL)	<u>11.</u>	14/												
	Compact grey brown fine to coarse SAND, trace sitt		0.15												
	Dense grey brown SILTY fine SAND, trace gravel		0.29												
- 1															
			1.10												
	Dense grey brown SILTY SAND to SANDY SILT														
2			2.09												
	Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL)		2.00						SI			FLIC	ATION	8	
	End of test pit		2.54						F	REQI		FO	R ALL S		
														infl obs tim	oundwater
3															
DEPTH	SCALE	Но	oule C	how	rior	Enc	inoo	rina	144				LC	GGED:	B.W.

LO	ROJECT: 08-536 CATION: Refer to Site Plan, Figure 2 ITE OF EXCAVATION: September 26, 2008	40.0			/ 142		STPI	Τ5			DAT	ET 1 OF UM: Not E OF EXC	Applica	ble DR: Backhoe
DEPTH SCALE METRES	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	TO: SH R 20	EAR STF Cu (kPa atural. V emoulded 40	+	0	Wp - 20	VATER CO (PERC	ENT) W	WI 80	ADDITIONAL LAB. TESTING	WATER LE OPEN TE OR STAND INSTALL
- 0 .	Ground Surface Dark brown silty sand (TOPSOIL)	<u>11</u> 11 11												
	Compact grey brown fine to coarse SAND with trace to some silt and trace gravel		0.20											
-	Dense grey brown SILTY fine SAND, trace gravel		0.60											
- 1 - ·														
	a A A A													
- 2								s	EPTIC	APF	LICA	TION	ea	Ā
	Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL)	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.20					F	0 REQU II		FOL	Pala		
	End of test pit Refusal on boulders or possible bedrock		2.60										ir o a r b g s s ti	Sroundwater offlow observed at bout 2.1 netres relow rround urface at me of xcavation.

	TE OF EXCAVATION: September 26, 2008			20							TYPE	OFEXO		PR: Backhoe
DEPTH SCALE METRES		T STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Natural	TRENGTH, Pa) V- + ded. V-⊕ 60 80		Wf 2	(F	ER CON PERCEN	п) ——-	W1 80	ADDITIONAL LAB. TESTING	WATER LEVE OPEN TEST OR STANDPIF INSTALLAT
- 0	Ground Surface Dark brown silty sand (TOPSOIL)	<u>x 4</u> <u>y</u> <u>x 4</u> <u>x 6</u> <u>x</u>												
	Compact grey brown fine to coarse SAND w trace to some silt and trace gravel	<u>b</u> <u>v</u>	0.26	1				0					M See Fig 3	
	Dense grey brown SILTY fine SAND, trace gravel		0.58											
1			- 1.07											
	Dense grey brown SILTY SAND to SANDY SILT													
2			- 2											
							30			PPL		TION		
_	Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL)		2.65				India	Ve.			in t		g ir o	lo roundwater iflow bserved at me of

IK.	V. 6	.A.	NEA	Rill -	Ψ	Lill	6
0 4 4 5	V 0 3000	91 1.0	The start of the	and store			

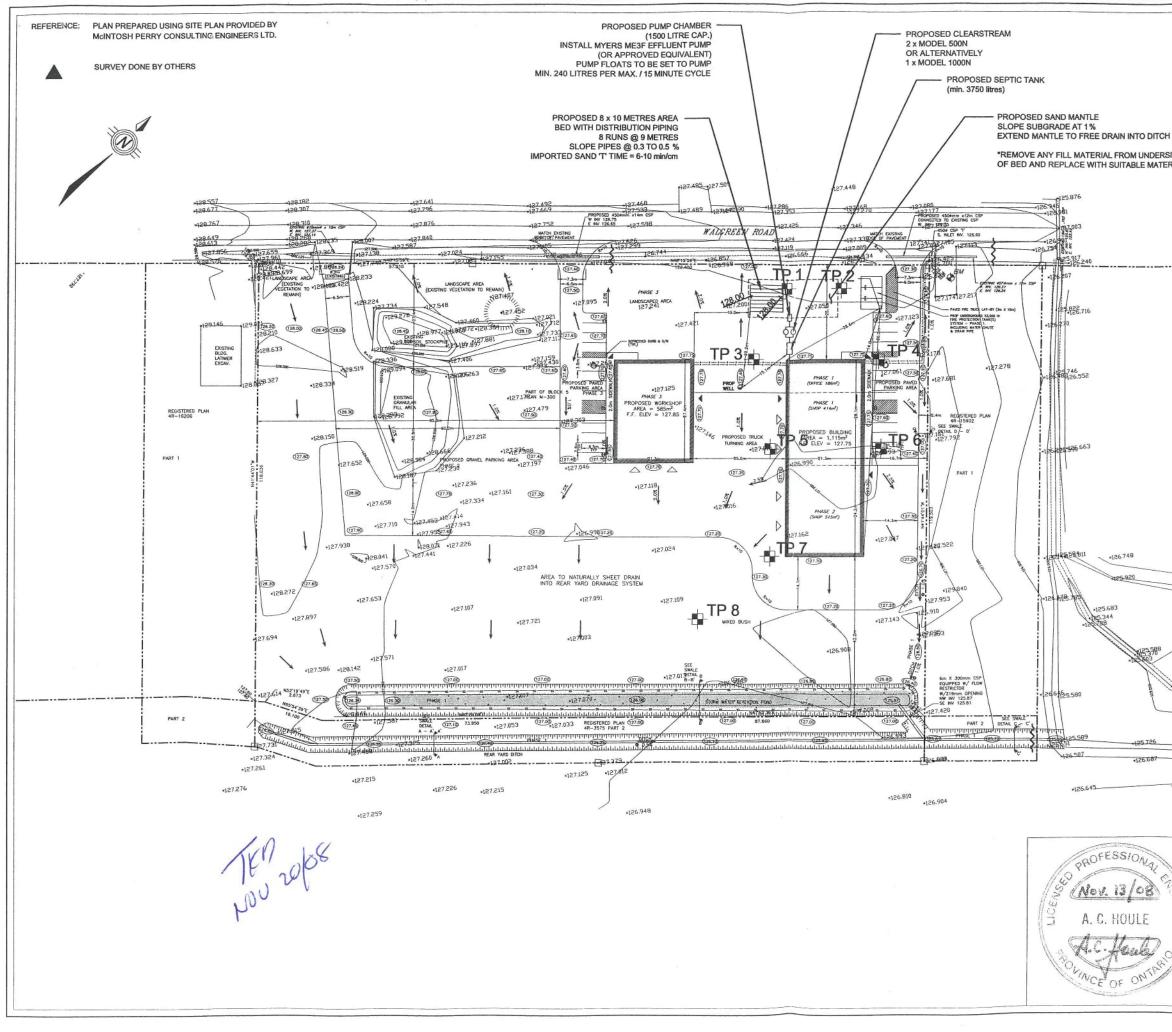
SOIL PROFILE			MBER		SHEAR		ith,		w		ONTENT		ING	WATERI
DESCRIPTION	STRATA PLO	ELEV. DEPTH (m)	SAMPLE NU	20	Natural Remou	V -	+ ⊕ 80		Wp			1 WI 80	ADDITION LAB. TEST	OPEN T O STANI INSTAL
Ground Surface Dark brown peat (TOPSOIL)		1												
Compact grey brown fine to coarse SAND with trace to some silt and trace gravel														
Dense grey brown SILTY fine SAND, trace gravel		0.84												
Compact to donce provide sittly cand		1.39												
Explore the second seco		1.50												No groundwater inflow observed at time of excavation.
									SEF	TIC	APP	LICA	TION	J
									F			8 7		
	Ground Surface Dark brown peat (TOPSOIL) Compact grey brown fine to coarse SAND with trace to some silt and trace gravel Dense grey brown SILTY fine SAND, trace gravel Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) End of test pit Practical refusal to excavation on bedrock Note: Pocket of silty clay with some gravel (FILL) in southern wall of test pit from ground level to	Ground Surface 14. Dark brown peat (TOPSOIL) 14. Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 14. Dense grey brown Silt and trace gravel 14. Dense grey brown SILTY fine SAND, trace gravel 14. Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) 14. End of test pit 14. Practical refusal to excavation on bedrock 14. Note: Pocket of silty clay with some gravel (FILL) in southern wall of test pit from ground level to of the store of silty clay with some gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit processes to be the proceses to be the	Ground Surface Image: Second Surface Dark brown peat (TOPSOIL) Image: Second Surface Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Compact grey brown silt and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.84 Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) 1.39 End of test pit Practical refusal to excavation on bedrock 1.50 Note: Pocket of silty clay with some gravel (FILL) in southern wall of test pit from ground level to be to b	Ground Surface 11/2 Dark brown peat (TOPSOIL) 11/2 Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Compact grey brown silt and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.84 Dense grey brown SILTY fine SAND, trace gravel 1.39 Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) 1.39 End of test pit Practical refusal to excavation on bedrock 1.50 Note: Pocket of silty clay with some gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit from gravel (FILL) in southern wall of test pit processor southern wall of test pit procesor southern wall of test pit processor southern wall of t	Ground Surface Image: Second strate Dark brown peat (TOPSOIL) Image: Second strate Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Compact grey brown Silt and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.84 Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) 1.39 End of test pit Practical refusal to excavation on bedrock 1.50 Note: Procket of silty clay with some gravel (FILL) in southerm wall of test pit from gravel (FILL) in southerm wall of test pit from gravel (FILL) in southerm wall	Ground Surface 11/2 Dark brown peat (TOPSOIL) 11/2 Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.84 Dense grey brown SILTY fine SAND, trace gravel 0.84 Compact to dense, grey brown silty sand, some gravel, cobles and boulders (GLACIAL TILL) 1.39 End of test pit Practical refusal to excavation on bedrock 1.50 Note: Pocket of silty clay with some gravel (FILL) in southern wall of test pit from grown level to be	Ground Surface 11/2 Dark brown peat (TOPSOIL) 11/2 Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Compact grey brown SILTY fine SAND, trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.84 Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL) 1.39 End of test pit 1.50 Practical refusal to excavation on bedrock 1.50 Note: Pocket of silty clay with some gravel (FILL) in southern wall of southern wall of thest pit for ground level to bedrock	Ground Surface Image: Section of the	Ground Surface 14 s Dark brown peat (TOPSOIL) 14 s Dark brown peat (TOPSOIL) 14 s Compact grey brown fine to coarse SAND with trace to some silt and trace gravel 0.15 Compact to some silt and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace gravel 0.34 Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL, TILL) 1.39 End fest pit Practical refusal to excavation on bedrock 1.50 Note: Pocket of silty clay with some gravel (FILL) in southern wall of silty clay with some gravel to be	Oround Surface 1 Dark brown peat (TOPSOIL) 1 Compact grey brown fine to coarse SAND with trace to some sill and trace gravel 0.15 Compact grey brown SILTY fine SAND, trace gravel 0.84 Dense grey brown SILTY fine SAND, trace gravel 0.584 Compact to dense, grey brown silly sand, some gravel (CLA) is cobles and boulders (SLACIAL TLL) 1.50 Practical refiscal to excavation on bedrock 1.50 Note: 0.5	Orrund Surface Use Dark brown peat (TOPSOIL) Use Dark brown peat (TOPSOIL) Use Compact gray brown fine to coarse SAND with trace for some silt and trace gravel 0.15 Dense gray brown SILTY fine SAND, trace 0.84 Dense gray brown SILTY fine SAND, trace 0.84 Compact to dense, gray brown silty sand, some gravel, cobbles and boulders (GLACIAL 0.84 End of test pit mound evel to 0.5 metres. 1.50 Docket of silty clay with some gravel (FLL) in southern wall of test pit form gravel to 0.5 metres. 0.8	Ground Surface U.S. Dark brown peat (TOPSOL) U.S. U.S. U.S. Compact grey brown fine to coarse SAND with trace to some sill and trace gravel 0.15 Dense grey brown SILTY fine SAND, trace 0.84 Dense grey brown SILTY fine SAND, trace 1.39 Thill 1.50 Practica relast to dense, grey brown silty sand, some gravel, cobbes and boulders (GLACIAL) 1.50 Practica relast to dense, grey brown silty sand, some gravel, cobbes and boulders (GLACIAL) 1.50 Practica relast to dense, grey brown silty sand, some gravel, cobbes and boulders (GLACIAL) 1.50 Practica relast to dense, grey brown silty sand, some gravel, cobbes and boulders (GLACIAL) 1.50 Practica relast to dense, grey brown silty sand, some gravel (TL) some gravel, cobbes and boulders (GLACIAL) 1.50 Practica relast to dense, grey brown silty sand, some gravel (TL) some grav	Oround Surface 15 Dark brown peat (TOPSOIL) 15 Compact grey brown file to coarse SAND with trace gravel 0.15 Compact up y brown SiLTY fine SAND, trace gravel 0.15 Dense grey brown SiLTY fine SAND, trace gravel 0.14 Compact to dense, grey brown silty sand, gravel 0.15 Dense grey brown SiLTY fine SAND, trace gravel 0.15 Dense grey brown SiLTY fine SAND, trace gravel 1.20 Dense grey brown SiLTY fine SAND, trace gravel 1.20 Compact to dense, grey brown silty sand, gravel 1.20 Dense grey brown SiLTY fine SAND, trace gravel 1.20 Compact to dense, grey brown silty sand, gravel 1.20 Dense grey brown SiLTY fine SAND, trace gravel 0.8 Dense grey brown SiLTY fine SAND, trace gravel 0.8	Oround Surface L15 Dark brown peat (TOPSOL) L15 Compact gray brown file to coarse SAND with trace gravel 0.15 Compact gray brown Sill TY fine SAND, trace gravel 0.34 Dense gray brown Sill TY fine SAND, trace gravel 0.34 Dense gray brown Sill TY fine SAND, trace gravel 1.39 TLSD 1.39 Pocket of ally clay with some gravel fills) is southen wall of the typic souther wall of the typic souther wall of the typic gravel low classes. 1.50 Note: gravel low souther wall of the typic souther wall of the typic gravel low classes. 1.50 Note: gravel low classes. 1.50 0.50 1.50 0.6 8

RECORD	OF	TEST	PIT	8
--------	----	------	-----	---

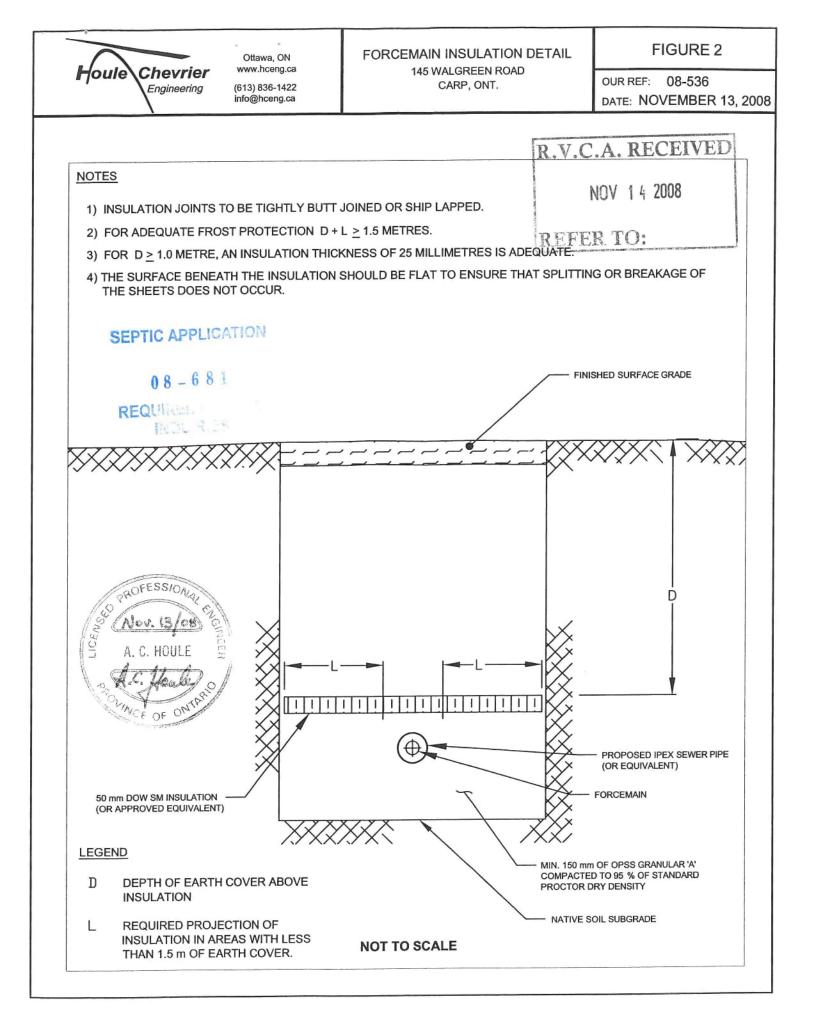
SHEET 1 OF 1

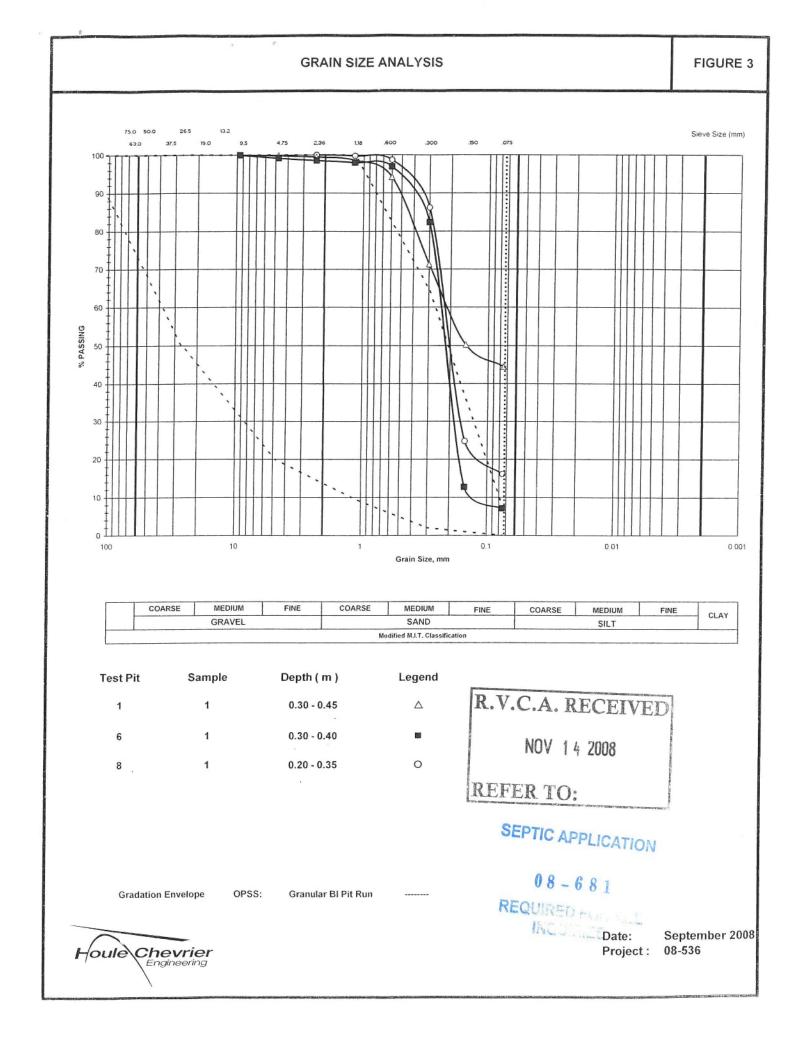
DATUM: Not Applicable

TYPE OF EXCAVATOR: Backhoe


LOCATION: Refer to Site Plan, Figure 2

PROJECT: 08-536


TESTPIT_RECORD 08-536 TP LOGS.GPJ MHECL.GDT 10/22/08


DATE OF EXCAVATION: September 26, 2008

				C CC									1		
DEPTH SCALE METRES	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Na Re	ural. V - noulded	ENGTH, . V - ⊕ 60 80		Wp 20	WATER CO (PERCE 0	ит) М	WI 80	ADDITIONAL LAB. TESTING	WATER LEV OPEN TES OR STANDP INSTALLA	VEL IN IT PIT IPE ITION
	Ground Surface														
- 0	Dark brown peat (TOPSOIL)	11 34 11 34 11 34													
	Dense grey brown SILTY fine SAND, trace gravel		0.18	1					0				M See Fig 3		-
															-
															-
- 1															-
	Compact to dense, grey brown silty sand.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.34												-
	Compact to dense, grey brown silty sand, some gravel, cobbles and boulders (GLACIAL TILL)														-
ia St															-
- 2	End of test pit	929	1.80											No groundwater inflow observed at time of excavation.	
	*) 								R					IVED	-
												14	2008		-
									R	EFE	RT	0:	NUMBER OF	Cross-Hong (Assoc 27 Assoc	-
										SEPT	IC A	PPL	CAT	ION	-
										-	08		1	£.	-
3										Riz -	1.121X. 1.	18.7			
DEP 1 to	TH SCALE 15	Но	ule (Che	evrier E	ngir	neerin	g Ltd	Ι.		I N N See			D: B.W.	0

		Houle	Chevrie Engineerin		Ottawa, ON www.hceng.ca (613) 836-1422 info@hceng.ca
	GENERAL NOTE	S			
Œ	1. ALL WORKS TO BE PROVINCIAL AND	E COMPLETED IN ACCO LOCAL AUTHORITY ST. .E, AND IN ACCORDAN	ANDARDS AND	REGULATI	ONS
AL	 INFORMATION PRO REASONABLY AVA ENGINEERING LTD IS TO VERIFY THE REGARDING, BUT I FASFMENTS, UTLI 	VIDED ON THE PLAN I ILABLE AND/OR PROV AT THE TIME OF DESI ACCURANCY OF THE NOT LIMITED TO, ELEV. TY LOCATIONS AND DE SIONS TO HOULE CHEV	DED TO HOULE GN. THE CONT INFORMATION C ATIONS, DIMENS TAILS,ETC.,	CHEVRIE RACTOR/ CONTAINED IONS, SE AND REP	R 'OWNER D HEREIN TBACKS,
	POSITIONS MAY NO OWNER/CONTRACT WORKS. HOULE C	D ON THIS PLAN AND, OT BE ACCURATE. IT OR TO LOCATE SUCH CHEVRIER ENGINEERING IAGE TO SERVICES, UT	WHERE SHOWN IS THE RESPON UTILITIES PRIOF LTD. DOES NO	NSIBILTY TO CON T ASSUM	OF THE IMENCING E
	 IT IS THE RESPON THAT THE PLAN U LATEST VERSION. 	SIBILTY OF THE OWNED	R/CONTRACTOR ON IS AN APPR	TO ENSI ROVED AN	JRE ID
	METRES. THIS IS SCALED, ALTERED	ELEVATIONS DISPLAYED NOT A PLAN OF SURV OR REPRODUCED AND PROJECT FOR WHICH	EY. THIS PLA IS INTENDED F	N IS NOT	TO BE ONLY IN
	 THIS PLAN SHOULD DOCUMENTS, PLAN ENGINEERING LTD. 	D BE USED IN CONJUN IS, AND DETAILS PREP	CTION WITH RE ARED BY HOUL	LEVANT E CHEVRI	ER
	 SOIL, BEDROCK, AN AT TEST PIT/AUGE TEST LOCATIONS. 	ND GROUNDWATER CHA RHOLE LOCATIONS ON	ARACTERISTICS	WERE IDE	INTIFIED OND THE
	CHEVRIER ENGINEE REQUIREMENTS ANI TIME THE DESIGN 1 DOES NOT WARRAN	PTIC SYSTEM DESIGN RING LTD. MEETS ALL D MANUFACTURER SPE WAS PREPARED. HOU NT THE PERFORMANCE SYSTEM AND ITS COM OR ADVERSE PERFOR	ONTARIO BUILD CIFICATIONS IN LE CHEVRIER EI OR DURABILITY	EFFECT NGINEERIN	E AT THE NG LTD.
-42	NOV 14	-	08 - Equirei		
125	REFTEREND		INGU	1000 10120	s Anala S
	^е н т	EST PIT LOCATION IN	PLAN		
-	+	ROPOSED GROUND S	URFACE ELEV	ATION, ME	ETRES
5.346	× ^{99,99} Е	XISTING GROUND SU	RFACE ELEVAT	ION	
	 Septic tank/tertiary Septic tank/tertiary Septic tank/tertiary Distribution pipe to Distribution pipe to 	SYSTEM SEPARATION y unit to dwelling/structur y treatment unit to well = y unit to property line = 3 o dwelling/structures = 7. p property line = 5.0 m (n o drilled well = 17.0 m (m	es = 1.5 m (min) 15 m (min) m (min) 0 m (min) nin)		
	Location 145 Walgreen F	Road, Carp, Onta	ario		Revision 0
	Client		Project No).	Scale
	Baird Construction M	anagement Ltd.	08-536	6	1:1000
N.	Designed by R.B.	SEF	TIC DE	SIG	N
	Approved by A.C.H.	Date			URE 1

Ottawa Septic System Office Bureau des systèmes septiques d'Ottawa			Do Not Complete Permit No_ <u>OS - (281</u> · Revision No Date
	Permit		L
	- Sewage rio Buildin		
		0	2 11000465
Inspected & Recommended by: 1411 Inspection Date & Time: 1000 17458 C			2 HOLDINGS
Civic Address: 1945 WALGREE	.0	Legal:	
Design T	min/cm	Percolation test require	d Yes/No
Design HGWT	m	Grain size analysis requ	uired Yes/No
Subgrade Elevation	m	Site to be Scarified	Yes/No
Depth to rock/impervious soil	m	Clay Seal Inspection	Yes/No
		Mantle required	Yes/No
Septic/Holding_Tank/Pretreatment Tank_3750	Ľ		
Septic Tank Effluent Filter			
Pump Rate 238.5	L/15 min		7
Treatment Unit - Make & Model	1 500N	Number of Units	L.
ELEVATION I In Ground I Partially Raised TYPE OF SYSTEM	K Fully Raised	d 🗇 Shallow Buried Tre	nch
Distribution Pipe Length	m		m
Loading Area	0	Filter Media Bed	
Type of Chamber			m ²
Length of Chamber			m [*]
XArea Bed	111		m
Stone 80	m²		ediaKg
Sand 2915			m
Pipe 72	m		
Manager, Septic System Approvals:	up I	hurdsen	4
Permit Issued Date:	1'NOU	EHBER 20	, 2008
Comments:			r
Maintenance Contract Required per 8.9.2.3 OBC	□ Engineer to Ve □ Subg □ Squir		
Manager, Septic System Approvals:			
Revision Issued Date:			
Comments:			
			*
			·

APPENDIX E - NEW PERMIT FOR EXISTING SEWAGE SYSTEM PERMIT

Reno Part 10,11

Application for a Permit to Construct or Demolish This form is authorized under subsection 8(1.1) of the *Building Code Act*, 1992

Change of Use

	For use by	Principa	I Authority	72 6 8	03 857573	
Application number:		Permit r	number (if different):			
Date received: 0 = 24 = 085				100 m	770	
Date received:		Roll nur	nber:	RVCA	RECEVED	
FART 10 & 11					ALCEIVED	
0777		m T O		DEC	1 9 2024	
	AWA SEP	PTIC S	SYSTEM OFFI	CE		
Application submitted to:(Name of municipali	ty, upper-tier mur	nicipality, bo	ard of health or conservatio	n authority)		
A. Project information						
Building number, street name				Unit number	Lot/con. Part of	
145 Walgreen Road					Lot 1 /Conc. 3 (Huntley)	
Municipality City of Ottawa	Postal code K0A 1L0		Plan number/other des	cription		
Project value est. \$			Area of work (m ²)			
	*					
B. Purpose of application						
New construction Addition existing l		Altera	ation/repair D	emolition	Conditional Permit	
Proposed use of building Residential		rent use of	building Residential	2		
Commercial		Commercial				
Other:			Other:			
Description of proposed work Check ALL that a Add BEDROOMS Y N Add FIXTURES Y N Add FINISHED FLOOR AREA N CHANGE of USE Y N	If OTHER, Proposed r	e-use of ex posed re-d	escribe project here: isting approved Class 4 s evelopment of property, in			
C. Applicant Applicant is:	Owner or First name	X	Authorized agent of or Corporation or partners			
Leblanc	Patrick		Egis Canada Ltd.	sinp		
Street address			Egis oundu Etd.	Unit number	Lot/con.	
115 Walgreen Road					1	
Municipality	Postal code		Province	E-mail		
Carp	K0A 1L0		ON	patrick.leblanc@	Degis-group.com	
Telephone number (613)714-4586	Fax (613) 836	-3742		Cell number (613) 229-586	3	
D. Owner (if different from applicant)	(EZACTATONIC)					
Last name	First name		Corporation or partner	ship		
			WO MW Realty Lim	ited	11	
Street address			· · · · · · · · · · · · · · · · · · ·	Unit number	Lot/con.	
180 Renfrew Drive, Suite 230			5 ·		8	
Municipality	Postal code		Province	E-mail		
Markham	L3R 9Z2		Ontario		vhiteowlgroup.ca	
Telephone number ()	Fax (289)818	8-2406		Cell number (647) 225-702	:1	

Application for a Permit to Construct or Demolish - Effective January 1, 2014

E. Builder (optional)			al anna da			
Last name	First name	Corporation or par	tnership (if	applicable)		
	- 9					
Street address	263			R.V.C.A.	RECEIVED	
Municipality	Postal code	Province	E-m		REVENED	
PART 10 & 11		TTOVINCE		DEC	1 9 2024	
Telephone number						
()	()		(,)	· · · · · · · · · · · · · · · · · · ·	
F. Tarion Warranty Corporation (Ontar	o New Home Warr	anty Program)				
i. Is proposed construction for a new hor <i>Plan Act</i> ? If no, go to section G.	ne as defined in the O	ntario New Home Warra	anties	Yes	No x	
ii. Is registration required under the Onta	rio New Home Warran	ties Plan Act?		Yes	No x	
		9			3	
iii. If yes to (ii) provide registration numbe	r(s):					
G. Required Schedules			141			
i) Attach Schedule 1 for each individual who re		, ,			=	
ii) Attach Schedule 2 where application is to con	nstruct on-site, install o	or repair a sewage syste	m.			
H. Completeness and compliance with	applicable law		14. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A			
 This application meets all the requirements of Building Code (the application is made in the applicable fields have been completed on the schedules are submitted). 	e correct form and by t	he owner or authorized	agent, all	Yes x	No	
Payment has been made of all fees that are regulation made under clause 7(1)(c) of the application is made.			on or	Yes 🗙	No	
ii) This application is accompanied by the plans resolution or regulation made under clause			ole by-law,	Yes x	No	
iii) This application is accompanied by the inform law, resolution or regulation made under cla the chief building official to determine wheth contravene any applicable law.	use 7(1)(b) of the Build	ding Code Act, 1992 wh	ich enable	Yes x	No	
iv) The proposed building, construction or demo	plition will not contrave	ne any applicable law.		Yes x	No	
I. Declaration of applicant						
Patrick Leblanc						
(print name)				d	eclare that:	
(pint nano)						
 The information contained in this appli documentation is true to the best of m If the owner is a corporation or partner 	y knowledge.				ther attached	
				D		
Date December 19, 2024	Signature	e of applicant	F	K		
ć.			1	6		
Personal information contained in this form and sche used in the administration and enforcement of the <i>B</i> the Chief Building Official of the municipality or upper duties of a chief building official in relation to sewage this application is made, or, c) Director, Building and 2E5 (416) 585-6666.	uilding Code Act, 1992. C r-tier municipality to whic systems or plumbing for	uestions about the collection h this application is being n an upper-tier municipality,	on of person hade, or, b) board of he	al information the inspector I alth or conser	may be addressed to: a naving the powers and vation authority to whom	

Application for a Permit to Construct or Demolish - Effective January 1, 2014

Schedule 1: Designer Information

uilding number, street name 45 Walgreen Road	n n 44		Unit no.	R.V. Lot/con: Part of Lo 1"/Conc: 3 (Huntley)
Aunicipality City of Ottawa	Postal code K0A 1L0	Plan number/ other description		DEC 1 9 2024
3. Individual who reviews and tak	es responsibil			
lame Patrick Leblanc, P.Eng.		Firm Egis Canada Ltd	I. (Egis)	
treet address 115 Walgreen Road, F	R.R.3		Unit no.	Lot/con.
icipality Carp (City of Ottawa) Postal code Province K0A 1L0			E-mail patrick.	eblanc@egis-group.con
elephone number	Fax number		Cell numb	er
613) 714-4586	(613) 836-	-3742	(613)2	29-5863
 Design activities undertaken by Division C] 	y individual ide	entified in Section B. [E	Building Cod	e Table 3.5.2.1. of
House	HVAC	- House	Buile	ding Structural
Small Buildings		g Services	Plur	nbing – House
Large Buildings		ion, Lighting and Power		nbing – All Buildings
Complex Buildings	Fire Pr	otection	x On-s	site Sewage Systems
Dbtain approval for proposed re-use of existence of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng.	retrofits within ex	kisting building and building	expansion.	to service proposed re-
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na	me)	xisting building and building	expansion.	choose one as appropriate):
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng.	me) lity for the design	visting building and building	expansion. declare that (d	choose one as appropriate): subsection 3.2.4.of Division
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar	me) lity for the design	visting building and building	expansion. declare that (d	choose one as appropriate): subsection 3.2.4.of Division
Obtain approval for proposed re-use of existence of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibite C, of the Building Code. I ar Individual BCIN:	retrofits within ex me) lity for the design n qualified, and the lity for the design ivision C, of the E	work on behalf of a firm reg he firm is registered, in the a	expansion. declare that (gistered under appropriate cla	choose one as appropriate): subsection 3.2.4.of Division sses/categories.
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN:	me) lity for the design n qualified, and the lity for the design ivision C, of the E	work on behalf of a firm reg he firm is registered, in the a	expansion. declare that (or gistered under appropriate cla	choose one as appropriate): subsection 3.2.4.of Division sses/categories.
Obtain approval for proposed re-use of existence of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN:	retrofits within ex me) lity for the design n qualified, and the lity for the design ivision C, of the E m registration: _P from the registrat	work on behalf of a firm reg he firm is registered, in the app and am qualified in the app Building Code.	expansion. declare that (gistered under appropriate cla propriate categ 1438)	choose one as appropriate): subsection 3.2.4 of Division sses/categories. ory as an "other designer"
Obtain approval for proposed re-use of existence of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN: Basis for exemption fro The design work is exemptin	retrofits within ex me) lity for the design n qualified, and the lity for the design ivision C, of the E m registration: _P from the registrat	work on behalf of a firm reg he firm is registered, in the app and am qualified in the app Building Code.	expansion. declare that (gistered under appropriate cla propriate categ 1438)	choose one as appropriate): subsection 3.2.4.of Division isses/categories.
Obtain approval for proposed re-use of existence of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN: Basis for exemption fro The design work is exemptin	retrofits within ex me) lity for the design n qualified, and the lity for the design ivision C, of the E m registration:from the registrat m registration and	a work on behalf of a firm reache firm is registered, in the application and qualification required d qualification:	expansion. declare that (or gistered under appropriate cla propriate categ 1438) ements of the E	choose one as appropriate): subsection 3.2.4.of Division isses/categories.
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN: Basis for exemption fro The design work is exempt is Basis for exemption fro Certify that:	retrofits within ex me) lity for the design n qualified, and the vision C, of the E m registration: <u>F</u> from the registrat m registration and s schedule is true	a work on behalf of a firm reache firm is registered, in the appaulding Code.	expansion. declare that (or gistered under appropriate cla propriate categ 1438) ements of the E	choose one as appropriate): subsection 3.2.4.of Division isses/categories.
(print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN: Basis for exemption fro The design work is exempt Basis for exemption fro I certify that: 1. The information contained in this	retrofits within ex me) lity for the design n qualified, and the vision C, of the E m registration: <u>F</u> from the registrat m registration and s schedule is true	a work on behalf of a firm reache firm is registered, in the appaulding Code.	expansion. declare that (or gistered under appropriate cla propriate categ 1438) ements of the E	choose one as appropriate): subsection 3.2.4.of Division isses/categories.
Obtain approval for proposed re-use of exis development of property, including interior D. Declaration of Designer Patrick Leblanc, P.Eng. (print na I review and take responsibi C, of the Building Code. I ar Individual BCIN: Firm BCIN: I review and take responsibi under subsection 3.2.5.of D Individual BCIN: Basis for exemption fro The design work is exempt to Basis for exemption fro I certify that: 1. The information contained in this	retrofits within ex me) lity for the design n qualified, and the vision C, of the E m registration: <u>F</u> from the registrat m registration and s schedule is true	a work on behalf of a firm reache firm is registered, in the appaulding Code.	expansion. declare that (or gistered under appropriate cla propriate categ 1438) ements of the E	choose one as appropriate): subsection 3.2.4.of Division sses/categories. ory as an "other designer"

 Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of practice, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

Application for a Permit to Construct or Demolish - Effective January 1, 2014

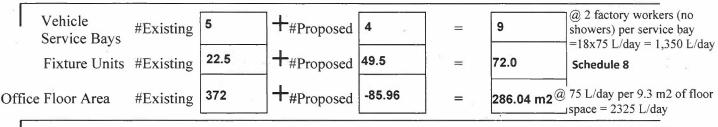
Schedule 2: Sewage System Installer Information

A. Project Information		and the second		
Building number, street name Street name	4-086		Unit number	Lot/con. Part of Lot 1 /Conc. 3 (Huntley)
Municipality City of Ottawa	Postal code	Plan number/ other de	scription	RVCA DEOFR
B. Sewage system installer	10 2 11			THE WORK RECEIVE
Is the installer of the sewage system engemptying sewage systems, in accordance Yes (Continue to Section C)	e with Building C	ness of constructing on-sit ode Article 3.3.1.1, Divisio (Continue to Section E)	Installer	servicing) Cleaning or 2024 unknown at time of tion (Continue to Section E)
C. Registered installer information	on (where answ	wer to B is "Yes")		
lame			BCIN	
Street address		a.	Unit number	Lot/con.
M unicipality	Postal code	Province	E-mail	
Felephone number)	Fax ()	i	Cell number ()	-
D. Qualified supervisor informat	ion (where ans	wer to section B is "Y	'es")	
E. Declaration of Applicant: Patrick Leblanc		·		
(print name)				declare that:
I am the applicant for the perm shall submit a new Schedule 2				time of application, I
OR I am the holder of the permit to is known.	construct the se	wage system, and am sub	omitting a new Sched	ule 2, now that the installer
I am the holder of the permit to is known.	construct the se	wage system, and am sub	omitting a new Sched	ule 2, now that the installer
I am the holder of the permit to	* *	12	4	ule 2, now that the installer

Application for a Permit to Construct or Demolish – Effective January 1, 2014

Ittawa Septic Bureau des systèmes System Office septiques d'Óttawa

8-24-086-


FART Schedule 13 Part 10 & 11 Site Amendment Check All that apply to project

Site Amendment/Description of Proposed Change/Renovation

Residential

X Commercial Property

Exceeding 15% of the gross area of the dwelling units for proposed addition

Total Q = 1,350 + 2325= 3,675 L/day

x Change in Use:

• Major occupancy (e.g. residential to commercial)

• Occupant load (e.g. Office to warehouse)

Please describe proposed use:

Internal retrofits to office space, restrooms, and storage areas. Building addition to increase number of vehicle service bays.

Installation of a POOL not meeting O.B.C Regulation setback distances

Installation of a DECK not meeting O.B.C Regulation setback distances

Required attachments

To be supplied by applicant/agent at applicant's expense:

- 1. One of the following documents to DESCRIBE CURRENT SEPTIC SYSTEM (ONE x1 copy): A. Copy of current sewage system approval (Use permit/ Certificate of Completion)
 - B. Professional engineer's report indicating size and location of system
- 2. Each of these documents to DESCRIBE PROPOSED RENOVATION (ONE x1 copy)
 - **x** A. Copy of site plan: Drawn to scale, indicating the layout of the existing building, well, other structures i.e shed, workshop, cabana
 - B. Completed Reno 10,11 Application Form
 - **x**C. Copy of Building Plans: Drawn to scale, showing the changes/additions as proposed

Ottawa Septic Bureau des systèmes System Office septiques d'Ottawa

8-24-086]

Do Not Complete Permit #

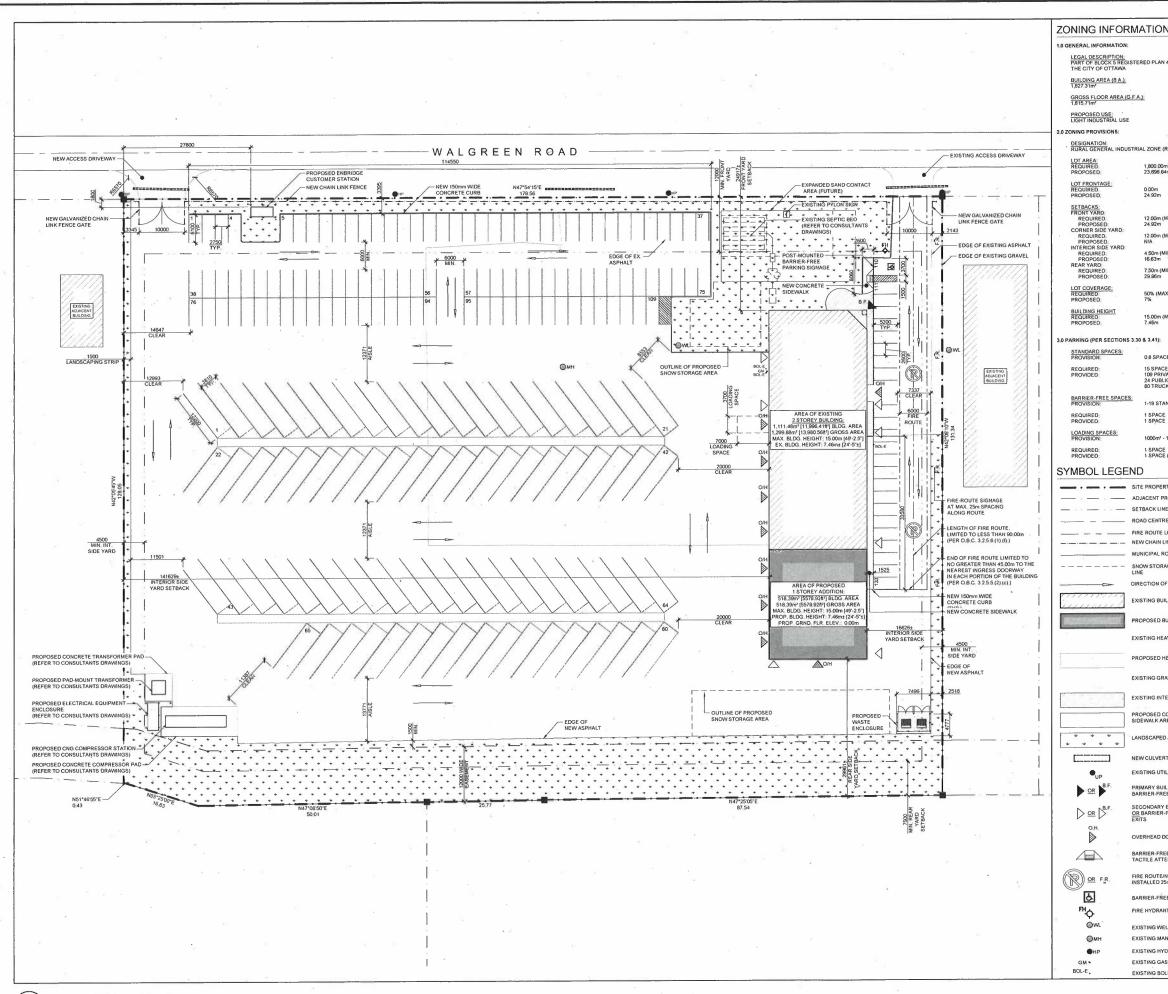
Revision #_ Date:

Fixture unit count

R.V.C.A. RECEIVED

Fixtures	# Existing	+ #	Proposed	X	unit count	In	Fixture Count
Bathroom Bathroom group (toilet, sink and tub				-			UEC 1 9 2024
or shower) installed in the same room		+		X	6	=	
Bathtub with/without overhead shower		+		X	1.5	=	
Shower stall		+	31 27	X	1.5	=	
Wash basin (SINK) (1 ¹ / ₂ inch trap)	3	+	6	X	1.5	=	13.5
Watercloset (TOILET) tank operated	3	+	9	x	4	=	48
Urinal	3	+	5	x	1.5	=	1.
Kitchen	*						12
Dishwasher		+		x	1	=	
Sink with/without garbage grinder(s), domestic and other small type single, double or 2 single with a common trap	3	+	-1	x	1.5	=	3.0
Other	e						
Domestic washing machine	16	+		X	1.5	=	
Combination sink and laundry tray single or double (Installed on 1½ trap)	1	+	-1	X	1.5	=	
· · · · · · · · · · · · · · · · · · ·							70.0

*Total: 72.0

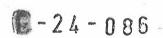

*Insert the TOTAL in Schedule 13 (0.Reg 151/13 Table 7.4.9.3)

- 1. Sump pumps and floor drains are not to be connected to the sewage system. Connection of such fixtures to a sewage system may lead to a hydraulic failure of the said system. The above mentioned fixtures should be discharged separately to an approved Class 2 (leaching pit) sewage system.
- 2. Where laundry waste is not more than 20% of the total daily design sanitary sewage flow, it may discharge to a sewage system (Part 8, OBC, 8.1.3.1(2)).

December 19, 2024

Agent/Owner signature

Date



01 PROPOSED SITE PLAN

	MATION					
INFORMATION						
FORMATION:						
SCRIPTION: BLOCK 5 REGISTERED PLAN 4M-300, OF OTTAWA						
OOR AREA (G F A)						
DUSE	· ·					
OVISIONS:	8.10					
TION ENERAL INDU	STRIAL ZONE (RG4)					
D D	1,800.00m ² (MIN.) 23,696.64m ²					
NTAGE: D ED.	0.00m 24.92m					
S: ARD						
RED DSED SIDE YARD	12.00m (MIN.) 24.92m 12.00m (MIN.)					
RED. DSED SIDE YARD RED	N/A 4.50m (MIN.)					
RED DSED: RD RED	16.63m 7.50m (MIN)					
ERAGE:	29.96m					
D	50% (MAX.) 7%					
HEIGHT D D	15.00m (MAX.) 7.46m					
ER SECTIONS	3.30 & 3.41);					
D SPACES.	0 8 SPACE PER 100m? G.F.A.					
D:	15 SPACES					
D .	109 PRIVATE SPACES 24 PUBLIC SPACES 80 TRUCK PARKING SPACES	1				
FREE SPACES	5: 1-19 STANDARD = 1 SPACE					
D. D	1 SPACE 1 SPACE					
SPACES:	1000m ² - 1,999m ² G F A = 1 SPACE					
D; D	1 SPACE 1 SPACE (EXISTING)					
L LEGE	ND					
	SITE PROPERTY LINE					
	ADJACENT PROPERTY LINE					
	SETBACK LINE					
	FIRE ROUTE LINE					
	NEW CHAIN LINK FENCE					
	MUNICIPAL ROAD BOUNDARY					
	SNOW STORAGE AREA BOUNDARY LINE DIRECTION OF TRAVEL					
	EXISTING BUILDING					
1112	PROPOSED BUILDING					
	EXISTING HEAVY DUTY ASPHALT					
	PROPOSED HEAVY DUTY ASPHALT					
	EXISTING GRAVEL					
	EXISTING INTERLOCK					
	PROPOSED CONCRETE SIDEWALK AREA					
* *	LANDSCAPED AREA					
]	NEWCULVERT					
UP	EXISTING UTILITY POLE					
B.F.	PRIMARY BUILDING ENTRANCE OR BARRIER-FREE ENTRANCE					
B.F	SECONDARY ENTRANCES / EXITS OR BARRIER-FREE ENTRANCE / EXITS					
н >	OVERHEAD DOOR					
\geq	BARRIER-FREE CURB RAMP w/ TACTILE ATTENTION INDICATORS					
F.R.	FIRE ROUTE/NO PARKING SIGNAGE INSTALLED 25m MAX ALONG ROUTE					
	BARRIER-FREE PARKING SIGN					
	FIRE HYDRANT (EXISTING)					
ML	EXISTING WELL					
мн	EXISTING MANHOLE					
4D	EXISTING HYDRO POLE	4				

EXISTING GAS METER EXISTING BOLLARD

DEIMLING ARCHITECTURE & INTERIOR DESIGN

PART 10 & 11

DEC 1 9 2024

R.V.C.A. RECEIVED

North

Revisions					
lo.	Ву	Description	Date		
			1+		
			0		
۲	-				
02	T.D.	ISSUED FOR COORDINATION	13 NOV 2024		
01	T.D	ISSUED FOR COORDINATION	08 NOV 2024		

Project

EGIS SITE PLAN DEVELOPMENT

145 WALGREEN RD, OTTAWA, ON

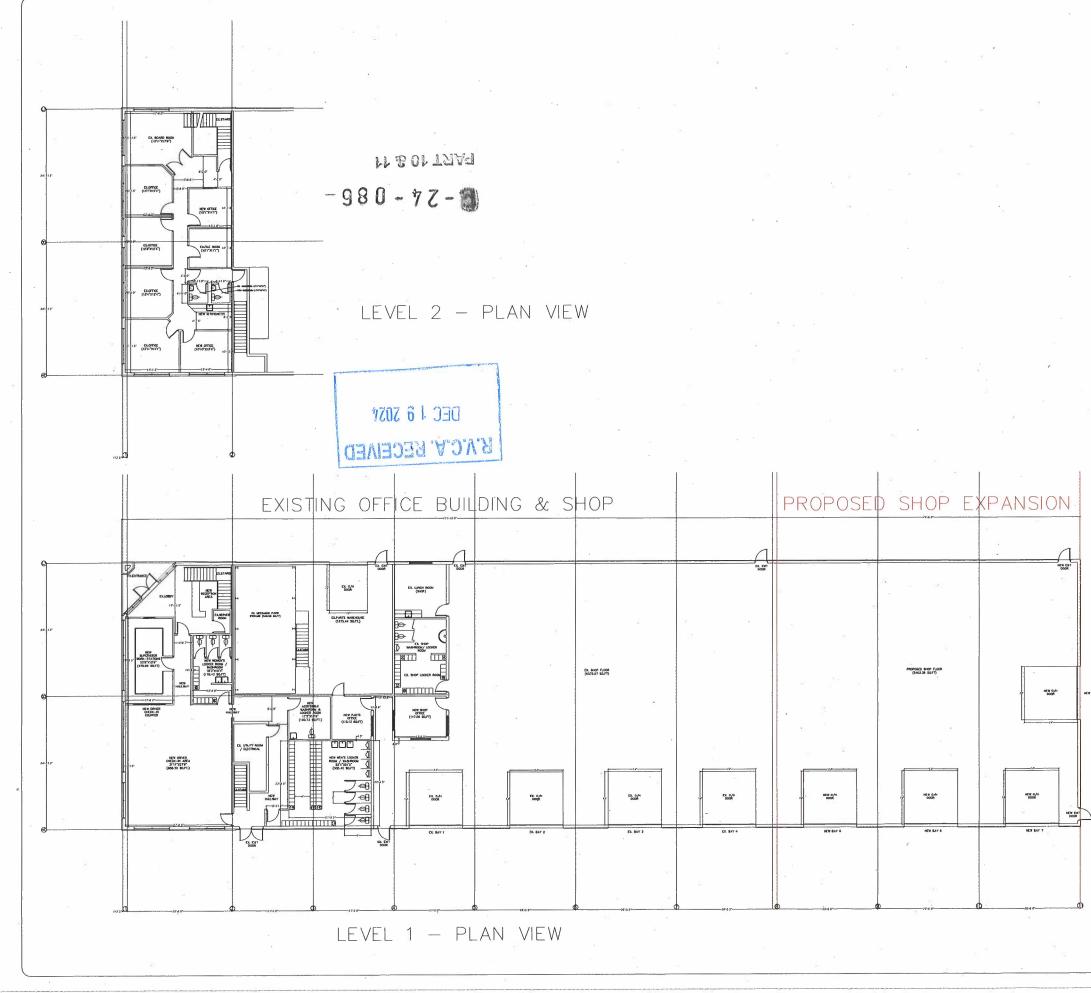
PROPOSED SITE PLAN

Scale AS NOTED

Drawn


T.D.

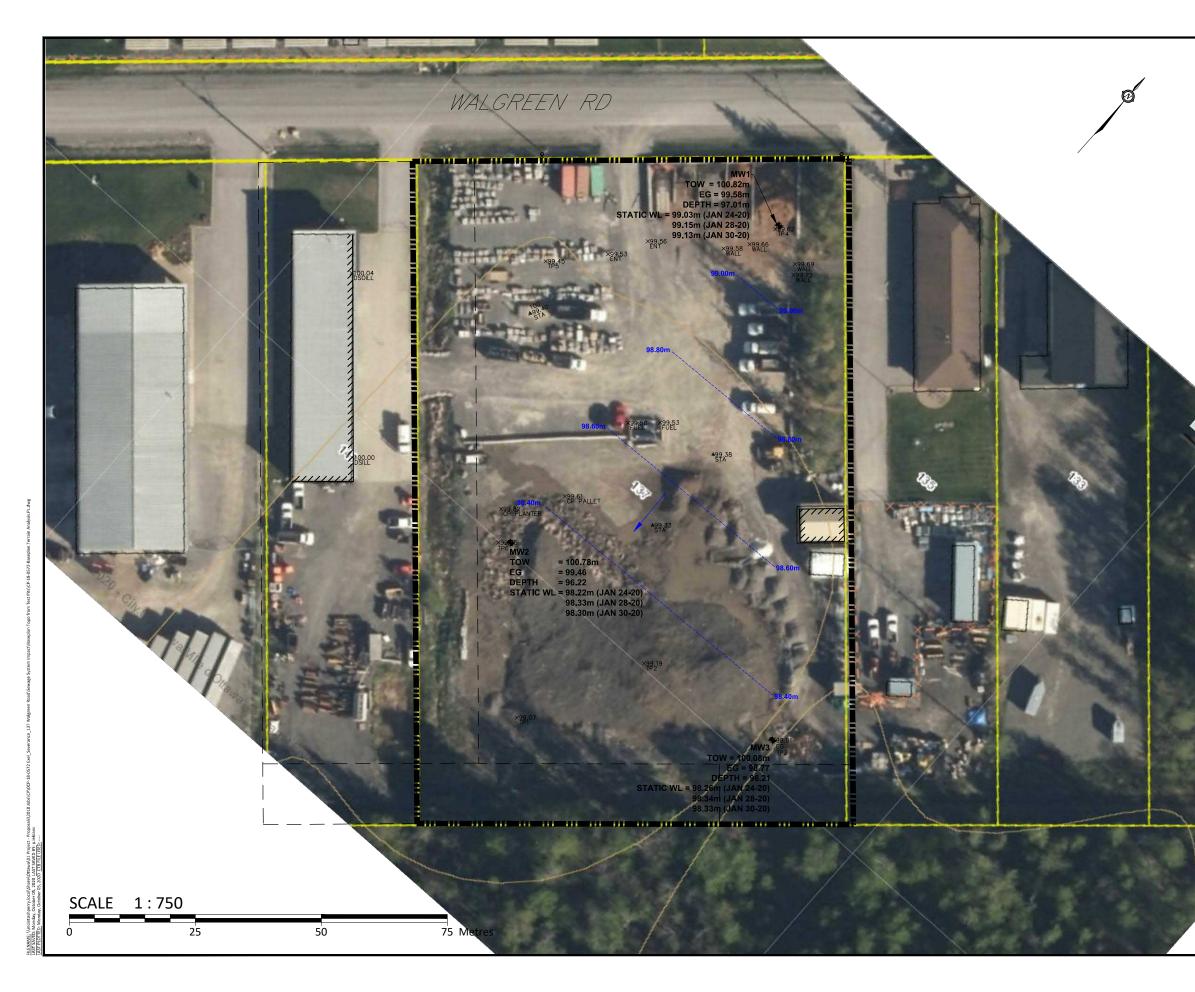
Checked W.P.


Project No. 24-138

Drawing No.

Stamp

	LEGEND:
0	
36.04 m ²	
(a);	NU.
	£
A. RECEIVED	
and the second of the	· · · · · · · · · · · · · · · · · · ·
EC 1 9 2024	
	2
-086	
080	6. REVISION 05 (L-1NEW SHOP OFC) SV 15 JULY 5. REVISION 04 (L-2 ROOM DOOR) SV 08 JULY
ß 11	4. REVISION 03 (RECP. H/C W/R) SV 04 JULY 3. REVISION 02 (SUP'S ROOM MOD.) SV 28 JUNE
· · · · · · · · · · · · · · · · · · ·	2. REVISION 01 (HATCH & STAIRS) SV 28 JUNE 1. ISSUE 01 SV 28 JUNE NO. REVISIONS/ISSUE BY DATE
	STAMP
8	CUENT
	Ŭ.
	OPERATOR
	Miller Waste Systems
	BUILDER
	≥
	PROJECT
	BUILDING RENOVATION
	CONSULTANT
	21
2.	BUILDING
	145 WALGREEN RD.
	OTTAWA
	BUILDING PLAN VIEW
	(MAIN FLOOR PLAN)
	PROJECT NO. SCALE: N.T.S
9	DATE: 2024-06-28 DESIGNED BY:
	DESIGNED BY: OW1



LEGEND: 6. REVISION 05 (L-INEW SHOP OFC) SV 5. REVISION 04 (L-2 ROOM DOOR) 4 REVISION 03 (RECP. H/C W/R) 08 JULY 04 JULY 28 JUNE REVISION 02 (SUP'S ROOM MOI SV 28 JURE SV 28 JURE BY DATE 2. REVISION 01 (HATCH & STARS) 1. ISSUE 01 ND. REVISIONS/ISSL OPERATO Miller Waste Systems PROJEC BUILDING RENOVATION CONSULTANT BUILDING 145 WALGREEN RD. OTTAWA DRAWING TITLE: BUILDING PLAN VIEW (MAIN FLOOR PLAN) SCALE: N.T.S PROJECT NO. DATE: 2024-06-28 DESIGNED BY: OW1 DRAWN BY: SV

	Do Not Complete Permit No <u>B-24-086</u>					
Rideau Valley Conservation Authority	Revision No Date					
Permit						
Part 10/11- Change of Use/Renovation Ontario Building Code						
This permit verifies that the on-site sewage system was reviewed under the Ontario Building Co- amended by Ontario Regulation 503/09	de and Ontario Regulation 350/06 as					
Reviewed & Recommended by: Ryan Hiemstra Owner: WO M	/W Realty Limited					
Civic Address:145 Walgreen Road Legal:	Lot 1, Con 3					
Roll #:						
Commercial Property: Factory area (75 L/day/employee x 18 employees = 1350 L/day) Office area (286.04 m2 x 75 L/day/9.3 m2 = 2325 L/day) Total Daily Design Flow Rate = 3675 L/day						
Bed Configuration 8 runs at 9m m Type A be	d w/ 2x Clearstream 600NC					
Tank size4500L						
Permit Refused By: Terry K. Davidson, P.Eng., Manager Septic System Approvals Permit Refused for the following reasons:	Date					
	· · · · · · · · · · · · · · · · · · ·					
	equired ecords required essment of septic system required					
Permit Approved and Issued By: Terry K. Davidson, P.Eng., Manager - Septic System Approvals Details and Conditions of Approval:	Permit Date					
Terry K. Davidson, P.Eng., Manager - Septic System Approvals	Revision Date					
Details and Conditions of Approval:	4.					

Note: this permit is valid for 12 months from the date of signing. It is not renewable.

APPENDIX F - SHALLOW GROUNDWATER FLOW DIRECTION FOR HYDROGEOLOGICAL STUDY AT 137 WALGREEN RD

LEGEND	<u>.</u>						
99.00m GROUNDWATER CONTOURS							
-	GROUNDWA	TER FLOW I	DIRECTION				
No.	Revision/Iss	ue	Date				
	McINTOSH PERRY 115 Walgreen Road, RR 3 Carp, ON KOA 1L0 Tel: 613-836-2184 Fax: 613-836-3742 www.mcintoshperry.com						
Stamp:		Stamp:					
Client:							
135 V	VALGREEN RD, C	ARP, ON					
Project:							
1 10/001.	HYDROGE AND SEPT						
		SMENT					
	137 WALGREE	-					
Drawing							
TER	RAIN ANALYS	SIS					
Scale:	1:750	Project Nu	mber:				
Drawn b	^{by:} BA	0CP	-18-0572				
Checke	^{d By:} PL	Drawing N	umber:				
Designe	ed By: BA						
Date:	SEP.30.2020		FIG. 4				