

Enhancing our communities

1981 Century Road West

SITE SERVICING & STORMWATER MANAGEMENT REPORT

Brunstad Christian Church Ottawa

Document Control

File: Prepared by: Prepared for:

523654 Tatham Engineering Limited Brunstad Christian Church Ottawa

5335 Canotek Road, Unit 100 PO Box 64 Manotick Main Ottawa, Ontario K1J 9L4 Ottawa, Ontario K4M 1A2

August **T** 613-747-3636 20, 2025 tathameng.com

Date:

Authored by:	Reviewed by:
Sauling	
David Fendler	
Technologist	ROFESSION
GUILLAUME COURTOIS NO 968249	J. R. ASH HOULZ OF ONT PRE
Guillaume M. Courtois, C.E.T.	Jeremy Ash, B.Sc.Eng., P.Eng.
Project Manager, Senior Technologist	Director, Manager - Ottawa Office

Disclaimer	Copyright
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and Tatham Engineering Limited undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.	This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tatham Engineering Limited.

Issue	Date	Description
1	January 15, 2025	Final Report
2	July 3, 2025	Revised Final Report
3	August 20, 2025	Revised Final Report

Document Contents

1	Introduction	1
2	Geotechnical Investigation	2
3	Site Servicing	3
3.1	Sewage Collection and Disposal	3
3.2	Domestic Water Supply	3
3.3	Fire Protection	4
4	Stormwater Management	5
4.1	SWM Design Criteria	6
4.2	Existing Site Drainage Conditions	6
4.3	Existing Condition Hydrogeologic Analysis	7
4.4	Proposed SWM Plan	7
4.5	Quantity Control	9
4.6	Quality Control	10
4.7	SWM Operation and Maintenance Program	10
5	Erosion and Sediment Control	14
6	Summary	15
Tak	oles	
	ole 1: Existing Condition Peak Flow Summary - Outlet 1	
Tak	ole 2: Proposed Condition Peak Flow Summary - Outlet 1	9

Drawings

DP-1: Existing Condition Drainage Plan

DP-2: Proposed Condition Drainage Plan

STM-1: Storm Drainage Plan

SC-1: Removals, Siltation and Erosion Control Plan

SG-1: Site Grading and Servicing Plan SWM-1: Stormwater Management Plan

DET-1: Notes and Details Plan

Appendices

Appendix A: Proposed Site Plan prepared by Lawrence Architect Inc.

Appendix B: Topographic Survey prepared by Annis, O'Sullivan, Vollebekk Ltd.

Appendix C: Sewage System Documents prepared by Paterson Group Inc.

Appendix D: Domestic and Fire Flow Demand Calculations

Appendix E: SWM Calculations and Supporting Documents

1 Introduction

Tatham Engineering Limited (Tatham) has been retained by the Brunstad Christian Church Ottawa (BCCO) to prepare a Site Servicing & Stormwater Management (SWM) Report in support of Site Plan Approval (SPA) for the proposed site redevelopment works at 1981 Century Road in the City of Ottawa. Specifically, this report has been prepared to confirm the servicing and SWM designs for the site.

The site is approximately 3.6 ha and currently consists of a one storey church, wooden shed, gazebo, canopy/pavillion area, playground area, asphalt parking area, and green space. There are two entrances to the site from Century Road along the south property limit. The site is identified as having floodplain within the rear portion of the lot. The site is currently zoned Rural Institutional, Subzone 5 (RI5) and is bounded by adjacent agricultural properties (AG1 to the North and East, and AG2 (undeveloped) to the West), and Century Road to the South. A key plan illustrating the site location is provided on the drawings enclosed at the back of this report.

The area proposed for re-development, herein referred to as the site, is approximately 1.87 ha. The final SWM plan has been developed for the site area only. The balance of the property will remain undisturbed. The proposed re-development consists of removing a portion of the existing Church's interlock and a few trees, decommissioning the existing private septic system, relocating the existing canopy/pavilion, and constructing a 2,507 m² partial two-storey addition and associated paved parking area. In the proposed condition, the two existing site entrances along the south property limit on Century Road will continue to provide access to the site. All work is being proposed outside of the 100-year floodplain. It is noted that all flood control storage in the pond is provided above the 350-year flood elevation (91.49). The Proposed Site Plan (A1.0) prepared by Lawrence Architect Inc., illustrating the proposed site layout, is included in Appendix A.

The servicing and SWM designs included herein are based on the topographic survey completed by Annis, O'Sullivan, Vollebekk Ltd. dated May 11, 2023, included in Appendix B.

2 Geotechnical Investigation

A geotechnical investigation to assess subsurface conditions was completed at the site by Paterson Group Inc. (Paterson) on July 17, 2023, and is documented in their report dated September 5, 2023. The report has been submitted under separate cover.

Four (4) boreholes (BH 1-23 to BH 4-23) were advanced throughout the site to a maximum depth of 6.7 metres below ground surface (mbgs).

A 300 mm thick layer of topsoil was encountered at all borehole locations. The topsoil layer was underlain by deposits of clayey silt to silty clay, silty sand, and glacial till. A 400 mm thick layer of fill was encountered underlying the topsoil at borehole BH 1-23. A very stiff to firm, brown to grey clayey silt to silty clay deposit was encountered underlying the topsoil layer (or fill layer at BH 1-23), extending to depths of 1.8 to 4.0 mbgs. A 700 mm thick very loose to loose, grey silty sand layer was encountered underlying the clayey silt to silty clay. A glacial till deposit was encountered underlying the silty sand, consisting of a loose to compact, grey silty sand to sandy silt with varying amounts of gravel, cobbles, and boulders.

During the July 17, 2023 investigation, three (3) boreholes were fitted with flexible standpipe piezometers and one (1) borehole was equipped with a monitoring well to facilitate monitoring of groundwater levels following the completion of the sampling program. Groundwater levels were measured in the monitoring wells on July 24, 2023, and ranged from 1.10 to 1.99 mbgs.

Further to the above, Paterson conducted a subsequent groundwater monitoring program, where the monitoring well installed at BH 3-23 was equipped with a Van Essen Instrument MiniDiver Water Level Logger on February 22, 2024, to accurately monitor fluctuations in the groundwater levels. The Mini-Diver was programmed to continuously measure and record groundwater levels throughout the subject site at a rate of 1 reading every 24 hours for a period of 6 months. The groundwater levels from the subsequent groundwater monitoring program, recorded between February 22, 2024 and August 26, 2024, ranged from 0.03 to 0.97 mbgs. The results are documented in Paterson's memorandum dated August 23, 2024. The memorandum has been submitted under separate cover.

3 Site Servicing

3.1 SEWAGE COLLECTION AND DISPOSAL

In the existing condition, sewage flow is conveyed to a private septic system located immediately east of the existing church.

In the proposed condition, the existing septic system is to be decommissioned, removed, and replaced with a new septic system located immediately north of the proposed building addition, to service the existing church and proposed addition. A septic system decommissioning permit from the Ottawa Septic System Office (OSSO) is required prior to decommissioning the existing septic system.

A Sewage System Sizing Memorandum, dated August 15, 2024, was prepared by Paterson to estimate the sewage design flow for the existing church and proposed addition. The estimated sewage design flow was found to be 42,274 L/week. To ensure a total daily design sewage flow (TDDSF) of less than 10,000 L/day and eliminate the requirement for an Environmental Compliance Approval (ECA), a balancing tank is required. The balancing tank will distribute the daily sewage evenly over a one (1) week period, allowing for a TDDSF of less than 10,000 L. The memorandum is included in Appendix C.

The proposed septic system design was completed by Paterson and consists of one 23,000 L pretreatment tank, an 18,500 L balancing tank, a 38 mm diameter schedule 40 PVC forcemain, a 6-outlet distribution box, and 66 Eljen GSF A42 modules with a 100 mm diameter perforated distribution pipe on top of the modules. The Sewage System Plan and Details and Notes Plan, dated November 22, 2024, are included in Appendix C.

3.2 DOMESTIC WATER SUPPLY

In the existing condition, domestic water supply is provided via a private well located immediately west of the existing church.

In the proposed condition, the existing well will be maintained and will provide water supply for the existing church and proposed addition. The water service on-site will be a regulated drinking water system, under O.Reg.319, and will follow any requirements set by the Ottawa Public Health Office. Any requirements related to the regulated system must be fulfilled prior to the use of the system.

Water demand calculations for the proposed conditions have been completed using the Type of Establishment Method from Section 8 of the 2024 Ontario Building Code (OBC).

The combined daily water demand for the overall development in the proposed condition was determined to be 1.25 L/s, and does not include allowances for fire fighting, irrigation, etc.

It is understood a Hydrogeological and Terrain Analysis Report is being prepared by others to demonstrate that the existing well can provide water supply in excess of the demand and to demonstrate compliance with the current water quality requirements. A pumping test of the existing water supply well is recommended to confirm a reliable well yield of at least 1.25 L/s and ensure the existing well supply will be sufficient to service the overall development. In the case where the domestic water supply and/or the water quality are insufficient, recommendations will be provided by the hydrogeological consultant.

The water demand calculations are included in Appendix D.

3.3 FIRE PROTECTION

In the existing condition, water supply for fire protection is provided via a private on-site 50,499 L fire water holding tank located south of the existing church, immediately within the south property limit.

In the proposed condition, the existing fire water holding tank will be utilized solely to supply the building's sprinkler system, and new fire water holding tanks with a combined storage capacity of 151,000 L will provide sufficient fire protection for the remainder of the site.

Fire flow demands were calculated in accordance with the City of Ottawa Technical Bulletin IWSTB-2024-05. This method combines aspects of the Ontario Building Code (OBC), Fire Underwriters Survey (FUS), and National Fire Protection Association (NFPA) 13 (applicable to sprinklered buildings). The fire flow demand for the site (excluding the demand for sprinklers) is 5,000 L/min and requires fire water holding tanks having a minimum combined storage volume of 150,000 L. The new tanks will be located on the east side of the site's west entrance along the south property limit and will be capable of providing the fire water supply flow rate of 5,000 L/min for a minimum duration of 30 minutes. On this basis, adequate fire flow protection will be provided. The fire flow demand calculations are included in Appendix D.

We note NFPA 13 calculations, applicable solely to the building's sprinklered system, have been completed under separate cover by the mechanical engineer.

The existing and proposed fire water holding tanks are shown on the Site Grading and Servicing Plan (Drawing SG-1).

4 Stormwater Management

The primary objective of the SWM plan is to demonstrate that post-development conditions will not adversely impact the hydrologic cycle and surface water runoff characteristics of the area. This will be accomplished by evaluating the effects of the proposed development on local drainage conditions. Where necessary, solutions will be provided to mitigate any adverse impacts. The following sections of the report will present the following:

- Existing runoff conditions including constraints and opportunities for improvement;
- Criteria to be applied in the SWM design;
- An overall SWM plan that complies with appropriate technical SWM guidelines; and
- Erosion and sediment control strategies.

The SWM plan was prepared recognizing municipal, provincial, and conservation authority guidelines on water resources and the environment, including the following publications:

- Design Criteria for Sanitary Sewers, Storm Sewers and Forcemains for Alterations Authorized under Environmental Compliance Approval (The Ministry of the Environment, Conservation and Parks, 2022);
- O. Reg. 174/06: Rideau Valley Conservation Authority: Regulation of Development, Interference with Wetlands and Alterations to Shorelines and Watercourses (2022);
- Erosion and Sediment Control Guide for Urban Construction (Toronto and Region Conservation Authority, 2019); and
- The City of Ottawa Sewer Design Guidelines (Second Edition, Document No. SDG002, October 2012), including technical bulletins:
 - ISDTB-2014-01;
 - PIEDTB-2016-01;
 - ISTB-2018-01:
 - ISTB-2018-04; and
 - ISTB-2019-02.

4.1 SWM DESIGN CRITERIA

Criteria to be met regarding drainage and stormwater management on the site are summarized as follows:

- The site will be developed in accordance with applicable municipal, provincial, and conservation authority, guidelines and standards;
- Attenuation of proposed condition peak flow rates from all storm events up to and including the 100-year storm to the allowable 2-year existing condition peak flow rate at each outlet;
- MECP "Enhanced" level water quality control, including 80% TSS removal, is required to ensure the development will have no negative impacts on the downstream receivers;
- Safe conveyance of runoff from all storms up to and including the 100-year storm;
- The proposed storm sewers are to be sized for conveyance of the 5-year design storm; and
- Erosion and sediment control measures are to be implemented during construction and are
 to remain in place until construction is completed and the site is stabilized thereby
 minimizing the potential for erosion and sediment transport off-site.

4.2 EXISTING SITE DRAINAGE CONDITIONS

The existing topography, ground cover, and drainage patterns were obtained through a review of available plans, base mapping, and site investigation. A detailed topographic survey of the site was completed by Annis, O'Sullivan, Vollebekk Ltd. on May 11, 2023 to confirm existing features and elevations.

The area proposed for re-development, herein referred to as the site, is approximately 1.87 ha. A well-defined ridge extending across the site from west to east bisects the site into two drainage areas with two distinct outlets.

Runoff from the major portion of the site (Drainage Area 101 - 1.73 ha) drains overland, generally from south to north, to a watercourse which is located along the east and north property limits (Outlet 1).

Runoff from the south portion of the site (Drainage Area 102 - 0.14 ha) drains overland, generally from north to south, into the Century Road north roadside ditch (Outlet 2). There is no proposed development within Drainage Area 102. On this basis, Drainage Area 102 has been excluded from the hydrologic modelling analysis included herein.

Eventually, runoff from both drainage areas discharges into the Mud Creek municipal drain, and ultimately into the Rideau River.

The Ontario Soil Survey Complex characterizes the native soils onsite as Brandon clay, having a corresponding hydrologic soil group D.

The Existing Condition Drainage Plan (DP-1), illustrating the existing condition drainage characteristics of the site, is attached at the back of this report.

4.3 EXISTING CONDITION HYDROGEOLOGIC ANALYSIS

A Visual OTTHYMO hydrologic model (VO6) scenario was developed to quantify the existing condition peak flows from Drainage Area 101.

The drainage area delineations were determined based on the available topographic information in combination with the areas proposed for development.

A summary of all hydrologic parameters established for the existing condition hydrologic model has been included in Appendix E.

Even though the site is currently developed, the City required that the existing condition land use reflect the site condition prior to the current development, which is conservative as it relates to the flood storage that is required to control post development peak flows at or below existing condition peak flow rates.

The peak flow rates for the 2-year storm event were calculated for the 3-hour Chicago, 6-hour Chicago and 24-hour SCS Type II design storms using IDF data derived from Meteorological Services of Canada (MSC) rainfall data taken from the MacDonald-Cartier Airport. Detailed calculations and Visual OTTHYMO modeling output are included in Appendix E with the results summarized below in Tables 1.

Table 1: Existing Condition Peak Flow Summary - Outlet 1

DESIGN STORM		DRAINAGE AREA 10° 1.73 ha (m³/s)	ı
	3-hr CHI	6-hr CHI	24-hr SCS Type II
2-Year	0.044	0.051	0.074

4.4 PROPOSED SWM PLAN

The proposed SWM plan has been prepared recognizing the SWM requirements for the site and has been developed to follow the existing topography of the land as much as possible to maintain the existing condition drainage patterns, while safely conveying stormwater runoff to the existing outlets.

- Runoff from the very south portion of the site (Drainage Area 202 0.13 ha), consisting of clean and unimpaired runoff from vegetated areas, will sheet flow uncontrolled to the Century Road north roadside ditch (Outlet 2), unchanged from the existing condition. The proposed development within Drainage Area 202 (which is slightly smaller than Drainage Area 102) will not result in any increase in impervious area or peak flows. On this basis, Drainage Area 202 has been excluded from the modelling analysis included herein.
- Runoff from the major portion of the site (Drainage Area 201 1.74 ha) will be controlled
 and treated onsite and will discharge to the existing watercourse which is located along the
 east and north property limits (Outlet 1).
- Runoff from Drainage Area 201 will be directed to a proposed dry SWM facility via the proposed storm sewer and controlled by an orifice plate flow restrictor located in CBMH1. The 100-year proposed condition peak flow rate from this area will be controlled to the 2-year pre-development peak flow from Drainage Area 101 (1.73 ha).
- The dry SWM facility has been sized to provide the requisite quantity control for the site. It consists of 0.4 m of freeboard above the 100-year storm peak flow level (increased freeboard to accommodate snow and ice formation during the winter months as is recommended by the MECP), and a 3.0 m wide emergency spillway, which has sufficient capacity to safely direct the uncontrolled 100-year peak flow from the facility to Outlet 1.
- Infiltration of stormwater runoff is not practical due to high groundwater levels (0.03 mbgs at BH 3-23 according to Paterson Groundwater Monitoring Program memorandum). Therefore, an oil-grit separator (OGS) unit is proposed immediately upstream of the site outlet and will provide MECP "Enhanced" level water quality treatment including 80% TSS removal from on-site runoff prior to discharging from the site.
- All internal storm sewers have been sized based on the 5-year design storm. A storm sewer design sheet and a corresponding Storm Drainage Plan (Dwg. STM-1) are attached in Appendix E.
- Runoff from both drainage areas (201 and 202) discharges to the Mud Creek municipal drain,
 and ultimately into the Rideau River, unchanged from the existing condition.

Portions of the property are within the 100-year and 350-year floodplains. Development is prohibited within the 100-year flood plain as per Zoning By-law Section 58. We note that all work is being proposed outside of the 100-year floodplain. Any work within 15 metres of the 100-year floodplain will require a permit from the Rideau Valley Conservation Authority (RVCA) prior to construction.

The Proposed Condition Drainage Plan (DP-2), illustrating the proposed condition drainage characteristics of the site, is attached at the back of this report.

4.5 QUANTITY CONTROL

An orifice plate flow restrictor, consisting of a 153 mm diameter orifice, installed in CBMH1, is proposed to control peak flows from Drainage Area 201, to ensure the 100-year post development peak flow is less than or equal to the existing 2-year peak flow rate from Drainage Area 101.

A VO6 model scenario was developed to quantify the proposed condition peak flow from Drainage Area 201.

The drainage area delineation for the contributing lands was completed according to the proposed site grading illustrated on the Site Grading and Servicing Plan (Drawing SG-1), which is included at the back of this report.

Summaries of all hydrologic parameters and stage-storage-discharge tables, established for the proposed condition hydrologic model, have been included in Appendix E.

The peak flow for the 100-year storm event was calculated for the 3-hour Chicago, 6-hour Chicago, and 24-hour SCS Type II design storms using IDF data derived from Meteorological Services of Canada (MSC) rainfall data taken from the MacDonald-Cartier Airport. Detailed calculations and Visual OTTHYMO modeling output are included in Appendix E with the results summarized below in Table 2.

Table 2: Proposed Condition Peak Flow Summary - Outlet 1

DESIGN STORM		DRAINAGE AREA 201 1.74 ha CONTROLLED (m³/s)	
	3-hr CHI	6-hr CHI	24-hr SCS Type II
100-Year	0.044 (0.044)	0.045 (0.051)	0.044 (0.074)

Note: (0.100) refers to existing condition 2-year peak flow rate.

Table 2 confirms the proposed SWM plan will attenuate the proposed condition 100-year peak flow rate at or below the existing condition 2-year peak flow rate. The maximum storage required during the 100-year storm was determined to be 730 m³, whereas 759 m³ of storage volume is provided in the dry SWM facility up to the emergency overflow elevation of 92.20 m as is shown on the Site Grading and Servicing Plan (Drawing SG-1) and the Stormwater Management Plan (Drawing SWM-1).

4.6 **QUALITY CONTROL**

The proposed water quality treatment objective under the proposed condition is to provide MECP enhanced level treatment including 80% TSS removal from on-site runoff, including treatment for the existing developed portion of the site, which is currently not treated.

Water quality control for the development will be provided via a proposed Stormceptor Model EFO6 oil-grit-separator.

Pre-treatment upstream of the proposed OGS will be provided via at-source and conveyance type controls such as, roof leaders discharging to splash pads directed to pervious areas, enhanced grassed swales, and via an extended pervious flow path through the dry SWM facility.

Even though these features are specified as part of the overall SWM design, they are not being relied on or included in the quality control calculations.

Pre-treatment upstream of the proposed OGS for runoff from the parking area is not feasible and therefore diligent maintenance of the OGS unit is needed for it to function as designed.

4.6.1 Oil-Grit-Separator

All runoff from Drainage Area 201 will be treated by a Stormceptor Model EFO6 OGS prior to discharging to the existing watercourse which is located along the east and north property limits (Outlet 1). The OGS has been sized to treat a minimum of 90% of annual runoff and provide 80% TSS removal. The specified Stormceptor Model EFO6 will provide 83% TSS removal from the contributing drainage area, thus exceeding the MECP's requirement for enhanced level water quality control. The Stormceptor EFO Sizing Report is included in Appendix E.

4.7 **SWM OPERATION AND MAINTENANCE PROGRAM**

Monitoring and maintenance provide a variety of important functions. Specifically, they ensure that the systems implemented are operating correctly and effectively, while maintaining and protecting water resources. A proactive, routine inspection and maintenance program will also:

- Identify maintenance issues before they significantly affect the function of the individual stormwater components;
- Ensure the SWM plan continues to perform as designed; and
- Demonstrate to stakeholders that the SWM plan is achieving its intended design objective.

Monitoring the effectiveness of the proposed dry SWM facility and Stormceptor encourages the protection and restoration of surface water and groundwater resources. Early warnings provide time for problems to be identified and rectified at the source. Monitoring also helps develop strategies to improve existing conditions and protect downstream water uses. To ensure the

operation and maintenance plan is operating effectively, regular inspection and maintenance of each element of the plan is recommended.

The objectives of the Operation and Maintenance Program are to:

- Evaluate and maintain the condition of the SWM plan components in relation to their intended design purpose;
- Provide a tool for maintaining and implementing remediation works to restore SWM plan components performance; and
- Establish a future maintenance schedule based on the SWM plan's past performance.

The operation and maintenance program is to be provided year-round, albeit the majority of inspection, monitoring, and maintenance activities are anticipated to be provided when the ground conditions are clear of snow and ice. During the winter, and most importantly prior to the spring melt, the pipe inlets and outlets, including the pond inlet/outlet and the storm pipe outlet from the ponding area, should be checked for blockages and cleared.

The following sub-sections are potential areas of concern and should be monitored on an ongoing basis.

4.7.1 Sediment Removal

To ensure long-term effectiveness of the SWM plan, the sediment which accumulates in the SWM plan components should be monitored and periodically removed. The highest sediment load can be expected during the construction phase. Less sediment loading is expected after the development phase is complete.

For the first six months following construction, inspection should occur after each storm event greater than 10 mm or at least twice. Following this period, inspections should occur in the spring of each year and after rainfall events greater than 15 mm. The visual checks will provide an early warning of potential problems and reduce potential threats to the environment.

Prior to any handling, removal, and disposal of sediment from the SWM plan components, the accumulated sediment is to be tested according to the criteria contained in the April 15, 2011 Ministry of Environment Conservation and Parks "Soil, Ground, Water and Sediment Standard for use Under Part XV-1 of the Environmental Protection Act" and disposed of accordingly at an approved offsite location.

For the dry SWM facility, sediment is expected to accumulate near the outlet pipe. The stone placed at the outlet of the dry SWM facility will promote settling of fine particles at this location.

The Stormceptor model EFO6 has been specified downstream of the dry SWM facility. Sediment monitoring and removal is performed using vacuum trucks. No entry into the unit is required for

maintenance (in most cases). The Operation and Maintenance Guide, provided in Appendix E, provides the sediment depths indicating required sediment removal and should be followed to ensure the long-term function of the unit.

4.7.2 Vegetation

A large portion of the dry SWM facility consists of a grassed surface. Although the dry SWM facility is not being used for water quality control, allowing the growth of grass is encouraged to provide supplementary quality treatment opportunities via filtration and infiltration. In general, grass trimming is more associated with aesthetics compared to performance. Grass and other vegetation should be inspected on an annual basis, and the following actions for inspection are recommended:

- Remove and replace dying or unhealthy vegetation;
- Weeds, poisonous or invasive vegetation should be removed without the use of pesticides;
- Tree growth interfering with the intended operation or maintenance access should be trimmed or if necessary, removed;
- Grass cutting should be limited as much as possible while recognizing the aesthetic concerns of nearby residents. Grass clippings must be removed to reduce potential for organic loading;
- Herbicides and insecticides should not be used to control weeds. Fertilizer should also be limited to minimize nutrient loadings; and
- If gullies are observed along the surface, localized regrading and revegetating may be required.

4.7.3 Trash and Debris

During inspections, the area should be checked for any trash and/or debris which should be disposed of immediately.

Ponded water can indicate blockages caused by trash or debris. This would include but is not limited to leaves, branches, sediment, litter, and other forms of debris. These obstructions can cause nuisance ponding and/or redirection of flows away from the intended outlet.

4.7.4 Weed Control

Weed control for any invasive species such as Dog Strangling Vines, European Buckhorn, Norway Maple, Garlic Mustard, etc., is recommended on a bi-annual basis. Herbicides and insecticides should be avoided due to the potential water quality concerns associated with downstream uses.

A suggested Stormwater Management Operation, Inspection and Maintenance Report, which includes each component of the SWM plan, is included in Appendix E, to be completed and logged by the operating authority or property manager.

Erosion and Sediment Control 5

Erosion and sediment control will be implemented for all construction activities within the development site, including vegetation clearing, topsoil stripping, drive aisle and parking area construction, and stockpiling of materials. The principles considered and to be utilised to minimize erosion and sedimentation at the site and resultant negative environmental impacts consist of the following:

- Minimize disturbance activities where possible;
- Expose the smallest possible land area to erosion for the shortest possible time;
- Institute specified erosion control measures immediately;
- Implement sediment control measures before the outset of construction activities;
- Carry out regular inspections of erosion/sediment control measures and repair or maintain as necessary; and
- Seed or sod exposed soils as soon as possible after construction and keep chemical applications to suppress dust and control pests and vegetation to a minimum.

The proposed grading and building construction for the subject site will be carried out in such a manner that a minimum amount of erosion occurs and such that sedimentation facilities control any erosion that does occur. Specific erosion, sediment, and pollution control measures included within the proposed design, that are to be utilized on-site, consist of the following:

- Installing heavy-duty silt fence downstream of the overall construction work area (i.e., along the limits of construction) to prevent sediment from discharging offsite;
- Constructing the dry SWM facility (to be used as a temporary settling basin) and swale, complete with temporary straw bale check dams, immediately following the installation of the silt fence to filter out and capture sediment from runoff prior to discharging from the site:
- Placing and maintaining stone mud mats at the construction work area access points;
- Confining refuelling/servicing of equipment to areas well away from the existing watercourses, and the minor/major drainage system elements;
- Cleaning out/removing all sediment from the dry SWM facility at the end of construction;
- Bi-weekly inspections of control measures to be instituted through a monitoring and mitigation plan and repairs made, as necessary.

The proposed erosion and sediment controls are shown on the Removals, Siltation and Erosion Control Plan (Drawing SC-1).

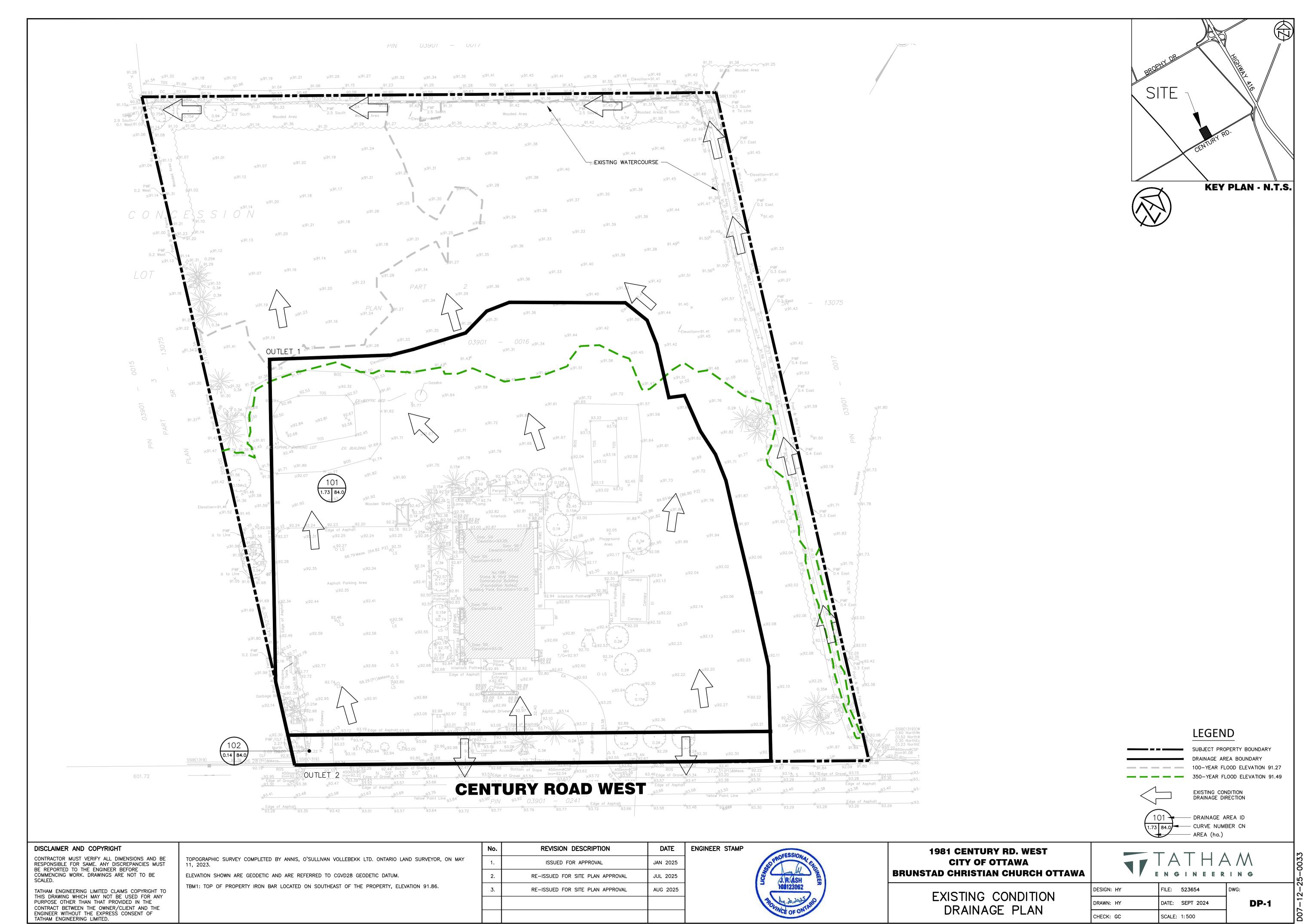
6 Summary

The proposed site development has been designed recognizing the pertinent Municipal Agency and Provincial guidelines along with site specific constraints and criteria.

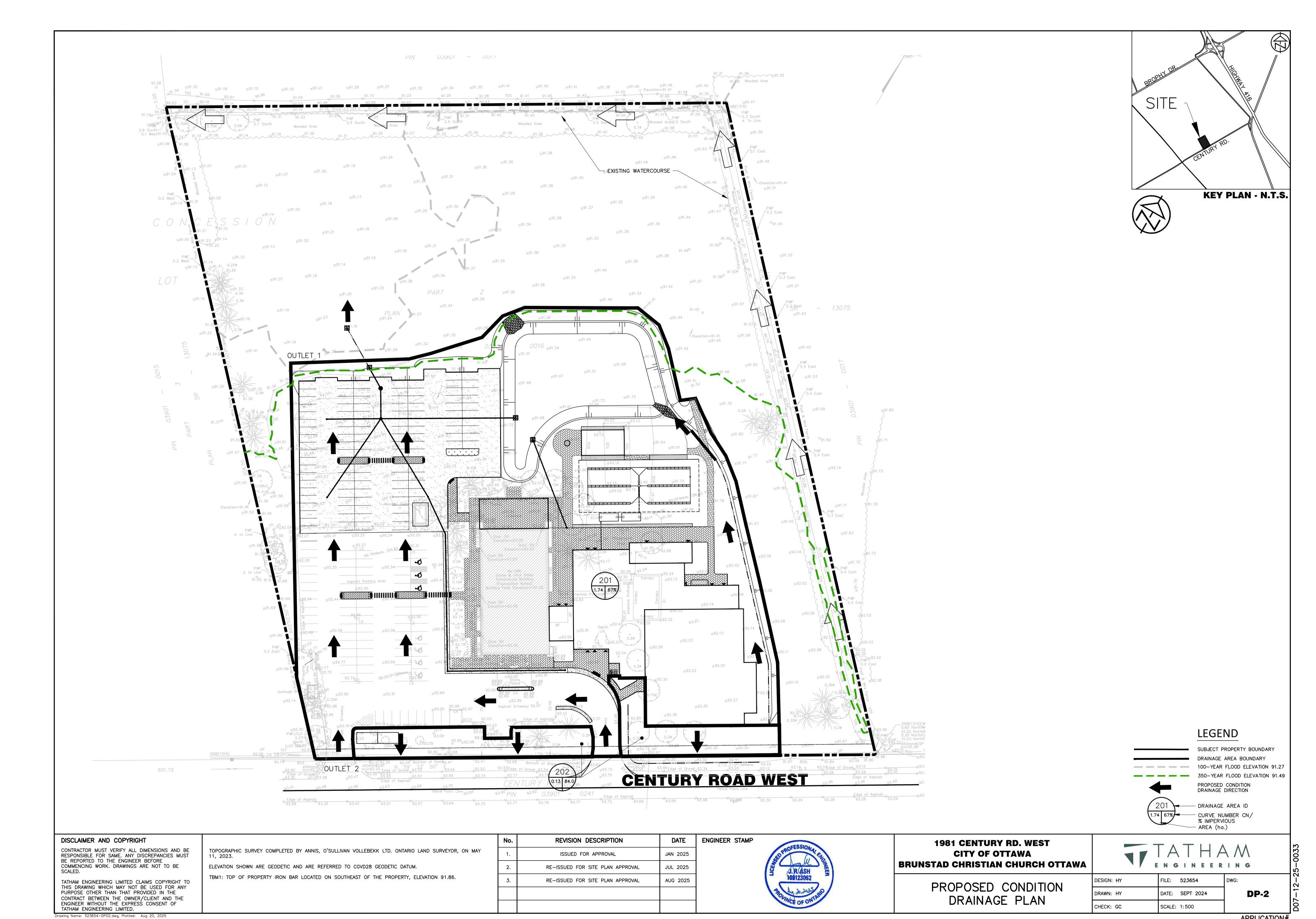
The existing septic system will be decommissioned, removed, and replaced with a new septic system capable of servicing the existing church and the proposed addition. A septic system decommissioning permit from the Ottawa Septic System Office (OSSO) is required prior to decommissioning the existing septic system.

It is the intent that the existing private on-site well be maintained to provide water supply to meet the demands of the existing church and the proposed addition. If the domestic water supply and/or the water quality are insufficient, recommendations will be provided by the hydrogeological consultant.

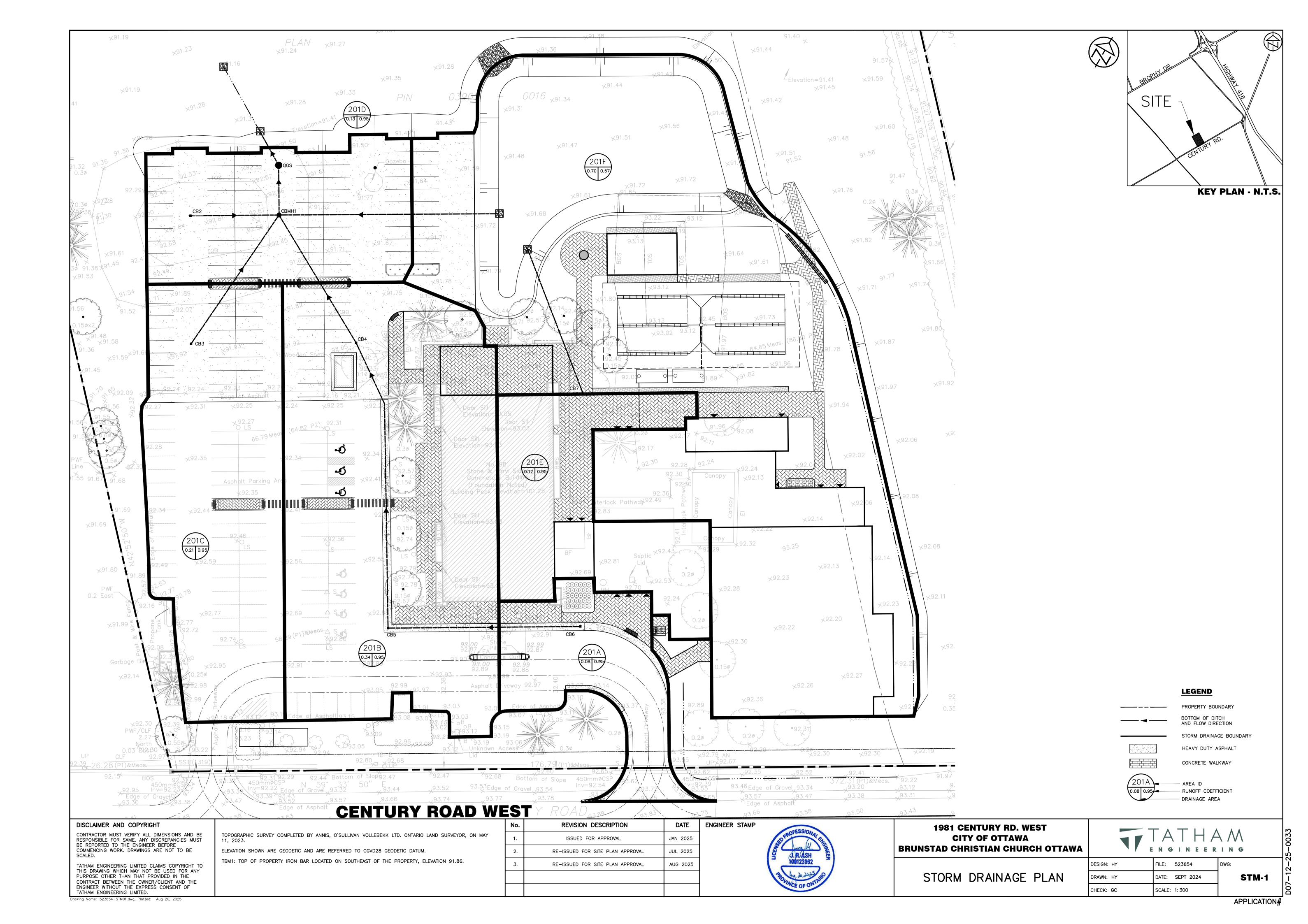
The existing 50,499 L fire water holding tank will be utilized solely to supply the building sprinkler system, and new fire water holding tanks with a combined storage capacity of 151,000 L will provide sufficient fire protection for the remainder of the site.

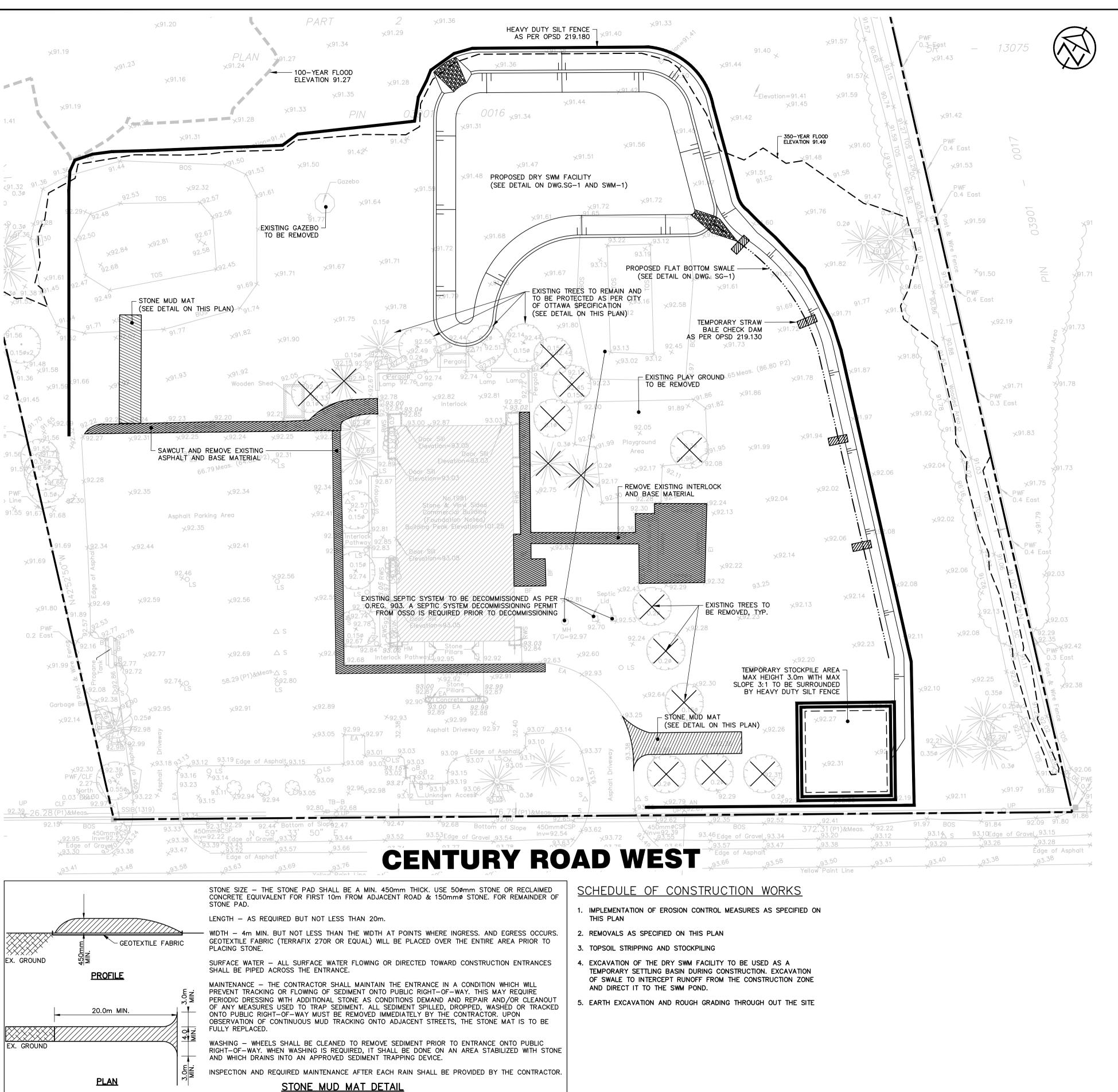

Runoff from the major portion of the site will be directed to a dry SWM facility and controlled by an orifice plate flow restrictor. The 100-year proposed condition peak flow rate from this area will be controlled to the 2-year pre-development peak flow rate. Water quality control for runoff discharging from the dry SWM facility is proposed by means of a Stormceptor Model EFO6 OGS, which achieves MECP enhanced level water quality control.

Runoff from the balance of the site, consisting of clean and unimpaired runoff from vegetated areas, will sheet flow uncontrolled to the Century Road north roadside ditch, unchanged from the existing condition.


All proposed condition runoff will eventually discharge to the Mud Creek municipal drain and ultimately into the Rideau River, unchanged from existing conditions.

We trust this report is sufficient to support the proposed site plan application.





APPLICATION#

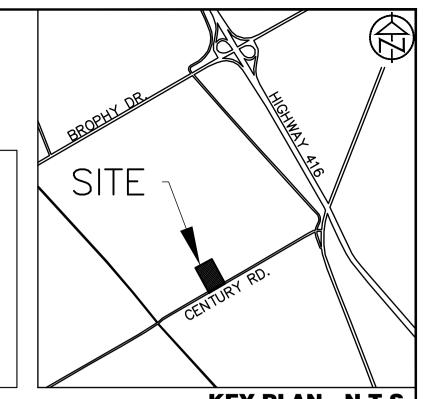
APPLICATION#

GENERAL NOTES

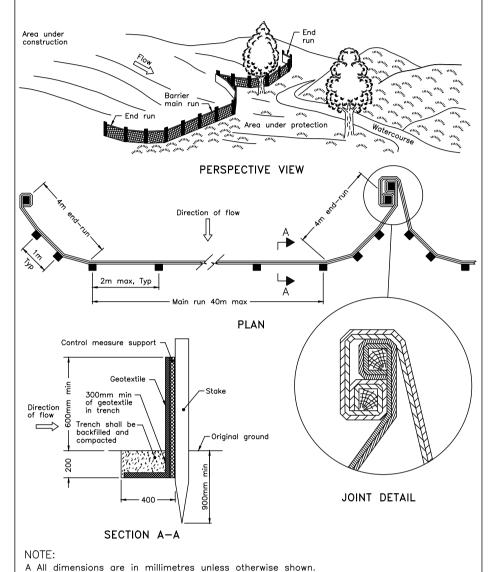
. CONTRACTOR TO INSTALL AND MAINTAIN SILT FENCE AND STRAW BALE CHECK DAMS AT LOCATIONS SHOWN OR AS DIRECTED BY THE ENGINEER.

2. IF CONSTRUCTION IS INTERRUPTED AND/OR INACTIVITY EXCEEDS 30 DAYS, THEN STOCKPILED, STRIPPED OR EXPOSED AREAS MUST BE STABILIZED BY HYDROSEEDING AND

ANY OTHER APPROPRIATE GEOTEXTILE MATERIAL, IF REQUIRED.

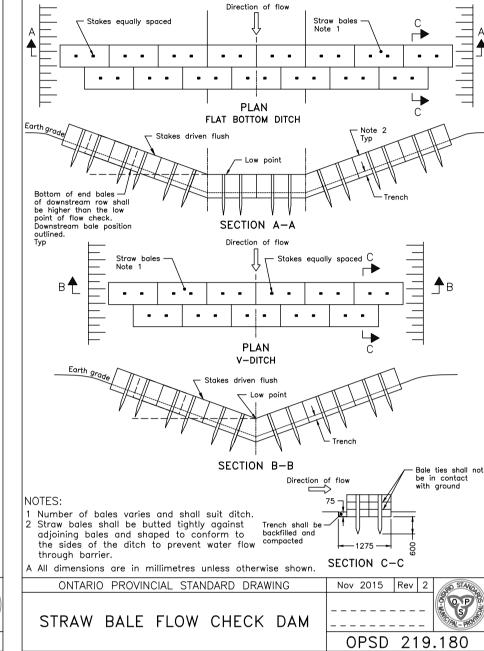

3. REMOVAL OF ALL SILT FENCES AND STRAW BALE CHECK DAMS AT THE END OF CONSTRUCTION TO BE APPROVED BY THE ENGINEER AFTER THE SITE HAS STABILIZED.

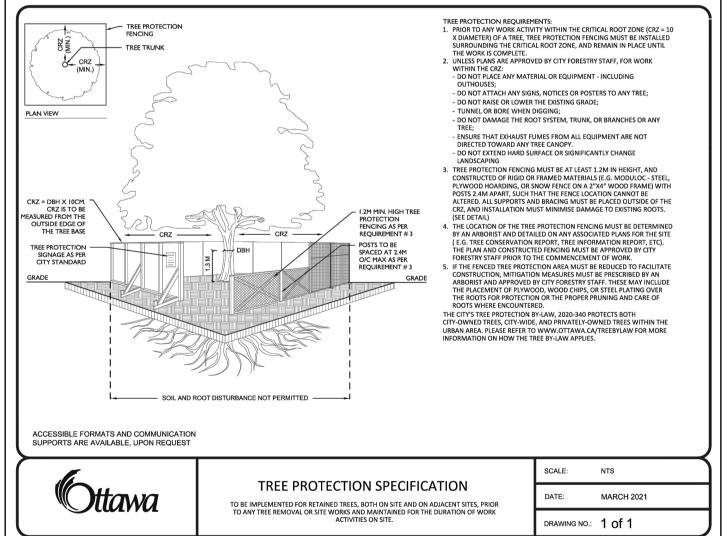
4. SILT FENCE TO OPSD 219.130 AND STRAW BALE CHECK DAM TO OPSD 219.180.


5. CLEARING OF VEGETATION AND TREE COVER IS TO OCCUR OUTSIDE OF BIRD BREEDING SEASON AS RECOMMENDED BY THE CITY OF OTTAWA'S PROTOCOL FOR WILDLIFE

PROTECTION DURING CONSTRUCTION (APRIL 15 — AUGUST 15).

5. ALL SIDE SLOPES 3:1 OR GREATER ARE TO BE STABILIZED IMMEDIATELY WITH HYDROSEED (USING A NATIVE SEED MIX) UNLESS OTHERWISE NOTED. USE OF AN EROSION CONTROL BLANKET SUCH AS TERRAFIX S-100 (OR APPROVED EQUAL) IS RECOMMENDED IF CONSTRUCTION OCCURS OUTSIDE OF THE GROWING SEASON.


KEY PLAN - N.T.S.



ONTARIO PROVINCIAL STANDARD DRAWING

HEAVY-DUTY

SILT FENCE BARRIER

OPSD 219.130

LEGEND

PROPERTY BOUNDARY

BOTTOM OF SWALE
AND FLOW DIRECTION

262.25 EXISTING ELEVATION

TEMPORARY STRAW BALE CHECK DAM

IEMPORARY STRAW BALE CHECK AS PER OPSD 219.180

HEAVY DUTY SILT FENCE AS PER

HEAVY DUTY SILT FENCE AS PER OPSD 219.130

DISCLAIMER AND COPYRIGHT

CONTRACTOR MUST VERIFY ALL DIMENSIONS AND BE RESPONSIBLE FOR SAME. ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER BEFORE COMMENCING WORK. DRAWINGS ARE NOT TO BE

SCALED.

TATHAM ENGINEERING LIMITED CLAIMS COPYRIGHT TO THIS DRAWING WHICH MAY NOT BE USED FOR ANY PURPOSE OTHER THAN THAT PROVIDED IN THE CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF TATHAM ENGINEERING LIMITED.

Drawing Name: 523654-SC01.dwg, Plotted: Aug 20, 2025

TOPOGRAPHIC SURVEY COMPLETED BY ANNIS, O'SULLIVAN VOLLEBEKK LTD. ONTARIO LAND SURVEYOR, ON MAY 11, 2023.

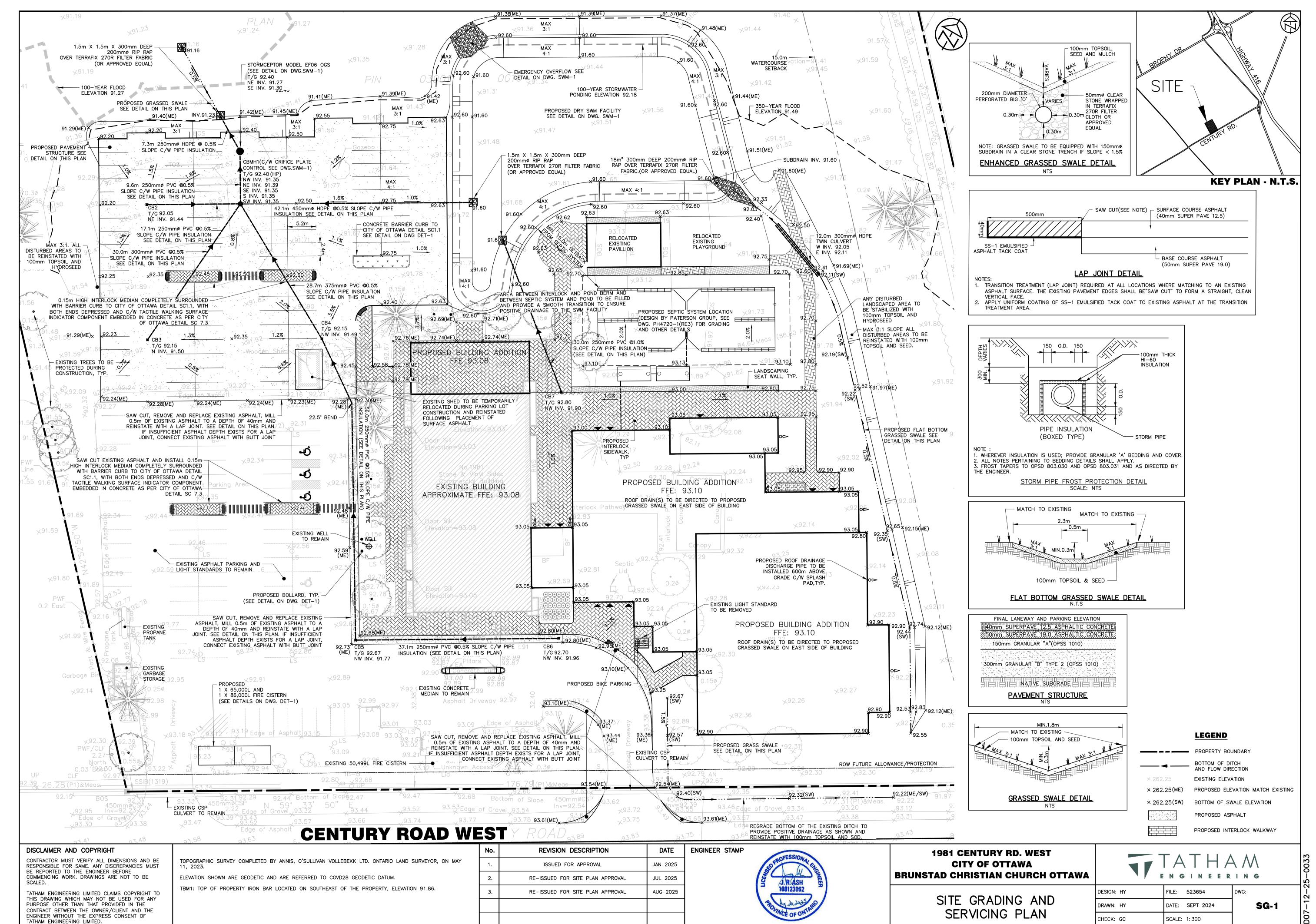
TBM1: TOP OF PROPERTY IRON BAR LOCATED ON SOUTHEAST OF THE PROPERTY, ELEVATION 91.86.

SCALE: N.T.S

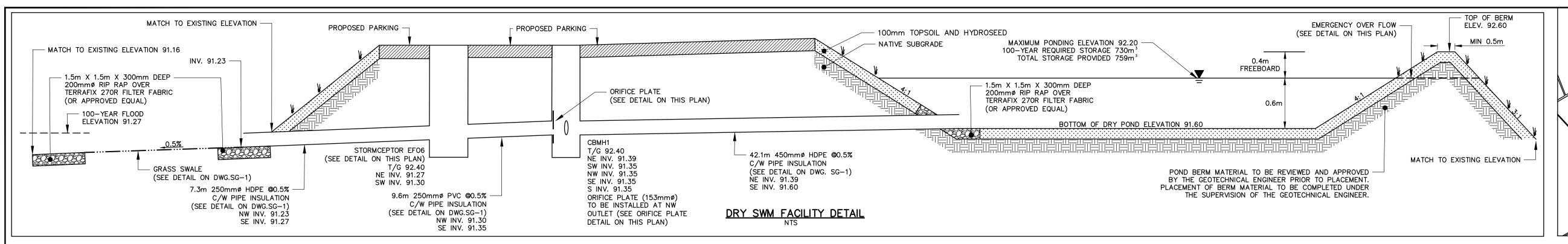
ELEVATION SHOWN ARE GEODETIC AND ARE REFERRED TO CGVD28 GEODETIC DATUM.

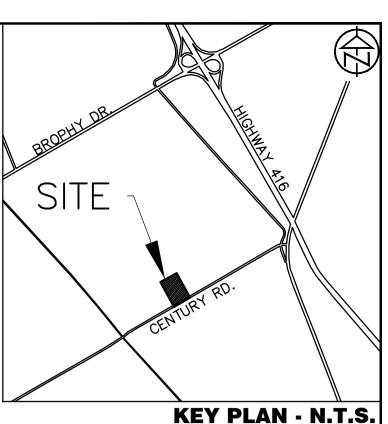
No. REVISION DESCRIPTION 1. ISSUED FOR APPROVAL 2. RE—ISSUED FOR SITE PLAN APPROVAL 3. RE—ISSUED FOR SITE PLAN APPROVAL 4. AUG 2025 4. AUG 2025

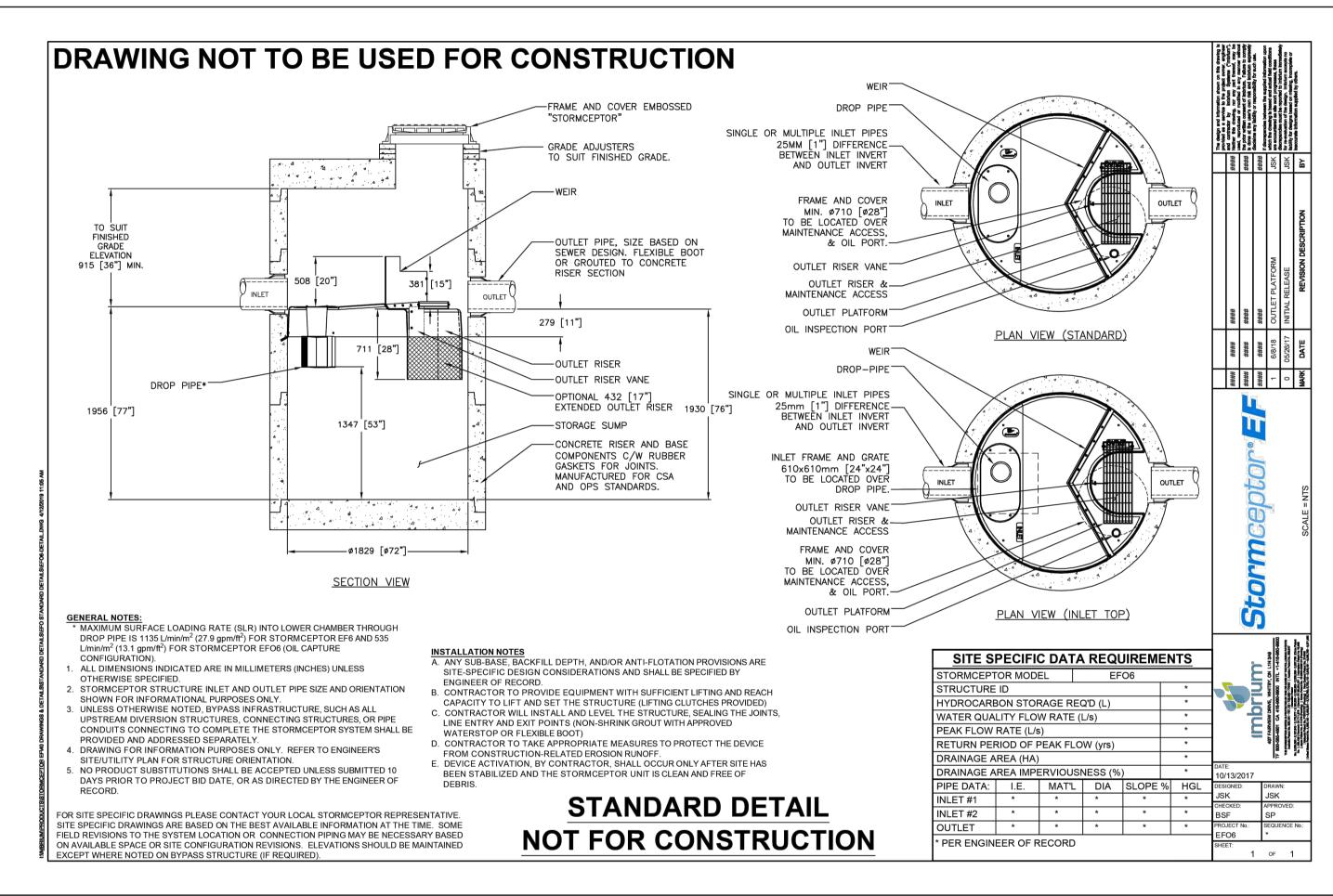
ENGINEER STAMP

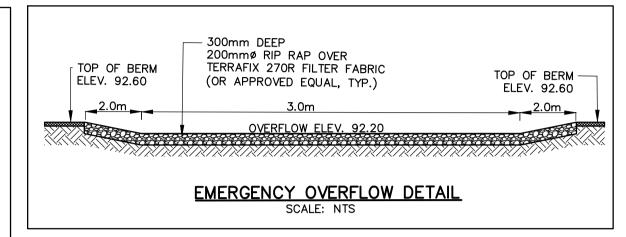

J.R.ASH
100123062

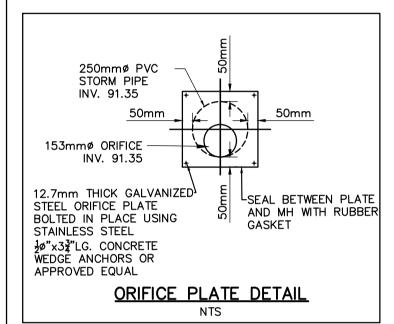
1981 CENTURY RD. WEST CITY OF OTTAWA BRUNSTAD CHRISTIAN CHURCH OTTAWA


REMOVALS, SILTATION AND EROSION CONTROL PLAN


17	Т	- /	Д	٦		H	+	\triangle	1	٨	Λ	
•	E	N	G	I	N	E	E	R	1	N	G	


GN: HY	FILE:	523654	DWG:	
WN: HY	DATE:	SEPT 2024		SC-1
CK: GC	SCALE:	1: 400		




Prawing Name: 523654—SG01.dwg, Plotted: Aug 20, 2025

DISCLAIMER AND COPYRIGHT

CONTRACTOR MUST VERIFY ALL DIMENSIONS AND BE RESPONSIBLE FOR SAME. ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER BEFORE COMMENCING WORK. DRAWINGS ARE NOT TO BE SCALED.

TATHAM ENGINEERING LIMITED CLAIMS COPYRIGHT TO THIS DRAWING WHICH MAY NOT BE USED FOR ANY PURPOSE OTHER THAN THAT PROVIDED IN THE CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF TATHAM ENGINEERING LIMITED.

TOPOGRAPHIC SURVEY COMPLETED BY ANNIS, O'SULLIVAN VOLLEBEKK LTD. ONTARIO LAND SURVEYOR, ON MAY 11, 2023.

ELEVATION SHOWN ARE GEODETIC AND ARE REFERRED TO CGVD28 GEODETIC DATUM.

TBM1: TOP OF PROPERTY IRON BAR LOCATED ON SOUTHEAST OF THE PROPERTY, ELEVATION 91.86.

No.	REVISION DESCRIPTION	DATE
1.	ISSUED FOR APPROVAL	JAN 2025
2.	RE-ISSUED FOR SITE PLAN APPROVAL	JUL 2025
3.	RE-ISSUED FOR SITE PLAN APPROVAL	AUG 2025

ENGINEER STAMP

1981 CENTURY RD. WEST
CITY OF OTTAWA
BRUNSTAD CHRISTIAN CHURCH OTTAWA

STORMWATER MANAGEMENT PLAN

17	T	- /	Δ	٦		H	+	A	1	٨	\wedge	
	E	N	G	ı	N	E	E	R	ı	N	G	

SIGN: HY	FILE:	523654	DWG:
AWN: HY	DATE:	SEPT 2024	SWM-1
ECK: GC	SCALE:	AS SHOWN	

1. <u>STANDARDS AND DRAWINGS</u>

- A. THE NOTES ON THIS SHEET APPLY TO ALL WORKS UNDER THIS CONTRACT UNLESS OTHERWISE NOTED ON DRAWINGS AND/OR SPECIFIC DETAIL DRAWINGS.
- B. THE STANDARDS OF THE CITY OF OTTAWA, ONTARIO PROVINCIAL STANDARDS AND SPECIFICATIONS (OPSS), THE ONTARIO PROVINCIAL STANDARDS DRAWINGS (OPSD) AND ELECTRICAL SAFETY AUTHORITY (ESA) CONSTITUTE PART OF THE PLANS OF THIS CONTRACT.
- C. ORDER OF PRECEDENCE OF STANDARDS IS FIRSTLY CITY OF OTTAWA.
- D. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH OCCUPATIONAL HEALTH AND SAFETY ACT.

 E. THE STANDARD DRAWINGS INCLUDED WITH THESE PLANS ARE PROVIDED FOR CONVENIENCE ONLY
- THE STANDARD DRAWINGS INCLUDED WITH THESE PLANS ARE PROVIDED FOR CONVENIENCE ONLY AND ARE NOT TO BE CONSTRUED TO BE A COMPLETE SET FOR THE PURPOSE OF THE CONTRACT. IT IS THE CONTRACTOR'S RESPONSIBILITY TO OBTAIN ALL RELEVANT STANDARD DRAWINGS AND SPECIFICATIONS AS REQUIRED FOR THIS CONTRACT.

2. <u>MEASUREMENTS</u>

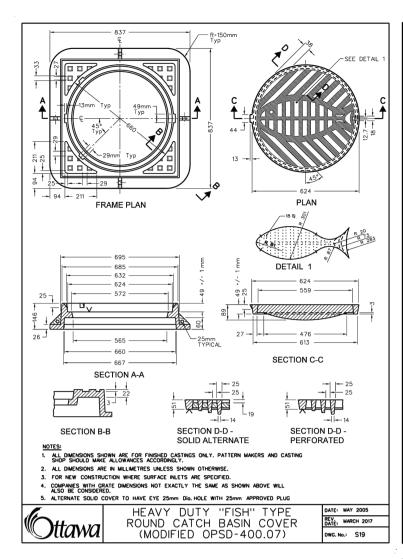
- A. ALL DIMENSIONS ARE IN METRES, EXCEPT PIPE AND STRUCTURE DIAMETERS, WHICH ARE IN
- 3. ALL DIMENSIONS SHALL BE CHECKED AND VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES SHALL BE REPORTED IMMEDIATELY TO THE ENGINEER.

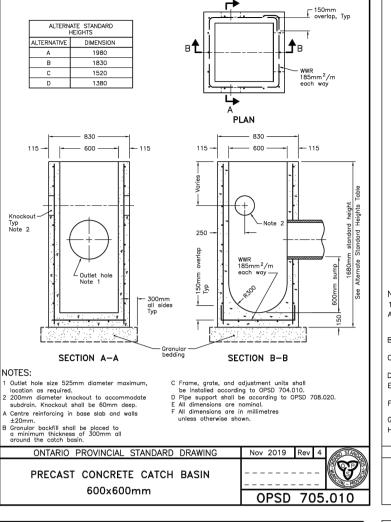
. GENERAL

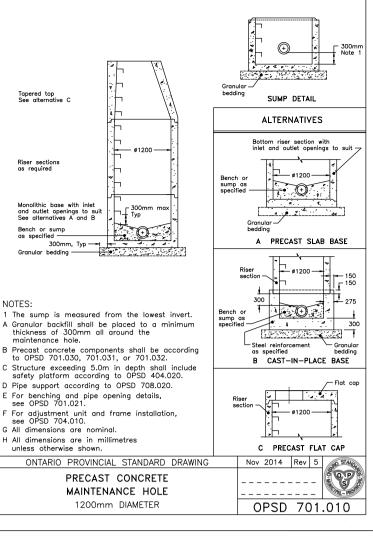
- PIPES TO BE CONSTRUCTED WITH BEDDING, COVER AND BACKFILL OR EMBEDMENT AND BACKFILL CONFORMING TO OPSD 802.010, 802.013, 802.014, 802.030, 802.031, 802.032, 802.033 AND 802.034 AS APPLICABLE BASED ON PIPE MATERIAL AND SOIL CONDITIONS, BEDDING, COVER, AND EMBEDMENT MATERIALSHALL BE GRANULAR 'A'. EMBEDMENT, BEDDING, COVER AND BACKFILL MATERIAL TO BE COMPACTED TO A DRY DENSITY OF AT LEAST 100% OF THE MATERIALS SPMDD. IN WET AREAS EMBEDMENT MATERIAL TO BE 9.5 MM CLEAR LIMESTONE WRAPPED IN AN APPROVED GEOTEXTILE (TERRAFIX 270R OR APPROVED EQUIVALENT).
- B. ALL DISTURBED AREAS ARE TO BE REINSTATED TO THEIR ORIGINAL CONDITION OR BETTER, AS DETERMINED BY THE CITY ENGINEERING DEPARTMENT. ALL DISTURBED AREAS WITHIN THE CITY RIGHT—OF—WAY TO BE SODDED.
- C. EXISTING SERVICES AND UTILITIES SHOWN ON THESE CONTRACT DRAWINGS ARE APPROXIMATE ONLY.
 THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING ALL UTILITIES DURING
 CONSTRUCTION
- D. EXISTING BELL DUCT BANKS, HYDRO BANKS AND GAS MAINS IN PAVEMENT OR BOULEVARD (AS LOCATED BY UTILITY PROVIDER) TO BE EXPOSED AT CONTRACTORS COST PRIOR TO INSTALLATION OF SANITARY OR STORM SEWER, CULVERTS, WATERMAIN OR SERVICES WHICH CROSS DUCT BANK OR GAS MAINS. ALL UTILITY DUCT BANKS ARE TO BE PROPERLY SUPPORTED WHEN SEWERS OR SERVICES ARE INSTALLED UNDERNEATH. SPACE BETWEEN DUCT BANK AND SEWER OR SERVICE TO BE BACKFILLED WITH UNSHRINKABLE FILL.
- E. THE CONTRACTOR IS RESPONSIBLE TO PROVIDE TEMPORARY SUPPORT OF EXISTING CULVERTS, SEWER AND WATERMAIN AT ALL CROSSINGS.
- F. THE CONTRACTOR SHALL OBTAIN ROAD OCCUPANCY AND ACCESS PERMITS FOR ALL WORK IN THE MUNICIPAL ROW. THE PERMIT(S) OBTAINED SHALL BE TAKEN OUT IN THE NAME OF THE CONTRACTOR
- THE CONTRACTOR SHALL PROTECT SURVEY MONUMENTS AND BENCHMARKS ENCOUNTERED DURING THE WORK. ALL SURVEY MONUMENTS AND BENCHMARK DISTURBED DURING CONSTRUCTION SHALL BE REPLACED BY AN ONTARIO LAND SURVEYOR, AT THE CONTRACTOR'S EXPENSE.
- I. CONTRACTOR TO SUBMIT SHOP DRAWINGS FOR ALL MATERIALS TO CONTRACT ADMINISTRATOR FOR REVIEW PRIOR TO ORDERING.
- I. THE CONTRACTOR IS REQUIRED TO CONFIRM EXISTING GRADES AND PIPE INVERTS AT CONNECTIONS AND REPORT ANY DISCREPANCIES TO THE CONTRACT ADMINISTRATOR BEFORE COMMENCING WORK.
- J. THE CONTRACTOR SHALL SUPPLY ALL NECESSARY WATER AND/OR CALCIUM CHLORIDE AS REQUIRED FOR COMPACTION AND/OR DUST CONTROL.
- K. TREES/SHRUBS THAT MUST BE REMOVED SHALL BE IDENTIFIED AND PERMISSION FOR REMOVAL SHALL BE OBTAINED FROM THE CONTRACT ADMINISTRATOR.
- CONTRACTOR IS TO NOTIFY THE CITY OF ALL CONSTRUCTION ACTIVITIES A MINIMUM OF 72 HOURS PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- M. TRAFFIC CONTROL AND SIGNAGE DURING CONSTRUCTION SHALL CONFORM TO THE MOST CURRENT ONTARIO CONSTRUCTION REGULATIONS INCLUDING REGULATION No. 213 UNDER OHSA AND REFERENCE TO MTO TEMPORARY CONDITIONS MANUAL BOOK No. 7.
- N. ALL EARTH GRADING TO OPSS 206.
- O. EXCESS STOCKPILED OR UNSUITABLE MATERIALS TO BE DISPOSED OF BY THE CONTRACTOR AT AN APPROVED OFFSITE LOCATION IN ACCORDANCE WITH O.REG.406/19.
- . FOR THE DURATION OF THE CONTRACT. MATERIAL THAT BECOMES CONTAMINATED DUE TO CONTRACTOR'S ACTIVITY SHALL BE REMOVED AND REPLACED AT THE CONTRACTOR'S EXPENSE.

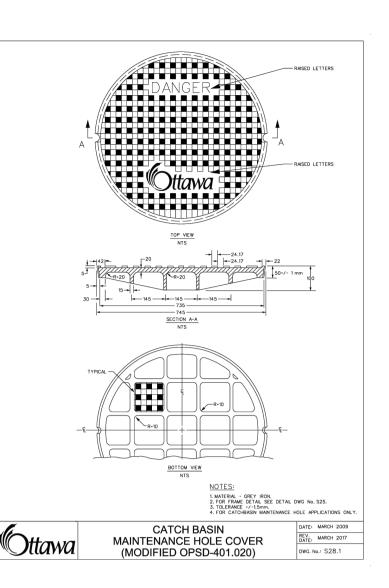
4. ENTRANCE, DRIVE AISLES AND PARKING AREAS

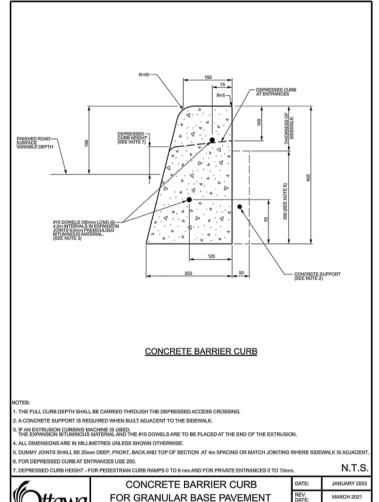
- A. ALL TOPSOIL MUST BE STRIPPED FROM LANEWAY AND PARKING AREAS PRIOR TO CONSTRUCTION.
- B. CONTRACTOR TO REMOVE ALL TOPSOIL AND ORGANIC MATERIAL LOCATED BELOW EXISTING FILL MATERIAL WITHIN THE LANEWAY AND PARKING AREAS. BACKFILL TO BE APPROVED ENGINEERED FILL OR NATIVE MATERIAL COMPACTED TO 95% SPMDD. THE SUBGRADE SHOULD BE COMPACTED. PROOF ROLLED AND INSPECTED BY A GEOTECHNICAL ENGINEER.
- C. GRANULAR 'B' SUBBASE TO BE PLACED IN 150mm MAXIMUM LOOSE LIFT AND COMPACTED TO 98% OF MATERIAL'S SPMDD.
- D. GRANULAR 'A' BASES TO BE PLACED IN 1500mm MAXIMUM LOOSE LIFT AND COMPACTED TO 100% OF MATERIAL'S SPMDD.
- E. ALL ASPHALT MATERIAL AND PLACEMENT TO BE IN ACCORDANCE WITH OPSS 310.
- F. PAVEMENT AND GRANULAR STRUCTURES SHALL BE AS PER PAVEMENT STRUCTURE TABLE ON DRAWING SG-1 AND GEOTECHNICAL RECOMMENDATIONS.
- G. FROST TREATMENT FOR ALL STORM SEWERS IN ACCORDANCE WITH OPSD 803.030.
- H. BOULDER TREATMENT TO OPSD 204.010.
- I. TRANSITION TREATMENT FOR EARTH/ROCK CUT/FILL OPERATIONS TO OPSD 205.010, 205.020, 205.040, 205.050 ACCORDINGLY.

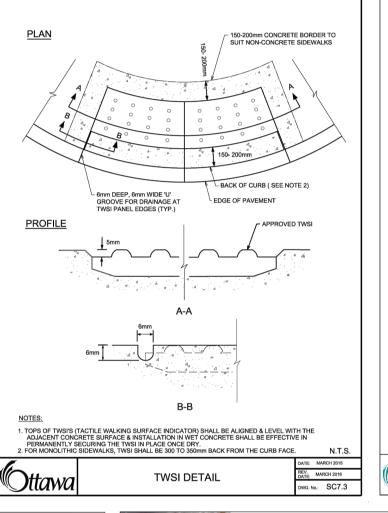

5. <u>STORM SEWER</u>

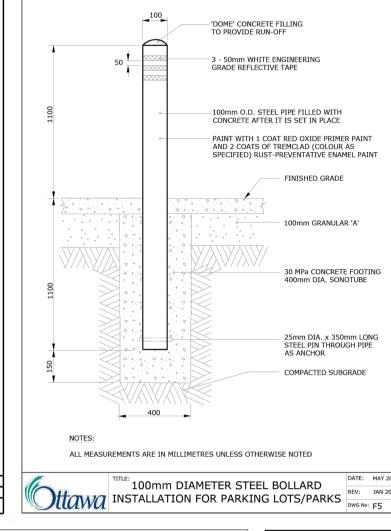

- A. PIPE MATERIAL TO BE PVC SDR 35 CERTIFIED TO C.S.A. STANDARDS B182.2 AND B182.4 OR CONCRETE REINFORCED PIPE, CONFORMING TO CSA STANDARD A257.1 WITH A STRENGTH AS INDICATED ON THE DRAWINGS OR APPROVED EQUIVALENTS. WHERE SPECIFIED, HDPE STORM SEWER TO BE CORRUGATED DOUBLE WALL PIPE CONFORMING TO CSA B1 82.8 AND WITH MIN. 320 KPA PIPE STIFFNESS.
- B. ALL PIPE HANDLING AND INSTALLATION MUST BE IN STRICT COMPLIANCE WITH MANUFACTURERS INSTALLATION GUIDES AND THE UNIBELL GUIDELINES.
- C. MAXIMUM DEFLECTION FROM COMBINED LINE AND DEAD LOADING SHALL NOT EXCEED ANY C.S.A., O.P.S. OR MANUFACTURERS RECOMMENDED SPECIFICATIONS.
- D. SINGLE CATCHBASINS TO BE 600 mm SQUARE PRECAST CONCRETE TO OPSD 705.010. FRAME AND GRATE TO CITY OF OTTAWA DETAIL S19. 900mm SUMP. CATCHBASIN MAINTENANCE HOLE TO BE 1200mmø PRECAST CONCRETE TO OPSD 701.010 FRAME AND GRATE TO CITY OF OTTAWA DETAIL S28.1 500mm SUMP.
- E. STORM SEWER WITH LESS THAN 2.0M COVER TO PIPE CROWN REQUIRES INSULATION AS PER DETAIL ON DWG SG-1 OR APPROVED EQUIVALENT.
- F. TESTING OF STORM SEWERS SHALL INCLUDE:
- -CCTV VIDEO INSPECTION
 -FLUSHING AND CLEANING

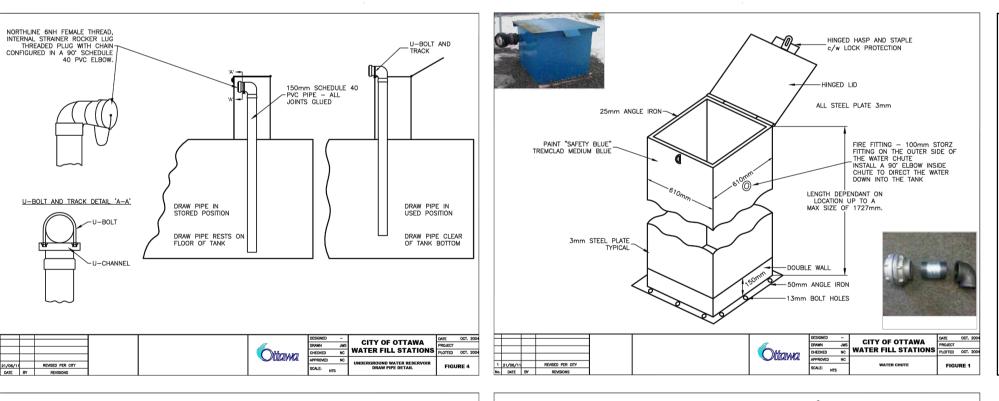

- G. PIPE SUPPORT AT ALL STRUCTURES TO OPSD 708.020.
- H. IF SEPARATION BETWEEN STORM SEWER AND OTHER STRUCTURES, PIPE OR UTILITIES IS LESS THAN 0.3m, INSTALL 50mm HI-60 INSULATION AS DIRECTED BY THE ENGINEER.
- I. ALL RIP RAP SHALL CONFORM WITH OPSD 810.010.

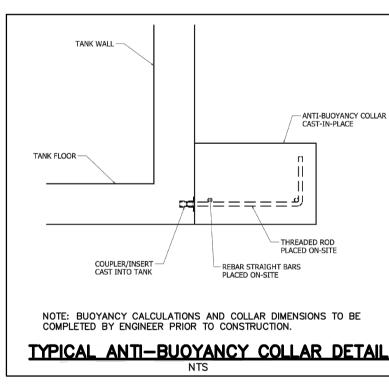

6. <u>UTILITIES</u>

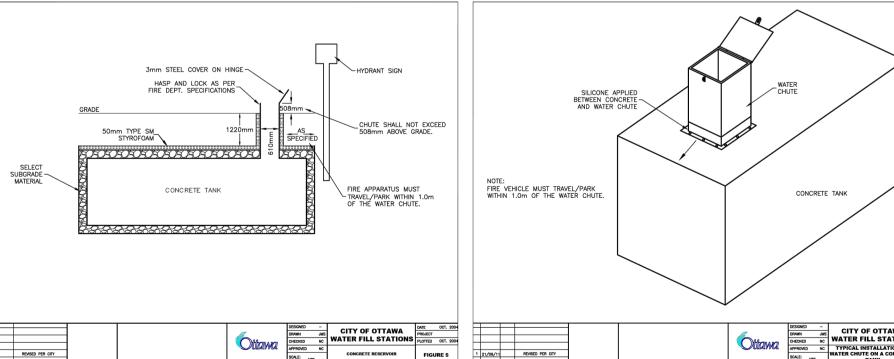

- A. LOCATION OF EXISTING UTILITIES ARE APPROXIMATE ONLY, ACTUAL LOCATION TO BE CONFIRMED BY CONTRACTOR.
- B. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING LOCATES AND INFORMATION IN REGARD TO EXACT LOCATION OF BURIED UTILITIES AND INFRASTRUCTURE. THIS SHALL INCLUDE HYDRO VACUUM EXCAVATION IF NECESSARY. THE CONTRACTOR MUST EXERCISE NECESSARY CARE IN CONSTRUCTION OPERATIONS INCLUDING IF NECESSARY HAND DIGGING TO SAFEGUARD UTILITIES AND ALL OTHER BURIED INFRASTRUCTURE FROM DAMAGE. THE CONTRACTOR IS LIABLE FOR ALL DAMAGE TO UTILITIES AND ALL BURIED INFRASTRUCTURE OCCURRING WITHIN OR OUTSIDE THE CONTRACT LIMITS CAUSED BY HIS OPERATIONS.
- C. ANY AREA OF POSSIBLE CONFLICTS WITH EXISTING UTILITIES SHALL BE EXCAVATED BY HAND PRIOR
- D. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE TO GIVE 72 HOURS WRITTEN NOTICE TO UTILITY CORPORATIONS PRIOR TO CROSSING UTILITIES FOR THE PURPOSE OF INSPECTION BY THE CONCERNED CORPORATION. THIS INSPECTION WILL BE FOR THE DURATION OF CONSTRUCTION WITH THE CONTRACTOR RESPONSIBLE FOR ALL COSTS ARISING FROM SUCH INSPECTION.
- 4. CONSTRUCTION DEWATERING
- A. THE CONTRACTOR IS RESPONSIBLE FOR ALL DEWATERING THAT MAY BE REQUIRED TO PRODUCE A DRY AND STABLE TRENCH FOR CONSTRUCTION OF THE WORKS. WORK TO BE IN ACCORDANCE WITH ONTARIO REGULATION 63/16, OPSS 518.
- B. DURING NORMAL OPERATIONS, THE MAXIMUM VOLUME OF WATER TO BE DISCHARGED FROM THE DE-WATERING OPERATION ON A DAILY BASIS WITHOUT A MECP PERMIT TO TAKE WATER IS 400,000 L/DAY. FOR DE-WATERING BETWEEN 50,000L/DAY AND 400,000L/DAY THE CONTRACTOR IS REQUIRED TO REGISTER THE ACTIVITY ON THE EASR IN ACCORDANCE WITH O.REG. 63/16.
- C. ALL WATER DISCHARGED FROM THE DEWATERING OPERATION SHALL BE DISCHARGED TO AN APPROVED OUTLET AS DETERMINED BY THE CONTRACT ADMINISTRATOR.
- D. DEWATERING PUMPS SHALL DISCHARGE TO A GEOTEXTILE FILTER BAG LOCATED ON A GENTLY SLOPING GRASSED SURFACE TO THE APPROVED OUTLET.
- E. WHERE REQUIRED, SUPPLEMENTARY SEDIMENT AND EROSION CONTROL WORKS, SUCH AS SILT FENCE AND STRAW BALE CHECK DAMS, SHALL BE INSTALLED DOWN GRADIENT OF THE FILTER BAGS TO ENSURE DISCHARGE WATER IS FREE OF SEDIMENT AND TO PREVENT EROSION.
- F. TO MINIMIZE THE VOLUME OF WATER TO BE REMOVED FROM EXCAVATIONS, THE WORK AREA SHALL BE GRADED TO DIRECT SURFACE RUNOFF AROUND AND AWAY FROM OPEN EXCAVATIONS.
- G. THE CONTRACTOR SHALL MEASURE AND RECORD, ON A DAILY BASIS, THE TOTAL VOLUME OF WATER DISCHARGED (L/DAY) AND THE AVERAGE DISCHARGE RATE (L/S). THE CONTRACTOR SHALL SUBMIT COPIES OF THE DEWATERING DISCHARGE FLOW RECORDS TO THE CONTRACT ADMINISTRATOR ON A WEEKLY BASIS OR UPON REQUEST. THE METHOD OF MEASURING THE VOLUME OF WATER DISCHARGED SHALL BE APPROVED BY THE CONTRACT ADMINISTRATOR PRIOR TO COMMENCING DEWATERING OPERATIONS.
- H. DEWATERING OPERATIONS ARE TO BE SUSPENDED DURING SEVERE STORM EVENTS.









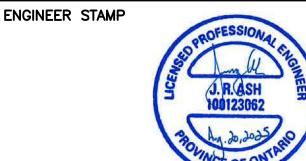

(MODIFIED OPSD-600.110)

DISCLAIMER AND COPYRIGHT

CONTRACTOR MUST VERIFY ALL DIMENSIONS AND BE RESPONSIBLE FOR SAME. ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER BEFORE COMMENCING WORK. DRAWINGS ARE NOT TO BE

TATHAM ENGINEERING LIMITED CLAIMS COPYRIGHT TO THIS DRAWING WHICH MAY NOT BE USED FOR ANY PURPOSE OTHER THAN THAT PROVIDED IN THE CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF TATHAM ENGINEERING LIMITED.

REVISION DESCRIPTION


ISSUED FOR APPROVAL

RE—ISSUED FOR SITE PLAN APPROVAL

JUL 2025

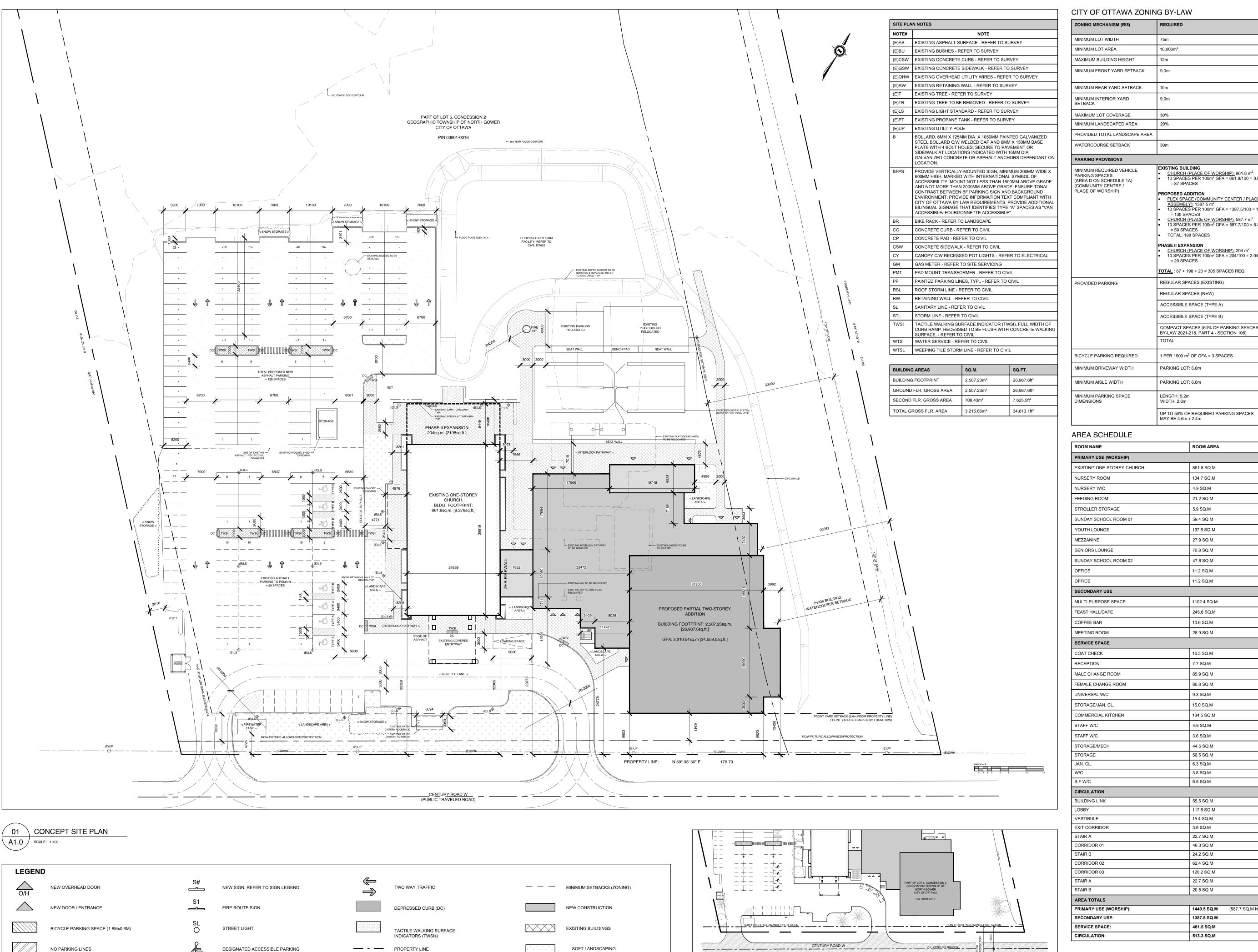
RE—ISSUED FOR SITE PLAN APPROVAL

AUG 2025

1981 CENTURY RD. WEST
CITY OF OTTAWA
BRUNSTAD CHRISTIAN CHURCH OTTAWA

TATHAM

DESIGN: HY FILE: 523654 DWG:


DRAWN: HY DATE: SEPT 2024

CHECK: GC SCALE:

NOTES AND DETAILS

Drawing Name: 523654-DET01.dwg, Plotted: Aug 20, 2025

Appendix A: Proposed Site Plan prepared by Lawrence Architect Inc.

CONCRETE SIDEWALK

BUILDING MOUNTED LIGHTS

REFER TO ELECTRICAL DWGs

26.0m REQUIRED ROW PROTECTION

SPACE AS PER AODA STANDARDS

PROPOSED FENCE

COMPACT PARKING SPACES

VISITOR PARKING

PARKING STALL COUNT PER ROW

PROVIDED 176.79m 36,422.13m² 9.6m FROM PROPERTY LINE 3.3m FROM ROW 130m 30.4m/80m 6.9% 70.5% 25,670m² 24.34m 188 SPACES PROVIDED CHURCH (PLACE OF WORSHIP): 861.8 m² 10 SPACES PER 100m² GFA = 861.8/100 = 8.618 x 10 FLEX SPACE (COMMUNITY CENTER / PLACE OF ASSEMBLY): 1387.5 m²
10 SPACES PER 100m² GFA = 1387.5/100 = 13.875 x 10 = 139 SPACES <u>CHURCH (PLACE OF WORSHIP):</u> 587.7 m² 10 SPACES PER 100m² GFA = 587.7/100 = 5.877 x 10 <u>CHURCH (PLACE OF WORSHIP):</u> 204 m² 10 SPACES PER 100m² GFA = 204/100 = 2.04 x 10 TOTAL: 87 + 198 + 20 = 305 SPACES REQ. COMPACT SPACES (50% OF PARKING SPACES: BY-LAW 2021-218, PART 4 - SECTION 106)

ROOM NAME	ROOM AREA	LOCATION
PRIMARY USE (WORSHIP)		
EXISTING ONE-STOREY CHURCH	861.8 SQ.M	GROUND FLOOR
NURSERY ROOM	134.7 SQ.M	GROUND FLOOR
NURSERY W/C	4.9 SQ.M	GROUND FLOOR
FEEDING ROOM	21.2 SQ.M	GROUND FLOOR
STROLLER STORAGE	5.9 SQ.M	GROUND FLOOR
SUNDAY SCHOOL ROOM 01	59.4 SQ.M	SECOND FLOOR
YOUTH LOUNGE	197.8 SQ.M	SECOND FLOOR
MEZZANINE	27.9 SQ.M	SECOND FLOOR
SENIORS LOUNGE	70.8 SQ.M	SECOND FLOOR
SUNDAY SCHOOL ROOM 02	47.8 SQ.M	SECOND FLOOR
OFFICE	11.2 SQ.M	SECOND FLOOR
OFFICE	11.2 SQ.M	SECOND FLOOR
SECONDARY USE		
MULTI PURPOSE SPACE	1102.4 SQ.M	GROUND FLOOR
FEAST HALL/CAFE	245.6 SQ.M	GROUND FLOOR
COFFEE BAR	10.6 SQ.M	GROUND FLOOR
MEETING ROOM	28.9 SQ.M	SECOND FLOOR
SERVICE SPACE	·	·
COAT CHECK	16.3 SQ.M	GROUND FLOOR
RECEPTION	7.7 SQ.M	GROUND FLOOR
MALE CHANGE ROOM	85.9 SQ.M	GROUND FLOOR
FEMALE CHANGE ROOM	86.8 SQ.M	GROUND FLOOR
UNIVERSAL W/C	9.3 SQ.M	GROUND FLOOR
STORAGE/JAN. CL.	15.0 SQ.M	GROUND FLOOR
COMMERCIAL KITCHEN	134.5 SQ.M	GROUND FLOOR
STAFF W/C	4.8 SQ.M	GROUND FLOOR
		GROUND FLOOR
STAFF W/C	3.6 SQ.M	
STORAGE/MECH STORAGE	44.5 SQ.M 56.5 SQ.M	GROUND FLOOR GROUND FLOOR
JAN. CL.	6.3 SQ.M	SECOND FLOOR
W/C	3.8 SQ.M	SECOND FLOOR
B.F W/C	6.5 SQ.M	SECOND FLOOR
CIRCULATION		
BUILDING LINK	55.5 SQ.M	GROUND FLOOR
LOBBY	117.6 SQ.M	GROUND FLOOR
VESTIBULE	15.4 SQ.M	GROUND FLOOR
EXIT CORRIDOR	3.8 SQ.M	GROUND FLOOR
STAIR A	22.7 SQ.M	GROUND FLOOR
CORRIDOR 01	48.3 SQ.M	GROUND FLOOR
STAIR B	24.2 SQ.M	GROUND FLOOR
CORRIDOR 02	62.4 SQ.M	GROUND FLOOR
CORRIDOR 03	120.2 SQ.M	SECOND FLOOR
STAIR A STAIR B	22.7 SQ.M 20.5 SQ.M	SECOND FLOOR SECOND FLOOR
	20.0 SQ.IVI	SECOND FLOOR
AREA TOTALS		

BCCO BRUNSTAD CHRISTIAN CHURCH) ALL WORK TO BE IN COMPLIANCE WITH LOCAL BUILDING CODES, REGULATIONS AND BY-LAWS.

2) ADDITIONAL DRAWINGS MAY BE ISSUED FOR CLARIFICATION TO ASSIST PROPER EXECUTION OF WORK. SUCH DRAWINGS WILL HAVE THE SAME MEANING AND INTENT AS IF THEY WERE INCLUDED WITH PLANS IN CONTRACT DOCUMENTS.

) DO NOT SCALE DRAWINGS 4) ALL SUB-CONTRACTORS TO TAKE THEIR OWN ON-SITE MEASUREMENTS AND BE RESPONSIBLE FOR THEIR 5) NOTIFY SHAWN J. LAWRENCE ARCHITECT FOR ANY ERRORS AND/OR OMISSIONS PRIOR TO START OF WORK.

ONSULTANTS: RCHITECTURAL DRAWINGS S.J. LAWRENCE ARCHITECT INC. 205-18 DEAKIN STREET, NEPEAN, ON K2E 8B7 613.739.7770

TRUCTURAL DRAWINGS CLELAND JARDINE (BPA) 580 TERRY FOX DR, KANATA, ON K2L 4B9 613.591.1533

MECHANICAL & ELECTRICAL DRAWINGS GOODKEY, WEEDMARK & ASSOCIATES LTD. (GWAL) 1688 WOODWARD DR. OTTAWA, ON K2C 3R8 613.727.5111 CIVIL DRAWINGS

100-5335 CANOTEK RD, GLOUCESTER, ON K1J 9L4 613.747.3636 SEPTIC DRAWINGS PATERSON GROUP 9 AURIGA DRIVE, OTTAWA,ON K23 7T9 613.226.7381 LANDSCAPE DRAWINGS

VS LANDSCAPE GROUP 4886 BANK ST, OTTAWA, ON K1X 1G7 613.774.5296 URBAN PLANNER Q9 PLANNING + DESIGN 43 ECCLES ST UNIT C, OTTAWA, ON K1R 6S3

LENGTH: 5.2m

= 81 SPACES

50% (94 SPACES PERMITTED)

WIDTH: 2.6m

NORTH ARROW:

S.J.LAWRENCE ARCHITECT INCORPORATED 18 DEAKIN STREET SUITE 205 OTTAWA, ONTARIO K2E 8B7 T: (613) 739.7770 F: (613) 739.7703

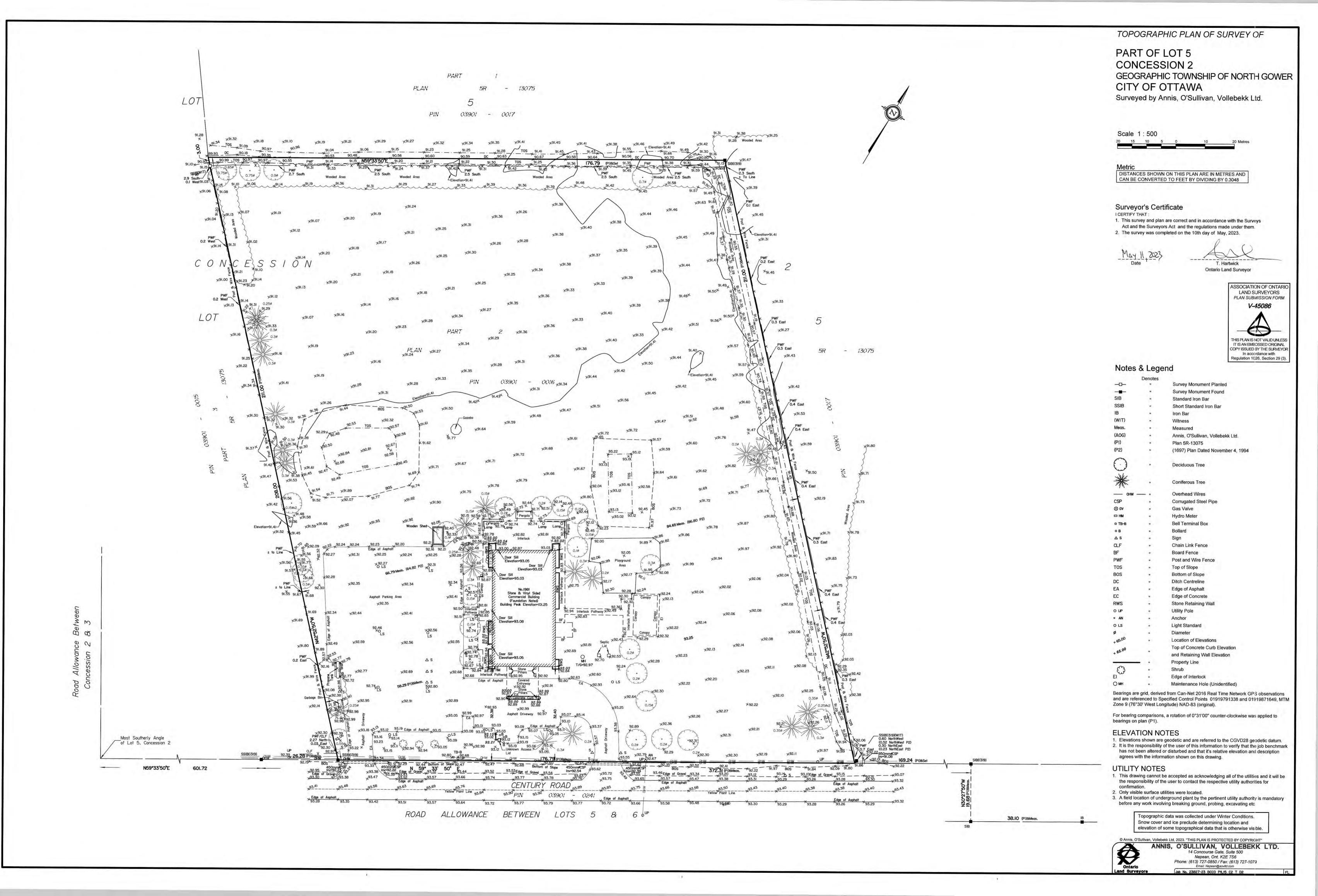
No. DATE

INCORPORATE sjl@sjlarchitect.com

THIS DRAWING IS THE SOLE PROPERTY OF S.J. LAWRENCE ARCHITECT INCORPORATED REPRODUCTION IS NOT PERMITTED

BCCO CHURCH ADDITION

1981 CENTURY RD W, NORTH GOWER, ON SHEET TITLE:


SITE PLAN DRAWN BY: PROJECT DATE: 2025.08.06

2023.03.15 SCALE: 1:400 JOB NUMBER: SL-1090-23 SHEET NUMBER:

APPLICATION #

A1.0

Appendix B: Topographic Survey prepared by Annis, O'Sullivan, Vollebekk Ltd.

Appendix C: Sewage System Documents prepared by Paterson Group Inc.

memorandum

re: Sewage System Sizing Exercise

1981 Century Road - Ottawa

to: Peter Twilley - ptwilley@arrowservice.ca

date: August 15, 2024

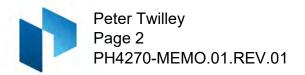
file: PH4720-MEMO.01.REV.01

Preliminary

2024-11-11 3:04:17 PM

Paterson Group (Paterson) prepared the following Memorandum (memo) to summarize the findings of a Sewage System Sizing Exercise in support of a Site Plan application at 1981 Century Road.

Background

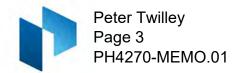

A Site Application has been proposed for the addition and renovation of the existing Church Building at 1981 Century Road. This Sewage System Sizing Exercise is based on the attached Brunstad Christian Church Ottawa Architectural Design Program Drawings as well as discussion with the client.

Proposed Development

The following is Paterson's summary of the proposed development taken from the attached Brunstad Christian Church Ottawa Architectural Design Program Drawings as well as discussion with the client:

Phase 1

Church with space for 350 people: 1 service on Sunday (max 350 people), 1			
service on Wednesday (100 people), and 1 service on Friday (100 people)			
Nursery: 1 use per week during Sunday service			
Kitchen: 350 people once a month, 500 – 600 people once every few years			
Feast hall / Lobby: few times a year for a few hours at a time			
Multi purpose space: used in conjunction with church			
Youth Lounge (Mezzanine): used once a week with Saturday night service			
Seniors area: once every 2 weeks for 2 hours			
Workshop: one time a week in conjunction with church service			
Office with 2 desks and small meeting table: once a week			
Meeting & Seminar Rooms: once a week in conjunction with church service			
Gymnasium: once per week on Friday evening			
Sanctuary/Main Meeting Hall:			
 700 people: once every couple of years 			
 400 people: 1 time per month max for 9 months of the year 			
 150 people: one a week 			



Sewage System Flow Calculation

Phase 1

	Church with space for 350 people: 1 service on Sunday (max 350 people), 1			
	service on Wednesday (100 people), and 1 service on Friday (100 people)			
	 350 people x 36L x 1 day = 12,600 L/week +100 people x 36L x 2 days = 			
	7,200 L/week			
	Nursery: 1 use per week during Sunday service			
	 30 people x 30L x 1 day = 900 L/week 			
	Kitchen: 350 people once a month, 500 – 600 people once every few years			
	\circ 600 people x 36L x 0.2 days = 4,320 L/week. 350 people once a month is			
_	accounted in conjunction with church service			
Ц	Feast hall / Lobby: few times a year for a few hours at a time			
	 For design purposes assume once per week – 80 people x 36 L x 1 day = 2,880 L/week 			
	Multi purpose space: used in conjunction with church			
	Accounted for in church services			
☐ Youth Lounge (Mezzanine): used once a week with Saturday night se				
	 25 people x 125L x 1 day = 1,440 L/week 			
	Seniors area: once every 2 weeks for 2 hours			
	 40 people x 36L x 0.5 days = 720 L/week 			
	Workshop: one time a week in conjunction with church service			
	 Accounted for in church services 			
	Offices (2) and a small meeting room: once a week			
	Meeting & Seminar Rooms: once a week in conjunction with church service			
_	Accounted for in church services			
Ц	Gymnasium: once per week on Friday evening			
_	o 80 people x 30L x 1 day = 2,400 L/week			
Ц	Sanctuary/Main Meeting Hall Extension:			
	o 700 people: once every couple of years			
	■ 700 people x 8 L x 0.2 days = 1,120 L/week			
	400 people: 1 time per month max for 9 months of the year 400 people x 36/ x 0.3 days = 3.880 / (xxxx)			
	 400 people x 36L x 0.2 days = 2,880 L/week 			
	 150 people: one a week 			
	150 people x 36 L x 1 day = 5,400 L/week			

The total sewage system design flows for the proposed addition development calculated cumulatively over a week are: 12,600 L/week + 7,200 L/week + 900 L/week + 4,320 L/week + 2,880 L/week + 1,440 L/week + 720 L/week + 414 L/week + 2,400 L/week + 1,120 L/week + 2,880 L/week + 5,400 L/week = **42,274 L/week**

Proposed Sewage systems flows using a Balancing Tank

In order to have a total daily design sewage flow volume (TDDSF) of less than 10,000 L/day, then a balancing tank would need to be used. A balancing tank will distribute the daily sewage flow volumes over a week, allowing for a lower TDDSF. Should the sewage system design flow volume be over 10,000 L/day, then an Environmental Compliance Approval (ECA) application would be required. The sizing of the balancing tank will need to be calculated as part of a new sewage system design.

☐ Balanced Flows: 42,274 L/week / 7 days per week = 6,040 L/day

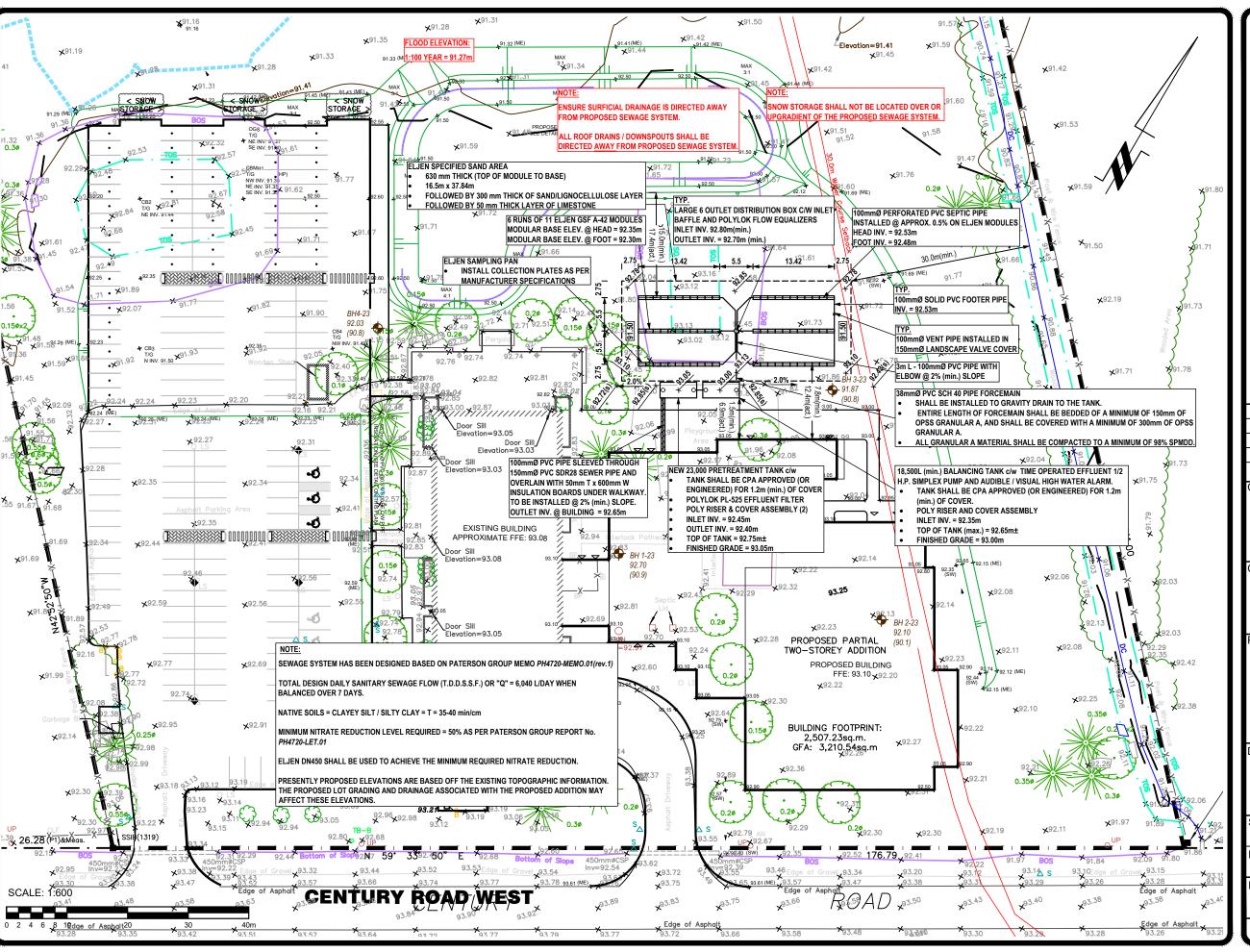
For a cumulative flow of **6,040 L/day**.

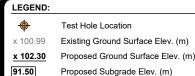
Conclusion

Provided that a balancing tank is used as part of the sewage system design and that the provided usage is not increased from the information provided, the Site Application for the addition and renovation of the existing Church Building at 1981 Century Road can proceed using a TDDSF of less than 10,000 L/day. A ECA application will not be required for flow volumes of greater than 10,000 L/day.

We trust that this information satisfies your immediate requirements.

Best Regards,


Paterson Group Inc.


Hendrik Van De Glind

C.E.T.

Attachments:

☐ Brunstad Christian Church Ottawa Architectural Design Program Drawings

(99.99) Ground Water Elev. (m) - 17/07/23

T/C Top of Foundation Wall

Existing Structure

Proposed Structure

Existing Coniferous Tree

Existing Deciduous Tree

All units are in meters unless otherwise specified

REFERENCE:

Base Plan Information obtained from Proposed Site Plan A1.0, dated August 29, 2024, by Lawrence Architect Inc. and from Site Grading Plan No. SG-1, dated September 2024 by Tatham Engineering

22/11/24	Proposed Grading Information Added	3
14/11/24	30m Setback Revised to Top of Bank	2
15/10/24	Proposed Grading Information Added	1
13/09/24 Issued for Preliminary Review		0
DD/MM/YY	DESCRIPTION	REV.

Consultant:

9 AURIGA DRI OTTAWA, C K2E 7 TEL: (613) 226-73

Client

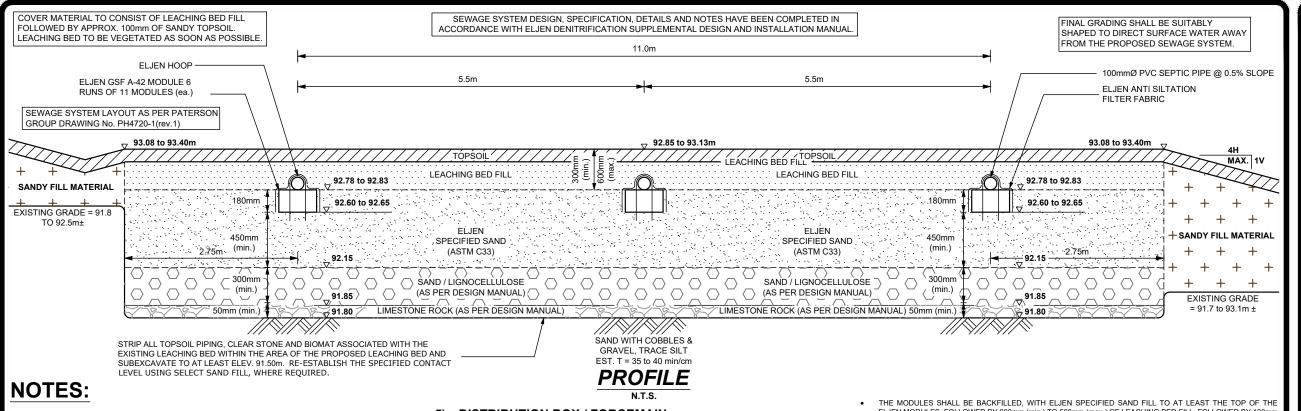
BRUNSTAD CHRISTIAN CHURCH

Proiect

PROPOSED ADDITION TO EXISTING CHURCH

1981 CENTURY ROAD OTTAWA (CARP), ONTARIO

Drawing:


SEWAGE SYSTEM LAYOUT PLAN

Scale:	Drawn by:
1:600	HV
Date:	Checked by:
11/2024	MK

Drawing No.:

PH4720-1(rev.3)

p:\autocad drawings\hydrogeology\ph47xx\ph4720 - brunstad christian church - 1981 century road, ottawa\ph4720-1(rev.3).dwg

ESTIMATE OF DAILY SEWAGE FLOW (Q)

THE PROPOSED SEWAGE SYSTEM HAS BEEN DESIGNED TO SUPPORT A PLACE OF WORSHIP, CONSISTING OF AN EXISTING CHURCH WITH PROPOSED ADDITIONS. THE DAILY DESIGN SEWAGE FLOW RATE IS CALCULATED IN ACCORDANCE WITH O.B.C. TABLE 8.2.1.3.B. AND HAS BEEN CALCULATED AS PER PATERSON GROUP MEMO No.

BALANCED DESIGN SEWAGE FLOW = 6,040 L/DAY

SOIL CONDITIONS

SOILS INFORMATION GATHERED BY PATERSON GROUP INC. ON JULY 17, 2023. REFER TO PATERSON GROUP REPORT PG6727-1 FOR FULL SOILS BREAKDOWN

3)	DDET	DEATMENT TANK		
-	G.W.L. @ 1.10m DEPTH (90.8m)		- G.W.L. @ 1.25m DEPTH (90.8m)	
			4.72-6.1	GLACIAL TILL: SISA TO SASI
	4.88-6.71	GLACIAL TILL: SISA TO SASO	3.96-4.72	GREY SILTY SAND, TRACE CLAY
	2.29-4.88	GR. CLAYEY SILT, TR. SAND	2.59-3.96	GREY CLAYEY SILT, TRACE SAND
	0.30-2.29	BR. CLAYEY SILT, TR. SAND	0.30-2.59	BR. SILTY CLAY, TRACE TO SOME SAND
	0-0.30	TOPSOIL	0-0.30	TOPSOIL
	BH 3-23, ELEV.91.87m		BH 4-23, ELEV. 92.03m	

PREIREAIMENI IANK

- TANK SHALL BE CONNECTED TO BUILDING BY A 100mm Ø PVC PIPE SLEEVED THROUGH A 150mmØ PVC SDR 28 PIPE AND OVERLAIN WITH 50mm T x 600mm W RIGID INSULATION BOARDS (UNDER WALKWAY) AND SHALL BE INSTALLED AT 2.0% (min.) SLOPE TO THE PRETREATMENT TANK. MINIMUM WORKING CAPACITY OF PRETREATMENT TANK = (3 x Q) = 3 x 6,040 L/DAY = 18,120 L (min.)
- IN CONSIDERATION THAT THE DAILY FLOW IS A BALANCED DAILY FLOW RATE, IT IS RECOMENDED TO
- OVERSIZE THE PRETREATMENT TANK WITH A 23,000L (min.) TANK.
- IT IS RECOMMENDED THAT A NEW 23,000L (min.). TWO-COMPARTMENT SEPTIC TANK BE INSTALLED.
- AN OBC APPROVED EFFLUENT FILTER (I.E. POLYLOK PL-525 EFFLUENT FILTER, OR EQUIVALENT) SHALL BE INSTALLED ON THE OUTLET PIPE IN THE PRETREATMENT TANK.
- THE ACCESS LIDS TO THE TANK OPENINGS SHALL BE EXTENDED TO THE GROUND SURFACE. INSTALL RISERS AND COVERS TO SUIT.
- ACCESS LIDS SHALL INCLUDE SAFETY DEVICES AS PER CSA B66-21.
- IF THE SEWER OUTLET AT THE BUILDING IS AT A LOWER ELEVATION THAN ANTICIPATED. THE TANK COVER WILL REQUIRE REVIEW

BALANCING TANK

- INSTALL A 18,500L (min.) BALANCING TANK IN SERIES AND DOWNSTREAM FROM THE NEW PRETREATMENT
- A TIME OPERATED SIMPLEX 1/2 H.P. PUMPING SYSTEM AND A HIGH WATER ALARM SHALL BE INSTALLED IN THE BALANCING TANK. THE TIME OPERATIONAL PUMPING SYSTEM SHALL OPERATE EVERY 1/2 HOUR (I.E. 126 L/DOSE + VOLUME TO
- CHARGE THE SYSTEM) A 3mmØ DRAIN HOLE SHALL BE INSTALLED IN THE UNDERSIDE OF THE FORCEMAIN IN THE BALANCING TANK
- RISERS WITH A COVER SHALL BE INSTALLED OVER THE BALANCING TANK TO PROVIDE ACCESS FROM THE
- GROUND SURFACE DISCHARGE PIPING FOR PUMP SHALL BE CONFIGURED SUCH THAT THE PUMP IS EASILY SERVICED FROM THE GROUND SURFACE
- ACCESS LIDS SHALL INCLUDE SAFETY DEVICES AS PER CSA B66-21

5) DISTRIBUTION BOX / FORCEMAIN

- A 38mmØ (NOMINAL) PVC SCH 40 FORCEMAIN SHALL BE USED TO CARRY THE EFFLUENT FROM THE BALANCING TANK TO THE 3m L x 100mm Ø PVC SEWER PIPE
- 100mm SEWER PIPE SHALL DRAIN BY GRAVITY TO A LARGE 6 OUTLET DISTRIBUTION BOX. THE FORCE MAIN SHALL BE INSTALLED TO GRAVITY DRAIN TO THE BALANCING TANK
- THE FORCE MAIN SHALL BE OVERLAIN WITH 50mm T x 600mm C/W RIGID INSULATION
- THE DISTRIBUTION BOX SHALL BE EQUIPPED WITH AN INLET BAFFLE AND OUTLET PIPES (6).
- EACH PIPING RUN SHALL BE FED BY A 6 OUTLET DISTRIBUTION BOX.
- THE DISTRIBUTION BOX SHALL BE CONNECTED TO THE DISTRIBUTION PIPING RUNS USING 100mmØ SOLID PVC SEWER PIPE @ 2% (min.) SLOPE

LEACHING BED SIZING CRITERIA

- NO. OF MODULES REQUIRED = Q/95 = 6.040/95 = 64 MODULES
- USE 6 RUNS OF 11 (66) ELJEN GSF A-42 MODULES EACH
- SAND AREA REQUIRED = QT/400 = 6,040(40)/400 = 604.0m SAND AREA PROVIDED = 16.5m x 37.84m = 624.4m² (min.)

7) LEACHING BED CONSTRUCTION GUIDELINES

- REMOVE ALL EXISTING TOPSOIL, PIPING, CLEARSTONE AND BIOMAT ASSOCIATED WITH THE EXISTING LEACHING BED, WITHIN THE LIMITS OF THE SAND AREA AND SUBEXCAVATE TO AT LEAST FLEVATION 91.80m. WHICHEVER IS GREATER. RE-ESTABLISH THE SPECIFIED CONTACT LEVEL USING SELECT SAND FILL. WHERE REQUIRED.
- THE SUBGRADE SURFACE SHALL BE SCARIFIED. UNDER DRY CONDITIONS
- PLACE A 50mm MIN. THICK LAYER OF LIMESTONE ROCK OVER THE SUITABLY PREPARED SUBGRADE LIMESTONE ROCK SHALL NOT BE SMALLER THAN 25mm IN DIAMETER AND UP TO 50mm IN DIAMETER. THE ROCK SHALL CONTAIN GREATER THAN 15% LIMESTONE AS PER ELJEN DENITRIFICATION SUPPLEMENTAL
- DESIGN AND INSTALLATION MANUAL PLACE A 300mm THICK LAYER OF SAND / LIGNOCELLULOSE OVER THE LIMESTONE ROCK LAYER
- SAND / LIGNOCELLULOSE SHALL CONSIST OF WOOD CHIPS OR SAW DUST FROM HARD WOOD TREES THAT HAVE NOT BEEN FURTHER PROCESSED BY CHEMICALS. THE 300mm SAND AND LIGNOCELLULOSE LAYER SHALL BE A MINIMUM OF 50/50 EQUAL MIXTURE OF ASTM C33 SAND AND WOOD CHIPS FROM HARD WOOD TREES. THE MIXTURE MUST NOT EXCEED 60/40 IN FAVOR OF THE MORE WOOD TO SAND.
- PLACE A 450mm MIN. THICK LAYER OF ELJEN SPECIFIED SAND FILL OVER THE SAND/LIGNOCELLULOSE FILL. THE ELJEN SPECIFIED SAND FILL SHALL CONSIST OF WASHED SAND MEETING THE REQUIREMENTS OF ASTM C33 "STANDARD SPECIFICATION FOR CONCRETE AGGREGATES" WITH LESS THAN THAN 5% PASSING
- 0.075mm SIEVE. ELJEN SPECIFIED SAND FILL SHALL BE PRE-APPROVED BY THE CONSULTANT. THE MODULES SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- THE MODULES SHALL BE INSTALLED @ A 0.5% SLOPE, END TO END AND WITH THE WHITE DEMARCATION THE MODULAR BASE LEVEL (FLEV. 92.65 AT THE HEAD AND 92.60m AT THE FOOT) SHALL BE ESTABLISHED.
- WITH ELJEN SPECIFIED SAND FILL, HAVING A MINIMUM THICKNESS OF 150mm. THE ELJEN MODULES SHALL BE FED BY GRAVITY BY A 100mmØ PVC SEWER PIPE @ 2% (min.) SLOPE FROM •
- THE DISTRIBUTION BOX TO BE OVERLAIN WITH 50mm T x 600mm W RIGID INSUI ATION BOARDS THE DISTRIBUTION PIPE SHALL CONSIST OF A 100mm@ PERFORATED PVC PIPE CENTRED OVER THE MODULES. THE PIPE SHALL BE SECURED TO THE TOP OF THE MODULES USING AN ELIEN HOOP (MINIMUM 1
- HOOP PER MODULE). THE INVERT LEVEL OF THE DISTRIBUTION PIPE SHALL BE SET ON THE MODULES AT A 0.5% AT ELEVATION 92.83m AT THE HEAD AND 92.78m AT THE FOOT, THE END OF THE PIPE RUNS SHALL BE CONNECTED TO A
- 100mmØ SOLID PVC FOOTER PIPE INSTALL ELJEN SYSTEM SAMPLING DEVICE AS PER MANUFACTURER'S RECOMMENDATIONS
- THE ELJEN ANTI-SILTATION FILTER FABRIC SHALL BE SPREAD LENGTHWISE OVER THE PERFORATED SEPTIC PIPE AND DOWN THE SIDES OF THE MODULES. ENSURE ENDS OF MODULES ARE ALSO COVERED WITH

- ELJEN MODULES, FOLLOWED BY 200mm (min.) TO 500mm (max.) OF LEACHING BED FILL, FOLLOWED BY 100mm OF SANDY TOPSOIL, WITHIN THE LIMITS OF THE SAND AREA. THE BED AREA SHOULD BE VEGETATED AS
- THE SIDES OF THE BED SHOULD BE SLOPED AT 3H:1V OR SHALLOWER
- VENT SYSTEM SHALL BE INSTALLED ON THE FOOTER PIPE. CONNECT A 100mmØ PVC VENT PIPE TO FOOTER PIPE, EXTENDING TO GROUND SURFACE. VENT PIPE TO BE INSTALLED IN 150mmØ LANDSCAPE VALVE

8) MINIMUM CLEARANCE DISTANCE FROM DISTRIBUTION PIPE

- 5.2m FROM ANY PROPERTY LINE
- 7.2m FROM ANY STRUCTURE: 5.0m FROM ANY BASEMENTLESS STRUCTURE
- 17.2m FROM ANY DRILLED WELL

MINIMUM CLEARANCE DISTANCE FROM TANK(S)

- 1.5m FROM ANY STRUCTURE
- 15.0m FROM ANY DRILLED OR DUG WELL
- 3 0m FROM ANY PROPERTY LINE

10) GENERAL

- THE SEWAGE SYSTEM HAS NOT BEEN DESIGNED TO SUPPORT TRAFFIC LOADING
- THE BACKFILLING OF THE SEWAGE SYSTEM SHOULD MINIMIZE THE RISK OF OVER COMPACTION WITH THE USE RUBBER TRACKED EQUIPMENT AND BY AVOIDING THE CREATION OF ANY CONSTRUCTION ROUTES OR PATHWAYS OVER THE SYSTEM
- ANY NEW IRRIGATION / SPRINKLER SYSTEM SHOULD NOT BE USED IN PROXIMITY OF THE PROPOSED SEWAGE SYSTEM
- ENSURE WALKWAYS AND/OR SHRUBBERY ARE NOT PLACED WITHIN PROXIMITY OF THE TANKAGE
- THE BACKWASH WATERS FROM ANY WATER TREATMENT UNIT, SUCH AS WATER SOFTENER, SHOULD NOT DISCHARGE INTO THE SEWAGE SYSTEM. THE SEWAGE SYSTEM HAS NOT BEEN DESIGNED FOR THE LISE OF A GARBAGE DISPOSAL
- SEWAGE SYSTEM INSTALLER SHALL BE QUALIFIED AND REGISTERED UNDER PART 8 OF THE ONTARIO BUILDING CODE AND SHALL BE AN AUTHORIZED FJLEN TREATMENT SYSTEM INSTALLER.
- ALL WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH THE LATEST BY-LAWS, CODES AND REGULATIONS CONTRACTOR SHALL REVIEW DRAWINGS IN DETAIL AND SHALL INFORM THE CONSULTANT OF ANY FRRORS AND/OR
- OMISSIONS ON DESIGN DRAWINGS IMMEDIATELY. CONTRACTOR SHALL BE RESPONSIBLE TO LOCATE AND PROTECT ALL EXISTING UNDERGROUND SERVICES
- CONTRACTOR SHALL VISIT THE SITE AND REVIEW ALL DOCUMENTATION TO BECOME FAMILIAR WITH THE SITE AND SUBSURFACE SOIL CONDITIONS TO DETERMINE SUITABLE METHODS OF CONSTRUCTION. THE MANUFACTURER PROVIDES A LIMITED WARRANTY OF THE SYSTEM COMPONENTS. THE OWNER OF THE SYSTEM
- MUST SIGN A MAINTENANCE AGREEMENT WITH THE MANUFACTURER'S REPRESENTATIVE. THE SYSTEM OWNER IS RESPONSIBLE FOR THE ANNUAL FEES ASSOCIATED WITH THE MAINTENANCE THE FIRM OF PATERSON GROUP INC. HAS PROVIDED DESIGN SERVICES ONLY FOR THE SUBJECT SEWAGE SYSTEM.
- THE DESIGN HAS BEEN CARRIED OUT IN ACCORDANCE WITH THE MANUFACTURER'S GUIDELINES AND OUR INTERPRETATION OF PART 8 OF THE ONTARIO BUILDING CODE.
- INSPECTIONS BY THE CONSULTANT DURING THE INSTALLATION OF THE SYSTEM IS A REQUIREMENT OF SOMI REGULATING AUTHORITIES AND IS STRONGLY RECOMMENDED BY THIS FIRM
- THE PROPERTY LINE / SEPARATION DISTANCES SHOULD BE CONFIRMED PRIOR TO CONSTRUCTION. REGULATING AUTHORITY AND ARE STRONGLY RECOMMENDED BY THIS FIRM. IF THIS FIRM IS TO COMPLETE AN ONSTRUCTION INSPECTION(S), ADDITIONAL FEES MAY BE APPLIED. CONFIRMATION OF PAYMENT WILL BE REQUIRED PRIOR TO THE INSPECTION.
- THE TEST HOLE INFORMATION PROVIDED, IS INTENDED TO BE USED FOR DESIGN PURPOSES ONLY, AND SHOUL NOT BE RELIED UPON FOR CONSTRUCTION PURPOSES. IF DISCREPANCIES ARE FOUND DURING THE CONSTRUCTION PROCESS, IT IS THE CLIENT'S RESPONSIBILITY TO CONTACT THIS FIRM TO MAKE ANY NECESSARY COMMENTS OR REVISIONS. ADDITIONAL REVISIONS ARE NOT CONSIDERED PART OF THE DESIGN WORKS AND WILL BE CONSIDERED AS AN ADDITIONAL COST

22/11/24	Proposed Grading Information Added	3
14/11/24	30m Setback Revised to Top of Bank	2
12/10/24	Proposed Grading Information Added	1
13/09/24	Issued for Preliminary Review	0
DD/MM/YY	DESCRIPTION	REV.

Consultant

TEL: (613) 226-73

Client:

BRUNSTAD CHRISTIAN CHURCH

PROPOSED ADDITION TO **EXISTING CHURCH**

1981 CENTURY ROAD OTTAWA (CARP), ONTARIO

SEWAGE SYSTEM DETAILS AND NOTES

Scale: N.T.S.	Drawn by: HV	
Date: 11/2024	Checked by: MK	

PH4720-2(rev.3)

p:\autocad drawings\hydrogeology\ph47xx\ph4720 - brunstad christian church - 1981 century road, ottawa\ph4720-2(rev.3).dwo Appendix D: Domestic and Fire Flow Demand Calculations

Water Demand Calculations

Tatham File No.: 523654 1981 Century road June 16, 2025 DVF GC Project :

Date : Designed by : Reviewed by :

Water Demands (OBC Type of Establishment Method)

Establishment	Max Day Population	Total Area (m ²)	Loading Rate (L/d)	Total Daily Demand (L/d)	Frequency
Gymnasium	80	-	30	2,400	once per week (Friday)
Youth Lounge	25	-	125	3,125	once per week (Saturday)
Church	350	-	36	12,600	once per week (Sunday)
Nursery	30	-	30	900	once per week (Sunday)
Offices	-	51.3	8.1	414	once per week (may alternate)
Seniors Area	40	-	36	1,440	once every two weeks (may alternate)
Feast Hall/Lobby	80	-	36	2,880	a few times per year
Kitchen	600	-	36	21,600	once every few years
Sanctuary/Main Meeting Hall	400	-	36	14.400	once every few years

Total Daily Demands During Worst Case Scenarios:

Fridays
Saturdays
Sundays
Largest Event (Gymnasium + Offices + Seniors Area + Feast Hall/Lobby)
(Youth Lounge + Offices + Seniors Area + Feast Hall/Lobby)
(Church + Nursery + Offices + Seniors Area + Feast Hall/Lobby)
(Kitchen+Main Meeting Hall) *Worst Case Scenario L/d L/d L/d **L/d** 7,134 7,859 18,234 36,000

Instantaneous Flow Rate 1.25 (Wort Case Scenario Total Daily Demand Over 8hr Period)

Fire Flow Demand Calculations (Existing Building incl. North Addition)							
Tatham File no. :	523654						
Project:	1981 Century Road, Ottawa						
Date:	9-Jan-25						
Designed by:	DVF						

 $Q = KVS_{Tot}$

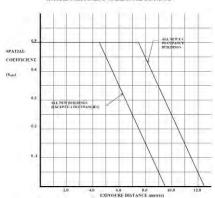
Q = minimum supply of water in litres K = water supply coefficient from Table 1 of the Building Code

 S_{Tot} = total spacial coefficient values from property line exposures on all sides to a maximum of 2 (Note: if property line runs parallel to road; mesure from building to CL of road)

Determining water supply coefficient (K)

Tuble 3.1.2.1. Major Occupancy Classification

Cohmm I	Column 3	Column 3
Group	Division	Description of Major Occupancies
A	1	Assembly occupancies intended for the production and viewing of the performing arts
A	2	Aszembly occupancies not elsewhere classified in Group A.
A	3	Assembly occupancies of the arena type
A	4	Assembly occupancies in which occupants are eathered in the open air
B	1	Detention occupancies
B	2	Care and treatment occupancies
B.	3	Care occupancies
C		Residential occupancies
D	-	Business and personal services occupancies
E		Mercantile occupancies
F	1	High lugged industrial recognitive
F	8	Medium hazard industrial occupancies
E	3	Low hazard industrial occurrencies


TABLE 1 WATER SUPPLY COEFFICIENT – K

	Classification by Group or Division in Accordance with Table 3.1.2.1 of the Ontario Building Code							
TYPE OF CONSTRUCTION	A-2 B-1 B-2 B-3 C D	A-1 F-3	A-1 A-3	F-2	E-1			
Building is of announimetable construction with fire separations and fire-remature artings provided in secondance with Subsection 3.2.2 of the OBC including foodbearing walls, columns and arches	m	14	14	11	23			
Building is of newcomboutble construction or of heavy maker construction conforming to Article 3.1.4%, of the OBC. Floor assemblies are fire separations but with an fige-resistance raring. Boof assemblies, mezzanines, loadbearing walls, columns and arches do not have a frest-resistance rating.	16	19	22	27	67			
Building is of continuable construction with fire separations and fire-resistance ratings provided in accordance with Soluscition 3.2.2 of the OBC, including loodbearing walls, solutions and arches Noncombinative construction may be seed in their of fine-resistance rating where permutted in Subsection 3.2.4 of the OBC.	13	21	25	in	ai			
Building is of conducable construction. Floor assembline are fire separations but with no line- resistance rating. Roof asymptotes, mechanisms, loodbearing walls, commissed archics do not have a free-resistance rating.	2)	26	72	XW-	43			

:	Determine the L Type of Construction	assemblies are fire	Building is of combustible construction. Floor assemblies are fire separations but with no fireresistance rating. Roof assemblies, mezzanines, loadbearing walls, columns and arches do not have a fire-resistance rating.			A-2	Coefficient K	23	
Determine the Total					Building Volume in Cubic Metres	(V)	-		
	Determine the Gross Floor Area	1065.8	m²	Determine the Height of the Building	3	m	Total Volume	3197.4	m³

Determine the Total Spacial coefficient Values from Property Line Exposure on All Sides S_{tot}

SPATIAL COEFFICIENT VS EXPOSURE DISTANCE

ı	1	North Side	134	m	S _{side 1}	0			
ı	Determine the 3 Distance on	East Side	30	m	S _{side 2}	0	e	1	
ı	each side	South Side	20	m	S _{side 3}	0	S _{tot}		
ı		West Side	59	m	S _{side 4}	0			
I				Determine the	Minimum Water Supply (Q)				
ſ	K	23			0 17110				
ı	4 V	3197.4	m ³		$Q = KVS_{Tot}$			73540.2	L
ı	S _{tot}	1		_					

TABLE 2 MINIMUM WATER SUPPLY FLOW RATES

Building Code, Part 3 Buildings	Required Minimum Water Supply Flow Rate (L/min.)
One-storey building with building area not exceeding 600m ² (excluding F-1 occupancies)	1800
All other buildings	2700 (If Q ≤ 108,000L) ⁽¹⁾ 3600 (If Q > 108,000L) and ≤ 135,000L) ⁽¹⁾ 4900 (If Q > 135,000L and ≤ 162,000L) ⁽¹⁾ 5400 (If Q > 162,000L and ≤ 190,000L) ⁽¹⁾ 5400 (If Q > 190,000L and ≤ 270,000L) ⁽¹⁾ 9000 (If Q > 270,000L) ⁽¹⁾

2700 L/min Is the Site Building One Storey? FALSE Minimum Water Supply Duration Required Storage 38000 e: Per City of Ottawa Technical Bulletin IWSTB-2024-05, a reduction in storage volume (Q) of 57000L will be applied for OBC flow rates < 4500 L/min, to a minimum permissible storage vo

FUS Fire Flow Calculations (Proposed Building/East Addition)							
Tatham File no. :	523654						
Project:	1981 Century Road, Ottawa						
Date:	19-Jun-25						
Designed by:	DVF						

$RFF = 220C\sqrt{A}$

Where:

= the Required Fire Flow in litres per minutes (LPM)
= the Construction Coefficient is related to the type of construction of the building
= the Total Effective Floor Area (effective building area) in square metres of the building

					1						
	1			e the Construction Coeffi							
				ood Frame Construction	1.5			<u> </u>			
				Mass Timber Construction	0.8	_					
		Coefficient C		Mass Timber Construction	0.9	Type II		<u> </u>			
1	Choose frame used for	related to the		Mass Timber Construction	1.0	Noncombustible	0.8				
	building	type of construction		Mass Timber Construction	1.5	Construction					
		construction		Ordinary Construction	1.0						
				combustible Construction	0.8						
				e Resistive Construction	0.6						
	•			ne Total Effective Floor A	rea (A)						
2	The Construction coefficient is less than	TRUE	(Per NBC Divi	nings in the building protected? sion B, Section 3.5. Vertical ransportation)	NO	Are the floor areas uniform throughout the building	NO				
_	TRUE	Area of 2 largest adjoining floors	3210.54	Area of floors above 2 largest adjoining floors (up to a maximum of 8 floors)	0	Total Effective Area	3210.54	sq.m.			
			Dete	rmine the Required Fire F	low						
7	Obtain Danwins	d Eine Elenn				inad Eina Elann	10,000	L/min			
3	Obtain Require	a Fire Flow	RFF	$T = 220C\sqrt{A}$	Requ	iired Fire Flow	166.7	L/s			
		Re	duction or Sur	charge Due to Factors Af	fecting Bur	ning					
			Non-	-0.25							
			combustible	-0.23				<u> </u>			
	Choose combustibility	Occupancy	Limited combustible	-0.15	Limited						
4	of contents	hazard reduction	Combustible	0	combustible	-0.15		1			
		or surcharge	Free burning	0.15			8,500	L/min			
	1		Rapid burning	0.15			141.7	L/s			
			Sprinklers	0.23			141.7	L/S			
	Choose reduction for sprinklers		conforming to NFPA13 (wet or dry system)	-0.30	YES	-0.3					
		·	I			Water supply is standard for both the system and fire department hose lines (siamese connection)	-0.10	YES	-0.1		
5			Fully supervised system (electronic monitoring system on at all times)	-0.10	YES	-0.1					
			All buildings within 30m of the proposed structure are confirmed to have a sprinkler	-0.25	NO	0	4,250 70.8	L/min L/s			
_			system	A 11'		<u> </u>					
		North side	Over 30m	posure Adjustment Charg	>100	Exposure Adjustment Charge	0				
	Exposure distance	East side	Over 30m	Length - Height Value Assumed worst case exposed	>100	Exposure Adjustment Charge	0				
6	between units	South side	Over 30m	building facing wall	>100	Exposure Adjustment	0.00				
J		West side	Over 30m		>100	Charge Exposure Adjustment Charge	0.00				
		4,250	L/min								
	<u> </u>						70.8	L/s			
				Total Required Fire Flow							
	1			Minimum required fire		unded to nearest 1000)	5,000	L/min			
7	Obtain fire flow,					required fire flow rate	83.3	L/s			
•	duration			Required duration for St			0.5	Hrs			
	I				Red	quired Storage Volume	150000	L			

Appendix E: SWM Calculations and Supporting Documents

Project Details

Project Number 523654

Data Sources

Detailed Soil Survey Reports for Ontario, MTO Drainage Management Manual (1997)

Prepared By

Name HY

Pre-Development Condition

Watershed: RVCA
Catchment ID: 101
Catchment Area (ha): 1.73
Impervious %:

Average Curve Number (CN), Runoff Coefficient (C) and Initial Abstraction (IA)

Soil Symbol			Bra										
Soil Series	Brandon												
Hydrologic Soils Group			D										
Soil Texture		(Clay										
Runoff Coefficient Type			3										
Area (ha)		-	1.73										
Percentage of Catchment		1	L00%										
Land Cover Category	IA	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С
Impervious	2		100	0.95									
Gravel	3		89	0.38									
Woodland	10		79	0.35									
Pasture/Lawns	5	1.73	84	0.40									
Meadows	8		81	0.38									
Cultivated	7		86	0.55									
Waterbody	12		50	0.05									
Average CN		84.00											
Average C		(0.40										
Average IA		Ę	5.00										

Time to Peak Calculations

Max. Catchment Elev. (m):	93.15
Min. Catchment Elev. (m):	91.40
Catchment Length (m):	133
Catchment Slope (%):	1.32%
Method: Airport Method	
Time of Concentration (mins):	24.04

Catchment CN:	84.0
Catchment C:	0.40
Catchment IA (mm):	5.00
Time of Concentration (hrs):	0.40
Catchment Time to Peak (hrs):	0.27
Catchment Time Step (mins):	3.21

Project Details

Project Number 523654

Data Sources

Detailed Soil Survey Reports for Ontario, MTO Drainage Management Manual (1997)

Prepared By

Name HY

Pre-Development Condition

Watershed: RVCA
Catchment ID: 102
Catchment Area (ha): 0.14
Impervious %:

Average Curve Number (CN), Runoff Coefficient (C) and Initial Abstraction (IA)

Soil Symbol			Bra										
Soil Series			andoi	n									
Hydrologic Soils Group		D											
Soil Texture		(Clay										
Runoff Coefficient Type			3										
Area (ha)		(0.14										
Percentage of Catchment		1	L00%										
Land Cover Category	IA	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С
Impervious	2		100	0.95									
Gravel	3		89	0.44									
Woodland	10		79	0.42									
Pasture/Lawns	5	0.14	84	0.45									
Meadows	8		81	0.44									
Cultivated	7		86	0.60									
Waterbody	12		50	0.05									
Average CN		8	4.00										
Average C		().45										
Average IA		Ĺ	5.00										

Time to Peak Calculations

Max. Catchment Elev. (m):	93.15				
Min. Catchment Elev. (m):	92.68				
Catchment Length (m):	9				
Catchment Slope (%):	5.22%				
Method: Bransby-Williams Formula					
Time of Concentration (mins):	0.45				

Catchment CN:	84.0
Catchment C:	0.45
Catchment IA (mm):	5.00
Time of Concentration (hrs):	0.01
Catchment Time to Peak (hrs):	0.00
Catchment Time Step (mins):	0.06

Project Details

Project Number	523654
----------------	--------

Data Sources

Detailed Soil Survey Reports for Ontario, MTO Drainage Management Manual (1997)

Prepared By

Name	HY
------	----

Post Development Condition

Watershed:	RVCA
Catchment ID:	201
Catchment Area (ha):	1.74
Impervious %:	67%

Average Curve Number (CN), Runoff Coefficient (C) and Initial Abstraction (IA)

Soil Symbol		1	1GC										
Soil Series		١	NGC										
Hydrologic Soils Group		С											
Soil Texture		Clay	Clay Loam										
Runoff Coefficient Type			3										
Area (ha)		1.74											
Percentage of Catchment		1	L00%										
Land Cover Category	IA	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С
Impervious	2	1.17	100	0.95									
Gravel	3		89	0.38									
Woodland	10		73	0.35									
Pasture/Lawns	5	0.57	79	0.40									
Meadows	8		76	0.38									
Cultivated	7		82	0.55									
Waterbody	12		50	0.05									
Average CN		9	3.12										
Average C		(0.77										
Average IA		2	2.98										

Time to Peak Calculations

Max. Catchment Elev. (m):	93.15				
Min. Catchment Elev. (m):	91.40				
Catchment Length (m):	133				
Catchment Slope (%):	1.32%				
Method: Bransby-Williams Formula					
Time of Concentration (mins): 6.79					

Catchment CN:	93.1
Catchment C:	0.77
Catchment IA (mm):	2.98
Time of Concentration (hrs):	0.11
Catchment Time to Peak (hrs):	0.08
Catchment Time Step (mins):	0.91

Project Details

Project Number 523654

Data Sources

Detailed Soil Survey Reports for Ontario, MTO Drainage Management Manual (1997)

Prepared By

Name HY

Post Development Condition

Watershed: RVCA
Catchment ID: 202
Catchment Area (ha): 0.13
Impervious %:

Average Curve Number (CN), Runoff Coefficient (C) and Initial Abstraction (IA)

Soil Symbol			Bra										
Soil Series			ando	n									
Hydrologic Soils Group			D										
Soil Texture		(Clay										
Runoff Coefficient Type			3										
Area (ha)		(0.13										
Percentage of Catchment		1	L00%										
Land Cover Category	IA	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С	A (ha)	CN	С
Impervious	2		100	0.95									
Gravel	3		89	0.44									
Woodland	10		79	0.42									
Pasture/Lawns	5	0.13	84	0.45									
Meadows	8		81	0.44									
Cultivated	7		86	0.60									
Waterbody	12		50	0.05									
Average CN		8	4.00										
Average C		().45										
Average IA		5	5.00										

Time to Peak Calculations

Max. Catchment Elev. (m):	93.15				
Min. Catchment Elev. (m):	92.68				
Catchment Length (m):	9				
Catchment Slope (%):	5.22%				
Method: Bransby-Williams Formula					
Time of Concentration (mins): 0.45					

ļ-	
Catchment CN:	84.0
Catchment C:	0.45
Catchment IA (mm):	5.00
Time of Concentration (hrs):	0.01
Catchment Time to Peak (hrs):	0.01
Catchment Time Step (mins):	0.06

Project :	1981 Century Road
File No.	523654
Date:	Oct-24
Designed By:	HY
Checked By:	JA
Subject:	SWMF Discharge Table

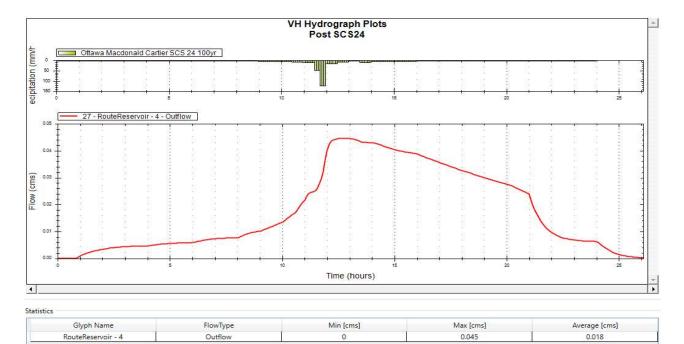
OUTLET CONTROL

Orifice		Emergency Overflow		
Orifice Size (mm): 153		Weir Length (m)	3	
Cross-Sectional Area (sq.m): 0.018385		Sill elevation (m)	92.20	
Orifice Coefficient: 0.63		Weir Coefficient	1.7	
Invert Elevation (m): 91.35		Weir Side Slopes (H:V)	5H:1V	
Outlet Pipe Size (mm): 250		Downstream Weir Length (m)	3	

STAGE DISCHARGE TABLE & CONTROL STRUCTURE CONFIGURATION

Water Level	153 mm dia. Orifice		Emergency	Overflow	Total Discharge	Active Storage
	Head	Discharge	Head	Discharge		
(m)	(m)	(cms)	(m)	(cms)	(cms)	(cm)
91.60	0.17	0.021	0.000	0.000	0.021	0.0
91.65	0.22	0.024	0.000	0.000	0.024	54.6
91.70	0.27	0.027	0.000	0.000	0.027	110.8
91.75	0.32	0.029	0.000	0.000	0.029	168.5
91.80	0.37	0.031	0.000	0.000	0.031	227.7
91.85	0.42	0.033	0.000	0.000	0.033	288.4
91.90	0.47	0.035	0.000	0.000	0.035	350.8
91.95	0.52	0.037	0.000	0.000	0.037	414.7
92.00	0.57	0.039	0.000	0.000	0.039	480.3
92.05	0.62	0.040	0.000	0.000	0.040	547.5
92.10	0.67	0.042	0.000	0.000	0.042	616.4
92.15	0.72	0.044	0.000	0.000	0.044	687.0
92.20	0.77	0.045	0.000	0.000	0.045	759.3
92.25	0.82	0.047	0.000	0.000	0.047	833.3
92.30	0.87	0.048	0.000	0.000	0.048	909.0
92.35	0.92	0.049	0.150	0.370	0.420	986.5
92.40	0.97	0.051	0.200	0.608	0.659	1065.8
92.45	1.02	0.052	0.250	0.903	0.955	1146.9
92.50	1.07	0.053	0.300	1.257	1.310	1229.9

Proposed Condition (Controlled area)								
Design Storm		SWM Facility Operating Characteristics						
	Total Outlfow (m ³ /s)	Water Level (m)						
2yr 24hr SCS	229	229	0.031	91.80				
2yr 3hr Chicago	227	227	0.031	91.80				
2yr 6hr Chicago	237	237	0.031	91.81				
100yr 24hr SCS	722	722	0.044	92.17				
100yr 3hr Chicago	704	704	0.044	92.16				
100yr 6hr Chicago	730	730	0.045	92.18				


Project :	1981 Century Road
File No.	523654
Date:	Oct-24
Designed By:	HY
Checked By:	JA
Subject:	SWM Facility 1

Dry Pond Storage

Elevation	Depth	Increasing Area	Accum Area	Volume	Storage Volume ¹
(m)	(m)	(m ²)	(m ²)	(m ³)	(m ³)
91.60	0.00	0.00	1078.00	0.00	0.00
91.65	0.05	29.82	1107.82	54.64	54.64
91.70	0.10	30.23	1138.05	56.14	110.79
91.75	0.15	30.63	1168.68	57.67	168.46
91.80	0.20	31.04	1199.72	59.21	227.66
91.85	0.25	31.45	1231.17	60.77	288.43
91.90	0.30	31.85	1263.02	62.35	350.79
91.95	0.35	32.26	1295.28	63.96	414.74
92.00	0.40	32.67	1327.95	65.58	480.32
92.05	0.45	33.07	1361.02	67.22	547.54
92.10	0.50	33.48	1394.50	68.89	616.43
92.15	0.55	33.89	1428.39	70.57	687.00
92.20	0.60	34.29	1462.69	72.28	759.28
92.25	0.65	34.70	1497.39	74.00	833.28
92.30	0.70	35.11	1532.50	75.75	909.02
92.35	0.75	35.52	1568.01	77.51	986.53
92.40	0.80	35.92	1603.94	79.30	1065.83
92.45	0.85	36.33	1640.26	81.10	1146.93
92.50	0.90	36.74	1677.00	82.93	1229.86

Project:	1981 Century Road	Date:	2025/06/06
File No.:	523654	Designed By:	HY
Subject:	SWM Facility Detention	Checked By:	JA

For 100-year storm, proposed SWM pond detention time is 26 hours as calculated by VISUAL OTTHYMO software.

Project:	1981 Century Road	Date:	Oct-24
File No.:	523654	Designed:	HY
Subject:	Swale Capacity Calcs.	Checked	JA

East Swale Capacity Calculation

Swale Characteristics

Design Storms				
100-Year Storm				
0.627				

Channel Depth	Channel Type	Manning's N	Base Width	Side Slopes	Min. Slope	Total Area	Area Contributing
0.30 m	Grass Ditch	0.035	0.50 m	3H : 1V	0.50%	1.740	0.340

Storm Conditions		Swale Flow Conditions					
Return Period	Peak Flow (m ³ /s)	Flow Depth	Area (m²)	WP	R	Q (m³/s)	V (m/s)
100-year storm	0.184	0.300	0.42	2.40	0.18	0.266	0.63
Comments:							

Storm Sewer Design Sheet

Version Number: 1 Version Date: Aug/20/2025

Project Information

1981 Century Road

523654

Storm Drainage Plan STM-1

Prepared By

HY October 03/24

Reviewed By

JA October 03/24

Municipality
City of Ottawa

Runoff Coefficient Adjustment

Year	Α	В		
10	1.00	0.00		
25	1.00	0.00		
50	1.20	0.00		
100	1.25	0.00		

Manning's Coefficient

Pipe	Value
CSP	0.025
Concrete	0.013
PVC	0.013

Time of Concentration

10 mins

IDF Curve Coefficients

IDI CUIVC	COCITICICITES		
Year	Α	В	С
2	732.95	0.81	6.20
5	998.07	0.81	6.05
10	1174.18	0.82	6.01
25	1402.88	0.82	6.02
50	1569.58	0.82	6.01
100	1735.69	0.82	6.01

Engine	er Stamp		

Notes	Area ID / Label	Upstream Maintenance Hole	Downstream Maintenance Hole	Area (ha)	5 Year Runoff Coefficient (C)	Design Storm (Year)	Adjusted Runoff Coefficient (C)	Area × Runoff Coefficient	Cumulative Area (ha)	Cumulative Area × Adjusted Runoff Coefficient	Time of Concentration (min)	Rainfall Intensity (mm/hr)	Peak Flow (m³/s)	Manning's Roughness Coefficient	Sewer Length (m)	Sewer Slope (%)	Actual Sewer Diameter (mm)	Full Flow Velocity (m/s)	Full Flow Capacity (m³/s)	Actual Velocity (m/s)	Travel Time (min)	Calculated Sewer Diameter (mm)	Percentage of Full Flow Capacity (%)	Total Time of Travel (min)
	201A	CB6	CB5	0.08	0.95	5	0.95	0.08	0.08	0.08	10.00	104.19	0.022	0.013	37.1	0.5%	250	0.86	0.042	0.81	0.77	196	52.3%	10.77
		CB5	CB4	0.00	0.95	5					10.77		0.022	0.013	56.0	0.5%	250	0.86	0.042	0.81	1.16	196	52.3%	11.92
	201B	CB4	CBMH1	0.34	0.95	5	0.95	0.32	0.42	0.40	11.92	95.04	0.105	0.013	28.7	0.5%	375	1.12	0.124	1.12	0.43	353	85.0%	12.35
	201C	CB3	СВМН1	0.21	0.95	5	0.95	0.20	0.21	0.20	10.00	104.19	0.058	0.013	30.0	0.5%	300	0.97	0.068	0.97	0.52	281	84.4%	10.52
	201D	CB2	CBMH1	0.13	0.95	5	0.95	0.12	0.13	0.12	10.00	104.19	0.036	0.013	17.1	0.5%	250	0.86	0.042	0.86	0.33	235	85.0%	10.33
	201E	СВ7	POND	0.12	0.95	5	0.95	0.11	0.12	0.11	10.00	104.19	0.033	0.013	30.0	1.0%	250	1.21	0.059	1.16	0.43	200	55.5%	10.43
	201F	POND	CBMH1	0.70	0.57	5	0.63	0.44	0.82	0.52	10.43	104.19	0.149	0.013	42.1	0.5%	450	1.27	0.202	1.27	0.55	402	74.0%	10.98

V	V	I	SSSSS	U	U	Į.	4	L				(v 6.2.2015)
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SS	U	U	AAA	AAA	L				
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL			
00	0	TTTTT	TTTTT	Н	Н	Υ	Υ	Μ	Μ	00	00	TM
0	0	Т	T	Н	Н	Υ	Υ	MM	MM	0	0	
0	0	Т	T	Н	Н	١	1	Μ	Μ	0	0	
00	0	Т	Τ	Н	Н	\	1	Μ	М	00	00	

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\1797188a-1803-4bbe-9794-067484109463\scenario \\$

Summary filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\1797188a-1803-4bbe-9794-067484109463\scenario \\$

DATE: 08/20/2025 TIME: 10:58:13

USER:

COMMENTS:

W/E COMMAND HYD ID DT AREA 'Qpeak Tpeak R.V. R.C. Qbase min ha 'cms hrs mm cms

START @ 0.00 hrs

```
CHIC STORM
                            10.0
   [ Ptot= 31.86 mm ]
** CALIB NASHYD
                       0003 1 5.0
                                      1.73
                                             0.04 1.33
                                                          9.58 0.30
                                                                     0.000
   [CN=84.0
   [ N = 3.0:Tp 0.27]
   CHIC STORM
                            10.0
   [ Ptot= 31.86 mm ]
** CALIB NASHYD
                       0004 1 5.0
                                      0.14
                                             0.00 1.17
                                                          9.55 0.30
                                                                     0.000
   [CN=84.0
   [ N = 3.0:Tp 0.17]
_____
```

٧ V Ι SSSSS U (v 6.2.2015) U Α L Ι SS U U ΑА L Ι SS U U AAAAA L ٧ Ι SS U Α Ι SSSSS UUUUU LLLLL VV Α Α Υ 000 TM 000 TTTTT TTTTT Н Н Υ Μ Μ 0 0 Т Т Н Н YY MM MM 0 0 0 Т Т Н Н Υ Μ Μ Т Т 000 Н Н Υ Μ 000

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** SUMMARY OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\534287f8-242b-455a-9958-3ef80031fd7f\scenario

Summary filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\534287f8-242b-455a-9958-3ef80031fd7f\scenario

DATE: 08/20/2025 TIME: 10:58:13

USER:

COMMENTS: _											
******	*******	******	***	*****	*****	***	*				
** SIMULA *****	TION : 2 ******	******	***	*****	******		* *				
W/E COMMA	ND	HYD	ID	DT min	AREA ha				R.V.	R.C.	Qbase cms
START	@ 0.00 hr	`S									
CHIC STO	ORM 36.86 mm]		10	.0							
-	ASHYD 0] .0:Tp 0.27]	0003	1	5.0	1.73		0.05	2.25	12.64	0.34	0.000
CHIC STO	ORM 36.86 mm]		10	.0							
** CALIB N [CN=84. [N = 3		0004	1	5.0	0.14		0.01	2.17	12.60	0.34	0.000
FINISH											

V	V	I	SSSSS	U	U	1	Д	L				(v 6.2.2015)
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SS	U	U	AA	ΔДД	L				
V	V	I	SS	U	U	Α	Α	L				
٧	/ V	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL			
OC	00	TTTTT	TTTTT	Н	Н	Υ	Υ	М	М	00	00	ТМ
0	0	Т	Т	Н	Н	Υ	Υ	MM	MM	0	0	
0	0	Т	Т	Н	Н	•	Y	Μ	Μ	0	0	
OC	00	Т	Т	Н	Н	•	Y	Μ	Μ	00	00	

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\7ac295bd-e705-454d-a39e-5431bd7e237e\scenario \\$

Summary filename:

 $\label{localline} C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\7ac295bd-e705-454d-a39e-5431bd7e237e\scenario$

DATE: 08/20/2025 TIME: 10:57:17

USER:

COMMENTS:

W/E COMMAND HYD ID DT AREA 'Qpeak Tpeak R.V. R.C. Qbase min ha 'cms hrs mm cms

START @ 0.00 hrs

```
READ STORM
                               5.0
   [ Ptot= 49.09 mm ]
   fname :
C:\Users\hyu\AppData\Local\Temp\7e1e4ba3-c527-4890-955c-e5b4124484ea\a83aa445-7986-4
108-a295-abaadc5
    remark: Ottawa Macdonald Cartier SCS 24 2yr
** CALIB NASHYD
                        0004 1 5.0
                                        0.14
                                                0.01 12.00 20.95 0.43
                                                                         0.000
    [CN=84.0
    [ N = 3.0:Tp 0.17]
   READ STORM
                               5.0
   [ Ptot= 49.09 mm ]
   fname:
C:\Users\hyu\AppData\Local\Temp\7e1e4ba3-c527-4890-955c-e5b4124484ea\a83aa445-7986-4
108-a295-abaadc5
   remark: Ottawa Macdonald Cartier SCS 24 2yr
** CALIB NASHYD
                        0003 1 5.0
                                        1.73
                                                0.07 12.17 21.01 0.43
                                                                         0.000
    [CN=84.0
    [ N = 3.0:Tp 0.27]
                                                        (v 6.2.2015)
               Ι
                    SSSSS
                           U
                               U
                                    Α
                                         L
                    SS
               Ι
                           U
                               U
                                   ΑА
                                         L
               Ι
                     SS
                           U
                               U AAAAA L
          ٧
               Ι
                      SS
                               U A
                           U
                                      Α
                                         L
        VV
               Ι
                    SSSSS UUUUU A
                                      Α
                                         LLLLL
       000
             TTTTT TTTTT
                           Н
                                      Υ
                                             Μ
                                                 000
                                                        TM
                               Н
                                         М
          0
                      Т
               Τ
                               Н
                                   YY
                                         MM MM
                                                0
               Т
                      Т
      0
          0
                                                0
                                                    0
                           Н
                               Н
                                    Υ
                                         Μ
                                             Μ
                                    Υ
       000
               Т
                      Т
                                                 000
                               Н
                                         Μ
Developed and Distributed by Smart City Water Inc
Copyright 2007 - 2022 Smart City Water Inc
All rights reserved.
                  ***** SUMMARY OUTPUT *****
         filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat
 Input
 Output filename:
```

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\9460e25e-

```
Summary filename:
C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\9460e25e-
c627-420d-8b62-75c7a7bb36de\scenario
DATE: 08/20/2025
                                    TIME: 10:57:18
USER:
COMMENTS:
 *****************
 ** SIMULATION : 2
 **************
                                   AREA ' Qpeak Tpeak
 W/E COMMAND
                      HYD ID
                             DT
                                                     R.V. R.C.
                                                                Obase
                                        ' cms
                             min
                                   ha
                                               hrs
                                                      mm
                                                                 cms
     START @ 0.00 hrs
   READ STORM
                           5.0
   [ Ptot=111.87 mm ]
   fname:
C:\Users\hyu\AppData\Local\Temp\7e1e4ba3-c527-4890-955c-e5b4124484ea\e20e7578-d439-4
ffb-8edc-8fe2588
   remark: Ottawa Macdonald Cartier SCS 24 100yr
** CALIB NASHYD
                     0004 1 5.0
                                  0.14
                                         0.03 12.00 73.30 0.66
                                                               0.000
   [CN=84.0
   [ N = 3.0:Tp 0.17]
   READ STORM
                           5.0
   [ Ptot=111.87 mm ]
   fname:
C:\Users\hyu\AppData\Local\Temp\7e1e4ba3-c527-4890-955c-e5b4124484ea\e20e7578-d439-4
ffb-8edc-8fe2588
   remark: Ottawa Macdonald Cartier SCS 24 100yr
** CALIB NASHYD
                     0003 1 5.0 1.73
                                         0.26 12.08 73.52 0.66
                                                               0.000
   [CN=84.0
   [ N = 3.0:Tp 0.27]
FINISH
______
```

c627-420d-8b62-75c7a7bb36de\scenario

٧	V	I	SSSSS	U	U	-	4	L				(v 6	5.2.2015)
V	V	I	SS	U	U	Α	Α	L					
V	V	I	SS	U	U	AAA	AAA	L					
V	V	I	SS	U	U	Α	Α	L					
V	V	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL				
00	0	TTTTT	TTTTT	Н	Н	Υ	Υ	М	М	00	00	TM	
0	0	Т	Т	Н	Н	Υ	Υ	MM	MM	0	0		
0	0	Т	T	Н	Н	`	′	Μ	Μ	0	0		
00	0	Т	T	Н	Н	•	′	Μ	М	00	00		

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\94514945-66e0-46aa-99d8-33d13997a96b\scenario

Summary filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\94514945-66e0-46aa-99d8-33d13997a96b\scenario

DATE: 08/20/2025 TIME: 10:59:51

USER:

COMMENTS:

W/E COMMAND HYD ID DT AREA 'Qpeak Tpeak R.V. R.C. Qbase min ha 'cms hrs mm cms

START @ 0.00 hrs

*	CHIC STORM [Ptot= 31.86 mm]		10	.0						
**	CALIB NASHYD [CN=84.0] [N = 3.0:Tp 0.17]	0030	1	5.0	0.13	0.00	1.17	9.55 (0.30	0.000
*	CHIC STORM [Ptot= 31.86 mm]		10	.0						
*	CALIB STANDHYD [I%=67.0:S%= 2.00]	0032	1	5.0	1.74	0.24	1.00	23.19	0.73	0.000
**	Reservoir OUTFLOW:	0031	1	5.0	1.74	0.03	1.58	23.16	n/a	0.000

=	V I V I I	SSSSS SS SS	U U U	U U U	Α	Д А ДДД	L L L				(v 6.2.2015)
V V	I	SS	U	U	Α	Α	L				
VV	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL			
000	TTTTT	TTTTT	Н	Н	Υ	Υ	М	М	00	00	TM
0 0	T	Т	Н	Н	Υ	Υ	MM	MM	0	0	
0 0	Т	Т	Н	Н	•	Y	Μ	Μ	0	0	
000	Т	Т	Н	Н	•	Y	Μ	Μ	00	00	

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

**** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\802e2e82-a7f3-4573-bc19-493105733e18\scenario \\$

Summary filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\802e2e82-a7f3-4573-bc19-493105733e18\scenario \\$

DATE: 08/20/2025 TIME: 10:59:51

```
COMMENTS:
 **************
 ** SIMULATION : 2
 **************
 W/E COMMAND
                                AREA ' Qpeak Tpeak
                    HYD ID
                           DT
                                                 R.V. R.C.
                                                           Qbase
                                    ' cms
                          min
                                ha
                                           hrs
                                                  mm
                                                           cms
    START @ 0.00 hrs
    ______
   CHIC STORM
                        10.0
   [ Ptot= 36.86 mm ]
** CALIB NASHYD
                   0030 1 5.0
                                0.13
                                      0.00 2.17 12.60 0.34
                                                          0.000
   [CN=84.0
   [ N = 3.0:Tp 0.17]
   CHIC STORM
                        10.0
   [ Ptot= 36.86 mm ]
                   0032 1 5.0
  CALIB STANDHYD
                                1.74
                                      0.25 2.00 27.39 0.74
                                                          0.000
   [I%=67.0:S%= 2.00]
** Reservoir
   OUTFLOW:
                                      0.03 2.58 27.36 n/a
                   0031 1 5.0
                                1.74
                                                          0.000
______
=================
            Ι
                SSSSS U
                                            (v 6.2.2015)
                            Α
                                 L
            Ι
                SS
                         U
                           ΑА
                     U
            Ι
                 SS
                         U AAAAA L
                     U
        ٧
            Ι
                 SS
                     U
                         U
                           Α
      VV
            Ι
                SSSSS UUUUU
                          Α
                              A LLLLL
      000
          TTTTT TTTTT
                                       000
                                            TM
                     Н
                         Н
                           Y Y
                                Μ
                                    Μ
     0 0
            Т
                  Τ
                     Н
                         Н
                            YY
                                MM MM
                                      0
            Т
     0
        0
                  Τ
                             Υ
                                      0
                         Н
                                 Μ
            Т
                 Т
      000
                         Н
                             Υ
                     Н
                                 Μ
                                    Μ
                                       000
Developed and Distributed by Smart City Water Inc
```

Copyright 2007 - 2022 Smart City Water Inc

All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\ee31136a-3779-4040-9bcf-769891f328a9\scenario

Summary filename:

** SIMULATION : 3

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\ee31136a-3779-4040-9bcf-769891f328a9\scenario \\$

DATE: 08/20/2025 TIME: 10:59:51

USER:

FINISH

COMMENTS:

**	********	*****	***	*****	******	**			
W,	/E COMMAND	HYD	ID	DT min	AREA ' ha '	Qpeak cms	Tpeak hrs	R.V. R.C.	Qbase cms
	START @ 0.00 hrs								
.	CHIC STORM [Ptot= 71.66 mm]		10	.0					
**	CALIB NASHYD [CN=84.0] [N = 3.0:Tp 0.17]	0030	1	5.0	0.13	0.02	1.08	38.49 0.54	0.000
<	CHIC STORM [Ptot= 71.66 mm]		10	.0					
*	CALIB STANDHYD [I%=67.0:S%= 2.00]	0032	1	5.0	1.74	0.65	1.00	58.27 0.81	0.000
**	Reservoir OUTFLOW:	0031	1	5.0	1.74	0.04	1.92	58.24 n/a	0.000

V	V	I	SSSSS	U	U	-	Д	L				(v 6.2.2015)
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SS	U	U	AA	AAA	L				
V	V	I	SS	U	U	Α	Α	L				
٧	/ V	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL			
00	00	TTTTT	TTTTT	Н	Н	Υ	Υ	М	М	00	00	TM
0	0	Т	Т	Н	Н	Υ	Υ	MM	MM	0	0	
0	0	Т	T	Н	Н	•	Y	Μ	Μ	0	0	
00	00	Т	Т	Н	Н	,	Y	Μ	Μ	00	00	

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

 $C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\30c49944-173c-4d7b-ba19-aef5c83a1a7d\scenario \\$

Summary filename:

 $\label{locallocal} C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\30c49944-173c-4d7b-ba19-aef5c83a1a7d\scenario$

DATE: 08/20/2025	TIME: 10:59:51
USER:	
COMMENTS:	
*********	******
** SIMULATION : 4	**
***********	*******

W/E COMMAND HYD ID DT AREA 'Qpeak Tpeak R.V. R.C. Qbase min ha 'cms hrs mm cms

START @ 0.00 hrs

*	CHIC STORM [Ptot= 82.32 mm]		10	.0						
**	CALIB NASHYD [CN=84.0] [N = 3.0:Tp 0.17]	0030	1	5.0	0.13	0.02	2.08	47.39	0.58	0.000
*	CHIC STORM [Ptot= 82.32 mm]		10	.0						
*	CALIB STANDHYD [I%=67.0:S%= 2.00]	0032	1	5.0	1.74	0.66	2.00	68.10	0.83	0.000
**	Reservoir OUTFLOW:	0031	1	5.0	1.74	0.04	2.92	68.07	n/a	0.000

V	V	I	SSSSS	U	U	Δ	١	L				(v 6.2.2015)
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SS	U	U	АДА	AA	L				
V	V	I	SS	U	U	Α	Α	L				
V	V	I	SSSSS	UUl	JUU	Α	Α	LLI	LLL			
00	0	TTTTT	TTTTT	Н	Н	Υ	Υ	Μ	Μ	00	00	TM
0	0	Т	T	Н	Н	Υ	Υ	MM	MM	0	0	
0	0	Т	T	Н	Н	Υ	,	Μ	Μ	0	0	
00	0	Т	Τ	Н	Н	Υ	,	Μ	Μ	00	00	

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved.

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

Output filename:

C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\c9fa69aa-7cbe-4bba-942c-2c766e95ce75\scenario

Summary filename:

 $\label{localline} C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\c9fa69aa-7cbe-4bba-942c-2c766e95ce75\scenario$

DATE: 08/20/2025 TIME: 11:00:13

USER:

COMMENTS:

W/E COMMAND HYD ID DT AREA 'Qpeak Tpeak R.V. R.C. Qbase min ha 'cms hrs mm cms

START @ 0.00 hrs

```
READ STORM
                             5.0
   [ Ptot= 49.09 mm ]
   fname :
C:\Users\hyu\AppData\Local\Temp\6721d922-4024-4fee-8fc1-dd050a0ff3fa\a83aa445-7986-4
108-a295-abaadc5
   remark: Ottawa Macdonald Cartier SCS 24 2yr
** CALIB NASHYD
                      0029 1 5.0
                                            0.01 12.00 20.95 0.43
                                     0.13
                                                                   0.000
   [CN=84.0
   [ N = 3.0:Tp 0.17]
   READ STORM
                             5.0
   [ Ptot= 49.09 mm ]
   fname :
C:\Users\hyu\AppData\Local\Temp\6721d922-4024-4fee-8fc1-dd050a0ff3fa\a83aa445-7986-4
108-a295-abaadc5
   remark: Ottawa Macdonald Cartier SCS 24 2yr
  CALIB STANDHYD
                      0028 1 5.0
                                     1.74
                                            0.19 12.00 37.97 0.77
                                                                   0.000
   [I%=67.0:S%= 2.00]
** Reservoir
   OUTFLOW:
                      0027 1 5.0
                                     1.74
                                            0.03 12.50 37.94 n/a
                                                                   0.000
______
=================
                                                    (v 6.2.2015)
          ٧
              Ι
                   SSSSS U
                             U
                                      L
                                 Α
          V
              Ι
                             U
                                ΑА
                   SS
                         U
                                      L
         ٧
              Ι
                   SS
                             U AAAAA L
                         U
         V
              Ι
                    SS
                         U
                             U
                               Α
                                   Α
                                      L
        VV
              Ι
                   SSSSS UUUUU
                                   A LLLLL
                               Α
            TTTTT TTTTT
                                             000
                                                    TM
       000
                         Н
                             Н
                                   Υ
                                      Μ
                                          Μ
                                ΥΥ
                                      MM MM O
         0
              Т
                     Т
                         Н
                             Н
      0
         0
              Т
                     Т
                         Н
                             Н
                                 Υ
                                      Μ
                                          Μ
                                            0
       000
              Т
                    Т
                         Н
                             Н
                                 Υ
                                      Μ
                                             000
                                          Μ
Developed and Distributed by Smart City Water Inc
Copyright 2007 - 2022 Smart City Water Inc
All rights reserved.
```

***** S U M M A R Y O U T P U T *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat

```
Output filename:
C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\e7a7ce61-
35c3-493d-b880-631f56b7bff7\scenario
 Summary filename:
C:\Users\hyu\AppData\Local\Civica\VH5\e2c2d2be-418b-4c4d-a4c4-d228733f752c\e7a7ce61-
35c3-493d-b880-631f56b7bff7\scenario
                                       TIME: 11:00:13
DATE: 08/20/2025
USER:
 **************
 ** SIMULATION : 2
 **************
 W/E COMMAND
                       HYD ID
                                DT
                                      AREA ' Qpeak Tpeak
                                                          R.V. R.C.
                                                                     Qbase
                                           ' cms
                               min
                                      ha
                                                   hrs
                                                           mm
                                                                      cms
     START @ 0.00 hrs
   READ STORM
                             5.0
   [ Ptot=111.87 mm ]
C:\Users\hyu\AppData\Local\Temp\6721d922-4024-4fee-8fc1-dd050a0ff3fa\e20e7578-d439-4
ffb-8edc-8fe2588
   remark: Ottawa Macdonald Cartier SCS 24 100yr
** CALIB NASHYD
                       0029 1 5.0
                                     0.13
                                             0.03 12.00 73.30 0.66
                                                                    0.000
   [CN=84.0
   [ N = 3.0:Tp 0.17]
                             5.0
   READ STORM
   [ Ptot=111.87 mm ]
   fname :
C:\Users\hyu\AppData\Local\Temp\6721d922-4024-4fee-8fc1-dd050a0ff3fa\e20e7578-d439-4
ffb-8edc-8fe2588
   remark: Ottawa Macdonald Cartier SCS 24 100yr
  CALIB STANDHYD
                       0028 1 5.0
                                     1.74
                                             0.51 12.00 95.89 0.86
                                                                    0.000
   [I%=67.0:S%= 2.00]
** Reservoir
   OUTFLOW:
                       0027 1 5.0
                                     1.74
                                             0.04 12.67 95.86 n/a
                                                                    0.000
```

*			
FINISH			
1 11(13)			
=======================================	=======================================	=======================================	=====
=======================================			

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

08/19/2025

Province:	Ontario
City:	Ottawa
Nearest Rainfall Station:	OTTAWA CDA RCS
Climate Station Id:	6105978
Years of Rainfall Data:	20
Sita Namo:	1

Site Name: 201

Drainage Area (ha): 1.74
% Imperviousness: 67.00

Runoff Coefficient 'c': 0.70

Particle Size Distribution:	Fine
Target TSS Removal (%):	80.0

Required Water Quality Runoff Volume Capture (%):	90.00
Estimated Water Quality Flow Rate (L/s):	39.42
Oil / Fuel Spill Risk Site?	Yes
Upstream Flow Control?	Yes
Upstream Orifice Control Flow Rate to Stormceptor (L/s):	45.00
Peak Conveyance (maximum) Flow Rate (L/s):	
Influent TSS Concentration (mg/L):	100
Estimated Average Annual Sediment Load (kg/yr):	658
Estimated Average Annual Sediment Volume (L/yr):	535

Project Name:	1981 Century Road
Project Number:	523654
Designer Name:	David Fendler
Designer Company:	Tatham
Designer Email:	dfendler@tathameng.com
Designer Phone:	613-747-3636
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

Net Annual Sediment (TSS) Load Reduction Sizing Summary							
Stormceptor Model	TSS Removal Provided (%)						
EFO4	69						
EFO5	77						
EFO6	83						
EFO8	89						
EFO10	93						

Recommended Stormceptor EFO Model: EFO6
Estimated Net Annual Sediment (TSS) Load Reduction (%): 83

Water Quality Runoff Volume Capture (%): >90

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

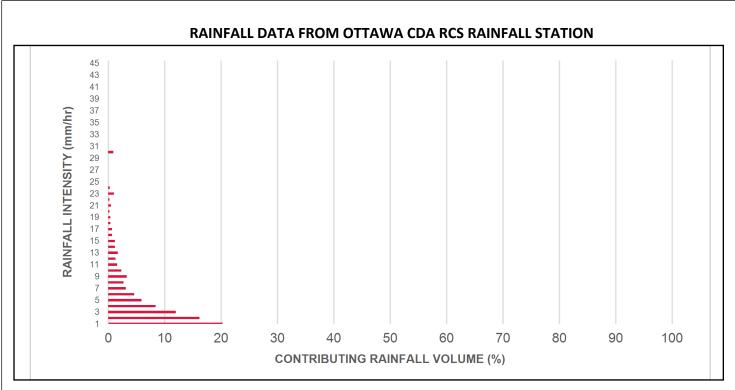
▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

PARTICLE SIZE DISTRIBUTION (PSD)

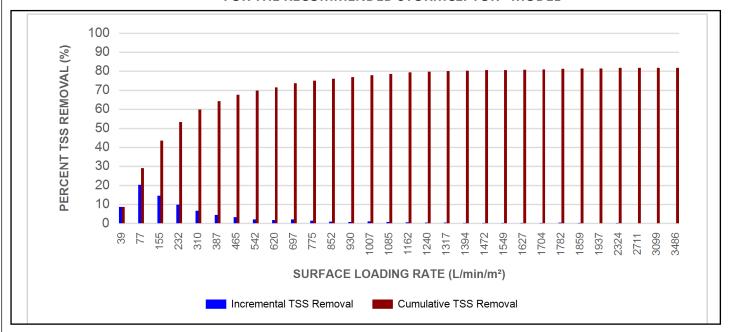
▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle Size (µm)	Percent Less Than	Particle Size Fraction (µm)	Percent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	

Upstream Flow Controlled Results


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)	
0.50	8.6	8.6	1.70	1.70 102.0 39.0 100		8.6	8.6		
1.00	20.3	29.0	3.40	204.0	77.0	100	20.3	29.0	
2.00	16.2	45.2	6.79	407.0	155.0	89	14.5	43.5	
3.00	12.0	57.2	10.19	611.0	232.0	82	9.8	53.3	
4.00	8.4	65.6	13.58	815.0	310.0	78	6.6	59.9	
5.00	5.9	71.6	16.98	1019.0	387.0	75	4.4	64.3	
6.00	4.6	76.2	20.37	1222.0	465.0	71	3.3	67.6	
7.00	3.1	79.3	23.77	1426.0	542.0	67	2.1	69.7	
8.00	2.7	82.0	27.17	1630.0	620.0	64	1.8	71.4	
9.00	3.3	85.3	30.56	1834.0	697.0	64	2.1	73.6	
10.00	2.3	87.6	33.96	2037.0	775.0	63	1.5	75.0	
11.00	1.6	89.2	37.35	2241.0	852.0	63	1.0	76.0	
12.00	1.3	90.5	40.75	2445.0	930.0	62	0.8	76.8	
13.00	9.5	100.0	44.14	2649.0	1007.0	62	5.8	82.7	
14.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
15.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
16.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
17.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
18.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
19.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
20.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
21.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
22.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
23.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
24.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
25.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
30.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
35.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
40.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
45.00	0.0	100.0	45.00	2700.0	1027.0	61	0.0	82.7	
Estimated Net Annual Sediment (TSS) Load Reduction =									

Climate Station ID: 6105978 Years of Rainfall Data: 20



INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outlet Pipe Diameter		Peak Conveyance Flow Rate	
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF5 / EFO5	1.5	5	90	762	30	762	30	710	25
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

Stormceptor* EF Sizing Report

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe. 45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Mod Diam	eter	Pipe In Sump	Floor)	Oil Vo		Maintenance Depth *		Sediment Sediment Volume *		Maximum Sediment Mass ** (kg) (lb)	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	` '					
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF5 / EFO5	1.5	5	1.62	5.3	420	111	305	10	2124	75	2612	5758
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Stormceptor EF Sizing Report

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREAMENT DEVICE

PART 1 - GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil 5 ft (1524 mm) Diameter OGS Units: 1.95 m³ sediment / 420 L oil 6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil 8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil 10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil 12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 - PERFORMANCE & DESIGN

Stormceptor* EF Sizing Report

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m².
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid

Stormceptor* EF Sizing Report

Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This re-entrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic
occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance
results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates
(ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing
within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an
OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with
screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would
not be expected to retain light liquids such as oil and fuel.

VERIFICATION STATEMENT

GLOBE Performance Solutions

Verifies the performance of

Stormceptor® EF and EFO Oil-Grit Separators

Developed by Imbrium Systems, Inc., Whitby, Ontario, Canada

Registration: GPS-ETV_VR2023-11-15_Imbrium-SC

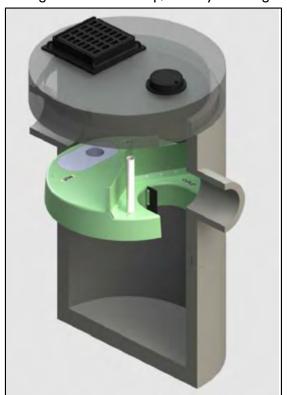
In accordance with

ISO 14034:2016

Environmental management — Environmental technology verification (ETV)

John D. Wiebe, PhD Executive Chairman GLOBE Performance Solutions

November 15, 2023 Vancouver, BC, Canada



Verification Body
GLOBE Performance Solutions
404 – 999 Canada Place | Vancouver, B.C | Canada | V6C 3E2

Technology description and application

The Stormceptor® EF and EFO are treatment devices designed to remove oil, sediment, trash, debris, and pollutants attached to particulates from Stormwater and snowmelt runoff. The device takes the place of a conventional manhole within a storm drain system and offers design flexibility that works with various site constraints. The EFO is designed with a shorter bypass weir height, which accepts lower surface loading rate into the sump, thereby reducing re-entrainment of captured free floating light liquids.

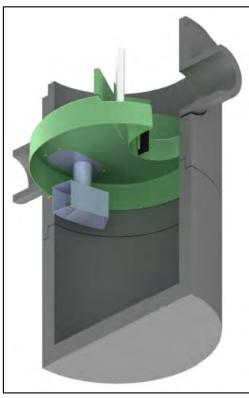


Figure 1. Graphic of typical inline Stormceptor® unit and core components.

Stormwater and snowmelt runoff enters the Stormceptor® EF/EFO's upper chamber through the inlet pipe(s) or a surface inlet grate. An insert divides the unit into lower and upper chambers and incorporates a weir to reduce influent velocity and separate influent (untreated) from effluent (treated) flows. Influent water ponds upstream of the insert's weir providing driving head for the water flowing downwards into the drop pipe where a vortex pulls the water into the lower chamber. The water diffuses at lower velocities in multiple directions through the drop pipe outlet openings. Oil and other floatables rise up and are trapped beneath the insert, while sediments undergo gravitational settling to the sump's bottom. Water from the sump can exit by flowing upward to the outlet riser onto the top side of the insert and downstream of the weir, where it discharges through the outlet pipe.

Maximum flow rate into the lower chamber is a function of weir height and drop pipe orifice diameter. The Stormceptor® EF and EFO are designed to allow a surface loading rate of 1135 L/min/m² (27.9 gal/min/ft²) and 535 L/min/m² (13.1 gal/min/ft²) into the lower chamber, respectively. When prescribed surface loading rates are exceeded, ponding water can overtop the weir height and bypass the lower treatment chamber, exiting directly through the outlet pipe. Hydraulic testing and scour testing demonstrate that the internal bypass effectively prevents scour at all bypass flow rates. Increasing the bypass flow rate does not increase the orifice-controlled flow rate into the lower treatment chamber where sediment is stored. This internal bypass feature allows for in-line installation, avoiding the cost of

additional bypass structures. During bypass, treatment continues in the lower chamber at the maximum flow rate. The Stormceptor® EFO's lower design surface loading rate is favorable for minimizing reentrainment and washout of captured light liquids. Inspection of Stormceptor® EF and EFO devices is performed from grade by inserting a sediment probe through the outlet riser and an oil dipstick through the oil inspection pipe. The unit can be maintained by using a vacuum hose through the outlet riser.

Performance conditions

The data and results published in this Technology Fact Sheet were obtained from the testing program conducted on the Imbrium Systems Inc.'s Stormceptor® EF4 and EFO4 Oil-Grit Separators, in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014). The Procedure was prepared by the Toronto and Region Conservation Authority (TRCA) for Environment Canada's Environmental Technology Verification (ETV) Program. A copy of the Procedure may be accessed on the Canadian ETV website at www.etvcanada.ca.

Performance claim(s)

Capture test^a:

During the capture test, the Stormceptor® EF4 OGS device, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L, removes 70, 64, 54, 48, 46, 44, and 49 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m², respectively.

Stormceptor® EFO4, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L, removes 70, 64, 54, 48, 42, 40, and 34 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m², respectively.

Scour test a:

During the scour test, the Stormceptor® EF4 and Stormceptor® EFO4 OGS devices, with 10.2 cm (4 inches) of test sediment pre-loaded onto a false floor reaching 50% of the manufacturer's recommended maximum sediment storage depth, generate corrected effluent concentrations of 4.6, 0.7, 0, 0.2, and 0.4 mg/L at 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m², respectively.

Light liquid re-entrainment testa:

During the light liquid re-entrainment test, the Stormceptor® EFO4 OGS device with surrogate low-density polyethylene beads preloaded within the lower chamber oil collection zone, representing a floating light liquid volume equal to a depth of 50.8 mm over the sedimentation area, retained 100, 99.5, 99.8, 99.8, and 99.9 percent of loaded beads by mass during the 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m².

Performance results

^a The claim can be applied to other units smaller or larger than the tested unit as long as the untested units meet the scaling rule specified in the Procedure for Laboratory of Testing of Oil Grit Separators (Version 3.0, June 2014)

The test sediment consisted of ground silica (I – 1000 micron) with a specific gravity of 2.65, uniformly mixed to meet the particle size distribution specified in the testing procedure. The *Procedure for Laboratory Testing of Oil Grit Separators* requires that the three sample average of the test sediment particle size distribution (PSD) meet the specified PSD percent less than values within a boundary threshold of 6%. The comparison of the average test sediment PSD to the CETV specified PSD in Figure 2 indicates that the test sediment used for the capture and scour tests met this condition.

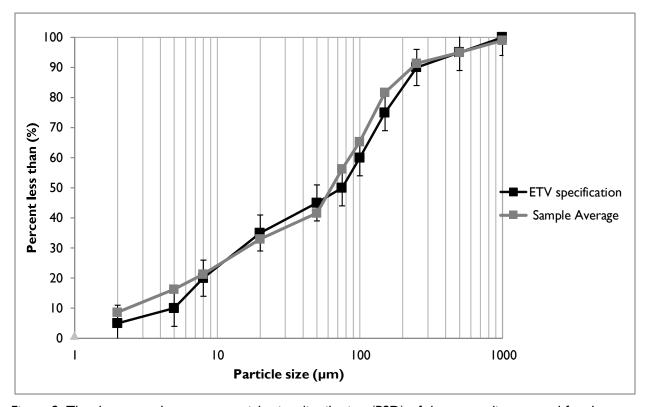


Figure 2. The three sample average particle size distribution (PSD) of the test sediment used for the capture and scour test compared to the specified PSD.

The capacity of the device to retain sediment was determined at seven surface loading rates using the modified mass balance method. This method involved measuring the mass and particle size distribution of the injected and retained sediment for each test run. Performance was evaluated with a false floor simulating the technology filled to 50% of the manufacturer's recommended maximum sediment storage depth. The test was carried out with clean water that maintained a sediment concentration below 20 mg/L. Based on these conditions, removal efficiencies for individual particle size classes and for the test sediment as a whole were determined for each of the tested surface loading rates (Table I). Since the EF and EFO models are identical except for the weir height, which bypasses flows from the EFO model at a surface loading rate of 535 L/min/m² (13.1 gpm/ft²), sediment capture tests at surface loading rates from 40 to 400 L/min/m² were only performed on the EF unit. Surface loading rates of 600, 1000, and 1400 L/min/m² were tested on both units separately. Results for the EFO model at these higher flow rates are presented in Table 2.

In some instances, the removal efficiencies were above 100% for certain particle size fractions. These discrepancies are not unique to any one test laboratory and may be attributed to errors relating to the blending of sediment, collection of representative samples for laboratory submission, and laboratory

analysis of PSD. Due to these errors, caution should be exercised in applying the removal efficiencies by particle size fraction for the purposes of sizing the tested device (see <u>Bulletin # CETV 2016-11-0001</u>). The results for "all particle sizes by mass balance" (see Table I and 2) are based on measurements of the total injected and retained sediment mass, and are therefore not subject to blending, sampling or PSD analysis errors.

Table I. Removal efficiencies (%) of the EF4 at specified surface loading rates

Particle size		Surface loading rate (L/min/m²)												
fraction (µm)	40	80	200	400	600	1000	1400							
>500	90	58	58	100*	86	72	100*							
250 - 500	100*	100*	100	100*	100*	100*	100*							
150 - 250	90	82	26	100*	100*	67	90							
105 - 150	100*	100*	100*	100*	100*	100*	100							
75 - 105	100*	92	74	82	77	68	76							
53 - 75	Undefined ^a	56	100*	72	69	50	80							
20 - 53	54	100*	54	33	36	40	31							
8 - 20	67	52	25	21	17	20	20							
5 – 8	33	29	П	12	9	7	19							
<5	13	0	0	0	0	0	4							
All particle sizes by mass														
balance	70.4	63.8	53.9	47.5	46.0	43.7	49.0							

^a An outlier in the feed sample sieve data resulted in a negative removal efficiency for this size fraction.

Table 2. Removal efficiencies (%) of the EFO4 at surface loading rates above the bypass rate of 535 L/min/m²

	Surface loading rate						
Particle size	(L/min/m²)						
fraction (µm)	600	1000	1400				
>500	89	83	100*				
250 - 500	90	100*	92				
150 - 250	90	67	100*				
105 - 150	85	92	77				
75 - 105	80	71	65				
53 - 75	60	31	36				
20 - 53	33	43	23				
8 - 20	17	23	15				
5 – 8	10	3	3				
<5	0	0	0				
All particle sizes by							
mass balance	41.7	39.7	34.2				

^{*} Removal efficiencies were calculated to be above 100%. Calculated values ranged between 103 and 111% (average 107%). See text and Bulletin # CETV 2016-11-0001 for more information.

Figure 3 compares the particle size distribution (PSD) of the three sample average of the test sediment to the PSD of the sediment retained by the EF4 at each of the tested surface loading rates. Figure 4 shows the same graph for the EFO4 unit at surface loading rates above the bypass rate of 535 L/min/m².

^{*} Removal efficiencies were calculated to be above 100%. Calculated values ranged between 101 and 171% (average 128%). See text and Bulletin # CETV 2016-11-0001 for more information.

As expected, the capture efficiency for fine particles in both units was generally found to decrease as surface loading rates increased.

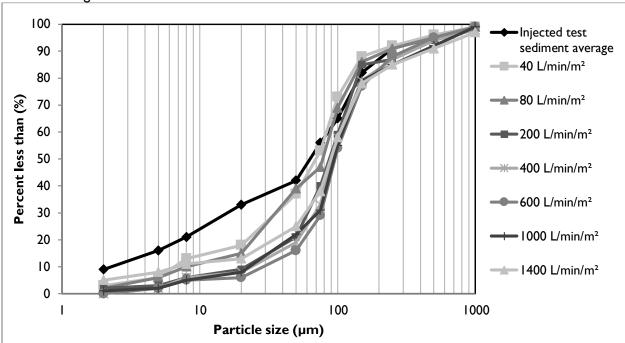


Figure 3. Particle size distribution of sediment retained in the EF4 in relation to the injected test sediment average.

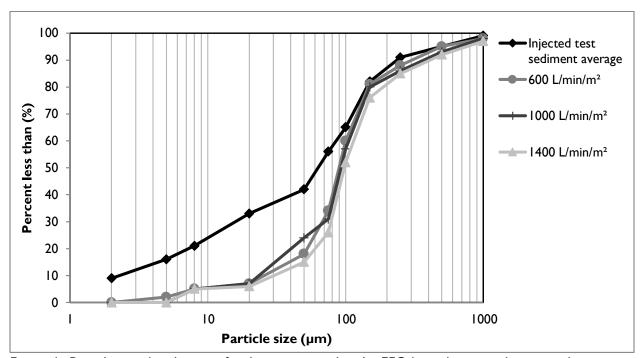


Figure 4. Particle size distribution of sediment retained in the EFO4 in relation to the injected test sediment average at surface loading rates above the bypass rate of 535 L/min/m²

Table 4 shows the results of the sediment scour and re-suspension test for the EF4 unit. The EFO4 was not tested as it was reasonably assumed that scour rates would be lower given that flow bypass occurs at a lower surface loading rate. The scour test involved preloading 10.2 cm of fresh test sediment into

the sedimentation sump of the device. The sediment was placed on a false floor to mimic a device filled to 50% of the maximum recommended sediment storage depth. Clean water was run through the device at five surface loading rates over a 30 minute period. Each flow rate was maintained for 5 minutes with a one minute transition time between flow rates. Effluent samples were collected at one minute sampling intervals and analyzed for Suspended Sediment Concentration (SSC) and PSD by recognized methods. The effluent samples were subsequently adjusted based on the background concentration of the influent water. Typically, the smallest 5% of particles captured during the 40 L/min/m² sediment capture test is also used to adjust the concentration, as per the method described in Bulletin # CETV 2016-09-0001. However, since the composites of effluent concentrations were below the Reporting Detection Limit of the Laser Diffraction PSD methodology, this adjustment was not made. Results showed average adjusted effluent sediment concentrations below 5 mg/L at all tested surface loading rates.

It should be noted that the EF4 starts to internally bypass water at 1135 L/min/m², potentially resulting in the dilution of effluent concentrations, which would not normally occur under typical field conditions because the field influent concentration would contain a much higher sediment concentration than during the lab test. Recalculation of effluent concentrations to account for dilution at surface loading rates above the bypass rate showed sediment effluent concentrations to be below 1.6 mg/L.

Table 4. Scour test adjusted effluent sediment concentration.

Run	Surface loading rate (L/min/m²)	Run time (min)	Background sample concentration (mg/L)	Adjusted effluent suspended sediment concentration (mg/L) a	Average (mg/L)		
		1:00		11.9			
		2:00		7.0			
1	200	3:00	<rdl< td=""><td>4.4</td><td>4.6</td></rdl<>	4.4	4.6		
'	200	4:00	\KDL	2.2	7.0		
		5:00		1.0			
		6:00		1.2			
		7:00		1.1			
		8:00		0.9			
2	800	9:00	<rdl< td=""><td>0.6</td><td>0.7</td></rdl<>	0.6	0.7		
_		10:00		1.4			
		11:00		0.1			
		12:00		0			
		13:00		0			
		14:00		0.1			
3	1400	15:00	<rdl< td=""><td>0</td><td>0</td></rdl<>	0	0		
	1 100	16:00		0			
		17:00		0			
		18:00		0			
		19:00		0.2			
		20:00		0			
4	2000	21:00	1.2	0	0.2		
7	2000	22:00		0.7			
		23:00		0			
		24:00		0.4			

		25:00		0.3	
		26:00		0.4	
г	2600	27:00	1.6	0.7	0.4
3	2600	28:00		0.4	
		29:00		0.2	
		30:00		0.4	

^a The adjusted effluent suspended sediment concentration represents the actual measured effluent concentration minus the background concentration. For more information see <u>Bulletin # CETV 2016-09-0001</u>.

The results of the light liquid re-entrainment test used to evaluate the unit's capacity to prevent re-entrainment of light liquids are reported in Table 5. The test involved preloading 58.3 L (corresponding to a 5 cm depth over the collection sump area of $1.17m^2$) of surrogate low-density polyethylene beads within the oil collection skirt and running clean water through the device continuously at five surface loading rates (200, 800, 1400, 2000, and 2600 L/min/m²). Each flow rate was maintained for 5 minutes with approximately 1 minute transition time between flow rates. The effluent flow was screened to capture all re-entrained pellets throughout the test.

Table 5. Light liquid re-entrainment test results for the EFO4.

Surface		Amount of Beads Re-entrained								
Loading Rate (L/min/m2)	• •		Volume (L) ^a	% of Pre-loaded Mass Re- entrained	% of Pre-loaded Mass Retained					
200	62	0	0	0.00	100					
800	247	168.45	0.3	0.52	99.48					
1400	432	51.88	0.09	0.16	99.83					
2000	617	55.54	0.1	0.17	99.84					
2600	802	19.73	0.035	0.06	99.94					
Total Re-e	Total Re-entrained		0.525	0.91						
Total Retained		32403	57.78		99.09					
Total Loaded		32699	58.3							

^a Determined from bead bulk density of 0.56074 g/cm³

Variances from testing Procedure

The following minor deviations from the *Procedure for Laboratory Testing of Oil-Grit Separators* (Version 3.0, June 2014) have been noted:

1. During the capture test, the 40 L/min/m² and 80 L/min/m² surface loading rates were evaluated over 3 and 2 days respectively due to the long duration needed to feed the required minimum of 11.3 kg of test sediment into the unit at these lower flow rates. Pumps were shut down at the end of each intermediate day, and turned on again the following morning. The target flow rate was re-established within 30 seconds of switching on the pump. This procedure may have allowed sediments to be captured that otherwise may have exited the unit if the test was continuous. On the basis of practical considerations, this variance was approved by the verifier prior to testing.

- 2. During the scour test, the coefficient of variation (COV) for the lowest flow rate tested (200 L/min/m²) was 0.07, which exceeded the specified limit of 0.04 target specified in the OGS Procedure. A pump capable of attaining the highest flow rate of 3036 L/min had difficulty maintaining the lowest flow of 234 L/min but still remained within +/- 10% of the target flow and is viewed as having very little impact on the observed results. Similarly, for the light liquid reentrainment test the COV for the flow rate of the 200 L/min/m² run was 0.049, exceeding the limit of 0.04, but is believed to introduce negligible bias.
- 3. Due to pressure build up in the filters, the runs at 1000 L/min/m² for the Stormceptor® EF4 and 1000 and 1400 L/min/m² for the Stormceptor® EFO4 were slightly shorter than the target. The run times were 54, 59 and 43 minutes respectively, versus targets of 60 and 50 minutes. The final feed samples were timed to coincide with the end of the run. Since >25 lbs of sediment was fed, the shortened time did not invalidate the runs.

Verification

The verification was completed by the Verification Expert, Toronto and Region Conservation Authority, contracted by GLOBE Performance Solutions, using the International Standard ISO 14034:2016 Environmental management -- Environmental technology verification (ETV). Data and information provided by Imbrium Systems Inc. to support the performance claim included the following: Performance test report prepared by Good Harbour Laboratories, and dated September 8, 2017; the report is based on testing completed in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014).

What is ISO 14034:2016 Environmental management -**Environmental technology verification (ETV)?**

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV), and was developed and published by the International Organization for Standardization (ISO). The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

For more information on the Stormceptor® EF and EFO OGS please contact:

Imbrium Systems, Inc. 407 Fairview Drive Whitby, ON LIN 3A9, Canada Tel: 416-960-9900 info@imbriumsystems.com For more information on ISO 14034:2016 / ETV please contact:

GLOBE Performance Solutions World Trade Centre 404 - 999 Canada Place Vancouver, BC V6C 3E2 Canada Tel: 604-695-5018 / Toll Free: 1-855-695-5018 etv@globeperformance.com

Limitation of verification - Registration: GPS-ETV_VR2023-11-15_Imbrium-SC

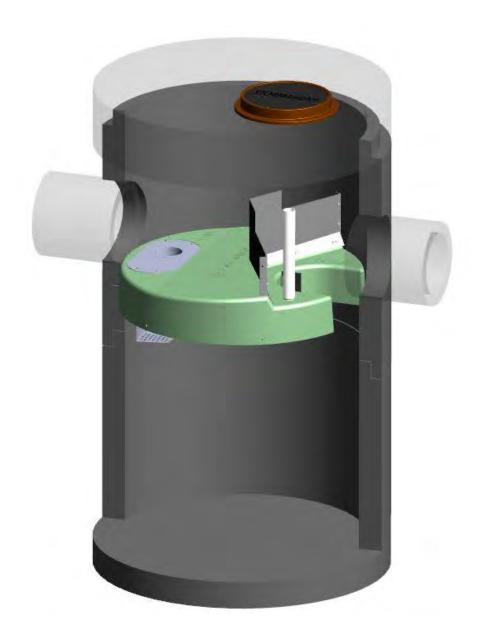
GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

TABLE 1 Stormwater Management Operation, Inspection and Maintenance Report

roject: roject No./Contract No.:	<u>1981 Century Road</u> <u>523654</u>	Inspection Date and Time: Time:
.,	<u>525054</u>	Reason for Inspection:
rime Contractor:		Date of Last Inspection:
nspector:		Weather (24 hours prior to inspection):
spector Qualifications:		Previous Weather
		Conditions at Site:
		Rainfall amount (mm):
onstruction Activities on Site:		Rainfall duration (hours):
eavy Equipment on Site:		Snowmelt amount (mm):

1. Dry Stormwater Management (SWM) Facility

	Maintenance Items (list measures that appear/should appear on SWM Plan)		Condition		Picture Taken	Action(s) Required	Inspector's Comments
_		Pass	Fail	N/A			(include location of SWM measure to be repaired)
	Dimensions: Differ from design or as-built drawing by >10%						
	Side slope erosion: Gullies, ruts or bare soil areas ≥30 cm in length are visible. Evidence of seepage from cell's berms, erosion, or loss of vegetation. Erosion around base and side slopes						
Perimeter	Damage/ inlet or outlet obstruction due to Wildlife: Evidence of animal activities. (e.g., erosion rills, animal borrows, local sinking, ruts, bare soil areas, visible nest)						
	Trash/Vandalistm: Trash is visible and impairing aesthetics or function of the bio-retention cell. Evidence of presence of oil, grease or hydrocarbons.						
.ea	Vegetation cover: Less than 80% of planting area is covered by living vegetation						
Planting Area	Vegetation condition: Vegetation is over-grown or over-crowded and is impairing aesthetics or obstructing sight lines needed for safety						
Pla	Vegetation composition: More than 50% of the vegetation is undesirable (e.g. weeds, invasive)						
Pipe and Overflow Outlets	$\label{eq:Storm pipe obstructions:} Structural damage, sediment clog or vegetation roots are visible and reducing conveyance capacity of the pipe by \geq33\%$.}$						
Pipe and Overflow Outlets	Overflow outlet obstruction: Structural damage, sediment/trash/debris is obstructing outflow						
	Other : (specify)						


2. Stormceptor Model EFO6

Maintenance Items	Condition			Picture Taken	Action(s) Required	Inspector's Comments
		Fail	N/A			(include location of SWM measure to be repaired)
Stormceptor Model EFO6						
Operation and Maintenance Guide Followed						
Other:						
(specify)						
Depth Monitoring						
Peptil Monitoring	_	_				
ediment depth monitoring carried out?						

	Stormceptor Model EF Operation and Maintenance Guide Follow					
	Oth (speci					
Sedimen	t Depth Monitoring	•	•	•	•	
	Sediment depth monitoring carried out?	[
			iment Dep	th (m)	Ī	
	1. Dry SWM Facili 2. Stormceptor Model EFC					
	Summary Overall Condition of SWM plan					
	Acceptable Unacceptable					
	General Comments Including Dates of any Maintenance	e That Mu	st Be Co	mpleted		

Owner's Manual

Stormceptor is protected by one or more of the following patents:

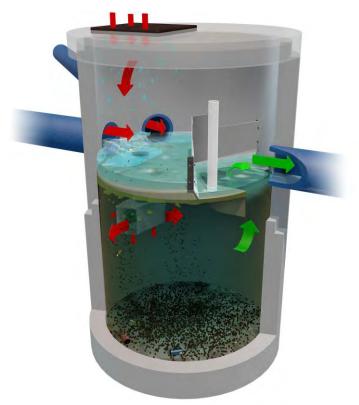
Canadian Patent No. 2,137,942 Canadian Patent No. 2,180,305 Canadian Patent No. 2,327,768 Canadian Patent No. 2,694,159 Canadian Patent No. 2,697,287 U.S. Patent No. 6,068,765 U.S. Patent No. 6,371,690 U.S. Patent No. 7,582,216 U.S. Patent No. 7,666,303 Australia Patent No. 693.164 Australia Patent No. 729,096 Australia Patent No. 2008,279,378 Australia Patent No. 2008,288,900 Japanese Patent No. 5,997,750 Japanese Patent No. 5,555,160 Korean Patent No. 0519212 Korean Patent No. 1451593 New Zealand Patent No. 583,008 New Zealand Patent No. 583,583

South African Patent No. 2010/00682 South African Patent No. 2010/01796

Patent pending

Table of Contents:

- 1 Stormceptor EF Overview
- 2 Stormceptor EF Operation, Components
- 3 Stormceptor EF Model Details
- 4 Stormceptor EF Identification
- **5 Stormceptor EF Inspection & Maintenance**
- **6 Stormceptor Contacts**


OVERVIEW

Stormceptor® EF is a continuation and evolution of the most globally recognized oil grit separator (OGS) stormwater treatment technology - *Stormceptor®*. Also known as a hydrodynamic separator, the enhanced flow Stormceptor EF is a high performing oil grit separator that effectively removes a wide variety of pollutants from stormwater and snowmelt runoff at flow rates higher than the original Stormceptor. Stormceptor EF captures and retains sediment (TSS), free oils, gross pollutants and other pollutants that attach to particles, such as nutrients and metals. Stormceptor EF's patent-pending treatment and scour prevention platform ensures sediment is retained during all rainfall events.

Stormceptor EF offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe, multiple inlet pipes, and/or from the surface through an inlet grate. Stormceptor EF can also serve as a junction structure, accommodate a 90-degree inlet to outlet bend angle, and be modified to ensure performance in submerged conditions. With its scour prevention and internal bypass, Stormceptor EF can be installed online, eliminating the need for costly additional bypass structures.

OPERATION

- Stormwater enters the Stormceptor upper chamber through the inlet pipe(s) or a surface inlet grate. A specially designed insert reduces the influent velocity by creating a pond upstream of the insert's weir. Sediment particles immediately begin to settle. Swirling flow sweeps water, sediment, and floatables across the sloped surface of the insert to the inlet opening of the drop pipe, where a strong vortex draws water, sediment, oil, and debris down the drop pipe cone.
- Influent exits the cone into the drop pipe duct. The duct has two large rectangular outlet openings as well as perforations in the backside and floor of the duct. Influent is diffused through these various opening in multiple directions and at low velocity into the lower chamber.
- Free oils and other floatables rise up within the channel surrounding the central riser pipe and are trapped beneath the insert, while sediment settles to the sump. Pollutants are retained for later removal during maintenance cleaning.
- Treated effluent enters the outlet riser, moves upward, and discharges to the top side of the insert downstream of the weir, where it flows out the outlet pipe.
- During intense storm events with very high influent flow rates, the pond height on the upstream side of the weir may exceed the height of the weir, and the excess flow passes over the top of the weir to the downstream side of the insert, and exits through the outlet pipe. This internal bypass feature allows for in-line installation, avoiding the cost of additional bypass structures. During bypass, the pond separates sediment from all incoming flows, while full treatment in the lower chamber continues at the maximum flow rate.
- Stormceptor EF's patent-pending enhanced flow and scour prevention technology ensures pollutants are captured and retained, allowing excess flows to bypass during infrequent, high intensity storms.

COMPONENTS

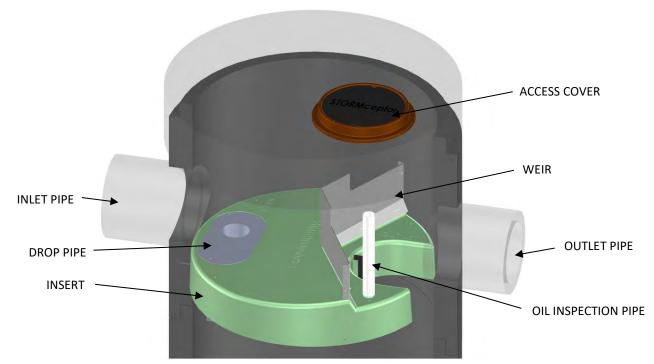


Figure 1

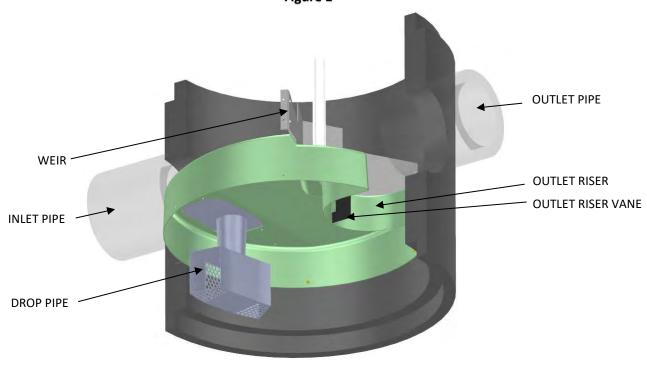
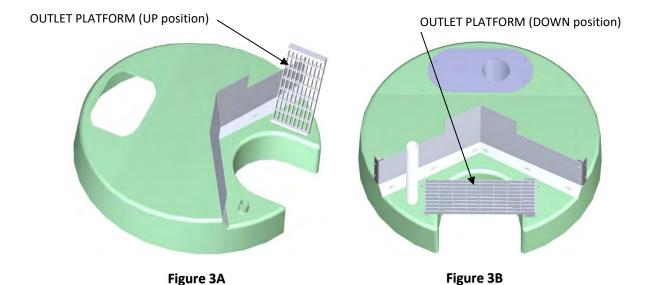



Figure 2

- Insert separates vessel into upper and lower chambers, and provides double-wall containment of hydrocarbons
- Weir creates stormwater ponding and driving head on top side of insert
- **Drop pipe** conveys stormwater and pollutants into the lower chamber
- **Outlet riser** conveys treated stormwater from the lower chamber to the outlet pipe, and provides primary inspection and maintenance access into the lower chamber
- Outlet riser vane prevents formation of a vortex in the outlet riser during high flow rate conditions
- Outlet platform (optional) safety platform in the event of manned entry into the unit
- Oil inspection pipe primary access for measuring oil depth

PRODUCT DETAILS

METRIC DIMENSIONS AND CAPACITIES

Table 1

Stormceptor Model	Inside Diameter (m)	Minimum Surface to Outlet Invert Depth (mm)	Depth Below Outlet Pipe Invert (mm)	Wet Volume (L)	Sediment Capacity ¹ (m³)	Hydrocarbon Storage Capacity ² (L)	Maximum Flow Rate into Lower Chamber ³ (L/s)	Peak Conveyance Flow Rate ⁴ (L/s)
EF4 / EFO4	1.22	1219/914	1524	1780	1.19	265	22.1 / 10.4	425
EF5/EFO5	1.52	1219	1626	3150	1.95	420	34.6 / 16.2	708
EF6 / EFO6	1.83	1219	1930	5070	3.47	610	49.6 / 23.4	990
EF8 / EFO8	2.44	1219	2591	12090	8.78	1070	88.3 / 41.6	1700
EF10 / EFO10	3.05	1219	3251	23700	17.79	1670	138 / 65	2830
EF12 / EFO12	3.66	1219	3886	40800	31.22	2475	198.7 / 93.7	2830

¹ Sediment Capacity is measured from the floor to the bottom of the drop pipe duct. Sediment Capacity can be increased to accommodate specific site designs and pollutant loads. Contact your local representative for assistance.

U.S. DIMENSIONS AND CAPACITIES

Table 2

Stormceptor Model	Inside Diameter (ft)	Minimum Surface to Outlet Invert Depth	Depth Below Outlet Pipe Invert	Wet Volume (gal)	Sediment Capacity ¹ (ft³)	Hydrocarbon Storage Capacity ² (gal)	Maximum Flow Rate into Lower Chamber ³	Peak Conveyance Flow Rate ⁴ (cfs)
	,	(in)	(in)	10.7	, , ,	10.	(cfs)	(* - 7
EF4 / EFO4	4	48 / 36	60	471	42	70	0.78 / 0.37	15
EF5 / EFO5	5	48	64	833	75	111	1.22 / 0.57	25
EF6 / EFO6	6	48	76	1339	123	160	1.75 / 0.83	35
EF8 / EFO8	8	48	102	3194	310	280	3.12 / 1.47	60
EF10 / EFO10	10	48	128	6261	628	440	4.87 / 2.30	100
EF12 / EFO12	12	48	153	10779	1103	655	7.02 / 3.31	100

¹Sediment Capacity is measured from the floor to the bottom of the drop pipe duct. Sediment Capacity can be increased to accommodate specific site designs and pollutant loads. Contact your local representative for assistance.

² Hydrocarbon Storage Capacity is measured from the bottom of the outlet riser to the underside of the insert. Hydrocarbon Storage Capacity can be increased to accommodate specific site designs and pollutant loads. Contact your local representative for assistance.

³ EF Maximum Flow Rate into Lower Chamber is based on a maximum surface loading rate (SLR) into the lower chamber of 1135 L/min/m². EFO Maximum Flow Rate into Lower Chamber is based on a maximum surface loading rate (SLR) into the lower chamber of 535 L/min/m².

 $^{^{4}}$ Peak Conveyance Flow Rate is limited by a maximum velocity of 1.5 m/s.

² Hydrocarbon Storage Capacity is measured from the bottom of the outlet riser to the underside of the insert. Hydrocarbon Storage Capacity can be increased to accommodate specific site designs and pollutant loads. Contact your local representative for assistance.

³EF Maximum Flow Rate into Lower Chamber is based on a maximum surface loading rate (SLR) into the lower chamber of 27.9 gpm/ft². EFO Maximum Flow Rate into Lower Chamber is based on a maximum surface loading rate (SLR) into the lower chamber of 13.1 gpm/ft².

⁴Peak Conveyance Flow Rate is limited by a maximum velocity of 5 fps.

IDENTIFICATION

Each Stormceptor EF/EFO unit is easily identifiable by the trade name *Stormceptor*® embossed on the access cover at grade as shown in **Figure 3**. The tradename *Stormceptor*® is also embossed on the top of the insert upstream of the weir as shown in **Figure 3**.



Figure 4

The specific Stormceptor EF/EFO model number is identified on the top of the aluminum Drop Pipe as shown in **Figure 4**. The unit serial number is identified on the top of the insert upstream of the weir as shown in **Figure 4**.

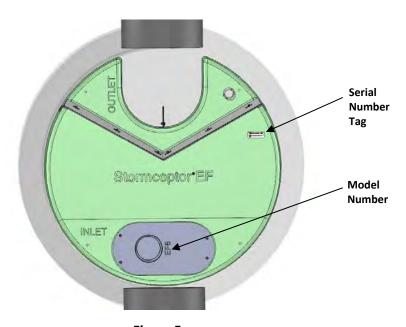


Figure 5

INSPECTION AND MAINTENANCE

It is very important to perform regular inspection and maintenance. Regular inspection and maintenance ensures maximum operation efficiency, keeps maintenance costs low, and provides continued of natural waterways.

Quick Reference

- Typical inspection and maintenance is performed from grade
- Remove manhole cover(s) or inlet grate to access insert and lower chamber
 NOTE: EF4/EFO4 & EF5/EFO5 require the removal of a flow deflector beneath inlet grate
- Use Sludge Judge® or similar sediment probe to check sediment depth through the outlet riser
- Oil dipstick can be inserted through the oil inspection pipe
- Visually inspect the **insert** for debris, remove debris if present
- Visually inspect the drop pipe opening for blockage, remove blockage if present
- Visually inspect insert and weir for damage, schedule repair if needed
- Insert vacuum hose and jetting wand through the outlet riser and extract sediment and floatables
- Replace flow deflector (EF4/EFO4 & EF5/EFO5), inlet grate, and cover(s)
- NOTE: If the unit has an outlet platform, the outlet platform is typically in the UP position (see Figure 3A) for normal treatment conditions, and for inspection and maintenance. If manned entry into the unit is required, the outlet platform must first be placed in the DOWN position (see Figure 3B). After manned entry is completed, return the outlet platform to the UP position for treatment.

When is inspection needed?

- Post-construction inspection is required prior to putting the Stormceptor into service.
- o Routine inspections are recommended during the first year of operation to accurately assess pollutant accumulation.
- o Inspection frequency in subsequent years is based on the maintenance plan developed in the first year.
- o Inspections should also be performed immediately after oil, fuel, or other chemical spills.

What equipment is typically required for inspection?

- Manhole access cover lifting tool
- Oil dipstick / Sediment probe with ball valve (typically ¾-inch to 1-inch diameter)
- o Flashlight
- o Camera
- Data log / Inspection Report
- Safety cones and caution tape
- o Hard hat, safety shoes, safety glasses, and chemical-resistant gloves

When is maintenance cleaning needed?

- o If the post-construction inspection indicates presence of construction sediment of a depth greater than a few inches, maintenance is recommended at that time.
- o For optimum performance and normal operation the unit should be cleaned out once the sediment depth reaches the recommended maintenance sediment depth, see **Table 3**.
- o Maintain immediately after an oil, fuel, or other chemical spill.

Table 3

Recommended Sediment Depths for					
Maintenance Service*					
MODEL	Sediment Depth				
MODEL	(in/mm)				
EF4 / EFO4	8 / 203				
EF5 / EFO5	12 /305				
EF6 / EFO6	12 /305				
EF8 / EFO8	24 / 610				
EF10 / EFO10	24 / 610				
EF12 / EFO12	24 / 610				

^{*} Based on a minimum distance of 41 inches (1,041 mm) from bottom of outlet riser to top of sediment bed

The frequency of inspection and maintenance may need to be adjusted based on site conditions to ensure the unit is operating and performing as intended. Maintenance costs will vary based on the size of the unit, site conditions, local requirements, disposal costs, and transportation distance.

What equipment is typically required for maintenance?

- Vacuum truck equipped with water hose and jet nozzle
- Small pump and tubing for oil removal
- o Manhole access cover lifting tool
- Oil dipstick / Sediment probe with ball valve (typically ¾-inch to 1-inch diameter)
- o Flashlight
- o Camera
- Data log / Inspection Report
- o Safety cones
- Hard hats, safety shoes, safety glasses, chemical-resistant gloves, and hearing protection for service providers
- Gas analyzer, respiratory gear, and safety harness for specially trained personnel if confined space entry is required (adhere to all OSHA / CCOSH standards)

What conditions can compromise Stormceptor performance?

- o Presence of construction sediment and debris in the unit prior to activation
- o Excessive sediment depth beyond the recommended maintenance depth
- Oil spill in excess of the oil storage capacity
- Clogging or restriction of the drop pipe inlet opening with debris
- o Downstream blockage that results in a backwater condition

Maintenance Procedures

- Maintenance should be conducted during dry weather conditions when no flow is entering the unit.
- Stormceptor is maintained from grade through a standard surface manhole access cover or inlet grate.
- In the case of submerged or tailwater conditions, extra measures are likely required, such as plugging the inlet and outlet pipes prior to conducting maintenance.
- Inspection and maintenance of upstream catch basins and other stormwater conveyance structures is also recommended to extend the time between future maintenance cycles.

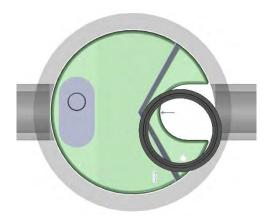


Figure 6

- Sediment depth inspections are performed through the **Outlet Riser** and oil presence can be determined through the **Oil Inspection Pipe**.
- Oil presence and sediment depth are determined by inserting a Sludge Judge® or measuring stick to quantify the pollutant depths.

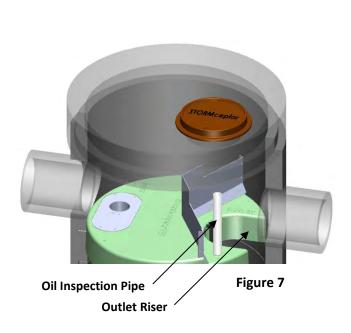


Figure 8

- Visually inspect the insert, weir, and drop pipe inlet opening to ensure there is no damage or blockage.
- **NOTE:** If the unit has an **outlet platform**, the outlet platform is typically in the UP position (see Figure 3A) for normal treatment conditions, and for inspection and maintenance. If manned entry into the unit is required, the outlet platform must first be placed in the DOWN position (see Figure 3B). After manned entry is completed, return the outlet platform to the UP position for treatment.

• When maintenance is required, a standard vacuum truck is used to remove the pollutants from the lower chamber of the unit through the **Outlet Riser**.

Figure 9

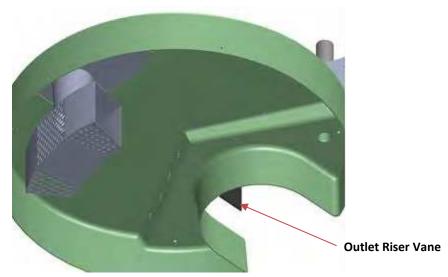


Figure 10

NOTE: The Outlet Riser Vane is durable and flexible and designed to allow maintenance activities with minimal, if any, interference.

Removable Flow Deflector

Top grated inlets for the Stormceptor EF4/EFO4 & EF5/EFO5 models require a removable flow deflector staged underneath a 24-inch x 24-inch (600 mm x 600 mm) square inlet grate to direct flow towards the inlet side of the insert, and avoid flow and pollutants from entering the outlet side of the insert from grade. The EF6/EFO6 and larger models do not require the flow deflector.

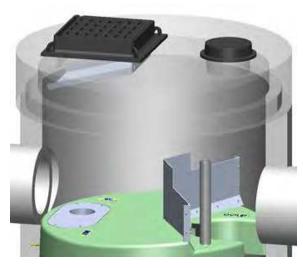
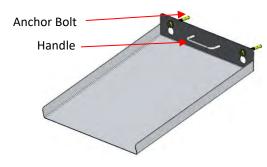



Figure 11

How to Remove:

- 1. Loosen anchor bolts
- 2. Pull up and out using the handle

Removable Flow Deflector

Hydrocarbon Spills

Stormceptor is often installed on high pollutant load hotspot sites with vehicular traffic where hydrocarbon spill potential exists. Should a spill occur, or presence of oil be identified within a Stormceptor EF/EFO, it should be cleaned immediately by a licensed liquid waste hauler.

Disposal

Maintenance providers are to follow all federal, state/ provincial, and local requirements for disposal of material.

Oil Sheens

When oil is present in stormwater runoff, a sheen may be noticeable at the Stormceptor outlet. An oil rainbow or sheen can be noticeable at very low oil concentrations (< 10 mg/L). Despite the appearance of a sheen, Stormceptor EF/EFO may still be functioning as intended.

Oil Level Alarm

To mitigate spill liability with 24/7 detection, an electronic monitoring system can be employed to trigger a visual and audible alarm when a pre-set level of oil is captured within the lower chamber or when an oil spill occurs. The oil level alarm is available as an optional feature to include with Stormceptor EF/EFO as shown in **Figure 11**. For additional details about the Oil Level Alarm please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-systems.

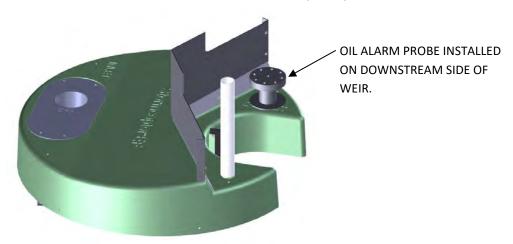


Figure 12

Replacement Parts

Stormceptor has no moving parts to wear out. Therefore inspection and maintenance activities are generally focused on pollutant removal. Since there are no moving parts during operation in a Stormceptor, broken, damaged, or worn parts are not typically encountered. However, if replacement parts are necessary, they may be purchased by contacting your local Stormceptor representative.

Stormceptor Inspection and Maintenance Log

Stormceptor Model No:	
Serial Number:	
Installation Date:	
Location Description of Unit:	
Recommended Sediment Maintenance Depth:	

DATE	SEDIMENT DEPTH (inch or mm)	OIL DEPTH (inch or mm)	SERVICE REQUIRED (Yes / No)	MAINTENANCE PERFORMED	MAINTENANCE PROVIDER	COMMENTS

Other Comments:

Contact Information

Questions regarding Stormceptor EF/EFO can be addressed by contacting your local Imbrium representative or by visiting our website at www.imbriumsystems.com.

Imbrium Systems Inc. & Imbrium Systems LLC

Canada 1-416-960-9900 / 1-800-565-4801 United States 1-301-279-8827 / 1-888-279-8826 International +1-416-960-9900 / +1-301-279-8827

www.imbriumsystems.com info@imbriumsystems.com