Stantec Consulting Ltd.

Orleans II Frontage Phase 3 - 2025 Mer Bleue Road

Site Servicing and Stormwater Management Report

Prepared for:

SmartREIT (Orleans II) Inc. & Mer Bleue

Shopping Centres Limited

Prepared by:

Stantec Consulting Ltd.

July 22, 2025

Project/File: 160402122

Revision Record

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
0	Site Plan Control Application	MW/ZW	2025- 04-16	KS	2025- 04-16	DT	2025- 04-21
1	Address 1 st Submission City Comments	MW/ZW	2025- 07-21	KS	2025- 07-22	DT	2025- 07-22

Disclaimer

Prepared by:

The conclusions in the Report titled Orleans II Frontage Phase 3 - 2025 Mer Bleue Road are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from SmartREIT (Orleans II) Inc. & Mer Bleue Shopping Centres Limited (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

	Mirchael MM.	
	Signature	_
	Michael Wu, E.I.T. and Ziyi Wang, B.Eng.	_
Reviewed by:	horto	
	Signature	_
	Dustin Thiffault, P.Eng.	PROFESSIONAL CO
Approved by:	Konaddla	K.L. SMADELLA
	Signature	2025-07-23
	Karin Smadella, P.Eng.	TO MINCE OF OMTARIO

Table of Contents

1	Introduction	
2	Background	2.2
3	Water Supply Servicing	1
3.1	Background	1
3.2	Water Demands	1
3.3	Boundary Conditions	1
3.4	Summary of Findings	
	Westweeten Oundaling	_
1	Wastewater Servicing	
1.1	Background	
1.2	Design Criteria	
1.3	Proposed Servicing	3
5	Stormwater Management	5
5.1	Objectives	5
5.2	SWM Criteria and Constraints	5
5.3	Stormwater Management	6
5.3.1	Allowable Release Rate	6
5.3.2	Proposed Stormwater Management Plan	6
5.3.3	Modeling Rationale	
5.3.4	Input Parameters	9
5.3.5	Model Results	
5.3.6	Results	
5.4	Water Quality Control	15
6	Grading and Drainage	
7	Utilities	
3	Approvals	16
9	Erosion Control During Construction	
10	Geotechnical Investigation	
11	Conclusions	
11.1	Water Servicing	
11.2	Sanitary Servicing	19
11.3	Stormwater Servicing	19
11.4	Grading	19
11.5	Utilities	19
11.6	Approvals/Permits	19
ist of	Tables	
	5.1: Target Release Rates	6
	5.2: General Subcatchment Parameters	
	5.3: Subcatchment Parameters	
	5.4: Storage Node Parameters	
	5.5: Orifice Parameters	
	5.6: Outlet Parameters	
	5.7: 3 Hour Chicago Event Peak Discharge Rates	
	5.8: Modeled Hydraulic Grade Line (HGL) Results	
	5.9: Maximum Surface Water Depths	
	5.10: Summary of Overall Site Release Rates	
ı able b	5.11: Storage HGL and Volume	15

Orleans II Frontage Phase 3 - 2025 Mer Bleue Road Table of Contents

Table 5.12: Quantity Control Storage – 100 Year Event
List of Figures
Figure 1.1: Location Plan
Figure 5.1: Schematic Representing Model Object Roles
Figure 5.2: Location of MH EXSTM13
List of Appendices Appendix A Water Servicing A.1 Domestic Water Demands A.2 Fire Flow Demands (2020 FUS) A.3 Hydraulic Boundary Conditions Appendix B Wastewater Servicing B.1 Sanitary Sewer Design Sheet
B.2 Background Report Sanitary Excerpts
Appendix C Stormwater Management
C.1 Storm Sewer Design Sheet
C.2 MRM Roof Storage Calculations
C.3 Sample PCSWMM Model Output (100-yr 3hr Chicago)
C.4 Background Report Storm Excerpts
C.5 StormTech Sizing Report

1 Introduction

Stantec Consulting Ltd. has been retained by SmartREIT (Orleans II) Inc. & Mer Bleue Shopping Centres Limited to prepare a servicing study in support of the Site Plan Control (SPC) application for Phase 3 of the Orleans II Frontage Lands commercial development located at 2025 Mer Bleue Road. The commercial site is situated in the southeast corner of the intersection of Innes Road and Mer Bleue Road within the City of Ottawa and is bound on the east by Noella Leclair Way, Roger Pharand Street to the south, as shown in the figure below.

Figure 1.1: Location Plan

The commercial development site measures 5.3 ha in area and is developed in phases, with Phases 1 and 2 already approved and constructed. As the final phase of the commercial block development, Phase 3 measures 1.8 ha in area and will include a commercial building, space for a future commercial building, and completion of the parking area and servicing for the overall commercial block development.

This Site Servicing and Stormwater Management report has been prepared to support Phase 3 of the development. The intent of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the background studies noted in **Section 2.0**, and as outlined in consultation with City of Ottawa staff.

2 Background

Documents referenced in preparation of the design for Phase 3 of the Orleans II Frontage Lands commercial development include:

- Geotechnical Investigation Proposed Commercial Development 2025 Mer Bleue Road Phase 2, Paterson Group, September 6, 2024
- Phase 1 Environmental Site Assessment, Part of 2025 Mer Bleue Road, Paterson Group,
 September 18, 2024
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012, and all subsequent Technical Bulletins
- City of Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010, and all subsequent Technical Bulletins
- Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update, Stantec Consulting Ltd., July 2006
- Pharand Lands, Innes Shopping Centres Limited City of Ottawa, Stantec Consulting Ltd.,
 February 22, 2012
- Site Servicing and Stormwater Management Report Orleans II Development 2025 Mer Bleue Road – Phase 1, Stantec Consulting Ltd., March 7, 2017
- Site Servicing and Stormwater Management Report Orleans II Development 2025 Mer Bleue Road – Phase 2, Stantec Consulting Ltd., March 8, 2018

()

3 Water Supply Servicing

3.1 Background

The proposed development is the final phase of the commercial site plan development at 2025 Mer Bleue Road. The site location is outlined in **Figure 1.1**. The ultimate development of this phase will include two commercial buildings, above ground parking areas and associated servicing. The commercial buildings will be serviced by a watermain connection to the existing 305 mm watermain within Roger Pharand Street. A 150 mm watermain will also be extended from the existing private watermain servicing to allow for installation of a fire hydrant on the north side of the proposed buildings. The full development site is fed by the 305 mm watermain in Roger Pharand which is fed from distribution mains and feedermains in Innes Road, Mer Bleue Road and Noella Leclair Way.

The site is located within the City's Pressure Zone 2E. Proposed ground elevations of the site vary from approximately 89.8 m to 88.2 m. Under normal operating conditions, hydraulic gradelines vary from approximately 127.8 m to 130.2 m based on boundary conditions provided by the City of Ottawa (see **Appendix A.3**).

3.2 Water Demands

Water demands for the development were estimated using the Ministry of Environment's Design Guidelines for Drinking Water Systems (2008) and the City of Ottawa's Water Distribution Design Guidelines (2010).

A demand of 2,500 L/1,000m²/day for commercial shopping space was used to estimate water demands for the development site. See **Appendix A.1** for detailed domestic water demand estimates.

The average day demand (AVDY) for Phase 3 of the development was determined to be 0.2 L/s. The maximum daily demand (MXDY) is 1.5 times the AVDY (commercial property), which totals 0.3 L/s. The peak hour demand (PKHR) is 1.8 times the MXDY, totaling 0.5 L/s.

To determine the ultimate serviceability of this site, ordinary construction for buildings S2 and the future building are considered in the assessment for fire flow requirements according to the FUS Guidelines. The buildings have been considered as one area for a conservative analysis. Both building S2 and future building will be equipped with an automatic sprinkler system conforming to NFPA 13 with a Combustible occupancy charge due to their commercial use. Based on calculations per the FUS Guidelines (**Appendix A.2**), the maximum required fire flow is 8,000 L/min (133 L/s) for this conservative scenario.

3.3 Boundary Conditions

Boundary conditions were requested to the City of Ottawa based on the above domestic demands and fire flow. Boundary conditions provided from the City of Ottawa demonstrate that adequate domestic flows are available for the subject site, with on-site pressures ranging from **55.8 psi** to **59.1 psi** under normal operating conditions. These values are within the normal operating pressure range as defined by MECP and City of

Orleans II Frontage Phase 3 - 2025 Mer Bleue Road

3 Water Supply Servicing

Ottawa design guidelines (50 to 70 psi and not less than 40 psi). Boundary conditions provided by the City of Ottawa are included in **Appendix A.3**.

Boundary conditions provided by the City of Ottawa indicate that fire flows of 8,000 L/min (133 L/s) can be delivered while maintaining an operating pressure of 55.5 psi, which is well above the minimum 20 psi required.

3.4 Summary of Findings

Given the boundary conditions and the design analysis, the proposed water servicing for this development will adequately meet the domestic demands, operating pressures and emergency fire flow requirements for the site.

()

4 Wastewater Servicing

4.1 Background

The proposed development is the final phase of the commercial development at 2025 Mer Bleue Road. The site is located on the east side of Mer Bleue Road and south of the intersection with Innes Road as identified in **Figure 1.1**. Wastewater servicing for this phase of the development will be extended from the existing 250mm diameter private sewer connected to Roger Pharand Street within the private access (**Drawing SSP-1**). A new 250 mm sewer will extend along the south side of the proposed and future buildings and sewer stubs will be dropped off for the building connections.

The private collection system for the site discharges to the municipal system in Roger Pharand Street and is ultimately serviced by to the Tenth Line Road pumping station.

4.2 Design Criteria

As outlined in the City of Ottawa Sewer Design Guidelines and the Ministry of Environment Conservation and Parks Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Minimum size 200 mm dia. for residential areas, 250 mm for commercial areas
- Average Wastewater Generation 28,000 L/ha/day
- Peak Factor 1.5 (Harmon's) (Commercial)
- Extraneous Flow Allowance 0.28 l/s/ha
- Manhole Spacing 120 m
- Minimum Cover 2.5 m

4.3 Proposed Servicing

The proposed site will be serviced by gravity sewers which will direct the wastewater flows from the entire development site (approx. 2.4 L/s with allowance for infiltration) to the existing 250 mm diameter sanitary sewer. The proposed collection system is detailed on **Drawing SA-1**. A sanitary sewer design sheet is included in **Appendix B.1**. Full port backwater valves are to be installed on all sanitary services within the

Orleans II Frontage Phase 3 - 2025 Mer Bleue Road

4 Wastewater Servicing

site to prevent any potential surcharge from the downstream sanitary sewer from impacting the proposed property.

()

5 Stormwater Management

5.1 Objectives

The objective of this stormwater management plan is to determine the measures necessary to control the quantity/quality of stormwater released from the proposed development to criteria established by the *Pharand Lands – Innes Shopping Centres Limited – Serviceability Study* Stantec, February 2012) for the region, and to provide sufficient detail for approval and construction.

The proposed development is Phase 3 of the commercial development at 2025 Mer Bleue Road depicted in **Figure 1.1**.

5.2 SWM Criteria and Constraints

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), and through consultation with City of Ottawa staff. The following summarizes the criteria, with the source of each criterion indicated in brackets:

General

- Use of the dual drainage principle (City of Ottawa).
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff. (City of Ottawa).
- Assess impact of 100-year event outlined in the City of Ottawa Sewer Design Guidelines on major
 & minor drainage system (City of Ottawa).
- Enhanced quality control (80 % TSS removal) to be provided on-site for the development.

Storm Sewer & Inlet Controls

- Stormwater discharge from the commercial development to be directed to the existing 1350mm diameter storm sewer on Noella Leclair Way (City of Ottawa).
- Minor system inflow to be restricted for all contributing areas to 50 L/s/ha (Pharand Lands Serviceability Study).
- 100-year HGL boundary condition at the site outlet sewer of 81.342 m (BCIP Report, Appendix I for node W19).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing (City of Ottawa).

Surface Storage & Overland Flow

Building openings to be a minimum of 0.30 m above the 100-year water level (City of Ottawa).

- Site to provide minimum storage of 200 m³/ha or sufficient storage to contain 100-year storm event on-site, whichever is greater (Pharand Lands Serviceability Study).
- Public Road storage to be maximized where possible to provide 130 m³/ha of storage (Pharand Lands Serviceability Study).
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35 m (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

5.3 Stormwater Management

5.3.1 Allowable Release Rate

Based on background information, the peak post-development discharge from the entirety of the development area to the minor system is to be limited to 50 L/s/ha of contributing area. Peak post-development discharge from municipal Rights-of-Way within the development area are to be limited to 100 L/s/ha. Peak release rates for the current phase, existing tributary areas and future developments are summarized in **Table 5.1** below and are detailed in the Phase 1 report excerpts attached in **Appendix C.4** and depicted on **Drawing SD-1**:

Development Site	Area (ha)	Target Flow Rate (L/s)
Phase 1 - Private	2.718	135.9
Phase 1 – Public	1.294	129.4
Phase 2 & 3	2.508	125.4
Future Block E of Noella Leclair	1.826	91.3
Existing Car Dealership (EX104A)	4.205	214.235 (Per CIMA Stormwater Management Report)
Private Site Plan Blocks S of Roger Pharand	11.189	559.5
Subdivision Public Roadways	1.434	143.4
Future External (South of Vanguard Road)	16.830	841.5
Total	41.464	2240.6

Table 5.1: Target Release Rates

5.3.2 Proposed Stormwater Management Plan

The proposed storm sewer collection system for Phase 3 of the development comprises of a network of 675 mm to 900 mm diameter storm sewers that will convey discharge from the full site into the municipal storm sewer collection system within the adjacent public roadways, as shown in **Drawings SSP-1** and **SD-1**.

Orleans II Frontage Phase 3 - 2025 Mer Bleue Road

5 Stormwater Management

Quality control of stormwater runoff for the commercial development is being provided by a Model STC 750 Stormceptor, designed to provide "Enhanced" level of treatment (80 % TSS Removal) prior to discharging into the 1350 mm diameter storm sewer on Noella Leclair Way.

As part of Phases 1 and 2 of the development, flows were temporarily stored on a drainage ditch within the Phase 3 parcel. For the Phase 3 development, a new underground storage tank will be constructed, complete with an orifice, for restricting discharge from the site into the Noella Leclair Way storm sewers.

At the south side of the Phase 3 site, roof drains, foundation drains and catch basins will direct drainage to a network of 900 mm diameter storm sewers sized to provide in-pipe storage, before discharge into the municipal 900 mm diameter storm sewer in Roger Pharand Street. The Roger Pharand Street storm sewer ultimately contributes to the 1350 mm storm sewer on Noella Leclair Way.

5.3.3 Modeling Rationale

A comprehensive hydrologic modeling exercise was completed with PCSWMM, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the systems response during various storm events. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). The following assumptions were applied to the detailed model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration,
 Manning's 'n', and depression storage values
- 3-hour Chicago Storm distribution for the 2, 5, and 100-year analysis with static boundary condition at the site outlet to model 'worst-case' scenario in regard to on-site HGLs.
- To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year Chicago storm event at their specified time step.
- Percent imperviousness calculated based on actual soft and hard surfaces on each subcatchment, converted to equivalent Runoff Coefficient using the relationship C = (Imp. x 0.7) + 0.2
- Subcatchment areas are defined from high-point to high-point where sags occur. Subcatchment width (average length of overland sheet flow) determined by dividing subcatchment area by subcatchment length x 2 (length of overland flow path measured from high-point to high-point) for street (double-sided) catchments, and by 225 x the subcatchment area otherwise.
- Number of catchbasins based on servicing plan (Drawing SSP-1)
- Catchbasin inflow restricted with inlet-control devices (ICDs) as necessary to maintain inflow target rate and maximize use of surface storage.
- Surface ponding in sag storage where no well-defined road cross section exists calculated based
 on grading plans (Drawing GP-1). For storage on roads with defined cross-sections, active storage
 was modeled based on actual conduit flow using a cross-section as detailed on Drawing DS-1.

(

7

 The proposed buildings are assumed to have ten roof drains each and equipped with roof drain controls with scuppers at 0.15 m above the roof drains for emergency overflow to restrict discharge into the storm sewers.

5.3.3.1 SWMM Dual Drainage Methodology

The proposed subdivision is modeled in one modeling program as a dual conduit system (see **Figure 5.1**), with: 1) circular conduits representing the sewers & junction nodes representing manholes; 2) irregular conduits using street-shaped cross-sections to represent the sawtoothed overland road network from highpoint to low-point and storage nodes representing catchbasins. The dual drainage systems are connected via orifice link objects (or outlets) from storage node (i.e. CB) to junction (i.e. MH) and represent inlet control devices (ICDs). Subcatchments are linked to the storage node on the surface so that generated hydrographs are directed there firstly.

Storage (CB)

Irregular Conduit (Road)

Junction (MH)

Circular Conduit (Sewer)

Figure 5.1: Schematic Representing Model Object Roles

Storage nodes are used in the model to represent catchbasins as well as major system junctions. For storage nodes representing catchbasins (CBs), the invert of the storage node represents the invert of the CB and the rim of the storage node is the top of the CB plus an additional constant depth of 0.45m represent depth of surface water over the storage node (to be limited to a maximum of 0.35m during the 100-year event). The additional depth has been added to rim elevations to allow routing from one surface storage to the next, and is unused where no spillage occurs between ponding areas. Ponding at low points is represented via storage area-depth curves for each individual storage node to match ponding volumes demonstrated on the grading plan **Drawing GP-1**. Storage volumes exceeding the sag storage available in the node will route through the connected irregular conduit to the next storage node and continue routing through the system until, ultimately, flows either re-enter the minor system or reach the outfall of the major system.

Inlet control devices, as represented by orifice links, use a user-specified diameter and discharge coefficient taken from manufacturer's specifications for the chosen ICD model.

Subcatchment imperviousness was calculated via impervious area measured from Drawing SD-1.

5.3.3.2 Boundary Conditions

The detailed PCSWMM hydrology and the proposed storm sewers were used to assess the peak inflows and hydraulic grade line (HGL) for the site. All storm events used to demonstrate adherence to SWM target outflow rates for the site were run with a free-flowing outlet condition to be conservative with respect to the maximum expected release rate from the site. Within previous reports for the region, a fixed backwater condition was used at the obvert of the receiving 1800 mm diameter sewer within Wildflower Drive. As this elevation is below the invert of the 1350 mm sewer outgoing from the subject site, the 1350 mm sewer was considered as free flowing for the purposes of this model.

5.3.4 Input Parameters

Drawing SD-1 summarizes the discretized subcatchments used in the analysis of the proposed development and outlines the major overland flow paths. The grading plans are also enclosed for review.

Appendices C.2 and C.3 summarize the modeling input parameters and results for the subject area; an example input and output file are provided for the 100-year 3hr Chicago storm. For all other input files and results of storm scenarios, please examine the electronic model files provided as part of the submission package. This analysis was performed using PCSWMM, which is a front-end GUI to the EPA-SWMM engine. Model files can be examined in any program which can read EPA-SWMM files version 5.2.4.

5.3.4.1 Hydrologic Parameters

Table 5.2 presents the general subcatchment parameters used:

Table 5.2: General Subcatchment Parameters

Parameter	Value
Infiltration Method	Horton
Max. Infil. Rate (mm/hr)	76.2
Min. Infil. Rate (mm/hr)	13.2
Decay Constant (1/hr)	4.14
N Impervious	0.013
N Pervious	0.25
Dstore Imperv. (mm)	1.57
Dstore perv. (mm)	4.67
Zero Imperv. (%)	0

Table 5.3 presents the individual parameters that vary for each of the proposed subcatchments.

Table 5.3: Subcatchment Parameters

Name	Outlet	Area (ha)	Width (m)	Slope (%)	Imperv. (%)
C101A	CB101A-S	0.557	125.492	2.0	94.3

Name	Outlet	Area (ha)	Width (m)	Slope (%)	Imperv. (%)
C102A	CB102A-S	0.421	94.929	2.0	98.6
C102B	CB102B-S	0.248	55.969	2.0	95.7
C103A	CB103A-S	0.031	7.126	2.0	100.0
C103B	CB103B-S	0.026	5.872	2.0	100.0
C105A	CB105A-S	0.048	10.817	2.0	100.0
C105B	CB105B-S	0.019	4.454	2.0	100.0
R104A	R104A-S	0.360	81.076	1.5	100.0
R104B	R104A-S	0.004	0.987	1.5	100.0
R106A	R106A-S	0.262	59.019	1.5	100.0
UNC-1	100A	0.013	2.947	2.0	100.0
UNC-2	101A-1	0.038	8.528	2.0	68.6
UNC-3	103A-1	0.113	25.427	2.0	48.6
UNC-4	203B	0.039	8.691	2.0	70.0
TOTAL		2.183			94.0

Table 5.4 summarizes the storage node parameters used in the model. Storage curves for each node have been created based on volumes presented for each individual ponding area within **Drawing GP-1**. Rim elevations for each node correspond to the rim elevation of the associated area's catchbasin plus maximum depth of storage plus an additional buffer depth to allow for demonstration of overland flow in the climate change event scenario. The buffer is unused during other modeled events. Storage curves noted as 'functional' are set not to provide any additional storage for the node, as storage will occur within the major system conduit (transect) connecting the storage nodes within the model. Storage curves for roof areas are based on roof design spreadsheets included as **Appendix C.1**.

Table 5.4: Storage Node Parameters

Name	Invert	Rim	Depth	Storage Curve	Curve Name
CB101A-S	87.27	89	1.73	TABULAR	CB101A-V
CB102A-S	86.93	88.66	1.73	TABULAR	CB102A-V
CB102B-S	86.82	88.55	1.73	TABULAR	CB102B-V
CB103A-S	84.8	88.58	3.78	TABULAR	CB103A-V
CB103B-S	87.38	88.76	1.38	TABULAR	CB103B-V
CB105A-S	87.52	88.9	1.38	TABULAR	CB105A-V
CB105B-S	84.9	88.38	3.48	TABULAR	CB103B-V
R104A-S	103	103.3	0.15	TABULAR	R104A-V
R106A-S	103	103.3	0.15	TABULAR	R106A-V
SU7	84.72	88	3.28	TABULAR	STORMTECH

FUT CBMH 105B (storage node CB105B-S) represents the anticipated stormwater collection infrastructure for the loading bay of the future building. The stormwater infrastructure design will be finalized as part of a future site plan control submission when the building and loading bay design requirements are known. The catch basin and associated infrastructure will be installed concurrent with the associated building construction.

5.3.4.2 Hydraulic Parameters

As per the Ottawa Sewer Design Guidelines (OSDG 2012), Manning's roughness values of 0.013 were used for sewer modeling and overland flow corridors representing roadways.

Storm sewers were modeled to confirm flow capacities and hydraulic grade lines (HGLs) in the ultimate condition with consideration of flow contributions from future areas. The detailed storm sewer design sheet is included in **Appendix C.1**.

Tables 5.5 and **5.6** below present the parameters for the outlet and orifice link objects in the model, which represent ICDs and flow-controlled roof drains. All IPEX tempest orifices were assigned a discharge coefficient of 0.572. Roof release discharge curves assume a standard Watts Model R1100 Accuflow controlled release roof drain as noted in the calculation sheets in **Appendix C.1**. The number of roof notches are to be confirmed with the building mechanical engineer. Inflows from future undeveloped areas have been modeled as direct constant inflows to the minor system at the given 50 L/s/ha or 100 L/s/ha inflow rate as applicable. It is assumed that no major system spillage will occur from external areas to those within the commercial development site during design storm events.

Table 5.5: Orifice Parameters

Name	Inlet	Outlet	Inlet Elev.	Туре	Diameter
201-O	SU7	STC	84.72	CIRCULAR	0.2
C29	MH103	EXSTM	84.69	IPEX Tempest	0.127
OR1	CB101A-S	202	87.11	CIRCULAR	0.2
OR2	CB102A-S	102	86.82	IPEX Tempest	0.178
OR3	CB102B-S	201	86.82	IPEX Tempest	0.152
OR6	CB105A-S	MH105	87.52	IPEX Tempest	0.127
OR7	CB103B-S	CB103A-S	87.72	IPEX Tempest	0.127

Table 5.6: Outlet Parameters

Name	Inlet	Outlet	Inlet Elev.	Curve Name
OR4	R104A-S	MH103	103	R104A-O
OR5	R106A-S	MH105	103	R106A-O

5.3.5 Model Results

The following section summarizes the key hydrologic and hydraulic model results. For detailed model results or inputs please refer to the example input file in **Appendix C.2**.

5.3.5.1 Hydrologic Results

The following tables demonstrate the peak outflow from each modeled outfall during the design storm (3hr Chicago 2-100yr) events. A free-flowing outfall condition has been modeled for these events to be conservative with respect to site peak release rates.

Event	Location	Discharge Rate (L/s)
3 Hr Chicago 2-Year	Outlet Sewer (OF-MJ, OF-MN)	2126
3 Hr Chicago 5-Year	Outlet Sewer (OF-MJ, OF-MN)	2162
3 Hr Chicago 100-Year	Outlet Sewer (OF-MJ, OF-MN)	2227
3 Hr Chicago 100-Year + 20%	Outlet Sewer (OF-MJ, OF-MN)	2322

Table 5.7: 3 Hour Chicago Event Peak Discharge Rates

5.3.5.2 Hydraulic Results

Table 5.8 summarizes the HGL results within the site for the 100-year, 3-hour Chicago storm event and the 'climate change' scenario storm required by the City of Ottawa Sewer Design Guidelines (2012), where intensities are increased by 20 %.

The City of Ottawa requires that during major storm events, the maximum hydraulic grade line be kept at least 0.30 m below the underside-of-footing (USF) of any adjacent units connected to the storm sewer during design storm events. HGLs during the climate change event are not to exceed adjacent USF elevations (Freeboard of 0.00 m). USF elevations are detailed on **Drawing GP-1**.

	Adiacont	100-year :	3hr Chicago	100-year 3hr Chicago + 20%							
STM MH	Adjacent USF (m)	HGL (m)	USF-HGL Clearance (m)	HGL (m)	USF-HGL Clearance (m)						
102	-	86.30	-	86.42	-						
100	-	86.29	-	86.42	-						
201CB	88.15	86.60	1.55	86.60	1.55						
101	-	86.30	-	86.42	-						
EXSTM *	-	84.66	-	84.67	-						
MH103	88.3	86.05	2.25	86.43	1.87						
MH105	88.3	86.05	2.25	86.43	1.87						
STC	-	84.98	-	85.11	-						

Table 5.8: Modeled Hydraulic Grade Line (HGL) Results

*Note that MH EXSTM in the model refers to the existing storm manhole located downstream from MH 103 south of the proposed building, as highlighted in red in **Figure 5.2**.

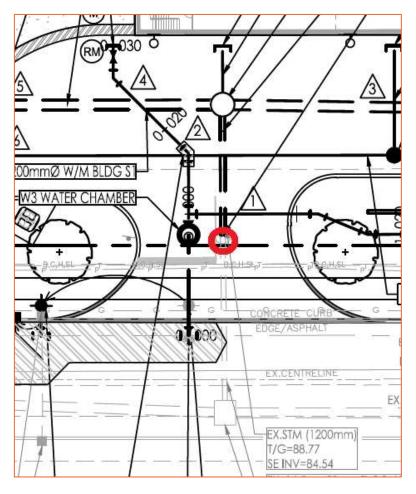


Figure 5.2: Location of MH EXSTM

As is demonstrated in the table above, the worst-case scenario results in HGL elevations remain at least 0.30 m below the proposed underside of footings, and HGL elevations remain below the proposed underside of footing elevations during the 20 % increased intensity 'climate change' scenario.

Table 5.9 presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of catchbasins for the 2-year and 100-year design storms and climate change storm. Based on the model results, the total ponding depth (static + dynamic) does not exceed the required 0.35 m maximum during the 100-year event. Total ponding depths during the climate change scenario are below adjacent building openings and should not impact the proposed buildings. No ponding was present in the 2-year storm event.

Table 5.9: Maximum Surface Water Depths

		Rim	2-year, 3	-hour Chicago		ar, 3-hour cago	100-year, 3-hour Chicago+20%				
Storage node ID	Structure ID	Elevation (m)	Max Surface HGL (m)	Total Surface Water Depth (m)	Max Surface HGL (m)	Total Surface Water Depth (m)	Max Surface HGL (m)	Total Surface Water Depth (m)			
CB101A-S	CB 101A	88.65	88.58	0.00	88.81	0.16	88.81	0.16			
CB102A-S	CB 102A	88.31	88.30	0.00	88.54	0.23	88.54	0.23			
CB102B-S	CB 102B	88.20	88.10	0.00	88.50	0.30	88.52	0.32			
CB103A-S	CBMH 103A	88.58	85.37	0.00	86.05	0.00	86.44	0.00			
CB103B-S	CB 103B	88.76	87.82	0.00	87.95	0.00	88.02	0.00			
CB105A-S	CB 105A	88.90	87.68	0.00	88.13	0.00	88.38	0.00			
CB105B-S	CBMH 105B	88.58	85.75	0.00	86.05	0.00	86.44	0.00			

Catch basin CB 102A has a spill elevation of 88.5 m, which is less than the HGL of 88.54 m under the 100-year storm event, meaning there is spillage at the catch basin during the 100-year storm event. The spillage from CB 102A is part of the overland flow from Phase 2, which, at 122.2 L/s, is within the target flow rate of 125.4 L/s from **Table 5.1**. Furthermore, the bulk of this overland flow is captured by the adjacent catch basin CB 102B, thus the impact of the spillage at CB 102A on the overall site release rate is minimal.

5.3.6 Results

Table 5.10 demonstrates that the proposed Phase 3 stormwater management plan provides adequate attenuation storage to meet the target peak outflow rates to Innes Road for the overall development site as described in the Site Servicing and Stormwater Management Report – Orleans II Development – 2025 Mer Bleue Road – Phase 1,

Table 5.10: Summary of Overall Site Release Rates

Storm Event	Site Peak Discharge (L/s)*	Target Discharge Rate (L/s)*
3 Hour Chicago 2-Year	2126.3	2240.6
3 Hour Chicago 5-Year	2162.3	2240.6
3 Hour Chicago 100-Year	2226.7	2240.6
3 Hour Chicago 100-Year+20%	2321.8	-

^{*}Includes discharge from uncontrolled and external drainage areas.

Furthermore, the table below presents the HGLs and associated storage volume and release rate in the underground storage under the 100-year storm and climate change events. Based on the model results, stormwater flows will bypass the storage tank and use the emergency overflow pipe to the Noella Leclair Way storm sewer under the climate change event.

Table 5.11: Storage HGL and Volume

Ctorono			100	-year, 3-hour C	100-year, 3-hour Chicago+20%										
Storage Node ID	Model	Max HGL (m)	Required Storage (m³)	Provided Storage (m³)	Release Rate (L/s)	Uncontrolled Flows from Site (L/s)	Max HGL (m)	Required Storage (m³)	Release Rate (L/s)	Uncontrolled Flows from Site (L/s)					
SU7	StormTech MC-7200	86.29	1048	1050	91.4	48.1	86.44	1048	95.9	62.8					

A StormTech system was sized based on the minimum required storage size under the 100-year storm event. Based on the model results, a StormTech Model MC-7200 was sized to provide 1050 m³ of storage excluding volume in the base stone. The sizing report is attached in **Appendix C.5**.

Table 5.12 below summarizes the storage required and provided in the 100-year storm event.

Table 5.12: Quantity Control Storage – 100 Year Event

Storage Type	Storage Required (m³)	Storage Available (m³)
Catch Basins (Surface Storage)	148	148
Rooftop Storage	241	241
StormTech MC-7200	1048	1050
Total	1437	1439

5.4 Water Quality Control

On-site quality control measures are required for the development per section 3.1.2.5.2 of the Gloucester Cumberland EUC & BCIP Servicing Update. Enhanced protection (80% removal of suspended solids) is required for the site similar to existing areas of the BCIP. An oil grit separator (OGS) was sized to service the entire commercial site to treat runoff from impervious areas directed to catchbasins on-site. The design of the OGS was undertaken as part of Phase 1 of the development and the approved unit was subsequently installed. The oil-grit separator unit is privately maintained and is located immediately upstream of the connection to the sewer in Noella Leclair Way as shown on **Drawing SSP-1**. The OGS unit was modeled in the PCSWMM for Stormceptor model provided by the manufacturer (Imbrium Systems) to validate suitability for the site. The detailed design of Phase 3 of the development does not result in an increase in imperviousness over the original design assumptions.

Treated runoff from the commercial site is directed to the 1350 mm storm sewer within Noella Leclair Way. The stormwater is then directed to the downstream SWMF at Des Epinettes Avenue (designed to provide 70% TSS removal) prior to discharge to Bilberry Creek. The majority of impervious surfaces from the overall site plan development are directed to the on-site OGS unit and suspended solids within runoff are not anticipated to have a deleterious impact on downstream watercourses.

6 Grading and Drainage

This phase of the commercial development measures approximately 1.83 ha in area. The topography across the site is relatively flat and currently drains from west to east. A detailed grading plan (see **Drawing GP-1**) has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions (see Section 10.0) for the site, and provide for minimum cover requirements for storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The subject site maintains emergency overland flow routes for flows from storm events in excess of the maximum design event to the proposed municipal rights-of-way at the southern and eastern boundaries of the development, and ultimately to Innes Road as depicted in **Drawing GP-1**.

7 Utilities

As the subject site is bound to the east and west by an existing commercial business park, and by a municipal right-of-way to the north, Hydro, Bell, Gas and Cable servicing for the proposed development are readily available. Pole mounted Hydro infrastructure and a gas main exist along Mer Bleue Road. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the proposed site. Exact size, location and routing of utilities will be finalized after design circulation.

8 Approvals

Environmental Compliance Approval (ECAs, formerly Certificates of Approval (CofA)) under the Ontario Water Resources Act are not expected to be a requirement for Phase 3 of the development as approval was obtained for storm and sanitary sewers within the adjacent municipal roadways as a part of Phase 1 of the development. The commercial site is of a single parcel of non-industrial use, and discharges to existing sewers designed to accommodate the current phase.

9 Erosion Control During Construction

To protect downstream water quality and prevent sediment build-up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit the extent of the exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- 6. Install silt barriers/fencing around the perimeter of the site as indicated in **Drawing ECDS-1** to prevent the migration of sediment offsite.
- 7. Install trackout control mats (mud mats) at the entrance/egress to prevent migration of sediment into the public ROW.
- 8. Provide sediment traps and basins during dewatering works.
- 9. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 10. Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Refer to **Drawing ECDS-1** for the proposed location of silt fences, sediment traps, and other erosion control measures.

(

10 Geotechnical Investigation

A geotechnical Investigation Report was prepared by Paterson Group entitled Geotechnical investigation Proposed Commercial Development, 2025 Mer Bleue Road – Phase 2, dated September 6, 2024. The report summarizes the existing soil conditions within the development and provides construction recommendations. For details which are not summarized below, please see the Paterson Group Geotechnical Report which accompanies the Site Plan Control application.

Subsurface soil conditions within the subject area were determined from 12 boreholes and 8 test pits distributed across Phase 3 of the site. In general soil stratigraphy consisted of fill material over silty clay and glacial till. Bedrock elevations are expected to be encountered at 5m to 15m in depth. Groundwater Levels were measured in August 2024 and vary in elevation from 1.8m to 3.6m below ground surface. Long term groundwater levels table is expected at approximately 2.5 to 3.5m below ground surface.

A permissible grade raise of 1.8m above existing ground surface is recommended for grading within 6m of the building footprint. A grade raise restriction of 2.2m raise is recommended for parking areas and access lanes.

The required pavement structure for proposed hard surfaced areas is outlined in **Table 10.1** below:

Material Description Thickness (mm) **Car-Only Parking Areas Access Lanes and Heavy Truck Parking Areas** Wear Course – HL-3 or Superpave 12.5 50 40 Asphaltic Concrete Binder Course – HL-8 or Superpave 19.0 50 Asphaltic Concrete Base - OPSS Granular A Crushed Stone 150 Subbase - OPSS Granular B Type II 300 450 Subgrade - Either in situ soil, fill or engineered fill placed over in situ soil

Table 10.1: Pavement Structure

11 Conclusions

11.1 Water Servicing

Based on the supplied boundary conditions for existing watermains and estimated domestic and fire flow demands for the subject site, it is anticipated that the proposed servicing in this development will provide sufficient capacity to meet the required domestic demands and emergency fire flow demands of the site. Fire flows greater than those required are available for this development.

11.2 Sanitary Servicing

The proposed sanitary sewer network is sufficiently sized to provide gravity drainage of the site. The proposed development will be serviced by a network of gravity sewers which will direct wastewater flows to the existing 250 mm dia. sanitary sewer constructed as part of Phase 1. The proposed drainage outlet to the east has sufficient capacity to receive sanitary discharge from the site based on the findings of the Gloucester and Cumberland EUC Master Servicing Update.

11.3 Stormwater Servicing

The proposed stormwater management plan is in compliance with the goals specified through consultation with the City of Ottawa. On-site stormwater management controls have been proposed to limit peak storm sewer inflows to downstream storm sewers to 50 L/s/ha. The downstream receiving sewer has sufficient capacity to receive runoff volumes from the site based on the findings of the Gloucester and Cumberland EUC Master Servicing Update.

11.4 Grading

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the recommendations made in the Geotechnical Investigation Report prepared by Paterson Group. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing facilities.

11.5 Utilities

Utility infrastructure exists within the surrounding roadways. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the entirety of the development. Exact size, location and routing of utilities will be finalized after design circulation.

11.6 Approvals/Permits

An MECP Environmental Compliance Approval is not expected to be required. No other approval requirements from other regulatory agencies are anticipated.

Appendix A Water Servicing

A.1 Domestic Water Demands

Orleans II Phase 3, Ottawa, ON - Domestic Water Demand Estimates

Site Plan provided by Petroff Partnership Architects. (2025-03-14)

Project No. 160402122 Designed by: ZW Revision: Revised by: Date: 31-Mar-2025 Checked by: KS

Date Checked: 11-Apr-2025

City File No.

Demand conversion factors per Table 4.2 of the City of Ottawa Water

Design Guidelines 2500 L/(1000m²/day) for Shopping Centre:

Commercial 2500 L/(1000m²/d)

Unit Type	Commercial	No. of Units	Population	Avg Day	Demand	Max Day D	1 2 emand	Peak Hour Demand		
	(m²)	Units	·	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)	
Commercial										
Future Building										
Commercial	2995	N/A	N/A	5.2	0.09	7.8	0.13	14.0	0.23	
Building S2								_		
Commercial	3970	N/A	N/A	6.9	0.11	10.3	0.17	18.6	0.31	
Total Site :				12.1	0.2	18.1	0.3	32.6	0.5	

Notes:

- 1 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate
 - peak hour demand rate = 2.2 x maximum day demand rate (as per Technical Bulletin ISD-2010-02)
- 2 Water demand criteria used to estimate peak demand rates for gross commercial area are as follows:
 - maximum daily demand rate = 1.5 x average day demand rate
 - peak hour demand rate = 1.8 x maximum day demand rate (as per Technical Bulletin ISD-2010-02)

A.2 Fire Flow Demands (2020 FUS)

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines **Stantec**

Stantec Project #: 160402122 Project Name: Smartcentres Orlean Phase 3 - Farmboy Date: 7/16/2025

Fire Flow Calculation #: 1

Description: Building S2 (Proposed New Farm Boy Building)

Non-combustible structure 1-storey commerical building has estimated GFA 3969.6 sqm with fully supervised sprinkler system per site plan provided by Pertroff Partnership Architects dated March 14, 2025

Step	Task					No	tes				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction		Ту	pe II - Nonc	ombustible (Construction	/ Type IV-A - Mass Tin	ber Construct	ion		0.8	-
2	Determine Effective	Sum of Tw	o Largest Flo	ors + 50% of	Eight Addition	onal Floors	Vertic	al Openings P	rotected?		NO	-
	Floor Area	3970										-
3	Determine Required Fire Flow				-	11000						
4	Determine Occupancy Charge				0%	11000						
					-30%							
١ ,	Determine Sprinkler			-10%	-5500							
	5 Reduction			-10%	-5500							
					100%							
		Direction Exposure Exposed Exposed Height Factor (mx Stories) Direction Distance (m) Length (m) Exposed Height (Stories) Foctor (mx Wall Stories)							red ?	-	-	
	Determine Increase	North	> 30	74	1	61-80	Type I-II - Unprotected Openia	ıgs	NO		0%	
6	for Exposures (Max. 75%)	East	> 30	47	1	41-60	Type I-II - Unprotected Openin	ıgs	NO		0%	0
	7 5701	South	> 30	74	1	61-80	Type I-II - Unprotected Openia	ıgs	NO		0%	U
		West	> 30	47	1	41-60	Type I-II - Unprotected Openia	ıgs	YES		0%	
					Total Requi	red Fire Flow	in L/min, Rounded to	Nearest 1000L	/min			6000
7	Determine Final					100.0						
	Required Fire Flow				2.00							
						Required	l Volume of Fire Flow (m³)				720

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines Stantec

Stantec Project #: 160402122 Project Name: Smartcentres Orlean Phase 3 Date: 7/16/2025

Fire Flow Calculation #: 2

Description: Building S2 together with future building TBD without using firewall

Non-combustible structure 1-storey commerical building has total estimated GFA 6593 sqm and 372 sqm mezzanine with fully supervised sprinkler system per site plan provided by Pertroff Partnership Architects dated March 14, 2025

Step	Task					No	tes					Value Used	Req'd Fire Flow (L/min)		
1	Determine Type of Construction		Ту	pe II - Nonc	ombustible (Construction	/ Type IV-A -	Mass Timbe	er Constructi	on		0.8	-		
2	Determine Effective	Sum of Tw	o Largest Flo	ors + 50% of	Eight Addition	onal Floors		Vertical (Openings Pr	otected?		NO	-		
	Floor Area	6965										6965	-		
3	Determine Required Fire Flow				-	15000									
4	Determine Occupancy Charge				0%	15000									
					-30%										
١,	Determine Sprinkler					Standard W	ater Supply					-10%	-7500		
	5 Reduction			-10%	-/500										
					100%										
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)		Construction of Adjacent Wall Firewall / Sprinklered ?				-	-		
	Determine Increase	North	> 30	74	1	61-80	Type I-II - Unprof	ected Openings		NO		0%			
6	for Exposures (Max. 75%)	East	> 30	47	1	41-60	Type I-II - Unprof	ected Openings		NO		0%	0		
	7 5701	South	> 30	74	1	61-80	Type I-II - Unprof	ected Openings		NO		0%	U		
		West	Vest 10.1 to 20 47 1 41-60 Type I-II - Unprotected Openings YES									0%			
					Total Requi	red Fire Flow	in L/min, Rou	unded to Ne	arest 1000L/	min			8000		
,	Determine Final			133.3											
′	Required Fire Flow		Required Duration of Fire Flow (hrs)												
						Required	l Volume of F	ire Flow (m³)				960		

A.3 Hydraulic Boundary Conditions

Boundary Conditions R1 – Smart Centre Orléans – Phase 3

Provided Information

Scenario	Demand								
Scenario	L/min	L/s							
Average Daily Demand	12.1	0.20							
Maximum Daily Demand	18.1	0.30							
Peak Hour	32.6	0.54							
Fire Flow Demand #1	8,000.0	133.333							

Location

Results

Connection 1 - Noella Leclair

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.2	59.0
Peak Hour	128.0	55.8
Max Day plus Fire Flow #1	127.8	55.5

¹ Ground Elevation = 88.8 m

Connection 2 - Roger-Pharand

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.2	59.1
Peak Hour	128.0	55.9
Max Day plus Fire Flow #1	127.9	55.8

¹ Ground Elevation = 87.7 m

Notes

- 1. The IWSD has recently updated their water modelling software. Any significant difference between previously received BC results and newly received BC results could be attributed to this update.
- 2. The referenced model update also used the City's updated DEM to refresh node elevations. This explains the variance between the node elevations of the previously submitted BC results and these updated results at the same locations.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix B Wastewater Servicing

B.1 Sanitary Sewer Design Sheet

Stantec

SUBDIVISION

Orleans II Smart Centres
Phase 3 Development

DATE: 4/14/2025
REVISION: 1
DESIGNED BY: ZW
CHECKED BY: KS

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160402122

ER DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= MINIMUM VELOCITY 0.60 m/s 4.0 AVG. DAILY FLOW / PERSON² 280 l/p/day MIN PEAK FACTOR (RES.)= 2.0 COMMERCIAL 28,000 l/ha/day MAXIMUM VELOCITY 3.00 m/s PEAKING FACTOR (INDUSTRIAL): 2.4 INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 PEAKING FACTOR (COMM., INST.): 1.5 INDUSTRIAL (LIGHT) 35,000 l/ha/day В BEDDING CLASS PERSONS / SINGLE 28,000 l/ha/day 3.4 INSTITUTIONAL MINIMUM COVER 2.50 m

PERSONS / TOWNHOME 2.7 INFILTRATION 0.28 I/s/Ha

															PERSONS /	APARTMENT		1.8																	
LOCATI	ION					RESIDENTIA	L AREA AND	POPULATION				COMM	ERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)	INSTITU	JTIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION		TOTAL				PIP	E				
AREA ID	FROM	ТО	AREA	001015	UNITS		POP.		ILATIVE	PEAK	PEAK	AREA	ACCU.	AREA		AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.	(la = \	SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW	(la =)	AREA	/l \	AREA	(1)	AREA	/l \	AREA	(1)	AREA	FLOW	AREA	AREA	FLOW	(1/-)	()	()			(0/)		PEAK FLOW		(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(I/s)	(ha)	(ha)	(l/s)	(I/S)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
C6L		6	0.00	0	0	0	0	0.00	0	4.00	0.0	0.07	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.07	0.07	0.0	0.1	4.1	150	PVC	DR 28	1.0	15.3	0.3%	0.9	0.2
COL		U	0.00	U	U	U	U	0.00	U	4.00	0.0	0.07	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.07	0.07	0.0	0.1	7.1	100	1 00	DIV 20	1.0	10.0	0.576	0.5	0.2
C6M	М	6	0.00	0	0	0	0	0.00	0	4.00	0.0	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	0.10	0.0	0.1	9.3	150	PVC	DR 28	1.0	15.3	0.5%	0.9	0.2
G6A	6	3	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	1.40	1.40	0.1	1.40	1.57	0.4	0.5	102.4	250	PVC	SDR 35	0.3	30.3	1.7%	0.6	0.2
C4J	J	4	0.00	0	0	0	0	0.00	0	4.00	0.0	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.05	0.05	0.0	0.0	31.4	135	PVC	DR 28	1.0	11.5	0.3%	0.8	0.2
0.417	1/	4	0.00	0	0		0	0.00	0	4.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.0	2.4	405	D) (C	DD 00	4.0	44.5	0.40/	0.0	0.0
C4K	K	4	0.00	U	U	U	0	0.00	U	4.00	0.0	0.06	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.06	0.06	0.0	0.0	3.1	135	PVC	DR 28	1.0	11.5	0.4%	0.8	0.2
G4A, C4N	4	3	0.00	0	0	0	0	0.00	0	4.00	0.0	0.04	0.15	0.00	0.00	0.00	0.00	0.00	0.00	1 72	1 72	0.1	1.76	1 87	0.5	0.6	87.8	250	PVC	SDR 35	0.6	47.0	1.3%	0.9	0.3
04/A, 04/A	3	2	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.12	0.1	0.00	3.44	1.0	1.1	80.0	250	PVC	SDR 35	0.3	30.3	3.7%	0.6	0.2
	2	1A	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.12	0.2	0.00	3.44	1.0	1.1	55.9	250	PVC	SDR 35	0.3	30.3	3.7%	0.6	0.2
C5H	Н	5	0.00	0	0	0	0	0.00	0	4.00	0.0	0.66	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.3	0.66	0.66	0.2	0.5	9.9	150	PVC	DR 28	1.0	15.3	3.3%	0.9	0.3
G5A	5	1A	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.71	0.71	0.3	0.71	1.37	0.4	0.7	55.3	250	PVC	SDR 35	0.5	42.9	1.6%	0.9	0.3
		45	0.00	•	•	•	•	0.00	•	4.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.5	0.00	4.04	4.0	4.0	0.0	0.50	D) (0	222.5	0.0	22.2	2.22/		
	1A	1B	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.83	0.5	0.00	4.81	1.3	1.8	2.2	250	PVC	SDR 35	0.3	30.3	6.0%	0.6	0.3
C10A	BLDG S2	Ω	0.00	0	0	Λ	Λ	0.00	0	4.00	0.0	0.36	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	0.36	0.36	0.1	0.3	10.2	150	PVC	DR 28	1.0	15.3	1.8%	0.9	0.3
G8A	8	7	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	0.30	0.50	0.1	0.3	38.8	250	PVC	SDR 35	0.4	38.3	0.8%	0.8	0.3
30/1		,	0.00					0.00		7.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	U.Z	0.10	0.01	0.1	0.0	00.0	200		551, 55	U	00.0	0.070	0.0	0.2
C9A	STUB 9	7	0.00	0	0	0	0	0.00	0	4.00	0.0	0.26	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.26	0.26	0.1	0.2	10.2	150	PVC	DR 28	1.0	15.3	1.3%	0.9	0.2
G7A	7	1B	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.27	0.3	0.12	0.89	0.2	0.6	47.8	250	PVC	SDR 35	0.4	38.3	1.4%	0.8	0.2
	1B	1	0.00	0	0	0	0	0.00	0	4.00	0.0	0.00	1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.10	8.0	0.00	5.70	1.6	2.4	19.9	250	PVC	SDR 35	0.3	30.3	7.8%	0.6	0.3
																												250							

1 of 1 anl_2025-04-11_san.xlsx

B.2 Background Report Sanitary Excerpts

Project: 160402122 B-2

Stantec

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Sanitary Drainage February 22, 2012

5.0 Sanitary Drainage

For the purposes of this serviceability study the sanitary drainage sewers have been designed to service the proposed commercial development. Detailed design of the sanitary sewer network will be completed during the detailed design phase. Sanitary sewer connection is available at the existing 525mm diameter municipal main at the intersection of Lanthier Drive and Vanguard Drive. Sewage will be directed along Vanguard Drive to Tenth Line Road and south along Tenth Line Road to the Tenth Line Road pumping station. The development will include extension of the sanitary trunk sewer from Lanthier Drive along future Vanguard extension at the south property line of the proposed site. A sanitary stub will be provided to service the development to the south of the proposed site (see **Drawing SAN-1**).

For detailed information regarding the wastewater servicing and pump station improvements please refer to the appended excerpts of the Stantec Consulting Ltd. "Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update", dated July, 2006

5.1 SANITARY SEWER

A 375mm dia. extension is proposed for the Vanguard Drive sanitary trunk in order to connect to the existing 525mm diameter sanitary main at the intersection of Lanthier Drive and Vanguard Drive. The proposed sanitary sewer network for the site consists of 200mm and 250mm diameter sewers with gravity feed to sanitary manhole SAN 6 in Vanguard Drive; roughly 90m northeast of the site access road off Vanguard Drive. See the attached **Drawing SAN-1** for details.

Design flows for the proposed site were developed in accordance with the City of Ottawa Sewer Design Criteria using standard commercial flow estimates and total land area of 24.0ha. Total peak flow estimates were based on a commercial peaking factor of 1.5 and an infiltration rate of 0.28L/s/ha. Flow estimates of a nearby 16.83ha industrial land draining to the site sanitary sewer network were also included in the flow estimate using a peaking factor of 2.4. Building footprint areas were not included in the total area used for infiltration flows. The proposed site falls within drainage boundaries as presented in the 2006 Master Servicing Update.

Stantec

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Sanitary Drainage February 22, 2012

The total flow through the proposed Pharand Lands development site was estimated to be approximately 49.6L/s. This flow estimate includes flows of approximately 21 L/s from the nearby industrial area and offsite flows generated along Vanguard Drive between the site sanitary service network connection at sanitary manhole SAN6 and the connection to the existing sewer at Lanthier Drive. The capacity of the Tenth Line Rd pumping station is sufficient to handle the flows generated by the proposed development as the pumping station was designed to accommodate the entire 85ha of the BCIP. The sanitary sewer design sheets for the proposed site are included in **Appendix C.2**.

Appendix C Stormwater Management

C.1 Storm Sewer Design Sheet

Project: 160402122

C-3

	DATE: REVISION	Orleans I	Phase 3 2025-	07-22			STORM DESIGN (City of		Т		I = a / (t+	1:2 yr	1:5 yr	1:10 yr	1:100 yr	1	elines, 201	•																			
	DESIGNE	D BY:	M.		FILE NUM	IBER:	16040212	2			a = b = c =	732.951 6.199 0.810	998.071 6.053 0.814	6.014 0.816		MANNIN MINIMUN TIME OF	COVER:	0.013 2.00 10		BEDDING	CLASS =	В															
LOCATION															RAINAGE A													I					IPE SELEC	TION			
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2,VEAR}	I _{S,YEAR}	I _{10,VEAR}	I _{100,VEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR	R) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR	AxC (10YR)	(100-YEAR)	AxC (100YR)							Q _{CONTROL}	(CIA/360)	(R DIAMETE	HEIGHT	SHAPE				(FULL)		(FULL
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)
PHASE 1, C101A PHASE 2, C102A, C102B	STUB 101	102	1.63	0.56	0.00	0.00	0.14	0.83	0.86	0.00	0.00	1.343	1.343	0.480	0.480	0.000	0.000	0.000	0.000	13.13	66.56	90.13	105.58	154.24	6.5	6.5 15.2	374.9 514.3	70.4	675	675	CIRCULAR CIRCULAR	CONCRETE	-	0.15	339.6 731.4	110.38% 70.31%	
PHASE 2, C102A, C102B	102	100	0.06	0.07	0.00	0.00	0.17	0.90	0.00	0.00	0.00	0.050	1.392	0.592	1.072	0.000	0.000	0.000	0.000	15.03	63.21	85.53	100.17	140.30	0.7	15.2	514.3	39.4	900	900	CIRCULAR	CONCRETE	•	0.15	731.4	70.31%	1.11
																				10.00																	
	100	ADS 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.03	61.70	83.47	97.75	142.74	0.0	15.2	15.2	3.0	900	900	CIRCULAR	CONCRETE	-	0.50	1335.4	1.14%	2.03
																				15.11																	
	100	TANK OUT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1 302	0.000	1 072	0.000	0.000	0.000	0.000	15 11	61.50	83 20	97 43	142.27	0.0	0.0	485.5	5.5	450	450	CIRCULAR	CONCRETE		2 85	502.1	96.69%	3.06
	100	TAINIT OUT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1.552	0.000	1.072	0.000	0.000	0.000	0.000	15.14	01.50	00.20	37.43	142.21	0.0	0.0	400.0	3.3	450	430	OITOODAT	CONONLIL		2.00	302.1	30.0378	5.00
	ADS 2	TANK OUT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	3.0	200	200	CIRCULAR	PVC	-	1.00	33.3	0.00%	1.05
																				10.00																	
	TANK OUT	STC 750	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1 302	0.000	1 072	0.000	0.000	0.000	0.000	15.14	61 44	83 10	07 32	142.11	01.4	01.4	576.4	6.2	900	900	CIRCULAR	PVC		0.48	1308 /	44.05%	1 00
	TAIN OU	010730	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1.552	0.000	1.072	0.000	0.000	0.000	0.000	15.20	01.44	00.10	31.32	142.11	01.4	31.4	370.4	0.2	900	900	OITOODAT	110		0.40	1300.4	44.0070	1.00
C103A, C103B	103A	103	0.00	0.06	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.056	0.056	0.000	0.000	0.000	0.000	10.00 12.09	76.81	104.19	122.14	178.56	0.0	0.0	16.2	52.9	900	900	CIRCULAR	CONCRETE	-	0.20	844.6	1.92%	1.29
																				12.05																	
R104A, R104B	104	103	0.00	0.00	0.00	0.00	0.36	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	18.6	18.6	18.6	5.5	200	200	CIRCULAR	PVC		1.00	33.3	55.84%	1.05
																				10.10																	
C105B	105B	105	0.00	0.02	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.018	0.018	0.000	0.000	0.000	0.000	10.00 11.37	76.81	104.19	122.14	178.56	0.0	0.0	5.2	30.6	900	900	CIRCULAR	CONCRETE	-	0.35	1117.3	0.46%	1.70
																				11.31																	
R106A	106	105	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	12.5	12.5	12.5	5.5	200	200	CIRCULAR	PVC	-	1.00	33.3	37.53%	1.05
																				10.11																	
C105A	105	103	0.00	0.05	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.043	0.061	0.000	0.000	0.000	0.000	11.37	71.90	97.45	114.20	166.90	0.0	12.5	29.0	21.0	900	900	CIRCULAR	CONCRETE		0.45	1266.9	2.29%	1.93
																				11.90																	
	400	EXMH	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0 117	0.000	0.000	0.000	0.000	12.09	69.60	94 30	110.49	161 44	0.0	31.1	61.8	12.1	450	450	CIRCULAR	CONCRETE		1.00	297.4	20.77%	1.81

C.2 MRM Roof Storage Calculations

Project: 160402122 C-4

Project #160402122, Orleans II Phase 3 Roof Drain Design Sheet, Area R104A Standard Watts Accutrol Weir - Single Notch Roof Drain

	Rating	Curve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	(cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0032	1	0.025	81	1	1	0.025
0.050	0.0006	0.0063	5	0.050	324	5	5	0.050
0.075	0.0009	0.0095	18	0.075	729	13	18	0.075
0.100	0.0013	0.0126	43	0.100	1297	25	43	0.100
0.125	0.0016	0.0158	84	0.125	2026	41	84	0.125
0.150	0.0019	0.0189	146	0.150	2918	61	146	0.150

	Drawdow	n Estimate	1
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
4.7	749.5	4.7	0.20819
17.6	1356.2	12.8	0.58491
42.6	1980.8	25.0	1.13512
83.8	2612.5	41.2	1.8608
145.2	3247.7	61.5	2.76294

Total Building Area (sq.m)		3647.26
Assume Available Roof Area (sq.	80%	2917.808
Roof Imperviousness		0.99
Roof Drain Requirement (sq.m/Notch)		232
Number of Roof Notches*		10
Max. Allowable Depth of Roof Ponding (m)		0.15
Max. Allowable Storage (cu.m)		146
Estimated 100 Year Drawdown Time (h)		2.7

^{*} As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available	
Qresult (cu.m/s)	0.014	0.019	-	
Depth (m)	0.112	0.147	0.150	
Volume (cu.m)	63.1	138.8	145.9	
Draintime (hrs)	1.5	2.7		

Ad	djustable A	Accutrol W	Adjustable Accutrol Weir Flow Rate Settings										
	From Watts Drain Catalogue												
Head (m)	Head (m) L/s												
	Open	75%	50%	25%	Closed								
0.025	0.3154	0.3154	0.3154	0.3154	0.3154								
0.05	0.6308	0.6308	0.6308	0.6308	0.3154								
0.075	0.9462	0.8674	0.7885	0.7097	0.3154								
0.1	1.2617	1.104	0.9462	0.7885	0.3154								
0.125	1.5771	1.3405	1.104	0.8674	0.3154								
0.15	1.8925	1.5771	1.2617	0.9462	0.3154								

Project #160402122, Orleans II Phase 3 Roof Drain Design Sheet, Area R106A Standard Watts Accutrol Weir - Single Notch Roof Drain

	Rating	Curve			Volume E	Estimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0032	0	0.025	58	0	0	0.025
0.050	0.0006	0.0063	4	0.050	233	3	4	0.050
0.075	0.0008	0.0079	13	0.075	525	9	13	0.075
0.100	0.0009	0.0095	31	0.100	933	18	31	0.100
0.125	0.0011	0.0110	61	0.125	1457	30	61	0.125
0.150	0.0013	0.0126	105	0.150	2098	44	105	0.150

	Drawdown	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
3.4	539.0	3.4	0.14973
12.6	1170.4	9.2	0.47484
30.6	1899.4	18.0	1.00245
60.2	2684.1	29.6	1.74802
104.4	3503.6	44.2	2.72123

Roofto	p Storage	Summary
--------	-----------	---------

623.06
098.448
0.99
232
10
0.15
105
2.7

^{*} As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Cal	cul	ation	Res	sults

sults	5yr	100yr	Available
Qresult (cu.m/s)	0.010	0.013	-
Depth (m)	0.112	0.149	0.150
Volume (cu.m)	45.3	102.3	104.9
Draintime (hrs)	1.4	2.7	

Adjustable Accutrol Weir Flow Rate Settings								
From Watts Drain Catalogue								
Head (m)	L/s							
	Open	75%	50%	25%	Closed			
0.025	0.3154	0.3154	0.3154	0.3154	0.3154			
0.05	0.6308	0.6308	0.6308	0.6308	0.3154			
0.075	0.9462	0.8674	0.7885	0.7097	0.3154			
0.1	1.2617	1.104	0.9462	0.7885	0.3154			
0.125	1.5771	1.3405	1.104	0.8674	0.3154			
0.15	1.8925	1.5771	1.2617	0.9462	0.3154			

Stormwater Management Calculations

File No: 160402122 Project: Orleans II Phase 3 Date: **09-Apr-25**

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Runoff Co Sub-catchment Area			oefficient Table Area (ha)	Runoff Coefficient		Overall Runoff
Catchment Type	ID / Description		"A"	"C"	"A x C"	Coefficien
Roof	R106A	Hard	0.262	0.9	0.236	
		Soft	0.000	0.2	0.000	
	Su	ubtotal		0.262306	0.2360754	0.900
Roof	R104A	Hard	0.365	0.9	0.328	
		Soft	0.000	0.2	0.000	
	Sı	ubtotal		0.364726	0.3282534	0.900
Total				0.627	0.564	
II Runoff Coefficient= C:						0.90

Total Roof Areas
Total Tributary Surface Areas (Controlled and Uncontrolled)
Total Tributary Area to Outlet 0.627 ha 0.000 ha 0.627 ha Total Uncontrolled Areas (Non-Tributary) 0.000 ha **Total Site** 0.627 ha

Stormwater Management Calculations

Project #160402122, Orleans II Phase 3 Modified Rational Method Calculations for Storage

	Rational M							
	5 yr Intens	itv	I = a/(t + b) ^c	a =	998.071	t (min)	I (mm/hr)	1
	City of Otta			b =	6.053	10	104.19	
			Ĺ	c =	0.814	20	70.25	
						30 40	53.93 44.18	
						50	37.65	
						60	32.94	
						70	29.37	
						80	26.56	
						90	24.29	
						100 110	22.41 20.82	
						120	20.82 19.47	
	5 YE	AR Predeve	elopment Ta	arget Releas	se from Po	ortion of Si	te	
Subdrai	nage Area: Area (ha): C:	Predevelopr 0.6270 0.20	nent Tributar	y Area to Out	let			
	Typical Tim	ne of Concen	tration					
	tc	I (5 yr)	Qtarget					
	(min) 20	(mm/hr) 70.25	(L/s) 24.49					
	5 YEAR N	Modified Ra	tional Meth	nod for Enti	re Site			
			inonai men	iou ioi Eiitii	COILC			
Subdrai	nage Area: Area (ha): C:	R106A 0.26 0.90		М	aximum Sto	rage Depth:	Roof 150	mm
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	l
	10	104.19	68.38	9.68	58.70	35.22	103.5	0.00
	20	70.25	46.11	10.11	36.00	43.20	110.2	0.00
	30	53.93	35.39	10.22	25.17	45.31	112.0	0.00
	40 50	44.18 37.65	29.00 24.71	10.21 10.14	18.79 14.58	45.10 43.73	111.8 110.7	0.00
	60	32.94	21.62	10.14	11.59	41.73	109.0	0.00
	70	29.37	19.28	9.90	9.37	39.37	107.0	0.00
	80	26.56	17.43	9.77	7.67	36.80	104.8	0.00
	90	24.29	15.94	9.62	6.32	34.11	102.6	0.00
	100	22.41	14.71	9.48	5.23	31.37	100.2	0.00
	110	20.82	13.67	9.28	4.39	28.97	97.1	0.00
	120	19.47	12.78	9.07	3.70	26.66	93.8	0.00
Storage:	Roof Storag	ge						
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
5-year \	Water Level		0.11	10.22	45.31	104.92	0.00	
Subdrai	nage Area: Area (ha):	R104A 0.36		M	aximum Sto	rage Depth:	Roof 150	mm
	Ć:	0.90						
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	10	104.19	95.08	13.07	82.01	49.20	103.6	0.00
	20	70.25	64.11	13.92	50.19	60.23	110.3	0.00
	30	53.93	49.21	14.14	35.07	63.13	112.1	0.00
	40	44.18	40.32	14.12	26.20	62.88	111.9	0.00
	50	37.65	34.36	13.99	20.37	61.12	110.9	0.00
	60 70	32.94 29.37	30.06	13.79	16.27	58.57	109.3	0.00
	70 80	29.37 26.56	26.80 24.24	13.56 13.32	13.24 10.92	55.60 52.41	107.5 105.6	0.00
	90	24.29	24.24	13.32	9.10	49.12	103.6	0.00
	100	22.41	20.45	12.81	7.63	45.80	101.6	0.00
	110	20.82	19.00	12.54	6.46	42.63	99.4	0.00
	120	19.47	17.76	12.21	5.56	40.00	96.8	0.00
torage:	Roof Storag	де 						
		Depth	Head (m)	Discharge (L/s)	Vreq	Vavail (cu. m)	Discharge Check	
		(mm)			63.13	145.89	0.00	
				(L/s)	(cu. m)	(cu. m)	Check	
5-year \	Water Level	(mm) 112.08	0.11	14.14	63.13			
	TO OUTLET	112.08	0.11	0.627			Vavailable*	m ³
	TO OUTLET	112.08 Tril Total 5yr Flo	0.11 butary Area w to Sewer butary Area	0.627 28 0.000	ha L/s	Vrequired		m³
	TO OUTLET	Tril Total 5yr Flo Non-Tril I 5yr Flow U	0.11 butary Area w to Sewer butary Area ncontrolled Total Area	0.627 28 0.000 0	ha L/s ha L/s	Vrequired		m³
	TO OUTLET	Tril Total 5yr Flo Non-Tril I 5yr Flow U	0.11 butary Area w to Sewer butary Area ncontrolled	0.627 28 0.000 0 0.627 28	ha L/s ha L/s	Vrequired		m ³

	100 yr Inte	neity	I = a/(t + b)	a =	1735.688	t (min)	I (mm/hr)	1
	City of Ott		(/	b =	6.014	10	1 (mm/hr) 178.56	1
				c =	0.820	20	119.95	
						30	91.87	
						40 50	75.15 63.95	
						60	55.89	
						70	49.79	
						80	44.99	
						90	41.11	
						100 110	37.90 35.20	
						120	32.89	
Subdrai	nage Area:	Predevelop	velopment	_		ortion of S	ite	
	Area (ha): C:	0.6270 0.20		Bl.	4			
	tc	I (100 yr)	Q100yr	er Developme	ent			
	(min)	(mm/hr)	(L/s)					
	20	119.95	41.82					
	100 YEAR	R Modified	Rational M	ethod for Er	ntire Site			
Subdrai	nage Area:	R106A			avimum Star	ogo Donth	Roof	
	Area (ha): C:	0.26 1.00		IVI	aximum Stor	ացե Debii):	150	mm
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	1
	(min) 10	(mm/hr) 178.56	(L/s) 130.21	(L/s) 11.42	(L/s) 118.79	(m^3) 71.27	(mm) 131.0	0.0
	20	119.95	87.47	12.10	75.37	90.44	141.8	0.0
	30	91.87	66.99	12.38	54.61	98.30	146.3	0.0
	40	75.15	54.80	12.50	42.30	101.52	148.1	0.0
	50	63.95	46.64	12.52	34.11	102.33	148.5	0.0
	60	55.89	40.76	12.50	28.26	101.72	148.2	0.0
	70 80	49.79 44.99	36.31 32.81	12.45 12.37	23.86 20.44	100.21 98.09	147.3 146.1	0.0
	90	41.11	29.98	12.28	17.70	95.56	144.7	0.0
	100	37.90	27.64	12.18	15.46	92.74	143.1	0.0
	110	35.20	25.67	12.07	13.60	89.73	141.4	0.0
	120	32.89	23.99	11.96	12.03	86.58	139.6	0.0
torage:	Roof Stora	ge						_
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
100-year \	Water Level		0.15	12.52	102.33	104.92	0.00	1
Subdrai	nage Area: Area (ha): C:	R104A 0.36 1.00		M	aximum Stor	age Depth:	Roof 150	mm
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	10	178.56	181.05	16.50	164.54	98.73	130.8	0.0
	20	119.95	121.62	17.83	103.79	124.55	141.3	0.0
	30	91.87	93.15	18.35	74.80	134.64	145.4	0.0
	40	75.15	76.19	18.54	57.65	138.37	146.9	0.0
	50 60	63.95 55.89	64.85 56.67	18.56 18.49	46.28 38.18	138.85 137.45	147.1 146.6	0.0
	70	49.79	50.48	18.36	32.12	134.91	145.5	0.0
	80	44.99	45.62	18.19	27.42	131.64	144.2	0.0
	90	41.11	41.68	18.00	23.68	127.89	142.7	0.0
	100 110	37.90 35.20	38.43 35.69	17.79 17.57	20.64 18.12	123.83 119.58	141.0 139.3	0.0
	120	32.89	33.35	17.35	16.00	115.22	139.3	0.0
torage:	Roof Stora							
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	1
100-year \	Water Level	147.13	0.15	18.56	138.85	145.89	0.00	1
UMMARY	TO OUTLET	ī				Vrequired	Vavailable*	

0.627 ha 28 L/s 42 L/s

Total Area Total 100yr Flow Target

C.3 Sample PCSWMM Model Output (100-yr 3hr Chicago)

Project: 160402122 C-5

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

	minimum elevation drop used for Conduit C11 negative offset ignored for Link C13
WARNING 04:	minimum elevation drop used for Conduit C23
WARNING 04:	minimum elevation drop used for Conduit C24
WARNING 04:	minimum elevation drop used for Conduit C7
WARNING 04:	minimum elevation drop used for Conduit C8
WARNING 04:	minimum elevation drop used for Conduit C9
WARNING 03:	negative offset ignored for Link OR1
WARNING 03:	negative offset ignored for Link OR2

Number	of	rain gages	4
Number	of	$\operatorname{subcatchments} \ldots$	40
Number	of	nodes	62
Number	of	links	81
Number	of	pollutants	0
Number	of	land uses	0

Raingage Summary ********

Name	Data Source	Data Type	Recording Interval
002	002yr_3hr_10m_CHI	INTENSITY	10 min.
005	005yr_3hr_10m_CHI	INTENSITY	60 min.
100	100yr_3h_10m_CHI	INTENSITY	10 min.
120	100yr_3hr_10m_CHI+20%	INTENSITY	10 min.

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	
Outlet					
BLDG H	0.65	146.70	100.00	1.5000 100	
BLDG_H-S					
BLDG_J	0.06	16.70	100.00	1.5000 100	
BLDG_J-S					
BLDG_K	0.06	13.60	100.00	1.5000 100	

DI DG IV G				
BLDG_K-S BLDG L	0.07	34.90	100.00	1.5000 100
BLDG_L-S				
BLDG_M	0.09	45.70	100.00	1.5000 100
BLDG_M-S BLDG N	0.04	15.10	100.00	1.5000 100
BLDG_N-S				
C101A	0.56	125.49	94.29	2.0000 100
CB101A-S C102A	0.42	94.93	98.57	2.0000 100
CB102A-S	0.42	J 4 .JJ	50.57	2.0000 100
C102B	0.25	55.97	95.71	2.0000 100
CB102B-S	0.02	7 12	100 00	2 0000 100
C103A CB103A-S	0.03	7.13	100.00	2.0000 100
C103B	0.03	5.87	100.00	2.0000 100
CB103B-S				
C105A	0.05	10.82	100.00	2.0000 100
CB105A-S	0.02	4 45	100 00	2 0000 100
C105B CB105B-S	0.02	4.45	100.00	2.0000 100
EX.C100A	0.13	102.50	75.71	2.0000 100
100A				
EX.C101A	0.17	141.60	77.14	1.3000 100
101A EX.C102A	0.17	146.20	77.14	1.1000 100
102A	0.17	140.20	//.14	1.1000 100
EX.C103A	0.16	133.80	77.14	1.2000 100
103A				
EX.C104A	0.21	166.00	75.71	1.0000 100
104A EX.C105A	0.45	288.70	62.86	1.2000 100
105A	0.43	200.70	02.80	1.2000 100
L106A	0.03	24.00	100.00	3.0000 100
106A				
L106B	0.02	27.00	100.00	3.0000 100
106A L107A	0.02	27.00	100.00	3.0000 100
107	0.00			210000 =00
L107B	0.14	142.10	100.00	2.0000 100
107A	0.20	69.60	100 00	1 5000 100
L203A 203A	0.30	68.60	100.00	1.5000 100
L203B	0.07	70.70	100.00	2.0000 100
203B				
L203C	0.05	32.10	100.00	1.5000 100
203C	0.33	70.20	100 00	1 5000 100
L204A 204A	0.32	70.20	100.00	1.5000 100
L204B	0.37	85.00	100.00	1.5000 100

204B				
L205A	0.37	81.80	87.14	1.5000 100
205				
L207A	0.16	30.90	42.86	3.5000 100
207A				
R104A	0.36	81.08	100.00	1.5000 100
R104A-S				
R104B	0.00	0.99	100.00	1.5000 100
R104A-S				
R106A	0.26	59.02	100.00	1.5000 100
R106A-S				
U100A	0.03	5.90	32.86	3.0000 100
U100A-OF				
U100B	0.08	13.60	31.43	3.0000 100
U100B-OF				
U100C	0.12	25.60	31.42	2.0000 100
U100C-OF				
UNC-1	0.01	2.95	100.00	2.0000 100
100A				
UNC-2	0.04	8.53	68.57	2.0000 100
101A-1				
UNC-3	0.11	25.43	48.57	2.0000 100
103A-1				
UNC-4	0.04	8.69	70.00	2.0000 100
203B				

Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	
100	JUNCTION	84.74	3.76	0.0	
101	JUNCTION	85.20	3.02	0.0	
102	JUNCTION	84.85	3.85	0.0	
103	JUNCTION	82.65	6.15	0.0	Yes
104	JUNCTION	82.34	9.33	0.0	Yes
105	JUNCTION	84.45	4.58	0.0	
106	JUNCTION	85.19	4.04	0.0	
106A	JUNCTION	86.39	2.34	0.0	
107	JUNCTION	86.43	2.63	0.0	
201CB	JUNCTION	85.90	2.93	0.0	
203	JUNCTION	84.95	4.19	0.0	
204	JUNCTION	85.96	3.23	0.0	
206	JUNCTION	86.70	3.23	0.0	
207	JUNCTION	87.00	3.14	0.0	
207A	JUNCTION	86.89	3.29	0.0	
208	JUNCTION	86.97	2.65	0.0	
EX100	JUNCTION	81.73	5.78	0.0	

EX101	JUNCTION	81.94	6.44	0.0	Yes
EX102	JUNCTION	82.24	6.61	0.0	Yes
EXSTM	JUNCTION	84.54	4.23	0.0	
MH103	JUNCTION	84.69	4.55	0.0	
MH105	JUNCTION	84.75	4.43	0.0	
STC	JUNCTION	84.42	4.06	0.0	
OF-MJ	OUTFALL	87.87	0.35	0.0	
OF-MN	OUTFALL	81.99	1.35	0.0	
U100A-OF	OUTFALL	0.00	0.00	0.0	
U100B-OF	OUTFALL	0.00	0.00	0.0	
U100C-OF	OUTFALL	0.00	0.00	0.0	
100A	STORAGE	86.25	2.15	0.0	
100A-1	STORAGE	88.56	0.10	0.0	
101A	STORAGE	86.48	2.25	0.0	
101A-1	STORAGE	88.67	0.10	0.0	
102A	STORAGE	86.56	2.25	0.0	
102A-1	STORAGE	88.69	0.10	0.0	
103A	STORAGE	86.66	2.25	0.0	
103A-1	STORAGE	88.84	0.10	0.0	
104A	STORAGE	86.81	2.25	0.0	
104A-1	STORAGE	88.92	0.10	0.0	
105A	STORAGE	86.44	2.68	0.0	
107A	STORAGE	87.25	2.15	0.0	
203A	STORAGE	87.30	2.15	0.0	
203B	STORAGE	87.30	2.15	0.0	
203C	STORAGE	86.50	2.68	0.0	
204A	STORAGE	87.30	2.15	0.0	
204B	STORAGE	87.30	2.15	0.0	
205	STORAGE	86.49	2.96	0.0	
BLDG_H-S	STORAGE	103.00	0.30	0.0	
BLDG_J-S	STORAGE	103.00	0.30	0.0	
BLDG_K-S	STORAGE	103.00	0.30	0.0	
BLDG_L-S	STORAGE	103.00	0.30	0.0	
BLDG_M-S	STORAGE	103.00	0.30	0.0	
BLDG_N-S	STORAGE	103.00	0.30	0.0	
CB101A-S	STORAGE	87.27	1.73	0.0	
CB102A-S	STORAGE	86.93	1.73	0.0	
CB102B-S	STORAGE	86.82	1.73	0.0	
CB103A-S	STORAGE	84.80	3.78	0.0	
CB103B-S	STORAGE	87.38	1.38	0.0	
CB105A-S	STORAGE	87.52	1.38	0.0	
CB105B-S	STORAGE	84.90	3.48	0.0	
R104A-S	STORAGE	103.00	0.30	0.0	
R106A-S	STORAGE	103.00	0.30	0.0	
SU7	STORAGE	84.72	3.28	0.0	

Link Summarv

Link Summary *******

Name %Slope Ro	oughness	From Node	To Node	Туре	Length
C1		203C	CB102A-S	CONDUIT	48.4
0.2687	0.0130	2030	CDIOZA 3	CONDOIT	40.4
C10		203B	CB101A-S	CONDUIT	56.0
1.0887	0.0250	0045			24.0
C11 0.0009	0.0130	204B	203A	CONDUIT	34.2
C12	0.0130	100A-1	100A	CONDUIT	52.2
0.9771	0.0130	20071 2	2007.	00110011	32.12
C13		100A	OF-MJ	CONDUIT	5.0
3.6023	0.0130				
C14 -0.5882	0.0130	105A	104A-1	CONDUIT	25.5
-0.3882 C15	0.0130	104A	103A-1	CONDUIT	30.0
-0.7667	0.0130	20	103/11	00110011	30.0
C16		103A	102A-1	CONDUIT	37.7
-0.6101	0.0130				
C17 -1.1878	0.0130	102A	101A-1	CONDUIT	26.1
-1.1878 C18	0.0130	101A	100A-1	CONDUIT	22.8
-1.2282	0.0130	IUIA	100A 1	CONDOIT	22.0
C19		101	102	CONDUIT	71.0
0.1409	0.0130				
C2	0.0120	104A-1	104A	CONDUIT	52.8
0.5874 C20	0.0130	102	100	CONDUIT	39.2
0.2910	0.0130	102	100	CONDOIT	33.2
C21		100	SU7	CONDUIT	10.3
0.1553	0.0130				
C22	0.0120	CB101A-S	CB102A-S	CONDUIT	58.0
0.4998 C23	0.0130	CB102A-S	CB102B-S	CONDUIT	34.3
0.0009	0.0130	CDIOZA S	CD102D 3	CONDOIT	54.5
C24		CB102B-S	100A	CONDUIT	15.0
0.0020	0.0130				
C25	0.0130	100	STC	CONDUIT	5.2
2.8649 C26	0.0130	CB103A-S	MH103	CONDUIT	52.9
0.2079	0.0130	CD103A-3	Pillios	CONDOIT	32.9
C27		MH105	MH103	CONDUIT	21.0
0.4762	0.0130				
C28	0.0130	CB105B-S	MH105	CONDUIT	30.6
0.3595 C3	0.0130	107A	104A-1	CONDUIT	15.0
1.8670	0.0130	±0/A	IUTA I	COMPOTI	10.0
C30		EXSTM	103	CONDUIT	16.5

1.0910 C31	0.0130	CB105A-S	103A-1	CONDUIT	37.7
0.1592	0.0130	CD10JA-3	103A-1	CONDOIT	37.7
C32		CB103B-S	103A-1	CONDUIT	15.0
1.7388	0.0130				
C4		103A-1	103A	CONDUIT	30.0
1.2668	0.0130				
C5	0.0430	102A-1	102A	CONDUIT	47.6
0.6933 C6	0.0130	1014 1	1014	CONDUIT	40 A
0.8125	0.0130	101A-1	101A	CONDUIT	48.0
C7	0.0130	205	204A	CONDUIT	35.1
0.0009	0.0130	203	2044	CONDOIT	JJ.1
C8	0.0230	204A	204B	CONDUIT	34.2
0.0009	0.0130				
C 9		203A	203B	CONDUIT	23.8
0.0013	0.0130				
Pipe_1		EX100	OF-MN	CONDUIT	9.8
0.4071	0.0130				
Pipe_10		103	EX102	CONDUIT	78.6
0.3300	0.0130				
Pipe_11		104	103	CONDUIT	59.2
0.1500	0.0130				
Pipe_12		203	101	CONDUIT	32.7
0.1498	0.0130	204	202	CONDUITT	60.4
Pipe_13 0.2000	0.0130	204	203	CONDUIT	68.4
		206	204	CONDUIT	38.9
Pipe_14 1.0001	0.0130	200	204	CONDUIT	30.9
Pipe_16		207	206	CONDUIT	24.2
1.0000	0.0130	207	200	CONDOIT	27.2
Pipe_19		208	203	CONDUIT	38.9
1.0000	0.0130				
Pipe 23		106A	106	CONDUIT	74.5
1.0001	0.0130				
Pipe_25	,	107	106	CONDUIT	33.9
1.0001	0.0130				
Pipe_41		207A	207	CONDUIT	14.2
1.0000	0.0130				
Pipe_49		105	104	CONDUIT	70.1
0.5849	0.0130	104	405		40 =
Pipe_50		106	105	CONDUIT	18.7
0.4200	0.0130	CTC	FV101	CONDUITT	15 2
Pipe_53 0.1500	0.0130	STC	EX101	CONDUIT	15.2
Pipe_76		201CB	102	CONDUIT	56.3
1.1724	0.0130	20100	102	COMPOTI	ر. ن
Pipe_8	0.0100	EX101	EX100	CONDUIT	73.8
0.2614	0.0130	_,v_	- •		
Pipe_9		EX102	EX101	CONDUIT	119.1
r ~					

0.2500 0.0130						
105A-0	105A	105		FICE		
107-0	107A	107		FICE		
201-0	SU7	STC		FICE		
203A-0	203A	203		FICE		
203B-0	203B	203		FICE		
204A-0	204A	204		IFICE		
204B-0	204B	204		FICE		
205-0	205	204		FICE		
C29	MH103	EXSTM		FICE		
0L1	203C	201CB		FICE		
OR1	CB101A-S	101		FICE		
OR2	CB102A-S	102		FICE		
OR3	CB102B-S	100		FICE		
OR6	CB105A-S	MH105		IFICE		
OR7	CB103B-S	CB103A-S		IFICE		
100A-0	100A	EX100		TLET		
100A-01	100A	EX100		TLET		
101A-0	101A	EX101		ΓLET		
101A-01	101A	EX101		TLET		
102A-0	102A	EX102		LET		
102A-01	102A	EX102		[LET		
103A-0	103A	103		TLET		
103A-01	103A	103		[LET		
104A-0	104A	104		[LET		
104A-01	104A	104		LET		
BLDG_H_OUT	BLDG_H-S	106		LET		
BLDG_J_OUT	BLDG_J-S	207		[LET		
BLDG_K_OUT	BLDG_K-S	206		TLET		
BLDG_L_OUT	BLDG_L-S	201CB		TLET		
BLDG_M_OUT	BLDG_M-S	201CB		TLET		
BLDG_N_OUT	BLDG_N-S	208		TLET		
OR4	R104A-S	MH103		TLET		
OR5	R106A-S	MH105	001	ΓLET		
*********	****					
Cross Section S	ummary					
*********	****					
		Full	Full	Hyd.	Max.	No. of
Full						
Conduit	Shape	Depth	Area	Rad.	Width	Barrels
Flow						
	TD 4 DE 70 TD 4 1	2.25	4 05	0.05	22.00	a
C1	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
550.90	TD 4 D = 7 0 T 2	0.10	0.40	0.0=		4
C10	TRAPEZOIDAL	0.10	0.40	0.07	6.00	1

274.35

C11	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
31.73 C12	24mROW	0.35	4.20	0.18	24.00	1
10287.69 C13	24mROW	0.35	4.20	0.18	24.00	1
19753.76						
C14 7982.47	24mROW	0.35	4.20	0.18	24.00	1
C15	24mROW	0.35	4.20	0.18	24.00	1
9113.13						
C16	24mROW	0.35	4.20	0.18	24.00	1
8129.34						
C17	24mROW	0.35	4.20	0.18	24.00	1
11343.15	2.4mDOU	0.25	4 20	0 10	24 00	1
C18 11534.15	24mROW	0.35	4.20	0.18	24.00	1
C19	CIRCULAR	0.68	0.36	0.17	0.68	1
315.55	CINCULAN	0.08	0.50	0.17	0.08	
C2	24mROW	0.35	4.20	0.18	24.00	1
7976.41	2 1	0.33		0.10	21100	_
C20	CIRCULAR	0.90	0.64	0.23	0.90	1
976.65						
C21	CIRCULAR	0.90	0.64	0.23	0.90	1
713.48						
C22	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
751.31						
C23	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
31.69	TD 4 D 5 7 0 T D 4 1	0.05	4 05	0.05	22.00	
C24	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
47.90 C25	CIRCULAR	0.45	0.16	0.11	0.45	1
482.60	CINCULAN	0.45	0.10	0.11	0.45	
C26	CIRCULAR	0.90	0.64	0.23	0.90	1
825.56	C11(C02) II(0.50	0.01	0.25	0.50	_
C27	CIRCULAR	0.90	0.64	0.23	0.90	1
1249.32						
C28	CIRCULAR	0.90	0.64	0.23	0.90	1
1085.47						
C3	24mROW_OS	0.35	2.12	0.18	12.00	1
7156.89						
C30	CIRCULAR	0.45	0.16	0.11	0.45	1
297.81	2.4mDOU_OC	0.25	2 12	0.10	12.00	4
C31 2090.10	24mROW_OS	0.35	2.12	0.18	12.00	1
C32	24mROW_OS	0.35	2.12	0.18	12.00	1
6906.84	24III\0W_03	0.55	2.12	0.10	12.00	_
C4	24mROW	0.35	4.20	0.18	24.00	1
11714.03		3.22				_
C5	24mROW	0.35	4.20	0.18	24.00	1
8665.96						

C6	24mROW	0.35	4.20	0.18	24.00	1
9381.59 C7	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
31.32	=====:		_,,,			_
C8	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
31.73						
C 9	TRAPEZOIDAL	0.05	1.05	0.05	22.00	1
38.03						
Pipe_1	CIRCULAR	1.35	1.43	0.34	1.35	1
3405.65						
Pipe_10	CIRCULAR	0.90	0.64	0.23	0.90	1
1040.01						
Pipe_11	CIRCULAR	0.90	0.64	0.23	0.90	1
701.19						
Pipe_12	CIRCULAR	0.68	0.36	0.17	0.68	1
325.35						
Pipe_13	CIRCULAR	0.60	0.28	0.15	0.60	1
274.61						_
Pipe_14	CIRCULAR	0.25	0.05	0.06	0.25	1
59.47	CTDCIII AD	0.25	0.05	0.06	0.05	
Pipe_16	CIRCULAR	0.25	0.05	0.06	0.25	1
59.47	CTDCIII AD	0.25	0.05	0.06	0.25	4
Pipe_19	CIRCULAR	0.25	0.05	0.06	0.25	1
59.47	CIRCULAR	0.20	0.03	0.05	0.20	1
Pipe_23 32.80	CIRCULAR	0.20	0.03	0.05	0.20	1
Pipe_25	CIRCULAR	0.30	0.07	0.07	0.30	1
96.71	CINCOLAN	0.50	0.07	0.07	0.50	_
Pipe_41	CIRCULAR	0.20	0.03	0.05	0.20	1
32.80	CINCOLAN	0.20	0.05	0.05	0.20	_
Pipe_49	CIRCULAR	0.90	0.64	0.23	0.90	1
1384.54	CINCOLAN	0.30	0.01	0.23	0.50	-
Pipe_50	CIRCULAR	0.90	0.64	0.23	0.90	1
1173.25	CINCOL, III	0.50	0.0.	0.25	0.50	-
Pipe_53	CIRCULAR	0.90	0.64	0.23	0.90	1
701.13	3 277 33 27	0.120		0.12	0.120	_
Pipe 76	CIRCULAR	0.30	0.07	0.07	0.30	1
104.71						
Pipe_8	CIRCULAR	1.35	1.43	0.34	1.35	1
2729.02			-	-		
Pipe 9	CIRCULAR	1.35	1.43	0.34	1.35	1
2668.87						

Transect 24mROW Area:

0	.0004	0.0016	0.0035	0.0062	0.0097
0	.0140	0.0191	0.0250	0.0316	0.0390
0	.0472	0.0561	0.0659	0.0764	0.0877
0	.0998	0.1127	0.1263	0.1407	0.1560
0	.1719	0.1888	0.2067	0.2258	0.2457
0	.2664	0.2879	0.3102	0.3333	0.3572
0	.3818	0.4072	0.4335	0.4605	0.4883
0	.5169	0.5463	0.5764	0.6074	0.6392
0	.6717	0.7050	0.7391	0.7740	0.8097
0	.8462	0.8835	0.9215	0.9604	1.0000
Hrad:					
0	.0190	0.0380	0.0570	0.0760	0.0949
0	.1139	0.1329	0.1519	0.1709	0.1899
0	.2089	0.2279	0.2469	0.2659	0.2848
0	.3038	0.3228	0.3418	0.3608	0.3798
0	.3988	0.4176	0.4354	0.4604	0.4943
0	.5264	0.5568	0.5857	0.6131	0.6393
0	.6642	0.6881	0.7109	0.7329	0.7539
	.7742	0.7937	0.8126	0.8308	0.8485
	.8656	0.8821	0.8982	0.9139	0.9291
	.9440	0.9585	0.9726	0.9865	1.0000
Width:					
	.0195	0.0390	0.0584	0.0779	0.0974
	.1169	0.1364	0.1559	0.1753	0.1948
	.2143	0.2338	0.2533	0.2727	0.2922
	.3117	0.3312	0.3507	0.3701	0.3896
	.4091	0.4340	0.4629	0.4879	0.5076
	.5273	0.5470	0.5667	0.5864	0.6061
	.6258	0.6455	0.6652	0.6849	0.7046
	.7242	0.7439	0.7636	0.7833	0.8030
	.8227	0.8424	0.8621	0.8818	0.9015
	.9212	0.9409	0.9606	0.9803	1.0000
J	.,,	0.5.05	0.2000	0.3003	
Transect 24mR	OW OS				
Area:	.0103				
	.0004	0.0015	0.0035	0.0062	0.0096
	.0139	0.0189	0.0247	0.0312	0.0385
	.0466	0.0555	0.0651	0.0755	0.0867
	.0987	0.1114	0.1249	0.1391	0.1542
	.1700	0.1867	0.2048	0.2244	0.2449
	.2661	0.2881	0.3108	0.3342	0.3585
	.3834	0.4091	0.4356	0.4628	0.4908
	.5195	0.5489	0.4330	0.4028	0.6418
	.6742	0.7074	0.7414	0.7761	0.8115
	.8477	0.8847	0.9224	0.9608	1.0000
Hrad:	.04//	0.004/	0.7424	0.7000	1.0000
	.0191	0.0383	0.0574	0.0765	0 0057
					0.0957
	.1148	0.1339	0.1531	0.1722	0.1913
	. 2104	0.2296	0.2487	0.2678	0.2870
0	.3061	0.3252	0.3444	0.3635	0.3826

	0.4018	0.4205	0.4373	0.4605	0.4929
	0.5237	0.5530	0.5810	0.6077	0.6334
	0.6580	0.6816	0.7043	0.7262	0.7474
	0.7678	0.7875	0.8067	0.8252	0.8432
	0.8607	0.8778	0.8944	0.9105	0.9263
	0.9417	0.9567	0.9715	0.9859	1.0000
Width:					
	0.0195	0.0390	0.0584	0.0779	0.0974
	0.1169	0.1364	0.1559	0.1753	0.1948
	0.2143	0.2338	0.2533	0.2728	0.2922
	0.3117	0.3312	0.3507	0.3702	0.3897
	0.4091	0.4394	0.4778	0.5078	0.5268
	0.5457	0.5646	0.5836	0.6025	0.6214
	0.6403	0.6593	0.6782	0.6971	0.7161
	0.7350	0.7539	0.7729	0.7918	0.8107
	0.8296	0.8486	0.8675	0.8864	0.9054
	0.9243	0.9432	0.9621	0.9811	1.0000
******	****				
Analysis ******	Options *****				
Process	ts Models: ll/Runoff				
	lt				

Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed YES Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 11/23/2016 00:00:00 Ending Date 11/23/2016 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Wet Time Step 00:01:00 Dry Time Step 00:05:00 Routing Time Step 1.00 sec Variable Time Step NO Maximum Trials 8 Number of Threads 8 Head Tolerance 0.001500 m

Runoff Quantity Continuity	hectare-m	mm
*******	Volume	Depth

Total Precipitation	0.468	71.665
Evaporation Loss	0.000	0.000
Infiltration Loss	0.035	5.433
Surface Runoff	0.424	64.918
Final Storage	0.009	1.389
Continuity Error (%)	-0.106	
*******	Vala	V/a I
	Volume	Volume
Flow Routing Continuity ************************************	hectare-m	10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.424	4.238
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	3.996	39.958
External Outflow	4.329	43.289
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.090	0.902
Continuity Error (%)	0.011	

Node 203B (-9.16%)

Node 104A-1 (-6.00%)

Node 104A (2.95%)

Node 103A-1 (-2.34%)

Node CB102A-S (-1.60%)

Link OL1 (56)

Link C21 (5)

Link C20 (3)

Node OF-MJ (0.05%)

Node OF-MN (0.05%)

Node U100A-OF (0.05%)

Node U100B-OF (0.05%)

Node U100C-OF (0.05%)

Minimum Time Step : 1.00 sec
Average Time Step : 1.00 sec
Maximum Time Step : 1.00 sec
% of Time in Steady State : 0.00
Average Iterations per Step : 2.01
% of Steps Not Converging : 0.05

			Total	Total	Total	Total	Imperv
Perv	Total		Peak				r -
		Р	recip	Runon	Evap	Infil	Runoff
Runoff	Runoff	Runof	f Runof	f Coeff			
Subcato	hment		mm	mm	mm	mm	mm
mm	mm	10^6 ltr	LPS				
BLDG_H			71.66	0.00	0.00	0.00	70.14
0.00	70.14	0.46	323.24	0.979			
BLDG_J		•	71.66	0.00	0.00	0.00	70.16
0.00	70.16		27.64				
BLDG_K				0.00	0.00	0.00	70.15
0.00	70.15	0.04	28.47	0.979			
BLDG_L				0.00	0.00	0.00	70.18
0.00	70.18		37.10				
BLDG_M				0.00	0.00	0.00	70.18
0.00	70.18	0.06	43.77				
BLDG_N				0.00	0.00	0.00	70.17
0.00	70.17		18.68				
C101A				0.00	0.00	2.51	66.14
	67.74		274.22				
C102A				0.00	0.00	0.62	69.15
0.40	69.55	0.29		0.970			
C102B		•	71.66	0.00	0.00	1.88	67.15
1.20	68.34	0.17	122.59	0.954			
C103A			71.66	0.00	0.00	0.00	70.15
0.00	70.15	0.02	15.70	0.979			

C103B			71.66		0.00	0.00	70.15
0.00	70.15	0.02	12.94				
C105A			71.66		0.00	0.00	70.15
0.00	70.15	0.03	23.84	0.979			
C105B				0.00	0.00	0.00	70.15
	70.15	0.01	9.82	0.979			
EX.C100			71.66	0.00	0.00	10.68	53.16
	59.91	0.08					
EX.C101				0.00	0.00	10.06	54.16
	60.50	0.10			0.00	40.07	54.46
EX.C102		0.44	71.66	0.00	0.00	10.07	54.16
6.33		0.11	83.24		0.00	40.07	F4 16
EX.C103		0.10	71.66	0.00	0.00	10.07	54.16
6.34		0.10	78.37		0.00	10 71	F2 1F
EX.C104		0 12	71.66		0.00	10.71	53.15
6.71		0.13	99.20		0.00	16 50	44 12
EX.C105		0.27		0.00	0.00	16.50	44.13
10.14	54.27	0.24		0.757	0 00	0.00	70 21
L106A	70 21	0.02	71.66	0.00	0.00	0.00	70.21
	70.21	0.02	14.06 71.66		0.00	0.00	70 21
L106B	70.21	0 02		0.00	0.00	0.00	70.21
0.00 L107A	70.21	0.02		0.980 0.00	0.00	0.00	70.21
0.00	70.21	0 02	11.38	0.980	0.00	0.00	70.21
L107B	70.21	0.02	71.66	0.00	0.00	0.00	70.21
0.00	70.21	0 10	71.00	0.980	0.00	0.00	70.21
L203A	70.21	0.10	71.49	0.00	0.00	0.00	70.14
0.00	70.14	0 21	148.30	0.979	0.00	0.00	70.14
L203B	70.14	0.21	71.66		0.00	0.00	70.21
0.00	70.21	0 05	32.68	0.980	0.00	0.00	70.21
L203C	70.21	0.03		0.00	0.00	0.00	70.19
0.00	70.19	9.94	24.93		0.00	0.00	70.13
L204A	, 0 . 2 .	0.0.		0.00	0.00	0.00	70.14
0.00	70.14	0.22	158.04		0.00	0.00	, , , , ,
L204B	, , , , ,			0.00	0.00	0.00	70.14
0.00	70.14	0.26					
L205A			71.66		0.00	5.70	61.13
3.52	64.65	0.24		0.902			
L207A				0.00	0.00	26.17	30.08
14.80	44.88	0.07	7 56.27	0.626			
R104A			71.66	0.00	0.00	0.00	70.14
0.00	70.14	0.25		0.979			
R104B			71.66	0.00	0.00	0.00	70.14
0.00	70.14	0.00	2.17	0.979			
R106A			71.66	0.00	0.00	0.00	70.14
0.00	70.14	0.18	130.01	0.979			
U100A			71.66	0.00	0.00	30.85	23.07
17.28	40.35	0.01	8.26	0.563			
U100B			71.66	0.00	0.00	31.93	22.06
17.22	39.29	0.03	22.27	0.548			

U100C		71	.66	0.00	0.00	31.93	22.06
17.24	39.29	0.05	34.09	0.548			
UNC-1		71	.66	0.00	0.00	0.00	70.15
0.00	70.15	0.01	6.49	0.979			
UNC-2		71	.66	0.00	0.00	14.15	48.12
8.38	56.50	0.02	16.50	0.788			
UNC-3		71	.66	0.00	0.00	23.56	34.09
13.31	47.40	0.05	40.87	0.661			
UNC-4		71	.66	0.00	0.00	13.49	49.12
8.02	57.14	0.02	16.99	0.797			

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL		rrence	Max Depth
Node	Туре	Meters	Meters	Meters	days	hr:min	Meters
100	JUNCTION	1.06	1.56	86.29	0	03:00	1.56
101	JUNCTION	0.68	1.10	86.30	0	02:59	1.10
102	JUNCTION	0.96	1.45	86.30	0	03:00	1.44
103	JUNCTION	1.64	1.72	84.37	0	01:01	1.72
104	JUNCTION	2.07	2.16	84.50	0	01:00	2.16
105	JUNCTION	0.38	0.50	84.95	0	01:00	0.50
106	JUNCTION	0.37	0.47	85.66	0	01:00	0.47
106A	JUNCTION	0.53	0.67	87.06	0	01:00	0.67
107	JUNCTION	0.31	0.44	86.87	0	00:53	0.44
201CB	JUNCTION	0.61	0.70	86.60	0	01:03	0.70
203	JUNCTION	0.93	1.36	86.30	0	02:59	1.36
204	JUNCTION	0.43	0.56	86.52	0	01:00	0.56
206	JUNCTION	0.33	0.51	87.21	0	01:00	0.51
207	JUNCTION	0.32	0.50	87.50	0	01:00	0.50
207A	JUNCTION	0.59	1.06	87.95	0	01:00	1.05
208	JUNCTION	0.30	0.33	87.31	0	01:22	0.33
EX100	JUNCTION	1.04	1.08	82.81	0	01:02	1.08
EX101	JUNCTION	1.11	1.15	83.09	0	01:02	1.15
EX102	JUNCTION	1.13	1.17	83.41	0	01:01	1.17
EXSTM	JUNCTION	0.09	0.12	84.66	0	01:38	0.12
MH103	JUNCTION	0.74	1.36	86.05	0	01:38	1.36
MH105	JUNCTION	0.69	1.30	86.05	0	01:38	1.30
STC	JUNCTION	0.47	0.56	84.98	0	03:00	0.56
OF-MJ	OUTFALL	0.00	0.04	87.91	0	01:00	0.04
OF-MN	OUTFALL	0.74	0.78	82.77	0	01:02	0.78
U100A-OF	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
U100B-OF	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
U100C-OF	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
100A	STORAGE	0.16	1.84	88.09	0	01:00	1.84

100A-1	STORAGE	0.00	0.00	88.56	0	00:00	0.00
101A	STORAGE	0.44	2.01	88.49	0	01:10	2.01
101A-1	STORAGE	0.01	0.02	88.69	0	01:00	0.02
102A	STORAGE	0.71	2.09	88.65	0	01:27	2.09
102A-1	STORAGE	0.01	0.05	88.74	0	01:11	0.05
103A	STORAGE	0.62	2.08	88.74	0	01:11	2.08
103A-1	STORAGE	0.01	0.06	88.90	0	01:03	0.06
104A	STORAGE	0.68	2.09	88.90	0	01:03	2.09
104A-1	STORAGE	0.01	0.08	89.00	0	01:00	0.08
105A	STORAGE	0.27	2.57	89.01	0	01:00	2.57
107A	STORAGE	0.15	2.01	89.26	0	00:52	2.01
203A	STORAGE	1.22	2.07	89.37	0	01:25	2.07
203B	STORAGE	0.28	2.12	89.42	0	01:00	2.12
203C	STORAGE	0.15	2.13	88.63	0	01:00	2.13
204A	STORAGE	1.31	2.12	89.42	0	01:20	2.12
204B	STORAGE	1.59	2.08	89.38	0	01:41	2.08
205	STORAGE	1.60	2.93	89.42	0	01:10	2.93
BLDG_H-S	STORAGE	0.10	0.15	103.15	0	01:32	0.15
BLDG_J-S	STORAGE	0.06	0.13	103.13	0	01:21	0.13
BLDG_K-S	STORAGE	0.08	0.15	103.15	0	01:30	0.15
BLDG_L-S	STORAGE	0.12	0.16	103.16	0	01:40	0.16
BLDG_M-S	STORAGE	0.08	0.15	103.15	0	01:22	0.15
BLDG_N-S	STORAGE	0.07	0.14	103.14	0	01:21	0.14
CB101A-S	STORAGE	0.19	1.54	88.81	0	01:00	1.54
CB102A-S	STORAGE	0.24	1.61	88.54	0	01:02	1.61
CB102B-S	STORAGE	0.30	1.68	88.50	0	01:12	1.68
CB103A-S	STORAGE	0.64	1.25	86.05	0	01:37	1.25
CB103B-S	STORAGE	0.34	0.57	87.95	0	01:00	0.57
CB105A-S	STORAGE	0.04	0.61	88.13	0	01:00	0.61
CB105B-S	STORAGE	0.55	1.15	86.05	0	01:38	1.15
R104A-S	STORAGE	0.09	0.15	103.15	0	01:29	0.15
R106A-S	STORAGE	0.09	0.15	103.15	0	01:31	0.15
SU7	STORAGE	1.06	1.57	86.29	0	03:00	1.57

.-----

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance						
			Inflow	Inflow	Occurrence	Volume	
Volume	Error						
Node		Type	LPS	LPS	days hr:min	10^6 ltr	10^6
ltr	Percent						

100 JUNCTION 0.00 396.24 0 01:01 0 2.14 0.721 101 JUNCTION 0.00 240.81 01:01 0 1.48 1.144 JUNCTION 0.00 341.48 0 102 01:01 1.9 0.675 103 JUNCTION 43.50 481.95 01:00 0.94 7.16 0.240 104 JUNCTION 214.24 392.37 01:00 4.63 5.56 0.261 0 105 JUNCTION 0.00 157.68 01:00 0.778 0.045 0.00 96.02 01:00 0 106 JUNCTION 0.59 0.059 106A JUNCTION 25.44 25.44 01:00 0.036 0.036 1.778 107 JUNCTION 11.38 43.83 00:53 0.0161 0.098 0.355 0.00 24.06 201CB JUNCTION 01:03 0 0.147 0.699 203 JUNCTION 0.00 145.40 01:00 0 1.18 0.246 204 JUNCTION 0.00 111.70 01:00 0 0.872 0.045 0.00 206 JUNCTION 61.56 01:00 0 0.151 0.233 207 JUNCTION 0.00 59.49 01:00 0 0.111 0.316 207A JUNCTION 56.27 56.27 01:00 0.0727 0.0727 0.979 0.00 0 208 JUNCTION 2.35 01:21 0.0264 1.342 EX100 JUNCTION 0.00 2178.58 01:02 0 43.2 0.010 EX101 JUNCTION 91.30 2159.26 01:02 1.97 43.2 0.170 EX102 JUNCTION 1500.90 2002.73 01:01 32.4 39.7 0.226 0.00 0 **EXSTM** JUNCTION 36.50 01:38 0.526 0.011 MH103 JUNCTION 0.00 48.56 00:59 0 0.527 0.098 MH105 JUNCTION 0.00 35.97 00:58 0 0.233 0.014 STC JUNCTION 0.00 100.54 03:00 1.47 0.170 0 OF-MJ OUTFALL 0.00 48.08 01:00

0.0255	0.000							
OF-MN		OUTFALL	0.00	2178.59	0	01:02	0	
43.2	0.000							
U100A-0F		OUTFALL	8.26	8.26	0	01:00	0.0106	
0.0106	0.000							
U100B-OF		OUTFALL	22.27	22.27	0	01:00	0.0307	
0.0307	0.000							
U100C-0F		OUTFALL	34.09	34.09	0	01:00	0.0469	
0.0469	0.000				_			
100A		STORAGE	67.54	67.54	0	01:00	0.0858	
0.0861	-0.001	31010102	0,151	07.51	Ū	02.00	0.0050	
100A-1	0.002	STORAGE	0.00	0.00	0	00:00	0	
	0.000 ltr	31010102	0.00	0.00	Ū	00.00	Ŭ	
101A	0.000 10	STORAGE	81.21	88.40	0	01:00	0.103	
0.113	0.687	STORAGE	01.21	00.40	U	01.00	0.105	
101A-1	0.007	STORAGE	16.50	16.50	0	01:00	0.0214	
0.0214	-6.319	STORAGE	10.50	10.50	ð	01.00	0.0214	
102A	-0.319	STORAGE	83.24	91.93	0	01:00	0.105	
0.167	1.046	STURAGE	03.24	91.93	О	01.00	0.105	
	1.040	CTODACE	0.00	E4 62	0	01.10	۵	
102A-1	1 160	STORAGE	0.00	54.63	0	01:10	0	
0.0499	-1.160	CTODACE	70 27	121 26	0	01.03	0.0003	
103A	0 575	STORAGE	78.37	131.36	0	01:03	0.0993	
0.198	0.575	STODAGE	40.07	422.50	•	04 00	0.0536	
103A-1	2 226	STORAGE	40.87	133.58	0	01:00	0.0536	
0.108	-2.286	STODAGE	00.00		•	00 50	0.405	
104A	2 22=	STORAGE	99.20	277.57	0	00:59	0.125	
0.22	3.035	CT00.05		4=4 40	_			
104A-1		STORAGE	0.00	174.69	0	01:00	0	
0.0785	-5.663				_			
105A		STORAGE	202.38	202.38	0	01:00	0.244	
0.246	-0.197							
107A		STORAGE	71.49	71.49	0	01:00	0.101	
0.101	-0.211							
203A		STORAGE	148.30	165.34	0	01:00	0.21	
0.218	0.006							
203B		STORAGE	49.67	49.67	0	01:00	0.0683	
0.0683	-8.393							
203C		STORAGE	24.93	24.93	0	01:00	0.0353	
0.0354	-0.609							
204A		STORAGE	158.04	158.04	0	01:00	0.224	
0.249	-1.406							
204B		STORAGE	184.34	184.34	0	01:00	0.261	
0.281	0.004							
205		STORAGE	180.16	180.16	0	01:00	0.242	
0.244	3.892							
BLDG_H-S		STORAGE	323.24	323.24	0	01:00	0.457	
0.457	0.001							
BLDG_J-S		STORAGE	27.64	27.64	0	01:00	0.0391	
0.0391	0.002							
BLDG_K-S		STORAGE	28.47	28.47	0	01:00	0.0403	
_								

0.0403	0.002						
BLDG_L-S		STORAGE	37.10	37.10	0	01:00	0.0525
0.0525	0.004						
BLDG_M-S		STORAGE	43.77	43.77	0	01:00	0.0619
0.0619	0.002						
BLDG_N-S		STORAGE	18.68	18.68	0	01:00	0.0264
0.0264	0.002						
CB101A-S		STORAGE	274.22	284.07	0	01:00	0.378
0.383	1.372						
CB102A-S		STORAGE	208.78	395.88	0	01:00	0.293
0.364	-1.576						
CB102B-S		STORAGE	122.59	206.08	0	01:00	0.17
0.248	0.007				_		
CB103A-S		STORAGE	15.70	28.64	0	01:00	0.0222
0.0405	0.008		40.04		_	04 00	0.0400
CB103B-S		STORAGE	12.94	12.94	0	01:00	0.0183
0.0183	1.524	CTODACE	22.04	22.04	•	04 00	0.0007
CB105A-S		STORAGE	23.84	23.84	0	01:00	0.0337
0.0337	0.005	CTODACE	0.00	44 25	•	00.50	0.0430
CB105B-S		STORAGE	9.82	11.25	0	00:58	0.0139
0.016	-0.142	CTODACE	100 70	100 70	0	01.00	0.256
R104A-S 0.256	0.001	STORAGE	180.78	180.78	0	01:00	0.256
	0.001	CTODACE	120 01	130.01	0	01.00	0 104
R106A-S	0.001	STORAGE	130.01	130.01	0	01:00	0.184
0.184 SU7	Ø.001	STORAGE	0.00	448.82	0	00:55	0
2.12	0.148	STURAGE	0.00	440.02	Ð	00.55	Ø
Z • 1 Z	0.140						

Node Surcharge Summary *******

Surcharging occurs when water rises above the top of the highest conduit.

-----Max. Height Min. Depth Above Crown Hours Below Rim Surcharged Meters Node Meters Type ______ 101 JUNCTION 3.38 0.427 1.918 1.76 102 2.405 JUNCTION 0.155 207A JUNCTION 0.12 0.256 2.235 2.31 MH103 0.456 3.194 JUNCTION MH105 1.87

0.356

3.134

JUNCTION

Node Flooding Summary *******

No nodes were flooded.

		Average	Avg	Evap	Exfil	Maximum	Max	Time of
Max Ma	ximum	· ·		•				
		Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Occurrenc	e Outflow							
Storage	Unit	1000 m	Full	Loss	Loss	1000 m	Full	days
hr:min	LPS							
100A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	67.48	0.000	0.0	0.0	0.0	0.000	0.0	Ü
100A-1	07.1.0	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	0.00	0.000	0.0	0.0	0.0	0.000	0.0	· ·
101A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	20.28							-
101A-1		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	15.90							
102A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	20.67							
102A-1		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	50.35							
103A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	75.27							
103A-1		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	106.41							
104A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	126.96							
104A-1		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	166.39							
105A		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	197.51							
107A		0.000	3.4	0.0	0.0	0.002	100.0	0
00:52	72.69							
203A		0.042	26.7	0.0	0.0	0.118	75.6	0
01:25	16.37							
203B		0.001	8.6	0.0	0.0	0.007	100.0	0
00:55	43.80			_				
203C		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	23.66							
204A		0.046	39.3	0.0	0.0	0.117	100.0	0

01:11 204B	33.31	0.076	39.3	0.0	0.0	0.168	86.4	0
01:41	16.44	0.070	33.3	0.0	0.0	0.100	00.4	· ·
205		0.029	32.1	0.0	0.0	0.092	100.0	0
01:01	53.45							
BLDG_H-S		0.133	7.6	0.0	0.0	0.282	16.0	0
01:32	29.02							
BLDG_J-S		0.007	3.6	0.0	0.0	0.022	10.8	0
01:21	3.49							_
BLDG_K-S		0.010	6.0	0.0	0.0	0.024	14.5	0
01:30	2.82	0 017	10.3	0.0	0.0	0 022	40.7	•
BLDG_L-S		0.017	10.3	0.0	0.0	0.033	19.7	0
01:40 BLDG_M-S	2.84	0.013	5.5	0.0	0.0	0.035	14.8	0
01:22	5.03	0.013	ر. ر	0.0	0.0	0.033	14.0	Ø
BLDG_N-S		0.005	3.8	0.0	0.0	0.015	11.3	0
01:21	2.35	0.005	5.0	0.0	0.0	0.013	11.5	O
CB101A-S		0.002	1.7	0.0	0.0	0.034	30.5	0
	275.75							
CB102A-S		0.003	4.8	0.0	0.0	0.032	55.2	0
01:02	200.06							
CB102B-S		0.008	7.2	0.0	0.0	0.091	77.6	0
01:12	59.65							
CB103A-S		0.000	16.9	0.0	0.0	0.000	33.0	0
01:37	12.78							
CB103B-S		0.000	24.3	0.0	0.0	0.000	41.0	0
01:00	12.94	0 000	2 7	0.0	0.0	0.000	44 5	•
CB105A-S		0.000	2.7	0.0	0.0	0.000	44.5	0
01:00 CB105B-S	23.82	0.000	0.2	0.0	0.0	0.000	0.4	0
01:38	1.92	0.000	0.2	0.0	0.0	0.000	0.4	Ø
R104A-S	1.92	0.066	6.6	0.0	0.0	0.154	15.6	0
01:29	18.93	0.000	0.0	0.0	0.0	0.154	13.0	O
R106A-S	10.55	0.049	6.8	0.0	0.0	0.111	15.6	0
01:31	12.62					0,-11		· ·
SU7		0.765	73.1	0.0	0.0	1.048	100.0	0
02:56	91.39							

	Flow	Avg	Max	Total								
	Freq	Flow	Flow	Volume								
Outfall Node	Pcnt	LPS	LPS	10^6 ltr								
OF-MJ	5.39	21.88	48.08	0.025								
OF-MN	99.85	2001.95	2178.59	43.175								

System	50.19	2032.13	2283.15	43.289
U100C-OF	49.86	4.35	34.09	0.047
U100B-OF	48.91	2.90	22.27	0.031
U100A-OF	46.93	1.04	8.26	0.011

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow			Veloc	Full	Full
Link	Туре	LPS	days	hr:min	m/sec	Flow	-
C1	CONDUIT	7.27		01:00	0.03		0.47
C10	CONDUIT	9.94	0	01:00	0.22	0.04	0.19
C11	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
C12	CHANNEL	0.00	0	00:00	0.00	0.00	0.05
C13	CHANNEL	48.08	0	01:00	1.02	0.00	0.11
C14	CHANNEL	135.81	0	01:00	0.21	0.02	0.46
C15	CHANNEL	106.30	0	01:01	0.28	0.01	0.51
C16	CHANNEL	54.63	0	01:10	0.11	0.01	0.48
C17	CHANNEL	8.70	0	01:00	0.31	0.00	0.43
C18	CHANNEL	0.00	0	00:00	0.00	0.00	0.30
C19	CONDUIT	239.61	0	01:01	1.26	0.76	1.00
C2	CHANNEL	166.39	0	01:00	0.21	0.02	0.52
C20	CONDUIT	339.21	0	01:01	1.23	0.35	1.00
C21	CONDUIT	448.82	0	00:55	2.33	0.63	1.00
C22	CONDUIT	180.17	0	01:00	0.36	0.24	0.63
C23	CONDUIT	122.17	0	01:02	0.20	3.85	0.60
C24	CONDUIT	1.32	0	01:12	0.00	0.03	0.05
C25	CONDUIT	9.17	0	03:00	1.18	0.02	0.10
C26	CONDUIT	12.78	0	00:59	0.07	0.02	1.00
C27	CONDUIT	19.80	0	00:59	0.26	0.02	1.00
C28	CONDUIT	6.05	0	01:13	0.11	0.01	1.00
C3	CHANNEL	40.26	0	00:53	1.99	0.01	0.19
C30	CONDUIT	36.50	0	01:38	1.13	0.12	0.26
C31	CHANNEL	7.08	0	01:04	0.19	0.00	0.13
C32	CHANNEL	0.00	0	00:00	0.00	0.00	0.09
C4	CHANNEL	106.41	0	01:03	0.38	0.01	0.48
C5	CHANNEL	50.35	0	01:11	0.07	0.01	0.46
C6	CHANNEL	7.20	0	01:00	0.26	0.00	0.32
C7	CONDUIT	34.93	0	01:10	0.10	1.12	0.37
C8	CONDUIT	16.73	0	01:21	0.08	0.53	0.22
C9	CONDUIT	17.28	0	01:00	0.08	0.45	0.21
Pipe_1	CONDUIT	2178.59	0	01:02	2.52	0.64	0.58
Pipe_10	CONDUIT	481.60	0	01:01	1.68	0.46	0.46
Pipe_11	CONDUIT	392.27	0	01:00	1.27	0.56	0.49

Pipe_12	CONDUIT	145.30	0	01:01	0.68	0.45	1.00
Pipe_13	CONDUIT	110.43	0	01:00	1.06	0.40	0.40
Pipe_14	CONDUIT	60.74	0	01:00	1.41	1.02	0.82
Pipe_16	CONDUIT	58.90	0	01:00	1.41	0.99	0.80
Pipe_19	CONDUIT	2.35	0	01:22	0.59	0.04	0.14
Pipe_23	CONDUIT	25.44	0	01:00	1.16	0.78	0.66
Pipe_25	CONDUIT	43.84	0	00:53	1.34	0.45	0.47
Pipe_41	CONDUIT	56.26	0	01:00	1.81	1.72	0.97
Pipe_49	CONDUIT	157.49	0	01:00	1.45	0.11	0.23
Pipe_50	CONDUIT	95.98	0	01:00	1.11	0.08	0.19
Pipe_53	CONDUIT	100.40	0	03:00	0.83	0.14	0.24
Pipe_76	CONDUIT	24.05	0	01:03	1.16	0.23	0.60
Pipe_8	CONDUIT	2159.29	0	01:02	2.40	0.79	0.60
Pipe_9	CONDUIT	2002.61	0	01:01	2.11	0.75	0.63
105A-0	ORIFICE	61.70	0	01:00			1.00
107-0	ORIFICE	32.48	0	00:52			1.00
201-0	ORIFICE	91.39	0	03:00			1.00
203A-0	ORIFICE	16.37	0	01:25			1.00
203B-0	ORIFICE	16.58	0	01:00			1.00
204A-0	ORIFICE	16.58	0	01:20			1.00
204B-0	ORIFICE	16.44	0	01:41			1.00
205-0	ORIFICE	18.52	0	01:10			1.00
C29	ORIFICE	36.50	0	01:38			1.00
0L1	ORIFICE	16.40	0	00:54			1.00
OR1	ORIFICE	95.58	0	01:00			1.00
OR2	ORIFICE	77.89	0	01:02			1.00
OR3	ORIFICE	58.33	0	01:12			1.00
OR6	ORIFICE	23.82	0	01:00			1.00
OR7	ORIFICE	12.94	0	01:00			1.00
100A-0	DUMMY	9.70	0	01:00			1.00
100A-01	DUMMY	9.70	0	01:00			
101A-0	DUMMY	10.14	0	01:10			
101A-01	DUMMY	10.14	0	01:10			
102A-0	DUMMY	10.33	0	01:10			
102A 0	DUMMY	10.33	0	01:27			
103A-0	DUMMY	10.32	0	01:11			
103A-01	DUMMY	10.32	0	01:11			
104A-0	DUMMY	10.35	0	01:03			
104A-01	DUMMY	10.35	0	01:03			
BLDG_H_OUT	DUMMY	29.02	0	01:12			
BLDG_II_OUT	DUMMY	3.49	0	01:12			
BLDG_5_001 BLDG K OUT	DUMMY	2.82	0	01:21			
BLDG_K_OUT	DUMMY	2.84	0	01:01			
BLDG_M_OUT	DUMMY	5.03	0	01:01			
BLDG_M_OUT	DUMMY	2.35	0	01:22			
OR4	DUMMY	18.93	0	01:21			
OR5	DUMMY		0	01:13			
OVO	אוייוטע	12.62	О	01:14			

				Function of Time in Flow Class					
	Adjusted			Fract	Fraction of Time in Flow Class				
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm
Inlet	, , , , , , ,		96	2011.1	20.5	- O.P	96	20	
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd
Ctrl									
C1	1.00	0.91	0.06	0.00	0.03	0.00	0.00	0.00	0.85
0.00									
C10	1.00	0.93	0.00	0.00	0.03	0.00	0.00	0.03	0.02
0.00									
C11	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	1 00	0.05	0.05	0.00	0.00	0 00	0.00	0 00	0.00
C12 0.00	1.00	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00
C13	1.00	0.95	0.00	a aa	0.00	a a5	0.00	0.00	0.01
0.00	1.00	0.95	0.00	0.00	0.00	0.05	0.00	0.00	0.01
C14	1.00	0.14	0.00	0.00	0.07	0.00	0.00	0.78	0.02
0.00									
C15	1.00	0.04	0.00	0.00	0.31	0.00	0.00	0.65	0.22
0.00									
C16	1.00	0.14	0.03	0.00	0.26	0.00	0.00	0.57	0.16
0.00									
C17	1.00	0.04	0.00	0.00	0.33	0.00	0.00	0.63	0.33
0.00	1 00	0 00	0 20	0 00	0 00	0 00	0 00	0 00	0.00
C18 0.00	1.00	0.80	0.20	0.00	0.00	0.00	0.00	0.00	0.00
C19	1.00	0.04	9.99	9.99	0.81	9.99	0.00	0.15	0.00
0.00	2.00	0.0.	0.00	0.00	0.02	0.00	0.00	0.13	0.00
C2	1.00	0.14	0.01	0.00	0.31	0.00	0.00	0.55	0.31
0.00									
C20	1.00	0.04	0.00	0.00	0.96	0.00	0.00	0.00	0.01
0.00									
C21	1.00	0.04	0.00	0.00	0.86	0.10	0.00	0.00	0.01
0.00	1 00	0 01	0 01	0 00	0 01	0 00	0 00	0 00	0.94
C22 0.00	1.00	0.91	0.04	0.00	0.04	0.00	0.00	0.00	0.84
C23	1.00	0.91	0.00	0.00	0.00	0.00	0.00	0.09	0.00
0.00	1.00	J.J.	2.00	2.00	2.00	5.50	2.00	0.00	0.00
C24	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00
0.00									
C25	1.00	0.97	0.00	0.00	0.00	0.00	0.00	0.03	0.00

0.00 C26	1.00	0.04	0.00	0.00	0.96	0.00	0.00	0.00	0.07
0.00	1.00	0.04	0.00	0.00	0.50	0.00	0.00	0.00	0.07
C27	1.00	0.04	0.01	0.00	0.95	0.00	0.00	0.00	0.07
0.00	1.00	0.01	0.01	0.00	0.55	0.00	0.00	0.00	0.07
C28	1.00	0.04	0.00	0.00	0.95	0.00	0.00	0.01	0.12
0.00	_,,,								***
C3	1.00	0.15	0.83	0.00	0.01	0.02	0.00	0.00	0.85
0.00									
C30	1.00	0.04	0.00	0.00	0.00	0.00	0.00	0.96	0.00
0.00									
C31	1.00	0.04	0.95	0.00	0.00	0.00	0.01	0.00	0.00
0.00									
C32	1.00	0.04	0.96	0.00	0.00	0.00	0.00	0.00	0.00
0.00									
C4	1.00	0.04	0.00	0.00	0.29	0.00	0.00	0.67	0.29
0.00									
C5	1.00	0.14	0.03	0.00	0.30	0.00	0.00	0.52	0.30
0.00	1 00	0.04	0.00	0.00	0 20	0.00	0.00	0.76	0 20
C6 0.00	1.00	0.04	0.00	0.00	0.20	0.00	0.00	0.76	0.20
C7	1.00	0.82	0.00	0.00	0.12	0.00	0.03	0.03	0.00
0.00	1.00	0.02	0.00	0.00	0.12	0.00	0.05	0.03	0.00
C8	1.00	0.84	0.00	0.00	0.00	0.00	0.00	0.16	0.00
0.00	2.00	0.0.	0.00	0.00	0.00	0.00	0.00	0.10	0.00
C9	1.00	0.94	0.00	0.00	0.00	0.00	0.06	0.00	0.00
0.00									
Pipe_1	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.01
0.00									
Pipe_10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00									
Pipe_11	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.01	0.00
0.00	1 00	0.04	0 01	0.00	0.05	0.00	0.00	0 00	0.00
Pipe_12	1.00	0.04	0.01	0.00	0.95	0.00	0.00	0.00	0.00
0.00 Pipe_13	1.00	0.05	0.00	0.00	0.03	0.00	0.00	0.92	0.00
0.00	1.00	0.05	0.00	0.00	0.05	0.00	0.00	0.52	0.00
Pipe_14	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00
0.00	2.00	0.07	0.00	0.00	0.00	0.00	0.00	0.23	0.00
Pipe_16	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00
0.00									
Pipe_19	1.00	0.08	0.00	0.00	0.00	0.00	0.00	0.92	0.00
0.00									
Pipe_23	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00
0.00									
Pipe_25	1.00	0.05	0.00	0.00	0.00	0.00	0.00	0.95	0.00
0.00	4 00	0 6-	0.55	0.05	0.55	0.55	0.55	0.05	0.00
Pipe_41	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00
0.00 Dina 40	1 00	0.00	0.05	0.00	0.03	0.00	0.00	0 01	0.02
Pipe_49	1.00	0.00	0.05	0.00	0.03	0.00	0.00	0.91	0.03

0.00									
Pipe_50	1.00	0.05	0.00	0.00	0.00	0.00	0.00	0.95	0.00
0.00									
Pipe_53	1.00	0.09	0.00	0.00	0.00	0.00	0.00	0.91	0.00
0.00									
Pipe_76	1.00	0.06	0.00	0.00	0.54	0.01	0.00	0.38	0.55
0.00									
Pipe_8	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00									
Pipe_9	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00									

Conduit			Dnstream		Hours Capacity Limited
C19	3.38	3.38	3.80	0.01	0.01
C20	3.91	3.91	4.37	0.01	0.01
C21	4.37	4.37	4.44	0.01	0.01
C23	0.01	0.01	0.01	0.24	0.01
C26	1.83	1.83	2.31	0.01	0.01
C27	1.87	1.87	2.31	0.01	0.01
C28	1.38	1.38	1.87	0.01	0.01
C7	0.01	0.01	0.01	0.06	0.01
Pipe_12	3.16	3.16	3.38	0.01	0.01
Pipe_14	0.01	0.01	0.01	0.01	0.01
Pipe_41	0.01	0.12	0.01	0.16	0.01
Pipe_76	0.01	0.01	1.76	0.01	0.01

Analysis begun on: Thu Jul 17 12:25:49 2025 Analysis ended on: Thu Jul 17 12:25:51 2025

Total elapsed time: 00:00:02

C.4 Background Report Storm Excerpts

Project: 160402122 C-6

GLOUCESTER AND CUMBERLAND EAST URBAN COMMUNITY EXPANSION AREA AND BILBERRY CREEK INDUSTRIAL PARK MASTER SERVICING UPDATE

BILBERRY CREEK INDUSTRIAL PARK July 2006

Line/Vanguard Intersection (that controls the flow from the N2 pond and the Tenth Line road interconnect).

The release rate from the BCIP was determined by providing a 5 year level of service for the road corridors and controlling the flow from the development parcels. Accounting for the 10 year flow contribution from the Innes and Mer Bleue road corridors and flow contributions from the remainder of the tributary area, it was found that new developments within the BCIP would have to be controlled to 50L/s/ha.

Tributary areas and peak flow contributions to the Wildflower Drive trunk sewer at Innes Road are summarized in **Table 3-1**.

TABLE 3-1 Tributary Areas and Peak Flow Contributions to the Wildflower Trunk Sewer at Innes Road – Major Flows				
Tributary Area	Area	Controlled	Flow Rate	
	(ha)	L/s/ha	Total (L/s)	
The BCIP development:				
Future Lots (Phases 1 & 2)	63.8	50	3190	
Roads (Exist & Future)	5.19	100	519	
Innes Road	3.7	235*	869.5	
Mer Bleue Road	0.86	111	95.5	
Existing Urban Block (south west corner of	1.20	111	133.2	
Innes and Mer Bleue Roads)				
Existing Urban area north of Innes Road	2.14	150	321	
west of Prestwick Drive				
The outflow from N2 SWM pond and Tenth	N/A	N/A	820	
Line Road storm sewer at Vanguard Drive				
Total	76.89		5948	

The total peak flow contribution to the Wildflower storm trunk at Innes Road of 5948L/s, shown in **Table 3-1**, represents the 100 year storm condition. For a 5 year storm, the peak flow contribution as shown in the Rational Method calculation provided in **Appendix G** is 5663L/s, which is less than the allowable flow of 5948L/s.

Areas and flow contributions to the BCIP – Innes Road trunk sewer between Tenth Line Road and Wildflower Drive are summarized in **Table 3-2**.

The required BCIP/Innes Road storm trunk size is a 1200mm diameter at Tenth Line Road and increases to a 1650mm on Innes Road at the outlet to Wildflower Drive trunk sewer. The sewer

GLOUCESTER AND CUMBERLAND EAST URBAN COMMUNITY EXPANSION AREA AND BILBERRY CREEK INDUSTRIAL PARK MASTER SERVICING UPDATE

BILBERRY CREEK INDUSTRIAL PARK July 2006

depth varies from 6.0m at Tenth Line Road to 7.2m at Wildflower Drive. The routing of the storm sewers through the BCIP for the preferred concept plan is shown on **Figure 3-3**.

TABLE 3-2 Tributary Areas and Peak Flow Contributions to the BCIP					
Tributary Area	Area	Controlle	d Flow Rate		
•	(ha)	L/s/ha	Total (L/s)		
The BCIP development:					
Future Lots (Phase 1) Including Loblaws Site	25.7	50	1285		
Roads (Exist & Future Phase 1)	1.74	100	174		
Innes Road Prestwick Dr. to Wildflower Dr.	1.88	235	441.8		
Existing Urban area north of Innes Road west of	2.14	150	321		
Prestwick Drive					
The outflow from N2 SWM pond and Tenth Line	N/A	N/A	820		
Road storm sewer at Vanguard Drive					
Total	31.46		3042		

3.1.2.4 Major System

The developments within the BCIP are required to provide onsite storage to reduce the 100 year storm flow to 50L/s/ha. The onsite storage volume requirement for the 100 year storm is 310m³/ha based on the release rate of 50L/s/ha and an imperviousness ratio of 0.7.

The roads within the BCIP are to be designed to maximize the amount of storage that can be provided at sag points to a maximum of 130m³/ha. The effective road slopes should be designed to allow major system flow to overflow towards Innes Road or Mer Bleue Road. Inlet control devices are required on catch basins to control sewer flows to the 5 year level of 100L/s/ha. Given that the major system flow from the BCIP area cannot flow across Innes Road, it is proposed to store excess volume in the ditches south of Innes Road and east of Mer Bleue Road. A DDSWMM assessment of the BCIP roadway drainage system was undertaken and it was found that approximately 1330m³ of excess runoff would be generated during the July 1st, 1979 storm event. If 130m³/ha of storage is provided in the sag points, 900m³ of storage will be provided along the 6.93ha of internal roads. The remaining 430m³ will therefore need to be stored in the ditches south of Innes Road.

The City's current design guidelines, published in November 2004, dictate that the minor system within arterial roads be designed to handle the 10 year peak flow and the flow from residential developments to the minor system be restricted to 85L/s/ha. (Refer to **Appendix H** for a copy of the technical memo explaining the basis for the 85L/s/ha.) As the BCIP storm flows were approved prior to the release of the November 2004 guidelines, the criteria used in sizing the collection system do not match the current guidelines. In addition, as it is intended to upgrade

GLOUCESTER AND CUMBERLAND EAST URBAN COMMUNITY EXPANSION AREA AND BILBERRY CREEK INDUSTRIAL PARK MASTER SERVICING UPDATE

BILBERRY CREEK INDUSTRIAL PARK July 2006

Mer Bleue Road in 2008, the detailed design of the minor system along Mer Bleue must account for the proposed upgrade.

3.1.2.5 Downstream Impacts

3.1.2.5.1 Cardinal Farm Developments

The Hydraulic Gradeline (HGL) elevations in the Wildflower Drive trunk, which services the Cardinal Farm development, were calculated to determine the impact of major storm flow contributions from the sewershed south of and including Innes Road. The allowable release rates in **Table 3-1** were applied in calculating the flows and HGL elevations in XPSWMM. Peak flows from the Cardinal Farm development, which is tributary to the sewer system, were increased by 20 % for the 5 year event to account for the increased catch basin capture rates during the 100 year storm.

The results of the HGL analysis indicated there is no significant sewer surcharge during the 100 year storm. The maximum flow contribution to the Wildflower trunk from the catchment area south of and including Innes Road is 5.9m³/s (major storm), which is close to the 5 year allowable flow of 6.16m³/s. (Refer to **Appendix I** for modeling details.)

3.1.2.5.2 Bilberry Creek

The existing SWM pond at Avenue Des Epinettes, constructed in 1986 was sized to control the flows from the BCIP and the Cardinal Farm development, as well as address erosion and flooding concerns in Bilberry Creek. Therefore, no negative impacts to Bilberry Creek are expected.

Similar to the existing properties within Phase 1 of the BCIP, water quality control measures are to be implemented as part of the City's development site plan control process. It is also of note that the N2 SWM pond provides additional treatment to allow areas downstream of the pond to be released untreated. Therefore, water quality control measures for the section of Innes Road draining to Wildflower and Prestwick trunks are not required.

3.1.2.6 Cost Apportionment – BCIP/Innes Road Storm Trunk

The cost sharing analysis for the BCIP / Innes Road trunk sewer was completed to delineate the costs associated between both the Innes Road and BCIP drainage catchments. The cost sharing considers not only the areas draining directly to the BCIP / Innes Road trunk but also the lands that were allocated capacity in the Prestwick Drive trunk, with the construction of the BCIP / Innes Road trunk. The cost sharing is assessed based on the peak flow contribution from the tributary areas considering the allowable flow to the Prestwick Drive trunk and the total flow from the areas directly tributary to the BCIP – Innes Road trunk sewer. The allowable flow to the Prestwick Drive trunk sewer is 2.6 m³/s and the total flow contribution to the BCIP – Innes Road trunk sewer is 3.65 m³/s. Flow contributions from the Innes Road (including Tenth Line Road) and the existing and proposed developments are summarized in **Table 3-3**.

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage June 15, 2010

4.0 Storm Drainage

4.1 STORM SEWER CRITERIA

Criteria were established by combining current design practices outlined by the City of Ottawa guidelines (2004) and the supporting servicing studies for the Pharand Lands and Bilberry Creek industrial Park (BCIP). Where the criteria conflicted, the BCIP & Pharand Lands report criteria were given precedence. The following summarizes the criteria, with the source of each criterion indicated in italics:

General

- Use of the dual drainage principle (City of Ottawa)
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa)
- Assess impact of 5 and 100 year storm (using 3-hour Chicago Storm distribution and City of Ottawa IDF parameters) (City of Ottawa, Pharand/BCIP Reports)

Storm Sewer & Inlet Controls

- Size storm sewers to convey 5 year storm event under free-flow conditions using 2004 City of Ottawa I-D-F parameters (City of Ottawa)
- 100 year Hydraulic Grade Line (HGL) analysis to be conducted using the boundary condition at outlet of 81.342 m (from BCIP report, Appendix I for node W19) (Pharand/BCIP Reports)
- Overall inlet rate to sewer to be restricted to 50 L/s/ha (Pharand/BCIP Reports)
- Sewer inlet rate for roads within the BCIP to be restricted to 100 L/s/ha (Pharand/BCIP Reports)

Surface Storage & Overland Flow

- No overland flow is allowed from internal sites, however overland flow is expected to occur along roadways
- Maximum 100 year ponding depth of 0.30 m (City of Ottawa)
- Sites to provide minimum storage of 200 m³/ha or sufficient storage to contain 100 year storm on-site, whichever of the two is greater (*Pharand/BCIP Reports*)
- Road storage to be maximized where possible to provide up to 130 m³/ha of storage (Pharand/BCIP Reports)

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

- Standing water depths at road sags not to cause surface flooding in any building or structure (City of Ottawa)
- Maximum ponding spill point elevation to be at least 0.30m below adjacent at-units grades (City of Ottawa)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (*City of Ottawa*)

4.2 STORMWATER MANAGEMENT

The following sections describe the stormwater management (SWM) design for the Pharand Lands Development in the context of the background documents and governing criteria.

4.2.1 Proposed Conditions

The proposed development will consist of commercial buildings complete with associated transportation and servicing infrastructure. The various commercial blocks are bisected by the proposed internal roadways which connect to the intersection of Wildflower Drive and Innes Road.

The overall drainage area to the proposed outlet sewer is 41.2 ha: Future Development Lands (16.8 ha), Area Tributary to Proposed Dry Pond (9.6 ha), Development block STOR168 (4.3 ha), Remaining Site Area (10.4 ha). At the required rate of 50 L/s/ha, the peak allowable rate at the outlet is 2,060 L/s.

Future development areas (future blocks) have been considered for the purposes of this stormwater management analysis. The previous Stantec Pharand Lands report quantified this future area to the South as 15.2 ha, however using more detailed CAD areas it has been found that this area is actually 16.83 ha in size. For location and extent of this future development block, refer to excerpts of the previous Stantec report in **Appendix D.1**. The future development block will be serviced through the storm sewer trunk at upstream manhole MH200.

It is expected that development designs for these future blocks will be submitted to the City of Ottawa under separate applications. Stormwater Management criteria for the future blocks remain the same as in the BCIP and Pharand lands reports: sites are to provide minimum 200 m³/ha of active storage in the 100 year event or sufficient storage to contain the 100 year storm on-site, whichever of the two criteria is greater. Inflow rates to the minor system are not to exceed 50 L/s/ha. Precise ponding volumes and final ICD sizes should be determined at the detailed design stage.

It is proposed that a portion of the proposed site drain unrestricted to a storm sewer, which is connected by reverse sloped pipe to a dry pond. An orifice will be placed on the sewer at MH110, causing water to back-up into the proposed dry pond. The orifice will not be in-line with

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

the main trunk that runs from the Future Development Lands in the south to the intersection of Innes Road and Wildflower Drive. See **Figure 4.1** below, showing the proposed site subcatchments, with the proposed area which is tributary to the dry pond highlighted in blue.

The previous storm sewer design included conveying a portion of the Vanguard Road stormwater (drainage areas 132 and 139) through the site. At the City's request this design has been modified to convey these flows to the existing manhole in Vanguard Road. Analysis of the existing storm sewer design indicated that the downstream system (existing nodes 15 to 13) has capacity for 1671L/s and the proposed design would result in an actual flow rate of 1591 L/s. Therefore, there is sufficient capacity within the existing system to accommodate the additional flows from Vanguard Road.

Figure 4.1: PCSWMM Model Subcatchments in light green (area in blue is tributary to the proposed dry pond, area = 9.6 ha)

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

4.2.2 Design Methodology

The design methodology for the SWM component of the development is as follows:

- Restrict inflows to the sewer to a rate of 50 L/s/ha or less for sites via orifices
- Road CBs to be interconnected and controlled with a 100 mm circular diameter orifice per catchbasin pair, except in areas upstream of MH110 (these areas are tributary to the dry pond and should not have inlet restrictors)
- Produce a combined hydrologic/hydraulic model to provide minor system hydrographs and to model the storm sewer system
- Provide a preliminary volume total for the proposed dry pond based on the proposed outline
- Identify criteria and constraints for development blocks

The roadways are designed using the "dual drainage" principle, whereby the minor (pipe) system is designed to convey the peak rate of runoff from the 5 year design storm and runoff from larger events is to be conveyed by both minor (pipe) and major (overland) channels, such as roadways and walkways, safely off site without impacting proposed or existing downstream properties. A separate DDSWMM model was prepared as part of the BCIP report, dealing with major system flows from the internal roadways in the BCIP. Inlet and storage rates in the roadways should meet BCIP criteria; overflows should be directed to Innes Road, where they are to be stored in roadside ditches. See the BCIP report excerpts included in **Appendix D** for more information. Since the inlet rates for roadways are being met (and exceeded) in this analysis, and that an overland flow model for the roadways has been dealt with by others, the overland routes and downstream off-site storage have not been modeled in this analysis.

Solid covers should be installed on all manholes located in ponding areas to limit inflows to the minor system to that of the ICD.

Drawing SD-1 outlines the proposed storm sewer alignment, ICD locations, drainage divides and labels. The major flow from most of the site is contained within each block; right-of-ways are allowed to have major system flow beyond the five year event. Regardless, all areas will be graded to safely convey extreme flows off-site via engineered (overland) channels such as roadways and walkways. The majority of the site is graded to overflow to Innes Road, however some portions in the east will be directed to Vanguard Extension.

4.2.3 Building Storm Service Surcharging

Because the proposed buildings are slab-on-grade and will not have any basements, flooding will not be an issue. However, the City has expressed concerns regarding building storm services that are attached to the sewer which surcharges into the proposed dry pond. We have

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

agreed to perform SWM modeling using several different storms to determine the maximum HGL (excluding the initial wave pulse). The pipe surcharge is due to water accumulating in the dry pond and is not permanent – the dry pond drains down over several hours. Six storm distributions were run at the 100 year return period: 3, 6, and 12 hour Chicago storms, and 6, 12, and 24 hour SCS storms. The HGLs from the 6 hour SCS storm were used to set the minimum storm service inverts for buildings S and A. HGL for the services to buildings S and A were 86.94 m and 87.14 m for building S and building A, respectively. It is therefore proposed that the storm services to these buildings have inverts not lower than these values and that a similar approach be taken for any future buildings proposed at the detailed design stage, unless these buildings are to have underground parking, in which case they will need to be sump pumped. Any parking garages will be fitted with backflow preventers and pumps, as is standard practice in the City of Ottawa. See **Appendix B.4** for the results of the SWM analysis, or the SWM modeling files that have been included on the CD attached to this report.

4.3 HYDROLOGY / HYDRAULICS

A preliminary integrated hydrologic/hydraulic modeling exercise was completed with PCSWMM, accounting for the sites area and future lands to the south.

Surface storage amounts based on the Pharand and BCIP reports were originally 200 m³/ha for sites, 130 m³/ha for right-of-ways. Because the criteria in this report is to provide either these above rates or sufficient storage to contain the 100 year storm on-site, these rates were multiplied by three (an arbitrary number). It is intended that if storage greater than 200 m³/ha occurs, this preliminary overestimate of storage will allow the total quantity of stored volume to be identified. Actual per hectare rates of required storage are reported later in this report.

The following assumptions were applied to the preliminary PCSWMM model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values
- 3-hour Chicago Storm distribution for 5 & 100 Year Analysis; July 1, 1979 City of Ottawa Historical Storm used to assess impact of major storm
- Imperviousness assumed as 100% for all site areas excluding the proposed pond and vacant strip of land to its north (these areas were assumed to have 0% imperviousness)
- Subcatchment areas and segment lengths defined from conceptual grading.
- Subcatchment width equal to catchment area divided by subcatchment flow length. Site
 inflows restricted with inlet-control devices (ICDs) as necessary to meet inlet rate
 criterion.
- Storage amounts over-predicted to ensure capture of total 'actual storage' volume

Drawing SD-1 presents the proposed subcatchments used in the analysis of the proposed development. The preliminary grading plans are also enclosed for review.

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

For the purposes of this analysis, the Future Development Lands to the south and the development block in storm area ST168 are considered to be self contained. Hydrographs for area ST168 were generated and routed through that site's storage, with a flow restriction at 50 L/s/ha. The Future Development Land to the south was represented by a static constant inflow of 841.6 L/s at node 200 (i.e. 16.833 ha at 50 L/s/ha).

Zurn Flo-Control Roof Drains are proposed for the flat roofs of the buildings on-site. A brief modified rational method analysis was used to calculate the number of drains required for the buildings, see **Appendix B** for the results. The stage versus flow and storage curves calculated in this analysis were input into the PCSWMM model. Water depths on roofs during the 100 year storm do not exceed 75 mm.

The BCIP proposed inlet restriction rate for the roadways is 100 L/s/ha. It was found that for most road catchments, this could be achieved using a 100 mm circular orifice. In order to meet the criterion for some smaller catchments however, an orifice smaller than the minimum allowable City size would be required; this was not considered to be a viable option. For simplification of construction installation, it is proposed to use this ICD size in all interconnected roadway CBs. Any over-contribution of flow has been offset by reducing the flow from the dry pond tributary area.

The list of proposed inlet control devices is presented below in **Table 4.1**.

Table 4.1: Preliminary Inlet Control Device Schedule

Tributary Area IDs	Located in Structure:	Install Type	Orifice Size, Circular Diameter (mm)	Peak Flow Rate (L/s)
Control for areas to pond	110	PLUG	200	216
ST170, ST174, RF181, RF179, RF176, RF177	167 (on u/s inv. to STM170)	FRAME	175	125
ST199	206	PLUG	100	39
ST167	184	PLUG	100	34
ST197	208	PLUG	100	39
ST188	193	PLUG	100	31
ST190	191	PLUG	100	45
ST106B	228	PLUG	100	37
ST106	226	PLUG	100	35
ST165	212	PLUG	100	34
CB203	201	PLUG	95	36
CB215	214	PLUG	95	33

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

Tributary Area IDs	Located in Structure:	Install Type	Orifice Size, Circular Diameter (mm)	Peak Flow Rate (L/s)
ST230	230	PLUG	75	32
ST109	217	PLUG	75	30
ST106A	225	PLUG	75	18
CB223, CB224, ST219, CB222, RF220	218	PLUG	150	102

Table 4.2 summarizes the subcatchment areas, node outlets, and peak runoff rates for the proposed development during the 100 year, 3-hour Chicago storm, as well as maximum required storage rates. **Appendix B** summarizes the modeling results for the subject area for the 100 year storm.

Table 4.2: PCSWMM Results (100 Year Storm)

Area Group	Name	Area (ha)	Peak Runoff (L/s)	Outlet	Storage Node	Maximum Storage (cu.m)	Orifice Size, Circular Diameter (mm)	Peak Flow Rate (L/s)
ROW	ST106B	0.088	43	228	228	3	100	37
	ST106	0.324	156	226	226	84	100	35
	ST199	0.369	169	206	206	89	100	39
	ST197	0.385	175	208	208	99	100	39
	ST190	0.108	53	191	191	2	100	45
	ST188	0.383	174	193	193	110	100	31
	ST167	0.341	150	184	184	88	100	34
	ST165	0.483	225	212	212	157	100	34
To_Pond	ST154	0.783	366	154				
	CB156	0.479	234	156				
	ST151	0.148	73	151				
	ST135A	0.932	441	136	142	2625	0	0
	ST132	1.912	907	140	143	2635	U	U
	ST128A	1.793	849	146				
	ST128	0.137	62	128				
	ST123	0.604	272	123				

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

Area Group	Name	Area (ha)	Peak Runoff (L/s)	Outlet	Storage Node	Maximum Storage (cu.m)	Orifice Size, Circular Diameter (mm)	Peak Flow Rate (L/s)
	ST118	0.375	173	118				
	CB160	0.076	37	160				
	POND	0.549	68	143				
	FREE_1	0.175	47	POND				
	RF150A	0.271	133	STOR150	CTOD150	FF0		
	RF150	0.886	430	STOR150	STOR150	559		
	RF114	0.178	88	STOR114	STOR114	87		
Parcels	ST109	0.419	206	217	217	138	75	30
	ST230	0.401	190	230	230	122	75	32
	ST106A	0.325	156	225	225	116	75	18
	RF231	0.030	15	STOR231	STOR231	15	Zurn	1
	RF211	0.419	208	STOR211	STOR211	204	Zurn	16
	RF210	0.046	23	STOR210	STOR210	23	Zurn	2
	RF195	0.289	143	STOR195	STOR195	141	Zurn	11
	CB215	0.782	350	214	214	309	95	33
	CB203	0.996	414	201	201	406	95	36
Future	ST168	4.328	1700	STOR1	STOR1	1546	TBD	216
	ST174	1.159	558	172	169	771		
NW	ST170	0.983	472	170	109	//1		
corner of site,	RF181	0.310	154	STOR181	STOR181	151	0	0
controlled	RF179	0.035	17	STOR179	STOR179	17	0	U
at	RF177	0.046	23	STOR177	STOR177	23		
MH174	RF176	0.067	33	STOR176	STOR176	33		
	RF220	0.237	117	STOR220	STOR220	115		_
NE corner	ST219	0.234	114	219				
of site,	CB224	0.198	98	224	218	454	0	0
controlled	CB223	0.338	166	223	218	454		
at MH218	CB222	0.614	301	222				

Tot. Area: 24.035 ha Max Storage: 8497.52 cu.m

Max. Storage per ha: 353.5 cu.m/ha

Total Peak

Runoff: L/s Maximum Inflow (L/s): 841.6

Maximum Inflow per ha

Total peak runoff per hectare: 448.7 L/s/ha (L/s/ha): 35.0

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

Maximum ICD Inflow from Site (L/s):	936	L/s
External Flow From Industrial Lands to South (L/s):	842	L/s
Peak Maximum Inflow with ICDs & External:	1777	L/s

Actual Peak Flow at outlet from model: 1946 L/s

Allowable flow: 2060 L/s

Amount that actual peak flow

is below allowable flow: 114 L/s

As can be seen from the table, the expected required storage rate per hectare for the proposed site is higher than previously estimated (310 m³/ha from BCIP report versus 354 cu.m/ha). This is mostly due to the change in imperviousness: the subject sites were previously anticipated to be 70% impervious, but now are effectively 100% impervious. Some sites may not be able to contain all of the proposed runoff in surface storage. In these cases, either underground storage or volume reduction methods would be required to meet the criterion.

The proposed dry pond peaks at 0.76 m in depth during the 100 year 3 hour Chicago storm event (2,635 cu.m). This is below the 2.0 m allowable maximum depth the Ministry of the Environment specifies. A detailed pond design should be prepared at the detailed design stage. A preliminary area and depth has been shown on **Drawing GP-1**, which was used in this analysis.

In future, further storage could be gained by placing inlet controls on sites within the dry pond tributary area. Standard practice in the City of Ottawa is to avoid inlet control devices in series such as this, however because the potential storage volumes are at different elevations, ICDs in series would be necessary to take advantage of all of the available storage. Storing more runoff on the individual sites within the dry pond tributary area would reduce the size of the dry pond.

Table 4.3 below presents the peak outflow rates to the trunk sewer on Innes Road for each of the modeled scenarios. During all scenarios, the peak flow rate is below the allowable rate of 2,060 L/s.

Table 4.3: Scenario Peak Outflow Rates

	100 Year, 3 Hour Chicago Storm	5 Year, 3 Hour Chicago Storm	July 1, 1979 Historical Storm
Peak Outflow Rate (L/s) to Innes Road	1946	1834	1905

PHARAND LANDS, INNES SHOPPING CENTRES LIMITED - CITY OF OTTAWA

Storm Drainage February 22, 2012

Peak Outlet Rate per	40	45	47
Hectare (L/s/ha)	48	45	47

The City of Ottawa normally requires that during the major storm event, the maximum hydraulic grade line (HGL) be kept at least 0.30 m below the underside-of-footing (USF) of any adjacent units connected to the storm sewer. There are no units with USFs proposed in this commercial development.

Appendix B summarizes the results of the hydraulic modeling and output files for the subject site area during the 100 year storm event. All modeling files and results are contained on the CD enclosed with this report.

Site Servicing and Stormwater Management Report – Orleans II Development - 2025 Mer Bleue Road – Phase 1

Project # 160401242

Prepared for: SmartREIT (Orleans II) Inc. and Mer Bleue Shopping Centres Limited

Prepared by: Stantec Consulting Ltd.

March 7, 2017

Revision History				
1	2016-07-22			
2	2016-11-30			

SITE SERVICING AND STORMWATER MANAGEMENT REPORT – ORLEANS II DEVELOPMENT - 2025 MER BLEUE ROAD – PHASE 1

Stormwater Management March 7, 2017

5.0 STORMWATER MANAGEMENT

5.1 OBJECTIVES

The objective of this stormwater management plan is to determine the measures necessary to control the quantity/quality of stormwater released from the proposed development to criteria established by the *Pharand Lands – Innes Shopping Centres Limited – Serviceability Study* Stantec, February 2012) for the region, and to provide sufficient detail for approval and construction.

5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), and through consultation with City of Ottawa staff. The following summarizes the criteria, with the source of each criterion indicated in brackets:

General

- Use of the dual drainage principle (City of Ottawa).
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff. (City of Ottawa).
- Assess impact of 100 year event outlined in the City of Ottawa Sewer Design Guidelines on major & minor drainage system (City of Ottawa).
- Enhanced quality control (80% TSS removal) to be provided on-site for the development.

Storm Sewer & Inlet Controls

- Proposed site to discharge the existing 1350mm diameter storm sewer stub at the intersection
 of Wildflower Drive and Innes Road at the northern boundary of the subject site (City of
 Ottawa).
- Proposed storm sewers to be sized to service existing and future commercial/light industrial developments to the south and east of the subject site as per background reports (Pharand Lands Serviceability Study).
- Minor system inflow to be restricted for all contributing areas to 50L/s/ha (Pharand Lands Serviceability Study).
- Minor system inflow for municipal ROW contributing areas to be limited to 100L/s/ha (Pharand Lands Serviceability Study).
- 100-year HGL boundary condition at the site outlet sewer of 81.342m (BCIP Report, Appendix I for node W19).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing (City of Ottawa).

SITE SERVICING AND STORMWATER MANAGEMENT REPORT – ORLEANS II DEVELOPMENT - 2025 MER BLEUE ROAD – PHASE 1

Stormwater Management March 7, 2017

Surface Storage & Overland Flow

- Building openings to be a minimum of 0.30m above the 100-year water level (City of Ottawa).
- No overland flow is to be permitted from internal sites to the municipal ROW (Pharand Lands Serviceability Study).
- Sites to provide minimum storage of 200 m³/ha or sufficient storage to contain 100-year storm event on-site, whichever is greater (Pharand Lands Serviceability Study).
- Road storage to be maximized where possible to provide 130 m³/ha of storage (Pharand Lands Serviceability Study).
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.30m (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

5.3 STORMWATER MANAGEMENT

5.3.1 Allowable Release Rate

Based on background information, the peak post-development discharge from the subject site to the minor system is to be limited to 50L/s/ha of contributing area. Peak post-development discharge from municipal Rights-of-Way within the development are to be limited to 100L/s/ha. Peak release rates for the current phase, existing tributary areas and future developments are summarized in **Table 1** below:

Table 1: Target Release Rates

Development Site	Area (ha)	Target Flow Rate (L/s)
Phase 1 - Private	2.718	135.9
Phase 1 – Public	1.294	129.4
Phase 2	2.508	125.4
Phase 3	1.826	91.3
Existing (EX104A)	4.205	214.235 (Per CIMA Stormwater Management Report)
Future – Private	11.189	559.5
Future – Public	1.434	143.4
Future External (South of Vanguard Road)	16.830	841.5
Total	41.464	2240.6

C.5 StormTech Sizing Report

Project: 160402122 C-7

PROJEC	T INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

160402122 - ORLEANS II PHASE 3

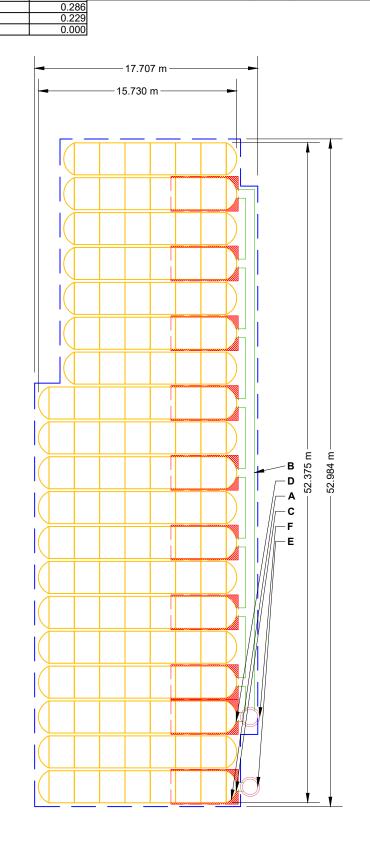
OTTAWA, ON, CANADA

MC-7200 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-7200.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.</p>
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3").
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
- 10. MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
- 11. ADS DOES NOT DESIGN OR PROVIDE MEMBRANE LINER SYSTEMS. TO MINIMIZE THE LEAKAGE POTENTIAL OF LINER SYSTEMS, THE MEMBRANE LINER SYSTEM SHOULD BE DESIGNED BY A KNOWLEDGEABLE GEOTEXTILE PROFESSIONAL AND INSTALLED BY A QUALIFIED CONTRACTOR.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-7200 CHAMBER SYSTEM

- 1. STORMTECH MC-7200 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE"
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 230 mm (9") SPACING BETWEEN THE CHAMBER ROWS.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE; AASHTO M43 #3, 357, 4, 467, 5, 56, OR 57.
- STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER BY MORE THAN 300 mm (12") BETWEEN ADJACENT CHAMBER ROWS.
- 10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- 12. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.


NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE".
- 2. THE USE OF EQUIPMENT OVER MC-7200 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-7200 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-800-821-6710 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				BOVE BAS	E OF CHAMBER	₹ ш		z
126 STORMTECH MC-7200 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.886 PART TY	PE ITEM O		INVERT*	MAX FLOW	AS		SUCTIC
38 STORMTECH MC-7200 END CAPS 305 STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	2.362 PREFABRICATED EI	ND CAP A	600 mm BOTTOM PARTIAL CUT END CAP, PART#: MC7200IEPP24B / TYP OF ALL 600 mm BOTTOM CONNECTIONS	57 mm] <u>F</u>		/A
229 STONE BELOW (mm) 40 STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	2.362 2.362 PIPE CONNECTION	В	600 mm x 600 mm BOTTOM MANIFOLD, ADS N-12 600 mm BOTTOM CONNECTION	57 mm] =	Z N	D: N GOR C
INSTALLED SYSTEM VOLUME (m³) (PERIMETER STONE INCLUDED)	TOP OF STONE: TOP OF MC-7200 CHAMBER:	1 753 PIPE CONNECTION	ן ט	600 mm BOTTOM CONNECTION	57 mm	000 1 /- IN		ANA	SIDDIN
(BASE STONE INCLUDED)	600 mm x 600 mm BOTTOM MANIFOLD INVERT: 600 mm ISOLATOR ROW PLUS INVERT:	0.286 CONCRETE STRUC 0.286 CONCRETE STRUC	TURE F	(DESIGN BY ENGINEER / PROVIDED BY OTHERS) (DESIGN BY ENGINEER / PROVIDED BY OTHERS)		269 L/s IN 1174 L/s IN	3 E ⊢	N, O	CHE JSE IN E
886.3 SYSTEM AREA (m²) 141.4 SYSTEM PERIMETER (m)	600 mm ISOLATOR ROW PLUS INVERT: BOTTOM OF MC-7200 CHAMBER:	0.286 0.229 0.000					A N	۸A,	FOR U
	BOTTOM OF STONE:	0.000					2 -	TTAN 25	ENDEC
		17.707 m					212	2/20	#: OT INT
		15.730 m					405	07/2	ECT I
		- 15.730 III					160	ATE:	ROJI RAWIN AND AL
							DATE	DWN (CHK H

NO ISOLATOR ROW PLUS

BED LIMITS

PLACE MINIMUM 5.334 m OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

NOTES

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

StormTech® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 300 Ш SCALE

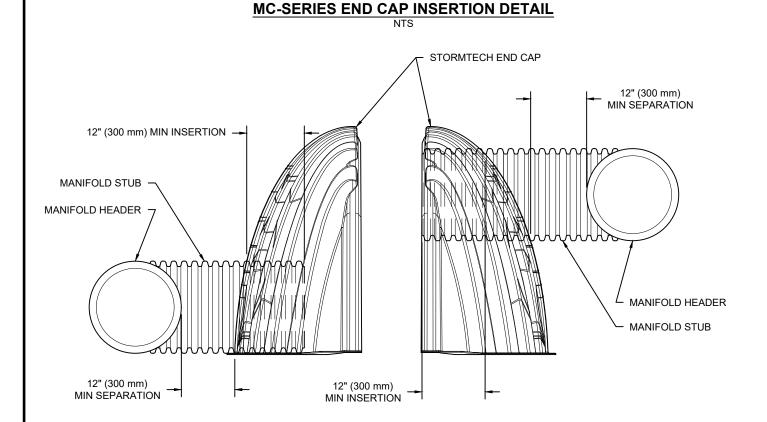
SHEET

2 OF 4

ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS

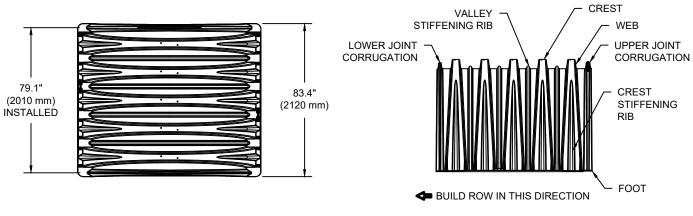
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE⁵	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE ⁵	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

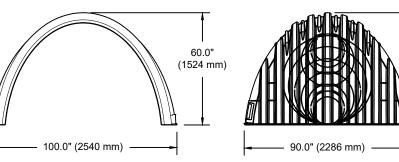
PLEASE NOTE:


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
- 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101
- 2. MC-7200 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. REFERENCE STORMTECH DESIGN MANUAL FOR BEARING CAPACITY GUIDANCE.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.





NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-7200 TECHNICAL SPECIFICATION

NTS

NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT (NOMINAL)

NOMINAL END CAP SPECIFICATIONS

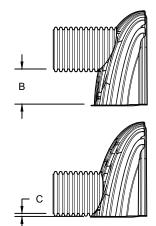
SIZE (W X H X INSTALLED LENGTH) END CAP STORAGE MINIMUM INSTALLED STORAGE* WEIGHT (NOMINAL) 100.0" X 60.0" X 79.1" 175.9 CUBIC FEET 267.3 CUBIC FEET 205 lbs.

90.0" X 61.0" X 32.8" (2286 mm X 1549 mm X 833 mm) 39.5 CUBIC FEET (1.12 m³) 115.3 CUBIC FEET (3.26 m³) 90 lbs. (40.8 kg)

(4.98 m³)

(7.56 m³)

(92.9 kg)


(2540 mm X 1524 mm X 2010 mm)

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY.

PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

END CAPS WITH A PREFA	ABRICATED WELDED STU	JB END WITH "W"	
PART#	STUB	В	С
MC7200IEPP06T	6" (150 mm)	42.54" (1081 mm)	
MC7200IEPP06B	6" (150 mm)		0.86" (22 mm)
MC7200IEPP08T	8" (200 mm)	40.50" (1029 mm)	
MC7200IEPP08B	0 (200 11111)		1.01" (26 mm)
MC7200IEPP10T	10" (250 mm)	38.37" (975 mm)	
MC7200IEPP10B	10 (230 11111)		1.33" (34 mm)
MC7200IEPP12T	12" (300 mm)	35.69" (907 mm)	
MC7200IEPP12B	12 (300 11111)		1.55" (39 mm)
MC7200IEPP15T	15" (375 mm)	32.72" (831 mm)	
MC7200IEPP15B	15 (57511111)		1.70" (43 mm)
MC7200IEPP18T		29.36" (746 mm)	
MC7200IEPP18TW	18" (450 mm)	29.30 (740 11111)	
MC7200IEPP18B	10 (43011111)		1.97" (50 mm)
MC7200IEPP18BW			1.37 (30 11111)
MC7200IEPP24T		23.05" (585 mm)	
MC7200IEPP24TW	24" (600 mm)	23.03 (303 11111)	
MC7200IEPP24B	24 (000 11111)		2.26" (57 mm)
MC7200IEPP24BW			2.20 (37 11111)
MC7200IEPP30BW	30" (750 mm)		2.95" (75 mm)
MC7200IEPP36BW	36" (900 mm)		3.25" (83 mm)
MC7200IEPP42BW	42" (1050 mm)		3.55" (90 mm)

NOTE: ALL DIMENSIONS ARE NOMINAL

32.8"

(833 mm)

INSTALLÉD

38.0"

(965 mm)

(1549 mm)

CUSTOM PREFABRICATED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-7200 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

© 4	DATE	160402122 - ORLEANS II PHASE 3	LEANS II PHASE 3
	DW	OTTAWA, C	OTTAWA, ON, CANADA
em	N	DATE: 07/22/2025	DRAWN: ZW
	CH		
	K	PROJECT #:	CHECKED: N/A

StormTeck
Chamber System

4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

SHEET

4 OF 4

Stantec is a global leader in sustainable engineering, architecture, and environmental consulting. The diverse perspectives of our partners and interested parties drive us to think beyond what's previously been done on critical issues like climate change, digital transformation, and future-proofing our cities and infrastructure. We innovate at the intersection of community, creativity, and client relationships to advance communities everywhere, so that together we can redefine what's possible.

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4 stantec.com