

# **Phase II Environmental Site Assessment – Trail Road Switching Station in Ottawa, Ontario**

Final Report

December 18, 2025

Prepared for:  
Trail Road BESS Inc.  
41 Rue Victoria  
Gatineau, QC J8X 2A1

Prepared by:  
Stantec Consulting Ltd.

Project Number:  
160923647



## Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by Trailroad BESS Inc. to conduct a Phase II Environmental Site Assessment (ESA) at the location of the proposed Trail Road Switching Station. The Phase II ESA was completed on the property located at the southeastern portion of 3478 Moodie Drive in Ottawa, Ontario, herein referred to as the “Site”.

The Site is located in an agricultural and industrial area of Ottawa, Ontario, on the southeastern portion of a larger property with municipal address 3478 Moodie Drive. The Site is approximately 210 m northwest of the intersection of Moodie Drive and Cambrian Road. The Site is currently undeveloped and has an area of approximately 3400 square meters.

In December 2025, Stantec conducted a Phase I ESA at the Site in support of the development of the Trail Road Switching Station. The Phase I ESA identified the following potential environmental concerns at the Site:

- The presence of a tree nursery immediately west of the Site and record for hazardous waste generation records at 3478 Moodie Drive represented potential environmental concerns for soil impacts at the Site.
- The presence of off-site aggregate pits and records of waste generation at the neighbouring properties to the north and northeast of the Site represented potential environmental concerns for soil and/or groundwater impacts at the Site.

It was understood that Trailroad BESS was intending on leasing (i.e., not purchasing) the Site, and therefore the recommendations made were related to Site development. As such, it was recommended that soil quality be assessed on the Site to address the areas of potential environmental concern (APEC) due to the potential environmental concerns noted above, and it was further noted that if groundwater management was anticipated to be required during development that an attempt should be made to sample the onsite monitoring well to assess the quality of the groundwater at the Site.

The objective of the Phase II ESA was to assess soil impacts within the following APECs:

- APEC-1 – Located along the western limit of the Site associated with the presence of a tree nursery and records of hazardous waste generation at 3478 Moodie Drive.
- APEC-2 - Located along the northern and eastern portion of the Site associated with the presence of off-site aggregate pits and records of waste generation at the neighbouring properties to the north and northeast of the Site.

The Phase II ESA was completed in general accordance with the Canadian Standards Association (CSA) Standard Z769-00 (R2023) (CSA, 2023) for due diligence purposes.



**Phase II Environmental Site Assessment – Trail Road Switching Station in Ottawa, Ontario**

**Executive Summary**

December 18, 2025

Four boreholes (BH25-01 to BH25-04) were advanced at the Site to a maximum depth of 6.10 metres (m) below ground surface (BGS). BH25-01 and BH25-03 were advanced within APEC-1 and BH25-02 to BH25-04 were advanced within APEC-2 (note: BH25-03 is located within the overlapping area containing both APEC-1 and APEC-2).

Representative soil samples were collected from the boreholes and submitted for laboratory analysis of benzene, toluene, ethylbenzene, xylenes (BTEX); petroleum hydrocarbons (PHC) fractions 1 to 4 (F1 to F4); polycyclic aromatic hydrocarbons (PAHs); organochlorine pesticides (which includes analysis of polychlorinated biphenyls (PCBs)), and metal and inorganic parameters.

Stantec offers the following conclusions with respect to the results of the Phase II ESA:

- In general, the Site was covered in topsoil from surface to depths of between 0.3 m BGS and 0.76 m BGS underlain by sand or silty sand to a depth of between 3.81 m BGS (BH25-03) to the maximum investigation depth of 6.01 m BGS (BH25-01 and BH25-02). The top of a layer of clay was observed at 3.81 m BGS (BH25-03) and 5.33 m BGS (BH25-04) and extended to the maximum investigation depth of 6.01 m BGS (BH25-03 and BH25-04).
- One existing onsite monitoring well (TR24-17) installed by others (depth of approximately 5.49 m BGS) was determined to be dry during the site visit on November 20, 2025. This monitoring well does not currently have a proper protective well casing installed so there is an increased risk of the well being damaged in future.
- No visual or olfactory evidence of organic impacts of PHC, PAHs, or volatile organic compounds (VOCs), such as staining or odours, was noted in the soil recovered from the boreholes. Combustible vapour concentrations (CVC) ranged from less than 5 parts per million by volume (ppm<sub>v</sub>) to 10 ppm<sub>v</sub> and total organic vapour (TOV) concentrations were determined to be less than 0.02 ppm<sub>v</sub> in each of the samples.
- The Ontario Regulation (O.Reg.) 153/04 Table 2 Site Condition Standards (SCS) for all soil textures and industrial/commercial/community property use were considered applicable at the Site.
- Based on the analytical results of the submitted soil samples, concentrations of analyzed parameters met the applicable Table 2 SCS in all samples analyzed.

Based on the results of the Phase II ESA as noted herein, no soil impacts were identified at the Site at the completed boreholes at concentrations greater than the applicable Table 2 SCS.

No additional environmental investigations are recommended at this time; however, it is recommended that the existing onsite monitoring well either have a protective casing installed or the well should be decommissioned in accordance with Regulation 903.

The statements made in this Executive Summary text are subject to the limitations included in Section 7 and are to be read in conjunction with the remainder of this report.



## Table of Contents

|          |                                                      |           |
|----------|------------------------------------------------------|-----------|
| <b>1</b> | <b>Introduction</b>                                  | <b>1</b>  |
| <b>2</b> | <b>Environmental Site Setting</b>                    | <b>2</b>  |
| 2.1      | Topography and Regional Drainage                     | 2         |
| 2.2      | Geology                                              | 2         |
| <b>3</b> | <b>Regulatory Framework</b>                          | <b>3</b>  |
| 3.1      | Generic Soil and Groundwater Quality Standards       | 3         |
| <b>4</b> | <b>Site Investigation Methods</b>                    | <b>6</b>  |
| 4.1      | Soil Investigation                                   | 6         |
| 4.1.1    | Pre-Field Activities                                 | 6         |
| 4.1.2    | Field Activities                                     | 6         |
| 4.1.3    | Data Interpretation and Reporting                    | 6         |
| 4.2      | Sampling Location Rationale                          | 7         |
| 4.2.1    | Deviations from the Sampling and Analysis Plan (SAP) | 7         |
| <b>5</b> | <b>Results</b>                                       | <b>8</b>  |
| 5.1      | Site Geology and Hydrogeology                        | 8         |
| 5.1.1    | Site Geology                                         | 8         |
| 5.1.2    | Site Hydrogeology                                    | 8         |
| 5.2      | Soil Screening Results                               | 9         |
| 5.3      | Analytical Results                                   | 10        |
| 5.3.1    | Soil Quality                                         | 10        |
| 5.3.2    | Quality Assurance/Quality Control                    | 10        |
| <b>6</b> | <b>Conclusions</b>                                   | <b>12</b> |
| <b>7</b> | <b>Limitations and Sign-off</b>                      | <b>13</b> |
| <b>8</b> | <b>References</b>                                    | <b>15</b> |

## List of Tables

|           |                                  |   |
|-----------|----------------------------------|---|
| Table 4.1 | Sampling and Analysis Plan (SAP) | 7 |
|-----------|----------------------------------|---|

## List of Appendices

|                   |                                            |
|-------------------|--------------------------------------------|
| <b>Appendix A</b> | <b>Figures</b>                             |
| <b>Appendix B</b> | <b>Methodology</b>                         |
| <b>Appendix C</b> | <b>Borehole Logs</b>                       |
| <b>Appendix D</b> | <b>Tables</b>                              |
| <b>Appendix E</b> | <b>Laboratory Certificates of Analysis</b> |
| <b>Appendix F</b> | <b>Quality Assurance / Quality Control</b> |



## 1 Introduction

Stantec was retained by Trailroad BESS Inc. to conduct a Phase II Environmental Site Assessment (ESA) at the location of the proposed Trail Road Switching Station. The Phase II ESA was completed at the southeastern portion of a larger property with municipal address 3478 Moodie Drive in Ottawa, Ontario, herein referred to as the “Site”. The Site is located in an agricultural and industrial area of Ottawa, Ontario, on the southeastern portion of a larger property with municipal address 3478 Moodie Drive. The Site is approximately 220 m northwest of the intersection of Moodie Drive and Cambrian Road. The Site is currently undeveloped and has an area of approximately 1600 square meters. A site location map and site layout are provided as **Figure 1** and **Figure 2, Appendix A**.

The purpose of the Phase II ESA was to characterize soil in areas of potential environmental concern (APECs) at the Site. The APECs were identified in a Phase I ESA completed by Stantec in 2025. The Phase I ESA is documented in a report titled *Phase I Environmental Site Assessment, Trail Road Switching Station ESA*, dated December 12, 2025 (Stantec, 2025). The Phase I ESA identified potential environmental concerns at the Site and further environmental investigation (i.e., a Phase II ESA) to assess the soil quality was recommended. Groundwater sampling was only recommended if groundwater management was anticipated to be required during development.

Stantec developed a sampling and analysis plan (SAP) to assess the following potential environmental concerns at the Site based on the findings of the Phase I ESA:

- An area of potential environmental concern (APEC) was identified along the western limit of the Site associated with the presence of a tree nursery and records of hazardous waste generation at 3478 Moodie Drive (APEC 1 as shown on **Figure 2** and **Figure 3, Appendix A**).
- An APEC was identified along the northern and eastern portion of the Site associated with the presence of off-site aggregate pits and records of waste generation at the neighbouring properties to the north and northeast of the Site (APEC 2 as shown on **Figure 2** and **Figure 3, Appendix A**).

Potential contaminants of concern (COCs) associated with the APECs at the Site listed above were considered to be benzene, toluene, ethylbenzene, xylenes (BTEX); petroleum hydrocarbons (PHC) fractions 1 to 4 (F1 to F4); polycyclic aromatic hydrocarbons (PAHs); organochlorine pesticides (which includes polychlorinated biphenyls (PCBs) as part of the analytical suite); and metal and inorganic parameters.



## 2 Environmental Site Setting

### 2.1 Topography and Regional Drainage

At the time of the Phase II ESA, the Site was undeveloped with low-lying vegetation. Storm water is anticipated to drain primarily through infiltration as well as some overland flow.

Based on a review of topographic mapping and observations made during the Phase I ESA (Stantec, 2025), surface drainage and anticipated shallow groundwater flow appeared to be to the south towards an unnamed tributary, located approximately 360 m south of the Site, which drains into Jock River, located approximately 2 km west of the Site.

It should be noted that the direction of the shallow groundwater flow in limited areas can also be influenced by the presence of underground utility corridors and is not necessarily a reflection of regional or local groundwater flow or a replica of the Site or area topography.

### 2.2 Geology

As indicated in the Phase I ESA (Stantec, 2025), the native surficial soils at the Site were mapped as glaciofluvial deposits, including river deposits and delta topset facies, and bedrock within the surrounding area of the Site consists of dolostone and sandstone of the Beekmantown Group. Based on the water well records identified in the Environmental Risk Information Services (ERIS) report, limestone bedrock was identified at a depth of 34.4 m BGS.

Bedrock was not encountered to the maximum investigated depth of 6.01 metres (m) below ground surface (BGS) during the Phase II ESA.



## 3 Regulatory Framework

The roles and powers of the Ministry of the Environmental Conservation and Parks (MECP) when dealing with contaminated sites are outlined primarily in the *Environmental Protection Act* (R.S.O. 1990). The MECP has a mandate to deal with situations where there is an adverse effect, or the likelihood of an adverse effect, associated with the presence or discharge of a contaminant. Ontario Regulation (O.Reg.) 153/04, amended by O.Reg. 407/19, provides guidance and information to property owners and consultants to use when assessing the environmental condition of a property, when determining whether restoration is required and in determining the kind of restoration needed to allow continued use or reuse of a property. *The Soil, Ground Water, and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act* (MOE, 2011) provide generic numerical site condition standards (SCS) for soil, groundwater, and sediment quality as a function of land use, soil texture (medium and fine or coarse), groundwater usage (potable or non-potable), and remediation approach (full depth or stratified).

As a Record of Site Condition (RSC) is not required for the Site, this report was not intended to meet all requirements of O.Reg. 153/04 for Phase Two ESAs, such as the prescribed report format. The Phase II ESA was completed in general accordance with the Canadian Standards Association (CSA) Standard Z769-00 (R2023) (CSA, 2023) for due diligence purposes.

### 3.1 Generic Soil and Groundwater Quality Standards

This section summarizes the selection process Stantec used to identify the appropriate SCS for the Site. The selection was based on a review of site-specific characteristics consistent with the requirements of O.Reg.153/04 and considered the following characteristics specific to the Site.

#### Groundwater Use

The Site is situated in an agricultural and industrial area of Ottawa, Ontario. Based on the Phase I ESA (Stantec, 2025), the Site is undeveloped and is not serviced by a municipal drinking water system. The surrounding agricultural and industrial properties likely source their potable water from domestic wells. The SCS for potable groundwater conditions were therefore considered applicable at the Site.

#### Current/Intended Property Use

The property is undeveloped. Stantec understands the Phase II ESA is being conducted at the Site to support the Trail Road Switching Station. Therefore, is anticipated that the future land use will be industrial. Accordingly, the applicable land use category was considered to be industrial/commercial/community (ICC) for the purposes of environmental quality assessment, based on the future use of the Site.



### Depth to Bedrock

The subsurface investigation completed as part of this Phase II ESA did not encounter bedrock at the maximum investigated depth of 6.01 m BGS. Well records identified in the ERIS report were reviewed and based on the records, bedrock was encountered at a depth of 34.4 m BGS (Stantec, 2025). Therefore, the full depth generic SCS were considered applicable for the use at the Site.

### Proximity to Water Bodies

No water bodies were located within 30 m of the Site. Therefore, the generic SCS suitable for properties greater than 30 m from a water body are applicable for the Site.

### Soil Characteristics

Stratigraphy observed in the boreholes as part of this Phase II ESA generally consisted of a layer of topsoil overlying sand and clay encountered below to a maximum investigated depth of 6.01 m BGS. Two grain size analyses were obtained from samples considered representative of the general soil stratigraphy on the Site, based on field observations. A detailed description of the stratigraphy observed during the field program is provided in the borehole logs in **Appendix C**. Soil collected from BH25-01-2 and BH25-02-2 from 0.5 to 3.05 m BGS indicated the presence of coarse textured soil, with 90% and 88% greater than 0.075 millimeters in size (sieve #200) respectively, as shown in **Table I, Appendix D**.

### Environmentally Sensitive Sites

The O.Reg.153/04 generic SCS cannot be used at properties that are considered environmentally sensitive. This includes sites that include or are within 30 m of an area of natural significance, or sites at which soil pH is not within the allowable ranges for surface and/or subsurface soils. If either condition applies, the Table 1 (background) SCS are used to evaluate soil and groundwater quality.

With respect to areas of natural significance, according to information provided by the Ontario Ministry of Natural Resources and Forestry online tool (MNR, 2025), and in the Phase I ESA (Stantec, 2025), no areas of natural and scientific interest (ANSIs) or other areas of natural significance were reported within 30 m of the Site.

With respect to soil pH, the generic SCS cannot be applied to a property if the soil pH has a value outside a range of 5 to 9 for surface soil (i.e., less than or equal to 1.5 m BGS) or outside a range of 5 to 11 for subsurface soil (i.e., greater than 1.5 m BGS). Two surface soil samples and six subsurface soil samples plus one field duplicate were submitted for analysis of pH. The measured pH values in the surface soil samples were 7.03 and 7.35 and the measured pH values in the subsurface soil samples ranged from 7.44 to 7.97. The pH measured in soil samples at the Site were within the acceptable ranges.

Based on the above, the Site was not considered to be environmentally sensitive.



### **Applicable Standards**

Based on the Site's characteristics described above, the Table 2 SCS (Full Depth Generic Site Condition Standards in a Potable Ground Water Condition) for industrial/commercial/community property use for all soil textures were the regulatory standards used for comparison at the Site (Table 2 SCS).



## 4 Site Investigation Methods

### 4.1 Soil Investigation

A summary of the completed scope of work is presented below. Detailed methods are presented in **Appendix B**.

#### 4.1.1 Pre-Field Activities

Pre-field activities completed included the following tasks:

- Prepared health and safety documentation prior to commencing any field work.
- Retained subcontractors for private underground utility location and laboratory analytical services.
- Established data quality objectives (DQOs).

#### 4.1.2 Field Activities

Field activities completed at the Site included the following tasks:

- Retained private utility locators (multiVIEW Locates Inc.) to locate private underground utilities in the work areas.
- Requested public utility clearances (Ontario One Call).
- Drill four boreholes (BH25-01 to BH25-04) using a Geoprobe 7822DT (Strata Drilling Group).
- Collected and submitted select soil samples from the boreholes to Bureau Veritas North America Inc. (BV Labs) for laboratory analysis of BTEX, PHC F1 to F4, PAHs, metal and inorganic parameters, organochlorine pesticides (including PCBs as part of the analytical suite), and grain size.

#### 4.1.3 Data Interpretation and Reporting

Data interpretation and reporting activities completed included the following tasks:

- Interpreted the observations and findings of the field work and the analytical results.
- Evaluated quality assurance/quality control (QA/QC).
- Prepared this report to document the investigation findings.



## 4.2 Sampling Location Rationale

The initial SAP is provided in Table 4.1. The depth of soil samples submitted for laboratory analysis from the boreholes were based on field observations and/or soil vapour concentrations, staining, odours, and the expected behaviour of COCs in the environment. Groundwater was not included in the initial sampling plan at the Site. One monitoring well (TR24-17) installed by others was located on the Site, as described in Section 5.1.2. This well was found to be dry during the site visit on November 20, 2025.

**Table 4.1 Sampling and Analysis Plan (SAP)**

| Location                      | Rationale                                                                                                                                        | Soil Analyses                                                                                                                   | Groundwater Analyses                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| BH25-01 and BH25-03           | Assess potential soil impacts in the western portion due to the presence of a tree nursery and record of hazardous waste generation              | PHC F1 to F4, BTEX, PAHs, metal and inorganic parameters, organochlorine pesticides (included in the analytical suite was PCBs) | Not included in the initial sampling plan. |
| BH25-02, BH25-03, and BH25-04 | Assess potential soil impacts in the northern and eastern portion due to the presence of off-site aggregate pits and records of waste generation |                                                                                                                                 |                                            |

### 4.2.1 Deviations from the Sampling and Analysis Plan (SAP)

No significant deviations were conducted to the SAP; however, the following two items should be noted.

The onsite monitoring well (installed previously by other) was attempted to be monitored on November 20, 2025, but was found to be dry.

During the Phase II ESA planning stage, Trail Road BESS Inc. provided Stantec with a figure showing a property area meant to be representative of the Site; however, the boundaries shown on the site plan were not consistent with the property boundaries reflected on a recent legal survey of the property. Since the Site is comprised of the entire property, the Site boundaries were expanded to match the recent legal survey. As a result, BH25-02 and BH25-04, which were intended to be placed along the eastern property boundary, were advanced approximately 10 m west relative to the eastern Site property boundary. Despite the distance from the eastern property boundary, BH25-02 and BH25-04 are still located within the boundary of and adequately assess APEC-2; however, if Trail Road Bess Inc. requires soil or groundwater information closer to the eastern Site property boundary, then further drilling would be required.



## **5 Results**

### **5.1 Site Geology and Hydrogeology**

#### **5.1.1 Site Geology**

In general, the Site was covered in topsoil from surface to depths of between 0.3 m BGS and 0.76 m BGS underlain by sand or silty sand to a depth of between 3.81 m BGS (BH25-03) to the maximum investigation depth of 6.01 m BGS (BH25-01 and BH25-02). The top of a layer of clay was observed at 3.81 m BGS (BH25-03) and 5.33 m BGS (BH25-04) and extended to the maximum investigation depth of 6.01 m BGS (BH25-03 and BH25-04).

Bedrock was not encountered to the maximum depth of investigation.

Detailed descriptions of stratigraphy observed are provided on the borehole logs in **Appendix C**.

#### **5.1.2 Site Hydrogeology**

No monitoring wells were installed during this Phase II ESA; however, there was one monitoring well (TR24-17) previously installed by others that was located on the Site. This well did not have a protective casing, but a flush mount cover was placed on the top of the well, which was approximately 0.7 m above the ground surface. According to a partially redacted monitoring well provided by Trail Road BESS Inc., it was noted that this well was installed to approximately 5.49 m BGS. Stantec attempted to monitor the well on November 20, 2025; however, the well was found to be dry. A photo of monitoring well TR-24-17 is provided below, a copy of the redacted well log is included in **Appendix C** and the location of this monitoring well is shown on **Figure 2** and **Figure 3, Appendix A**.





## 5.2 Soil Screening Results

No evidence of PHC, PAHs, or volatile organic compounds (VOCs) impacts, such as staining or odours, was noted in the soil recovered from the boreholes advanced at the Site.

The combustible vapour concentrations (CVC) and total organic vapour (TOV) concentrations measured in the headspace of the soil samples recovered from the boreholes are provided on the borehole logs in **Appendix C**. CVC/TOV are used as a screening tool during soil sampling to indicate the potential presence of volatile impacts; the measured concentrations did not suggest evidence of significant presence of volatiles. There are no regulatory criteria for headspace soil vapour concentrations. Headspace soil vapour concentrations are a field screening tool to provide a qualitative indication of the presence of volatile COCs (e.g., BTEX, PHC F1, VOCs).

The CVC measured in soil samples collected during the sampling program ranged from less than 5 parts per million by volume (ppm<sub>v</sub>) (various locations) to 10 ppm<sub>v</sub> (BH25-04-4 from 3.0 m to 3.75 m BGS). The TOV measured in soil samples collected during the sampling program were determined to be less than 0.02 ppm<sub>v</sub>.



## 5.3 Analytical Results

This section presents the laboratory analytical results. Soil samples were analyzed for the parameters outlined in Table 4.1.

### 5.3.1 Soil Quality

Soil analytical results for samples collected from the boreholes are summarized in **Table I, Appendix D** and on **Figure 3, Appendix A**. Concentrations of BTEX, PHC F1 to F4, PAHs, organochlorine pesticides, PCBs, and metal and inorganic parameters met the Table 2 SCS in the soil samples submitted for laboratory analysis.

Laboratory certificates of analysis are presented in **Appendix E**.

### 5.3.2 Quality Assurance/Quality Control

The overall DQO for the investigation was to collect data that were precise, accurate, reproducible, complete, and suitable for the purposes of the Phase II ESA. A full discussion of quality assurance/quality control (QA/QC) is provided in **Appendix F**.

As a check on the laboratory analytical methods and on sample precision, the following QC samples were submitted:

One blind field duplicate soil sample was analyzed as follows:

- QC-01 from BH25-02-6 for PHC F1 to F4, BTEX, PAHs, organochlorine pesticides (including PCBs as part of the analytical suite), metal and inorganic parameters

The analytical results for the field duplicate samples are shown in **Table I, Appendix D**. The blind field duplicate samples were used to assess the precision of the sampling and analytical procedures.

Typically, the relative percent difference (RPD) is calculated for the concentrations in the original sample and its duplicate.



The RPDs for parent and field duplicate soil samples collected at the Site were either within the respective alert limits or not calculated because the concentrations were less than the laboratory reporting limits (RLs) or less than five times the RL in one or both samples with the exception of parameters of electrical conductivity and barium. The following RPD values were above the alert limits:

- Soil duplicate sample pair BH25-02-6/QC-01: electrical conductivity (RPD of 17% compared to an alert limit of 10%) and barium (RPD of 36% compared to an alert limit of 30%). Elevated RPDs were likely a result of sample heterogeneity. Because the RPD were greater than the alert limits, the analytical results should be considered as estimates. As a matter of conservancy, the higher of the two reported concentrations is taken to be indicative of conditions at that location and depth.

A detailed summary of the QA/QC evaluation is presented in **Appendix F** and copies of the laboratory certificates of analysis are provided in **Appendix E**.

Based on the QA/QC evaluation described in **Appendix F**, Stantec concluded that the DQO for this investigation was satisfied, and that the data were considered acceptable for use in this report.



## 6 Conclusions

Stantec offers the following conclusions with respect to the results of the Phase II ESA:

- In general, the Site was covered in topsoil from surface to depths of between 0.3 m BGS and 0.76 m BGS underlain by sand or silty sand to a depth of 3.81 m BGS (BH25-03) to the maximum investigation depth of 6.01 m BGS (BH25-02 and BH25-02). The top of a layer of clay was observed at 3.81 m BGS (BH25-03) and 5.33 m BGS (BH25-04) and extended to the maximum investigation depth of 6.01 m BGS (BH25-03 and BH25-04).
- One existing onsite monitoring well (TR24-17) installed by others (depth of approximately 5.49 m BGS) was determined to be dry during the site visit on November 20, 2025. This monitoring well does not currently have a proper protective well casing installed so there is an increased risk of the well being damaged in future.
- No visual or olfactory evidence of organic impacts of PHC, PAHs, or VOCs, such as staining or odours, was noted in the soil recovered from the boreholes. CVC concentrations ranged from less than 5 ppm<sub>v</sub> to 10 ppm<sub>v</sub> and TOV concentrations were determined to be less than 0.02 ppm<sub>v</sub> in each of the samples.
- The O.Reg. 153/04 Table 2 SCS for all soil textures and industrial/commercial/community property use were considered applicable at the Site.
- Based on the analytical results of the submitted soil samples, concentrations of analyzed parameters met the applicable Table 2 SCS in all samples analyzed.

No additional environmental investigations are recommended at this time; however, it is recommended that the existing onsite monitoring well either have a protective casing installed or the well should be decommissioned in accordance with Regulation 903.



## 7 Limitations and Sign-off

This report documents work that was performed in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this work has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of selected environmental conditions associated with the identified portion of the property that was assessed at the time the work was conducted and is based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the portion of the identified property that was assessed at the time the work was conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Stantec cannot comment on other areas of the property that were not assessed.

Conclusions made within this report consist of Stantec's professional opinion as of the time of the writing of this report and are based solely on the scope of work described in the report, the limited data available and the results of the work. They are not a certification of the property's environmental condition. This report should not be construed as legal advice.

This report has been prepared for the exclusive use of the client identified herein and any use by any third party is prohibited. Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from third party use of this report.

This report is limited by the following:

- *Locations of the soil samples and parameters analyzed.*
- *Groundwater at the Site was not monitored or sampled (the one onsite monitoring well was determined to be dry during the sampling event).*

The locations of any utilities, buildings and structures, and property boundaries illustrated in or described within this report, if any, including pole lines, conduits, water mains, sewers and other surface or sub-surface utilities and structures are not guaranteed. Before starting work, the exact location of all such utilities and structures should be confirmed and Stantec assumes no liability for damage to them.



**Phase II Environmental Site Assessment – Trail Road Switching Station in Ottawa, Ontario**

**7 Limitations and Sign-off**

December 18, 2025

The conclusions are based on the site conditions encountered by Stantec at the time the work was performed at the specific testing and/or sampling locations, and conditions may vary among sampling locations. Factors such as areas of potential concern identified in previous studies, site conditions (e.g., utilities) and cost may have constrained the sampling locations used in this assessment. In addition, analysis has been carried out for only a limited number of chemical parameters, and it should not be inferred that other chemical species are not present. Due to the nature of the investigation and the limited data available, Stantec does not warrant against undiscovered environmental liabilities nor that the sampling results are indicative of the condition of the entire site. As the purpose of this report is to identify site conditions which may pose an environmental risk; the identification of non-environmental risks to structures or people on the site is beyond the scope of this assessment.

Should additional information become available which differs significantly from our understanding of conditions presented in this report, Stantec specifically disclaims any responsibility to update the conclusions in this report.

This report was prepared by Jasper Koo, M.Sc., and reviewed by Brent Ferguson, B.Sc., P.Geo.

 **Koo, Jasper**

Digitally signed by Koo,  
Jasper  
Date: 2025.12.18  
11:49:31 -05'00'

**Jasper Koo, M.Sc.**  
Environmental Site Assessor  
Phone: (416) 786-7244  
Jasper.Koo@stantec.com

 **Brent**

Digitally signed by  
Ferguson, Brent  
Date: 2025.12.18  
11:53:13 -05'00'

**Brent Ferguson, B.Sc., P.Geo.**  
Senior Geoscientist  
Phone: (905) 381-3262  
Brent.Ferguson@stantec.com

JK/BF/de

ed\lca0221-ppfss01\work\_group\01609\active\160923647\05\_report\_deliv\phiii\rpt\_160923647\_phase\_ii\_20251218\_fnl.docx



## 8 References

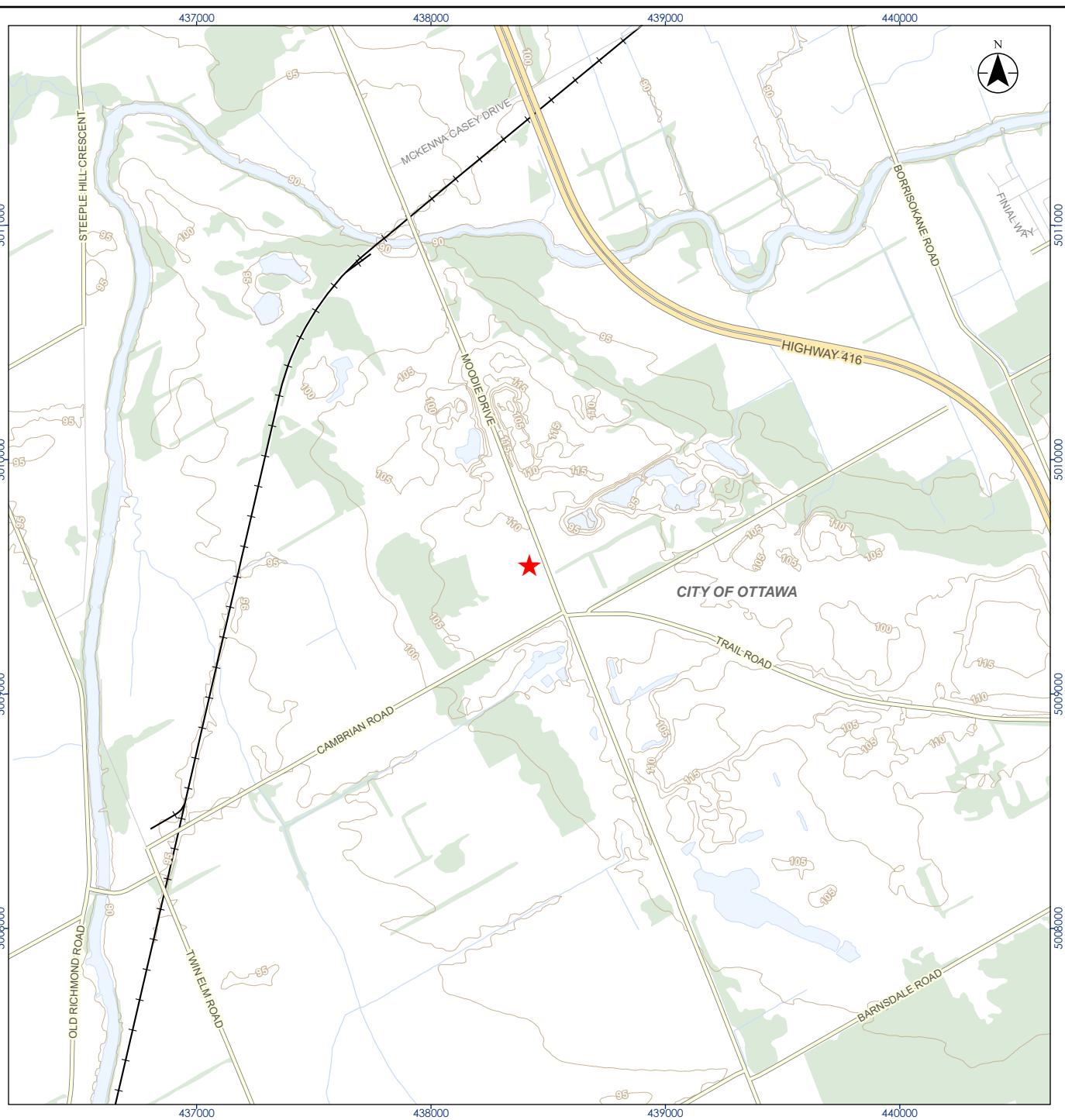
CSA. (2023). CAN/CSA-Z769-00 (R2023) - Phase II Environmental Site Assessment. Canadian Standards Association (CSA).

MNR. (2025). Areas of Natural and Scientific Interest (ANSI).

<https://geohub.lio.gov.on.ca/datasets/lio::areas-of-natural-and-scientific-interest-ansi/explore?location=44.220475%2C-76.754262%2C17.00>. Last updated October 1, 2025. Accessed November 24, 2025. Ministry of Natural Resources (MNR).

MOE. (2011). *Soil, Groundwater, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*. Ontario Ministry of the Environment (MOE).

Stantec. (2025). *Phase I Environmental Site Assessment, Trail Road Switching Station ESA*. December 12, 2025. Stantec Consulting Ltd.




# **Appendices**



## **Appendix A      Figures**





#### Legend

- ★ Site Location
- Expressway / Highway
- Major Road
- Minor Road
- + Railway - Operational
- Topographic Contour (m AMSL)
- Watercourse
- Waterbody
- + Wooded Area
- + Municipal Boundary - Lower Tier

0 500 1,000 metres  
1:25,000 (at original document size of 8.5x11)

 **Stantec**

Project Location  
Ottawa, Ontario

160923647  
Prepared by svandamne on 2025-11-04

Client/Project  
SCOUT CLEAN ENERGY  
PHASE II ENVIRONMENTAL SITE ASSESSMENT  
TRAIL ROAD SWITCHING STATION, OTTAWA, ONTARIO

Figure No.

1

**Site Location**

#### Notes

1. Coordinate System: NAD 1983 UTM Zone 18N
2. Contains information licensed under the Open Government Licence - Ontario.
3. This figure is to be viewed in the context of the accompanying report and is subject to the limitations herein in that report.
4. m AMSL - metres above mean sea level.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.





Legend

- ⊕ Approximate Borehole Location (Stantec, 2025)
- Approximate Monitoring Well Location
- Soil Parameters Tested Met Regulatory Standards (Table 2 ICC - Coarse)
- Approximate Site Boundary

## **Appendix B      Methodology**



## METHODOLOGY

This Appendix summarizes the methods Stantec followed in completing the Phase II Environmental Site Assessment (ESA).

### Underground Utilities

#### *Public and Private Underground Service Locates*

Prior to the ground disturbance activities, Stantec contacted Ontario One Call to have publicly owned utilities located in the vicinity of the proposed test pit locations. MultiVIEW Locates Inc. was retained to verify the locations of private services at the Site.

### Borehole Advancement

Stantec contracted Strata Drilling Group to advance four boreholes to a maximum depth of 6.10 metres (m) below ground surface (BGS) along the property boundaries using a Geoprobe 7822DT. Borehole logs in **Appendix C** present the observed stratigraphy.

### Sampling Methods

#### *Soil Sampling*

Soil samples were collected from the boreholes at regular intervals. Stantec's field technicians visually assessed and logged the recovered soil samples in the field and recorded observations of colour, odour, texture, soil type, and moisture in borehole logs found in **Appendix C**. Each soil sample was split into two portions. One portion was placed into a sealable plastic bag for use in screening headspace soil vapour concentrations. The second portion of each sample was placed into laboratory-supplied jars and temporarily stored in a cooler on ice prior to transport to Bureau Veritas North America Inc. (BV Labs). Samples to be analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon (PHC) fractions 1 to 4 (F1 to F4), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (including PCBs as part of the analytical suite) and metal and inorganic parameters were recovered at each sampling interval using direct push techniques.

Stantec screened soil samples for headspace soil vapour concentrations in the field using an RKI Eagle 2 gas detector. The Eagle 2 is equipped with a combustible gas detector to measure combustible vapour concentrations (CVC) and a photoionization detector (PID) to measure total organic vapours (TOV). The combustible gas detector was calibrated to hexane and operated in methane elimination mode for CVC measurements, and the PID was calibrated to isobutylene and equipped with a 10.6 eV lamp for TOV measurements. For CVC, the Eagle 2 can display measurement in parts per million by volume (ppm<sub>v</sub>), percent by volume (% volume), and percent of the lower explosive limit (% LEL). TOV measurements are reported in units of ppm<sub>v</sub>. The Eagle 2 is equipped with a Teflon® lined hose and a 0.4 m (10 inch) long hydrophobic probe. The probe includes a replaceable hydrophobic filter disk that reduces the potential for particulates and water to enter the instrument.



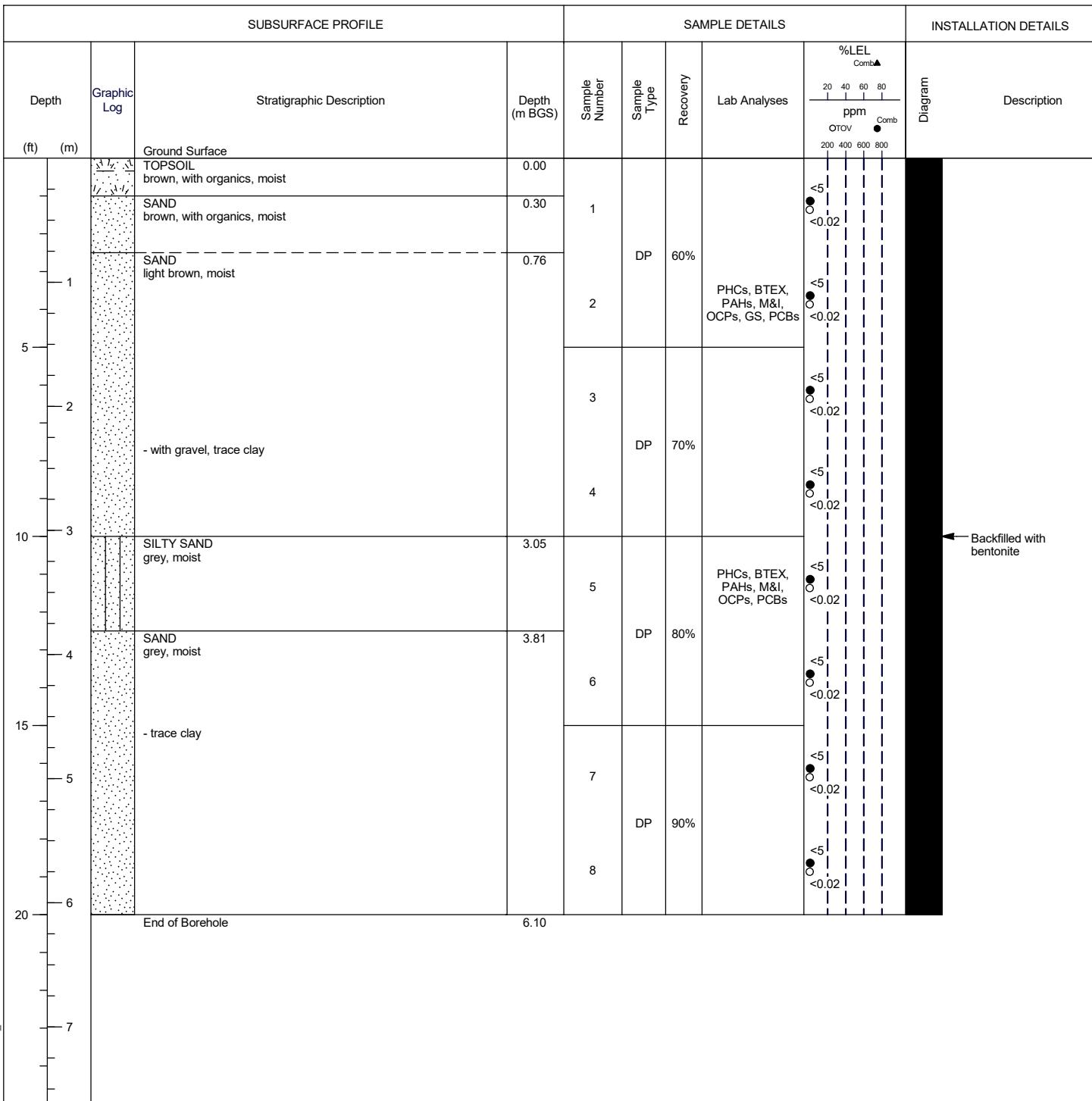
The Eagle 2 was calibrated in the field at the beginning of work each day. The calibration data were recorded when the Eagle 2 was calibrated.

Field screening soil vapour readings are recorded on the borehole logs in **Appendix C**.

Potential cross-contamination of samples was reduced by using cleaned sampling equipment. The non dedicated sampling equipment that came in contact with the soil was washed using a solution of Alconox and water and rinsed with water between sample locations. Stantec's field technicians wore a new pair of disposable nitrile gloves for each soil sample.

Stantec selected soil samples for laboratory analysis based on a variety of lines of evidence, including samples with elevated CVC/TOV concentrations, staining, odour, and the expected behaviour of COC in the environment. Samples submitted for laboratory analysis were packed in coolers on ice and shipped to BV Labs under chain-of-custody documentation.

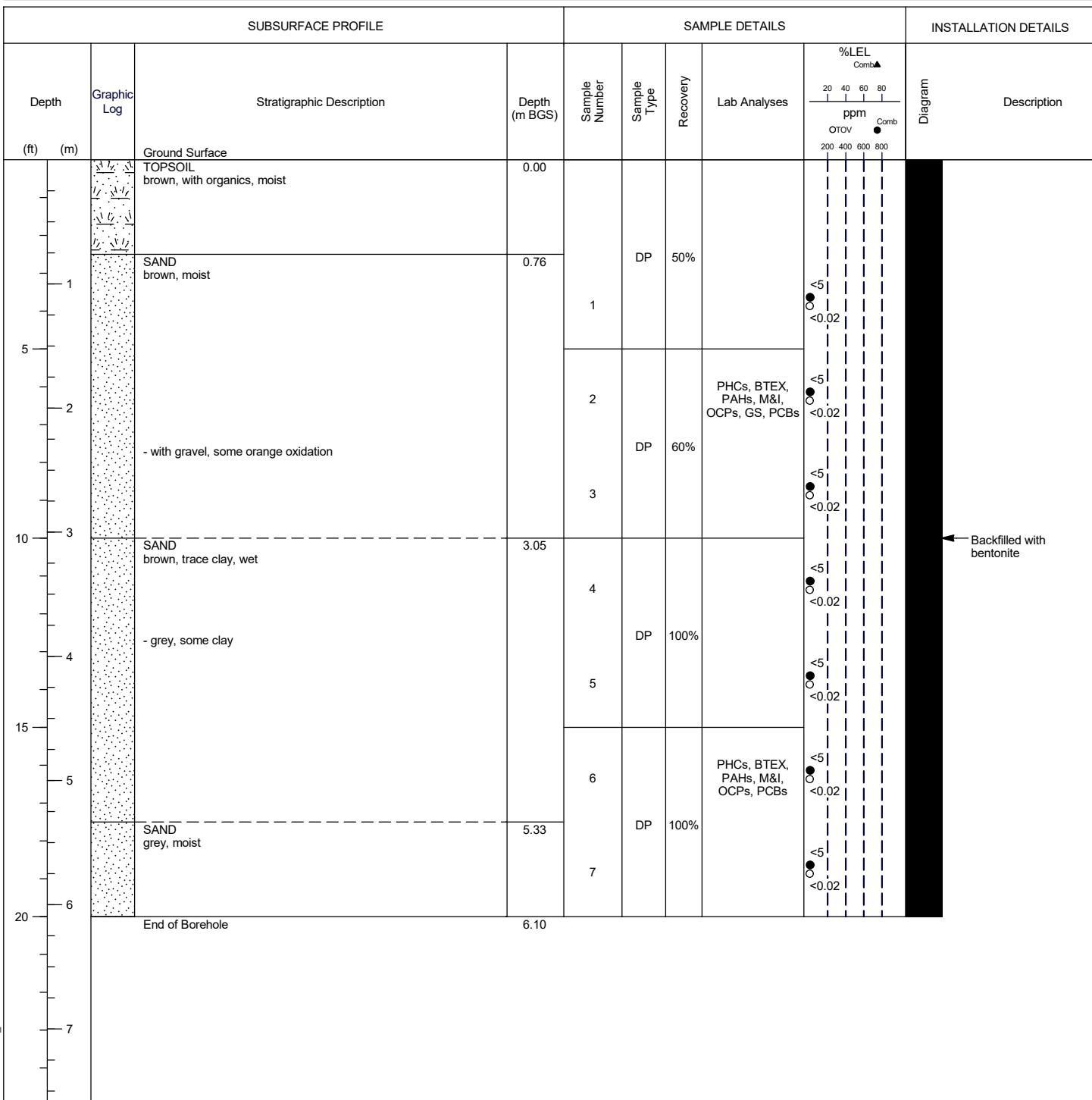



## **Appendix C      Borehole Logs**



# Borehole: BH25-01

**Project:** Phase II ESA  
**Client:** Railroad BESS Inc.  
**Location:** 1378 Moodie Drive, Ottawa, ON  
**Number:** 160923647  
**Field investigator:** M. Dinh  
**Contractor:** Strata Drilling Group


**Method:** Geoprobe 7822DT (Direct Push)  
**Date started/completed:** 17-Nov-2025  
**Ground surface elevation:** n/a  
**Top of casing elevation:** n/a  
**Easting:** n/a  
**Northing:** n/a



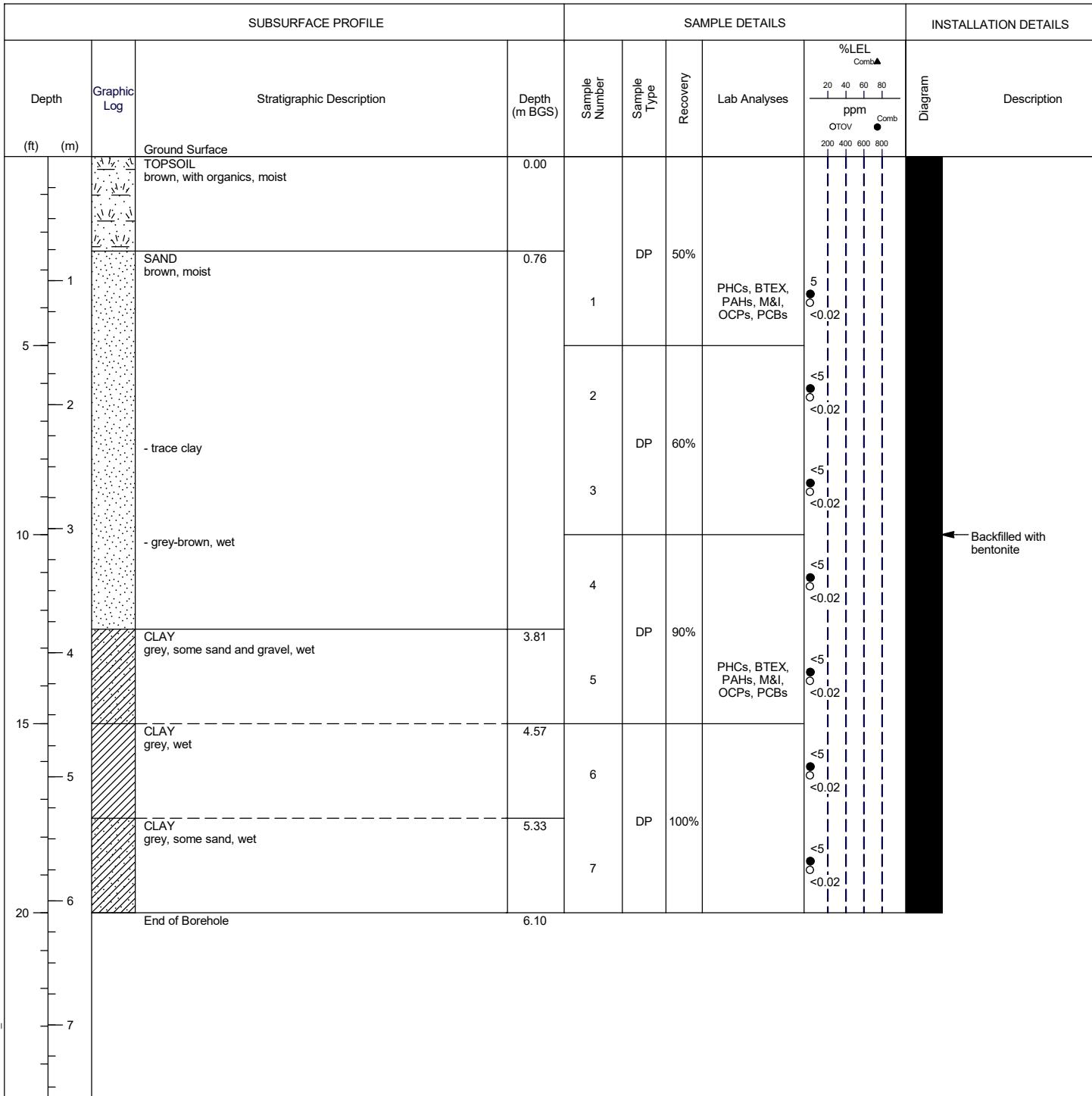
## Borehole: BH25-02

**Project:** Phase II ESA  
**Client:** Railroad BESS Inc.  
**Location:** 1378 Moodie Drive, Ottawa, ON  
**Number:** 160923647  
**Field investigator:** M. Dinh  
**Contractor:** Strata Drilling Group

**Method:** Geoprobe 7822DT (Direct Push)  
**Date started/completed:** 17-Nov-2025  
**Ground surface elevation:** n/a  
**Top of casing elevation:** n/a  
**Easting:** n/a  
**Northing:** n/a



Notes:  
 m BGS - metres below ground surface  
 DP - direct push sample  
 ppm - parts per million by volume  
 %LEL - percent lower explosive limit  
 n/a - not available


PHCs - petroleum hydrocarbon fractions 1 to 4  
 BTEX - benzene, toluene, ethylbenzene, xylenes  
 M&I - metals and inorganics  
 PAHs - polycyclic aromatic hydrocarbons  
 OCPs - organochlorine pesticides  
 GS - grain size  
 PCBs - polychlorinated biphenyls



## **Borehole: BH25-03**

**Project:** Phase II ESA  
**Client:** Railroad BESS Inc.  
**Location:** 1378 Moodie Drive, Ottawa, ON  
**Number:** 160923647  
**Field investigator:** M. Dinh  
**Contractor:** Strata Drilling Group

**Method:** Geoprobe 7822DT (Direct Push)  
**Date started/completed:** 17-Nov-2025  
**Ground surface elevation:** n/a  
**Top of casing elevation:** n/a  
**Easting:** n/a  
**Northing:** n/a



STANTEC BOREHOLE AND WELL V2 160923647 BHLOGS,GPJ STANTEC - DATA TEMPLATE;GDT 11/27/25 MIFORD

Notes:  
m BGS - metres below ground surface  
DP - direct push sample  
ppm - parts per million by volume  
%LEL - percent lower explosive limit  
n/a - not available

PHCs - petroleum hydrocarbon fractions 1 to 4  
BTEX - benzene, toluene, ethylbenzene, xylenes  
M&I - metals and inorganics  
PAHs - polycyclic aromatic hydrocarbons  
OCPs - organochlorine pesticides  
PCBs - polychlorinated biphenyls



## Borehole: BH25-04

**Project:** Phase II ESA  
**Client:** Railroad BESS Inc.  
**Location:** 1378 Moodie Drive, Ottawa, ON  
**Number:** 160923647  
**Field investigator:** M. Dinh  
**Contractor:** Strata Drilling Group

**Method:** Geoprobe 7822DT (Direct Push)  
**Date started/completed:** 17-Nov-2025  
**Ground surface elevation:** n/a  
**Top of casing elevation:** n/a  
**Easting:** n/a  
**Northing:** n/a



## **Appendix D      Tables**



**Table I**  
**Summary of Soil Analytical Results**  
**Phase II Environmental Site Assessment - Trail Road Switching Station**  
**Trail Road BESS Inc.**

| Sample Location                          | Units | Ontario SCS                          | BH25-01   |           | BH25-02   |           | BH25-03   |           | BH25-04    |           |
|------------------------------------------|-------|--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
|                                          |       |                                      | 17-Nov-25  | 17-Nov-25 |
| Sample Date                              |       |                                      | BH25-01-2 | BH25-01-5 | BH25-02-2 | BH25-02-6 | QC-01     | STANTEC   | BH25-03-1  | BH25-03-5 |
| Sample ID                                |       |                                      | STANTEC    | STANTEC   |
| Sampling Company                         |       |                                      | BV         | BV        |
| Laboratory                               |       |                                      | C5E6301    | C5E6301   |
| Laboratory Work Order                    |       |                                      | AXME88    | AXME91    | AXME96    | AXMF00    | AXMF01    | AXMF03    | AXMF07     | AXMF13    |
| Laboratory Sample ID                     |       |                                      |           |           |           |           |           |           |            |           |
| Sample Type                              |       |                                      |           |           |           |           |           |           |            |           |
| <b>General Chemistry</b>                 |       |                                      |           |           |           |           |           |           |            |           |
| Available (CaCl <sub>2</sub> ) pH        | S.U.  | 5.9/5.11 <sub>s12</sub> <sup>A</sup> | 7.03      | 7.64      | 7.44      | 7.78      | 7.89      | nc        | 7.35       | 7.88      |
| Cyanide (Free)                           | µg/g  | 0.051 <sup>A</sup>                   | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | nc        | <0.01      | <0.01     |
| Electrical Conductivity, Lab             | mS/cm | 1.4 <sup>A</sup>                     | 0.042     | 0.093     | 0.081     | 0.69      | 0.58      | 17%       | 0.057      | 0.10      |
| Moisture Content                         | %     | n/v                                  | 8.3       | 7.1       | 7.6       | 31        | 30        | 3%        | 8.2        | 21        |
| Sodium Adsorption Ratio (SAR)            | none  | 12 <sup>A</sup>                      | 0.44 SDC  | 0.34 SDC  | 0.40 SDC  | 6.5       | 6.1       | nc        | 0.39 SDC   | 0.96      |
| <b>Physical Properties</b>               |       |                                      |           |           |           |           | RPD (%)   |           |            |           |
| Grain Size                               | %     | n/v                                  | COARSE    | -         | COARSE    | -         | -         | -         | -          | -         |
| Sieve - #200 (<0.075mm)                  | %     | n/v                                  | 10        | -         | 12        | -         | -         | -         | -          | -         |
| Sieve - #200 (>0.075mm)                  | %     | n/v                                  | 90        | -         | 88        | -         | -         | -         | -          | -         |
| <b>BTEX and Petroleum Hydrocarbons</b>   |       |                                      |           |           |           |           |           |           |            |           |
| Benzene                                  | µg/g  | 0.32 <sup>A</sup>                    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | nc        | <0.020     | <0.020    |
| Toluene                                  | µg/g  | 6.4 <sup>A</sup>                     | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | nc        | <0.020     | <0.020    |
| Ethylbenzene                             | µg/g  | 1.1 <sup>A</sup>                     | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | nc        | <0.020     | <0.020    |
| Xylene, m & p-                           | µg/g  | s <sup>A</sup> <sub>1</sub>          | <0.040    | <0.040    | <0.040    | <0.040    | <0.040    | nc        | <0.040     | <0.040    |
| Xylene, o-                               | µg/g  | s <sup>A</sup> <sub>1</sub>          | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | nc        | <0.020     | <0.020    |
| Xylenes, Total                           | µg/g  | 20 <sub>s1</sub> <sup>A</sup>        | <0.040    | <0.040    | <0.040    | <0.040    | <0.040    | nc        | <0.040     | <0.040    |
| PHC F1 (C6-C10 range)                    | µg/g  | s <sup>A</sup> <sub>7</sub>          | <10       | <10       | <10       | <10       | <10       | nc        | <10        | <10       |
| PHC F1 (C6-C10 range) minus BTEX         | µg/g  | 55 <sub>s1</sub> <sup>A</sup>        | <10       | <10       | <10       | <10       | <10       | nc        | <10        | <10       |
| PHC F2 (>C10-C16 range)                  | µg/g  | 230 <sub>s15</sub> <sup>A</sup>      | <7.0      | <7.0      | <7.0      | <7.0      | <7.0      | nc        | <7.0       | <7.0      |
| PHC F3 (>C16-C34 range)                  | µg/g  | 1,700 <sub>s8</sub> <sup>A</sup>     | <50       | <50       | <50       | <50       | <50       | nc        | <50        | <50       |
| PHC F4 (>C34-C50 range)                  | µg/g  | 3,300 <sub>s10</sub> <sup>A</sup>    | <50       | <50       | <50       | <50       | <50       | nc        | <50        | <50       |
| Chromatogram to baseline at C50          | none  | n/v                                  | YES       | YES       | YES       | YES       | YES       | nc        | YES        | YES       |
| <b>Metals</b>                            |       |                                      |           |           |           |           |           |           |            |           |
| Antimony                                 | µg/g  | 40 <sup>A</sup>                      | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | nc        | <0.20      | <0.20     |
| Arsenic                                  | µg/g  | 18 <sup>A</sup>                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | nc        | <1.0       | <1.0      |
| Barium                                   | µg/g  | 670 <sup>A</sup>                     | 26        | 26        | 16        | 66        | 46        | 36%       | 20         | 48        |
| Beryllium                                | µg/g  | 8 <sup>A</sup>                       | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | nc        | <0.20      | <0.20     |
| Boron                                    | µg/g  | 120 <sub>s16</sub> <sup>A</sup>      | <5.0      | <5.0      | <5.0      | <5.0      | <5.0      | nc        | <5.0       | <5.0      |
| Boron (Available)                        | µg/g  | 2 <sub>s16</sub> <sup>A</sup>        | <0.050    | <0.050    | <0.050    | <0.050    | <0.050    | nc        | 0.078      | <0.050    |
| Cadmium                                  | µg/g  | 1.9 <sup>A</sup>                     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | nc        | <0.10      | <0.10     |
| Chromium                                 | µg/g  | 160 <sup>A</sup>                     | 9.8       | 11        | 9.6       | 15        | 13        | 14%       | 9.6        | 12        |
| Chromium (Hexavalent)                    | µg/g  | 8 <sup>A</sup>                       | <0.18     | <0.18     | <0.18     | <0.18     | <0.18     | nc        | <0.18      | <0.18     |
| Cobalt                                   | µg/g  | 80 <sup>A</sup>                      | 2.9       | 3.3       | 2.7       | 4.8       | 4.1       | 16%       | 2.6        | 4.8       |
| Copper                                   | µg/g  | 230 <sup>A</sup>                     | 2.9       | 7.8       | 4.0       | 9.5       | 8.2       | 15%       | 2.3        | 8.3       |
| Lead                                     | µg/g  | 120 <sup>A</sup>                     | 2.0       | 1.8       | 1.7       | 2.3       | 2.0       | nc        | 1.9        | 2.5       |
| Mercury                                  | µg/g  | 3.9 <sup>A</sup>                     | <0.050    | <0.050    | <0.050    | <0.050    | <0.050    | nc        | <0.050     | <0.050    |
| Molybdenum                               | µg/g  | 40 <sup>A</sup>                      | <0.50     | 0.67      | <0.50     | <0.50     | <0.50     | nc        | <0.50      | 0.66      |
| Nickel                                   | µg/g  | 270 <sup>A</sup>                     | 5.3       | 5.6       | 4.2       | 9.1       | 7.2       | 23%       | 4.8        | 8.1       |
| Selenium                                 | µg/g  | 5.5 <sup>A</sup>                     | <0.50     | <0.50     | <0.50     | <0.50     | <0.50     | nc        | <0.50      | <0.50     |
| Silver                                   | µg/g  | 40 <sup>A</sup>                      | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | nc        | <0.20      | <0.20     |
| Thallium                                 | µg/g  | 3.3 <sup>A</sup>                     | <0.050    | <0.050    | <0.050    | 0.069     | 0.055     | nc        | <0.050     | 0.064     |
| Uranium                                  | µg/g  | 33 <sup>A</sup>                      | 0.48      | 0.44      | 0.56      | 0.39      | 0.43      | 10%       | 0.48       | 0.47      |
| Vanadium                                 | µg/g  | 86 <sup>A</sup>                      | 22        | 22        | 25        | 22        | 20        | nc        | 23         | 21        |
| Zinc                                     | µg/g  | 340 <sup>A</sup>                     | 9.9       | 14        | 8.9       | 22        | 18        | nc        | 10         | 17        |
| <b>Pesticides, Herbicides &amp; PCBs</b> |       |                                      |           |           |           |           |           |           |            |           |
| Aldrin                                   | µg/g  | 0.088 <sup>A</sup>                   | <0.0020   | <0.0020   | <0.0020   | <0.0040   | <0.0020   | nc        | <0.0020    | <0.0020   |
| Aroclor 1242                             | µg/g  | s <sup>A</sup> <sub>14</sub>         | <0.015    | <0.015    | <0.015    | <0.030    | <0.015    | nc        | <0.015     | <0.015    |
| Aroclor 1248                             | µg/g  | s <sup>A</sup> <sub>14</sub>         | <0.015    | <0.015    | <0.015    | <0.030    | <0.015    | nc        | <0.015     | <0.015    |
| Aroclor 1254                             | µg/g  | s <sup>A</sup> <sub>14</sub>         | <0.015    | <0.015    | <0.015    | <0.030    | <0.015    | nc        | <0.015     | <0.015    |
| Aroclor 1260                             | µg/g  | s <sup>A</sup> <sub>14</sub>         | <0.015    | <0.015    | <0.015    | <0.030    | <0.015    | nc        | <0.015     | <0.015    |
| Chlordane (Total)                        | µg/g  | 0.05 <sup>A</sup>                    | <0.0020   | <0.0020   | <0.0020   | <0.0040   | <0.0020   | nc        | <0.0020    | <0.0020   |
| Chlordane, alpha-                        | µg/g  | n/v                                  | <0.020    | <0.020    | <0.020    | <0.040    | <0.020    | nc        | <0.020     | <0.020    |
| Chlordane, gamma-                        | µg/g  | n/v                                  | <0.020    | <0.020    | <0.020    | <0.040    | <0.020    | nc        | <0.020     | <0.020    |
| DDD (p,p'-DDD)                           | µg/g  | 4.6 <sub>s4</sub> <sup>A</sup>       | <0.020    | <0.020    | <0.020    | <0.040    | <0.020    | nc        | <0.020     | <0.020    |
| DDD, o,p'                                | µg/g  | n/v                                  | <0.020    | <0.020    | <0.020    | <0.040    | <0.020    | nc        | <0.020     | <0.020    |
| DDD, o,p' + DDD, p,p'                    | µg/g  | 4.6 <sup>A</sup>                     | <0.020    | <0.020    | <0.020    | <0.040    | <0.020    | nc        | <0.020</td |           |

## **Appendix E      Laboratory Certificates of Analysis**





BUREAU  
VERITAS

Your Project #: 160923647  
Your C.O.C. #: C#1068687-01-01

**Attention: Cori Linetsky**

Stantec Consulting Ltd  
300-125 Commerce Valley Dr W  
Markham, ON  
CANADA L3T 7W4

**Report Date: 2025/11/21**  
Report #: R8655967  
Version: 1 - Final

**CERTIFICATE OF ANALYSIS**

**BUREAU VERITAS JOB #: C5E6301**

**Received: 2025/11/18, 10:00**

Sample Matrix: Soil  
# Samples Received: 9

| Analyses                                       | Quantity | Date Extracted | Date Analyzed | Laboratory Method | Analytical Method    |
|------------------------------------------------|----------|----------------|---------------|-------------------|----------------------|
| Methylnaphthalene Sum (1)                      | 9        | N/A            | 2025/11/21    | CAM SOP-00301     | EPA 8270D m          |
| Hot Water Extractable Boron (1)                | 9        | 2025/11/20     | 2025/11/20    | CAM SOP-00408     | R153 Ana. Prot. 2011 |
| Free (WAD) Cyanide (1)                         | 9        | 2025/11/21     | 2025/11/21    | CAM SOP-00457     | OMOE E3015 m         |
| Conductivity (1)                               | 9        | 2025/11/21     | 2025/11/21    | CAM SOP-00414     | OMOE E3530 v1 m      |
| Hexavalent Chromium in Soil by IC (1, 2)       | 9        | 2025/11/20     | 2025/11/21    | CAM SOP-00436     | EPA 3060A/7199 m     |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3) | 9        | N/A            | 2025/11/20    | CAM SOP-00315     | CCME PHC-CWS m       |
| Petroleum Hydrocarbons F2-F4 in Soil (1, 4)    | 9        | 2025/11/20     | 2025/11/20    | CAM SOP-00316     | CCME CWS m           |
| Acid Extractable Metals by ICPMS (1)           | 9        | 2025/11/20     | 2025/11/20    | CAM SOP-00447     | EPA 6020B m          |
| Moisture (1)                                   | 9        | N/A            | 2025/11/19    | CAM SOP-00445     | Carter 2nd ed 70.2 m |
| OC Pesticides (Selected) & PCB (1, 5)          | 9        | 2025/11/20     | 2025/11/20    | CAM SOP-00307     | EPA 8081B/ 8082A     |
| OC Pesticides Summed Parameters (1)            | 9        | N/A            | 2025/11/20    | CAM SOP-00307     | EPA 8081B/ 8082A     |
| PAH Compounds in Soil by GC/MS (SIM) (1)       | 9        | 2025/11/20     | 2025/11/20    | CAM SOP-00318     | EPA 8270E            |
| pH CaCl <sub>2</sub> EXTRACT (1)               | 9        | 2025/11/21     | 2025/11/21    | CAM SOP-00413     | EPA 9045 D m         |
| Sieve, 75um (1)                                | 2        | N/A            | 2025/11/21    | CAM SOP-00467     | ASTM D1140 -17 m     |
| Sodium Adsorption Ratio (SAR) (1)              | 9        | N/A            | 2025/11/21    | CAM SOP-00102     | EPA 6010C            |

**Remarks:**

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.



BUREAU  
VERITAS

Your Project #: 160923647  
Your C.O.C. #: C#1068687-01-01

**Attention: Cori Linetsky**

Stantec Consulting Ltd  
300-125 Commerce Valley Dr W  
Markham, ON  
CANADA L3T 7W4

**Report Date: 2025/11/21**  
Report #: R8655967  
Version: 1 - Final

**CERTIFICATE OF ANALYSIS**

**BUREAU VERITAS JOB #: C5E6301**

**Received: 2025/11/18, 10:00**

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(5) Chlordane ( Total ) = Alpha Chlordane + Gamma Chlordane

**Encryption Key**

Please direct all questions regarding this Certificate of Analysis to:

Julie Clement, Technical Account Manager

Email: Julie.CLEMENT@bureauveritas.com

Phone# (613)868-6079

=====

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports.

For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD**O.REG 153 METALS & INORGANICS PKG (SOIL)**

|                   |              |                     |                     |                     |                 |                     |            |                 |
|-------------------|--------------|---------------------|---------------------|---------------------|-----------------|---------------------|------------|-----------------|
| Bureau Veritas ID |              | AXME88              | AXME91              | AXME96              |                 | AXMF00              |            |                 |
| Sampling Date     |              | 2025/11/17<br>09:30 | 2025/11/17<br>09:50 | 2025/11/17<br>10:20 |                 | 2025/11/17<br>10:30 |            |                 |
| COC Number        |              | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |                 | C#1068687-01-01     |            |                 |
|                   | <b>UNITS</b> | <b>BH25-01-2</b>    | <b>BH25-01-5</b>    | <b>BH25-02-2</b>    | <b>QC Batch</b> | <b>BH25-02-6</b>    | <b>RDL</b> | <b>QC Batch</b> |

**Calculated Parameters**

|                         |     |          |          |          |         |     |  |         |
|-------------------------|-----|----------|----------|----------|---------|-----|--|---------|
| Sodium Adsorption Ratio | N/A | 0.44 (1) | 0.34 (1) | 0.40 (1) | A057191 | 6.5 |  | A057191 |
|-------------------------|-----|----------|----------|----------|---------|-----|--|---------|

**Inorganics**

|                                   |       |       |       |       |         |       |       |         |
|-----------------------------------|-------|-------|-------|-------|---------|-------|-------|---------|
| Conductivity                      | mS/cm | 0.042 | 0.093 | 0.081 | A058827 | 0.69  | 0.002 | A058827 |
| Available (CaCl <sub>2</sub> ) pH | pH    | 7.03  | 7.64  | 7.44  | A058979 | 7.78  |       | A058979 |
| WAD Cyanide (Free)                | ug/g  | <0.01 | <0.01 | <0.01 | A058816 | <0.01 | 0.01  | A058816 |
| Chromium (VI)                     | ug/g  | <0.18 | <0.18 | <0.18 | A058277 | <0.18 | 0.18  | A058277 |

**Metals**

|                                  |      |        |        |        |         |        |       |         |
|----------------------------------|------|--------|--------|--------|---------|--------|-------|---------|
| Hot Water Ext. Boron (B)         | ug/g | <0.050 | <0.050 | <0.050 | A058534 | <0.050 | 0.050 | A058454 |
| Acid Extractable Antimony (Sb)   | ug/g | <0.20  | <0.20  | <0.20  | A058537 | <0.20  | 0.20  | A058456 |
| Acid Extractable Arsenic (As)    | ug/g | <1.0   | <1.0   | <1.0   | A058537 | <1.0   | 1.0   | A058456 |
| Acid Extractable Barium (Ba)     | ug/g | 26     | 26     | 16     | A058537 | 66     | 0.50  | A058456 |
| Acid Extractable Beryllium (Be)  | ug/g | <0.20  | <0.20  | <0.20  | A058537 | <0.20  | 0.20  | A058456 |
| Acid Extractable Boron (B)       | ug/g | <5.0   | <5.0   | <5.0   | A058537 | <5.0   | 5.0   | A058456 |
| Acid Extractable Cadmium (Cd)    | ug/g | <0.10  | <0.10  | <0.10  | A058537 | <0.10  | 0.10  | A058456 |
| Acid Extractable Chromium (Cr)   | ug/g | 9.8    | 11     | 9.6    | A058537 | 15     | 1.0   | A058456 |
| Acid Extractable Cobalt (Co)     | ug/g | 2.9    | 3.3    | 2.7    | A058537 | 4.8    | 0.10  | A058456 |
| Acid Extractable Copper (Cu)     | ug/g | 2.9    | 7.8    | 4.0    | A058537 | 9.5    | 0.50  | A058456 |
| Acid Extractable Lead (Pb)       | ug/g | 2.0    | 1.8    | 1.7    | A058537 | 2.3    | 1.0   | A058456 |
| Acid Extractable Molybdenum (Mo) | ug/g | <0.50  | 0.67   | <0.50  | A058537 | <0.50  | 0.50  | A058456 |
| Acid Extractable Nickel (Ni)     | ug/g | 5.3    | 5.6    | 4.2    | A058537 | 9.1    | 0.50  | A058456 |
| Acid Extractable Selenium (Se)   | ug/g | <0.50  | <0.50  | <0.50  | A058537 | <0.50  | 0.50  | A058456 |
| Acid Extractable Silver (Ag)     | ug/g | <0.20  | <0.20  | <0.20  | A058537 | <0.20  | 0.20  | A058456 |
| Acid Extractable Thallium (Tl)   | ug/g | <0.050 | <0.050 | <0.050 | A058537 | 0.069  | 0.050 | A058456 |
| Acid Extractable Uranium (U)     | ug/g | 0.48   | 0.44   | 0.56   | A058537 | 0.39   | 0.050 | A058456 |
| Acid Extractable Vanadium (V)    | ug/g | 22     | 22     | 25     | A058537 | 22     | 5.0   | A058456 |
| Acid Extractable Zinc (Zn)       | ug/g | 9.9    | 14     | 8.9    | A058537 | 22     | 5.0   | A058456 |
| Acid Extractable Mercury (Hg)    | ug/g | <0.050 | <0.050 | <0.050 | A058537 | <0.050 | 0.050 | A058456 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD**O.REG 153 METALS & INORGANICS PKG (SOIL)**

|                   |              |                     |                     |                     |                     |            |                 |
|-------------------|--------------|---------------------|---------------------|---------------------|---------------------|------------|-----------------|
| Bureau Veritas ID |              | AXMF01              | AXMF03              | AXMF07              | AXMF13              |            |                 |
| Sampling Date     |              | 2025/11/17<br>10:30 | 2025/11/17<br>11:35 | 2025/11/17<br>11:50 | 2025/11/17<br>11:05 |            |                 |
| COC Number        |              | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |            |                 |
|                   | <b>UNITS</b> | <b>QC-01</b>        | <b>BH25-03-1</b>    | <b>BH25-03-5</b>    | <b>BH25-04-4</b>    | <b>RDL</b> | <b>QC Batch</b> |

**Calculated Parameters**

|                         |     |     |          |      |      |  |         |
|-------------------------|-----|-----|----------|------|------|--|---------|
| Sodium Adsorption Ratio | N/A | 6.1 | 0.39 (1) | 0.96 | 0.49 |  | A057191 |
|-------------------------|-----|-----|----------|------|------|--|---------|

**Inorganics**

|                                   |       |       |       |       |       |       |         |
|-----------------------------------|-------|-------|-------|-------|-------|-------|---------|
| Conductivity                      | mS/cm | 0.58  | 0.057 | 0.10  | 0.14  | 0.002 | A058827 |
| Available (CaCl <sub>2</sub> ) pH | pH    | 7.89  | 7.35  | 7.88  | 7.59  |       | A058979 |
| WAD Cyanide (Free)                | ug/g  | <0.01 | <0.01 | <0.01 | <0.01 | 0.01  | A058816 |
| Chromium (VI)                     | ug/g  | <0.18 | <0.18 | <0.18 | <0.18 | 0.18  | A058277 |

**Metals**

|                                  |      |        |        |        |        |       |         |
|----------------------------------|------|--------|--------|--------|--------|-------|---------|
| Hot Water Ext. Boron (B)         | ug/g | <0.050 | 0.078  | <0.050 | 0.060  | 0.050 | A058534 |
| Acid Extractable Antimony (Sb)   | ug/g | <0.20  | <0.20  | <0.20  | <0.20  | 0.20  | A058537 |
| Acid Extractable Arsenic (As)    | ug/g | <1.0   | <1.0   | <1.0   | <1.0   | 1.0   | A058537 |
| Acid Extractable Barium (Ba)     | ug/g | 46     | 20     | 48     | 25     | 0.50  | A058537 |
| Acid Extractable Beryllium (Be)  | ug/g | <0.20  | <0.20  | 0.20   | <0.20  | 0.20  | A058537 |
| Acid Extractable Boron (B)       | ug/g | <5.0   | <5.0   | <5.0   | <5.0   | 5.0   | A058537 |
| Acid Extractable Cadmium (Cd)    | ug/g | <0.10  | <0.10  | <0.10  | <0.10  | 0.10  | A058537 |
| Acid Extractable Chromium (Cr)   | ug/g | 13     | 9.6    | 12     | 11     | 1.0   | A058537 |
| Acid Extractable Cobalt (Co)     | ug/g | 4.1    | 2.6    | 4.8    | 3.2    | 0.10  | A058537 |
| Acid Extractable Copper (Cu)     | ug/g | 8.2    | 2.3    | 8.3    | 6.2    | 0.50  | A058537 |
| Acid Extractable Lead (Pb)       | ug/g | 2.0    | 1.9    | 2.5    | 2.4    | 1.0   | A058537 |
| Acid Extractable Molybdenum (Mo) | ug/g | <0.50  | <0.50  | <0.50  | 0.66   | 0.50  | A058537 |
| Acid Extractable Nickel (Ni)     | ug/g | 7.2    | 4.8    | 8.1    | 5.2    | 0.50  | A058537 |
| Acid Extractable Selenium (Se)   | ug/g | <0.50  | <0.50  | <0.50  | <0.50  | 0.50  | A058537 |
| Acid Extractable Silver (Ag)     | ug/g | <0.20  | <0.20  | <0.20  | <0.20  | 0.20  | A058537 |
| Acid Extractable Thallium (Tl)   | ug/g | 0.055  | <0.050 | 0.064  | <0.050 | 0.050 | A058537 |
| Acid Extractable Uranium (U)     | ug/g | 0.43   | 0.48   | 0.47   | 0.53   | 0.050 | A058537 |
| Acid Extractable Vanadium (V)    | ug/g | 20     | 23     | 21     | 22     | 5.0   | A058537 |
| Acid Extractable Zinc (Zn)       | ug/g | 18     | 10     | 17     | 12     | 5.0   | A058537 |
| Acid Extractable Mercury (Hg)    | ug/g | <0.050 | <0.050 | <0.050 | <0.050 | 0.050 | A058537 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### O.REG 153 METALS & INORGANICS PKG (SOIL)

|                                   |       |                     |       |          |
|-----------------------------------|-------|---------------------|-------|----------|
| Bureau Veritas ID                 |       | AXMF16              |       |          |
| Sampling Date                     |       | 2025/11/17<br>11:15 |       |          |
| COC Number                        |       | C#1068687-01-01     |       |          |
|                                   | UNITS | BH25-04-7           | RDL   | QC Batch |
| <b>Calculated Parameters</b>      |       |                     |       |          |
| Sodium Adsorption Ratio           | N/A   | 1.9                 |       | A057191  |
| <b>Inorganics</b>                 |       |                     |       |          |
| Conductivity                      | mS/cm | 0.26                | 0.002 | A058827  |
| Available (CaCl <sub>2</sub> ) pH | pH    | 7.97                |       | A058979  |
| WAD Cyanide (Free)                | ug/g  | <0.01               | 0.01  | A058816  |
| Chromium (VI)                     | ug/g  | <0.18               | 0.18  | A058277  |
| <b>Metals</b>                     |       |                     |       |          |
| Hot Water Ext. Boron (B)          | ug/g  | <0.050              | 0.050 | A058534  |
| Acid Extractable Antimony (Sb)    | ug/g  | <0.20               | 0.20  | A058537  |
| Acid Extractable Arsenic (As)     | ug/g  | 1.1                 | 1.0   | A058537  |
| Acid Extractable Barium (Ba)      | ug/g  | 88                  | 0.50  | A058537  |
| Acid Extractable Beryllium (Be)   | ug/g  | 0.24                | 0.20  | A058537  |
| Acid Extractable Boron (B)        | ug/g  | <5.0                | 5.0   | A058537  |
| Acid Extractable Cadmium (Cd)     | ug/g  | <0.10               | 0.10  | A058537  |
| Acid Extractable Chromium (Cr)    | ug/g  | 19                  | 1.0   | A058537  |
| Acid Extractable Cobalt (Co)      | ug/g  | 6.1                 | 0.10  | A058537  |
| Acid Extractable Copper (Cu)      | ug/g  | 13                  | 0.50  | A058537  |
| Acid Extractable Lead (Pb)        | ug/g  | 3.3                 | 1.0   | A058537  |
| Acid Extractable Molybdenum (Mo)  | ug/g  | <0.50               | 0.50  | A058537  |
| Acid Extractable Nickel (Ni)      | ug/g  | 12                  | 0.50  | A058537  |
| Acid Extractable Selenium (Se)    | ug/g  | <0.50               | 0.50  | A058537  |
| Acid Extractable Silver (Ag)      | ug/g  | <0.20               | 0.20  | A058537  |
| Acid Extractable Thallium (Tl)    | ug/g  | 0.099               | 0.050 | A058537  |
| Acid Extractable Uranium (U)      | ug/g  | 0.69                | 0.050 | A058537  |
| Acid Extractable Vanadium (V)     | ug/g  | 32                  | 5.0   | A058537  |
| Acid Extractable Zinc (Zn)        | ug/g  | 31                  | 5.0   | A058537  |
| Acid Extractable Mercury (Hg)     | ug/g  | <0.050              | 0.050 | A058537  |
| RDL = Reportable Detection Limit  |       |                     |       |          |
| QC Batch = Quality Control Batch  |       |                     |       |          |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                   |       |                     |                     |     |          |                      |     |          |
|-------------------|-------|---------------------|---------------------|-----|----------|----------------------|-----|----------|
| Bureau Veritas ID |       | AXME88              | AXME91              |     |          | AXME91               |     |          |
| Sampling Date     |       | 2025/11/17<br>09:30 | 2025/11/17<br>09:50 |     |          | 2025/11/17<br>09:50  |     |          |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     |     |          | C#1068687-01-01      |     |          |
|                   | UNITS | BH25-01-2           | BH25-01-5           | RDL | QC Batch | BH25-01-5<br>Lab-Dup | RDL | QC Batch |

#### Calculated Parameters

|                   |      |         |         |        |         |  |  |  |
|-------------------|------|---------|---------|--------|---------|--|--|--|
| Chlordane (Total) | ug/g | <0.0020 | <0.0020 | 0.0020 | A057190 |  |  |  |
| o,p-DDD + p,p-DDD | ug/g | <0.0020 | <0.0020 | 0.0020 | A057190 |  |  |  |
| o,p-DDE + p,p-DDE | ug/g | <0.0020 | <0.0020 | 0.0020 | A057190 |  |  |  |
| o,p-DDT + p,p-DDT | ug/g | <0.0020 | <0.0020 | 0.0020 | A057190 |  |  |  |
| Total Endosulfan  | ug/g | <0.0020 | <0.0020 | 0.0020 | A057190 |  |  |  |
| Total PCB         | ug/g | <0.015  | <0.015  | 0.015  | A057190 |  |  |  |

#### Pesticides & Herbicides

|                      |      |         |         |        |         |         |        |         |
|----------------------|------|---------|---------|--------|---------|---------|--------|---------|
| Aldrin               | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| a-Chlordane          | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| g-Chlordane          | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| o,p-DDD              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| p,p-DDD              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| o,p-DDE              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| p,p-DDE              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| o,p-DDT              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| p,p-DDT              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Dieldrin             | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Lindane              | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Endosulfan I (alpha) | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Endosulfan II (beta) | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Endrin               | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Heptachlor           | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Heptachlor epoxide   | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Hexachlorobenzene    | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Hexachlorobutadiene  | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Hexachloroethane     | ug/g | <0.0020 | <0.0020 | 0.0020 | A057897 | <0.0020 | 0.0020 | A057897 |
| Methoxychlor         | ug/g | <0.0050 | <0.0050 | 0.0050 | A057897 | <0.0050 | 0.0050 | A057897 |
| Aroclor 1242         | ug/g | <0.015  | <0.015  | 0.015  | A057897 | <0.015  | 0.015  | A057897 |
| Aroclor 1248         | ug/g | <0.015  | <0.015  | 0.015  | A057897 | <0.015  | 0.015  | A057897 |
| Aroclor 1254         | ug/g | <0.015  | <0.015  | 0.015  | A057897 | <0.015  | 0.015  | A057897 |
| Aroclor 1260         | ug/g | <0.015  | <0.015  | 0.015  | A057897 | <0.015  | 0.015  | A057897 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                   |       |                     |                     |     |          |                      |     |          |
|-------------------|-------|---------------------|---------------------|-----|----------|----------------------|-----|----------|
| Bureau Veritas ID |       | AXME88              | AXME91              |     |          | AXME91               |     |          |
| Sampling Date     |       | 2025/11/17<br>09:30 | 2025/11/17<br>09:50 |     |          | 2025/11/17<br>09:50  |     |          |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     |     |          | C#1068687-01-01      |     |          |
|                   | UNITS | BH25-01-2           | BH25-01-5           | RDL | QC Batch | BH25-01-5<br>Lab-Dup | RDL | QC Batch |

#### Surrogate Recovery (%)

|                              |   |    |    |  |         |    |  |         |
|------------------------------|---|----|----|--|---------|----|--|---------|
| 2,4,5,6-Tetrachloro-m-xylene | % | 95 | 78 |  | A057897 | 89 |  | A057897 |
| Decachlorobiphenyl           | % | 96 | 79 |  | A057897 | 99 |  | A057897 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                   |       |                     |     |                     |     |                     |                     |     |          |
|-------------------|-------|---------------------|-----|---------------------|-----|---------------------|---------------------|-----|----------|
| Bureau Veritas ID |       | AXME96              |     | AXMF00              |     | AXMF01              | AXMF03              |     |          |
| Sampling Date     |       | 2025/11/17<br>10:20 |     | 2025/11/17<br>10:30 |     | 2025/11/17<br>10:30 | 2025/11/17<br>11:35 |     |          |
| COC Number        |       | C#1068687-01-01     |     | C#1068687-01-01     |     | C#1068687-01-01     | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-02-2           | RDL | BH25-02-6           | RDL | QC-01               | BH25-03-1           | RDL | QC Batch |

#### Calculated Parameters

|                   |      |         |        |         |        |         |         |        |         |
|-------------------|------|---------|--------|---------|--------|---------|---------|--------|---------|
| Chlordane (Total) | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057190 |
| o,p-DDD + p,p-DDD | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057190 |
| o,p-DDE + p,p-DDE | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057190 |
| o,p-DDT + p,p-DDT | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057190 |
| Total Endosulfan  | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057190 |
| Total PCB         | ug/g | <0.015  | 0.015  | <0.030  | 0.030  | <0.015  | <0.015  | 0.015  | A057190 |

#### Pesticides & Herbicides

|                      |      |         |        |         |        |         |         |        |         |
|----------------------|------|---------|--------|---------|--------|---------|---------|--------|---------|
| Aldrin               | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| a-Chlordane          | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| g-Chlordane          | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| o,p-DDD              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| p,p-DDD              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| o,p-DDE              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| p,p-DDE              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| o,p-DDT              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| p,p-DDT              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Dieldrin             | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Lindane              | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Endosulfan I (alpha) | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Endosulfan II (beta) | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Endrin               | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Heptachlor           | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Heptachlor epoxide   | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Hexachlorobenzene    | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Hexachlorobutadiene  | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Hexachloroethane     | ug/g | <0.0020 | 0.0020 | <0.0040 | 0.0040 | <0.0020 | <0.0020 | 0.0020 | A057897 |
| Methoxychlor         | ug/g | <0.0050 | 0.0050 | <0.010  | 0.010  | <0.0050 | <0.0050 | 0.0050 | A057897 |
| Aroclor 1242         | ug/g | <0.015  | 0.015  | <0.030  | 0.030  | <0.015  | <0.015  | 0.015  | A057897 |
| Aroclor 1248         | ug/g | <0.015  | 0.015  | <0.030  | 0.030  | <0.015  | <0.015  | 0.015  | A057897 |
| Aroclor 1254         | ug/g | <0.015  | 0.015  | <0.030  | 0.030  | <0.015  | <0.015  | 0.015  | A057897 |
| Aroclor 1260         | ug/g | <0.015  | 0.015  | <0.030  | 0.030  | <0.015  | <0.015  | 0.015  | A057897 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                   |  |                     |  |                     |  |                     |                     |  |  |
|-------------------|--|---------------------|--|---------------------|--|---------------------|---------------------|--|--|
| Bureau Veritas ID |  | AXME96              |  | AXMF00              |  | AXMF01              | AXMF03              |  |  |
| Sampling Date     |  | 2025/11/17<br>10:20 |  | 2025/11/17<br>10:30 |  | 2025/11/17<br>10:30 | 2025/11/17<br>11:35 |  |  |
| COC Number        |  | C#1068687-01-01     |  | C#1068687-01-01     |  | C#1068687-01-01     | C#1068687-01-01     |  |  |

| Surrogate Recovery (%)       |   |    |  |    |  |    |     |  |         |
|------------------------------|---|----|--|----|--|----|-----|--|---------|
| 2,4,5,6-Tetrachloro-m-xylene | % | 93 |  | 97 |  | 87 | 91  |  | A057897 |
| Decachlorobiphenyl           | % | 86 |  | 92 |  | 87 | 105 |  | A057897 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                   |       |                     |                     |     |                     |     |          |
|-------------------|-------|---------------------|---------------------|-----|---------------------|-----|----------|
| Bureau Veritas ID |       | AXMF07              | AXMF13              |     | AXMF16              |     |          |
| Sampling Date     |       | 2025/11/17<br>11:50 | 2025/11/17<br>11:05 |     | 2025/11/17<br>11:15 |     |          |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     |     | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-03-5           | BH25-04-4           | RDL | BH25-04-7           | RDL | QC Batch |

#### Calculated Parameters

|                   |      |         |         |        |         |        |         |
|-------------------|------|---------|---------|--------|---------|--------|---------|
| Chlordane (Total) | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057190 |
| o,p-DDD + p,p-DDD | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057190 |
| o,p-DDE + p,p-DDE | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057190 |
| o,p-DDT + p,p-DDT | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057190 |
| Total Endosulfan  | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057190 |
| Total PCB         | ug/g | <0.015  | <0.015  | 0.015  | <0.030  | 0.030  | A057190 |

#### Pesticides & Herbicides

|                      |      |         |         |        |         |        |         |
|----------------------|------|---------|---------|--------|---------|--------|---------|
| Aldrin               | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| a-Chlordane          | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| g-Chlordane          | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| o,p-DDD              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| p,p-DDD              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| o,p-DDE              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| p,p-DDE              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| o,p-DDT              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| p,p-DDT              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Dieldrin             | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Lindane              | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Endosulfan I (alpha) | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Endosulfan II (beta) | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Endrin               | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Heptachlor           | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Heptachlor epoxide   | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Hexachlorobenzene    | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Hexachlorobutadiene  | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Hexachloroethane     | ug/g | <0.0020 | <0.0020 | 0.0020 | <0.0040 | 0.0040 | A057897 |
| Methoxychlor         | ug/g | <0.0050 | <0.0050 | 0.0050 | <0.010  | 0.010  | A057897 |
| Aroclor 1242         | ug/g | <0.015  | <0.015  | 0.015  | <0.030  | 0.030  | A057897 |
| Aroclor 1248         | ug/g | <0.015  | <0.015  | 0.015  | <0.030  | 0.030  | A057897 |
| Aroclor 1254         | ug/g | <0.015  | <0.015  | 0.015  | <0.030  | 0.030  | A057897 |
| Aroclor 1260         | ug/g | <0.015  | <0.015  | 0.015  | <0.030  | 0.030  | A057897 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 OC PESTICIDES (SOIL)

|                                  |       |                     |                     |     |                     |     |          |
|----------------------------------|-------|---------------------|---------------------|-----|---------------------|-----|----------|
| Bureau Veritas ID                |       | AXMF07              | AXMF13              |     | AXMF16              |     |          |
| Sampling Date                    |       | 2025/11/17<br>11:50 | 2025/11/17<br>11:05 |     | 2025/11/17<br>11:15 |     |          |
| COC Number                       |       | C#1068687-01-01     | C#1068687-01-01     |     | C#1068687-01-01     |     |          |
|                                  | UNITS | BH25-03-5           | BH25-04-4           | RDL | BH25-04-7           | RDL | QC Batch |
| <b>Surrogate Recovery (%)</b>    |       |                     |                     |     |                     |     |          |
| 2,4,5,6-Tetrachloro-m-xylene     | %     | 86                  | 89                  |     | 91                  |     | A057897  |
| Decachlorobiphenyl               | %     | 91                  | 101                 |     | 95                  |     | A057897  |
| RDL = Reportable Detection Limit |       |                     |                     |     |                     |     |          |
| QC Batch = Quality Control Batch |       |                     |                     |     |                     |     |          |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 PAHS (SOIL)

|                   |       |                     |                     |                     |                     |                     |     |          |
|-------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|-----|----------|
| Bureau Veritas ID |       | AXME88              | AXME91              | AXME96              | AXMF00              | AXMF01              |     |          |
| Sampling Date     |       | 2025/11/17<br>09:30 | 2025/11/17<br>09:50 | 2025/11/17<br>10:20 | 2025/11/17<br>10:30 | 2025/11/17<br>10:30 |     |          |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-01-2           | BH25-01-5           | BH25-02-2           | BH25-02-6           | QC-01               | RDL | QC Batch |

#### Calculated Parameters

|                           |      |         |         |         |         |         |        |         |
|---------------------------|------|---------|---------|---------|---------|---------|--------|---------|
| Methylnaphthalene, 2-(1-) | ug/g | <0.0071 | <0.0071 | <0.0071 | <0.0071 | <0.0071 | 0.0071 | A057192 |
|---------------------------|------|---------|---------|---------|---------|---------|--------|---------|

#### Polyaromatic Hydrocarbons

|                        |      |         |         |         |         |         |         |         |
|------------------------|------|---------|---------|---------|---------|---------|---------|---------|
| Acenaphthene           | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Acenaphthylene         | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | A057901 |
| Anthracene             | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | A057901 |
| Benzo(a)anthracene     | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | A057901 |
| Benzo(a)pyrene         | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Benzo(b/j)fluoranthene | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Benzo(g,h,i)perylene   | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Benzo(k)fluoranthene   | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Chrysene               | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Dibeno(a,h)anthracene  | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Fluoranthene           | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Fluorene               | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Indeno(1,2,3-cd)pyrene | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| 1-Methylnaphthalene    | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| 2-Methylnaphthalene    | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Naphthalene            | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Phenanthrene           | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |
| Pyrene                 | ug/g | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | 0.0050  | A057901 |

#### Surrogate Recovery (%)

|                    |   |     |     |     |     |     |  |         |
|--------------------|---|-----|-----|-----|-----|-----|--|---------|
| D10-Anthracene     | % | 115 | 119 | 111 | 116 | 113 |  | A057901 |
| D14-Terphenyl (FS) | % | 106 | 108 | 108 | 106 | 111 |  | A057901 |
| D8-Acenaphthylene  | % | 81  | 81  | 76  | 77  | 76  |  | A057901 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 PAHS (SOIL)

|                                  |       |                     |                     |                     |                     |            |                 |
|----------------------------------|-------|---------------------|---------------------|---------------------|---------------------|------------|-----------------|
| Bureau Veritas ID                |       | AXMF03              | AXMF07              | AXMF13              | AXMF16              |            |                 |
| Sampling Date                    |       | 2025/11/17<br>11:35 | 2025/11/17<br>11:50 | 2025/11/17<br>11:05 | 2025/11/17<br>11:15 |            |                 |
| COC Number                       |       | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |            |                 |
|                                  | UNITS | <b>BH25-03-1</b>    | <b>BH25-03-5</b>    | <b>BH25-04-4</b>    | <b>BH25-04-7</b>    | <b>RDL</b> | <b>QC Batch</b> |
| <b>Calculated Parameters</b>     |       |                     |                     |                     |                     |            |                 |
| Methylnaphthalene, 2-(1-)        | ug/g  | <0.0071             | <0.0071             | <0.0071             | <0.0071             | 0.0071     | A057192         |
| <b>Polyaromatic Hydrocarbons</b> |       |                     |                     |                     |                     |            |                 |
| Acenaphthene                     | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Acenaphthylene                   | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Anthracene                       | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Benzo(a)anthracene               | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Benzo(a)pyrene                   | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Benzo(b/j)fluoranthene           | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Benzo(g,h,i)perylene             | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Benzo(k)fluoranthene             | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Chrysene                         | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Dibeno(a,h)anthracene            | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Fluoranthene                     | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Fluorene                         | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Indeno(1,2,3-cd)pyrene           | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| 1-Methylnaphthalene              | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| 2-Methylnaphthalene              | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Naphthalene                      | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Phenanthrene                     | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| Pyrene                           | ug/g  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | 0.0050     | A057901         |
| <b>Surrogate Recovery (%)</b>    |       |                     |                     |                     |                     |            |                 |
| D10-Anthracene                   | %     | 112                 | 108                 | 112                 | 113                 |            | A057901         |
| D14-Terphenyl (FS)               | %     | 106                 | 103                 | 109                 | 103                 |            | A057901         |
| D8-Acenaphthylene                | %     | 83                  | 71                  | 73                  | 79                  |            | A057901         |
| RDL = Reportable Detection Limit |       |                     |                     |                     |                     |            |                 |
| QC Batch = Quality Control Batch |       |                     |                     |                     |                     |            |                 |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

|                   |       |                     |                     |                     |                     |                     |            |                 |
|-------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|------------|-----------------|
| Bureau Veritas ID |       | AXME88              | AXME91              | AXME96              | AXMF00              | AXMF01              |            |                 |
| Sampling Date     |       | 2025/11/17<br>09:30 | 2025/11/17<br>09:50 | 2025/11/17<br>10:20 | 2025/11/17<br>10:30 | 2025/11/17<br>10:30 |            |                 |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |            |                 |
|                   | UNITS | <b>BH25-01-2</b>    | <b>BH25-01-5</b>    | <b>BH25-02-2</b>    | <b>BH25-02-6</b>    | <b>QC-01</b>        | <b>RDL</b> | <b>QC Batch</b> |

#### BTEX & F1 Hydrocarbons

|                    |      |        |        |        |        |        |       |         |
|--------------------|------|--------|--------|--------|--------|--------|-------|---------|
| Benzene            | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| Toluene            | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| Ethylbenzene       | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| o-Xylene           | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| p+m-Xylene         | ug/g | <0.040 | <0.040 | <0.040 | <0.040 | <0.040 | 0.040 | A057960 |
| Total Xylenes      | ug/g | <0.040 | <0.040 | <0.040 | <0.040 | <0.040 | 0.040 | A057960 |
| F1 (C6-C10)        | ug/g | <10    | <10    | <10    | <10    | <10    | 10    | A057960 |
| F1 (C6-C10) - BTEX | ug/g | <10    | <10    | <10    | <10    | <10    | 10    | A057960 |

#### F2-F4 Hydrocarbons

|                           |      |      |      |      |      |      |     |         |
|---------------------------|------|------|------|------|------|------|-----|---------|
| F2 (C10-C16 Hydrocarbons) | ug/g | <7.0 | <7.0 | <7.0 | <7.0 | <7.0 | 7.0 | A057900 |
| F3 (C16-C34 Hydrocarbons) | ug/g | <50  | <50  | <50  | <50  | <50  | 50  | A057900 |
| F4 (C34-C50 Hydrocarbons) | ug/g | <50  | <50  | <50  | <50  | <50  | 50  | A057900 |
| Reached Baseline at C50   | ug/g | Yes  | Yes  | Yes  | Yes  | Yes  |     | A057900 |

#### Surrogate Recovery (%)

|                       |   |     |     |     |     |     |  |         |
|-----------------------|---|-----|-----|-----|-----|-----|--|---------|
| 1,4-Difluorobenzene   | % | 106 | 108 | 110 | 110 | 109 |  | A057960 |
| 4-Bromofluorobenzene  | % | 98  | 97  | 96  | 96  | 97  |  | A057960 |
| D10-o-Xylene          | % | 105 | 102 | 109 | 113 | 104 |  | A057960 |
| D4-1,2-Dichloroethane | % | 93  | 91  | 91  | 92  | 90  |  | A057960 |
| o-Terphenyl           | % | 97  | 94  | 98  | 100 | 100 |  | A057900 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

|                   |       |                     |                     |                     |                     |     |          |
|-------------------|-------|---------------------|---------------------|---------------------|---------------------|-----|----------|
| Bureau Veritas ID |       | AXMF03              | AXMF07              | AXMF13              | AXMF16              |     |          |
| Sampling Date     |       | 2025/11/17<br>11:35 | 2025/11/17<br>11:50 | 2025/11/17<br>11:05 | 2025/11/17<br>11:15 |     |          |
| COC Number        |       | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-03-1           | BH25-03-5           | BH25-04-4           | BH25-04-7           | RDL | QC Batch |

#### BTEX & F1 Hydrocarbons

|                    |      |        |        |        |        |       |         |
|--------------------|------|--------|--------|--------|--------|-------|---------|
| Benzene            | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| Toluene            | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| Ethylbenzene       | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| o-Xylene           | ug/g | <0.020 | <0.020 | <0.020 | <0.020 | 0.020 | A057960 |
| p+m-Xylene         | ug/g | <0.040 | <0.040 | <0.040 | <0.040 | 0.040 | A057960 |
| Total Xylenes      | ug/g | <0.040 | <0.040 | <0.040 | <0.040 | 0.040 | A057960 |
| F1 (C6-C10)        | ug/g | <10    | <10    | <10    | <10    | 10    | A057960 |
| F1 (C6-C10) - BTEX | ug/g | <10    | <10    | <10    | <10    | 10    | A057960 |

#### F2-F4 Hydrocarbons

|                           |      |      |      |      |      |     |         |
|---------------------------|------|------|------|------|------|-----|---------|
| F2 (C10-C16 Hydrocarbons) | ug/g | <7.0 | <7.0 | <7.0 | <7.0 | 7.0 | A057900 |
| F3 (C16-C34 Hydrocarbons) | ug/g | <50  | <50  | <50  | <50  | 50  | A057900 |
| F4 (C34-C50 Hydrocarbons) | ug/g | <50  | <50  | <50  | <50  | 50  | A057900 |
| Reached Baseline at C50   | ug/g | Yes  | Yes  | Yes  | Yes  |     | A057900 |

#### Surrogate Recovery (%)

|                       |   |     |     |     |     |  |         |
|-----------------------|---|-----|-----|-----|-----|--|---------|
| 1,4-Difluorobenzene   | % | 109 | 109 | 111 | 107 |  | A057960 |
| 4-Bromofluorobenzene  | % | 96  | 96  | 96  | 97  |  | A057960 |
| D10-o-Xylene          | % | 101 | 103 | 102 | 108 |  | A057960 |
| D4-1,2-Dichloroethane | % | 91  | 90  | 93  | 94  |  | A057960 |
| o-Terphenyl           | % | 99  | 101 | 103 | 102 |  | A057900 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

|                   |       |                      |     |          |
|-------------------|-------|----------------------|-----|----------|
| Bureau Veritas ID |       | AXMF16               |     |          |
| Sampling Date     |       | 2025/11/17<br>11:15  |     |          |
| COC Number        |       | C#1068687-01-01      |     |          |
|                   | UNITS | BH25-04-7<br>Lab-Dup | RDL | QC Batch |

| <b>F2-F4 Hydrocarbons</b>                |      |      |     |         |
|------------------------------------------|------|------|-----|---------|
| F2 (C10-C16 Hydrocarbons)                | ug/g | <7.0 | 7.0 | A057900 |
| F3 (C16-C34 Hydrocarbons)                | ug/g | <50  | 50  | A057900 |
| F4 (C34-C50 Hydrocarbons)                | ug/g | <50  | 50  | A057900 |
| Reached Baseline at C50                  | ug/g | Yes  |     | A057900 |
| <b>Surrogate Recovery (%)</b>            |      |      |     |         |
| o-Terphenyl                              | %    | 101  |     | A057900 |
| RDL = Reportable Detection Limit         |      |      |     |         |
| QC Batch = Quality Control Batch         |      |      |     |         |
| Lab-Dup = Laboratory Initiated Duplicate |      |      |     |         |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### RESULTS OF ANALYSES OF SOIL

|                   |       |                     |     |          |                     |     |          |                     |     |          |
|-------------------|-------|---------------------|-----|----------|---------------------|-----|----------|---------------------|-----|----------|
| Bureau Veritas ID |       | AXME88              |     |          | AXME91              |     |          | AXME96              |     |          |
| Sampling Date     |       | 2025/11/17<br>09:30 |     |          | 2025/11/17<br>09:50 |     |          | 2025/11/17<br>10:20 |     |          |
| COC Number        |       | C#1068687-01-01     |     |          | C#1068687-01-01     |     |          | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-01-2           | RDL | QC Batch | BH25-01-5           | RDL | QC Batch | BH25-02-2           | RDL | QC Batch |

#### Inorganics

|          |   |     |     |         |     |     |         |     |     |         |
|----------|---|-----|-----|---------|-----|-----|---------|-----|-----|---------|
| Moisture | % | 8.3 | 1.0 | A057738 | 7.1 | 1.0 | A057738 | 7.6 | 1.0 | A057738 |
|----------|---|-----|-----|---------|-----|-----|---------|-----|-----|---------|

#### Miscellaneous Parameters

|                         |   |        |     |         |  |  |  |        |     |         |
|-------------------------|---|--------|-----|---------|--|--|--|--------|-----|---------|
| Grain Size              | % | COARSE | N/A | A058510 |  |  |  | COARSE | N/A | A058510 |
| Sieve - #200 (<0.075mm) | % | 10     | 1   | A058510 |  |  |  | 12     | 1   | A058510 |
| Sieve - #200 (>0.075mm) | % | 90     | 1   | A058510 |  |  |  | 88     | 1   | A058510 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

|                   |       |                     |          |  |                     |  |  |                     |          |  |                     |     |          |
|-------------------|-------|---------------------|----------|--|---------------------|--|--|---------------------|----------|--|---------------------|-----|----------|
| Bureau Veritas ID |       | AXMF00              |          |  | AXMF01              |  |  | AXMF01              |          |  | AXMF03              |     |          |
| Sampling Date     |       | 2025/11/17<br>10:30 |          |  | 2025/11/17<br>10:30 |  |  | 2025/11/17<br>10:30 |          |  | 2025/11/17<br>11:35 |     |          |
| COC Number        |       | C#1068687-01-01     |          |  | C#1068687-01-01     |  |  | C#1068687-01-01     |          |  | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-02-6           | QC Batch |  | QC-01               |  |  | QC-01<br>Lab-Dup    | QC Batch |  | BH25-03-1           | RDL | QC Batch |

#### Inorganics

|          |   |    |         |    |    |         |     |     |         |
|----------|---|----|---------|----|----|---------|-----|-----|---------|
| Moisture | % | 31 | A057738 | 30 | 31 | A057700 | 8.2 | 1.0 | A057738 |
|----------|---|----|---------|----|----|---------|-----|-----|---------|

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

|                   |       |                     |  |                     |  |                      |  |                     |     |          |
|-------------------|-------|---------------------|--|---------------------|--|----------------------|--|---------------------|-----|----------|
| Bureau Veritas ID |       | AXMF07              |  | AXMF13              |  | AXMF13               |  | AXMF16              |     |          |
| Sampling Date     |       | 2025/11/17<br>11:50 |  | 2025/11/17<br>11:05 |  | 2025/11/17<br>11:05  |  | 2025/11/17<br>11:15 |     |          |
| COC Number        |       | C#1068687-01-01     |  | C#1068687-01-01     |  | C#1068687-01-01      |  | C#1068687-01-01     |     |          |
|                   | UNITS | BH25-03-5           |  | BH25-04-4           |  | BH25-04-4<br>Lab-Dup |  | BH25-04-7           | RDL | QC Batch |

#### Inorganics

|          |   |    |  |    |  |    |  |    |     |         |
|----------|---|----|--|----|--|----|--|----|-----|---------|
| Moisture | % | 21 |  | 17 |  | 17 |  | 30 | 1.0 | A057738 |
|----------|---|----|--|----|--|----|--|----|-----|---------|

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

## TEST SUMMARY

**Bureau Veritas ID:** AXME88  
**Sample ID:** BH25-01-2  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sieve, 75um                             | SIEV            | A058510 | N/A        | 2025/11/21    | Simranjit KAUR     |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXME91  
**Sample ID:** BH25-01-5  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXME91 Dup  
**Sample ID:** BH25-01-5  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description               | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst |
|--------------------------------|-----------------|---------|------------|---------------|---------|
| OC Pesticides (Selected) & PCB | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

## TEST SUMMARY

**Bureau Veritas ID:** AXME96  
**Sample ID:** BH25-02-2  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sieve, 75um                             | SIEV            | A058510 | N/A        | 2025/11/21    | Simranjit KAUR     |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF00  
**Sample ID:** BH25-02-6  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058454 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058456 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF01  
**Sample ID:** QC-01  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum             | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron       | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                      | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

## TEST SUMMARY

**Bureau Veritas ID:** AXMF01  
**Sample ID:** QC-01  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|-----------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu   |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li  |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu      |
| Moisture                                | BAL             | A057700 | N/A        | 2025/11/19    | Angela Binny      |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng           |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng      |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai      |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk |

**Bureau Veritas ID:** AXMF01 Dup  
**Sample ID:** QC-01  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst      |
|------------------|-----------------|---------|-----------|---------------|--------------|
| Moisture         | BAL             | A057700 | N/A       | 2025/11/19    | Angela Binny |

**Bureau Veritas ID:** AXMF03  
**Sample ID:** BH25-03-1  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF07  
**Sample ID:** BH25-03-5  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|-----------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum       | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk |
| Hot Water Extractable Boron | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai     |
| Free (WAD) Cyanide          | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal     |
| Conductivity                | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur      |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

## TEST SUMMARY

**Bureau Veritas ID:** AXMF07  
**Sample ID:** BH25-03-5  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF13  
**Sample ID:** BH25-04-4  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                   | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk  |
| Hot Water Extractable Boron             | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai      |
| Free (WAD) Cyanide                      | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal      |
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF13 Dup  
**Sample ID:** BH25-04-4  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst      |
|------------------|-----------------|---------|-----------|---------------|--------------|
| Moisture         | BAL             | A057738 | N/A       | 2025/11/19    | Angela Binny |

**Bureau Veritas ID:** AXMF16  
**Sample ID:** BH25-04-7  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description            | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|-----------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum       | CALC            | A057192 | N/A        | 2025/11/21    | Automated Statchk |
| Hot Water Extractable Boron | ICP             | A058534 | 2025/11/20 | 2025/11/20    | Gagandeep Rai     |
| Free (WAD) Cyanide          | TECH            | A058816 | 2025/11/21 | 2025/11/21    | Prgya Panchal     |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

## TEST SUMMARY

**Bureau Veritas ID:** AXMF16  
**Sample ID:** BH25-04-7  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Conductivity                            | AT              | A058827 | 2025/11/21 | 2025/11/21    | Gurnoor Kaur       |
| Hexavalent Chromium in Soil by IC       | IC/SPEC         | A058277 | 2025/11/20 | 2025/11/21    | Sousan Besharatlou |
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | A057960 | N/A        | 2025/11/20    | Ravinder Gaidhu    |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li   |
| Acid Extractable Metals by ICPMS        | ICP/MS          | A058537 | 2025/11/20 | 2025/11/20    | Daniel Teclu       |
| Moisture                                | BAL             | A057738 | N/A        | 2025/11/19    | Angela Binny       |
| OC Pesticides (Selected) & PCB          | GC/ECD          | A057897 | 2025/11/20 | 2025/11/20    | Li Peng            |
| OC Pesticides Summed Parameters         | CALC            | A057190 | N/A        | 2025/11/20    | Automated Statchk  |
| PAH Compounds in Soil by GC/MS (SIM)    | GC/MS           | A057901 | 2025/11/20 | 2025/11/20    | Lingyun Feng       |
| pH CaCl <sub>2</sub> EXTRACT            | AT              | A058979 | 2025/11/21 | 2025/11/21    | Surinder Rai       |
| Sodium Adsorption Ratio (SAR)           | CALC/MET        | A057191 | N/A        | 2025/11/21    | Automated Statchk  |

**Bureau Veritas ID:** AXMF16 Dup  
**Sample ID:** BH25-04-7  
**Matrix:** Soil

**Collected:** 2025/11/17  
**Shipped:**  
**Received:** 2025/11/18

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst          |
|--------------------------------------|-----------------|---------|------------|---------------|------------------|
| Petroleum Hydrocarbons F2-F4 in Soil | GC/FID          | A057900 | 2025/11/20 | 2025/11/20    | (Kent) Maolin Li |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

## GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

|           |       |
|-----------|-------|
| Package 1 | 5.7°C |
| Package 2 | 5.0°C |
| Package 3 | 4.0°C |

Sample AXMF00 [BH25-02-6] : OC Pesticide Analysis: Detection limits were adjusted for high moisture content.

Sample AXMF16 [BH25-04-7] : OC Pesticide Analysis: Detection limits were adjusted for high moisture content.

**Results relate only to the items tested.**



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

## QUALITY ASSURANCE REPORT

| QA/QC   | Batch | Init                        | QC Type         | Parameter                    | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|---------|-------|-----------------------------|-----------------|------------------------------|---------------|-------|----------|-------|-----------|
| A057700 | A2B   |                             | RPD [AXMF01-02] | Moisture                     | 2025/11/19    | 4.0   |          | %     | 20        |
| A057738 | A2B   |                             | RPD [AXMF13-02] | Moisture                     | 2025/11/19    | 1.2   |          | %     | 20        |
| A057897 | LPG   | Matrix Spike<br>[AXME91-02] |                 | 2,4,5,6-Tetrachloro-m-xylene | 2025/11/21    |       | 66       | %     | 50 - 130  |
|         |       |                             |                 | Decachlorobiphenyl           | 2025/11/21    |       | 54       | %     | 50 - 130  |
|         |       |                             |                 | Aldrin                       | 2025/11/21    |       | 71       | %     | 50 - 130  |
|         |       |                             |                 | a-Chlordane                  | 2025/11/21    |       | 68       | %     | 50 - 130  |
|         |       |                             |                 | g-Chlordane                  | 2025/11/21    |       | 88       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDD                      | 2025/11/21    |       | 74       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDD                      | 2025/11/21    |       | 78       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDE                      | 2025/11/21    |       | 77       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDE                      | 2025/11/21    |       | 96       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDT                      | 2025/11/21    |       | 81       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDT                      | 2025/11/21    |       | 81       | %     | 50 - 130  |
|         |       |                             |                 | Dieldrin                     | 2025/11/21    |       | 72       | %     | 50 - 130  |
|         |       |                             |                 | Lindane                      | 2025/11/21    |       | 66       | %     | 50 - 130  |
|         |       |                             |                 | Endosulfan I (alpha)         | 2025/11/21    |       | 93       | %     | 50 - 130  |
|         |       |                             |                 | Endosulfan II (beta)         | 2025/11/21    |       | 70       | %     | 50 - 130  |
|         |       |                             |                 | Endrin                       | 2025/11/21    |       | 73       | %     | 50 - 130  |
|         |       |                             |                 | Heptachlor                   | 2025/11/21    |       | 64       | %     | 50 - 130  |
|         |       |                             |                 | Heptachlor epoxide           | 2025/11/21    |       | 66       | %     | 50 - 130  |
|         |       |                             |                 | Hexachlorobenzene            | 2025/11/21    |       | 63       | %     | 50 - 130  |
|         |       |                             |                 | Hexachlorobutadiene          | 2025/11/21    |       | 69       | %     | 50 - 130  |
|         |       |                             |                 | Hexachloroethane             | 2025/11/21    |       | 53       | %     | 50 - 130  |
|         |       |                             |                 | Methoxychlor                 | 2025/11/21    |       | 104      | %     | 50 - 130  |
| A057897 | LPG   | Spiked Blank                |                 | 2,4,5,6-Tetrachloro-m-xylene | 2025/11/20    |       | 74       | %     | 50 - 130  |
|         |       |                             |                 | Decachlorobiphenyl           | 2025/11/20    |       | 82       | %     | 50 - 130  |
|         |       |                             |                 | Aldrin                       | 2025/11/20    |       | 84       | %     | 50 - 130  |
|         |       |                             |                 | a-Chlordane                  | 2025/11/20    |       | 74       | %     | 50 - 130  |
|         |       |                             |                 | g-Chlordane                  | 2025/11/20    |       | 72       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDD                      | 2025/11/20    |       | 78       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDD                      | 2025/11/20    |       | 84       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDE                      | 2025/11/20    |       | 87       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDE                      | 2025/11/20    |       | 84       | %     | 50 - 130  |
|         |       |                             |                 | o,p-DDT                      | 2025/11/20    |       | 94       | %     | 50 - 130  |
|         |       |                             |                 | p,p-DDT                      | 2025/11/20    |       | 86       | %     | 50 - 130  |
|         |       |                             |                 | Dieldrin                     | 2025/11/20    |       | 80       | %     | 50 - 130  |
|         |       |                             |                 | Lindane                      | 2025/11/20    |       | 67       | %     | 50 - 130  |
|         |       |                             |                 | Endosulfan I (alpha)         | 2025/11/20    |       | 77       | %     | 50 - 130  |
|         |       |                             |                 | Endosulfan II (beta)         | 2025/11/20    |       | 73       | %     | 50 - 130  |
|         |       |                             |                 | Endrin                       | 2025/11/20    |       | 77       | %     | 50 - 130  |
|         |       |                             |                 | Heptachlor                   | 2025/11/20    |       | 81       | %     | 50 - 130  |
|         |       |                             |                 | Heptachlor epoxide           | 2025/11/20    |       | 73       | %     | 50 - 130  |
|         |       |                             |                 | Hexachlorobenzene            | 2025/11/20    |       | 73       | %     | 50 - 130  |
|         |       |                             |                 | Hexachlorobutadiene          | 2025/11/20    |       | 86       | %     | 50 - 130  |
|         |       |                             |                 | Hexachloroethane             | 2025/11/20    |       | 70       | %     | 50 - 130  |
|         |       |                             |                 | Methoxychlor                 | 2025/11/20    |       | 58       | %     | 50 - 130  |
| A057897 | LPG   | RPD                         |                 | Aldrin                       | 2025/11/20    | 14    |          | %     | 40        |
|         |       |                             |                 | a-Chlordane                  | 2025/11/20    | 19    |          | %     | 40        |
|         |       |                             |                 | g-Chlordane                  | 2025/11/20    | 14    |          | %     | 40        |
|         |       |                             |                 | o,p-DDD                      | 2025/11/20    | 16    |          | %     | 40        |
|         |       |                             |                 | p,p-DDD                      | 2025/11/20    | 19    |          | %     | 40        |
|         |       |                             |                 | o,p-DDE                      | 2025/11/20    | 14    |          | %     | 40        |
|         |       |                             |                 | p,p-DDE                      | 2025/11/20    | 15    |          | %     | 40        |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC<br>Batch | Init | QC Type         | Parameter                    | Date Analyzed | Value   | Recovery | UNITS | QC Limits |
|----------------|------|-----------------|------------------------------|---------------|---------|----------|-------|-----------|
| A057897        | LPG  | Method Blank    | o,p-DDT                      | 2025/11/20    | 16      |          | %     | 40        |
|                |      |                 | p,p-DDT                      | 2025/11/20    | 25      |          | %     | 40        |
|                |      |                 | Dieldrin                     | 2025/11/20    | 14      |          | %     | 40        |
|                |      |                 | Lindane                      | 2025/11/20    | 14      |          | %     | 40        |
|                |      |                 | Endosulfan I (alpha)         | 2025/11/20    | 13      |          | %     | 40        |
|                |      |                 | Endosulfan II (beta)         | 2025/11/20    | 17      |          | %     | 40        |
|                |      |                 | Endrin                       | 2025/11/20    | 15      |          | %     | 40        |
|                |      |                 | Heptachlor                   | 2025/11/20    | 13      |          | %     | 40        |
|                |      |                 | Heptachlor epoxide           | 2025/11/20    | 12      |          | %     | 40        |
|                |      |                 | Hexachlorobenzene            | 2025/11/20    | 16      |          | %     | 40        |
|                |      |                 | Hexachlorobutadiene          | 2025/11/20    | 13      |          | %     | 40        |
|                |      |                 | Hexachloroethane             | 2025/11/20    | 18      |          | %     | 40        |
|                |      |                 | Methoxychlor                 | 2025/11/20    | 16      |          | %     | 40        |
|                |      |                 | 2,4,5,6-Tetrachloro-m-xylene | 2025/11/20    |         | 82       | %     | 50 - 130  |
|                |      |                 | Decachlorobiphenyl           | 2025/11/20    |         | 89       | %     | 50 - 130  |
|                |      |                 | Aldrin                       | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | a-Chlordane                  | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | g-Chlordane                  | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | o,p-DDD                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | p,p-DDD                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | o,p-DDE                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | p,p-DDE                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | o,p-DDT                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | p,p-DDT                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Dieldrin                     | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Lindane                      | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Endosulfan I (alpha)         | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Endosulfan II (beta)         | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Endrin                       | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Heptachlor                   | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Heptachlor epoxide           | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Hexachlorobenzene            | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Hexachlorobutadiene          | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Hexachloroethane             | 2025/11/20    | <0.0020 |          | ug/g  |           |
|                |      |                 | Methoxychlor                 | 2025/11/20    | <0.0050 |          | ug/g  |           |
|                |      |                 | Aroclor 1242                 | 2025/11/20    | <0.015  |          | ug/g  |           |
|                |      |                 | Aroclor 1248                 | 2025/11/20    | <0.015  |          | ug/g  |           |
|                |      |                 | Aroclor 1254                 | 2025/11/20    | <0.015  |          | ug/g  |           |
|                |      |                 | Aroclor 1260                 | 2025/11/20    | <0.015  |          | ug/g  |           |
| A057897        | LPG  | RPD [AXME91-02] | Aldrin                       | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | a-Chlordane                  | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | g-Chlordane                  | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | o,p-DDD                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | p,p-DDD                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | o,p-DDE                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | p,p-DDE                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | o,p-DDT                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | p,p-DDT                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Dieldrin                     | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Lindane                      | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Endosulfan I (alpha)         | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Endosulfan II (beta)         | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Endrin                       | 2025/11/20    | NC      |          | %     | 40        |
|                |      |                 | Heptachlor                   | 2025/11/20    | NC      |          | %     | 40        |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   | Batch | Init                        | QC Type | Parameter                 | Date Analyzed | Value | Recovery | UNITS    | QC Limits |
|---------|-------|-----------------------------|---------|---------------------------|---------------|-------|----------|----------|-----------|
|         |       |                             |         | Heptachlor epoxide        | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Hexachlorobenzene         | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Hexachlorobutadiene       | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Hexachloroethane          | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Methoxychlor              | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Aroclor 1242              | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Aroclor 1248              | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Aroclor 1254              | 2025/11/20    | NC    |          | %        | 40        |
|         |       |                             |         | Aroclor 1260              | 2025/11/20    | NC    |          | %        | 40        |
| A057900 | KLI   | Matrix Spike<br>[AXMF16-02] |         | o-Terphenyl               | 2025/11/20    | 99    | %        | 60 - 140 |           |
|         |       |                             |         | F2 (C10-C16 Hydrocarbons) | 2025/11/20    | 95    | %        | 60 - 140 |           |
|         |       |                             |         | F3 (C16-C34 Hydrocarbons) | 2025/11/20    | 99    | %        | 60 - 140 |           |
|         |       |                             |         | F4 (C34-C50 Hydrocarbons) | 2025/11/20    | 100   | %        | 60 - 140 |           |
| A057900 | KLI   | Spiked Blank                |         | o-Terphenyl               | 2025/11/20    | 97    | %        | 60 - 140 |           |
|         |       |                             |         | F2 (C10-C16 Hydrocarbons) | 2025/11/20    | 92    | %        | 80 - 120 |           |
|         |       |                             |         | F3 (C16-C34 Hydrocarbons) | 2025/11/20    | 96    | %        | 80 - 120 |           |
|         |       |                             |         | F4 (C34-C50 Hydrocarbons) | 2025/11/20    | 96    | %        | 80 - 120 |           |
| A057900 | KLI   | Method Blank                |         | o-Terphenyl               | 2025/11/20    | 99    | %        | 60 - 140 |           |
|         |       |                             |         | F2 (C10-C16 Hydrocarbons) | 2025/11/20    | <7.0  | ug/g     |          |           |
|         |       |                             |         | F3 (C16-C34 Hydrocarbons) | 2025/11/20    | <50   | ug/g     |          |           |
|         |       |                             |         | F4 (C34-C50 Hydrocarbons) | 2025/11/20    | <50   | ug/g     |          |           |
| A057900 | KLI   | RPD [AXMF16-02]             |         | F2 (C10-C16 Hydrocarbons) | 2025/11/20    | NC    | %        | 30       |           |
|         |       |                             |         | F3 (C16-C34 Hydrocarbons) | 2025/11/20    | NC    | %        | 30       |           |
|         |       |                             |         | F4 (C34-C50 Hydrocarbons) | 2025/11/20    | NC    | %        | 30       |           |
| A057901 | LFE   | Matrix Spike                |         | D10-Anthracene            | 2025/11/20    | 110   | %        | 50 - 130 |           |
|         |       |                             |         | D14-Terphenyl (FS)        | 2025/11/20    | 104   | %        | 50 - 130 |           |
|         |       |                             |         | D8-Acenaphthylene         | 2025/11/20    | 82    | %        | 50 - 130 |           |
|         |       |                             |         | Acenaphthene              | 2025/11/20    | 86    | %        | 50 - 130 |           |
|         |       |                             |         | Acenaphthylene            | 2025/11/20    | 82    | %        | 50 - 130 |           |
|         |       |                             |         | Anthracene                | 2025/11/20    | 111   | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(a)anthracene        | 2025/11/20    | 88    | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(a)pyrene            | 2025/11/20    | 97    | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(b/j)fluoranthene    | 2025/11/20    | 98    | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(g,h,i)perylene      | 2025/11/20    | 103   | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(k)fluoranthene      | 2025/11/20    | 101   | %        | 50 - 130 |           |
|         |       |                             |         | Chrysene                  | 2025/11/20    | 85    | %        | 50 - 130 |           |
|         |       |                             |         | Dibenzo(a,h)anthracene    | 2025/11/20    | 103   | %        | 50 - 130 |           |
|         |       |                             |         | Fluoranthene              | 2025/11/20    | 111   | %        | 50 - 130 |           |
|         |       |                             |         | Fluorene                  | 2025/11/20    | 92    | %        | 50 - 130 |           |
|         |       |                             |         | Indeno(1,2,3-cd)pyrene    | 2025/11/20    | 113   | %        | 50 - 130 |           |
|         |       |                             |         | 1-Methylnaphthalene       | 2025/11/20    | 83    | %        | 50 - 130 |           |
|         |       |                             |         | 2-Methylnaphthalene       | 2025/11/20    | 84    | %        | 50 - 130 |           |
|         |       |                             |         | Naphthalene               | 2025/11/20    | 75    | %        | 50 - 130 |           |
|         |       |                             |         | Phenanthrene              | 2025/11/20    | 97    | %        | 50 - 130 |           |
|         |       |                             |         | Pyrene                    | 2025/11/20    | 112   | %        | 50 - 130 |           |
| A057901 | LFE   | Spiked Blank                |         | D10-Anthracene            | 2025/11/20    | 111   | %        | 50 - 130 |           |
|         |       |                             |         | D14-Terphenyl (FS)        | 2025/11/20    | 107   | %        | 50 - 130 |           |
|         |       |                             |         | D8-Acenaphthylene         | 2025/11/20    | 80    | %        | 50 - 130 |           |
|         |       |                             |         | Acenaphthene              | 2025/11/20    | 84    | %        | 50 - 130 |           |
|         |       |                             |         | Acenaphthylene            | 2025/11/20    | 79    | %        | 50 - 130 |           |
|         |       |                             |         | Anthracene                | 2025/11/20    | 111   | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(a)anthracene        | 2025/11/20    | 88    | %        | 50 - 130 |           |
|         |       |                             |         | Benzo(a)pyrene            | 2025/11/20    | 97    | %        | 50 - 130 |           |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC<br>Batch | Init | QC Type      | Parameter              | Date Analyzed | Value   | Recovery | UNITS    | QC Limits |
|----------------|------|--------------|------------------------|---------------|---------|----------|----------|-----------|
| A057901        | LFE  | Method Blank | Benzo(b/j)fluoranthene | 2025/11/20    | 100     | %        | 50 - 130 |           |
|                |      |              | Benzo(g,h,i)perylene   | 2025/11/20    | 107     | %        | 50 - 130 |           |
|                |      |              | Benzo(k)fluoranthene   | 2025/11/20    | 101     | %        | 50 - 130 |           |
|                |      |              | Chrysene               | 2025/11/20    | 85      | %        | 50 - 130 |           |
|                |      |              | Dibenz(a,h)anthracene  | 2025/11/20    | 99      | %        | 50 - 130 |           |
|                |      |              | Fluoranthene           | 2025/11/20    | 112     | %        | 50 - 130 |           |
|                |      |              | Fluorene               | 2025/11/20    | 91      | %        | 50 - 130 |           |
|                |      |              | Indeno(1,2,3-cd)pyrene | 2025/11/20    | 113     | %        | 50 - 130 |           |
|                |      |              | 1-Methylnaphthalene    | 2025/11/20    | 87      | %        | 50 - 130 |           |
|                |      |              | 2-Methylnaphthalene    | 2025/11/20    | 85      | %        | 50 - 130 |           |
|                |      |              | Naphthalene            | 2025/11/20    | 82      | %        | 50 - 130 |           |
|                |      |              | Phenanthrene           | 2025/11/20    | 97      | %        | 50 - 130 |           |
|                |      |              | Pyrene                 | 2025/11/20    | 114     | %        | 50 - 130 |           |
|                |      |              | D10-Anthracene         | 2025/11/20    | 112     | %        | 50 - 130 |           |
|                |      |              | D14-Terphenyl (FS)     | 2025/11/20    | 112     | %        | 50 - 130 |           |
|                |      |              | D8-Acenaphthylene      | 2025/11/20    | 84      | %        | 50 - 130 |           |
|                |      |              | Acenaphthene           | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Acenaphthylene         | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Anthracene             | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Benzo(a)anthracene     | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Benzo(a)pyrene         | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Benzo(b/j)fluoranthene | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Benzo(g,h,i)perylene   | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Benzo(k)fluoranthene   | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Chrysene               | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Dibenz(a,h)anthracene  | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Fluoranthene           | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Fluorene               | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Indeno(1,2,3-cd)pyrene | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | 1-Methylnaphthalene    | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | 2-Methylnaphthalene    | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Naphthalene            | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Phenanthrene           | 2025/11/20    | <0.0050 | ug/g     |          |           |
|                |      |              | Pyrene                 | 2025/11/20    | <0.0050 | ug/g     |          |           |
| A057901        | LFE  | RPD          | Acenaphthene           | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Acenaphthylene         | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Anthracene             | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Benzo(a)anthracene     | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Benzo(a)pyrene         | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Benzo(b/j)fluoranthene | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Benzo(g,h,i)perylene   | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Benzo(k)fluoranthene   | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Chrysene               | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Dibenz(a,h)anthracene  | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Fluoranthene           | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Fluorene               | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Indeno(1,2,3-cd)pyrene | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | 1-Methylnaphthalene    | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | 2-Methylnaphthalene    | 2025/11/20    | NC      | %        | 40       |           |
| A057960        | RGA  | Matrix Spike | Naphthalene            | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Phenanthrene           | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | Pyrene                 | 2025/11/20    | NC      | %        | 40       |           |
|                |      |              | 1,4-Difluorobenzene    | 2025/11/21    | 98      | %        | 60 - 140 |           |
|                |      |              | 4-Bromofluorobenzene   | 2025/11/21    | 99      | %        | 60 - 140 |           |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   | Batch | Init         | QC Type                         | Parameter  | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|---------|-------|--------------|---------------------------------|------------|---------------|-------|----------|-------|-----------|
| A057960 | RGA   | Spiked Blank | D10-o-Xylene                    | 2025/11/21 | 83            | %     | 60 - 140 |       |           |
|         |       |              | D4-1,2-Dichloroethane           | 2025/11/21 | 93            | %     | 60 - 140 |       |           |
|         |       |              | Benzene                         | 2025/11/21 | NC            | %     | 50 - 140 |       |           |
|         |       |              | Toluene                         | 2025/11/21 | NC            | %     | 50 - 140 |       |           |
|         |       |              | Ethylbenzene                    | 2025/11/21 | NC            | %     | 50 - 140 |       |           |
|         |       |              | o-Xylene                        | 2025/11/21 | NC            | %     | 50 - 140 |       |           |
|         |       |              | p+m-Xylene                      | 2025/11/21 | NC            | %     | 50 - 140 |       |           |
|         |       |              | F1 (C6-C10)                     | 2025/11/21 | NC            | %     | 60 - 140 |       |           |
|         |       |              | 1,4-Difluorobenzene             | 2025/11/20 | 106           | %     | 60 - 140 |       |           |
|         |       |              | 4-Bromofluorobenzene            | 2025/11/20 | 98            | %     | 60 - 140 |       |           |
|         |       |              | D10-o-Xylene                    | 2025/11/20 | 98            | %     | 60 - 140 |       |           |
|         |       |              | D4-1,2-Dichloroethane           | 2025/11/20 | 87            | %     | 60 - 140 |       |           |
|         |       |              | Benzene                         | 2025/11/20 | 86            | %     | 50 - 140 |       |           |
|         |       |              | Toluene                         | 2025/11/20 | 86            | %     | 50 - 140 |       |           |
|         |       |              | Ethylbenzene                    | 2025/11/20 | 103           | %     | 50 - 140 |       |           |
|         |       |              | o-Xylene                        | 2025/11/20 | 99            | %     | 50 - 140 |       |           |
|         |       |              | p+m-Xylene                      | 2025/11/20 | 98            | %     | 50 - 140 |       |           |
|         |       |              | F1 (C6-C10)                     | 2025/11/20 | 100           | %     | 80 - 120 |       |           |
| A057960 | RGA   | Method Blank | 1,4-Difluorobenzene             | 2025/11/20 | 110           | %     | 60 - 140 |       |           |
|         |       |              | 4-Bromofluorobenzene            | 2025/11/20 | 97            | %     | 60 - 140 |       |           |
|         |       |              | D10-o-Xylene                    | 2025/11/20 | 98            | %     | 60 - 140 |       |           |
|         |       |              | D4-1,2-Dichloroethane           | 2025/11/20 | 95            | %     | 60 - 140 |       |           |
|         |       |              | Benzene                         | 2025/11/20 | <0.020        | ug/g  |          |       |           |
|         |       |              | Toluene                         | 2025/11/20 | <0.020        | ug/g  |          |       |           |
|         |       |              | Ethylbenzene                    | 2025/11/20 | <0.020        | ug/g  |          |       |           |
|         |       |              | o-Xylene                        | 2025/11/20 | <0.020        | ug/g  |          |       |           |
|         |       |              | p+m-Xylene                      | 2025/11/20 | <0.040        | ug/g  |          |       |           |
|         |       |              | Total Xylenes                   | 2025/11/20 | <0.040        | ug/g  |          |       |           |
|         |       |              | F1 (C6-C10)                     | 2025/11/20 | <10           | ug/g  |          |       |           |
|         |       |              | F1 (C6-C10) - BTEX              | 2025/11/20 | <10           | ug/g  |          |       |           |
|         |       |              | Benzene                         | 2025/11/21 | 12            | %     | 50       |       |           |
|         |       |              | Toluene                         | 2025/11/21 | NC            | %     | 50       |       |           |
|         |       |              | Ethylbenzene                    | 2025/11/21 | 4.7           | %     | 50       |       |           |
|         |       |              | o-Xylene                        | 2025/11/21 | 4.5           | %     | 50       |       |           |
|         |       |              | p+m-Xylene                      | 2025/11/21 | 4.7           | %     | 50       |       |           |
|         |       |              | Total Xylenes                   | 2025/11/21 | 4.7           | %     | 50       |       |           |
|         |       |              | F1 (C6-C10)                     | 2025/11/21 | 4.8           | %     | 30       |       |           |
|         |       |              | F1 (C6-C10) - BTEX              | 2025/11/21 | 4.8           | %     | 30       |       |           |
| A058277 | SB5   | Matrix Spike | Chromium (VI)                   | 2025/11/21 | 54 (1)        | %     | 70 - 130 |       |           |
| A058277 | SB5   | Spiked Blank | Chromium (VI)                   | 2025/11/20 | 94            | %     | 80 - 120 |       |           |
| A058277 | SB5   | Method Blank | Chromium (VI)                   | 2025/11/20 | <0.18         | ug/g  |          |       |           |
| A058277 | SB5   | RPD          | Chromium (VI)                   | 2025/11/20 | NC            | %     | 35       |       |           |
| A058454 | GR1   | Matrix Spike | Hot Water Ext. Boron (B)        | 2025/11/20 | 104           | %     | 75 - 125 |       |           |
| A058454 | GR1   | Spiked Blank | Hot Water Ext. Boron (B)        | 2025/11/20 | 104           | %     | 75 - 125 |       |           |
| A058454 | GR1   | Method Blank | Hot Water Ext. Boron (B)        | 2025/11/20 | <0.050        | ug/g  |          |       |           |
| A058454 | GR1   | RPD          | Hot Water Ext. Boron (B)        | 2025/11/20 | 2.1           | %     | 40       |       |           |
| A058456 | DT1   | Matrix Spike | Acid Extractable Antimony (Sb)  | 2025/11/20 | 100           | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Arsenic (As)   | 2025/11/20 | 97            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Barium (Ba)    | 2025/11/20 | NC            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Beryllium (Be) | 2025/11/20 | 94            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Boron (B)      | 2025/11/20 | 90            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Cadmium (Cd)   | 2025/11/20 | 99            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Chromium (Cr)  | 2025/11/20 | 96            | %     | 75 - 125 |       |           |
|         |       |              | Acid Extractable Cobalt (Co)    | 2025/11/20 | 97            | %     | 75 - 125 |       |           |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC<br>Batch | Init | QC Type      | Parameter                        | Date Analyzed | Value  | Recovery | UNITS    | QC Limits |
|----------------|------|--------------|----------------------------------|---------------|--------|----------|----------|-----------|
| A058456        | DT1  | Spiked Blank | Acid Extractable Copper (Cu)     | 2025/11/20    | 96     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    | 96     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    | 98     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    | 99     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    | 99     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Silver (Ag)     | 2025/11/20    | 102    | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Thallium (Tl)   | 2025/11/20    | 96     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Uranium (U)     | 2025/11/20    | 104    | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Vanadium (V)    | 2025/11/20    | 94     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Zinc (Zn)       | 2025/11/20    | NC     | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Mercury (Hg)    | 2025/11/20    | 104    | %        | 75 - 125 |           |
|                |      |              | Acid Extractable Antimony (Sb)   | 2025/11/20    | 99     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Arsenic (As)    | 2025/11/20    | 95     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Barium (Ba)     | 2025/11/20    | 90     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Beryllium (Be)  | 2025/11/20    | 88     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Boron (B)       | 2025/11/20    | 83     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Cadmium (Cd)    | 2025/11/20    | 95     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Chromium (Cr)   | 2025/11/20    | 93     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Cobalt (Co)     | 2025/11/20    | 96     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Copper (Cu)     | 2025/11/20    | 95     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    | 96     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    | 91     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    | 98     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    | 98     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Silver (Ag)     | 2025/11/20    | 98     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Thallium (Tl)   | 2025/11/20    | 96     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Uranium (U)     | 2025/11/20    | 104    | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Vanadium (V)    | 2025/11/20    | 93     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Zinc (Zn)       | 2025/11/20    | 96     | %        | 80 - 120 |           |
|                |      |              | Acid Extractable Mercury (Hg)    | 2025/11/20    | 99     | %        | 80 - 120 |           |
| A058456        | DT1  | Method Blank | Acid Extractable Antimony (Sb)   | 2025/11/20    | <0.20  | ug/g     |          |           |
|                |      |              | Acid Extractable Arsenic (As)    | 2025/11/20    | <1.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Barium (Ba)     | 2025/11/20    | <0.50  | ug/g     |          |           |
|                |      |              | Acid Extractable Beryllium (Be)  | 2025/11/20    | <0.20  | ug/g     |          |           |
|                |      |              | Acid Extractable Boron (B)       | 2025/11/20    | <5.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Cadmium (Cd)    | 2025/11/20    | <0.10  | ug/g     |          |           |
|                |      |              | Acid Extractable Chromium (Cr)   | 2025/11/20    | <1.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Cobalt (Co)     | 2025/11/20    | <0.10  | ug/g     |          |           |
|                |      |              | Acid Extractable Copper (Cu)     | 2025/11/20    | <0.50  | ug/g     |          |           |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    | <1.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    | <0.50  | ug/g     |          |           |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    | <0.50  | ug/g     |          |           |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    | <0.50  | ug/g     |          |           |
|                |      |              | Acid Extractable Silver (Ag)     | 2025/11/20    | <0.20  | ug/g     |          |           |
|                |      |              | Acid Extractable Thallium (Tl)   | 2025/11/20    | <0.050 | ug/g     |          |           |
|                |      |              | Acid Extractable Uranium (U)     | 2025/11/20    | <0.050 | ug/g     |          |           |
|                |      |              | Acid Extractable Vanadium (V)    | 2025/11/20    | <5.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Zinc (Zn)       | 2025/11/20    | <5.0   | ug/g     |          |           |
|                |      |              | Acid Extractable Mercury (Hg)    | 2025/11/20    | <0.050 | ug/g     |          |           |
| A058456        | DT1  | RPD          | Acid Extractable Antimony (Sb)   | 2025/11/20    | NC     | %        | 30       |           |
|                |      |              | Acid Extractable Arsenic (As)    | 2025/11/20    | 1.3    | %        | 30       |           |
|                |      |              | Acid Extractable Barium (Ba)     | 2025/11/20    | 0.92   | %        | 30       |           |
|                |      |              | Acid Extractable Beryllium (Be)  | 2025/11/20    | 10     | %        | 30       |           |
|                |      |              | Acid Extractable Boron (B)       | 2025/11/20    | NC     | %        | 30       |           |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC<br>Batch | Init | QC Type      | Parameter                        | Date Analyzed | Value  | Recovery | UNITS | QC Limits |
|----------------|------|--------------|----------------------------------|---------------|--------|----------|-------|-----------|
| A058510        | SIA  | QC Standard  | Acid Extractable Cadmium (Cd)    | 2025/11/20    | NC     |          | %     | 30        |
|                |      |              | Acid Extractable Chromium (Cr)   | 2025/11/20    | 5.3    |          | %     | 30        |
|                |      |              | Acid Extractable Cobalt (Co)     | 2025/11/20    | 5.0    |          | %     | 30        |
|                |      |              | Acid Extractable Copper (Cu)     | 2025/11/20    | 1.8    |          | %     | 30        |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    | 5.3    |          | %     | 30        |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    | NC     |          | %     | 30        |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    | 1.6    |          | %     | 30        |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    | NC     |          | %     | 30        |
|                |      |              | Acid Extractable Silver (Ag)     | 2025/11/20    | NC     |          | %     | 30        |
|                |      |              | Acid Extractable Thallium (Tl)   | 2025/11/20    | 10     |          | %     | 30        |
|                |      |              | Acid Extractable Uranium (U)     | 2025/11/20    | 12     |          | %     | 30        |
|                |      |              | Acid Extractable Vanadium (V)    | 2025/11/20    | 6.5    |          | %     | 30        |
|                |      |              | Acid Extractable Zinc (Zn)       | 2025/11/20    | 12     |          | %     | 30        |
|                |      |              | Acid Extractable Mercury (Hg)    | 2025/11/20    | NC     |          | %     | 30        |
|                |      |              | Sieve - #200 (<0.075mm)          | 2025/11/21    |        | 55       | %     | 53 - 58   |
|                |      |              | Sieve - #200 (>0.075mm)          | 2025/11/21    |        | 45       | %     | 42 - 47   |
|                |      |              | Sieve - #200 (<0.075mm)          | 2025/11/20    | 12     |          | %     | 20        |
|                |      |              | Sieve - #200 (>0.075mm)          | 2025/11/20    | 3.5    |          | %     | 20        |
| A058534        | GR1  | Matrix Spike | Hot Water Ext. Boron (B)         | 2025/11/20    |        | 114      | %     | 75 - 125  |
| A058534        | GR1  | Spiked Blank | Hot Water Ext. Boron (B)         | 2025/11/20    |        | 102      | %     | 75 - 125  |
| A058534        | GR1  | Method Blank | Hot Water Ext. Boron (B)         | 2025/11/20    | <0.050 |          | ug/g  |           |
| A058534        | GR1  | RPD          | Hot Water Ext. Boron (B)         | 2025/11/20    | NC     |          | %     | 40        |
| A058537        | DT1  | Matrix Spike | Acid Extractable Antimony (Sb)   | 2025/11/20    |        | 92       | %     | 75 - 125  |
|                |      |              | Acid Extractable Arsenic (As)    | 2025/11/20    |        | 92       | %     | 75 - 125  |
|                |      |              | Acid Extractable Barium (Ba)     | 2025/11/20    |        | 86       | %     | 75 - 125  |
|                |      |              | Acid Extractable Beryllium (Be)  | 2025/11/20    |        | 87       | %     | 75 - 125  |
|                |      |              | Acid Extractable Boron (B)       | 2025/11/20    |        | 84       | %     | 75 - 125  |
|                |      |              | Acid Extractable Cadmium (Cd)    | 2025/11/20    |        | 91       | %     | 75 - 125  |
|                |      |              | Acid Extractable Chromium (Cr)   | 2025/11/20    |        | 95       | %     | 75 - 125  |
|                |      |              | Acid Extractable Cobalt (Co)     | 2025/11/20    |        | 92       | %     | 75 - 125  |
|                |      |              | Acid Extractable Copper (Cu)     | 2025/11/20    |        | 89       | %     | 75 - 125  |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    |        | 93       | %     | 75 - 125  |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    |        | 88       | %     | 75 - 125  |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    |        | 95       | %     | 75 - 125  |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    |        | 94       | %     | 75 - 125  |
|                |      |              | Acid Extractable Silver (Ag)     | 2025/11/20    |        | 95       | %     | 75 - 125  |
|                |      |              | Acid Extractable Thallium (Tl)   | 2025/11/20    |        | 93       | %     | 75 - 125  |
|                |      |              | Acid Extractable Uranium (U)     | 2025/11/20    |        | 102      | %     | 75 - 125  |
|                |      |              | Acid Extractable Vanadium (V)    | 2025/11/20    |        | 93       | %     | 75 - 125  |
|                |      |              | Acid Extractable Zinc (Zn)       | 2025/11/20    |        | 92       | %     | 75 - 125  |
|                |      |              | Acid Extractable Mercury (Hg)    | 2025/11/20    |        | 97       | %     | 75 - 125  |
| A058537        | DT1  | Spiked Blank | Acid Extractable Antimony (Sb)   | 2025/11/20    |        | 95       | %     | 80 - 120  |
|                |      |              | Acid Extractable Arsenic (As)    | 2025/11/20    |        | 93       | %     | 80 - 120  |
|                |      |              | Acid Extractable Barium (Ba)     | 2025/11/20    |        | 86       | %     | 80 - 120  |
|                |      |              | Acid Extractable Beryllium (Be)  | 2025/11/20    |        | 87       | %     | 80 - 120  |
|                |      |              | Acid Extractable Boron (B)       | 2025/11/20    |        | 83       | %     | 80 - 120  |
|                |      |              | Acid Extractable Cadmium (Cd)    | 2025/11/20    |        | 92       | %     | 80 - 120  |
|                |      |              | Acid Extractable Chromium (Cr)   | 2025/11/20    |        | 93       | %     | 80 - 120  |
|                |      |              | Acid Extractable Cobalt (Co)     | 2025/11/20    |        | 96       | %     | 80 - 120  |
|                |      |              | Acid Extractable Copper (Cu)     | 2025/11/20    |        | 93       | %     | 80 - 120  |
|                |      |              | Acid Extractable Lead (Pb)       | 2025/11/20    |        | 93       | %     | 80 - 120  |
|                |      |              | Acid Extractable Molybdenum (Mo) | 2025/11/20    |        | 89       | %     | 80 - 120  |
|                |      |              | Acid Extractable Nickel (Ni)     | 2025/11/20    |        | 99       | %     | 80 - 120  |
|                |      |              | Acid Extractable Selenium (Se)   | 2025/11/20    |        | 97       | %     | 80 - 120  |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd  
Client Project #: 160923647  
Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   | Batch | Init         | QC Type                          | Parameter  | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|---------|-------|--------------|----------------------------------|------------|---------------|-------|----------|-------|-----------|
| A058537 | DT1   | Method Blank | Acid Extractable Silver (Ag)     | 2025/11/20 | 96            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Thallium (Tl)   | 2025/11/20 | 94            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Uranium (U)     | 2025/11/20 | 99            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Vanadium (V)    | 2025/11/20 | 92            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Zinc (Zn)       | 2025/11/20 | 97            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Mercury (Hg)    | 2025/11/20 | 97            | %     | 80 - 120 |       |           |
|         |       |              | Acid Extractable Antimony (Sb)   | 2025/11/20 | <0.20         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Arsenic (As)    | 2025/11/20 | <1.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Barium (Ba)     | 2025/11/20 | <0.50         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Beryllium (Be)  | 2025/11/20 | <0.20         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Boron (B)       | 2025/11/20 | <5.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Cadmium (Cd)    | 2025/11/20 | <0.10         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Chromium (Cr)   | 2025/11/20 | <1.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Cobalt (Co)     | 2025/11/20 | <0.10         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Copper (Cu)     | 2025/11/20 | <0.50         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Lead (Pb)       | 2025/11/20 | <1.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Molybdenum (Mo) | 2025/11/20 | <0.50         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Nickel (Ni)     | 2025/11/20 | <0.50         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Selenium (Se)   | 2025/11/20 | <0.50         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Silver (Ag)     | 2025/11/20 | <0.20         | ug/g  |          |       |           |
|         |       |              | Acid Extractable Thallium (Tl)   | 2025/11/20 | <0.050        | ug/g  |          |       |           |
|         |       |              | Acid Extractable Uranium (U)     | 2025/11/20 | <0.050        | ug/g  |          |       |           |
|         |       |              | Acid Extractable Vanadium (V)    | 2025/11/20 | <5.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Zinc (Zn)       | 2025/11/20 | <5.0          | ug/g  |          |       |           |
|         |       |              | Acid Extractable Mercury (Hg)    | 2025/11/20 | <0.050        | ug/g  |          |       |           |
| A058537 | DT1   | RPD          | Acid Extractable Antimony (Sb)   | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Arsenic (As)    | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Barium (Ba)     | 2025/11/20 | 6.8           | %     | 30       |       |           |
|         |       |              | Acid Extractable Beryllium (Be)  | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Boron (B)       | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Cadmium (Cd)    | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Chromium (Cr)   | 2025/11/20 | 12            | %     | 30       |       |           |
|         |       |              | Acid Extractable Cobalt (Co)     | 2025/11/20 | 3.3           | %     | 30       |       |           |
|         |       |              | Acid Extractable Copper (Cu)     | 2025/11/20 | 2.0           | %     | 30       |       |           |
|         |       |              | Acid Extractable Lead (Pb)       | 2025/11/20 | 1.5           | %     | 30       |       |           |
|         |       |              | Acid Extractable Molybdenum (Mo) | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Nickel (Ni)     | 2025/11/20 | 4.3           | %     | 30       |       |           |
|         |       |              | Acid Extractable Selenium (Se)   | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Silver (Ag)     | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Thallium (Tl)   | 2025/11/20 | NC            | %     | 30       |       |           |
|         |       |              | Acid Extractable Uranium (U)     | 2025/11/20 | 12            | %     | 30       |       |           |
|         |       |              | Acid Extractable Vanadium (V)    | 2025/11/20 | 12            | %     | 30       |       |           |
|         |       |              | Acid Extractable Zinc (Zn)       | 2025/11/20 | 4.3           | %     | 30       |       |           |
|         |       |              | Acid Extractable Mercury (Hg)    | 2025/11/20 | NC            | %     | 30       |       |           |
| A058816 | GYA   | Matrix Spike | WAD Cyanide (Free)               | 2025/11/21 | 96            | %     | 75 - 125 |       |           |
| A058816 | GYA   | Spiked Blank | WAD Cyanide (Free)               | 2025/11/21 | 106           | %     | 80 - 120 |       |           |
| A058816 | GYA   | Method Blank | WAD Cyanide (Free)               | 2025/11/21 | <0.01         | ug/g  |          |       |           |
| A058816 | GYA   | RPD          | WAD Cyanide (Free)               | 2025/11/21 | NC            | %     | 35       |       |           |
| A058827 | GK6   | Spiked Blank | Conductivity                     | 2025/11/21 | 104           | %     | 90 - 110 |       |           |
| A058827 | GK6   | Method Blank | Conductivity                     | 2025/11/21 | <0.002        | mS/cm |          |       |           |
| A058827 | GK6   | RPD          | Conductivity                     | 2025/11/21 | 5.6           | %     | 10       |       |           |
| A058979 | SAU   | Spiked Blank | Available (CaCl2) pH             | 2025/11/21 | 100           | %     | 97 - 103 |       |           |



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |         | Parameter                         | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|---------|------|---------|-----------------------------------|---------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type |                                   |               |       |          |       |           |
| A058979 | SAU  | RPD     | Available (CaCl <sub>2</sub> ) pH | 2025/11/21    | 2.7   |          | %     | N/A       |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.



BUREAU  
VERITAS

Bureau Veritas Job #: C5E6301

Report Date: 2025/11/21

Stantec Consulting Ltd

Client Project #: 160923647

Sampler Initials: MD

## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

*Cristina Carriere*

---

Cristina Carriere, Senior Scientific Specialist

---

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C5E6301

2025/11/18 10:00

COR FCD-00265 / 6  
Page \_\_\_\_ of \_\_\_\_

Received in Ottawa



ADDITIONAL COOLER TEMPERATURE RECORD  
CHAIN-OF-CUSTODY RECORD

RUSH

COOLER OBSERVATIONS: *Ice packs*BV RECEIPT#: *OTT-2025-41-186*

| CUSTODY SEAL | YES | NO | COOLER ID | 1       |         |        | CUSTODY SEAL | YES | NO | COOLER ID | 11 |   |   | CUSTODY SEAL | YES          | NO  | COOLER ID | 21          |             |        |      |   |   |   |  |
|--------------|-----|----|-----------|---------|---------|--------|--------------|-----|----|-----------|----|---|---|--------------|--------------|-----|-----------|-------------|-------------|--------|------|---|---|---|--|
|              |     |    |           | PRESENT | INTACT  | TEMP   |              |     |    |           |    |   |   |              |              |     |           | PRESENT     | INTACT      | TEMP   | 1    | 2 | 3 |   |  |
| ICE PRESENT  |     |    |           |         |         | 1      | 2            | 3   |    |           |    |   |   |              |              |     |           | ICE PRESENT |             |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 2       | PRESENT | INTACT | TEMP         | 6   | 4  | 5         | 1  | 2 | 3 | 12           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 3       | PRESENT | INTACT | TEMP         | 6   | 3  | 3         | 1  | 2 | 3 | 13           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 4       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 14           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 5       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 15           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 6       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 16           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 7       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 17           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 8       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 18           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 9       | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 19           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |
| CUSTODY SEAL | YES | NO | COOLER ID | 10      | PRESENT | INTACT | TEMP         |     |    |           | 1  | 2 | 3 | 20           | CUSTODY SEAL | YES | NO        | COOLER ID   | PRESENT     | INTACT | TEMP | 1 | 2 | 3 |  |
| ICE PRESENT  |     |    |           |         |         |        |              |     |    |           |    |   |   |              |              |     |           |             | ICE PRESENT |        |      |   |   |   |  |

RECEIVED BY (SIGN &amp; PRINT)

*Pedro da Silva**10/10*

DATE (YYYY/MM/DD)

*2025/11/18*

TIME (HH:MM)

*10:00*

If Custody seal condition  
and presence of ice is the  
same for all, use these  
boxes:

|              |                                     |                          |
|--------------|-------------------------------------|--------------------------|
| CUSTODY SEAL | YES                                 | NO                       |
| PRESENT      | <input checked="" type="checkbox"/> | <input type="checkbox"/> |
| INTACT       | <input checked="" type="checkbox"/> | <input type="checkbox"/> |
| ICE PRESENT  | <input checked="" type="checkbox"/> | <input type="checkbox"/> |



| BV Receipt # |                              | COOLER OBSERVATIONS: |                                     |                          |                                         |              |                                     |                          |                                         |
|--------------|------------------------------|----------------------|-------------------------------------|--------------------------|-----------------------------------------|--------------|-------------------------------------|--------------------------|-----------------------------------------|
|              |                              | CUSTODY SEAL         | YES                                 | NO                       | <input type="checkbox"/> Drinking Water |              |                                     |                          |                                         |
| 1            | 193<br>to<br>OTT-2025-11-105 | PRESENT              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | TEMP         | N/A                                 | N/A                      | M/D                                     |
| 2            | 197                          | INTACT               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | TEMP         | 2<br>1                              | 3<br>2                   | 4<br>3                                  |
| 3            | 188                          | ICE PRESENT          | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | CUSTODY SEAL | YES                                 | NO                       | <input type="checkbox"/> Drinking Water |
| 4            | 186                          | PRESENT              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | TEMP         | 2<br>1                              | 1<br>2                   | 4<br>3                                  |
| 5            |                              | INTACT               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | ICE PRESENT  | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> Drinking Water |
| 6            |                              | ICE PRESENT          | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | CUSTODY SEAL | YES                                 | NO                       | <input type="checkbox"/> Drinking Water |
| 7            |                              | PRESENT              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | TEMP         | 2<br>1                              | 1<br>2                   | 1<br>3                                  |
| 8            | 189                          | INTACT               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | ICE PRESENT  | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> Drinking Water |
| 9            | 201                          | ICE PRESENT          | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | CUSTODY SEAL | YES                                 | NO                       | <input type="checkbox"/> Drinking Water |
| 10           | 202                          | PRESENT              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | TEMP         | 2<br>1                              | 1<br>2                   | 2<br>3                                  |
|              |                              | INTACT               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>                | ICE PRESENT  | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> Drinking Water |

RECEIVED BY (PRINT & SIGN)

Anmolpreet Singh

### SERVICE CENTER COOLER TEMPERATURE RECORD

#### CHAIN-OF-CUSTODY RECORD

| BV Receipt # |                              | SHIPPED FROM BV SERVICE CENTER: |     |    |                                         |      |        |        |        |
|--------------|------------------------------|---------------------------------|-----|----|-----------------------------------------|------|--------|--------|--------|
|              |                              | OTTAWA                          |     |    |                                         |      |        |        |        |
|              |                              | RECEIVED AT: MISSISSAUGA        |     |    |                                         |      |        |        |        |
| 11           | 203<br>to<br>OTT-2025-11-208 | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 4<br>1 | 2<br>2 | 1<br>3 |
| 12           | 209                          | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 2<br>1 | 4<br>2 | 4<br>3 |
| 13           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 2<br>1 | 1<br>2 | 1<br>3 |
| 14           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 0<br>1 | 1<br>2 | 1<br>3 |
| 15           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 2<br>1 | 1<br>2 | 1<br>3 |
| 16           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 1<br>1 | 2<br>2 | 3<br>3 |
| 17           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 1<br>1 | 2<br>2 | 3<br>3 |
| 18           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 1<br>1 | 2<br>2 | 3<br>3 |
| 19           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 1<br>1 | 2<br>2 | 3<br>3 |
| 20           |                              | CUSTODY SEAL                    | YES | NO | <input type="checkbox"/> Drinking Water | TEMP | 1<br>1 | 2<br>2 | 3<br>3 |

If Custody seal condition and presence of ice is the same for all, use these boxes:

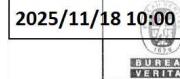
| CUSTODY SEAL | YES                      | NO                       |
|--------------|--------------------------|--------------------------|
| PRESENT      | <input type="checkbox"/> | <input type="checkbox"/> |
| INTACT       | <input type="checkbox"/> | <input type="checkbox"/> |
| ICE PRESENT  | <input type="checkbox"/> | <input type="checkbox"/> |

C5E6301

2025/11/18 10:00

1975  
BUREAU  
VERITÉ

Bureau Veritas  
6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel:(905) 817-5700 Toll-free 800-563-6266 Fax (905) 817-5777 www.bvna.com


Received in Ottawa

CHAIN OF CUSTODY RECORD

Page 1 of 1

| Invoice To:                                                                                                                                                                                                                                                                                                                                                                                          |                                                          | Report To:                                                                                                                                                                                                                                                                                                                                                     |              | PROJECT INFORMATION: |                                 |                                            |                                   | Laboratory Use Only:    |                                          |                                                                                            |                             |              |                                     |        |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|---------------------------------|--------------------------------------------|-----------------------------------|-------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|--------------|-------------------------------------|--------|-------------------------------------|
| Company: #3072 Stantec Consulting Ltd                                                                                                                                                                                                                                                                                                                                                                | Address: 300-125 Commerce Valley Dr W Markham ON L3T 7W4 | Company: Cori Linetsky                                                                                                                                                                                                                                                                                                                                         | Address:     | Quotation #: C51234  | P.O. #: 160923647               | Project: Project Name: Site #: Sampled By: | Bureau Veritas Job #: C51234      | Bottle Order #: 1068687 |                                          |                                                                                            |                             |              |                                     |        |                                     |
| Tel: (905) 944-7777 Fax: (905) 479-9326                                                                                                                                                                                                                                                                                                                                                              | Email: SAInvoices@stantec.com                            | Tel: Cori.Linetsky@stantec.com                                                                                                                                                                                                                                                                                                                                 | Fax:         |                      |                                 | COC #: C#1068687-01-01                     | Project Manager: Julie Clement    |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |
| MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |
| Regulation 153 (2011)                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Other Regulations                                                                                                                                                                                                                                                                                                                                              |              | Special Instructions |                                 | ANALYSIS REQUESTED (PLEASE BE SPECIFIC)    |                                   |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |
| <input type="checkbox"/> Table 1 <input type="checkbox"/> Res/Park <input type="checkbox"/> Medium/Fine<br><input checked="" type="checkbox"/> Table 2 <input checked="" type="checkbox"/> Ind/Comm <input checked="" type="checkbox"/> Coarse<br><input type="checkbox"/> Table 3 <input type="checkbox"/> Agri/Other <input checked="" type="checkbox"/> For RSC<br><input type="checkbox"/> Table |                                                          | <input type="checkbox"/> CCME <input type="checkbox"/> Sanitary Sewer Bylaw<br><input type="checkbox"/> Reg 558. <input type="checkbox"/> Storm Sewer Bylaw<br><input type="checkbox"/> MISA <input type="checkbox"/> Municipality _____<br><input type="checkbox"/> PWQO <input type="checkbox"/> Reg 406 Table _____<br><input type="checkbox"/> Other _____ |              |                      |                                 | Metals / Hg / Cr VI                        | O Reg 153 PHCs, BTEX/F1-F4 (Soil) | O Reg 153 PAHs (Soil)   | O Reg 153 Metals & Inorganics Pkg (Soil) | TCLP: Inorganics, SVOC, VOC, Bulk PCB, Ignitability                                        | Grain size analysis         |              |                                     |        |                                     |
| Include Criteria on Certificate of Analysis (Y/N)?                                                                                                                                                                                                                                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |
| Sample Barcode Label                                                                                                                                                                                                                                                                                                                                                                                 | Sample (Location) Identification                         | Date Sampled                                                                                                                                                                                                                                                                                                                                                   | Time Sampled | Matrix               | Field Filtered (please circle): |                                            |                                   |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |
| 1 BH 25-01-1                                                                                                                                                                                                                                                                                                                                                                                         |                                                          | Nov 17, 25                                                                                                                                                                                                                                                                                                                                                     | 8:30         | S                    | NA                              | X                                          | X                                 | X                       | X                                        |                                                                                            |                             |              |                                     |        |                                     |
| 2 BH 25-01-2                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 9:30         |                      |                                 |                                            | X                                 | X                       | X                                        | X                                                                                          | X                           |              |                                     |        |                                     |
| 3 BH 25-01-3                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 9:45         |                      |                                 |                                            | X                                 | X                       | X                                        | Y                                                                                          |                             |              |                                     |        |                                     |
| 4 BH 25-01-4                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 9:45         |                      |                                 |                                            | X                                 | X                       | X                                        | X                                                                                          |                             |              |                                     |        |                                     |
| 5 BH 25-01-5                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 9:50         |                      |                                 |                                            | X                                 | X                       | X                                        | Y                                                                                          |                             |              |                                     |        |                                     |
| 6 BH 25-01-6                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 9:50         |                      |                                 |                                            | Y                                 | X                       | X                                        | X                                                                                          |                             |              |                                     |        |                                     |
| 7 BH 25-01-7                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 10:00        |                      |                                 |                                            | X                                 | X                       | X                                        | Y                                                                                          |                             |              |                                     |        |                                     |
| 8 BH 25-01-8                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 10:00        |                      |                                 |                                            | X                                 | X                       | X                                        | X                                                                                          |                             |              |                                     |        |                                     |
| 9 BH 25-02-1                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 10:15        |                      |                                 |                                            | X                                 | X                       | X                                        | X                                                                                          |                             |              |                                     |        |                                     |
| 10 BH 25-02-2                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                | 10:20        |                      |                                 |                                            | X                                 | X                       | X                                        | X                                                                                          | X                           |              |                                     |        |                                     |
| * Relinquished By (Print): <b>MIA DINH</b> Date: (YY/MM/DD) 25/11/17 Time: 17:05 RECEIVED BY: (Signature/Print) <b>Ricardo da Silva Mello</b> Date: (YY/MM/DD) 2025/11/18 Time: 10:00 # jars used and not submitted                                                                                                                                                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          | Laboratory Use Only                                                                        |                             |              |                                     |        |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          | Time Sensitive                                                                             | Temperature (°C) on Receipt | Custody Seal | Yes                                 | No     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          |                                                                                            | ACTR                        | Present      | <input checked="" type="checkbox"/> | Intact | <input checked="" type="checkbox"/> |
| * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS.                                                |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          | SAMPLES MUST BE KEPT COOL (< 10° C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS |                             |              |                                     |        |                                     |
| * IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.                                                                                                                                                                                                                            |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          | White: Bureau Veritas Yellow: Client                                                       |                             |              |                                     |        |                                     |
| ** SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs.                                                                                                                                                                                                                                    |                                                          |                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                 |                                            |                                   |                         |                                          |                                                                                            |                             |              |                                     |        |                                     |

C5E6301



2025/11/18 10:00

Bureau Veritas  
6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel (905) 817-5700 Toll-free 800-563-6266 Fax (905) 817-5777 www.bvna.com

Page 2 of 4

Received in Ottawa

## CHAIN OF CUSTODY RECORD

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Invoice To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          | Report To:                                           |                                            | PROJECT INFORMATION:                                                           |                                                        |                                                     |                                               | Laboratory Use Only:                                                                |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| Company:<br>Attention:<br>Address:<br>Tel:<br>Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #3072 Stantec Consulting Ltd<br>Accounts Payable<br>300-125 Commerce Valley Dr W<br>Markham ON L3T 7W4<br>(905) 944-7777 Fax (905) 479-9326<br>SAPInvoices@Stantec.com                                                                                                                                                                                   | Company:<br>Attention:<br>Address:<br>Tel:<br>Email: | Cori Linetsky<br>Cori.Linetsky@stantec.com | Quotation #:<br>P.O. #:<br>Project:<br>Project Name:<br>Site #:<br>Sampled By: | C51234<br>160923647                                    | Bureau Veritas Job #:<br>Bottle Order #:<br>1068687 | COC #:<br>Project Manager:<br>C#1068687-02-01 | Turnaround Time (TAT) Required:<br>Please provide advance notice for rush projects. |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| <p><b>MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY</b></p> <table border="1"> <tr> <td>Regulation 153 (2011)</td> <td>Other Regulations</td> <td>Special Instructions</td> </tr> <tr> <td> <input type="checkbox"/> Table 1 <input type="checkbox"/> Res/Park <input type="checkbox"/> Medium/Fine<br/> <input checked="" type="checkbox"/> Table 2 <input type="checkbox"/> Ind/Comin <input checked="" type="checkbox"/> Coarse<br/> <input type="checkbox"/> Table 3 <input type="checkbox"/> Agric/Other <input type="checkbox"/> For RSC<br/> <input type="checkbox"/> Table _____         </td> <td> <input type="checkbox"/> CCME <input type="checkbox"/> Sanitary Sewer Bylaw<br/> <input type="checkbox"/> Reg 558. <input type="checkbox"/> Storm Sewer Bylaw<br/> <input type="checkbox"/> MISA <input type="checkbox"/> Municipality _____<br/> <input type="checkbox"/> PWQO <input type="checkbox"/> Reg 405 Table<br/> <input type="checkbox"/> Other _____         </td> <td></td> </tr> </table> <p><i>Include Criteria on Certificate of Analysis (Y/N)?</i></p> |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                | Regulation 153 (2011)                                                                    | Other Regulations | Special Instructions | <input type="checkbox"/> Table 1 <input type="checkbox"/> Res/Park <input type="checkbox"/> Medium/Fine<br><input checked="" type="checkbox"/> Table 2 <input type="checkbox"/> Ind/Comin <input checked="" type="checkbox"/> Coarse<br><input type="checkbox"/> Table 3 <input type="checkbox"/> Agric/Other <input type="checkbox"/> For RSC<br><input type="checkbox"/> Table _____ | <input type="checkbox"/> CCME <input type="checkbox"/> Sanitary Sewer Bylaw<br><input type="checkbox"/> Reg 558. <input type="checkbox"/> Storm Sewer Bylaw<br><input type="checkbox"/> MISA <input type="checkbox"/> Municipality _____<br><input type="checkbox"/> PWQO <input type="checkbox"/> Reg 405 Table<br><input type="checkbox"/> Other _____ |  |
| Regulation 153 (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other Regulations                                                                                                                                                                                                                                                                                                                                        | Special Instructions                                 |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| <input type="checkbox"/> Table 1 <input type="checkbox"/> Res/Park <input type="checkbox"/> Medium/Fine<br><input checked="" type="checkbox"/> Table 2 <input type="checkbox"/> Ind/Comin <input checked="" type="checkbox"/> Coarse<br><input type="checkbox"/> Table 3 <input type="checkbox"/> Agric/Other <input type="checkbox"/> For RSC<br><input type="checkbox"/> Table _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <input type="checkbox"/> CCME <input type="checkbox"/> Sanitary Sewer Bylaw<br><input type="checkbox"/> Reg 558. <input type="checkbox"/> Storm Sewer Bylaw<br><input type="checkbox"/> MISA <input type="checkbox"/> Municipality _____<br><input type="checkbox"/> PWQO <input type="checkbox"/> Reg 405 Table<br><input type="checkbox"/> Other _____ |                                                      |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| Sample Barcode Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample (Location) Identification                                                                                                                                                                                                                                                                                                                         | Date Sampled                                         | Time Sampled                               | Matrix                                                                         | Field Filtered (please circle):<br>Metals / Hg / Cr VI | O Reg 153 PhCs, BTEX/F1-F4 (Soil)                   | O Reg 153 PAHs (Soil)                         | O Reg 153 Metals & Inorganics Pkg (Soil)                                            | O Reg 153 OC Pesticides (Soil) | TCLP: Inorganics, SVOC, VOC Bulk, P-C-3, Ignitability                                    | # of Bottles      | Comments             |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 1 BH25-02-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          | Nov 17, 25                                           | 10:20                                      | S NA                                                                           | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          | 4                 | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 2 BH25-02-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 10:25                                      |                                                                                | X X X Y                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 3 BH25-02-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 10:25                                      |                                                                                | X X Y X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 4 BH25-02-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 10:30                                      |                                                                                | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 5 BH QC-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 10:30                                      |                                                                                | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 6 BH 25-02-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 10:30                                      |                                                                                | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 7 BH 25-03-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 11:35                                      |                                                                                | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 8 BH 25-03-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 11:40                                      |                                                                                | X X X Y                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 9 BH 25-03-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 11:40                                      |                                                                                | X X Y X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| 10 BH 25-03-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |                                                      | 11:50                                      |                                                                                | X X X X                                                |                                                     |                                               |                                                                                     |                                |                                                                                          |                   | HOLD                 |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| * Relinquished By (Print): MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          | Date: (YY/MM/DD) 2025/11/17                          | Time 17:05                                 | RECEIVED BY: (Signature/Print) <i>Refer to page 1</i>                          | Date: (YY/MM/DD)                                       | Time                                                | # jars used and not submitted                 | Laboratory Use Only                                                                 |                                |                                                                                          |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               | Time Sensitive                                                                      | Temperature (°C) on Receipt    | Custody Seal                                                                             | Yes               | No                   |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               | Present                                                                             |                                | Intact                                                                                   |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                | White: Bureau Veritas Yellow: Client                                                     |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |
| <p>* UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT <a href="http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CO-C-TERMS-AND-CONDITIONS">WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CO-C-TERMS-AND-CONDITIONS</a>.</p> <p>** IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.</p> <p>** SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT <a href="http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCS">WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCS</a>.</p>                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                            |                                                                                |                                                        |                                                     |                                               |                                                                                     |                                | SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |

Bureau Veritas Canada (2019) Inc.

C5E6301

2025/11/18 10:00

Bureau Veritas  
6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: (905) 817-5700 Toll-free: 800-563-6266 Fax: (905) 817-5777 [www.bvna.com](http://www.bvna.com)

Received in Ottawa

**CHAIN OF CUSTODY RECORD**

Page 3 of 4

UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT [WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS](http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS).

\* IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.

\*\* SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT [WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs](http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs).

SAMPLES MUST BE KEPT COOL (  $< 10^{\circ} \text{C}$  ) FROM TIME OF SAMPLING  
UNTIL DELIVERY TO BUREAU VERITAS

White: Bureau Veritas Yellow: Client

C5E6301

2025/11/18 10:00



Bureau Veritas  
6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel:(905) 817-5700 Toll-free:800-563-6266 Fax:(905) 817-5777 www.bvna.com

Received in Ottawa

## CHAIN OF CUSTODY RECORD

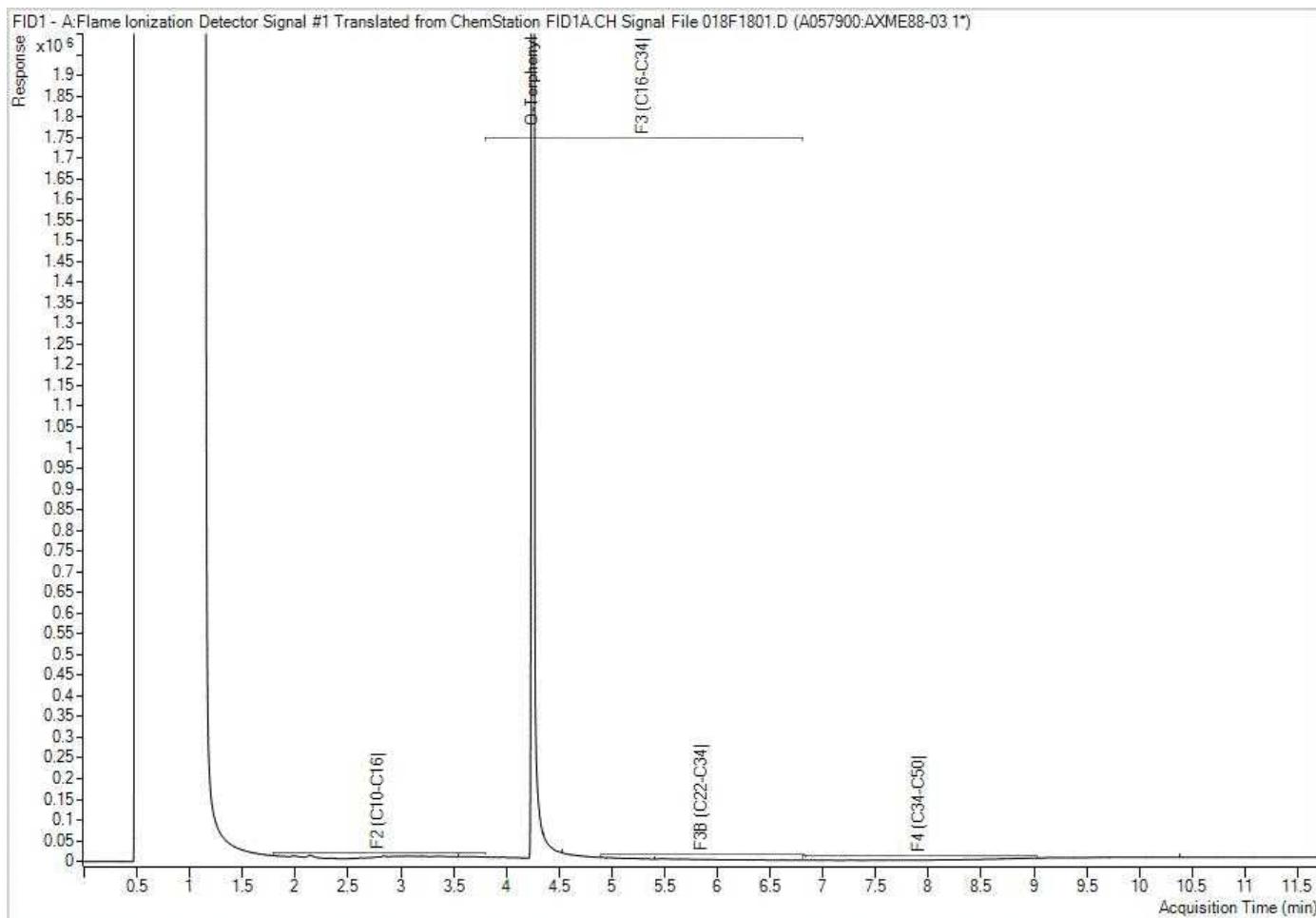
Page 4 of 4

| Invoice To:                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Report To:                                                                                                                                                                                                                                                                                                                                         |                          |                                                       | PROJECT INFORMATION:                  |                                         |                               | Laboratory Use Only:                     |                                |                                                                                           |     |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----|----|
| Company: #3072 Stantec Consulting Ltd                                                                                                                                                                                                                                                                                                                                                                                                                  | Attention: Accounts Payable         | Company: Cori Linetsky                                                                                                                                                                                                                                                                                                                             | Attention: Cori Linetsky | Quotation #: C51234                                   | P.O. #: 160923647                     | Project #: 160923647                    | Project Name: 160923647       | Bureau Veritas Job #: 1068687            | Bottle Order #: 1068687        |                                                                                           |     |    |
| Address: 300-125 Commerce Valley Dr W                                                                                                                                                                                                                                                                                                                                                                                                                  | Address: Markham ON L3T 7W4         | Tel: (905) 944-7777                                                                                                                                                                                                                                                                                                                                | Fax: (905) 479-9326      | Tel: Email: SAPInvoices@stantec.com                   | Fax: Email: Cori.Linetsky@stantec.com | Site #: Sampled By: C#1068667-04-01     | COC #: Julie Clement          | Project Manager: Julie Clement           |                                |                                                                                           |     |    |
| NOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| Regulation 153 (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | Other Regulations                                                                                                                                                                                                                                                                                                                                  |                          | Special Instructions                                  |                                       | ANALYSIS REQUESTED (PLEASE BE SPECIFIC) |                               |                                          |                                |                                                                                           |     |    |
| <input type="checkbox"/> Rec/Park <input type="checkbox"/> Medium/Fine<br><input checked="" type="checkbox"/> Table 2 <input checked="" type="checkbox"/> Ind/Comm <input checked="" type="checkbox"/> Coarse<br><input type="checkbox"/> Table 3 <input type="checkbox"/> Agri/Other <input type="checkbox"/> For RSC<br><input type="checkbox"/> Table                                                                                               |                                     | <input type="checkbox"/> CCME <input type="checkbox"/> Sanitary Sewer Bylaw<br><input type="checkbox"/> Reg 558. <input type="checkbox"/> Storm Sewer Bylaw<br><input type="checkbox"/> MISA <input type="checkbox"/> Municipality _____<br><input type="checkbox"/> PWQO <input type="checkbox"/> Reg 406 Table<br><input type="checkbox"/> Other |                          |                                                       |                                       | O Reg 53 PHCs, BTEX/F-F4 (Soil)         | O Reg 153 PAHs (Soil)         | O Reg 153 Metals & Inorganics Pkg (Soil) | O Reg 153 OC Pesticides (Soil) | TCI: Inorganics, SVOC, VOC, Bulk PCB, Ignitability                                        |     |    |
| Include Criteria on Certificate of Analysis (Y/N)?                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| Sample Barcode Label                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample (Location) Id/Identification | Date Sampled                                                                                                                                                                                                                                                                                                                                       | Time Sampled             | Matrix                                                | Field Filtered (please circle):       | Metals / Hg / Cr VI                     |                               |                                          |                                |                                                                                           |     |    |
| 1 TCP-01                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | Nov 17, 25                                                                                                                                                                                                                                                                                                                                         | NA                       | S                                                     |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |
| * Relinquished By (Print): MD                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Date: (YY/MM/DD) 25/11/17                                                                                                                                                                                                                                                                                                                          | Time 17:05               | RECEIVED BY: (Signature/Print) <i>Rever to page 1</i> | Date: (YY/MM/DD)                      | Time                                    | # jars used and not submitted | Laboratory Use Only                      |                                |                                                                                           |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               | Time Sensitive                           | Temperature (°C) on Receipt    | Custody Seal                                                                              | Yes | No |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               | Present                                  |                                | Intact                                                                                    |     |    |
| * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT <a href="http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS">WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS</a> . |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                | SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS |     |    |
| * IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.                                                                                                                                                                                                                                                                              |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                | White: Bureau Veritas Yellow: Client                                                      |     |    |
| ** SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT <a href="http://WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs">WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs</a> .                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                    |                          |                                                       |                                       |                                         |                               |                                          |                                |                                                                                           |     |    |

**UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARDS TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT [WWW.BVNA.COM/ENVIRONMENTAL-STANDARDS/TERMS/RESOURCES/OC-COC-TERMS-AND-CONDITIONS](http://WWW.BVNA.COM/ENVIRONMENTAL-STANDARDS/TERMS/RESOURCES/OC-COC-TERMS-AND-CONDITIONS).**

\* IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.

ENVIRONMENTAL, EVIDENCE/ITEM, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT [WWW.PVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs](http://WWW.PVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCs)

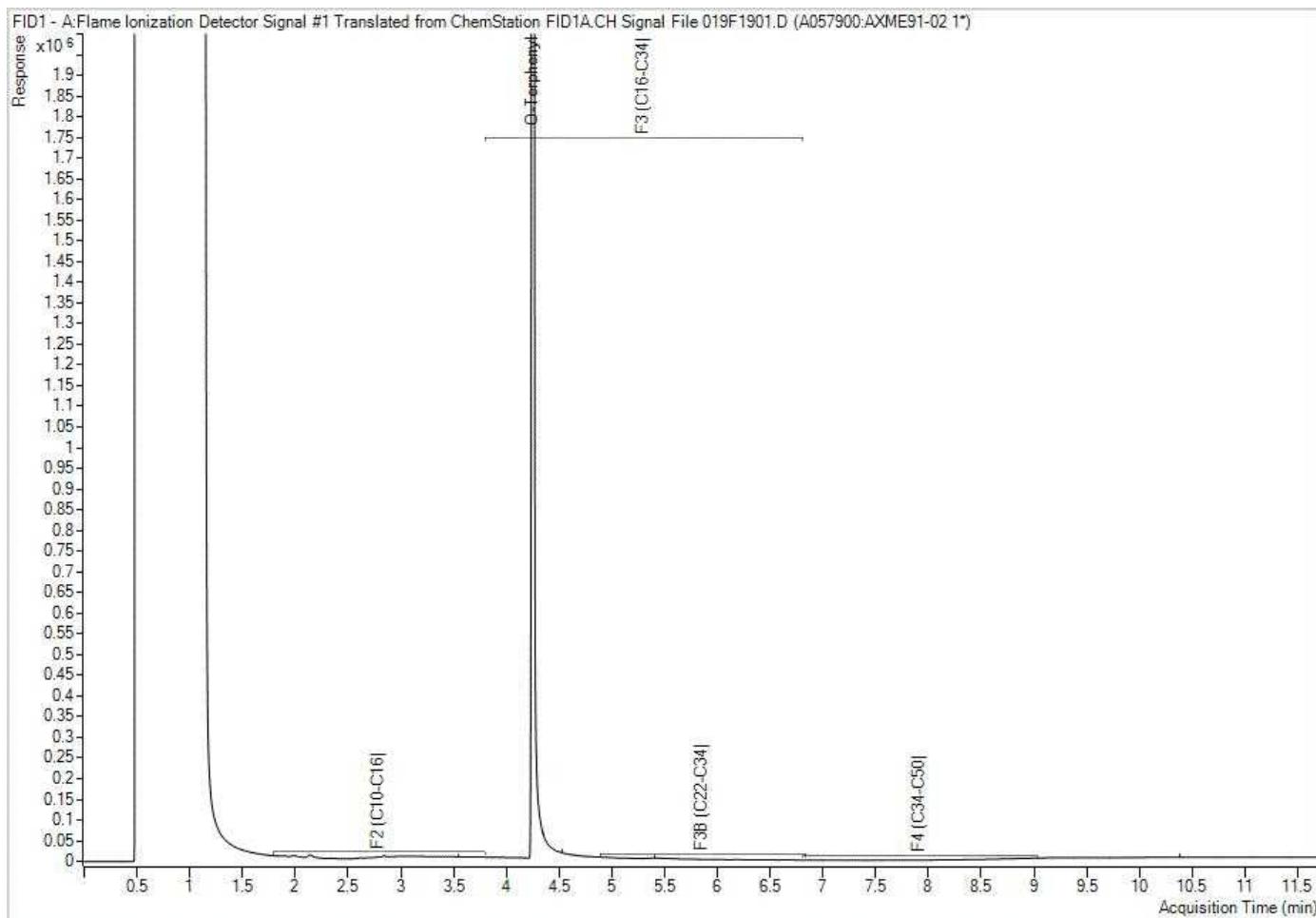

SAMPLES MUST BE KEPT COOL (< 10° C) FROM TIME OF SAMPLING  
UNTIL DELIVERY TO BUREAU VERITAS

White: Bureau Veritas Yellow: Client

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXME88

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-01-2

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

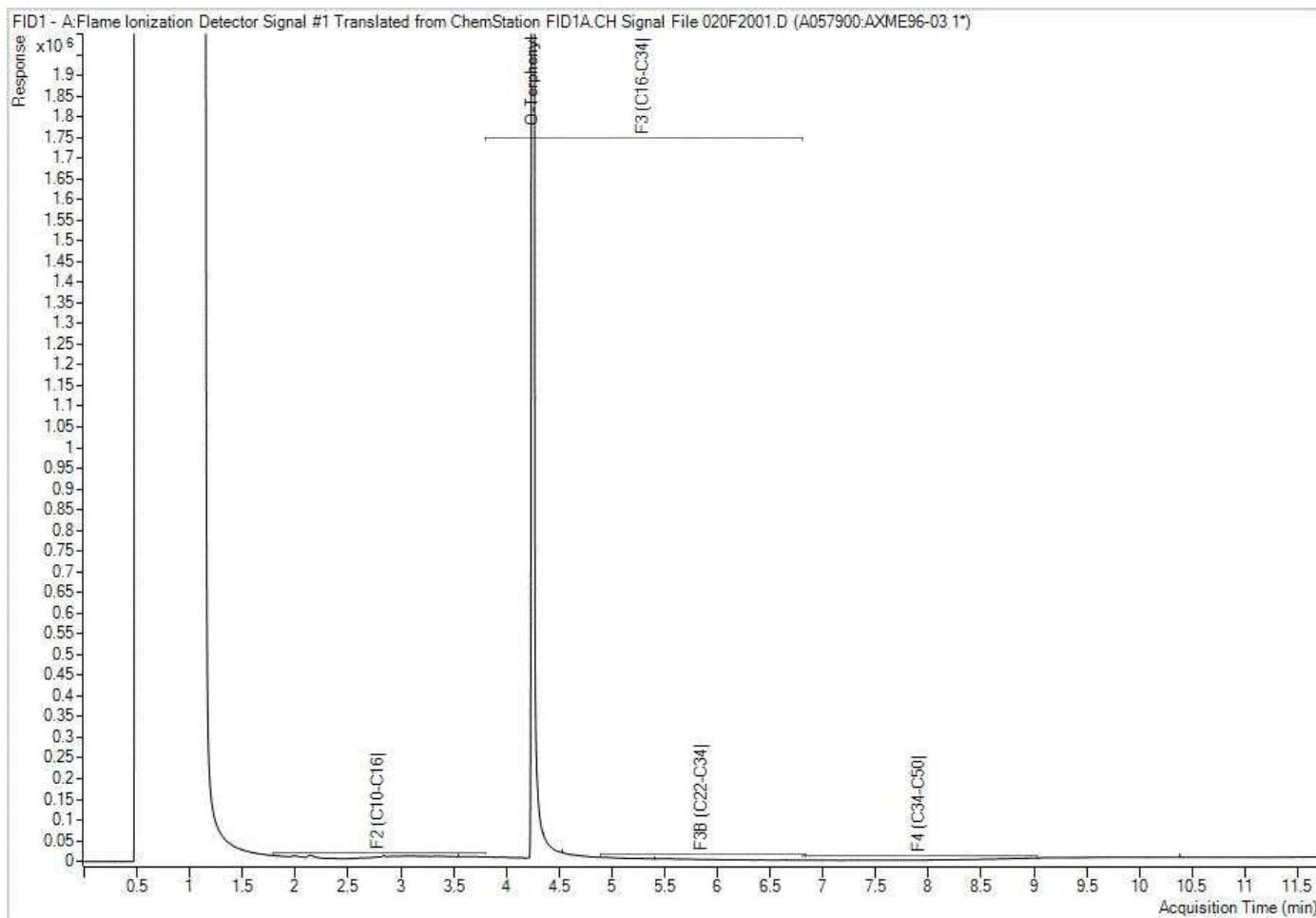



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXME91

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-01-5

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

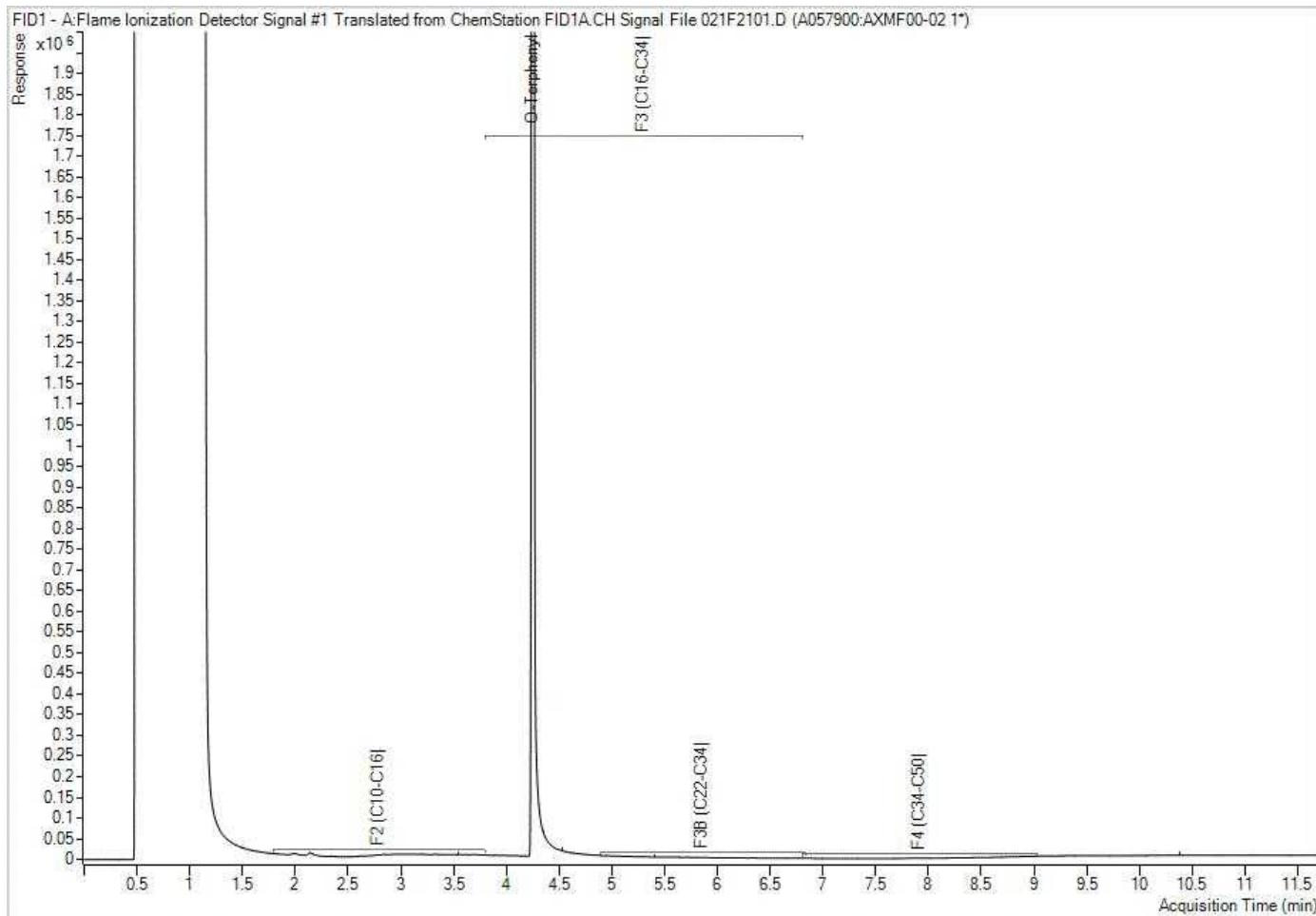



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXME96

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-02-2

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

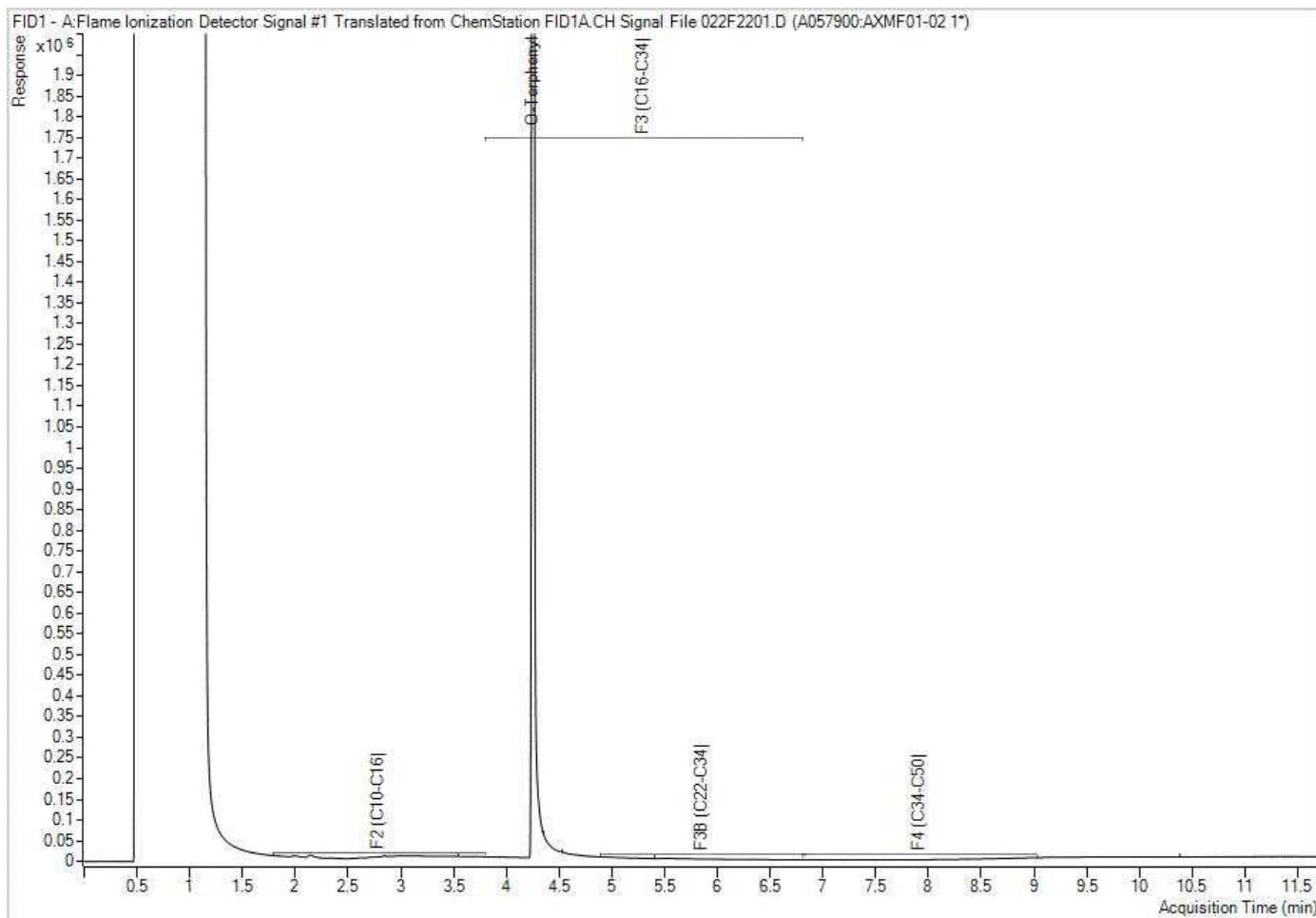



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF00

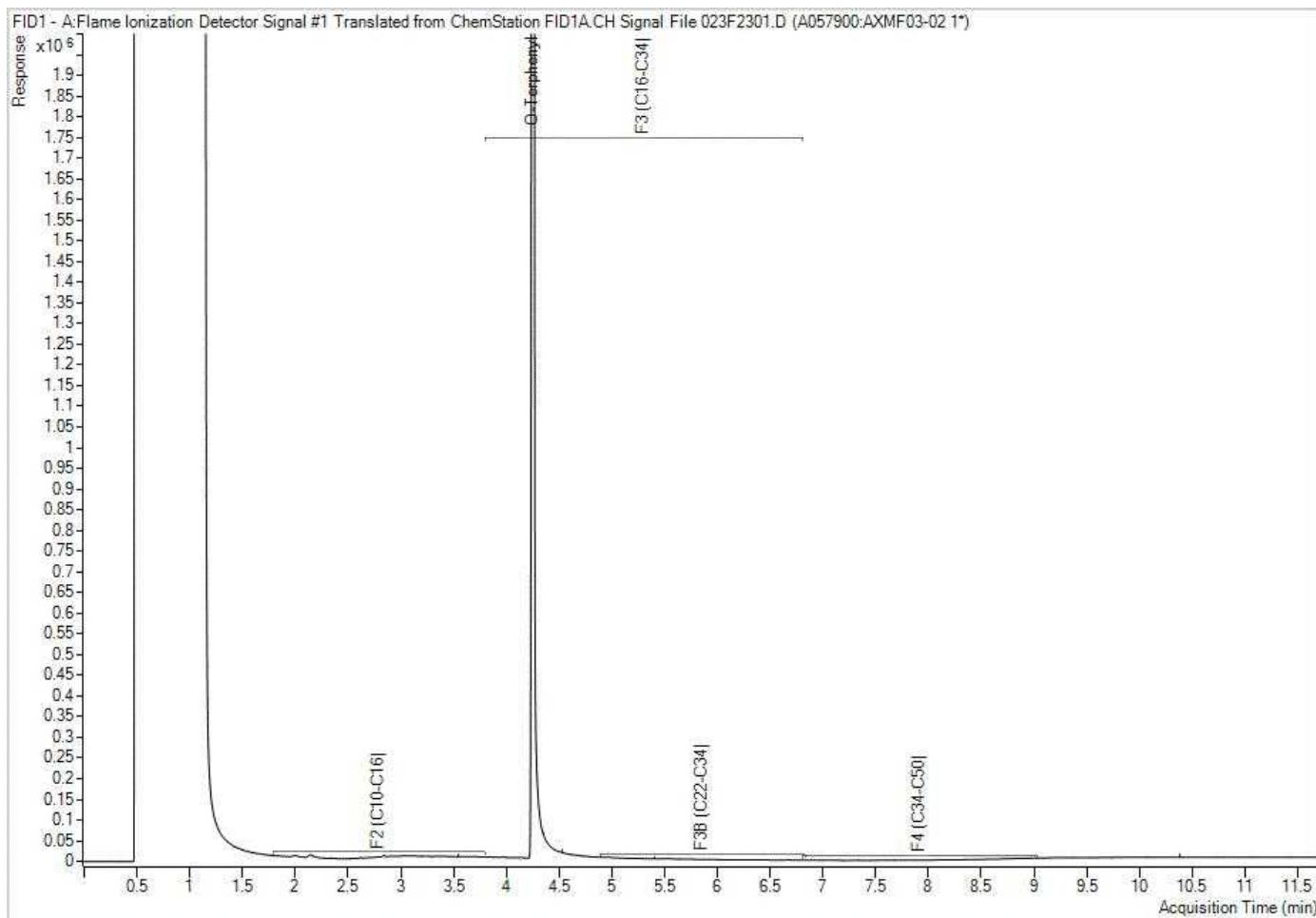
Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-02-6

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**




**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF01

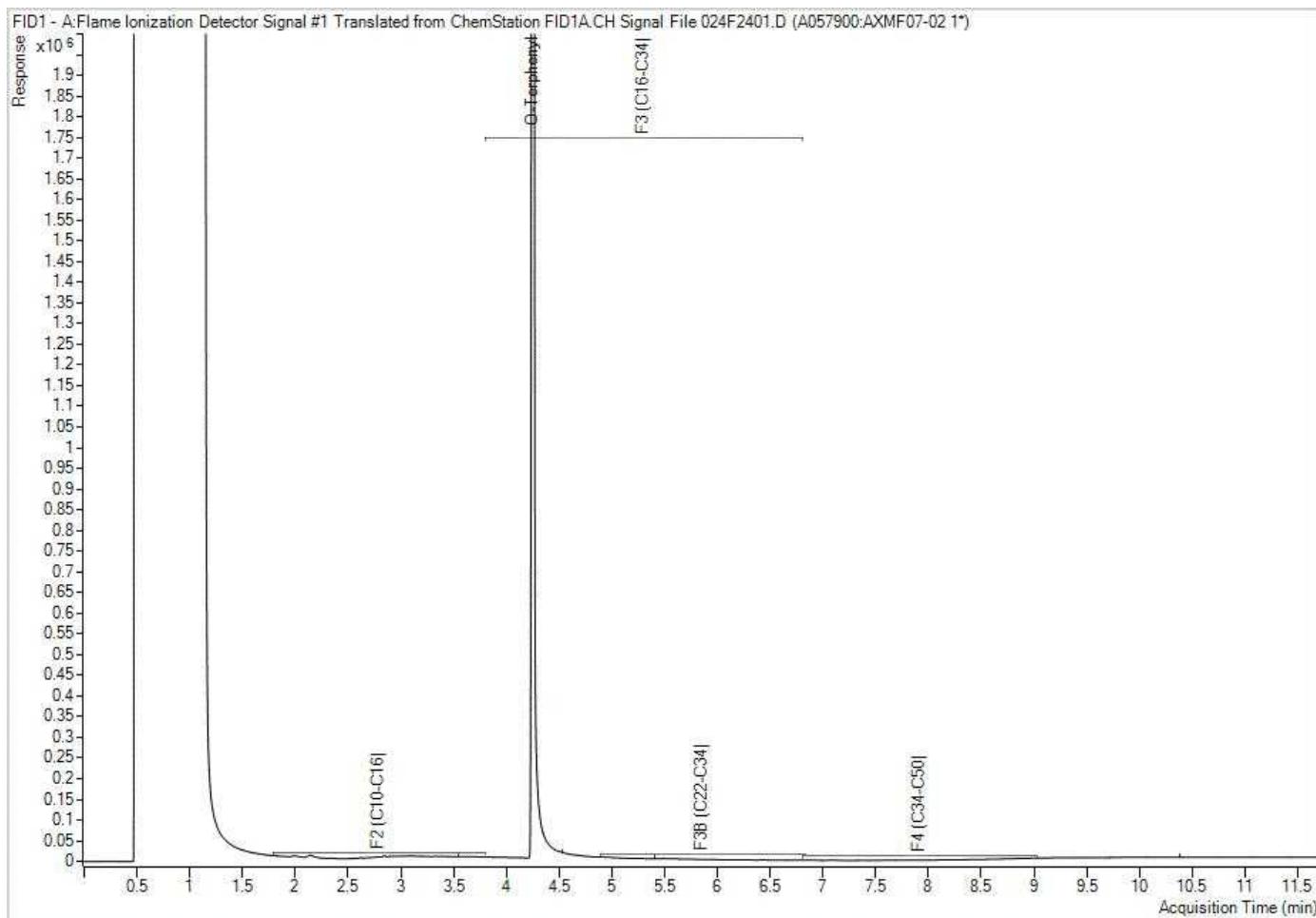

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: QC-01

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

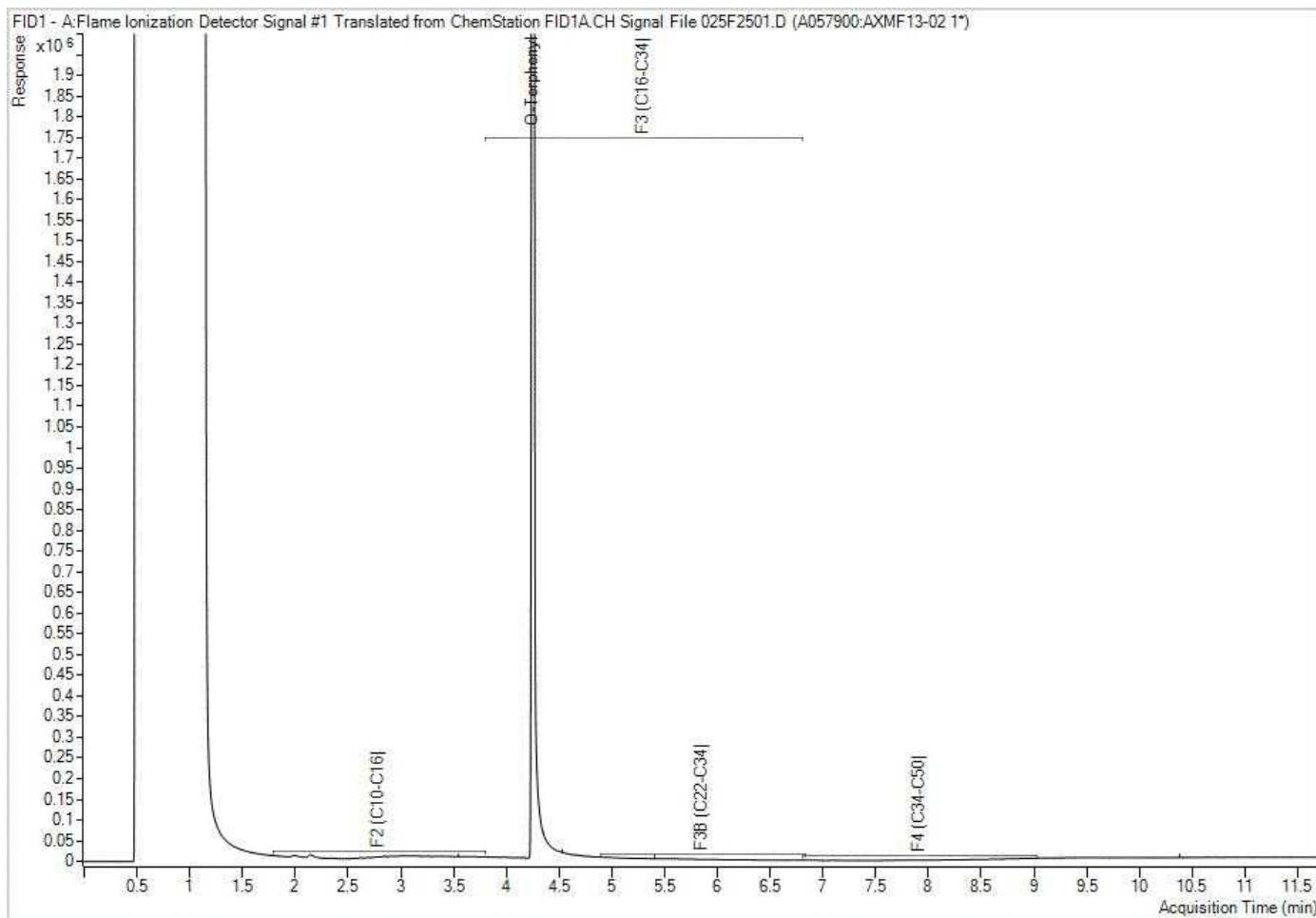



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF07

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-03-5

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

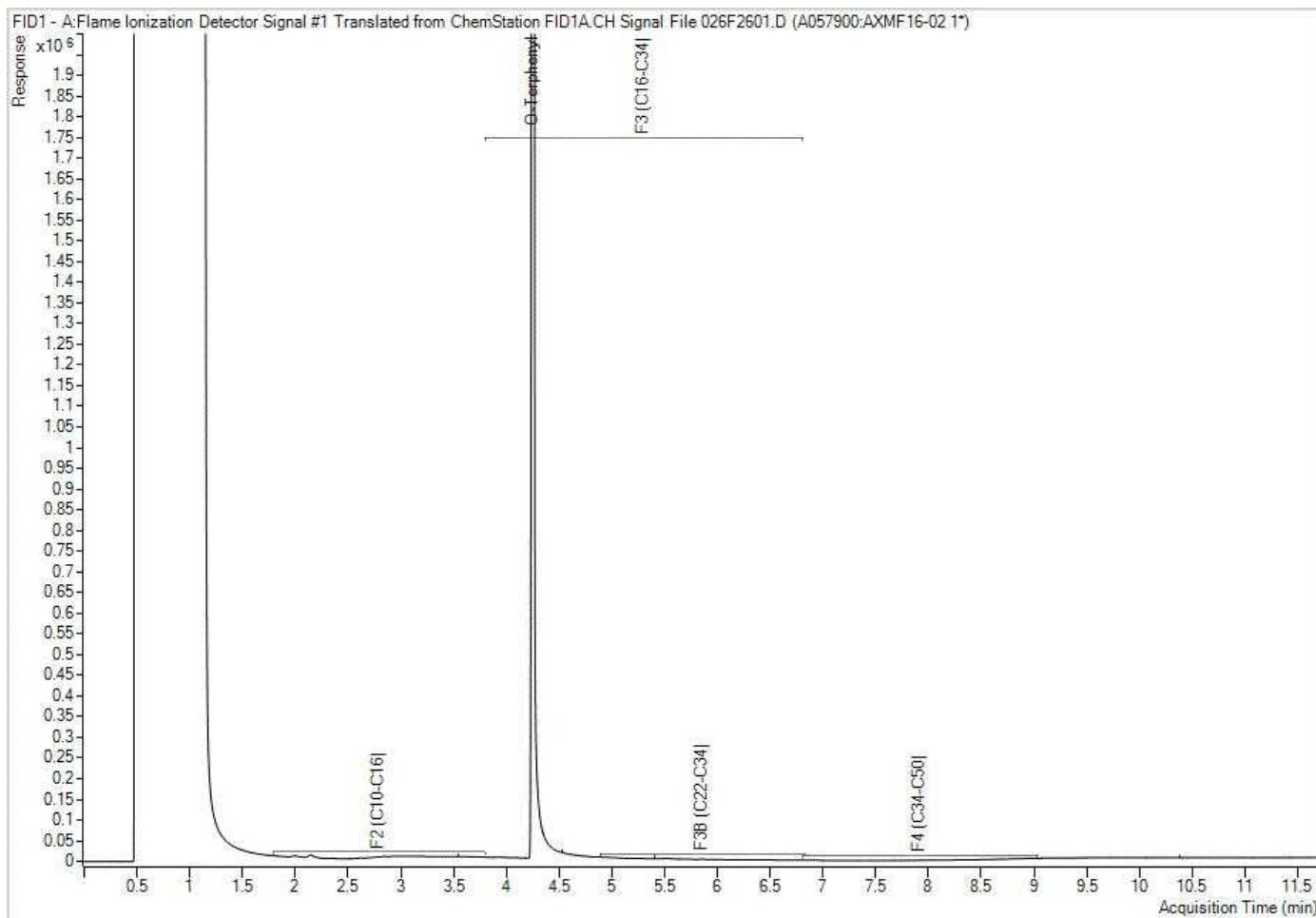



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF13

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-04-4

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**

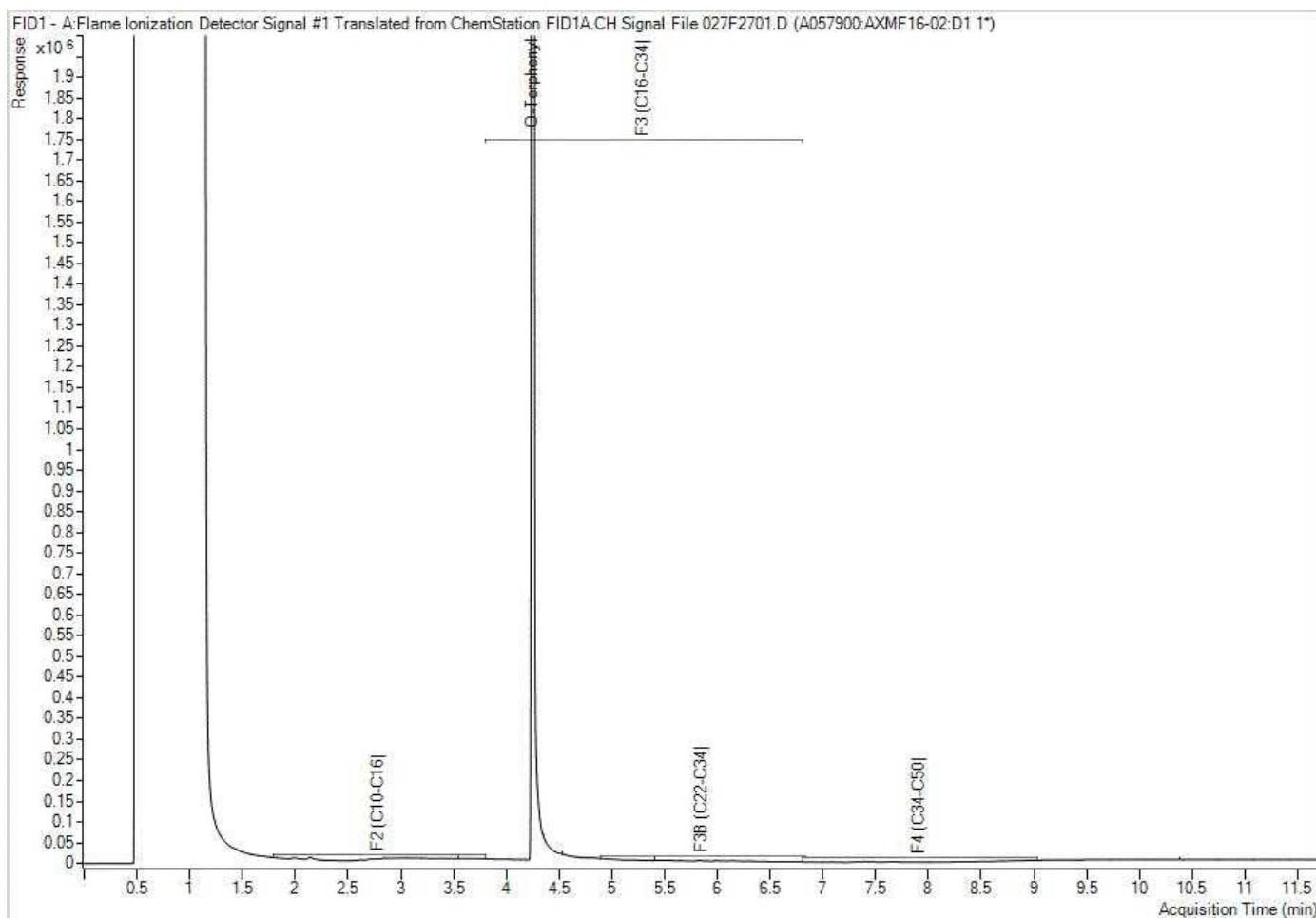



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF16

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-04-7

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**




**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C5E6301  
Report Date: 2025/11/21  
Bureau Veritas Sample: AXMF16 Lab-  
Dup

Stantec Consulting Ltd  
Client Project #: 160923647  
Client ID: BH25-04-7

**Petroleum Hydrocarbons F2-F4 in Soil Chromatogram**



**Note:** This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

## **Appendix F      Quality Assurance / Quality Control**



## QUALITY ASSURANCE / QUALITY CONTROL

The overall data quality objectives (DQO) for the investigation was to collect data that were precise, accurate, reproducible, complete, and suitable for comparison with the Table 2 Site Condition Standard (SCS).

Soil samples were placed into glass sample jars supplied by Bureau Veritas North America Inc. (BV Labs). Sample jars used for organic parameters (e.g., petroleum hydrocarbons (PHC)) were equipped with Teflon lined caps. Samples for analysis of PHC fraction 1 (F1) and benzene, toluene, ethylbenzene and xylenes (BTEX) parameters were collected and placed into containers containing methanol that were provided by the laboratory.

Each sample was labeled with a unique identification number, packed into coolers with ice, and transported to BV Labs under chain of custody documentation. To meet the DQO, quality assurance/quality control (QA/QC) procedures were incorporated into both field and laboratory methods. Efforts were made during sampling to reduce the potential for contamination so as to obtain representative samples. Accordingly, soil sampling was completed using a new pair of disposable nitrile gloves for each sample.

Calibration checks on field instruments were completed by Stantec field personnel prior to use.

As a check on the laboratory analytical methods and on sample precision, the following QC samples were submitted:

- One blind field duplicate soil samples were analyzed as follows:
  - QC-01 from BH25-02-6 for PHC F1 to F4, BTEX, PAHs, organochlorine pesticides, PCBs, metal and inorganic parameters

The blind field duplicate samples were used to assess the precision of the sampling and analytical procedures. Typically, the relative percent difference (RPD) is calculated for the concentrations in the original sample and its duplicate. The RPD was calculated using the following formula:

$$RPD = \left| \frac{C_1 - C_2}{(C_1 + C_2)/2} \right| \times 100$$

Where: C1 is the concentration in the original sample; and  
C2 is the concentration in the sample duplicate.

If the results for either or both the original sample and the duplicate were below the laboratory reporting limits (RLs), the RPD was not calculated. RPDs were only calculated in the event that both analytical results were greater than five times the RL.



The recommended alert criteria from the BV Labs Ontario QA/QC Interpretation Guideline for soil field duplicates is 50% for BTEX, 40% for PAHs, 40% for organochlorine pesticides, 40% for PCBs, 30% for PHCs, 30% for metal and inorganic parameters, and 10% for electrical conductivity.

In addition to the assessment of duplicate samples, BV Labs conducted further internal QA/QC tests, which included replicate sample analyses, process blanks, process recovery and matrix spike analyses. The results of these tests are provided with the laboratory certificates of analysis in **Appendix E**.

### **Evaluation of Laboratory Quality Assurance / Quality Control**

As a first step in the review of the laboratory data, the laboratory QA/QC data were assessed (blanks, duplicates analyses, matrix and blank spikes, surrogate analytical recovery). With the exception of the following, BV Labs did not report any laboratory QA/QC qualifiers.

- For the organochlorine pesticide analysis of samples BH25-02-6 and BH25-04-7, BV Labs reported that detection limits were adjusted for high moisture content.

The above noted qualifier is not expected to have adversely impacted the overall DQO. No other QA/QC issues were noted by BV Labs regarding the analytical results for the soil samples.

### **Evaluation of Field Quality Assurance / Quality Control**

The analytical results for the field duplicate samples are shown in **Table I, Appendix D**. RPDs for parent and field duplicate soil and groundwater samples collected at the Site were either within the alert limits or not calculated because the concentrations were less than the laboratory RLs or less than 5 times the RL in one or both samples with the exception of the following RPDs that were above the alert limits:

- Soil duplicate sample pair BH25-02-6/QC-01: electrical conductivity (RPD of 17% compared to an alert limit of 10%) and barium (RPD of 36% compared to an alert limit of 30%). Elevated RPDs were likely a result of sample heterogeneity. Because the sample RPD results exceeded the alert criteria, these values should be considered to be estimates. As a matter of conservancy, the higher of the two reported concentrations is taken to be indicative of conditions at that location and depth.

### **Conclusions**

Based on the QA/QC evaluation, it was concluded that the DQO for this investigation was satisfied, and that the data were considered acceptable for use in this report.

