

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/

Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (OLT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community &

Residential

Commercial & Institutional

Environmental Restoration

335 Roosevelt Avenue Ottawa, ON

Site Servicing & Stormwater Management Report

335 ROOSEVELT AVENUE

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared for:

UNIFORM URBAN DEVELOPMENTS LTD.

Suite 300, 117 Centrepointe Drive Ottawa, Ontario K2G 5X3

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

June 27, 2025

Novatech File: 110098 Ref: R-2025-48

June 27, 2025

City of Ottawa
Planning and Growth Management Department
Development Review (Urban Services - Central) Branch
Infrastructure Approvals Division
110 Laurier Avenue West, 4th Floor
Ottawa, ON K1P 1J1

Attention: Shawn Wessel, A.Sc.T.,rcji

Project Manager

Reference: 335 Roosevelt Avenue

Site Servicing and Stormwater Management Report

Novatech File No.: 110098

Novatech has prepared this Site Servicing and Stormwater Management Report of behalf of Uniform Urban Developments for 335 Roosevelt Avenue.

This report provides an analysis of sewer capacity (sanitary, storm), water distribution, and stormwater management for the proposed development site.

Contact the undersigned with any question or comments.

Yours truly,

NOVATECH

Lucas Wilson, P. Eng.

Project Engineer | Land Development

L. Whi

TABLE OF CONTENTS

1.0	INTRODUCTION	3
1.1 1.2	Background Proposed Development	3
2.0	GEOTECHNICAL INVESTIGATION	
_		
3.0	STORM SEWER SYSTEM AND STORMWATER MANAGEMENT	5
3.1	STORM SERVICING	5
3.2	STORMWATER MANAGEMENT CRITERIA	
3.3	Pre-Development Conditions	
3.4	ALLOWABLE RELEASE RATES	
3.5	STORMWATER QUANTITY CONTROL	
3.6	SITE GRADING & EMERGENCY OVERLAND FLOW	
3.7	ASSESSMENT OF STORM INFRASTRUCTURE	
4.0	SANITARY SEWER SYSTEM	8
4.1	Sanitary Infrastructure	8
4.2	SANITARY DESIGN PARAMETERS	8
4.3		
	4.3.1 West Building (Phase 1)	
4	4.3.2 East Building (Phase 2)	9
5.0	WATER SUPPLY SYSTEM	10
5.1	WATER INFRASTRUCTURE	10
5.2		
5	5.2.1 Domestic Demands	10
_	5.2.2 Fire Demands	
5.3	HYDRAULIC ANALYSIS	11
6.0	EROSION AND SEDIMENT CONTROL AND DEWATERING MEASURES	12
7.0	MISSISSIPPI-RIDEAU SOURCE PROTECTION PLAN	12
9 N	SHIMMADY AND CONCLUSIONS	12

LIST OF TABLES

Table 1.1	Development Land Use Breakdown
Table 2.1	Summary of Geotechnical Servicing and Grading Considerations
Table 3.1	Stormwater Management Summary
Table 4.1	Sanitary Sewer Design Parameters
Table 5.1	Watermain Design Parameters and Criteria
Table 5.2	Domestic Demand Water Analysis Results Summary
Table 5.3	Fire Fighting Demand Water Analysis Results Summary

LIST OF FIGURES

Figure 1.1	Key Plan
Figure 1.2	Existing Conditions
Figure 1.3	Site Plan
Figure 3.1	Proposed Servicing Layout Plan
Figure 4.1	Sanitary Drainage Area Plan

LIST OF APPENDICES

Appendix A	Correspondence
Appendix B	Stormwater Management Calculations
Appendix C	Sanitary Sewer Design Sheets and Sanitary Calculations
Appendix D	Boundary Conditions, Water Demands and FUS Calculations
Appendix E	Mississippi-Rideau Source Protection Plan

Novatech Page ii

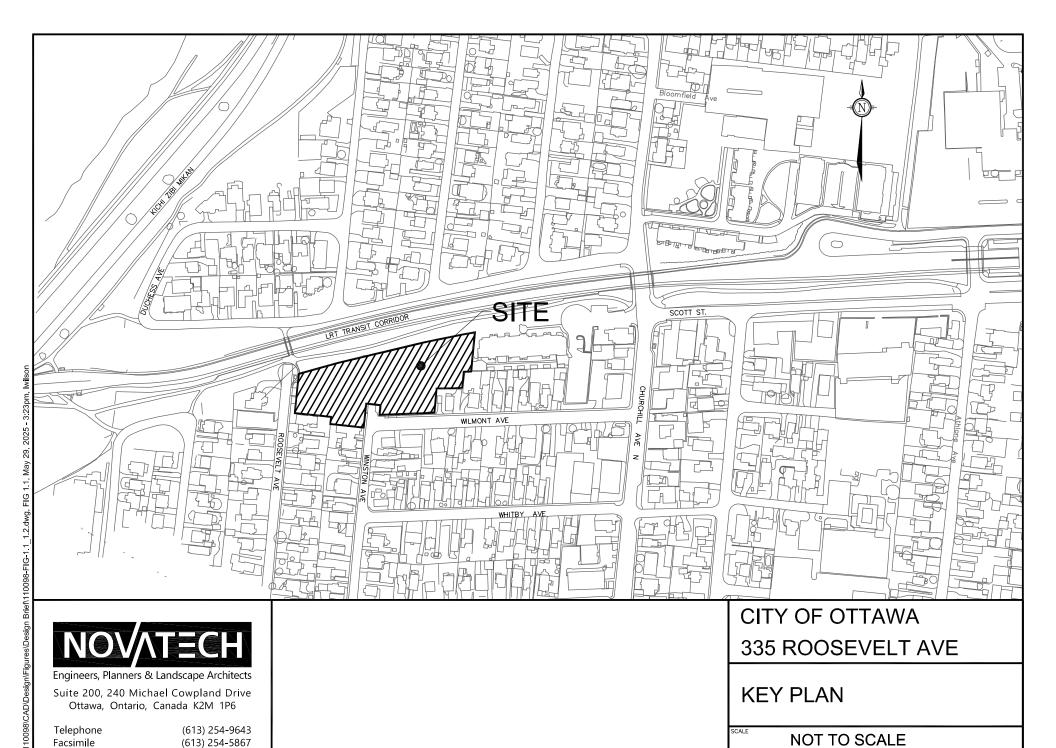
1.0 INTRODUCTION

1.1 Background

This report addresses the approach to site servicing and stormwater management for the development at 335 Roosevelt Avenue (Subject Site), which is being proposed by Uniform Urban Developments Ltd. (Developer).

The Subject Site is located to the north of the Wilmont Avenue and Winston Avenue intersection, as shown on **Figure 1.1** – Key Plan. The site is bound to the north by the LRT Transit Corridor, to the west by Roosevelt Avenue, to the south by existing residences fronting Winston Avenue and Wilmont Avenue, and to the east by an existing apartment building.

The existing land usage consists of vacant land, as shown on **Figure 1.2** – Existing Conditions Plan. The Subject Site is relatively flat.


1.2 Proposed Development

The Subject Site has an area 0.71ha, and the proposed development will be comprised of two condominium towers. The west building consists of 14 floors with a total of 157 units and the east building consists of 13 floors with a total of 160 units as shown in **Table 1.1**. The development will include three levels of underground parking that encompass the majority of the site, with access off Roosevelt Avenue at the west side of the site, as well as access from Wilmont Avenue at the south side of the site. The proposed site plan is shown on **Figure 1.3** – Site Plan. A portion of the site (0.072 ha) will be transferred to the City of Ottawa as a public park; the area of the park is based on 10% of the total site area.

The development will be constructed in two separate phases. The west building will be constructed as part of Phase 1 while the east building will be completed as part of Phase 2.

Table 1.1: Development Land Use Breakdown

Unit Type	Number of Units
Condominium Tower - Building #1 (West)	157
Condominium Tower - Building #2 (East)	160
Total	317

www.novatech-eng.com

Website

1.1
SHT8X11.DWG - 216mmx279mm

110098

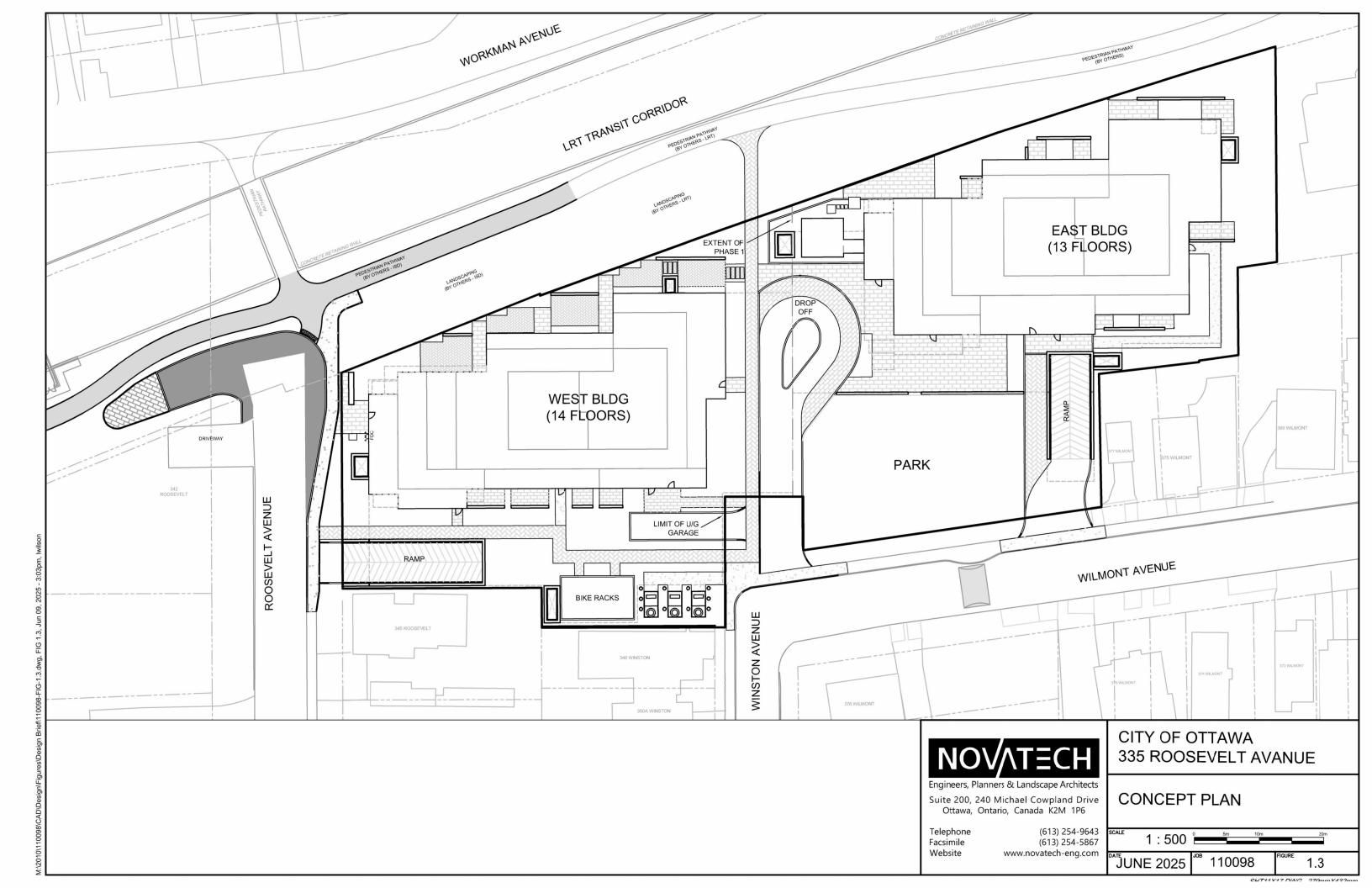
JUNE 2025

Engineers, Planners & Landscape Architects

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6

Telephone Facsimile Website (613) 254-9643 (613) 254-5867 www.novatech-eng.com CITY OF OTTAWA 335 ROOSEVELT AVE

EXISTING CONDITIONS


CALE

NOT TO SCALE

JUNE 2025

110098

1.2

2.0 GEOTECHNICAL INVESTIGATION

Paterson Group Inc. (Paterson) conducted a geotechnical investigation in support of the proposed residential development:

Geotechnical Investigation – Proposed High-Rise Development 335 Roosevelt Avenue, Ottawa, Ontario; Report No. PG2178-1 (revision 4), Paterson Group Inc., May 28, 2025.

Based on the geotechnical study, it is not anticipated that there will be any significant geotechnical concerns with respect to servicing and developing the site. It should be noted that protection and monitoring of the existing 1200mm diameter watermain and the West Nepean Collector, running parallel to the northern property line of the Subject Site, will be required during the bedrock removal (refer to the geotechnical study for further details). A summary of the geotechnical report findings is provided in **Table 2.1** below.

Table 2.1: Summary of Geotechnical Servicing and Grading Considerations

Parameter	Summary		
Sub-Soil Conditions	Silty sand, silty sand with some gravel and clay, silty clay or silt, and bedrock		
Grade Raise Restriction	N/A		
Groundwater Considerations	Low groundwater level (3.1m to 6.5m depths). It is anticipated that groundwater infiltration into the excavations should be relatively low to moderate, and controllable using open sumps.		
Bedrock	Shallow bedrock encounter at boreholes (0.5m to 3m depths) Line drilling of the perimeter in conjunction with controlled rock blasting and/or hoe ramming expected.		
Pipe Bedding / Backfill	Pipe Bedding Pipe Cover Backfill	150 mm Granular A 300 mm Granular A Native Material	
Pavement Structure (Car Only Parking Areas)	50mm Wear Course 150mm Base 300mm Subbase	(SuperPave 12.5) (Granular A) (Granular B Type II)	
Pavement Structure (Access Lanes)	40mm Wear Course 50mm Binder Course 150mm Base 400mm Subbase	(SuperPave 12.5) (SuperPave 19.0) (Granular A) (Granular B Type I or II)	

3.0 STORM SEWER SYSTEM AND STORMWATER MANAGEMENT

3.1 Storm Servicing

There is an existing 450mm diameter storm sewer within Wilmont Avenue.

The proposed development will be serviced with two (2) 250mm diameter storm services connected to the existing 450mm diameter storm sewer in Wilmont Avenue which ultimately outlets to the West Transit Storm and outlets to the Ottawa River near Onigam Street. Each building will include a separate cistern that will be pumped to the proposed 250mm diameter storm services.

Refer to **Figure 3.1** – Proposed Servicing Layout Plan for an illustration of the proposed storm service, and existing storm sewers.

Foundation Flows

Flows from the foundation drainage system will be pumped to the proposed storm services from the building sump pit. The foundation drain connection will be made downstream of any proposed stormwater controls. The exact details of the foundation drain connection will be provided by the mechanical consultant.

3.2 Stormwater Management Criteria

The Subject Site is located within the Ottawa River West subwatershed, which falls under the jurisdiction of the Rideau Valley Conservation Authority (RVCA). The following stormwater management criteria has been developed based on the criteria in the Ottawa Sewer Design Guidelines, subsequent Technical Bulletins, and the pre-consultation meeting discussions. As such, the City will require that on-site stormwater quantity control be implemented to control post-development stormwater discharge for any storm events greater than the 5-year, up to and including the 100-year event. No on-site stormwater quality control is required for the site.

3.3 Pre-Development Conditions

The Subject Site is currently vacant land. The topographical survey plan prepared by Annis O'Sullivan Vollebekk Ltd indicates that under existing conditions, the site sheet drains to the north towards the LRT Transit Corridor. There is currently no storm sewer system on-site, as such, the majority of the site drainage was previously collected in the existing low area/swale located within the Transitway property limits (LRT Transit Corridor). Refer to **Figure 1.2** – Existing Conditions.

3.4 Allowable Release Rates

The existing 450mm storm sewer in Wilmont Avenue was not designed to accommodate runoff from the entire site area of 0.71 ha. The allowable release rate of 29.2 L/s is based on an area of 0.39 ha, a runoff coefficient (C) of 0.45 and a rainfall intensity of 59.92 mm/hr. Refer to **Appendix B** for the MOE Certificate of Approval, the storm sewer design sheet, and the Drainage Area Plan for the existing 450mm storm sewer in Wilmont Avenue.

3.5 Stormwater Quantity Control

Stormwater runoff from the Subject Site will consist of both uncontrolled and controlled flows. Stormwater quantity control will be provided using two (2) cisterns, one for each Phase. Phase 1 will be directed to cistern #1 while Phase 2 will be directed to cistern #2. The cisterns will be located within the underground parking garage, extending from P1 down to P3.

SWM Modelling

PCSWMM was used to confirm the required storage volumes for each storm event and ensure the allowable release rate is met.

The SWM modelling was completed using the 3-hour Chicago Storm Distribution (10-minute time step). The design storms were generated using IDF curves from the City of Ottawa Sewer Design Guidelines (October 2012).

Calculation Parameters

Refer to drawing **110098-STM** – Post-Development Storm Drainage Area Plan and **Appendix B** for details on the drainage areas. A description of each area is as follows:

B-01 and B-02: Areas consist of landscape areas along the site boundary. These areas will remain uncontrolled and drain to the existing catch basins within Roosevelt Avenue and the LRT corridor per existing conditions. The calculated post-development flows are a significant decrease compared to the entire existing site sheet draining uncontrolled, thus the small uncontrolled release rate should not adversely affect the downstream public sewers, refer to **Appendix B** for details.

B-03: Area consists of an access road to the underground parking garage ramp below the east building (Phase 2). This area will flow uncontrolled and drain to the existing catch basins within Wilmont Avenue. The flow from this area will be included in the minor system allowable release rate to the Wilmont storm sewer.

A-01 to A-03: Areas consist of the west building rooftop, parking/access road and landscaped areas. These areas will be directed internally to cistern #1 as part of Phase 1. Cistern #1 will include a pump discharging flows to the Wilmont storm sewer.

A-04 and A-05: Areas consist of the east building rooftop, access road and landscaped areas. These areas will be directed internally to cistern #2 as part of Phase 2. Cistern #2 will include a pump discharging flows to the Wilmont storm sewer.

A-06: Area consists of public park land. This area will be captured by CB3 complete with an inlet control device (ICD) and directed to the Wilmont storm sewer.

<u>Cistern Design</u>

Flows from both cisterns will be controlled by pump which will convey flows to the proposed storm services that drain by gravity to the existing storm sewer system in Wilmont Avenue. Storage will be provided for storms up to and including the 100-year+20% event within the cisterns. Both cisterns will include a 150mm internal overflow located above the 100-yr+20% water elevation, and vented lids are proposed on the tanks for maintenance access and emergencies which will convey flows directly to the Wilmont Avenue right-of-way. The proposed pump and back-up power system will be designed by the mechanical consultant. The pumps will be designed to convey flows at a constant rate of **11.4L/s** for cistern #1 and **6.9 L/s** for cistern #2. Refer to drawing **110098-GP** – General Plan of Service for details on the cisterns.

Table 3.1 below summarizes the total post-development flow (uncontrolled + controlled) from the Subject Site for the 5-year and 100-year design events, and storage required / provided for each cistern.

4.8

4.8

29.2

29.2

B-03

5-Year Storm Event 100-Year Storm Event Provided Area Area 1:5 Year Weighted Vol Release Reg'd Vol Release Reg'd Vol ID (ha) Cw (cu.m) (L/s) (cu.m) (L/s) (cu.m) Controlled Flow A-01 to A-03 0.296 0.78 11.4 51.3 11.4 121.0 181.6 (Cistern #1) A-04. A-05 0.225 0.77 6.9 57.4 88.3 194.7 6.9 (Cistern #2) A-06 (Park) 0.072 0.40 5.8 1.0 6.1 11.0 376.3 **Total Controlled Flow to Wilmont Ave** 24.1 24.4 109.7 220.3 Uncontrolled Flow 0.010

Table 3.1: Stormwater Management Summary

Total Uncontrolled Flow to Wilmont Ave

Total Flow to Wilmont Ave

Allowable Flow to Wilmont Ave

As shown in the table above, both cisterns provide sufficient volume to contain the 100-year storm event. Additional volume has been provided to contain the 100-year + 20% storm event, refer to 110098-GP for cistern details and water elevations for the 2-year and 100-year + 20% events.

2.6

2.6

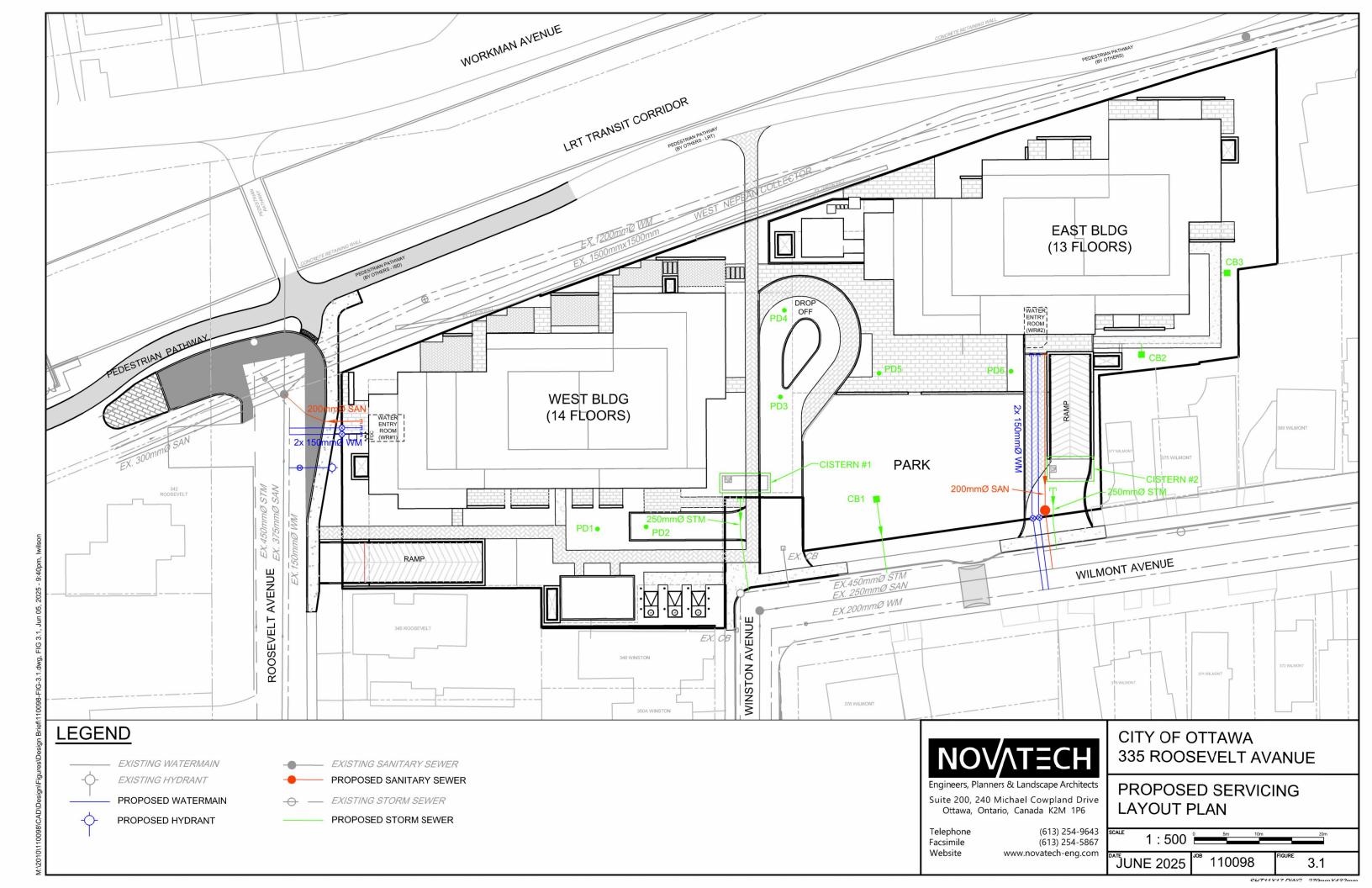
26.7

29.2

Site Grading & Emergency Overland Flow 3.6

0.76

As described above the existing site is currently graded to direct runoff north towards the low area/swale within the landscape area between the proposed site and LRT corridor. The proposed design intent for the site is to contain and direct all stormwater runoff to the on-site area drains while minimizing uncontrolled direct runoff from the site. The site has two accesses to the underground garage, one from Roosevelt Avenue and one from Wilmont Avenue. Elevations along the existing edge of roadways will be matched into, thus minimizing any disturbances to the surrounding roadways.


In the case of a major rainfall event exceeding the design storms or blockage of the area drains, stormwater will pond to a maximum depth of 0.30m before cascading off-site towards Wilmont/Winston Avenue or the LRT corridor. The emergency overland flow route is shown on **110098-STM** – Post-Development Storm Drainage Area Plan.

Refer to 110098-GR - Grading Plan for proposed site grading, grading tie-ins, spill elevations, and the emergency overland flow route.

3.7 **Assessment of Storm Infrastructure**

As outlined in the above sections, all post-development runoff in excess of the allowable will be stored and controlled on-site prior to being released into the Wilmont Avenue sewer. This will be done using cisterns located in the underground parking garage adjacent to Wilmont Avenue.

Page 7 Novatech

4.0 SANITARY SEWER SYSTEM

4.1 Sanitary Infrastructure

The proposed development will be serviced with two (2) 200mm diameter sanitary services. The west building sanitary service will be connected to the existing SANMH 115 in Roosevelt Avenue, directing flows to an existing 450mm sanitary sewer which outlets to the West Nepean Collector. The east building sanitary service will be connected to the existing 250mm sanitary sewer in Wilmont Avenue.

Refer to **Figure 3.1** – Proposed Servicing Layout Plan for an illustration of the proposed sanitary service, and existing sanitary sewers.

4.2 Sanitary Design Parameters

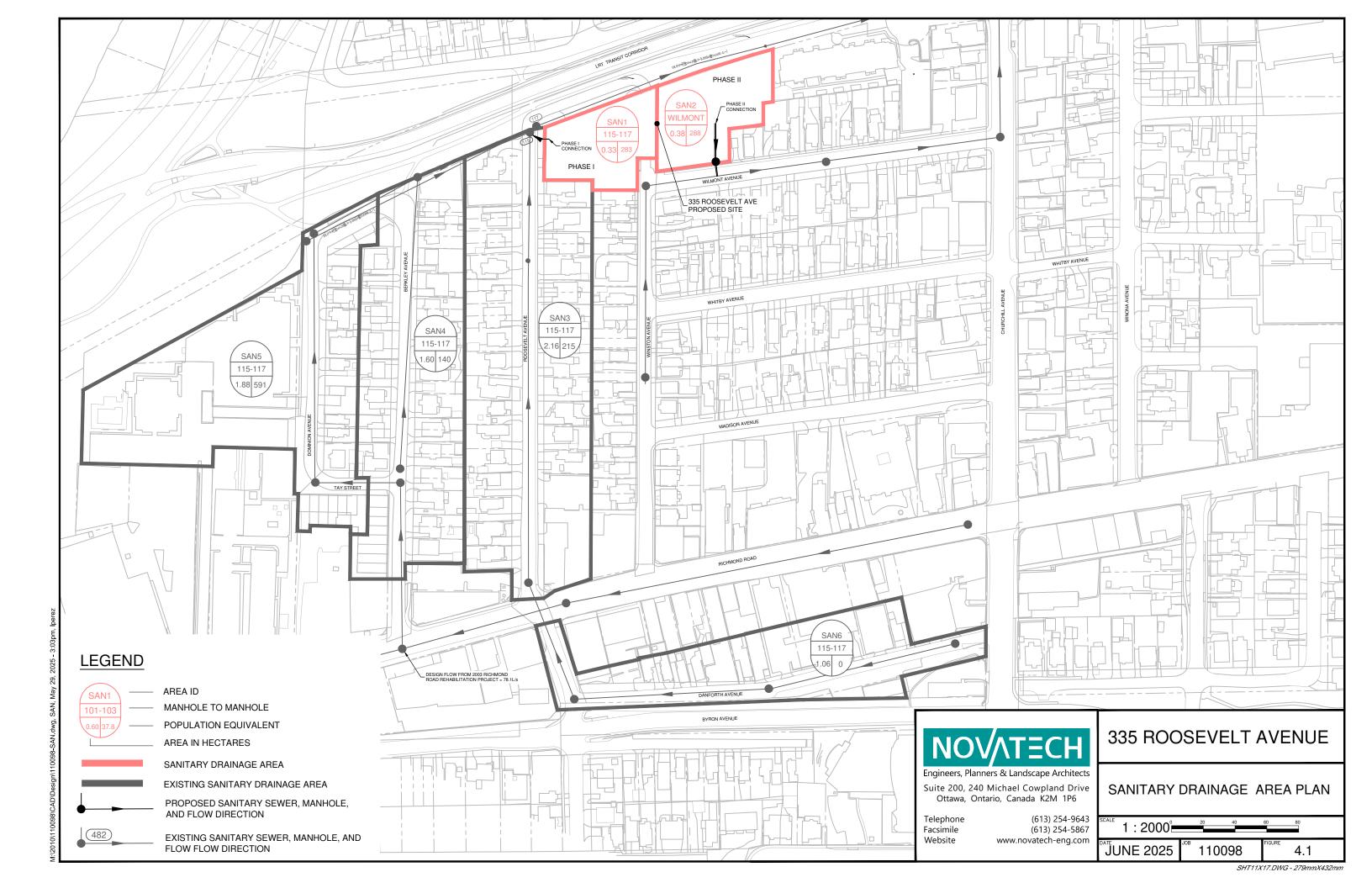
The peak design flow parameters in **Table 4.1** have been used in the sewer capacity analysis. Unit and population densities and all other design parameters are specified in the OSDG.

Table 4.1: Sanitary Sewer Design Parameters

Design Component	Design Parameter
Unit Population:	
Single Family	3.4 people/unit (used for existing)
Semi-detached/Row Townhome	2.7 people/unit (used for existing)
Average Apartment	1.8 people/unit
Residential Flow Rate:	
Design	280 L/cap/day
Residential Peaking Factor	Harmon Equation (min=2.0, max=4.0)
Harmon Correction Factor:	
Design	0.8
Extraneous Flow Rate:	
Design	0.33 L/s/ha
Minimum Pipe Size	200 mm (Res)
Minimum Velocity ¹	0.6 m/s
Maximum Velocity	3.0 m/s
Minimum Pipe Cover	2.5 m (Unless frost protection provided)

4.3 Sanitary Sewer Analysis

4.3.1 West Building (Phase 1)


Existing sanitary flows upstream of City of Ottawa SANMH 115 in Roosevelt Avenue were analyzed to determine available capacity for additional flows from the proposed development. Two existing sanitary sewers enter SANMH 115, the 375mm diameter sewer from Roosevelt Avenue and the 300mm diameter sewer from Berkley Avenue. The analysis includes Roosevelt Street, Danforth Avenue, Berkley Avenue, Dominion Avenue, Tay Street and a portion of Richmond Road. Flows from Richmond Road were taken from the 2003 Richmond Road rehabilitation project design sheet located in **Appendix C**. Refer to **Figure 4.1** - Sanitary Drainage Area Plan below for reference.

Sanitary flow from Phase 1 is calculated to be 3.3 L/s. The sanitary flows entering SANMH115 from Berkley Avenue and Roosevelt Avenue are 90 L/s.

Combining the wastewater flow entering City of Ottawa SANMH 115, the total flow conveyed through the existing 450mm diameter sewer connecting to the West Nepean Collector will be 93.3 L/s (3.3 L/s + 90.0 L/s). A 450mm diameter storm sewer at a minimum design slope of 0.2% has a capacity of 133.0 L/s, which exceeds the projected total flows (existing and proposed) to the 450mm diameter sewer discharging to the West Nepean Collector. Refer to **Appendix C** for detailed calculations.

4.3.2 East Building (Phase 2)

The Wilmont sanitary sewer and downstream sanitary system was analyzed as part of the Churchill Avenue/Scott Street Rehabilitation Project. The analysis included sanitary flows from 335 Roosevelt Avenue based on an overall area of 0.56 ha and a population of 403.2 ppl resulting in a total flow of 6.7 L/s. Sanitary flows from Phase 2 is calculated to be 3.4 L/s, a reduction of 3.3 L/s. The previous analysis included a 225mm sanitary sewer within Wilmont Avenue running at 71% capacity directly downstream of the 335 Roosevelt Avenue sanitary connection. As part of the Road and Sewer Renewal project recently completed for Wilmont Avenue, the sanitary sewer within Wilmont has been increased to a 250mm sanitary sewer, providing increased capacity. Refer to **Appendix C** for detailed calculations and previous report excerpts.

5.0 WATER SUPPLY SYSTEM

5.1 Water Infrastructure

The proposed development will be serviced with four (4) 150mm diameter watermains. The west building will have two connections to the existing 150mm diameter watermain in Roosevelt Avenue and the east building will have two connections to the existing 200mm diameter watermain in Wilmont Avenue.

Refer to **Figure 3.1** – Proposed Servicing Layout Plan for an illustration of the proposed watermain services, and existing watermains.

5.2 Watermain Design Parameters and Demands

The domestic and fire fighting demand design parameters, and system pressure design criteria are outlined in **Table 5.1** below. Unit and population densities and all other design parameters and system pressure design criteria are specified in the Ottawa Water Distribution Guidelines. The system pressure design criteria are based on a conservative approach that considers three possible scenarios.

Table 5.1: Watermain Design Parameters and Criteria

Domestic Demand Design Parameters	Design Parameters
Unit Population:	
Average Apartment	1.8 people/unit
Average Day Residential Demand (AVDY)	280 L/c/d
Maximum Day Demand (MXDY)	2.5 x AVDY
Peak Hour Demand (PKHR)	2.2 x MXDY
Fire Demand Design	Design Flows
Fire Demand (FF)	83 L/s per FUS
System Pressure Criteria Design Parameters	Criteria
Maximum Dragging (AVDV) Condition	< 80 psi occupied areas (552 kPa)
Maximum Pressure (AVDY) Condition	< 100 psi unoccupied areas (690 kPa)
Minimum Pressure (PKHR) Condition	> 40 psi (276 kPa)
Minimum Pressure (MXDY + FF) Condition	> 20 psi (138 kPa)

5.2.1 Domestic Demands

Based on the above parameters, the theoretical water demands from the proposed development were calculated and are as follows:

- Population = 282.6 persons (Phase 1), 288 persons (Phase 2)
- Average Day Demand = 0.916 L/s (Phase 1), 0.933 L/s (Phase 2)
- Maximum Day Demand = 2.29 L/s (Phase 1), 2.333 L/s (Phase 2)
- Peak Hour Demand = 5.037 L/s (Phase 1), 5.133 L/s (Phase 2)

Refer to **Appendix D** for water demand calculations.

5.2.2 Fire Demands

The required fire demand for the Subject Site was calculated using the Fire Underwriters Survey (FUS). The fire flow supply required was calculated to be 83 L/s for both buildings.

Refer to **Appendix D** for a copy of the FUS fire flow calculations.

5.3 Hydraulic Analysis

This water demand information was submitted to the City and boundary conditions provided from the City's water model. The boundary conditions were used to complete a hydraulic analysis to confirm the existing water infrastructure has capacity for the proposed development. The hydraulic analysis was completed using EPANET, to confirm that the existing water infrastructure will meet the required pressures in the average day and peak hour conditions under domestic use and during maximum day plus fire flow conditions. Refer to **Table 5.2** and **Table 5.3** for the results of the hydraulic analysis for the domestic demands.

Table 5.2 Summary of Hydraulic Model Results – Peak Hour Demand

Operating Condition	Maximum Pressure	Minimum Pressure
10.17 L/s through system	407.70 kPa (WR1)	407.02 kPa (WR2)

Table 5.3 Summary of Hydraulic Model Results – Max Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure
1.849 L/s through system	470.59 kPa (WR1)	468.53 kPa (WR2)

Therefore, the existing watermain along Roosevelt Avenue and Wilmont can provide adequate pressures for domestic demands. Note that due to the size of the buildings, booster pumps will be required to provide adequate service pressure on the upper floor levels.

For fire fighting purposes, the proposed buildings are to be sprinklered with fire department connections (FDC). In addition to the FDC connections, there are three existing fire hydrants in the vicinity of the site; located at 335 Roosevelt Avenue, 349 Winston Ave, and 364 Wilmont Avenue and one (1) proposed hydrant located at the entrance off Wilmont Avenue and Winston Avenue. Refer to **Table 5.4** for the results of the hydraulic analysis for fire fighting demands.

Table 5.4 Summary of Hydraulic Model Results - Max Day + Fire Flow

Operating Condition	83 L/s at West Building	83 L/s at East Building	
4.623 L/s through system	356.40 kPa (WR1)	333.44 kPa (WR2)	

Therefore, based on the boundary condition information provided by the City, the existing watermain infrastructure can provide adequate flow and pressure for domestic demand and fire protection for the proposed development. Refer to **Appendix D** for water demands, fire flow calculations, and boundary conditions.

6.0 EROSION AND SEDIMENT CONTROL AND DEWATERING MEASURES

Erosion and sediment control measures will be implemented in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Details will be provided on an Erosion and Sediment Control Pla. Erosion and sediment control measures will include:

- Placement of filter fabric under all catch basin and maintenance hatches;
- Tree protection fence around the trees to be maintained;
- Silt fence around the area under construction placed as per OPSS 577 / OPSD 219.110;
- Mud mats located at site entrances.

The erosion and sediment control measures will need to be installed to the satisfaction of the engineer, the City, the Ontario Ministry of Environment Conservation and Parks (MECP), and the RVCA, prior to construction and will remain in place during construction until vegetation is established. The erosion and sediment control measure will also be subject to regular inspection to ensure that measures are operational.

Prior to construction, a Permit-To-Take-Water (PTTW) or Environmental Activity and Sector Registry (EASR) application will be submitted to the Ministry of the Environment, Conservation and Parks (MECP). The permit will outline the water taking quantity, and location/quality of the discharge.

7.0 MISSISSIPPI-RIDEAU SOURCE PROTECTION PLAN

The Mississippi-Rideau Source Protection Plan has been implemented in order to oversee the source protection program in the Mississippi-Rideau Source Protection Region, in which the proposed development is located. Please refer to the Source Protection figures provided in **Appendix E** and the Source Protection policy screening correspondence provided in **Appendix A**. Although the location of the Subject Site is within the Surface Water Intake Protection Zone for the Ottawa River (Britannia) Intake and the Highly Vulnerable Aquifer source protection areas, the proposed development is not considered to cause a significant drinking water threat.

8.0 SUMMARY AND CONCLUSIONS

This report demonstrates that the proposed development can be adequately serviced with storm and sanitary sewers and watermain. Key findings are summarized below:

Stormwater Management:

- The proposed development will be serviced with two 250mm diameter storm services (one service per cistern) connected to the existing 450mm diameter storm sewer in Wilmont Avenue. The existing storm sewers have adequate capacity to service the proposed development.
- Flows from the foundation drainage system will be pumped to the proposed storm services from the building sump pit. The foundation drain connection will be made downstream of any proposed stormwater controls.
- Stormwater management will be provided to adhere to the allowable release rates. Quantity
 control will be achieved via separate cisterns for the west and east buildings. Quality control
 is not required.

Wastewater Collection System:

• Each building will be serviced with a 200mm diameter sanitary service. The west building (Phase 1) will be connected to the existing SANMH 115 directly upstream of the 450mm diameter sanitary sewer within Roosevelt Avenue. The east building (Phase 2) will be connected to the existing 250mm sanitary sewer in Wilmont Avenue. The existing sanitary sewers have adequate capacity to service the proposed development.

Water Supply System

- Each building will be serviced with two 150mm diameter watermains. The west building will be connected to the existing 150mm diameter watermain in Roosevelt Avenue. The east building will be connected to the existing 200mm diameter watermain in Wilmont Avenue.
- The existing water supply system has adequate capacity to meet system pressure for the developments domestic and fire demands.
- Fire fighting protection is provided by the existing hydrants, an automated sprinkler system, and the fire department connections.

Erosion and Sediment Control

• Erosion and sediment control measures will be implemented in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987).

This report is respectfully submitted for review and subsequent approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Lucas Wilson, P.Eng. Project Engineer I Land Development

Reviewed by:

Mark Bissett, P.Eng. Senior Project Manager | Land Development

Site Se.	rvicina and	d Stormwater	r Management	Report

Appendix A Correspondence

File No.: PC2024-0041

March 11, 2024

Jacob Bolduc
Fotenn Planning + Design
Via email: bolduc@fotenn.com

Subject: Phase 2 Pre-Consultation: Meeting Feedback

Proposed Site Plan Control Application – 335 & 339 Roosevelt / 344

Winston / 379 & 389 Wilmont

Note: Official Plan and Zoning By-law Amendment requirement identified during Phase 2 discussion. See Planning Comments 1 & 2.

Please find below information regarding next steps as well as consolidated comments from the above-noted pre-consultation meeting held on February 28, 2024.

Pre-Consultation Preliminary Assessment

1 1 1	2 □	ว □	1 ×	5 🗆
I 🗀 🗎	∠ ⊔	J	T	J

One (1) indicates that considerable major revisions are required while five (5) suggests that the proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

Next Steps

- 1. A review of the materials submitted for the above-noted pre-consultation has been undertaken and staff are satisfied that the information is consistent with previous direction provided and sufficient to move to a Phase 3 pre-consultation.
- Please note that if your development proposal changes significantly in scope, design, or density between the Phase 2 pre-consultation review and Phase 3 preconsultation submission, you may be required to repeat the Phase 2 preconsultation process.
- 3. In your Phase 3 pre-consultation submission, please ensure that all comments or issues detailed herein are addressed. A detailed cover letter stating how each issue has been addressed must be included with the submission materials. Please coordinate the numbering of your responses within the cover letter with the comment number(s) herein. Please note the comments below concerning a Phase 3 for the OPA/ZBLA and the subsequent Phase 3 for the Site Plan.

Supporting Information and Material Requirements

- 1. The attached **Study and Plan Identification List** outlines the information and material that has been further identified and/or confirmed, during this phase of preconsultation, as <u>required</u> (R) or <u>advised</u> (A) as part of a future complete application submission.
 - a. Note: Separate study and plan identification lists have been provided for the respective OPA/ZBLA and Site Plan applications.
 - b. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on Ottawa.ca. These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.

Planning

- 1. Process/Applications:
 - a. Zoning By-law Amendment and Official Plan Amendment Applications are required to address the proposed increased heights.
 - b. Please proceed with a Phase 3 submission for the ZBA/OPA based on the attached SPIL specific to the ZBA/OPA.
 - c. Once the Zoning and OPA is final and binding, you will submit your Phase 3 for the Site Plan.
- 2. Official Plan and Zoning By-law Amendment applications.
 - a. During the meeting, the applicant team expressed concern with the requirement of another Official Plan and Zoning by-law amendment given the file history, and the notion that this is only being required to accommodate the City's request to take parkland as opposed to cash-inlieu.
 - b. Staff direction: Staff appreciate the collobration and response to the Phase 1 pre-consultation as it relates to the requirement for parkland. Appreicating that the development of the site has been through four OMB/OLT hearings, all with Council approval, this matter was discussed internal and it has been decided that the OPA/ZBLA applications will be City-intiated. Authorization on this approach has been confirmed with the Director of Planning. However, as noted above, the submission requirements are subject to a phase 3 pre-consultation, and all supporiting material for these applications are to be completed and provided by the applicant team. The City will not start the city-initated applications until this is complete.

3. Surface Parking Lot Comments:

a. The low-rise buildings, especially the one that was located on the southwestern side, offered built form transition to the low-rise developments to the south. The Secondary Plan has language that requires built form transition or some form of natural or built buffer.

Presently, the current surface parking lot configuration does not appear to beachieving that objective. We'd ask that you consider removing this parking lot in favour of at-grade amenity with trees along southern property line.

b. Please provide a sidewalk connection between north Wilmont sidewalk and what is presently shown as a surface parking area, to Winston.

4. Ramp/Park Comments:

- a. Regarding the ramp on Wilmont, we ask that you consider some alternative locations/configurations, such as internal to the site. We're looking for a park that is connected to both the community and proposed development, and a ramp location that supports those objectives while being compatible with the adjacent low-rise.
- b. Please consider sightlines of vehicles exiting the ramp especially considering it is located adjacent to a park.

5. Other Comments:

- a. Please provide short-term bike parking options at-grade.
- b. We are concerned with the number of parking spaces being proposed, especially for a development who's heights were rationalized through its proximity to the LRT station. Staff fail to find rationale in further increasing the amount of parking via a surface parking area, at the detriment of the site's aesthetics.
- c. We note on the submitted plans that there is a large reduction in bike parking. However, at the information session there was mention of a 1:1 commitment. Please revise plans to reflect that and provide detail. With the City-initiated zoning, we would be recommending an increase in the bicycle parking rate to reflect the 1:1.

Urban Design

Comments:

6. The following elements of the preliminary design are appreciated:

- a. Addition of the parkland.
- b. Location of the additional height on the west tower.
- 7. The following elements of the preliminary design are of concern:
 - a. Location and interface of the ramp adjacent to the City park.
 - b. Shadow impacts of additional heights.
 - c. Vegetative screening around both ramps when located adjacent to residential properties.
 - d. Potential conflict with pedestrian movement between buildings from the MUP to the north and the community to the south with access to the future City park.

Engineering

Comments:

8. The Stormwater Management Criteria, for the subject site, is to be based on the following:

Water Quantity Control: In the absence of area specific SWM criteria please control post-development runoff from the subject site, up to and including the 100-year storm event, to a pre-development level of 5-year. The pre-development runoff coefficient will need to be determined as per existing conditions but in no case more than 0.5. [If 0.5 applies it needs to be clearly demonstrated in the report that the pre-development runoff coefficient is greater than 0.5]. The time of concentration (T_c) used to determine the pre-development condition should be calculated. To should not be less than 10 min. since IDF curves become unrealistic at less than 10 min; T_c of 10 minutes shall be used for all post-development calculations].

Any storm events greater than the established **5-year allowable** release rate, up to and including the **100-year storm event**, shall be detained on-site. The SWM measures required to avoid impact on downstream sewer system will be subject to review.

Water Quality Control: Not required if there will be no surface drainage capture/control infrastructure such as a catch basin, catch basin with ICD.

9. Water Boundary condition requests must include the location of the service (map or plan with connection location(s) indicated) and the expected loads required by the proposed development, including calculations. Please provide the following information:

a. Location of service
Type of development and the amount of fire flow required (as per FUS).
Average daily demand: ____ l/s.
Maximum daily demand: ____ l/s.
Maximum hourly daily demand: ____ l/s.

10. Water

A 152 mm dia. UCI watermain (1931) is available within Roosevelt Ave.

A 152 mm dia. UCI watermain (1931) is available within Winston Ave & Wilmont Ave.

- a. Water Supply Redundancy: Residential buildings with a basic day demand greater than 50m3/day (0.57 L/s) are required to be connected to a minimum of two water services separated by an isolation valve to avoid a vulnerable service area as per the Ottawa Design Guidelines - Water Distribution, WDG001, July 2010 Clause 4.3.1 Configuration. The basic day demand for this site not expected to exceed 50m3/day.
- b. Please review Technical Bulletin ISTB-2018-02, maximum fire flow hydrant capacity is provided in Section 3 Table 1 of Appendix I. A hydrant coverage figure shall be provided and demonstrate there is adequate fire protection for the proposal. Two or more public hydrants are anticipated to be required to handle fire flow.
- c. Existing residential service(s) to be blanked at the main.

11. Sewer (sanitary and storm)

A 450 mm dia. CONC Sanitary sewer (1930) is available within Roosevelt Ave.

A 450 mm dia. CONC Storm sewer (UNK) is available within Roosevelt Ave.

A 225 mm dia. CONC Sanitary sewer (1989) is available within Winston Ave.

A 375 mm dia. CONC Storm sewer (UNK) is available within Winston Ave.

A 225 mm dia. CONC Sanitary sewer (1932) is available within Wilmont Ave.

A 450 mm dia. CONC Storm sewer (1989) is available within Wilmont Ave.

Please see below for additional sewer and stormwater requirements:

a. Capacity – Please provide proposed sanitary demands to verify for any capacity constraints.

- b. A storm sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) Monitoring Devices.
- c. Sanitary sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) Monitoring Devices.
- d. Document how any foundation drainage system will be integrated into the servicing design and show the positive outlet on the plan. Foundation drainage is to be independently connected to sewer main unless being pumped with appropriate back up power, sufficient sized pump and back flow prevention. It is recommended that the foundation drainage system be drained by a sump pump connection to the storm sewer to minimize risk of basement flooding as it will provide the best protection from the uncontrolled sewer system compared to relying on the backwater valve.
- e. Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s to reduce the likelihood of plugging.
- f. Please provide a Pre-Development Drainage Area Plan to define the predevelopment drainage areas/patterns. Existing drainage patterns shall be maintained and discussed as part of the proposed SWM solution.
- g. Post-development site grading shall match existing property line grades to minimize disruption to the adjacent residential properties. A topographical plan of survey shall be provided as part of the submission and a note provided on the plans.
- h. There must be at least **15cm of vertical clearance** between the spill elevation and the ground elevation at the building envelope that is in proximity of the flow route or ponding area. The exception in this case would be at reverse sloped loading dock locations. At these locations, a minimum of 15cm of vertical clearance must be provided below loading dock openings. Ensure to provide discussion in report and ensure grading plan matches if applicable.
- i. **Underground Storage:** Please note that the Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e., parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.
- j. When underground storage is used, the release rate fluctuates from a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate equal

to 50% of the peak allowable rate shall be applied to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate.

- k. If there is a disagreement from the designer regarding the required storage, the City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modellers in the Water Resources Group.
- I. Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self-cleansing), chart of storage values, length, width and height, capacity, entry ports (maintenance) etc. UG storage to provide actual 2- and 100-year event storage requirements.
- m. Regarding all proposed UG storage, ground water levels (and in particular HGW levels) will need to be reviewed to ensure that the proposed system does not become surcharged and thereby ineffective.
- n. Modeling can be provided to ensure capacity for both storm and sanitary sewers for the proposed development by City's Water Distribution Dept. Modeling Group, through PM and upon request.
- o. If rooftop control and storage is proposed as part of the SWM solutions sufficient details (Cl. 8.3.8.4) shall be discussed and document in the report and on the plans. Roof drains are to be connected downstream of any incorporated ICDs within the SWM system and not to the foundation drain system. Provide a Roof Drain Plan as part of the submission.

12. Grading

Post-development site grading shall match existing property line grades to minimize disruption to the adjacent residential properties. A **topographical plan of survey** shall be provided as part of the submission and a note provided on the plans. Please provide a grading plan for the proposed park block to ensure that site grades tie into the park block accordingly.

13. Geotechnical Study

Geotechnical Study shall be consistent with the Geotechnical Investigation and Reporting Guidelines for Development Applications. https://documents.ottawa.ca/sites/default/files/documents/cap137602.pdf

The geotechnical study is required to include the following:

- Please also note that all high transmission WMs are to be monitored when within, but not limited to, 15m of any foundation, particularly when blasting, piling,

shoring, rock anchoring, hoe ramming, pile (sheet) driving, or any other source of vibration could cause injury to the WM. In addition, a \$25M insurance, separate from the \$5M General Aggregate Insurance (Naming City of Ottawa) is required along with a emergency plan to isolate the flows and protect the LRT and Bus rapid transit (BRT).

- -Impact of rock anchors on abutting City of Ottawa infrastructure (if applicable).
- -Support of excavation plan to verify excavation activities will not impact nearby City infrastructure.

14. Pre-construction Survey

Pre-Construction (Piling/Hoe Ramming or in proximity to City Assets) and/or Pre-Blasting Survey required for any buildings/dwellings in proximity of 75m of site and circulation of notice of vibration/noise to residents within 150 m of site. Conditions for Pre-Construction/Pre-Blast Survey & Use of Explosives will be applied to agreements. Refer to City's Standard S.P. No. F-1201 entitled Use of Explosives, as amended.

15. CCTV sewer inspection

CCTV sewer inspection required for pre and post construction conditions to ensure no damage to City Assets surrounding site.

16. Snow Storage

Any portion of the subject property which is intended to be used for permanent or temporary snow storage shall be as shown on the approved site plan and grading plan. Snow storage shall not interfere with approved grading and drainage patters or servicing. Snow storage areas shall be setback from the property lines, foundations, fencing or landscaping a minimum of 1.5m. Snow storage areas shall not occupy driveways, aisles, catch basins, catch basin maintenance hole, required parking spaces or any portion of a road allowance. If snow is to be removed from the site please indicate this on the plan(s).

17. Road Reinstatement

Where servicing involves three or more service trenches, either a full road width or full lane width 40 mm asphalt overlay will be required, as per amended Road Activity By- Law 2003-445 and City Standard Detail Drawing R10. The amount of overlay will depend on condition of roadway and width of roadway(s).

18. Gas pressure regulating station

A gas pressure regulating station may be required depending on HVAC needs (typically for 12+ units). Be sure to include this on the Grading, Site Servicing, SWM and Landscape plans. This is to ensure that there are no barriers for overland flow

routes (SWM) or conflicts with any proposed grading or landscape features with installed structures and has nothing to do with supply and demand of any product.

19. Phase One Environmental Site Assessment

- a. A Phase I ESA is required to be completed in accordance with Ontario Regulation 153/04 in support of this development proposal to determine the potential for site contamination. Depending on the Phase I recommendations a Phase II ESA may be required.
- b. The Phase I ESA shall provide all the required Environmental Source Information as required by O. Reg. 153/04. ERIS records are available to public at a reasonable cost and need to be included in the ESA report to comply with O.Reg. 153/04 and the Official Plan. The City will not be in a position to approve the Phase I ESA without the inclusion of the ERIS reports.
- c. Official Plan Section 10.1.6
- d. Based on the results of the Phase 1 ESA and Phase 2 ESA may be requested.

Please see comments for the phase one and phase two ESA submitted for the ZBLA & OPA. Comments are required to be addressed in the submission for site plan.

Phase One ESA - Paterson, 2020

• The report indicates the historical presence of "Globe Oil" at the eastern portion of 335 Roosevelt Ave and "Sun Oil" at "approximately 120 m downgradient of of the site". The report has not considered any of these as PCAs causing APECs on the phase one ESA property. However, according to the 1948 FIP, these two oil companies were in operation at 335 Roosevelt Ave and 2100 Scott St, respectively, and each had oil tanks on-site. Specifically, the historical oil tanks of Globe Oil were located close to the northeast corner of the proposed development site. The phase one ESA needs to be revised to include the oil tanks as an on-site PCA which requires further investigation.

Phase Two ESA - Paterson, 2020

- As the phase one ESA missed including the Globe Oil tanks as a PCA located close to the northeast corner of the site, the phase two ESA has not investigated this area for the potential soil and groundwater petroleum contamination. Further investigation in this regard is required.
- Further, based on the identified groundwater flow direction towards northwest, the northern property boundary is considered the downgradient of any potential contamination on-site. Therefore, in my opinion, there is no sufficient

- and recent groundwater quality data along the northern property boundary to ensure off-site migration of contamination has not occurred.
- There have been no duplicate samples collected / analyzed for soil samples.
 Therefore, the report is not in compliance with the O. Reg. 153/04 mandatory requirements.

General Recommendations

- The ESA reports need to be revised & resubmitted as per the comments above.
- Given the presence of soil and groundwater contamination on-site, a remedial action plan needs to be submitted.
- Upon completion of the remedial activities, the phase two ESA needs to be revised / resubmitted with a remediation report appended.
- Given the proposed land use change to a more sensitive use (i.e. industrial / commercial to residential), filing an RSC is required prior to issuing a building permit as per the OP/ O. Reg. 153/04 requirements (as a condition of approval).
- Given the potential for an off-site migration of contamination, I would recommend inclusion of an Off-Site Management Agreement as a condition of approval.

20. Exterior Site Lighting

Any proposed light fixtures (both pole-mounted and wall mounted) must be part of the approved Site Plan. All external light fixtures must meet the criteria for Full Cut-off Classification as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and must result in minimal light spillage onto adjacent properties (as a guideline, 0.5 fc is normally the maximum allowable spillage). In order to satisfy these criteria, the please provide the City with a **Certification (Statement) Letter** from an acceptable professional engineer stating that the design is compliant.

21. Record of Site condition

A **Record of Site Condition (RSC) in accordance with O.Reg.** 153/04 will be required to be filed and acknowledged by the Ministry prior to issuance of a building permit due to a change to a more sensitive property use.

22. General

a. It is the sole responsibility of the consultant to investigate the location of existing underground utilities in the proposed servicing area and submit a request for locates to avoid conflict(s). The location of existing utilities and services shall be documented on an **Existing Conditions Plan**.

- b. Any easements on the subject site shall be identified and respected by any development proposal and shall adhere to the conditions identified in the easement agreement. A **legal survey plan** shall be provided, and all easements shall be shown on the engineering plans.
- c. All underground and above ground building footprints and permanent walls need to be shown on the plans to confirm that any permanent structure does not extend either above or below into the existing property lines and sight triangles.
- d. **Construction approach** Please contact the Right-of-Ways Permit Office TMconstruction@ottawa.ca early in the Site Plan process to determine the ability to construct site and copy File Lead on this request.

23. Easement

A 9m wide easement over the high-pressure watermain and West Nepean collector sanitary sewer is required. The easement shall extend 4.5m on each side from the centerline of high-pressure water main or centerline of trunk sewer main whichever is closer. Please confirm that no structures are proposed within 4.5m from centerline of high-pressure watermain or trunk sanitary sewer (which ever is closer) for this development.

24. Watermain contingency plan

A systematic strategy to address and mitigate potential disruptions to the high-pressure watermain. Include procedures and resources for identifying and responding to water main breaks, leaks, or other emergencies. Key components of the plan may involve rapid detection of issues, communication protocols to notify relevant stakeholders, coordination of repair and maintenance efforts, and steps to ensure continued water supply to affected areas.

Feel free to contact Amy Whelan, Infrastructure Project Manager for follow-up questions.

Noise

1. Noise

- a. A **Transportation Noise Assessment** is required as the subject development is within 100m of transit corridor.
- b. A Stationary Noise Assessment is required to assess the noise impact of the proposed sources of stationary noise (mechanical HVAC system/equipment) of the development onto the surrounding residential area to ensure the noise levels do not exceed allowable limits specified in the City Environmental Noise Control Guidelines.

c. A **Vibration Study** is required as the subject development is within 75m of an existing or proposed light rail transit corridor.

Feel free to contact Amy Whelan, Infrastructure Project Manager for follow-up questions.

Transportation

Comments:

2. Private Accesses

The Owner acknowledges and agrees that all private accesses to Roads shall comply with the City's Private Approach By-Law being By-Law No. 2003-447 as amended https://ottawa.ca/en/living-ottawa/laws-licences-and-permits/laws/laws-z/private-approach-law-no-2003-447 or as approved through the Site Plan control process. Depressed sidewalks are to be extend across all the proposed accesses, also signage to indicate private parking for the above ground parking entrance.

- 3. Right-of-way protection.
 - b. See Schedule C16 of the Official Plan.
 - c. Any requests for exceptions to ROW protection requirements must be discussed with Transportation Planning and concurrence provided by Transportation Planning management.
- 4. The details of the phasing have not been finalized and will be confirmed during the future Site Plan Control application.
- 5. The consultant is to finalize the TIA report and submit with the future Site Plan Control application for the City's circulation and review process. Further comments will be provided during the Site Plan application.
- 6. This proposed development abuts the integrate road, sewer and watermain project on Wilmont St slated to occur between 1-2 years. Further details on these works can be provided upon request.
- 7. Why is the access being shifted east from the current north leg of the T-intersection? Seems non-standard.
- 8. Will this mean the Wilmont stop bar has to be set back for WBL and will that create sightline issues? 34 .This info will assist with refining the traffic calming plan for Wilmont.

- The Owner shall be required to enter into maintenance and liability agreement for all pavers, plant and landscaping material placed in the City right-of-way and the Owner shall assume all maintenance and replacement responsibilities in perpetuity.
- 10. Bicycle parking spaces are required as per Section 111 of the Ottawa Comprehensive Zoning By-law. Bicycle parking spaces should be in safe, secure places near main entrances and preferably protected from the weather.
- 11. Signs related to the development site are to be placed in accordance with the applicable sign by-law https://ottawa.ca/en/search?searchfield=sign+by+law. (Permanent Signs on Private Property By-law No. 2016-326). (Temporary Signs on Private Property By-law No. 2004-239). (Signs on City Roads By-law No. 2003-520). An Encroachment Agreement will be required for any signage on the road allowance.

Feel free to contact Wally Dubyk, Transportation Project Manager, for follow-up questions.

Forestry

Deficiencies:

- 12. A Tree Conservation Report will be required for Site Plan see Phase 1 PC comments for details
- 13. Tree planting must be demonstrated on the Landscape Plan see Phase 1 PC comments for details

Feel free to contact Mark Richardson, Planning Forester, for follow-up questions.

Parkland - Mike Russet

Deficiencies:

- 14. Parks and Facilities Planning (PFP) would like to acknowledge and thank the applicant for including the park block in the Stage 2 pre-con stage.
- 15. Parks and Facilities Planning (PFP) requests that the park block extend to the east and abut directly with the residential property line (377 Wilmont Ave).
- 16. PFP requests an understanding on how the design, while incorporating with the open space and amenity area(s) of the new development, shall be delineated from public parkland.
- 17. PFP prefers some form of boundary definition between public and private space and would like to work with the applicant to determine border definition conditions are softer than a standard chainlink fence or other hard delineation.

Feel free to contact Mike Russet, Parks Planner, for follow-up questions.

We look forward to further discussing your project with you.

Should there be any questions, please do not hesitate to contact myself or the contact identified for the above areas / disciplines.

Yours Truly, Jean-Charles Renaud, RPP, MCIP

Ben Sweet

From: Gauthier, Steve < Steve. Gauthier@ottawa.ca>

Sent: Tuesday, July 14, 2020 12:00 PM

To: Jacob Bolduc

Subject: FW: 335 Roosevelt AVe

FYI

From: Wessel, Shawn <shawn.wessel@ottawa.ca>

Sent: July 14, 2020 9:52 AM

To: Gauthier, Steve <Steve.Gauthier@ottawa.ca>

Subject: FW: 335 Roosevelt AVe

For the applicant

Thanks

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji **Project Manager - Infrastructure Approvals** Gestionnaire de projet - Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Infrastructure and Economic Development Department | Direction générale de la planification de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 shawn.wessel@ottawa.ca

Please consider the environment before printing this email

Please note that, while my work hours may be affected by the current situation, I still have access to email, video conferencing and telephone. Feel free to schedule video conferences and/or telephone calls, as necessary.

From: Di Iorio, Tessa < tessa.diiorio@ottawa.ca >

Sent: July 13, 2020 11:04 AM

To: Wessel, Shawn <shawn.wessel@ottawa.ca>

Subject: RE: 335 Roosevelt AVe

Hello Shawn,

Thank you for contacting me for a Source Protection policy screening for the *Planning Act* application at **335 Roosevelt**.

Source Protection Policy Screening:

- 1. The address lies within the Mississippi-Rideau Source Protection Region and is subject to the policies of the Mississippi-Rideau Source Protection Plan.
- 2. The western portion of the property (west of Winston Avenue) lies within the Surface Water Intake Protection Zone for the Ottawa River (Britannia) Intake, IPZ-2 (vulnerability score of 8.1) where significant threat policies apply. Policies are only applicable for specific significant drinking water threat activities and policies are only applicable within the area identifies as IPZ-2 (vulnerability score 8.1).
 - The Clean Water Act Tables of Circumstances identify circumstances under which
 certain activities would be considered a significant threat to drinking water, and the
 Mississippi-Rideau Source Protection Plan contains policies related to significant
 drinking water threat activities to protect the drinking water supply.
 - Activities that may be considered a significant drinking water threat within the IPZ-2 (score 8.1) include the following:
 - Untreated stormwater from a stormwater retention pond
 - Sewage treatment plant effluent discharges
 - Combined sewer discharge from a stormwater outlet
 - Sewage treatment plant bypass discharge
 - Industrial effluent discharge
 - Waste disposal site
 - Agricultural activities (application or storage of manure or chemical fertilizers or pesticides, or use of land for livestock grazing)
 - If any of the above activities are proposed within the western portion of the property (west of Winston Avenue), then please follow up with me to determine if the activity meets the circumstance to be a significant drinking water threat.
 - If none of the activities listed above are proposed within the IPZ-2 (the western portion
 of the property), then there are no applicable Source Protection policies related to the
 IPZ-2.
- 3. The area is <u>not</u> within a Wellhead Protection Area (WHPA).
- 4. The area located within a Highly Vulnerable Aquifer (HVA). Note that there are no legally binding policies under the Mississippi-Rideau Source Protection Plan for activities within Highly Vulnerable Aquifers.
- 5. The area is <u>not</u> within a Significant Groundwater Recharge Area.

Please follow up with confirmation if the above highlighted activities are proposed within the IPZ-2 (western portion of the property, west of Winston Avenue).

And feel free to contact me directly if you have any questions.

Kind Regards, Tessa

Tessa Di Iorio, M.Sc., P.Geo.

Risk Management Official/Inspector, Hydrogeologist Infrastructure Services – Asset Management Branch Planning, Infrastructure and Economic Development City of Ottawa | Ville d'Ottawa

(613) 580-2424 ext./poste 17658 tessa.diiorio@ottawa.ca

Please note: Due to the current pandemic, I will be working from home until further notice. Contact by email is preferred; I will be checking my voicemail less frequently.

From: Wessel, Shawn <<u>shawn.wessel@ottawa.ca</u>>

Sent: July 10, 2020 1:52 PM

To: Di Iorio, Tessa < tessa.diiorio@ottawa.ca>

Subject: 335 Roosevelt AVe

Good afternoon Tessa

May I request Source Protection Screening for this site.

Have a nice weekend! ☺

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji
Project Manager - Infrastructure Approvals

Gestionnaire de projet – Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Infrastructure and Economic Development Department | Direction générale de la planification de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 shawn.wessel@ottawa.ca

Please consider the environment before printing this email

Please note that, while my work hours may be affected by the current situation, I still have access to email, video conferencing and telephone. Feel free to schedule video conferences and/or telephone calls, as necessary.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Site	Servicina	and	Stormwater	Managemen	t Report

Appendix B Stormwater Management Calculations

335 Roosevelt Avenue (110098)

Pre-Development Peak Flow Calculations (Sheet Flow to LRT)

EXISTING CONDITIONS (Site Sheet Draining to LRT Corridor)

Time-of-Concentration (Uplands Method)

Flow Classification	Length	Elev	ation	Slope	Valasitu ¹	Time-of-
(Land Use)	Length	U/S	D/S	Slope	Velocity ¹	Concentration
(Land Ose)	(m)	(m)	(m)	(%)	(m/s)	(min)
Site	50	66.5	66.0	1.0%	0.60	1.4
TOTAL	50	66.5	66.0	1.0%	0.60	10.0

¹ Refer to Uplands Velocity Chart.

*Min 10-minutes.

Existing Catchment Parameters

		Areas (ha)		Runoff C	oefficient	
Catchment ID	Total	Hard Surfaces (C=0.90)	Soft Surfaces (C=0.20)	C _{avg}	C _{100yr} ¹	%Imperv.
TOTAL	0.710	0.254	0.456	0.45	0.52	35.7%

¹ Runoff coefficient increases by 25%, up to a maximum value of 1.00, for the 100-year event.

Pre-Development Peak Flows

Catchment ID	Rainfa	II Intensity (m	ım/hr) ¹		Peak Flows (L/s)
Catchinent ib	2-year	5-year	100-year	2-year	5-year	100-year
Site Boundary (existing conditions)	76.81	104.19	178.56	68.2	92.5	182.5

¹ Tc is based on Uplands Method.

Notes:

Rainfall Intensity from City of Ottawa Sewer Design Guidelines (Oct. 2012)

- $-100 \text{ year Intensity} = 1735.688 / (Tc + 6.014)^{0.820}$
- -5 year Intensity = 998.071 / (Tc + 6.053)^{0.814}
- -2 year Intensity = 732.951 / (Tc + 6.199)^{0.810}

 $Q(peak flow) = 2.78 \times C \times I \times A$

- C is the runoff coefficient
- I is the rainfall intensity
- A is the total drainage area

Date: 5/29/2025

335 Roosevelt Avenue (110098) Post-Development Peak Flow Calculations (Sheet Flow to LRT)

POST DEVELOPMENT CONDITIONS (B-01 & B-02 Sheet Draining to LRT Corridor)

Time-of-Concentration (Uplands Method)

Flow Classification	Length	Elev	ation	Slope	Velocity ¹	Time-of-
(Land Use)		U/S	D/S		•	Concentration
	(m)	(m)	(m)	(%)	(m/s)	(min)
Uncontrolled (B-01, B-02)	10	66.9	66.7	2.0%	0.90	0.2
TOTAL	10	66.9	66.7	2.0%	0.90	10.0

¹ Refer to Uplands Velocity Chart.

*Min 10-minutes.

Existing Catchment Parameters

		Areas (ha)		Runoff C	oefficient	
Catchment ID	Total	Hard Surfaces (C=0.90)	Soft Surfaces (C=0.20)	C _{avg}	C _{100yr} 1	%Imperv.
TOTAL	0.114	0.047	0.067	0.49	0.56	41.4%

¹ Runoff coefficient increases by 25%, up to a maximum value of 1.00, for the 100-year event.

Pre-Development Peak Flows

Catchment ID	Rainfa	II Intensity (m	ım/hr) ¹		Peak Flows (L/s)
Catchinent ib	2-year	5-year	100-year	2-year	5-year	100-year
Site Boundary (existing conditions)	76.81	104.19	178.56	11.9	16.2	31.7

¹ Tc is based on Uplands Method.

Notes:

Rainfall Intensity from City of Ottawa Sewer Design Guidelines (Oct. 2012)

- $-100 \text{ year Intensity} = 1735.688 / (Tc + 6.014)^{0.820}$
- -5 year Intensity = 998.071 / (Tc + 6.053)^{0.814}
- -2 year Intensity = 732.951 / (Tc + 6.199)^{0.810}

 $Q(peak flow) = 2.78 \times C \times I \times A$

- C is the runoff coefficient
- I is the rainfall intensity
- A is the total drainage area

Date: 5/29/2025

335 Roosevelt Avenue (110098) Pre-Development Peak Flow Sample Calculations

Calculation of Peak Flows

$$Q_p = 2.78 \, x \, C \, x \, I \, x \, A$$

*Rational Method Equation

Where:

 $Q_p = Peak Flow (L/s)$

C = Runoff Coefficient (increases by 25% for a 100-year event; max 1.0)

I = Rainfall Intensity (mm)

*Based on City of Ottawa IDF data using a 10-minute time-of-concentration (T_c)

A = Drainage Area (ha)

Sample Calculation for 100-year Storm Event:

Drainage Area = 2.280 ha

Runoff Coefficient = 0.36 (100-year)

Rainfall Intensity = 170.13 mm/hr (based on 11-minute Tc; City of Ottawa IDF data)

 $Q_p = 2.78 \times 0.36 \times 170.13 mm/hr \times 2.280 ha$

 $Q_p = 385.1 L/s$

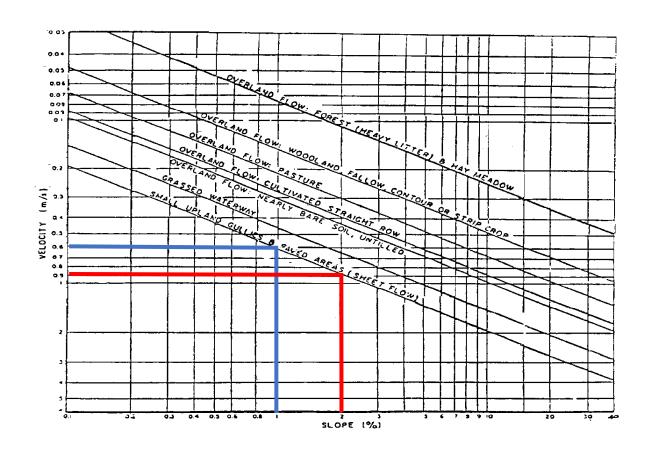


Figure A.5.2: Upland Method for Estimating Time of Concentration (SCS National Engineering Handbook, 1971)

Certificate of Approval (Sewage) Certificat d'autorisation (eaux usées,

Number / Numéro 3-2058-88-006

Whereas / Attendu que CITY OF OTTAWA

xXXX

44.0

has applied in accordance with Section 24 of the Ontario Water Resources Act for approval of:

a fait, conformément à l'article 24 de la loi sur les ressources en eau de l'Ontario, une demande d'autorisation:
sewers and appurtenances to be constructed in the City of Ottawa, as
follows:

Street From To Storm Sewers Roosevelt Avenue Richmond Road Approx. 290m north of Richmond Road Winston Avenue Approx. 35m north of Wilmont Avenue Richmond Road Wilmont Avenue Winston Avenue Churchill Avenue Churchill Avenue Wilmont Avenue Scott Street Scott Street Churchill Avenue Winona Avenue Easement Approx. 290m north of Approx. 145m west to (Roosevelt Avenue) Richmond Road Dominion Avenue

including stub sewer connections and building sewers from the main sewer to the street line, all in accordance with the plans prepared by Oliver, Mangione, McCalla & Associates Ltd., Consulting Engineers, at a total estimated cost, including engineering and contingencies, of TWO HUNDRED AND FORTY FIVE THOUSAND DOLLARS (\$245,000.00).

CITY OF OTTAWA

DEPARTMENT OF
ENGINEERING & WORKS

Rec'd NOV I 1988

TO:
FILE NO.:
FILE NO.:
FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE NO.:

FILE N

Now therefore this is to certify that after due enquiry the said proposed works have been approved under Section 24 of the Ontario Water Resources Act.

Le présent document certifie qu'après vérification en bonne et due forme la construction dudit projet d'ouvrages a été.

approuvée aux termes de l'article 24 de la loi sur les ressources en eau de l'Ontario.

DATED AT TORONTO this DATE À TORONTO ce

25th

day of jour d

October.

file no. | No du dossici

Attn: J.R. Cyr, Clerk, City of Ottawa

: Ms. G. Brown, Clerk, R.M. of Ottawa-Carleton

D. Guscott, MOE SE, Reg. Dir.

Oliver, Mangione, McCalla & Assoc. Ltd.

13 1. 10- EE-

Deput des decuments

SC 15

Description of Works
Description des ouvrages
Application is hereby made to the Director for Le demandeur adresse au directeur par la présente une demande d'autorisation

City of Ottawa
Department of Engineering & Works

Approval to Construct (Describe type of sewers, pumping stations and miscellaneous structures.) de construire (décrire le type d'égouts, de postes de pompage et d'ouvrages divers).

Storm sewers

And Sewage Treatment Works (Describe type and capacity of major works.)
ainsi que les ouvrages d'épuration des eaux usées suivants (décrire le type et la capacité des principaux ouvrages).

Location of Proposed Sewage Works Roosevelt Avenue, Winston Avenue, Wilmont Avenue

Emplacement des ouvrages

Churchill Avenue & Scott Street, City of Ottawa,

Lol. Concession, Municipalité et comté, district ou région

Regional Municipality of Ottawa-Carleton

Works will Outlet to (Sewer system, name of receiving stream or take.)

Les eaux irellées se déverseront dans (réseau d'égouts ou nom du cours d'eau ou du lac récepteur).

1) existing 675 mm dia. storm sewer on Dominion Avenue

2) existing 900 mm dia. storm sewer on Scott Street

This application is made under the provisions of Section 24, Ontario Water Resources Act, R.S.O. 1980, and such other statutes as relate to sewage works.

The applicant agrees that no changes in or deviations from the approved plans and specifications will be made except with the consent and approval of the Director, and agrees, if requested, to submit as-built drawings and cost figures to the Director upon completion of the project.

La présente demande est faite aux termes des dispositions de l'article 24 de la Loi sur les ressources en eau de l'Ontario, L.R.O. de 1980, et des autres lois qui se rapportent aux ouvrages d'adduction et de purification de l'eau. Le demander s'engage à n'apporter aucune modification aux plans et cahier des charges approuvés, saut s'il obtient le consentement et l'autorisation du directeur, et s'engage, sur demande, à remettre les plans des ouvrages tels qu'ils ont été construits ainsi que la ventilation détaillée du coût de construction au directeur à la fin des travaux.

Signatures Required Signatures requises Applicant Demandeur Name (Print or Type) Signature Nom (en lettres moulées) Corporation of Signature Date the City Ottawa Mailing Address 1355 Bank Street Adresse Telephone Ottawa, Ontario Nº de téléphone KlH 8K7 Municipality (if not applicant) Municipalité (À remplir si le demandeur n'est pas la municipalité.) 564-1858 Signature Name & Title of Municipal Authority Nom et titre du responsable municipal Date Signature Date Mailing Address Telephone Adresse Nº de téléphone NOVESES ON O Engineer Jaco . Ingénieus Name of Engineer or Firm Date Nom de l'ingénieur ou de la lirme d'ingénierie Oliver, Mangione, McCalla & Assoc. Ltd. Sept. 1988 Mailing oad South Adresse Telephone Ofital epean. Nº de léléphone MIAN Operating Authority (if not applicant)
Exploitant (A remplir si l'explorant n'est pas le demandeur.) 225-9940 Signature Name of Operating Authority Nom de l'exploitant Date Signature Date Mailing Address Telephone Adresse Nº de téléphone

\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$ 245_3000 . Financing (municipal, private, government) et financement (municipal, privé, gouvernemental) municipal thon Period (years, months)
\$
\$
\$
\$\$\$ 245,000. \$ inancing (municipal, private, government) of financement (municipal, privé, gouvernemental) municipal
\$ 245,000 . Financing (municipal, private, government) e financement (municipal, privé, gouvernemental) municipal
\$ 245,000. Financing (municipal, private, government) e financement (municipal, privé, gouvernemental) municipal
Financing (municipal, private, government) e financement (municipal, privé, gouvernemental) municipal
e financement (municipal, privé, gouvernemental) municipal
tion Period (years, months)
s travaux (années, mois)
1) month
ered Plan Number (il applicable) o de plan enregistré (s'il y a lieu)
N/A
ed
.4

Ministère l'Environnement

Certificate of Approval (Sewage) Certificat d'autorisation (eaux usées)

OLIVER MANGIONE MCALLA3 2058-88-006

Whereas AAttentiu que CITY OF OTTAWA

nc7 3 1 1988

XXXXX

RECEIVED

has applied in accordance with Section 24 of the Ontario Water Resources Act for approval of:

néme::t à l'article 24 de la loi sur les ressources en eau de l'Ontario, une demande d'autorisation: sewers al appurtenances to be constructed in the City of Ottawa, as

follows.

Street

From

To

Storm Swers

Roosevel: Avenue

Richmond Road

Approx. 290m north of

Richmond Road

Winston Avenue

Approx. 35m north of

Wilmont Avenue

Richsond Road

Wilmont Avenue

Winston Avenue

Churchill Avenue

Churchit Avenue

Wilmont Avenue

Scott Street

Scott Simeet

Churchill Avenue

Winona Avenue

Easemen ?

(Roosev. t Avenue)

Approx. 290m north of

Richwond Road

Approx. 145m west to Dominion Avenue

includia, stup sewer connections and building sewers from the main sewer to the strant line, all in accordance with the plans prepared by Oliver, Mangion: McCalla & Associates Ltd., Consulting Engineers, at a total estimate: cost, including engineering and contingencies, of TWO HUNDRED AND FORTY F. E THOUSAID DOLLARS (\$245,000.00). -

> THIS IS A TRUE COPY OF THE ORIGINAL CERTIFICATE MAILED

ON OCT 2 6 1988

Now there... e this is to certify that after due enquiry the said proposed works have been approved under Section 24 of the Ontario Whiter Resources Act.

Le préser, e ocume it certifie qu'après vérification en bonne et due forme la construction dudit projet d'ouvrages a été approuvée aux termas de l'article 24 de la loi sur les ressources en eau de l'Ontario.

DATED AT 1 DRONT O this

25th

day of

October, 1988

DATÉ À TUL ONTO Je

jour d

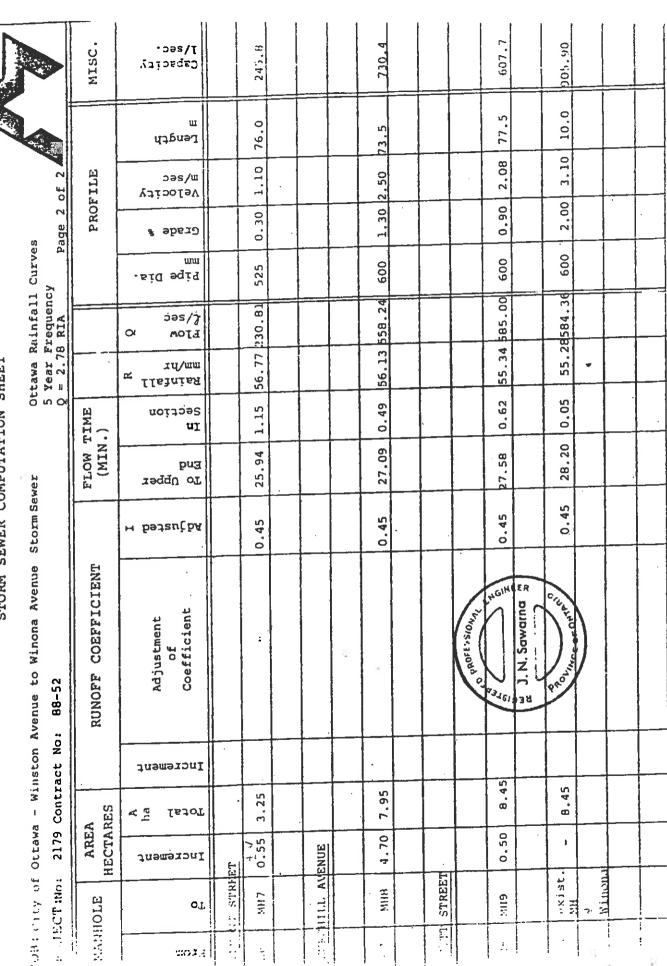
Attn: D.R. Cyr, Clerk, City of Ottawa cc: ... G. Brown, Clerk, R.D. of Ottawa-Carleton by Guscott, MOR SE, Reg. Dir.

Wiver Mangions, McCalla & Assoc. T.td.

OLIVER, MANGIONE, MCCALLA & ASSOCIATES LIMITED STORM SEWER COMPUTATION SHEET

District of Ottawa - Winston Avenue to Winona Avenue Storm Sewer

NOJECT:No: 2179 Contract No: 88-52

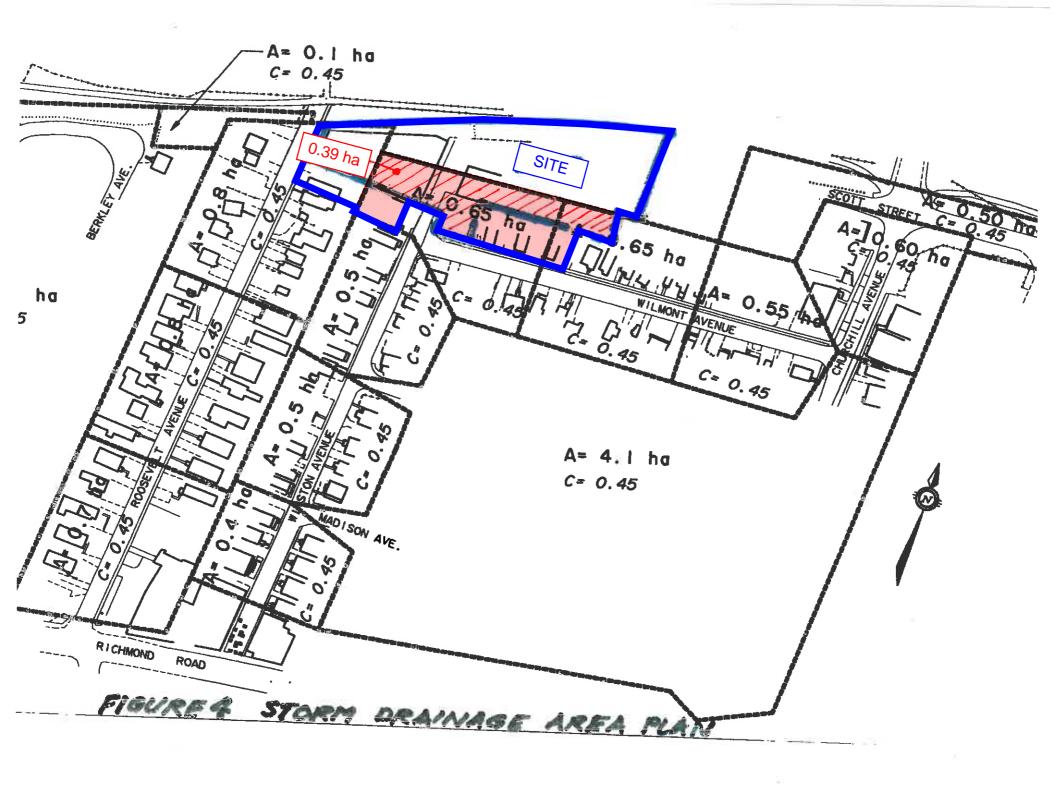

Ottawa Rainfall Curves 5 Year Frequency 0 = 2.78 RIA Pag

RUNOFF	RUNOFF	RUNOFF	l I	LI .	COEFFICIENT		FLOW	M. H.		WIW		Page 1	PROFILE		MISC.
							(MIM)	-							
Total ha Adjustment Total Total Of Coefficient	Total a ⊳	Increment		Adjustment of Coefficien	. 4	H bəjsuçbA	To Upper	In Section	∝ fisinisa Td\mm	K/sec to	Pipe Dia.	Grade &	Velocity m/sec	т Гелусћ	Capacity l/sec.
INSTOR AVENUE															
- - -	9	÷	9	ş											
MH2 0.40	0,40	0,40				0.45	20.	1.09	66.29	33.17	300.	0.4	.87	57.0	63.8
		E)		8									1		
MH3 0.50 0.90		06.0				0.45	21.09	1.24	64.02	72.08	375	0.4	1.01	75.0	115.7
NH4 0.50 1.40	1.40	1.40	-			0.45	22.33	1.37	61.71	108.08	375	0.4	1.01	83.0	115.7
															}
NLWICWT STREET		4018810h	10188190p	2011 SS104											
Mils 0.65, 2.05 E. J.N. Sawarna 3	2.05 E. J.N. Sawarn	2.05 E. J.N. Sawarn	N. Sawarn	N. Sawarn		0.45	23.70	1,15	59.92	153.67	450	0 3	0,99	68.5	16.2.9
										,					4
1116 0.65 2.70	2.70 "","CE OF OM	2.70 "","CE OF OM	LINCE OF ONLY	L'WCE OF OWN		0.45	24.85	1.09	58.34	197.06	450	0,45	1,22	80	199.5
· -															

OLIVER, MANGIONE, MCCALLA & ASSOCIATES LIMITED STORM SEWER COMPUTATION SHEET

* JECT NO.

2014


STORM SEWER COMPUTATION SHEET

JOB: City of Ottawa - Roosevelt Avenue to Dominion Avenue Storm Sewer PROJECT:No: 2179 Contract No: 88-52

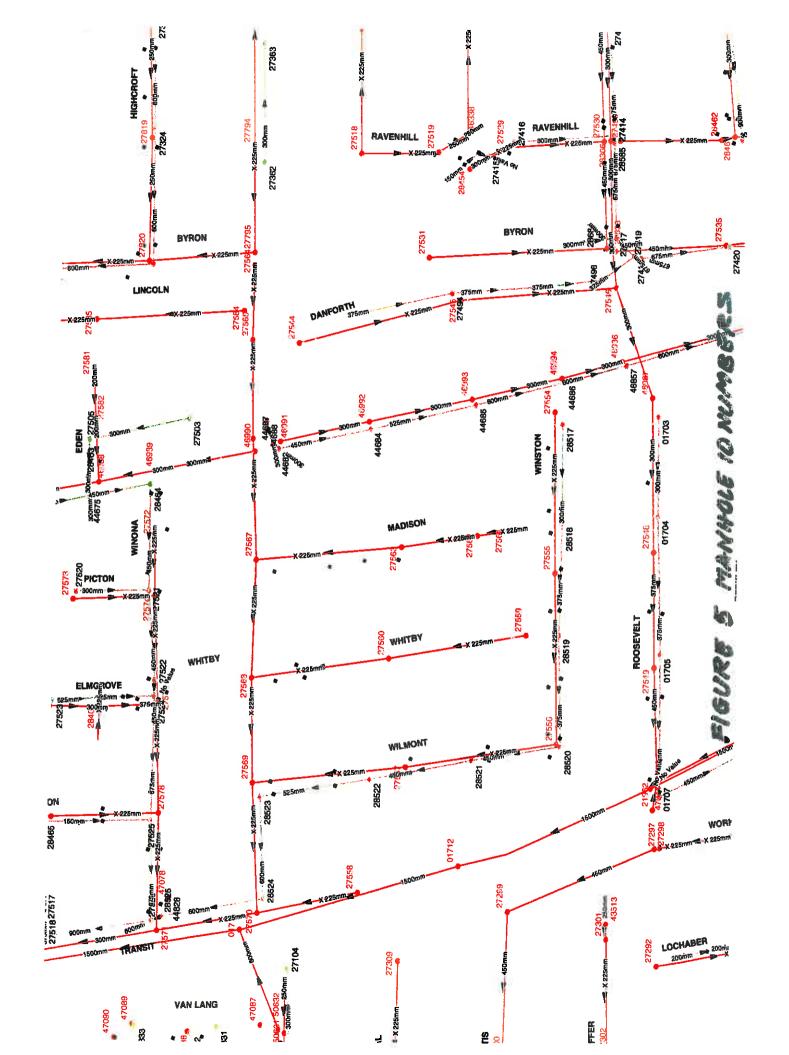
Ottawa Rainfall Curves 5 Year Frequency Q = 2.78 RIA

ň		
٥		
4		
1		
)		
	>	
4	U	
4	C	
3	(2)	
ā	ā	
÷	- 64	10
3	×	~
3		_
9	,	_
à.		Ψ
		~
3	H	
:	ď	2
s	Year Frequency	
í	54	-14
1	-	
		-

					15											
MISC.	Capacity L/sec-			63.80		121.30		188.1		188.1		405.1				
	Length			95		100		98		82.5	-) /6	14 J. 24 J.	£17	O.W.J.	_
PROFILE	Velocity m/sec			0,87		1.06		1.15		1.15		\$5.34v		Z Sawa		ů
PRO	Grade &			0.40	_	0.44		0.40		0.40	<u>.</u>	1	38315	FEC.	P 200	
	-siQ əqiq ma			300		375		450								
	r/sec			56.86		119.93		172.58		174.86		5393.22				
	k Llslnis¶ ⊤d\mm			64.93 56.86		63.91		59.98		58,24		57.15393			•	
TIME	Section			1.82		1.57		1.42		1.20		0.79				·
FLOW TI	To Upper End			20	<u></u>	21.82		23,39		25.81		26.01				
	ы bətzuçbA			0,45		0.45		0.45		0.45		0.45		,		
RUNOFF COEFFICIENT	Adjustment of Coefficient		191	ર્જું												
	Increment				į											
A. RES	α α IstoT			0.70		1.50		2.30		2.40		5.50	Avenue			
AREA HECTARES	Ілстепел	AVENUE				0.80		0.80		0.10	_	3.10	outlet @ Dominion Avenue			
aloi	OT	ELT AV		MH2		MH3	,	MH4		MH5		энм.	outlet @ Domi			
MANHOLE	From	ROOSEVELT		MH1	-	MHZ		мнз	FARK	MH4		мнѕ			у 100	

335 ROOSEVELT STREET WILLMONT AVENUE STORM SEWER: HYDRAULIC GRADE LINE ANALYSIS (5-YEAR EVENT) ORIGINAL DESING + SITE@ C=0.20

This spreadsheet uses the Darcy-Weisbach equation to calculate hydraulic losses through a pipe network with a specified flow rate. Minor losses are accounted for including both pipe bend losses and structure losses.


The spreadsheet returns the upstream hydraulic grade line if surcharged, or the pipe obvert if free flow conditions exist. The slope of the HGL is calculated and the minimum USF elevations can be established +0,30m above the HGL.

		_		_	_	_	-	_	_	_		_	_	_		_	_	_	-	_	_	_
	TO NAME	- 111		Upstream	(m)	EWER	10.00	03.07	64.05	64.34	04.04	04.04	64.88	66.46								
	i	S OBL	100	2		S GNOWL	0.24	2	0.46	0.38	000	0.43	0.38	282		7					MENTS	
			SIODE	מרטי היי	œ.	<- OUTLET TO RICHMOND SEWER	0 34	2	U.48	0.42	0.37		3	2.74		1	į	VENUE			UNIFORM URBAN DEVELOPMENTS	
	1	Ę	2/0	_		· OUTLE	63.11	60 63	20.07	63.75	84 04	76.75	5	64.58		1	į	SSS ROUSEVELT AVENUE			URBAN	
Me MGL.			Sin	3 (5		63.10	63.37	82 7E	2	64.04	64.34	RA ED	-	90.16		DDO INCT		200		CLIENT:		i
TS and appear to complete the HGL	4770		Upstream	(8)			0.00	80	3	0.05	0.11	000	200	0.00			- (<u>, , , , , , , , , , , , , , , , , , , </u>		<u>~ .</u>		
		COSS	ı≝	(E)			0.26	0.39	6	27.0	0.31	0.13	700	3								
				V-12g			90.0	0.08	30.0	3	0.05	0.02	000	3		WS	!		1	2		
!	DLUMNS		Velocity	(m/s) V			.05	122	0.97	2	0.95	0.83	0.45			Designed: MS	ı		Charked Dec	i consti		
	COMPUTATIONAL COLUMNS		Friction	L/D. Factor (f)			0.02610	0.02747	0.02747		0.02820	0.02920	0.03145				Γ					
	OMPUTA					+	-	175	153	0 70	4	204	193	-				-	May do lore		¥1.6	
	٥		a L	Area (m.)		0000	0.223	0.164	0.184	0.444	1	0.114	0.073	i				Major Loss≂ Pipe Friction (Darcy-Weisbach)	Minor Loss= Head loss correction for flow through MAL	bends	Friction Factor= 8g/c^2, where c=(1/n)*(D/4)*1/6	
	ď	d	1			100	0.54	99.	0.87	1 00		0.64	0.19				OSSES	ction (Darc	SS correcti	changes in pipe size, and pipe bends	'2, where o	
	ď	(m ² /8)]			676 0	2000	0.20	0.183	0.099	0,000	2	0.169				HGL=Major + Minor Losses	≂ Pipe Fri	= Head lo	pipe size,	ctor= 8g/c	
	TOTAL		(S/,E)			0.235	0 204	0.20	0.159	0.108	0.000	2,0,0	0.033				HGL=IMajo	Major Loss	Winor Loss	hanges In	riction Fa	
	AMETERS	į				84.50 0.013	78 60 0 043	2 1	00.70	0.013	0.042		0.013					_	_	-	_	
	PIPE PARAM	Lanoth	_	1	4		L	1	4	81.60	76 80	,	200		FDS							
-		E		-	+	525	55	45	3	375	375	Ş	3		ARAMET							
	COVER	Орветан	<u>E</u>			2.865	2.840	2 800		2,455	2.235	2 200	2		DESIGN PARAMETERS							
	GROUND	Upstream	Ē		00 00	00.23	66.56	66.59	0000	60.00	66.81	68.45			_	MM MAX HOL						
	TION	2/3	(E)		62 50	05.30	62.91	63.28	69 69	20.02	63.91	64.23		7		EPA SW						ļ
	INVERT	S)	Ē		62 84	5	63.27	83.54	89.86	2000	64.20	65.86				= 67.57m (
	MANHOLE	Upstream Downstream			28523		28522	28521	28520	0540	61007	28518				DOWNSTREAM WATER LEVEL at Outlet = 67.57m (EPA SWMM MAX HOLL)	S YEAR	m/s		30m		
	MAN	Орѕтеат			28522	1		28520 [2	28519	28540		28517 2				M WATER L	QUENCY = {	OCTTY= 0.8(= 0.013	ARANCE 0		
	LOCATION				WILMONT		7	_	WINSTON 2	6	4	2				DOWNSTREA.	RETURN FREQUENCY = 5 YEAR	MINIMUM VELOCITY= 0.80 m/s	MANNING'S n≈ 0.013	MIN. HGL CLEARANCE 0.30m		

335 ROOSEVELT STREET WILLMONT AVENUE STORM SEWER: HYDRAULIC GRADE LINE ANALYSIS (5-YEAR EVENT) ORIGINAL DESING + SITE @ C≈0.45

This spreadsheet uses the Darcy-Weisbach equation to calculate hydraulic losses through e pipe network with a specified flow rate. Minor losses are accounted for including both pipe bend kosses and structure losses.

The spreadsheet returns the upstream hydraulic grade line if surchanged, or the pipe obvert if free flow conditions exist. The stope of the HGL is calculated and the minimum USF elevations can be established +0.30m above the HGL.

PROJECT #:110098 PROJECT NAME: 335 Roosevelt Avenue LOCATION: City of Ottawa

Allowable Flows

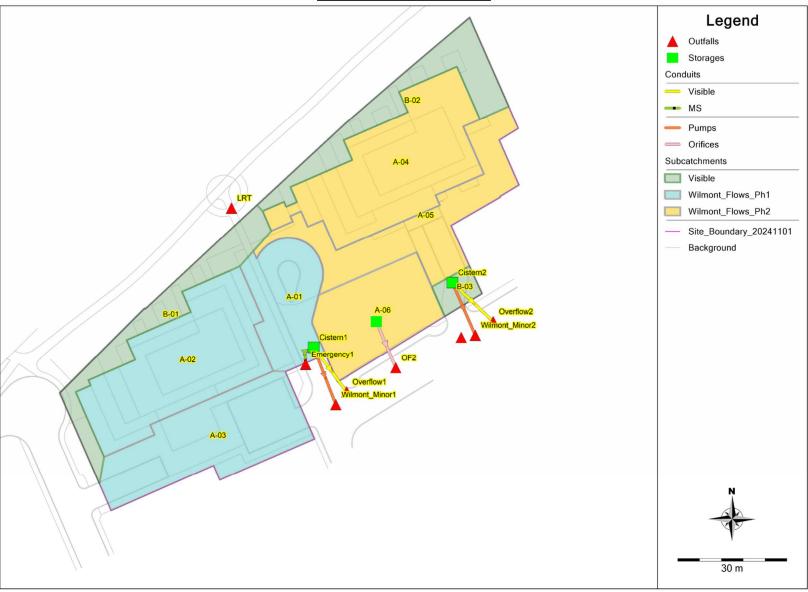
Outlet Options	Area (ha)	"C"	Intensity (5yr)	Q _{5 Year} (L/s)	Q _{ALLOW} (L/s)
Wilmont (450mm Sewer)	0.390	0.45	59.92	29.2	29.2

 $Q = 2.78 \times C \times I \times A$ Where:

100 year Intensity = 1735.688 / (Time in min + 6.014) $^{0.820}$ 5 year Intensity = 998.071 / (Time in min + 6.053) $^{0.814}$

C is the runoff coefficient
I is the rainfall intensity, City of Ottawa IDF

A is the total drainage area


335 Roosevelt Avenue Subcatchment Parameters

Area ID	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Runoff Coeff.	Imperv. (%)	Zero Imperv (%)				
Wilmont Avenue											
A-01	0.06	20	30	2.0	0.73	75.4	0				
A-02	0.13	26	50	0.5	0.90	100	95				
A-03	0.11	19	55	2.0	0.66	65.7	0				
A-04	0.14	25	55	0.5	0.90	100	95				
A-05	0.09	15	60	2.0	0.58	53.6	0				
A-06	0.07	48	15	2.0	0.40	28.6	0				
B-03	0.01	5	20	2.0	0.76	80	0				
	Roosevelt Avenue/LRT Corridor										
B-01	0.06	55	10	2.0	0.49	41.4	0				
B-02	0.06	59	10	2.0	0.48	40	0				

Overall Model Schematic

Date: 2025-05-29

M:\2010\110098\DATA\Calculations\SWM\Model Schematic.docx

335 Roosevelt Avenue (110098) PCSWMM Model Output 100yr 3-hour Chicago Storm

 Number of rain gages
 1

 Number of subcatchments
 9

 Number of nodes
 11

 Number of links
 6

 Number of pollutants
 0

 Number of land uses
 0

Name Width %Imperv %Slope Rain Gage Outlet Area A-01 0.06 19.67 75.40 2.0000 RG-1 Tank1 0.5000 RG-1 A-02 0.13 26.20 100.00 Tank1 2.0000 RG-1 Tank1 A-03 0.11 19.27 65.70 A-04 24.55 100.00 0.5000 RG-1 Tank2 2.0000 RG-1 2.0000 RG-1 A-05 0.09 15.00 53.60 Tank2 A-06 0.07 48.00 28.60 SU2 OF1 B-01 55.00 41.40 2.0000 RG-1 0.06 2.0000 RG-1 80.00 2.0000 RG-1

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
OF1	OUTFALL	66.00	0.00	0.0	
OF2	OUTFALL	63.00	0.00	0.0	
OF3	OUTFALL	63.95	0.00	0.0	
OF4	OUTFALL	64.72	0.49	0.0	
OF5	OUTFALL	66.70	1.00	0.0	
OF6	OUTFALL	63.95	0.00	0.0	
OF7	OUTFALL	64.36	0.27	0.0	
OF8	OUTFALL	65.00	0.00	0.0	
SU2	STORAGE	64.90	2.40	0.0	
Tank1	STORAGE	54.86	11.70	0.0	
Tank2	STORAGE	54.86	11.00	0.0	

Name	From Node	To Node	Type	Length	%Slope	Roughness
C1	Tank1	OF4	CONDUIT	6.0	0.8334	0.0130
C2	Tank1	OF5	CONDUIT	3.0	6.6815	0.0150
C3	Tank2	OF7	CONDUIT	6.0	0.8334	0.0130
P1	Tank1	OF3	TYPE2 PUMP			
P2	Tank2	OF6	TYPE2 PUMP			
OD 1	CITO	OFF	ODITETOR			

Conduit	Shape	Depth	Area	Rad.	Max. Width	No. or Barrels	Flow
C1	CIRCULAR	0.15	0.02	0.04	0.15	1	13.90
C2	RECT_OPEN	1.00	3.00	0.60	3.00	1	36778.58
C3	CIRCULAR	0.15	0.02	0.04	0.15	1	13.90

Analysis Options

Flow Units LPS

Water Quality NO
Infiltration Method HORTON
Flow Routing Method DYNWAVE
Surcharge Method EXTRAN
Starting Date 11/01/2024 00:00:00

 Maximum Trials
 8

 Number of Threads
 1

 Head Tolerance
 0.001524 m

Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.042 0.419 Groundwater Inflow 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 0.042 0.419 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%)

Minimum Time Step : 4.50 sec Average Time Step : 5.00 sec Maximum Time Step : 5.00 sec

335 Roosevelt Avenue (110098) PCSWMM Model Output 100yr 3-hour Chicago Storm

% of Time Average I	ter	ations	per Step		0.00	
% of Step				:	0.01	
Time Step	Fr	equenci	ies	:		
		3.155		:	100.00	g
3.155	-	1.991	sec	:	0.00	do
1.991	-	1.256	sec	:	0.00	do
1.256	-	0.792	sec	:	0.00	do
0.702	_	0 500	000		0 00	Q.

			Total	Total	Total	Total	Imperv	Perv	Total			
Total	Peak	Runoff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff			
Runoff	Runof	f Coeff	riecip	Kulloli	Evap	IIIIII	KullOII	KullOII	KullOII			
	tchment		mm	mm	mm	mm	mm	mm	mm			
10^6 lt	r	LPS										
A-01			71.67	0.00	0.00	10.93	53.07	7.17	60.24			
0.04	27.48	0.841	/1.0/	0.00	0.00	10.93	33.07	/.1/	00.24			
A-02			71.67	0.00	0.00	0.00	72.21	0.00	72.21			
0.09	64.15	1.008										
A-03			71.67	0.00	0.00	15.60	46.34	9.31	55.65			
0.06	44.01	0.777	71 67	0.00	0.00	0.00	70.01	0.00	70.01			
A-04 0.10	65.86	1.008	71.67	0.00	0.00	0.00	72.21	0.00	72.21			
A-05	05.00	1.000	71.67	0.00	0.00	21.46	37.78	12.13	49.91			
0.04	32.57	0.696										
A-06			71.67	0.00	0.00	31.95	20.07	20.28	40.35			
0.03	27.44	0.563	71 67	0.00	0.00	05.05	00.05	17.05	46.40			
B-01 0.03	23.88	0.647	71.67	0.00	0.00	25.95	29.05	17.35	46.40			
B-02	23.00	0.047	71.67	0.00	0.00	26.58	28.07	17.74	45.80			
0.03	25.47	0.639										
B-03			71.67	0.00	0.00	8.82	56.23	6.08	62.31			
0.01	4.79	0.869										

Node	Type	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Occu	of Max rrence hr:min	Reported Max Depth Meters
OF1	OUTFALL	0.00	0.00	66.00	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	63.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	63.95	0	00:00	0.00
OF4	OUTFALL	0.00	0.00	64.72	0	00:00	0.00
OF5	OUTFALL	0.00	0.00	66.70	0	00:00	0.00
OF6	OUTFALL	0.00	0.00	63.95	0	00:00	0.00
OF7	OUTFALL	0.00	0.00	64.36	0	00:00	0.00
OF8	OUTFALL	0.00	0.00	65.00	0	00:00	0.00
SU2	STORAGE	0.08	1.58	66.48	0	01:23	1.58
Tank1	STORAGE	0.78	7.14	62.00	0	01:45	7.14
Tank2	STORAGE	0.62	4.60	59.46	0	01:55	4.60

Node	Type	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
OF1	OUTFALL	49.36	49.36	0 01:10	0.0525	0.0525	0.000
OF2	OUTFALL	0.00	6.10	0 01:23	0	0.029	0.000
OF3	OUTFALL	0.00	11.40	0 00:50	0	0.189	0.000
OF4	OUTFALL	0.00	0.00	0 00:00	0	0	0.000 ltr
OF5	OUTFALL	0.00	0.00	0 00:00	0	0	0.000 ltr

OF6	OUTFALL	0.00	6.90	0	00:46	0	0.142	0.000
OF7	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
OF8	OUTFALL	4.79	4.79	0	01:10	0.00623	0.00623	0.000
SU2	STORAGE	27.44	27.44	0	01:10	0.0291	0.0291	0.249
Tank1	STORAGE	135.64	135.64	0	01:10	0.189	0.189	-0.015
Tank2	STORAGE	98.43	98.43	0	01:10	0.142	0.142	-0.012

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m³	Avg Pent Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m³	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
SU2 Tank1	0.000 0.012	0.3	0.0	0.0	0.011 0.110	11.2 66.7	0 01:23 0 01:45	6.10 11.40
Tank2	0.012	6.2	0.0	0.0	0.110	45 9	0 01:45	6 90

Outfall Node	Flow Freq Pont	Avg Flow LPS	Max Flow LPS	Total Volume 10^6 ltr
OF1	12.34	4.93	49.36	0.053
OF2	12.07	2.78	6.10	0.029
OF3	20.97	10.44	11.40	0.189
OF4	0.00	0.00	0.00	0.000
OF5	0.00	0.00	0.00	0.000
OF6	25.43	6.48	6.90	0.142
OF7	0.00	0.00	0.00	0.000
OF8	11.79	0.61	4.79	0.006
System	10.32	25.23	78.43	0.419

Link	Type	Maximum Flow LPS	0ccu	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
C2	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
C3	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
P1	PUMP	11.40	0	00:50		1.00	
P2	PUMP	6.90	0	00:46		1.00	
OR1	ORIFICE	6.10	0	01:23			1.00

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl

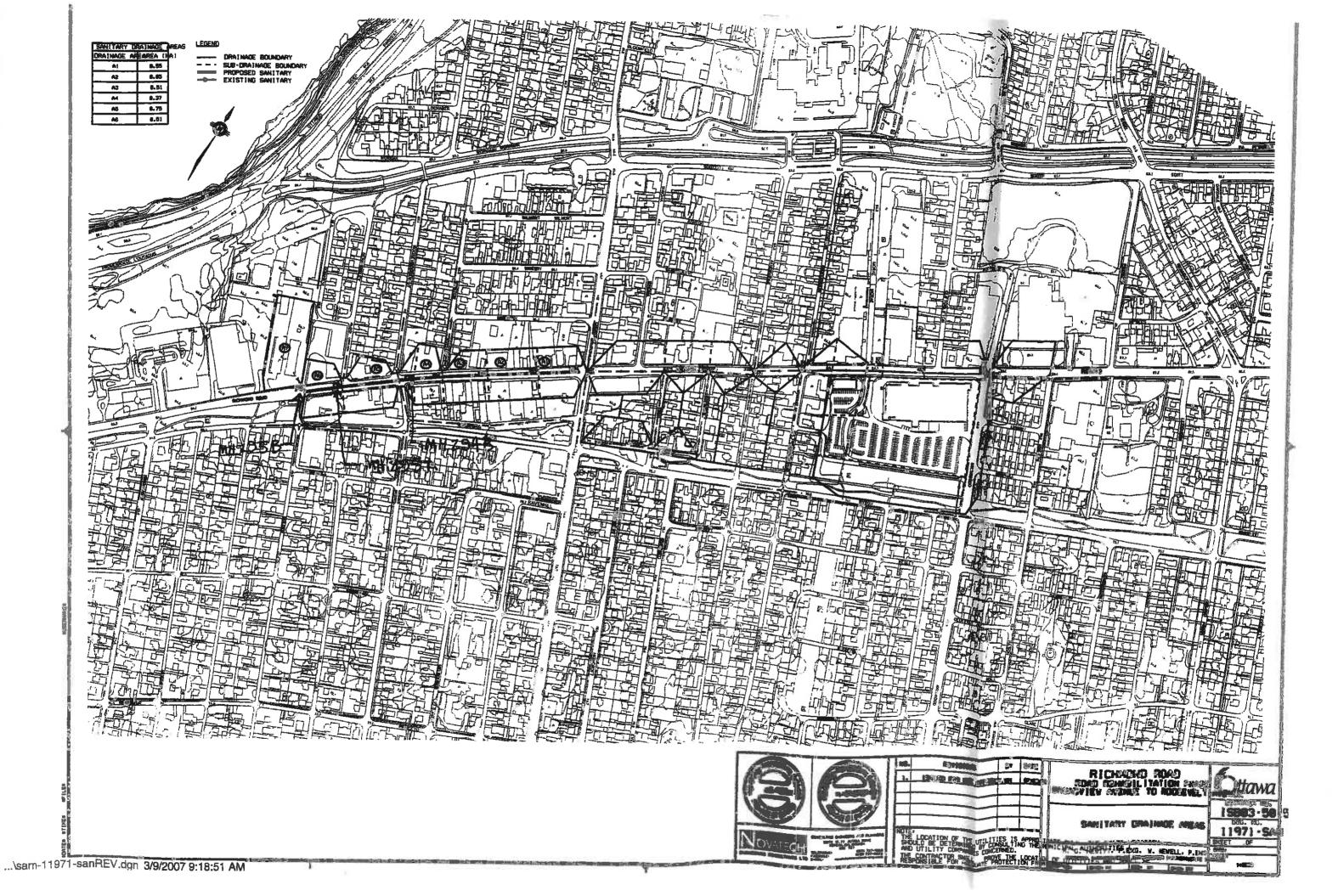
335 Roosevelt Avenue (110098) PCSWMM Model Output 100yr 3-hour Chicago Storm

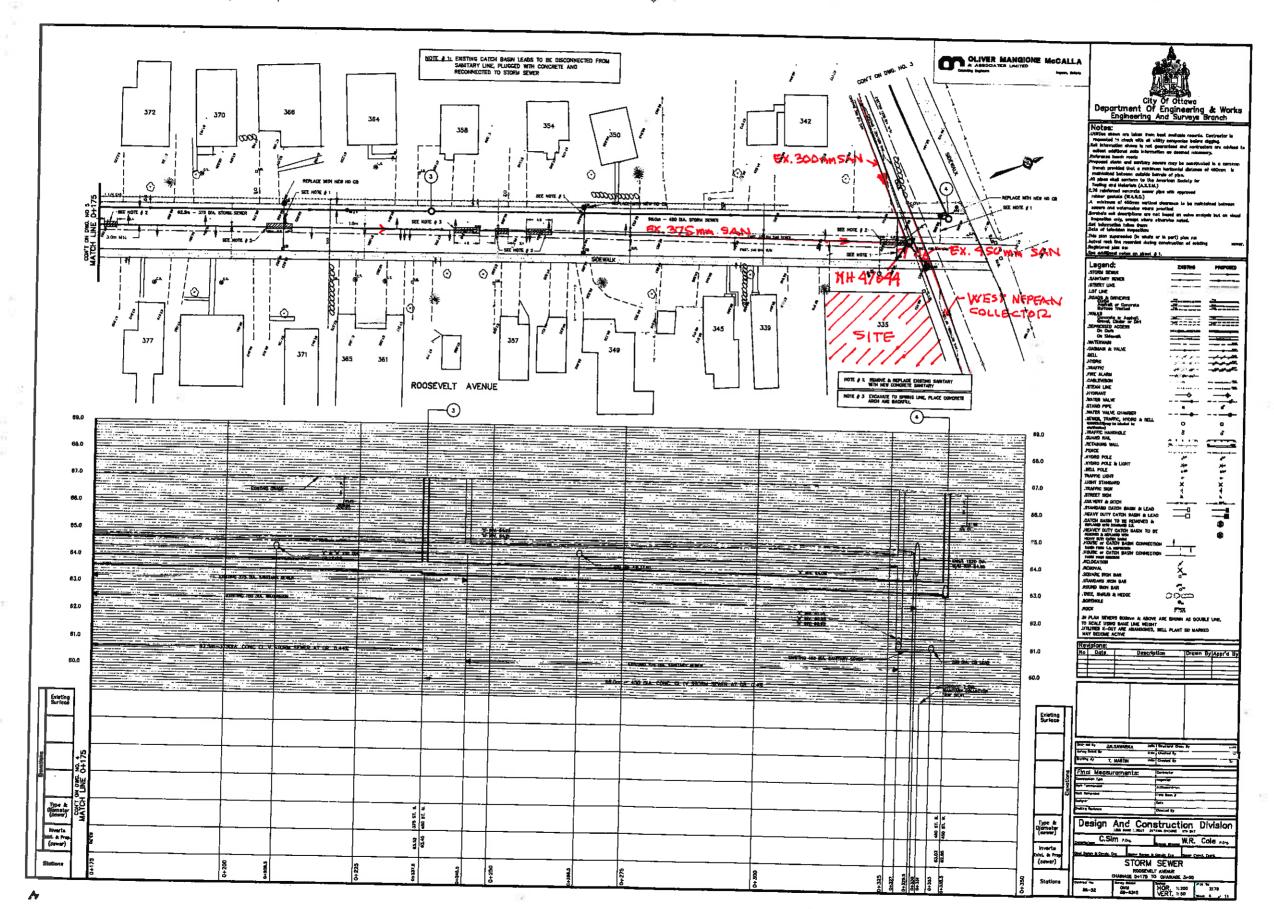
No conduits were surcharged.

=			Min	Avq	Max	Total	Power	% Time
Off			PILII	Avg	ridx	TOTAL	rower	5 IIMe
	Percent	Number of	Flow	Flow	Flow	Volume	Usage	Pump
Curve Pump High	Utilized	Start-Ups	LPS	LPS	LPS	10^6 ltr	Kw-hr	Low
- P1 41.3	20.97	1	0.00	10.44	11.40	0.189	2.60	0.0
P2 0.0	25.43	1	0.00	6.48	6.90	0.142	2.52	0.0

Analysis begun on: Thu May 29 22:01:05 2025 Analysis ended on: Thu May 29 22:01:05 2025 Total elapsed time: < 1 sec

335 Roosevelt Avenue		Site Servicing and Stormwater Management Report
S	Appendix C Sanitary Sewer Design Sheets and Sar	nitary Calculations


SANITARY SEWER DESIGN SHEET


RICHMOND ROAD REHABILITATION BROADVIEW AVE. to ROOSEVELT AVE. CITY OF OTTAWA

Manning Coefficient n = 0.013 Flow for Zoning = City of Ottawa Guidelines Peak Factor M = City of Ottawa Guidelines Weeping Tile Flow Allowance 1.0 L/ha/s Inflitration Flow Allowance = 0.2 L/ha/s

Part	Location		-			Individual											S	Sewer Data			
Maria Control No. Type (Lakell) Rad			<u> </u>	\vdash	<u> </u>	Ave. Flow		Т		Flow	Peak	Peak	EXF.	Design	Type	Pipe		Grade	Capacity	Veloc	2
No. 1996		Cross	-			for Zoning	Area (ha)	How (2)		in Run	Factor	Flow	Flow	Flow	ō :	Size	Length	à	E 3	E (Actual
No. 200	olleer		2	-1-	R	(L/S/I/B)	(Page 1)	(8)	(EE)		Σ	(CS)	(37)	(172)	8	(EIIII)	Ē	,	(SD)	(m/s)	(m/s)
FULTINE State Action Color	TERLY, Churchill to Berki	.S																			
FUTURE 2539, 2339, 2339, 234, A	FUTURE	307A	293A	A	5	3.00	0.55	1.7	0.55	1.7	9.00	10.2	-	1	PVC	250	67.92	0.44	41.2	0.8	0.6
FUTURE 2346 2346 A3 C1 3.00 0.37 1.5 1.71 8.1 6.00 3.05 2.5 1 3.27 PVC 300 0.4890 0.49 0.20 0.4890 0.49 0.20 0.4890 0.49 0.20 0.4890 0.49 0.20 0.4890 0.49 0.20 0.4890 0.49 0.20 0.4890 0.49 0.49 0.20 0.4890 0.49	FUTURE	293A	293B	A2	ပ်	3.00	0.65	2.0	1.20	3.6	6.00	21.6	1,4	23.0	PVC	250	79.07	0.44	41.2	8.0	0.7
FULUME 234A	FUTURE]	293B	294A	A3	ပ်	3.00	0.51	, 5	1.71	5.1	6,00	30.6	2.1	32.7	PVC	300	69.42	0.40	63.8	6.0	0.8
2848 2854 A5 C1 3.00 0.75 2.3 2.83 8.5 6.00 51.0 3.4 9.00 114.50 100 100 1.4	[FUTURE]	294A	294B	A4	C C	3.00	0.37	1.1	2.08	6.2	6.00	37.2	2.5	7.68	PVC	300	46.90	0.40	63.8	0.0	0.8
Signature Sign		294B	295A	A5	ပ်	3.00	0,75	2.3	2.83	8.5	6.00	51.0	\mapsto		PVC	300	114.50	1.00	100.9	1.4	1.2
Sight Air Right 2.80 0.83	COLVERNATE DATE	1	1	\dagger	+		1	1					+								
2866 5867 No. 2	ERET, GOIDEN TO DEFINE			A 7	90	200	COC	,	1		1	+	+						1		
2366 EXIST		3050	205.4	A A	2	2.80	0.63	4.7	1 24	00	000	7 000	ç	100	2/2	000	000	0	ic i		0
2364 EXIST		0007	Uncey	2	5	3.00	0.01		\$	2,0	0.00	4:33	2.0	7.07	2	\bot	68.00	0.50	5.	2	ò
A 17 Design: W. Hemberger Project: Checked.		295A	EXIST				1							78.1	EXIST	Н	107.00	0.20	81.8	0.7	0.7
417 Design: W. Hemberger Froderic		1	1		1			1	1			1									
4.17 Design: W. Hemberger Project:			1						1				1							+	
The state of the s									T				\dagger	Ţ							
4.17 Design: W. Hemberger Project:								П													
4.17 Design: W. Hemberger Checked: Chec								1				1									
4.17 Design: W. Hemberger Checked: Che								\dagger				\dagger									
4.17 Design: W. Hemberger Checked: Ch		T														L					
4.17 A.17 Design: W. Hemberger Frederic Freder																					
4.17 Design: W. Hemberger Checked: Ch	•																				
4.17 Design: W. Hemberger Checked: Che	*		1	1				1													•
4.17 Design: W. Hemberger Checked: Che			1	T	†		1	1				1	+							1	
4.17 Design: W. Hemberger Checked: Che	Total Services	6							†	T			+							1	
4.17 Design: W. Hemberger Checked: Che		7					T	1												†	
4.17 Design: W. Hemberger Project:	A CAN AND AND AND AND AND AND AND AND AND A																			T	
4.17 Design: W. Hemberger Project:	11/2/12/12/12		G\																		
4.17 Design: W. Hemberger Characteristics Design: W. Hemberger Design: W. Hemberger Design: Othersked: Design: Othersked			N																		
4.17 Design: W. Hemberger Checked:	3		E	1	<u> </u>		1		1												
4.17 Design: W. Hemberger Checked:	100		2				1						+	1							
A.17 Design: W. Hemberger Project:	The state of the s			T	1								1	T						1	
4.17 Design: W. Hemberger Project:		1	-		İ			T													
4.17 Design: W. Hemberger Project:	The state of the s	10																	Ī	1	
4.17 Design: W. Hemberger Project:		2																			
4.17 Design: W. Hemberger Project:																					
A.17 Design: W. Hemberger Project:																					
Design: W. Hemberger Project: Checked: Checked: Checked:			_																		
Design: W. Hernberger Project:							4.17														
Date: http://doi.org/10.1011/1	Mes Weening Tile Flow	Allowand	a								-14	Design:	W. Hernber	rger		Project:		d Road Re	habilitation		
			,									CI IBLAEU.	1			1	Broadvie	W Ave. to	Yoosevell /	Ve.	

K:\1998\98002\SEWERS\RichmondRdSanitary_BroadviewToRoosevelt.xls

A1 - SANITARY SEWER DESIGN SHEET CHURCHILL AVENUE - SCOTT OUTLET

JOB# 108058

LOCATION		RESIDE	ENTIAL AREA	AND POPUL	ATION		C	OMMERCIAL/II	NSTITUTIONA	AL			INFILTRATIO	ON			OTHER EXTE	RANEOUS FLO	ws	FLOW							
MANHOLE ID's	Area	Pop.	Cumu Area	ulative Pop.	Peak Factor	Peak Flow	Area	Accu. Area	Peak Factor	Peak Flow	Total Area	Infiltration Flow	Foundation Drain allowance	Combined additional flow	Accumulated Flow	Rev. Slope Driveways	Flat Roofs	Combined Ext Flows	Accumulated Flow	Total Flow	Type of Pipe	Length	Diameter Actual	Diameter Nominal	SLOPE	Velocity (Full)	Capacity Ratio (Full) Q/Qfull
STREET FROM TO AREA ID	(ha)		(ha)		1 4010.	(l/s)	(ha)	(ha)		(l/s)	(ha)	(I/s)	(l/s)	(I/s)	(I/s)	(l/s)	(l/s)	(l/s)	(I/s)	(l/s)	, ,	(m)	(mm)	(mm)	020.2	(m/s)	(l/s) (%)
Churchill 209 207 209-207(A) 209-207 (B)	0.07 0.18	25.2 129.6	0.07 0.25	25.2 154.8			0	0	1.5 1.5	0.00	0.07 0.18	0.02 0.05	0.00	0.02 0.05	0.02 0.07	0	0	0	0								
209-207 (C)	0.08	57.6	0.33	212.4			0	0	1.5	0.00	0.08	0.02	0.00	0.02	0.09	0	0	0	0								
209-207 (ROW) 207 205 207-205 (A)	0.13 0.23	0 82.8	0.46 2.6	212.4 1114.5	4.00	3.44	0	0	1.5	0.00	0.13 0.23	0.04 0.06	0.00	0.04	0.13 2.98	0	0	0	0.95	3.57	PVC	65.00	254	250	2.15	1.80	91.0 4%
207-205 (B)	0.22	158.4	2.82	1272.9			0	0	1.5	0.00	0.22	0.06	0.00	0.06	3.04	0	0	0	0.95								
207-205 (C) 207-205 (ROW1)	0.2 0.08	144 0	3.02 3.1	1416.9 1416.9			0	0	1.5 1.5	0.00	0.2 0.18	0.06 0.05	0.00	0.06 0.05	3.10 3.15	0	0	0	0.95 0.95								
207-205 (ROW2)	0.14	0	3.24	1416.9	3.70	21.22	0	0	1.5	0.00	0.14	0.04	0.00	0.04	3.19	0	0	0	0.95	25.36	PVC	79.09	254	250	0.39	0.77	38.8 65%
205 203 205-203 (A) 205-203 (B)	0.24 0.24	86.4 172.8	4.83 5.07	1644.4 1817.2			0	0	1.5 1.5	0.00	0.24 0.24	0.07 0.07	0.00	0.07 0.07	8.33 8.40	0	0	0	4.87 4.87								
205-203 (C)	0.2	144	5.27	1961.2			0	0	1.5	0.00	0.2	0.06	0.00	0.06	8.45	0	0	0	4.87			T	1	1 1		1	
205-203 (ROW) 203 201 203-201 (A)	0.15 0.12	0 43.2	5.42 8.96	1961.2 2927.8	3.59	28.54	0	0	1.5 1.5	0.00	0.15 0.12	0.04	0.00	0.04	8.50 18.74	0	0	0	4.87 4.87	41.91	PVC	77.58	305	300	0.34	0.80	58.4 72%
203-201 (B)	0.12	86.4	9.08	3014.2			0	0	1.5	0.00	0.12	0.03	0.00	0.03	18.77	0	0	0	4.87								
203-201 (C) 203-201 (ROW)	0.23 0.15	165.6 0	9.31 9.46	3179.8 3179.8	3.42	44.06	0	0	1.5 1.5	0.00	0.23 0.15	0.06 0.04	0.00	0.06 0.04	18.83 18.88	0	0	0	4.87 4.87	67.81	PVC	82.08	305	300	0.65	1.11	81.0 84%
, ,		·																				•	•		•	•	•
Scott 201 253A 253A 253B 201-253 (A)	0.19	0 136.8	9.95 10.14	3439 3575.8	3.39	47.25	0	0	1.5 1.5	0.00	0.19	0.00	0.00	0.00	19.01 19.07	0	0	0	4.87 4.87	71.13	PVC	10.75	305	300	0.84	1.26	92.2 77%
253A 253B 201-253 (A) 201-253 (ROW)	0.19	0	10.14	3575.8	3.38	48.91	0	0	1.5	0.00	0.19	0.05	0.00	0.05 0.04	19.07	0	0	0	4.87	72.88	PVC	65.22	305	300	1.15	1.48	108.1 67%
253 255 253-259 (A)	0.37	266.4	14.01	4895.2			0	0	1.5	0.00	0.37	0.10	0.00	0.10	20.15	0	0	0	4.87							•	•
253-259 (B) 253-259 (ROW)	0.33 0.14	59.4 0	14.34 14.48	4954.6 4954.6	3.25	65.20	0	0	1.5 1.5	0.00	0.33 0.14	0.09 0.04	0.00	0.09 0.04	20.24 20.28	0	0	0	4.87 4.87	90.36	CONC	60.00	457	450	0.25	0.91	148.6 61%
255 257			14.48	4954.6	3.25	65.20	0	0	1.5	0.00	0	0.00	0.00	0.00	20.28	0	0	0	4.87	90.36	CONC	57.17	457	450	0.26	0.93	152.2 59%
257 259 259 1710			14.48 14.48	4954.6 4954.6		65.20 65.20	0	0	1.5 1.5	0.00	0	0.00	0.00	0.00	20.28 20.28	0	0	0	4.87 4.87	90.36 90.36	CONC			450 375	0.40 1.70	1.14 2.09	188.0 48% 238.3 38%
239 1710			14.40	4334.0	5.23	03.20	J	J	1.0	0.00	U	0.00	0.00	0.00	20.20	v	U	U	4.07	30.30	1 40	10.00	301	5/5	1.70	۵.03	200.0 30%
Madison 27561 27562 27561-27562 (A)	0.07	10.2	0.07	10.2			0	0	1.5	0.00	0.07	0.02	0.35	0.37	0.37	0	0	0	0								
27561-27562 (B) 27561-27562 (C)	0.06 0.12	43.2 86.4	0.13 0.25	53.4 139.8			0	0	1.5 1.5	0.00 0.00	0.06 0.12	0.02 0.03	0.00 0.00	0.02 0.03	0.39 0.42	0	0	0	0								
27561-27562 (ROW)	0.1	0	0.35	139.8	4.00	2.27	0	0	1.5	0.00	0.1	0.03	0.00	0.03	0.45	0.95	0	0.95	0.95	3.66	PVC	23.23	229	225	0.90	1.08	44.5 8%
27562 27563 27562-27563 (A) 27562-27563 (B)	0.18 0.23	25.5 165.6	0.53 0.76	165.3 330.9			0	0	1.5 1.5	0.00 0.00	0.18 0.23	0.05 0.06	0.90 0.00	0.95 0.06	1.40 1.46	0	0	0	0.95 0.95								
27562-27563 (C)	0.25	180	1.01	510.9			0	0	1.5	0.00	0.25	0.07	0.00	0.07	1.53	0	0	0	0.95								
27562-27563 (ROW)	0.11	0	1.12	510.9	3.97	8.22	0	0	1.5	0.00	0.11	0.03	0.00	0.03	1.56	0	0	0	0.95	10.73	PVC	62.02	229	225	0.71	0.96	39.4 27%
27563 265 27563-207 (A) 27563-207 (B)	0.2 0.21	20.4 151.2	1.32 1.53	531.3 682.5			0	0	1.5 1.5	0.00 0.00	0.2 0.21	0.06 0.06	1.00 0.00	1.06 0.06	2.62 2.68	0	0	0	0.95 0.95								
27563-207 (C)	0.19	136.8	1.72	819.3	0.05	10.70	0	0	1.5	0.00	0.19	0.05	0.00	0.05	2.73	0	0	0	0.95	10.50	DI/O	00.00	000	005	0.05	0.07	07.0
27563-207 (ROW) 265 207	0.19 0	0	1.91 1.91	819.3 819.3	3.85 3.85	12.79 12.79	0	0	1.5 1.5	0.00	0.19 0	0.05 0.00	0.00	0.05 0.00	2.78 2.78	0	0	0	0.95 0.95	16.53 16.53		86.22 23.50	229 254		0.35 0.50	0.67 0.86	27.6 60% 43.8 38%
Whitby 27559 27560 27559-27560 (A)	0.31	45.9 35.7	0.31 0.6	45.9			0	0	1.5 1.5	0.00 0.00	0.31 0.29	0.09 0.08	1.55 1.45	1.64	1.64	0	0	0	0								
27559-27560 (B) 27559-27560 (ROW)	0.29 0.23	35.7 0	0.6 0.83	81.6 81.6	4.00	1.32	0	0	1.5 1.5	0.00	0.29 0.23	0.08	0.00	1.53 0.06	3.17 3.23	0 1.9	0	1.90	0 1.9	6.45	PVC	102.52	229	225	0.46	0.77	31.7 20%
27560 205 27560-205 (A)	0.18	34	1.01	115.6			0	0	1.5	0.00	0.18	0.05	0.90	0.95	4.18	0	0	0	1.9								
27560-205 (B) 27560-205 (ROW)	0.16 0.18	25.5 0	1.17 1.35	141.1 141.1	4.00	2.29	0	0	1.5 1.5	0.00 0.00	0.16 0.18	0.04 0.05	0.80 0.00	0.84 0.05	5.03 5.08	0	0 2.02	0 2.02	1.9 3.92	11.28	PVC	80.03	229	225	0.35	0.67	27.7 41%
263 205	0	0	1.35	141.1	4.00	2.29	0	0	1.5	0.00	0	0.00	0.00	0.00	5.08	0	0	0	3.92	11.28	PVC	24.00	254	250	1.79	1.64	83.0 14%
Winston 27554 27555 27554-27555 (A)	0.07	10.2	0.07	10.2			0	0	1.5	0.00	0.07	0.02	0.35	0.37	0.37	0	0	0	0	I	ı				1		
27554-27555 (B)	0.09	64.8	0.16	75			0	o	1.5	0.00	0.09	0.03	0.00	0.03	0.39	0	0	0	0								
27554-27555 (C) 27554-27555 (D)	0.12 0.21	86.4 35.7	0.28 0.49	161.4 197.1			0	0	1.5 1.5	0.00 0.00	0.12 0.21	0.03 0.06	0.00 1.05	0.03 1.11	0.43 1.54	0	0	0	0								
27554-27555 (E)	0.13	93.6	0.62	290.7			0	0	1.5	0.00	0.13	0.04	0.00	0.04	1.57	0	0	0	o								
27554-27555 (ROW)	0.15	0	0.77	290.7	4.00	4.71	0	0	1.5	0.00	0.15	0.04	0.00	0.04	1.62	0	0	0	0	6.33	PVC	114.08	229	225	1.61	1.45	59.4 11%
27555 27556 27555-27556 (A) 27555-27556 (B)	0.1 0.18	15.3 30.6	0.87 1.05	306 336.6			0	0	1.5 1.5	0.00 0.00	0.1 0.18	0.03 0.05	0.50 0.90	0.53 0.95	2.14 3.09	0	0	0	0								
27555-27556 (C) 27555-27556 (ROW)	0.4 0.15	71.4	1.45	408 408	4.00	6.61	0	0	1.5	0.00	0.4	0.11 0.04	2.00	2.11 0.04	5.21 5.25	0	0	0	0	11 00	DVC	120.00	220	205	0.21	0.64	26.2 450/
2/333-2/336 (HOW)	U. 10	U	1.0	408	4.00	0.01	U	U	1.0	0.00	0.15	0.04	0.00	0.04	J.20	U	U	U	U	11.80	PVC	120.82	229	225	0.31	0.64	26.2 45%
Wilmont 27556 27557 27556-27557 (A)	0.25	35.7	1.85	443.7			0	0	1.5	0.00	0.25	0.07	1.25	1.32	6.57	0	0	0	0	1	İ						
27556-27557 (B) 27556-27557 (C)	0.21 0.56	30.6 403.2	2.06 2.62	474.3 877.5			0	0	1.5 1.5	0.00 0.00	0.21 0.56	0.06 0.16	1.05 0.00	1.11 0.16	7.68 7.83	0	0	0	0								
27556-27557 (C) 27556-27557 (ROW)	0.18	0	2.8	877.5	3.84	13.64	0	0	1.5	0.00	0.18	0.05	0.00	0.05	7.88	0	0	0	0	21.52	PVC	114.97	229	225	0.42	0.74	30.2 71%
27557 261 27557-203 (A) 27557-203 (B)	0.24 0.19	25.5 20.4	3.04 3.23	903 923.4			0	0	1.5 1.5	0.00 0.00	0.24 0.19	0.07 0.05	1.20 0.95	1.27 1.00	9.15 10.15	0	0	0	0								
27557-203 (B) 27557-203 (ROW)	0.19	0	3.42	923.4 923.4	3.82	14.30	0	0	1.5 1.5	0.00	0.19	0.05	0.95	0.05	10.15 10.21	0	0	0	0	24.50				225		0.68	27.8 88%
261 203	0	0	3.42	923.4	3.82	14.30	0	0	1.5	0.00	0	0.00	0.00	0.00	10.21	0	0	0	0	24.50	PVC	26.00	254	250	1.12	1.29	65.5 37%
Site 201 Site-201 (A)	0.36	259.2	0.36	259.2	1		O	0	1.5	0.00	0.36	0.10	0.00	0.10	0.10	0	0	n	0								
Site-201 (ROW)	0.13	0	0.49	259.2	4.00	4.20	ő	Ö	1.5	0.00	0.13	0.04	0.00	0.04	0.14	Ö	Ö	ő	ő	4.34	PVC	81.80	229	225	1.09	1.19	48.8 9%
Design Flow Bates based on Formulas found in The City of Ottawa Sewer I													e Sloped Driveways and								PROJECT:		Sanitary De	sign: Novatech E	Engineering Cor	sultants Ltd.	Designed: NTQ

Design Flow Rates based on Formulas found in The City of Ottawa Sewer Design Guidelines Populations Totals based on Anticipated Future Residential Intensification Rates

Areas where population totals are underlined, indicates that the existing conditions produce the most critical sanitary flows (ie. Existing population, infiltration and extraneous flow contributions) Existing Sanitary Sewers are Indicated in Italics

Extraneous Flow Contricutions from Reverse Sloped Driveways and Flat Roof Buildings contributing to the Churchill Sanitary Sewer have been accounted for as follows:

Flows based on Rational Method (Q=ciA), where

A = Area in hectares (ha)
 i = Rainfall intensity (mm/hr) = 104.2mm/hr (City of Ottawa, 5yr stm, 10min tc)
 c = Runoff Coefficient = 0.9 (Impervious Surfaces)

PROJECT: Churchill Avenue Reconstruction

Designed: NTQ City of Ottawa October 14, 2009 January 7, 2009 Checked: Dwg. Reference: CLIENT:

A1 - SANITARY SEWER DESIGN SHEET CHURCHILL AVENUE - SCOTT OUTLET JOB# 108058

					RESI	DENTIAL ARI	EA AND POPUL	ATION			OMMERCIAL	INSTITUTION	AL			INFILTRAT	ON			OTHER EX	RANEOUS FLO	WS	FLOW	1							
		LOCATION		Area	Pop.	Cu	mulative	Peak	Peak	Area	Accu.	Peak	Peak	Total	Infiltration	Foundation Drain	Combined	Accumulated	Rev. Slope	Flat	Combined	Accumulated	Total	1		Diameter	Diameter	T	Velocity	Capacity	Ratio
	MANHO	DLE ID's			-	Area	Pop.	Factor	Flow		Area	Factor	Flow	Area	Flow	allowance	additional flow	Flow	Driveways	Roofs	Ext Flows	Flow	Flow	Type of Pipe	Length	Actual	Nominal	SLOPE	(Full)	(Full)	Q/Qfull
STREET	FROM	то	AREA ID	(ha)		(ha)			(I/s)	(ha)	(ha)		(I/s)	(ha)	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)	(I/s)	(I/s)	(I/s)	(l/s)		(m)	(mm)	(mm)		(m/s)	(I/s)	(%)
Winona	27572	27574	27572-27574 (A)	0.11	79.2	0.11	79.2			0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.03	0	0	0	0								*	
			27572-27574 (ROW)	0.05	0	0.16	79.2	4.00	1.28	0	0	1.5	0.00	0.05	0.01	0.00	0.01	0.04	0	0	0	0	1.33	PVC	44.00	229	225	0.77	1.00	41.1	3%
	27574	27576	27574-27576 (ROW)	0.1	0	0.91	471.6	3.99	7.62	0	0	1.5	0.00	0.1	0.03	0.00	0.03	0.25	0	0	0	0	7.87	PVC	75.30	229	225	2.86	1.93	79.1	10%
	27576	27578	27576-27578 (A)	0.1	36	2.15	817.2			0	0	1.5	0.00	0.1	0.03	0.00	0.03	0.60	0	0	0	0						-	1		-
			27576-27578 (ROW)	0.11	0	2.26	817.2	3.85	12.76	0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.63	0	0	0	0	13.39	PVC	79.40	229	225	0.57	0.86	35.2	38%
	27578	253	27578-253 (A)	0.04	14.4	3.26	1053			0	0	1.5	0.00	0.04	0.01	0.00	0.01	0.91	0	0	0	0		1	•	•			1		
			27576-253 (ROW)	0.11	0	3.37	1053	3.79	16.15	0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.94	0	0	0	0	17.09	PVC	80.30	229	225	0.59	0.87	35.8	48%
																													1		
Picton	27573	27574	27573-27574 (A)	0.13	46.8	0.13	46.8			0	0	1.5	0.00	0.13	0.04	0.00	0.04	0.04	0	0	0	0									
			27573-27574 (B)	0.48	345.6	0.61	392.4			0	0	1.5	0.00	0.48	0.13	0.00	0.13	0.17	0	0	0	0									
			27573-27574 (ROW)	0.04	0	0.65	392.4	4.00	6.36	0	0	1.5	0.00	0.04	0.01	0.00	0.01	0.18	0	0	0	0	6.54	PVC	62.80	229	225	0.51	0.81	33.4	20%
Elmgrove	27575	28408	27575-28408 (A)	0.2	72	0.2	72	1		0	0	1.5	0.00	0.2	0.06	0.00	0.06	0.06	0	0	0	1 0	1	1							
Lilligiove	2/3/3	20400	27575-28408 (B)	0.19	68.4	0.39	140.4			0	0	1.5	0.00	0.19	0.05	0.00	0.05	0.11	0	0	0	0									
			27575-28408 (C)	0.19	82.8	0.39	223.2			0	0	1.5	0.00	0.19	0.03	0.00	0.13	0.24	0	0	0	0									
			27575-28408 (ROW)	0.40	02.0	0.87	223.2	4.00	3.62	0	0	1.5	0.00	0.40	0.13	0.00	0.01	0.24	0	0	0	0	3.86	PVC:	36.70	305	300	0.74	1.18	86.5	4%
	28408	27576	28408-27576 (A)	0.11	39.6	0.98	262.8	4.00	0.02	0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.27	0	0	0	0	0.00	7.00	00.70	505	500	0.74	1.10	00.0	770
	20400	2/3/0	28408-27576 (B)	0.11	46.8	1.11	309.6			0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.31	0	0	0	0									
			28408-27576 (ROW)	0.03	0	1.14	309.6	4.00	5.02	0	0	1.5	0.00	0.13	0.01	0.00	0.01	0.32	0	0	0	0	5.34	PVC	43.80	381	375	0.02	0.24	27.6	19%
																	-				-	-									
Ashton	27577	27578	27577-27578 (A)	0.19	68.4	0.19	68.4			0	0	1.5	0.00	0.19	0.05	0.00	0.05	0.05	0	0	0	0								*	
			27577-27578 (B)	0.16	57.6	0.35	126			0	0	1.5	0.00	0.16	0.04	0.00	0.04	0.10	0	0	0	0									
			27577-27578 ©	0.53	95.4	0.88	221.4			0	0	1.5	0.00	0.53	0.15	0.00	0.15	0.25	0	0	0	0									
			27577-27578 (ROW)	0.08	0	0.96	221.4	4.00	3.59	0	0	1.5	0.00	0.08	0.02	0.00	0.02	0.27	0	0	0	0	3.86	PVC	81.40	229	225	0.45	0.77	31.6	12%
			T. 6". 10". 6												. , 5	0			1.110 11 0					DD0 1505	01 1:11:		esign: Novatech	Engineering C	Jonsultants Ltd.		. NTO
			The City of Ottawa Sewer		ies								Extraneous F			e Sloped Driveways and	riat Roof Buildings o	contributing to the Chi	urcnill Sanitary Sev	wer have been	accounted for as f	Ollows:		PROJECT:	Cnurchill Ave	enue Reconstru	uction			Designed:	i: NTQ
			Residential Intensification F													thod (Q=ciA), where															
			dicates that the existing con	ditions produce	the most critic	cal sanitary flo	ws (ie. Existing p	oopulation, infilti	ration and extra	neous flow co	ntributions)				hectares (ha)									CLIENT:	City of Ottav					Checked:	
Existing Sanitary	Sewers are Inc	dicated in Italics	i													= 104.2mm/hr (City of C	Ottawa, 5yr stm, 10mi	n tc)						Date:	October 14,				D [.]	Owg. Reference:	1
														c = Runoff (Coefficient = 0.9 (Impervious Surfaces)								Revised	January 7, 2	2009					

CHURCHILL AVENUE - RICHMOND & BYRON OUTLETS JOB# 108058

		LOCATION			RESII	DENTIAL ARE	A AND POPUL	ATION			OMMERCIAL	/INSTITUTION	AL			INFILTRATI	ON			OTHER EXT	RANEOUS FLO	ws	FLOW								
		LOCATION		Area	Pop.	Cum	nulative	Peak	Peak	Area	Accu.	Peak	Peak	Total	Infiltration	Foundation Drain	Combined	Accumulated	Rev. Slope	Flat	Combined	Accumulated	Total			Diameter	Diameter	(Velocity	Capacity	Rat
		DLE ID's		1		Area	Pop.	Factor	Flow		Area	Factor	Flow	Area	Flow	allowance	additional flow	Flow	Driveways	Roofs	Ext Flows	Flow	Flow	Type of Pipe	Length	Actual	Nominal	SLOPE	(Full)	(Full)	Q/Q
STREET	FROM	то	AREA ID	(ha)		(ha)			(I/s)	(ha)	(ha)		(I/s)	(ha)	(I/s)	(l/s)	(l/s)	(I/s)	(l/s)	(I/s)	(l/s)	(I/s)	(l/s)		(m)	(mm)	(mm)	<u> </u>	(m/s)	(I/s)	(%
CHMOND OU	ITLET																														
Lincoln	Dead End	213	Dead End-213 (ROW)	0.11	0	0.11	0	4.00	0.00	0	0	1.5	0.00	0.11	0.03	0.00	0.03	0.03	0	0	0	0	0.03	PVC	-	152	150	-		-	-
Churchill	213	211	213-211 (A)	0.09	69.8	0.2	69.8			0	0	1.5	0.00	0.09	0.03	0.00	0.03	0.06	0	0	0	0						"			
			213-211 (B)	0.1	72	0.3	141.8			0	0	1.5	0.00	0.1	0.03	0.00	0.03	0.08	0	0	0	0						Ų.			
			213-211 (ROW A)	0.06	0	0.36	141.8			0	0	1.5	0.00	0.06	0.02	0.00	0.02	0.10	0	0	0	0									
			213-211 (ROW B)	0.28	0	0.64	141.8	4.00	2.30	0	0	1.5	0.00	0.28	0.08	0.00	0.08	0.18	0	0	0	0	2.48	CONC	47.78	305	300	5.99	3.38	246.6	19
	211B	211A	211-46990 (A)	0.17	122.4	0.81	264.2			0	0	1.5	0.00	0.17	0.05	0.00	0.05	0.23	0	0	0	0									
			211-46990 (B)	0.16	115.2	0.97	379.4			0	0	1.5	0.00	0.16	0.04	0.00	0.04	0.27	0	0	0	0									
			211-46990 (ROW)	0.12	0	1.09	379.4	4.00	6.15	0	0	1.5	0.00	0.12	0.03	0.00	0.03	0.31	0	0	0	0	6.45	CONC	27.10	305	300	2.84	2.33	169.9	49
	211A	46990		0	0	1.09	379.4	4.00	6.15	0	0	1.5	0.00	0	0.00	0.00	0.00	0.31	0	0	0	0	6.45	CONC	23.15	305	300	2.85	2.33	170.2	49
	46990	46989																													
RON OUTLE						1					_	1		1						_			1								
Churchill	217	215A	217-215 (A)	0.14	20.4	0.14	20.4			0	0	1.5	0.00	0.14	0.04	0.70	0.74	0.74	0	0	0	0						ų.			
			217-215 (B)	0.76	163.2	0.9	183.6			0	0	1.5	0.00	0.76	0.21	3.80	4.01	4.75	0	0	0	0		<u> </u>			1				
			217-215 (ROW)	0.18	0	1.08	183.6	4.00	2.98	0	0	1.5	0.00	0.18	0.05	0.00	0.05	4.80	0	0	0	0	7.78	PVC	69.65	254	250	1.36	1.43	72.4	11
	215A	215B		0	0	1.08	183.6	4.00	2.98	0	0	1.5	0.00	0	0.00	0.00	0.00	4.80	0	0	0	0	7.78	PVC	9.50	254	250	0.95	1.19	60.3	13
																															
Byron	215B	27820		0	0	1.08	183.6	4.00	2.98	0	0	1.5	0.00	0	0.00	0.00	0.00	4.80	0	0	0	0	7.78	PVC	76.80	229	225	1.15	1.22	50.1	16
•			in The City of Ottawa Sewer	•	ines								Extraneous F			Sloped Driveways and	Flat Roof Buildings co	ontributing to the Chu	urchill Sanitary Se	ewer have been a	accounted for as f	follows:		PROJECT:	Churchill Ave			Engineering Co	onsultants Ltd.	Designed:	l: N7
eas where por	oulation totals a	•	re Residential Intensification I indicates that the existing cons s		e the most critic	cal sanitary flow	vs (ie. Existing p	opulation, infilt	ration and extra	neous flow cor	ntributions)			A = Area in h i = Rainfall ir	ectares (ha) tensity (mm/hr) =	nod (Q=ciA), where 104.2mm/hr (City of Ompervious Surfaces)	ttawa, 5yr stm, 10min	ı tc)						Date:	City of Ottaw October 14, 3 January 7, 20	2009			D	Checked: wg. Reference:	

SANITARY SEWER DESIGN SHEET

Novatech Project #: 110098
Project Name: 335 Roosevelt Avenue
Date: 5/29/2025

Input By: Lucas Wilson
Reviewed By: Mark Bissett
Drawing Reference: 110098-GP, Figure 4.1

Legend: Design Input by User
As-Built Input by User
Cumulative Cell
Calculated Design Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Output
Calculated Annual Cell Outpu

Reference: City of Ottawa - Sewer Design Guidelines (2012 and TBs) MOE - Design Guidelines for Sewage Works (2008)

	Location											I	Demand												Design Ca	apacity			
								Residential Flo	w					Ir	ndustrial / Commercial	/ Institutional (ICI) FI	ow			eous Flow Method	Total Design Flow			Pro	posed Sewer Pipe	oe Sizing / Des	ign		
Street	Area ID	From MH	To MH	Singles Semis /	Apts	Population	Cumulative Population	Average Pop. Flow	Design Peaking Factor	Peak Design Pop. Flow	Res. Drainage Area	Cumulative Res. Drainage Area	Commercial / Institutional Area	Cumulative Commercial /	Average Design Commercial / Institutional Flow	Commercial / Institutional Peaking	Cumulative ICI Area	Peak Design ICI Flow	Cumulative Extraneous Drainage Area	Design Extraneous Flow	Total Peak Design Flow	Pipe Length	Pipe Size (mm) and Material	Pipe ID Actual	Roughness	Design Grade	Capacity	Full Flow Velocity	Q(D) / Qfull
				Towns	1	(in 1000's)	(in 1000's)	Q(q) (L/s)	M	Q(p) (L/s)	(ha.)	(ha.)	(ha.)	(ha.)	(L/s)	Factor	(ha.)	Q (ici) (L/s)	(ha.)	Q(e) (L/s)	Q(D) (L/s)	(m)		(m)	n	So (%)	Qfull (L/s)	Vfull (m/s)	
PHASE 1													•	•					•		•								
West Building	SAN1	Stub E:	kisting		157	0.283	0.283	0.92	3.47	3.18	0.330	0.330	0.000	0.000	0.00	1.00	0.000	0.00	0.330	0.11	3.3	13.3	200 PVC	0.203	0.013	1.00	34.2	1.06	9.6%
	Existng Flows																												
Richmond Road	Design Flow from 2003	Project (Richmond Ro	d Rehab)																		78.1								
Danforth Avenue	SAN6					0.000	0.000	0.00	3.80	0.00	0.000	0.000	0.550	0.550	0.18	1.50	0.550	0.27	1.060	0.35	0.6								
Roosevelt Avenue	SAN3			7 32	58	0.215	0.215	0.70	3.51	2.44	2.100	2.100	0.060	0.060	0.02	1.00	0.060	0.02	2.160	0.71	3.2								
Berkeley Avenue	SAN4			7 43		0.140	0.140	0.45	3.56	1.61	1.600	1.600	0.000	0.000	0.00	1.00	0.000	0.00	1.600	0.53	2.1								
Tay Street	SAN5			9		0.024	0.024	0.08	3.69	0.29	0.250	0.250	0.000	0.000	0.00	1.00	0.000	0.00	0.250	0.08	0.4								
Dominion Avenue	SAN5			7 7	291	0.567	0.567	1.84	3.36	6.16	1.630	1.630	0.000	0.000	0.00	1.00	0.000	0.00	1.630	0.54	6.7								
Total Flow	-					0.000	1.228	3.98	3.19	12.70	5.910	5.910	0.000	0.610	0.20	1.00	0.610	0.20	7.030	2.32	93.3	5.7	450 PVC	0.457	0.013	0.20	133.0	0.81	70.2%
PHASE 2																													
East Building	SAN2	Stub Ex	kisting		160	0.288	0.288	0.93	3.47	3.24	0.360	0.360	0.000	0.000	0.00	1.00	0.000	0.00	0.360	0.12	3.4	13.3	200 PVC	0.203	0.013	1.00	34.2	1.06	9.8%

Demand Equation / Parameters

1. Q(D), Q(A), Q(R) = Q(p) + Q(fd) + Q(ici) + Q(e) 2. Q(p) = (P x q x M x K / 86,400) 280 200 L/per person/day (design) (annual and rare) 3. q= 4. M = Harmon Formula (maximum of 4.0) (design) (annual and rare) 6. Park flow is considered equivalent to a single unit / ha

Park Demand = 4

= 4 single unit equivalent / park ha (~ 3,600 L/ha/day)

1Cl Area x ICl Flow x ICl Peak 7. Q(fd) = 8. Q(ici) = 9. Q(e) = 0.33 0.30 0.55 L/s/ha L/s/ha (design) (annual) (rare)

L/s/ha

Q(D) = Peak Design Flow (L/s) Q(A) = Peak Annual Flow (L/s) Q(R) = Peak Rare Flow (L/s) Q(p) = Peak Design Population Flow (L/s)
Q(q) = Average Population Flow (L/s)

P = Residential Population =
q = Average Capita Flow
M = Harmon Formula
K = Harmon Correction Factor
Typ. Service Diameter (mm) =
Typ. Service Length (m) =
I/I Pipe Rate (L/mm dia/m/hr) =
I/I Pipe Rate (L/mm dia/m/hr) = Q(fd) = Foundation Flow (L/s)
Q(ici) = Industrial / Commercial / Institutional Flow (L/s)
Q(e) = Extraneous Flow (L/s)

Institutional / C	ommercial / Industrial	Industrial	Commercial / Ins	titutional
	Design =	35000	28000	L/gross ha/day
	Annual / Rare =	10000	17000	L/gross ha/day
ICI Peak *	Design = Annual / Rare =	1.0	1.5 1.0	* ICI Peak = 1.0 Default, 1.5 if ICI in contributing area is >20% (design onl

Capacity Equation

Q full = (1/n) Ap R^(2/3) So^(1/2)

Q full = Capacity (L/s)

n = Manning coefficient of roughness (0.013)

R = Wetted perimeter (m)

So = Pipe slope/gradient

335 Roosevelt Avenue	Site Servicing and Stormwater Management Report
Appendix Boundary Conditions, Water Dem	(D
Boundary Conditions, Water Dem	ands and FUS Calculations

Lucas Wilson

From: Wessel, Shawn <shawn.wessel@ottawa.ca>

Sent: Wednesday, June 4, 2025 3:54 PM

To: Lucas Wilson
Cc: Mark Bissett

Subject: RE: 335 Roosevelt Avenue - Hydraulic Boundary Conditions

Attachments: 335 Roosevelt Avenue May 2025 .pdf

Hello Lucas

I don't recall if you received the BC you requested.

Here is the response to my recent request, attached and below

The following are boundary conditions, HGL, for hydraulic analysis at 335 Roosevelt Avenue (zone 1W) assumed to be connected via two separate dual connections for each building to the 152mm watermain on Roosevelt Avenue and to the 203mm watermain on Wilmont Avenue (see attached PDF for location).

Roosevelt Ave - Connection 1 (Building West demand)

Minimum HGL= 108.6 m

Maximum HGL= 115.0 m

Max Day + Fire Flow (83 L/s) = 105.2 m

Wilmont Ave - Connection 2 (Building East demand)

Minimum HGL= 108.5 m Maximum HGL= 114.7m

Max Day + Fire Flow (83 L/s) = 105.1 m

These are for current conditions and are based on computer model simulation.

Disclaimer:

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

"The IWSD has recently updated their water modelling software. Any significant difference between previously received BC results and newly received BC results could be attributed to this update."

Regards,

Shawn Wessel, A.Sc.T.,rcji

Pronouns: he/him | Pronom: il

Project Manager - Infrastructure Approvals

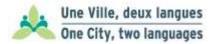
Gestionnaire de projet - Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale

Planning, Development & Building Services Department (PDBS) | Direction générale des services de la planification, de l'aménagement et du

bàtiment (DGSPAB)

City of Ottawa | Ville d'Ottawa


110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1

(613) 580 2424 Ext. | Poste 33017

Int. Mail Code | Code de Courrier Interne 01-14

shawn.wessel@ottawa.ca

Please consider the environment before printing this email

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Lucas Wilson < l.wilson@novatech-eng.com>

Sent: Tuesday, May 20, 2025 3:24 PM

To: Wessel, Shawn < shawn.wessel@ottawa.ca > Cc: Mark Bissett < m.bissett@novatech-eng.com >

Subject: 335 Roosevelt Avenue - Hydraulic Boundary Conditions

Hi Shawn,

Could you please provide water boundary conditions for the above noted site based on the info provided below. If you have any question, or require additional information, let me know. Also let me know if this should be directed to someone else.

Roosevelt Ave – Connection 1 (Building West demand)

- i. The water connection will be made at Roosevelt Ave (connection 1 – 150mm WM), see figure attached.
- ii. Residential development with required fire flow: 83 L/s see FUS calcs attached.
- iii. Average daily demand: 0.916 L/s.
- Maximum daily demand: 2.29 L/s. iv.
- Maximum hourly daily demand: 5.037 L/s. ٧.

Wilmont Ave – Connection 2 (Building East demand)

- The water connection will be made at Wilmont Ave (connection 2 200mm WM), see figure attached. i.
- ii. Residential development with required fire flows: 83 L/s see FUS calcs attached.
- iii. Average daily demand: 0.933 L/s.
- Maximum daily demand: 2.333 L/s. iv.
- Maximum hourly daily demand: 5.133 L/s. ٧.

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji

Pronouns: he/him | Pronom: il

Project Manager - Infrastructure Approvals

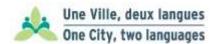
Gestionnaire de projet – Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale

Planning, Development & Building Services Department (PDBS) | Direction générale des services de la planification, de l'aménagement et du bàtiment (DGSPAB)

City of Ottawa | Ville d'Ottawa

110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1


(613) 580 2424 Ext. | Poste 33017

Int. Mail Code | Code de Courrier Interne 01-14

shawn.wessel@ottawa.ca

Please consider the environment before printing this email

From: Wessel, Shawn

Sent: Tuesday, May 20, 2025 5:29 PM

To: Lucas Wilson < l.wilson@novatech-eng.com> Cc: Mark Bissett < m.bissett@novatech-eng.com>

Subject: RE: 335 Roosevelt Avenue - Hydraulic Boundary Conditions

Thank you, Lucas,

Request sent to the Water Dept.

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji

Pronouns: he/him | Pronom: il

Project Manager - Infrastructure Approvals

Gestionnaire de projet – Approbation des demandes d'infrastructures

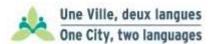
Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale

Planning, Development & Building Services Department (PDBS) | Direction générale des services de la planification, de l'aménagement et du bàtiment (DGSPAB)

City of Ottawa | Ville d'Ottawa

110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1

(613) 580 2424 Ext. | Poste 33017


Int. Mail Code | Code de Courrier Interne 01-14

shawn.wessel@ottawa.ca

Please consider the environment before printing this email

Please also note that, while my work hours may be affected by the current situation and am working from home, I still have access to email, video conferencing and telephone. Feel free to schedule video conferences and/or telephone calls, as necessary.

From: Lucas Wilson < l.wilson@novatech-eng.com>

Sent: Tuesday, May 20, 2025 3:24 PM

To: Wessel, Shawn < shawn.wessel@ottawa.ca> Cc: Mark Bissett < m.bissett@novatech-eng.com>

Subject: 335 Roosevelt Avenue - Hydraulic Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION: Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Shawn,

Could you please provide water boundary conditions for the above noted site based on the info provided below. If you have any question, or require additional information, let me know. Also let me know if this should be directed to someone else.

Roosevelt Ave – Connection 1 (Building West demand)

The water connection will be made at Roosevelt Ave (connection 1 – 150mm WM), see figure attached. i.

- ii. Residential development with required fire flow: 83 L/s see FUS calcs attached.
- iii. Average daily demand: 0.916 L/s.iv. Maximum daily demand: 2.29 L/s.
- v. Maximum hourly daily demand: 5.037 L/s.

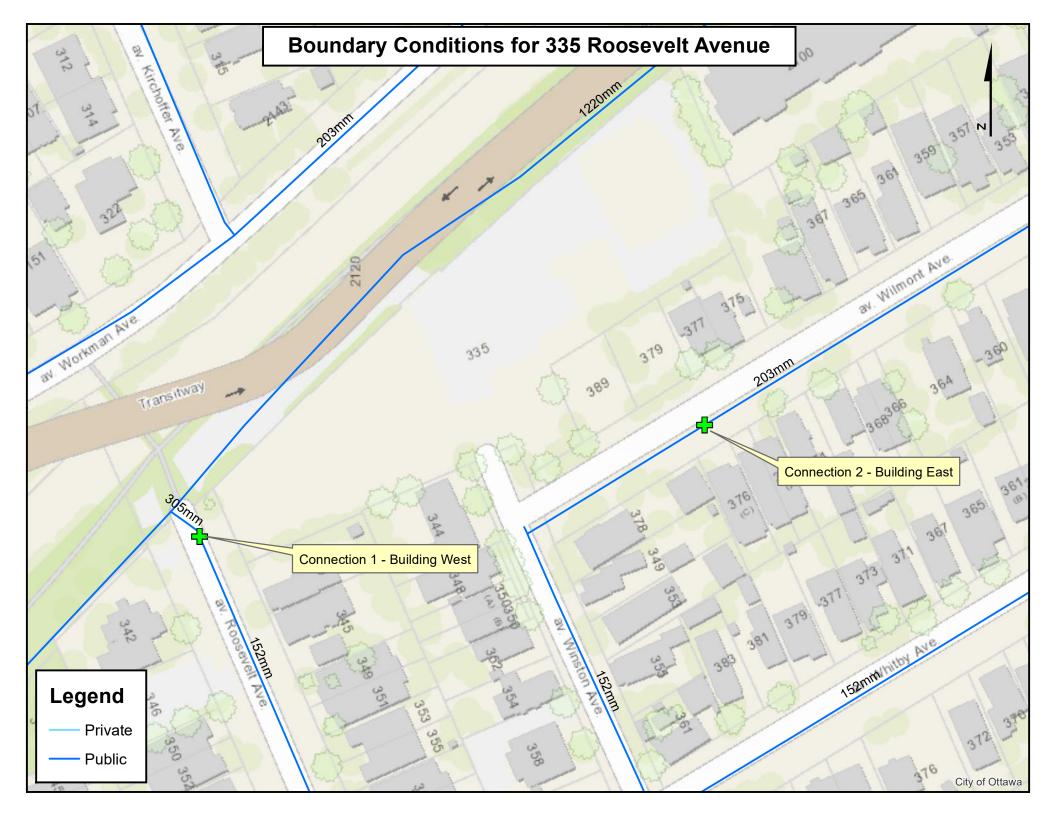
Wilmont Ave – Connection 2 (Building East demand)

- i. The water connection will be made at Wilmont Ave (connection 2 200mm WM), see figure attached.
- ii. Residential development with required fire flows: 83 L/s see FUS calcs attached.
- iii. Average daily demand: 0.933 L/s.
- iv. Maximum daily demand: 2.333 L/s.
- v. Maximum hourly daily demand: 5.133 L/s.

Thanks,

Lucas Wilson, P.Eng., Project Manager | Engineering

NOVATECH


Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282

The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

335 Roosevelt Avenue Water Demand								
Area Average Day Maximum Day Peak Hould Demand Demand Demand Demand (1/2)								
	(ha)	Units	Population		(L/s)	(L/s)		
West Building (WR#1)	N/A	157	283	0.916	2.290	5.037		
East Building (WR#2)	N/A	160	288	0.933	2.333	5.133		
Total	0.00	317	571	1.849	4.623	10.170		

Water Demand Parameters

Apartment Unit	1.8	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	83	L/s

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
unc WR1	67.0	5.04	108.56	41.56	407.70	59.13	
unc WR2	67	5.13	108.49	41.49	407.02	59.03	
Resvr RES1	108.6	-8.46	108.6	0	0.00	0.00	
Resvr RES2	108.5	-1.71	108.5	0	0.00	0.00	
Network Table - Links	- (Peak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	12	150	100	-8.46	0.48	3.16	0.041
Pipe P2	115	150	100	3.43	0.19	0.59	0.046
Pipe P3	40	150	100	-1.71	0.10	0.16	0.051

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
unc WR1	67.0	0.92	114.97	47.97	470.59	68.25	
lunc WR2	67	0.93	114.76	47.76	468.53	67.95	
Resvr RES1	115	-7.29	115	0	0.00	0.00	
Resvr RES2	114.7	5.45	114.7	0	0.00	0.00	
Network Table - Links	- (Max Pressure Check)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	-	LPS	m/s	m/km	Factor
Pipe P1	12	150	100	-7.29	0.41	2.40	0.041
Pipe P2	115	150	100	6.38	0.36	1.87	0.042
	40	150	100	5.45	0.31	1.39	0.043

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
unc WR1	67.0	85.29	103.33	36.33	356.40	51.69	
unc WR2	67	2.33	104.55	37.55	368.37	53.43	
Resvr RES1	105.2	-68.95	105.2	0	0.00	0.00	
Resvr RES2	105.1	-18.67	105.1	0	0.00	0.00	
Network Table - Links	- (Max Day + FF)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Frictio
Link ID	m	mm		LPS	m/s	m/km	Facto
Pipe P1	12	150	100	-68.95	3.90	153.56	0.030
Pipe P2	115	150	100	-16.34	0.92	10.67	0.037
Pipe P3	40	150	100	-18.67	1.06	13.66	0.036

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
unc WR1	67.0	2.29	104.74	37.74	370.23	53.70	
unc WR2	67	85.33	100.99	33.99	333.44	48.36	
Resvr RES1	105.2	-32.15	105.2	0	0.00	0.00	
Resvr RES2	105.1	-55.47	105.1	0	0.00	0.00	
Network Table - Links	- (Max Day + FF)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Frictio
Link ID	m	mm	-	LPS	m/s	m/km	Facto
Pipe P1	12	150	100	-32.15	1.82	37.38	0.033
Pipe P2	115	150	100	29.86	1.69	32.60	0.034
Pipe P3	40	150	100	-55.47	3.14	102.63	0.031

FUS - Fire Flow Calculations

Novatech Project #: 110098

Project Name: 335 Roosevelt Avenue

Date: 5/20/2025
Input By: Lucas Wilson
Reviewed By: Mark Bissett

Drawing Reference:

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Building Description: West Building

Type I - Fire resistive construction (2 hrs)

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	Flow			
	Construction Ma			Multi		
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	С	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Podium Level Footprint (m²)	1262			
		Total Floors/Storeys (Podium)	7			
	A	Tower Footprint (m ²)	1140			
2	^	Total Floors/Storeys (Tower)	7			
		Protected Openings (1 hr)	Yes			
		A, Total Effective Floor Area (m²)			1,893	
	F	Base fire flow without reductions				6,000
	•	$F = 220 C (A)^{0.5}$				0,000
		Reductions or Su	urcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
	(1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,100
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	Reduction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	No	-10%		-2.032
	(2)		Cumulat	ive Sub-Total	-40%	-2,032
		Area of Sprinklered Coverage (m²)	16750	100%		
			Cun	nulative Total	-40%	
	Exposure Surch	arge per	FUS Table 5		Surcharge	
		North Side	>30m		0%	
5		East Side	10.1 - 20 m		15%	
J	(3)	South Side	10.1 - 20 m		15%	2,040
		West Side	20.1 - 30 m		10%	
			Cun	nulative Total	40%	
		Results	<u> </u>			
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	5,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	83
		(2,000 L/IIIII > FIIE FIOW > 45,000 L/IIIII)		or	USGPM	1.321

FUS - Fire Flow Calculations

Novatech Project #: 110098

Project Name: 335 Roosevelt Avenue

Date: 5/20/2025
Input By: Lucas Wilson
Reviewed By: Mark Bissett

Drawing Reference:

Building Description: East Building

Type I - Fire resistive construction (2 hrs)

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	low			(L/IIIII)
	Construction Ma			Mult	iplier	
		Type V - Wood frame		1.5		
	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	0.6	
	C	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Podium Level Footprint (m²)	1307			
		Total Floors/Storeys (Podium)	7			
	A	Tower Footprint (m ²)	1140			
2	A	Total Floors/Storeys (Tower)	6			
		Protected Openings (1 hr)	Yes			
		A, Total Effective Floor Area (m²)			1,961	
	F	Base fire flow without reductions				6,000
	•	$F = 220 C (A)^{0.5}$				0,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
		Combustible		0%	-15%	5,100
		Free burning		15%	_	
		Rapid burning		25%		
	Sprinkler Reduc		FUS Table 4		ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	No	-10%		-2,041
	()		1	ive Sub-Total	-40%	,-
		Area of Sprinklered Coverage (m²)	16000	100%		
				nulative Total	-40%	
	Exposure Surch		FUS Table 5		Surcharge	
		North Side	>30m	_	0%	
5	(2)	East Side	10.1 - 20 m	_	15%	0.005
	(3)	South Side West Side	10.1 - 20 m		15%	2,295
		West Side	10.1 - 20 m	l nulative Total	15% 45%	
		Results		iuialive i Uldi	40%	
		Total Required Fire Flow, rounded to nea			L/min	5,000
6	(1) + (2) + (3)	Total Negulieu File Flow, Toulided to flea	IGSU IOOUL/IIIIII	or	L/s	83
	(1) - (2) - (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	1,321

0" 0 "				
Site Servicino	and Storm	<i>water Manad</i>	gement Re	enort

Appendix E Mississippi-Rideau Source Protection Plan

Schedule I