

Report
Project: 30282806-6.4.3

8201 CAMPEAU DRIVE SERVICING BRIEF

Prepared for 8201 Campeau Drive Inc.
by ARCADIS

July 2025

Table of Contents

1	INTRODUCTION	4
1.1	Guidelines and Standards	4
1.2	Pre-Consultation Meeting	5
1.3	Geotechnical Concerns.....	5
2	WATER DISTRIBUTION	6
2.1	Existing Conditions	6
2.2	Design Criteria	6
2.2.1	Water Demands	6
2.2.2	System Pressures	6
2.2.3	Fire Flow Rate.....	7
2.2.4	Boundary Conditions.....	7
2.3	Proposed Water Plan.....	7
3	WASTEWATER.....	9
3.1	Existing Conditions	9
3.2	Proposed Sewers.....	9
3.2.1	Design Flow:	9
3.2.2	Population Density:	9
4	SITE STORMWATER MANAGEMENT	10
4.1	Existing Conditions	10
4.2	Design Criteria	Error! Bookmark not defined.
4.3	Stormwater Management.....	14
4.3.1	Water Quantity Control.....	14
5	SEDIMENT AND EROSION CONTROL PLAN	16
5.1	General	16
5.2	Trench Dewatering.....	16
5.3	Bulkhead Barriers	16
5.4	Seepage Barriers	16
5.5	Surface Structure Filters	16
6	CONCLUSIONS & RECOMMENDATIONS.....	17
6.1	Conclusions	17
6.2	Recommendations	17

List of Appendices

APPENDIX A

Site Plan for 8201 Campeau Drive
City of Ottawa Pre-Consultation Meeting Notes
City of Ottawa Study and Plan Identification Checklist
30282806-001 General Plan of Services

APPENDIX B

Boundary Conditions
Water Demand Calculations
FUS Calculations
Water Model Results

APPENDIX C

Sanitary Sewer Design Sheet
30282806-400 Sanitary Drainage Area Plan

APPENDIX D

Storm Sewer Design Sheet
30282806-500 Storm Drainage Area Plan
Modified Rational Method SWM Calculations
Runoff Coefficient Calculations
Infiltration Gallery Calculations
EZ Storm Underground Storage Detail Sheets

APPENDIX E

30282806-900 Erosion and Sediment Control Plan
30282806-010 Notes and Legends
30282806-200 Grading Plan

1 INTRODUCTION

8201 Campeau Drive is located at the South-East intersection of Campeau Drive and Taggart Road in Ottawa, Ontario. This site is Phase 1 of a larger development consisting of residential dwelling units, commercial units and greenspace amenity spaces. The site is comprised of two buildings with a communal link separating the two buildings and is abutted by Campeau Drive to the North, Taggart Road to the East and existing undeveloped land to the East and South. Vehicle access to the site will be provided on Taggart Road. Pedestrian access to the building entrances will be provided from Campeau Drive and Taggart Road.

Arcadis Professional Services (Canada) Inc. (formerly IBI Group) has been retained by 8201 Campeau Drive Inc. to provide professional engineering services for 8201 Campeau Drive. The subject site including the parkland is approximately 1.40 ha and consists of 176 apartment units in building 1 and 147 apartment units in building 2 for a total of 323 dwelling units. Refer to key plan on **Figure 1.1** for Site location.

Figure 1.1 Site Location

The proposed servicing design conforms to current City of Ottawa and MECP design criteria.

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, the 2018 Technical Bulletin 2018-02 and the 2020 Technical Bulletin 2020-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a pre-consultation meeting on March 11th, 2025. Notes of the meeting and City of Ottawa Planning Checklist are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting.

1.3 Geotechnical Concerns

A geotechnical report entitled “Geotechnical Investigation – Proposed Development – 8201 Campeau Drive – Ottawa, Ontario” Report PG6934-1 dated October 4, 2024 by Paterson Group Inc. has been prepared for the subject site.

The objective of the investigation report include:

- Determination of the subsoil and groundwater conditions;
- Provision of geotechnical recommendations pertaining to the design and development of the subject site including construction considerations.

Among other items, the report comments on the following:

- Site grading;
- Foundation design;
- Pavement structure;
- Infrastructure construction;
- Groundwater control;

The report concludes that the subject site is considered suitable for the proposed development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

8201 Campeau Drive will be serviced with potable water from the City of Ottawa's existing watermains. There is an existing 203 mm diameter PVC watermain on Taggart Road and a 600mm diameter watermain on Campeau Drive. For the purpose of this development, only connections to Taggart Road will be considered.

2.2 Design Criteria

2.2.1 Water Demands

The proposed development consists of 323 apartment units, split into two buildings. In order to calculate water demand rates, the per unit population density and consumption rates are taken from Tables 4.1 and 4.2 of the Ottawa Design Guidelines – Water Distribution were used and are summarized as follows:

• 1 Bedroom Apartment	1.4 person per average apartment
• 2 Bedroom Apartment	2.1 person per average apartment
• 3 Bedroom Apartment	3.1 persons per average apartment
• Average Day Demand	280 l/cap/day
• Peak Daily Demand	700 l/cap/day
• Peak Hour Demand	1,540 l/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

• Average Day	1.59 l/s
• Maximum Day	3.99 l/s
• Peak Hour	8.77 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for the design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi).
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure	Maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings when it is not possible/feasible to maintain the system pressure below 552 kPa.
------------------	---

2.2.3 Fire Flow Rate

The Fire Underwriters Survey was used to determine the fire flow for the site. The calculations result in a fire flow of 18,000 L/min (300.0 L/s) based on wood frame building construction. A copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided a hydraulic boundary condition at the connection locations off Taggart Road. A copy of the boundary condition received June 11th, 2025 is included in **Appendix B** and is summarized as follows:

BOUNDARY CONDITIONS		
SCENARIO	Connection 1 HGL (m)	Connection 2 HGL (m)
Existing Condition (Pre-SUC Pressure Zone Reconfiguration)		
Average Day	162.0	162.0
Peak Hour	155.8	155.8
Max Day + Fire Flow (183 l/s)	133.5	132.2

2.3 Proposed Water Plan

The site will be serviced by several connections to the existing 200 mm watermain on Taggart Road. One connection will be included to the East entrance of Building A at the intersection to the existing Kanata Commons commercial site. An existing connection has previously been installed in anticipation of the proposed residential development and will have a double service to meet water demands.

Building B will be serviced by extending a new 200mm diameter watermain in J way to accommodate future buildings. One service will be provided from J Way and include an additional connection within the shared parking garages in order to accommodate a double service connection to meet water demands.

There is one hydrant proposed on site, there are two existing hydrants on Campeau Drive adjacent to buildings A and B.

A hydraulic model has been created for the subject site using the InfoWater 12.4 program. The model includes the hydraulic boundary condition and the existing main on Taggart Road. The hydraulic model was run under basic day, maximum day with fire flows and under peak hour conditions, watermains are sized to provide sufficient pressure and to deliver the required fire flow, the watermains on site are 200mm in diameter in order to provide the required pressures. Results of the hydraulic analysis for the site is included in **Appendix B** and is summarized as follows:

SCENARIO	RESULTS
Basic Day (Max HGL) Pressure (kPa)	641.8-651.6 kPa
Maximum Day plus Fire Flow Design Fire Flow @ 140 kPa (20 psi) Residual Pressure	184.7 l/s
Peak Hour Pressure (kPa)	580.8-590.8 kPa

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure	Under Basic Day all nodes have pressure that exceeds 552 kPa (80 psi), therefore pressure reducing control is required for the buildings. There is no area where the pressure exceeds the maximum level of 689 kPa (100 psi) in unoccupied areas.
Minimum Pressure	The lowest minimum pressure during peak hour conditions is 580.8 kPa which exceeds the minimum 276 kPa (40 psi) requirement.
Fire Flow	For the proposed hydrant at the southeast corner of the site, the maximum design flow is 184.7 l/s which is below the 300 l/s rate from the FUS calculation. The design flow is expected to increase to over 300 l/s once the watermain is looped back to the Taggart Road watermain. The two hydrants on Campeau Drive are expected to have fire flows at 300 l/s as they are fed from an existing 600 mm watermain. Further analysis of the hydrants can be conducted to determine the actual design fire flow and the on site hydrant can be looped back to the Taggart Road watermain.

3 WASTEWATER

3.1 Existing Conditions

The proposed site at 8201 Campeau Drive is located within the City of Ottawa where sanitary flows ultimately to the Ottawa Wastewater Treatment Plant at 395 Terry Fox Drive. There is an existing 200mm sanitary sewer bulkhead in Taggart Road at the property line that was previously installed in anticipation of the subject site, which will be utilized to service the dwelling units in Building A. It is proposed to extend the sanitary sewer further South to the intersection of Taggart Road and J Way, and continue East along J Way to the site limits. This proposed sanitary sewer extension along Taggart Road and J Way will provide a separate service connection directly to Building B and has been sized to accommodate future development capacity.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MECP design criteria which include but are not limited to the below listed criteria. The detailed sanitary sewer design sheet which is included in **Appendix C** illustrates the population densities and sewers which provide the necessary outlets. The design wastewater criteria for this analysis area:

3.2.1 Design Flow:

Average Residential Flow	-	280 l/cap/day
Peak Residential Factor	-	Modified Harmon Formula
Infiltration Allowance	-	0.33 l/sec/Ha
Minimum Pipe Size	-	200mm diameter

3.2.2 Population Density:

1 Bedroom Apartments	-	1.4 people per unit
2 Bedroom Apartments	-	2.1 people per unit
3 Bedroom Apartments	-	2.5 people per unit
Average Apartments	-	1.8 people per unit

In order to calculate the projected average dwelling units and capacity requirements in future phases, a criteria of 1.8 people per unit was used for the total estimated unit count.

4 SITE STORMWATER MANAGEMENT

4.1 Existing Conditions

The subject site is currently undeveloped with no known stormwater management control measures. Stormwater currently flows overland to the South-West of the site.

An existing 300mm storm sewer stub, complete with temporary catch basin, is located within the site from the previous Kanata Commons commercial development. The stub will be utilized to service Building A. This stub was designed and installed in anticipation of this proposed development.

It is proposed that a new storm maintenance hole will be installed at the intersection of J Way and extended to the Eastern site limits in order to service Building B and future development separately. This proposed storm extension has been designed in anticipation of future overall development loads.

Catchment areas can be referenced in the Storm Drainage Area Plan in **Appendix D**.

4.2 Design Criteria

The stormwater system for the subdivision was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

- | | |
|---------------------------------|--------------------------|
| • Design Storm | 1:2-year return (Ottawa) |
| • Rational Method Sewer Sizing | |
| • Initial Time of Concentration | 10 minutes |
| • Runoff Coefficients | |
| - Softscape Areas | C = 0.20 |
| - Hardscape Areas | C = 0.90 |
| • Pipe Velocities | 0.80 m/s to 3.0 m/s |
| • Minimum Pipe Size | 250 mm diameter |

4.2.1 Infiltration

The Taggart-Loblaws Design Brief, dated June 2013, maintained the infiltration targets established within previous studies completed for the Kanata West Area, namely the Kanata West Master Servicing Study. The targets provided within the KWMSS design brief indicated that a range of 50-70 mm/year of runoff be infiltrated from the area. The infiltration target for this site is therefore to be considered as 70mm/year.

The design of the infiltration gallery is to be as per MECP requirements and the bottom of storage media will be minimum 1m above the high groundwater. The lowest bottom of media storage is 94.425m (94.575m header pipe elevation – 0.15m depth of clear stone base), or approximately 1.4m deep. Based on the geotechnical report the current groundwater table onsite is approximately 4.9-5.5m deep.

The proposed infiltration gallery has been sized to maximize infiltration potential for the site. The sizing was based on the amenity area catchment, and daily precipitation data (using wet year and dry year to establish overflow volume based on measured historical data). The maximum potential infiltration of the gallery was estimated using gallery size and precipitation norms for the area [920mm] and the overflow was then subtracted. Infiltration was assumed through the bottom surface area, with percolation rates established based on geotechnical investigation of the site determining that area generally ranges from silty sand to silty clay. The sizing of the gallery has been tailored for the proposed catchment area. The below table provides summary of the infiltration calculations for the site, further details of the infiltration galleries are provided within the servicing drawing. Also, detailed design calculations are provided within **Appendix D**. These calculations are discussed in-depth in Section 4.2.2 of this report.

Table 4.2.1 - Infiltration Gallery Calculations Summary on Annual Basis

GALLERY	TRIB AREA (M ²)	ANNUAL RUNOFF VOLUME (M ³)	AVERAGE OVERFLOW VOLUME (M ³)	AVERAGE ANNUAL VOLUME INFILTRATED (M ³)
Amenity Area	2200	1214	30	1184

Where:

- Annual Runoff Volume is based on catchment area and 60% of the annual precipitation from the catchment available as runoff (920mm annual precipitation)
- Overflow Volume is based on building specific infiltration gallery sizing

The required infiltration will be provided by an infiltration gallery. The infiltration gallery will provide an estimated 1184m³ of infiltration on an annual basis, or 95.5mm/year for the 1.24ha site, above the required post-development rate of 70mm/year.

4.2.2 Infiltration Detailed Calculations

The Appendix C calculations have been broken down step-by-step below. The volume of the infiltration gallery can be calculated as follows:

$$\begin{aligned}\text{Volume} &= \text{Width} \times \text{Length} \times \text{Depth} \times \text{No. of Cells} \times \text{Void Ratio} \\ &= 4\text{m} \times 34.4\text{m} \times 0.81\text{m} \times 1 \times 0.38 \\ &= 42.35\text{m}^3\end{aligned}$$

The depth has been considered to be the height of the underground storage system (0.66m) plus the clear stone base (0.15m). In order to establish a range of function for the proposed infiltration gallery, precipitation data for a wet year and a dry year was used. Daily precipitation data was provided by the Government of Canada Climate Normals Data for Station Ottawa CDA. The data that was provided includes rainfall amounts from April 1st through October 31st. This rainfall (in mm) was converted into an average rainfall intensity (mm/hr) by taking the amount of rain and dividing by 24 hours. The rainfall available to the infiltration gallery was then determined to be the average rainfall intensity multiplied by the captured area (2200m²) by the effective runoff percent (60%). To be conservative, the volume into the infiltration gallery was then capped at the volume of the gallery (42.35m³) and assumed any overflow would outlet through the overflow pipe.

The amount of water that can infiltrate through the gallery from the bottom per day is as follows:

$$\begin{aligned}\text{Infiltration} &= \text{Surface Area of Infiltration Gallery} \times \text{No. of Cells} \times \text{Percolation Rate} \\ &= (4\text{m} \times 34.4\text{m}) \times 1 \times 0.3495\text{m/day} \\ &= 48.09 \text{ m}^3/\text{day}\end{aligned}$$

Therefore the maximum infiltration that the gallery can provide in one day is 48.09m³. Since this value is above our conservative capped volume, the calculations will only show up to 48.09m³/day of infiltration.

These calculations were applied to each “wet year” and “dry year” day’s rainfall quantities on the catchment area and the infiltration gallery’s overflow was tracked to be 53 m³ and 0 m³, respectively.

The function of the infiltration gallery during a wet year can then be determined as follows:

$$\begin{aligned}\text{Runoff Percent} &= \text{Overflow Volume} / \text{Precipitation Volume} \\ &= 53 \text{ m}^3 / 1056 \text{ m}^3 \\ &= 5.00\%\end{aligned}$$

Therefore, during a wet year it can be expected that 5.00% of the water that enters the infiltration gallery will overflow without being infiltrated. The same calculations were done for a “dry year” and yielded a result of 0.00% (no overflow). On average, it can be expected that 2.50% of the water that enters the infiltration gallery will overflow and not be infiltrated.

Since the data only ranges from April to October, we cannot take the wet year Precipitation Volume of 1056 m³ and Overflow Volume of 53 m³ as the entire year’s volumes. The overflow percentage must be applied to the Available Volume for an annual precipitation. The annual precipitation is 920mm as provided by the Government of Canada Climate Normals Data for Station Ottawa CDA. The Available Volume can be calculated as follows:

$$\begin{aligned}\text{Available Volume} &= \text{Area of Catchment} \times (\text{Annual Precipitation} \times \text{Effective Runoff}) \\ &= 2200\text{m}^2 \times (920\text{mm} \times 0.60 / 1000\text{mm/m}) \\ &= 1214.4 \text{ m}^3\end{aligned}$$

It is then possible to determine the overflow volume for a full wet year or dry year, as shown below for a wet year:

$$\begin{aligned}\text{Overflow Volume} &= \text{Available Volume} \times \text{Overflow Percent} \\ &= 1214.4 \text{ m}^3 \times 5.00\% \\ &= 60.7 \text{ m}^3\end{aligned}$$

The infiltration volume is then the difference between the Available Volume and the Overflow Volume, or $1214.4\text{m}^3 - 60.7\text{m}^3 = 1153.7 \text{ m}^3/\text{year}$. Repeating the same calculations for a dry year yields an infiltration volume of $1214.4 \text{ m}^3/\text{year}$ (0% overflow). On average, the infiltration gallery is expected to infiltrate $1184.1 \text{ m}^3/\text{year}$, or $95.5\text{mm}/\text{year}$ for the 1.24ha site, which is above the target post-development rate of $70\text{mm}/\text{year}$.

There will be some years with high intensity precipitation (similar to the “wet year” used in these calculations) where the target will not be reached as the intensity will flow through the gallery before it has a chance to infiltrate, however the target has been met for an average year as required.

4.3 Stormwater Management

This site is designed to have minimal impact on adjacent properties grading, drainage, access, circulation, and privacy. This will be achieved by means of Water Quantity Controls.

4.3.1 Water Quantity Control

Per the McIntosh Perry Assessment of Adequacy of Public Services Report – 8201 Campeau Drive & 303 Didsbury Road (CCO-24-3115), the subject site will be limited to a maximum minor system release rate of 105.40 L/s during a 100-year storm. (see storm drainage plan in **Appendix D**). This release rate was calculated using the recommended 85.0 L/s/ha in the aforementioned report. This will be achieved through a combination of inlet control devices (ICD's), underground storage and surface storage where possible.

Surface flows in excess of the site's allowable release rate will be stored on site and gradually released into the minor system to respect the site's allowable release rate. The surface flows and ponding allocated to this site plan are shown in the grading plan located in **Appendix E**.

Along the Northern perimeter of the site, the opportunity to capture and store runoff is limited due to grading constraints and building geometry. These areas will discharge uncontrolled to Campeau Drive. These areas are located at the perimeter of the site where it is necessary to tie into public boulevards and adjacent properties or in areas where ponding stormwater is undesirable.

Based on the proposed site plan, the total uncontrolled area has been calculated to be 0.09 Ha. The runoff calculations for these uncontrolled areas have been calculated and provided in **Appendix D**. For the detailed storm drainage area plan for the site, refer to Drawing 500 in **Appendix D**.

Based on a 1:100-year event, the flow from the 0.09 Ha uncontrolled areas can be determined as:

$Q_{uncontrolled}$	$= 2.78 \times C_{100yr} \times i_{100yr} \times A$	where:
C	= Average runoff coefficient (100-year C-value, max 1.00)	
i_{100yr}	= Intensity of 100-year storm event (mm/hr)	
	$= 1735.688 \times (T_c + 6.014)^{0.820} = 178.56 \text{ mm/hr}$; where $T_c = 10 \text{ minutes}$
A	= Uncontrolled Area	

Therefore, the uncontrolled release rates can be determined as:

$$\begin{aligned} Q_{uncontrolled1} &= 2.78 \times C_{100yr} \times i_{100yr} \times A \\ &= 2.78 \times 0.85 \times 178.56 \times 0.09 \\ &= 37.97 \text{ L/s} \end{aligned}$$

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

$$Q_{max} = Q_{restricted} - Q_{uncontrolled1} - Q_{uncontrolled2} - Q_{uncontrolled3}$$

$$Q_{max} = 105.40 \text{ L/s} - 37.97 \text{ L/s}$$

$$\mathbf{Q_{max} = 67.43 \text{ L/s}}$$

Therefore, the total restricted flow rate through the minor system will be the design flow rate of **67.43 L/s**. This will be achieved using Inlet Control Devices. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas have been provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m ³)	2 YEAR STORAGE REQUIRED (m ³)	STORAGE PROVIDED (m ³)
ROOF A	4.00	96.33	28.02	106.88
ROOF B	4.00	96.33	28.02	106.88
ROOF C	2.00	15.34	3.85	22.50
CB108	6.00	87.15	21.88	94.95
CBMH104	10.00	82.42	19.41	94.42
CICB100B	20.00	26.11	3.86	36.52
CB99	20.00	50.94	9.53	51.43
TOTAL	66.00	454.62	114.55	513.57

Detailed stormwater management calculations for the 2-year event, 100-year event, and stress test (100-year plus 20%) event can be found in **Appendix D**.

There will be no surface ponding for the 2-year storm event per the rational method calculations, noting that a minimum concentration time of 10 min was considered for 2-year ponding. A 0.3m freeboard from downstream high points/maximum ponding elevations to first floor building openings is maintained in all scenarios including emergency overflow conditions.

Refer to geotechnical report for information regarding foundation drainage. Foundation drainage systems are to be independent and connected to the storm service downstream of any stormwater management control device.

5 SEDIMENT AND EROSION CONTROL PLAN

5.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

5.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

5.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

5.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

5.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

6 CONCLUSIONS & RECOMMENDATIONS

6.1 Conclusions

This report and the accompanying working drawings clearly indicate that the proposed development meets the requirements of the stakeholder regulators, including the City of Ottawa. The proposed development is also in general conformance with the recommendations made by the Pre-consultation Meeting Notes.

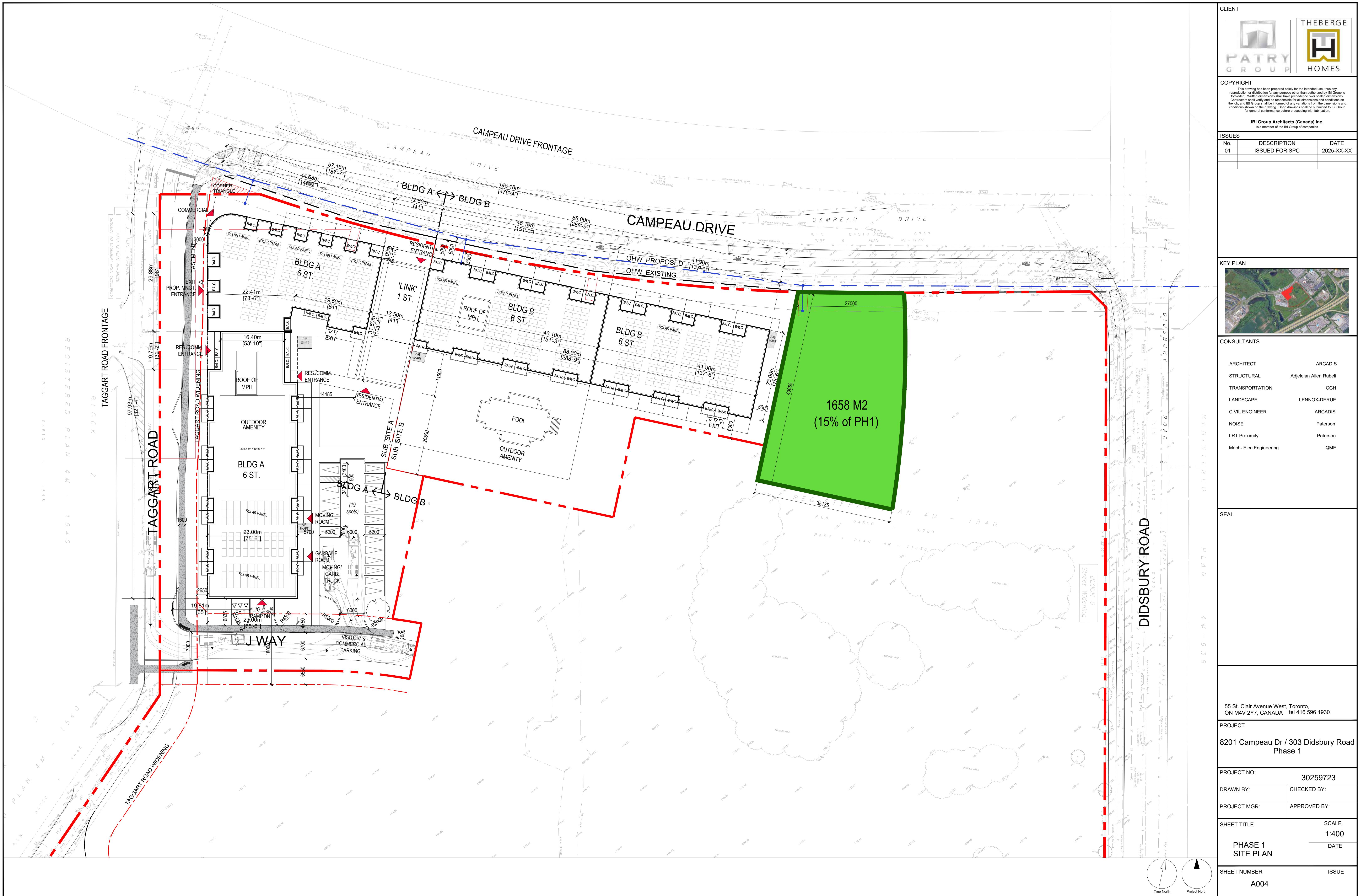
There is a reliable water supply available adjacent to the proposed development; a wastewater outlet is available adjacent to the site and local storm sewers have been installed adjacent to the site.

6.2 Recommendations

It is recommended that the regulators review this submission with an aim of providing the requisite approvals to permit the owners to proceed to the construction stage of the subject site.

Report prepared by:

ARCADIS



Samantha E. Labadie, P. Eng
Civil Engineer

Matt Anderson Petitpas
Engineering Technologist

Appendix A

File No.: PC2025-0048

March 21, 2025

Scott Alain
Fotenn Planning + Design
Via email: alain@fotenn.com

**Subject: Pre-Consultation: Meeting Feedback
Proposed Application – 8201 Campeau Drive**

Please find below information regarding next steps as well as consolidated comments from the above-noted pre-consultation meeting held on March 11, 2025.

Pre-Consultation Preliminary Assessment

1 <input type="checkbox"/>	2 <input type="checkbox"/>	3 <input checked="" type="checkbox"/>	4 <input type="checkbox"/>	5 <input type="checkbox"/>
----------------------------	----------------------------	---------------------------------------	----------------------------	----------------------------

One (1) indicates that considerable major revisions are required while five (5) suggests that the proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

Next Steps

1. A review of the proposal and materials submitted for the above-noted pre-consultation has been undertaken. Should you choose, proceed to complete a Phase 2 / Phase 3 Pre-consultation Application Form. Please submit this information together with the necessary studies and/or plans to planningcirculations@ottawa.ca.
2. In your subsequent pre-consultation submission, please ensure that all comments or issues detailed herein are addressed. A detailed cover letter stating how each issue has been addressed is requested with the submission materials. Please coordinate the numbering of your responses within the cover letter with the comment number(s) herein.
3. Please note, if your development proposal changes significantly in scope, design, or density it is recommended that a subsequent pre-consultation application be submitted.
4. If the Urban Design Review Panel (UDRP) Report is listed as a required submission material in the Study and Plan Identification List, the applicant must visit the UDRP prior to formally submitting the planning application. The UDRP report is required for the application to be considered complete.

Supporting Information and Material Requirements

1. The attached **Study and Plan Identification List** outlines the information and material that has been identified, during this phase of pre-consultation, as either required (R) or advised (A) as part of a future complete application submission.
 - a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on Ottawa.ca. These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.

Consultation with Technical Agencies

1. You are encouraged to consult with technical agencies early in the development process and throughout the development of your project concept. A list of technical agencies and their contact information is enclosed.

Planning

Comments:

2. **OP:** [Schedule B5](#) -Suburban West Transect, Neighbourhood (with Overlay),
3. **Zoning:** MC11[74] H(34)
4. **Future Zoning:** Present draft Zoning By-law has it listed as a Hub(H)[74] H(34) and Minor Corridor(CM) [74] H(34).

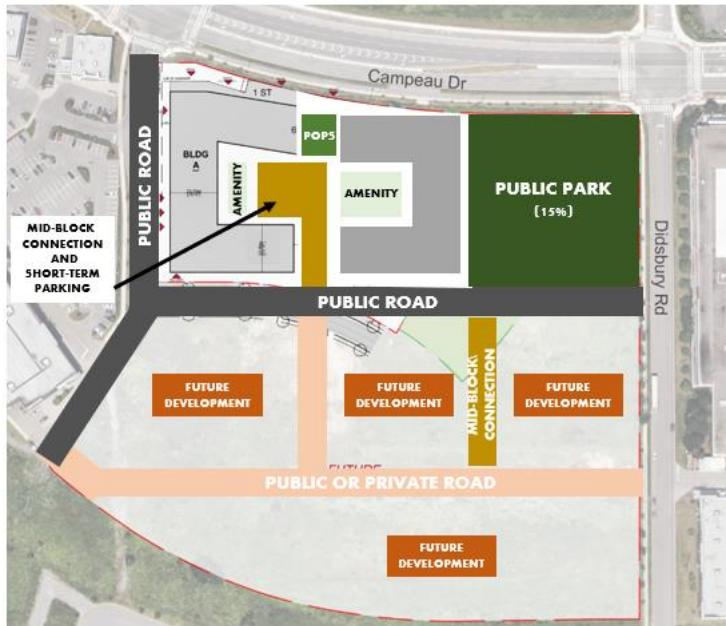
5. **TOD:** Didsbury LRT Station is part of the Ultimate Transit Network (Sch.C2); However, it is not a funded station.

From a policy perspective, it is in proximity to a future LRT Station (which is still supportive of a mix of uses in higher densities); BUT, the future context is not intended as a Hub function.

6. Section 37 requirements / Community Benefits Charge

- a. The former Section 37 regime has been replaced with a "Community Benefits Charge", [By-law No. 2022-307](#), of 4% of the land value. This charge will be required for ALL buildings that are 5 or more storeys and 10 or more units and will be required at the time of building permit unless the development is subject to an existing registered Section 37 agreement. Questions regarding this change can be directed to Ranbir.Singh@ottawa.ca.

7. Please observe the [Urban Desing Guidelines for High-rise Buildings](#) in any future Site Plan Application in determining appropriate lotting.


8. Landscape requirements
 - a. A landscape plan is required prior to early servicing.
9. The comments provided in the 2023 preconsult are largely still applicable.
 - a. Size of the blocks are still of concern for us, for scale the building façade along Campeau is a similar length as the strip mall. I think that the development could benefit from further refining both the block and building sizes.
10. Will need confirmation of deeded access to this private ROW on the west.
11. When assessing this application, I'll push for them to treat this as a corner lot line
12. E-W private ROW will need to be included in the Phase 1 lands and detailed further.
13. We would like to get further detail on what is targeted for the interior courtyard.
Consider:
 - o The shadow impacts on this space – there may be many reasons to have Building A split up into two buildings.
 - o The 'back of house' condition that may be present in areas adjacent to amenity areas.
 - o The issues that the surface parking lot may have for perspective commercial tenants which will have difficulty managing two entrances.

Urban Design

Comments:

- Urban Design Brief required – please refer to the attached Terms of Reference.
- Staff appreciate that the Applicant is hoping to move ahead with the Phase 1 development leveraging as-of-right zoning permissions, however, it would be best if the plans were viewed in the context of a larger master plan.
- As supported by Parks, the park block should be larger and more regularly shaped with adequate frontage on public roads. Microclimate conditions (future) should inform the position of the park.
- Public roads a critical part of the development of this very large site. Staff appreciate the ongoing discussions being had with the adjacent neighbour as well as the addition of a public road link through the center of the property.

- Staff appreciate that the proposed 6 storey form will relate back to the scale of development anticipated along the Minor Corridor.
- Staff also appreciate that the Applicant is thinking about ground floor animation in the form of retail along Campeau and grade-related units and amenity along the remainder of the streets.
- Ground floor units facing out onto a private walkway and landscaping should also be provided along-side the proposed park for further animation.
- Staff also appreciate that the Applicant is looking at a robust amenity strategy to support the future residents of the Phase 1 development.
- Staff feel that that the development block as proposed cuts off the balance of the future development from Campeau and that the development would benefit from a mid-block connection into the site.
- Built form should be reorganized to support a semi-public connection to Campeau.
- Short term parking areas should be screened from the public realm.
- If connection between the buildings is important a second or third level bridge connection can be supported.
- Staff look forward to reviewing future public realm treatments for Campeau as well as new public and private roads anticipated through the property.
- High level concept (draft) included below to stimulate workshop discussions which we anticipate will occur in the coming weeks:

14. Feel free to contact Nader Kadri, Urban Designer, for follow-up questions.

Engineering

15. Existing public infrastructure:

- a. Campeau
 - i. 600mm backbone watermain (new connections not permitted)
 - ii. 675mm concrete sanitary
 - iii. 525mm concrete storm
- b. Didsbury (30 cm reserve must be lifted for frontage on Didsbury)
 - i. 203mm PVC watermain
 - ii. 450mm concrete sanitary
 - iii. 300mm pvc storm
- c. Private service stubs may be available on servicing block between 8201 Campeau Drive and 8231 Campeau Drive. Legal access to the easement will be required.

16. The preferred connection location for new service laterals will be via the private roadway access shared between 8231 Campeau Drive and 8201 Campeau Drive. Legal access will be required. Alternatively, if a private or public roadway is proposed to transect the site, servicing via the new roadway alignment would be a preferred option.

17. Water

- a. Boundary conditions: Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission.
 - i. Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:
 - Location of service(s)
 - Type of development and the amount of fire flow required (as per FUS, 2020)
 - Average daily demand: ____ L/s
 - Maximum daily demand: ____ L/s
 - Maximum hourly daily demand: ____ L/s
 - ii. Fire protection (Fire demand, Hydrant Locations)
- b. A District Metering Area Chamber (DMA) is required for services 150mm or greater in diameter.
- c. Service areas with a basic demand greater than 50 m3/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid the creation of a vulnerable service area. If a private watermain network is proposed within the subject site, the private watermain will require two connections to the public watermain network, separated by an isolation valve. Watermain connections to the 600mm backbone watermain on Campeau Drive will not be permitted.
- d. Existing water services that are not to be used must be decommissioned as per City Standards.

18. The sanitary sewer release rate, for the subject site, is to be in accordance with the following reports:

- a. Kanata West Master Servicing Study (KWMSS), Stantec Consulting Ltd and IBI. Group, June 2006
- b. Taggart – Loblaws Subdivision, Kanata West, Servicing Report, Stantec Consulting Ltd., June 2013

Stormwater Management

19. The storm sewer release rate and stormwater management criteria, for the subject site, is to be in accordance with the following reports:
 - a. Kanata West Master Servicing Study (KWMSS), Stantec Consulting Ltd and IBI. Group, June 2006
 - b. Taggart – Loblaws Subdivision, Kanata West, Servicing Report, Stantec Consulting Ltd., June 2013
 - c. Taggart-Loblaws Subdivision Stormwater Management Facility Design Brief, Stantec Consulting Ltd, June 2013
20. Quality Control: SWMP 3 is designed to treat 80% TSS from the minor system. Additional stormwater quality treatment is not required.
21. Water Balance: The subject site must provide infiltration measures in order to meet the 70mm/yr infiltration rate indicated in the KWMSS, and further the Taggart – Loblaws Subdivision Stormwater Management Facility Design Brief (June 2013). Detailed calculations will be required to demonstrate that this requirement can be achieved.
22. When both underground and above ground storage is utilized, the release rate from the system will significantly differ than when solely one level storage is being used (i.e. greater range of head vs smaller change of head during storm event). If both levels of storage are to be accounted for then there are two options for SWM calculations: 1) use a dynamic computer model or 2) use an assumed average flow rate of half (50%) of the controlled peak flow rate of the area(s) utilizing two levels of storage.

Geotechnical

23. The site is subject to water balance requirements through infiltration. All soil assumptions made in the servicing report should be supported by the geotechnical report.
24. If a road cut is proposed on Campeau, the geotechnical report should provide construction recommendations for work around the critical infrastructure within the ROW.

Environmental Compliance Application

25. The development will be exempt from an ECA assuming it continues to meet the O.Reg 525/98 exemption criteria.
O.Reg 525/98 ECA exemption criteria:

- (a) is designed to service one lot or parcel of land;
- (b) discharges into a storm sewer that is not a combined sewer;
- (c) does not service industrial land or a structure located on industrial land; and
- (d) is not located on industrial land.

Feel free to contact Julie Cандow, Project Manager, for follow-up questions.

Noise

Comments:

26. Noise Impact Studies required for the following:

- a. Road, as the subject development is located within 100m proximity of Campeau Road, and within 500m of Highway 417.
- b. Rail, site is within 100m of the future LRT ROW.
- c. Stationary, due to the proximity to neighboring exposed mechanical equipment and/or if there will be any exposed mechanical equipment due to the proximity to neighboring noise sensitive land uses.
- d. Vibration Assessment is required as the subject development is located within 75m from the LRT ROW.
- e. Feel free to contact Rochelle Fortier-Lesage, Transportation Project Manager, for follow-up questions.

Transportation

Comments:

27. Follow Transportation Impact Assessment Guidelines:

- a. A Transportation Impact Assessment is required. Please submit the Scoping report to rochelle.fortier@ottawa.ca at your earliest convenience. The applicant is responsible to submit the Scoping Report and must allow for a 14 day circulation period and sign-off prior to proceeding to the Strategy Report.
- b. The Strategy Report must be submitted for review at the latest with the formal submission package. The applicant is still encouraged to submit the Strategy Report to the TMP before submission and allow for a 14 day circulation period.

- c. If an RMA is required to support the proposed development, the functional plan and/or RMA plans must be submitted with the formal submission to deem complete. Request base mapping asap if RMA is required. Contact [Engineering Services](#).
28. Ensure that the development proposal complies with the Right-of-Way protection requirements - See [Schedule C16 of the Official Plan](#).
- a. Corner triangles on the final plan will be required (measure on the property line/ROW protected line; no structure above or below this triangle). The City requires the following corner triangles at these locations:
 - i. Arterial/Local, or Collector/Local: a 3 metre x 9 metre triangle, with the longer portion on the higher road segment
 - ii. Local/Local, or Public Lane/Local: a 3 metre x 3 metre triangle
 - b. ROW must be unencumbered and conveyed at no cost to the City. Note that conveyance of the ROW will be required prior to registration of the SP agreement. Additional information on the conveyance process can be provided upon request.
 - c. Any requests for exceptions to ROW protection requirements must be discussed with Transportation Planning and concurrence provided by Transportation Planning management.
29. Site is partially within MTO permit control area which requires an MTO Building and Land Use Permit. [Coordination with MTO staff](#) is required to determine their TIS requirements.
30. Corner clearances should follow minimum distances set out within TAC Figure 8.8.2.
31. Please note that there is a new transit pad along the Campeau Drive frontage.
32. TMP includes:
- a. LRT from Moodie Drive to Kanata (Ultimate Network Concept), with new station at Didsbury
 - b. The City is proceeding with the extension of Earl Grey Drive west to Didsbury Road, with the construction of a segment of road approximately 140 metres in length. The extension will pass under Terry Fox Drive and requires the construction of a new bridge structure as well as an upgrade to the Terry Fox Drive and Didsbury Road intersection in order to meet the requirements of the City's protected intersection guidelines.

33. AODA legislation applies for all areas accessible to the public. Please consider using the City's [Accessibility Design Standards](#), which provide a summary of AODA requirements.

34. On site plan:

- a. Ensure site accesses meet the [City's Private Approach Bylaw](#) and all driveways/aisles meet the requirements outlined in [Section 107 of the Zoning By-law](#).
- b. Show all details of the roads abutting the site; include such items as pavement markings, accesses and/or sidewalks.
- c. Turning movement diagrams required for all accesses showing the largest vehicle to access/egress the site.
- d. Turning movement diagrams required for internal movements (loading areas, garbage).
- e. Show all curb radii measurements; ensure that all curb radii are reduced as much as possible and fall within TAC guidelines (Figure 8.5.1).
- f. Show dimensions for site elements (i.e. lane/aisle widths, access width and throat length, parking stalls, sidewalks, pedestrian pathways, etc.)
- g. Sidewalks are to be continuous across accesses as per City Specification 7.1.
- h. Show proposed and required parking rates.
- i. Show slope of garage ramps on site plan. Note that underground ramps should be limited to a 12% grade and must contain a subsurface melting device when exceeding 6%. Ramp grades greater than 15% can be psychological barriers to some drivers.
- j. Parking stalls at the end of dead-end parking aisles require adequate turning around space
- k. Grey out any area that will not be impacted by this application.

Feel free to contact Rochelle Fortier-Lesage, Transportation Project Manager, for follow-up questions.

Environment

Comments:

35. There are no triggers for an Environmental Impact Study.
36. Bird-Safe Design Guidelines - Please review and incorporate bird safe design elements. Some of the risk factors include glass and related design traps such as corner glass and fly-through conditions, ventilation grates and open pipes, landscaping, light pollution. More guidance and solutions are available in the guidelines which can be found here:
https://documents.ottawa.ca/sites/documents/files/birdsafedesign_guidelines_en.pdf
37. Please consider if there are features that can be added to reduce the urban heat island effect (see OP 10.3.3). For example, this impact can be reduced by adding large canopy trees, green roofs or vegetation walls, or incorporating building with low heat absorbing materials.
- 38.

Feel free to contact Matthew Hayley, Environmental Planner, for follow-up questions.

Forestry

Comments:

39. The park should be situated to include retention of the existing conifer stand, which is a remnant from the former farm and laneway that were on this parcel.
40. The design including the setbacks from underground parking should allow for retention of as many of the newly planted trees along Campeau and Didsbury as possible, and for replacement of any which must be removed.
41. A TCR and Landscape Plan are required including all elements within the associated guidelines and Terms of Reference.
42. The LP must include trees on all frontages and for screening between the park and building B, toward the Official Plan goal of 40% canopy cover.

Feel free to contact Nancy Young, Forester, for follow-up questions.

Parkland

43. Parkland dedication is required in accordance with the Parkland Dedication By-law (2022-280) and Planning Act. The applicable parkland dedication rate for residential development is 1 ha per 600 units, to a maximum of 15% of the site area, per application. The parcel size is 6.16 ha based on GeoOttawa. If looked at comprehensively, the maximum parkland dedication that can be taken for the residential use of the site is 0.924 ha.

44. Previous conversations with the applicant included discussion of a parkland dedication based on a Transit Oriented Development Zone. Staff advise that the site does not currently benefit from such a TOD zone, and so policies in Section 5 of the Parkland Dedication By-law are not applicable at this time.
45. Based on the TIA submitted with the pre-con application package, 350 units are considered for phase 1, and so the site plan application generates a parkland dedication requirement of approximately 0.583 ha. As more details of the mixed-use nature of the development are provided, this calculation may be slightly refined.
46. Parks and Facilities Planning encourages that the applicant provide a park block through the phase 1 site plan application that will serve the entire site, i.e. the 0.924 ha park block size. This should provide greater clarity in planning in planning the remainder of the community.
47. A park block 0.924 ha in size is classified as a “parkette” within the hierarchy of parks in the City of Ottawa. Parkettes are small parks, rectangular in shape, that are located within walking distance of residents, they provide a central greenspace and social gathering space. Parkettes are to be located on local streets with a minimum of 50% public road frontage. Staff do not think it is appropriate to locate a parkette abutting Campeau Drive. PFP suggest that the parkette would be better located with greater frontage abutting Didsbury Road and the new public road to the south. PFP supports the park location shown in the sketch provided within the urban design comments.
48. The ultimate concept of the full site proposes residential towers to the south of park block resulting in possible concerns for wind and shade. Ensuring the park has 50% or more road frontage on local roads may help mitigate the effects on park users of feeling squeezed between towers.
49. Prior to site plan approval, the Owner is required to submit a Facility Fit Plan for the 0.583 ha park block, and/or the 0.924 ha park block in accordance with the submission requirements for a Facility Fit Plan ([PARK DEVELOPMENT MANUAL](#) page 60). The Facility Fit plan is a planning exercise to ensure the size and configuration of the park block is acceptable. It identifies any existing vegetation or special feature in the park which may be preserved.
50. Forestry has noted that there is a line of mature conifer trees located near to the proposed park site perpendicular to Didsbury. The ideal park location will allow for the retention of those trees and inclusion of them in the Facility Fit Plan.
51. As a starting point, I suggest that the appropriate amenities for include in the Fit Plan for this parkette are a junior and senior play structures, swings, splash pad, shaded seating and a basketball court, along with open space and plantings. This Fit Plan must include a cost estimate corresponding with the park design

and construction budget. Park amenities and design will be further refined through the park detail design process which includes public consultation.

52. Staff are available to discuss the developer-built park process. The applicant is encouraged to ask if they are unfamiliar or have questions about the process expectations. The applicant should make clear their intentions to provide and/or construct the park block in one or more phases. The city encourages the developer to construct the park block in conjunction with Phase 1 to ensure it is made available to residents at the soonest opportunity.
53. Parks staff will also be looking at details of the façade of Building B or any proposed building abutting the park to ensure it is compatible.

Feel free to contact Anissa.mcalpine@ottawa.ca, Parks Planner, for follow-up questions.

Other

54. The High Performance Development Standard (HPDS) is a collection of voluntary and required standards that raise the performance of new building projects to achieve sustainable and resilient design and will be applicable to Site Plan Control and Plan of Subdivision applications.
 - a. The HPDS was passed by Council on April 13, 2022, but is not in effect at this time, as Council has referred the 2023 HPDS Update Report back to staff with the direction to bring forward an updated report to Committee at a later date. The timing of an updated report to Committee is unknown at this time, and updates will be shared when they are available.
 - b. Please refer to the HPDS information at ottawa.ca/HPDS for more information.
55. Under the Affordable Housing Community Improvement Plan, a Tax Increment Equivalent Grant (TIEG) program was created to incentivize the development of affordable rental units. It provides a yearly fixed grant for 20 years. The grant helps offset the revenue loss housing providers experience when incorporating affordable units in their developments.

To be eligible for the TIEG program you must meet the following criteria:

 - a. the greater of five units OR 15 per cent of the total number of units within the development must be made affordable
 - b. provide a minimum of 15 per cent of each unit type in the development as affordable
 - c. enter into an agreement with the city to ensure the units maintain affordable for a minimum period of 20 years at or below the city-wide

average market rent for the entire housing stock based on building form and unit type, as defined by the Canada Mortgage and Housing Corporation

- d. must apply after a formal Site Plan Control submission, or Building Permit submission for projects not requiring Site Plan Control, and prior to Occupancy Permit issuance
- a. Please refer to the TIEG information at [Affordable housing community improvement plan / Plan d'améliorations communautaires pour le logement abordable](#) for more details or contact the TIEG coordinator via email at affordablehousingcip@ottawa.ca.

Submission Requirements and Fees

1. Complex Site Plan Control & Plan of Subdivision Applications
 - a. Additional information regarding fees related to planning applications can be found [here](#).
2. The attached **Study and Plan Identification List** outlines the information and material that has been identified as either required (R) or advised (A) as part of a future complete application submission.
 - a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on [Ottawa.ca](#). These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.
3. All of the above comments or issues should be addressed to ensure the effectiveness of the application submission review.

Should there be any questions, please do not hesitate to contact myself or the contact identified for the above areas / disciplines.

Yours Truly,
John Bernier, MCIP RPP

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Proposed Site Plan and Subdivision Applications – 8201 Campeau Drive – PC2025-0048

Legend: **R** = Required, the study or plan is required with application submission

A = Advised, the study or plan is advised to evaluate the application or satisfy a condition of approval/draft approval

1 - OPA, 2 - ZBA, 3 - Plan of Subdivision, 4 - Plan of Condominium, 5 - SPC

Core studies required for certain applications all the time (Remaining studies are site specific)

For information and guidance on preparing required studies and plans refer [here](#):

ENGINEERING										
R	A	Study/ Plan Name	Description	When Required					Applicable Study Components & Other Comments	
				1	2	3	4	5		
<input checked="" type="checkbox"/>	<input type="checkbox"/>	1. Environmental Site Assessment (Phase 1 & Phase 2)	Ensures development only takes place on sites where the environmental conditions are suitable for the proposed use	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Record of Site Condition Yes <input type="checkbox"/> No <input type="checkbox"/>	
				<u>Study Trigger Details:</u> All cases						
<input checked="" type="checkbox"/>	<input type="checkbox"/>	2. Geotechnical Study	Geotechnical design requirements for the subsurface conditions	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
				<u>Study Trigger Details:</u> All cases						
<input checked="" type="checkbox"/>	<input type="checkbox"/>	3. Grading and Drainage Plan	Grading relationships between connecting (or abutting) properties and surface runoff control	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>		
				<u>Study Trigger Details:</u> All cases						
<input type="checkbox"/>	<input type="checkbox"/>	4. Hydrogeological and Terrain Analysis	A scientific study or evaluation that includes a description of the ground and surface hydrology, geology, terrain, affected landform and its susceptibility	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Reasonable Use Study Yes <input type="checkbox"/> No <input type="checkbox"/> Groundwater Impact Study Yes <input type="checkbox"/> No <input type="checkbox"/>	
				<u>Study Trigger Details:</u> When developing on private services or when urban development is in close proximity to existing private serviced development						
<input checked="" type="checkbox"/>	<input type="checkbox"/>	5. Noise Control Study	Potential impacts of noise on a development	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Vibration Study Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	
				<u>Study Trigger Details:</u> See Terms of Reference for full details.						

<input checked="" type="checkbox"/>	<input type="checkbox"/>	6. Rail Proximity Study	Development on land adjacent to all Protected Transportation Corridors and facilities shown on Schedule C2 of the Official Plan, to follow rail safety and risk mitigation best practices	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Within the Development Zone of Influence for existing and future rapid transit stations and corridors, as shown on Annex 2 of the OP OR on land adjacent to all Protected Transportation Corridors and facilities shown on Schedule C2 of the Official Plan</p>	<p>Rail Safety Report Yes <input type="checkbox"/> No <input checked="" type="checkbox"/></p> <p>O-Train Network Proximity Study Yes <input checked="" type="checkbox"/> No <input type="checkbox"/></p>
				<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
<input checked="" type="checkbox"/>	<input type="checkbox"/>	7. Site Servicing Study	Provides servicing details based on proposed scale of development with an engineering overview taking into consideration surrounding developments and connections.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> All cases</p>	<p>Fluvial Geomorphological Report Yes <input type="checkbox"/> No <input type="checkbox"/></p> <p>Assessment of Adequacy of Public Services Yes <input type="checkbox"/> No <input type="checkbox"/></p> <p>Servicing Options Report Yes <input type="checkbox"/> No <input type="checkbox"/></p> <p>Erosion and Sediment Control Plan / Brief Yes <input checked="" type="checkbox"/> No <input type="checkbox"/></p> <p>Hydraulic Water Main Analysis Yes <input checked="" type="checkbox"/> No <input type="checkbox"/></p> <p>Stormwater Management Report and Detailed Design Brief Yes <input checked="" type="checkbox"/> No <input type="checkbox"/></p>
				<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
<input type="checkbox"/>	<input type="checkbox"/>	8. Slope Stability Study	Assessment of slope stability and measures to provide safe set-back.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Where the potential for Hazard Lands exists on a site.</p>	<p>Retrogressive Landslide Analysis Yes <input type="checkbox"/> No <input type="checkbox"/></p>
				<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
<input checked="" type="checkbox"/>	<input type="checkbox"/>	9. Transportation Impact Assessment	Identify on and off-site measures to align a development with City transportation objectives.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> If the development generates 60 person-trips or more; or if the development is located in a Location Trigger; or if the development has a Safety Trigger.</p>	<p>Roadway Modification Functional Design Yes <input type="checkbox"/> No <input type="checkbox"/></p>
				<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		

<input type="checkbox"/>	<input type="checkbox"/>	10. Water Budget Assessment	Identify impact of land use changes on the hydrologic cycle and post-development mitigation targets.	<input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	Study Trigger Details: May be required for site plan control applications for sites with private servicing and / or proximity to hydrogeologically-sensitive areas. Draft plans of subdivision are required to integrate water budget assessments into supporting stormwater management plans and analysis for the study area.
<input type="checkbox"/>	<input type="checkbox"/>	11. Wellhead Protection Study	Delineate a Wellhead Protection Area (WHPA) and characterize vulnerability for new communal residential drinking water well systems, in accordance with Technical Rules under <i>Clean Water Act</i> .	<input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	Study Trigger Details: Required for all new communal residential drinking water well systems; including new municipal wells, new private communal wells (small water works) that require a Municipal Responsibility Agreement (MRA), expansions or increased water takings from an existing municipal well or existing private communal well and new private communal wells.

PLANNING

R	A	Study/Plan Name	Description	When Required					Applicable Study Components & Other Comments
				1	2	3	4	5	
<input type="checkbox"/>	<input type="checkbox"/>	12. Agrology and Soil Capability Study	Confirm or recommend alterations to mapping of agricultural lands in the City.	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<p><u>Study Trigger Details:</u> For the expansion of a settlement area or identification of a new settlement area through a comprehensive review; or where it is demonstrated that the land does not meet the requirements for an Agricultural Resource Area.</p>
<input type="checkbox"/>	<input type="checkbox"/>	13. Archaeological Assessment	Discover any archaeological resources on site, evaluate cultural heritage value and conservation strategies	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> When the land has either: a known archaeological site; or the potential to have archaeological sites; or where the City's Archaeological Resource Potential Mapping Study indicates archaeological potential, outside of the historic core; or upon discovery of any archaeological resource during construction in the City's historic core area.</p>				
<input checked="" type="checkbox"/>	<input type="checkbox"/>	14. Building Elevations	Visual of proposed development to understand facing of building including direction of sunlight, height, doors, and windows.	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Site Plan: for residential buildings with 25 or more residential units; or for residential buildings with less than 25 residential units, if the units are within the Urban area or the High-performance Development Standard threshold in the rural area.</p> <p>Official Plan or Zoning By-law: if staff deem it necessary to determine compliance with OP policies, the Zoning By-law or City of Ottawa Urban Design Guidelines.</p>

<input type="checkbox"/>	<input type="checkbox"/>	15. Heritage Impact Assessment	Determine impacts of proposed development on cultural heritage resources.	<input checked="" type="checkbox"/>	<p>Study Trigger Details: Where development or an application under the Ontario Heritage Act is proposed on, adjacent to, across the street from or within 30 metres of a protected heritage property; or for any development adjacent to the Rideau Canal UNESCO World Heritage Site and its landscaped buffer.</p>	<p>Conservation Plan Yes <input type="checkbox"/> No <input type="checkbox"/></p>
<input type="checkbox"/>	<input type="checkbox"/>	16. Heritage Act Acknowledgement Report	A submission requirement to demonstrate that the <i>Ontario Heritage Act</i> requirements have been satisfied, to ensure that multiple applications are considered currently.	<input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>		
<input type="checkbox"/>	<input type="checkbox"/>	17. Impact Assessment Study – Mineral Aggregate	Mineral aggregate extraction activities; and to protect known high quality mineral aggregate resources from development and activities that would preclude or hinder their existence (ability to be extracted) or expansion.	<input checked="" type="checkbox"/>	<p>Study Trigger Details: New Development within 500 metres of lands within the Bedrock Overlay , or within 300 metres of lands within the Sand and Gravel Resource Area Overlay.</p>	
<input type="checkbox"/>	<input type="checkbox"/>	18. Impact Assessment Study – Mining Hazards	To identify or confirm known mineral deposits or petroleum resources and significant areas of mineral potential. To protect mineral and petroleum resources from development and activities which would preclude or hinder the establishment of new operations or access to the resources.	<input checked="" type="checkbox"/>		

<input type="checkbox"/>	<input type="checkbox"/>	19. Impact Assessment Study – Waste Disposal Sites / Former Landfill Sites	<p>To identify or confirm known proximity of existing or former waste disposal sites.</p> <p>To ensure issues of public health, public safety and environmental impact are addressed.</p>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> For the establishment of any new Solid Waste Disposal Site or for a footprint expansion of an operating Solid Waste Disposal Site; or development within three kilometers of an operating or non-operating Waste Disposal Site.</p>	
<input checked="" type="checkbox"/>	<input type="checkbox"/>	20. Landscape Plan	<p>A plan to demonstrate how the canopy cover, urban design, health, and climate change objectives of Official Plan will be met through tree planting and other site design elements.</p>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Site Plan, Plan of Subdivision, and Plan of Condominium: always required, except where it is demonstrated that the landscape component of a project is not relevant to the review of the application.</p> <p>A high-level conceptual Landscape Plan may be required to support Zoning By-law and Official Plan Amendment applications.</p>	
<input type="checkbox"/>	<input type="checkbox"/>	21. Mature Neighbourhood Streetscape Character Analysis	<p>In the Mature Neighbourhoods a Streetscape Character Analysis is required to determine the applicable zoning requirements.</p>	<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	<p><u>Study Trigger Details:</u> Zoning By-law amendment application in areas covered by the Mature Neighbourhoods zoning overlay for applications of residential development of four storeys or less located in a R1, R2, R3, or R4 zone.</p>	
<input type="checkbox"/>	<input type="checkbox"/>	22. Minimum Distance Separation	<p>Provincial land use planning tool that determines setback distances between livestock barns, manure storages or anaerobic digesters and surrounding land uses, with the objective of minimizing land use conflicts and nuisance complaints related to odour.</p>	<input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Applications in the Rural Area, outside of a village.</p>	

<input type="checkbox"/>	<input type="checkbox"/>	23. Parking Plan	A tool to assess the sufficiency of on-street parking in plans of subdivision.	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	Study Trigger Details: For new or revised plans of subdivision with public streets.
				<input checked="" type="checkbox"/>	
<input checked="" type="checkbox"/>	<input type="checkbox"/>	24. Plan of Survey	A Plan of Survey depicts legal boundaries and is a specialized map of a parcel of land and it delineates boundary locations, building locations, physical features and other items of spatial importance.	<input checked="" type="checkbox"/>	Study Trigger Details: Required for all <i>Planning Act</i> applications.
				<input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	
<input checked="" type="checkbox"/>	<input type="checkbox"/>	25. Plan of Subdivision	Proposed subdivision layout to be used for application approval	<input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	Study Trigger Details: Always required with the submission of plan of subdivision application. Only required with a Zoning By-law Amendment application, where such ZBLA is in response to enable a subdivision.
				<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	
<input type="checkbox"/>	<input type="checkbox"/>	26. Plan of Condominium	Proposed condominium layout to be used for application approval	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>	Study Trigger Details: With the submission of plan of condominium application.
				<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	
<input checked="" type="checkbox"/>	<input type="checkbox"/>	27. Planning Rationale	Provides the planning justification in support of the <i>Planning Act</i> application and to assist staff and the public in the review of the proposal.	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	Integrated Environmental Review Summary Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>
<input checked="" type="checkbox"/>	<input type="checkbox"/>	28. Preliminary Construction Management Plan	A checklist that shows a development proposal's anticipated impacts to all modes of transportation and all elements in the right of way during construction.	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	Study Trigger Details: For all Site Plan and plan of subdivision applications.
				<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	

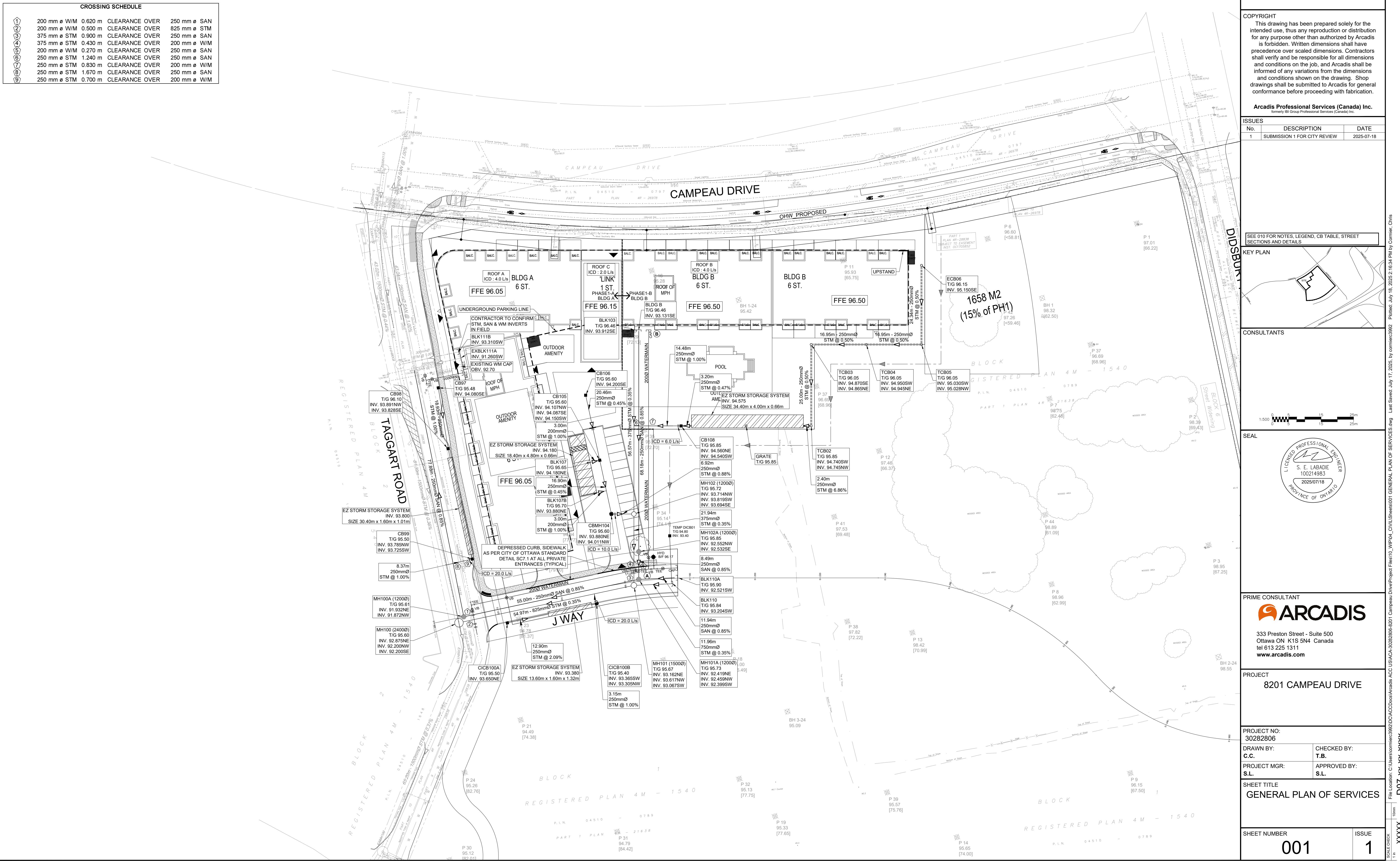
				<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
<input checked="" type="checkbox"/>	<input type="checkbox"/>	29. Public Consultation Strategy	Proposal to reach and collect public input as part of development application.	<u>Study Trigger Details:</u> Official Plan Amendment, Zoning By-law Amendment and Subdivision: Always required. Condominium: Vacant Land only Site Plan: At the discretion of the City's file lead in consultation with the Business and Technical Support Services Manager.				
<input type="checkbox"/>	<input type="checkbox"/>	30. Shadow Analysis	A visual model of how the proposed development will cast its shadow.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
<input checked="" type="checkbox"/>	<input type="checkbox"/>	31. Site Plan	A Site Plan is a visual drawing that illustrates the proposed development of a site in two dimensions.	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>

				public realm, building massing, heights, densities or massing of the proposal provides changes to the planned context; sites proposing multiple land uses; sites with multiple landowners; sites with two or more buildings, on-site park dedication, and/or a new public or private street(s); sites with proposed changes to connectivity (such as active transportation networks, vehicular circulation or access to transit); sites where the development potential on adjacent properties may be impacted by or could be integrated into the proposed site.	Facility Fit Plan Yes <input type="checkbox"/> No <input type="checkbox"/>
<input checked="" type="checkbox"/>	<input type="checkbox"/>	32. Urban Design Brief	Illustrate how a development proposal represents high-quality and context sensitive design that implements policies of the Official Plan, relevant secondary plans, and Council approved plans and guidelines.	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <u>Study Trigger Details:</u> For all Official Plan amendment, Zoning By-law amendment, and plan of subdivision applications. For SPC applications: proposals for residential buildings with 25 or more residential units, or for proposals for residential buildings with less than 25 residential units, if the units are within the Urban area or the High-performance Development Standard threshold in the rural area where OP Policy 11.3 (3) is relevant; for non-residential and mixed-use proposals.	
<input type="checkbox"/>	<input type="checkbox"/>	33. Urban Design Review Panel Report	Demonstrates that a development proposal has attended an Urban Design Review Panel formal review meeting, received, and responded to the associated recommendations, if applicable	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <u>Study Trigger Details:</u> Required for all planning act applications subject to UDRP review, in accordance with the UDRP Panel Terms of Reference.	
<input type="checkbox"/>	<input type="checkbox"/>	34. Wind Analysis	A visual model and a written evaluation of how a proposed development will impact pedestrian-level wind conditions.	<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <u>Study Trigger Details:</u> Applications seeking an increase in height and/or massing which is either: a tall building(s), 10 storeys or more or a proposed building that is more than twice the height of	

				adjacent existing buildings and is greater than five storeys in height and is adjacent to existing or planned low rise development, open spaces, water bodies and large public amenity areas.	
<input type="checkbox"/>	<input type="checkbox"/>	35. Zoning Confirmation Report	The purpose of the Zoning Confirmation Report (ZCR) is to identify all zoning compliance issues, if any, at the outset of a planning application.	<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Required for all SPC and ZBLA applications.</p>

ENVIRONMENTAL								
R	A	Study / Plan Name	Description	When Required			Applicable Study Components & Other Comments	
				1	2	3		
<input type="checkbox"/>	<input type="checkbox"/>	36. Community Energy Plan	Includes a community energy analysis, alongside mitigation measures, and other associated information. The community energy analysis refers to the overall assessment process to identify on and off-site measures to align the design of the development with City climate objectives.	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	NOT IMPLEMENTED & NOT REQUIRED			
<input type="checkbox"/>	<input type="checkbox"/>	37. Energy Modelling Report	The Energy Modeling Report is a Site Plan Control application submission requirement to show how climate change mitigation, and energy objectives will be met through exterior building design elements.	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	NOT IMPLEMENTED & NOT REQUIRED			
<input type="checkbox"/>	<input type="checkbox"/>	38. Environmental Impact Study	Assessment of environmental impacts of a project and documents the existing natural features, identifies the potential environmental impacts,	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>	<p><u>Study Trigger Details:</u> Is required when development or site alteration is proposed in or within a</p>			
					Assessment of Landform Features Yes <input type="checkbox"/> No <input type="checkbox"/> Integrated Environmental Review Yes <input type="checkbox"/> No <input type="checkbox"/>			

			<p>recommends ways to avoid and reduce the negative impacts, and proposes ways to enhance natural features and functions.</p>	<p>specified distance of environmentally designated lands, natural heritage features, the City's Natural Heritage System, or hazardous forest types for wildland fire.</p> <p>The EIS Decision Tool (Appendix 2 of the Environmental Impact Study Guidelines) provides a checklist of the natural heritage features and adjacent areas within which an EIS is required to support development applications under the <i>Planning Act</i>.</p>	<p>Protocol for Wildlife Protection during Construction Yes <input type="checkbox"/> No <input type="checkbox"/></p> <p>Significant Woodlands Guidelines for Identification, Evaluation, and Impact Assessment Yes <input type="checkbox"/> No <input type="checkbox"/></p>
<input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/>	39. Environmental Management Plan	<p>A comprehensive environmental planning document that identifies, evaluates, and mitigates the potential impacts of proposed development on the natural environment and its ecological functions at local planning stage.</p>	<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <p>Study Trigger Details: Official Plan amendments for local plans (area-specific policy or secondary plan, where: there is significant change in the conditions upon which the original study was based; there are proposed changes to planned infrastructure needed to service a subdivision that would have a significant impact on the infrastructure needs of another subdivision within the EMP study area, or the applicable Class Environmental Assessment approval has expired.</p>	
<input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/>	40. High-performance Development Standard	<p>A collection of voluntary and required standards that raise performance of new building projects to achieve sustainable and resilient design</p>	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <p>NOT IMPLEMENTED & NOT REQUIRED</p>	
<input checked="" type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/>	41. Tree Conservation Report	<p>Demonstrates how tree cover will be retained and protected on the site, including mature trees, stands of trees, and hedgerows.</p>	<input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <p>Study Trigger Details: Where there is a tree of 10 centimeters in diameter or greater on the site and/or if there is a tree on an adjacent site that has a Critical Root Zone (CRZ) extending onto the development site.</p>	

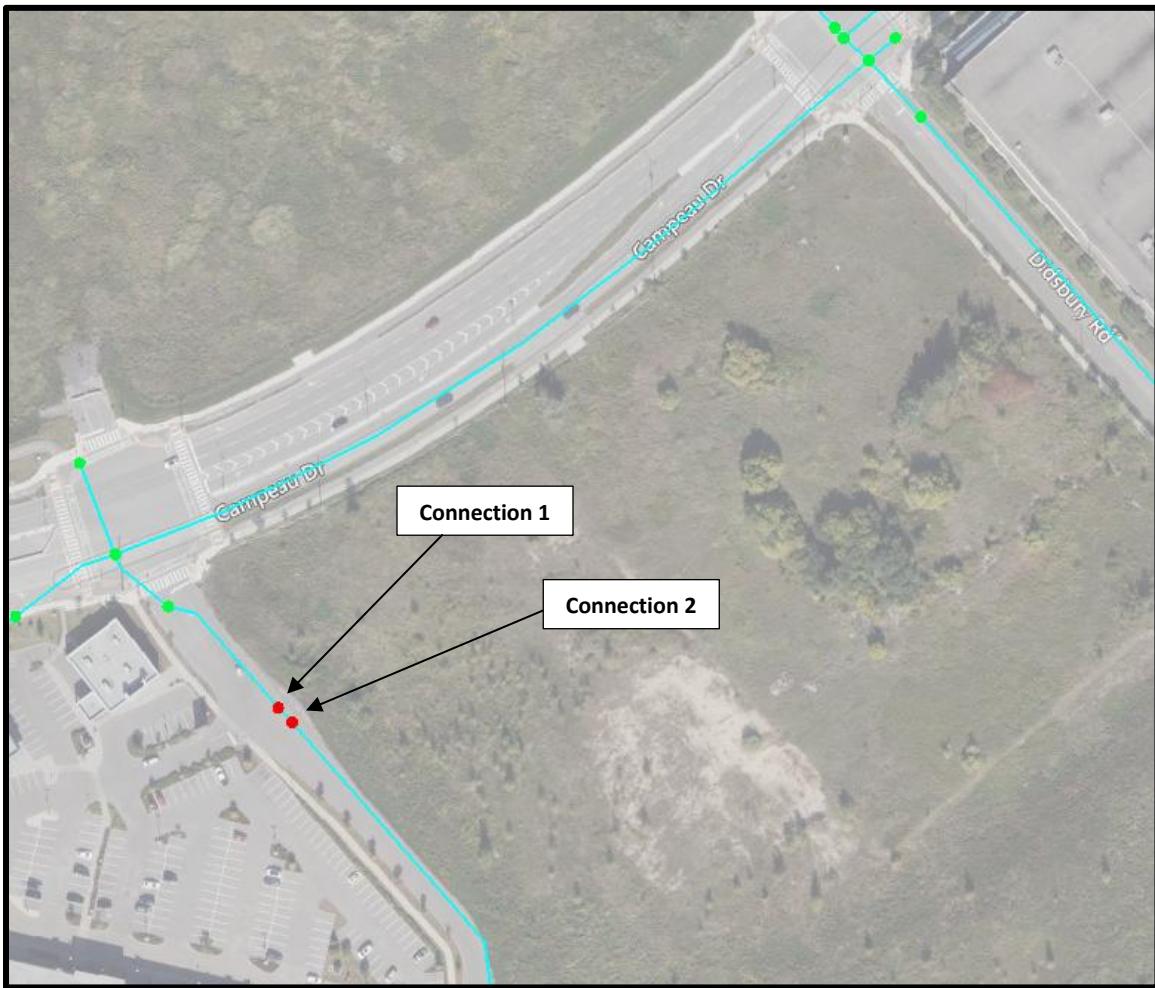

WATERMAIN SCHEDULE					
	Station	Description	Finished Grade	Top of Waterain	As Built Watermain
A	0+000.00	TEE	95.670	93.270	
	0+003.59	VB	95.830	93.430	
B	0+073.53	BLDG B	96.460	94.060	

Date 2025-07-18

CROSSING SCHEDULE

1	200 mm ø W/M	0.620 m	CLEARANCE OVER	250 mm ø SAN
2	200 mm ø W/M	0.500 m	CLEARANCE OVER	825 mm ø STM
3	375 mm ø STM	0.900 m	CLEARANCE OVER	250 mm ø SAN
4	375 mm ø STM	0.430 m	CLEARANCE OVER	200 mm ø W/M
5	200 mm ø W/M	0.270 m	CLEARANCE OVER	250 mm ø SAN
6	250 mm ø STM	1.240 m	CLEARANCE OVER	250 mm ø SAN
7	250 mm ø STM	0.830 m	CLEARANCE OVER	200 mm ø W/M
8	250 mm ø STM	1.670 m	CLEARANCE OVER	250 mm ø SAN
9	250 mm ø STM	0.700 m	CLEARANCE OVER	200 mm ø W/M

Date 2025-07


Appendix B

Boundary Conditions
8201 Campeau Drive – 2025 Update

Provided Information

Scenario	Demand	
	L/min	L/s
Average Daily Demand	95	1.59
Maximum Daily Demand	238	3.96
Peak Hour	524	8.74
Fire Flow Demand #1	18,000	300.00

Location

Results

Connection 1

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	162.0	93.9
Peak Hour	155.8	85.1
Max Day plus Fire Flow #1	133.5	53.5

¹ Ground Elevation = 95.9 m

Connection 2

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	162.0	93.9
Peak Hour	155.8	85.1
Max Day plus Fire Flow #1	132.2	51.6

¹ Ground Elevation = 95.9 m

Notes

1. The IWSD has recently updated their water modelling software. Any significant difference between previously received BC results and newly received BC results could be attributed to this update.
2. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - o If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - o Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

IBI GROUP

ARCADIS IBI GROUP

500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
arcadis.com

WATERMAIN DEMAND CALCULATION SHEET

WATERMAIN DEMAND CALCULATION SHEET

8201 Campeau Drive | Patry Group / Theberge Homes
147814 -6.0 | Rev #2 | 2025-06-06
Prepared By: MAP | Checked By: SEL

NODE	RESIDENTIAL				NON-RESIDENTIAL (ICI)			AVERAGE DAILY DEMAND (l/s)			MAXIMUM DAILY DEMAND (l/s)			MAXIMUM HOURLY DEMAND (l/s)			FIRE DEMAND (l/min)
	1 Bedroom Apartment	2 Bedroom Apartment	3 Bedroom Apartment	POPULATION	INDUST. (ha)	COMM. (m2)	INSTIT. (pp)	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	
Building A + B	297	12	16	490.6				1.59		1.59	3.97		3.97	8.74		8.74	18,000

POPULATION DENSITY		WATER DEMAND RATES			PEAKING FACTORS			FIRE DEMANDS		
1 Bedroom Apartment	1.4 persons/unit	Residential	280 l/cap/day	Maximum Daily Residential	2.5 x avg. day	Single Family				
2 Bedroom Apartment	2.1 persons/unit	Commercial Shopping Center	2,500 L/(1000m ²)/day	Commercial	1.5 x avg. day	Semi Detached & Townhouse	15,000 l/min (250.0 l/s)			
3 Bedroom Apartment	3.1 persons/unit	Institutional	75 l/cap/day	Maximum Hourly Residential	2.2 x avg. day	Medium Density	15,000 l/min (250 l/s)			

IBI GROUP

ARCADIS IBI GROUP

500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
arcadis.com

WATERMAIN DEMAND CALCULATION SHEET

WATERMAIN DEMAND CALCULATION SHEET

8201 Campeau Drive | Patry Group / Theberge Homes
147814 -6.0 | Rev #2 | 2025-06-06
Prepared By: MAP | Checked By: SEL

NODE	RESIDENTIAL				NON-RESIDENTIAL (ICI)			AVERAGE DAILY DEMAND (l/s)			MAXIMUM DAILY DEMAND (l/s)			MAXIMUM HOURLY DEMAND (l/s)			FIRE DEMAND (l/min)
	1 Bedroom Apartment	2 Bedroom Apartment	3 Bedroom Apartment	POPULATION	INDUST. (ha)	COMM. (m2)	INSTIT. (pp)	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	
Building A + B	297	12	16	490.6				1.59		1.59	3.97		3.97	8.74		8.74	18,000

POPULATION DENSITY		WATER DEMAND RATES			PEAKING FACTORS			FIRE DEMANDS		
1 Bedroom Apartment	1.4 persons/unit	Residential	280 l/cap/day	Maximum Daily Residential	2.5 x avg. day	Single Family				
2 Bedroom Apartment	2.1 persons/unit	Commercial Shopping Center	2,500 L/(1000m ²)/day	Commercial	1.5 x avg. day	Semi Detached & Townhouse	15,000 l/min (250.0 l/s)			
3 Bedroom Apartment	3.1 persons/unit	Institutional	75 l/cap/day	Maximum Hourly Residential	2.2 x avg. day	Medium Density	15,000 l/min (250 l/s)			

STEP	Contents	Description	Adjustment Factor	Result
1	Building A (AA) 6-storey residential	Floor 1 Floors 2-6	1452 1404	Floors 1 Floors 5 1452 m2 7020 m2
	Total Effective Floor Area			8472 m2
2	Type of Construction	Type V Wood Frame Type III Ordinary Construction Type II Noncombustible Construction Type I Fire Resistive Construction	1.5 1.0 0.8 0.6	Type V Wood Frame 1.5
3	Required Fire Flow	RFF = $220C\sqrt{A}$, rounded to nearest 1000 L/min		30000 L/min
4	Occupancy and Contents	Noncombustible Contents Limited Combustible Contents Combustible Contents Free Burning Contents Rapid Burning Contents	-25% -15% 0% 15% 25%	Limited Combustible Contents -15% -4500 L/min
	Fire Flow			25500 L/min
5	Automatic Sprinkler Protection	Automatic Sprinkler Conforming to NFPA 13 Standard Water Supply for both the system and Fire Department Hose Lines Fully Supervised System	-30% -10% -10%	Yes -30% Yes -10% No
	Total Sprinkler Adjustment			-10200 L/min
6	Exposure Adjustment	Based on Table 6 Exposure Adjustment Charges for Subject Building		
	North	Separation (m) Length X Height Factor (m.storeys) Construction Type		Firewall 10% 2550 L/min
	South	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	East	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	West	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	Total Exposure Adjustment			2550 L/min
7	Total Required Fire Flow	Rounded to Nearest 1000 L/min		17850 L/min 18000 L/min 300 L/s

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

2. If any vertical opening in the building are unprotected (e.g. interconnected floor spaces, elevators etc.), consider the two largest adjoining floor area plus 50% of all floors immediately above them up to a maximum of eight.

STEP	Contents	Description		Adjustment Factor	Result
1	Building A (AB) + LINK 6-storey residential	Floor 1	1432	Floors 1	1432 m ²
		Floors 2-6	986	Floors 5	4930 m ²
	Total Effective Floor Area				6362 m²
2	Type of Construction	Type V Wood Frame	1.5	Type V Wood Frame	1.5
		Type III Ordinary Construction	1.0		
		Type II Noncombustible Construction	0.8		
		Type I Fire Resistive Construction	0.6		
3	Required Fire Flow	RFF = $220C\sqrt{A}$, rounded to nearest 1000 L/min			26000 L/min
4	Occupancy and Contents	Noncombustible Contents	-25%	Limited Combustible Contents	-15%
		Limited Combustible Contents	-15%		
		Combustible Contents	0%		
		Free Burning Contents	15%		
		Rapid Burning Contents	25%		
	Fire Flow				22100 L/min
5	Automatic Sprinkler Protection	Automatic Sprinkler Conforming to NFPA 13	-30%	Yes	-30%
		Standard Water Supply for both the system and Fire Department Hose Lines	-10%	Yes	-10%
		Fully Supervised System	-10%	No	0 L/min
	Total Sprinkler Adjustment				-8840 L/min
	Exposure Adjustment	Based on Table 6 Exposure Adjustment Charges for Subject Building			
6	North	Separation (m)	>30		0 L/min
		Length X Height Factor (m.storeys)			
		Construction Type			
	South	Separation (m)		Firewall	10%
		Length X Height Factor (m.storeys)			2210 L/min
		Construction Type			
	East	Separation (m)		Firewall	10%
		Length X Height Factor (m.storeys)			2210 L/min
		Construction Type			
	West	Separation (m)	28.6	With unprotected opening	0%
		Length X Height Factor (m.storeys)	21.1		
		Construction Type	Type III		
	Total Exposure Adjustment				4420 L/min
7	Total Required Fire Flow				17680 L/min
		Rounded to Nearest 1000 L/min			18000 L/min
					300 L/s

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

2. If any vertical opening in the building are unprotected (e.g. interconnected floor spaces, elevators etc.), consider the two largest adjoining floor area plus 50% of all floors immediately above them up to a maximum of eight.

STEP	Contents	Description	Adjustment Factor	Result
1	Building B (BA) 6-storey residential	Floor 1 Floors 2-6	1251 1089 Floors 1 Floors 5	1251 m2 5445 m2
	Total Effective Floor Area			6696 m2
2	Type of Construction	Type V Wood Frame Type III Ordinary Construction Type II Noncombustible Construction Type I Fire Resistive Construction	1.5 1.0 0.8 0.6 Type V Wood Frame	1.5
3	Required Fire Flow	RFF = $220C\sqrt{A}$, rounded to nearest 1000 L/min		27000 L/min
4	Occupancy and Contents	Noncombustible Contents Limited Combustible Contents Combustible Contents Free Burning Contents Rapid Burning Contents	-25% -15% 0% 15% 25% Limited Combustible Contents	-15% -4050 L/min
	Fire Flow			22950 L/min
5	Automatic Sprinkler Protection	Automatic Sprinkler Conforming to NFPA 13 Standard Water Supply for both the system and Fire Department Hose Lines Fully Supervised System	-30% -10% -10%	Yes -30% Yes -10% No
	Total Sprinkler Adjustment			-9180 L/min
6	Exposure Adjustment	Based on Table 6 Exposure Adjustment Charges for Subject Building		
	North	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	South	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	East	Separation (m) Length X Height Factor (m.storeys) Construction Type	Firewall 10%	2295 L/min
	West	Separation (m) Length X Height Factor (m.storeys) Construction Type	Firewall 10%	2295 L/min
	Total Exposure Adjustment			4590 L/min
7	Total Required Fire Flow	Rounded to Nearest 1000 L/min		18360 L/min
				18000 L/min
				300 L/s

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

2. If any vertical opening in the building are unprotected (e.g. interconnected floor spaces, elevators etc.), consider the two largest adjoining floor area plus 50% of all floors immediately above them up to a maximum of eight.

STEP	Contents	Description	Adjustment Factor	Result
1	Building B (BB) 6-storey residential	Floor 1 Floors 2-6	844 747 Floors 1 Floors 5	844 m2 3735 m2
	Total Effective Floor Area			4579 m2
2	Type of Construction	Type V Wood Frame Type III Ordinary Construction Type II Noncombustible Construction Type I Fire Resistive Construction	1.5 1.0 0.8 0.6 Type V Wood Frame	1.5
3	Required Fire Flow	RFF = $220C\sqrt{A}$, rounded to nearest 1000 L/min		22000 L/min
4	Occupancy and Contents	Noncombustible Contents Limited Combustible Contents Combustible Contents Free Burning Contents Rapid Burning Contents	-25% -15% 0% 15% 25% Limited Combustible Contents	-15% -3300 L/min
	Fire Flow			18700 L/min
5	Automatic Sprinkler Protection	Automatic Sprinkler Conforming to NFPA 13 Standard Water Supply for both the system and Fire Department Hose Lines Fully Supervised System	-30% -10% -10%	Yes -30% Yes -10% No
	Total Sprinkler Adjustment			-7480 L/min
6	Exposure Adjustment	Based on Table 6 Exposure Adjustment Charges for Subject Building		
	North	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	South	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	East	Separation (m) Length X Height Factor (m.storeys) Construction Type	>30	0 L/min
	West	Separation (m) Length X Height Factor (m.storeys) Construction Type	Firewall 10%	1870 L/min
	Total Exposure Adjustment			1870 L/min
7	Total Required Fire Flow	Rounded to Nearest 1000 L/min		13090 L/min
				13000 L/min
				217 L/s

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

2. If any vertical opening in the building are unprotected (e.g. interconnected floor spaces, elevators etc.), consider the two largest adjoining floor area plus 50% of all floors immediately above them up to a maximum of eight.

8201 CAMPEAU DRIVE WATER MODEL

BOUNDARY
CONDITIONS

TAGGART ROAD

BC1
BC2

16

17

J12
J14

3.1449173°F 41.0423266°N

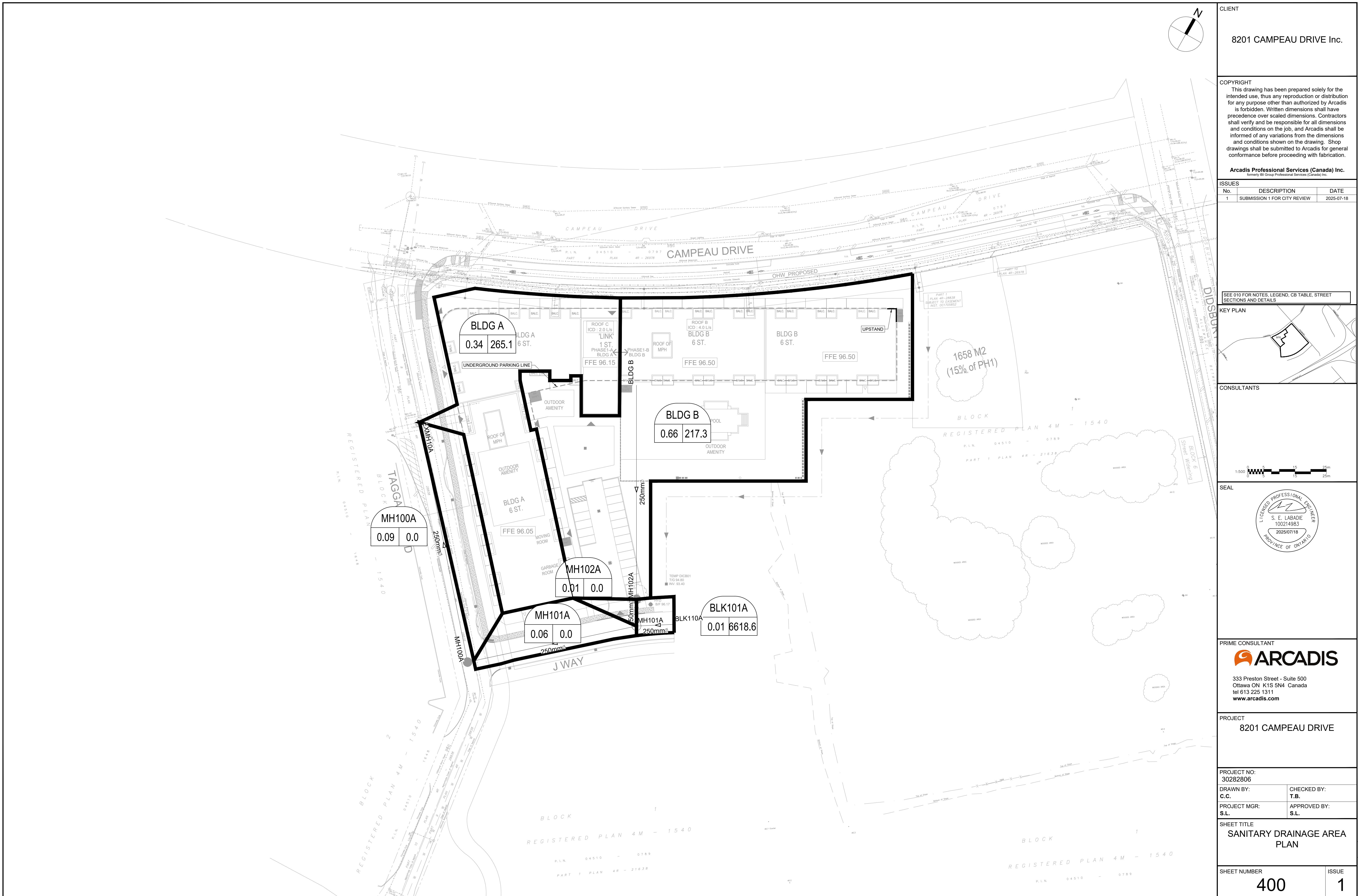
Selected Features: 0

Basic Day (Max HGL) - Junction Report

		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	<input type="checkbox"/>	J1	0.00	95.55	162.00	651.16
2	<input type="checkbox"/>	J10	0.00	95.50	162.00	651.64
3	<input type="checkbox"/>	J12	0.00	95.65	162.00	650.17
4	<input type="checkbox"/>	J14	0.00	95.70	162.00	649.68
5	<input type="checkbox"/>	J16	0.72	96.50	162.00	641.84
6	<input type="checkbox"/>	J2	0.00	95.55	162.00	651.16
7	<input type="checkbox"/>	J3	0.44	95.80	162.00	648.71
8	<input type="checkbox"/>	J4	0.44	95.80	162.00	648.71

Peak Hour - Junction Report

		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	<input type="checkbox"/>	J1	0.00	95.55	155.80	590.39
2	<input type="checkbox"/>	J10	0.00	95.50	155.79	590.78
3	<input type="checkbox"/>	J12	0.00	95.65	155.78	589.24
4	<input type="checkbox"/>	J14	0.00	95.70	155.78	588.75
5	<input type="checkbox"/>	J16	3.94	96.50	155.77	580.81
6	<input type="checkbox"/>	J2	0.00	95.55	155.80	590.39
7	<input type="checkbox"/>	J3	2.45	95.80	155.80	587.93
8	<input type="checkbox"/>	J4	2.45	95.80	155.80	587.93


Peak Hour - Pipe Report

		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	<input type="checkbox"/>	P11	J1	J2	3.90	204.00	110.00	1.84	0.06	0.00	0.04	Open	0
2	<input type="checkbox"/>	P13	J16	J12	74.05	204.00	110.00	-3.94	0.12	0.01	0.14	Open	0
3	<input type="checkbox"/>	P15	J12	J14	4.02	204.00	110.00	0.00	0.00	0.00	0.00	Open	0
4	<input type="checkbox"/>	P17	J12	J10	50.00	204.00	110.00	-3.94	0.12	0.01	0.14	Open	0
5	<input type="checkbox"/>	P19	J10	J2	68.87	204.00	110.00	-3.94	0.12	0.01	0.14	Open	0
6	<input type="checkbox"/>	P21	J1	BC1	9.45	204.00	110.00	-4.29	0.13	0.00	0.17	Open	0
7	<input type="checkbox"/>	P23	J2	BC2	9.19	204.00	110.00	-4.55	0.14	0.00	0.19	Open	0
8	<input type="checkbox"/>	P25	J2	J4	6.63	204.00	110.00	2.45	0.07	0.00	0.06	Open	0
9	<input type="checkbox"/>	P27	J1	J3	6.76	204.00	110.00	2.45	0.07	0.00	0.06	Open	0

	ID	Capacity Assessment	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	<input type="checkbox"/> J14	FAIL	300.00	184.70	J14	139.96	-180.54	139.96	184.70	139.96

Appendix C

LOCATION				RESIDENTIAL										ICI AREAS						INFILTRATION ALLOWANCE			FIXED FLOW (L/s)		TOTAL FLOW (L/s)			PROPOSED SEWER DESIGN					
STREET	AREA ID	FROM MH	TO MH	AREA w/ Units (Ha)	AVG	UNIT TYPES			AREA w/o Units (Ha)	POPULATION		RES PEAK FACTOR	PEAK FLOW (L/s)	AREA (Ha)			ICI PEAK FACTOR	PEAK FLOW (L/s)	AREA (Ha)		FLOW	IND CUM		IND CUM		CAPACITY (L/s)	LENGTH (m)	DIA (mm)	SLOPE (%)	VELOCITY (full) (m/s)	AVAILABLE CAPACITY L/s (%)		
						1 Bed APT	2 Bed APT	3 Bed APT		IND	CUM			IND	CUM	IND	CUM		IND	CUM	IND	CUM	IND	CUM									
FUTURE DEV.	FUT	BLK110A	2.80	3000					5400.0	5400.0	2.77	48.49	0.00	0.0	0.00	0.00	0.0	1.00	0.00	2.80	2.8	0.92	0.00	0.0	49.42	57.20	31.00	250	0.85	1.129	7.78	13.60%	
J WAY	BLK110A	MH101A	0.01						0.0	5400.0	2.77	48.49	0.00	0.0	0.00	0.00	0.0	1.00	0.00	0.01	2.8	0.93	0.00	0.0	49.42	57.20	42.90	250	0.85	1.129	7.78	13.59%	
PHASE 2	BLDG B	BLDG B	MH102A	0.66	134	7	6		217.3	217.3	3.51	2.47	0.00	0.0	0.00	0.0	0.0	0.0	1.00	0.00	0.66	0.7	0.22	0.00	0.0	2.69	57.20	16.00	250	0.85	1.129	54.51	95.30%
		MH102A	MH101A	0.01					0.0	217.3	3.51	2.47	0.00	0.0	0.00	0.0	0.0	0.0	1.00	0.00	0.01	0.0	0.00	0.0	0.0	2.47	57.20	16.00	250	0.85	1.129	54.72	95.68%
J WAY	MH101A	MH101A	MH100A	0.06					0.0	5617.3	2.76	50.21	0.00	0.0	0.00	0.0	0.0	0.0	1.00	0.00	0.06	3.5	1.16	0.00	0.0	51.38	57.20	55.00	250	0.85	1.129	5.82	10.18%
TAGGART ROAD	MH100A	MH100A	EXMH10	0.09					0.0	5617.3	2.76	50.21	0.00	0.0	0.00	0.0	0.0	0.0	1.00	0.00	0.09	3.6	1.19	0.00	0.0	51.41	57.20	77.88	250	0.85	1.129	5.79	10.12%
TAGGART ROAD	BLDG A	CAP	EXMH10	0.34	155	11	10		265.1	265.1	3.48	2.99	0.00	0.0	0.00	0.0	0.0	0.0	1.00	0.00	0.34	0.3	0.11	0.00	0.0	3.10	43.87	20.00	250	0.50	0.866	40.77	92.93%
Design Parameters:				Notes:										Designed: MAP			No.		Revision			Date					2025-07-18						
Residential	ICI Areas			1. Manning's coefficient (n) = 0.013 2. Demand per capita: 280 L/day 3. Infiltration allowance: 0.33 Ls/Ha 4. Residential Peaking Factor: Harmon Formula = 1+(14/4*(P1000)^0.5)*0.8 where K = 0.8 Correction Factor 5. Commercial and Institutional Peak Factors based on total area, 1.5 if greater than 20%, otherwise 1.0										200 L/day			1.		Servicing Brief - Submission No. 1														
AVG 1.8 p/p/Ha	INST 28,000 L/Ha/day			Checked: SEL																													
1 Bed 1.4 p/p/Ha	COM 28,000 L/Ha/day			Dwg. Reference: 30282806-400													File Reference: 30282806-6.04.04		Date: 2025-07-18								Sheet No: 1 of 1						
2 Bed 2.1 p/p/Ha	IND 35,000 L/Ha/day																																
3 Bed 2.5 p/p/Ha	MOE Chart																																
Other 60 p/p/Ha	17000 L/Ha/day																																

Appendix D

Formulas and Descriptions

$$i_{2y} = 1.2 \text{ year Intensity} = 732.951 / (T_c + 6.199)^{0.810}$$

$$i_{5y} = 1.5 \text{ year Intensity} = 998.071 / (T_c + 6.053)^{0.814}$$

$$i_{100y} = 1.100 \text{ year Intensity} = 1735.688 / (T_c + 6.014)^{0.820}$$

 $T_c = \text{Time of Concentration (min)}$
 $C = \text{Average Runoff Coefficient}$
 $A = \text{Area (Ha)}$
 $Q = \text{Flow} = 2.78CIA \text{ (L/s)}$
Maximum Allowable Release Rate
Restricted Flowrate

Per McIntosh Perry Assesment of Adequacy of Public Services Report - 8201 Campeau Drive & 303 Didsbury Road (CCO-24-3115) dated 12 January 2024
Calculated at 85 L/s/ha with 1.24ha for this site (excluding park land)

$$Q_{\text{restricted}} = 105.40 \text{ L/s}$$

$$Q_{\text{uncontrolled}} = 2.78C^i_{100y} * A_{\text{uncontrolled}}$$

UNC 1	
$C =$	0.85
$T_c =$	10 min
$i_{100y} =$	178.56 mm/hr
$A_{\text{uncontrolled}} =$	0.09 Ha
$Q_{\text{uncontrolled}} =$	37.97 L/s

$$Q_{\text{max allowable}} = Q_{\text{restricted}} - Q_{\text{uncontrolled}}$$

$$Q_{\text{max allowable}} = 67.43 \text{ L/s}$$

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area		ROOF A	
Area (Ha)	0.190	Restricted Flow ICD Actual (L/s)=	4.00
C =	1.00	Restricted Flow Q_r for swm calc (L/s)=	4.00 50% reduction if sub-surface storage

100-Year Ponding

		100-Year +20% Ponding			
T_c Variable (min)	i_{100y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{100y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 100yr 20% (m ³)
105	36.50	19.28	4.00	15.28	96.25
110	35.20	18.59	4.00	14.59	96.32
115	34.01	17.96	4.00	13.96	96.33
120	32.89	17.38	4.00	13.38	96.30
125	31.86	16.83	4.00	12.83	96.22

100+20

		100+20			
T_c Variable (min)	i_{2y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{2y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 100+20 (m ³)
44	30.73	14.61	4.00	10.61	28.00
45	30.24	14.38	4.00	10.38	28.01
46	29.77	14.15	4.00	10.15	28.02
47	29.32	13.94	4.00	9.94	28.02
48	28.88	13.73	4.00	9.73	28.01

100+20

Overflow	Required	Surface	Sub-surface	Balance
0.00	96.33	106.88	0	0.00

convert to flow with peak T_c (L/s)

overflows to:

Drainage Area		ROOF A	
Area (Ha)	0.190	Restricted Flow ICD Actual (L/s)=	4.00
C =	1.00	Restricted Flow Q_r for swm calc (L/s)=	4.00 50% reduction if sub-surface storage

2-Year Ponding

T_c Variable (min)	i_{2y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{2y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 2yr (m ³)
44	30.73	14.61	4.00	10.61	28.00
45	30.24	14.38	4.00	10.38	28.01
46	29.77	14.15	4.00	10.15	28.02
47	29.32	13.94	4.00	9.94	28.02
48	28.88	13.73	4.00	9.73	28.01

Storage (m³)

Overflow	Required	Surface	Sub-surface	Balance
0.00	28.02	106.88	0	0.00

overflows to: 0.00

Drainage Area
ROOF B

Area (Ha)	0.190
C =	0.90

2-Year Ponding

T_c Variable (min)	i_{2y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{2y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 2y (m ³)
44	30.73	14.61	4.00	10.61	28.00
45	30.24	14.38	4.00	10.38	28.01
46	29.77	14.15	4.00	10.15	28.02
47	29.32	13.94	4.00	9.94	28.02
48	28.88	13.73	4.00	9.73	28.01

Storage (m³)

Overflow	Required	Surface	Sub-surface	Balance
0.00	28.02	106.88	0	0.00

overflows to: 0.00

Drainage Area
ROOF C

Area (Ha)	0.040
C =	0.90

2-Year Ponding

T_c Variable (min)	i_{2y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{2y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 2y (m ³)
17	57.42	5.75	2.00	3.75	3.82
18	55.49	5.55	2.00	3.55	3.84
19	53.70	5.37	2.00	3.37	3.85
20	52.03	5.21	2.00	3.21	3.85
21	50.48	5.05	2.00	3.05	3.85

Storage (m³)

Overflow	Required	Surface	Sub-surface	Balance
0.00	3.85	22.50	0	0.00

overflows to: 0.00

Drainage Area
CB108

Area (Ha)	0.220
C =	0.75

2-Year Ponding

T_c Variable (min)	i_{2y} (mm/hour)	Peak Flow $Q_p = 2.78xCl_{2y} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 2y (m ³)
45	30.24	11.10	3.00	8.10	21.86
46	29.77	10.92	3.00	7.92	21.87
47	29.32	10.76	3.00	7.76	21.88
48	28.88	10.60	3.00	7.60	21.88
49	28.45	10.44	3.00	7.44	21.88

Storage (m³)

Overflow	Required	Surface	Sub-surface	Balance
0.00	21.88	123.75	87.18	0.00

overflows to: CBMH104

Drainage Area		CBMH104		CB106, CB105, CBMH104					
Area (Ha)	0.218	Restricted Flow ICD Actual (L/s)=						10.00	
C =	0.81	Restricted Flow Q_r for swm calc (L/s)=						5.00	50% reduction if sub-surface storage
100-Year Ponding		100-Year +20% Ponding							
T_c Variable (min)	i_{100yr} (mm/hour)	Peak Flow $Q_p = 2.78 \times C_{100yr} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 100yr 20% (m ³)	$100YRQ_p$ 20% (L/s)	$Q_p - Q_r$ (L/s)	Volume 100+20 (m ³)	
75	47.26	23.28	5.00	18.28	82.26				
80	44.99	22.16	5.00	17.16	82.39				
85	42.95	21.16	5.00	16.16	82.42	25.39	20.39	104.00	
90	41.11	20.26	5.00	15.26	82.36				
95	39.43	19.43	5.00	14.43	82.23				

Storage (m ³)									
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
0.00	82.42	38.46	55.96	0.00	0.00	104.00	9.58		
convert to flow with peak T_c (L/s)									
overflows to: CICB100B									

Drainage Area		CBMH104	
Area (Ha)	0.218		
C =	0.65	Restricted Flow Q_r (L/s)=	5.00
2-Year Ponding			
T_c Variable (min)	i_{2yr} (mm/hour)	Peak Flow $Q_p = 2.78 \times C_{2yr} A$ (L/s)	Q_r (L/s)
28	41.93	16.52	5.00
29	40.65	16.14	5.00
30	40.04	15.78	5.00
31	39.17	15.44	5.00
32	38.34	15.11	5.00
			10.11
			19.41

Storage (m ³)				
Overflow	Required	Surface	Sub-surface	Balance
0.00	19.41	122.68	55.96	0.00
overflows to: CICB100B				

Drainage Area		CICB100B		CICB100A, CICB100B					
Area (Ha)	0.110	Restricted Flow ICD Actual (L/s)=						20.00	
C =	0.86	Restricted Flow Q_r for swm calc (L/s)=						10.00	50% reduction if sub-surface storage
100-Year Ponding		100-Year +20% Ponding							
T_c Variable (min)	i_{100yr} (mm/hour)	Peak Flow $Q_p = 2.78 \times C_{100yr} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 100yr 20% (m ³)	$100YRQ_p$ 20% (L/s)	$Q_p - Q_r$ (L/s)	Volume 100+20 (m ³)	
15	142.89	37.71	10.00	27.71	24.94				
20	119.95	31.65	10.00	21.65	25.99				
25	103.85	27.40	10.00	17.40	26.11	32.89	22.89	34.33	
30	91.87	24.24	10.00	14.24	25.64				
35	82.58	21.79	10.00	11.79	24.76				

Storage (m ³)									
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
0.00	26.11	8.95	27.57	0.00	0.00	34.33	0.00		
convert to flow with peak T_c (L/s)									
overflows to: CICB100A									

Drainage Area		CB99		CB97, CB98, CB99					
Area (Ha)	0.149	Restricted Flow ICD Actual (L/s)=						20.00	
C =	1.00	Restricted Flow Q_r for swm calc (L/s)=						10.00	50% reduction if sub-surface storage
100-Year Ponding		100-Year +20% Ponding							
T_c Variable (min)	i_{100yr} (mm/hour)	Peak Flow $Q_p = 2.78 \times C_{100yr} A$ (L/s)	Q_r (L/s)	$Q_p - Q_r$ (L/s)	Volume 100yr 20% (m ³)	$100YRQ_p$ 20% (L/s)	$Q_p - Q_r$ (L/s)	Volume 100+20 (m ³)	
25	103.85	43.08	10.00	33.08	49.62				
30	91.87	38.11	10.00	28.11	50.60				
35	82.58	34.26	10.00	24.26	50.94	41.11	31.11	65.33	
40	75.15	31.17	10.00	21.17	50.82				
45	69.05	28.65	10.00	18.65	50.34				

Storage (m ³)									
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
0.00	50.94	3.77	47.66	0.00	0.00	65.33	13.90		
convert to flow with peak T_c (L/s)									
overflows to: Taqart Commons									

Stormwater Management Summary Table									
Drainage Area		ICD Restricted Flow (L/s)	100 Year Storage Required (m ³)	2 Yr Storage Required (m ³)	Storage Provided				
ROOF A		4.00	96.33	28.02	106.88				
ROOF B		4.00	96.33	28.02	106.88				
ROOF C		2.00	15.34	3.85	22.50				
CB108		6.00	87.15	21.88	94.95				
CBMH104		10.00	82.42	19.41	94.42				
CICB100B		20.00	26.11	3.86	36.52				
CB99		20.00	50.94	9.53	51.43				
TOTAL		66.00	454.62	114.55	513.57				

5-yr Max Allowable: 67.43 L/s

100-yr Overflow: 0.00 L/s

100-yr Total Release Rate: 66.00 L/s

8201 CAMPEAU DRIVE
RUNOFF COEFFICIENT CALCULATION SHEET

RESTRICTED			Ha	GROUPED DRAINAGE AREAS			Ha
ROOF A1	Area (m²)	C		CBMH104	Area (m²)	C	
Softscape	0.00	0.20		CB106	936.6	0.57	
Hardscape	1414.26	0.90	0.14	CB105	730.2	0.72	
Total	1414.26	0.90		CBMH104	514.2	0.69	
				Total	2181.0	0.65	0.22
ROOF A2	Area (m²)	C		CICB100B	Area (m²)	C	
Softscape	0.00	0.20		CICB100A	225.7	0.64	
Hardscape	986.47	0.90	0.10	CICB100B	874.9	0.70	
Total	986.47	0.90		Total	1100.6	0.69	0.11
LINK	Area (m²)	C		CB99	Area (m²)	C	
Softscape	0.00	0.20		CB97	769.4	0.83	
Hardscape	385.22	0.90	0.04	CB98	241.4	0.77	
Total	385.22	0.90		CB99	481.5	0.76	
				Total	1492.3	0.80	0.15
ROOF B1	Area (m²)	C		Total area (m ²) =	12424.67		
Softscape	0.00	0.20		Total area (ha) =	1.24		
Hardscape	960.53	0.90	0.10				
Total	960.53	0.90					
ROOF B2	Area (m²)	C					
Softscape	0.00	0.20					
Hardscape	878.19	0.90	0.09				
Total	878.19	0.90					
CICB100A	Area (m²)	C					
Softscape	82.97	0.20					
Hardscape	142.75	0.90	0.02				
Total	225.72	0.64					
CICB100B	Area (m²)	C					
Softscape	249.40	0.20					
Hardscape	625.47	0.90	0.09				
Total	874.87	0.70					
CBMH104	Area (m²)	C					
Softscape	155.31	0.20					
Hardscape	358.90	0.90	0.05				
Total	514.21	0.69					
CB106	Area (m²)	C					
Softscape	438.95	0.20					
Hardscape	497.60	0.90	0.09				
Total	936.55	0.57					

CB105	Area (m ²)	C
Softscape	190.53	0.20
Hardscape	539.67	0.90
Total	730.20	0.72

CB108	Area (m ²)	C
Softscape	928.89	0.20
Hardscape	1242.64	0.90
Total	2171.53	0.60

UNC1	Area (m ²)	C
Softscape	268.69	0.20
Hardscape	585.95	0.90
Total	854.64	0.68

CB97	Area (m ²)	C
Softscape	72.33	0.20
Hardscape	697.05	0.90
Total	769.38	0.83

CB98	Area (m ²)	C
Softscape	44.72	0.20
Hardscape	196.71	0.90
Total	241.43	0.77

CB99	Area (m ²)	C
Softscape	97.21	0.20
Hardscape	384.26	0.90
Total	481.47	0.76

SUMMARY OF INFILTRATION GALLERY CALCULATIONS

AVERAGE SILTY CLAY PERCOLATION RATE

annual precipitation (mm)	920
60% available runoff (mm)	552
area (ha)	1.24

Building ID	Available Runoff Area (m ²)	Gallery Volume (m ³)	Infiltration Gallery Overflow (%)			Overflow Volume (m ³)			Infiltration Volume (m ³)		
			Width (m)	Length (m)	Area (m ²)	Depth (m)	WET YEAR	DRY YEAR	AVERAGE	WET YEAR	DRY YEAR
			1	4	34.4	137.6	0.81	5.00%	31.02%	18.01%	61
Roof	2200	1214									377
TOTAL		1214									219
											996

AVERAGE INFILTRATION RATE	80.30
REQUIRED INFILTRATION RATE	70

INFILTRATION GALLERY SIZING CALCULATION

WET YEAR CALCULATION

Structure 2200 m²
 Effective Runoff 0.6 %
 Percolation 0.3495 (m/day, avg silty clay)
 INFILTRATION GALLERY SIZING
 Width 4 m
 Length 34.4 m
 depth 0.81 m
 Number Cells 1
 void ratio 0.38
 42.35328 TOTAL DRYCELL VOL

PRECIPITATION DATA APRIL 1 TO OCTOBER 31 (WET YEAR)
 TOT PRECIP DEPTH 800.4 mm
 TOTAL PRECIP VOLUME 1056 m3

DEVELOPMENT AREA 1.24 ha
 OVERFLOW VOL 53 m3/year
 RUNOFF VOLUME OVERFLOW 5.00%

DATE	RAINFALL	RAINFALL INTENSITY (AVG)	RAINWATER AVAILABLE	VOLUME INFLOW TO DRYCELL	VOLUME IN DRY CELL	VOLUME PASSING DRY CELL	INFILTRATION FROM BOTTOM	INFILTRATION FROM SIDES	BALANCE IN (BOTTOM 1/3) DRYCELL
01-Apr	0.2	0.008	0	0	0	0	0	0	0
02-Apr	0.4	0.017	1	1	1	0	1	0	0
03-Apr	0	0.000	0	0	0	0	0	0	0
04-Apr	0	0.000	0	0	0	0	0	0	0
05-Apr	0	0.000	0	0	0	0	0	0	0
06-Apr	7.8	0.325	10	10	10	0	10	0	0
07-Apr	3.4	0.142	4	4	4	0	4	0	0
08-Apr	4.6	0.192	6	6	6	0	6	0	0
09-Apr	4.2	0.175	6	6	6	0	6	0	0
10-Apr	0	0.000	0	0	0	0	0	0	0
11-Apr	0	0.000	0	0	0	0	0	0	0
12-Apr	0	0.000	0	0	0	0	0	0	0
13-Apr	0	0.000	0	0	0	0	0	0	0
14-Apr	0	0.000	0	0	0	0	0	0	0
15-Apr	0	0.000	0	0	0	0	0	0	0
16-Apr	0	0.000	0	0	0	0	0	0	0
17-Apr	0	0.000	0	0	0	0	0	0	0
18-Apr	0	0.000	0	0	0	0	0	0	0
19-Apr	0	0.000	0	0	0	0	0	0	0
20-Apr	8.2	0.342	11	11	11	0	11	0	0
21-Apr	2.8	0.117	4	4	4	0	4	0	0
22-Apr	0	0.000	0	0	0	0	0	0	0
23-Apr	0	0.000	0	0	0	0	0	0	0
24-Apr	0	0.000	0	0	0	0	0	0	0
25-Apr	0	0.000	0	0	0	0	0	0	0
26-Apr	0	0.000	0	0	0	0	0	0	0
27-Apr	0	0.000	0	0	0	0	0	0	0
28-Apr	0	0.000	0	0	0	0	0	0	0
29-Apr	0	0.000	0	0	0	0	0	0	0
30-Apr	0	0.000	0	0	0	0	0	0	0
01-May	9	0.375	12	12	12	0	12	0	0
02-May	0	0.000	0	0	0	0	0	0	0
03-May	0	0.000	0	0	0	0	0	0	0
04-May	2.4	0.100	3	3	3	0	3	0	0
05-May	8	0.333	11	11	11	0	11	0	0
06-May	1	0.042	1	1	1	0	1	0	0
07-May	1.6	0.067	2	2	2	0	2	0	0
08-May	0.8	0.033	1	1	1	0	1	0	0
09-May	0	0.000	0	0	0	0	0	0	0
10-May	0	0.000	0	0	0	0	0	0	0
11-May	0	0.000	0	0	0	0	0	0	0
12-May	0	0.000	0	0	0	0	0	0	0
13-May	0	0.000	0	0	0	0	0	0	0
14-May	0	0.000	0	0	0	0	0	0	0
15-May	1	0.042	1	1	1	0	1	0	0
16-May	17.4	0.725	23	23	23	0	23	0	0
17-May	0	0.000	0	0	0	0	0	0	0
18-May	11	0.458	15	15	15	0	15	0	0
19-May	30.2	1.258	40	40	40	0	40	0	0
20-May	29.4	1.225	39	39	39	0	39	0	0
21-May	5.9	0.246	8	8	8	0	8	0	0
22-May	26.9	1.121	36	36	36	0	36	0	0
23-May	11.3	0.471	15	15	15	0	15	0	0
24-May	0.4	0.017	1	1	1	0	1	0	0
25-May	0	0.000	0	0	0	0	0	0	0
26-May	0	0.000	0	0	0	0	0	0	0
27-May	7.8	0.325	10	10	10	0	10	0	0
28-May	0	0.000	0	0	0	0	0	0	0
29-May	0	0.000	0	0	0	0	0	0	0
30-May	0	0.000	0	0	0	0	0	0	0
31-May	0	0.000	0	0	0	0	0	0	0
01-Jun	10.6	0.442	14	14	14	0	14	0	0
02-Jun	0	0.000	0	0	0	0	0	0	0
03-Jun	0	0.000	0	0	0	0	0	0	0
04-Jun	0	0.000	0	0	0	0	0	0	0
05-Jun	1.4	0.058	2	2	2	0	2	0	0
06-Jun	0	0.000	0	0	0	0	0	0	0
07-Jun	5	0.208	7	7	7	0	7	0	0
08-Jun	0.2	0.008	0	0	0	0	0	0	0
09-Jun	0	0.000	0	0	0	0	0	0	0
10-Jun	0	0.000	0	0	0	0	0	0	0
11-Jun	4.8	0.200	6	6	6	0	6	0	0
12-Jun	26.2	1.092	35	35	35	0	35	0	0
13-Jun	1	0.042	1	1	1	0	1	0	0
14-Jun	0	0.000	0	0	0	0	0	0	0
15-Jun	0	0.000	0	0	0	0	0	0	0
16-Jun	5.6	0.233	7	7	7	0	7	0	0
17-Jun	0	0.000	0	0	0	0	0	0	0
18-Jun	0	0.000	0	0	0	0	0	0	0
19-Jun	4	0.167	5	5	5	0	5	0	0
20-Jun	0	0.000	0	0	0	0	0	0	0
21-Jun	0	0.000	0	0	0	0	0	0	0
22-Jun	0	0.000	0	0	0	0	0	0	0
23-Jun	1	0.042	1	1	1	0	1	0	0
24-Jun	27.2	1.133	36	36	36	0	36	0	0
25-Jun	0	0.000	0	0	0	0	0	0	0
26-Jun	0	0.000	0	0	0	0	0	0	0
27-Jun	29	1.208	38	38	38	0	38	0	0
28-Jun	0	0.000	0	0	0	0	0	0	0
29-Jun	0.2	0.008	0	0	0	0	0	0	0
30-Jun	0	0.000	0	0	0	0	0	0	0
01-Jul	0	0.000	0	0	0	0	0	0	0
02-Jul	10	0.417	13	13	13	0	13	0	0
03-Jul	14.8	0.617	20	20	20	0	20	0	0
04-Jul	7.6	0.317	10	10	10	0	10	0	0
05-Jul	14.8	0.617	20	2					

08-Jul	0	0.000	0	0	0	0	0	0	0	0	0
09-Jul	0	0.000	0	0	0	0	0	0	0	0	0
10-Jul	0	0.000	0	0	0	0	0	0	0	0	0
11-Jul	0	0.000	0	0	0	0	0	0	0	0	0
12-Jul	0	0.000	0	0	0	0	0	0	0	0	0
13-Jul	10.6	0.442	14	14	14	0	0	14	0	0	0
14-Jul	0.4	0.017	1	1	1	0	0	1	0	0	0
15-Jul	0	0.000	0	0	0	0	0	0	0	0	0
16-Jul	0	0.000	0	0	0	0	0	0	0	0	0
17-Jul	0	0.000	0	0	0	0	0	0	0	0	0
18-Jul	0	0.000	0	0	0	0	0	0	0	0	0
19-Jul	0	0.000	0	0	0	0	0	0	0	0	0
20-Jul	6.2	0.258	8	8	8	0	0	8	0	0	0
21-Jul	0	0.000	0	0	0	0	0	0	0	0	0
22-Jul	0	0.000	0	0	0	0	0	0	0	0	0
23-Jul	0	0.000	0	0	0	0	0	0	0	0	0
24-Jul	0	0.000	0	0	0	0	0	0	0	0	0
25-Jul	3.6	0.150	5	5	5	0	0	5	0	0	0
26-Jul	31.6	1.317	42	42	42	0	0	42	0	0	0
27-Jul	0	0.000	0	0	0	0	0	0	0	0	0
28-Jul	0	0.000	0	0	0	0	0	0	0	0	0
29-Jul	42.4	1.767	56	42	42	14	14	42	0	0	0
30-Jul	2.4	0.100	3	3	3	0	0	3	0	0	0
31-Jul	0	0.000	0	0	0	0	0	0	0	0	0
01-Aug	0.6	0.025	1	1	1	0	0	1	0	0	0
02-Aug	10.8	0.450	14	14	14	0	0	14	0	0	0
03-Aug	0	0.000	0	0	0	0	0	0	0	0	0
04-Aug	0	0.000	0	0	0	0	0	0	0	0	0
05-Aug	0.4	0.017	1	1	1	0	0	1	0	0	0
06-Aug	4	0.167	5	5	5	0	0	5	0	0	0
07-Aug	1.2	0.050	2	2	2	0	0	2	0	0	0
08-Aug	2.8	0.117	4	4	4	0	0	4	0	0	0
09-Aug	11	0.458	15	15	15	0	0	15	0	0	0
10-Aug	0	0.000	0	0	0	0	0	0	0	0	0
11-Aug	0	0.000	0	0	0	0	0	0	0	0	0
12-Aug	0	0.000	0	0	0	0	0	0	0	0	0
13-Aug	0	0.000	0	0	0	0	0	0	0	0	0
14-Aug	0	0.000	0	0	0	0	0	0	0	0	0
15-Aug	2	0.083	3	3	3	0	0	3	0	0	0
16-Aug	0	0.000	0	0	0	0	0	0	0	0	0
17-Aug	0	0.000	0	0	0	0	0	0	0	0	0
18-Aug	14.2	0.592	19	19	19	0	0	19	0	0	0
19-Aug	0	0.000	0	0	0	0	0	0	0	0	0
20-Aug	0	0.000	0	0	0	0	0	0	0	0	0
21-Aug	15.6	0.650	21	21	21	0	0	21	0	0	0
22-Aug	0	0.000	0	0	0	0	0	0	0	0	0
23-Aug	6.6	0.275	9	9	9	0	0	9	0	0	0
24-Aug	0.8	0.033	1	1	1	0	0	1	0	0	0
25-Aug	0	0.000	0	0	0	0	0	0	0	0	0
26-Aug	3.8	0.158	5	5	5	0	0	5	0	0	0
27-Aug	24.2	1.008	32	32	32	0	0	32	0	0	0
28-Aug	0.8	0.033	1	1	1	0	0	1	0	0	0
29-Aug	0	0.000	0	0	0	0	0	0	0	0	0
30-Aug	0	0.000	0	0	0	0	0	0	0	0	0
31-Aug	0	0.000	0	0	0	0	0	0	0	0	0
01-Sep	0	0.000	0	0	0	0	0	0	0	0	0
02-Sep	0.4	0.017	1	1	1	0	0	1	0	0	0
03-Sep	0	0.000	0	0	0	0	0	0	0	0	0
04-Sep	1.9	0.079	3	3	3	0	0	3	0	0	0
05-Sep	5.8	0.242	8	8	8	0	0	8	0	0	0
06-Sep	0	0.000	0	0	0	0	0	0	0	0	0
07-Sep	0	0.000	0	0	0	0	0	0	0	0	0
08-Sep	0	0.000	0	0	0	0	0	0	0	0	0
09-Sep	0	0.000	0	0	0	0	0	0	0	0	0
10-Sep	6.4	0.267	8	8	8	0	0	8	0	0	0
11-Sep	61.8	2.575	82	42	42	39	42	0	0	0	0
12-Sep	20.6	0.858	27	27	27	0	0	27	0	0	0
13-Sep	5.8	0.242	8	8	8	0	0	8	0	0	0
14-Sep	0	0.000	0	0	0	0	0	0	0	0	0
15-Sep	8.1	0.338	11	11	11	0	0	11	0	0	0
16-Sep	2.3	0.096	3	3	3	0	0	3	0	0	0
17-Sep	0	0.000	0	0	0	0	0	0	0	0	0
18-Sep	0	0.000	0	0	0	0	0	0	0	0	0
19-Sep	0	0.000	0	0	0	0	0	0	0	0	0
20-Sep	0.8	0.033	1	1	1	0	0	1	0	0	0
21-Sep	0	0.000	0	0	0	0	0	0	0	0	0
22-Sep	0	0.000	0	0	0	0	0	0	0	0	0
23-Sep	13	0.542	17	17	17	0	0	17	0	0	0
24-Sep	0	0.000	0	0	0	0	0	0	0	0	0
25-Sep	0	0.000	0	0	0	0	0	0	0	0	0
26-Sep	0	0.000	0	0	0	0	0	0	0	0	0
27-Sep	0	0.000	0	0	0	0	0	0	0	0	0
28-Sep	1.3	0.054	2	2	2	0	0	2	0	0	0
29-Sep	14.1	0.588	19	19	19	0	0	19	0	0	0
30-Sep	25.2	1.050	33	33	33	0	0	33	0	0	0
01-Oct	0	0.000	0	0	0	0	0	0	0	0	0
02-Oct	0.4	0.017	1	1	1	0	0	1	0	0	0
03-Oct	7.8	0.325	10	10	10	0	0	10	0	0	0
04											

INFILTRATION GALLERY SIZING CALCULATION

DRY YEAR CALCULATION

Roof 2200 m²
 Effective Runoff 0.6 %
 Percolation 0.3495 (m/day, avg silty clay)
 INFILTRATION GALLERY SIZING
 Width 4 m
 Length 34.4 m
 depth 0.15 m
 Number Cells 1
 void ratio 0.38
 7.8432 TOTAL DRYCELL VOL

PRECIPITATION DATA APRIL 1 TO OCTOBER 31 (DRY YEAR)
 TOT PRECIP DEPTH 405.1 mm
 TOTAL PRECIP VOLUME 535 m3

DEVELOPMENT AREA 1.24 ha
 OVERFLOW VOL 166 m3/year
 RUNOFF VOLUME OVERFLOW 31.02%

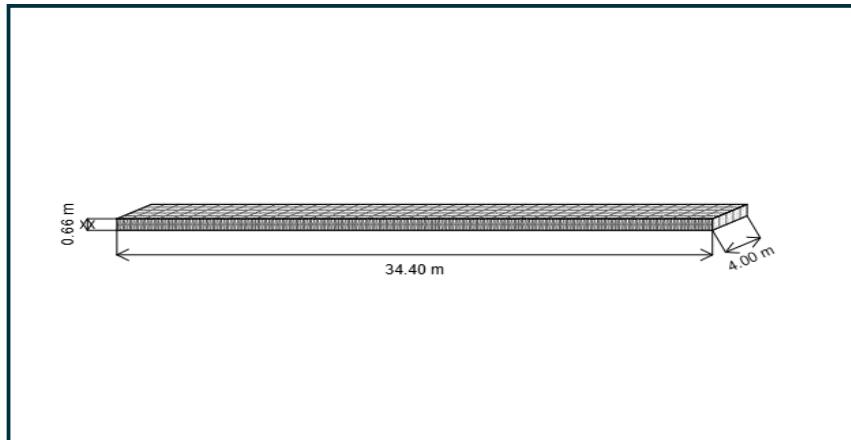
DATE	RAINFALL	RAINFALL INTENSITY (AVG)	RAINWATER AVAILABLE	VOLUME INFLOW TO DRYCELL		VOLUME IN DRY CELL	VOLUME PASSING DRY CELL	INFILTRATION FROM BOTTOM	INFILTRATION FROM SIDES	BALANCE IN (BOTTOM 1/3) DRYCELL
				[MM]	[MM/HR]	[M ³]	[M ³]	[M ³]	[M ³]	[M ³]
01-Apr	0	0.000	0	0	0	0	0	0	0	0
02-Apr	0	0.000	0	0	0	0	0	0	0	0
03-Apr	0	0.000	0	0	0	0	0	0	0	0
04-Apr	15	0.625	20	8	8	12	8	0	0	0
05-Apr	0	0.000	0	0	0	0	0	0	0	0
06-Apr	0	0.000	0	0	0	0	0	0	0	0
07-Apr	0.3	0.013	0	0	0	0	0	0	0	0
08-Apr	0	0.000	0	0	0	0	0	0	0	0
09-Apr	0	0.000	0	0	0	0	0	0	0	0
10-Apr	0	0.000	0	0	0	0	0	0	0	0
11-Apr	0	0.000	0	0	0	0	0	0	0	0
12-Apr	1	0.042	1	1	1	0	1	0	0	0
13-Apr	1.6	0.067	2	2	2	0	2	0	0	0
14-Apr	5.9	0.246	8	8	8	0	8	0	0	0
15-Apr	2.3	0.096	3	3	3	0	3	0	0	0
16-Apr	0	0.000	0	0	0	0	0	0	0	0
17-Apr	0	0.000	0	0	0	0	0	0	0	0
18-Apr	0	0.000	0	0	0	0	0	0	0	0
19-Apr	0	0.000	0	0	0	0	0	0	0	0
20-Apr	0	0.000	0	0	0	0	0	0	0	0
21-Apr	0	0.000	0	0	0	0	0	0	0	0
22-Apr	6.9	0.288	9	8	8	1	8	0	0	0
23-Apr	4.8	0.200	6	6	6	0	6	0	0	0
24-Apr	0.3	0.013	0	0	0	0	0	0	0	0
25-Apr	0	0.000	0	0	0	0	0	0	0	0
26-Apr	0	0.000	0	0	0	0	0	0	0	0
27-Apr	0	0.000	0	0	0	0	0	0	0	0
28-Apr	0	0.000	0	0	0	0	0	0	0	0
29-Apr	10.8	0.450	14	8	8	6	8	0	0	0
30-Apr	1.6	0.067	2	2	2	0	2	0	0	0
01-May	3.8	0.158	5	5	5	0	5	0	0	0
02-May	0	0.000	0	0	0	0	0	0	0	0
03-May	11.3	0.471	15	8	8	7	8	0	0	0
04-May	0	0.000	0	0	0	0	0	0	0	0
05-May	0	0.000	0	0	0	0	0	0	0	0
06-May	4.1	0.171	5	5	5	0	5	0	0	0
07-May	3	0.125	4	4	4	0	4	0	0	0
08-May	0	0.000	0	0	0	0	0	0	0	0
09-May	23.4	0.975	31	8	8	23	8	0	0	0
10-May	0.5	0.021	1	1	1	0	1	0	0	0
11-May	0	0.000	0	0	0	0	0	0	0	0
12-May	22.3	0.929	29	8	8	22	8	0	0	0
13-May	0	0.000	0	0	0	0	0	0	0	0
14-May	0	0.000	0	0	0	0	0	0	0	0
15-May	2.3	0.096	3	3	3	0	3	0	0	0
16-May	0.3	0.013	0	0	0	0	0	0	0	0
17-May	0	0.000	0	0	0	0	0	0	0	0
18-May	0	0.000	0	0	0	0	0	0	0	0
19-May	0	0.000	0	0	0	0	0	0	0	0
20-May	0	0.000	0	0	0	0	0	0	0	0
21-May	0	0.000	0	0	0	0	0	0	0	0
22-May	8.4	0.350	11	8	8	3	8	0	0	0
23-May	10	0.417	13	8	8	5	8	0	0	0
24-May	3.4	0.142	4	4	4	0	4	0	0	0
25-May	6.2	0.258	8	8	8	0	8	0	0	0
26-May	1.9	0.079	3	3	3	0	3	0	0	0
27-May	0.3	0.013	0	0	0	0	0	0	0	0
28-May	1.3	0.054	2	2	2	0	2	0	0	0
29-May	1.1	0.046	1	1	1	0	1	0	0	0
30-May	0	0.000	0	0	0	0	0	0	0	0
31-May	10.9	0.454	14	8	8	7	8	0	0	0
01-Jun	0	0.000	0	0	0	0	0	0	0	0
02-Jun	0.5	0.021	1	1	1	0	1	0	0	0
03-Jun	0	0.000	0	0	0	0	0	0	0	0
04-Jun	0	0.000	0	0	0	0	0	0	0	0
05-Jun	0	0.000	0	0	0	0	0	0	0	0
06-Jun	0	0.000	0	0	0	0	0	0	0	0
07-Jun	0	0.000	0	0	0	0	0	0	0	0
08-Jun	0	0.000	0	0	0	0	0	0	0	0
09-Jun	0	0.000	0	0	0	0	0	0	0	0
10-Jun	0	0.000	0	0	0	0	0	0	0	0
11-Jun	0	0.000	0	0	0	0	0	0	0	0
12-Jun	0.3	0.013	0	0	0	0	0	0	0	0
13-Jun	12.2	0.508	16	8	8	8	8	0	0	0
14-Jun	0.3	0.013	0	0	0	0	0	0	0	0
15-Jun	1.3	0.054	2	2	2	0	2	0	0	0
16-Jun	11.8	0.492	16	8	8	8	8	0	0	0
17-Jun	6.4	0.267	8	8	8	1	8	0	0	0
18-Jun	0.8	0.033	1	1	1	0	1	0	0	0
19-Jun	0	0.000	0	0	0	0	0	0	0	0
20-Jun	5.2	0.217	7	7	7	0	7	0	0	0
21-Jun	3.2	0.133	4	4	4	0	4	0	0	0
22-Jun	0	0.000	0	0	0	0	0	0	0	0
23-Jun	0	0.000	0	0	0	0	0	0	0	0
24										

EZstorm system overview

Project details :

Project description :	Campeau
Date :	7/16/2025
Location :	Ottawa, ON

Client details :

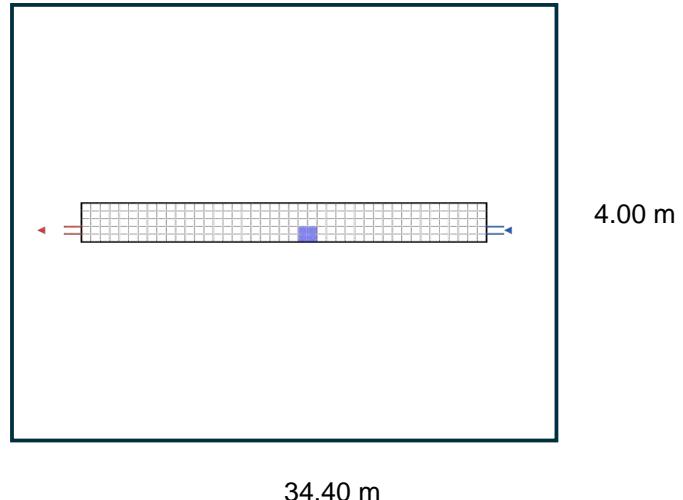

Contact:	
E-mail :	

EZstorm configuration

EZstorm application	Infiltration
Load type	Heavy traffic
Height	0.66 m
Length	34.40 m
Width	4.00 m
EZstorm storage volume	87.18 m ³
Total storage volume	87.18 m ³

Fill materiel

Fill materiel	3/4" clear stone
Storage in stone	No
Stone porosity	-
Stone above system	-
Perimeter stone	-
Stone below system	-
Storage in stone	-



Summary

Total storage volume provided :	87.18 m ³
EZstorm storage volume	87.18 m ³
Storage in stone	-
Stone quantity (fill) required for this project :	67.35 m ³

EZstorm system accessories

- Inlet
- Inlet with HDS
- Outlet
- Inspection port
- Pretreatment row
- EZaccess manhole

Material list

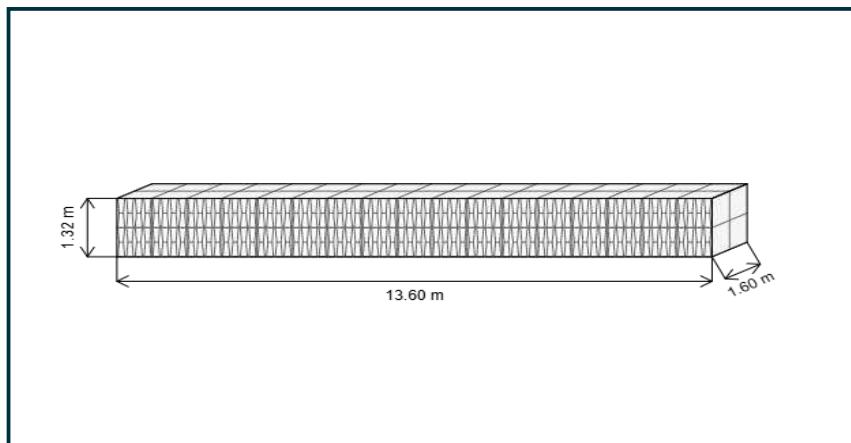
EZstorm material list	Qty
EZstorm half blocs	0
EZstorm lateral side grid	96
EZstorm access chimney (frame and cover included)	0
EZaccess (frame and cover included)	1
Geotextile surface area required	782.13
Geomembrane surface area required	0.00

EZstorm system overview

Project details :

Project description : 8201 Campeau Drive - J Way
 Date : 7/16/2025
 Location : Ottawa, Ontario

Client details :

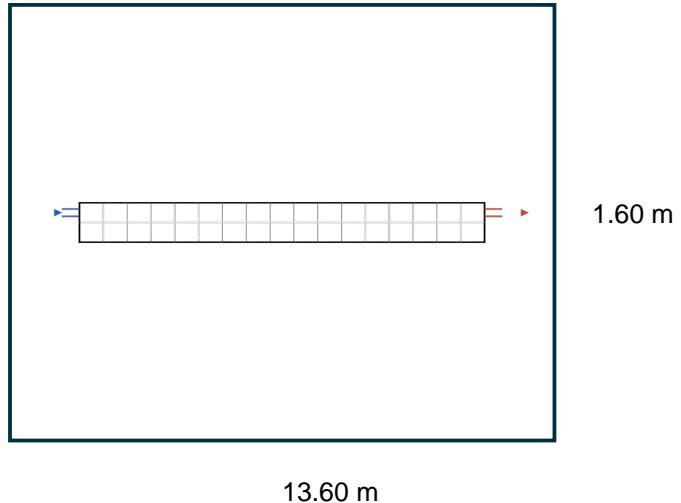

Contact: Matt Petipas
 E-mail : matt.petipas@arcadis.com

EZstorm configuration

EZstorm application	Retention / Detention
Load type	No traffic
Height	1.32 m
Length	13.60 m
Width	1.60 m
EZstorm storage volume	27.57 m ³
Total storage volume	27.57 m ³

Fill materiel

Fill materiel	3/4" granular fill / Sand
Storage in stone	No
Stone porosity	-
Stone above system	-
Perimeter stone	-
Stone below system	-
Storage in stone	-



Summary

Total storage volume provided :	27.57 m ³
EZstorm storage volume	27.57 m ³
Storage in stone	-
Stone quantity (fill) required for this project :	16.70 m ³

EZstorm system accessories

- Inlet
- Inlet with HDS
- Outlet
- Inspection port
- Pretreatment row
- EZaccess manhole

Material list

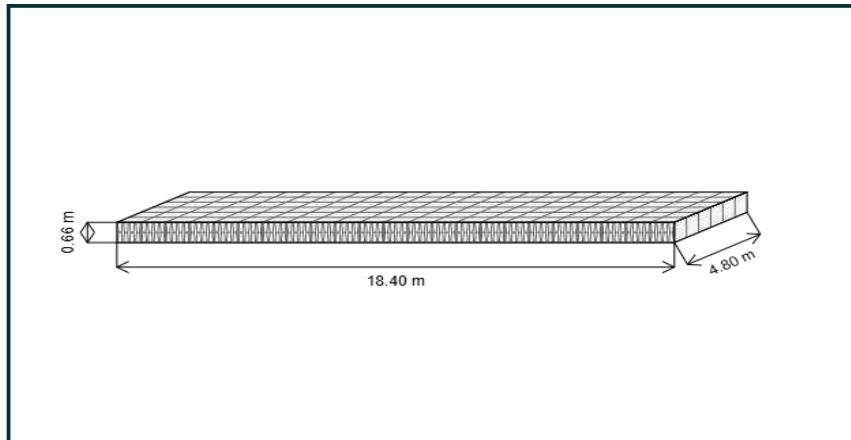
EZstorm material list	Qty
EZstorm half blocs	0
EZstorm lateral side grid	76
EZstorm access chimney (frame and cover included)	0
EZaccess (frame and cover included)	0
Geotextile surface area required	200.76
Geomembrane surface area required	92.01

EZstorm system overview

Project details :

Project description :	Project description :
Date :	7/16/2025
Location :	null, null

Client details :

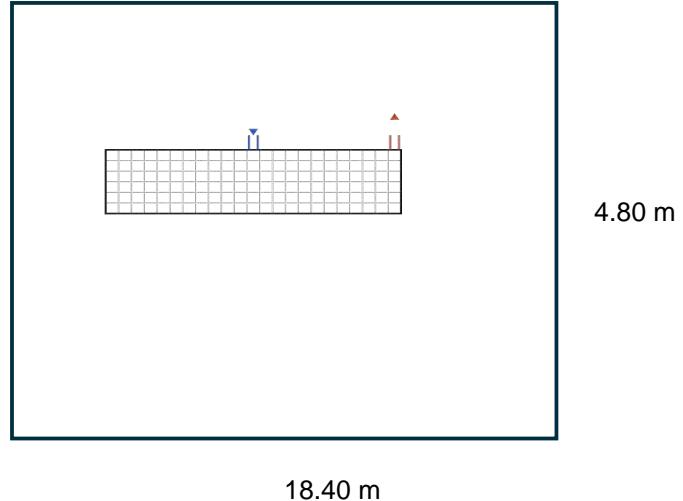

Contact:	Matt Petitpas
E-mail :	matt.petitpas@arcadis.com

EZstorm configuration

EZstorm application	Retention / Detention
Load type	Light traffic
Height	0.66 m
Length	18.40 m
Width	4.80 m
EZstorm storage volume	55.96 m ³
Total storage volume	55.96 m ³

Fill materiel

Fill materiel	3/4" granular fill / Sand
Storage in stone	No
Stone porosity	-
Stone above system	-
Perimeter stone	-
Stone below system	-
Storage in stone	-



Summary

Total storage volume provided :	55.96 m ³
EZstorm storage volume	55.96 m ³
Storage in stone	-
Stone quantity (fill) required for this project :	42.80 m ³

EZstorm system accessories

- Inlet
- Inlet with HDS
- Outlet
- Inspection port
- Pretreatment row
- EZaccess manhole

Material list

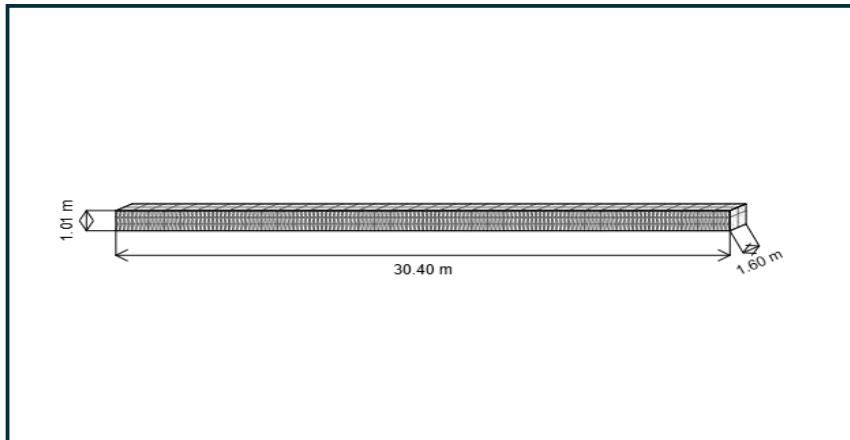
EZstorm material list	Qty
EZstorm half blocs	0
EZstorm lateral side grid	58
EZstorm access chimney (frame and cover included)	0
EZaccess (frame and cover included)	0
Geotextile surface area required	497.43
Geomembrane surface area required	227.99

EZstorm system overview

Project details :

Project description: 8201 Campeau Drive - Taggart Road
 Date : 7/18/2025
 Location : Ottawa, Ontario

Client details :

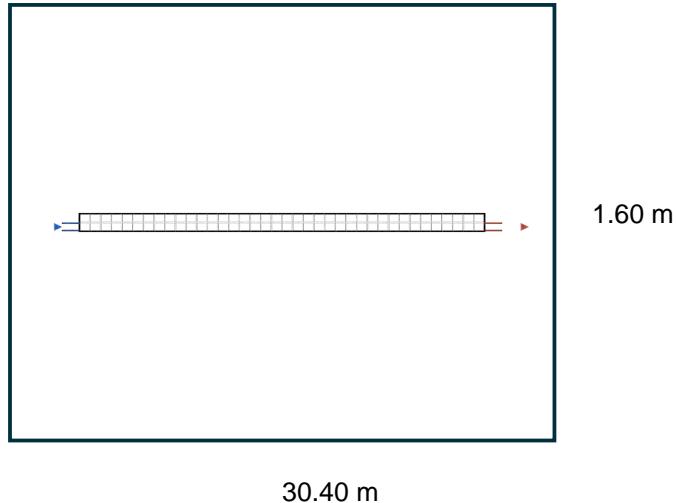

Contact: Matt Petitpas
 E-mail : matt.petitpas@arcadis.com

EZstorm configuration

EZstorm application	Retention / Detention
Load type	Light traffic
Height	1.01 m
Length	30.40 m
Width	1.60 m
EZstorm storage volume	47.16 m ³
Total storage volume	47.16 m ³

Fill material

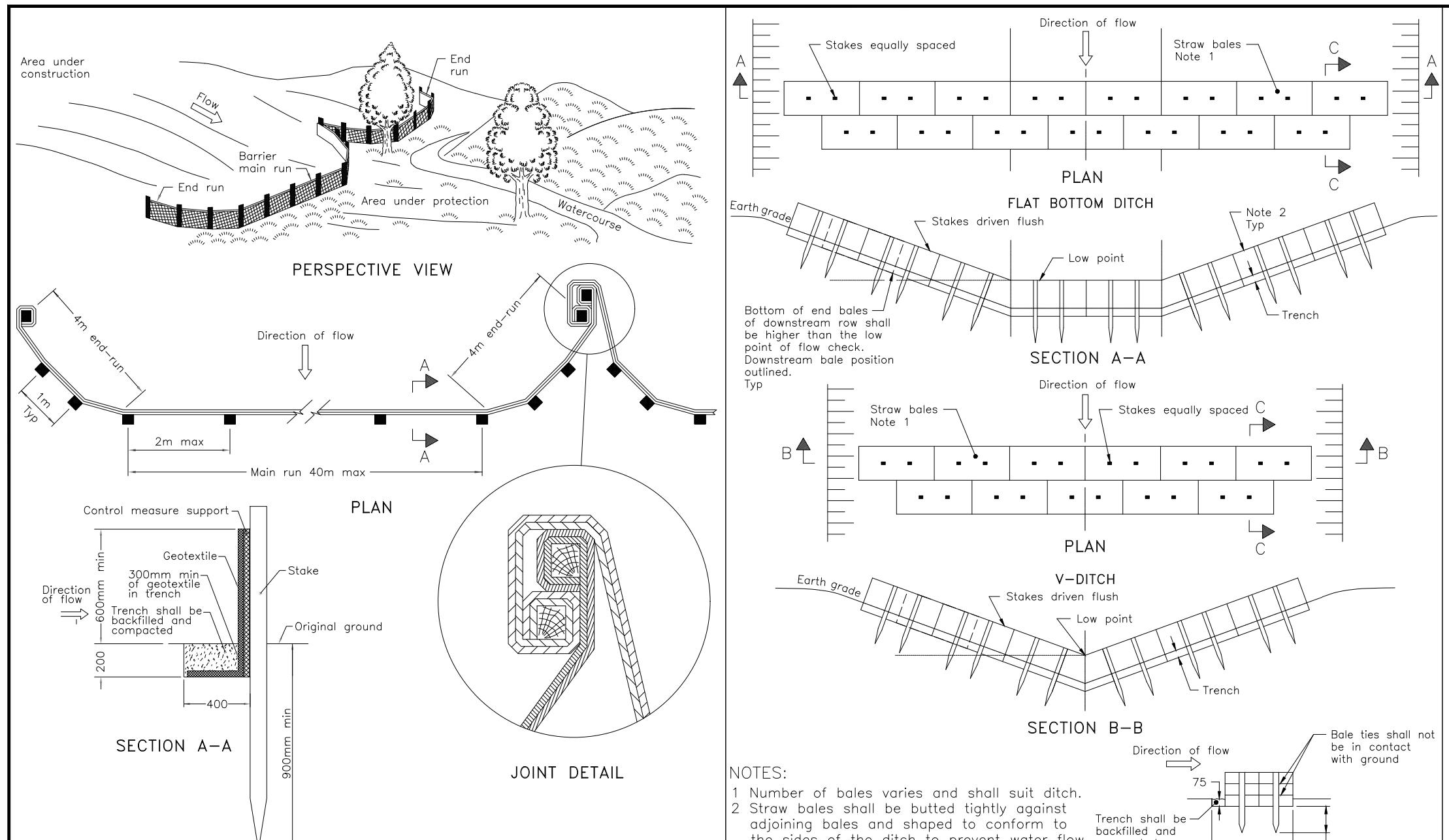
Fill material	3/4" granular fill / Sand
Storage in stone	No
Stone porosity	-
Stone above system	-
Perimeter stone	-
Stone below system	-
Storage in stone	-



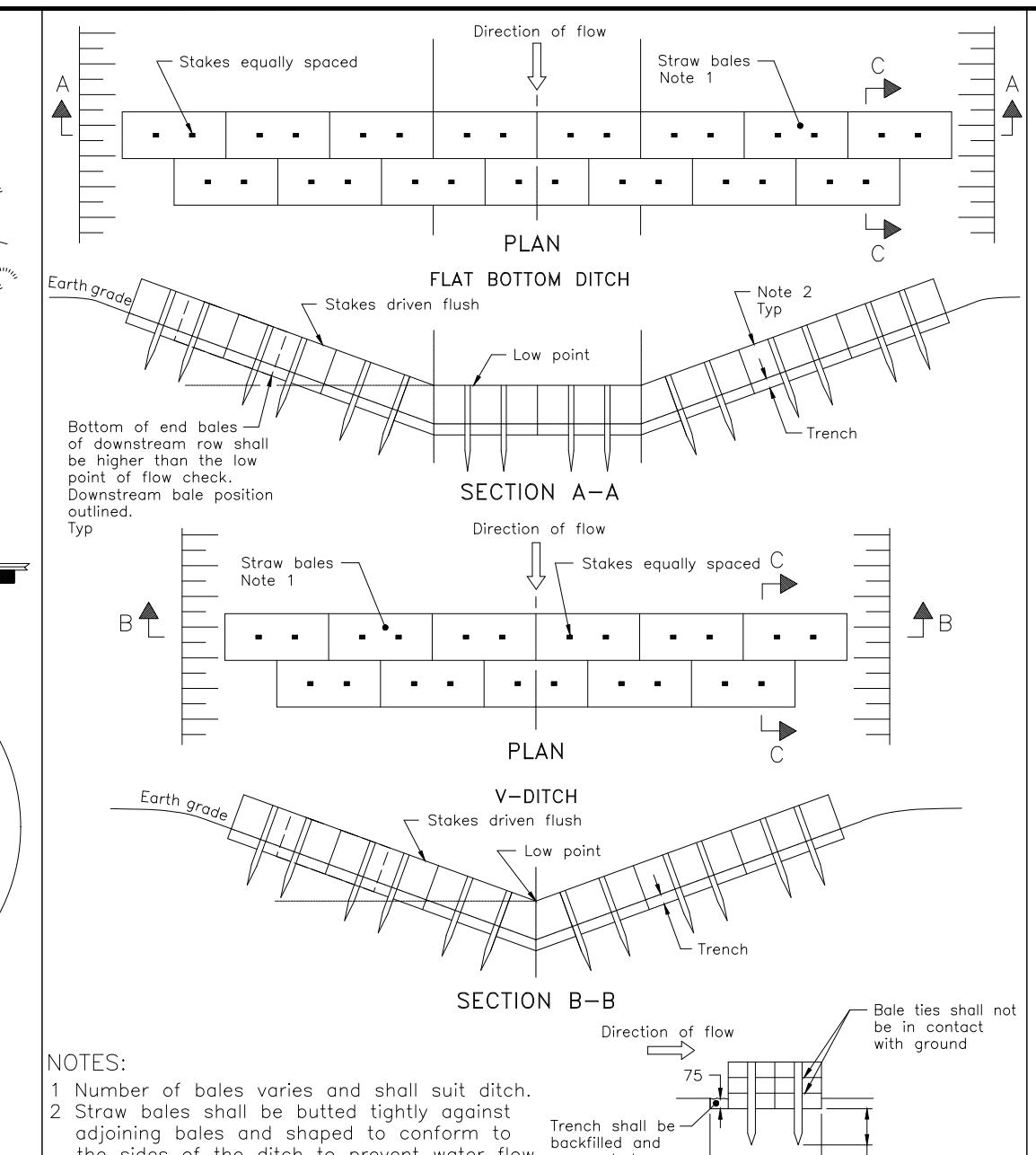
Summary

Total storage volume provided :	47.16 m ³
EZstorm storage volume	47.16 m ³
Storage in stone	-
Stone quantity (fill) required for this project :	33.12 m ³

EZstorm system accessories


- Inlet
- Inlet with HDS
- Outlet
- Inspection port
- Pretreatment row
- EZaccess manhole

Material list


EZstorm material list	Qty
EZstorm half blocs	76
EZstorm lateral side grid	80
EZstorm lateral side grid (half blocs)	80
EZstorm cover plates	76
EZstorm access chimney (frame and cover included)	0
EZaccess (frame and cover included)	0
Geotextile surface area required	388.61
Geomembrane surface area required	178.11

Appendix E

NOTE:
A All dimensions are in millimetres unless otherwise shown.

ONTARIO PROVINCIAL STANDARD DRAWING Nov 2021 Rev 3
HEAVY-DUTY SILT FENCE BARRIER
OPSD 219.130

NOTES:

1 Number of bales varies and shall suit ditch.

2 Straw bales shall be butted tightly against

adjoining bales and shaped to conform to

the sides of the ditch to prevent water flow

through bales.

3 Fill and compact gaps with loose straw.

4 Trench shall be backfilled and

compacted.

5 Stake shall not be in contact with ground.

6 Stake shall be spaced equally.

7 Stake shall be driven flush.

8 Trench shall be backfilled and

compacted.

9 Stake shall not be in contact with ground.

10 Trench shall be backfilled and

compacted.

11 Stake shall not be in contact with ground.

12 Trench shall be backfilled and

compacted.

13 Stake shall not be in contact with ground.

14 Trench shall be backfilled and

compacted.

15 Stake shall not be in contact with ground.

16 Trench shall be backfilled and

compacted.

17 Stake shall not be in contact with ground.

18 Trench shall be backfilled and

compacted.

19 Stake shall not be in contact with ground.

20 Trench shall be backfilled and

compacted.

21 Stake shall not be in contact with ground.

22 Trench shall be backfilled and

compacted.

23 Stake shall not be in contact with ground.

24 Trench shall be backfilled and

compacted.

25 Stake shall not be in contact with ground.

26 Trench shall be backfilled and

compacted.

27 Stake shall not be in contact with ground.

28 Trench shall be backfilled and

compacted.

29 Stake shall not be in contact with ground.

30 Trench shall be backfilled and

compacted.

31 Stake shall not be in contact with ground.

32 Trench shall be backfilled and

compacted.

33 Stake shall not be in contact with ground.

34 Trench shall be backfilled and

compacted.

35 Stake shall not be in contact with ground.

36 Trench shall be backfilled and

compacted.

37 Stake shall not be in contact with ground.

38 Trench shall be backfilled and

compacted.

39 Stake shall not be in contact with ground.

40 Trench shall be backfilled and

compacted.

41 Stake shall not be in contact with ground.

42 Trench shall be backfilled and

compacted.

43 Stake shall not be in contact with ground.

44 Trench shall be backfilled and

compacted.

45 Stake shall not be in contact with ground.

46 Trench shall be backfilled and

compacted.

47 Stake shall not be in contact with ground.

48 Trench shall be backfilled and

compacted.

49 Stake shall not be in contact with ground.

50 Trench shall be backfilled and

compacted.

51 Stake shall not be in contact with ground.

52 Trench shall be backfilled and

compacted.

53 Stake shall not be in contact with ground.

54 Trench shall be backfilled and

compacted.

55 Stake shall not be in contact with ground.

56 Trench shall be backfilled and

compacted.

57 Stake shall not be in contact with ground.

58 Trench shall be backfilled and

compacted.

59 Stake shall not be in contact with ground.

60 Trench shall be backfilled and

compacted.

61 Stake shall not be in contact with ground.

62 Trench shall be backfilled and

compacted.

63 Stake shall not be in contact with ground.

64 Trench shall be backfilled and

compacted.

65 Stake shall not be in contact with ground.

66 Trench shall be backfilled and

compacted.

67 Stake shall not be in contact with ground.

68 Trench shall be backfilled and

compacted.

69 Stake shall not be in contact with ground.

70 Trench shall be backfilled and

compacted.

71 Stake shall not be in contact with ground.

72 Trench shall be backfilled and

compacted.

73 Stake shall not be in contact with ground.

74 Trench shall be backfilled and

compacted.

75 Stake shall not be in contact with ground.

76 Trench shall be backfilled and

compacted.

77 Stake shall not be in contact with ground.

78 Trench shall be backfilled and

compacted.

79 Stake shall not be in contact with ground.

80 Trench shall be backfilled and

compacted.

81 Stake shall not be in contact with ground.

82 Trench shall be backfilled and

compacted.

83 Stake shall not be in contact with ground.

84 Trench shall be backfilled and

compacted.

85 Stake shall not be in contact with ground.

86 Trench shall be backfilled and

compacted.

87 Stake shall not be in contact with ground.

88 Trench shall be backfilled and

compacted.

89 Stake shall not be in contact with ground.

90 Trench shall be backfilled and

compacted.

91 Stake shall not be in contact with ground.

92 Trench shall be backfilled and

compacted.

93 Stake shall not be in contact with ground.

94 Trench shall be backfilled and

compacted.

95 Stake shall not be in contact with ground.

96 Trench shall be backfilled and

compacted.

97 Stake shall not be in contact with ground.

98 Trench shall be backfilled and

compacted.

99 Stake shall not be in contact with ground.

100 Trench shall be backfilled and

compacted.

101 Stake shall not be in contact with ground.

102 Trench shall be backfilled and

compacted.

103 Stake shall not be in contact with ground.

104 Trench shall be backfilled and

compacted.

105 Stake shall not be in contact with ground.

106 Trench shall be backfilled and

compacted.

107 Stake shall not be in contact with ground.

108 Trench shall be backfilled and

compacted.

109 Stake shall not be in contact with ground.

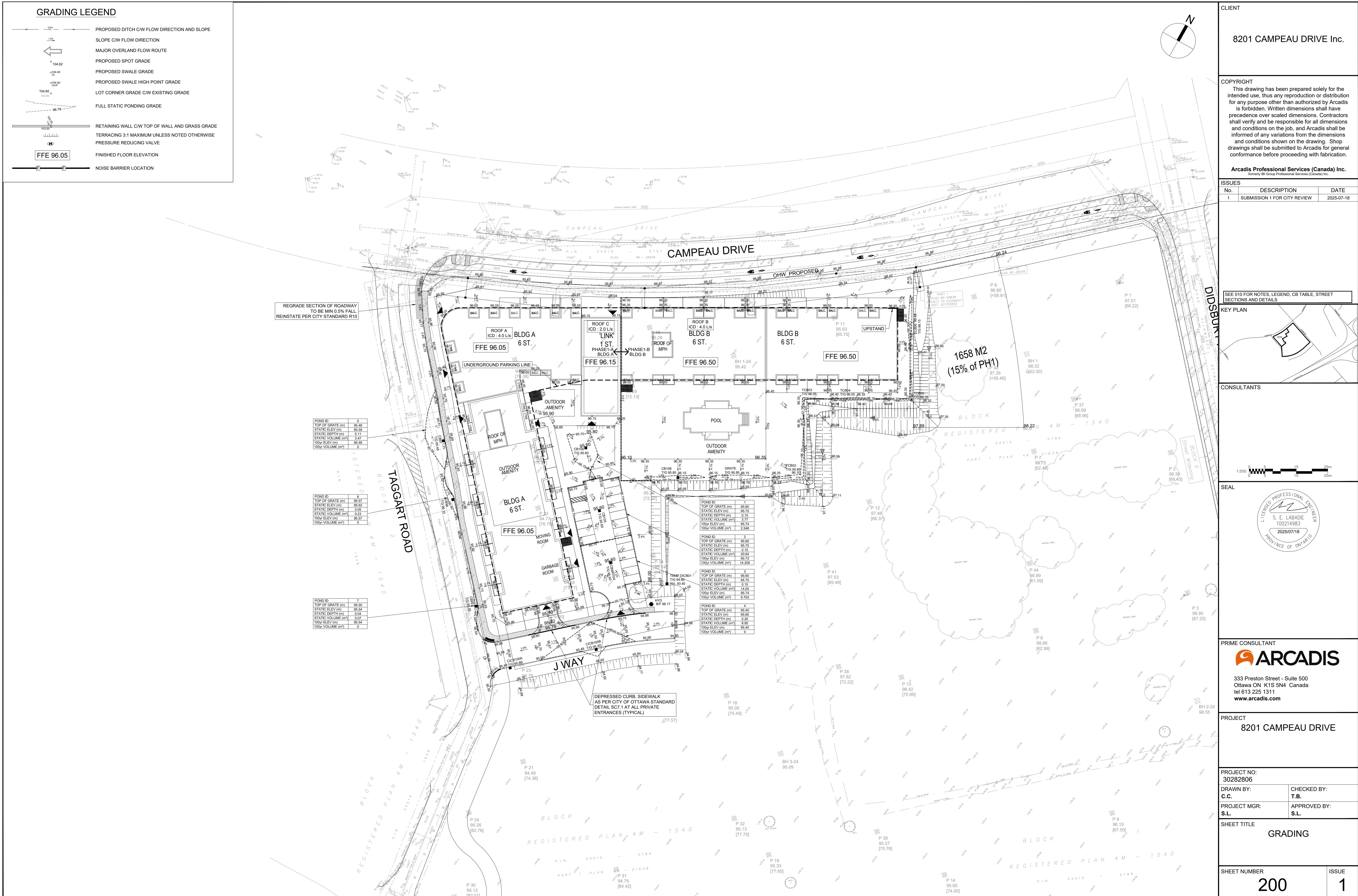
110 Trench shall be backfilled and

compacted.

111 Stake shall not be in contact with ground.

112 Trench shall be backfilled and

compacted.


113 Stake shall not be in contact with ground.

114 Trench shall be backfilled and

compacted.

</div

<div style="border: 1px solid black; padding: 10px; margin-bottom: 10px;"> <p>GENERAL LEGEND</p> </div> <div style="border: 1px solid black; padding: 10px; margin-bottom: 10px;"> <p>SERVICING LEGEND</p> </div>	<p>CLIENT 8201 CAMPEAU DRIVE Inc.</p> <p>COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by Arcadis is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and Arcadis shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to Arcadis for general conformance before proceeding with fabrication.</p> <p>Arcadis Professional Services (Canada) Inc. (Formerly IBI Group Professional Services Canada) Inc.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th colspan="3">ISSUES</th> </tr> <tr> <th>No.</th> <th>DESCRIPTION</th> <th>DATE</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>SUBMISSION 1 FOR CITY REVIEW</td> <td>2025-07-18</td> </tr> </tbody> </table> <p>NOTES</p> <p>1. ALL MATERIALS AND CONSTRUCTION IS TO BE IN ACCORDANCE WITH THE CURRENT CITY OF OTTAWA STANDARD DRAWINGS & SPECIFICATIONS OR OPSD/OPSS IF CITY DRAWINGS AND SPECIFICATIONS DO NOT APPLY.</p> <p>2. THE POSITION OF UNDERGROUND AND ABOVE GROUND SERVICE, UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONSTRUCTION DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH SERVICES, UTILITIES AND STRUCTURES IS NOT GUARANTEED. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING SERVICES AND UTILITIES PRIOR TO CONSTRUCTION.</p> <p>3. THE CONTRACTOR SHALL REPORT ALL CONFLICTS, DISCOVERIES OF ERROR AND DISCREPANCIES TO THE ENGINEER.</p> <p>4. THE CONTRACTOR SHALL BE RESPONSIBLE TO PROTECT AND ASSUME RESPONSIBILITY FOR ALL UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS.</p> <p>5. THE CONTRACTOR SHALL BE RESPONSIBLE TO PROTECT ALL LANDS BEYOND THE SITE LIMITS. ANY AREAS BEYOND THE SITE LIMITS, WHICH ARE DISTURBED DURING CONSTRUCTION, SHALL BE REPAVED AND RESTORED TO ORIGINAL CONDITION OR BETTER, TO THE SATISFACTION OF THE ADJACENT LAND OWNER, THE OWNER, THE OWNERS REPRESENTATIVES AND/OR THE AUTHORITY HAVING JURISDICTION AT THE EXPENSE OF THE CONTRACTOR.</p> <p>6. WHERE NECESSARY, THE CONTRACTOR SHALL IMPLEMENT A TRAFFIC MANAGEMENT PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA. ALL CONSTRUCTION SIGNAGE MUST CONFORM TO THE LATEST VERSION OF THE M.T.O. MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. ALL TEMPORARY TRAFFIC CONTROL MEASURES MUST BE REMOVED UPON THE COMPLETION OF THE WORKS.</p> <p>7. SHOULD ANY BURIED ARCHAEOLOGICAL REMAINS BE FOUND ON THE PROPERTY DURING CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL NOTIFY THE OWNER TO CONTACT THE HERITAGE OPERATIONS UNIT OF THE ONTARIO MINISTRY OF CULTURE MUST BE NOTIFIED IMMEDIATE, AND WORK WITHIN THE AREA SHALL BE CEASED UNTIL FURTHER NOTICE.</p> <p>8. FOR GEOTECHNICAL INFORMATION REFER TO GEOTECHNICAL REPORT PG6934-1 PREPARED BY PATERSON GROUP.</p> <p>9. FOR GEODETIC BENCHMARK AND GEOMETRIC LAYOUT OF STREET AND LOTS, REFER TO TOPOGRAPHICAL SURVEY AND PLAN OF SUBDIVISION PREPARED BY FARLEY, SMITH & DENIS SURVEYING Ltd BENCHMARK BASED ON CAN-NET VIRTUAL REFERENCE SYSTEM NETWORK.</p> <p>10. FOR SITE PLAN INFORMATION, REFER TO SITE PLAN PREPARED BY ARCADIS.</p> <p>11. THESE DRAWINGS ARE NOT TO BE SCALED OR USED FOR LAYOUT PURPOSES.</p> <p>12. ROADWAY SECTIONS REQUIRING GRADE RAISE TO PROPOSED SUB GRADE LEVEL TO BE FILLED WITH ACCEPTABLE NATIVE EARTH BORROW OR IMPORTED OPSS SELECTED SUBGRADE MATERIAL IF NATIVE MATERIAL IS DEFICIENT AS PER RECOMMENDATION OF GEOTECHNICAL ENGINEER.</p> <p>13. IN AREAS WHERE EXISTING GROUND IS BELOW THE PROPOSED ELEVATION OF SEWER AND WATERMAINS, GRADE RAISING AND FILLING IS TO BE IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL REPORT. AS PER CITY GUIDELINES ALL WATERMAINS IN FILL AREAS ARE TO BE TIED WITH RESTRAINING JOINTS AND THRUST BLOCKS.</p> <p>14. THE CONTRACTOR SHALL IMPLEMENT THE EROSION AND SEDIMENT CONTROL PLAN PRIOR TO THE COMMENCEMENT OF ANY SITE CONSTRUCTION. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED TO THE SATISFACTION OF THE ENGINEER, OR ANY REGULATORY AGENCY. ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE MAINTAINED UNTIL VEGETATION IS ESTABLISHED OR UNTIL THE START OF A SUBSEQUENT PHASE.</p> <p>15. CONTRACTORS SHALL BE RESPONSIBLE FOR KEEPING CLEAN ALL ROADS WHICH BECOME COVERED IN DUST, DEBRIS AND/OR MUD AS A RESULT OF ITS CONSTRUCTION OPERATIONS.</p> <p>16. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY ADDITIONAL BEDDING OR ADDITIONAL STRENGTH PIPE SHOULD THE MAXIMUM OPSS TRENCH WIDTH BE EXCEEDED.</p> <p>17. ALL PIPE, CULVERTS, STRUCTURES REFER TO NOMINAL INSIDE DIMENSIONS.</p> <p>18. SHOULD CLAY SEALS BE REQUIRED, THEY SHALL BE INSTALLED AS PER THE RECOMMENDATIONS WITHIN THE GEOTECHNICAL REPORT.</p> <p>19. UNLESS SPECIFICALLY NOTED OTHERWISE, PIPE MATERIALS SHALL BE AS FOLLOWS: -WATERMAINS TO BE PVC DR30 -SANITARY SEWER TO BE PVC DR35 -PERFORATED STORM SEWERS IN REAR YARDS AND LANDSCAPE AREAS TO BE HDPE -STORM SEWER 375mm DIAMETER AND LESS TO BE PVC DR35 -STORM SEWER 450mm DIAMETER AND GREATER TO BE CONCRETE, CLASS AS PER OPSD 807.010 OR 807.020 OR HIGHER FOR SHALLOW SEWERS, REFER TO CITY STANDARD S35.</p> <p>20. ALL CONNECTIONS TO EXISTING WATERMAINS ARE TO BE COMPLETED BY CITY FORCES. CONTRACTOR IS TO EXCAVATE, BACKFILL, COMPACT AND REINSTATE.</p> <p>21. ANY WATERMAIN WITH LESS THAN 2.4m AND ANY SEWER WITH LESS THAN 2.0m DEPTH OF COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22 OR AS APPROVED BY THE ENGINEER.</p> <p>22. ALL FIRE HYDRANTS AS PER CITY STANDARD W19, c/w 150mmØ LEAD UNLESS OTHERWISE SPECIFIED.</p> <p>23. ALL STUBBED SEWERS SHALL HAVE PRE-MANUFACTURED CAPS INSTALLED.</p> <p>24. ALL CATCHBASINS SHALL HAVE A 600mm SUMP, ALL CATCHBASIN MANHOLES, AND ALL STORM MANHOLES WITH OUTLETING PIPE SIZES LESS THAN 900mm, SHALL HAVE A 300mm SUMP.</p> <p>25. ALL SANITARY MANHOLES IN PONDING AREAS SHALL BE EQUIPPED WITH A WATERTIGHT COVER.</p> <p>26. ALL LEADS FOR STREET CATCHBASINS AND CURB INLET CATCHBASINS CONNECTED TO MAIN SHALL BE 200mmØ PVC DR35 @ MIN 2% SLOPE UNLESS NOTED OTHERWISE. ALL LEADS FOR RYCB'S CONNECTED TO MAIN SHALL BE 200mmØ PVC DR35 @ MIN 1% SLOPE UNLESS NOTED OTHERWISE.</p> <p>27. UNLESS SPECIFICALLY NOTED OTHERWISE, ALL STREET CATCHBASINS SHALL BE INSTALLED WITH TWO - 3.0m MINIMUM SUBDRAINS INSTALLED LONGITUDINALLY, PARALLEL WITH THE CURB. ALL CATCHBASINS IN ASPHALT AREAS, NOT ADJACENT TO A CURB, SHALL BE INSTALLED WITH FOUR - 3.0m MINIMUM SUBDRAINS INSTALLED ORTHOGONALLY.</p> <p>28. INLET CONTROL DEVICES SHALL BE INSTALLED PRIOR TO COMPLETING THE ROAD BASE (GRANULAR A).</p> <p>29. ALL SEWER SERVICE LATERALS WITH MAINLINE CONNECTIONS DEEPER THAN 5.0m REQUIRE A CONTROLLED SETTLEMENT JOINT.</p> <p>30. EACH BUILDING SHALL BE EQUIPPED WITH A SANITARY AND STORM SEWER BACKWATER VALVE AND CLEAN-OUT ON ITS PRIMARY SERVICE IF REQUIRED BY ONTARIO BUILDING CODE REQUIREMENTS (BY OTHERS).</p> <p>31. THE SUBGRADE OF ALL STRUCTURES, PIPE, ROADS, SIDEWALKS, WALKWAYS, AND BUILDINGS SHALL BE INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO PROCEEDING WITH CONSTRUCTION.</p> <p>32. TOP COURSE ASPHALT SHALL NOT BE PLACED UNTIL THE FINAL CCTV INSPECTION AND NECESSARY REPAIRS HAVE BEEN COMPLETED TO THE SATISFACTION OF THE ENGINEER AND THE CITY OF OTTAWA.</p> <p>33. ALL RETAINING WALLS GREATER THAN 1.0m IN HEIGHT SHALL BE DESIGNED BY A QUALIFIED STRUCTURAL ENGINEER.</p> <p>34. ALL RETAINING WALLS GREATER THAN 0.6m IN HEIGHT REQUIRE A GUARD. ANY GUARD ON A RETAINING WALL GREATER THAN 1.0m IN HEIGHT SHALL BE DESIGNED BY THE QUALIFIED STRUCTURAL ENGINEER RESPONSIBLE FOR THE WALL DESIGN.</p> <p>35. UPON COMPLETION OF THE RETAINING WALL, THE CONTRACTOR SHALL REQUEST A CONFORMANCE CERTIFICATE FROM THE QUALIFIED ENGINEER RESPONSIBLE FOR THE WALL DESIGN.</p> <p>SEAL </p> <p>ARCADIS 333 Preston Street - Suite 500 Ottawa ON K1S 5N4 Canada tel 613 225 1311 www.arcadis.com</p> <p>PROJECT 8201 CAMPEAU DRIVE</p> <p>File location: C:\Users\commerc\30210\DC\ACCDocs\Arcadis ACC USACA30210\MP04_Civil\Sheets\010 NOTES\LEGEND.dwg Last Saved: July 17, 2025, by commerc3021 Protected: July 18, 2025 2:19:30 PM by commerc3021</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td>PROJECT NO: 30282806</td> <td>DRAWN BY: C.C.</td> <td>CHECKED BY: T.B.</td> </tr> <tr> <td>PROJECT MGR: S.L.</td> <td>APPROVED BY: S.L.</td> <td></td> </tr> <tr> <td colspan="3">SHEET TITLE: NOTES & LEGEND</td> </tr> <tr> <td>SHEET NUMBER: 010</td> <td>ISSUE: 1</td> <td>SCALE CHECK: XXXXX</td> </tr> </table>	ISSUES			No.	DESCRIPTION	DATE	1	SUBMISSION 1 FOR CITY REVIEW	2025-07-18	PROJECT NO: 30282806	DRAWN BY: C.C.	CHECKED BY: T.B.	PROJECT MGR: S.L.	APPROVED BY: S.L.		SHEET TITLE: NOTES & LEGEND			SHEET NUMBER: 010	ISSUE: 1	SCALE CHECK: XXXXX
ISSUES																						
No.	DESCRIPTION	DATE																				
1	SUBMISSION 1 FOR CITY REVIEW	2025-07-18																				
PROJECT NO: 30282806	DRAWN BY: C.C.	CHECKED BY: T.B.																				
PROJECT MGR: S.L.	APPROVED BY: S.L.																					
SHEET TITLE: NOTES & LEGEND																						
SHEET NUMBER: 010	ISSUE: 1	SCALE CHECK: XXXXX																				

