3387 Borrisokane Road Community Transportation Study / Transportation Impact Study

Prepared for: Glenview Homes (Cedarview) Ltd.

Prepared by: Stantec Consulting Ltd.

September 27, 2016 Project No. 163601067

Table of Contents

1.0	INTRODUCTION	1
1.1	STUDY PURPOSE	1
1.2	PROPOSED DEVELOPMENT	
	1.2.1 Site Plan Concepts	1
1.3	SCOPE OF THE ASSESSMENT	4
2.0	EXISTING TRANSPORTATION ENVIRONMENT	5
2.1	ROADS AND TRAFFIC CONTROL	5
2.2	TRANSIT	7
2.3	WALKING AND CYCLING	
2.4	TRAFFIC VOLUMES	
3.0	FUTURE TRANSPORTATION ENVIRONMENT	
3.1	FUTURE NETWORK UPGRADES	
	3.1.1 Road Network Improvements	
	3.1.2 Future Background Developments	10
3.2	2022 FUTURE BACKGROUND CONDITIONS	11
3.3	SITE TRAFFIC GENERATION	14
	3.3.1 Land Use and Trip Generation Rates	14
	3.3.2 Conversion of ITE Rates to Person Trips	
	3.3.3 Net New Site Trips	
	3.3.4 Traffic Distribution and Assignment	
3.4	2022 TOTAL FUTURE CONDITIONS	17
3.5	2027 ULTIMATE CONDITIONS	19
4.0	TRANSPORTATION ASSESSMENT	21
4.1	2016 EXISTING CONDITIONS	21
	4.1.1 Jock River Screenline Analysis	
	4.1.2 Intersection Operational Analysis	23
4.2	2022 FUTURE BACKGROUND CONDITIONS	
	4.2.1 Intersection Operational Analysis	24
4.3	2022 TOTAL FUTURE CONDITIONS	
	4.3.1 Jock River Screenline Analysis	
	4.3.2 Auxiliary Left Turn Lane Warrants at Site Access #1	
	4.3.3 Intersection Operational Analysis	
4.4	2027 ULTIMATE CONDITIONS	
	4.4.1 Jock River Screenline Analysis	
	4.4.2 Intersection Operational Analysis	32
5.0	SIIMMARY AND CONCLUSIONS	3.4

SEPTEMBER 2016

LIST OF TABLES

Table 1 2013 Transportation Master Plan Scheduled Upgrades	10
Table 2 Background Developments	
Table 3 Trips Generated by the Proposed Residential Development	14
Table 4 Traffic Distribution from the South Nepean District	15
Table 5 Screenline Growth from 2011 to 2031	22
Table 6 2016 Existing Jock River Screenline Analysis	22
Table 7 2016 Existing Intersection Operations	
Table 8 2022 Future Background Intersection Operations	26
Table 9 2022 Total Future Jock River Screenline Analysis	28
Table 10 2022 Total Future Intersection Operations	30
Table 11 2027 Total Future Jock River Screenline Analysis	32
Table 12 2027 Ultimate Intersection Operations	
LIST OF FIGURES	
Figure 1 Site Location	2
Figure 2 Proposed Site Plan	
Figure 3 2016 Existing Intersection Control and Lane Configuration	
Figure 4 Study Area Transit	
Figure 5 2016 Existing Traffic Volumes	
Figure 6 2022 Future Background Traffic Volumes	
Figure 7 3387 Borrisokane Road Site Traffic	
Figure 8 2022 Total Future Traffic Volumes	
Figure 9 2027 Ultimate Traffic Volumes	
Figure 10 2022 Future Background Intersection Control and Lane Configuration	
Figure 11 2022 Total Future Intersection Control and Lane Configuration	ا ک ۲

LIST OF APPENDICES

APPENDIX A TRAFFIC DATA

APPENDIX B INTERSECTION PERFORMANCE WORKSHEETS

APPENDIX C AUXILIARY LANE WARRANTS

SEPTEMBER 2016

INTRODUCTION

1.0 INTRODUCTION

1.1 STUDY PURPOSE

Glenview Homes (Cedarview) Ltd. (Glenview) is preparing a development application for a proposed residential development in the Barrhaven South Community of Ottawa, Ontario. As part of the approvals process a combined Community Transportation Study (CTS) / Transportation Impact Study (TIS) is required to support the application.

This CTS / TIS has been prepared to assess the potential transportation implications of the proposed residential development and to determine whether transportation improvements are required to support it.

1.2 PROPOSED DEVELOPMENT

Figure 1 illustrates the location of the subject development.

The proposed development is located at 3387 Borrisokane Road in the City of Ottawa's south end. The site is bound by the Jock River to the north, Mattamy's Half Moon Bay West development to the east and south, and Borrisokane Road to the west. It should be noted that prior to June 2016, Borrisokane Road was called Cedarview Road.

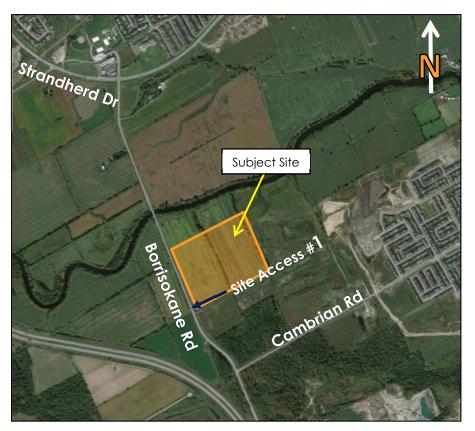
The proposed Glenview development is anticipated to be constructed by 2022 which coincides with the timing of the adjacent Half Moon Bay West development. This provides the opportunity for transportation infrastructure to be implemented consistently and concurrently between the two adjacent developments.

1.2.1 Site Plan Concepts

Glenview is considering three separate concepts for their subdivision, each with varying quantities of residential units. All three concepts are planned to access the boundary road network (i.e. Borrisokane Road) at the same location, which is located approximately 400m north of Cambrian Road.

The first concept includes a stormwater management pond, a school block, and 211 residential units. The second concept includes a school block and 222 residential units but no stormwater management pond. The third concept includes 288 residential units but no stormwater management pond or school block. The unit counts shown in the concepts are approximate and may be refined through the subdivision design process to accommodate servicing requirements (i.e. easements, grading, etc.), that would in turn trigger minor revisions to the proposed lot fabric and consequently unit counts.

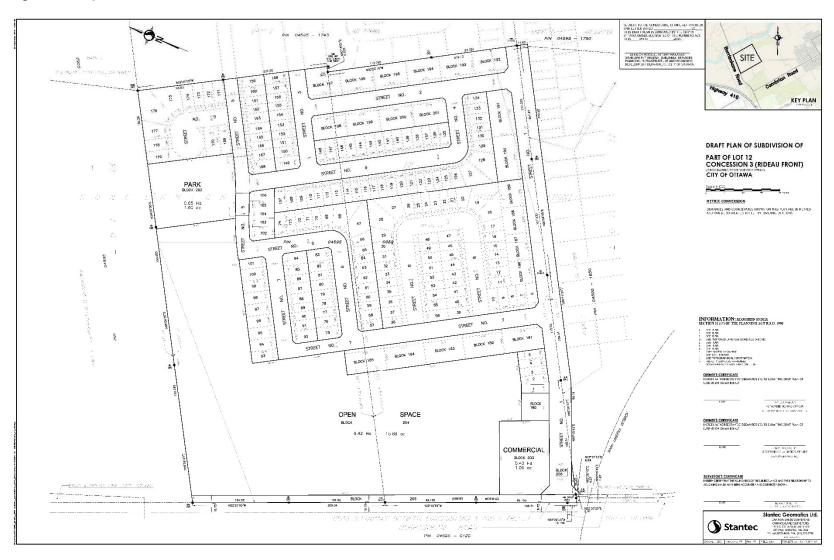
SEPTEMBER 2016


INTRODUCTION

All three concepts include the same road network and are planned to access Borrisokane Road at the same location. In addition, all three concepts are proposed to have three internal connections to Mattamy's Half Moon Bay West development.

From a transportation perspective, the third concept represents the most conservative concept in that it has the highest number of residential units and will therefore generate the highest volume of vehicular trips. For this reason, the subject CTS / TIS will be based on the third concept which includes 288 residential homes, consisting of 179 single family homes and 109 townhomes.

Figure 2 depicts the site plan for the proposed concept 3.


3387 BORRISOKANE ROAD

COMMUNITY TRANSPORTATION STUDY / TRANSPORTATION IMPACT STUDY

SEPTEMBER 2016

INTRODUCTION

Figure 2 Proposed Site Plan

SEPTEMBER 2016

INTRODUCTION

1.3 SCOPE OF THE ASSESSMENT

This CTS / TIS has been carried out in accordance with the City of Ottawa's 2006 Transportation Impact Assessment (TIA) Guidelines and is based on a pre-consultation meeting with City of Ottawa staff. The scope of the transportation assessment, which was discussed with City staff, includes the following:

- Study area intersections include:
 - o Borrisokane Road at Strandherd Drive;
 - o Borrisokane Road at Proposed Site Access #1; and
 - o Borrisokane Road at Cambrian Road.
- Study horizons include:
 - o 2016 existing conditions;
 - o 2022 future background conditions;
 - o 2022 total future conditions (site build-out); and
 - o 2027 total future conditions (5 years beyond build-out).
- Jock River screenline analysis from Borrisokane Road to Prince of Wales Drive
- Analysis time periods include the weekday AM and PM peak hours

The methodology used in the TIS includes:

- The net increase in site traffic from the proposed development will be estimated;
- Background traffic growth will be explicitly accounted for based on known developments in the study area;
- Future background traffic volumes will be combined with the net increase in site traffic volumes to determine total future traffic volumes;
- Intersection analyses will be performed to determine the operating characteristics of the study area intersections under each study horizon; and
- Where operational deficiencies are identified mitigation measures will be examined.

SEPTEMBER 2016

EXISTING TRANSPORTATION ENVIRONMENT

2.0 EXISTING TRANSPORTATION ENVIRONMENT

2.1 ROADS AND TRAFFIC CONTROL

The roadways under consideration in the study area are described below:

Borrisokane Road Within the vicinity of the subject site Borrisokane Road is a

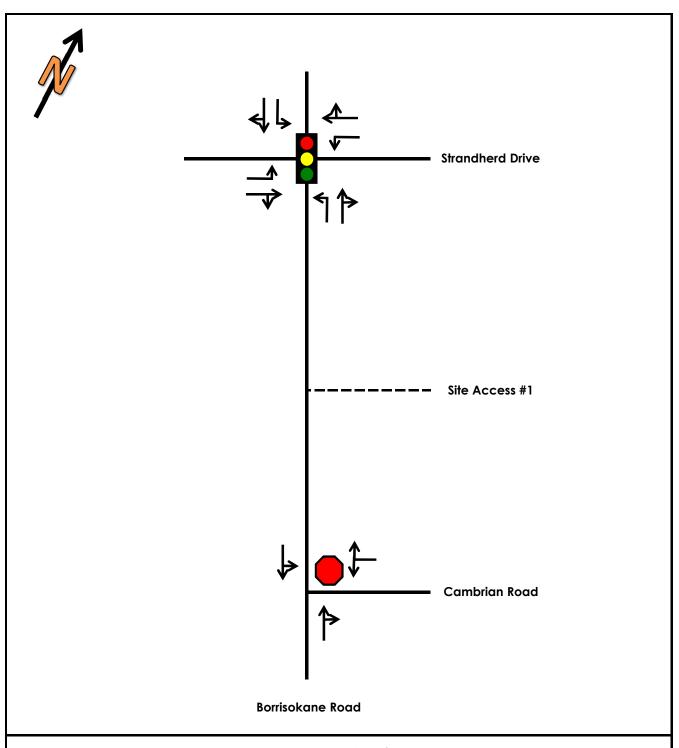
two-lane rural arterial road. It has a posted speed limit of 80 km/h and gravel shoulders are provided along both sides.

Strandherd Drive Strandherd Drive is a two-lane rural arterial road with a

posted speed limit of 80 km/h. Gravel shoulders are provided along both sides of the road and the intersection

with Borrisokane Road is signalized.

Cambrian Road West of Seeley's Bay Street Cambrian Road is a two-lane


rural arterial road with a posted speed limit of 70 km/h. The intersection with Borrisokane Road is currently stop controlled along the minor approach (i.e. along Cambrian

Road).

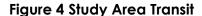
The road classifications noted above are referenced from Map 5 of the City of Ottawa's 2013 Transportation Master Plan.

Figure 3 illustrates the existing intersection control and lane configuration for the study area intersections.

Glenview

3387 Borrisokane Road

Figure 3: 2016 Existing Intersection Control and Lane Configuration


SEPTEMBER 2016

EXISTING TRANSPORTATION ENVIRONMENT

2.2 TRANSIT

Transit service is not currently provided in the immediate vicinity of the proposed development, however, it is located nearby along Cambrian Road and Strandherd Drive via routes 73, 170, 173, and 177. Route 73 is a peak direction route that runs between Mackenzie King Station and Barrhaven. Route 170 is a regular route that runs from Barrhaven Centre to Fallowfield Station. Route 173 is a regular route that runs from Bayshore Shopping Centre to Barrhaven Centre. Route 177 is a regular route that runs from Barrhaven Centre to Cambrian Road.

Figure 4 illustrates the study area transit routes.

(Source: OC Transpo System Map, Accessed April 11th, 2016)

2.3 WALKING AND CYCLING

As the proposed development is currently surrounded by greenfield and undeveloped land, there are currently no existing sidewalks or bicycle lanes in the immediate vicinity of the site. There are, however, sidewalks along Cambrian Road within Mattamy's Half Moon Bay North community.

SEPTEMBER 2016

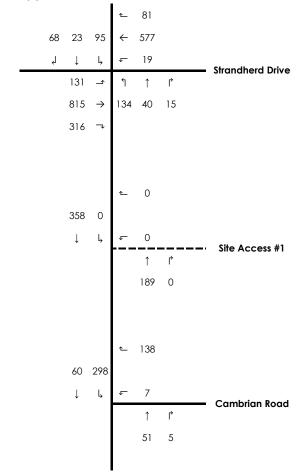
EXISTING TRANSPORTATION ENVIRONMENT

2.4 TRAFFIC VOLUMES

Traffic counts were provided by the City of Ottawa at the Borrisokane Road at Strandherd Drive intersection (2015). Stantec performed intersection turning movement counts at the Borrisokane Road at Cambrian Road intersection in 2015.

As the intersection counts were collected prior to 2016, the data required adjustments to reflect the current existing condition. In order to calculate the anticipated growth rate between the 2015 and 2016 horizons, volumes from the City of Ottawa's TRANS regional transportation model were used. Using the provided 2011 volumes and the 2031 projections from the TRANS model, the annual growth rate was calculated to be 4% during the AM peak hour and 5% during the PM peak hour between 2011 and 2031. Using these annual growth rates, the 2015 volumes were increased to represent 2016 conditions.

Figure 5 illustrates 2016 existing AM and PM peak hour traffic volumes at the study area intersections.


Appendix A contains the traffic data and is provided for reference.

AM Peak Hour

							-	
		2		_				
		0	7	←	59	16	112	
Strandherd Drive		•		₽	Ļ	\downarrow	٢	
Silananera Drive	}			٦	Ļ	52		
	29	2		355	\rightarrow	486		
					┍	98		
)		_				
					0	123		
)		┰	L,	\downarrow		
Site Access #1			_	l — —				
	0	86	4					
		36	3	_				
					97	26		
		,		₽	Ļ			
Cambrian Road	}				7	*		
	3							
	,		,					

PM Peak Hour

Borrisokane Road

Borrisokane Road

Glenview
3387 Borrisokane Road
Figure 5 2016 Existing Traffic Volumes

SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT

3.0 FUTURE TRANSPORTATION ENVIRONMENT

3.1 FUTURE NETWORK UPGRADES

3.1.1 Road Network Improvements

Several significant transportation improvements have been noted in the City of Ottawa's 2013 *Transportation Master Plan* (TMP) in the vicinity of the proposed site and are outlined in **Table 1** below.

Table 1 2013 Transportation Master Plan Scheduled Upgrades

Project	Description	TMP Phase
Realigned Greenbank Road	New four lane road from near Jockvale Road to Cambrian Road, includes Jock River Bridge	Phase 1 (2014 – 2019)
Strandherd Drive Widening	Widen from two to four lanes between Fallowfield Road and Jockvale Road	Phase 2 (2022 – 2025)
Chapman Mills Drive	New four lane arterial road from Longfields Drive to Strandherd Drive, includes Bus Rapid Transit	Phase 2 (2022 – 2025)
Cambrian Road Widening	Widen from two to four lanes from Realigned Greenbank Road to Jockvale Road	Network Concept (i.e. beyond 2031)
Southwest Transitway	From Barrhaven Centre to Cambrian Road	Network Concept (i.e. beyond 2031)

It should be noted that although the TMP suggests that Realigned Greenbank Road will be constructed during Phase 1 (2014 - 2019) of the TMP, based on the current status of the project it is believed that the timing will be shifted and that this section of Realigned Greenbank Road will be constructed and operational before 2022.

3.1.2 Future Background Developments

The Barrhaven South community has experienced substantial growth over the past few years and that growth is anticipated to continue well into the future. There are numerous developments scheduled to occur in the vicinity of the subject site, as outlined in **Table 2** below. These background developments were explicitly accounted for and added to the roadway network as background traffic volumes.

SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT

Table 2 Background Developments

Development	Location	Development Size	Assumed Build-Out
Mattamy's Half Moon Bay South Phase 4	South of Half Moon Bay south Phase 3, between Realigned Greenbank and Existing Greenbank	265 Residential Units	2017
Mattamy's Half Moon Bay North	North and South of Cambrian Road, west of Greenbank Road	471 Residential Units	2019
Mattamy's Half Moon Bay West	North of Cambrian Road between Cedarview Road and Realigned Greenbank Road	1,006 Residential Units	2021
Minto's Quinn's Pointe	West of Existing Greenbank Road, South of Half Moon Bay South	475 Residential Units	2019
Citi Gate Highway 416 Employment Lands	Between Highway 416 and Strandherd Drive, south of Fallowfield, north of the train tracks	350,000 ft ² GFA 95 hectares of Business Park	Interim Phase: 2019 ¹ Ultimate Phase: 2029

Notes: 1. Only the interim 2019 phase for the Citi Gate development was considered as the ultimate 2029 phase occurs beyond the horizons of the subject study

3.2 2022 FUTURE BACKGROUND CONDITIONS

Future background conditions are assessed to differentiate between the transportation improvements that may be required to address background traffic growth and those that may be required to accommodate traffic generated by the subject development. Any improvements identified to address future background conditions are not the responsibility of the developer.

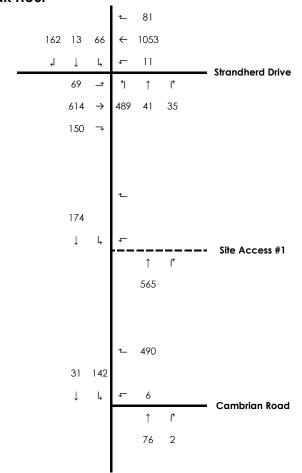
In addition to the future background developments that were explicitly accounted for, a nominal 2% annual growth rate was applied to the Borrisokane Road and Cambrian Road traffic volumes and a 3% annual growth rate was applied to the Strandherd Drive volumes. These rates of growth are consistent with industry standards and those that were applied in previously approved studies (i.e. Citi Gate Highway 416 Employment Lands Community Transportation Study, Novatech 2012).

By 2022, Realigned Greenbank Road is assumed to be constructed and operational from Jockvale Road to Cambrian Road, which will include Bus Rapid Transit (BRT). This BRT will provide the residents of Barrhaven South with an increased transit service which will attract more residents to use transit as their primary means of transportation. As more residents choose to use transit, the transit modal share in the area will increase, and, conversely, the auto modal share will decrease. To reflect this shift in modal share for future transit, the 2022 future background traffic volumes were adjusted to reflect a higher transit modal share in the future.

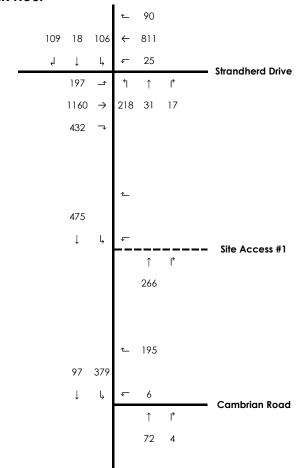
Given that the Barrhaven South community is only being serviced by one existing transit route, and given the limited amount of pedestrian facilities crossing the Jock River, the current transit

SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT


and active modal shares are assumed to be approximately 10% combined. Conversely, this means that the current auto modal share is roughly 90%.

The TRANS Committee's 2011 Origin-Destination (O-D) Survey indicates that the modal shares for the overall South Nepean District are 60% auto, 30% transit, and 10% active modes. As the current auto modal share for the Barrhaven South community is assumed to be approximately 90%, in order to reflect the target of 60% the 2022 future background traffic volumes were reduced by 30% to account for the increase in future transit facilities in the Barrhaven South community.


Figure 6 illustrates 2022 future background traffic volumes at the study area intersections.

AM Peak Hour

PM Peak Hour

Borrisokane Road

Borrisokane Road

Glenview 3387 Borrisokane Road

Figure 6 2022 Future Background Traffic Volumes SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT

3.3 SITE TRAFFIC GENERATION

3.3.1 Land Use and Trip Generation Rates

The Institute of Transportation Engineers (ITE) Trip Generation Manual (9th Edition) was used to estimate traffic generated by the subject site. The ITE land use codes 210 – Single Family Homes and 230 – Condo / Townhomes were thought to be most representative of the proposed land uses.

Table 3 summarizes the trip rates obtained from the *ITE Trip Generation Manual* and the ensuing sections describe the methodology used to convert these trips to person trips across all modes.

Table 3 Trips Generated by the Proposed Residential Development

ITE Land Use			Mo	orning Pea	k Hour	Afte	noon Pe	ak Hour
TIE Edita 036			In	Out	Total	In	Out	Total
Step 1: ITE Trip Generation Rate	s							
210 – Single Family Homes	Units	179	25%	75%	0.75	63%	37%	0.99
230 – Condo / Townhomes	Units	109	17%	83%	0.51	67%	33%	0.59
Step 2: Conversion From Auto	Trips to Person Trips							
	Trip Gen		43	147	190	156	86	242
	Transit Share	10%	4	15	19	16	8	24
Total Development	Auto Occupancy	1.1	4	15	19	16	8	24
	Total Person Trips		51	177	228	188	102	290
Step 3: Person Trips by Modal S	hare							
	Auto	60%	31	106	137	113	61	174
Total Development	Passenger	10%	5	18	23	19	10	29
Total Bevelopment	Transit	30%	15	53	68	56	31	87
	Walk / Bike	0%	0	0	0	0	0	0

3.3.2 Conversion of ITE Rates to Person Trips

The notion of quantifying the volume of "person" trips expected to be generated by a given development is becoming a commonly accepted practice. It is aimed at quantifying the expected demands across the primary modes of transportation.

In order to convert ITE rates to person trips, the rates obtained from the ITE Trip Generation Manual were adjusted to account for the transit modal share and auto occupancy thought to be inherent within the ITE rates. An assumed transit share of 10% was thought to be inherent within the ITE rates and an auto occupancy rate of 1.1 persons per vehicle was also assumed to be inherent within the ITE rates.

SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT

Step 2 of **Table 3** outlines the conversion from auto trips to person trips.

3.3.3 Net New Site Trips

To reflect local Ottawa travel characteristics, the person trips were assigned to the four primary modal shares (i.e. auto, passenger, transit, and active moves) according to the TRANS Committee's 2011 Origin-Destination (O-D) Survey for the South Nepean District. The proposed residential development is anticipated to generate 228 and 290 person trips during the AM and PM peak hours, respectively. In terms of vehicle trips, the proposed residential development is anticipated to generate 137 and 174 net new auto trips (two-way) during the AM and PM peak hours, respectively.

Step 3 of **Table 3** summarizes the expected person trips by modal share.

3.3.4 Traffic Distribution and Assignment

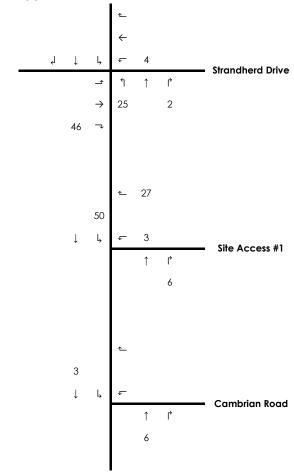
The distribution of traffic to / from the study area was determined through examination of the TRANS Committee's 2011 Origin-Destination (O-D) Survey for the South Nepean District.

Table 4 provides a summary of the estimated distribution for the traffic generated by the proposed development.

The anticipated site traffic generated by the proposed residential development was assigned to the boundary road network using a logical pattern of primary roads (i.e. along arterials and collectors) and in consideration of the future road network (i.e. the future Realigned Greenbank Road) which can be seen in **Table 4** below.

Table 4 Traffic Distribution from the South Nepean District

		Via (to / from)	
Cardinal Direction	% Distribution	Borrisokane North	Borrisokane South	Realigned Greenbank North
North	25%	20%		5%
East	25%	8%		17%
South	5%		5%	
West	5%	5%		
Internal (South Nepean)	40%	12%		28%
Total	100%	45%	5%	50%


Figure 7 illustrates the assignment of total site traffic volumes to the boundary road network.

AM Peak Hour

N.	пош							
				←				
				←				
	Ļ	\downarrow	Ļ	\	1		Stran	dherd Drive
			4	٦	1	ľ	— Jiluli	allela blive
			\rightarrow	44		3		
		13	\neg					
				←	47			
			14					
		\downarrow	Ļ	\	5		Site	Access #1
					1	ľ	00	710000 ii 1
						2		
				_				
		5						
		\downarrow	Ļ	\			— Cam	brian Road
					1	ľ		
					2			

PM Peak Hour

Borrisokane Road

Borrisokane Road

Glenview

3387 Borrisokane Road

Figure 7 3387 Borrisokane Road Site Traffic

SEPTEMBER 2016

FUTURE TRANSPORTATION ENVIRONMENT

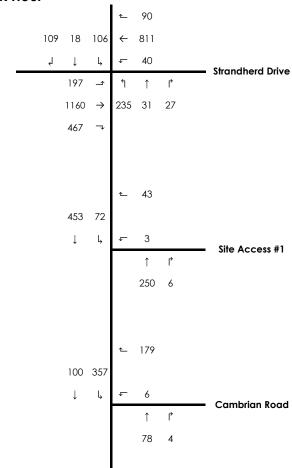
3.4 2022 TOTAL FUTURE CONDITIONS

Total future conditions are examined to determine improvements that may be required as a direct result of the development of the site. It is anticipated that by 2022 the residential development will be fully built and occupied.

The 2022 total future traffic volumes were derived by adding 3387 Borrisokane Road site generated trips to future background volumes anticipated for 2022.

Mattamy's adjacent Half Moon Bay West development is anticipated to be built-out prior to the subject Glenview development. The Half Moon Bay West development is proposed to include one direct connection to Cambrian Road, one direct connection to Realigned Greenbank Road, and one connection to Borrisokane Road that will be shared with the subject Glenview development. It was assumed that once Glenview's development is built, some of Mattamy's Half Moon Bay West traffic will infiltrate through Glenview's development in order to reach Borrisokane Road. As such, the Half Moon Bay West site traffic that is assigned to Borrisokane Road was split 50/50 between Cambrian Road at Glenview's Site Access #1.

Figure 8 illustrates 2022 total future traffic volumes at the study area intersections during the AM and PM peaks.


An assessment of 2022 total future traffic conditions is outlined in **Section 4.3**.

AM Peak Hour

			-				
		81	←				
		1053	←	66	13	162	
Strandherd Drive		21		Ļ	\downarrow	۲	
— Sildildileid blive	ľ	1	٦	4	69		
	59	41	512	\rightarrow	614		
				→	154		
		91	←				
				33	155		
Site Access #1		5		Ļ	\downarrow		
Sile Access #1	ľ	1					
	2	521					
		446	←				
				123	36		
— Cambrian Board		6		Ļ	\downarrow		
— Cambrian Road	ľ	1					
	2	78					

PM Peak Hour

Borrisokane Road

Borrisokane Road

Glenview

3387 Borrisokane Road

Figure 8 2022 Total Future Traffic Volumes

SEPTEMBER 2016

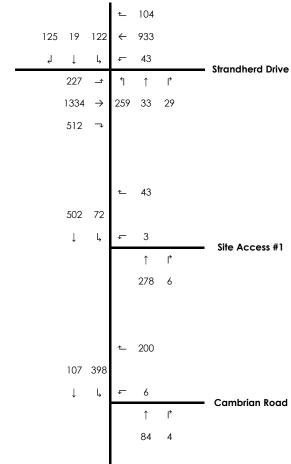
FUTURE TRANSPORTATION ENVIRONMENT

3.5 2027 ULTIMATE CONDITIONS

Ultimate conditions for the 2027 horizon were examined to determine if other improvements may be required due to additional growth in background traffic volumes 5 years beyond the expected build-out of the subject site.

In order to calculate the anticipated growth rate between the 2022 and 2027 horizons, volumes from the City of Ottawa's TRANS regional transportation model was used. Using the calculated 2022 volumes and the provided 2031 projections from the TRANS model, the annual growth rate was calculated to be 3% between 2022 and 2031. Using this growth rate, the 2022 volumes were adjusted to 2027 ultimate traffic volumes.

Figure 9 illustrates 2027 ultimate traffic volume at the study area intersections during the AM and PM peaks.


An assessment of 2027 ultimate traffic conditions is outlined in Section 4.4.

AM Peak Hour

		89	_				
		158	←	73	14	178	
Strandherd Drive		23	Ļ	Ļ	\downarrow	ل	
Silananeia brive	7	1	٦	Ļ	76		
	63	44	560	\rightarrow	675		
				ightharpoons	167		
		91	←				
				33	171		
Site Access #1		5	Ļ	Ļ	\downarrow		
	7	1					
	2	576					
		494	←				
				137	39		
Cambrian Road	_	6	4	Ļ	\downarrow		
	r	1					
	2	84					
			Ī				

PM Peak Hour

Borrisokane Road

Borrisokane Road

Glenview

3387 Borrisokane Road

Figure 9: 2027 Ultimate Traffic Volumes

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

4.0 TRANSPORTATION ASSESSMENT

4.1 2016 EXISTING CONDITIONS

Figure 3 (Section 2.1) illustrates the 2016 existing intersection controls and lane configuration at the study area intersections.

4.1.1 Jock River Screenline Analysis

A screenline is an imaginary line that is drawn along the boundary of an area of interest, in this case, the Jock River. System capacity across a screenline is determined by the number of roads and travel lanes which cross the screenline. Traffic demands are then compared to the available capacity to determine if there is a surplus or shortfall in system capacity.

Screenline data from the TRANS regional transportation model for the Jock River screenline (screenline 49) was obtained from the City of Ottawa's Transportation Modeling department for the years 2011 and 2031.

Annual growth rates were calculated for the entire screenline and at each station between Borrisokane Road and Prince of Wales Drive between 2011 and 2031 (assuming a straight line growth assumption), which is outlined in **Table 5** below. The inbound movements represent vehicles traveling towards the urban core (i.e. leaving Barrhaven South by traveling north across the screenline) and outbound movements represent vehicles traveling away from the urban core (i.e. entering Barrhaven South by travelling south across the screenline).

As we have updated 2015 counts at the Borrisokane Road screenline station, these volumes replaced the 2011 volumes and were used in calculating the annual growth rate to 2031.

Total annual growth across the entire screenline is forecasted to be 6% during the AM peak (predominant direction being "inbound") and 6% during the PM peak (predominant direction being "outbound"). At individual stations the majority of the screenline growth is anticipated to occur at the Borrisokane Road and Greenbank Road location.

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

Table 5 Screenline Growth from 2011 to 2031

Station	Divantion	20	11	20	31	Annual Growth 2011 to 2031	
	Direction	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
Borrisokane	Inbound	4201	1811	694	165	4%	-1%
Borrisokane	Outbound	1191	3421	67	637	-3%	5%
Greenbank ²	Inbound	414	137	1338	310	11%	6%
Greenbank ²	Outbound	74	320	117	1012	3%	11%
Jockvale	Inbound	544	335	1411	381	8%	1%
Jockvale	Outbound	194	562	175	1202	0%	6%
Prince of Wales	Inbound	931	507	1751	971	4%	5%
Prince of Wales	Outbound	525	833	551	1736	0%	5%
Total	Inbound	2103	1018	5194	1827	6%	3%
Total	Outbound	811	1902	910	4587	0%	6%

Notes: 1. Taken from 2015 turning movement counts at Borrisokane / Cambrian

Using the annual growth rates from **Table 5**, the screenline data was interpolated to the existing 2016 condition and can be seen in **Table 6** below.

Table 6 2016 Existing Jock River Screenline Analysis

				2016 Exi	sting Conditio	ns	
Station	Direction	AM Peak Hour	PM Peak Hour	Lanes	Capacity (Veh/hr)	AM Peak v/c²	PM Peak v/c
Borrisokane	Inbound	432	186	1	1000	0.43	0.19
Borrisokane	Outbound	122	352	1	1000	0.12	0.35
Greenbank	Inbound	645	180	1	1000	0.65	0.18
Greenbank	Outbound	85	493	1	1000	0.09	0.49
Jockvale	Inbound	761	347	2	2000	0.38	0.17
Jockvale	Outbound	189	722	2	2000	0.09	0.36
Prince of Wales	Inbound	1136	623	2	2000	0.57	0.31
Prince of Wales	Outbound	532	1059	2	2000	0.27	0.53
Total	Inbound	2974	1336	6	6000	0.50	0.22
Total	Outbound	928	2626	6	6000	0.15	0.44

Notes: 1. Volume to capacity ratio: compares roadway demand (vehicle volumes) with roadway supply (carrying capacity).

As shown in **Table 6**, the volumes fall well below the capacities at all four stations along the Jock River screenline under 2016 existing conditions. In addition, the total volume across the entire screenline is less than half of the existing available capacity which suggests that significant residual capacity exists to accommodate future growth. During the AM peak, where predominant direction is inbound, the screenline currently operates at v/c 0.50. During the PM peak, where the predominant direction is outbound, the screenline currently operates at v/c 0.44.

^{2.} Greenbank refers to Existing Greenbank Road in 2011 and Realigned Greenbank Road in 2031

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

4.1.2 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Intersection operations were facilitated by Synchro 9.1TM software package and analyzed using the following methodologies:

- Highway Capacity Manual 2010 edition (HCM 2010) for two-way stop controlled intersections; and
- Highway Capacity Manual 2000 edition (HCM 2000) for signalized intersections.

Table 7 provides a summary of 2016 existing intersection operations.

The Borrisokane Road at Strandherd Drive intersection currently operates at or above capacity for the peak directional movements along Strandherd Drive (i.e. westbound through during the AM peak hour and eastbound through during the PM peak hour). In addition, there is little residual capacity for the northbound left turn movement to accommodate future growth. As the Strandherd Drive widening is part of the City's TMP Affordable Network (Phase 2, 2020 – 2025), no improvements are recommended to supplement existing conditions.

The intersection of Borrisokane Road at Cambrian Road is expected to operate acceptably under 2016 existing conditions.

Appendix B contains detailed intersection performance worksheets.

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

Table 7 2016 Existing Intersection Operations

Intersection					AM Peak	Hour	PM Peak Hour			
Intersection	Control	Approach/Movement		LOS	v/c¹	Delay (s)	LOS	v/c¹	Delay (s)	
Borrisokane		WB	Left / Right	В	0.43	11.2	Α	0.18	9.9	
Road at	Two-Way Stop	NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0	
Cambrian	Control	SB	Left / Through	Α	0.07	5.9	Α	0.21	6.6	
Road		Ove	erall Intersection	Α	-	9.0	Α	-	6.8	
	Traffic Signals	Approach/Movement		LOS	v/c¹	Q^2	LOS	v/c¹	\mathbf{Q}^2	
		EB	Left	С	0.78	#32.8	С	0.78	#56.6	
			Through / Right	В	0.70	125.5	F	1.38	<mark>#385.4</mark>	
		WB	Left	Α	0.04	3.6	Α	0.29	9.0	
Borrisokane Road			Through / Right	F	1.01	<mark>#253.4</mark>	С	0.79	153.5	
at Strandherd Drive			Left	D	0.90	#122.2	Α	0.33	35.3	
Dilve		NB	Through / Right	Α	0.11	17.1	Α	0.08	13.4	
			Left	Α	0.14	17.2	Α	0.22	25.7	
		SB	Through / Right	Α	0.11	13.9	Α	0.09	13.4	
		Ove	erall Intersection	E	0.96	-	E	0.95	-	

Notes:

4.2 2022 FUTURE BACKGROUND CONDITIONS

Future background conditions for the 2022 horizon were assessed to determine transportation improvements that may be required to address growth in traffic exclusive from improvements that may be required to accommodate traffic generated by the proposed development.

The background development assumptions and distributions outlined in **Section 3.1.2** and **Section 3.2** were applied to existing traffic volumes to predict 2022 future background traffic volumes.

4.2.1 Intersection Operational Analysis

Table 8 summarizes the operational characteristics of the study area intersections under 2022 future background conditions.

Consistent with the findings from the 2016 intersection capacity analysis, the Borrisokane Road at Strandherd Drive intersection is anticipated to operate at or above capacity during the 2022 future background horizon. As the widening of Strandherd Drive is part of the City of Ottawa's 2013 Transportation Master Plan Affordable Network (Phase 2, 2020 – 2025), this intersection was reanalyzed assuming the widening is in place. The intersection configuration reflected in the

^{1.} v/c - represents the anticipated volume divided by the predicted capacity

^{2. 95&}lt;sup>th</sup> Percentile Queue (m)

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

analysis is consistent with the *Preliminary Design Report Strandherd Drive Widening Fallowfield Road to Jockvale Road (Delcan 2006)*, which includes dual northbound lefts, dual westbound lefts, and a channelized eastbound right turn lane. As depicted in **Table 8** below, with the widening of Strandherd Drive and the intersection upgrades, the intersection of Borrisokane Road at Strandherd Drive intersection is anticipated to operate acceptably under 2022 future background conditions.

The intersection of Borrisokane Road at Cambrian Road is also expected to operate acceptably under 2022 future background conditions.

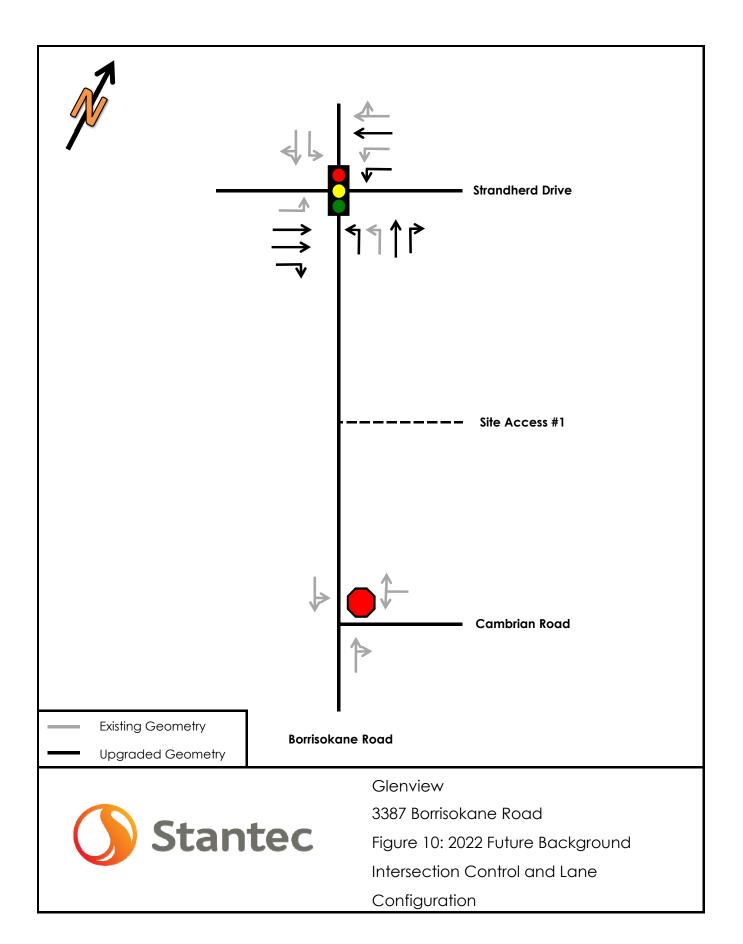
Figure 10 illustrates the intersection control and lane requirements for the 2022 future background horizon with the Strandherd Drive widening in place.

Appendix B contains detailed intersection performance worksheets.

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

Table 8 2022 Future Background Intersection Operations


	Intersection				AM Peak	Hour	PM Peak Hour		
Intersection	Control	Appr	oach/Movement	LOS	v/c¹	Delay (s)	LOS	v/c¹	Delay (s)
Borrisokane		WB	Left / Right	В	0.51	12.5	В	0.23	10.2
Road at	Two-Way Stop	NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0
Cambrian	Control	SB	Left / Through	Α	0.09	6.2	Α	0.25	6.5
Road		Ove	rall Intersection	Α	-	9.7	Α	-	6.8
		Appr	oach/Movement	LOS	v/c¹	Q^2	LOS	v/c¹	Q ²
		ED.	Left	F	<mark>1.17</mark>	<mark>#42.6</mark>	В	0.65	#84.2
		EB	Through / Right	D	0.82	#268.3	F	<mark>1.27</mark>	<mark>#650.2</mark>
	Traffic Signals		Left	Α	0.07	5.1	Α	0.42	#19.6
Borrisokane Road		WB	Through / Right	F	1.21	#477.9	В	0.70	193.4
at Strandherd Drive			Left	F	1.22	#238.6	F	<mark>1.18</mark>	#126. 7
ыме		NB	Through / Right	Α	0.09	19.1	Α	0.12	19.5
		SB	Left	Α	0.14	23.0	Α	0.49	46.6
			Through / Right	Α	0.22	38.4	Α	0.14	26.3
		Overall Intersection		F	<mark>1.21</mark>	-	F	<mark>1.25</mark>	-
	TMP Up	grades	(Strandherd Drive w	idening	from two	to four lane	es)		
			Left	Α	0.51	16.8	В	0.65	46.3
		EB	Through	Α	0.42	76.5	С	0.77	157.5
			Right	Α	0.10	15.5	Α	0.28	27.7
).4/D	Dual Lefts	Α	0.42	4.9	Α	0.40	8.3
Borrisokane Road		WB	Through / Right	D	0.84	173.3	С	0.77	129.1
at Strandherd	Traffic Signals		Dual Lefts	D	0.84	#92.4	Α	0.59	41.5
Drive		NB	Through	Α	0.06	15.0	Α	0.05	13.3
			Right	Α	0.02	2.3	Α	0.01	0.0
		SB	Left	Α	0.26	31.5	Α	0.37	45.8
		SB	Through / Right	Α	0.30	45.4	Α	0.12	26.0
Notos		Ove	rall Intersection	В	0.69	-	В	0.65	-

Notes:

^{1.} v/c - represents the anticipated volume divided by the predicted capacity

^{2. 95&}lt;sup>th</sup> Percentile Queue (m)

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

4.3 2022 TOTAL FUTURE CONDITIONS

Total future conditions are assessed to determine transportation improvements that may be required to accommodate traffic generated by the proposed development. The site trip generation, distribution, and assignment assumptions outlined in **Section 3.3** were applied to 2022 future background traffic volumes to predict total future traffic volumes.

4.3.1 Jock River Screenline Analysis

The Jock River screenline was assessed under 2022 total future conditions. Although Realigned Greenbank Road is assumed to be in place by the 2022 total future horizon, the construction staging is unknown at this time. In order to remain conservative, it was assumed that by 2022 Realigned Greenbank Road will have one lane for vehicle travel in both directions (the ultimate design includes two travel lanes for vehicles in both directions).

As seen in **Table 9**, the Jock River screenline is anticipated to operate well below capacity under 2022 total future conditions. With Realigned Greenbank Road having an assumed capacity of 1,000 vehicles per hour per direction, this station along the Jock River screenline is projected to approach capacity during the AM peak hour in the inbound direction (i.e. vehicles traveling towards the urban core) during the 2022 total future horizon.

Table 9 2022 Total Future Jock River Screenline Analysis

		2022 Total Future Conditions									
Station	Direction	AM Peak Hour	PM Peak Hour	Lanes	Capacity (Veh/hr)	AM Peak V/c²	PM Peak v/c				
Borrisokane	Inbound	612	293	1	1000	0.61	0.29				
Borrisokane	Outbound	188	526	1	1000	0.19	0.53				
Greenbank	Inbound	922	232	1	1000	0.92	0.23				
Greenbank	Outbound	98	701	1	1000	0.10	0.70				
Jockvale	Inbound	1021	360	2	2000	0.51	0.18				
Jockvale	Outbound	184	914	2	2000	0.09	0.46				
Prince of Wales	Inbound	1382	762	2	2000	0.69	0.38				
Prince of Wales	Outbound	539	1330	2	2000	0.27	0.67				
Total	Inbound	3937	1647	6	6000	0.66	0.27				
Total	Outbound	1009	3471	6	6000	0.17	0.58				

Notes: 1. Volume to capacity ratio: compares roadway demand (vehicle volumes) with roadway supply (carrying capacity).

4.3.2 Auxiliary Left Turn Lane Warrants at Site Access #1

The need for a southbound left turn auxiliary lane was reviewed at the Borrisokane Road at Site Access #1 intersection using the standards outlined in the Geometric Design Standards for Ontario Highways. Based on an assumed design speed of 90 km/hr along Borrisokane Road, it was found that this intersection meets the warrant for the implementation of a southbound left turn auxiliary lane into the development with a storage length of 25m.

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

Appendix C contains the detailed left turn auxiliary lane warrant worksheets.

4.3.3 Intersection Operational Analysis

Table 10 summarizes the operational characteristics of the study area intersections under 2022 total future conditions.

Consistent with the findings from the 2022 future background intersection capacity analysis, the Borrisokane Road at Strandherd Drive intersection is anticipated to operate at or above capacity during the 2022 total future horizon and therefore this intersection was also assessed assuming the Strandherd Drive widening is in place. As depicted in **Table 10** below, with the widening of Strandherd Drive, the intersection of Borrisokane Road at Strandherd Drive intersection is anticipated to operate acceptably.

The intersection of Borrisokane Road at Cambrian Road is also expected to operate acceptably under 2022 total future conditions.

Figure 11 illustrates the intersection control and lane requirements for the 2022 total future horizon.

Appendix B contains detailed intersection performance worksheets.

SEPTEMBER 2016

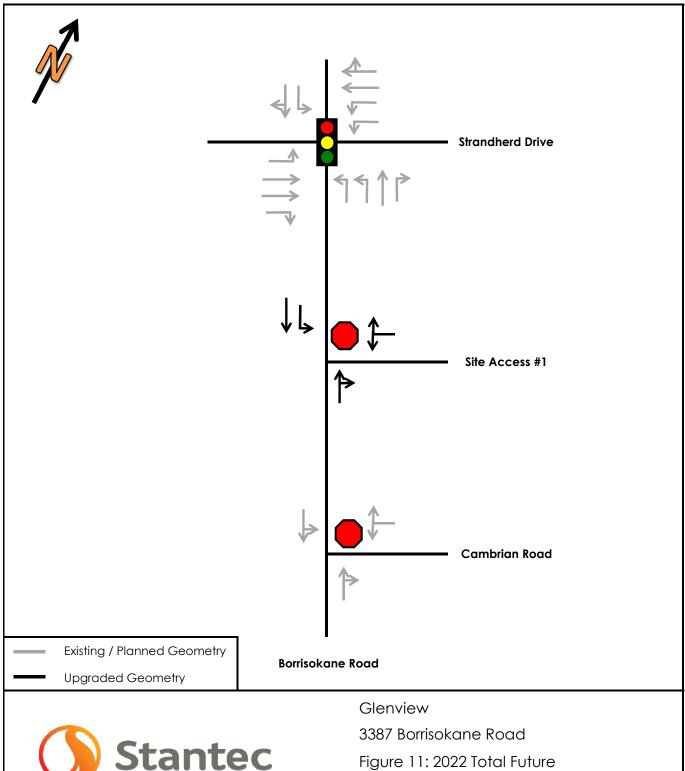

TRANSPORTATION ASSESSMENT

Table 10 2022 Total Future Intersection Operations

	Intersection				AM Peak	Hour		PM Peak Hour			
Intersection	Control	Appr	oach/Movement	LOS	v/c¹	Delay (s)	LOS	v/c¹	Delay (s)		
Borrisokane		WB	Left / Right	В	0.47	11.9	В	0.21	10.1		
Road at	Two-Way Stop	NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0		
Cambrian	Control	SB	Left / Through	Α	0.08	5.9	Α	0.24	6.3		
Road		Ove	erall Intersection	Α	-	9.1	Α	-	6.6		
		WB	Left / Right	В	0.18	13.1	В	0.06	10.4		
Damisalawa a Dagad	Tive Many Stars	NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0		
Borrisokane Road at Site Access #1	Control	SB	Left	Α	0.03	8.6	Α	0.06	7.9		
di sile Access #1	Control	28	Through	Α	0.00	0.0	Α	0.0	0.0		
		Ove	erall Intersection	Α	-	1.9	Α	-	1.3		
		Appr	oach/Movement	LOS	v/c¹	Q^2	LOS	v/c¹	\mathbf{Q}^2		
	Traffic Signals		Left	F	<mark>1.17</mark>	<mark>#42.6</mark>	В	0.69	#44.5		
		EB	Through / Right	D	0.84	#274.7	F	<mark>1.46</mark>	<mark>#708.5</mark>		
		WB	Left	Α	0.14	8.8	Α	0.35	6.9		
Borrisokane Road			Through / Right	F	1.23	<mark>#481.6</mark>	D	0.85	#315.4		
at Strandherd Drive		NB	Left	F	<mark>1.24</mark>	#249. <mark>7</mark>	E	1.19	#134.6		
Dilve			Through / Right	Α	0.10	20.7	Α	0.12	20.9		
		SB	Left	Α	0.14	22.8	Α	0.46	46.2		
			Through / Right	Α	0.23	38.4	Α	0.14	26.0		
		Ove	erall Intersection	F	<mark>1.23</mark>	_	F	<mark>1.39</mark>	_		
	TMP Up	grades	(Strandherd Drive w	idening	from two	to four lane	es)				
			Left	Α	0.47	15.8	В	0.66	46.5		
		EB	Through	Α	0.43	72.9	C	0.79	157.8		
			Right	Α	0.08	13.4	Α	0.31	30.1		
			Dual Lefts	Α	0.30	8.4	Α	0.41	11.6		
Borrisokane Road		WB	Through / Right	D	0.84	167.5	С	0.77	129.4		
at Strandherd	Traffic Signals		Dual Lefts	С	0.80	#85.6	В	0.61	44.6		
Drive		NB	Through	Α	0.06	15.7	Α	0.05	13.3		
			Right	Α	0.05	13.0	Α	0.02	0.0		
		0.5	Left	Α	0.26	31.5	Α	0.38	45.9		
		SB	Through / Right	Α	0.29	44.3	Α	0.12	26.0		
		Ove	erall Intersection	В	0.68	-	В	0.66	-		
Notes:								· <u></u>	·		

v/c – represents the anticipated volume divided by the predicted capacity
 95th Percentile Queue (m)

Intersection Control and Lane

Configuration

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

4.4 2027 ULTIMATE CONDITIONS

Ultimate future conditions for the 2027 horizon were examined to determine if other improvements may be required due to growth in background traffic volumes 5 years beyond the anticipated build-out horizon of the site.

4.4.1 Jock River Screenline Analysis

The Jock River screenline was assessed under 2027 ultimate conditions. Consistent with the analysis of 2022 total future, although Realigned Greenbank Road is assumed to be in place by the 2022 total future horizon, the construction staging is unknown at this time. In order to remain conservative, it was assumed that by 2027 Realigned Greenbank Road will have one lane for vehicle travel in both directions.

As seen in **Table 11**, the overall Jock River screenline is anticipated to operate below capacity under 2027 ultimate conditions. Despite this, the Greenbank Road station is projected to operate above capacity for the inbound movement (i.e. towards the urban core) during the AM peak hour. Constructing Realigned Greenbank to its ultimate cross-section (i.e. two vehicle lanes of travel in both directions) will be beneficial to alleviate the projected congestion that will occur at the Realigned Greenbank Road station along the Jock River screenline.

Table 11 2027 Total Future Jock River Screenline Analysis

		2027 Ultimate Conditions										
Station	Direction	AM Peak Hour	PM Peak Hour	Lanes	Capacity (Veh/hr)	AM Peak V/c²	PM Peak v/c					
Borrisokane	Inbound	657	316	1	1000	0.66	0.32					
Borrisokane	Outbound	202	567	1	1000	0.20	0.57					
Greenbank	Inbound	1153	275	1	1000	1.15	0.28					
Greenbank	Outbound	108	874	1	1000	0.11	0.87					
Jockvale	Inbound	1238	372	2	2000	0.62	0.19					
Jockvale	Outbound	179	1074	2	2000	0.09	0.54					
Prince of Wales	Inbound	1587	878	2	2000	0.79	0.44					
Prince of Wales	Outbound	546	1555	2	2000	0.27	0.78					
Total	Inbound	4635	1841	6	6000	0.77	0.31					
Total	Outbound	1035	4070	6	6000	0.17	0.68					

Notes: 1. Volume to capacity ratio: compares roadway demand (vehicle volumes) with roadway supply (carrying capacity).

4.4.2 Intersection Operational Analysis

Table 12 summarizes the operational characteristics of the study area intersections under 2027 ultimate conditions.

SEPTEMBER 2016

TRANSPORTATION ASSESSMENT

The widening of Strandherd Drive from two to four lanes was assumed to be in place by the 2027 ultimate horizon. All study area intersections are expected to operate acceptably under 2022 total future conditions.

Appendix B contains detailed intersection operation summaries.

Table 12 2027 Ultimate Intersection Operations

	Intersection				AM Peak Hour			PM Peak Hour		
Intersection	Control Approach/Movement LOS		v/c¹	Delay (s)	LOS	v/c¹	Delay (s)			
Borrisokane		WB	Left / Right	В	0.52	12.7	В	0.24	10.4	
Road at	Two-Way Stop	NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0	
Cambrian	Control	SB	Left / Through	Α	0.09	7.6	Α	0.26	8.2	
Road		Ove	rall Intersection	Α	-	9.7	Α	-	6.8	
		WB	Left / Right	В	0.19	13.9	В	0.07	10.7	
		NB	Through / Right	Α	0.0	0.0	Α	0.0	0.0	
	Two-Way Stop Control		Left	Α	0.03	8.7	Α	0.06	8.0	
at Site Access #1		SB	Through	Α	0.0	0.0	Α	0.0	0.0	
		Ove	erall Intersection	Α	-	1.8	Α	-	1.2	
		Appr	oach/Movement	LOS	v/c¹	\mathbf{Q}^2	LOS	v/c¹	\mathbf{Q}^2	
		EB	Left	Α	0.59	#22.3	С	0.77	#73.2	
			Through	Α	0.46	83.6	D	0.82	188.3	
			Right	Α	0.11	16.1	Α	0.35	33.1	
		WB	Dual Lefts	Α	0.28	7.9	Α	0.51	12.4	
Borrisokane Road			Through / Right	D	0.88	#213.3	D	0.81	153.5	
at Strandherd Drive	Traffic Signals		Dual Lefts	Е	0.93	#120.8	В	0.69	#53.3	
Drive		NB	Through	Α	0.06	16.1	Α	0.05	14.7	
			Right	Α	0.04	9.6	Α	0.02	0.0	
			Left	Α	0.33	34.1	Α	0.51	#60.0	
		SB	Through / Right	Α	0.43	54.8	Α	0.15	28.8	
		Ove	erall Intersection	С	0.78	-	С	0.75	-	

Notes:

^{1.} v/c - represents the anticipated volume divided by the predicted capacity

^{2. 95&}lt;sup>th</sup> Percentile Queue (m)

SEPTEMBER 2016

SUMMARY AND CONCLUSIONS

5.0 SUMMARY AND CONCLUSIONS

Proposed Development

- The proposed Glenview development is located at 3387 Borrisokane Road in the City of Ottawa's south end. The site is bound by the Jock River to the north, Mattamy's Half Moon Bay West development to the east and south, and Borrisokane Road to the west. It should be noted that prior to June 2016, Borrisokane Road was called Cedarview Road.
- Glenview is considering three separate concepts for their draft plan, each with varying number of residential units. From a transportation perspective, the most conservative concept is the one that produces the greatest number of vehicular trips (concept 3). The subject CTS / TIS is based on this concept, which includes 288 residential homes, which consists of 179 single family homes and 109 townhomes.
- Transportation access to the site will be facilitated through a proposed Site Access to Borrisokane Road, approximately 400m north of Cambrian Road. It should be noted that all three concepts that Glenview is exploring contain the same internal road network and site access to Borrisokane Road.
- The proposed residential development is anticipated to generate 228 and 290 person trips during the AM and PM peak hours, respectively. In terms of vehicle trips, the proposed residential development is anticipated to generate 137 and 174 net new auto trips (two-way) during the AM and PM peak hours, respectively.

2016 Existing Conditions

- The Jock River screenline, between Borrisokane Road and Prince of Wales Drive, was examined under 2016 existing conditions. It was found that every station (Borrisokane, Greenbank, Jockvale, and Prince of Wales) is operating below the available capacity.
- The Borrisokane Road at Strandherd Drive intersection currently operates at or above capacity for the peak directional movements along Strandherd Drive (i.e. westbound through during the AM peak hour and eastbound through during the PM peak hour). As the Strandherd Drive widening is part of the City's TMP Affordable Network (Phase 2, 2020 2025), no improvements are recommended to supplement existing conditions.
- The Borrisokane Road at Cambrian Road intersection currently operates satisfactorily under 2016 existing conditions.

34

SEPTEMBER 2016

SUMMARY AND CONCLUSIONS

2022 Future Background Conditions

- For the 2022 future background horizon, Realigned Greenbank Road was assumed to be completed and operational with one lane of vehicle traffic in both directions.
- Consistent with the findings from the 2016 intersection capacity analysis, the Borrisokane Road at Strandherd Drive intersection is anticipated to operate at or above capacity during the 2022 future background horizon. As the widening of Strandherd Drive is part of the City of Ottawa's 2013 Transportation Master Plan Affordable Network (Phase 2, 2020 2022), this intersection was reanalyzed assuming the widening is in place. The assumed intersection configuration is consistent with the previously approved Preliminary Design Report Strandherd Drive Widening Fallowfield Road to Jockvale Road (Delcan 2006), which includes dual northbound lefts, dual westbound lefts, and a channelized eastbound right turn lane. With the widening of Strandherd Drive, the intersection of Borrisokane Road at Strandherd Drive is anticipated to operate acceptably under 2022 future background conditions.
- The intersection of Borrisokane Road at Cambrian Road is expected to operate acceptably under 2022 future background conditions.

2022 Total Future Conditions

- The Jock River screenline is anticipated to operate well below capacity under 2022 total future conditions.
- The need for a southbound left turn auxiliary lane was reviewed at the Borrisokane Road at Site Access #1 intersection. Using an assumed design speed of 90 km/hr along Borrisokane Road, it was found that this intersection meets the warrants to implement a southbound left turn lane with a storage length of 25m.
- Consistent with the findings from the 2022 future background intersection capacity analysis, the Borrisokane Road at Strandherd Drive intersection is anticipated to operate at or above capacity during the 2022 total future horizon. With the widening of Strandherd Drive, the intersection is anticipated to operate acceptably.

2027 Ultimate Conditions

• While the overall Jock River screenline is anticipated to operate below capacity under 2027 ultimate conditions, the Greenbank Road station is projected to operate at or above capacity for the inbound movement during the AM peak hour (i.e. towards the urban core). Constructing Realigned Greenbank to its ultimate cross-section (i.e. two vehicle lanes of travel in both directions) will be beneficial to alleviate the projected congestion that will occur at the Realigned Greenbank Road station along the Jock River screenline.

35

SEPTEMBER 2016

SUMMARY AND CONCLUSIONS

• The widening of Strandherd Drive from two to four lanes was assumed to be in place by the 2027 ultimate horizon. All study area intersections are expected to operate acceptably under 2022 total future conditions.

Based on the transportation evaluation and improvements recommended in this study, Glenview's proposed residential development located at 3387 Borrisokane Road should be permitted to proceed.

STANTEC CONSULTING LTD.

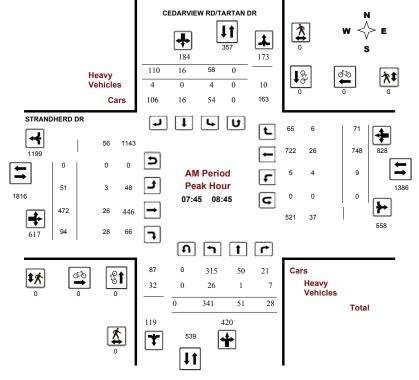
(Original signed and stamped)

Robert Vastag, RPP
Project Manager, Senior Transportation Planner

Lauren O'Grady, B.A.Sc.
Transportation Engineering Intern

Appendix A TRAFFIC DATA SEPTEMBER 2016

Appendix A TRAFFIC DATA

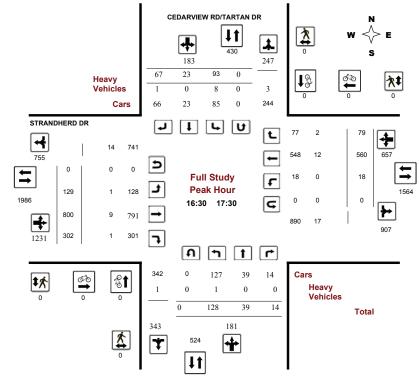

Intersection:	Cambrian a	at Borrisok	ane											
Date:	21-Jul-15													
	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Total	Hour
7:15 - 7:30	0	5	0	19	4	0	0	0	0	1	0	83	112	
7:30 -7:45	0	7	1	21	3	0	0	0	0	1	0	83	116	
7:45 - 8:00	0	7	0	18	10	0	0	0	0	0	0	82	117	
8:00 - 8:15	0	5	2	24	5	0	0	0	0	2	0	74	112	457
8:15 - 8:30	0	14	1	20	5	0	0	0	0	1	0	69	110	455
8:30 - 8:45	0	9	0	20	8	0	0	0	0	1	0	71	109	448
Peak Hour	0	24	3	82	22	0	0	0	0	4	0	322		
	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Total	Hour
3:30 - 3:45	0	10	1	48	9	0	0	0	0	1	0	31	100	
3:45 - 4:00	0	12	1	53	11	0	0	0	0	2	0	33	112	
4:00 - 4:15	0	9	2	56	14	0	0	0	0	2	0	34	117	
4:15 - 4:30	0	19	1	67	11	0	0	0	0	1	0	22	121	450
4:30 - 4:45	0	4	1	60	11	0	0	0	0	2	0	31	109	459
4:45 - 5:00	0	3	1	57	5	0	0	0	0	3	0	28	97	444
Peak Hour	0	44	5	236	47	0	0	0	0	7	0	120		

Turning Movement Count - Peak Hour Diagram

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date:Thursday, December 17, 2015WO No:35623Start Time:07:00Device:Miovision

Comments



Public Works - Traffic Services

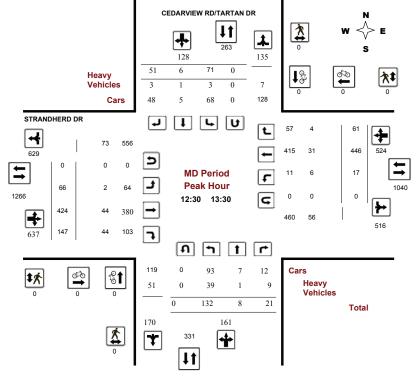
Turning Movement Count - Peak Hour Diagram

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date: Thursday, December 17, 2015 WO No: 35623
Start Time: 07:00 Device: Miovision

Comments

2016-Apr-11



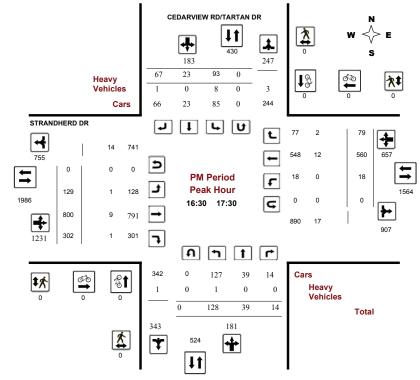
Turning Movement Count - Peak Hour Diagram

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

 Survey Date:
 Thursday, December 17, 2015
 WO No:
 35623

 Start Time:
 07:00
 Device:
 Miovision

Comments


Public Works - Traffic Services

Turning Movement Count - Peak Hour Diagram

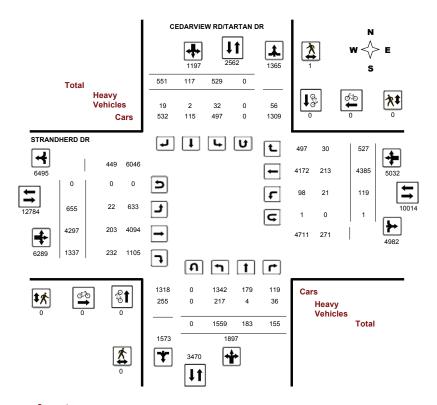
STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

 Survey Date:
 Thursday, December 17, 2015
 WO No:
 35623

 Start Time:
 07:00
 Device:
 Miovision

Comments

2016-Apr-11



Turning Movement Count - Full Study Diagram

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date: Thursday, December 17, 2015 WO#: 35623

Device: Miovision

Comments

Ottawa

Public Works - Traffic Services

Work Order 35623

Turning Movement Count - Full Study Summary Report

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

								F	ull St	udy									
		CED	ARVI	EW R)/TAR	TAN D	R					STF	RANDH	IERD	DR				
-	١	Northbo	ound		5	Southb	ound		_		Eastb	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	319	20	19	358	32	1	108	141	499	50	446	88	584	14	592	25	631	1215	1714
08:00 09:00	300	48	29	377	58	21	100	179	556	63	456	110	629	9	745	72	826	1455	2011
09:00 10:00	234	13	17	264	33	4	51	88	352	61	346	110	517	8	496	57	561	1078	1430
11:30 12:30	149	7	20	176	69	6	51	126	302	50	426	113	589	17	407	77	501	1090	1392
12:30 13:30	132	8	21	161	71	6	51	128	289	66	424	147	637	17	446	61	524	1161	1450
15:00 16:00	145	26	17	188	90	28	80	198	386	109	630	214	953	20	579	79	678	1631	2017
16:00 17:00	139	31	14	184	84	33	63	180	364	126	797	279	1202	19	591	75	685	1887	2251
17:00 18:00	141	30	18	189	92	18	47	157	346	130	772	276	1178	15	529	81	625	1803	2149
Sub Total	1559	183	155	1897	529	117	551	1197	3094	655	4297	1337	6289	119	4385	527	5031	11320	14414
U Turns				0				0	0				0				1	1	1
Total	1559	183	155	1897	529	117	551	1197	3094	655	4297	1337	6289	119	4385	527	5032	11321	14415
EQ 12Hr	2167	254	215	2637	735	163	766	1664	4301	910	5973	1858	8742	165	6095	733	6994	15736	20037
Note: These	values a	re calcu	lated by	y multipl	ying the	totals b	y the a	opropriate	e expans	sion fact	tor.		1	1.39					
AVG 12Hr	2167	254	215	2637	735	163	766	1664	4301	910	5973	1858	8742	165	6095	733	6994	15736	20037
Note: These	volumes	are cald	culated	by multi	plying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			1.00					
AVG 24Hr	2839	333	282	3454	963	213	1003	2180	5634	1193	7824	2435	11452	217	7985	960	9163	20615	26249
Note: These	volumes	are cald	culated	by multi	plying th	ne Avera	age Dai	ly 12 hr. t	otals by	12 to 2	4 expan	sion fac	ctor. '	1.31					

Comments

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown

W.C

35623

Turning Movement Count - 15 Minute Summary Report

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date: Thursday, December 17, 2015

Total Observed U-Turns

Northbound: 0 Eastbound: 0

Southbound: 0 Westbound: 1

		С	EDAR	RVIEV	V RD/1	ART	AN DI	₹		uotoou		s	TRAN	IDHEF	RD DF	1				
		No	orthbou	ınd		So	uthbour	nd			Ea	astbound	d		W	estboun	ıd			
Time	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
	07:15	80	1	2	83	5	0	25	30	113	16	85	25	126	4	106	1	111	237	350
	07:30	62	6	4	72	6	0	24	30	102	14	112	21	147	2	139	6	147	294	396
07:30	07:45	81	6	8	95	13	0	32	45	140	13	117	27	157	6	171	6	183	340	480
07:45	08:00	96	7	5	108	8	1	27	36	144	7	132	15	154	2	176	12	190	344	488
08:00	08:15	85	13	7	105	12	3	22	37	142	12	122	21	155	1	187	15	203	358	500
08:15	08:30	76	24	8	108	24	9	37	70	178	15	100	33	148	2	189	28	219	367	545
08:30	08:45	84	7	8	99	14	3	24	41	140	17	118	25	160	4	196	16	216	376	516
08:45	09:00	55	4	6	65	8	6	17	31	96	19	116	31	166	2	173	13	189	355	451
09:00	09:15	94	6	4	104	14	1	16	31	135	14	79	27	120	0	151	14	165	285	420
09:15	09:30	56	3	4	63	5	0	16	21	84	15	101	26	142	1	119	14	134	276	360
09:30	09:45	43	1	5	49	9	2	10	21	70	13	106	35	154	3	120	7	130	284	354
09:45	10:00	41	3	4	48	5	1	9	15	63	19	60	22	101	4	106	22	132	233	296
11:30	11:45	49	1	5	55	25	4	15	44	99	9	112	26	147	9	108	19	136	283	382
11:45	12:00	27	2	4	33	24	2	6	32	65	18	103	32	153	1	92	25	118	271	336
12:00	12:15	38	2	4	44	11	0	11	22	66	11	98	25	134	5	104	12	121	255	321
12:15	12:30	35	2	7	44	9	0	19	28	72	12	113	30	155	2	103	21	126	281	353
12:30	12:45	27	3	8	38	23	0	10	33	71	16	112	37	165	1	121	13	135	300	371
12:45	13:00	30	3	2	35	16	0	9	25	60	19	96	38	153	2	100	18	120	273	333
13:00	13:15	40	2	6	48	14	2	19	35	83	11	98	32	141	11	112	15	138	279	362
13:15	13:30	35	0	5	40	18	4	13	35	75	20	118	40	178	3	113	15	131	309	384
15:00	15:15	37	13	1	51	16	6	15	37	88	29	144	36	209	7	129	22	158	367	455
15:15	15:30	38	8	4	50	20	8	22	50	100	24	152	48	224	5	111	28	144	368	468
15:30	15:45	25	0	5	30	29	10	21	60	90	27	176	62	265	4	196	14	214	479	569
15:45	16:00	45	5	7	57	25	4	22	51	108	29	158	68	255	4	143	15	162	417	525
16:00	16:15	38	5	4	47	18	10	9	37	84	31	189	62	282	3	157	21	181	463	547
16:15	16:30	35	6	4	45	19	10	11	40	85	33	201	74	308	4	145	13	162	470	555
16:30	16:45	30	10	5	45	19	5	23	47	92	31	207	68	306	7	149	20	176	482	574
16:45	17:00	36	10	1	47	28	8	20	56	103	31	200	75	306	5	140	21	166	472	575
17:00	17:15	24	12	4	40	24	3	9	36	76	31	203	67	301	1	142	24	167	468	544
17:15	17:30	38	7	4	49	22	7	15	44	93	36	190	92	318	5	129	14	148	466	559
17:30	17:45	49	5	7	61	26	5	9	40	101	31	205	72	308	5	131	18	154	462	563
17:45	18:00	30	6	3	39	20	3	14	37	76	32	174	45	251	4	127	25	156	407	483

Note: U-Turns are included in Totals.

Comment

2016-Apr-11 Page 1 of 1

TOTAL: 1559 183 155 **1897** 529 117 551 **1197** 3094 655 4297 1337 **6289** 119 4385 527 **5032 11321 14415**

Public Works - Traffic Services

Turning Movement Count - Cyclist Volume Report

Work Order 35623

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Count Date: Thursday, December 17, 2015

Start Time: 07:00

	CEDAR	VIEW RD/TART	AN DR	S	STRANDHERD DR						
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total				
07:00 08:00	0	0	0	0	0	0	0				
08:00 09:00	0	0	0	0	0	0	0				
09:00 10:00	0	0	0	0	0	0	0				
11:30 12:30	0	0	0	0	0	0	0				
12:30 13:30	0	0	0	0	0	0	0				
15:00 16:00	0	0	0	0	0	0	0				
16:00 17:00	0	0	0	0	0	0	0				
17:00 18:00	0	0	0	0	0	0	0				
Total	0	0	0	0	0	0	0				

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

W.O. 35623

Turning Movement Count - Heavy Vehicle Report

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date: Thursday, December 17, 2015

		CED	ARVIE	W R	D/TAR	TAN	DR					STR	AND	HERD	DR					
		Northb	ound			Southb	ound	_			Eastb	ound		1	Westbo	ound	_			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	24	1	4	29	3	0	1	4	33	6	34	30	70	3	20	6	29	99	132
08:00	09:00	29	1	7	37	3	0	6	9	46	2	33	35	70	4	26	5	35	105	151
09:00	10:00	29	0	7	36	2	0	2	4	40	3	33	35	71	2	42	4	48	119	159
11:30	12:30	42	0	3	45	3	0	1	4	49	3	27	40	70	5	37	3	45	115	164
12:30	13:30	39	1	9	49	3	1	3	7	56	2	44	44	90	6	31	4	41	131	187
15:00	16:00	35	0	4	39	4	1	2	7	46	3	18	36	57	1	33	3	37	94	140
16:00	17:00	15	1	2	18	8	0	4	12	30	3	6	11	20	0	20	2	22	42	72
17:00	18:00	4	0	0	4	6	0	0	6	10	0	8	1	9	0	4	3	7	16	26
Sub	Γotal	217	4	36	257	32	2	19	53	310	22	203	232	457	21	213	30	264	721	1031
U-Turn	s (Heav	vy Veh	icles)		0				0	0				0				0	0	0
Tot	tal	217	4	36	0	32	2	19	53	310	22	203	232	457	21	213	30	264	721	1031

Heavy Vehicles are vehicles having one rear axle with four or more wheels, or having two or more rear axles. These vehicles include most O.C. Transpo, school and inter-city buses. Further, they ARE included in the Turning Movement Count Summary.

2016-Apr-11 Page 1 of 1

Public Works - Traffic Services

Work Order 35623

Turning Movement Count - Pedestrian Volume Report

				@ CEDARVIEW	/ RU/TARTAN		
Count Date	e: Thursday, D	ecember 17, 2015				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
07:00 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
08:00 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
09:00 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	1	1	0	0	0	1
12:15 12:30	0	0	0	0	0	0	0
11:30 12:30	0	1	1	0	0	0	1
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
12:30 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
15:00 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
16:00 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	Ō	0	0	0	ō
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	Ö
17:00 18:00	0	0	0	0	0	0	0
Total	0		•	0	0	v	

Commen

Work Order

35623

Turning Movement Count - 15 Min U-Turn Total Report

STRANDHERD DR @ CEDARVIEW RD/TARTAN DR

Survey Date:

Thursday, December 17, 2015

		,,	, ==			
Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	1	1
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
To	otal	0	0	0	1	1

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

Appendix B INTERSECTION PERFORMANCE WORKSHEETS

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.1 2016 EXISTING CONDITIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2016 Existing AM

	٠	-	•	-	•	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	57	635	10	915	386	89	64	139	
v/c Ratio	0.78	0.70	0.04	1.01	0.90	0.14	0.14	0.22	
Control Delay	84.1	22.8	12.4	56.4	55.7	14.8	22.2	6.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	84.1	22.8	12.4	56.4	55.7	14.8	22.2	6.3	
Queue Length 50th (m)	8.3	84.7	0.9	~166.7	67.8	7.0	8.0	2.1	
Queue Length 95th (m)	#32.8	125.5	3.6	#253.4	#122.2	17.1	17.2	13.9	
Internal Link Dist (m)		124.7		145.0		270.9		84.5	
Turn Bay Length (m)	120.0		130.0		80.0		37.5		
Base Capacity (vph)	73	902	238	909	429	628	449	635	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.78	0.70	0.04	1.01	0.90	0.14	0.14	0.22	

Queue shown is maximum after two cycles.

9/21/2016 Synchro 9 Report Stantec Consulting Ltd. Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2016 Existing AM

	٠	→	•	•	-	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	**	1>		ሻ	1>		ሻ	4		ሻ	f)	
Traffic Volume (vph)	52	486	98	9	770	72	355	52	29	59	16	112
Future Volume (vph)	52	486	98	9	770	72	355	52	29	59	16	112
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.99		1.00	0.95		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1739		1695	1761		1695	1688		1695	1549	
Flt Permitted	0.08	1.00		0.26	1.00		0.67	1.00		0.70	1.00	
Satd. Flow (perm)	143	1739		464	1761		1192	1688		1248	1549	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	57	528	107	10	837	78	386	57	32	64	17	122
RTOR Reduction (vph)	0	7	0	0	3	0	0	20	0	0	78	0
Lane Group Flow (vph)	57	628	0	10	912	0	386	69	0	64	61	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	50.0	50.0		50.0	50.0		35.0	35.0		35.0	35.0	
Effective Green, q (s)	50.0	50.0		50.0	50.0		35.0	35.0		35.0	35.0	
Actuated g/C Ratio	0.51	0.51		0.51	0.51		0.36	0.36		0.36	0.36	
Clearance Time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	73	894		238	905		429	607		449	557	
v/s Ratio Prot		0.36			c0.52			0.04			0.04	
v/s Ratio Perm	0.40			0.02			c0.32			0.05		
v/c Ratio	0.78	0.70		0.04	1.01		0.90	0.11		0.14	0.11	
Uniform Delay, d1	19.2	17.9		11.7	23.6		29.4	20.7		21.0	20.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	40.6	2.5		0.1	31.7		24.4	0.4		0.7	0.4	
Delay (s)	59.7	20.5		11.8	55.3		53.9	21.1		21.6	21.1	
Level of Service	Е	С		В	E		D	С		С	С	
Approach Delay (s)		23.7		_	54.8		_	47.7		-	21.3	
Approach LOS		С			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			41.0	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.96									
Actuated Cycle Length (s)	1		97.2	S	um of los	t time (s)			12.2			
Intersection Capacity Utiliza	ation		91.3%		U Level)		F			
Analysis Period (min)			15									

Analysis Period (min)

c Critical Lane Group

9/21/2016 Synchro 9 Report Stantec Consulting Ltd. Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

30

3: Cambrian Road & Borrisokane Road

3387 Cedarview Road 2016 Existing AM

Intersection							
Int Delay, s/veh	9						
=,,							
Movement	WBL	WBR		NBT	NBR	SBL	SBT
	7 VVDL				3	97	26
Traffic Vol, veh/h		386		50			
Future Vol, veh/h	7	386		50	3	97	26
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None		None
Storage Length	0	-			-	-	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	8	420		54	3	105	28
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	295	56		0	0	58	0
Stage 1	56	-		-	-	-	-
Stage 2	239			-	-	_	
Critical Hdwy	6.42	6.22		-	_	4.12	
Critical Hdwy Stg 1	5.42	-			-		
Critical Hdwy Stg 2	5.42				-		
Follow-up Hdwy	3.518	3.318			-	2.218	
Pot Cap-1 Maneuver	696	1011			_	1546	
Stage 1	967	1011			-	-	
Stage 2	801				_		
Platoon blocked, %	001				-		
Mov Cap-1 Maneuver	648	1011				1546	
Mov Cap-1 Maneuver	648	1011				1340	
Stage 1	967			-	-	-	
Stage 2	746					-	
Slaye 2	140	-			-	-	-
Approach	WB			NB		SB	
HCM Control Delay, s	11.2			0		5.9	
HCM LOS	В						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	- 1101	- 1001	1546	-			
HCM Lane V/C Ratio		- 0.427					
HCM Control Delay (s)	-	- 11.2	7.5	0			
HCM Lane LOS		- 11.2 - B	7.5 A	A			
	-	- B	0.2	A -			
HCM 95th %tile Q(veh)	-	- 2.2	0.2	-			

9/21/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 3

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2016 Existing PM

	•	→	•	-	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	142	1229	21	715	146	59	103	99	
v/c Ratio	0.78	1.38	0.29	0.79	0.33	0.09	0.22	0.16	
Control Delay	51.0	200.3	26.3	26.8	25.2	16.6	23.3	8.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.0	200.3	26.3	26.8	25.2	16.6	23.3	8.4	
Queue Length 50th (m)	20.6	~307.8	2.2	103.3	19.7	5.3	13.3	3.0	
Queue Length 95th (m)	#56.6	#385.4	9.0	153.5	35.3	13.4	25.7	13.4	
Internal Link Dist (m)		124.6		144.9		270.9		84.5	
Turn Bay Length (m)	120.1		130.1		79.9		37.5		
Base Capacity (vph)	182	893	73	906	445	626	461	617	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.78	1.38	0.29	0.79	0.33	0.09	0.22	0.16	

ntersection Summar

Queue shown is maximum after two cycles.

9/21/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2016 Existing PM

	•	→	•	•	-	•	•	†	~	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₽		ሻ	1>		ሻ	₽		ሻ	1>	
Traffic Volume (vph)	131	815	316	19	577	81	134	40	15	95	23	68
Future Volume (vph)	131	815	316	19	577	81	134	40	15	95	23	68
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.98		1.00	0.96		1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1710		1695	1751		1695	1712		1695	1584	
Flt Permitted	0.20	1.00		0.08	1.00		0.69	1.00		0.72	1.00	
Satd. Flow (perm)	355	1710		143	1751		1236	1712		1282	1584	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	142	886	343	21	627	88	146	43	16	103	25	74
RTOR Reduction (vph)	0	15	0	0	5	0	0	10	0	0	47	0
Lane Group Flow (vph)	142	1214	0	21	710	0	146	49	0	103	52	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	50.0	50.0		50.0	50.0		35.0	35.0		35.0	35.0	
Effective Green, q (s)	50.0	50.0		50.0	50.0		35.0	35.0		35.0	35.0	
Actuated g/C Ratio	0.51	0.51		0.51	0.51		0.36	0.36		0.36	0.36	
Clearance Time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	182	879		73	900		445	616		461	570	
v/s Ratio Prot		c0.71			0.41			0.03			0.03	
v/s Ratio Perm	0.40			0.15			c0.12			0.08		
v/c Ratio	0.78	1.38		0.29	0.79		0.33	0.08		0.22	0.09	
Uniform Delay, d1	19.1	23.6		13.5	19.3		22.6	20.5		21.6	20.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	19.2	178.8		2.2	4.6		2.0	0.3		1.1	0.3	
Delay (s)	38.3	202.4		15.6	23.9		24.5	20.7		22.8	20.9	
Level of Service	D	F		В	С		С	С		C	С	
Approach Delay (s)		185.4			23.7			23.4			21.8	
Approach LOS		F			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			111.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		0.95									
Actuated Cycle Length (s)			97.2		um of lost				12.2			
Intersection Capacity Utiliza	ation		99.8%	IC	U Level	of Service)		F			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

9/21/2016 Synchro 9 Report
Stantec Consulting Ltd. Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

3387 Cedarview Road 2016 Existing PM

3: Cambrian Road & Borrisokane Road

Intersection							
	.8						
, , , , , , , , , , , , , , , , , , , ,							
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Traffic Vol., veh/h	7	138		51	5	298	60
Future Vol. veh/h	7	138		51	5	298	60
Conflicting Peds, #/hr	0	130		0	0	290	00
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	Slop -	None		FIEE -	None	riee -	
Storage Length	0	None			NOTIE -	-	NOITE
Veh in Median Storage, #	0	-		0		-	0
Grade. %	0			0			0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
	8	150		55	5	324	65
Mvmt Flow	ð	150		55	5	324	00
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	771	58		0	0	61	0
Stage 1	58	-		-	-	-	-
Stage 2	713	-		-	-	-	-
Critical Hdwy	6.42	6.22		-	-	4.12	-
Critical Hdwy Stg 1	5.42	-		-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	2.218	-
Pot Cap-1 Maneuver	368	1008		-	-	1542	-
Stage 1	965	-		-	-	-	-
Stage 2	486	-		-	-	-	-
Platoon blocked. %				-	-		
Mov Cap-1 Maneuver	288	1008		-	-	1542	-
Mov Cap-2 Maneuver	288	-			-	-	
Stage 1	965	_			-		-
Stage 2	380	-			-		
3.030 2	000						
Approach	WB			NB		SB	
HCM Control Delay, s	9.9			0		6.6	
HCM LOS	Α.					0.0	
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 899	1542	-			
HCM Lane V/C Ratio	-	- 0.175	0.21				
HCM Control Delay (s)	-	- 9.9	8	0			
		3.0	-	-			
HCM Lane LOS	-	- A	Α	Α			

9/21/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 3

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.2 2022 FUTURE BACKGROUND CONDITIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG AM

	٠	-	•	•	4	†	>	Į.	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	69	764	11	1134	489	76	66	175	
v/c Ratio	1.17	0.83	0.07	1.21	1.22	0.12	0.14	0.29	
Control Delay	480.1	32.9	15.4	416.9	447.8	15.2	26.4	16.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	480.1	32.9	15.4	416.9	447.8	15.2	26.4	16.0	
Queue Length 50th (m)	~19.3	142.1	1.2	~326.9	~141.1	6.2	10.3	15.4	
Queue Length 95th (m)	#42.6	#268.3	5.1	#477.9	#238.6	19.1	23.0	38.4	
Internal Link Dist (m)		124.7		145.0		270.9		84.5	
Turn Bay Length (m)	120.0		130.0		80.0		37.5		
Base Capacity (vph)	59	926	159	937	402	633	465	614	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.17	0.83	0.07	1.21	1.22	0.12	0.14	0.29	

ntersection Summar

Queue shown is maximum after two cycles.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG AM

	•	→	•	•	←	•	•	†	/	~	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	î»		ሻ	1>		7	₽		ሻ	1>	
Traffic Volume (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
Future Volume (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.99		1.00	0.93		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1732		1695	1765		1695	1661		1695	1537	
Flt Permitted	0.06	1.00		0.17	1.00		0.61	1.00		0.71	1.00	
Satd. Flow (perm)	112	1732		300	1765		1092	1661		1263	1537	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
RTOR Reduction (vph)	0	8	0	0	2	0	0	22	0	0	49	0
Lane Group Flow (vph)	69	756	0	11	1132	0	489	54	0	66	126	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	63.6	63.6		63.6	63.6		44.2	44.2		44.2	44.2	
Effective Green, q (s)	63.6	63.6		63.6	63.6		44.2	44.2		44.2	44.2	
Actuated g/C Ratio	0.53	0.53		0.53	0.53		0.37	0.37		0.37	0.37	
Clearance Time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	59	917		159	935		402	611		465	566	
v/s Ratio Prot		0.44			c0.64			0.03			0.08	
v/s Ratio Perm	0.61	• • • • • • • • • • • • • • • • • • • •		0.04			c0.45			0.05		
v/c Ratio	1.17	0.82		0.07	1.21		1.22	0.09		0.14	0.22	
Uniform Delay, d1	28.2	23.6		13.8	28.2		37.9	24.7		25.3	26.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	448.3	6.5		0.2	389.3		413.3	0.3		0.6	0.9	
Delay (s)	476.5	30.0		13.9	417.5		451.2	25.0		25.9	27.0	
Level of Service	F	C		В	F		F	C		C	C	
Approach Delay (s)		67.0			413.7			393.9			26.7	
Approach LOS		E			F			F			C	
••												
Intersection Summary												
HCM 2000 Control Delay			272.4	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.21									
Actuated Cycle Length (s)			120.0		um of los				12.2			
Intersection Capacity Utiliz	ation		118.6%	IC	CU Level	of Service	•		Н			
Analysis Daried (min)			60									

Analysis Period (min) c Critical Lane Group

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Intersection							
Int Delay, s/veh 9	.7						
Marrana	MDI	WDD		NDT	NDD	ODI	ODT
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Traffic Vol, veh/h	6	490		76	2	142	31
Future Vol, veh/h	6	490		76	2	142	31
Conflicting Peds, #/hr	0	0		0	0	_ 0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	- 0	None		-	None	-	
Storage Length	0	-		- 0	-	-	- 0
Veh in Median Storage, #	0	-		0	-	-	0
Grade, % Peak Hour Factor	100	100		100	100	100	100
Heavy Vehicles, %	2	2		2	2	2	2
Mymt Flow	6	490		76	2	142	31
IVIVIIIL FIOW	0	430		70	2	142	31
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	392	77		1VIAJOI I	0	78	0
	77	- 11		0	-		0
Stage 1					-	-	-
Stage 2 Critical Hdwy	315 6.42	6.22		-	-	4.12	-
		0.22		-	-		-
Critical Hdwy Stg 1 Critical Hdwy Stg 2	5.42 5.42	-		-	-	-	
Follow-up Hdwy	3.518	3.318			-	2.218	-
Pot Cap-1 Maneuver	612	984		-	-	1520	-
Stage 1	946	984			-	1520	- 1
Stage 2	740	-		-	-	-	
Platoon blocked. %	740	-		-		-	
Mov Cap-1 Maneuver	554	984		-	-	1520	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	554 554	984				1520	-
	946			-			-
Stage 1 Stage 2	670	-		-	-	_	-
Stage 2	0/0				-	-	-
Approach	WB			NB		SB	
HCM Control Delay, s	12.5			0		6.2	
HCM LOS	12.3 B			0		0.2	
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 975	1520	-			
HCM Lane V/C Ratio	-	- 0.509		-			
HCM Control Delay (s)	-	- 12.5	7.6	0			
HCM Lane LOS	-	- B	A	A			
HCM 95th %tile Q(veh)	-	- 3.1	0.3	-			

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 3

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG PM

	٠	→	•	—	•	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	197	1592	25	901	218	48	106	127	
v/c Ratio	0.65	1.26	0.42	0.70	1.18	0.16	0.49	0.36	
Control Delay	21.4	500.8	33.2	12.6	430.2	32.0	54.0	14.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.4	500.8	33.2	12.6	430.2	32.0	54.0	14.2	
Queue Length 50th (m)	21.0	~471.3	2.0	101.4	~61.5	6.3	22.9	3.6	
Queue Length 95th (m)	#84.2	#650.2	#19.6	193.4	#126.7	19.5	46.6	26.3	
Internal Link Dist (m)		124.6		144.9		270.9		84.5	
Turn Bay Length (m)	120.1		130.1		79.9		37.5		
Base Capacity (vph)	302	1260	59	1286	184	298	217	352	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.65	1.26	0.42	0.70	1.18	0.16	0.49	0.36	

ntersection Summar

Queue shown is maximum after two cycles.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG PM

	۶	-	•	•	-	•	4	†	/	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	î»		ሻ	1>		ሻ	1>		ሻ	₽	
Traffic Volume (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
Future Volume (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.99		1.00	0.95		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1712		1695	1758		1695	1690		1695	1555	
Flt Permitted	0.23	1.00		0.05	1.00		0.62	1.00		0.73	1.00	
Satd. Flow (perm)	414	1712		81	1758		1099	1690		1295	1555	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
RTOR Reduction (vph)	0	11	0	0	3	0	0	14	0	0	91	0
Lane Group Flow (vph)	197	1581	0	25	898	0	218	34	0	106	36	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	87.6	87.6		87.6	87.6		20.2	20.2		20.2	20.2	
Effective Green, g (s)	87.6	87.6		87.6	87.6		20.2	20.2		20.2	20.2	
Actuated g/C Ratio	0.73	0.73		0.73	0.73		0.17	0.17		0.17	0.17	
Clearance Time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	302	1249		59	1283		184	284		217	261	
v/s Ratio Prot		c0.92			0.51			0.02			0.02	
v/s Ratio Perm	0.48			0.31			c0.20			0.08		
v/c Ratio	0.65	1.27		0.42	0.70		1.18	0.12		0.49	0.14	
Uniform Delay, d1	8.4	16.2		6.3	8.9		49.9	42.4		45.2	42.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.1	485.1		4.9	1.7		386.6	0.9		7.9	1.1	
Delay (s)	13.5	501.3		11.2	10.6		436.5	43.2		53.1	43.6	
Level of Service	В	F		В	В		F	D		D	D	
Approach Delay (s)		447.6			10.7			365.5			47.9	
Approach LOS		F			В			F			D	
Intersection Summary												
HCM 2000 Control Delay			285.9	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.25									
Actuated Cycle Length (s)			120.0		um of lost				12.2			
Intersection Capacity Utiliza	ation		137.5%	IC	U Level	of Service	•		Н			
Analysis Period (min)			60									

Analysis Period (min) c Critical Lane Group

 9/22/2016
 Synchro 9 Report

 Stantec Consulting Ltd.
 Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Intersection								
Int Delay, s/veh 6	5.8							
Movement	WBL	WBR		NBT	NBR	SBL	SBT	
Traffic Vol, veh/h	6	195		72	4	379	97	
Future Vol, veh/h	6	195		72	4	379	97	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized	-	None		-	None	-	None	
Storage Length	0	-		-	-	-	-	
Veh in Median Storage, #	0	-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	100	100		100	100	100	100	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	6	195		72	4	379	97	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	929	74		0	0	76	0	
Stage 1	74	-		-	-	-	-	
Stage 2	855							
Critical Hdwy	6.42	6.22				4.12		
Critical Hdwy Stg 1	5.42	0.22				4.12		
Critical Hdwy Stg 2	5.42			-		-		
Follow-up Hdwy	3.518	3.318		-		2.218		
Pot Cap-1 Maneuver	297	988				1523		
Stage 1	949	900				1020		
Stage 2	417	-		-	-	-	-	
Platoon blocked. %	417	-		-		-		
Mov Cap-1 Maneuver	219	988		-		1523		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	219	988				1523	-	
Stage 1	949	-			-	-	-	
	307			-		-	-	
Stage 2	307	-			-	-	-	
	14/7							
Approach	WB			NB		SB		
HCM Control Delay, s	10.2			0		6.5		
HCM LOS	В							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
Capacity (veh/h)	-	- 894	1523	-				
HCM Lane V/C Ratio	-	- 0.225		-				
HCM Control Delay (s)	-	- 10.2	8.1	0				
HCM Lane LOS	-	- B	Α	Α				
HCM 95th %tile Q(veh)	-	- 0.9	1	-				

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 3

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.3 2022 FUTURE BACKGROUND CONDITIONS – TMP MODIFICATIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG AM with TMP Modifications

	•	-	•	•	•	•	†	~	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	69	614	150	11	1134	489	41	35	66	175	
v/c Ratio	0.44	0.41	0.20	0.07	0.86	0.81	0.05	0.05	0.25	0.45	
Control Delay	23.4	21.3	3.7	55.7	38.5	56.3	22.6	0.8	46.5	23.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.4	21.3	3.7	55.7	38.5	56.3	22.6	8.0	46.5	23.1	
Queue Length 50th (m)	7.7	43.6	0.0	1.2	118.0	53.7	5.5	0.0	12.9	13.4	
Queue Length 95th (m)	16.8	76.5	15.5	4.9	173.3	#92.4	15.0	2.3	31.5	45.4	
Internal Link Dist (m)		124.7			145.0		270.9			84.5	
Turn Bay Length (m)	120.0			130.0		80.0			37.5		
Base Capacity (vph)	157	1697	834	154	1598	711	759	687	261	392	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.36	0.18	0.07	0.71	0.69	0.05	0.05	0.25	0.45	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG AM with TMP Modifications

	•	-	•	•	-	•	4	†	~	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	77	† 1>		14	†	7	ሻ	1>	
Traffic Volume (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
Future Volume (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	3390	1517	3288	3354		3288	1784	1517	1695	1537	
Flt Permitted	0.09	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.73	1.00	
Satd. Flow (perm)	169	3390	1517	3288	3354		3288	1784	1517	1303	1537	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	69	614	150	11	1053	81	489	41	35	66	13	162
RTOR Reduction (vph)	0	0	85	0	5	0	0	0	21	0	85	0
Lane Group Flow (vph)	69	614	65	11	1129	0	489	41	14	66	90	0
Turn Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2						4	8		
Actuated Green, G (s)	53.2	49.0	49.0	0.9	45.7		20.2	46.8	46.8	22.1	22.1	
Effective Green, g (s)	53.2	49.0	49.0	0.9	45.7		20.2	46.8	46.8	22.1	22.1	
Actuated g/C Ratio	0.47	0.43	0.43	0.01	0.40		0.18	0.41	0.41	0.19	0.19	
Clearance Time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	135	1464	655	26	1351		585	736	626	253	299	
v/s Ratio Prot	c0.02	0.18		0.00	c0.34		c0.15	0.02			c0.06	
v/s Ratio Perm	0.22		0.04						0.01	0.05		
v/c Ratio	0.51	0.42	0.10	0.42	0.84		0.84	0.06	0.02	0.26	0.30	
Uniform Delay, d1	21.5	22.3	19.1	56.0	30.5		45.0	20.0	19.7	38.7	39.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	3.3	0.2	0.1	11.1	4.9		11.0	0.1	0.1	2.5	2.6	
Delay (s)	24.8	22.5	19.2	67.0	35.3		56.0	20.2	19.8	41.2	41.6	
Level of Service	С	С	В	Е	D		Е	С	В	D	D	
Approach Delay (s)		22.1			35.6			51.2			41.5	
Approach LOS		С			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			35.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Cap	acity ratio		0.69									
Actuated Cycle Length (s)			113.4	S	um of los	t time (s)			21.2			
Intersection Capacity Utiliz	ation		81.3%	IC	U Level	of Service			D			
Analysis Period (min)			60									

c Critical Lane Group

 9/22/2016
 Synchro 9 Report

 Stantec Consulting Ltd.
 Page 2

Queue shown is maximum after two cycles.

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG PM with TMP Modifications

	•	-	•	•	-	•	†	~	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	197	1160	432	25	901	218	31	17	106	127	
v/c Ratio	0.64	0.75	0.47	0.14	0.82	0.58	0.05	0.03	0.36	0.29	
Control Delay	25.1	26.4	3.5	51.8	38.2	50.4	24.0	0.1	42.1	12.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.1	26.4	3.5	51.8	38.2	50.4	24.0	0.1	42.1	12.7	
Queue Length 50th (m)	20.1	87.4	0.0	2.4	84.2	20.8	3.7	0.0	17.6	2.8	
Queue Length 95th (m)	46.3	157.5	27.7	8.3	129.1	41.5	13.3	0.0	45.8	26.0	
Internal Link Dist (m)		124.6			144.9		270.9			84.5	
Turn Bay Length (m)	120.1			130.1		79.9			37.5		
Base Capacity (vph)	367	2012	1076	180	1620	476	684	651	293	431	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.58	0.40	0.14	0.56	0.46	0.05	0.03	0.36	0.29	
Intersection Summary											

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 FBG PM with TMP Modifications

	٠	-	•	•	•	•	4	†	~	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† †	7	ሻሻ	† ⊅		ሻሻ	†	7"	ሻ	1>	
Traffic Volume (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
Future Volume (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	3390	1517	3288	3339		3288	1784	1517	1695	1555	
Flt Permitted	0.14	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.74	1.00	
Satd. Flow (perm)	251	3390	1517	3288	3339		3288	1784	1517	1315	1555	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	197	1160	432	25	811	90	218	31	17	106	18	109
RTOR Reduction (vph)	0	0	239	0	8	0	0	0	11	0	85	0
Lane Group Flow (vph)	197	1160	193	25	893	0	218	31	6	106	42	0
Turn Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2						4	8		
Actuated Green, G (s)	52.9	46.4	46.4	2.0	35.9		11.7	38.8	38.8	22.6	22.6	
Effective Green, g (s)	52.9	46.4	46.4	2.0	35.9		11.7	38.8	38.8	22.6	22.6	
Actuated g/C Ratio	0.51	0.45	0.45	0.02	0.35		0.11	0.37	0.37	0.22	0.22	
Clearance Time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	301	1513	677	63	1153		370	666	566	286	338	
v/s Ratio Prot	c0.08	c0.34		0.01	0.27		c0.07	0.02			0.03	
v/s Ratio Perm	0.25		0.13						0.00	c0.08		
v/c Ratio	0.65	0.77	0.28	0.40	0.77		0.59	0.05	0.01	0.37	0.12	
Uniform Delay, d1	17.9	24.2	18.2	50.4	30.4		43.8	20.8	20.5	34.6	32.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	5.2	2.4	0.2	4.1	3.4		2.4	0.1	0.0	3.7	0.7	
Delay (s)	23.0	26.6	18.5	54.5	33.8		46.2	20.9	20.5	38.3	33.4	
Level of Service	С	С	В	D	С		D	С	С	D	С	
Approach Delay (s)		24.3			34.3			41.6			35.6	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			29.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.65									
Actuated Cycle Length (s)			103.9	Si	um of los	t time (s)			21.2			
Intersection Capacity Utiliza	ation		70.5%			of Service			С			
Analysis Period (min)			60									

c Critical Lane Group

 9/22/2016
 Synchro 9 Report

 Stantec Consulting Ltd.
 Page 2

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.4 2022 TOTAL FUTURE CONDITIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total AM

	•	-	•	•	•	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	69	768	21	1134	512	100	66	175	
v/c Ratio	1.17	0.84	0.14	1.23	1.24	0.15	0.14	0.28	
Control Delay	480.4	35.3	18.0	449.7	491.9	12.0	25.8	16.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	480.4	35.3	18.0	449.7	491.9	12.0	25.8	16.0	
Queue Length 50th (m)	~19.2	146.5	2.5	~330.7	~149.7	6.1	10.1	15.7	
Queue Length 95th (m)	#42.6	#274.7	8.7	#481.6	#249.7	20.7	22.8	38.4	
Internal Link Dist (m)		124.7		145.0		270.9		84.5	
Turn Bay Length (m)	120.0		130.0		80.0		37.5		
Base Capacity (vph)	59	910	146	923	412	649	465	624	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.17	0.84	0.14	1.23	1.24	0.15	0.14	0.28	

ntersection Summar

Queue shown is maximum after two cycles.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total AM

	۶	→	•	€	+	4	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	f)		7	₽		٦	f)		٦	f)	
Traffic Volume (vph)	69	614	154	21	1053	81	512	41	59	66	13	162
Future Volume (vph)	69	614	154	21	1053	81	512	41	59	66	13	162
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.99		1.00	0.91		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1731		1695	1765		1695	1626		1695	1537	
Flt Permitted	0.06	1.00		0.16	1.00		0.61	1.00		0.69	1.00	
Satd. Flow (perm)	114	1731		281	1765		1096	1626		1235	1537	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	69	614	154	21	1053	81	512	41	59	66	13	162
RTOR Reduction (vph)	0	8	0	0	2	0	0	37	0	0	46	0
Lane Group Flow (vph)	69	760	0	21	1132	0	512	63	0	66	129	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	62.6	62.6		62.6	62.6		45.2	45.2		45.2	45.2	
Effective Green, g (s)	62.6	62.6		62.6	62.6		45.2	45.2		45.2	45.2	
Actuated g/C Ratio	0.52	0.52		0.52	0.52		0.38	0.38		0.38	0.38	
Clearance Time (s)	6.4	6.4		6.4	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	59	903		146	920		412	612		465	578	
v/s Ratio Prot		0.44			c0.64			0.04			0.08	
v/s Ratio Perm	0.61			0.07			c0.47			0.05		
v/c Ratio	1.17	0.84		0.14	1.23		1.24	0.10		0.14	0.22	
Uniform Delay, d1	28.7	24.5		14.8	28.7		37.4	24.3		24.6	25.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	448.3	7.7		0.5	424.2		458.2	0.3		0.6	0.9	
Delay (s)	477.0	32.2		15.3	452.9		495.6	24.6		25.3	26.3	
Level of Service	F	С		В	F		F	С		С	С	
Approach Delay (s)		68.9			445.0			418.7			26.0	
Approach LOS		Е			F			F			С	
Intersection Summary												
HCM 2000 Control Delay			293.2	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.23									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			12.2			
Intersection Capacity Utilization	n		119.9%	IC	CU Level of	of Service			Н			

Analysis Period (min) c Critical Lane Group

 9/22/2016
 Synchro 9 Report

 Stantec Consulting Ltd.
 Page 2

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

3387 Cedarview Road 2022 Total AM HCM 2010 TWSC 3387 Cedarview Road 3: Borrisokane Road & Cambrian Road 2022 Total AM

													_
tersection							Intersection						
	.9							9.1					
. 2010, 0.7011							in Boldy, 9/1011						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Movement	WBL	WBR	NBT	NBR	SBL	SBT
Fraffic Vol. veh/h	5	91	521	2	33	155	Traffic Vol. veh/h	6	446	78	2	123	36
Future Vol. veh/h	5	91	521	2	33	155	Future Vol. veh/h	6	446	78	2	123	36
Conflicting Peds, #/hr	0	0	0	0	0	0	Conflicting Peds. #/hr	0	0	0	0	0	00
Sign Control	Stop	Stop	Free		-	Free	Sign Control	Stop	Stop	Free	Free	Free	_
RT Channelized	-	None		None		None	RT Channelized	-	None		None		None
Storage Length	0	-			250	-	Storage Length	0	-		-	- '	10110
/eh in Median Storage, #	0	-	0	-	-	0	Veh in Median Storage, #	-	-	0	-		0
Grade, %	0	-	0	-		0	Grade. %	0	-	0	-		C
Peak Hour Factor	100	100	100	100	100	100	Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	Heavy Vehicles, %	2	2	2	2	2	2
Nymt Flow	5	91	521	2		155	Mymt Flow	6	446	78	2	123	36
	-			_								0	
lajor/Minor	Minor1		Major1		Major2		Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	743	522	0	0	523	0	Conflicting Flow All	361	79	0	0	80	0
Stage 1	522	-	-	-	-	-	Stage 1	79	-	-	-	-	
Stage 2	221	-	-	-		-	Stage 2	282	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	Critical Hdwy	6.42	6.22	-	-	4.12	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	Critical Hdwy Stg 1	5.42	-	-	-		
Critical Hdwy Stg 2	5.42		-	-	-	-	Critical Hdwy Stg 2	5.42	-	-	-	-	
ollow-up Hdwy	3.518	3.318	-	-	2.218	-	Follow-up Hdwy	3.518	3.318	-	-	2.218	
ot Cap-1 Maneuver	383	555	-	-	1043	-	Pot Cap-1 Maneuver	638	981	-	-	1518	
Stage 1	595	-	-	-	-	-	Stage 1	944	-	-	-	-	
Stage 2	816	-	-	-	-	-	Stage 2	766	-	-	-	-	
Platoon blocked, %			-	-		-	Platoon blocked, %			-	-		
Nov Cap-1 Maneuver	371	555	-	-	1043	-	Mov Cap-1 Maneuver	585	981	-	-	1518	
Mov Cap-2 Maneuver	371	-	-	-	-	-	Mov Cap-2 Maneuver	585	-	-	-	-	
Stage 1	595	-	-	-	-	-	Stage 1	944	-	-	-	-	
Stage 2	790	-	-	-	-	-	Stage 2	702	-	-	-	-	
Approach	WB		NB		SB		Approach	WB		NB		SB	
HCM Control Delay, s	13.1		0		1.5		HCM Control Delay, s	11.9		0		5.9	
HCM LOS	В						HCM LOS	В					
Minor Lane/Major Mvmt	NBT N		SBT				Minor Lane/Major Mvmt	NBT		SBL SBT			
Capacity (veh/h)	-	011 1010	-				Capacity (veh/h)	-	0.2				
HCM Lane V/C Ratio	-	- 0.177 0.032	-				HCM Lane V/C Ratio	-					
HCM Control Delay (s)	-	- 13.1 8.6	-				HCM Control Delay (s)	-		7.6 0			
HCM Lane LOS	-	- B A	-				HCM Lane LOS	-	- B	A A			
HCM 95th %tile Q(veh)	-	- 0.6 0.1	-				HCM 95th %tile Q(veh)	-	- 2.6	0.3 -			

9/22/2016 Synchro 9 Report
Stantec Consulting Ltd. Page 4

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total PM

	٠	→	•	•	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	197	1628	40	901	235	58	106	127	
v/c Ratio	0.68	1.44	0.30	0.85	1.18	0.18	0.46	0.35	
Control Delay	20.6	826.2	11.5	29.6	415.9	27.3	51.7	13.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.6	826.2	11.5	29.6	415.9	27.3	51.7	13.8	
Queue Length 50th (m)	12.0	~527.1	2.2	160.2	~67.0	6.2	22.6	3.6	
Queue Length 95th (m)	#44.5	#708.5	6.9	#315.4	#134.6	20.9	46.2	26.0	
Internal Link Dist (m)		124.6		144.9		270.9		84.5	
Turn Bay Length (m)	120.1		130.1		79.9		37.5		
Base Capacity (vph)	303	1128	133	1080	199	320	230	368	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.65	1.44	0.30	0.83	1.18	0.18	0.46	0.35	

ntersection Summar

Queue shown is maximum after two cycles.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total PM

	•	→	•	•	←	•	1	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4		ሻ	1>		7	₽		ሻ	1>	
Traffic Volume (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
Future Volume (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4		4.5	6.4		5.8	5.8		5.8	5.8	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.99		1.00	0.93		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1695	1707		1695	1758		1695	1660		1695	1555	
Flt Permitted	0.13	1.00		0.06	1.00		0.62	1.00		0.72	1.00	
Satd. Flow (perm)	240	1707		99	1758		1113	1660		1283	1555	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
RTOR Reduction (vph)	0	12	0	0	3	0	0	22	0	0	90	C
Lane Group Flow (vph)	197	1616	0	40	898	0	235	36	0	106	37	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	85.6	77.2		75.8	71.9		21.2	21.2		21.2	21.2	
Effective Green, q (s)	85.6	77.2		75.8	71.9		21.2	21.2		21.2	21.2	
Actuated g/C Ratio	0.72	0.65		0.64	0.60		0.18	0.18		0.18	0.18	
Clearance Time (s)	4.5	6.4		4.5	6.4		5.8	5.8		5.8	5.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	285	1107		115	1062		198	295		228	277	
v/s Ratio Prot	c0.05	c0.95		0.01	0.51			0.02			0.02	
v/s Ratio Perm	0.44			0.21			c0.21			0.08		
v/c Ratio	0.69	1.46		0.35	0.85		1.19	0.12		0.46	0.14	
Uniform Delay, d1	18.3	20.9		27.8	19.1		48.9	41.1		43.8	41.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.3	832.9		1.8	6.7		386.6	0.8		6.8	1.0	
Delay (s)	25.6	853.8		29.7	25.8		435.5	41.9		50.6	42.2	
Level of Service	С	F		C	С		F	D		D	D	
Approach Delay (s)		764.4			26.0			357.6			46.0	
Approach LOS		F			С			F			D	
Intersection Summary												
HCM 2000 Control Delay			466.2	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.39	- 11	OIVI 2000	20V01 01	JOI VIOG					
Actuated Cycle Length (s)	adity ratio		119.0	9	um of los	timo (c)			16.7			
Intersection Capacity Utiliz	ation		139.3%		UIII OI IOS CU Level o				16.7 H			
Analysis Pariod (min)	auvii		133.370	IC	O LEVEL	JI JEI VICE			п			

Analysis Period (min) c Critical Lane Group

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

1.3

WBL

Stop

0

100

Minor1

850

253

597

6.42

5.42

5.42

331

789

550

313

313

789

520

WB

В

3.518

WBR

43

43

0

Stop

None

100

2

43

253

6.22

3.318

786

-

786

NBT NBRWBLn1 SBL SBT - 715 1309 -

- - 10.4 7.9

- - B A

- - 0.2 0.2

- 0.064 0.055

-

NBT NBR

250

250

0 0

0

0 0

100 100

2 2

- -

250 6

Free Free

- None

SBL SBT

72 453

72 453

0 0

- None

- 0

100 100

2 2

72 453

4.12 -

1309 -

1309 -

- -

SB

Free Free

250

256 0

2.218

Intersection

Int Delay, s/veh

Movement

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Mov Cap-2 Maneuver

Stage 2

HCM Control Delay, s HCM LOS

Minor Lane/Major Mvmt

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)
HCM Lane V/C Ratio

HCM Lane LOS

Stage 1

Approach

Platoon blocked, % Mov Cap-1 Maneuver

Follow-up Hdwy

Critical Hdwy

Sign Control

Grade, %

Mvmt Flow

Conflicting Peds, #/hr

Veh in Median Storage, #

3387 Cedarview Road 2022 Total PM

HCM 2010 TWSC 3: Cambrian Road & Borrisokane Road

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection							
Int Delay, s/veh 6	5.6						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Traffic Vol. veh/h	6	179		78	4	357	100
Future Vol, veh/h	6	179		78	4	357	100
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	
RT Channelized	-	None		-	None	-	None
Storage Length	0	-		-	-	-	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	100	100		100	100	100	100
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	6	179		78	4	357	100
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	894	80		0	0	82	0
Stage 1	80	-		-	-	-	-
Stage 2	814	-		-	-	-	-
Critical Hdwy	6.42	6.22		-	-	4.12	-
Critical Hdwy Stg 1	5.42	-		-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	2.218	-
Pot Cap-1 Maneuver	312	980		-	-	1515	-
Stage 1	943	-		-	-	-	-
Stage 2	436	-		-	-	-	-
Platoon blocked, %				-	-		-
Mov Cap-1 Maneuver	234	980		-	-	1515	-
Mov Cap-2 Maneuver	234			-	-		-
Stage 1	943	-		-	-	-	-
Stage 2	327	-		-	-	-	-
Approach	WB			NB		SB	
HCM Control Delay, s	10.1			0		6.3	
HCM LOS	В						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 888	1515	-			
HCM Lane V/C Ratio	-	- 0.208		-			
HCM Control Delay (s)	-	- 10.1	8.1	0			
HCM Lana LOS		D	Λ	^			

9/22/2016	Synchro 9 Report
Stantec Consulting Ltd.	Page 3

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 4

- - B A A

- - 0.8 0.9

3387 BORRISOKANE ROAD COMMUNITY TRANSPORTATION STUDY / TRANSPORTATION IMPACT STUDY

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.5 2022 TOTAL FUTURE CONDITIONS – TMP MODIFICATIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total AM with TMP Modifications

	•	-	•	•	•	•	†	~	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	69	614	122	25	1134	433	41	82	66	175	
v/c Ratio	0.40	0.43	0.17	0.16	0.85	0.79	0.06	0.12	0.25	0.45	
Control Delay	20.1	22.6	4.0	56.0	36.4	55.9	23.7	6.1	45.9	22.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.1	22.6	4.0	56.0	36.4	55.9	23.7	6.1	45.9	22.0	
Queue Length 50th (m)	7.2	49.1	0.0	2.7	114.0	46.1	5.5	0.0	12.6	12.3	
Queue Length 95th (m)	15.8	72.9	13.4	8.4	167.5	#85.6	15.7	13.0	31.5	44.3	
Internal Link Dist (m)		124.7			145.0		270.9			84.5	
Turn Bay Length (m)	120.0			130.0		80.0		25.0	37.5		
Base Capacity (vph)	175	1765	848	158	1706	638	730	669	259	393	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.39	0.35	0.14	0.16	0.66	0.68	0.06	0.12	0.25	0.45	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total AM with TMP Modifications

	٠	→	•	•	←	•	1	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† †	7	ሻሻ	† 1>		ሻሻ	†	7	ሻ	1>	
Traffic Volume (vph)	69	614	122	25	1053	81	433	41	82	66	13	162
Future Volume (vph)	69	614	122	25	1053	81	433	41	82	66	13	162
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	3390	1517	3288	3354		3288	1784	1517	1695	1537	
Flt Permitted	0.10	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.73	1.00	
Satd. Flow (perm)	171	3390	1517	3288	3354		3288	1784	1517	1303	1537	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	69	614	122	25	1053	81	433	41	82	66	13	162
RTOR Reduction (vph)	0	0	71	0	5	0	0	0	49	0	88	0
Lane Group Flow (vph)	69	614	51	25	1129	0	433	41	33	66	87	0
Turn Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2						4	8		
Actuated Green, G (s)	50.5	45.6	45.6	2.8	43.5		18.0	43.9	43.9	21.4	21.4	
Effective Green, g (s)	50.5	45.6	45.6	2.8	43.5		18.0	43.9	43.9	21.4	21.4	
Actuated g/C Ratio	0.46	0.42	0.42	0.03	0.40		0.17	0.40	0.40	0.20	0.20	
Clearance Time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	147	1418	634	84	1338		542	718	610	255	301	
v/s Ratio Prot	c0.02	0.18		0.01	c0.34		c0.13	0.02			c0.06	
v/s Ratio Perm	0.20		0.03						0.02	0.05		
v/c Ratio	0.47	0.43	0.08	0.30	0.84		0.80	0.06	0.05	0.26	0.29	
Uniform Delay, d1	20.7	22.5	19.1	52.1	29.7		43.8	19.9	19.9	37.1	37.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.4	0.2	0.1	2.0	5.3		8.6	0.2	0.2	2.5	2.4	
Delay (s)	23.1	22.7	19.1	54.1	35.0		52.3	20.0	20.0	39.5	39.7	
Level of Service	С	С	В	D	С		D	С	С	D	D	
Approach Delay (s)		22.2			35.4			45.2			39.7	
Approach LOS		С			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			33.9	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.68									
Actuated Cycle Length (s)			109.0	Sı	um of lost	time (s)			21.2			
Intersection Capacity Utiliz	ation		79.6%	IC	U Level	of Service			D			
Analysis Period (min)			60									

Analysis Period (min) c Critical Lane Group

Queue shown is maximum after two cycles.

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total PM with TMP Modifications

	•	-	•	•	-	1	†	~	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	197	1160	468	40	901	235	31	27	106	127	
v/c Ratio	0.65	0.77	0.50	0.22	0.81	0.60	0.05	0.04	0.37	0.30	
Control Delay	25.7	28.7	3.7	53.4	37.0	51.1	24.2	0.1	43.0	12.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.7	28.7	3.7	53.4	37.0	51.1	24.2	0.1	43.0	12.9	
Queue Length 50th (m)	20.2	107.1	0.0	4.0	82.5	23.2	3.9	0.0	18.4	2.9	
Queue Length 95th (m)	46.5	157.8	30.1	11.6	129.4	44.6	13.3	0.0	45.9	26.0	
Internal Link Dist (m)		124.6			144.9		270.9			84.5	
Turn Bay Length (m)	120.1			130.1		79.9		25.0	37.5		
Base Capacity (vph)	366	1995	1085	179	1607	476	681	649	287	424	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.58	0.43	0.22	0.56	0.49	0.05	0.04	0.37	0.30	
Intersection Summary											

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2022 Total PM with TMP Modifications

	۶	→	•	•	←	•	1	†	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	1/2	† ↑		1/2	↑	7	7	4	
Traffic Volume (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
Future Volume (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.87	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	3390	1517	3288	3339		3288	1784	1517	1695	1555	
Flt Permitted	0.14	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.74	1.00	
Satd. Flow (perm)	252	3390	1517	3288	3339		3288	1784	1517	1315	1555	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	197	1160	468	40	811	90	235	31	27	106	18	109
RTOR Reduction (vph)	0	0	265	0	8	0	0	0	17	0	86	0
Lane Group Flow (vph)	197	1160	203	40	893	0	235	31	10	106	41	0
Turn Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2						4	8		
Actuated Green, G (s)	52.6	45.0	45.0	3.1	35.9		12.1	38.9	38.9	22.3	22.3	
Effective Green, g (s)	52.6	45.0	45.0	3.1	35.9		12.1	38.9	38.9	22.3	22.3	
Actuated g/C Ratio	0.51	0.43	0.43	0.03	0.35		0.12	0.38	0.38	0.22	0.22	
Clearance Time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	297	1471	658	98	1155		383	669	569	282	334	
v/s Ratio Prot	c0.08	c0.34		0.01	0.27		c0.07	0.02			0.03	
v/s Ratio Perm	0.26		0.13						0.01	c0.08		
v/c Ratio	0.66	0.79	0.31	0.41	0.77		0.61	0.05	0.02	0.38	0.12	
Uniform Delay, d1	17.9	25.3	19.2	49.4	30.3		43.6	20.6	20.4	34.8	32.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	5.6	3.0	0.3	2.8	3.4		2.9	0.1	0.1	3.8	0.8	
Delay (s)	23.6	28.2	19.5	52.2	33.6		46.5	20.7	20.4	38.6	33.6	
Level of Service	С	С	В	D	С		D	С	С	D	С	
Approach Delay (s)		25.5			34.4			41.4			35.9	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			30.2	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			103.7	Si	um of lost	t time (s)			21.2			
Intersection Capacity Utiliz	ation		71.1%	IC	U Level	of Service			С			
Analysis Period (min)			60									

c Critical Lane Group

3387 BORRISOKANE ROAD COMMUNITY TRANSPORTATION STUDY / TRANSPORTATION IMPACT STUDY

Appendix B INTERSECTION PERFORMANCE WORKSHEETS SEPTEMBER 2016

B.6 2027 ULTIMATE CONDITIONS

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2027 Ultimate AM

	•	-	•	•	-	•	†	~	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	76	675	167	23	1247	560	44	63	73	192	
v/c Ratio	0.50	0.45	0.22	0.15	0.89	0.91	0.06	0.10	0.32	0.55	
Control Delay	25.8	23.3	3.7	57.6	40.1	71.8	24.2	5.1	49.2	30.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.8	23.3	3.7	57.6	40.1	71.8	24.2	5.1	49.2	30.5	
Queue Length 50th (m)	8.2	56.7	0.0	2.7	134.5	67.4	6.5	0.0	15.4	20.8	
Queue Length 95th (m)	#22.3	83.6	16.1	7.9	#213.3	#120.8	16.1	9.6	34.1	54.8	
Internal Link Dist (m)		124.7			145.0		270.9			84.5	
Turn Bay Length (m)	120.0			130.0		80.0		25.0	37.5		
Base Capacity (vph)	152	1641	820	150	1588	635	717	653	226	346	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.50	0.41	0.20	0.15	0.79	0.88	0.06	0.10	0.32	0.55	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2027 Ultimate AM

	•	-	•	•	—	•	•	†	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	34	† †	ř	ሻሻ	† 1>		ሻሻ	†	7	7	1≽	
Traffic Volume (vph)	76	675	167	23	1158	89	560	44	63	73	14	178
Future Volume (vph)	76	675	167	23	1158	89	560	44	63	73	14	178
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	3390	1517	3288	3354		3288	1784	1517	1695	1536	
Flt Permitted	0.08	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.73	1.00	
Satd. Flow (perm)	144	3390	1517	3288	3354		3288	1784	1517	1300	1536	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	76	675	167	23	1158	89	560	44	63	73	14	178
RTOR Reduction (vph)	0	0	95	0	5	0	0	0	38	0	79	0
Lane Group Flow (vph)	76	675	72	23	1242	0	560	44	25	73	113	0
Turn Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2						4	8		
Actuated Green, G (s)	54.1	49.6	49.6	2.9	48.0		21.1	45.3	45.3	19.7	19.7	
Effective Green, g (s)	54.1	49.6	49.6	2.9	48.0		21.1	45.3	45.3	19.7	19.7	
Actuated g/C Ratio	0.47	0.43	0.43	0.03	0.42		0.18	0.40	0.40	0.17	0.17	
Clearance Time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	128	1468	657	83	1406		605	705	600	223	264	
v/s Ratio Prot	c0.02	0.20		0.01	c0.37		c0.17	0.02			c0.07	
v/s Ratio Perm	0.26		0.05						0.02	0.06		
v/c Ratio	0.59	0.46	0.11	0.28	0.88		0.93	0.06	0.04	0.33	0.43	
Uniform Delay, d1	22.6	23.0	19.3	54.8	30.7		45.9	21.4	21.3	41.6	42.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	7.4	0.2	0.1	1.8	7.6		26.9	0.2	0.1	3.9	5.1	
Delay (s)	30.0	23.2	19.4	56.6	38.3		72.8	21.6	21.4	45.5	47.5	
Level of Service	С	С	В	Е	D		E	С	С	D	D	
Approach Delay (s)		23.1			38.6			64.6			46.9	
Approach LOS		С			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			40.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)			114.5		um of los				21.2			
Intersection Capacity Utiliz	ation		88.1%	IC	U Level	of Service			Е			
Analysis Period (min)			60									

Analysis Period (min) c Critical Lane Group

Queue shown is maximum after two cycles.

1.8

WBL

Stop

0

100

Minor1

814

577 237

6.42

5.42

5.42

347

562 802

336

336

562

775

WB

В

3.518

WBR

91

91

0

Stop

None

100

2

91

577

6.22

3.318

516

516

-

NBT NBRWBLn1 SBL SBT

- 0.191 0.033

- - 502 996

- - 13.9 8.7

- - B A

- - 0.7 0.1

Intersection

Movement

Sign Control

Grade, %

Mvmt Flow

Int Delay, s/veh

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2 Critical Hdwy

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1 Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 2

HCM Control Delay, s HCM LOS

Minor Lane/Major Mvmt

Capacity (veh/h)

HCM Lane LOS

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Stage 1

Approach

Follow-up Hdwy

Conflicting Peds, #/hr

Veh in Median Storage, #

3387 Cedarview Road 2027 Ultimate AM

HCM 2010 TWSC 3: Borrisokane Road & Cambrian Road

3387 Cedarview Road 2027 Ultimate AM

Intersection							
	9.7						
,,							
Mayamant	WBL	WBR		NDT	NBR	CDI	CDT
Movement				NBT		SBL	SBT
Traffic Vol, veh/h	6	494		84	2	137	39
Future Vol, veh/h	6	494		84	2	137	39
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	
RT Channelized	-	None		-	None	-	
Storage Length	0	-		-	-	-	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	100	100		100	100	100	100
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	6	494		84	2	137	39
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	398	85		0	0	86	0
Stage 1	85	-		-	-	-	-
Stage 2	313						
Critical Hdwy	6.42	6.22			- :	4.12	
Critical Hdwy Stg 1	5.42	0.22		_		4.12	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	607	974		-		1510	
Stage 1	938	314		_		1010	
Stage 2	741			-	- 1		-
Platoon blocked. %	741						
Mov Cap-1 Maneuver	551	974		-		1510	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	551	9/4				1510	-
Stage 1	938	-				-	-
Stage 1 Stage 2	938 672	-		-			-
Stage 2	0/2	-		-	-	-	-
Approach	WB			NB		SB	
HCM Control Delay, s	12.7			0		5.9	
HCM LOS	В						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 965	1510	-			
HCM Lane V/C Ratio	-	- 0.518		-			
HCM Control Delay (s)	-	- 12.7	7.6	0			
HCM Lane LOS		- B	Α.	A			
HCM 95th %tile Q(veh)	_	- 3.2	0.3	-			
3001 70010 ((7011)		0.2	0.0				

9/22/2016	Synchro 9 Report
Stantec Consulting Ltd.	Page 3

NBT NBR

576

576

0 0

0

0 0

100 100

2 2

- -

NB

576 2

Free Free

- None

SBL SBT

33 171

33 171

0 0

- None

- 0

100 100

2 2

33 171

Free Free

250

578 0

4.12

2.218

996 -

996 -

- -

SB

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 4

1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2027 Ultimate PM

	•	-	•	•	-	1	†	/	>	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	227	1334	512	43	1037	259	33	29	122	144	
v/c Ratio	0.76	0.81	0.51	0.27	0.84	0.68	0.05	0.05	0.50	0.37	
Control Delay	38.1	27.9	3.6	57.5	37.1	56.7	27.7	0.1	51.0	13.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.1	27.9	3.6	57.5	37.1	56.7	27.7	0.1	51.0	13.8	
Queue Length 50th (m)	25.5	126.9	1.4	4.6	98.1	27.2	4.7	0.0	24.0	3.4	
Queue Length 95th (m)	#73.2	188.3	33.1	12.4	153.5	#55.3	14.7	0.0	#60.0	28.8	
Internal Link Dist (m)		124.6			144.9		270.9			84.5	
Turn Bay Length (m)	120.1			130.1		79.9		25.0	37.5		
Base Capacity (vph)	347	2013	1103	157	1621	424	617	599	245	392	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.65	0.66	0.46	0.27	0.64	0.61	0.05	0.05	0.50	0.37	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

9/22/2016 Synchro 9 Report Stantec Consulting Ltd. Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 1: Borrisokane Road & Strandherd Drive

3387 Cedarview Road 2027 Ultimate PM

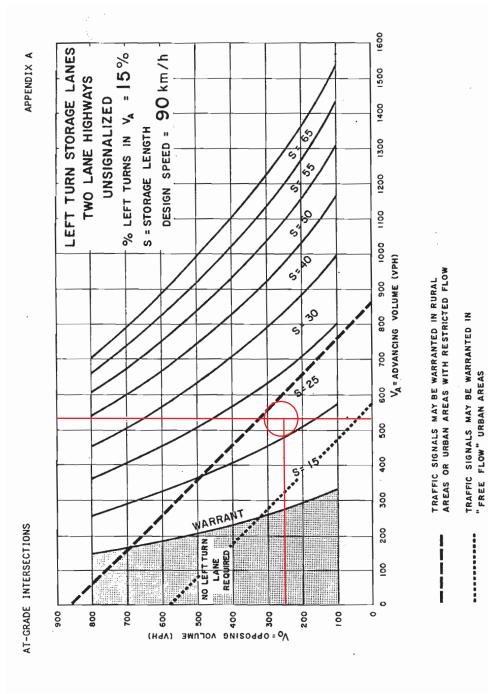
Future Volume (vph)		•	-	•	•	-	•	4	†	~	>	ļ	1
Traffic Volume (vph)	ement	EBL	EBT	EBR	WBL	WBT	WBR		NBT	NBR	SBL	SBT	SBR
Future Volume (vph)	Configurations	*	† †	7	ሻሻ	† ⊅		ሻሻ	†	7	ሻ	î»	
Ideal Flow (vphpl)	ic Volume (vph)	227	1334	512	43	933	104	259	33	29	122	19	125
Total Lost time (s)	re Volume (vph)	227	1334	512	43	933	104	259	33	29	122	19	125
Lane Util. Factor 1.00 0.95 1.00 0.97 0.95 0.97 1.00 1.00 1.00 Frt 1.00 1.00 1.00 0.85 1.00 0.98 1.00 1.00 1.00 0.85 1.00 0.98 1.00 1.00 0.95 1.00 1.00 0.85 1.00 0.95 1.00 0.95 1.00 1.00 0.85 1.00 0.95 1.00 0.95 1.00 1.00 0.85 1.00 0.95 1.00 0.95 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	l Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Frt Protected 0.95 1.00 0.85 1.00 0.98 1.00 1.00 0.85 FIt Protected 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 III Protected 0.11 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 III Protected 0.11 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 III Protected 0.11 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 III Protected 0.11 1.00 1.00 1.00 1.00 1.00 1.00 1.0	I Lost time (s)	4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
Fit Protected	Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	1.00	1.00	1.00	1.00	
Satd. Flow (prot) 1695 3390 1517 3288 3339 3288 1784 1517 FIF Permitted 0.11 1.00 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 1.00 1.00 0.95 1.00 0.95 1.00 1.		1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85	1.00	0.87	
Fit Permitted	rotected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm) 201 3390 1517 3288 3339 3288 1784 1517 Peak-hour factor, PHF 1.00	. Flow (prot)	1695	3390	1517	3288	3339		3288	1784	1517	1695	1552	
Peak-hour factor, PHF 1.00	ermitted	0.11	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.74	1.00	
Adj. Flow (vph) 227 1334 512 43 933 104 259 33 29 RTOR Reduction (vph) 0 0 260 0 7 0 0 0 19 Lane Group Flow (vph) 227 1334 252 43 1030 0 259 33 10 Turn Type pm+pt NA Perm Prot NA Prot NA Prot NA Permitted Phases 2 2 1 6 7 4 Permitted Phases 2 2 2 43 1030 0 28 36.6 3	. Flow (perm)	201	3390	1517	3288	3339		3288	1784	1517	1313	1552	
Adj. Flow (vph) 227 1334 512 43 933 104 259 33 29 RTOR Reduction (vph) 0 0 260 0 7 0 0 0 19 Lane Group Flow (vph) 227 1334 252 43 1030 0 259 33 10 Turn Type pm+pt NA Perm Prot NA Prot NA Prot NA Permitted Phases 2 2 1 6 7 4 Permitted Phases 2 2 2 43 1030 0 28 36.6 3		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Group Flow (vph) 227 1334 252 43 1030 0 259 33 10 Turn Type pm+pt NA Perm Prot NA Prot NA Perm Protected Phases 5 2 1 6 7 4 Permitted Phases 2 2 4 4 4 4 5 6 36.6 <td< td=""><td>Flow (vph)</td><td>227</td><td>1334</td><td>512</td><td>43</td><td>933</td><td>104</td><td>259</td><td>33</td><td>29</td><td>122</td><td>19</td><td>125</td></td<>	Flow (vph)	227	1334	512	43	933	104	259	33	29	122	19	125
Lane Group Flow (vph) 227 1334 252 43 1030 0 259 33 10 Turn Type pm+pt NA Perm Prot NA Prot NA Perm Protected Phases 5 2 1 6 7 4 Permitted Phases 2 2 4 4 4 4 5 6 36.6 <td< td=""><td>R Reduction (vph)</td><td>0</td><td>0</td><td>260</td><td>0</td><td>7</td><td>0</td><td>0</td><td>0</td><td>19</td><td>0</td><td>102</td><td>0</td></td<>	R Reduction (vph)	0	0	260	0	7	0	0	0	19	0	102	0
Protected Phases 5 2 1 6 7 4 Permitted Phases 2 2 2 Actuated Green, G (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Effective Green, g (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Actuated g/C Ratio 0.55 0.48 0.48 0.03 0.38 0.11 0.34 0.34 Clearance Time (s) 4.5 6.4 6.4 4.5 6.4 4.5 5.8 5.8 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			1334	252		1030	0	259	33	10	122	42	0
Protected Phases 2 2 2 1 6 7 4 Permitted Phases 2 2 2 2 2 3.6.6 36.6 Effective Green, g (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Effective Green, g (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Actuated g/C Ratio 0.55 0.48 0.48 0.03 0.38 0.11 0.34 0.34 Clearance Time (s) 4.5 6.4 6.4 4.5 6.4 4.5 5.8 5.8 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Type	pm+pt	NA	Perm	Prot	NA		Prot	NA	Perm	Perm	NA	
Permitted Phases 2 2 2 4 4 4 Actuated Green, G (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6			2		1	6		7	4			8	
Effective Green, g (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Actuated g/C Ratio 0.55 0.48 0.48 0.03 0.38 0.11 0.34 0.34 Clearance Time (s) 4.5 6.4 6.4 4.5 6.4 4.5 5.8 5.1 5.0				2						4	8		
Effective Green, g (s) 58.9 51.6 51.6 2.8 41.2 12.3 36.6 36.6 Actuated g/C Ratio 0.55 0.48 0.48 0.03 0.38 0.11 0.34 0.34 Clearance Time (s) 4.5 6.4 4.5 6.4 4.5 5.8 5.8 Vehicle Extension (s) 3.0	ated Green, G (s)	58.9	51.6	51.6	2.8	41.2		12.3	36.6	36.6	19.8	19.8	
Actuated g/C Ratio 0.55 0.48 0.48 0.03 0.38 0.11 0.34 0.34 Clearance Time (s) 4.5 6.4 6.4 4.5 6.4 4.5 5.8 5.8 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			51.6	51.6					36.6	36.6	19.8	19.8	
Clearance Time (s) 4.5 6.4 6.4 4.5 6.4 4.5 5.8 5.8 Vehicle Extension (s) 3.0 <		0.55	0.48	0.48	0.03	0.38		0.11	0.34	0.34	0.18	0.18	
Lane Grp Cap (vph) 293 1624 726 85 1277 375 606 515 v/s Ratio Prot c0.09 c0.39 0.01 0.31 c0.08 0.02 v/s Ratio Perm 0.33 0.17 0.01 0.01 0.01 0.01 0.05 0.02 V/c Ratio 0.77 0.82 0.35 0.51 0.81 0.69 0.05 0.02 Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00		4.5	6.4	6.4	4.5	6.4		4.5	5.8	5.8	5.8	5.8	
v/s Ratio Prot c0.09 c0.39 0.01 0.31 c0.08 0.02 v/s Ratio Perm 0.33 0.17 0.01 0.81 0.69 0.05 0.01 v/c Ratio 0.77 0.82 0.35 0.51 0.81 0.69 0.05 0.02 Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00	cle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
v/s Ratio Prof c0.09 c0.39 0.01 0.31 c0.08 0.02 v/s Ratio Perm 0.33 0.17 0.01 0.81 0.69 0.05 0.02 V/c Ratio 0.77 0.82 0.35 0.51 0.81 0.69 0.05 0.02 Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00	Grp Cap (vph)	293	1624	726	85	1277		375	606	515	241	285	
v/s Ratio Perm 0.33 0.17 0.82 0.17 0.81 0.69 0.05 0.01 v/c Ratio 0.77 0.82 0.35 0.51 0.81 0.69 0.05 0.02 0.02 Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00		c0.09	c0.39		0.01	0.31		c0.08	0.02			0.03	
v/c Ratio 0.77 0.82 0.35 0.51 0.81 0.69 0.05 0.02 Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00				0.17						0.01	c0.09		
Uniform Delay, d1 21.7 24.1 17.5 51.8 29.7 45.9 23.9 23.6 Progression Factor 1.00 <			0.82		0.51	0.81		0.69	0.05		0.51	0.15	
Progression Factor 1.00 <td></td> <td>39.6</td> <td>36.9</td> <td></td>											39.6	36.9	
Incremental Delay, d2 13.1 3.6 0.3 4.7 3.9 5.6 0.2 0.1											1.00	1.00	
Delay (s) 34.7 27.7 17.8 56.5 33.6 51.4 24.1 23.7 Level of Service C C B E C D C C Approach Delay (s) 26.0 34.5 46.1			3.6								7.6	1.1	
Level of Service C C B E C D C C Approach Delay (s) 26.0 34.5 46.1		34.7	27.7	17.8	56.5	33.6		51.4	24.1	23.7	47.1	38.0	
Approach Delay (s) 26.0 34.5 46.1											D	D	
		-		_				_	46.1	-	_	42.2	
			С			С			D			D	
Intersection Summary	section Summary												
HCM 2000 Control Delay 31.4 HCM 2000 Level of Service C				31.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio 0.75		pacity ratio											
Actuated Cycle Length (s) 107.7 Sum of lost time (s) 21.2					Sı	um of los	t time (s)			21.2			
Intersection Capacity Utilization 78.7% ICU Level of Service D													
Analysis Period (min) 60				60									

Analysis Period (min) c Critical Lane Group

Queue shown is maximum after two cycles.

3387 Cedarview Road 2027 Ultimate PM

Intersection							
	1.2						
,							
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Traffic Vol, veh/h	3	43		278	6	72	502
Future Vol. veh/h	3	43		278	6	72	502
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None		None
Storage Length	0	140110			-	250	-
Veh in Median Storage, #	0	_		0	_	-	0
Grade, %	0	-		0		-	0
Peak Hour Factor	100	100		100	100	100	100
Heavy Vehicles, %	2	2		2	2	2	2
Mymt Flow	3	43		278	6	72	502
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	927	281		0	0	284	0
Stage 1	281	201		-	-	204	-
Stage 2	646			-			
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22				4.12	
Critical Hdwy Stg 2	5.42						-
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	298	758				1278	
Stage 1	767	700				1270	
Stage 2	522	-		-		-	
Platoon blocked, %	OLL				-		-
Mov Cap-1 Maneuver	281	758		-	_	1278	_
Mov Cap-2 Maneuver	281	-				1210	
Stage 1	767				-		-
Stage 2	493						
	.50						
Approach	WB			NB		SB	
HCM Control Delay, s	10.7			0		1	
HCM LOS	10.7 B			U			
I IOWI LUO	ь						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 682	1278	-			
HCM Lane V/C Ratio	-	- 0.067		-			
HCM Control Delay (s)	-	- 10.7	8	-			
HCM Lane LOS	-	- B	Α	-			
HCM 95th %tile Q(veh)	-	- 0.2	0.2	-			


Intersection							
	6.8						
, , , , ,							
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Traffic Vol, veh/h	6	200		84	4	398	107
Future Vol. veh/h	6	200		84	4	398	107
Conflicting Peds, #/hr	0	200		04	0	390	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	Stop -	None		-		riee -	
Storage Length	0	NOTIE			None		NOHE -
Veh in Median Storage, #	-			0	-		0
Grade. %	0			0			0
Peak Hour Factor	100	100		100	100	100	100
Heavy Vehicles, %	2	2		2	2	2	2
Mymt Flow	6	200		84	4	398	107
IVIVIIIL FIOW	0	200		04	4	390	107
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	989	86		0	0	88	0
Stage 1	86	-		-	-	-	-
Stage 2	903	-		-	-	-	-
Critical Hdwy	6.42	6.22		-	-	4.12	-
Critical Hdwy Stg 1	5.42	-		-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	2.218	-
Pot Cap-1 Maneuver	274	973		-	-	1508	-
Stage 1	937	-		-	-	-	-
Stage 2	396	-		-	-	-	-
Platoon blocked, %				-	-		-
Mov Cap-1 Maneuver	197	973		-	-	1508	-
Mov Cap-2 Maneuver	197	-		-	-	-	-
Stage 1	937	-		-	-	-	-
Stage 2	285	-		-	-	-	-
Approach	WB			NB		SB	
HCM Control Delay, s	10.4			0		6.5	
HCM LOS	10.4 B			0		0.0	
I IOW LOG	Б						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	- 1101	- 873	1508	-			
HCM Lane V/C Ratio		- 0.236					
HCM Control Delay (s)		- 10.4	8.2	0			
HCM Lane LOS		- 10.4 - B	0.2 A	A			
HCM 95th %tile Q(veh)		- 0.9	1.1	-			
HOW Sour Joule Q(VeII)	-	- 0.9	1.1	-			

3387 BORRISOKANE ROAD COMMUNITY TRANSPORTATION STUDY / TRANSPORTATION IMPACT STUDY

Appendix C AUXILIARY LANE WARRANTS SEPTEMBER 2016

Appendix C AUXILIARY LANE WARRANTS

