APPENDICES

Appendix A : Watermain Hydraulic Analysis May 10, 2018

Appendix A : WATERMAIN HYDRAULIC ANALYSIS

Thiffault, Dustin

From:	Alemany, Kevin
Sent:	Tuesday, February 27, 2018 9:34 AM
То:	Thiffault, Dustin
Cc:	Moroz, Peter
Subject:	RE: Minto Mahogany

Hi Dustin,

Max P

Min P

Ρ

Ρ

Here are the build out boundary conditions prior to MWL Phase 2:

w Eastman and Potter upgraded to 305 and Manotick Main 305

w NIL & MWL1

w/o MWL2

		HGL (m)	Q (L/s)						
	BC#1 (Potter)	BC#2 (Manotick Main)	BC#1 (Potter)	BC#2 (Manotick Main)					
AVDY = 15.96L/s	146.0	146.0	N/A	N/A					
PKHR = 85.13L/s	139.3	139.2	N/A	N/A					
MXDY = 38.95L/s+ FF167L/s	109.6	108.7	129.8	76.2					
MXDY = 38.95L/s+ FF133L/s	119.1	118.5	108.4	63.6					

Regards, Kevin

Kevin Alemany

M.A.Sc., P.Eng. Principal, Water, Regional Discipline Leader

Direct: (613) 724-4091 Mobile: (613) 292-4226 Fax: (613) 722-2799

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 CA

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Thiffault, Dustin
Sent: Thursday, February 22, 2018 10:31 AM
To: Alemany, Kevin <kevin.alemany@stantec.com>
Cc: Moroz, Peter <peter.moroz@stantec.com>
Subject: Minto Mahogany

Hi Kevin,

I believe Peter mentioned to you that Minto was looking to expand on their interim watermain analysis to show a what-if scenario demonstrating full buildout of the subdivision prior to construction of the MWL Phase 2. We are hoping to get yet another boundary condition from your model considering the ultimate buildout demands below:

AVDY = 15.96L/s PKHR = 85.13L/s MXDY = 38.95L/s + FF167L/s MXDY = 38.95L/s + FF133L/s

Thanks for all your help,

Dustin Thiffault

P. Eng. Project Engineer

Direct: (613) 724-4385 Fax: (613) 722-2799

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 CA

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Stantec Project #: 160499000 Project Name: FUS Protocol Test Drive Date: 10/5/2018 Fire Flow Calculation #: 1 Description: Townhomes

Notes: 900sq. Ft. Townhouse row to max 2 units. 2hr fire separations between each 2 units for larger blocks.

Step	Task			Value Used	Req'd Fire Flow (L/min)					
1	Determine Type of Construction			1.5	-					
~	Determine Ground Floor Area of One Unit	-								
2	Determine Number of Adjoining Units		Includes a	idjacent wo	od frame stru	ctures separ	ated by 3m or less	2	-	
3	Determine Height in Storeys		Does not	t include floo	ors >50% belo	w grade or o	open attic space	2	-	
4	Determine Required Fire Flow		(1	F = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	6000	
5	Determine Occupancy Charge				Limited Com	bustible		-15%	5100	
					None	•		0%		
4				0%	0					
°	Delemine Spinkler Reduction			0%	0					
				0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-	
		North	0 to 3	15	2	0-30	Ordinary or Fire Resistive (Blank Wall)	0%		
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	6.2	2	0-30	Wood Frame or Non-Combustible	12%	1887	
		South	3.1 to 10	15	2	0-30	Wood Frame or Non-Combustible	17%	1007	
		West	20.1 to 30	6.2	2	0-30	Wood Frame or Non-Combustible	8%		
			Т	otal Require	d Fire Flow in	L/min, Roun	ded to Nearest 1000L/min		7000	
8	8 Determine Final Required Fire Flow -	Total Required Fire Flow in L/s								
		Required Duration of Fire Flow (hrs)								
			Required Volume of Fire Flow (m³)							

Stantec Project #: 160499000 Project Name: FUS Protocol Test Drive Date: 10/5/2018 Fire Flow Calculation #: 2 Description: Townhomes

Notes: 900sq. Ft. Townhouse row to max 4 units. 2hr fire separations between each 4 units for larger blocks.

Step	Task			Value Used	Req'd Fire Flow (L/min)					
1	Determine Type of Construction			1.5	-					
2	Determine Ground Floor Area of One Unit				-			83.6	-	
2	Determine Number of Adjoining Units		Includes a	ated by 3m or less	4	-				
3	Determine Height in Storeys		Does not	include floo	ors >50% belc	w grade or a	open attic space	2	-	
4	Determine Required Fire Flow		(F	= = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	9000	
5	Determine Occupancy Charge				Limited Com	bustible		-15%	7650	
					None	•		0%		
4				0%	0					
0				0%	0					
				0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-	
		North	0 to 3	15	2	0-30	Ordinary or Fire Resistive (Blank Wall)	0%		
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	12.4	2	0-30	Wood Frame or Non-Combustible	12%	2931	
		South	3.1 to 10	15	2	0-30	Wood Frame or Non-Combustible	17%	2031	
		West	20.1 to 30	12.4	2	0-30	Wood Frame or Non-Combustible	8%		
				otal Require	d Fire Flow in	L/min, Roun	ded to Nearest 1000L/min		10000	
	Determine Final Required Fire Flow	Total Required Fire Flow in L/s								
3	Belefining finds keybiled file flow			2.00						
			Required Volume of Fire Flow (m ³)							

Stantec Project #: 160499000 Project Name: FUS Protocol Test Drive Date: 10/5/2018 Fire Flow Calculation #: 3 Description: Single Family Home

Notes: 900sq. Ft. Townhouse row to max 4 units.

Step	Task	Notes							Req'd Fire Flow (L/min)
1	Determine Type of Construction			1.5	-				
~	Determine Ground Floor Area of One Unit	-				83.6	-		
2	Determine Number of Adjoining Units		Includes a	4	-				
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or c	pen attic space	2	-
4	Determine Required Fire Flow		(F	= = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	9000
5	Determine Occupancy Charge				-15%	7650			
				0%					
4				0%	0				
°	Delemine spinkler keduciion			0%					
				0%					
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	3.1 to 10	15	2	0-30	Wood Frame or Non-Combustible	17%	
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	12.4	2	0-30	Wood Frame or Non-Combustible	12%	4131
		South	3.1 to 10	15	2	0-30	Wood Frame or Non-Combustible	17%	4101
		West	20.1 to 30	12.4	2	0-30	Wood Frame or Non-Combustible	8%	
			Ţ	otal Require	d Fire Flow in	L/min, Round	led to Nearest 1000L/min		12000
	8 Determine Final Required Fire Flow	Total Required Fire Flow in L/s							
Ů		Required Duration of Fire Flow (hrs)							
					Required V	olume of Fire	Flow (m ³)		1800

Stantec Project #: 160499000 Project Name: FUS Protocol Test Drive Date: 10/5/2018 Fire Flow Calculation #: 4 Description: Single Family Home

Notes: 1500sq.ft. floorplate

Step	Task			Value Used	Req'd Fire Flow (L/min)													
1	Determine Type of Construction			1.5	-													
2	Determine Ground Floor Area of One Unit	-													-			
2	Determine Number of Adjoining Units		Includes c	ated by 3m or less	1	-												
3	Determine Height in Storeys		Does not	t include flo	ors >50% belo	w grade or c	open attic space	2	-									
4	Determine Required Fire Flow		(1	F = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	6000									
5	Determine Occupancy Charge				-15%	5100												
					None	•		0%										
,	6 Determine Sprinkler Reduction			0%	0													
°				0%														
				0%														
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-									
		North	3.1 to 10	14	2	0-30	Wood Frame or Non-Combustible	17%										
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	10	2	0-30	Wood Frame or Non-Combustible	12%	2754									
		South	3.1 to 10	14	2	0-30	Wood Frame or Non-Combustible	17%	27.54									
		West	20.1 to 30	10	2	0-30	Wood Frame or Non-Combustible	8%										
			Т	otal Require	d Fire Flow in	L/min, Round	ded to Nearest 1000L/min		8000									
8	Determine Final Required Fire Flow	Total Required Fire Flow in L/s																
		Required Duration of Fire Flow (hrs)																
			Required Volume of Fire Flow (m ³)															

Stantec Project #: 160499000 Project Name: FUS Protocol Test Drive Date: 10/5/2018 Fire Flow Calculation #: 5 Description: School

Notes: 4500sq.m. Floorplate

Step	Task			Value Used	Req'd Fire Flow (L/min)				
1	Determine Type of Construction			1	-				
	Determine Ground Floor Area of One Unit	-					4500	-	
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or c	ppen attic space	1	-
4	Determine Required Fire Flow		(1	= = 220 x C x	A ^{1/2}). Round	to nearest 10	000 L/min	-	15000
5	Determine Occupancy Charge				Combus	tible		0%	15000
					Conforms to	NFPA 13		-30%	
4	6 Determine Sprinkler Reduction			-10%	-6000				
°				0%	-0000				
				100%					
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	> 45	67.1	1	61-90	Wood Frame or Non-Combustible	0%	
7	Determine Increase for Exposures (Max. 75%)	East	> 45	67.1	1	61-90	Wood Frame or Non-Combustible	0%	0
		South	> 45	67.1	1	61-90	Wood Frame or Non-Combustible	0%	0
		West	> 45	67.1	1	61-90	Wood Frame or Non-Combustible	0%	
			Т	otal Require	d Fire Flow in	L/min, Round	ded to Nearest 1000L/min		9000
8	Determine Final Required Fire Flow			150.0					
Ŭ				2.00					
					Required V	olume of Fire	Flow (m ³)		1080

Appendix B : Sanitary Sewer Calculations May 10, 2018

Appendix B : SANITARY SEWER CALCULATIONS

		SUBDIVISIO	on: to Mahoga	any Phase	es 2-4				SANIT DES	ARY S	SEWER HEET	२											DESIGN P	ARAMETERS											
	_	DATE: REVISION	N:	9/5/2	2018			16041014	(Ci	ty of Otta	iwa)				MAX PEAK F MIN PEAK F PEAKING FA	ACTOR (RES.) ACTOR (RES.) ACTOR (INDUS)= = :TRIAL):	4.0 2.0 2.4		AVG. DAILY COMMERCI INDUSTRIAL	FLOW / PERS AL . (HEAVY)	ON	280 28,000 55,000	l/p/day l/ha/day l/ha/day		MINIMUM VE MAXIMUM V MANNINGS I	ELOCITY ELOCITY n		0.60 3.00 0.013	m/s m/s					
Stante	C	CHECKE	DBY:	P	M	FILE NU	VIBER:	16041014	0						PERSONS /	SINGLE	J%):	1.5	Ļ	INSTITUTIO	NAL		28,000	l/ha/day l/ha/day		BEDDING CL MINIMUM CC	LASS DVER		B 2.50	m					
															PERSONS /	TOWNHOME		2.7		INFILTRATIO	DN .		0.33	l/s/Ha		HARMON CO	DRRECTION F	ACTOR	0.8						
LOCATIO	ON					RESIDENTI	IAL AREA AND	POPULATION	4			COMM	IERCIAL	INDUS	PERSONS /	INDUST	RIAL (H)	1.8 INSTIT	JTIONAL	GREEN	/ UNUSED	C+I+I		INFILTRATION	4	TOTAL				PI	PE				
	FROM	то	AREA	SINGLE	UNITS	ADT	POP.			PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK		ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NOMBER	IVI.I I.	WI.I 1.	(ha)	SINGLE	TOWN	AFT		(ha)	POP.	TACI.	(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(I/s)	(%)	(m/s)	(m/s)
PHASE 1, EXT	109 110 111 112	110 111 112 114	42.87 0.00 0.00 0.00	299 0 0 0	0 0 0	0 0 0 0	1017 0 0 0	42.87 42.87 42.87 42.87	1017 1017 1017 1017	3.24 3.24 3.24 3.24 3.24	10.7 10.7 10.7 10.7	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	42.87 0.00 0.00 0.00	42.87 42.87 42.87 42.87	14.1 14.1 14.1 14.1	24.8 24.8 24.8 24.8 24.8	61.5 50.3 37.3 68.2	300 300 300 300	PVC PVC PVC PVC	SDR 35 SDR 35 SDR 35 SDR 35	0.20 0.20 0.20 0.20	42.4 42.8 42.8 43.2	58.51% 57.95% 57.98% 57.44%	0.60 0.61 0.61 0.61	0.54 0.54 0.54 0.55
G11A, G11B, R11A, FUT R10A	11 10	10 9	52.90 5.70	322 64	34 0	0 0	2220 218	52.90 58.60	2220 2437	3.04 3.01	21.9 23.8	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	2.84 0.00	2.84 2.84	17.34 0.00	17.34 17.34	0.9 0.9	73.07 5.70	73.07 78.78	24.1 26.0	46.9 50.7	56.1 111.7	450 450	PVC PVC	SDR 35 SDR 35	0.15 0.15	116.4 116.4	40.29% 43.57%	0.71 0.71	0.57 0.58
R12A	12	9	1.26	14	0	0	48	1.26	48	3.66	0.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.26	1.26	0.4	1.0	223.0	200	PVC	SDR 35	0.40	21.1	4.63%	0.67	0.28
R6A	9 8 7 6	8 7 6 5	0.00 0.00 0.00 1.14	0 0 0 19	0 0 0	0 0 0	0 0 0 65	59.86 59.86 59.86 60.99	2485 2485 2485 2549	3.01 3.01 3.01 3.00	24.2 24.2 24.2 24.2 24.8	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	2.84 2.84 2.84 2.84	0.00 0.00 0.00 0.00	17.34 17.34 17.34 17.34	0.9 0.9 0.9 0.9	0.00 0.00 0.00 1.14	80.03 80.03 80.03 81.17	26.4 26.4 26.4 26.8	51.6 51.6 51.6 52.5	104.2 111.9 64.5 175.6	450 450 450 450	PVC PVC PVC PVC	SDR 35 SDR 35 SDR 35 SDR 35	0.15 0.15 0.15 0.15	116.4 116.4 116.4 116.4	44.28% 44.28% 44.29% 45.10%	0.71 0.71 0.71 0.71	0.58 0.58 0.58 0.59
R14A	14	13	4.48	52	0	0	177	4.48	177	3.53	2.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	4.48	4.48	1.5	3.5	273.8	200	PVC	SDR 35	0.40	21.1	16.56%	0.67	0.41
R13A	13	5	5.73	82	0	0	279	10.21	456	3.40	5.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	5.73	10.21	3.4	8.4	252.4	200	PVC	SDR 35	0.40	21.1	39.63%	0.67	0.53
R16A R15A	16 15	15 5	4.50 3.05	15 19	99 48	0 0	318 194	4.50 7.55	318 513	3.45 3.37	3.6 5.6	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.0 0.0	4.50 3.05	4.50 7.55	1.5 2.5	5.0 8.1	153.5 149.9	200 200	PVC PVC	SDR 35 SDR 35	0.40 0.40	21.1 21.1	23.86% 38.28%	0.67 0.67	0.45 0.52
G5A, R5A R4A, I4A	5 4	4 3	3.81 3.46	51 48	0 0	0 0	173 163	82.55 86.01	<mark>3691</mark> 3854	2.89 2.88	34.6 35.9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 2.89	<mark>2.84</mark> 5.73	2.49 0.00	<mark>19.83</mark> 19.83	0.9 1.9	6.30 6.35	105.22 111.57	34.7 36.8	70.2 74.6	190.9 189.4	450 450	PVC PVC	SDR 35 SDR 35	0.15 0.15	116.4 116.4	60.32% 64.10%	0.71 0.71	0.64 0.65
R20A	20	3	1.34	16	0	0	54	1.34	54	3.65	0.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.34	1.34	0.4	1.1	172.4	200	PVC	SDR 35	0.40	21.1	5.13%	0.67	0.29
R19A	19	18	5.40	84	0	0	286	5.40	286	3.47	3.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	5.40	5.40	1.8	5.0	319.5	200	PVC	SDR 35	0.40	21.2	23.61%	0.67	0.45
R18A R17A	18 17	17 3	3.43 5.06	33 48	28 30	0	188 244	8.83 13.89	473 718	3.39 3.31	5.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	3.43 5.06	8.83 13.89	2.9 4.6	8.1 12.3	146.6 154.3	200	PVC	SDR 35 SDR 35	0.40	21.1 21.1	38.37% 58.08%	0.67	0.52
R3A	3	2	0.29	4	0	0	14	101.53	4640	2.82	42.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.73	0.00	19.83	1.9	0.29	127.09	41.9	86.2	77.8	450	PVC	SDR 35	0.15	116.4	74.04%	0.71	0.68
R22A G21A R21A	22 21	21 2	5.30	63 63	0	0	214 214	5.30 10.97	214 428	3.51 3.41	2.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	5.30 6.28	5.30 11.58	1.7 3.8	4.2	366.1 179.2	200 200	PVC PVC	SDR 35 SDR 35	0.40	21.1 21.1	19.79% 40.43%	0.67	0.43
R2A R1A	2	- 1 114	0.48	6 11	0	0	20	112.97 113.91	5089	2.79	46.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.73	0.00	20.43	1.9	0.48	139.14 140.08	45.9	93.8 94.4	73.6	450	PVC	SDR 35	0.20	134.4 134.4	69.77%	0.82	0.77
Manotick Estates	114 119 120	119 120 102	0.00 0.00 36.70	0 0 97	0 0 0	0 0 0	0 0 330	156.78 156.78 193.48	6143 6143 6472	2.73 2.73 2.71	54.3 54.3 56.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00 0.00 0.00	0.00	5.73 5.73 5.73	0.00 0.00 0.00	20.43 20.43 20.43 20.43	1.9 1.9 1.9 1.9	0.00 0.00 36.70	182.95 182.95 219.65	60.4 60.4 72.5	116.6 116.6 131.2	119.6 98.9 34.5	450 450 450 450	PVC PVC PVC	SDR 35 SDR 35 SDR 35 SDR 35	0.29 0.23 0.29	162.6 144.9 161.8	71.67% 80.42% 81.10%	0.99 0.88 0.99	0.95 0.87 0.98

Appendix C : Stormwater Management Calculations May 10, 2018

Appendix C : STORMWATER MANAGEMENT CALCULATIONS

- C.1 Background Reports Excerpts
- C.2 Conceptual Storm Sewer Design Sheet
- C.3 Wilson Cowan Municipal Drain Monitoring Program Data

C.4 Wilson Cowan Municipal Drain Existing Condition Model -Calibrated

- C.5 Pond 2 PCSWMM Model Input (Mahogany Creek)
- C.6 Pond 3 PCSWMM Model Input (WCMD)
- C.7 Conceptual Profile Pond 2
- C.8 Conceptual Profile Pond 3
- C.9 Conceptual SWM Pond Calculations

Appendix C : Stormwater Management Calculations May 10, 2018

C.1 BACKGROUND REPORTS EXCERPTS

Minto Developments Inc.

MAHOGANY COMMUNITY STORMWATER MANAGEMENT SERVICING REPORT

14167-5.2.3 DRAFT

JULY 2007

2.0 DESIGN CONSTRAINTS AND REGULATORY REQUIREMENTS

The regulatory requirements are related to water quantity and water quality and erosion control and are discussed for each watercourse independently in the following sections. There are, however, some regulatory requirements that apply to the entire study area. Each of the four watercourses is tributary to the Rideau River and as a result, water quality control for the proposed stormwater management facilities must meet the effluent target pertaining to E.coli bacteria established by the Ontario Ministry of the Environment⁶. According to the Assessment of Discharge Criteria for Stormwater Management Facilities on the Rideau River⁵, the stormwater quality control objectives for the Rideau River in the vicinity of the Village of Manotick, as determined by the Provincial Water Quality Objectives (PWQO), limit stormwater facility discharge during the recreational season (May 15–September 15) to a maximum allowable bacterial concentration of 100 counts of E.coli per dL. It should be noted that 'it is permitted to exceed this target criterion an average of four times per recreational season, the typical frequency for a 25 mm rainfall event in the Ottawa region. All new or rehabilitated stormwater facilities are required to meet this stormwater quality objective.'

According to the MDP¹, water quantity-runoff control is a desirable objective to mitigate the impact of the development on groundwater recharge. It is proposed that increases in the total runoff volume from the Mahogany Community be mitigated with BMP's. Utilizing infiltration techniques, infiltrative BMP's are proposed in the residential areas to encourage groundwater recharge rates on the site.

2.1 Unnamed Drain

The Unnamed Drain is tributary to the Rideau River and is therefore part of the Rideau River watershed. The drain is located on the east side of the study area, and outlets to Mahogany Harbour in the Rideau River, approximately 200 m downstream of the study area's northern limit. The proposed stormwater management system for the Mahogany Community includes two end-of-pipe stormwater management facilities that discharge to the Unnamed Drain.

Water Quality Control

Water quality and erosion control are required on the Unnamed Drain. With respect to suspended solids, the proposed stormwater management facilities should be designed as standard off-line facilities treating water to an Enhanced Level of Protection (80% suspended solids removal as per the MOE Stormwater Management Planning and Design Manual, March 2003). The facilities must also meet the Provincial Water Quality Objectives for bacteria concentrations.

Water Quantity Control

It was determined from studies conducted for the lower Rideau River that stormwater management facilities tributary to the Rideau River do not require water quantity-peak flow control. Since the Unnamed Drain is located in the lower reaches of the Rideau River watershed, water quantity control to pre-development levels would result in an increase of peak flows and velocities downstream during flood events. A review of the hydraulic regime confirmed that relatively fast runoff from the development, retained in a stormwater management facility,

would be delayed and the urban peak flows would coincide with the peak flows in the river, causing adverse impacts downstream. It should be noted that the conclusions from these studies are drawn only upon the application of theoretical hydrologic principles and not on actual calculations.

2.2 Wilson Cowan Drain

The Wilson Cowan Drain extends from the southern limit to the northern limit of the study area. The drain and its tributary form part of the Mud Creek subwatershed. The tributary flows east of the drain and begins south of the southern study area limit and flows into the drain at the northern limit. The proposed stormwater management system for the Mahogany Community includes one end-of-pipe stormwater management facility that discharges to the Wilson Cowan Drain.

Water Quality Control

Water quality and erosion control are required on the Wilson Cowan Drain. The SDA³ recommends that the proposed stormwater management facility be designed as a standard off-line facility treating water to an Enhanced Level of Protection (80% suspended solids removal as per the MOE Stormwater Management Planning and Design Manual, March 2003). The facilities must also meet the Provincial Water Quality Objectives for bacteria concentrations.

Water Quantity Control

Subject to model calibration, water quantity control measures will be included in the design of the proposed stormwater management facility. Post-development peak flows from the facility will meet pre-development levels.

2.3 Mud Creek

Mud Creek flows along the western limit of the study area and is part of the Rideau River watershed. The proposed stormwater management system for the Mahogany Community includes one end-of-pipe stormwater management facility that discharges to Mud Creek.

Water Quality Control

Water quality and erosion control are required on Mud Creek. The SDA³ recommends that the proposed stormwater management facility be designed as a standard off-line facility treating water to an Enhanced Level of Protection (80% suspended solids removal as per the MOE Stormwater Management Planning and Design Manual, March 2003). The facilities must also meet the Provincial Water Quality Objectives for bacteria concentrations.

Water Quantity Control

The SDA³ concluded that water quantity control measures are not recommended for the Mud Creek subwatershed. "It has been observed from previous studies that in such cases, quantity controls providing post to predevelopment flow attenuation for individual catchments may not be beneficial for the watershed as a whole. Such controls cause a delay in the peak of the hydrographs from these lower regions, so that they may

3.0 EXISTING CONDITIONS

The study area land use is predominantly agricultural. According to the Natural Resource Assessment⁴, the study area is approximately 5% old field meadow/scrubland, 20% treed, and 75% agricultural with no buildings or structures. There are four watercourses within the study area: Mud Creek; Wilson Cowan Drain and its tributary, which are tributaries to Mud Creek; and the Unnamed Drain, tributary to the Rideau River. The Unnamed Drain does not share any links with Mud Creek and Wilson Cowan Drain.

The existing conditions flow regime was examined to help in the assessment of the development on the natural drainage system. Existing conditions watershed delineation was based on topography (Figure 2). Surface runoff from the lands drains to the Rideau River, via the Wilson Cowan Drain and the Unnamed Drain, primarily via natural swales and man made ditches.

Hydrologic analysis of the existing conditions was conducted using the hydraulic/hydrologic model XPSWMM. Runoff simulations were conducted using the 25 mm 4 hour Chicago, 2, 5 and 100 year 24 hour SCS Type II storm event. The hydrologic parameters and results of the analysis are presented in the tables below and detailed XPSWMM output is included in Appendix D. Flow point locations are included in Figure 2.

Watercourse	Drainage Area ID	Drainage Area (ha)	Time to Peak (h)
Uppamed Drain	1	73.8	0.71
Unitalitied Drain	2	214.0	2.70
	3	23.0	0.67
Mileon Cowan	4	4.0	0.41
Drain Tributary	5	7.9	0.30
Diam moutary	6	1.8	0.16
	7	9.2	0.58
Wilson Cowan	8	34.8	0.85
Drain	9	245.0	2.69

Table 1. Existing Conditions Hydrologic Parameters

Table 2. Existing Conditions Flowrates

Watercourse	Flow (cms)										
(Flow Point)	25 mm	2 year	5 year	100 year							
Unnamed Drain (A)	0.72	1.76	2.69	6.03							
Wilson Cowan Drain* (B)	0.82	1.88	2.90	6.37							

* at confluence with Wilson Cowan Drain Tributary

For consistency with other studies, the peak flows generated in XPSWMM were compared with a SWMHYMO simulation. The rural land use routine in SWMHYMO utilizes a combination of the Nash Unit Hydrograph Method and the SCS Rainfall Abstraction Method. Equivalent results were achieved by selecting the SCS Hydrology routine in XPSWMM. In this method, the shape of the former Nash Unit Hydrographs is emulated by the SCS Unit Hydrographs with a shape factor of 388. Results of the comparison are presented in Appendix A.

The 100 year water surface elevations for the four watercourses were evaluated in the ECR². As part of the stormwater management servicing, the Wilson Cowan Drain and its tributary were re-evaluated using HEC-2. Surveyed cross-section data and flow data from the XPSWMM hydrologic analysis were used in the analysis. The 100 year water surface elevations for all four watercourses are presented in Figure 3. The results of the HEC-2 analysis for the Wilson Cowan Drain and its tributary are summarized in the below table and results for Mud Creek and the Unnamed Drain were developed for the ECR².

Table 3. Wilson Cowan Drain – HEC-2 100 year Water Surface Elevations

Wilson Cowa	n Drain Tributary	Wilson Cowan Drain						
Cross-section	100 year WSE (m)	Cross-section	100 year WSE (m)					
1000	87.41	2000	87.41					
1153	88.05	2099	87.49					
1269	88.33	2204	87.58					
1373	88.50	2312	87.79					
1473	88.90	2406	87.94					
1534	89.04	2526	88.09					
1586	89.05	2585	88.18					
1706	89.05	2645	88.24					
1809	89.09	2741	88.37					
		2846	88.49					
		2953	88.60					

Meander belt widths were established for each of the four watercourses. "Meander belt width is defined as the lateral containment of a channel within its valley. The meander belt width is a tool for managing risk from river erosion and for protecting the long term integrity of the watercourse as it provides a measure of the area in which river processes occur and are likely to occur in the future."³

Meander belt widths for the four watercourses were developed using two techniques: empirical morphological relationships and a planform analysis using 1:2000 scale topographic mapping and aerial photographs. Information about channel form was taken from the geomorphological investigation completed for the City of Ottawa ("Mud Creek Subwatershed Existing Conditions – Final Draft," Parish Geomorphic, April 2004⁷).

The established meander belt widths for the four watercourses are presented in Figure 4.

Drainago	Peceiving	Drainage	Weighted IMP Ratio (%)						
Area ID	MH	Area (ha) Total D Co		Directly Connected					
A1	1070	3.9	51	23					
A2	1020	2.3	51	23					
A3	1050	0.7	51	23					
A4	1031	4.8	54	27					
A5	1010	3.6	52	25					
A6	1030	3.9	52	25					
Тс	otal Area (ha) =	= 19.2	Weighted Imperviousness (%) = 52						

Table 4. Unnamed Drain Urban Drainage – Pond 1 Hydrologic Parameters

Table 5. Unnamed Drain Urban Drainage – Pond 2 Hydrologic Parameters

Drainage	Receiving	Drainage	Weighted IMP Ratio (%)		
Area ID	MH	Area (ha)	Total	Directly Connected	
B1	2090	6.5	51	23	
B2	2060	6.1	51	23	
B3	2070	4.9	52	25	
B4	2080	4.5	42	22	
B5	2042	1.9	51	23	
B6	2026	1.8	51	23	
B7	2030	17.6	51	26	
B8	2025	4.0	52	25	
B9	2010	5.3	51	23	
B10	2020	1.9	51	23	
Total Area (ha) = 54.5			Weighted Im	perviousness (%) = 50	

Table 6. Unnamed Drain Rural Drainage – Hydrologic Parameters

Drainage Area ID	Drainage Area (ha)	Tp (h)
2	214.0	2.70
10	7.5	0.15
Total Area	a (ha) = 221.5	

Table 7. Wilson Cowan Drain Urban Drainage – Pond 3 Hydrologic Parameters

Droinago	Receiving	Drainage	Weighted IMP Ratio (%)		
Area ID	MH	Area (ha)	Total	Directly Connected	
C1	3060	4.8	51	23	
C2	3050	4.1	54	43	
C3	3040	7.5	51	23	
C4	3010	6.3	51	23	
Total Area (ha) = 22.7			Weighted Im	perviousness (%) = 52	

Table 8. Wilson Cowan Drain Rural Drainage – Hydrologic Parameters

Drainage Area ID	Drainage Area (ha)	Tp (h)
7	9.2	0.58
6	1.8	0.16
11	16.2	0.60
12	3.2	0.60
9	245.0	2.69
13	3.3	0.15
14	8.3	0.15
15	2.4	0.15
Total Area		

Table 9. Mud Creek Urban Drainage – Pond 4 Hydrologic Parameters

Drainago	Receiving Drainage		Weighted	I IMP Ratio (%)	
Area ID	MH	Area (ha)	Total	Directly Connected	
D1	4043	3.8	43	20	
D2	4090	4.7	35	18	
D3	4042	5.7	47	22	
D4	4043	0.8	51	23	
D5	4060	1.8	51	23	
D6	4060	5.9	53	29	
D7	4030	7.9	45	24	
D8	4090	1.9	51	23	
D9	4070	12.3	51	23	
D10	4010	4.0	54	40	
Total Area (ha) = 48.8			Weighted Im	perviousness (%) = 48	

5.1.4 Overall Performance of the Stormwater Management System

The overall performance of the stormwater management system is summarized in the below tables.

Table 14. Unnamed Drain – Post-Development Flowrates

Location	Flow (cms) (Existing Conditions)				
	25 mm	2 year	5 year	100 year	
Pond 1 Outflow	0.06	0.07	0.07	0.07	
Pond 2 Outflow	0.31	0.37	0.41	0.45	
Flow Point A	0.86 (0.72)	1.79 (1.76)	3.38 (2.69)	7.24 (6.03)	

Table 15. Wilson Cowan Drain – Post-Development Flowrates

Location	Flow (cms) (Existing Conditions)			
. .	25 mm	2 year	5 year	100 year
Pond 3 Outflow	0.33	0.55	0.71	0.74
Flow Point B	0.80 (0.82)	1.80 (1.88)	2.75 (2.90)	6.09 (6.37)

Table 16. Mud Creek – Post-Development Flowrates

Location	Flow (cms)			
Location	25 mm	2 year	5 year	100 year
Pond 4 Outflow	0.79	1.29	1.70	2.01

With respect to pollutant loading, the overall impact of stormwater management facilities on Rideau River water quality was investigated by Baird and Associates in "Assessment of Discharge Criteria for Stormwater Management Facilities on the Rideau River⁵," January 2000. The report examined acceptable target discharge criteria for bacterial concentration from proposed stormwater management facilities with respect to mixing zones and bacteria die-off reaching the Rideau River. According to this study, facilities achieving treatment of 200 counts of E.coli/dL are acceptable. Consideration was given to the design of a passive stormwater management facility providing quality treatment as opposed to active disinfection.

Due to the above, it should be noted that the permanent storage was oversized, to ensure future flexibility in design. The permanent storage can be adjusted during detailed design. In addition, the extended storage was oversized to provide downstream erosion protection (refer to Section 5.4). During detailed design, water quality storage can be adjusted using either the XPSWMM or QUALHYMO model.

5.4 Erosion Control Analysis

Natural channel systems exist in a state of dynamic equilibrium where erosion and sedimentation processes work in tandem to maintain overall channel stability. Over the long term, watercourses can undergo changes in position and shape as a consequence of hydraulic forces acting on the bed and banks and related biological forces (i.e. roots, tree falls) interacting with the hydraulic forces. Channel adjustments may be slow or rapid and can result from human activity in watersheds. It is important to be able to predict the potential changes, resulting from a planned activity, to a watercourse regime.

One of the most obvious results of human influence on watercourses is accelerated rates of erosion or deposition. Disruption of the natural flow and/or sediment regimes of a system is most often the catalyst for excessive erosion or deposition as the system tries to adjust to the new conditions. Rate and type of erosion or deposition is dependent on the interrelationship between erosive and resistive forces of flow and sediment. Consideration of potential deposition is an integral part of the erosion process because excess deposition can change flow patterns which can increase shear stresses in previously stable portions of the watercourse.

Stormwater management facilities are examples of outsides perturbances which could potentially have impacts on the amount of erosion or deposition occurring within the system. The purpose of the erosion analysis for each of the four watercourses was to investigate potential changes in instream erosion potential as a result of the urbanization and to evaluate the performance of the proposed stormwater management facilities.

Although many factors influence the rate of sediment transport in a channel the basic control can be summarized by the relationship between the erosive (velocity) and the resistive (gravity and cohesion) forces of the system. The general controlling principle, however, is that when the drag force (erosive force) exerted on sediment, at a bed or back, is less than some critical value (related to resistive forces), the material remains motionless. When, however, the shear stress (which is the same as drag force) over the bed or bank attains or exceeds the critical shear stress value for the bed or bank material, particle motion begins. Critical shear stress (t_c) is intrinsic to sediment type and critical velocity in the stream.

The resistance of sediment to erosion is dependent on the nature of the sediment. For non-cohesive sediment (granular material such as sand) the ability to resist movement is dependent on the weight, size and shape and packing of the material. For cohesive material (e.g. clay) the resistance to erosion is governed more by bonding strengths (via electrostatic or van der Waal's forces) between individual soil particles. The strength of these bonds depends on soil characteristics such as: ionic charge, presence of electrolytes, mineralogy, temperature, pH, and porewater chemistry.

The banks of the four watercourses are comprised of silty clay soils. The bank material can be potentially more easily eroded than that of the bed. Resistive ability of the channel material to erosion can be used to assess potential future erodibility of the system as a result of changes in flow regime. The critical velocity was evaluated in "Mud Creek Subwatershed Existing Conditions – Final Draft," Parish Geomorphic, April 2004, in which it was concluded that the critical velocity reaches 0.7 m/s.

Erosion control analysis was conducted with the dynamic model XPSWMM with the 25 mm 4 hour Chicago storm event under existing and post-development conditions. The flow generated by this storm even is commonly considered to correspond to bankfull conditions. This approach is consistent with the MOE manual suggesting the use of this short-duration storm, regardless of land use, to evaluate erosion and water quality. The precipitation intensities were based on those set forth by the City of Ottawa Sewer Design Guidelines, November 2004. The results are presented below and the comparison hydrographs are presented in Appendix C.

Table 21. Unnamed Drain (Flow Point A) – Erosion Control Analysis

Location	Velocity (m/s)
Existing Conditions	0.54
Post-Development	0.54

Table 22. Wilson Cowan Drain (Flow Point B) – Erosion Control Analysis

Location	Velocity (m/s)
Existing Conditions	0.52
Post-Development	0.51

In order to achieve existing conditions velocities, the extended storage for Ponds 1, 2 and 3 was significantly oversized (refer to Section 5.3). The evaluation of Mud Creek's critical velocity is out of the scope of this project. Therefore, the outlet conditions were approximated based on the rationale of the other three ponds by oversizing the extended storage.

In conclusion, during the detailed design stage, the extended storage release flow rates and the size of the proposed facilities can be adjusted using a continuous shear stress modeling methodology.

The shape and the depths of the permanent pool should be selected to create transitional shallow water surfaces adjacent to the sediment forebay to disperse the main flow trajectory during treatment. These shallow water surfaces will play an important role in the ecology of the pond. The biological systems that occur naturally in shallow waters provide a breeding ground for micro-organisms and provide habitat for littoral vegetation such as cattails, bulrushes and other species. The soft, gently sloped edges of the pond will create an appealing transition to the adjacent area.

The main portion of the wet pond could resemble a manicured and landscaped urban lake with a continuous open water surface.

Water will be released from the stormwater management pond into a chamber, in which the permanent water level is controlled by the invert of the outlet pipe. The outlet structure will be provided with a sluice gate at the bottom to drain the pond during maintenance. Once in the chamber, water will rise to the permanent water level and the flow will be conveyed via an adequate flow control device to the receiving watercourse. At this conceptual level of detail, to evaluate the functionality of the facility vertical alignment, the outlet structure was simulated with the help of an equivalent pipe and weir. In other words, the specific configuration of the outlet structure must be designed during the detailed design stage.

Anticipated cross-sections are presented in Figures 8-11 and stage-storage for each facility is summarized in the below tables.

	Permanent		25 r	25 mm		100 year	
	Water Level (m)	Storage (m ³)	Water Level (m)	Storage (m ³)	Water Level (m)	Storage (m ³)	
Pond 1	86.85	3050	87.60	1475	87.90	695	
Pond 2	85.50	8000	86.20	3813	86.67	2731	
Pond 3	86.46	3850	86.90	1206	87.34	1755	
Pond 4	85.83	6950	86.40	2480	86.89	2623	

Table 24. Stage-Storage

6.2 Hydraulic Grade Line Analysis

In order to determine the feasibility of the stormwater management facility in relation to the development, the hydraulic grade line (HGL) was analyzed using a dynamic model. Initial analysis indicated that the trunk system can be designed with no surcharge due to sufficient overall site gradient.

The dynamic HGL analysis for Mahogany Community was modeled using the hydraulic layer of XPSWMM and the 25 mm 4 hour Chicago and the 2, 5 and 100 year SCS Type II storms. The hydrographs created in the runoff

B GROUP 1:15 000

MAHOGANY COMMUNITY

EXISTING CONDITIONS DRAINAGE BOUNDARIES

FIGURE 2

MAHOGANY COMMUNITY

POST-DEVELOPMENT DRAINAGE BOUNDARIES

FIGURE 5

MAHOGANY COMMUNITY

CONCEPTUAL STORMWATER MANAGEMENT SERVICING

1:7000

GROUP

FIGURE 7

6'5\29141\ T

APPENDIX D XPSWMM Output
EXISTING CONDITION XPSWMM SCHEMATIC

SWMM

07/24/07 Page 1/1

Minto Communities Inc.

APPENDIX 7

MAHOGANY COMMUNITY PHASE 1 STORMWATER MANAGEMENT SERVICING

14167-5.3.1.5

MAY 2012

 IBI Group

 400-333 Preston Street

 Ottawa ON
 K1S 5N4 Canada

 tel
 613 225 1311

 fax
 613 225 9868

May 7, 2012

14167-5.3.1.5

Mr. Kevin Hall City of Ottawa 110 Laurier Ave. W. Ottawa ON K1P 1J1

Dear Mr. Hall:

MAHOGANY COMMUNITY PHASE 1 STORMWATER MANAGEMENT SERVICING

We are pleased to submit, for your review and approval, the stormwater management servicing report for the above-noted project. The report has been revised based on City comment.

This study presents the dual drainage design of Phase 1 of the Mahogany Community and comprises Appendix 7 of EXP's "Infrastructure Servicing Brief, Phase 1." The storm servicing includes water quality treatment with Vortechs[®] stormwater treatment units. The Vortechs[®] units are designed to operate off-line and do not impact the hydraulic grade line in the upstream storm sewers.

We trust this report is satisfactory. Should you have any questions, please do not hesitate to contact the undersigned.

Yours truly,

Peter Spal, P.Eng. Associate Director Meghan Black, P.Eng.

cc. Sue Johns, Minto Communities Inc. Angela Jonkman, EXP

IBI Group is a group of firms providing professional services and is affiliated with IBI Group Architects

TABLE OF CONTENTS

1.	INTRODUC	TION	1					
1.1	Study Object	lives	1					
1.2	Synopsis of	Synopsis of Previous Studies						
2.	DESIGN CC	INSTRAINTS AND REGULATORY REQUIREMENTS	3					
2.1	Water Quant	ity Control	3					
2.2	Water Qualit	y and Erosion Control	3					
3.	HYDROLOG	GICAL MODELING PARAMETERS	4					
	3.1.1 Land	Use	4					
	3.1.2 Storm	IS	4 5					
	J.I.J DIAIII		၁					
4.	WATER QU	ANTITY ANALYSIS – PEAK FLOWS	8					
4.1	Comparison	of Peak Flows	8					
4.2	Dual Drainag	je Design	8					
4.3	Hydraulic Gr	ade Line Analysis	15					
5.	WATER QU	ANTITY ANALYSIS – RUNOFF VOLUME	.22					
6.	WATER QU	ALITY CONTROL	.23					
7.	MAINTENA	NCE AND MONITORING	25					
7.1	Routine Mair	ntenance	25					
7.2	Sediment Re	moval and Disposal	25					
7.3	Water Qualit	y Monitoring	25					
8.	EROSION A	ND SEDIMENTATION CONTROL PLAN	.26					
9.	CONCLUSI	ONS AND RECOMMENDATIONS	27					
10.	REFERENC	ES	29					
APPI APPI APPI	ENDIX 7A ENDIX 7B ENDIX 7C	Relevant Calculations and Model Parameters, Rational Method Spreadsheet (EXP), Revised Rational Method Spreadsheet Vortechs [®] Units Manufacturer Information SWMHYMO Schematic	t					
APPI	ENDIX 7D	XPSWMM Schematic and Model Files (CD)						

1. INTRODUCTION

1.1 Study Objectives

Minto Communities Inc. (Minto) retained IBI Group to prepare the stormwater management servicing plan for the Mahogany Community in Manotick. The subject lands are located in a quadrant bounded by Mud Creek to the west, Manotick Main Street to the east, Century Road to the south, and Potter Drive to the north. The proposed Mahogany Community measures approximately 150 ha and is comprised of low and medium density residential development, as well as school and park areas. In 2007, IBI Group prepared the stormwater management servicing plans for the subject lands, which are presented in the "Mahogany Community Measures 19 ha and is located at the eastern portion of the site, east of the Unnamed Drain (refer to Figure 2).

Minto is presently proceeding with Phase 1 development. EXP was retained to complete the engineering design and IBI Group was retained to complete the stormwater management for Phase 1. This report comprises Appendix 7 of EXP's "Infrastructure Servicing Brief, Phase 1." The detailed design of the fish habitat enhancement of the Unnamed Drain will be documented in a separate study.

1.2 Synopsis of Previous Studies

The "Manotick Master Drainage Plan¹," prepared by Robinson Consultants in 1996 addressed water quality requirements for future development. It included quantity and quality monitoring at various locations along Mud Creek, Baxter Drain, and Wilson Cowan Drain. The MDP presented hydrologic and hydraulic analyses, environmental investigations, and preliminary stormwater management recommendations.

In 2005, Marshall Macklin Monaghan & Water and Earth Science Associates prepared "Jock River Reach 2 and Mud Creek Subwatershed Study Existing Conditions Report (Draft)²." The ECR aims to develop integrated subwatershed plans based on ecosystem management principles that will provide guidance on how to best manage human activities that affect surface water, groundwater, and other valued resources. Phase 1 of the subwatershed study works included the collection of background information, the establishment of existing environmental conditions, and the identification of form, function and linkages of the natural system, and culminated in the ECR. Phase 2 of the works will identify a series of management plans, programs and policies to implement the recommendations of the subwatershed plan, including the completion of an Environmental Management Plan.

One component of the second phase of the subwatershed study works was completed in "Village of Manotick Environmental Management Plan Special Design Area Component³," Marshall Macklin Monaghan & Water and Earth Science Associates, June 2005. The SDA report provides a summary of recommendations related to environmental constraints and opportunities and stormwater management requirements applicable to the SDA lands, which are located at the southeast quadrant of First Line Road and Bankfield Road. Where appropriate, the recommendations were developed in the context of the anticipated overall Manotick EMP and subwatershed plan recommendations.

A "Natural Resource Assessment (Draft)⁴" was prepared by EcoTec Environmental Consultants Inc., June 2007. It provides information on the biophysical properties of the study area, the potential impacts that the proposed development may have on the properties and recommends mitigation/protection measures to lessen the impacts.

The "Mud Creek Subwatershed Existing Conditions – Final Draft⁵," prepared by Parish Geomorphic, April 2004, was reviewed for fluvial geomorphological data related to the study area.

Minto retained IBI Group to prepare the stormwater management servicing plan for the Mahogany Community. Based on the conclusions and recommendations of the above-mentioned studies, IBI Group prepared the "Mahogany Community Stormwater Management Servicing Report⁶" in 2007. At that time, four end-of-pipe SWM facilities were proposed to service the Mahogany Community, with the recommendation to investigate at the detail design stage the opportunity to develop a more comprehensive stormwater solution that provides environmental benefits on a broader basis.

Building on the recommendation of 2007 SWM Servicing⁶, and following discussions with the Rideau Valley Conservation Authority (RVCA) and City of Ottawa, the Unnamed Drain and proposed Phase 1 development, in combination with the topographical relief of the land, provide an opportunity to construct multiple stormwater outlets along the drain, thereby enhancing the hydrological regime of the drain. Presently, the Unnamed Drain, located in an actively cultivated agricultural setting, is a poorly defined, heavily intermittent watercourse that experiences prolonged absences of base flow. The more frequent water supply to the Unnamed Drain increases the viability of overall drain enhancement with respect to net gain in fish habitat.

In January 2011, IBI prepared "Mahogany Community Phase 1 Stormwater Management and Fish Habitat Enhancement of the Unnamed Drain⁷," which provided detail on the proposed comprehensive solution of stormwater management for Phase 1 and fish habitat enhancement to the Unnamed Drain.

2. DESIGN CONSTRAINTS AND REGULATORY REQUIREMENTS

2.1 Water Quantity Control

The Unnamed Drain is the recipient watercourse of Phase 1. Downstream of the development, the Unnamed Drain flows in a northeastern direction, ultimately discharging to the Rideau River approximately 200 m downstream (refer to Figure 1).

From a broad perspective, related to the lower Rideau River SWM strategy, it was determined from studies conducted for the lower Rideau River that stormwater management facilities tributary to the watercourse do not require water quantity-peak flow control. The Unnamed Drain is located in the lower reaches of the Rideau River watershed. Therefore, water quantity control to pre-development levels could result in an increase of peak flows and velocities downstream during flood events. A review of the hydraulic regime confirmed that relatively fast runoff from the development, retained in a stormwater management facility, would be delayed and the urban peak flows could coincide with the peak flows in the river, causing adverse impacts downstream. It should be noted that the conclusions from these studies are drawn only upon the application of theoretical hydrologic principles and not on actual calculations.

The 2005 SDA³ examined whether or not water quantity control is required for the Unnamed Drain, as well as for the other tributaries of the SDA lands. The SDA³ identified control points in the receiving streams and evaluated pre-development flows. Analysis was conducted regarding stormwater management requirements with respect to reducing flow at control points. From that perspective, water quantity control was recommended for the Unnamed Drain to meet pre-development flow at the control point. For the other tributaries, including Mud Creek, quantity control was not considered desirable due to a net increase in flow at control points.

With respect to water quantity-runoff control, it is a desirable objective to mitigate the impact of the development on groundwater recharge according to the MDP³. It is proposed that increases in the total runoff volume from the Mahogany Community be mitigated with BMP's. Utilizing infiltration techniques, infiltrative BMP's are proposed in the residential areas to encourage groundwater recharge rates on the site.

2.2 Water Quality and Erosion Control

Water quality and erosion control are required on the Unnamed Drain. With respect to suspended solids, based on previous studies the stormwater should be treated to an Enhanced Level of Protection (80% suspended solids removal as per the MOE Stormwater Management Planning and Design Manual, March 2003).

3. HYDROLOGICAL MODELING PARAMETERS

Hydrological analysis of both existing conditions and proposed dual drainage system was conducted using SWMHYMO. This technique offers a single storm event flow generation and routing. Land use, selected modeling routines, and input parameters are discussed in the following sections. A post-development model schematic is presented in Appendix 7C and model files are included in Appendix 7D. It should be noted that hydrographs generated by the SWMHYMO model were downloaded to the XPSWMM model to evaluate the hydraulic performance of the proposed system.

3.1.1 LAND USE

The area contributing flow to the Unnamed Drain is presently rural. For existing conditions modeling simulations, it was divided into two drainage areas (refer to Figure 1). Under post-development conditions, the lands tributary to the Unnamed Drain will be predominantly developed as a mixture of low and medium density residential areas with areas designated for schools and parks. Phase 1 development was divided into drainage areas reflective of the rational method design. Future development tributary to the Unnamed Drain was divided into ten urban sub-catchments. Two rural sub-catchments representing upstream rural drainage and the Unnamed Drain corridor were included. The post-development drainage scheme is indicated in Figure 2. The detailed Phase 1 drainage areas are presented in Figure 3.

3.1.2 STORMS

Based on experience with similar types of urban watersheds, the most critical runoff estimates are those generated by the summer single event storms. There are two standard types of summer single event design storms typically used for modeling in Eastern Ontario. The first SCS Type II design storm is typically used for watersheds characterized by the rural component being significantly greater than the urban component. The second design storm, the Chicago design storm, is more critical for the modeling of fully urbanized watersheds.

Runoff simulations were performed using the 25 mm 4 hour Chicago storm (12 minute time step); 5 and 100 year 3 hour Chicago design storms (10 minute time step); the 2, 5 and 100 year 24 hour SCS Type II design storms (12 minute time step); and, the July 1 1979 historical storm (5 minute time step).

The 25 mm 4 hour Chicago storm was used to quantify the "first flush" conditions for the Vortechs[®] treatment units used to evaluate overall development runoff and quantify peak flows. The 5 year 3 hour Chicago design storm was used to evaluate the minor system capture in future phases of development tributary to the Unnamed Drain. The 100 year 3 hour Chicago design storm was used to evaluate the urban component of the dual drainage, specifically maximum "overland flow," as well as the hydraulic grade line (HGL). The 24 hour SCS Type II storms were used to evaluate overall development runoff and quantify peak flows for comparison purposes in the receiving Unnamed Drain, as well as to evaluate the HGL. The July 1, 1979 historical storm was used as an analytical tool to establish the function of the system under an extreme event.

The precipitation intensities were based on those set forth by the City of Ottawa Sewer Design Guidelines, November 2004.

It should be noted that SWMHYMO was only used for the generation of runoff and routing was performed in XPSWMM.

3.1.3 DRAINAGE AREA PARAMETERS

The main hydrology parameters for existing and post-development conditions are summarized below and calculations are presented in Appendix 7A.

- **Design storms:** As discussed above, the site was evaluated using the 25 mm 4 hour Chicago storm; 5 and 100 year 3 hour Chicago design storms; the 2, 5 and 100 year 24 hour SCS Type II design storm; and, the July 1 1979 historical storm. The storms are consistent with City guidelines.
- Minor system capture: Minor system capture of the storm sewers throughout the drainage area is restricted to the 5 year flow, based on the revised rational method (enclosed in Appendix 7A). This is discussed in greater detail in Section 4.2. Major flow is captured by the storm sewer at two locations along Century Road.
- Area and imperviousness: Catchment areas and imperviousness are based on the rational method spreadsheet, completed by EXP. The conversion of runoff coefficient to imperviousness is: IMP = (c - 0.2)/0.7
- **Surface storage:** Available surface storage was accounted for in the SWMHYMO model (refer to Section 4.2 for details) and is summarized. The ponding plan, developed by EXP, is presented in Figure 4 for reference, where indicated pond volumes represent 'static' storage.
- Infiltration: The SCS CN method of infiltration loss was applied for existing conditions, using a CN value of 78, consistent with the approach and values used in the approved 2005 SDA³. The Horton method of infiltration loss was applied for post-development conditions. The values are as follows, consistent with City guidelines: f_o = 76.2 mm/h, f_c = 13.2 mm/h, k = 0.00115 s⁻¹.
- Length: The impervious length is based on an average of the measured length of the trunk through the catchment and the calculated length based on the SWMHYMO user's manual. The pervious length is based on an average lot depth. This approach is consistent with City of Ottawa Sewer Design Guidelines.
- Initial Abstraction (Depression Storage): Depression storage depths of 0.8 mm and 1.5 mm were used for impervious and pervious areas, respectively. These values are more conservative than those in the City of Ottawa Sewer Design Guidelines.
- **Manning's roughness:** Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- **Slope:** A slope of 0.5% was used for impervious surfaces and a slope of 2% was used for pervious areas (lot grading).

Table 3.1	Existing c	onditions h	ydrological	parameters -	Rural areas

Drainage Area ID	Area (ha)	Time to Peak (h)	
1	81.0	0.59	
2	214.0	2.70	

Drainage Area ID	Area (ha)	Time to Peak (h)	
2	214.0	2.70	
10	5.23	0.15	

Table 3.2 Post-development hydrological parameters – Rural areas

Table 3.3 Post-development hydrological parameters – Phase 1

hs [®] t	Drainage Area		Dessiving	Impervic [Time to	Longth	
Vortec Uni	ID	Area (ha)	MH	Timp	Ximp	Length LGI (m)
N/A	FREE5A	0.55	Existing Pond	[0.17]	N/A	N/A
N/A	FREE5B	0.18	Manotick Main St Ditch via swale	[0.17]	N/A	N/A
1	237A	0.26	237	0.46	0.46	57
1	262	0.20	262	0.33	0.33	45
1	271A	0.09	271	0.53	0.53	32
1	271B	0.17	271	0.40	0.40	68
1	267	0.37	267	0.52	0.52	61
1	287	0.31	287	0.62	0.62	53
N/A	FREE4	0.55	Manotick Main St Ditch	[0.17]	N/A	N/A
1	RY275	0.36	275	0.51	0.01	82
1	275	0.10	275	0.43	0.43	32
1	276	0.30	276	0.51	0.51	57
1	RY256	0.27	256	0.24	0.01	63
1	256	0.59	256	0.52	0.52	62
1	258	0.19	258	0.43	0.43	88
1	RY255	0.16	255	0.46	0.01	51
1	255	0.35	255	0.67	0.67	59
1	226	0.04	226	0.41	0.41	27
1	RY241	0.38	241	0.38	0.01	75
1	241	0.47	241	0.57	0.57	85
1	252A	0.25	252A	0.64	0.64	34
1	RY254	0.38	254	0.53	0.01	105
1	254	0.30	254	0.57	0.57	57
1	RY244	0.23	244	0.50	0.01	47
1	248	0.32	248	0.40	0.40	126
1	244	0.33	244	0.63	0.63	76
1	RY233A	0.34	233	0.51	0.01	70
1	RY233B	0.25	233	0.49	0.01	57
1	233	0.34	233	0.59	0.59	71
N/A	FREE3	0.67	Unnamed Drain	0.47	0.01	55
2	237B	0.25	237	0.56	0.56	61
2	RY252	0.11	252	0.47	0.01	44
2	252B	0.37	252	0.57	0.57	50
2	228	0.22	228	0.55	0.55	59
2	RY234	0.21	234	0.53	0.01	52
2	234	0.38	234	0.54	0.54	53
2	RY219A	0.03	219	0.58	0.01	14
2	RY219B	0.54	219	0.48	0.01	82

sh	Drainage	e Area		Impervio [Time to		
Vortecl Unit	ID	Area (ha)	Receiving MH	Timp	Ximp	Length LGI (m)
2	219A	0.37	219	0.59	0.59	77
2	RY223	0.32	223	0.45	0.01	69
2	223	0.55	223	0.56	0.56	83
2	220	0.3	220	0.69	0.69	60
2	222	0.19	222	0.66	0.66	50
2	283	0.1	283	0.60	0.60	45
2	216	0.35	216	0.62	0.62	77
N/A	FREE2	0.63	Unnamed Drain	0.30	0.01	117
3	RY225	0.2	225	0.31	0.01	48
3	225	0.39	225	0.64	0.64	60
3	RY219C	0.73	219	[0.17]	N/A	N/A
3	219B	0.19	219	0.63	0.63	40
3	RY281	0.67	281	[0.17]	N/A	N/A
3	278	0.3	278	0.57	0.57	41
3	RY279	0.04	279	0.38	0.01	18
3	279	0.41	279	0.37	0.37	63
3	203	0.11	203	0.55	0.55	39
3	RY204	0.06	204	[0.08]	N/A	N/A
3	204	0.06	204	0.60	0.60	40
3	281	0.47	281	0.57	0.57	78
3	206	0.13	206	0.57	0.57	43
3	211	0.29	211	0.48	0.48	46
3	284	0.80	284	[0.33]	N/A	N/A
3	208	0.12	208	0.48	0.48	38
3	285	0.29	285	0.48	0.48	87
3	207	0.25	207	0.60	0.60	62
N/A	Street 7 LP	0.30	Unnamed Drain	0.59	0.59	92
N/A	FREE1	1.05	Unnamed Drain	0.43	0.01	182

Table 3.3 Post-development hydrologic parameters – Phase 1 (continued)

Table 3.4	Post-develo	pment hydrol	ogic parameter	s – Future	phases tribut	ary to the
Unnamed	Drain (conce	ptual design)				

Draina	age Area	Imperv	Impervious Ratio			
ID	Area (ha)	Timp	Ximp	LGI (m)		
B1	6.5	0.51	0.23	206		
B2	6.1	0.51	0.23	151		
B3	4.9	0.52	0.25	160		
B4	4.5	0.42	0.22	256		
B5	1.9	0.51	0.23	202		
B6	1.8	0.51	0.23	166		
B7	17.6	0.52	0.26	335		
B8	4.0	0.52	0.25	230		
B9	5.3	0.51	0.23	274		
B10	1.9	0.51	0.23	97		

4. WATER QUANTITY ANALYSIS – PEAK FLOWS

4.1 Comparison of Peak Flows

As discussed in Section 2.1, the recipient watercourse of Phase 1 is the Unnamed Drain. The control point that was considered in the evaluation of water quantity peak flow control is identified as Point A, which is located at the downstream end of the development. Point A is an arbitrarily selected location in close proximity to the Rideau River.

Point A receives flow from Phase 1 and Phase 2 development, as well as two rural areas. Water quantity control is achieved with dual drainage and on site storage on Phase 1 and 2, as well as an end-of-pipe SWM facility servicing Phase 2. Phase 1 is discretized in detail; however, Phase 2 was kept at a conceptual level, consistent with the 2007 SWM Servicing⁶. The location of the Phase 2 SWM facility has been slightly adjusted, however, remains a conceptual design.

Simulations were completed with the 25 mm 4 hour Chicago storm, and the 2, 5 and 100 year 24 hour SCS Type II storms. As noted in Section 1.1, the detailed design of the fish habitat enhancements to the Unnamed Drain will be presented in a separate study

The overall performance of the stormwater management system is summarized in the below table.

Flow at Point A (cms)								
25	mm	2 y	year	5	year	100) year	
Existing	Post-Dev.	Existing	Post-Dev.	Existing	Post-Dev.	Existing	Post-Dev.	
0.89	0.73	2.21	1.75	3.44	2.59	7.54	7.54	

Table 4.1 Comparison of flow rates in the Unnamed Drain at Point A

At the Point A location, during flood conditions (100 year storm event) there is no increase in flow under post-development conditions with water quantity control in place. The above comparison also indicates that in order to accomplish peak flow control, stormwater management is required. As indicated above, the stormwater management consists of a dual drainage concept, in combination with a SWM facility servicing Phase 2 lands. The following sections provide a description of stormwater management components for the site. The Unnamed Drain is not part of the stormwater management system. The proposed works to the highly degraded drain are focused on enhancing the fish habitat.

4.2 Dual Drainage Design

As discussed in Section 3.0, hydrological analysis of the proposed dual drainage system was conducted using SWMHYMO. The Phase 1 site was designed with dual drainage features, accommodating minor and major system flow.

Minor system

Across the majority of the site the roads are designed to accommodate on-site storage. Inlet control devices (ICDs) are proposed to control the surcharge in the minor system during infrequent storm events and maximize use of available on-site storage. The minimum minor system capture of ICDs is based on 5 year rational method flow for street segments. The dual drainage system was evaluated using the SWMHYMO hydrological model. The minor system hydraulic grade line analysis was evaluated using the XPSWMM dynamic model.

Drainage areas were considered independently, each with a 10 minute time of concentration. The 5 year flow values for each street segment are indicated on the revised rational method spreadsheet enclosed in Appendix A.

Analysis indicated that in terms of on-site detention versus cascading flow, minor system capture did not require increasing above the 5 year rational flow on the majority of street segments. Inlet control devices were sized based on the maximum 0.3 m ponding, and the ICD flow was applied as the minor system restriction in SWMHYMO. Across the majority of the site, standard Hydrovex and Ipex ICDs are proposed; however, custom ICDs are proposed at three locations. The design flow rates and number of ICDs are indicated on the revised rational method spreadsheet, enclosed in Appendix 7A. Refer to EXP submission for detailed ICD schedule. Minor system restrictions are summarized in Table 4.2.

Major flow will cascade from the eastern portion of the site downstream to the western limits of the site. Available surface storage was accounted in the SWMHYMO model and is summarized in Table 4.2. The surface storage was considered in two parts: as a 'static' storage and a 'dynamic' storage. Each storage location was examined individually. Based on the grading plan, ponding from the low point to the downstream high point (for this particular design, a depth ranging from 0.10-0.29 m) was designed as 'static' storage with the outflow-storage curve based on the minor system capture and the 'static' ponding volume. If the SWMHYMO simulation did not produce overflow, then the design of the low point was completed. If the SWMHYMO simulation indicated an overflow, the 'dynamic' routing was performed to utilize the available storage (for example, for a 'static' storage depth of 0.24 m, the corresponding 'dynamic' storage is 0.06 m). Dynamic routing was performed with a second route reservoir command.

The second outflow-storage curve was based on the normal depth of flow for the downstream street segment and available storage between the static ponding elevation (approximately 0.20 m) and max depth of 0.3 m. The outflow from this command represents the major system flow cascading to the downstream segment. Since the stage-storage curve input in SWMHYMO ranges from 0.20-0.30 m depth, any overflow from this second route reservoir would indicate that 0.3 m depth would be exceeded. Specifically for this design, minor system capture was increased at street segment 244, 233 and 234 to ensure no overflow, and therefore the depth limited to below 0.3 m. The above approach ensures that City guideline of 0.3 m ponding depth is maintained at all locations. It should be noted that if the 0.3 m of ponding was designed as the 'static' storage, then 'dynamic' storage was not available and therefore not used.

The rational method spreadsheet was completed by EXP and is enclosed in Appendix 7A for reference. The rational method design indicates that the 5 year rational flow is conveyed in the system under free flow conditions; in other words, with spare capacity.

During 100 year flow conditions, as indicated on the revised rational method spreadsheet, the total flow (for both street segments and rear yards) from the ICDs is 3744 l/s, which is approximately 218 l/s/ha on an average basis. The inflow hydrographs were exported to XPSWMM to perform dynamic routing. The revised rational method spreadsheet is enclosed in Appendix 7A for reference.

Storm sewers within future phases of development tributary to the Unnamed Drain have been sized for an inflow equivalent to the 5 year 3 hour Chicago storm event. An average value of 20 cu-m/ha was applied to the Phase 2 lands, presently at the conceptual level of design.

hs [®]	Drainage Area			Avail.	Minor Restrict	Minor Flow Restriction (I/s)		
Vortec Unit	ID	Area (ha)	Receiving MH	Storage (cu-m)	Rational Method Flow	ICD Flow		
N/A	FREE5	0.55	Existing Pond	N/A	N/A	N/A		
N/A	FREE5B	0.18	Manotick Main St Ditch via swale	N/A	N/A	N/A		
1	237A	0.26	237	0	39.39	44.6		
1	262	0.20	262	0	24.77	31.7		
1	271A	0.09	271	0	14.95	14.95		
1	271B	0.17	271	0	21.41	22.3		
1	267	0.37	267	0	60.16	61.4		
1	287	0.31	287	16.8	56.89	61.4		
N/A	FREE4	0.55	Manotick Main Ditch	N/A	N/A	N/A		
1	RY275	0.36	275	N/A	57.96	61.4		
1	275	0.10	275	0	14.51	14.95		
1	276	0.30	276	52.7	48.40	61.4		
1	RY256	0.27	256	N/A	28.94	31.7		
1	256	0.59	256	34.3	96.63	104.7		
1	258	0.19	258	35.9 (in Century Rd Ditch)	275*	275.6 [†]		
1	RY255	0.16	255	N/A	24.32	31.7		
1	255	0.35	255	47.8	67.52	83.7		
1	226	0.04	226	0	5.66	7.0		
1	RY241	0.38	241	N/A	51.21	61.4		
1	241	0.47	241	0	81.36	85.9		
1	252A	0.25	252A	0	46.92	61.4		
1	RY254	0.38	254	N/A	62.57	83.7		
1	254	0.30	254	0	51.85	61.4		
1	RY244	0.23	244	N/A	36.64	41.3		
1	248	0.32	248	(in Century Rd Ditch)	325*	325.1 [†]		
1	244	0.33	244	53.9	61.58	122.8		
1	RY233A	0.34	233	N/A	54.57	61.4		
1	RY233B	0.25	233	N/A	39.10	41.3		
1	233	0.34	233	53.8	60.25	122.8		
N/A	FREE3	0.67	Unnamed Drain	N/A	N/A	N/A		
2	237B	0.25	237	30.9	42.87	61.4		
2	RY252	0.11	252	N/A	16.92	22.3		
2	252B	0.37	252	52.91	64.01	73.0		
2	228	0.22	228	0	37.08	41.3		
2	RY234	0.21	234	N/A	34.67	41.3		
2	234	0.38	234	68.9	63.38	167.4		
2	RY219A	0.03	219	N/A	5.29	7.0		
2	RY219B	0.54	219	N/A	84.00	84.8'		

Table 4.2 Storage and Minor System Restriction – Phase 1

 2
 RY219B
 0.54
 219
 N/A
 84.00
 84.8'

 * Represents total flow capture
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

hs [®]	Drainage Area			Avail.	Mino Restric	r Flow tion (I/s)
Vortec Unit	ID	Area (ha)	Receiving MH	Storage (cu-m)	Rational Method Flow	ICD Flow
2	219A	0.37	219	0	66.04	73.0
2	RY223	0.32	223	N/A	47.53	61.4
2	223	0.55	223	0	93.91	102.7
2	220	0.3	220	0	59.15	61.4
2	222	0.19	222	0	36.35	41.3
2	283	0.1	283	0	17.88	22.3
2	216	0.35	216	24.7	64.27	83.7
N/A	FREE2	0.63	Unnamed Drain	N/A	N/A	N/A
3	RY225	0.2	225	N/A	24.26	31.7
3	225	0.39	225	0	73.28	82.6
3	RY219C	0.73	219	N/A	44.32	61.4
3	219B	0.19	219	0	35.34	41.3
3	RY281	0.67	281	N/A	54.34	61.4
3	278	0.3	278	0	51.85	54.0
3	RY279	0.04	279	N/A	5.40	7.0
3	279	0.41	279	60.7	54.17	63.4
3	203	0.11	203	0	18.54	22.3
3	RY204	0.06	204	N/A	6.96	7.0
3	204	0.06	204	0	10.78	14.95
3	281	0.47	281	57.16	81.97	83.7
3	206	0.13	206	0	22.54	31.7
3	211	0.29	211	0	45.19	61.4
3	284	0.80	284	N/A	46.35	61.4
3	208	0.12	208	0	18.51	22.3
3	285	0.29	285	68.8	45.19	61.4
3	207	0.25	207	0	45.10	54.0
N/A	FREE1	1.05	Unnamed Drain	N/A	N/A	N/A
N/A	Street 7 LP	0.30	Unnamed Drain	64.0	53.01	61.4

Table 4.2 Storage and Minor System Restriction – Phase 1 (continued)

* Represents total flow capture [†] Custom ICD size required; refer to Appendix 7A and EXP submission for complete ICD schedule

Draina	age Area	Est. Storage	Minor Flow
ID	Area (ha)	(cu-m/ha)	Restriction (I/s)
B1	6.5	20	852
B2	6.1	20	844
B3	4.9	20	655
B4	4.5	20	484
B5	1.9	20	249
B6	1.8	20	236
B7	17.6	20	2092
B8	4.0	20	505
B9	5.3	20	658
B10	1.9	20	277

 Table 4.3 Storage and Minor System Restriction – Future phases tributary to the Unnamed Drain (conceptual design)

The total drainage area tributary to the Unnamed Drain is indicated on Figure 2, and the detailed Phase 1 drainage areas are included in Figure 3. Of the total Phase 1 drainage area, minor flow from 17.15 ha is conveyed to the Unnamed Drain via the storm sewer system. This includes the northern portion of Century Road, as well a portion of existing development east of Street 1. There are three storm sewer outlets to the Unnamed Drain, identified as Storm Outlet 1, 2 and 3 (refer to Figure 3).

The following areas are not connected to the storm sewer system and are considered external. They are also identified on Figure 3.

- Total flow from rear yards on Street 5 discharges to an adjacent existing pond and the roadside ditch on Manotick Main Street via a rear yard swale (Area 'Free5A' and 'Free5B', respectively).
- Total flow from the southeast corner of the site (at Century Road and Manotick Main Street) discharges to the existing roadside ditch on Manotick Main Street, and eventually to the Rideau River (Area 'Free4').
- Total flow from rear yards on Street 2 is conveyed overland to the Unnamed Drain (Area 'Free3').
- Total flow from an existing hedgerow adjacent to Street 7 is conveyed overland to the Unnamed Drain (Area 'Free2').
- Total flow from rear yards on Street 9 is conveyed overland to the Unnamed Drain (Area 'Free1').

Recipient	External Drainage Area	Total Flow (cms)
Existing pond and Manotick Main St. Ditch	FREE5	0.116
Existing Manotick Main St. Ditch	FREE4	0.087
	FREE3	0.188
Unnamed Drain	FREE2	0.159
	FREE1	0.260

Table 4.4 Maximum Total Flow from External Drainage Areas

It should be noted that the drainage area contributing flow to the existing pond measures 0.55 ha (refer to Figure 3), which represents a slight decrease from the drainage area under existing conditions (estimated at 0.6 ha). It is proposed that the landscaping buffer at the back of Lots 102, 101, 100 will act as an emergency overflow to the Manotick Main Street roadside ditch (refer to EXP Drawing 2545-GR1). Total flow from the rear yards of Lots 102, 101, 100 will also discharge to the landscaping buffer.

Overland flow from the majority of the site will be released at select discharge points directly to the Unnamed Drain. Design constraints under this scenario are the maximum quantity and depth of water conveyed on the surface segments. These design constraints become more restrictive as the generating lands become more remote from the recipient area. Overland flow from the site will be directed as follows (refer to Figure 4):

- Phase 1 development at the southeast corner of the site contributes major flow to an existing roadside ditch on Manotick Main Street. This flow will ultimately discharge to the Rideau River (Major Outlet 1).
- The existing roadside ditch on the north side of Century Road will be re-graded as part of the Phase 1 works. The high point located in the vicinity of Street 6 will be maintained and will result in major flow from the eastern-most portion of Century Road cascading east towards the existing ditch on Manotick Main Street and to the Rideau River (Major Outlet 2).
- The remainder of the site contributes overland flow to the Unnamed Drain. The major outlets are listed as follows, from south to north:
 - Generally, major flow from the southeastern portion of the site will be conveyed to the Century Road ditch, west of the high point. This flow will be picked up by the storm sewer at two locations and conveyed to the Unnamed Drain via the first storm outlet (Major Outlet 3).
 - A major flow outlet to the Unnamed Drain is located at the second storm sewer outlet, off of Street 3 (Major Outlet 4).
 - A major flow outlet to the Unnamed Drain is located off of Lane 2 (Major Outlet 5).
 - A major flow outlet to the Unnamed Drain is located off of Street 7, in the vicinity of the proposed low point. The overland flow will be conveyed by a swale from Street 7 to the drain (Major Outlet 6). Minor flow from the low point will also be conveyed

to the drain via the swale. The minor flow connection is an interim measure until the Phase 2 SWM facility is constructed.

• A major flow outlet to the Unnamed Drain is located off of Street 9, represented by Block 220 between Lots 186 and 187 (Major Outlet 7).

Recipient	Major Flow Outlet	Max. Cum. Flow (cms)	Corresponding Velocity (m/s)		
Existing Manotick Main St. Ditch	1	0.229	0.4 (in ditch)		
Century Road Ditch (East of high point)	2	0.040	0.8 (in ditch)		
Century Road Ditch	3A (Total Flow)	0.275	1.2 (in ditch)		
(West of high point)	3B (Total Flow)	0.325	0.9 (in ditch)		
	4	0.472	1.3		
Linnamod Drain	5	0.123	0.9		
Unnamed Drain	6 (Total Flow)	0.587	N/A (to BMP)		
	7	0	N/A		

Table 4.5 Maximum Cumulative Overland Flow at Major Storm Outlets

Simulations indicate that under post-development conditions, there is a decrease in flow to the Manotick Main Street ditch (approximately 550 l/s) in comparison to existing conditions.

The maximum resulting overland flow on subdivision streets during the 100 year 3 hour Chicago storm is presented in Table 4.6. The overland flow was evaluated at downstream locations, based on proposed grades. Using the channel routing routine in SWMHYMO, maximum normal depth and velocity of flow have been quantified and results are summarized below.

Recipient	Major Flow Outlet	Location	Max. Cum. Flow (cms)	Depth (m)	Velocity (m/s)	d x v (m²/s)
Existing Manotick	1	Lane 1 (NW)	0 220	0.07	1.4	0.10
Main St. Ditch	I	Lane 1 (SE)	0.225	0.07	1.1	0.10
Century Road Ditch	24	Street 4 (NW)	0.246	0.08	1.4	0.12
	34	Street 4 (NE)	0.340	0.09	1.4	0.12
	3B	Street 1	0.275	0.08	1.4	0.11
Street 3	4	Street 2	0.186	0.08	0.8	0.07
Street 3	4	Street 3 (NE of Street 2)	0.151	0.06	1.2	0.07
	4	Street 3 (SE)	0 472	0.20	1.7	0.34
	4	Street 3 (NW)	0.472	0.12	1.0	0.11
Unnamed Drain	5	Lane 2 (NE)	0.123	0.06	0.9	0.06
	6	Street 7	0.526	0.10	1.6	0.15
	7	Block 220	0	N/A	N/A	N/A

Table 4.6 Maximum Cumulative Overland Flow on Phase 1 streets

It should be noted that at each location, the d x v product is less than the maximum allowable product of 0.6 per City of Ottawa Sewer Design Guidelines.

4.3 Hydraulic Grade Line Analysis

The evaluation of the hydraulic grade line, as well as of flood levels in the Unnamed Drain, was completed using XPSWMM. The XPSWMM model represents the complete storm system: the Unnamed Drain, Phase 1 storm sewers, and Phase 2 SWM facility. The detailed design of the fish habitat enhancements to the Unnamed Drain will be presented in a separate study, however, the hydraulics of the drain were used as the starting water levels for the storm sewer system. The boundary condition at Point A was based on a tailwater developed using Rideau River water surface elevations for the 2, 5 and 100 year events (provided by RVCA). Point A is located within the Rideau River flood plain and therefore modeling of the Unnamed Drain between Point A and the Rideau River is not required. Cross-sections of the proposed fish habitat enhancements to the drain are included below and have been approved by the RVCA. A profile of the Unnamed Drain is provided on Drawings 702-704, which indicates the 100 year water surface elevations.

Minor system losses were accounted for in accordance with Appendix 6-B of the City of Ottawa Sewer Design Guidelines (November 2004). Losses at Vortechs[®] units were customized to reflect the design of the units.

XPSWMM simulations were conducted for the 25 mm 4 hour Chicago storm; 2, 5 and 100 year 24 hour SCS Type II storms; the 100 year 3 hour Chicago storm; and, the July 1, 1979 storm. Pipe data is summarized in the below table, along with HGL values for the 100 year 24 hour SCS Type II, 100 year 3 hour Chicago and July 1 1979 storms. A comparison of under-side of footing (USF) elevations and HGL is also included. XPSWMM model files are provided in Appendix 7D.

	U/S Pipe Data		100 ye	100 year 24 hour SCS Type II		100 year 3 hour Chicago		July 1 1979														
ΗW	USF (m)	lnv. (m)	Length (m)	Dia. (mm)	Slope (%)	(m)	Sur- charge (m)	USF - HGL (m)	(m)	Sur- charge (m)	USF - HGL (m)	(m)	Sur- charge (m)	USF – HGL (m)								
UD at #1	N/A	N/A	N/A	N/A	N/A	87.99	N/A	N/A	87.94	N/A	N/A	88.02	N/A	N/A								
288	N/A	87.47	18.2	1050	0.11	88.52	0	N/A	88.46	0	N/A	88.49	0	N/A								
249	N/A	87.62	57.1	900	0.51	88.74	0.22	N/A	88.67	0.15	N/A	88.71	0.19	N/A								
249	NI/A	88.06 (NE)	81.1	750	1.01	00.00	0.27	NI/A	00 04	0.12	NI/A	90.01	0.20	NI/A								
240	N/A	87.97 (NW)	17.6	600	0.51	09.00	09.00	09.00	09.00	09.00	09.00	09.00	00.00	00.00	0.27	IN/A	00.94	0.13	10/7 (03.01	0.20	IN/A
245	00.2	88.33 (NW)	108.3	450	0.36	80.26	0.49	1.04	90.10	0.24	1 101	80.10	0.44	1 1 1								
240	90.3	88.33 (NE)	81	450	1.22	09.20	0.40	1.04	09.12	0.34	1.101	69.19	0.41	1.11								
233	89.9	88.87	52	300	0.4	89.60	0.43	0.30	89.51	0.34	0.39	89.54	0.37	0.36								
234	89.95	89.08	-	-	-	89.39	0.01	0.56	89.34	0	0.61	89.31	0	0.64								
244	91.1	89.4	96.1	375	1.18	90.41	0.63	0.69	90.21	0.43	0.894	90.34	0.56	0.77								
254	92.2	90.6	32.3	300	1.46	91.48	0.58	0.72	91.18	0.28	1.024	91.43	0.53	0.78								
252	92.6	91.07	-	-	-	92.17	0	0.43	91.80	0	0.797	92.14	0	0.46								
243	N/A	88.95	77.9	750	0.35	89.55	0	N/A	89.44	0	N/A	89.49	0	N/A								

Table 4.7 Storm pipe data and HGL

			U/S	Pipe Da	ita	100 ye	ar 24 hou Type II	ur SCS	100	year 3 h Chicago	our	J	uly 1 197	'9
НМ	USF (m)	Inv. (m)	Length (m)	Dia. (mm)	Slope (%)	(m) HGL	Sur- charge (m)	USF - HGL (m)	HGL (m)	Sur- charge (m)	USF - HGL (m)	(m)	Sur- charge (m)	USF – HGL (m)
0.40		89.3 (NE)	86.5	675	0.31	00.05		N1/A	00.75	0	N1/A	00.70	_	N1/A
242	N/A	89.6 (NW)	93.6	375	2.49	89.85	0	N/A	89.75	0	N/A	89.76	0	N/A
241	93.45	91.93	24.3	375	2.39	92.25	0	1.20	92.25	0	1.20	92.25	0	1.20
240	93 45	92.52 (E)	79.8	375	0.46	92 70	0	0.75	92 70	0	0.75	92 70	0	0.75
210	00.10	92.64 (N)	78.5	250	2.08	02.70	Ŭ	0.70	02.70	Ŭ	0.10	02.70	Ŭ	0.10
226	94.85	94.10	108.6	250	1.35	94.15	0	0.70	94.15	0	0.70	94.15	0	0.70
237	96.2	96.2	-	-	-	95.68	0	0.52	95.68	0	0.52	95.67	0	0.53
255	94.15	93.02	12.8	250	0.94	93.09	0	1.07	93.09	0	1.06	93.09	0	1.07
250	94.15 N/A	93.14	-	-	-	92.87	0	1.28 N/A	92.87	0	1.28 N/A	92.87	0	1.28 N/A
200	IN/A	89.00	17.1	075	0.23	90.20	0	IN/A	90.24	0	IN/A	90.27	0	IN/A
257	N/A	(NE)	81	675	0.19	90.51	0	2.39	90.47	0	2.44	90.50	0	2.40
		(W)	61.1	300	1.83									
273	93.9	90.09 (NE)	47.2	450	0.34	90.78	0.24	3.12	90.72	0.18	3.18	90.78	0.24	3.12
070		90.09 (NW)	35.9	450	1.09	04.00	0.40			0.04		04.00	0.40	0.00
276	93.9	90.53	40.1	450	0.5	91.08	0.10	2.82	90.99	0.01	2.91	91.08	0.10	2.82
275	94.52	90.88	35.1	300	0.71	91.26	0.08	3.26	91.16	0	3.36	91.26	0.08	3.26
259	94.36	91.18 (N)	44.9	250	0.51	91.79	0.36	2.57	91.69	0.25	2.68	91.80	0.37	2.56
		94.1 (W)	73.1	250	1.4	04.00	0.04	4.00		0.10		04.00	0.00	4.00
260	93.22	91.46	50.4	250	0.62	91.92	0.21	1.30	91.81	0.10	1.41	91.93	0.22	1.29
262	92.4	91.77	-	-	-	92.06	0.04	0.34	91.96	0.00	0.44	92.07	0.05	0.33
271	94.2	90.32	23.0	375	0.07	90.94	0.25	2.20	90.07	0.10	2.33	90.95	0.25	2 70
268	93.94	90.00	25.8	375	0.71	91.14	0.10	1.99	91.00	0.03	2.00	91.13	0.17	1 97
267	93.24	91 14	39.6	375	0.61	91 41	0.00	1.83	91.36	0	1.88	91.42	0.07	1.87
266	92.64	91.46	29.4	300	0.75	91.57	0	1.07	91.57	0	1.07	91.58	0	1.06
287	93.08	91.68	-	-	-	91.89	0	1.19	91.89	0	1.19	91.89	0	1.19
UD								-		-	-			
at #2	N/A	N/A	N/A	N/A	N/A	87.50	N/A	N/A	87.42	N/A	N/A	87.56	N/A	N/A
232	N/A	87.00	3.9	900	0.26	87.83	0	N/A	87.81	0	N/A	87.81	0	N/A
232	N1/A	87.09 (N)	4	825	0.25	00 10	0.10	N1/A	88.06	0.15	N1/A	00.07	0.16	N1/A
A	IN/A	87.16 (SE)	6.2	675	0.16	00.10	0.19	IN/A	00.00	0.15	IN/A	00.07	0.10	IN/A
217 A	89.4	87.22	13	675	0.23	88.14	0.24	1.27	88.10	0.20	1.30	88.10	0.20	1.30
230	89.4	87.87	24.2	450	2.11	88.17	0	1.23	88.13	0	1.27	88.13	0	1.28

Table 4.7 Storm pipe data and HGL (continued)

			U/S	Pipe Da	ita	100 ye	ar 24 ho Type II	ur SCS	100	year 3 h Chicago	our	J	uly 1 197	'9
ΗW	USF (m)	lnv. (m)	Length (m)	Dia. (mm)	Slope (%)	(m)	Sur- charge (m)	USF – HGL (m)	(m)	Sur- charge (m)	USF – HGL (m)	(m)	Sur- charge (m)	USF – HGL (m)
		88.45 (NE)	86.4	375	3.07									
229	89.4	88.38 (SE)	54.9	375	1	88.77	0.01	0.63	88.76	0	0.64	88.74	0	0.66
228	92.25	91.1	23.3	375	2.58	91.23	0	1.02	91.23	0	1.03	91.23	0	1.02
227	92.25	91.88 (E)	78.5	250	2.76	91.80	0	0.45	91.79	0	0.46	91.79	0	0.46
		(S)	82.9	375	0.4									
217	89.4	87.21	66.3	675	0.38	88.14	0.26	1.26	88.10	0.21	1.30	88.11	0.22	1.29
216	89.1	87.68	10	450	0.9	88.50	0.37	0.60	88.43	0.30	0.67	88.47	0.34	0.63
282	89.1	87.82	85	450	1.64	88.66	0.39	0.44	88.57	0.30	0.53	88.62	0.35	0.48
223	90.6	89.28	119.5	375	2.17	89.57	0	1.03	89.54	0	1.06	89.57	0	1.03
283	89.32	88.17	78.7	375	0.99	88.78	0.23	0.54	88.68	0.14	0.64	88.76	0.21	0.56
222	90.15	89.08	119.3	250	1.28	89.44	0.11	0.71	89.27	0	0.88	89.40	0.07	0.75
UD at #3	N/A	N/A	N/A	N/A	N/A	86.86	N/A	N/A	86.78	N/A	N/A	86.91	N/A	N/A
213	N/A	86.5	10.2	900	0.19	87.40	0.004	N/A	87.37	0	N/A	87.41	0.01	N/A
214	N/A	86.52	85.6	900	0.39	87.71	0.28	N/A	87.64	0.22	N/A	87.71	0.29	N/A
207	89.05	87.16 (NW)	38	450	2.39	87.95	0.20	1.10	87.85	0.10	1.20	87.96	0.21	1.09
		07.3 (NE)	53.1	600	0.17									
208	88.75	87.35	46.4	525	0.22	88.03	0.15	0.72	87.91	0.03	0.84	88.04	0.16	0.71
284	88.55	87.46	12.4	525	0.32	88.11	0.14	0.44	87.98	0.01	0.57	88.13	0.16	0.42
212	88.55	87.59	13.8	450	0.22	88.12	0.08	0.43	87.99	0	0.56	88.14	0.10	0.41
285	88.6	87.82	68.8	250	1.24	88.15	0.08	0.45	88.01	0	0.59	88.17	0.10	0.43
211	89.6	88.7	22.6	250	3.1	88.88	0	0.72	88.86	0	0.74	88.88	0	0.72
210	89.6	89.4	-	-	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
206	N/A	88.24	37.4	450	2.14	88.61	0	N/A	88.55	0	N/A	88.61	0	N/A
205	91.7	89.18 (NE)	27	375	0.85	89.41	0	2.29	89.40	0	2.30	89.41	0	2.29
		89.1 (SE)	34.5	450	1.28									
281	91.7	89.61	57	375	1.54	90.23	0.25	1.47	90.22	0.23	1.49	90.23	0.24	1.47
220	91.52	90.61	39.8	375	3.14	91.08	0.10	0.44	91.04	0.05	0.48	91.08	0.09	0.44
219	92.44	91.87	89.4	300	2.19	92.05	0	0.39	92.05	0	0.39	92.05	0	0.39
225	94.75	93.78	-	-	-	93.98	0	0.77	93.98	0	0.77	93.98	0	0.77
204	91.65	89.44	44.8	375	0.76	89.74	0	1.92	89.73	0	1.92	89.74	0	1.92
203	91.35	89.86 (E)	44.4	300	1.67	90.11	0	1.24	90.11	0	1.24	90.11	0	1.24
	<u> </u>	(NE)	45.9	250	1.66	00.11	4.8-	0.0.5		4.5-	0.0.5	0.00	4.5-	
279	91.95	90.65	38.2	250	0.99	90.93	0.03	1.02	90.93	0.03	1.02	90.93	0.028	1.02
278	92.3	91.06	27.9	250	1.11	91.24	0	1.06	91.24	0	1.06	91.24	0.00	1.06
277	92.32	91.37	-	-	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
202	91.85	90.67	-	-	- 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 4.7 Storm pipe data and HGL (continued)

The minimum 0.3 m clearance between the USF and HGL is maintained across the Phase 1 site during the three storm events.

The proposed fish habitat enhancements to the Unnamed Drain previously approved by the RVCA were presented in the 2011 Unnamed Drain Report⁷. A summary of the cross-sections is presented below. The stationing has been updated to reflect the minor revisions to storm outlet locations. It should be noted that the flow and average depth were evaluated with XPSWMM and velocity was evaluated manually using the continuity equation (calculations included in Appendix A).

To STA 0+472

The drain will be enhanced with a meandering low flow channel and adjacent shallow pool/wetland areas. The channel at this location will receive flow from the upstream rural area as well as the first and second outlets. The area representing the Unnamed Drain corridor was also accounted for at this location. The typical cross-section is indicated in Chart 4.1 below. The results indicate that the maximum flow is 4.87 cms and the corresponding velocity and depth are 0.30 m/s and 1.12 m, respectively. The 100 year water levels are confined within the channel.

Chart 4.1 Typical Cross-section

Unnamed Drain Typical Cross-Section

STA (m)

Table 4.8 To STA 0+472: Summary of hydraulic performance

	Bankfull	Maximum
	25 mm 4 hour Chicago Storm	100 year 24 hour SCS Type II Storm
Flow (cms)	0.64	4.87
Velocity (m/s)	0.33	0.30
Average water depth (m)	0.52	1.12

From STA 0+472 to STA 0+550

This section of the Unnamed Drain extends to just upstream of the third storm outlet. It includes the culvert at Street 7 (refer to Drawing 713) and the typical cross-section of the drain is indicated in Chart 4.1 above. The results indicate that the maximum flow is 4.91 cms and the corresponding velocity and depth are 0.63 m/s and 0.82 m, respectively. The 100 year water levels are confined within the channel.

	Bankfull	Maximum	
	25 mm 4 hour Chicago Storm	100 year 24 hour SCS Type II Storm	
Flow (cms)	0.64	4.91	
Velocity (m/s)	1.37	0.63	
Average water depth (m)	0.37	0.82	

Table 4.9 From STA 0+472 to STA 0+550: Summary of hydraulic performance

From STA 0+550 to 0+800 (end of proposed works)

At this location the channel will receive additional flow from the third outlet, and Muskellunge spawning and refuge habitat areas are proposed. The typical cross-section for the spawning and refuge habitat areas is indicated in Chart 4.2 below. The results indicate that the maximum flow is 4.94 cms and the corresponding velocity and depth are 0.80 m/s and 0.95 m, respectively. The 100 year water levels are confined within the channel.

Chart 4.2 Muskellunge Spawning and Refuge Habitat Area Typical Cross-section

	Bankfull	Maximum
	25 mm 4 hour Chicago Storm	100 year 24 hour SCS Type II Storm
Flow (cms)	0.64	4.94
Velocity (m/s)	0.36	0.80
Average water depth (m)	0.33	0.95

Table 4.10 From STA 0+550 to STA 0+800: Summary of hydraulic performance

Existing Drain Downstream of STA 0+800 (to Point A)

The future SWM facility that will service subsequent phases of development west of the Unnamed Drain will outlet to the drain in the vicinity of STA 0+800 (corresponding to the downstream end of the enhancement to the drain). The typical cross-section for the existing drain is indicated in Chart 4.3 below. Results of the hydraulic modeling were considered at Point A (refer to Section 4.1 above), located approximately 125 m downstream of the proposed works. Results indicate that the maximum flow is 7.54 cms and the corresponding velocity and depth are 0.42 m/s and 1.16 m, respectively. The 100 year water levels are confined within the channel.

Chart 4.3 Existing Unnamed Drain Typical Cross-section

Existing Unnamed Drain Cross-Section

	Bankfull	Maximum
	25 mm 4 hour Chicago Storm	100 year 24 hour SCS Type II Storm
Flow (cms)	0.73	7.54
Velocity (m/s)	0.70	0.42
Average water depth (m)	0.36	1.16

Table 4.11 Downstream of STA 0+800 (to Point A): Summary of hydraulic performance

In review of the above, it can be concluded that the proposed design provides sufficient capacity for the 100 year storm event. The maximum depth of water in the Unnamed Drain ranges from 0.82 m to 1.16 m, which can be conveyed within the channel.

5. WATER QUANTITY ANALYSIS – RUNOFF VOLUME

From a water budget perspective, the changes in the land use (in this case the introduction of hard surfaces) results in some infiltration losses and increase in surface runoff from the developed area. With no BMP's in place, the majority of increased runoff is intercepted by catch basins and conveyed via storm sewers to stormwater treatment units or facilities for water quality treatment and attenuation.

In general, on a large or watershed scale, groundwater flow follows the surface topography, such as that of the Rideau River at Manotick. It is estimated that a general slope of infiltrated rainwater and subsurface flow from the subject area flows east and is intercepted by the Rideau River. In the 2007 SWM Servicing⁶, it was proposed that BMP's be implemented to promote infiltration. This was based on a review of Paterson Group's "Preliminary Geotechnical Investigation – Proposed Residential Development Century Road at First Line Road⁸," January 2007, which indicated that the soils in the study area vary between silty sand and silty clay. It was recommended that during the detail design of the subdivision, areas comprised of silty sand and some clay be considered for infiltration trenches. Specifically in the vicinity of Phase 1, soils are predominantly silty sand with gravel, making the Phase 1 area suitable for consideration of infiltrative BMP's.

The Phase 1 development is therefore being provided with perforated pipes in rear yards to collect and convey stormwater runoff from adjacent grassed areas and roof surfaces. This application has been used in the City of Ottawa, particularly in rear yards of residential area. The detailed design is being completed by EXP; refer to Section 6.7 of their report for further details.

6. WATER QUALITY CONTROL

As discussed in Section 3.1.1, Phase 1 has been divided into sub-catchment areas to reflect drainage connectivity. Minor flow from the drainage areas is collected by storm sewers and conveyed to an off-line Vortechs[®] stormwater treatment unit for water quality treatment of the first flush, prior to being discharged to the recipient Unnamed Drain. Minor flow in excess of the first flush will be conveyed over the bypass weir and discharge directly to the drain, bypassing the Vortechs[®] unit. The locations of the stormwater treatment units are indicated on Figure 3. Details of the storm outlet configurations, including the Vortechs[®] units, are on Drawings 710-712.

The stormwater treatment units will provide water quality treatment by removing core sediments, floating debris and provide oil and grit separation. Sediments removed from the stormwater runoff will be collected within the stormwater treatment units. The units will provide treatment to achieve an Enhanced Level of Protection on a long-term basis (80% suspended solids removal as per the MOE Stormwater Management Planning and Design Manual, March 2003).

Vortoche®	Tributary	Flow (cms)			
Unit	Drainage Area (ha)	First flush	100 year		
1	7.35	0.51	1.59		
2	4.29	0.20	0.88		
3	3 5.51		0.81		

	Table 6.1	Summary	of Drainage	Area and Flo	ows at Vorf	techs [®] Units
--	-----------	---------	-------------	--------------	-------------	--------------------------

Sizing of the Vortechs[®] units from the manufacturer is included in Appendix 7B. TSS removal efficiency ranges from 80% to 85% for the three units, meeting or exceeding the 80% criteria.

At Major Outlet 6, as noted in Section 4.2, a minor flow connection to a proposed swale will convey minor flow to the Unnamed Drain on an interim basis. Water quality treatment will be provided by a BMP prior to the storm runoff discharging to the Unnamed Drain. The BMP measures approximately 25 m in length, and has a bottom elevation of 86.46 m, corresponding to a depth of 0.3 m. Flow will be conveyed through the BMP, prior to discharging to the Unnamed Drain via a berm and swale. At the outlet of the BMP, the berm invert is 86.76 m. The swale will be provided with a reinforced grass treatment.

Table 6.2 presents the required storage volumes based on the MOE Stormwater Management Planning and Design Manual (March 2003). The BMP was oversized to provide 53 cu-m storage. A clear stone layer extending 0.3 m below the BMP invert will promote infiltration, and prevent permanent storage in the BMP. The clear stone layer itself will provide additional storage. It is therefore anticipated that the BMP will be dry the majority of the time. Storage in the BMP was oversized and will capture more runoff than required based on the MOE manual, exceeding the enhanced level of protection.

Table 6.2 Water quality storage volumes for BMP

Enhanced Level of Protection – Infiltration			
Overall Removal Efficiency of TSS 80%			
Drainage Area (ha)	Imperviousness Ratio (%)	Required Storage (cu-m)	Provided Storage (cu-m)
0.30	59	9	53

7. MAINTENANCE AND MONITORING

7.1 Routine Maintenance

Routine maintenance is essential in order to ensure the Vortechs[®] units continue to perform as designed. Standardized forms should be developed and completed at the time of each inspection. These completed forms would be filed at the City of Ottawa office for future reference. Utilizing a standardized format will assist in the interpretation of the collected data and the identification of future maintenance needs.

7.2 Sediment Removal and Disposal

The Vortechs[®] units, proposed to be built at the outlet of the storm sewer system, would capture much of the solids being transported by the storm flow. Timing for cleanout would have to be scheduled during dry periods of the summer or in the autumn.

Sediment accumulation rates to the Vortechs[®] units will vary depending on numerous factors including the status and maturity of the upstream development, the effectiveness of the adopted silt and erosion control plan implemented during the construction activities, etc. During development of the subdivision, sediment loading to the units could be high. This would necessitate more frequent cleanout. Once construction has been completed within the upstream catchment area, then the frequency of sediment removal would lessen.

It is anticipated that once development has been completed, annual removal of sediments form the units will be required.

7.3 Water Quality Monitoring

From the time of commissioning to the 80 % development level, the developer must ensure that the water discharged from the Vortechs[®] units is of an acceptable quality. Effluent monitoring will determine treatment efficiency. The development of the water quality monitoring program will be dictated by the Certificate of Approval from the Ontario Ministry of the Environment and the City of Ottawa requirements. It is understood that monitoring will commence upon the commissioning of the stormwater treatment units.

8. EROSION AND SEDIMENTATION CONTROL PLAN

An erosion and sedimentation control plan has been provided in EXP's submission. This plan is to provide guidance to the contractor when they are preparing their own plan, which will need to be approved by a Professional Engineer licensed to work in the Province of Ontario. The contractor's plan must also follow the requirements outlined in the City of Ottawa specifications F-1004.

The detailed erosion and sedimentation control plan to be submitted by the contractors will provide further details regarding types, sizing and location of sediment and erosion control measures, as well as maintenance and emergency procedures. Prior to implementation, the City and Rideau Valley Conservation Authority will approve all erosion and sedimentation control plans.

Utilization of a silt fence will be required around the perimeter of the site during construction of the stormwater management system. During the construction of the outlet to the Unnamed Drain, a straw bale sediment trap should be installed downstream of the disturbed areas.

It is also recommended that the sediment and erosion control plan include standard measures to be implemented within the development site during construction, such as the placing of filter cloth beneath the catch basins and manhole covers. Any deleterious substance collected on the cloths shall be disposed off-site.

Dewatering may be required during construction. Prior to dewatering, a Permit to Take Water must be obtained from the Ontario Ministry of the Environment, which will allow temporary removal of water for the operations. During dewatering, the pumped water should be discharged to a sufficiently large siltation basin provided with an outlet protected by straw bale filters. The size and location of the siltation basin will be determined by the contractor and submitted on their sediment and erosion control plan.

In addition to the erosion and sedimentation control plan, it is also suggested to conduct visual monitoring of the sediment controls (i.e., photographs, reporting, site visits).

9. CONCLUSIONS AND RECOMMENDATIONS

Minto is presently proceeding with Phase 1 development. EXP was retained to complete the engineering design and IBI Group was retained to complete the stormwater management. The detailed design of the fish habitat enhancement of the Unnamed Drain will be documented in a separate study.

The recipient watercourse of Phase 1 is the Unnamed Drain. The control point that was considered in the evaluation of water quantity peak flow control is identified as Point A, which is located at the downstream end of the development. Point A is an arbitrarily selected location in close proximity to the Rideau River.

To accomplish peak flow control, stormwater management is required. The stormwater management system consists of a dual drainage concept, in combination with a stormwater management facility servicing Phase 2 lands. Dual drainage is based on inflow rates into the receiving junctions are limited to the minor flow restriction. Storm sewers within the Phase 1 development are sized for the 5 year flow, based on a fixed time of concentration of 10 minutes. Inlet control devices were sized based on the maximum 0.3 m ponding, and the ICD flow was applied as the minor system restriction in SWMHYMO. Storm sewers within future phases of development tributary to the Unnamed Drain have been sized for an inflow equivalent to the 5 year 3 hour Chicago storm event. Section 4 provides a summary of minor system flow restrictions, on-site storage requirements and major system flow information.

The evaluation of the hydraulic grade line, as well as of flood levels in the Unnamed Drain, was completed using XPSWMM. The XPSWMM model represents the complete storm system: the Unnamed Drain, Phase 1 storm sewers, and Phase 2 SWM facility. The detailed design of the fish habitat enhancements to the Unnamed Drain will be presented in a separate study, however, the hydraulics of the Drain were used as the starting water levels for the storm sewer system. A comparison of under-side of footing (USF) elevations and HGL is also included in Section 4. SWMHYMO and XPSWMM model files are provided in Appendix 7D.

To help maintain the runoff volume equilibrium, the Phase 1 development is being provided with perforated pipes in rear yards to collect and convey stormwater runoff from adjacent grassed areas and roof surfaces. This application has been used in the City of Ottawa, particularly in rear yards of residential area. Refer to design details in EXP's submission.

Each minor system outlet will be provided with an off-line Vortechs® stormwater treatment unit for water quality treatment of the first flush, prior to being discharged to the recipient Unnamed Drain. Minor flow in excess of the first flush will bypass the Vortechs® unit and discharge directly to the drain. The locations of the stormwater treatment units are indicated on Figure 3 and design details are provided in Drawings 710-712.

Maintenance, monitoring and sediment and erosion control are discussed in Sections 7 and 8, respectively.

Prepared by

IBI GROUP

Peter Spal, P.Eng. Associate Manager, Water Resources Meghan Black, P.Eng.

10. REFERENCES

1. "Manotick Master Drainage Plan," Robinson Consultants, 1996.

2. "Jock River Reach 2 and Mud Creek Subwatershed Study Existing Conditions Report (Draft)," Marshall Macklin Monaghan & Water and Earth Science Associates, 2005.

3. "Village of Manotick Environmental Management Plan Special Design Area Component," Marshall Macklin Monaghan & Water and Earth Science Associates, 2005.

4. "Natural Resource Assessment (Draft)," EcoTec Environmental Consultants Inc., June 2007.

5. "Mud Creek Subwatershed Existing Conditions – Final Draft," Parish Geomorphic, April 2004.

6. "Preliminary Geotechnical Investigation – Proposed Residential Development Century Road at First Line Road," Paterson Group, January 2007

7. "Mahogany Community Stormwater Management Servicing Report," IBI Group July 2007.

8. "Mahogany Community Phase 1 Stormwater Management and Fish Habitat Enhancement of the Unnamed Drain," IBI Group, January 2011

9. "Preliminary Geotechnical Investigation – Proposed Residential Development Century Road at First Line Road," Paterson Group, January 2007

Project Title

MAHOGANY COMMUNITY PHASE 1

EXISTING CONDITIONS DRAINAGE BOUNDARIES

Drawing Title

FIGURE 1

Sheet No.

IBI GROUP N.T.S.

MAHOGANY COMMUNITY PHASE 1

Project Title

Drawing Title

Sheet No.

DEVELOPMENT TRIBUTARY TO UNNAMED DRAIN

FIGURE 2

LE 6	GEND: DRAINAGE IMP. (%) 3% 0.25 — AREA (h 207 — AREA IL PATHWAY (CONCEP)	E AREA) [TIME TO F ha)) TUAL)	ΡΈΑΚ	(h)]
14 13 12 11 10 9 8 7 6 5 4 3 2 1 No.		IONS		Date
2 1 No.	- REVIS 333 Towe Otta Cana Tel FAX	Preston Str er 1, Suite wa, Ontario ada K1S 5N4 (613)225–13 (613)225–99	By By 400 4 11 868	Date
Drawin	IAHOGAN	IY PHA		E 1
Scale Desigr Drawn Projec	1:1250 M.B. S.V.	Date NO Checked Drawing No.	V. 20 P.S)11 5.

	<u>SEND:</u>			
	POND MAJOF MAJOF DRAIN PATHY (CONC	ING VOLUM R FLOW R OUTLET AGE AREA VAY EPTUAL)	Ε	
14				
13 12				
11 10				
9 8				
7				
5				
3				
1		REVISIONS	By	Data
	BI	333 Presto Tower 1, S Ottawa, O Canada K1 Tel (613)2	on Street Suite 400 Intario .S 5N4 25 1211	
G		FAX (613)2	25-1311 225-9868	
Project	Title	ANY F	PHAS	E 1
Project	ROUP Title IAHOG	ANY F	PHAS	E 1
Project N Drawin N Scale	ROUP Title AHOGA g Title IAJOR S PONE	ANY F	PHAS PHAS EM A PLAN	
Project N Drawin N Scale	ROUP Title AHOGA g Title AJOR S PONE 1:1250	ANY F	PHAS PHAS EM A PLAN	
Project N Drawin N Scale	ROUP Title AHOGA g Title AJOR PONE 1:1250 M.B.	ANY F SYST DING F	PHAS PHAS EM A PLAN	
Project N Drawin N Scale Design Drawn	ROUP Title AHOGA g Title AJOR S PONE 1:1250 M.B. S.V.	ANY F	PHAS PHAS PHAS PHAS PHAS PHAS	

Appendix 7A

Relevant Calculations Rational Method Spreadsheet (EXP) Revised Rational Method Spreadsheet

STORM SEWER CALCULATIONS for MAHOGANY - PHASE 1

LOCATION												PROF	OSED SEWER				
						- "			TIME	RAINFALL	PEAK	PIPE			0.000	FULL FLOW	TIME OF
STREET	FROM	МН	l otal Area	Area R=	Area R=	C	1NDIV. 2 78AR	2 78AR			G (I/s)	SIZE (mm)	GRADE (%)	LENGTH (m)	(I/s)	VELOCITY (m/s)	FLOW (min)
AREA #1			7800	0.2	0.0		2110/11	2.1.07.41			۵ (۱۱۵)	()	(/0)	(,	(,,0)	(11,70)	()
Lane No. 1	287	266	0.37	0.179	0.191	0.56	0.58	0.58	10.00	104.19	60.16	304.8	0.75	29.4	87.45	1.20	0.41
Lane No. 1	266	267	0.31	0.118	0.192	0.63	0.55	1.12	10.41	102.08	114.68	381	0.61	39.6	143.00	1.25	0.53
Lane No. 1	267	268	0	0.000	0.000	0.00	0.00	1.12	10.94	99.50	111.78	381	0.75	35.8	158.57	1.39	0.43
Lane No. 1	268	270	0	0.000	0.000	0.00	0.00	1.12	11.36	97.50	109.53	381	0.71	23.9	154.28	1.35	0.29
Lane No. 1	270	271	0.09	0.042	0.048	0.57	0.14	1.27	11.66	96.18	121.85	381	0.67	35.9	149.87	1.31	0.46
Century Road	CB 69	Main	0.17	0.113	0.057	0.48	0.21	0.21	10.00	104.19	21.41	203	1.00	12.8	34.16	1.06	0.20
Street No. 4	271	273	0	0.000	0.000	0.00	0.00	1.47	12.11	94.21	138.71	457.2	0.34	47.2	173.61	1.06	0.74
0, , , 0				0.405	0.005	0.40	0.04	0.04	40.00	101.10	04.77	054	0.00	50.4	10.00	0.07	0.07
Street 6	262	260	0.2	0.135	0.065	0.43	0.24	0.24	10.00	104.19	24.77	254	0.62	50.4 44.9	48.90	0.97	0.87
<u> </u>	200	200	0	0.000	0.000	0.00	0.00	0.24	10.07	33.01	20.72	204	0.01	++.3	44.00	0.00	0.00
Street No. 5	237	259	0.26	0.140	0.120	0.52	0.38	0.38	10.00	104.19	39.39	254	1.40	73.1	73.48	1.45	0.84
Street No. 6	259	275	0	0.000	0.000	0.00	0.00	0.62	11.73	95.88	59.04	304.8	0.71	35.1	85.09	1.17	0.50
Street No. 6	CB 76	Main	0.36	0.177	0.183	0.56	0.56	0.56	15.00	83.56	46.48	254	2.00	6.8	87.82	1.73	0.07
Street No. 6	275	076	0.1	0.057	0.042	0.50	0.14	1.04	15.07	02.25	100.00	457.0	0.50	40.4	210 52	1.00	0.50
Street No. 6	215 276	270 273	0.1	0.057	0.043	0.50	0.14	1.31	15.07	03.35 81.71	109.29	457.2 457.2	1.00	40.1 35.9	≥10.53 310.84	1.28	0.52
	210	210	0.0	0.147	0.100	0.00	0.40	1.70	10.00	01.71	140.10	-101.2	1.00	00.0	010.04	1.00	0.02
Street No. 4	273	257	0	0.000	0.000	0.00	0.00	3.25	15.90	80.75	262.29	685.8	0.19	81.0	382.63	1.04	1.30
Street No. 4	CB 68	CBMH 67	0.23	0.178	0.052	0.36	0.23	0.23	15.00	83.56	19.17	203	2.00	32.2	48.31	1.49	0.36
Street No. 4	CBMH 67	main	0.04	0.026	0.014	0.45	0.05	0.28	15.36	82.41	22.99	203	2.00	11.3	48.31	1.49	0.13
Street No. 4	256	257	0.59	0.282	0.308	0.57	0.93	1.21	15.49	82.02	98.95	304.8	1.83	61.1	136.61	1.87	0.54
	057	050		0.000	0.000		0.00	4.45	47.04	77.05	0.40.04	005.0	0.00	47.4	100.00		0.05
Century Road	257	258	0	0.000	0.000	0.00	0.00	4.45	17.21	77.05	343.21	685.8	0.23	17.1	420.99	1.14	0.25
Century Road	CBMH 64	Main	0.19	0.109	0.081	0.50	0.26	0.26	10.00	104.19	27.41	533.4	2.00	5.5	635.14	2.84	0.03
Century Road	258	242	0	0.000	0.000	0.00	0.00	4.72	17.46	76.38	360.33	685.8	0.31	86.5	488.75	1.32	1.09
Street No. 4	256	255	0	0.000	0.000	0.00	0.00	0.00	10.00	104.19	0.00	254	0.94	12.8	60.21	1.19	0.18
Street No. 4	255	240	0.16	0.089	0.074	0.52	0.23	0.23	15.00	83.50	19.50 73.13	203	0.46	79.8	34.16 124.18	1.06	0.18
011661 110. 4	200	240	0.00	0.117	0.200	0.07	0.00	0.00	10.10	02.90	75.15	301	0.40	73.0	124.10	1.03	1.22
Street No. 1	226	240	0.04	0.024	0.017	0.49	0.05	0.05	10.00	104.19	5.66	254	2.08	78.5	89.56	1.77	0.74
Street No. 1	240	241	0	0.000	0.000	0.00	0.00	0.94	16.40	79.28	74.19	381	2.39	24.3	283.06	2.48	0.16
Street No. 1	CB 65	CBMH 75	0.35	0.206	0 144	0.49	0.47	0.47	15.00	83.56	39.67	254	2 78	26.2	103 54	2 04	0.21
Street No. 1	CBMH 75	Main	0.03	0.027	0.003	0.43	0.02	0.50	15.21	82.87	41.22	254	2.00	13.3	87.82	1.73	0.13
						-			-			-					
Street No. 1	241	242	0.47	0.203	0.267	0.60	0.78	2.21	16.57	78.82	174.50	381	2.49	93.6	288.92	2.53	0.62
O satura D s s d	0.40	0.40	0.00	0.000	0.000	0.00	0.00	0.00	40.55	70.04	540.00	700	0.05	77.0	007 70	4.54	0.00
Century Road	242	243 248	0.00	0.000	0.000	0.00	0.00	6.93	10.55 19.41	73.01	210.26 496.17	762	0.35	81.1	1168 38	2.56	0.53
Contary Road	2-10	2-10		0.000	5.000	0.00	0.00	0.00	10.41	71.00	100.17	102	1.01	51.1	1100.00	2.00	0.00
Street No. 2	252	254	0.25	0.090	0.160	0.65	0.45	0.45	10.00	104.19	46.92	304.8	1.46	32.3	122.02	1.67	0.32
Street No. 2	CB 70	Main	0.38	0.180	0.200	0.57	0.60	0.60	15.00	83.56	50.17	304.8	2.00	36.4	1/2 81	1.96	0.31
Sileer No. 2	CB 70	Ividii i	0.30	0.180	0.200	0.37	0.00	0.00	13.00	03.00	50.17	304.0	2.00	30.4	142.01	1.90	0.31
Street No. 2	254	244	0.30	0.130	0.170	0.60	0.50	1.55	15.31	82.57	127.85	457.2	1.18	96.1	323.42	1.97	0.81
Street No. 2 Street No. 2		CBMH 73	0.21	0.101	0.109	0.56	0.33	0.33	15.00	83.56	21.48	254	1.00	26.9	62.10	1.23	0.37
Street No. 2	244	244	0.02	0.013	0.007	0.45	0.02	2.49	16.12	80.10	199.69	<u>∠</u> 54 533.4	1.00	81.0	496.06	2.22	0.14
C.COTTOLE		_ 10	0.00	0.172	0.100	0.01	0.00							01.0			0.01
Street No. 2	234	233	0	0.000	0.000	0.00	0.00	0.00	10.00	104.19	0.00	304.8	0.40	52.0	63.87	0.88	0.99
Street No. 2	CB 60	Main	0.34	0.168	0.172	0.55	0.52	0.52	15.00	83.56	43.76	254	1.00	39.6	62.10	1.23	0.54
Street No. 2	CB 72	CBMH 61	0.20	0.093	0.107	0.57	0.32	0.32	15.00	83.56	26.69	203	1.75	28.0	45.19	1.40	0.33
Street No. 2	051VIH 61	iviain 2/15	0.05	0.034	0.016	0.43	0.06	0.38	15.33	81.86	31.23	∠54 457.2	2.00	108.3	07.82 178.64	1.73	0.11
0.1661 110. 2	200	273	0.04	0.170	0.200	0.01	0.00	0.70	10.04	01.00	121.13	-101.2	0.00	100.0	170.04	1.03	1.00
Century Road	245	248	0	0.000	0.000	0.00	0.00	3.97	17.20	77.07	306.25	762	0.51	17.6	830.25	1.82	0.16
Century Road	CBMH 62	Main	0.32	0.192	0.128	0.48	0.43	0.43	15.00	83.56	35.68	533.4	1.00	8.2	449.11	2.01	0.07
Century Road	248	249	0	0.000	0.000	0.00	0.00	11.33	17.36	76.64	868.48	1066.8	0.51	57.4	2036.50	2.28	0.42
Century Road	249	288	0	0.000	0.000	0.00	0.00	11.33	17.78	75.54	856.01	1066.8	0.11	18.2	945.79	1.06	0.29
Ш		1	L	I	1	1	I	1	1	1	I	I	1	L	1	I	

STORM SEWER CALCULATIONS for MAHOGANY - PHASE 1

	LOCATION												PROP	OSED SEWER			
									TIME	RAINFALL	PEAK	PIPE				FULL FLOW	TIME OF
	FROM	то	Total	Area R=	Area R=	Runoff	INDIV.	ACCUM.	OF	INTENSITY	FLOW	SIZE	GRADE	LENGTH	CAPACITY	VELOCITY	FLOW
STREET	MH	МН	Area	0.2	0.9	С	2.78AR	2.78AR	CONC.	I	Q (I/s)	(mm)	(%)	(m)	(l/s)	(m/s)	(min)
AREA #2																	
Street No. 5	237	226	0.25	0.110	0.140	0.59	0.41	0.41	10.00	104.19	42.87	254	1.35	108.6	72.16	1.42	1.27
Street No. 3	226	227	0	0.000	0.000	0.00	0.00	0.41	11.27	97.93	40.29	254	2.76	78.5	103.17	2.04	0.64
Street No. 2	CB 58	main	0.11	0.058	0.052	0.53	0.16	0.16	15.00	83.56	13.57	203	1.00	8.5	34.16	1.06	0.13
Street No. 2	252	227	0.37	0.160	0.210	0.60	0.61	0.78	15.13	83.13	64.57	381	0.40	82.9	115.80	1.02	1.36
Street No. 3	227	228	0	0.000	0.000	0.00	0.00	1.19	16.49	79.02	93.89	381	2.58	23.3	294.10	2.58	0.15
Street No. 3	228	229	0.22	0.100	0.120	0.58	0.36	1.54	16.65	78.59	121.35	381	3.07	86.4	320.81	2.81	0.51
Street No. 2	CB 59	main	0.21	0.098	0.112	0.57	0.33	0.33	15.00	83.56	27.97	254	2.00	11.3	87.82	1.73	0.11
Street No. 2	234	229	0.38	0.176	0.204	0.58	0.61	0.94	15.11	83.21	78.46	457.2	1.00	54.9	297.73	1.81	0.50
Street No. 3	229	230	0	0.000	0.000	0.00	0.00	2.49	17.16	77.18	191.95	457.2	2.11	24.2	432.48	2.63	0.15
Street No. 3	230	217A	0.00	0.000	0.000	0.00	0.00	2.49	17.31	76.77	190.92	685.8	0.23	13.0	420.99	1.14	0.19
Street No. 3	217A	232A	0.00	0.000	0.000	0.00	0.00	2.49	17.50	76.26	189.67	685.8	0.16	6.2	351.13	0.95	0.11
Lane No. 2	220	222	0.3	0.094	0.206	0.68	0.57	0.57	10.00	104.19	59.15	304.8	1.28	119.3	114.25	1.57	1.27
Lane No. 2	222	283	0.19	0.065	0.125	0.66	0.35	0.92	11.27	97.93	89.76	381	0.99	78.7	182.18	1.60	0.82
Lane No. 2	283	216	0.1	0.000	0.069	0.62	0.17	1.09	12.09	94.31	102.63	381	0.97	42.1	180.33	1.58	0.44
Street No. 3	CB 53	main	0.03	0.013	0.018	0.61	0.05	0.05	15.00	83.56	4.24	203	1.00	11.6	34.16	1.06	0.18
Street No. 3	CB 55	main	0.54	0.280	0.260	0.54	0.81	0.81	15.00	83.56	67.36	254	2.50	39.9	98.19	1.94	0.34
Street No. 3	219	223	0.37	0.150	0.220	0.62	0.63	1.49	15.34	82.46	122.94	381	2.17	119.5	269.72	2.37	0.84
	05.50																
Street No. 3	CB 56	CBMH 57	0.27	0.143	0.127	0.53	0.40	0.40	15.00	83.56	33.19	203	2.21	28.5	50.78	1.57	0.30
Street No. 3	CBMH 57	MAIN	0.05	0.030	0.020	0.48	0.07	0.46	15.30	82.59	38.29	254	2.00	11.5	87.82	1.73	0.11
			0.55	0.044		0.50	0.00	0.00	10.10	70.04	000.04	457.0	4.04	05.0	004.00	0.00	
Street No. 3	223	282	0.55	0.244	0.306	0.59	0.90	2.86	16.19	79.91	228.21	457.2	1.64	85.0	381.29	2.32	0.61
Street No. 3	282	216	0.05	0.000	0.000	0.00	0.00	2.86	16.80	/8.1/	223.24	457.2	0.90	10.0	282.45	1.72	0.10
Street NO. 3	216	217	0.35	0.133	0.217	0.63	0.62	4.50	16.89	77.90	355.30	682.8	0.38	66.3	541.12	1.40	0.75
Street No. 2	017	2224	0	0.000	0.000	0.00	0.00	4.50	17.50	76.06	247.02	020.2	0.25	4.0	740 51	1.26	0.05
Street No. 3	217	232A	0	0.000	0.000	0.00	0.00	4.50	17.50	75.09	347.82	014.4	0.25	4.0	149.51	1.30	0.05
Street NO. 3	232A	232	U	0.000	0.000	0.00	0.00	CU.1	17.01	75.98	030.4 <i>1</i>	914.4	0.20	3.9	903.90	1.47	0.04
Ш																	

STORM SEWER CALCULATIONS for MAHOGANY - PHASE 1

LOCATION													PROP	OSED SEWER	2		
									TIME	RAINFALL	PEAK	PIPE				FULL FLOW	TIME OF
	FROM	то	Total	Area R=	Area R=	Runoff	INDIV.	ACCUM.	OF	INTENSITY	FLOW	SIZE	GRADE	LENGTH	CAPACITY	VELOCITY	FLOW
STREET	MH	MH	Area	0.2	0.9	С	2.78AR	2.78AR	CONC.	I	Q (I/s)	(mm)	(%)	(m)	(l/s)	(m/s)	(min)
AREA #3																	
Street No. 1	CB 54	main	0.2	0.138	0.063	0.42	0.23	0.23	15.00	83.56	19.45	203	1.00	8.3	34.16	1.06	0.13
Street No. 1	225	219	0.39	0.140	0.250	0.65	0.70	0.94	15.13	83.14	77.83	304.8	2.19	89.4	149.44	2.05	0.73
Street No. 1	CB 52	main	0.73	0.720	0.010	0.21	0.43	0.43	15.00	83.56	35.54	254	1.00	43.7	62.10	1.23	0.59
Street No. 1	219	220	0.19	0.070	0.120	0.64	0.34	1.70	15.86	80.88	137.55	304.8	3.14	39.8	178.94	2.45	0.27
	05.50	0014154	0.00	0.500	0.050	0.00	0.45	0.45	15.00	00.50	07.40	05.4	0.00	05.4	440.00	0.05	
Street No. 1	CB 50	CBMH 51	0.63	0.580	0.050	0.26	0.45	0.45	15.00	83.56	37.40	254	3.36	35.1	113.83	2.25	0.26
Street No. 1	CBMH 51	main	0.04	0.020	0.020	0.55	0.06	0.51	16.13	80.08	40.74	254	2.00	9.3	87.82	1.73	0.09
Street No. 1	220	004	0	0.000	0.000	0.00	0.00	0.01	16.00	70.00	176.05	201	1 5 4	57.0	207.00	1.00	0.49
Sileer NO. 1	220	201	0	0.000	0.000	0.00	0.00	2.21	10.22	79.02	170.35	301	1.34	57.0	221.22	1.99	0.40
Street No. 1	281	205	0.47	0.200	0.270	0.60	0.79	3.00	16 70	78.45	235.06	457.2	1.28	34.5	336.85	2.05	0.28
Olleet NO. 1	201	205	0.47	0.200	0.270	0.00	0.13	5.00	10.70	70.45	200.00	437.2	1.20	04.0	330.03	2.05	0.20
Street No. 11	277	278	0	0.000	0.000	0.00	0.00	0.00	10.00	104 19	0.00	254	1 11	27.9	65 43	1 29	0.36
Street No. 11	278	279	0.3	0.130	0.170	0.60	0.50	0.50	10.36	102.33	50.92	254	0.99	38.2	61.79	1.20	0.52
Street No. 11	CB 48	main	0.04	0.025	0.015	0.47	0.05	0.05	15.00	83.56	4.33	203	2.00	8.1	48.31	1.49	0.09
Street No. 11	279	203	0.41	0.260	0.150	0.46	0.52	1.07	15.09	83.27	89.04	304.8	1.67	44.4	130.50	1.79	0.41
Street No. 7	202	203	0	0.000	0.000	0.00	0.00	0.00	10.00	104.19	0.00	254	1.66	45.9	80.01	1.58	0.48
Street No. 7	203	204	0.11	0.050	0.060	0.58	0.18	1.25	15.50	81.96	102.23	381	0.76	44.8	159.62	1.40	0.53
	05.10								1						10.01		
Street No. 7	CB 49	main	0.06	0.043	0.017	0.40	0.07	0.07	15.00	83.56	5.58	203	2.00	14.2	48.31	1.49	0.16
	004	005	0.00	0.004	0.000	0.00	0.40	1.10	40.04	00.05	440.00	004	0.05	07.0	100.01	1.40	0.00
Street No. 7	204	205	0.06	0.024	0.036	0.62	0.10	1.42	16.04	80.35	113.89	381	0.85	27.0	168.81	1.48	0.30
Stroot No. 7	205	206	0.00	0.000	0.000	0.00	0.00	1 11	16.08	77.67	342.83	533 /	2.14	37.4	656.00	2.04	0.21
Street No. 7	205	200	0.00	0.000	0.000	0.00	0.00	4.63	17 10	77.10	356.95	533.4	2.14	38.8	694 31	2.34	0.21
Officer No. 7	200	201	0.10	0.000	0.074	0.00	0.22	4.00	17.10	77.10	000.00	000.4	2.00	00.0	004.01	0.11	0.21
								1									
Street No. 9	210	211	0.00	0.000	0.000	0.00	0.00	0.00	10.00	104.19	0.00	254	3.10	22.6	109.34	2.16	0.17
Street No. 9	211	285	0.29	0.150	0.140	0.54	0.43	0.43	10.17	103.28	44.79	254	1.24	68.8	69.15	1.36	0.84
Street No. 9	285	212	0.29	0.150	0.140	0.54	0.43	0.87	11.01	99.12	85.97	457.2	0.22	13.8	139.65	0.85	0.27
Street No. 9	212	284	0.00	0.000	0.000	0.00	0.00	0.87	11.29	97.86	84.88	533.4	0.32	12.4	254.05	1.14	0.18
Street No. 9	CBMH 83	284	0.80	0.800	0.000	0.20	0.44	0.44	15.00	83.56	37.17	254	1.76	15.9	82.39	1.63	0.16
Street No. 9	284	208	0.00	0.000	0.000	0.00	0.00	1.31	15.16	83.03	108.95	533.4	0.22	46.4	210.65	0.94	0.82
Street No. 9	208	207	0.12	0.063	0.057	0.53	0.18	1.49	15.98	80.51	119.94	609.6	0.17	53.1	264.38	0.91	0.98
	0.07		0.05	0.000	0.454	0.00	0.40	0.55	17.10	70.54	504.50		0.00	05.0	1100.07	4.00	0.70
Street No. 7	207	214	0.25	0.099	0.151	0.62	0.43	6.55	17.40	76.54	501.53	914.4	0.39	85.6	1180.61	1.80	0.79
Street No. /	214	213	0	0.000	0.000	0.00	0.00	6.55	18.19	/4.49	488.13	914.4	0.19	10.6	824.05	1.25	0.14

REVISED STORM SEWER DESIGN SHEET MAHOGANY - PHASE 1 IBI GROUP

									TIME		DEAK			ICD RESTRICTED FLOW (I/s)								
	FROM	то	IBI GROUP	RECEIVING		Runoff	INDIV.	ACCUM.	OF	INTENSITY	FLOW		No. of ICDs	75VHV-1	X	Α	В	С	D	F	Custom	ICD Capture (I/s)
STREET	МН	МН	ID	MH	AREA	С	2.78AR	2.78AR	CONC.	I	Q (I/s)	CB IDs	per plan	7.00	14.95	22.3	31.7	41.3	61.4	83.7	Custom	ico capture (i/s)
AREA #1			RY FREE 5		0.73	0.48	0.97	0.97	10.00	104 19	101 50											N/A (overland to pond)
					0.70	0.40	0.07	0.07	10.00	104.10	101.00											
Street No. 5	237	259	237A	237	0.26	0.52	0.38	0.38	10.00	104.19	39.39	32, 32A	2			2						44.6
Street No. 6	262	260	262	262	0.20	0.43	0.24	0.24	10.00	104.19	24.77	44, T44	1				1					31.7
Lane No. 1	270	271	271A	271	0.09	0.57	0.14	0.14	10.00	104.19	14.95	43, T43	1		1							14.95
Century Road	CB 69	Main	271B	271	0.17	0.48	0.21	0.21	10.00	104.19	21.41	69	1			1						22.3
Lane No. 1	287	266	267	267	0.37	0.56	0.58	0.58	10.00	104.19	60.16 56.89	43A, T43A 42, T42	1						1			61.4
Lane No. 1	200	207	RY FREE 4	201	0.55	0.40	0.61	0.61	10.00	104.19	63.72	72, 172							1		N/A (overland	to Manotick Main St ditch)
Street No. 6	CB 76	Main 276	RY275	275	0.36	0.56	0.56	0.56	10.00	104.19	57.96	76 45 T45	1		1				1			61.4
Street No. 6	276	273	276	276	0.30	0.56	0.46	0.46	10.00	104.19	48.40	46, T46	1		1				1			61.4
Street No. 4	CB 68	CBMH 67	RY256	256	0.27	0.37	0.28	0.28	10.00	104.19	28.94	CBMH 67	1				1					31.7
Street No. 4	256	257	256	256	0.59	0.57	0.93	0.93	10.00	10/ 19	96.63	40 740 41 74	3				2	1				104 7
Offeet No. 4	200	201	230	230	0.00	0.57	0.35	0.33	10.00	104.13	30.03	+0, 1+0, +1, 7+	5				2					104.7
Century Road	CBMH 64	Main	258	258	0.19	0.50	0.26	0.26	10.00	104.19	27.41	CBMH 64	1								275.6	275.6
Street No. 4	CB 66	main	RV255	255	0.16	0.52	0.23	0.23	10.00	10/ 19	24.32	66	1				1					31 7
Street No. 4	255	240	255	255	0.35	0.52	0.65	0.65	10.00	104.19	67.52	39, T39	1				1	0		1		83.7
Street No. 1	226	240	226	226	0.04	0.49	0.05	0.05	10.00	104.19	5.66	17	1	1								7.0
Street No. 1	CB 65	CBMH 7	RY241	241	0.38	0.47	0.49	0.49	10.00	104.19	51.21	CBMH 75	1						1			61.4
Street No. 1	241	242	241	241	0.47	0.60	0.78	0.78	10.00	104.19	81.36	18, T18, 19, 20	3			2		1				85.9
Street No. 2	252	254	2524	2524	0.25	0.65	0.45	0.45	10.00	104.10	46.02	27 T27	1						1			61.4
Street No. 2	CB 70	Z54 Main	252A RY254	252A 254	0.25	0.65	0.45	0.45	10.00	104.19	40.92 62.57	70	1						1	1		83.7
Street No. 2	254	244	254	254	0.30	0.60	0.50	0.50	10.00	104.19	51.85	36, T36	1						1			61.4
Street No. 2	CB 63	CBMH 7:	RY244	244	0.23	0.55	0.35	0.35	10.00	104.19	36.64	CBMH 73	1					1			205.1	41.3
Street No. 2	244	245	240	240	0.32	0.48	0.43	0.43	10.00	104.19	61.58	35. 35A	1						2		323.1	122.8
Street No. 2	CB 60	Main	RY233A	233	0.34	0.55	0.52	0.52	10.00	104.19	54.57	60 CPMH 61	1					1	1			61.4
Street No. 2	233	245	233	233	0.23	0.54	0.58	0.58	10.00	104.19	60.25	34, 76	2						2			122.8
												· · ·										
Street No. 2	-		RY FREE 3		0.67	0.53	0.99	0.99	10.00	104.19	102.86											N/A (overland to drain)
AREA #2																						
Street No. 5	237	226	237B	237	0.25	0.59	0.41	0.41	10.00	104.19	42.87	30, T30	1						1			61.4
Street No. 2	CB 58	main	RY252	252	0.11	0.53	0.16	0.16	10.00	104.19	16.92	58	1			1	1	1				22.3
Street NO. 2	202	221	2020	202	0.37	0.00	0.01	0.01	10.00	104.19	04.01	30, 130, 29	2	<u> </u>								/3.0
Street No. 3	228	229	228	228	0.22	0.58	0.36	0.36	10.00	104.19	37.08	28, T28	1					1				41.3
Street No. 2	CB 59	main	RY234	234	0.21	0.57	0.33	0.33	10.00	104.19	34.67	59	1					1				41.3
Sueet NO. 2	204	229	204	204	0.30	0.00	0.01	0.01	10.00	104.19	03.30	33, 33A		<u> </u>	1		1			2		107.4
Street No. 3	CB 53	main	RY219A	219	0.03	0.61	0.05	0.05	10.00	104.19	5.29	53	1	1								7.0
Street No. 3	CB 55	main	RY219B	219	0.54	0.54	0.81	0.81	10.00	104.19	84.00	55	1				1	1			84.8	84.8
Sileet No. 3	219	223	219A	219	0.37	0.02	0.03	0.03	10.00	104.19	00.04	24, 124, 20, 120	2				'					73.0
Street No. 3	CB 56	Main	RY223	223	0.32	0.51	0.46	0.46	10.00	104.19	47.53	57	1						1			61.4
Street No. 3	223	282	223	223	0.55	0.59	0.90	0.90	10.00	104.19	93.91	26, 26A	2					1	1			102.7
Lane No. 2	220	222	220	220	0.3	0.68	0.57	0.57	10.00	104.19	59.15	21, T21	1	<u> </u>	1		1		1			61.4
Lane No. 2	222	283	222	222	0.19	0.66	0.35	0.35	10.00	104.19	36.35	22, T22	1					1				41.3
Lane No. 2	283	216	283	283	0.1	0.62	0.17	0.17	10.00	104.19	17.88	23, T23	1			1						22.3
Street No. 3	216	217	216	216	0.35	0.63	0,62	0.62	10.00	104.19	64.27	27.76	1							1		83.7
																			1			50.7
Lane No. 2			RY FREE 2		0.63	0.41	0.72	0.72	10.00	104.19	74.82											N/A (overland to drain)
I																		1	1	1		

REVISED STORM SEWER DESIGN SHEET MAHOGANY - PHASE 1 IBI GROUP

									TIME		DEAK			ICD RESTRICTED FLOW (I/s)								
	FROM	то		PECEIVING		Runoff		ACCUM		INTENSITY				75\/4\/_1	Y	^	в	C		F		
STREET	MH	мн		MH	AREA	C	2.78AR	2.78AR	CONC.		Q (I/s)	CB IDs	ner plan	7 00	14 95	22.3	31.7	41.3	61.4	837	Custom	ICD Capture (I/s)
						-				-			por plan	1.00	11100		•		•	0011		
AREA #3																						
Street No. 1	CB 54	main	RY225	225	0.2	0.42	0.23	0.23	10.00	104.19	24.26	54	1				1					31.7
Street No. 1	225	219	225	225	0.39	0.65	0.70	0.70	10.00	104.19	73.28	15, T15, 16, T16	2					2				82.6
Street No. 1	CB 52	main	RY219C	219	0.73	0.21	0.43	0.43	10.00	104.19	44.32	52	1						1			61.4
Street No. 1	219	220	219B	219	0.19	0.64	0.34	0.34	10.00	104.19	35.34	14, T14	1					1				41.3
Street No. 1	CB 50	CBMH 51	RY281	281	0.67	0.28	0.52	0.52	10.00	104.19	54.34	CBMH 51	1						1			61.4
Street No. 11	278	279	278	278	0.3	0.60	0.50	0.50	10.00	104.19	51.85	12, 80	2			1	1					54.0
Street No. 11	CB 48	main	RY279	279	0.04	0.47	0.05	0.05	10.00	104.19	5.40	48	1	1								7.0
Street No. 11	279	203	279	279	0.41	0.46	0.52	0.52	10.00	104.19	54.17	81, 11	2				2					63.4
Chroat No. 7	202	204	202	202	0.14	0.50	0.40	0.10	10.00	101.10	10 51	0	4			4						22.2
Street No. 7	203	204	203	203	0.11	0.58	0.18	0.18	10.00	104.19	18.54	9	1			1						22.3
Street No. 7	CB /0	main	PV204	204	0.06	0.40	0.07	0.07	10.00	104 19	6.06	40	1	1								7.0
Street No. 7	204	205	204	204	0.00	0.40	0.07	0.07	10.00	104.19	10.30	49	1	1	1							1.0
	204	200	204	204	0.00	0.02	0.10	0.10	10.00	104.13	10.70	0	1									14.35
Street No. 1	281	205	281	281	0.47	0.60	0.79	0.79	10.00	104.19	81.97	13. T13	1							1		83.7
					••••							,										
Street No. 7	206	207	206	206	0.13	0.60	0.22	0.22	10.00	104.19	22.54	7, T7	1				1					31.7
Street No. 9	211	285	211	211	0.29	0.54	0.43	0.43	10.00	104.19	45.19	1, T1	1						1			61.4
Street No. 9	CBMH 83	284	284	284	0.80	0.20	0.44	0.44	10.00	104.19	46.35	CBMH 83	1						1			61.4
Street No. 9	208	207	208	208	0.12	0.53	0.18	0.18	10.00	104.19	18.51	3, T3	1			1						22.3
Street No. 9	285	212	285	285	0.29	0.54	0.43	0.43	10.00	104.19	45.19	2, T2	1						1			61.4
Street No. 7	207	214	207	207	0.25	0.62	0.43	0.43	10.00	104.19	45.10	5, T5, 6, T6	2			1	1		0			54.0
Street No. 7			LP		0.3	0.61	0.51	0.51	10.00	104.19	53.01	4, T4	1						1			61.4
Lane No. 2			RY FREE 1		1.05	0.50	1.46	1.46	10.00	104.19	152.07											N/A (overland to drain)
											2597											3744

Appendix 7A

Impervious length

The impervious length parameter was determined as per the City of Ottawa Sewer Design Guidelines (November 2004) and based on calculations from Appendix 8.

The length parameter (LGI) is based on the average between the trunk sewer length and a calculated length based on area, as outlined below:

 L_M = measured length of trunk sewer within the sub-catchment area

$$L_{\rm C} = \sqrt{\frac{A}{1.5}}$$
 where: $A = area in m^2$

 $LGI = (L_{M} + L_{C}) / 2$

ID	Area (ha)	Lm (m)	Lc (m)	LGI (m)
237A	0.26	72	41.6	57
262	0.20	53	36.5	45
271A	0.09	40	24.5	32
271B	0.17	102	33.7	68
267	0.37	73	49.7	61
287	0.31	61	45.5	53
RY275	0.36	115	49.0	82
275	0.10	38	25.8	32
276	0.30	69	44.7	57
RY256	0.27	83	42.4	63
256	0.59	61	62.7	62
258	0.19	140	35.6	88
RY255	0.16	70	32.7	51
255	0.35	70	48.3	59
226	0.04	38	16.3	27
RY241	0.38	100	50.3	75
241	0.47	115	56.0	85
252A	0.25	28	40.8	34
RY254	0.38	160	50.3	105
254	0.30	70	44.7	57
RY244	0.23	55	39.2	47
248	0.32	205	46.2	126
244	0.33	106	46.9	76
RY233A	0.34	93	47.6	70
RY233B	0.25	74	40.8	57
233	0.34	95	47.6	71
RY FREE 3	0.67	44	66.8	55
237B	0.25	82	40.8	61
RY252	0.11	60	27.1	44
252B	0.37	50	49.7	50
228	0.22	80	38.3	59
RY234	0.21	67	37.4	52
234	0.38	55	50.3	53

ID	Area (ha)	Lm (m)	Lc (m)	LGI (m)
RY219A	0.03	13	14.1	14
RY219B	0.54	103	60.0	82
219A	0.37	105	49.7	77
RY223	0.32	92	46.2	69
223	0.55	105	60.6	83
220	0.3	75	44.7	60
222	0.19	65	35.6	50
283	0.1	65	25.8	45
216	0.35	105	48.3	77
RY FREE 2	0.63	170	64.8	117
RY225	0.2	60	36.5	48
225	0.39	70	51.0	60
219B	0.19	45	35.6	40
278	0.3	37	44.7	41
RY279	0.04	19	16.3	18
279	0.41	74	52.3	63
203	0.11	50	27.1	39
204	0.06	59	20.0	40
281	0.47	100	56.0	78
206	0.13	57	29.4	43
211	0.29	48	44.0	46
208	0.12	47	28.3	38
285	0.29	130	44.0	87
207	0.25	83	40.8	62
LP	0.3	140	44.7	92
B1	6.5	204	208.2	206
B2	6.1	100	201.7	151
B3	4.9	139	180.7	160
B4	4.5	338	173.2	256
B5	1.9	291	112.5	202
B6	1.8	222	109.5	166
B7	17.6	327	342.5	335
B8	4	296	163.3	230
B9	5.3	360	188	274

Calculation of velocity in the Unnamed Drain

Flow and average depth were evaluated with XPSWMM and velocity was evaluated manually using the continuity equation, Q = AV.

To STA 0+472

Cross-section: refer to Chart 4.1

25 mm

Depth of flow = 0.52 mCorresponding cross-sectional area = 1.943 m^2

Solving for v:

 $v = 0.64 \text{ m}^3/\text{s} / 1.943 \text{ m}^2 = 0.33 \text{ m/s}$

100 year

Depth of flow = 1.12 mCorresponding cross-sectional area = 16.107 m^2

Solving for v:

$$v = 4.87 \text{ m}^3/\text{s} / 16.107 \text{ m}^2 = 0.30 \text{ m/s}$$

From STA 0+472 to STA 0+550

Cross-section: refer to Chart 4.1

25 mm

Depth of flow = 0.37 mCorresponding cross-sectional area = 0.466 m^2

Solving for v:

$$v = 0.64 \text{ m}^3/\text{s} / 0.466 \text{ m}^2 = 1.37 \text{ m/s}$$

100 year Depth of flow = 0.82 mCorresponding cross-sectional area = 7.762 m^2

Solving for v:

$$v = 4.91 \text{ m}^3/\text{s} / 7.762 \text{ m}^2 = 0.63 \text{ m/s}$$

From STA 0+550 to 0+800 (end of proposed works)

Cross-section: refer to Chart 4.2

25 mm

Depth of flow = 0.33 m Corresponding cross-sectional area = 1.759 m^2

Solving for v:

 $v = 0.64 \text{ m}^3/\text{s} / 1.759 \text{ m}^2 = 0.36 \text{ m/s}$

100 year Depth of flow = 0.95 mCorresponding cross-sectional area = 6.174 m^2

Solving for v:

$$v = 4.94 \text{ m}^3/\text{s} / 6.174 \text{ m}^2 = 0.80 \text{ m/s}$$

Existing Drain Downstream of STA 0+800 (to Point A)

Cross-section: refer to Chart 4.3

25 mm Depth of flow = 0.36 m Corresponding cross-sectional area = 1.037 m^2

Solving for v:

 $v = 0.73 \text{ m}^3/\text{s} / 1.037 \text{ m}^2 = 0.70 \text{ m/s}$

100 year Depth of flow = 1.16 m Corresponding cross-sectional area = 17.813 m^2

Solving for v:

 $v = 7.54 \text{ m}^3/\text{s} / 17.813 \text{ m}^2 = 0.42 \text{ m/s}$

Sizing of Custom Orifices

The majority of inlet control devices (ICDs) in Phase 1 are standard Ipex and Hydrovex ICDs. There are, however, three locations at which custom ICDs will be required. They are sized using the orifice formula: $Q = C_v A(2gh)^{0.5}$, using a C_v value of 0.6.

Sizing is summarized in the below table.

	CB ID	Location	Approx. Head (m)	Target Flow Qt (I/s)	Area a x a (m)	Actual Flow Qa (I/s)
1	CBMH 64	Century Road Ditch	1.52	275	0.290	275.6
2	CBMH 62	Century Road Ditch	1.52	325	0.315	325.1
3	55	RY219B	1.22	84	0.170	84.8

J:\14167_ManotickDev\5.2 Reports\5.2.3 Stormwater\2012-03\Appendix 7A Parameters\WTRcalculations2012-03-26.docx\

Appendix 7B Vortechs[®] Manufacturer's Information

Sizing Estimate

Provided by Jennifer Knowles on March 16, 2012

Mahogany Phase 1, Ottawa, ON Stormwater Treatment System Design Summary

Information provided by Engineer (IBI Group):

Structure ID	Drainage Area (ha)	Runoff Coefficient	Tc (min)	Required Treatment Flow Rate (L/s)	100-Year Controlled Storm Event (L/s)	Mainline Pipe Size (mm)	Pipe Size Recommended to Off-line Vortechs (mm)
1	7.35	0.56	17.85	449	1589	1050	600
2	4.29	0.59	17.60	301	935	900	<mark>450</mark>
3	5.51	0.43	18.40	320	783	900	<mark>450</mark>

- Sediment removal efficiency required = 80%
- Sediment particle gradation = 50 microns and larger

Sizing Summary:

The Vortechs® Stormwater Treatment System is a hydrodynamic separator designed to enhance gravitational separation of floating and settleable materials from stormwater flows. Stormwater flows enter the unit tangentially to the treatment chamber, which promotes a gentle swirling motion. As stormwater circles the treatment chamber, pollutants migrate toward the center of the unit where velocities are the lowest. Sediments accumulate in the bottom of the swirl chamber, while floating debris, oil and grease form a floating layer trapped upstream of the floatables baffle wall.

For this project the Vortechs system was designed to remove at least 80% of an average particle size of 80 microns based on historical rainfall data. For this site CONTECH Construction Products recommends the following:

Structure ID	Vortechs Model & Configuration	Peak Treatment Capacity (I/s)	Sediment Storage Capacity (cubic meters)	Oil Spill Capacity (liters)	Total Holding Capacity (liters)	Heaviest Pick Weight (kg)
OGS 1	11000 off-line	495	4.28	2378	13592	22050
OGS 2	7000 off-line	312	3.06	1687	9515	15700
OGS 3	7000 off-line	312	3.06	1687	9515	15700

We have supplied project specific efficiency, flow and bypass calculations for your use and review. Please note that these off-line models will require a bypass and junction manhole.

Maintenance:

Like any stormwater best management practice, the Vortechs system requires regular inspection and maintenance to ensure optimal performance. Maintenance frequency will be driven by site conditions. Quarterly visual inspections are recommended, at which time the accumulation of pollutants can be determined. On average, the Vortechs system requires annual removal of accumulated pollutants.

Thank you for the opportunity to present this information to you and your client.

VORTECHS SYSTEM [®] ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON AN AVERAGE PARTICLE SIZE OF 80 MICRONS MAHOGANY PHASE 1 OTTAWA, ON MODEL 11000 OFF-LINE						
CONSTRUCTION	PRODUCTS INC.	SITE DESIGN	ATION OGS 1			
Design Ratio ¹ =	<u>(7.35</u>	hectares) x (0.56) x (2 (7.3 m2)	2.775)	= 1.56		
D : ()) ())	Bypass occurs at an	elevation of 88.04m	(at approximately 11	/s/m2)	D 1 5%	
Rainfall Intensity	Operating Rate ⁻	Flow Treated	<u>% Total Rainfall</u>	Rmvl. Effcy	Rel. Effcy	
mm/hr	% of capacity	(I/s)	Volume	(%)	(%)	
0.5	1.2	5.8	10.7%	98.0%	10.5%	
1.0	2.3	11.5	9.3%	98.0%	9.1%	
1.5	3.5	17.3	10.3%	98.0%	10.1%	
2.0	4.6	23.0	8.6%	98.0%	8.4%	
2.5	5.8	28.8	6.7%	98.0%	6.6%	
3.0	7.0	34.6	5.8%	98.0%	5.7%	
3.6	8.1	40.3	5.0%	96.9%	4.9%	
4.1	9.3	46.1	4.4%	96.3%	4.2%	
4.6	10.5	51.8	2.3%	96.0%	2.2%	
5.1	11.6	57.6	4.2%	95.3%	4.0%	
6.4	14.5	72.0	7.4%	92.8%	6.9%	
7.6	17.4	86.4	4.0%	89.9%	3.6%	
8.9	20.3	100.8	3.4%	87.3%	2.9%	
10.2	23.2	115.2	1.5%	85.7%	1.3%	
11.4	26.1	129.6	2.8%	84.3%	2.4%	
12.7	29.1	144.0	0.9%	82.6%	0.8%	
19.1	43.6	216.0	2.1%	72.8%	2.0%	
25.4	58.1	287.9	1.1%	59.3%	0.6%	
38.1	87.2	431.9	0.9%	22.7%	0.2%	
					86.3%	
% rain falling at >38.1 mm/hr or bypassing treatment =8.0%Assumed removal efficiency for bypassed flows =0.0%Estimated reduction in efficiency ⁵ =6.5%Predicted Net Annual Load Removal Efficiency =80%						
1 - Design Patio - (Total I	Trainago Aroa) y (Punoff C	Confficient) v (Pational M	othod Conversion) / Crit C	hambor Area		
	The Total Drainage Are	a and Runoff Coofficient	t are specified by the site of			
	- The rotal Drainage Are		nite in the above equation	ic 2 775		
2 - Operating Pate (% of c	- me rational method co	nversion based on the u		13 2.113.		
2 - Operating Rate (% 010	apacity) = percentage of p	Station 6105076 Ottom				
5 - Daseu un TU years of r	annan uata nom Canadian	Station 01059/0, Uttaw	a GDA, UN		a af 00 miana - (
4 - Based on Contech Cor Vortechs Guide).	nstruction Products laborat	ory verified removal of 3	8 to 500 micron particles v	with an average particle siz	e of 80 microns (see	
5- Reduction due to use o	t 60-minute data for a site	that has a time of conce	ntration less than 30-minu	tes.		
Calculated by:	JAK	3/16	Checked by:			

VORTECHS SYSTEM [®] BYPASS CALCULATIONS						
MAHOGANY PHASE 1						
CENTECH						
CONSTRUCTION PRODUCTS INC.	DEL 11000 DESIGNATI					
SITE I						
Vortechs System Specifications and Site Specifications and Spe	496 I/s	Actual length of bypass weir crest = 1 829 m				
Design flow rate at recurrence interval $\Omega_{\rm p}$ =	1589 l/s					
Recurrence Interval, L =	100 vr	Peak water surface elevation. $E_{P} = 88.52 \text{ m}$				
		Discharge coefficient, $C_{\rm D} = 1888$				
Notation:		5 , 5 , 600				
Q _B = Flow over bypass weir, I/s	i					
E _B = Elevation of bypass weir o	crest, m					
h = Depth of flow over bypass	weir crest, m					
<u>Calculations:</u>						
$Q_{B} = Q_{P} - Q_{V}$	- Calculate the	e flow over the bypass weir during the design-year storn				
= 1588 - 496						
= 1093 l/s						
$Q_{\rm B} = C_{\rm D} L_{\rm B} h^{3/2}$	- Francis form	ula for rectangular weir.				
		5				
h = (QB / 1888 LB)2/3	- Use this arra	angement of the Francis formula to solve for h.				
$= (1093 / 1888 * 1.829)^{2/3}$						
– 0.45 m						
E_B = E _P - h	- Solve for by	pass weir crest elevation (E_B).				
= 88.52 - 0.45						
= 88.05 m						
The bypass weir crest should be set	at an elevati	on of 88.05 m with a total length of 1.829 m.				
Calculated by: JAK	3/16	Checked by:				

VORTECHS SYSTEM [®] ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON AN AVERAGE PARTICLE SIZE OF 80 MICRONS MAHOGANY PHASE 1 OTTAWA, ON MODEL 7000 OFF-LINE SITE DESIGNATION OGS 2					
Design Ratio ¹ =	(4.29) Bypass occurs at a	<u>nectares) x (0.59) x</u> (4.7 m2)	(2.775)	= 1.5	
Deinfell Intensity	Operating Date ²	Elew Treated	V Total Dainfall	Dmul Effou ⁴	Del Effer
<u>Rainfall Intensity</u>		<u>Flow Treated</u>		KIIIVI. EIICY	<u>Rel. Elicy</u>
mm/nr	% of capacity	(I/S)	Volume [®]	(%)	(%)
0.5	1.1	3.5	10.7%	98.0%	10.5%
1.0	2.2	7.0	9.3%	98.0%	9.1%
1.5	3.3	10.4	10.3%	98.0%	10.1%
2.0	4.3 F.C	13.9	0.0%	96.0%	0.4%
2.0	0.0 6.7	17.4	0.7% E.90/	96.0%	0.0% 5.70/
3.0	0.7	20.9	5.6% E.0%	96.0%	D.1%
3.0	7.8	24.3	5.0%	97.6%	4.9%
4.1	8.9	27.8	4.4%	96.9%	4.2%
4.0	10.0	31.3	2.3%	96.0%	2.2%
5.1	11.2	34.8	4.2%	95.3%	4.0%
0.4	14.0	43.5	7.4%	93.8%	0.9%
7.0	10.7	52.1	4.0%	90.6%	3.7%
8.9	19.5	60.8	3.5%	88.0%	3.1%
10.2	22.3	09.0	1.8%	86.1%	1.6%
11.4	25.1	78.2	3.7%	84.9%	3.2%
12.7	27.9	86.9	1.2%	83.8%	1.0%
19.1	41.9	130.4	3.8%	75.0%	2.8%
20.4	00.7	1/3.0	1.0%	01.3%	0.9%
38.1	83.7	260.7	1.2%	30.1%	0.4%
					89.3%
		0/ nain fallin			4 50/
		% rain tailing	g at >38.1 mm/nr or byp	bassing treatment =	4.5%
		Assume	d removal efficiency to	or bypassed flows =	0.0%
			Estimated reduc	tion in efficiency [°] =	6.5%
		Predict	ted Net Annual Load R	emoval Efficiency =	83%
1 - Design Ratio = (Total I	Drainage Area) x (Runoff C	Coefficient) x (Rational	Method Conversion) / Grit	Chamber Area	
	- The Total Drainage Are	a and Runott Coefficie	ent are specified by the site	engineer.	
	- The rational method co	nversion based on the	units in the above equation	n IS 2.775.	
2 - Operating Rate (% of c	capacity) = percentage of p	beak operating rate of 6	So i/s/m.		
3 - Based on 10 years of r	aintall data from Canadiar	Station 6105976, Otta	awa CDA, ON		
4 - Based on Contech Cor (see Vortechs Guide).	nstruction Products labora	tory verified removal of	38 to 500 micron particles	with an average particle	e size of 80 microns
5- Reduction due to use o	f 60-minute data for a site	that has a time of cond	centration less than 30-min	utes.	
Calculated by:	JAK	3/16	Checked by:		

VORTECHS SYSTEM [®] BYPASS CALCULATIONS					
M <i>A</i>		PHASE 1			
	OTTAWA,				
GANILYN MO	DEL 7000 C)FF-LINE			
CONSTRUCTION PRODUCTS INC. SITE I	DESIGNATIO	ON OGS 2			
Vortechs System Specifications and Site Spec	ific Informatio	on: Actual length of hypass wair crest - 1.820 m			
Design flow rate at recurrence interval, $Q_{\rm D}$ =	935 l/s	Actual length of bypass well crest = 1.029 m			
Recurrence Interval, I =	100 yr	Peak water surface elevation, E_{P} = 87.83 m			
	,	Discharge coefficient, $C_D = 1883$			
Notation:					
Q _B = Flow over bypass weir, I/	's				
E _B = Elevation of bypass weir	crest, m				
h = Depth of flow over bypas	s weir crest, m	1			
Calculations:					
$Q_{\rm p} = Q_{\rm p} - Q_{\rm y}$	- Calculate the	e flow over the bypass weir during the design-year storm			
= 935 - 312	Ouloulate and				
= 623 I/s					
2/2					
$Q_{\rm B} = C_{\rm D} L_{\rm B} h^{3/2}$	- Francis form	ula for rectangular weir.			
h = (OP / 1992 P)2/2	Loo this orre	programs of the Eropeia formula to polya for h			
$= (623 / 1883 * 1.829)^{2/3}$		ingement of the Francis formula to solve for h.			
= 0.33 m					
E_B = E _P - h	- Solve for byp	bass weir crest elevation (E _B).			
= 87.83 - 0.33					
= or.5 m Conclusion:					
The bypass weir crest should be set	at an elevati	on of 87.5 m with a total length of 1.829 m.			
Calculated by: JAK	3/16	Checked by:			

VORTECHS SYSTEM [®] ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON AN AVERAGE PARTICLE SIZE OF 80 MICRONS MAHOGANY PHASE 1 OTTAWA, ON MODEL 7000 OFF-LINE SITE DESIGNATION OGS 3					
Design Ratio ¹ =	<u>(5.51 </u>	<u>hectares) x (0.43) x (</u> (4.7 m2)	<u>2.775)</u>	= 1.4	
	Bypass occurs at an	elevation of 87.13m	(at approximately 24	l/s/m2)	
Rainfall Intensity	Operating Rate ²	Flow Treated	<u>% Total Rainfall</u>	Rmvl. Effcy*	Rel. Effcy
mm/hr	% of capacity	(I/s)	Volume [°]	(%)	(%)
0.5	1.0	3.3	10.7%	98.0%	10.5%
1.0	2.1	6.5	9.3%	98.0%	9.1%
1.5	3.1	9.8	10.3%	98.0%	10.1%
2.0	4.2	13.0	8.6%	98.0%	8.4%
2.5	5.2	16.3	6.7%	98.0%	6.6%
3.0	6.3	19.5	5.8%	98.0%	5.7%
3.6	7.3	22.8	5.0%	97.6%	4.9%
4.1	8.4	26.0	4.4%	96.9%	4.2%
4.6	9.4	29.3	2.3%	96.3%	2.2%
5.1	10.4	32.5	4.2%	96.0%	4.0%
6.4	13.1	40.7	7.4%	93.8%	6.9%
7.6	15.7	48.8	4.0%	91.8%	3.7%
8.9	18.3	56.9	3.5%	88.8%	3.1%
10.2	20.9	65.0	1.8%	87.3%	1.6%
11.4	23.5	73.2	3.8%	85.7%	3.2%
12.7	26.1	81.3	1.4%	84.3%	1.2%
19.1	39.2	122.0	5.1%	76.8%	3.9%
25.4	52.2	162.6	2.1%	62.9%	1.3%
38.1	78.3	243.9	1.6%	38.2%	0.6%
					91.4%
		% rain falling Assume Predic	g at >38.1 mm/hr or by d removal efficiency fo Estimated reduc ted Net Annual Load R	passing treatment = or bypassed flows = ction in efficiency ⁵ = Removal Efficiency =	1.9% 0.0% 6.5% 85%
 Design Ratio = (Total Operating Rate (% of 3 - Based on 10 years of 	Drainage Area) x (Runoff C - The Total Drainage Are - The rational method co capacity) = percentage of p rainfall data from Canadiar	Coefficient) x (Rational I ea and Runoff Coefficiel onversion based on the beak operating rate of 6 on Station 6105976, Otta	Method Conversion) / Grit nt are specified by the site units in the above equation 8 l/s/mf. wa CDA, ON	Chamber Area engineer. n is 2.775.	
4 - Based on Contech Co Vortechs Guide). 5- Reduction due to use o	nstruction Products labora	tory verified removal of	38 to 500 micron particles	with an average particle	size of 80 microns (se
Calculated by:		3/16	Chockod by:		

VORTECHS SYSTEM [®] BYPASS CALCULATIONS MAHOGANY PHASE 1						
	DEL 7000 (DEF-LINE				
CONSTRUCTION PRODUCTS INC. SITE		ON OGS 3				
Vortechs System Specifications and Site Spe	cific Informati	on:				
Vortechs System flow capacity, $Q_V =$	312 l/s	Actual length of bypass weir crest = 1.829 m				
Design flow rate at recurrence interval, Q _D =	783 l/s					
Recurrence Interval, I =	100 yr	Peak water surface elevation, $E_P = 87.40 \text{ m}$				
		Discharge coefficient, $C_D = 1681$				
Notation:						
Q _B = Flow over bypass weir, I/	S					
$E_B = Elevation of bypass weir$	crest, m					
h = Depth of flow over bypas	s weir crest, m					
$Q_{\rm B} = Q_{\rm P} - Q_{\rm V}$	- Calculate the	e flow over the bypass weir during the design-year storm.				
= 784 - 312						
= 473 l/s						
$Q_{\rm B} = C_{\rm D} L_{\rm B} h^{3/2}$	- Francis form	ula for rectangular weir.				
h = $(QB / 1681 LB)2/3$ = $(472 / 1681 * 1.820)02/3$	- Use this arra	ingement of the Francis formula to solve for h.				
= (47371001 + 1.829)(2/3) - 0.27 m						
- 0.27 11						
Е_в = Е _Р - h	- Solve for by	bass weir crest elevation (E _B).				
= 87.4 - 0.27						
= 87.13 m						
Conclusion:	_					
The bypass weir crest should be set	at an elevat	on of 87.13 m with a total length of 1.829 m.				
Calculated by: JAK	3/16	Checked by:				

- 2. SWTS SHALL BE CONTAINED IN ONE RECTANGULAR STRUCTURE
- SWTS SHALL BE CONTAINED IN ONE RECTANGULAR STRUCTURE
 SWTS REMOVAL EFFICIENCY SHALL BE DOCUMENTED BASED ON PARTICLE SIZE
- 4. SWTS SHALL RETAIN FLOATABLES AND TRAPPED SEDIMENT UP TO AND INCLUDING PEAK TREATMENT CAPACITY
- 5. SWTS INVERTS IN AND OUT ARE TYPICALLY AT THE SAME ELEVATION
- SWTS INVERTS IN AND OUT ARE THREALT AT THE SAME ELEVATION
 SWTS SHALL NOT BE COMPROMISED BY EFFECTS OF DOWNSTREAM TAILWATER
- 10. PURCHASER SHALL NOT BE RESPONSIBLE FOR ASSEMBLY OF UNIT 11. MANHOLE FRAMES AND PERFORATED COVERS SUPPLIED WITH SYSTEM, NOT INSTALLED
- 12. PURCHASER TO PREPARE EXCAVATION AND PROVIDE CRANE FOR

OFF-LOADING AND SETTING AT TIME OF DELIVERY

13. VORTECHS SYSTEMS BY CONTECH STORMWATER SOLUTIONS; PORTLAND, OR (800) 548-4667; SCARBOROUGH, ME (877) 907-8676; LINTHICUM, MD (866) 740-3318.

PROPRIETARY INFORMATION - NOT TO BE USED FOR CONSTRUCTION PURPOSES

This CADD file is for the purpose of specifying stormwater treatment equipment to be furnished by CONTECH Stormwater Solutions and may only be transferred to other documents exactly as provided by CONTECH Stormwater Solutions. Title block information, **excluding** the CONTECH Stormwater Solutions logo and the Vortechs Stormwater Treatment System designation and patent number, may be deleted if necessary. Revisions to any part of this CADD file without prior coordination with CONTECH Stormwater Solutions shall be considered unauthorized use of proprietary Information.

<u>NOTE:</u> BYPASS AND JUNCTION MANHOLE DIAMETERS ARE ASSUMED BASED ON THE TREATMENT CAPACITY OF THE VORTECHS SYSTEM. THESE DIAMETERS MAY CHANGE DEPENDING ON SPECIFIC SITE CONDITIONS. CONTACT YOUR CONTECH STORMWATER SOLUTIONS DESIGN ENGINEER.

Vortechs Model Size	Vortech	ns Dims	Recommended	Typical Bypass	Typical	Approximate Center to	Approximate Bypass Pipe
	Length	Width	Diameter	Manhole	Manhole	Center Distance	Length Outside
	ft / mm	ft / mm	in / mm	Diameter	Diameter	ft / mm	ft / mm
1000	9 / 2743	3 / 914	10 / 250	4 / 1200	4 / 1200	7.5 / 2286	3.5 / 1067
2000	10 / 3048	4 / 1219	12 / 300	4 / 1200	4 / 1200	8.5 / 2591	4.42 / 1347
3000	11 / 3353	5 / 1524	15 / 375	5 / 1500	4 / 1200	9.25 / 2819	4.75 / 1448
4000	12 / 3658	6 / 1829	15 / 375	5 / 1500	4 / 1200	10.25 / 3124	5.75 / 1753
5000	13 / 3962	7 / 2134	18 / 450	6 / 1800	5 / 1500	11.17 / 3405	5.67 / 1728
7000	14 / 4267	8 / 2438	18 / 450	6 / 1800	5 / 1500	12.17 / 3709	6.67 / 2033
9000	15 / 4572	9 / 2743	21 / 525	6 / 1800	6 / 1800	11.83 / 3606	5.83 / 1777
11000	16 / 4877	10 / 3048	24 / 600	6 / 1800	6 / 1800	12.67 / 3862	6.67 / 2033
16000	18 / 5486	12 / 3658	27 / 675	6 / 1800	6 / 1800	14.58 / 4444	8.58 / 2615

This CADD file is for the purpose of specifying stormwater treatment equipment to be furnished by CONTECH Stormwater Solutions and may only be transferred to other documents exactly as provided by CONTECH Stormwater Solutions. Title block information, excluding the CONTECH Stormwater Solutions logo and the Vortechs Stormwater Treatment System designation and patent number, may be deleted if necessary. Revisions to any part of this CADD file without prior coordination with CONTECH Stormwater Solutions shall be considered unauthorized use of proprietary information.

TYPICAL BYPASS & JUNCTION MANHOLE LAYOUT WITH SPECIFICATIONS TABLE FOR VORTECHS[®] STORMWATER TREATMENT SYSTEM

DATE: 1/24/07 SCALE: NONE

FILE NAME: TYPTBLVXBPRmet

DATE: 6/15/06 SCALE: NONE FILE NAME: TYPVXBPLOR

DRAWN: GMC CHECKED: NDG

Appendix 7C SWMHYMO Model Schematic

MAHOGANY PHASE 1

PHASE 1 SWMHYMO SCHEMATIC

 \searrow

Sheet No.

Appendix 7D XPSWMM Model Schematic Model Files (CD)

DRAFT

WILSON COWAN DRAIN FLUVIAL GEOMORPHIC EXISTING CONDITIONS MINTO MAHOGANY, MANOTICK

156380-25016-504

Report Prepared for: MINTO COMMUNITIES INC.

Prepared by: MATRIX SOLUTIONS INC.

May 2017 Guelph, Ontario

Unit 7B - 650 Woodlawn Rd. W Guelph, ON N1K 1B8 T 519.772.3777 F 226.314.1908 www.matrix-solutions.com

DRAFT

WILSON COWAN DRAIN FLUVIAL GEOMORPHIC EXISTING CONDITIONS

MINTO MAHOGANY, MANOTICK

156380-25016-504

Report prepared for Minto Communities Inc., May 2017

Matthew McCombs, M.A.Sc., P.Eng. Water Resources Engineer <u>reviewed by</u> John Parish, P.Geo. Principal Geomorphologist

DISCLAIMER

We certify that this report is accurate and complete and accords with the information available during the site investigation. Information obtained during the site investigation or provided by third parties is believed to be accurate but is not guaranteed. We have exercised reasonable skill, care, and diligence in assessing the information obtained during the preparation of this report.

This report was prepared for Minto Communities Inc. The report may not be relied upon by any other person or entity without our written consent and that of Minto Communities Inc. Any uses of this report by a third party, or any reliance on decisions made based on it, are the responsibility of that party. We are not responsible for damages or injuries incurred by any third party, as a result of decisions made or actions taken based on this report.

DRAFT

TABLE OF CONTENTS

1	INTROD	UCTION	
	1.1	Backgro	und Review1
		1.1.1	Available Reporting1
		1.1.2	Historical Aerial Imagery1
2	EXISTIN	G COND	ITIONS2
	2.1	Rapid G	eomorphic Assessment
		2.1.1	Wilson Cowan Drain3
		2.1.2	Wilson Cowan Drain Tributary4
	2.2	Detailed	d Survey5
		2.2.1	Profile and Cross-sections5
		2.2.2	Sediment Characteristics
3	EROSIO	N THRES	HOLD ANALYSIS
	3.1	Method	ls6
	3.2	Results	
		3.2.1	Wilson Cowan Drain – Main Channel8
		3.2.2	Wilson Cowan Drain - Tributary9
4	CONCLU	JSIONS /	AND RECOMMENDATIONS
REFERE	NCES		

LIST OF FIGURES

FIGURE 1	Study Area and Subject Watercourses	2
FIGURE 2	Allowable Shear Stress in Cohesive Material (Chow 1959)	7
FIGURE 3	Shields Diagram for Initiation of Motion	8

LIST OF TABLES

Summary of RGA Results for the Mahogany Site	3
Average Bankfull Cross-section Parameters	6
WCD-R2 Erosion Threshold Results Summary	9
WCDT-R1 Erosion Threshold Results Summary	9
	Summary of RGA Results for the Mahogany Site Average Bankfull Cross-section Parameters WCD-R2 Erosion Threshold Results Summary WCDT-R1 Erosion Threshold Results Summary

APPENDIX

Appendix A Site Photographs and Detailed Survey Locations

1 INTRODUCTION

Matrix Solutions Inc. was retained by Minto Communities Inc. to provide a fluvial geomorphic existing conditions assessment of the Wilson Cowan Municipal Drain and its Tributary within the Minto Mahogany development area (Figure 1). The Drain and Tributary are under consideration as receiving channels for future stormwater management practices. The purpose of this report is to identify the existing conditions of the two watercourses and provide erosion threshold estimates in support of stormwater management design.

The following work was completed in support of this study:

- a background review of past geomorphic and environmental studies of the site and current and historical aerial imagery
- a field investigation to understand the existing conditions (stability, form, function, and processes) and delineate study reaches
- detailed geomorphic surveys in the main branch of the Drain and within the Tributary for the purposes of quantifying erosion threshold estimates
- erosion threshold analyses of each channel using collected field data

1.1 Background Review

1.1.1 Available Reporting

The report entitled *Natural Resource Existing Conditions Report – Part Lot 4 and 5 Concession A Former Geographic Township of Rideau, City of Ottawa* (EcoTech, 2008) was completed to provide a biophysical inventory of the property in order to assess the existing woodlands and wetland features, delineate vegetation community boundaries, determine fisheries populations, conduct geomorphological survey of the watercourses, and determine potential land use restrictions.

Channel dimensions, velocities, and material composition were determined throughout the study area including the current subject reaches. Overall, the majority of the channels were found to have low channel bed slopes and were composed of silty clay. The results presented in the 2008 report have been compared to the results of this current assessment.

1.1.2 Historical Aerial Imagery

Based on available historical imagery dating back to 1976, little discernable change has occurred to the planform of the channel over the past 41 years. This is consistent with the stability found within the channel observed during the field investigation. Urban development has occurred downstream of the study area since 1976 but the land use through the study area and upstream has remained agricultural with little change.

FIGURE 1 Study Area and Subject Watercourses

2 EXISTING CONDITIONS

The channels were investigated on April 12 and 13, 2017 to identify forms of natural channel adjustment, note general channel properties, and take measurements of channel geometry. During the initial site visit on April 12, channel conditions along the study reaches were evaluated using an established synoptic survey: the Rapid Geomorphic Assessment (RGA). A summary of this assessment is provided in Table 1. Detailed surveys of the Wilson Cowan Drain and its Tributary were completed on April 13 in locations displaying the greatest potential for erosion. Each survey included five cross-sections and a longitudinal profile of the centre of channel.

2.1 Rapid Geomorphic Assessment

The RGA was designed by the Ontario Ministry of Environment (2003) to assess reaches in rural and urban channels. This qualitative technique documents indicators of channel instability. Observations are quantified using an index that identifies channel sensitivity based on the presence or absence of evidence of aggradation, degradation, channel widening, and planimetric adjustment. Examples of these include the presence of bar forms, exposed infrastructure, head cutting due to knickpoint migration, fallen or leaning trees and exposed tree roots, channel scour along the bank toe, transition of the channel from single thread to multiple thread, and cut-off channels. Overall, the index produces values that indicate whether the channel is in regime (score ≤ 0.20), stressed (score 0.21 to 0.40), or adjusting (score ≥ 0.41).

Reach	Aggradation	Degradation	Widening	Planimetric Adjustment	Condition
WCD-R1	0.22	0	0.25	0	In Regime
WCD-R2	0.22	0	0	0	In Regime
WCD-R3	0.22	0	0.13	0	In Regime
WCDT-R1	0.11	0.29	0.25	0	In Regime
WCDT-R2	0.11	0	0	0	In Regime
WCDT-R3	0.11	0	0	0	In Regime

TABLE 1 Summary of RGA Results for the Mahogany Site

2.1.1 Wilson Cowan Drain

The Wilson Cowan Drain was divided into three reaches (WCD-R1 to WCD-R3) based on land use, channel form, and channel function. Overall the channel is highly stable under existing conditions. The channel is straight and likely historically dredged to serve its function as a municipal drain. The system is aggradational throughout with a large amount of its bed composition consisting of agricultural runoff, as made evident by its composition (sandy silt), and in some locations, based on its organic content (top soil compared to typical alluvial sediment). Throughout the watercourse, the bed material was loose and, in reach WCD-R3, the soil was both loose and unconsolidated. To accommodate municipal drain requirements for surrounding lands, the channel's relatively large cross-sectional area and low slope have resulted in a mainly depositional system. In some locations, immediately adjacent to agricultural lands, concentrated runoff volumes carrying loose sediment have created small gullies that flow into the drain. The bed sediment at and immediately downstream of these locations were composed of sandy and silty, highly organic material.

WCD-R1 represents the furthest reach of channel downstream from the confluence with the Tributary. This reach was assessed to the nearest downstream edge of property. This was the extent of where access was permitted at the time of the survey. Based on aerial imagery, this reach extends to Potter Drive, at which point the channel widens significantly before narrowing through an approximately

35 m wide wetland floodplain, dominated by tall grasses, to Bankfield Road. WCD-R1 has a bankfull width of 7.4 m and a bankfull depth of 1 m. The channel bottom was composed of soft but consolidated silty clay and had a low channel slope. Where present, coarser materials were embedded and there was evidence of deposition in and around woody debris. These processes are indicative of aggradation. Although some evidence of widening was noted in the form of organic debris and falling trees, these observations were likely not a result of channel widening, but rather naturally falling trees and branches broken from high winds.

Upstream of the confluence with the Tributary, to the end of the surrounding woodlot (approximate 600 m channel length), WCD-R2 is similar to its upstream neighbour in form and function but has a slightly smaller cross-sectional profile, with a 5.5 m bankfull width and 0.85 m bankfull depth. The majority of the bank and bed below the bankfull level were exposed and lacking in vegetation. This reach is assumed to the most susceptible to erosion, given its bare bed and banks, which suggests that this stretch of channel represents the least depositional reach of the system.

WCD-R3 extends from the end of the woodlot to the site boundary at Century Road East (approximate 470 m reach length). In this reach, the bankfull width and depth were approximately 6.3 m and 1.3 m, respectively. The channel bed in this location was composed of soft, unconsolidated silt, and organic soil with a large amount of instream vegetation, dominated by cattails. The material and condition of the drain suggested a high sediment load from neighbouring agricultural lands. Through this reach, there is little to no riparian buffer and the majority of the banks are lined with tall grasses.

2.1.2 Wilson Cowan Drain Tributary

The Tributary to the Wilson Cowan Drain was also divided into three reaches (WCDT-R1 to WCDT-R3). The Tributary exhibited a good deal of stability throughout and was found to be in regime along its entire length. The downstream (approximately 90 m) portion of the channel was composed of a steep step/riffle sequence to the confluence with the main branch of the Wilson Cowan Drain. Upstream of this area, the channel contained short, less defined banks that were void of channel processes. This is typical of intermittent or ephemeral streams. These upstream reaches were flooded at the time of the survey due to recent rains and snow melt. The bed of the channel in these low gradient portions of the channel contained instream grasses or decaying leaves.

Through WCDT-R1, small round boulders were observed along the banks and overbanks of the channel. The steps/riffles were mostly composed of these larger stone sizes. Between larger boulder steps, the bed was mostly composed of gravels and sands, except in locations where channel obstructions (woody debris, etc.) had formed pockets of fine sand and silt deposits from surrounding agricultural lands. The average bankfull width and depth of the reach were 4.0 m and 0.3 m, respectively.

WCDT-R2 extended from WCDT-R1, 350 m upstream to the edge of the woodlot. In this area the channel was an average of 6 m wide and 0.7 m deep and contained instream grasses and a low channel gradient. The channel bottom was composed of a silty clay substrate.

WCDT-R3 begins adjacent to a woodlot with a channel width and depth of 3.3 m and 0.30 m, respectively. In this location the channel did not contain instream vegetation and the beds and banks were composed of highly organic soils and decaying leaves. During the time of the investigation (April 12, 2017), a level of flooding was observed throughout this reach. In some locations large ponds had formed, submerging overbank trees. In the upstream 300 m of channel to Century Rd. East, the flooding expanded to form a 30 m wide pond and no defined channel was observed. No evidence of fluvial processes was observed where a defined channel was present, and EcoTech Environmental Consultants Inc. (2008), observed little to no flow within the channel in May and June 2007, suggest that the channel through this reach is intermittent or ephemeral.

2.2 Detailed Survey

2.2.1 Profile and Cross-sections

A detailed geomorphic survey was completed of approximately 170 m of the main branch of the Wilson Cowan Drain (WCD-R2). The length of the Wilson Cowan Drain surveyed had a low average bed slope of approximately 0.01%. Points surveyed of bankfull locations suggested that water elevations at during bankfull flows produce water elevation slopes between 0.05% and 0.14%, which are more consistent with channel slopes observed by EcoTech Environmental Consultants Inc. (2008) and more representative of the average channel slope. Given the uniformity of the channel, the five cross-sections collected were representative of the watercourse.

The entire 90 m length of WCDT-R1 was surveyed as it exhibited the most forms of channel adjustment and is likely to see the most rapid response to changing flow conditions given its bed steepness and exposed boulder step sequence. Five cross-sections were collected as part of the survey. The average channel slope of the surveyed area was 1.2%.

Values of discharge, velocity, and shear stress provided in Table 2 were quantified using a panelled approach between surveyed points of each cross-section and averaged. Manning's n values were chosen based on channel conditions and the roughness associated with the channel materials observed.

TABLE 2 Average Bankfull Cross-section Parameters

Parameter	WCD-R2	WCDT-R1
Width (m)	5.52	3.76
Average Depth (m)	0.54	0.27
Maximum Depth (m)	0.85	0.41
Width: Depth	10.38	14.08
Cross-sectional Area (m ²)	3.06	0.99
Representative Bed Slope (%)	0.05	1.2
Left Bank Angle (°)	26	18
Right Bank Angle (°)	20	17
Discharge (m ³ /s)	1.68	1.46
Average Velocity (m/s)	0.46	1.25
Maximum Velocity (m/s)	0.66	1.86
Average Shear Stress (N/m ²)	2.55	30.20
Maximum Shear Stress (N/m ²)	4.13	47.6
Manning's n	0.030	0.037

2.2.2 Sediment Characteristics

The bed material through the surveyed section of WCD-R2 was composed of clayey silt with trace sands. The material was characterised in the field as a loose, lean, clayey soil. The banks, up to the bankfull level were mainly composed of this lean, clayey soil but more compact than the bed material.

Through WCDT-R1 the step feature materials were composed of very coarse gravel (3 to 6 cm) to small boulders (25 to 50 cm). Between these areas of coarser material, the material was mostly composed of gravels embedded in sandy silt with trace clays. For the threshold analysis, coarse gravels to small cobbles were considered as these are representative of the mean grain size of the reach.

3 EROSION THRESHOLD ANALYSIS

3.1 Methods

The general procedure for estimating erosion thresholds is to calculate a critical flow, shear stress, or permissible velocity at which a sediment particle of a given grain size will begin to mobilize. Once a suitable value is determined, a model is used which increases the volume of the channel incrementally until values of shear stress or water velocity equal critical values. Matrix uses established entrainment relationships to calculate erosion thresholds based on critical shear stress and permissible velocity (velocity at which the channel lining will begin to actively erode). The model results are then examined

for convergence and compatibility with field observations. Selection of appropriate thresholds is also based on an understanding of site conditions and of the assumptions and range of conditions under which the entrainment relationships are applicable.

Through WCD-R2, loose, lean, clayey soils dominate the bed composition. For coarse materials, the median grain size (D_{50}) is commonly used in the determination of an erosion threshold value. In cases where fine, cohesive materials are considered, a median grain size would produce unrealistically low values of critical shear stress as the cohesion between these finer particles would not be taken into consideration. Although fine-grained particles are typically more vulnerable to erosion, the cohesion between the silt and clay particles adds resistance to shear stresses depending on the compactness and void ratio of the soil and must be taken into account in the threshold analysis. In the case of WCD-R2, the analysis must rely on relationships developed through studies of maximum permissible shear stresses for cohesive sediment. The method by Chow (1959) provides estimates of critical shear stress based on the void ratio or compactness of various cohesive materials (Figure 2).

FIGURE 2 Allowable Shear Stress in Cohesive Material (Chow 1959)

In contrast, WCDT-R1 is dominated by non-cohesive, granular sediment. The Modified Shields Curve (Yalin and da Silva, 2001) was used to estimate a critical shear stress for incipient motion of the coarse gravels and small cobbles observed on site. The Modified Shields Curve applies to fluvial sediment transport rather than cohesive clays and muds (Figure 3).

FIGURE 3 Shields Diagram for Initiation of Motion

Once the critical shear stresses were determined based on the methods described above, the thresholds were then calculated for each cross-section using the average cross-sectional dimensions. The hydraulic inputs to the iterative model are provided in Table 2. Bed and bank shear stresses were estimated using the method described by Javid and Mohammadi (2012) which accounts for secondary currents and variable eddy viscosity.

3.2 Results

3.2.1 Wilson Cowan Drain – Main Channel

Based on the method by Chow (1959), the range of loose, lean, clayey soils was considered in this analysis. The range of results is provided in Table 3. Critical shear stresses range from 1.01 to 2.39 N/m^2 for loose, lean, clayey soils. Based on field observations, water clarity was high during the field visit and little evidence of active sediment transport was noted. At the time of the survey, centre of channel wetted depths averaged 0.34 m. Based on these observations, it is assumed that the erosion threshold is only exceeded above this water level. A critical discharge of 0.29 m³/s, equivalent to a critical average depth of approximately 0.40 m, is recommended.

Parameter	Low Range	High Range	Recommended Values
Approximate Bankfull Discharge (m ³ /s)	1.68	1.68	-
Critical Shear Stress (N/m ²)	1.01	2.39	1.85
Critical Discharge (m ³ /s)	0.10	0.45	0.29
Critical Average Depth (m)	0.21	0.53	0.40
Critical Average Velocity (m/s)	0.22	0.35	0.30

TABLE 3 WCD-R2 Erosion Threshold Results Summary

3.2.2 Wilson Cowan Drain - Tributary

When considering WCDT-R1, two grain sizes were considered to provide a range of critical shear stresses based on the Modified Shields Curve (Yalin and da Silva, 2001). Coarse gravels to small cobbles (3 to 7 cm diameter) were chosen as the representative material of the channel. This material represents the lower distribution within the riffles/steps and the embedded materials in the pools and transition zones between steps. During the field investigation, sediment transport was observed from adjacent agricultural lands (possible tile drain outlet locations), but observations of instream material transport were made. This suggests that the erosion threshold of the representative bed material occurs above the average water level observed (0.13 m). A value in the middle of the range considered (0.19 m) is recommended. This equates to a critical discharge of $0.24 \text{ m}^3/\text{s}$. The range of results and recommended values are provided in Table 4.

TABLE 4 WCDT-R1 Erosion Threshold Results Summary

Parameter	Low Range	High Range	Recommended Values
Approximate Bankfull Discharge (m ³ /s)	1.46	1.46	-
Critical Shear Stress (N/m ²)	13.24	30.90	22.39
Critical Discharge (m ³ /s)	0.11	0.39	0.24
Critical Average Depth (m)	0.12	0.26	0.19
Critical Average Velocity (m/s)	0.60	0.88	0.76

4 CONCLUSIONS AND RECOMMENDATIONS

A fluvial geomorphic assessment of the Wilson Cowan Drain and its Tributary through the Minto Mahogany development area was completed. As part of this study, the existing conditions of the watercourses were discussed and erosion threshold discharges were estimated for both channels to support future stormwater management practices.

Field observations of channel process noted that both channels exhibited depositional characteristics, with significant sediment inputs from surrounding agricultural lands. In low lying areas, gullying was present along channel banks where sediment heavy surface runoff from agricultural fields has caused the slope failures. These gullies provide significant sediment sources that make up the majority of the bed material through the site, especially in the main branch of the Wilson Cowan Drain. The channel showed no signs of active erosion.

The upstream reaches of the Tributary were low gradient depositional channels that are likely intermittent or ephemeral. The downstream reach was found to be much steeper with a step/riffle-pool sequence to its confluence with the main branch of the Drain. This channel was also found to be in regime and stable with little evidence of active erosion. Based on conditions during the site investigation (high water table and post freshet), the thresholds of upstream reaches are rarely exceeded as flows generally spill into the surrounding floodplain before attaining sufficient energy to cause erosion and natural channel processes.

Erosion thresholds were estimated using the methods by Chow (1959) and the Modified Shields Curve (Yalin and da Silva, 2001) to approximate the critical shear stress of the materials of each watercourse. Based on channel geometry and composition critical discharge values of 0.29 and 0.24 m³/s for the Wilson Cowan Drain and its Tributary, respectively, are recommended for future stormwater management practices.

REFERENCES

Chow V.T. 1959. Open-channel Hydraulics. McGraw-Hill Inc.

- EcoTech Environmental Consultants Inc. (EcoTech). 2008. *Natural Resources Existing Conditions Report. Part Lot 4 and 5 Concession A Former Geographic Township of Rideau, City of Ottawa*. Report prepared for Delcan Corporation on behalf of Minto Developments Inc. January 2008.
- Javid S. and Mohammadi M. 2012. "Boundary Shear Stress in a Trapazoidal Channel". International Journal of Engineering.25 (4): 323-331.
- Ontario Ministry of the Environment (MOE). 2003. *Stormwater Management Planning and Design Manual.* Queen's Printer. Ottawa, Ontario. March 2003. <u>http://www.ontario.ca/document/stormwater-management-planning-and-design-manual</u>
- Yalin M.S. and da Silva A.M.F. 2001. *Fluvial processes*. International Association of Hydraulic Engineering and Research Monograph.

APPENDIX A Site Photographs and Detailed Survey Locations

APPENDIX A SITE PHOTOGRAPHS

Matrix Solutions Inc. April 12, 2017

1. WCD-R1: View looking downstream from Century Road. Agricultural fields on both sides of drain. Note presence of instream vegetation.

Matrix Solutions Inc. April 12, 2017

2. WCD-R1: View looking upstream towards Century Road. Riparian zone consists of tall grasses and intermittent shrubs.

Matrix Solutions Inc. April 12, 2017

3. WCD-R2: View looking downstream. Riparian zone consists of deciduous trees and grasses. Note the lack of vegetation along both bank toes.

Matrix Solutions Inc. April 12, 2017

4. WCD-R2: Gully formation originating from agricultural field resulting in sandy depositional feature.

SITE PHOTOGRAPHS

Matrix Solutions Inc. April 12, 2017

5. WCD-R2: Wooden retaining wall behind houses along Watterson St. No active erosion observed.

April 12, 2017

Matrix Solutions Inc.

6. WCD-R2: Confluence of tributary (right side of photo) with the main channel of Wilson Cowan Drain.

Matrix Solutions Inc. April 12, 2017

SITE PHOTOGRAPHS

7. WCD-R1: View looking downstream. Some fallen trees, not due to erosion.

Matrix Solutions Inc. April 12, 2017

8. WCD-R1: View looking downstream at step-pool formation. Large stones (potentially placed) across channel creating small drop.

Matrix Solutions Inc. April 12, 2017

9. WCD-R1: View looking upstream from Watterson St. Large quantities of instream vegetation.

10. WCDT-R1: View looking upstream. Substrate consists of small-large cobble within a riffle-pool sequence.

Appendix A Site Photographs

11. WCDT-R1: Woody debris build up in channel.

12. WCDT-R1: Tributary within wooded buffer with agricultural fields on both sides.

Matrix Solutions Inc. April 12, 2017

APPENDIX A SITE PHOTOGRAPHS

Matrix Solutions Inc. April 12, 2017

13. WCDT-R2: View looking upstream. Shows transition from agricultural field to beginning of wooded buffer.

14. WCDT-R2: Channel has lost definition and has much lower grade.

Matrix Solutions Inc. April 12, 2017

15. WCDT-R3: Where channel enters wooded area it regains some definition.

16. WCDT-R3: Water spreads out and creates small pond.

Matrix Solutions Inc. April 12, 2017

17. WCDT-R3: Channel remains undefined and flooded up to culvert under Century Rd.

Easting (m)

DRAFT

JOCK RIVER REACH 2, & MUD CREEK SUBWATERSHED

FIGURE 3.5.2.11

Mud Creek Floodline Delineation Sheet 2

100yr Floodline

100 yr Elevation ^{} Cross Section #

1:5000

MAHOGANY SUBDIVISION PHASES 2-4 – FUNCTIONAL SERVICING REPORT

Appendix C : Stormwater Management Calculations May 10, 2018

C.2 CONCEPTUAL STORM SEWER DESIGN SHEET

		Minto M	ahogany				STORM	SEWE	R		DESIGN	PARAME	TERS																										
🚺 🚺 Stantec	DATE		2010	05 10	_				Т		l = a / (t+	b) ^c	1.5 vr	(As per C	City of Otta	wa Guide	lines, 201	2)																					
	REVISIO	N:	2016-	2			(City of	Ollawaj			a =	732.951	998.071	1174.184	1735.688	MANNING	3'S n =	0.013		BEDDING	CLASS =	в																	
	DESIGNE	ED BY:	C	т	FILE NUN	IBER:	16041014	40			b =	6.199	6.053	6.014	6.014	MINIMUM	COVER:	2.00	m																				
	CHECKE	D BY:	A	MP							C =	0.810	0.814	0.816	0.820	TIME OF	ENTRY	10	min									1											
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	с	с	с	с	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2.YEAR}	I _{5-YEAR}	I10-YEAR	I100-YEAR	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	I PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR	(100-YEAR)) AxC (100YF	२)						Q _{CONTROL}	(CIA/360)		OR DIAMETE	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
L203B	203	202	1.17	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.644	0.644	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	137.3	158.7	525	525	CIRCULAR	CONCRETE	-	0.20	200.6	68.43%	0.90	0.85	3.12
L202A	202	201	4.40	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	2.201	2.845	0.000	0.000	0.000	0.000	0.000	0.000	13.12 16.74	66.58	90.15	105.61	154.28	0.0	0.0	526.1	197.8	975	975	CIRCULAR	CONCRETE	-	0.10	739.3	71.16%	0.96	0.91	3.62
																				10.00				170.50							0120111.42	001/00575							1.00
C206A	207	206	0.00	0.00 2.55	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.691	0.691	1.533	0.000	0.000	0.000	0.000	0.000	10.00 14.33	76.81 63.40	104.19 85.79	122.14	178.56 146.75	0.0	0.0	147.4 486.9	224.3 115.6	525 900	525 900	CIRCULAR	CONCRETE	-	0.20	200.6 597.2	73.45% 81.52%	0.90	0.86	4.33 2.14
L205A	205	204	3.02	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	1.662	2.352	0.000	1.533	0.000	0.000	0.000	0.000	16.47	58.51	79.10	92.61	135.20	0.0	0.0	719.0	113.2	1050	1050	CIRCULAR	CONCRETE		0.10	900.9	79.82%	1.01	0.99	1.90
L204B, L204A	204	201	9.70	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.000	8.018	0.000	1.533	0.000	0.000	0.000	0.000	18.37 19.54	54.81	74.05	80.07	120.50	0.0	0.0	1536.0	97.7	1350	1350	CIRCULAR	CONCRETE	-	0.15	2100.0	/1.22%	1.40	1.39	1.18
	201	200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	10.862	0.000	1 533	0.000	0.000	0.000	0.000	19 54	52 78	71 27	83.41	121 70	0.0	0.0	1895.8	42.4	1500	1500	CIRCUI AR	CONCRETE		0.10	2332.0	81 30%	1 28	1 27	0.56
	201	200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	10.002	0.000	1.000	0.000	0.000	0.000	0.000	20.10	02.70	11.21	00.41	121.70	0.0	0.0	1000.0	-121	1500	1500				0.10	2002.0	01.0070	1.20	1.21	0.00
L104B. L104A	104	103	5.90	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	3.096	3.096	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	660.5	369.5	1050	1050	CIRCULAR	CONCRETE	-	0.10	900.9	73.32%	1.01	0.97	6.35
L103A	103	102	7.38	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	4.062	7.157	0.000	0.000	0.000	0.000	0.000	0.000	16.35	58.75	79.43	93.00	135.77	0.0	0.0	1168.1	259.0	1200	1200	CIRCULAR	CONCRETE	-	0.15	1575.3	74.15%	1.35	1.30	3.33
																				19.68																			
C108A	108	106	0.00	1.14	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.000	0.000	0.681	0.681	0.000	0.000	0.000	0.000	10.00 13.48	76.81	104.19	122.14	178.56	0.0	0.0	197.1	174.8	600	600	CIRCULAR	CONCRETE	-	0.15	248.1	79.47%	0.85	0.84	3.48
																				10.40																			
L107A	107	106	1.54	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.848	0.848	0.000	0.000	0.000	0.000	0.000	0.000	10.00 14.98	76.81	104.19	122.14	178.56	0.0	0.0	180.9	242.9	600	600	CIRCULAR	CONCRETE		0.15	248.1	72.90%	0.85	0.81	4.98
	440	400	0.04	4.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4 700	4 700	0.000	0.000	0.000	0.000	0.000	0.000	10.00	70.04	101.10	100.44	470.50		0.0	0.47.0	455.4	4050	4050		CONODETE		0.40	000 5	70.05%	4.04	0.00	0.00
C109A, L109A	110	109	2.94	0.71	0.00	0.00	0.00	0.60	0.60	0.00	0.00	1.762	3.050	0.938	1.363	0.000	0.000	0.000	0.000	12.69	67.81	91.84	122.14	178.56	0.0	0.0	647.3 922.3	155.1	1050	1050	CIRCULAR	CONCRETE	-	0.10	1286.2	72.05%	1.01	1.05	2.69
																				15.05																			
C106A, L106B, L106A	106	105	5.72	0.59	0.00	0.00	0.00	0.47	0.60	0.00	0.00	2.681	6.579	0.352	2.396	0.000	0.000	0.000	0.000	15.05	61.64	83.38	97.64	142.59	0.0	0.0	1681.3	190.7	1500	1500	CIRCULAR	CONCRETE	-	0.10	2326.8	72.26%	1.28	1.22	2.61
L105B, C105A, L105A	105	102	5.90	0.45	0.00	0.00	0.00	0.65	0.60	0.00	0.00	3.829	10.407	0.271	2.667	0.000	0.000	0.000	0.000	17.66 19.74	56.12	75.84	88.78	129.58	0.0	0.0	2184.3	190.2	1500	1500	CIRCULAR	CONCRETE	-	0.15	2856.1	76.48%	1.57	1.52	2.08
L115A	115 114	114 113	3.89 0.00	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	2.335 0.000	2.335 2.335	0.000	0.000	0.000	0.000	0.000	0.000	10.00 12.79	76.81 67.54	104.19 91.47	122.14	178.56 156.56	0.0	0.0	498.2 438.1	151.4 93.3	900 900	900 900	CIRCULAR	CONCRETE	-	0.10	597.2 597.2	83.42% 73.36%	0.91 0.91	0.91 0.87	2.79
L113A	113	112	1.51	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.908	3.243	0.000	0.000	0.000	0.000	0.000	0.000	14.56	62.82	84.99	99.54	145.37	0.0	0.0	565.9	78.9	975	975	CIRCULAR	CONCRETE	-	0.10	739.3	76.54%	0.96	0.93	1.41
C112A, L112A C111A, L111A	112	111	1.85	1.58	0.00	0.00	0.00	0.60	0.60	0.00	0.00	1.111	4.354 5.901	0.946	0.946	0.000	0.000	0.000	0.000	15.97	59.57 55.00	80.54 74.31	94.31 86.98	137.69	0.0	0.0	932.2 1193.0	144.8 153.6	1200	1200	CIRCULAR	CONCRETE	-	0.10	1286.2	72.48%	1.10	1.05	2.29
																				20.22																			
C102A	102	101	0.00	1.34	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.000	23.466	0.806	4.885	0.000	0.000	0.000	0.000	20.22	51.67	69.76	81.64	119.11	0.0	0.0	4314.8	173.3	1800	1800	CIRCULAR	CONCRETE	-	0.15	4644.4	92.90%	1.77	1.82	1.59
L101A	101	100	1.46	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.805	24.270	0.000	4.885	0.000	0.000	0.000	0.000	21.81	49.29	66.51	77.82	113.51	0.0	0.0	4225.4	44.4	1800	1800	CIRCULAR	CONCRETE	-	0.15	4644.4	90.98%	1.77	1.81	0.41
	-																			~~~~									1000	1000									

MAHOGANY SUBDIVISION PHASES 2-4 – FUNCTIONAL SERVICING REPORT

Appendix C : Stormwater Management Calculations May 10, 2018

C.3 WILSON COWAN MUNICIPAL DRAIN MONITORING PROGRAM DATA

To:	File	From:	Marc Telmosse, P. Eng.
			Stantec's Ottawa (ON) Office
File:	1604-10140	Date:	March 15, 2018

Stantec completed a 4 month long (June to October 2017) stream flow monitoring program in the Wilson Cowan Municipal drain and tributary stream in Manotick (ON). The data from this program will be used to calibrate and validate the existing conditions model of the contributing area.

DATA GATHERING

Solinst's levelloggers and a barologger were used to obtain continuous (5-min) water levels. A total of four (4) site visits were completed to perform stream monitoring to obtain flow rates and to develop flow curves for each site. The site visit dates, recorded water depths, and corresponding calculated flows are listed in **Table 1**. Further details about the stream monitoring and flow determination are provided below.

Stream Monitoring

At all three sites (presented in **Appendix A**), a cross-section of the stream was selected where the stream was relatively straight and with minimal vegetation. The cross-sections were identified with wooden stakes on each bank to perform the stream measurements at the same location for the subsequent site visits.

Velocity measurements were taken using a current meter across the stream, at an interval of approximately 50cm. A measuring tape was laid out across the stream, connecting the stakes on both banks, and it was used to determine the length of the cross-section, as well as determining the distance from the velocity measurements to the bank. The water depth was measured at each velocity measurement station, and the velocity was measured as such:

- If the water depth is less than 75cm, the velocity measurement was taken at 60% of the depth (from the surface).
- If the water depth is greater than 75cm, the velocity measurement was taken at 20%, and 80% of the depth (from the surface). The average of both velocity measurements was used in the flow calculation.

Flow Determination

Using the velocity and water depth data gathered as part of the stream monitoring program, the flow was calculated using the Standard Mid-Section Method for each site and every site visits. For this method, the stream is divided into panels, which are defined as one half of the distance to the previous station (i.e. velocity measurement location) plus one half of the distance to the next section. The partial flow was calculated for each panel by multiplying the velocity, depth, and the width of the panel. The total flow at each site was determined by taking the sum of the partial flows. The Mid-Section Method is summarized in **Figure 1**. Sample calculations are provided in **Appendix B**.

Design with community in mind

sl \cd1218-f02\work_group\01-634\active\1604_10140\planning\report\flow monitoring\progress_memo\mem_flow_monitoring_progress_20180315_amg.docx

Site Visit	Date	Wa	ater Depth (m)	Calculated Flow (m ³ /s)					
		Site A	Site B	Site C	Site A	Site B	Site C			
1	16-Jun-17	0.52	0.29	0.00	0.000 ¹	0.019	0.000			
2	30-Jun-17	0.78	0.66	0.25	0.220	0.362	0.032			
3	4-Aug-17	0.42	0.34	0.05	0.050	0.052	0.002			
4	5-Oct-17	0.51	0.19	0.00	0.007	0.004	0.000			

Table 1: Flow Monitoring Program Details and Findings

¹ Standing water (i.e. no flow).

Figure 1: Standard Mid-Section Method

RAINFALL DATA & FREQUENCY OF MEASUREMENTS

Attempts were made to complete the site visits following rainfall events, or after a few consecutive rainy days. Several large rain events occurred during the flow monitoring periods, as listed in **Table 2**, and presented in **Figure 2**. The rainfall data was gathered from Environmental Canada Historical Data.

Date	Total Daily Rainfall (mm)	Date	Total Daily Rainfall (mm)
29-Jun-2017	32.4	24-Jul-2017	79.0
1-Jul-2017	42.0	22-Aug-2017	30.2
14-Jul-2017	42.6	7-Sep-2017	21.8

Table 2: Top 6 Rain Events (June 16 to October 1, 2017)

Figure 2: Daily Rainfall (June 16 – October 1, 2017)

STAGE-DISCHARGE CURVES DETERMINATION

The recorded water level data (levelloggers) was used with the measured velocity/flow data to establish representative stage-discharge curves for each of the sites. The recorded depths for all three sites are shown for the entire program in **Figure 5** (**Appendix C**). The established stage-discharge curves based on the 4 field measurements are shown in **Figures 6**, **7**, and **8** (**Appendix D**).

CALCULATED HYDROGRAPHS

Flow hydrographs were computed using the stage-discharge curves. Due to the limitation of the data quality (see **Limitations** Section), the flow at Site A was calculated using the Difference Basin Method (i.e. Site A = Site B – Site C). The calculated flows at each site are shown in **Figure 3** below.

PRELIMINARY CALIBRATION EFFORTS

The existing PCSWMM model was used in an attempt to calibrate to the measured and calculated stream flow data. The parameters used for each site in this preliminary calibration are shown in **Table 3**. The resulting volumes, peak flows, and fits for the three events observed and considered are summarized in **Table 4**. Comparison hydrographs (modeled versus measured/calculated) are presented in **Appendix E**.

The model was originally set up using CN values, which did not provide enough volume or a high enough peak flow to satisfy our calibration targets (+25/-15% on peak flow and +20/-10% on volume). Further iterations using Horton's Method, while adjusting the infiltration values, were then completed and found to produce better fits to the flow data. However, due to limitations with the calculated flows, further discussed in the **Limitations** section, a good fit was not achieved for all the sites and events. Generally, the fits between monitored and modelled results are better for Site A and B, but the modelled flows and volumes are overestimated at Site C.

LIMITATIONS

There are limitations to the validity of the established flow curves. These are due to difference in the magnitude of the measured depths and calculated flows when compared to the monitored peak depth and extrapolated flows from the largest event that was recorded on July 24-26th, 2017. This July 24th, 2017 event saw approximately 80mm over a 24hr period, which is more than double the intensity of the largest measured event that occurred on June 30th (~72mm over a 72hr period).

Additionally, the depth at Site A dropped by approximately 40cm on July 20th. We initially suspected that an equipment malfunction was responsible, however a review of the field measurements corroborates this drop. It is suspected that some type of blockage was removed downstream and caused this drop. We also observed that there was approximately 60cm of stagnant water during our first installation visit to Site A on June 16, 2017. Further consideration of the interpretation of the flows at this site is recommended due to the observed variability.

CONCLUSION

A flow monitoring program was completed in the Wilson Cowan Municipal drain and tributary stream in Manotick (ON). A total of (3) three sites were monitored over a 4-months period. The data from this program was used in preliminary calibration efforts of an existing PCSWMM model of the contributing area.

Due to limitations of the data (i.e. changed site conditions and difference in magnitude of measured to monitored depths) a good fit between the monitored and modelled data was not achieve at all sites for the entire period. It is recommended that further refinement and/or interpretation is warranted to reconcile the calibration of the model to the extrapolated flows.

STANTEC CONSULTING LTD.

Alexandre Mineault-Guitard Environmental Engineering Intern Phone: (613) 722-4349 Alexandre.Mineault-Guitard@stantec.com Marc Telmosse, P. Eng Water Resources Engineer Phone: (613) 724-4092 Marc.Telmosse@stantec.com

March 15, 2018 Page 6 of 15

Reference: Mahogany Stage 2-Development (Stream Flow Monitoring): Progress Memo

Site	Slope (%)	N Impervious	N Pervious	Impervious Depression Storage Depth (mm)	Previous Depression Storage Depth (mm)	Max Infiltration Rate (mm/hr)	Min Infiltration Rate (mm/hr)	Decay Constant (1/hr)
Α	0.1%	0.013	0.25	1.57	4.67	76.2	0.45	4.14
В	0.1%	0.013	0.25	1.57	4.67	76.2	0.45	4.14
С	0.1%	0.013	0.25	1.57	4.67	92	7.1	4.14

 Table 3: Preliminary Calibration Analysis Parameters1

¹A drying time of 7 days was assumed due to expected saturation from this year's storm events.

	Event 1	: June 27 th	to July 8th, 2	2017	Ever	nt 2: July 8 th t	o July 15 th , 20	017	Ever	nt 3: July 24 th t	o August 3 rd , 2	017
Site	Modeled Volume (m³)	Volume Fit (%)	Modeled Peak Flow (m ³ /s)	Peak Flow Fit (%)	Modeled Volume (m³)	Volume Fit (%)	Modeled Peak Flow (m ³ /s)	Peak Flow Fit (%)	Modeled Volume (m³)	Volume Fit (%)	Modeled Peak Flow (m³/s)	Peak Flow Fit (%)
А	140,763	-35%	0.932	30%	122,256	3%	0.785	-1%	181,111	24%	2.375	119%
В	194,911	-9%	1.396	72%	198,512	1%	1.923	114%	277,009	89%	4.374	250%
С	278,798	30%	1.671	105%	295,643	150%	2.202	145%	309,131	111%	4.486	259%

APPENDIX A: FLOW MONITORING SITE LOCATIONS

APPENDIX B: EXAMPLE FLOW CALCULATIONS

Location	Distance from Stake (m)	Total Depth W.S. to Bottom (m)	Panel Width (m)	60% Depth (m)	Measured Velocity (m/s)	Partial Flow (m ³ /s)
Water Edge Left	6.65	0.00	0.000	0.000	0.000	0.000
Station 1	7.50	0.25	0.675	0.150	0.020	0.003
Station 2	8.00	0.34	0.500	0.204	0.030	0.005
Station 3	8.50	0.34	0.500	0.204	0.040	0.007
Station 4	9.00	0.28	0.500	0.168	0.020	0.003
Station 5	9.50	0.11	0.550	0.066	0.010	0.001
Water Edge Right	10.10	0.00	0.000	0.000	0.000	0.000
					Total Flow (m ³ /s)	0.019

Table 5: Site B, June 16th, 2017

Table 6: Site A, June 30th, 2017

Location	Distance from Stake (m)	Total Depth W.S. to Bottom (m)	Panel Width (m)	20% Depth (m)	60% Depth (m)	80% Depth (m)	Measured Velocity 20% Depth (m/s)	Measured Velocity 60% Depth (m/s)	Measured Velocity 80% Depth (m/s)	Partial Flow (m ³ /s)
Water Edge Left	1.90	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Station 1	2.20	0.18	0.400	0.000	0.108	0.000	-	0.000	-	0.000
Station 2	2.70	0.34	0.500	0.000	0.204	0.000	-	0.020	-	0.003
Station 3	3.20	0.50	0.500	0.000	0.300	0.000	-	0.040	-	0.010
Station 4	3.70	0.75	0.500	0.000	0.000	0.000	-	0.020	-	0.008
Station 5	4.20	0.98	0.500	0.196	0.000	0.784	0.010	0.000	0.040	0.012
Station 6	4.70	1.00	0.500	0.200	0.000	0.800	0.040	0.000	0.080	0.030
Station 7	5.20	1.06	0.500	0.212	0.000	0.848	0.110	0.000	0.100	0.056
Station 8	5.70	1.01	0.500	0.202	0.000	0.808	0.140	0.000	0.080	0.056
Station 9	6.20	0.96	0.500	0.192	0.000	0.768	0.030	0.000	0.070	0.024
Station 10	6.70	0.77	0.500	0.154	0.000	0.616	0.020	0.000	0.030	0.010
Station 11	7.20	0.43	0.575	0.000	0.258	0.000	-	0.050	-	0.012
Water Edge Right	7.85	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
									Total Flow (m ³ /s)	0.220

APPENDIX C: RECORDED WATER LEVELS

Figure 5: Recorded Water Levels (5-min timestep)

APPENDIX D: STAGE-DISCHARGE CURVES

Figure 6: Site A Stage-Discharge Curve.

Reference: Mahogany Stage 2-Development (Stream Flow Monitoring): Progress Memo

Figure 8: Site C Stage-Discharge Curve

March 15, 2018 Page 13 of 15

Reference: Mahogany Stage 2-Development (Stream Flow Monitoring): Progress Memo

APPENDIX E: PRELIMINARY CALIBRATION RESULTS

Figure 9: Site A Hydrograph Comparison

March 15, 2018 Page 14 of 15

Reference: Mahogany Stage 2-Development (Stream Flow Monitoring): Progress Memo

Figure 10: Site B Hydrograph Comparison

March 15, 2018 Page 15 of 15

Reference: Mahogany Stage 2-Development (Stream Flow Monitoring): Progress Memo

Figure 11: Site C Hydrograph Comparison

MAHOGANY SUBDIVISION PHASES 2-4 – FUNCTIONAL SERVICING REPORT

Appendix C : Stormwater Management Calculations May 10, 2018

C.4 WILSON COWAN MUNICIPAL DRAIN EXISTING CONDITION MODEL - CALIBRATED

[TITLE]

[OPTI ONS]	
;;Options	Val ue
[OPTIONS] ;; Options ;; Options FLOW_UNITS INFILTRATION FLOW_ROUTING START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP ROUTING_STEP ALLOW_PONDING INERTIAL_DAMPING VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA NORMAL_FLOW_LIMITED SKIP_STEADY_STATE FORCE_MAIN_EQUATION LINK OFFSETS	Val ue CMS HORTON DYNWAVE 06/27/2017 05: 00: 00 06/29/2017 17: 00: 00 01/01 12/31 5 00: 01: 00 00: 01: 00 00: 01: 00 00: 01: 00 5 NO PARTI AL 0. 75 0 1. 167 BOTH NO H-W DEPTH
MIN_SLOPE	0
MIN_SLOPE	0
MAX_TRIALS	8
SYS_FLOW_TOL	5
LAT_FLOW_TOL	5
MINIMUM_SIEP THREADS	U. 5 2
	~

[FILES] USE HOTSTART "W: \active\1 planning_landscape\1604 Projects\160410140_Mahogany Stage 2+ Development\design\analysis\SWM\WC Drain Calibration\Final\PCSWMM\100SCS.HSF"

[EVAPORATI ON] ;; Type] F	Parameters								
MONTHLY O. O O. O DRY_ONLY	0. 0 NO	0.0	0. 0	0.0	0. 0	0.0	0. 0	0.0	0.0	0.0
[RAINGAGES]		Rai n Type	Time Intrvl	Snow Catch	Data Source					
002SCS 100 YR SCSGao Manotick_Fuli RG-1	ge	I NTENSI TY INTENSITY VOLUME I NTENSI TY	0: 12 0:12:00 0: 05 0: 12	1.0) 1 1.0 1.0	TI MESEF TIMESE TI MESEF TI MESEF	RIES ERIES RIES RIES	5SCS_24 100 YR Manoticl 100SCS_3	nr_IBI SCS <rg 24hr_IBI</rg 		
[SUBCATCHMEN ⁻ ;; ;; Curb St	TS] how					Т	otal	Pcnt.		Pcnt.
;;Name		Rai ngage		Outlet		A	rea	Imperv	Width	SI ope
				Pa	age 1					

Length Pack										
; 0. 20 3-PRE 0	RG-1		S4			2.861	0	30		0. 1
; 0. 20 4-PRE	RG-1		Jun-	4		3.34	0	100		0. 1
; 0. 20 5-PRE	RG-1		Jun-	2		10. 14	0	450		0. 1
; 0. 20 8-PRE1	RG-1		S9			9. 426	0	444		0. 1
; 0. 20 8-PRE2	RG-1		S9			5. 262	0	213		0. 1
Area 3	RG-1		S4			2.4479	0	150		0.1
Area 6	RG-1		s6			1.8	0	66.6	567	0.1
Area 7	RG-1		s5-7	,		9.2	0	450		0.1
Area 8	RG-1		8-pr	E1		13.50422	50	444		0.1
Area_4	RG-1		Jun-	4		0.66	0	100		0. 1
; 0. 60 FUT	RG-1		S9			6. 607775	0	444		0. 1
; 0. 55 S1 0	RG-1		S4			6.8411	0	275		0. 1
; 0. 50 S2	RG-1		S3			8. 61	0	480		0. 1
Sub9A 0	RG-1		9A			263. 0403	0	2400)	0. 01
[SUBAREAS] ;;Subcatchment PctRouted	N-Imper∨	N-Per	v 	S-Imperv	-	S-Perv	PctZero	F	Route	То
3-PRE	0.013	0. 25		1.57		4.67	0	F	PERVI	OUS
100 4-PRE	0. 013	0. 25		1.57		4.67	0	F	PERVI	OUS
100 5-PRE	0.013	0. 25		1.57		4.67	0	F	PERVI	OUS
100 8-PRE1	0. 013	0. 25		1.57		4.67	0	F	PERVI	OUS
100 8-PRE2	0.013	0. 25		1.57		4.67	0	F	PERVI	OUS
100 Area 3	0.013	0.25		1.57		4.67	0	F	PERVI	ous
100 Area 6	0.013	0.25		1.57		4.67	0	F	PERVI	ous
100 Area 7	0.013	0.25		1.57		4.67	0	F	PERVI	OUS
100 Area 8 100	0.013	0.25		1.57		4.67	0	F	PERVI	OUS

20180321_exi st_100SCS. i np

		20180)321_exi st	_100SCS. i np)			
Area_4 100	0. 013	0. 25	1.57	4.67	0		PERVI OUS	,
FUT 100	0. 013	0. 25	1.57	4.67	0		PERVI OUS)
S1 100	0. 013	0. 25	1.57	4.67	0		PERVI OUS	,)
S2	0.013	0. 25	1.57	4.67	0		PERVI OUS	;
Sub9A 100	0. 013	0. 25	1. 57	4.67	0		PERVI OUS)
[INFILTRATION] ;;Subcatchment	MaxRate	MinRate	e Deca	y DryTi	me Ma	xl nfi l		
3-PRE 4-PRE 5-PRE 8-PRE1 8-PRE2 Area 3 Area 6 Area 6 Area 7 Area 8 Area_4 FUT S1 S2 Sub9A	35 35 35 35 35 35 35 35 35 35 35 35 35 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 4.14\\$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
[OUTFALLS] ;;Name	lnvert Elev.	Outfal Type	l Sta Tii	age/Table me Series	Ti de Gate	Route To		
Dummy	85.99	FIXED	87	. 26	NO			
[STORAGE] ;; Ponded Evap. ;;Name Area Frac	Invert Elev.	Max. Depth ation para	lnit. Depth ameters	Storage Curve	Curve Params			
;;								-
9A	89	3	0	FUNCTI ONAL	0. 01	0	0	0
Jun-1	88.813	3. 187	0	FUNCTI ONAL	0. 01	0	0	0
Jun-2	88.8	0.965	0	FUNCTI ONAL	0. 01	0	0	0
Jun-3	88.679	0.956	0	FUNCTI ONAL	0. 01	0	0	0
Jun-4	88.677	0.969	0	FUNCTI ONAL	0. 01	0	0	0
Jun-5	90	2	0	FUNCTI ONAL	0. 01	0	0	0
Jun-6	88. 278	5.722	0	FUNCTI ONAL	19354	2.143	0	0
Point B	86.03	2.49	0	FUNCTIONAL	0	0	0	0
0 S3	86.72	2	0	FUNCTI ONAL	0	0	0	0
0 S4	88.66	1.1	0	FUNCTI ONAL	0	0	1	0
0 S5-7	88.9	3.1	0	FUNCTI ONAL	0	0	1	0

0				2018	0321_exi s	t_100SC	S. i np				
S6 0		88.69	0.87	7	0	FUNCT	ONAL	0	0	1	0
S8 0		86.04	2.34	1	0	FUNCT	ONAL	0	0	0	0
S9 0		88.26	2.34	1	0	FUNCT	ONAL	0	0	0	0
[CONDUITS] ;; Outlet ;;Name	lnit.	Inlet Max Node	۲.		Outlet Node		Leng	th	Manni ng N	g Inl Off	et set
;;	FI OW	FI (DW 								
1	0	Jun-6			S9		56.7	51	0. 024	0	
1_1 0	0	9A 0			Jun-6		2269	. 226	0.03	0	
2	0	Jun-5			Jun-1		146.	077	0.03	0	
Flow 5_1	0	s5-7 0			Jun-1		173.	143	0.03	0	
Flow 5_3	0	Jun-1 0			Jun-2		29.3	11	0.024	0	
Flow 5_4	0	Jun-2 0			S4		351.	811	0.03	0	
Flow 6_1 0	0	S6 0			Jun-3		208.	159	0.03	0	
Flow 6_3 0	0	Jun-3 0			Jun-4		29.9	19	0.024	0	
Flow 6_4 0	0	Jun-4 0			S4		301.	106	0.03	0	
;FM Site A Flow 9 O	0	s9 0			S8		950		0.03	0	
FIOW B	0	Point_B			Dummy		20		0.03	0	
Flow B1	0	s3 0			Point B		20		0.04	0	
0.49 Flow B2 0	0	s8 0			Point B		20		0.03	0	
Flow_4	0	S4 0			S3		594.	851	0. 03	0	
[XSECTIONS ;;Link Barrels]	Shape		Geor	n1	Geo	om2	Geo	m3 	Geom4	
1		CI RCULAF	R	1.5		0		0		0	1
1_1		I RREGULA	٨R	240	6-REV	0		0		0	1
2		I RREGULA	٨R	170	6-REV	0		0		0	1
Flow 5_1		IRREGULA	٨R	170	6-REV	0		0		0	1
Flow 5_3		CIRCULA	ર	0.2	64	0		0		0	1
Flow 5_4		IRREGULA	٨R	170	6-REV	0		0		0	1
					_						

20180321_exist_100SCS.inp

Flow 6_1	I	RREGULAR	1706-RE	EV	0	0	0	1
Flow 6_3	С	IRCULAR	0.264		0	0	0	1
Flow 6_4	I	RREGULAR	1706-RE	EV	0	0	0	1
Flow 9	I	RREGULAR	2406-ri	EV	0	0	0	1
Flow B	Т	RAPEZOIDAL	2		3	8	8	1
Flow B1	т	RAPEZOIDAL	2		3	8	8	1
Flow B2	т	RAPEZOIDAL	2		3	8	8	1
FI ow_4	I	RREGULAR	1153-RE	ΞV	0	0	0	1
[TRANSECTS]								
NC 0.060 X1_1153	0. 060	0. 030 6	6. 300	13.400	0.0	0.0	0.0	0.00
0.0 GR 88.85	0	88.49	6.3	87.78	9	87.78	9.6	88.57
13.4 GR 88.88	22.4							
NC 0.06 X1 1153-REV	0. 06	0. 05 6	6.3	13.4	0. 0	0.0	0.0	0.0
0.0 GR 1.07	0	0. 71	6.3	0	9	0	9.6	0.79
13.4 GR 1.1	22.4							
NC 0.060 X1_1706	0. 060	0. 030 6	7.000	12.100	0.0	0.0	0.0	0.00
0.0 GR 89.38	0	89.08	7	88.51	8.95	88. 51	9.55	88.96
12.1 GR 89.38	32							
NC 0.2 X1_1706-REV	0. 2	0. 2 8	7	12.1	0.0	0.0	0.0	0.0
GR 1	-30	0.87	0	0. 57	7	0	8.95	0
9.55 GR 0.45	12.1	0.87	32	1	62			
NC 0.060 X1 2	0. 060	0. 030 5	10. 000	18.000	0. 0	0. 0	0. 0	0.00
GR 86.85 28	0	86.72	10	86.34	14	87.07	18	87.21
NC 0.060 X1 2406	0. 060	0. 030 7	14. 900	25.500	0.0	0.0	0.0	0.00
GR 88.61	0	88.16	14.9	86. 93	17.55	86.71	19	86. 98
GR 88.34	25.5	89.05	31.8					
NC 0.2 X1 2406-REV	0. 2	0. 2 7	14.9	25.5	0.0	0.0	0.0	0.0
				rage 5				

0.0			2018032	21_exist_1	00SCS. i nj	C			
GR 1.9	0	1.45	14.9	0. 22	17.55	0	19	0. 27	
GR 1.63	25.5	2.34	31.8						
NC 0.06 X1 2-REV 0.0 GR 0.51	0. 06 0	0. 03 5 0. 38	10 10	18 0	0. 0 14	0. 0 0. 7	0. C 3 18	0.0	
28 [LOSSES]									
; ; Li nk ; ;	 	nl et 	Outlet	Average	e Flap	Gate	SeepageRa	te -	
[INFLOWS]	seline				Par	am	Units S	ical e	
;;Node Pattern ;;	P	arameter	Ti 	me Series	Тур	e	Factor F	actor Va	al ue
9A	F	LOW			FLO	W	1.0 1	0.	. 04

[TIMESERIES]

MAHOGANY SUBDIVISION PHASES 2-4 – FUNCTIONAL SERVICING REPORT

Appendix C : Stormwater Management Calculations May 10, 2018

C.5 POND 2 PCSWMM INPUT FILE (MAHOGANY CREEK)

[TITLE]

[OPTI ONS] ;;0pti ons	Val ue								
FLOW_UNITS FLOW_ROUTING START_DATE START_TIME REPORT_START_DATE REPORT_START_DATE REPORT_START_DATE REPORT_START_DATE REPORT_START_DATE END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP NOTING_STEP ROUTING_STEP ALLOW_PONDING INERTIAL_DAMPING VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA NORMAL_FLOW_LIMIT SKIP_STEADY_STATE FORCE_MAIN_EQUATI LINK_OFFSETS MIN_SLOPE MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	CMS HORTO DYNWA 01/01. 01:00 01/01. 01:00 01/03. 01:00 01/01 12/31 5 00:01 00:01 00:01 5 NO PARTI. 0 0 ED SLOPE NO ON H-W ELEVA 0 8 0.001 5 5 0.5 2	N VE /1995 : 00 /1995 : 00 /1995 : 00 : 00 : 00 AL TI ON							
[FILES] USE HOTSTART "C:∖	ana's\min	to∖mode	I i ng\PC	SWMM\1(DOCHI	_HOT. HSF	п		
[EVAPORATI ON] ; ; Type P	arameters								
MONTHLY O. O O. O O. O DRY_ONLY NO	0.0	0.0	0.0	0.0	0. C	0.0	0.0	0.0	0.0
[RAINGAGES]	Rai n Type	Time Intrvl	Snow Catch	Data Source	Э				
RÁINGAGE	I NTENSI TY	0: 10	1	TIMESE	ERLES	5 100yr3h	rChi cago-	-IBI	
[SUBCATCHMENTS]						Total	Pont		Pont
′′Curb Snow ;;Name	Rai ngage		Outlet			Area	Imperv	Width	SI ope
Length Pack									
; 0. 60									

C1024	PALNCACE	t_pond_2018-02-14	_100CHI.inp	111	05
0	KATNGAGE	CTUZA-S	1. 343323 - 57. 1	444	0.5
C105A 0	RAI NGAGE	C105A-S	0.451128 57.1	173	0.5
; 0. 60 C106A 0	RAI NGAGE	C106A-S	0. 586046 57. 1	210	0. 5
; 0. 60 C108A	RAI NGAGE	C108A-S	1.135278 57.1	306	0.5
; 0. 60 C109A	RAI NGAGE	C109A-S	0. 708703 57. 1	141	0. 5
; 0. 60 C110A	RAI NGAGE	C110A-S	1.563146 57.1	348	0.5
; 0. 60 C111A	RAI NGAGE	C111A-S	0.775898 57.1	169	0.5
; 0. 60 C112A	RAI NGAGE	C112A-S	1.577445 57.1	428	0.5
; 0. 55 L101A	RAI NGAGE	L101A-S	1.463042 50	788	1
; 0. 55 L103A	RAI NGAGE	L103A-S	7.38545 14.3	2651	1
; 0. 55 L104A	RAI NGAGE	L104A-S	5.299193 50	2102	1
; 0. 30 L104B	RAI NGAGE	L104B-S	0.604025 14.3	135	1
; 0. 60 L105A	RAI NGAGE	L105A-S	3.008836 57.1	1382	1
; 0. 70 L105B	RAI NGAGE	L105B-S	2.890668 71.4	650	1
; 0. 60 L106A	RAI NGAGE	L106A-S	3. 221312 57. 1	1564	1
; 0. 30 L106B	RAI NGAGE	L106B-S	2.493932 14.3	560	1
; 0. 55 L107A	RAI NGAGE	L107A-S	1.541354 50	250	1
; 0. 55 L109A	RAI NGAGE	L109A-S	2.341961 50	1067	1
; 0. 60 L110A	RAI NGAGE	L110A-S	2.936461 57.1	1163	1
; 0. 55 L111A	RAI NGAGE	L111A-S	2.811561 50	1106	1
; 0. 60 L112A	RAI NGAGE	L112A-S	1.852279 57.1	693	1
; 0. 60					

	p	ost pond 20)18-02-14 10	OCHI.inp			
L113A 0	RAINGAGE	L113	A-S	1.512982	57.1	721	1
; 0. 60 L115A 0	RAI NGAGE	L115	A-S	3. 891973	57.1	1374	1
; 0. 50 POND2 0	RAI NGAGE	100-3	S	3. 282099	42.9	738	1
; 0. 40 UNC1 0	RAI NGAGE	100-3	S	0. 717575	28.6	162	1
[SUBAREAS] ;;Subcatchment PctRouted	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Route	To
C102A C105A C106A C108A C109A C110A C111A C112A L101A L103A 20	$\begin{array}{c} 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ 0.\ 013\\ \end{array}$	$\begin{array}{c} 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \\ 0. \ 25 \end{array}$	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE PERVI	T T T T T T T OUS
L104A	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L104B	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L105A	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L105B L106A 30	0. 013 0. 013	0. 25 0. 25	1. 57 1. 57	4.67 4.67	0 0	OUTLE PERVI	T OUS
L106B	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L107A L109A 30	0. 013 0. 013	0. 25 0. 25	1.57 1.57	4.67 4.67	0 0	OUTLE PERVI	T OUS
L110A	0.013	0. 25	1.57	4.67	0	PERVI	OUS
L111A	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L112A	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L113A	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
L115A	0.013	0. 25	1.57	4.67	0	PERVI	OUS
POND2	0.013	0. 25	1.57	4.67	0	PERVI	OUS
UNC1 100	0. 013	0. 25	1.57	4.67	0	PERVI	OUS
[INFILTRATION] ;;Subcatchment	MaxRate	MinRate	Decay	DryTime	MaxInfil		
Ć102A C105A C106A	76. 2 76. 2 76. 2	13. 2 13. 2 13. 2 13. 2	4. 14 4. 14 4. 14 Page 3	7 7 7	0 0 0		

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

	p	ost_pond_20	18-02-14_10	OCHL.inp		
C108A C109A C110A C111A C112A L101A L103A L104A L104B L105A L105B L106A L106B L107A L106B L107A L109A L110A L111A L112A L113A L115A POND2 UNC1	76. 2 76. 2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4. 14 4.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
[JUNCTIONS]	lnvert Elev.	Max. Depth	lnit. Depth	Surcharge Depth	Ponded Area	
;; 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 PH1-213 PH1-232 PH1-288	$\begin{array}{c} 84.\ 667\\ 84.\ 987\\ 85.\ 975\\ 86.\ 495\\ 85.\ 572\\ 85.\ 765\\ 87.\ 029\\ 86.\ 927\\ 86.\ 214\\ 86.\ 518\\ 85.\ 817\\ 85.\ 965\\ 86.\ 269\\ 86.\ 437\\ 86.\ 664\\ 86.\ 5\\ 86.\ 945\\ 87.\ 47\\ \end{array}$	5.022 4.888 4.156 4.049 4.492 4.489 3.523 3.123 4.19 4.039 4.212 4.209 3.984 3.909 3.833 2.78 3.445 2.53	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
[OUTFALLS]	lnvert Elev.	Outfall Type	Stage/Tal Time Ser	ole Tio les Gat	de te Route To	
outlet A	84.766	TIDAL	OutletA_	100YRCHI_Sta	antec_revised	NO
[STORAGE] ;; Ponded Evap. ;;Name Area Frac.	Invert Ma Elev. Da Infiltrati	ax. Ini [.] epth Dep on parameto	t. Stora th Curve ers	ge Curve Params	5	
100-S	83.5 4.	93 0	 TABUL	AR Pond2_	_Storage_Curv	'e
0 0 168	87.087 1.	913 0	FUNCT	ONAL O	0	0
			Page 4			

0

post_pond_2018-02-14_100CHI . i np

0		p031_p01	Iu_2010-02	2-14_1000m.	пр			
172	86. 517	1. 983	0	FUNCTI ONAL	0	0	0	0
173A	86. 286	1.714	0	FUNCTI ONAL	0	0	0	0
173B	86. 211	2.439	0	FUNCTI ONAL	0	0	0	0
173C	86. 174	2.476	0	FUNCTI ONAL	0	0	0	0
0 174	86. 104	1. 896	0	FUNCTI ONAL	0	0	0	0
Area1	85	2.5	0	FUNCTI ONAL	0	0	0	0
Area2	87.27	2.93	0	FUNCTI ONAL	0	0	0	0
C102A-S	87.99	2.25	0	FUNCTI ONAL	0	0	0	0
C105A-S	87.73	2.6	0	TABULAR	C105A			0
C106A-S	87.94	2.5	0	TABULAR	C106A			0
C108A-S	88.15	2.5	0	TABULAR	C108A			0
C109A-S	88.13	2.5	0	TABULAR	C109A			0
C110A-S	88.41	2.5	0	TABULAR	C110A			0
C111A-S	87.73	2.5	0	TABULAR	C111A			0
C112A-S	88.18	2.5	0	TABULAR	C112A			0
L101A-S	87.65	2.5	0	TABULAR	L101A			0
L103A-S	87.8	2.5	0	TABULAR	L103A			0
L104A-S	87.8	2.5	0	TABULAR	L104A			0
L104B-S	88.08	2.4	0	FUNCTI ONAL	0	0	0	0
L105A-S	87.82	2.5	0	TABULAR	L105A			0
L105B-S	88.2	2.5	0	TABULAR	L105B			0
L106A-S	88.01	2.5	0	TABULAR	L106A			0
L106B-S	88.29	2.4	0	FUNCTI ONAL	0	0	0	0
L107A-S	88. 15	2.5	0	TABULAR	L107A			0
L109A-S	88. 22	2.5	0	TABULAR	L109A			0
L110A-S	88.5	2.5	0	TABULAR	L110A			0
L111A-S	88.13	2.5	0	TABULAR	L111A			0
L112A-S	88. 18	2.5	0	TABULAR	L112A			0
L113A-S	88.2	2.5	0	TABULAR	L113A			0
L115A-S	88.2	2.5	0	TABULAR	L115A			0
SU1	89.85	0.35	0	FUNCTI ONAL	0	0	0	0
0								

SU10		90. 23	post_po 0.35	nd_2018-02 0	2-14_100CHI . i np FUNCTI ONAL 0	0	0	0
0 SU2		89. 7	0.6	0	FUNCTIONAL O	0	0	0
0 SU3		90. 27	0.35	0	FUNCTIONAL O	0	0	0
0 SU4		90.06	0.35	0	FUNCTIONAL O	0	0	0
0 SU5		90. 18	0.35	0	FUNCTIONAL O	0	0	0
0 SU6		89. 87	0.45	0	FUNCTIONAL O	0	0	0
0 SU7		89. 7	0.45	0	FUNCTIONAL O	0	0	0
0 SU8		90. 55	0.35	0	FUNCTIONAL O	0	0	0
0 SU9		90.25	0. 35	0	FUNCTIONAL O	0	0	0
[CONDUI TS]				Outlot		Manning	l pl ot	
Outlet	lnit.	Max		Nede	Longth	Marini ng	Offect	
offset	Flow	FI o	N		Length	N 		
 1		C106A-S		SU4	2	0. 013	90.09	
90. 06 10	0	0 SU3		SU4	100	0. 013	90. 27	
90.06 13	0	0 L106A-S		SU4	20	0. 013	90. 16	
90. 06 15	0	0 L105B-S		SU6	10	0. 013	90.35	
90. 3 16	0	0 L106B-S		SU4	5	0. 025	90.09	
90. 06 17	0	0 L104B-S		SU1	5	0. 025	89.88	
89. 85 18	0	0 SU1		SU2	10	0. 013	89.85	
89. 7 19	0	0 su10		su5	10	0. 013	90. 23	
90. 18 2	0	0 SU4		SU6	100	0. 013	90.06	
89. 87 20	0	0 L103A-S		SU1	20	0. 013	89.95	
89. 85 21	0	0 SU8		SU3	20	0. 013	90.55	
90. 27 22	0	0 L107A-S		SU3	2	0.013	90.3	
90. 27 23	0	0 L111A-S		su5	20	0. 013	90. 28	
90. 18 5	0	0 C110A-S		SU8	2	0. 013	90.56	
90. 55 6	0	0 L113A-S		SU9	20	0. 013	90.35	
90. 25 7	0	0 SU9		SU10	10	0. 013	90. 25	
90.23 8	0	0 L110A-S		SU8	2	0.013	90.65	
90.55 9	0	0 C112A-S		SU10	20	0.013	90.33	
90. 23 C1	0	0 L104A-S		SU1	20	0. 013	89.95	

post_pond	_2018-02-14_	_100CHI . i np
-----------	--------------	----------------

00 05	0	о ^р	$031_{polla_2010} = 02 = 14_{polla_2010}$			
69.85 C2	0	C108A-S	SU3	2	0. 013	90.3
90.27 C3	0	0 C105A-S	SU6	2	0. 013	89.88
89. 87 C4	0	0 L112A-S	SU10	20	0.013	90.33
90. 23 C5	0	0 C111A-S	SU6	2	0 013	89 88
89. 87	0	0	1720	2	0.013	04 011
86. 174	0	173B 0	1730	23	0.013	80.211
Li nk236 86. 104	0	173C 0	174	55	0.045	86. 174
ORF 85	0	100-S	Area1	50	0.013	85.5
P168	0	168	172	270	0.045	87.087
P172	0	172	173A	130	0.045	86. 517
86. 286 P173	0	0 173A	173B	42	0. 045	86. 286
86. 211 P174	0	0 174	Area1	190	0. 045	86. 104
85 PArea1	0	0 Area1	outlet A	125	0.03	85
84. 766 PArcoa2	0		169	30	0.045	00 07 07
87.087	0		100	50	0.045	07.27
PI pe_100 86. 664	0	0	109	155.107	0.013	86.818
Pi pe_101 86. 365	0	109 0	106	149.274	0.013	86. 514
Pi pe_102	0	111	102	153. 586	0.013	86. 117
Pi pe_103	0	112	111	144.757	0.013	86. 265
Pi pe_104	0	113	112	78.898	0.013	86. 569
86. 49 Pi pe_105	0	0 114	113	93.337	0. 013	86. 737
86.644 Pipe 106	0	0 115	114	151. 423	0.013	86. 948
86.797 Pine 12-S	0	0 1 1094-5	SI13	20	0 013	90 37
90. 27 Dipo 14 S	0		100 \$	20	0.015	0. 7
87	0	302 0	100-3	20	0.025	09.7
Pi pe_19-S 89. 87	0	L105A-S 0	SU1	20	0.013	89.97
Pi pe_1-S 89. 3	0	SU7 0	100-S	20	0. 025	89.7
Pipe_4-S	0	L101A-S	SU7	20	0.013	89.8
Pi pe_5-S	0	C102A-S	SU7	17	0.013	89.79
89. 7 Pi pe_6-S	0	SU6	C102A-S	17	0.013	89.87
89.79 Pipe_7-S	0	0 C109A-S	SU3	2	0.013	90. 28
90.27 Pipe 8-S	0	0 SU5	SU6	20	0.013	90, 18
89.87 Dipo 01	0	0	100 5		0 012	Q/ 047
84.9	0	0	100-5	44.44	0.013	04.907
PI pe_92 85. 027	0	102 0	101	173.311	0.013	85. 287

			post_po	ond_2018-02-14_1	00CHI . i np		
Pi pe_93 85, 887	0	103 0		102	259.036	0. 013	86. 275
Pi pe_94	0	104		103	369.452	0. 013	86. 795
Pi pe_95	0	105 0		102	190. 197	0. 013	85.872
Pi pe_96	0	106		105	190. 691	0. 013	86.065
Pi pe_97	0	108		106	174.826	0. 013	87.08
86. 81 Pi pe_98	0	107		106	242.92	0. 013	87.329
86.965 Pi pe_9-S	0	0 L115A-S		SU9	20	0. 013	90.35
90. 25 ST213	0	0 PH1-213		174	12.3	0. 013	86.5
86. 49 ST232	0	0 PH1-232		172	4	0. 013	86. 945
86. 944 ST288 87. 46	0 0	0 PH1-288 0		168	10	0. 013	87.47
[WEI RS] ;; ELap_End		Inlet End		Outlet	Weir	Crest	Di sch
;;Name Gate Con.		Node Coeff.	Surchar	Node ge RoadWidth R	Type CoadSurf	Height	Coeff.
pond2weir NO O		100-S 2. 6	YES	Area1	TRANSVERSE	86	1.7
[OUTLETS]		Inlot		Outlot	Outflow	Outlot	
Qcoeff/		Nede	FI ap	Nede		Tupo	
QTabl e		Qexpon	Gate	Node	nergitt	туре	
C102A_LC		 C102A_S		102	87 00		
C102A-IC		C105A S	NO	105	97.77 97.72		
C105A-IC		C10/A-S	NO	105	07.73		
C106A-IC C106A-IC		C106A-S	NO	106	87.94		
C108A-1C C108A-1C		C108A-S	NO	108	88.15	TABULAR/HEA	4D
C109A-IC C109A-IC		C109A-S	NO	109	88.13	TABULAR/HEA	٩D
C110A-IC C110A-IC		C110A-S	NO	110	88.41	TABULAR/HEA	٩D
C111A-IC		C111A-S	NO	111	87.73	TABULAR/HEA	١D
C112A-IC		C112A-S	NO	112	88. 18	TABULAR/HEA	١D
L101A-IC		L101A-S	NO	101	87.65	TABULAR/HEA	٩D
LIUIA-IC LIUIA-IC		L103A-S	NU	103	87.8	TABULAR/HEA	١D
L103A-IC L104A-IC		L104A-S	NO	104	87.8	TABULAR/HE4	٩D
L104A-IC L104B-IC		L104B-S	NO	104	88.08	TABULAR/HE#	٩D
L104B-IC L105A-IC		L105A-S	NO	105	87.82	TABULAR/HE#	٩D

	ро	ost_p	ond_2018-02	-14_10	OCHL i n	С			
L105A-IC L105B-IC	L105B-S	NO	105		88. 2		TABULA	R/HEAD	
L105B-1C L106A-1C	L106A-S	NO	106		88. 01		TABULA	R/HEAD	
L106A-IC L106B-IC	L106B-S	NO	106		88. 29		TABULA	R/HEAD	
L106B-IC L107A-IC	L107A-S	NO	107		88. 15		TABULA	R/HEAD	
L107A-IC L109A-IC	L109A-S	NO	109		88. 22		TABULA	R/HEAD	
L109A-IC L110A-IC	L110A-S	NO	110		88.5		TABULA	R/HEAD	
L110A-IC L111A-IC	L111A-S	NO	111		88.13		TABULA	R/HEAD	
L111A-IC L112A-IC	L112A-S	NO	112		88. 18		TABULA	R/HEAD	
L112A-IC L113A-IC	L113A-S	NO	113		88.2		TABULA	R/HEAD	
L113A-IC L115A-IC L115A-IC	L115A-S	NO NO	115		88. 2		TABULA	R/HEAD	
[XSECTIONS] ;;Link Barrels	Shape	Geo	om1	Geo	m2	Geor	n3	Geom4	
, , 1		 18m	 ROW	0		0		0	1
10		26m	NOW ROW	0		0		0	1
13		16	5mROW	0		0		0	1
15		16.	5mROW	0		0		0	1
16		0.6	Sintow	3 6		0		0	1
17		0.6	, ,	3.6		0		0	, 1
18		1.8m	, nBOW	0		0		0	1
10		26m	NOW	0		0		0	1
2		2011 26m	NOW ROW	0		0		0	1
20		2011 1.Qm		0		0		0	1
20		76n		0		0		0	1
21		16		0		0		0	1
22		10. 1Qm		0		0		0	1
5		7011 26m		0		0		0	1
5		201		0		0		0	1
7		10.		0		0		0	1
, 0		1 Ŏ[] 1 ∠		0		0		0	1
0		10. 24~		0		0		0	1
7	IRREGULAK	201	INUW	0		U		U	1

C1	pos I RREGULAR	st_pond_2018-02-14 18mROW	4_100CHI . i np 0	0	0	1
C2	I RREGULAR	26mROW	0	0	0	1
C3	I RREGULAR	18mROW	0	0	0	1
C4	I RREGULAR	18mROW	0	0	0	1
C5	I RREGULAR	18mROW	0	0	0	1
Cul vert	RECT_CLOSED	1.5	2.4	1	1	1
Li nk236	I RREGULAR	2010-10-01Unname	d01 0	0	0	1
ORF	CI RCULAR	0.35	1	1	1	1
P168	I RREGULAR	2010-10-01Unname	d01 0	0	0	1
P172	I RREGULAR	2010-10-01Unname	d01 0	0	0	1
P173	I RREGULAR	2010-10-01Unname	d01 0	0	0	1
P174	I RREGULAR	2010-11-15Unname	d02 0	0	0	1
PArea1	I RREGULAR	2-rel ati ve	0	0	0	1
PArea2	I RREGULAR	2010-10-01Unname	d01 0	0	0	1
Pi pe_100	CI RCULAR	1.05	0	0	0	1
Pi pe_101	CI RCULAR	1.2	0	0	0	1
Pi pe_102	CI RCULAR	1.2	0	0	0	1
Pi pe_103	CI RCULAR	1.2	0	0	0	1
Pi pe_104	CI RCULAR	0. 975	0	0	0	1
Pi pe_105	CI RCULAR	0.9	0	0	0	1
Pi pe_106	CI RCULAR	0.9	0	0	0	1
Pi pe_12-S	I RREGULAR	18mROW	0	0	0	1
Pi pe_16-S	TRAPEZOI DAL	0.6	2	3	3	1
Pi pe_19-S	I RREGULAR	18mROW	0	0	0	1
Pi pe_1-S	TRAPEZOI DAL	0.45	5	10	10	1
Pi pe_4-S	I RREGULAR	18mROW	0	0	0	1
Pi pe_5-S	I RREGULAR	26mROW	0	0	0	1
Pi pe_6-S	I RREGULAR	26mROW	0	0	0	1
Pi pe_7-S	I RREGULAR	18mROW	0	0	0	1
Pi pe_8-S	I RREGULAR	26mROW	0	0	0	1
Pi pe_91	CI RCULAR	1.8	0	0	0	1
Pi pe_92	CI RCULAR	1.8	0	0	0	1

post_pond_2018-02-14_100CHI . i np

Pi pe_93	CI	RCULAR	1.2		0	0	0	1
Pi pe_94	CI	RCULAR	1.05		0	0	0	1
Pi pe_95	CI	RCULAR	1.5		0	0	0	1
Pi pe_96	CI	RCULAR	1.5		0	0	0	1
Pi pe_97	CI	RCULAR	0.75		0	0	0	1
Pi pe_98	CI	RCULAR	0.6		0	0	0	1
Pi pe_9-S	I I	RREGULAR	16.5mR0	W	0	0	0	1
ST213	CI	RCULAR	0.9		1	1	1	1
ST232	CI	RCULAR	0.9		1	1	1	1
ST288	CI	RCULAR	1.05		1	1	1	1
pond2weir	RI	ECT_OPEN	1		5	0	0	
[TRANSECTS]								
NC 0.060 X1 1153	0.060	0. 030 5	6.300	13. 400	0.0	0.0	0.0	0.00
GR 88.85 22.4	0	88.49	6.3	87.78	9.3	88.57	13.4	88.88
; Full stree one side, ba	t, width ank-slop	n = 8.5m, pe = 0.02n 0.013	curb = 0. n/m, 4m ba	15m , cro ank.	oss-slope	e = 0.03m∕m,	1.8m si	dewalk on
X1 16. 5mROW	0.025	8	10	20. 3	0.0	0.0	0.0	0.0
GR 0.35	0	0. 15	10	0	10	0. 13	14. 25	0
GR 0.15	18.5	0. 19	20. 3	0.35	28.3			
NC 0.060 X1 1706	0.060	0. 030 6	7.000	12. 100	0.0	0.0	0.0	0.00
GR 89.38	0	89.08	7	88.51	9	88.51	9.8	88.96
GR 89.38	32							
;Full stree 0.02m/m, ban	t, width nk-heigh 0.025	n = 8.5m, nt = 0.245 0.013	curb = 0. 5m, one si	15m , cro ded 1.8m	oss-slope si dewal k	e = 0.03m∕m,	bank-sl	ope =
X1 18mROW	0.025	8	10	20. 3	0.0	0.0	0.0	0.0
GR 0.35	0	0. 15	10	0	10	0. 13	14.25	0
GR 0.15	18.5	0. 19	20. 3	0.35	28.3			
NC 0.060 X1 2 0 0	0. 060	0. 030 5	10.000	18.000	0.0	0.0	0.0	0.00
GR 86.85 28	0	86. 72	10	86.34	14	87.07	18	87. 21
NC 0.060	0.060	0. 045						

X1	2010-10-0	01Unnamed	p 101 13	ost_pond_2 38.970	018-02-14 0 65.750	_100CHI . i 0 0. 0	np 0. 0	0.0	0.00
GR	0.0 88.2	37.75	87.8	38.97	87	39.77	87	40.39	87.8
41. GR	19 87.8	43.69	87.4	50.69	87.4	53.99	87.2	54.19	87.4
55. GR	38 87.4	58.38	87.8	65.75	88.39	67.55			
NC X1	0.060 2010-11-	0.060 15Unnamed	0.045 1029	3. 000	25. 500	0.0	0.0	0. 0	0.00
GR	86.56	0	85.93	3	84.73	4.2	84.73	9.2	85.93
GR	4 85. 93	23	85.13	24.3	85.79	25.5	86.5	43.5	
NC X1	0.060 2406	0.060	0. 030 7	14. 900	25. 500	0.0	0.0	0.0	0.00
GR	, 88.61	0	88.16	14.9	86. 93	17.55	86.71	19	86. 98
GR	8 88.34	25.5	89.05	31.8					
; FL 0. C NC	ull street)2m/m, bar 0.025	t, width hk-height 0.025	= 11m, c = 0.15r 0.013	curb = 0.15 m, two side	5m , cross ed 2m side	s-slope = ewalk.	0.03m/m,	bank-sl op	e =
X1	26mROW	0.020	9	8	23	0.0	0.0	0.0	0.0
GR 15	0.35 5	0	0. 19	8	0. 15	10	0	10	0. 165
GR	0	21	0. 15	21	0. 19	23	0.35	31	
NC X1	0.060 2-relativ	0. 060 ve	0. 030 5	10.000	18.000	0.0	0.0	0.0	0.00
GR 28	0. 51	0	0.38	10	0	14	0.73	18	0.87
NC X1	0.06 existing	0.06	0. 03 5	14	17	0.0	0.0	0. 0	0.0
GR 24	, 1. 11	0	0. 85	14	0	15.7	0.8	17	1.17
NC X1	0.03 Ri deau	0. 03	0. 03 3	0.0	58.83	0.0	0.0	0.0	0.0
GR	86. 11	0	84.65	33.62	86.74	58.53			
[LC ; ; L)SSES] .i nk	۱nl	et	Outlet	Average	Flap (Gate See	pageRate	
	be_102 be_103 be_104 be_105 be_92 be_92 be_93 be_94 be_95 be_96 be_97 be_98			1. 32 0. 06 1. 32 1. 32 1. 32 1. 32 0. 02 0. 02 0. 02 0. 06 0. 06 0. 06 1. 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO NO			

post_pond_2018-02-14_100CHI . i np

[INFLOWS]				Docom	ll ni to	Scalo	
Baseline Baselin ;;Node Pattern	e Parameter	T 	Time Series		Factor	Factor	Val ue
PH1-213	- FLOW	S	T213_100YRCHI	FLOW	1.0	1	0
PH1-232	FLOW	S	T232_100YRCHI	FLOW	1.0	1	0
PH1-288	FLOW	S	T288_100YRCHI	FLOW	1.0	1	0
168	FLOW	1	68_100YRCHI	FLOW	1.0	1	0
173A	FLOW	1	73A_100YRCHI	FLOW	1.0	1	0
173B	FLOW	1	73B_100YRCHI	FLOW	1.0	1	0
174	FLOW	1	74_100YRCHI	FLOW	1.0	1	0
Area1	FLOW	A	REA1_100YRCHI	FLOW	1.0	1	0
Area2	FLOW	А	REA2_100YRCHI	FLOW	1.0	1	0
[CURVES] ;;Name	Туре	X-Val ue	Y-Val ue				
105A-I C 105A-I C 105A-I C 105A-I C	Rating	0 1. 8 2. 15	0 0.07 0.072				
C102A-IC C102A-IC C102A-IC	Rating	0 1. 8 2. 15	0 0. 240 0. 245				
C103A-IC C103A-IC C103A-IC	Rating	0 1. 8 2. 15	0 0. 150 0. 152				
C104A-IC C104A-IC C104A-IC C104A-IC	Rating	0 3.65 3.85 4	0 0. 16 0. 162 0. 162				
C104B-IC C104B-IC C104B-IC C104B-IC C104B-IC	Rating	0 2.6 2.8 2.95	0 0. 24 0. 242 0. 242				
C105A-IC C105A-IC C105A-IC C105A-IC C105A-IC	Rati ng	0 1. 8 2. 15 2. 5	0 0. 08 0. 082 0. 082				
C106A-IC C106A-IC C106A-IC C106A-IC	Rati ng	0 1. 8 2. 15 2. 5	0 0. 110 0. 112 0. 112				
C107A-I C	Rating	0	0 Page 13				

C107A-I C C107A-I C C107A-I C		post_pond_2 3.264 3.464 3.614	018-02-14_100CHI . i np 0. 150 0. 152 0. 152
C108A-I C	Rati ng	0	0
C108A-I C		1. 8	0. 2
C108A-I C		2. 15	0. 204
C108A-I C		2. 5	0. 204
C109A-IC	Rati ng	0	0
C109A-IC		1. 8	0. 120
C109A-IC		2. 15	0. 122
C109A-IC		2. 5	0. 122
C110A-IC	Rati ng	0	0
C110A-IC		1. 8	0. 280
C110A-IC		2. 15	0. 286
C110A-IC		2. 5	0. 286
C111A-IC C111A-IC C111A-IC C111A-IC C111A-IC	Rati ng	0 1. 8 2. 15 2. 5	0 0. 140 0. 143 0. 143
C112A-IC	Rati ng	0	0
C112A-IC		1. 8	0. 280
C112A-IC		2. 15	0. 286
C112A-IC		2. 5	0. 286
C116A-I C	Rating	0	0
C116A-I C		1. 8	0. 210
C116A-I C		2. 15	0. 212
C119A-I C	Rati ng	0	0
C119A-I C		1. 8	0. 12
C119A-I C		2. 15	0. 122
C120A-I C	Rati ng	0	0
C120A-I C		1. 8	0. 39
C120A-I C		2. 15	0. 392
L101A-IC	Rati ng	0	0
L101A-IC		1. 8	0. 160
L101A-IC		2. 15	0. 163
L101A-IC		2. 5	0. 163
L102A-IC	Rati ng	0	0
L102A-IC		1. 8	0. 330
L102A-IC		2. 15	0. 332
L102A-IC		2. 5	0. 334
L102B-IC	Rati ng	0	0
L102B-IC		1. 8	0. 003
L102B-IC		2. 10	0. 003
L102B-IC		2. 7	0. 004
L103A-IC	Rati ng	0	0
L103A-IC		1. 8	0. 180
L103A-IC		2. 15	0. 184
L103A-IC		2. 5	0. 184
L104A-I C L104A-I C	Rati ng	0 1. 8	0 0.490 Page 14

L104A-IC L104A-IC		post_pond 2.15 2.5	_2018-02-14_100CHI . i np 0. 5 0. 5
L104B-IC	Rati ng	0	0
L104B-IC		1.8	0. 005
L104B-IC		2.4	0. 005
L105A-IC	Rati ng	0	0
L105A-IC		1. 8	0. 340
L105A-IC		2. 15	0. 347
L105A-IC		2. 5	0. 347
L105B-IC	Rating	0	0
L105B-IC		1. 8	0. 440
L105B-IC		2. 15	0. 449
L105B-IC		2. 5	0. 449
L106A-IC	Rating	0	0
L106A-IC		1. 8	0. 370
L106A-IC		2. 15	0. 377
L106A-IC		2. 5	0. 377
L106B-IC	Rati ng	0	0
L106B-IC		1.8	0. 010
L106B-IC		2.4	0. 01
L107A-IC	Rati ng	0	0
L107A-IC		1. 8	0. 160
L107A-IC		2. 15	0. 163
L107A-IC		2. 5	0. 163
L108A-IC	Rating	0	0
L108A-IC		1. 8	0. 37
L108A-IC		2. 15	0. 372
L108A-IC		2. 5	0. 373
L109A-IC	Rating	0	0
L109A-IC		1. 8	0. 220
L109A-IC		2. 15	0. 224
L109A-IC		2. 5	0. 224
L110A-IC	Rati ng	0	0
L110A-IC		1. 8	0. 320
L110A-IC		2. 15	0. 326
L110A-IC		2. 5	0. 326
L110B-IC	Rating	0	0
L110B-IC		1.8	0. 01
L110B-IC		2.10	0. 01
L110B-IC		2.7	0. 011
L111A-IC L111A-IC L111A-IC L111A-IC L111A-IC	Rating	0 1.8 2.15 2.5	0 0. 260 0. 265 0. 265
L111B-IC L111B-IC L111B-IC L111B-IC L111B-IC	Rati ng	0 1.8 2.1 2.5	0 0. 44 0. 442 0. 442
L112A-IC L112A-IC	Rating	0 1. 8	0 0.2 Page 15

L112A-IC L112A-IC		post_pond_20 2.15 2.5	018-02-14_100CHI . i np 0. 204 0. 204
L113A-IC L113A-IC L113A-IC L113A-IC L113A-IC	Rating	0 1. 8 2. 15 2. 5	0 0. 170 0. 173 0. 173
L114A-IC	Rati ng	0	0
L114A-IC		1. 8	0. 13
L114A-IC		2. 15	0. 132
L114B-IC	Rati ng	0	0
L114B-IC		1.8	0. 003
L114B-IC		2.4	0. 003
L114B-IC		2.75	0. 004
L115A-IC	Rati ng	0	0
L115A-IC		1. 8	0. 410
L115A-IC		2. 15	0. 418
L115A-IC		2. 5	0. 418
L116A-IC	Rati ng	0	0
L116A-IC		1. 8	0. 25
L116A-IC		2. 15	0. 252
L116A-IC		2. 5	0. 252
L118A-IC	Rati ng	0	0
L118A-IC		1. 8	0. 25
L118A-IC		2. 15	0. 252
L118A-IC		2. 5	0. 252
L120A-IC	Rati ng	0	0
L120A-IC		1. 8	0. 55
L120A-IC		2. 15	0. 552
L120A-IC		2. 5	0. 552
C105A C105A C105A C105A C105A	Storage	0 1. 8 2. 15 2. 5	0 0 26 26
C106A	Storage	0	0
C106A		1. 8	0
C106A		2. 15	39
C106A		2. 5	39
C108A	Storage	0	0
C108A		1. 8	0
C108A		2. 15	83
C108A		2. 5	83
C109A	Storage	0	0
C109A		1. 8	0
C109A		2. 15	48
C109A		2. 5	48
C110A	Storage	0	0
C110A		1. 8	0
C110A		2. 15	130
C110A		2. 5	130
C111A	Storage	0	0 Page 16

C111A C111A C111A		post_pond_20 1.8 2.15 2.50	018-02-14_100CHI . i np 0 45 45
C112A C112A C112A C112A C112A	Storage	0 1. 8 2. 15 2. 5	0 0 148 148
L101A	Storage	0	0
L101A		1. 8	0
L101A		2. 15	91
L101A		2. 5	91
L103A	Storage	0	0
L103A		1. 8	0
L103A		2. 15	564
L103A		2. 5	564
L104A	Storage	0	0
L104A		1. 8	0
L104A		2. 15	418
L104A		2. 5	418
L105A	Storage	0	0
L105A		1. 8	0
L105A		2. 15	262
L105A		2. 5	262
L105B	Storage	0	0
L105B		1. 8	0
L105B		2. 15	3000
L105B		2. 5	3000
L106A	Storage	0	0
L106A		1. 8	0
L106A		2. 15	247
L106A		2. 5	247
L107A	Storage	0	0
L107A		1. 8	0
L107A		2. 15	112
L107A		2. 50	112
L109A	Storage	0	0
L109A		1. 8	0
L109A		2. 15	207
L109A		2. 5	207
L110A	Storage	0	0
L110A		1. 8	0
L110A		2. 15	304
L110A		2. 5	304
L111A	Storage	0	0
L111A		1.8	0
L111A		2.15	253
L111A		2.5	253
L112A	Storage	0	0
L112A		1. 8	0
L112A		2. 15	174
L112A		2. 5	174
			Page 17

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

post_pond_2018-02-14_100CHI . i np

L113A	Storage	0	0
L113A		1.8	0
L113A		2.15	142
L113A		2.5	142
L115A	Storage	0	0
L115A		1. 8	0
L115A		2. 15	324
L115A		2. 5	324
Pond2_Storage_Cur Pond2_Storage_Cur Pond2_Storage_Cur Pond2_Storage_Cur Pond2_Storage_Cur	rve Storage rve rve rve rve rve rve	0 2 2. 7 3. 2 4. 93	10000 14000 17000 20000 21000

MAHOGANY SUBDIVISION PHASES 2-4 – FUNCTIONAL SERVICING REPORT

Appendix C : Stormwater Management Calculations May 10, 2018

C.6 POND 3 PCSWMM INPUT FILE (WCMD)

[TITLE]

[OPTIONS] ;;Options	Value								
FLOW_UNITS INFILTRATION FLOW_ROUTING START_DATE START_TIME REPORT_START_DAT REPORT_START_DAT REPORT_START_TIM END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP ALLOW_PONDING INERTIAL_DAMPING VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA NORMAL_FLOW_LIMI' SKIP_STEADY_STAT FORCE_MAIN_EQUAT LINK_OFFSETS MIN_SLOPE MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	CMS HORTON DYNWAY 06/27, 05:00 06/29, 17:00 01/01 12/31 5 00:01 00:01 00:01 00:01 5 NO PARTI/ 0.75 0 1.167 TED BOTH E NO ION H-W ELEVAT 0 8 0.001 5 5 0.5 2	N VE /2017 :00 /2017 :00 :00 :00 AL TION							
LFILESJ USE HOTSTART "W: 2+ Development\d 3\PCSWMM\100CHI.J	\active\1 esign\analy HSF"	plannin ysis\SW	g_lands M\Secon	cape∖16 d Submi	04 F ssic	projects\ on - Marc	\160410140 ch 2018\Pc)_Mahoga ond	ny Stage
[EVAPORATION] ;;Type	Parameters								
MONTHLY 0.0 0.0 0.0 DRY_ONLY NO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[RAINGAGES] ;; ;;Name	Rain Type	Time Intrvl	Snow Catch	Data Source					
,,RG1	INTENSITY	0:10	1	TIMESE	RIES	100 YR	Chicago 3	8 hr	
[SUBCATCHMENTS]						Totol	Dent		Dant
Curb Snow	Paincaco		00+10+			Area	PCHT.	width	Slope
,,Name Length Pack ;;	ra myaye							wiutn	
				200 1					

post_pond3_100CHI_2018-03-21.inp

	р	ost_por	103_10	UUCHI_2018-0	03-21.1np				
;0.20 3-PRE	RG1		S4		2.861	0	30		0.1
;0.20 4-PRE	RG1			4_nc	3.34	0	100)	0.1
;0.20 5-PRE	RG1		Jun-2	2_nc	10.14	0	450)	0.1
;0.20 8-PRE1 0	RG1		Site	A	9.426	0	444	ŀ	0.1
;0.20 8-PRE2	RG1		Site	4	5.262	0	213	3	0.1
9-PRE	RG1		9A_no	с	263.0403	0	240	00	0.01
O Area 6_nc	RG1		s6_n	с	1.8	0	66.	667	0.1
Area 7_nc 0	RG1		s5-7 <u>-</u>	_nc	9.2	0	450)	0.1
;0.60 C206A 0	RG1		C206/	4-S	2.554276	57.143	829)	1
;0.60 FUT 0	RG1		FUT-S		6.607775	57.143	148	37	1
;0.50 L202A 0	RG1		L202A-S		4.402029	57.143	123	87	1
;0.55 L203B	RG1		L203B-S		1.170178	57.143	450)	1
;0.55 L204A	RG1		L204A-S		3.091784	57.143	101	L6	1
;0.55 L205A	RG1		L205A-S		3.021067	57.143	967	7	1
;0.55 L207A	RG1		L207A-S		1.255982	57.143	283	3	1
;0.70 POND3 0	RG1		200-s		1.364137	57.143	489)	1
[SUBAREAS] ;;Subcatchment PctRouted	N-Imper∨	N-Perv	/	S-Imperv	S-Perv	PctZero		Route ⁻	Го
, , 									
3-pre 100	0.013	0.25		1.57	4.67	0		PERVI	DUS
4-PRE	0.013	0.25		1.57	4.67	0		PERVIO	DUS
5-PRE	0.013	0.25		1.57	4.67	0		PERVI	DUS
8-PRE1	0.013	0.25		1.57	4.67	0		PERVIO	DUS
8-PRE2	0.013	0.25		1.57	4.67	0		PERVIO	DUS
100 9-pre	0.013	0.25		1.57 Page 2	4.67	0		PERVIO	OUS

	p	post_pond	3_100сні_	2018-03-21	.inp			
100 Area 6_nc	0.013	0.25	1.57	4.67		0	PERVIOUS	
Area 7_nc	0.013	0.25	1.57	4.67		0	PERVIOUS	
C206A FUT	0.013 0.013	0.25 0.25	1.57 1.57	4.67 4.67		0 0	OUTLET PERVIOUS	
L202A	0.013	0.25	1.57	4.67		0	PERVIOUS	
L203B L204A	0.013 0.013	0.25 0.25	1.57 1.57	4.67 4.67		0 0	OUTLET PERVIOUS	
L205A L207A POND3 100	0.013 0.013 0.013	0.25 0.25 0.25	1.57 1.57 1.57	4.67 4.67 4.67		0 0 0	OUTLET OUTLET PERVIOUS	
[INFILTRATION] ;;Subcatchment	MaxRate	MinRate	e Decay	/ DryT	ime	MaxInfil		
,, 3-PRE 4-PRE 5-PRE 8-PRE1 8-PRE2 9-PRE Area 6_nC Area 7_nC C206A FUT L202A L203B L204A L203B L204A L205A L207A POND3 [OUTFALLS] ;;	35 35 35 35 35 35 35 35 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	3 3 3 1 3 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tid	0 44 0 0 0 44 44 0 0 0 0 0 0 0 0 0 0		
;;Name ;;	Elev.	Туре	Tin 	ne Series	Gat	e Route To 		
OUTIET B	85.99	FIXED	87.	26	NO			
[STORAGE] ;; Bonded Evan	Invert M	lax.	Init.	Storage	Curve			
;;Name Area Frac. ;;	Elev. [Infiltrat	Depth tion para	Depth ameters 	Curve	Params			-
200-s	84.46 4	4.855	2	TABULAR	SWM PO	ND3_Storag	e_Curve	
201	85.342 4	1.778	1.118	FUNCTIONAL	0	0	1.13	0
202	86.065 4	4.166	0.395	FUNCTIONAL	0	0	1.13	0
203	86.833	3.628	0	FUNCTIONAL	0	0	1.13	0
204	85.639 4	1.579	0.821	FUNCTIONAL	0	0	1.13	0
205 0	86.052	3.789	0.408	FUNCTIONAL	0	0	1.13	0

206		86.318	post_po 3.664	nd3_100CHI_ 0.142	_2018-03-2 FUNCTION	21.inp AL O	0	1.13	0
207		87.141	2.479	0	FUNCTION	al O	0	1.13	0
0 9A_nc		89	3	0	FUNCTION	AL 0.01	0	0	0
0 C206A-S		87.62	2.5	0	FUNCTION	al O	0	0	0
0 Drain1		86.04	2.34	0	FUNCTION	al O	0	0	0
Drain2		86.03	2.49	0	FUNCTION	al O	0	0	0
Drain3		86.72	2	0	FUNCTION	al O	0	0	0
U FUT-POND		86	4.85	2	TABULAR	FUT_SW	M_POND		0
FUT-S		88.54	3.96	0	FUNCTION	al O	0	0	0
J1 0		87.547	2.34	0	FUNCTION	al O	0	0	0
Jun-1_nc		88.813	3.187	0	FUNCTION	AL 0.01	0	0	0
Jun-2_nc		88.8	0.97	0	FUNCTION	AL 0.01	0	0	0
Jun-3_nc		88.679	0.956	0	FUNCTION	AL 0.01	0	0	0
Jun-4_nc		88.677	0.969	0	FUNCTION	AL 0.01	0	0	0
Jun-5_nc		90	2	0	FUNCTION	AL 0.01	0	0	0
Jun-6_nc		88.278	5.722	0	FUNCTION	AL 19354	2.143	0	0
L201A-S		90.12	0.6	0	FUNCTION	al O	0	0	0
L202A-S		88	2.5	0	FUNCTION	al O	0	0	0
L203B-S		88.1	2.5	0	FUNCTION	al O	0	0	0
L204A-S		88	2.5	0	FUNCTION	al O	0	0	0
L205A-S		87.65	2.5	0	FUNCTION	al O	0	0	0
L207A-S		87.47	2.75	0	FUNCTION	al O	0	0	0
s4 0		88.66	1.1	0	FUNCTION	al O	0	1	0
s5-7_nc		88.9	3.1	0	FUNCTION	al O	0	1	0
S6_nc 0		88.69	0.87	0	FUNCTION	al O	0	1	0
SiteA 0		88.26	2.34	0	FUNCTION	al O	0	0	0
[CONDUITS]		Inlet		Outlet			Manning	Inlet	
Outlet ::Name	Init.	Max		Node	L	enath	N	Offset	
Óffset	Flow	Flo	w 						
 1_1_nc		9A_nc		Jun-6_nc	22	269.226	0.03	89	
88.278 1_nc	0	0 Jun-6_nc		SiteA	5	6.751	0.024	88.278	
				Page	4				

	•	post		8-03-21.inp					
88.26 2_nc	0	U Jun-5_nc	Jun-1_nc	146.077	0.03	90			
88.813 3	0	0 L205A-S	C206A-S	5	0.013	89.8			
89.77 4	0	0 L203B-S	L202A-S	20	0.013	90.25			
90.15 C1	0	0 L202A-S	L201A-S	5	0.013	90.15			
90.12	0	0	Drain?	5	0.025	89 62			
89.3	0	0		20	0.013	02 15			
92.05	0	0	Ful-Fund	20	0.015	92.13			
86.72	0	0 0		394.891	0.05	00.00			
Flow 5 88.66	0	Jun-2_nc 0	S4	351.811	0.03	88.8			
Flow 5_1_no 88.813	0	s5-7_nc 0	Jun-1_nc	173.143	0.03	88.9			
Flow 5_3_no 88.8	0	Jun-1_nc 0	Jun-2_nc	29.311	0.024	88.813			
Flow 6	0	Jun-4_nc	S4	301.106	0.03	88.677			
Flow 6_1_n		s6_nc_	Jun-3_nc	208.159	0.03	88.69			
Flow 6_3_n		Jun-3_nc	Jun-4_nc	29.919	0.024	88.679			
Flow 9_1	0	SiteA	J1	305.023	0.03	88.26			
87.547 Flow 9_2	0	0 J1	Drain1	644.977	0.03	87.547			
86.04 Flow B	0	0 Drain2	Outlet B	20	0.03	86.03			
85.99 Flow B1	0	0 Drain3	Drain2	20	0.04	86.72			
86.52 Flow B2	0	0 Drain1	Drain2	20	0.03	86.04			
86.03 FUT-IC	0	0 FUT-S	FUT-POND	360	0.013	88.54			
88 Mai in	0	0 1 201A-S	200-5	20	0.025	90.12			
88.8 Min in	0	0	200-5	42 39	0 013	85 642			
85.6 Bino 108	0	0	200 5	107 760	0.013	86 365			
86.167	0	0	201	157.709	0.013	00.000			
86.815	0	203	202	158.698	0.013	87.133			
Pipe_116 85.792	0	204 0	201	97.733	0.013	85.939			
Pipe_117 86.09	0	205	204	113.222	0.013	86.2			
Pipe_118 86.35	0	206	205	115.608	0.013	86.47			
Pipe_123	0	207	206	224.321	0.013	87.36			
Pipe_22-S	0	L204A-S	L201A-S	5	0.013	90.15			
90.12 Pipe_24-S 89.75	0	C206A-S 0	S4	5	0.013	89.77			
[ORIFICES]									
;; Flap Open/	/Close	TULET		Urifice	Crest	UISCN.			
;;Name Gate Time ;;	Node	post_	oond3_100CF Node	HI_201	8-03-21.1 Type	inp	Неіgł 	nt	Coeff.
---	---	---------------------------------	---	--------	--	----------	--	---	------------------
C2	FUT-POND	-	J1		SIDE		88		0.65
OR1	FUT-POND		J1		SIDE		88.5		0.65
Orifice-1	200-s		Drain2		SIDE		86.46	5	0.61
NO 0 Orifice-2 NO 0	200-s		Drain2		SIDE		87.1		0.65
[WEIRS] ;; Flap End ;;Name Gate Con.	Inlet End Node Coeff.	Surcha	Outlet Node arge Roadw	vidth	Weir Type RoadSurt	=	Crest Heigł	: It	Disch. Coeff.
,, 			 1				 		17
NO 0 Weir-P3 NO 0	0 200-s 0	YES YES	Drain2		TRANS	SVERSE	87.3		1.7
[OUTLETS] ;; Qcoeff/ ;;Name OTable	Inlet Node Qexpon	Flaq Gate	Outlet Node		Outf Heigh	ow It	Outlet Type		
;; C206A-IC C206A-IC L202A-IC L202A-IC L203B-IC L203B-IC L204A-IC L204A-IC L205-IC L205A-IC L207A-IC L207A-IC [XSECTIONS] ;;Link Barrels ;;	C206A-S L202A-S L203B-S L204A-S L205A-S L207A-S Shape	NO NO NO NO NO G	206 202 203 204 205 207 207		87.62 88 88.1 88 87.65 87.47 Geom2	Geol	TABULAF TABULAF TABULAF TABULAF TABULAF TABULAF M3	R/HEAD R/HEAD R/HEAD R/HEAD R/HEAD R/HEAD R/HEAD Geom4	
1_1_nc	IRREGULAI	r 24	106		0	0		0	1
1_nc	CIRCULAR	1	. 5		0	0		0	1
2_nc	IRREGULA	r 1	706		0	0		0	1
3	IRREGULA	R 18	3mROW		0	0		0	1
4	IRREGULA	R 18	3mROW		0	0		0	1
c1	IRREGULA	R 18	3mROW		0	0		0	1
С3	TRAPEZOII	DAL 0	.6 Pag	ge 6	3	5		5	1

post_pond3_100CHI_2018-03-21.inp

C4		IRREGULAR	18mROW		0	0	0	1
Flow 4		IRREGULAR	1153		0	0	0	1
Flow 5		IRREGULAR	1706		0	0	0	1
Flow 5_1_nc		IRREGULAR	1706		0	0	0	1
Flow 5_3_nc		CIRCULAR	0.264		0	0	0	1
Flow 6		IRREGULAR	1706		0	0	0	1
Flow 6_1_nc		IRREGULAR	1706		0	0	0	1
Flow 6_3_nc		CIRCULAR	0.264		0	0	0	1
Flow 9_1		IRREGULAR	2406		0	0	0	1
Flow 9_2		IRREGULAR	2406		0	0	0	1
Flow B		TRAPEZOIDAL	2		3	8	8	1
Flow B1		TRAPEZOIDAL	2		3	8	8	1
Flow B2		TRAPEZOIDAL	2		3	8	8	1
FUT-IC		CIRCULAR	1.05		0	0	0	1
Maj_in		TRAPEZOIDAL	0.6		3	5	5	1
Min_in		CIRCULAR	1.5		0	0	0	1
Pipe_108		CIRCULAR	0.975		0	0	0	1
Pipe_109		CIRCULAR	0.525		0	0	0	1
Pipe_116		CIRCULAR	1.35		0	0	0	1
Pipe_117		CIRCULAR	1.2		0	0	0	1
Pipe_118		CIRCULAR	1.05		0	0	0	1
Pipe_123		CIRCULAR	0.6		0	0	0	1
Pipe_22-S		IRREGULAR	18mROW		0	0	0	1
Pipe_24-S		IRREGULAR	26mROW		0	0	0	1
C2 OR1 Orifice-1 Orifice-2 W1 Weir-P3		CIRCULAR CIRCULAR CIRCULAR CIRCULAR RECT_OPEN RECT_OPEN	0.1 0.15 0.15 0.5 0.55		0 0 0 20 35	0 0 0 0 0	0 0 0 0 0 0	
[TRANSECTS]								
NC 0.060 X1 1153	0.060	0.05 5	6.300	13.400	0.0	0.0	0.0	0.00
GR 88.85 22.4	0	88.49	6.3	87.78	9.3	88.57	13.4	88.88

post_pond3_100CHI_2018-03-21.inp

0.06	0.05 6	6.3	13.4	0.0	0.0	0.0	0.0
0	0.71	6.3	0	9	0	9.6	0.79
22.4							
0.025	0.013 8	10	20.3	0.0	0.0	0.0	0.0
0	0.15	10	0	10	0.13	14.25	0
18.5	0.19	20.3	0.35	28.3			
0.2	0.2 8	7.000	12.100	0.0	0.0	0.0	0.00
-30	89.38	0	89.08	7	88.51	9	88.51
12.1	89.38	32	89.51	62			
0.06	0.03 8	7	12.1	0.0	0.0	0.0	0.0
-30	0.87	0	0.57	7	0	8.95	0
12.1	0.87	32	1	62			
0.025	0.013 8	10	20.3	0.0	0.0	0.0	0.0
0	0.15	10	0	10	0.13	14.25	0
18.5	0.19	20.3	0.35	28.3			
0.060	0.045 5	10.000	18.000	0.0	0.0	0.0	0.00
0	86.72	10	86.34	14	87.07	18	87.21
0.2	0.2 7	14.900	25.500	0.0	0.0	0.0	0.00
0	88.16	14.9	86.93	17.55	86.71	19	86.98
25.5	89.05	31.8					
0.06	0.05 7	14.9	25.5	0.0	0.0	0.0	0.0
0	1.45	14.9	0.22	17.55	0	19	0.27
25.5	2.34	31.8					
0.025	0.013 9	8	23	0.0	0.0	0.0	0.0
0	0.19	8	0.15	10	0	10	0.165
21	0.15	21	0.19	23	0.35	31	
	0.06 0 22.4 0.025 0 18.5 0.2 -30 12.1 0.06 -30 12.1 0.025 0 18.5 0.060 0 0.2 0 25.5 0.06 0 25.5 0.025 0 21	0.06 0.05 6 0 0.71 22.4 0.025 $8^{0.013}$ 0.025 18.5 0.015 18.5 0.19 0.2 $8^{0.2}$ 0.2 $8^{0.38}$ 12.1 89.38 0.06 $8^{0.03}$ -30 0.87 12.1 0.87 0.025 $8^{0.013}$ 0 0.15 18.5 0.19 0.060 $5^{-0.045}$ 0 86.72 0.2 $7^{-0.2}$ 0.2 $7^{-0.2}$ 0.25 89.05 0.06 $7^{-0.05}$ 0.025 9.013 0 1.45 25.5 2.34 0.025 $9^{-0.013}$ 0 0.19 21 0.15	0.06 $6^{0.05}$ 6.3 0 0.71 6.3 22.4 0.025 $8^{0.013}$ 10 0.025 $8^{0.013}$ 10 18.5 0.19 20.3 0.2 $8^{0.2}$ 7.000 -30 89.38 0 12.1 89.38 32 0.06 $8^{0.03}$ 7 -30 0.87 0 12.1 0.87 32 0.025 $8^{0.013}$ 10 0 0.15 10 18.5 0.19 20.3 0.060 $5^{0.045}$ 10.000 0 86.72 10 0.2 $7^{0.2}$ 14.900 0 88.16 14.9 25.5 89.05 31.8 0.06 $7^{0.05}$ 14.9 0 1.45 14.9 0 1.45 14.9 0 1.45 14.9 0 1.45 14.9 0 1.45 14.9 0 0.19 8 0.025 $9^{0.013}$ 8 0 0.19 8	0.06 6 6.3 13.4 0 0.71 6.3 0 22.4 0.025 8 10 20.3 0 0.15 10 0 18.5 0.19 20.3 0.35 0.2 8 7.000 12.100 -30 89.38 0 89.08 12.1 89.38 32 89.51 0.06 $8^{0.03}$ 7 12.1 -30 0.87 0 0.57 12.1 0.87 32 1 0.025 $8^{0.013}$ 10 20.3 0 0.15 10 0 18.5 0.19 20.3 0.35 0.060 $5^{0.013}$ 10.000 18.000 0 86.72 10 86.34 0.2 $7^{0.2}$ 14.900 25.500 0 88.16 14.9 86.93 25.5 89.05 31.8 0.025 0 1.45 14.9 0.22 25.5 2.34 31.8 23 0 0.19 8 0.15 21 0.19 8 0.15	0.06 6 6.3 13.4 0.0 0 0.71 6.3 0 9 22.4 0.025 8 0.013 10 20.3 0.0 0 0.15 10 0 10 18.5 0.19 20.3 0.35 28.3 0.2 8 7 7.000 12.100 0.0 -30 89.38 0 89.08 7 12.1 89.38 32 89.51 62 0.06 8 7 12.1 0.0 -30 0.87 0 0.57 7 12.1 0.87 32 1 62 0.06 8 10 20.3 0.0 0 0.15 10 0 10 18.5 0.19 20.3 0.35 28.3 0.060 5 10.000 18.000 0.0 0 86.72 10 86.34 14 0.2 7 7 14.900 25.500 0.0 0 88.16 14.9 86.93 17.55 25.5 89.05 31.8 0.02 17.55 25.5 2.34 31.8 0.02 17.55 25.5 2.34 31.8 0.05 0.0 0 1.45 14.9 0.22 17.55 25.5 2.34 31.8 0.05 10.2 0.025 9 9 8 0.15 10 0 0.19 8 <td>$0.06$$6.05$$6.3$$13.4$$0.0$$0.0$$0$$0.71$$6.3$$0$$9$$0$$22.4$$0.025$$8^{0.013}$$10$$20.3$$0.0$$0.0$$0$$0.15$$10$$0$$10$$0.13$$18.5$$0.19$$20.3$$0.35$$28.3$$0.0$$0.2$$8^{0.2}$$7.000$$12.100$$0.0$$0.0$$-30$$89.38$$0$$89.08$$7$$88.51$$12.1$$89.38$$32$$89.51$$62$$0.025$$0.06$$8^{0.03}$$7$$12.1$$0.0$$0.0$$-30$$0.87$$0$$0.57$$7$$0$$12.1$$0.87$$32$$1$$62$$0.025$$8^{0.013}$$7$$12.1$$0.00$$0.01$$0.13$$18.5$$0.19$$20.3$$0.35$$28.3$$0.02$$0.060$$5^{0.045}$$10.000$$18.000$$0.0$$0.0$$0$$86.72$$10$$86.34$$14$$87.07$$0.2$$7^{0.2}$$14.900$$25.500$$0.0$$0.0$$0$$88.16$$14.9$$86.93$$17.55$$86.71$$25.5$$89.05$$31.8$$0.22$$17.55$$0$$0.06$$7^{0.55}$$14.9$$0.22$$17.55$$0$$25.55$$2.34$$31.8$$0.05$$0.0$$0.0$$0$$1.45$$14.9$$0.23$$0.06$<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td>	0.06 6.05 6.3 13.4 0.0 0.0 0 0.71 6.3 0 9 0 22.4 0.025 $8^{0.013}$ 10 20.3 0.0 0.0 0 0.15 10 0 10 0.13 18.5 0.19 20.3 0.35 28.3 0.0 0.2 $8^{0.2}$ 7.000 12.100 0.0 0.0 -30 89.38 0 89.08 7 88.51 12.1 89.38 32 89.51 62 0.025 0.06 $8^{0.03}$ 7 12.1 0.0 0.0 -30 0.87 0 0.57 7 0 12.1 0.87 32 1 62 0.025 $8^{0.013}$ 7 12.1 0.00 0.01 0.13 18.5 0.19 20.3 0.35 28.3 0.02 0.060 $5^{0.045}$ 10.000 18.000 0.0 0.0 0 86.72 10 86.34 14 87.07 0.2 $7^{0.2}$ 14.900 25.500 0.0 0.0 0 88.16 14.9 86.93 17.55 86.71 25.5 89.05 31.8 0.22 17.55 0 0.06 $7^{0.55}$ 14.9 0.22 17.55 0 25.55 2.34 31.8 0.05 0.0 0.0 0 1.45 14.9 0.23 0.06 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Page 8

		po po	ost_pond3_1	00СНІ_20	18-0)3-21.i	np				
NC 0.06 X1 2-REV	0.06	0.03 5	10	18	0.0)	0.0		0.0	(0.0
GR 0.51 28	0	0.38	10	0	14	ļ	0.7	3	18	0	. 87
[LOSSES] ;;Link		Inlet	Outlet	Average		Flap G	ate	Seepa	.geRat	e	
, ipe_108 Pipe_109 Pipe_116 Pipe_117 Pipe_118 Pipe_123		0 0 0 0 0 0	0.64 0.02 0.21 1.32 1.32 1.32	0 0 0 0 0		NO NO NO NO NO		0 0 0 0 0			
[INFLOWS]						Param		Units	Sc	ale	
Baseline Bas ;;Node Pattern	seline	e Parameter	тіте	Series		Туре		Factor	Fa	ctor	Value
9A_nc		FLOW				FLOW		1.0	1		0.04
[CURVES] ;;Name		Туре	X-Value	Y-Value							
C206A-IC C206A-IC C206A-IC C206A-IC		Rating	0 1.8 2.15 2.5	0 0.480 0.490 0.490 0.490							
FUT-IC FUT-IC FUT-IC FUT-IC		Rating	0 1.8 2.15 2.5	0 0.650 0.663 0.663							
L202A-IC L202A-IC L202A-IC L202A-IC		Rating	0 1.8 2.15 2.5	0 0.450 0.459 0.459							
L203B-IC L203B-IC L203B-IC L203B-IC		Rating	0 1.8 2.15 2.5	0 0.14 0.143 0.143							
L204A-IC L204A-IC L204A-IC L204A-IC		Rating	0 1.8 2.15 2.5	0 0.32 0.326 0.326							
L205A-IC L205A-IC L205A-IC L205A-IC		Rating	0 1.8 2.15 2.5	0 0.370 0.377 0.377							
L207A-IC L207A-IC L207A-IC L207A-IC		Rating	0 1.8 2.15 2.75	0 0.15 0.153 0.153 Page 9							

post_pond3_100CHI_2018-03-21.inp

FUT_SWM_POND	Storage	0	602
FUT_SWM_POND		2	1045.2
FUT_SWM_POND		2.44	1248
FUT_SWM_POND		3.04	1521
FUT_SWM_POND		5.14	2740
L201A-S	Storage	0	0
L201A-S		3.499	2000
L201A-S		3.849	2000
L204B	Storage	0	0
L204B		1.8	0
L204B		2.15	1000
L204B		2.5	1000
S-1020_Storage_Cu	Irve Storage	e 0	$1.00 \\ 1.00 \\ 1100.00 \\ 2200.00$
S-1020_Storage_Cu	Irve	1.3	
S-1020_Storage_Cu	Irve	1.4	
S-1020_Storage_Cu	Irve	1.55	
S-1050_Storage_Cu	irve Storage	e 0	1.00
S-1050_Storage_Cu	irve	1.3	1.00
S-1050_Storage_Cu	irve	1.4	335.00
S-1050_Storage_Cu	irve	1.55	670.00
S-1070_Storage_Cu	irve Storage	e 0	1.00
S-1070_Storage_Cu	irve	1.3	1.00
S-1070_Storage_Cu	irve	1.4	1850.00
S-1070_Storage_Cu	irve	1.55	3700.00
S-2010_Storage_Cu	irve Storage	e 0	$1.00 \\ 1.00 \\ 2500.00 \\ 5000.00$
S-2010_Storage_Cu	irve	1.3	
S-2010_Storage_Cu	irve	1.4	
S-2010_Storage_Cu	irve	1.55	
S-2020_Storage_Cu	irve Storage	e 0	$1.00 \\ 1.00 \\ 900.00 \\ 1800.00$
S-2020_Storage_Cu	irve	1.3	
S-2020_Storage_Cu	irve	1.4	
S-2020_Storage_Cu	irve	1.55	
S-2025_Storage_Cu	irve Storage	e 0	$1.00 \\ 1.00 \\ 1900.00 \\ 3800.00$
S-2025_Storage_Cu	irve	1.3	
S-2025_Storage_Cu	irve	1.4	
S-2025_Storage_Cu	irve	1.55	
S-2026_Storage_Cu	irve Storage	e 0	1.00
S-2026_Storage_Cu	irve	1.3	1.00
S-2026_Storage_Cu	irve	1.4	850.00
S-2026_Storage_Cu	irve	1.55	1700.00
S-2030_Storage_Cu	Irve Storage	e 0	$1.00 \\ 1.00 \\ 8400.00 \\ 16800.00$
S-2030_Storage_Cu	Irve	1.3	
S-2030_Storage_Cu	Irve	1.4	
S-2030_Storage_Cu	Irve	1.55	
S-2042_Storage_Cu	irve Storage	e 0	1.00
S-2042_Storage_Cu	irve	1.3	1.00
S-2042_Storage_Cu	irve	1.4	900.00
S-2042_Storage_Cu	irve	1.55	1800.00
S-2060_Storage_Cu S-2060_Storage_Cu	irve Storage irve	e 0 1.3	1.00 1.00 Page 10

S-2060 Storage Curve	post_p	ond3_100CH1	2018-03-21.inp
S-2060_Storage_Curve		1.55	5800.00
S-2070_Storage_Curve	Storage	0	1.00
S-2070_Storage_Curve		1.3	1.00
S-2070_Storage_Curve		1.4	2350.00
S-2070_Storage_Curve		1.55	4700.00
S-2080_Storage_Curve	Storage	0	1.00
S-2080_Storage_Curve		1.3	1.00
S-2080_Storage_Curve		1.4	2150.00
S-2080_Storage_Curve		1.55	4300.00
S-2090_Storage_Curve	Storage	0	1.00
S-2090_Storage_Curve		1.3	1.00
S-2090_Storage_Curve		1.4	3100.00
S-2090_Storage_Curve		1.55	6200.00
S-3010_Storage_Curve	Storage	0.0	1.00
S-3010_Storage_Curve		1.3	1.00
S-3010_Storage_Curve		1.4	3000.00
S-3010_Storage_Curve		1.55	6000.00
S-3050_Storage_Curve	Storage	0	1.00
S-3050_Storage_Curve		1.3	1.00
S-3050_Storage_Curve		1.4	1950.00
S-3050_Storage_Curve		1.55	3900.00
S-4010_Storage_Curve	Storage	0.0	1.00
S-4010_Storage_Curve		1.3	1.00
S-4010_Storage_Curve		1.4	1900.00
S-4010_Storage_Curve		1.55	3810.00
S-4030_Storage_Curve	Storage	0	1.00
S-4030_Storage_Curve		1.3	1.00
S-4030_Storage_Curve		1.4	3760.00
S-4030_Storage_Curve		1.55	7520.00
S-4060_Storage_Curve	Storage	0.0	1.00
S-4060_Storage_Curve		1.3	1.00
S-4060_Storage_Curve		1.4	3600.00
S-4060_Storage_Curve		1.55	7300.00
S-4070_Storage_Curve	Storage	0.0	1.00
S-4070_Storage_Curve		1.3	1.00
S-4070_Storage_Curve		1.4	5800.00
S-4070_Storage_Curve		1.55	11700.00
S-4090_Storage_Curve	Storage	0	1.00
S-4090_Storage_Curve		1.3	1.00
S-4090_Storage_Curve		1.4	3150.00
S-4090_Storage_Curve		1.55	6300.00
S-4092_Storage_Curve	Storage	0	1.00
S-4092_Storage_Curve		1.3	1.00
S-4092_Storage_Curve		1.4	2700.00
S-4092_Storage_Curve		1.55	5400.00
S-4093_Storage_Curve	Storage	0	1.00
S-4093_Storage_Curve		1.3	1.00
S-4093_Storage_Curve		1.4	2150.00
S-4093_Storage_Curve		1.55	4300.00

SWM POND1_Storage_Curve SWM POND1_Storage_Curve SWM POND1_Storage_Curve SWM POND1_Storage_Curve	post_pond Storage	d3_100СНІ_ 0 1 2 2.65	2018-03-21.inp 1200.00 1500.00 1900.00 2200.00
SWM POND2_Storage_Curve	Storage	0	3000.00
SWM POND2_Storage_Curve		1	4000.00
SWM POND2_Storage_Curve		2	5000.00
SWM POND2_Storage_Curve		3	6000.00
SWM POND3_Storage_Curve	Storage	0	1506
SWM POND3_Storage_Curve		2	2613
SWM POND3_Storage_Curve		2.44	3120
SWM POND3_Storage_Curve		3.04	3802
SWM POND3_Storage_Curve		5.14	6849
SWM POND4_Storage_Curve	Storage	0	2800.00
SWM POND4_Storage_Curve		1	3300.00
SWM POND4_Storage_Curve		2.	4500.00
SWM POND4_Storage_Curve		3.17	5200.00
outlet A_Tidal_Curve Tic outlet A_Tidal_Curve outlet A_Tidal_Curve outlet A_Tidal_Curve outlet A_Tidal_Curve outlet A_Tidal_Curve	dal 0 6 13 15 20	8 8 . 5 8 8 8	4 5.45 5.82 5.45 4
Outlet B_100YR_Tidal_Cur	rve Tidal	0	86.42
Outlet B_100YR_Tidal_Cur	rve	13.5	87.30
Outlet B_100YR_Tidal_Cur	rve	15	86.42
Outlet B_100YR_Tidal_Cur	rve	20	86.42
Weir4_Tidal_Curve Tidal	0	85.5	0
Weir4_Tidal_Curve	13.5	86.8	
Weir4_Tidal_Curve	16	85.5	
Weir4_Tidal_Curve	20	85.5	

Appendix C : Stormwater Management Calculations May 10, 2018

C.7 CONCEPTUAL PROFILE POND 2

CONCEPTUAL OUTLET POND #2 INLET (PIPE/ORIFICE-WEIR EQUIVALENT) EXISTING GROUND ±88.00 100YR W/L = 86.55 ____ EXT. DETENTION W/L =86.00 WEIR 86.00 PERMANENT W/L = 85.50 1800mm Ø INLET _ PIPE/ORIFICE 84.90 CONCEPT: 350mm DIA. ORIFICE INV.=85.50 83.50

CRIGINAL SHEET - ANSI B

Appendix C : Stormwater Management Calculations May 10, 2018

C.8 CONCEPTUAL PROFILE POND 3

∞ Q ORIGINAL SHEET - ANSI B

Appendix C : Stormwater Management Calculations May 10, 2018

C.9 CONCEPTUAL SWM POND CALCULATIONS

Project No. 160410140 - Mahogany Stage 2 Pond 2

Stormwater Quality Volumetric Requirements

				Water Qua	Water Quality Unit Volume Requirments			Water Quality Volume Requirements			Water Quality Volumes Provided		
Pond	Drainage Area (ha)	Actual % Imp.	MOE Control Level	Total Unit Volume (m ³ /ha)	Permanent Pool (m ³ /ha)	Extended Detention (m³/ha)	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Provided Unit Volume (m ³ /ha)
Mahogany Pond 2	55.40	51.6	Enhanced - 80% TSS Removal	181.5	141.5	40	7,839	2,216	10,055	23,098	7,750	30,848	557

- Water quality unit volume requirements based on interpolation for imperviousness requirements from Table 3.2, Stormwater Management Planning & Design Manual (MOE, 2003)

For use in Interpolation of above formulae											
			Wetpond		Wetland						
%	0	35	55	70	85	35	55	70	85		
Enhanced - 80% TSS Removal	0	140	190	225	250	80	105	120	140		
Normal - 70% TSS Removal	0	90	110	130	150	60	70	80	90		
Basic - 60% TSS Removal	0	60	75	85	95	60	60	60	60		

Project No. 160410140 - Mahogany Stage 2 Pond 2 Stage-Storage-Discharge Summary

The stage-storage-discharge relationship used to identify components required in PC-SWMM model which will incorporate backwater conditions.

		Sto	rage		Forebay Main Cell						
Stage	Discharge	Active	Total*	Depth	Area	Incremental Volume	Incremental Volume Accumulated Volume		Incremental Volume Accumulated Volume		
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	
83.50		0	0	0.00	3,000	0	0	7,000	0	0	
85.50		0	23,098	2.00	4,800	7,800	7,800	9,200	16,200	16,200	Permanent Pool
86.20		10,850	33,948	0.70	4,800	3,360	11,160	12,200	7,490	23,690	
86.70		20,100	43,198	1.20	4,800	2,400	13,560	15,200	6,850	30,540	
87.00		26,250	49,348	1.50	4,800	1,440	15,000	16,200	4,710	35,250	
	1										

* Total pond including forebay, excluding sediment storage (see forebay calculations)

Project No. 160410140 - Mahogany Stage 2 Pond 2

Detailed Outlet Structure Discharge Calculations

Elevation	Discharge (m ³ /s)						Parameters					
Lievation	Ove	rflow Outlet			Pij	ped Outlet			Total			Orifice 1
(m)		Spillway	Total	Orifice 1	Orifice 2		Control	Weir 1	Discharge		Orifice Centre	Perimeter
83.50											85.675 m	1.100 m
											Orifice Invert	Area
											85.50 m	0.0962 m ²
85.50									0.000		Orifice Diameter	Orifice Coeff.
86.20		0.000	0.000	0.214	0.000		0.000	0.760	0.974		350 mm	0.65
86.70		0.550	0.550	0.280	0.000		0.000	4.978	5.808		Orientation	Permanent Pool
87.00		4.402	4.402	0.313	0.000		0.000	8.500	13.215	Spillway Weir	Vertical	85.50 m
		0.000	0.000		0.000		0.000	0.000	0.000	Crest Elevation		Orifice 2
		0.000	0.000		0.000		0.000	0.000	0.000	86.6 m	Orifice Centre	Perimeter
		0.000	0.000		0.000		0.000	0.000	0.000	Crest Width	100.15 m	0.942 m
		0.000	0.000		0.000		0.000	0.000	0.000	10 m*	Orifice Invert	Area
		0.000	0.000		0.000		0.000	0.000	0.000		100.00 m	0.0707 m ²
		0.000	0.000		0.000		0.000	0.000	0.000	Weir Coeff. 1.740	Orifice Diameter	Orifice Coeff.
		0.000	0.000		0.000		0.000	0.000	0.000		300 mm	0.61
		0.000	0.000		0.000		0.000	0.000	0.000			Orientation
											Vertica	
												Weir 1
											Top of Weir Structure	Max Perimeter
											87.00 m	5.000 m
											Weir Crest Invert	Max Open Area
											86.00 m	5.000 m ²
											Weir Dimen	sions (Height x Length)
											1.00 m Height	5.00 m Len
											Side Walls	Weir Coeff.
											Vertical	1.700

Outlet structure consists of reverse-sloped lowflow pipe connected to orifice #1 (created by equivalent sluice gate orientation)
 Secondary outlet is Weir#1 in weir wall inside structure
 Tertiary outlet is Overflow Weir#1 on outside face of outlet structure

Water Quality Extended Detention Summary

Required Extended Detention Time Actual Extended Detention Time Extended Detention Elevation	24-48 hrs for water quality 27 hrs 86.00 m	y drawdown Q _{peak} Q _{avg}	0.129 0.064) m³/s , m³/s	Where,	$Q = C4 \sqrt{2g\left(h_2 - h_1 + \frac{D}{2000}\right)}$ h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m)	$\mathcal{Q} = \mathcal{C} (h_2 - h_1)^{1.5}$ h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m)
Watershed Area (ha) 55.40		Discharge Rates from	PCSWMM (m ³ /s)			D = orifice diameter (mm)	L = weir crest length (m)
Percent Impervious 51.6%	Storm	Pond Inflow	Pond Outflow	Water Level	Pond Volume (m ³)	C = orifice coefficient	C = weir coefficient
Water Quality Criteria Enhanced - 80% TSS Removal	25mm, 4hr Chi	2.41	0.129	85.76	4030	A = orifice open area (m ²)	
Req'd Ext. Det. Volume (m ³ /ha) 40	2-yr, 24hr SCS	3.49	0.143	86.00	7750		
Req'd Ext. Det. Volume (m ³) 2,216	5-yr, 24hr SCS	4.68	0.768	86.17	10385	Weir flow calculation for orifice below centre	line:
Provided Ext. Det. (m ³) 7,750						24 24	
Req'd Perm. Pool Volume (m ³ /ha) 181.5	100-yr, 24hr SCS	12.51	3.563	86.55	17325	$\theta = 2 \cos^{-}(1 - \frac{2\pi}{D}) = 2 \cos(1 - \frac{2\pi}{D})$	h = water level stage (m)
Req'd Perm. Pool Volume (m ³) 7,839	100-yr, 3hr Chi	15.65	3.670	86.55	17325		D = orifice diameter (m)
Provided Perm. Pool Volume (m ³) 23,098	100-yr+20, 3hr Ch	i 19.96	5.377	86.73	20715	$P_{W} = \frac{D\theta}{D\theta}$	θ = angle based on water level (radians)
	July 1st, 1979	11.16	4.849	86.69	19915		P _w = Wetted Perimeter = Crest Length (m)

5 m long weir at inv. = 86 350 mm lowflow outlet at inv. = 85.5 m

Project No. 160410140 - Mahogany Stage 2 Pond 3

Stormwater Quality Volumetric Requirements

				Water Quality Unit Volume Requirments			Water Quality Volume Requirements			Water Quality Volumes Provided			
Pond	Drainage Area (ha)	Actual % Imp.	MOE Control Level	Total Unit Volume (m ³ /ha)	Permanent Pool (m ³ /ha)	Extended Detention (m ³ /ha)	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Provided Unit Volume (m ³ /ha)
Mahogany Pond 3	16.90	57.0	Enhanced - 80% TSS Removal	194.7	154.7	40	2,614	676	3,290	3,967	#NAME?	#NAME?	#NAME?

*Enhanced Water Level protection as specified by Gloucester EUC Phase 2 ISSU (September 2013)

- Water quality unit volume requirements based on interpolation between 60% and 70% imperviousness requirements from Table 3.2, Stormwater Management Planning & Design Manual (MOE, 2003)

For use in Interpolation of above formulae

	Wetpond					Wetland			
%	0	35	55	70	85	35	55	70	85
Enhanced - 80% TSS Removal	0	140	190	225	250	80	105	120	140
Normal - 70% TSS Removal	0	90	110	130	150	60	70	80	90
Basic - 60% TSS Removal	0	60	75	85	95	60	60	60	60

Project No. 160410140 - Mahogany Stage 2 Pond 3 Stage-Storage-Discharge Summary

The stage-storage-discharge relationship used to identify components required in PC-SWMM model which will incorporate backwater conditions.

		Sto	rage			Forebay					
Stage	Discharge	Active	Total*	Depth	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	
84.46		0	0	0.00	497	0	0	1,009	0	0	
86.46		0	3,967	2.00	784	1,281	1,281	1,829	2,838	2,838	Permanent Pool
86.90	T	1,261	5,229	0.44	784	345	1,626	2,336	916	3,754	
87.50		3,338	7,305	1.04	784	470	2,096	3,018	1,606	5,361	
89.60		14,521	18,489	3.14	784	1,646	3,743	6,065	9,537	14,898	

* Total pond including forebay, excluding sediment storage (see forebay calculations)

Project No. 160410140 - Mahogany Stage 2 Pond 3

Detailed Outlet Structure Discharge Calculations

Elovation	Discharge (m³/s)							Parameters				
Lievation	Overf	flow Outlet		Piped Outlet					Total			Orifice 1
(m)		Spillway	Total	Orifice 1	Orifice 2		Control	Weir 1	Discharge		Orifice Centre	Perimeter
84.46											86.535 m	0.471 m
											Orifice Invert	Area
											86.46 m	0.0177 m ²
86.46									0.000		Orifice Diameter	Orifice Coeff.
86.90		0.000	0.000	0.031	0.000		0.000	0.000	0.031		150 mm	0.65
87.50		0.000	0.000	0.048	0.030		0.030	5.322	5.399		Orientation	Permanent Pool
89.60		49.215	49.215	0.083	0.074		0.074	207.543	256.915	Spillway Weir	Vertical	86.46 m
		0.000	0.000		0.000		0.000	0.000	0.000	Crest Elevation		Orifice 2
		0.000	0.000		0.000		0.000	0.000	0.000	87.6 m	Orifice Centre	Perimeter
		0.000	0.000		0.000		0.000	0.000	0.000	Crest Width	87.175 m	0.471 m
		0.000	0.000		0.000		0.000	0.000	0.000	10 m*	Orifice Invert	Area
		0.000	0.000		0.000		0.000	0.000	0.000		87.10 m	0.0177 m ²
		0.000	0.000		0.000		0.000	0.000	0.000	Weir Coeff. 1.740	Orifice Diameter	Orifice Coeff.
		0.000	0.000		0.000		0.000	0.000	0.000		150 mm	0.61
		0.000	0.000		0.000		0.000	0.000	0.000			Orientation
											Vertica	l
												Weir 1
											Top of Weir Structure	Max Perimeter
											89.18 m	35.000 m
											Weir Crest Invert	Max Open Area
											87.30 m	65.800 m ²
											Weir Dimen	sions (Height x Length)
											1.88 m Height	35.00 m Len
											Side Walls	Weir Coeff.
											Vertical	1.700

Outlet structure consists of reverse-sloped lowflow pipe connected to orifice #1 (created by equivalent sluice gate orientation)
 Secondary outlet is Weir#1 in weir wall inside structure
 The structure solution of the structure solution of the structure solution of the structure

Water Quality Extended Detention Summary

Required Extended Detention Time Actual Extended Detention Time	24-48 hrs for water 35 hrs	0.029) m ³ /s	Where,	$Q = C4 \sqrt{2g\left(h_2 - h_1 + \frac{D}{2000}\right)}$			
Extended Detention Elevation		87.10 m	Q _{avg}	0.015 m ³ /s			h2 = elevation at stage 2 (m)	
Watershed Area (ha)	16.90		Discharge Rates from PCSWMM (m ³ /s)			h1 = elevation at stage 1 (m) D = orifice diameter (mm)		
Percent Impervious	57.0%	Storm	Pond Inflow	Pond Outflow	Water Level	Volume (m3)	C = orifice coefficient	
Water Quality Criteria Enhanced - 8	0% TSS Removal	25mm, 4hr	Chi 0.977	0.029	86.91	1297	A = orifice open area (m ²)	
Req'd Ext. Det. Volume (m ³ /ha)	40	2-yr, 24hr \$	SCS 1.340	0.055	87.25	2478		
Req'd Ext. Det. Volume (m ³)	676	5-yr, 24hr \$	SCS 2.119	1.103	87.37	2878	Weir flow calculation for orifice belo	
Provided Ext. Det. (m ³)	#NAME?	100-yr, 24hr	SCS 3.565	3.874	87.46	3202	2h	
Req'd Perm. Pool Volume (m3/ha)	194.7	100-yr, 3hr	Chi 4.519	4.804	87.49	3288	$\theta = 2\cos^{-}(1-\frac{2\pi}{D}) = 2\cos(1-\frac{2\pi}{D})$	
Req'd Perm. Pool Volume (m ³)	2,614	100-yr+20, 3	hr Chi 5.344	5.720	87.51	3383		
Provided Perm. Pool Volume (m ³)	3,967	July 1, 19	3.289 3.289	3.573	87.45	3172	$P_{W} = \frac{D}{2}$	
							2	

2000 /	
e 2 (m)	h2 = elevation at stage 2 (m)
e 1 (m)	h1 = elevation at stage 1 (m)
nm)	L = weir crest length (m)
	C = weir coefficient
m ²)	
or orifice below centreline	<u>r</u>
$= 2 \cos\left(1 - \frac{2h}{D}\right)$	h = water level stage (m)
DB	D = orifice diameter (m) θ = angle based on water level (radians)
2	P _w = Wetted Perimeter = Crest Length (m)

 $Q = C (h_2 - h_1)^{1.5}$

Appendix D : Geotechnical Investigation Excerpts May 10, 2018

Appendix D : GEOTECHNICAL INVESTIGATION EXCERPTS

Detersongroup Ottawa Kingston North Bay

Table 3: Permissible Grade Raise at Borehole Locations										
Borehole	Ground Elev.	Permissible Grae	de Raise - No LWF	Permissible Gr	ade Raise - LWF					
Number	(m)	Raise (m)	Fin. Grade (m)	Raise (m)	Fin. Grade (m)					
Mahogany Stage 2										
BH 55-17	89.20	1.50	90.70	1.90	91.10					
BH 56-17	88.80	2.00	90.80	2.40	91.20					
BH 12-07	88.60	2.50	91.10	2.90	91.50					
BH 17-07	89.10	2.00	91.10	2.40	91.50					
BH 18-07	89.00	2.00	91.00	2.40	91.40					
BH 22-07	89.30	2.00	91.30	2.40	91.70					
BH 23-07	89.40	2.50	91.90	2.90	92.30					
BH 3-04B	88.90	2.50	91.40	2.90	91.80					
BH 4-04B	89.30	2.50	91.80	2.90	92.20					
Mahogany S ⁴	tage 3		·							
BH 54-17	89.20	1.50	90.70	1.90	91.10					
BH 34-07	88.90	1.80	90.70	2.20	91.10					
BH 5-04B	89.20	2.50	91.70	2.90	92.10					
Mahogany S	tage 4		· · · · · · · · · · · · · · · · · · ·							
BH 52-17	89.30	2.20	91.50	2.60	91.90					
BH 28-07	89.30	2.20	91.50	2.60	91.90					
BH 9-04	89.00	2.20	91.20	2.60	91.60					
BH 10-04	88.90	2.20	91.10	2.60	91.50					
Notes: 1.	Notes: I I I I Notes: 1. "Permissible Grade Raises - No LWF" are based on conventional wood-frame single home or town home housing construction with normal weight fill within garage, porch or floor slabs-on-grade (for back-to-back town home homes).									
2.	 "Permissible Grade Raises - LWF" are based on installing EPS LWF in garages and porches and/or under slab-on-grade floors. Up to 0.4 to 0.6 m of additional grade raise can be achieved using LWE in garages and porches for singles and town homes 									
3	Permissible Gra 3.0 m and may	ade Raises - No LV be greater, based (VF values for borehol on specific geotechni	es not listed can b cal review.	e taken to be					

p:\autocad drawings\geotechnical\pg40xx\pg4008-1 june 2017.dwg

Appendix E : Drawings May 10, 2018

Appendix E : DRAWINGS

