October 2017

REPORT ON

Geotechnical Investigation Proposed Residential Development Riverside South Lands River Road and Spratt Road Ottawa, Ontario

Submitted to: **Claridge Homes Corporation** 2001-210 Gladstone Avenue Ottawa, Ontario K2P 0Y6

EPORT

Report Number: 1658448-1000 **Distribution:**

- 6 copies Claridge Homes Corporation 1 e-copy Claridge Homes Corporation 1 e-copy Golder Associates Ltd.

Table of Contents

1.0	INTRODUCTION1				
2.0	DESCR	IPTION OF PROJECT AND SITE	2		
3.0	PROCE	EDURE	3		
4.0	SUBSU	IRFACE CONDITIONS	4		
	4.1	General	4		
	4.2	Topsoil and Fill	4		
	4.3	Upper Sands and Silts	4		
	4.4	Layered Silt, Clayey Silt, and Silty Sand	4		
	4.5	Weathered Silty Clay, Clayey Silt, and Silty Sand	5		
	4.6	Unweathered Silty Clay to Clay	5		
	4.7	Lower Sand to Gravelly Silty Sand	6		
	4.8	Glacial Till	6		
	4.9	Silty Sand and Gravel	6		
	4.10	Refusal and Bedrock	7		
	4.11	Groundwater	7		
5.0	DISCU	SSION	8		
	5.1	General	8		
	5.2	Site Grading	8		
	5.3	Foundations	9		
	5.4	Frost Protection	10		
	5.5	Seismic Design	10		
	5.6	Basement Excavations	11		
	5.7	Basement and Garage Floor Slabs	11		
	5.8	Basement Wall and Foundation Wall Backfill	12		
	5.9	Site Servicing	12		
	5.10	Pavement Design	15		
	5.11	Pools, Decks and Additions	16		
	5.11.1	Above Ground and In Ground Pools	. 16		
	5.11.2	Decks	16		

7.0	CLOSU	IRE	.18
6.0	ADDITI	ONAL CONSIDERATIONS	.17
	5.13	Trees	.16
	5.12	Corrosion and Cement Type	.16
	5.11.3	Additions	.16

Important Information and Limitations of This Report

FIGURES

Figure 1 – Site Plan

Figure 2 - Grain Size Distribution - Upper Silty Sand

Figures 3 to 5 – Consolidation Test Results

Figure 6 - Grain Size Distribution - Lower Gravelly Silty Sand

Figure 7 – Grain Size Distribution – Glacial Till

APPENDICES

APPENDIX A Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes List of Symbols Lithological and Geotechnical Rock Description Terminology Record of Borehole and Drillhole Sheets

APPENDIX B

Results of Chemical Analysis Eurofins Environmental Testing Report No. 1702728

1.0 INTRODUCTION

This report presents the results of a geotechnical investigation carried out for a proposed residential development to be located on the Riverside South Lands (east of River Road and west of Spratt Road) in Ottawa, Ontario.

The purpose of this geotechnical investigation was to determine the general soil, groundwater, and bedrock conditions across the site by means of 35 boreholes. Based on an interpretation of the factual information obtained, engineering guidelines are provided on the geotechnical design aspects of the project, including construction considerations which could affect design decisions.

The results of the environmental sampling and testing program are provided separately in the Phase II Environmental Site Assessment report for this project.

The reader is referred to the "Important Information and Limitations of This Report" which follows the text but forms an integral part of this document.

N.

2.0 DESCRIPTION OF PROJECT AND SITE

Plans are being prepared to develop a proposed residential development within the Riverside South Lands which is located east of River Road and west of Spratt Road in Ottawa, Ontario (see Key Plan inset, Figure 1).

The following is known about the project and site.

- The western boundary of the site is located east of River Road, approximately 400 metres north of the intersection with Rideau Road. The eastern boundary of the site is located west of Spratt Road, approximately 845 metres north of the intersection with Rideau Road.
- The site is irregular in shape, with the southwestern portion adjacent to River Road measuring approximately 390 metres by 420 metres and the northern portion measuring about 200 metres by 1,110 metres.
- The site topography is relatively flat with a gentle downward slope from east to west (i.e., towards the Rideau River).
- The majority of the site is currently undeveloped and predominately consists of agricultural land with localized vegetation and trees.
- It is understood that the proposed development will include conventional residential dwellings (single family homes and townhouses) as well as access roads and services within the subdivision. A park and institutional development are also proposed for the site.

Golder Associates has completed several geotechnical investigations within or in the vicinity of this site, including an investigation that was carried out in 2007 for the City of Ottawa for the overall planning of the Riverside South Community.

Based on a review of those previous studies and published geological mapping, the subsurface conditions on the site likely consist of a thick deposit of sensitive and compressible silty clay; the silty clay is expected to thin towards the northeast portion of the site, adjacent to Spratt Road, where glacial till and potentially bedrock is expected at shallow depths. The bedrock surface is expected to be at depths ranging from about 5 to 15 metres, sloping down from the east to the west across the site. Based on published geological mapping, the bedrock on the site should consist of March Formation sandstone and Oxford Formation dolostone on the northeast and southwest parts of the site, respectively. The bedrock formations are divided by the Hazeldean Fault, which crosses the site on a northwest to southeast trend.

3.0 PROCEDURE

The fieldwork for this investigation was carried out between January 5 and 26, 2017. At that time, 35 boreholes (numbered 17-1 to 17-35, inclusive) were put down at the approximate locations shown on the Site Plan, Figure 1.

The boreholes were advanced to sampled depths ranging from about 2.1 to 8.2 metres below the existing ground surface. Upon reaching practical refusal to augering in boreholes 17-2, 17-23, and 17-27, boreholes 17-2A, 17-23A, and 17-27A were advanced adjacent to boreholes 17-2, 17-23, and 17-27 for dynamic cone penetration testing to depths of about 7.9, 4.3, and 3.4 metres, respectively. Upon reaching practical refusal to augering in boreholes 17-22 and 17-28, the boreholes were then advanced to depths of about 6.4 and 3.2 metres, respectively, using dynamic cone penetration testing.

Upon reaching practical refusal to augering at a depth of about 3.3 metres below the existing ground surface, borehole 17-27 was advanced an additional 3.3 metres into the bedrock using rotary diamond drilling techniques while retrieving NQ sized bedrock core.

The boreholes were advanced using a track-mounted continuous flight hollow-stem auger drill rig, supplied and operated by CCC Geotechnical and Environmental Drilling of Ottawa, Ontario.

Standard Penetration Tests (SPT) were carried out in the boreholes at regular intervals of depth and samples of the soils encountered were recovered using drive open sampling equipment. In situ vane testing was carried out where possible in the cohesive deposits to determine the undrained shear strength of these soils. In addition, boreholes 17-10A, 17-12A, 17-14A, 17-17A, 17-18A, and 17-24A were advanced adjacent to boreholes 17-10, 17-12, 17-14, 17-17, 17-18, and 17-24 to retrieve relatively undisturbed 73 millimetre diameter thin walled Shelby tube samples of the silty clay using a fixed piston sampler.

Standpipe piezometers or monitoring wells were sealed into boreholes 17-1, 17-3, 17-9, 17-14A, 17-18A, 17-21, 17-24A, 17-27, 17-28, 17-29, 17-30, and 17-31 to allow subsequent measurement of the groundwater level across the site as well as groundwater sampling and analytical testing to support the Phase II Environmental Site Assessment. The groundwater levels in these standpipe piezometers were measured on January 30, 2017.

The fieldwork was supervised by an experienced technician from our staff who located the boreholes, directed the drilling operations and in situ testing, logged the boreholes, and took custody of the soil samples retrieved.

Upon completion of the drilling operations, samples of the soils and bedrock encountered in the boreholes were transported to our laboratory for further examination by the project engineer and for laboratory testing. The laboratory testing included natural water content determinations, Atterberg limit tests, grain size distribution tests, and oedometer consolidation testing.

Soil samples from boreholes 17-9 and 17-20 were submitted to Eurofins Environment Testing for basic chemical analysis related to potential sulphate attack on buried concrete elements and corrosion of buried ferrous elements.

The borehole locations were selected, picketed, and surveyed in the field by Golder Associates Ltd. The borehole locations and elevations were surveyed using a Trimble R8 Global Positioning System (GPS) unit. The elevations are referenced to Geodetic datum.

4.0 SUBSURFACE CONDITIONS

4.1 General

Information on the subsurface conditions is provided as follows:

- The Record of Borehole and Drillhole Sheets are provided in Appendix A.
- The results of the basic chemical analysis carried out on soil samples from boreholes 17-9 and 17-20 are provided in Appendix B.
- Oedometer consolidation test results are provided on Figures 3 to 5.
- Grain size distribution testing results are provided on Figures 2, 6, and 7.

In general, the subsurface conditions across this site consist of surficial layers of topsoil, fill, and silty sand. The surficial soils across the majority of the site are underlain by a deposit of weathered silty clay, clayey silt, and silty sand, which is underlain by unweathered silty clay and/or glacial till. Shallow bedrock (i.e. at a depth of about 3 metres depth) was encountered at the east end of the site, adjacent to Spratt Road.

The following sections present a more detailed overview of the subsurface conditions encountered in the boreholes at the site.

4.2 Topsoil and Fill

Topsoil exists at the ground surface, or buried beneath the surficial fill, at most of the borehole locations, and typically ranges from about 60 to 300 millimetres in thickness. Fill (some of which is topsoil) exists at boreholes 17-7, 17-8, 17-29, 17-30, 17-31, 17-32, 17-33, and 17-35. The fill layers extend to depths of between about 0.1 to 1.1 metres below the existing ground surface. The fill consists of topsoil, asphaltic concrete, sand, sandy gravel, silty sand, silty clay, and/or sand and gravel.

4.3 Upper Sands and Silts

A deposit of sandy silt, sand, or silty sand with varying amounts of gravel exists below the topsoil and/or fill in boreholes 17-2, 17-8, 17-9, 17-10, 17-12 to 17-16, 17-20, 17-21, 17-29, and 17-35. The deposit generally extends to depths ranging from about 0.4 to 1.3 metres below the existing ground surface, with the exception of borehole 17-21 where it extends to a depth of about 3.5 metre below the existing ground surface.

The results of standard penetration tests measured within the deposit gave SPT 'N' values ranging from 7 to greater than 50 blows per 0.3 metres of penetration, indicating a loose to very dense state of packing.

The measured natural water content of three samples of the deposit were about 6, 11, and 23 percent.

The results of grain size distribution testing carried out on one sample of the silty sand are provided on Figure 2.

4.4 Layered Silt, Clayey Silt, and Silty Sand

A deposit of layered silt, clayey silt, and silty sand exists below the topsoil in boreholes 17-3, 17-4, and 17-5. The layered deposit generally extends to depths ranging from about 1.4 to 2.0 metres below the existing ground surface.

The results of standard penetration tests measured within this layered deposit gave SPT 'N' values ranging from about 3 to 6 blows per 0.3 metres of penetration, indicating a very loose to loose state of packing.

The measured natural water content of one sample of this deposit was about 25 percent.

Weathered Silty Clay, Clayey Silt, and Silty Sand 4.5

Deposits of silty clay to clay and/or layered silty clay, clayey silt, and silty sand exists in all of the boreholes, with the exception of boreholes 17-20 and 17-21. These deposits have been weathered to a grey brown colour. These weathered deposits extend to depths of about 1.8 to 5.8 metres below the existing ground surface.

The results of standard penetration tests within these deposits measured SPT 'N' values ranging from 1 to 8 blows per 0.3 metres of penetration. The results of in situ vane testing in these deposits measured undrained shear strength values generally ranging from about 77 to greater than 96 kilopascals. The results of the in situ testing indicates these deposits to have a stiff to very stiff consistency.

The results of Atterberg limit testing carried out on three samples from the weathered deposits gave plasticity index values of about 29, 39, and 57 percent and liquid limit values of about 49, 59, and 77 percent, indicating a soil of intermediate to high plasticity. The measured natural water content measured on samples from these deposits ranged from about 28 to 65 percent.

4.6 Unweathered Silty Clay to Clay

The silty clay deposit below the depth of weathering in boreholes 17-5, 17-6, 17-8 to 17-19, 17-23, 17-24, and 17-26 is unweathered and grey in colour. The unweathered silty clay was fully penetrated to depth of about 3.8 to 6.3 metres below the existing ground surface at borehole 17-5, 17-6, 17-11, 17-19, 17-23, 17-24, and 17-26, where the thickness of the deposit ranges from about 0.3 to 3.2 metre. The unweathered silty clay was not fully penetrated in the remaining boreholes but was proven to depths ranging from about 5.8 to 7.9 metres below the existing ground surface.

The results of in situ vane testing in the deposit measured undrained shear strength values generally ranging from about 31 to 90 kilopascals, indicating a firm to stiff consistency

The results of Atterberg limit tests carried out on three sample of the unweathered deposit gave plasticity index values of about 24, 28, and 36 percent and liguid limit values ranging from 42, 47, and 57 percent, indicating a soil of intermediate to high plasticity. The measured natural water content measured in the unweathered silty clay ranges from about 33 to 63 percent.

Oedometer consolidation testing was carried out on three Shelby tube samples of the unweathered clay from boreholes 17-12A, 17-18A, and 17-24A. The results of this testing are provided on Figures 3 to 5, and are also summarized below.

Borehole/Sample Number	Sample Depth/Elevation (m)	σ₀′ (kPa)	σ _P ′ (kPa)	Cc	Cr	eo	OCR
17-12A / 1	4.8 / 85.0	60	150	0.97	0.008	1.47	2.5
17-18A / 1	4.1 / 86.6	35	155	0.39	0.006	1.01	4.4
17-24A / 1	3.4 / 89.2	35	180	1.03	0.004	1.46	5.1
Notes: σ_0' - Initial effective stress σ_P' - Apparent preconsolidation pressure							

Cr

- σ_0' Initial effective stress C_c - Compression index
- Initial void ratio e

- Apparent preconsolidation pressure
- Recompression index
- OCR Overconsolidation Ratio

4.7 Lower Sand to Gravelly Silty Sand

A deposit of sand to gravelly silty sand exists below the weathered silty clay in boreholes 17-26, 17-27, and 17-28. This deposit was proven/inferred to depths of about 5.5 and 3.2 metres below the existing ground surface, at boreholes 17-26 and 17-28, respectively, and fully penetrated to a depth of about 3.3 metres below the existing ground surface at borehole 17-27. The deposit also contains cobbles and boulders.

The results of standard penetration tests measured within this deposit gave SPT 'N' values ranging from 8 to greater than 50 blows per 0.3 metres of penetration, indicating a loose to very dense state of packing. However, the higher 'N' values likely reflect the presence of cobbles and boulders within the deposit, rather than the actual state of packing of the soil matrix.

The measured natural water content of two samples from this deposit were about 21 and 30 percent. The results of grain size distribution testing carried out on one sample of the gravelly silty sand are provided on Figure 6.

4.8 Glacial Till

A deposit of glacial till exists below the silty clay in boreholes 17-1, 17-3 to 17-7, 17-11, 17-19, 17-22, 17-24, and 17-25, and below the silty sand in boreholes 17-20 and 17-21. Glacial till was also inferred in borehole 17-2A below the silty clay and in borehole 17-22 below the upper portion of the glacial till based on the results of the dynamic cone penetration testing. The glacial till generally consists of a heterogeneous mixture of gravel, cobbles, and boulders in a matrix of silty sand to sandy silt. The glacial till was encountered at depths ranging from about 0.9 to 6.3 metres below the existing ground surface, and proven to extend to depths ranging from about 4.2 to 8.2 metres below the existing ground surface.

The results of standard penetration tests measured within the glacial till gave SPT 'N' values ranging from 3 to greater than 50 blows per 0.3 metres of penetration, but more generally ranging from 10 to 30 blows, indicating a compact state of packing. In addition, the higher 'N' values likely reflect the presence of cobbles and boulders within the glacial till, rather than the actual state of packing of the soil matrix.

The measured natural water content of samples obtained from this deposit ranged from about 6 to 15 percent. The results of grain size distribution testing carried out on two samples from the deposit of the glacial till are shown on Figure 7.

4.9 Silty Sand and Gravel

A layer deposit of silty sand and gravel was encountered below the glacial till in boreholes 17-20 and 17-21. This layered deposit was not fully penetrated at the borehole locations, but was proven to depths of about 6.1 and 7.9 metres, respectively, below the existing ground surface.

The results of two standard penetration tests measured within this layered deposit gave SPT 'N' values of 15 blows per 0.3 metres of penetration, indicating a compact state of packing.

The measured natural water content of one sample of the silty sand and gravel deposit was about 18 percent.

4.10 Refusal and Bedrock

Practical refusal to auger advancement was encountered at boreholes 17-1, 17-2, 17-4, 17-23, 17-24, 17-25, and 17-26 at depths ranging from about 3.8 to 6.7 metres below the existing ground surface. Refusal to dynamic cone penetration test advancement was encountered in boreholes 17-23A, 17-27A, and 17-28 at depths between about 3.2 and 4.3 metres below the existing ground surface. Refusal could indicate the bedrock surface or may reflect the presence of cobbles and boulders in the glacial till deposit.

In borehole 17-27, the bedrock was encountered below the overburden soils at a depth of about 3.3 metres below the existing ground surface, where it was cored for a depth of about 3.3 metres (i.e., to a total depth of about 6.6 metres below the existing ground surface).

The bedrock encountered consists of fresh, thinly to medium bedded, grey, fine grained limestone. The Rock Quality Designation (RQD) values measured on the recovered bedrock core were 62 and 100 percent, indicating fair to excellent quality rock.

4.11 Groundwater

The groundwater levels within the groundwater monitoring devices installed in boreholes 17-1, 17-3, 17-9, 17-14A, 17-18A, 17-21, 17-24A, 17-27, 17-28, 17-29, 17-30, and 17-31 were measured on January 30, 2017. The observed groundwater levels are summarized in the table below:

Borehole Number	Soil Strata	Ground Surface Elevation (m)	Water Level Depth (m)	Water Level Elevation (m)
17-1	Glacial Till	90.0	0.4	89.6
17-3	Glacial Till	91.1	1.3	89.8
17-9	Silty Clay	90.3	0.2	90.1
17-14A	Silty Clay	90.5	0.7	89.8
17-18A	Silty Clay	90.7	0.3	90.4
17-21	Silty Sand	94.7	2.5	92.2
17-24A	Silty Clay	92.6	0.8	91.8
17-27	Bedrock	93.9	0.8	93.1
17-28	Gravelly Silty Sand	94.0	0.3	93.7
17-29	Silty Clay	90.2	0.7	89.5
17-30	Silty Clay	90.0	0.6	89.4
17-31	Silty Clay	90.1	0.7	89.4

It should be noted that groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring.

5.0 DISCUSSION

5.1 General

This section of the report provides engineering guidelines on the geotechnical design aspects of this project based on our interpretation of the borehole information as well as the project requirements, and is subject to the limitations in the "Important Information and Limitations of This Report" which follows the text of this report.

5.2 Site Grading

Based on the subsurface conditions encountered and the soil strengths determined within the boreholes, the site has been divided into two "assessment areas", Area A and Area B. The boundaries of the assessment areas are shown on the Site Plan, Figure 1.

The subsurface conditions in Assessment Area A generally consist of topsoil/fill underlain low compressibility layered silt, silty clay, clayey silt, and silty sand overlying glacial till or topsoil underlain by silty sand and glacial till. The subsurface conditions in Assessment Area B generally consist of topsoil/fill underlain weathered silty clay, clayey silt, and silty sand, overlying a deposit of unweathered and potentially compressible silty clay to clay underlain by glacial till.

For Area A, there is no practical limitation on the amount of grade raise fill which can be placed in this area from a geotechnical point of view.

The "softer" unweathered silty clay in Area B has limited capacity to accept additional load from the weight of grade raise fill and from the foundations of houses without undergoing consolidation settlements. Therefore, for this area, to leave sufficient remaining capacity for the silty clay to support house foundations, with reasonable footing sizes, the thicknesses of grade raise fill will need to be limited.

The following table provides the maximum grade raises which are permitted for each of the assessment areas indicated on Figure 1. These grade raise limitations have been assessed based on leaving sufficient remaining capacity in the silty clay deposit such that strip footings up to 0.6 metres in size can be designed using an allowable bearing pressure of at least 75 kilopascals, consistent with design in accordance with Part 9 of the Ontario Building Code.

Assessment Area	Maximum Permissible Grade Raise (metres)
A*	No Limitation
В	2.4

Note: * There are no practical grade raise restrictions in Area A, however, grade raises of more than 4 metres would require additional review.

It should also be noted that the maximum permissible grade raise in Area B was calculated assuming that any fill required for site grading (above the original grade) and the backfill within the garages and porches would have a unit weight of no more than 19.5 kilonewtons per cubic metre. Silty clay, clayey silt, and silty sand (such as present on this site), as well as crushed clear stone and uniform fine sand (for the garage and porch backfill) may be suitable for this purpose. Silty sand and gravel, gravelly silty sand, glacial till, and crushed stone typically have a higher unit weight and, if these materials are to be used, the maximum permissible grade raises would be reduced

and would need to be re-evaluated. However, there are no restrictions with regards to the unit weight for site grading and garage backfill materials in Area A (i.e., silty sand and gravel, gravelly silty sand, glacial till and crushed stone would be acceptable in this area).

If the grading restrictions given above cannot be accommodated, then further recommendations from Golder Associates could be provided, if and when they are required.

In addition, with regards to site grading, the surficial sand and silt deposits which were encountered across the site are relatively permeable and the measured groundwater levels are relatively shallow (i.e., about 0.2 metres below the ground surface). Excavations for basement construction which extend below the groundwater level could therefore encounter groundwater inflows. Limiting the required depth of excavation into these materials could be advantageous as it would reduce the groundwater management requirements (and costs).

As a general guideline regarding the site grading, the preparation for filling of the site should include stripping the topsoil and fill for predictable performance of structures and services. The topsoil is not suitable as engineered fill and should be stockpiled separately for re-use in landscaping applications only. In areas with no proposed structures, services, or roadways, the topsoil may be left in place provided some settlement of the ground surface following filling can be tolerated.

5.3 Foundations

It is considered that the proposed residences may be supported on spread footings founded at conventional depth on or within the native overburden materials.

As discussed in the preceding section, the silty clay deposits have limited capacity to accept the combined load from site grading fill and foundation loads. The allowable bearing pressures for spread footing foundations in Area B are therefore based on limiting the stress increases on the firm, compressible, grey silty clay at depth to an acceptable level so that foundation settlements do not become excessive. Four important parameters in calculating the stress increase on the grey silty clay are:

- The thickness of soil below the underside of the footings and above the unweathered silty clay;
- The size (dimensions) of the footings;
- The amount of surcharge in the vicinity of the foundations due to landscape fill, underslab fill, floor loads, etc., as described in Section 5.2; and,
- The effects of groundwater lowering caused by this or other construction.

Provided that the grade raises are restricted to those indicated in Section 5.2, strip footing foundations up to 0.6 metres in width and pad footings up to 2.0 metres square can be designed using a maximum allowable bearing pressure of 75 kilopascals. As such, the house footings may be sized in accordance with Part 9 of the Ontario Building Code (OBC).

This same maximum allowable bearing pressure can be used for houses in Area A, but without restrictions on footing sizes.

The post construction total and differential settlements of footings sized using the above maximum allowable bearing pressure should be less than about 25 and 15 millimetres, respectively, provided that the subgrade at or below founding level is not disturbed during construction.

The tolerance of the house foundations to accept those settlements could be increased by providing nominal levels of reinforcing steel in the top and bottom of the foundation walls.

Further, the provided maximum allowable bearing pressure for footings founded within the silty clay correspond to settlement resulting from consolidation of these deposits. Consolidation of the silty clay is a process which takes months or longer and, as such, results from sustained loading. Therefore, the foundation loads to be used in conjunction with the allowable bearing pressure should be the full dead load plus <u>sustained</u> live load.

If any existing ditches are found to underlie future houses, these ditches will need to be filled. The ditches should be dry and cleaned of all organic or disturbed soil prior to filling. The ditches should be lined with a Class II non-woven geotextile with a Filtration Opening Size (FOS) not exceeding 100 microns, in accordance with Ontario Provincial Standard Specification (OPSS) 1860. Filling to the underside of footing elevation should be carried out using engineered fill consisting of OPSS Granular B Type II (or similar approved material), placed in maximum 300-millimetre thick lifts, and compacted to at least 95 percent of the material's standard Proctor maximum dry density using suitable vibratory compaction equipment. The engineered fill should extend out and down from the outside edge of the footings at a slope not steeper than 1 horizontal to 1 vertical. Footings founded on or within properly placed engineered fill (as described above) can also be designed using a maximum allowable bearing pressure of 75 kilopascals.

If the proposed grading results in some of the footing levels being above the surface of the native inorganic subgrade soil (following removal of the topsoil and any surficial fill materials), the engineered fill guidelines provided above should similarly be followed.

There may be portions of the site where the surficial sand and silt deposits will be exposed at footing/subgrade level. Prior to construction of footings or the placement of engineered fill within these areas, the surface of the native sandy material should be proof-rolled to provide surficial densification of any loose or disturbed material (which may require pre-drainage of these thin surficial layers).

The glacial till contains boulders which may be encountered when excavating to founding level. If those boulders extend below founding level and are dislodged by the excavator, the soils around the boulders will have become disturbed. In that case, the boulders will need to be fully removed (and not pushed back in place) and the void filled with concrete. Otherwise, recompression of the disturbed soils could lead to larger than expected post-construction settlements.

5.4 Frost Protection

All exterior perimeter foundation elements or foundation elements in unheated areas should be provided with a minimum of 1.5 metres of earth cover for frost protection purposes. Isolated and/or unheated exterior footings adjacent to surfaces which are cleared of snow cover during winter months should be provided with a minimum of 1.8 metres of earth cover.

Insulating the bearing surface with high density insulation could be considered as an alternative to earth cover for frost protection. Further details could be provide if required.

5.5 Seismic Design

The seismic design provisions of the 2012 OBC depend, in part, on the shear wave velocity of the upper 30 metres of soil and/or bedrock below founding level. The OBC also permits the Site Class to be specified based solely on the stratigraphy and in situ testing data, rather than from direct measurement of the shear wave velocity. Based on

this methodology, it is considered that for the design of low-rise structures, a Site Class of D would be applicable for the development, with the exception of the houses in the area of borehole 17-12 where a Site Class E would be applicable (using the available information). Geophysical measurement of the shear wave velocity for the upper 30 metres of soil and/or bedrock below founding level in the area of borehole 17-12 would allow for a more accurate seismic Site Class to be specified, and to help assess whether a more favourable Site Class value could be assigned to this area.

It should be noted that the seismic Site Class is not directly applicable to structures designed in accordance with Part 9 of the OBC (i.e., conventional housing), however this assessment is provided to address City of Ottawa requirements that relate to housing on Site Class E sites.

5.6 Basement Excavations

Excavations for basements will be through the topsoil, fill, sands, silts and clays, as well as the underlying glacial till (where the till surface is shallow). No unusual problems are anticipated with excavating the overburden soils using conventional hydraulic excavating equipment.

Side slopes in the clayey overburden materials should be stable in the short term at 1 horizontal to 1 vertical in accordance with the Occupational Health and Safety Act (OHSA) of Ontario for Type 3 soils. However, if the water table is encountered within the excavations, the sandy and silty layers would be considered as Type 4 soils and side slopes of 3 horizontal to 1 vertical will be required.

Based on *present* groundwater levels, excavations deeper than about 0.2 metres may, in some areas, extend below the groundwater level. Where this is the case and the excavation encounters the relatively more permeable sandy soils, the excavation subgrade will be subject to time dependent disturbance caused by the upward flow of groundwater, resulting in possible disturbance of the excavation subgrade and potential instability of the excavation side slopes. However, considering the limited thickness of these deposits, it is considered that, for conventional excavation depths for basement construction, it should generally be possible to handle the groundwater inflow by pumping from well filtered sumps in the floor of the excavations. Where the subgrade is found to be wet and sensitive to disturbance, consideration should be given to placing a 150 millimetre thick layer of OPSS Granular A (following inspection and approval by geotechnical personnel) underlain by a non-woven geotextile or a mud slab of lean concrete, to protect the subgrade from construction traffic.

In these areas (of excavation below the groundwater level in sandy soils), some pre-drainage of the site using ditching or one or more shallow wells to lower the groundwater level to at least 0.5 metres below the floor of the excavation would assist in avoiding subgrade disturbance.

5.7 Basement and Garage Floor Slabs

In preparation for the construction of the basement floor slabs, all loose, wet, and disturbed materials should be removed from beneath the floor slabs. Provision should be made for at least 200 millimetres of 19 millimetre crushed clear stone to form the base of the basement floor slabs.

To prevent hydrostatic pressure build up beneath the basement floor slabs, it is suggested that the granular base material be positively drained. This could be achieved by providing a hydraulic link between the underslab fill material and the exterior drainage system.

The general groundwater level at this site is within about 0.2 metres of the existing ground surface (at least on portions of the site). The surficial sandy soils at this site are permeable and therefore, if/where the groundwater

level is encountered above basement subgrade level in these soil conditions, a geotextile could be required between the clear stone underslab fill and the sandy subgrade soils, to avoid loss of fine soil particles from the subgrade soil into the voids in the clear stone and ultimately into the drainage system. In the extreme case, loss of fines into the clear stone could cause ground loss beneath the slab and plugging of the drainage system. Where a geotextile is required, it should consist of a Class II non-woven geotextile with a FOS not exceeding 100 microns, in accordance with OPSS 1860.

The backfill material inside the garages and porches in Area B should have a unit weight of no greater than 19.5 kilonewtons per cubic metre (i.e., uniform fine sand or clear crushed stone). Note: there is no restriction on the unit weight of the backfill materials in Area A. The garage backfill should be placed in maximum 300 millimetre thick lifts and be compacted to at least 95 percent of the material's standard Proctor maximum dry density using suitable compaction equipment. The granular base for the garage floor slab should consist of at least 150 millimetres of OPSS Granular A compacted to at least 95 percent of the material's standard Proctor maximum dry density using dry density using suitable compaction equipment.

5.8 Basement Wall and Foundation Wall Backfill

The soils at this site are frost susceptible and should not be used as backfill directly against exterior, unheated, or well insulated foundation elements. To avoid problems with frost adhesion and heaving, a bond break such as Platon system sheeting should be placed against the foundation walls.

Drainage of the wall backfill should be provided by means of a perforated pipe subdrain in a surround of 19 millimetre clear stone, fully wrapped in geotextile, which leads by gravity drainage to an adjacent storm sewer or sump pit. Conventional damp proofing of the basement walls is appropriate with the above design approach.

Should the foundations be designed in accordance with Part 4 of the Ontario Building Code, further guidelines on the foundation wall design will need to be provided.

5.9 Site Servicing

Excavations for the installation of site services will be made through the topsoil, fill, layered sands, silts and clays, as well as the glacial till, and possibly into the underlying bedrock (particularly in the eastern portion of the site adjacent to Spratt Road). No unusual problems are anticipated with excavating the overburden using conventional hydraulic excavating equipment. However, it should be expected that boulders will be encountered within the glacial till and gravelly silty sand deposits. Boulders larger than 0.3 metres in size should be removed from the excavation side slopes for worker safety.

Bedrock removal could be accomplished using mechanical methods (such as hoe ramming) for shallow excavation depths. However, deeper excavations will likely require drill and blast procedures, as hoe ramming would be slow and inefficient.

In accordance with the OHSA of Ontario, the overburden soils above the water table would generally be classified as Type 3 soils, and side slopes in the overburden in the short term may be sloped at 1 horizontal to 1 vertical. Excavation side slopes below the groundwater level in the sandier overburden soils would need to be cut back at 3 horizontal to 1 vertical (i.e., Type 4 soils). Alternatively, excavations within the overburden could also be carried out within a fully braced steel trench box, which would minimize the width of the excavation.

Stockpiling of soil beside the excavations made in the silty clay should be avoided; the weight of the stock piled soil could lead to basal instability of braced excavations or slope instability for unsupported excavations.

Near-vertical excavation side slopes in the bedrock should be feasible, at least for shallow depths of excavation (e.g., less than about 3 metres depth). The stability of deeper excavations would need further assessment.

Blasting should be controlled to limit the peak particle velocities at all adjacent structures or services (such as may be created by the development phasing) such that blast induced damage will be avoided. Blast designs should be prepared by a specialist in this field.

A pre-blast survey should be carried out of all the surrounding structures and utilities.

The contractor should be required to submit a complete and detailed blasting design and monitoring proposal prepared by a blasting/vibrations specialist prior to commencing blasting. This submission would have to be reviewed and accepted in relation to the requirements of the blasting specifications.

The contractor should be limited to only small controlled shots. The following frequency dependent peak vibration limits at the nearest structures and services are suggested.

Frequency Range (Hz)	Vibration Limits (mm/sec)
< 10	5
10 to 40	5 to 50 (sliding scale)
> 40	50

It is recommended that the monitoring of ground vibration intensities (peak ground vibrations and accelerations) from the blasting operations be carried out both in the ground adjacent to the closest structures/utilities and within the structures/utilities themselves.

Some groundwater inflow into the excavations should be expected. However, it should generally be possible to handle the groundwater inflow by pumping from well filtered sumps in the excavations provided suitably sized pumps are used. Somewhat higher rates of groundwater inflow could be expected where the excavation extends into/through deep sandy layers such as were encountered at boreholes 17-21, 17-26, 17-27, and 17-28 on the eastern portion of the site. In these areas, active dewatering of the sandy layers in advance of excavation could be necessary, such as by pumping from shallow wells. However, the need for such measures will depend on the design invert levels of the sewers. This issue should be reviewed further once the design sewer levels are known. Consideration should also be given to carrying out a test excavation at the bidding stage so that the contractors can directly view the groundwater flow conditions.

The hydraulic conductivity of the bedrock is also not known, but trenches in the bedrock could also potentially encounter significant groundwater inflow. The bedrock formations which are mapped to underlie this site are known to often have a very high hydraulic conductivity. A significant fault is also mapped to cross this site. If trenches into the bedrock will be required, further investigation to evaluate the bedrock hydraulic conductivity should be considered.

The actual rate of groundwater inflow to the trenches will depend on many factors including the contractor's schedule and rate of excavation, the size of the excavation, and the time of year at which the excavation is made. There also may be instances where significant volumes of precipitation and/or groundwater collects in an open excavation, and must be pumped out. According to Ontario Regulation 63/16 and Ontario Regulation 387/04, a Permit to Take Water (PTTW) is required from the Ministry of the Environment and Climate Change (MOECC)

if a volume of water greater than 400,000 Litres/day is pumped from the excavations. If the volume of water to be pumped will be less than 400,000 Litres/day, but more than 50,000 Litres/day, the water taking will not require a PTTW, but will need to be registered in the Environmental Activity and Sector Registry (EASR) as a prescribed activity. The anticipated dewatering rate should be confirmed once more details about the site servicing are known to determine if either a PTTW or EASR is required for this site.

At least 150 millimetres of OPSS Granular A should be used as pipe bedding for sewer and water pipes (or 300 millimetres where the trench is in bedrock). Where unavoidable disturbance to the subgrade surface does occur, it may be necessary to place a sub-bedding layer consisting of compacted OPSS Granular B Type II beneath the Granular A or to thicken the Granular A bedding. Where the sewers will likely be installed directly in the unweathered silty clay, it is likely that additional bedding thickness (e.g., 300 millimetres) will be required. The bedding material should, in all cases, extend to the spring line of the pipe and should be compacted to at least 95 percent of the material's standard Proctor maximum dry density. The use of crushed clear stone as a bedding layer should not be permitted anywhere on this project since fine particles from the sandy backfill materials or sandy soils on the trench walls could potentially migrate into the voids in the clear crushed stone and cause loss of lateral pipe support.

Cover material, from spring line of the pipe to at least 300 millimetres above the top of pipe, should consist of OPSS Granular A or Granular B Type I with a maximum particle size of 25 millimetres. The cover material should be compacted to at least 95 percent of the material's standard Proctor maximum dry density.

It should generally be possible to re-use the drier silty clay, clayey silt, sandy silt, silty sand, and glacial till as trench backfill. Boulders larger than 300 millimetres in diameter should be removed from the overburden materials.

However, the high moisture content of the unweathered clayey and silty soils makes these soils difficult to handle and compact. If these materials are excavated during installation of the site services, they should be wasted or should only be used as backfill in the lower portion of the trenches to limit the amount of long term settlement of the roadway surface. If the unweathered silty and clayey materials are used in trenches under roadways, long term settlement of the pavement surface should be expected. Some significant padding of the roadways may be required prior to final paving. In that case, it would also be prudent to delay final paving for as long as practical.

Well fractured or well broken bedrock will be acceptable as backfill for the lower portion of the service trenches in areas where the excavation is in rock. The rock fill, however, should only be placed from at least 300 millimetres above the pipes to minimize damage due to impact or point load. The rock fill should be limited to a maximum of 300 millimetres in size.

Where the trench will be covered with hard surfaced areas, the type of native material placed in the frost zone (between subgrade level and 1.8 metres depth) should match the soil exposed on the trench walls for frost heave compatibility. Trench backfill should be placed in maximum 300 millimetre thick lifts and should be compacted to at least 95 percent of the material's standard Proctor maximum dry density using suitable compaction equipment.

Impervious dykes or cut-offs should be constructed at 100 metre intervals in the service trenches to reduce groundwater lowering at the site due to the "french drain" effect of the granular bedding and surround for the service pipes. It is important that these barriers extend from trench wall to trench wall and that they fully penetrate the granular materials to the trench bottom. The dykes should be at least 1.5 metres wide and could be constructed using relatively dry (i.e., compactable) grey brown silty clay from the weathered zone.

5.10 Pavement Design

In preparation for pavement construction, all topsoil, fill, disturbed, or otherwise deleterious materials (i.e., those materials containing organic material) should be removed from the roadway areas.

Pavement areas requiring grade raising to proposed subgrade level should be filled using acceptable OPSS Select Subgrade Material (SSM). The SSM should be placed in maximum 300 millimetre thick lifts and should be compacted to at least 95 percent of the material's standard Proctor maximum dry density using suitable compaction equipment.

The surface of the pavement subgrade should be crowned to promote drainage of the roadway granular structure. Perforated pipe sub-drains should be provided at subgrade level extending from the catch basins for a distance of at least 3 metres longitudinally, parallel to the curb in two directions.

Pavement ComponentThickness
(millimetres)Asphaltic Concrete90OPSS Granular A Base150OPSS Granular B Type II Subbase375

The pavement structure for local roads without bus or truck traffic should consist of:

The pavement structure for collector roadways which will include bus and truck traffic should consist of:

Pavement Component	Thickness (millimetres)
Asphaltic Concrete	90
OPSS Granular A Base	150
OPSS Granular B Type II Subbase	450

For arterial roadways, the subbase thickness should be increased to 600 millimetres.

The granular base and subbase materials should be uniformly compacted as per OPSS 501, Method A. The asphaltic concrete should be compacted in accordance with the procedures outlined in OPSS 310

The composition of the asphaltic concrete pavement should be as follows:

- Superpave 12.5 mm Surface Course 40 millimetres
- Superpave 19 mm Base Course 50 millimetres

The asphaltic cement should consist of PG 58-34 and the design of the mixes should be based on a Traffic Category B for local roads and Category D for collector roads.

The above pavement designs are based on the assumption that the pavement subgrade has been acceptably prepared (i.e., where the trench backfill and grade raise fill have been adequately compacted to the required density and the subgrade surface not disturbed by construction operations or precipitation). Depending on the actual conditions of the pavement subgrade at the time of construction, it could be necessary to increase the thickness of the subbase and/or to place a woven geotextile beneath the granular materials.

5.11 Pools, Decks and Additions

The following guidelines are provided to address some typical requirements of the City of Ottawa.

5.11.1 Above Ground and In Ground Pools

There are no restrictions for above ground pools in Area A.

For Area B, no special geotechnical considerations are necessary for the installation of in-ground pools, provided that the pool (including piping) does not extend deeper than the house footing level. A geotechnical assessment will be required if the pool extends deeper than the house foundations.

For Area B, due to the additional loads that would be imposed by the construction of *above-ground pools*, these should be located no closer than 2 metres from the outside wall of the house. In addition, the installation of an above-ground pool should not be permitted to alter the existing grades within 2 metres of the house. Provided these restrictions are adhered to, no further geotechnical assessment should be required for above-ground pools.

5.11.2 Decks

For Area A, no special geotechnical considerations area necessary for decks.

For Area B, a geotechnical evaluation/assessment will be necessary for future decks that:

- are attached to the house;
- require changes to the existing grades; or,
- are heavily loaded and require spread footing or drilled pier foundations.

The geotechnical evaluation must consider the proposed grading, foundation types and sizes, depths of foundations, and design bearing pressures. Written approval from a geotechnical engineer should be required by the City of Ottawa prior to a building permit being issued.

5.11.3 Additions

For both Areas A and B, any proposed addition to a house (regardless of size) will require a geotechnical assessment. The geotechnical assessment must consider the proposed grading, foundation types and sizes, depths of foundations, and design bearing pressures. Written approval from a geotechnical engineer should be required by the City of Ottawa prior to the building permit being issued.

5.12 Corrosion and Cement Type

Samples of soil from boreholes 17-9 and 17-20 were submitted to Eurofin Environment Testing for basic chemical analysis related to potential corrosion of buried steel elements and potential sulphate attack on buried concrete elements. The results of this testing are provided in Appendix B. The results indicate that concrete made with Type GU Portland cement should be acceptable for substructures. The results also indicate a potential for corrosion of exposed ferrous metal, which should be considered in the design of substructures.

5.13 Trees

The clay soils on this site are potentially sensitive to water depletion by trees of high water demand during periods of dry weather. When trees draw water from clay soil, the clay undergoes shrinkage which can result in settlement of adjacent structures. Some restrictions could therefore need to be imposed on the planting of trees of higher water demand in close proximity to the foundations of houses or other structures founded at shallow depth. The required set-backs can be evaluated once further details are available on the site grading design.

6.0 ADDITIONAL CONSIDERATIONS

The soils at this site are sensitive to disturbance from ponded water, construction traffic, and frost.

All footing and subgrade areas should be inspected by experienced geotechnical personnel prior to filling or concreting to ensure that soil having adequate bearing capacity has been reached and that the bearing surfaces have been properly prepared. The placing and compaction of any engineered fill as well as sewer bedding and backfill should be inspected to ensure that the materials used conform to the specifications from both a grading and compaction point of view.

At the time of the writing of this report, only preliminary details for the proposed subdivision were available. Golder Associates should be retained to review the guidelines provided in this report once additional details are known.

Depending on the required sewer excavation depths, additional hydrogeological investigation could be required in order to evaluate the hydraulic conductivity of (and potential inflow from) the deep gravelly silty sand layers and/or the bedrock in order to support a EASR or PTTW application. It should also be confirmed that the boreholes drilled as part of this investigation extend below the required excavation depths for the sewers (since the invert levels are not currently known.

For any higher/heavier structures (e.g., schools, commercial buildings etc.) proposed for the site that will be designed in accordance with Part 4 of the OBC, further investigation will be required to support the site plan and building permit applications and additional geotechnical guidelines will need to be provided for detailed design.

The soil and groundwater quality was tested in areas where issues of potential environmental concern were identified during the Phase I Environmental Site Assessment. The reader is referred to the Phase II ESA report for this project, which is provided under separate cover.

The groundwater level monitoring devices (i.e., standpipe piezometers or wells) installed at the site will require decommissioning at the time of construction in accordance with Ontario Regulation 128/03. However, it is expected that most of the wells will either be destroyed during construction or can be more economically abandoned as part of the construction contract. If that is not the case or is not considered feasible, abandonment of the monitoring wells can be carried out separately.

7.0 CLOSURE

We trust this report satisfies your current requirements. If you have any questions regarding this report, please contact the undersigned.

WAM/SAT/TMS/mvrd n:\active\2016\3 proj\1658448 claridge riverside south lands ottawa\08_reports\geotechnical\final\1658448 final rpt-001 october 2017.docx

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client, <u>Claridge Homes Corporation</u>. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then the client may authorize the use of this report for such purpose by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process, provided this report is not noted to be a draft or preliminary report, and is specifically relevant to the project for which the application is being made. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

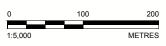
IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. **The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report.** The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

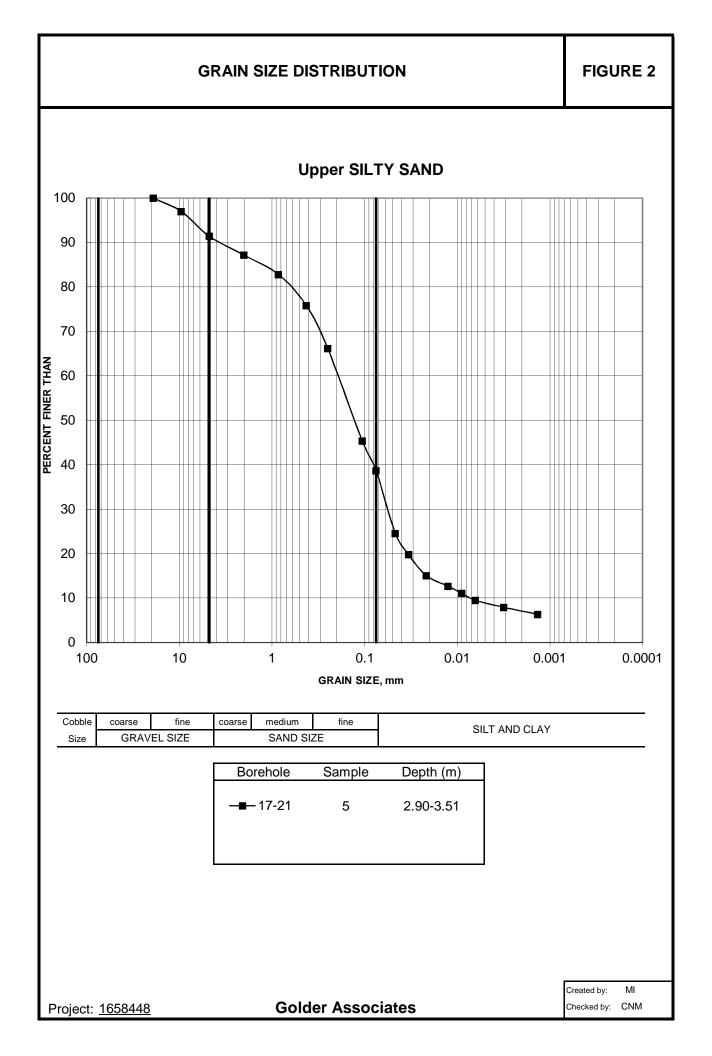

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

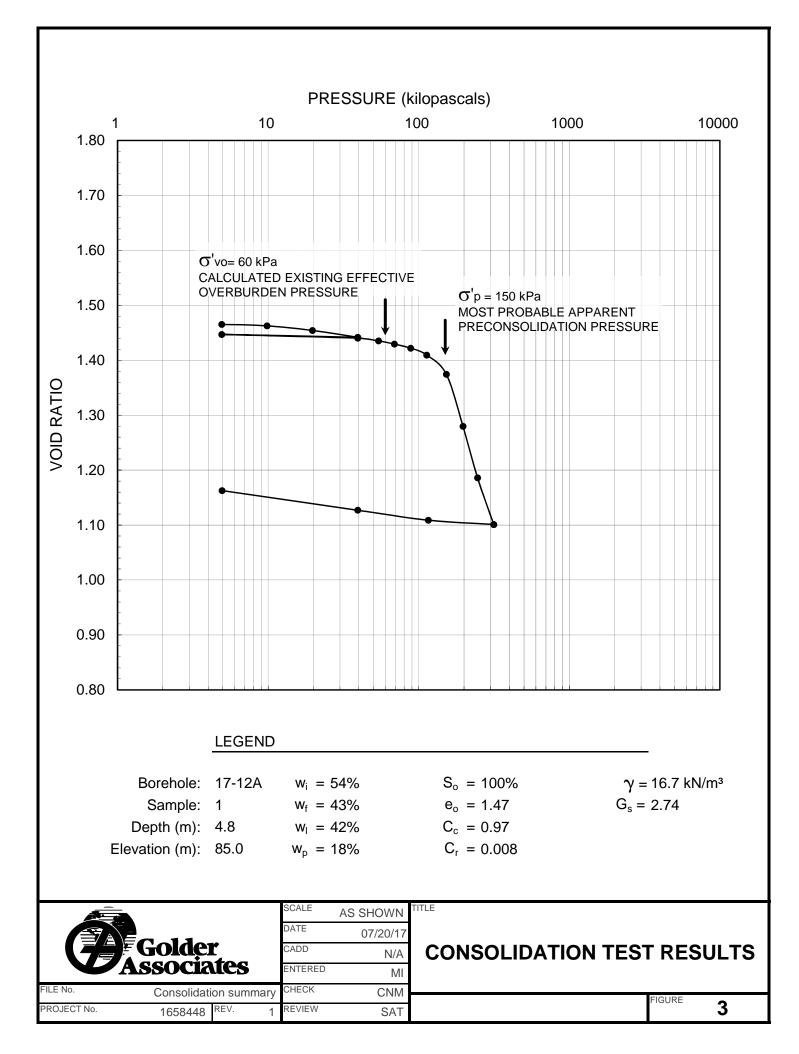

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

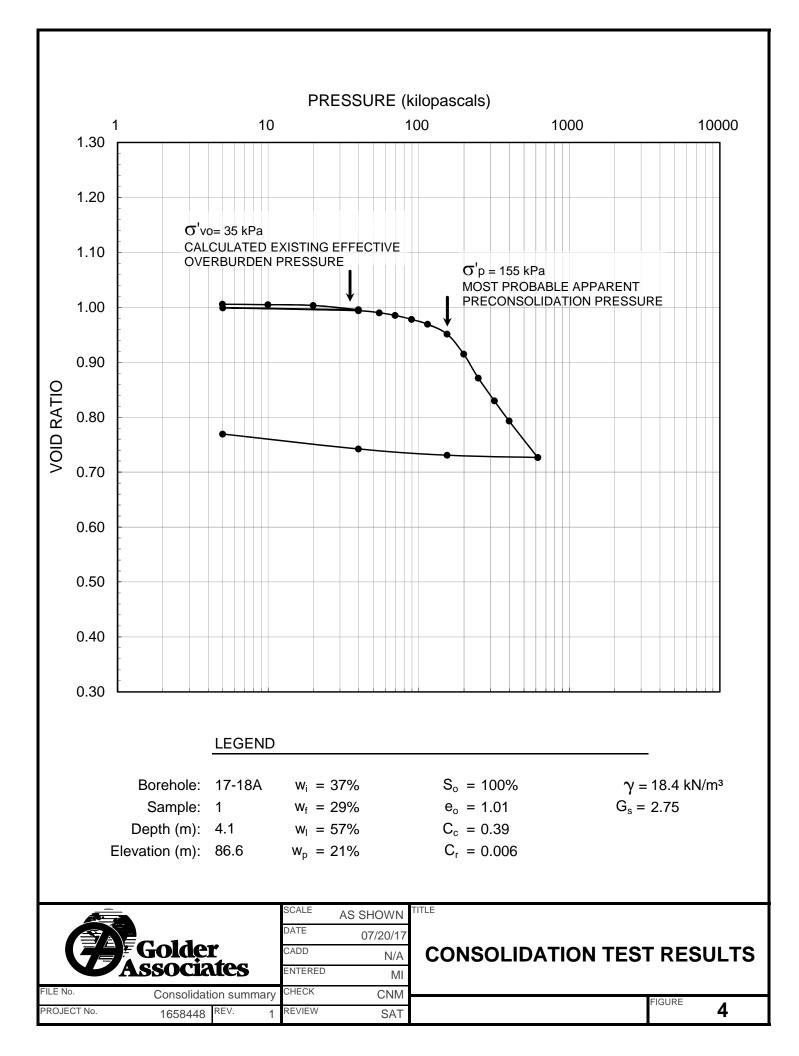

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

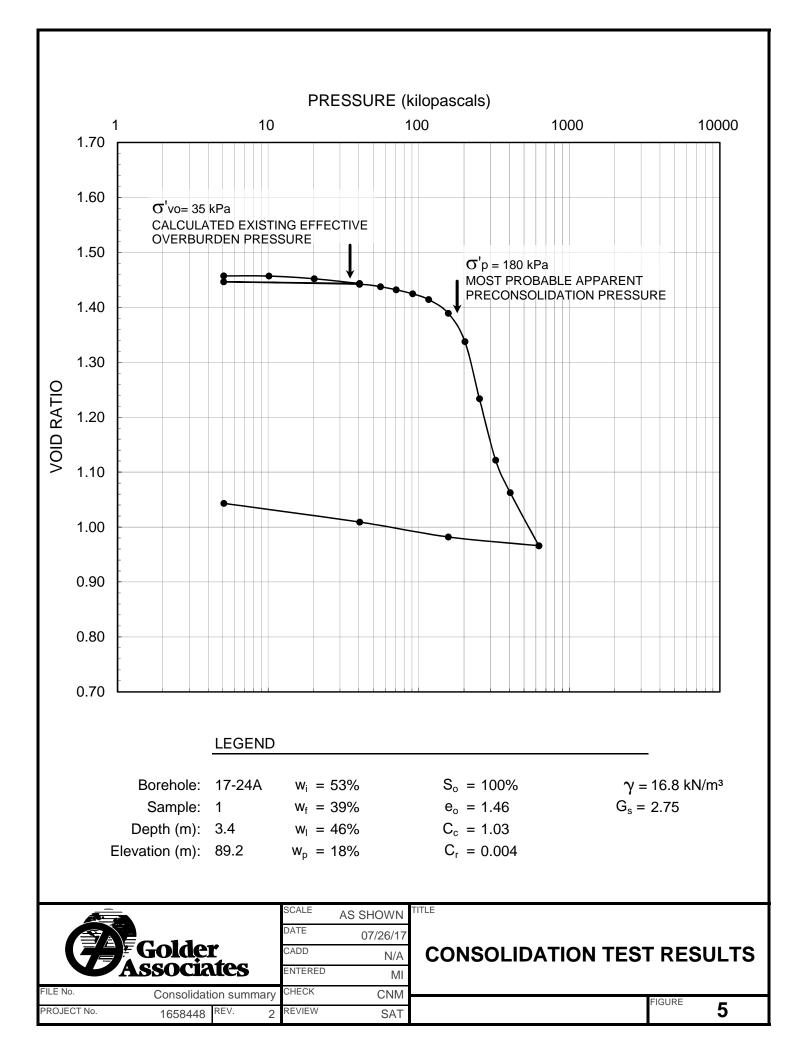
Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

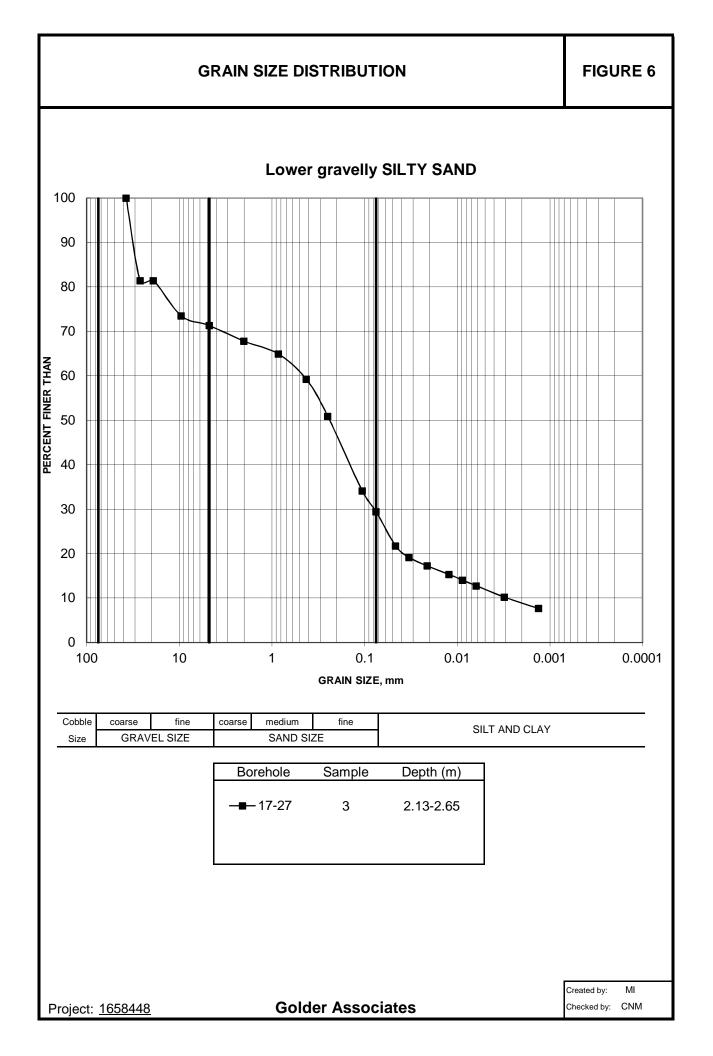
Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

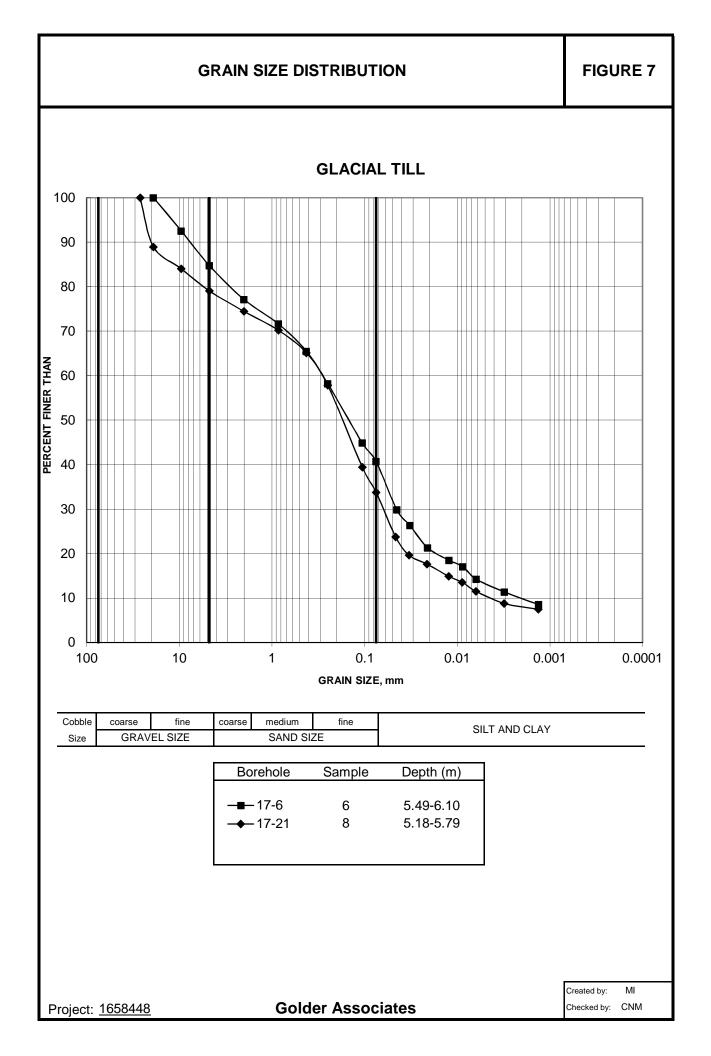



CLIENT CLARIDGE HOMES CORPORATION


PROJECT GEOTECHNICAL INVESTIGATION RIVERSIDE SOUTH LANDS - RIVER ROAD AND SPRATT ROAD OTTAWA, ONTARIO TITLE


SITE PLAN


CONSULTANT		YYYY-MM-DD	2017-03-07	
-		DESIGNED		
	Golder	PREPARED	JM	
	ssociates	REVIEWED	SAT	
		APPROVED	TMS	
PROJECT NO.	PHASE	RE	EV.	FIGURE
1658448	1000	A		1



APPENDIX A

Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes List of Symbols Lithological and Geotechnical Rock Description Terminology Record of Borehole and Drillhole Sheets

METHOD OF SOIL CLASSIFICATION

Organic or Inorganic	Soil Group	Type of	f Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name										
	<u> </u>									-	Gravels with ≤12%	Poorly Graded		<4		≤1 or 3	≥3		GP	GRAVEL		
(ss	5 mm)	VELS / mass action 14.75 I	A STE			≥4		1 to 3	3		GW	GRAVEL										
by ma	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	GRAVEL 50% by ma barse fraction er than 4.7		Below A Line			n/a				GM	SILTY GRAVEL										
SANIC t ≤30%	AINED rger th		>12% fines (by mass)	Above A Line			n/a			<20%	GC	CLAYEY GRAVEL										
INORGANIC (Organic Content ≤30% by mass)	SE-GR/ ss is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or i	≥3	≤30%	SP	SAND										
ganic (COARS by mai	SANDS 6 by mass se fraction than 4.75	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND										
Ō	(>50%	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND										
		smal	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND										
Organic						I	Field Indica	tors														
or Inorganic	Soil Group	Type of	f Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name										
	(Olganic Content ∋00% by mass) FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	(Organic Content ∋00% by mass) FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	(Organic Content ≤ 0.0 k 0 mass) FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	(Organic Content 530% by mass) FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	(Ugane Content 2007 by mass) FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)						. plot	I familed I family	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(ss						and LL	s Land L city low)	Liquid Limit <50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SIL						
by ma						OILS an 0.0	OILS an 0.0	OILS	OILS	OILS	DILS	SILTS SILTS (Non-Plastic or Pl and LL plot bolow A 1 inc.	SILTS astic or PI and below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT
ANIC ≤30%						ו-Plasti	e e e	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SIL						
INORGANIC Content ≤30%						FINE-GRAI	FINE-GRAI	FINE-GRAI	FINE-GRAI	FINE-GRAI by mass is sm	(Nor	N)	≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT	
ganic (FINE	FINE	by mas	FINE by mas	olot	olot e on nart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium
D.								ILAYS Ind LL p	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY				
					(Pla	Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY							
	الله الله الله الله الله الله الله الله									30% to 75%		SILTY PEAT SANDY PEA										
HIGHLY ORGANIC SOILS	by mai	Predominantly peat, may contain some mineral soil, fibrous or							75% to 100%	PEAT												
40 30 ((d) X4	Low Plasticity Medium Plasticity High Plasticity Dual Symbol — A d a hyphen, for examp For non-cohesive so the soil has betwee transitional material gravel.			for example, bhesive soils, as between Il material b	GP-GM, S the dual s 5% and etween "c	SW-SC and Cl ymbols must b 12% fines (i.e	ML. e used whe e. to identif rty" sand c															
Plasticity Index (PI) 05 -	ст окранис silt он liquid limit and pl stiffe				and plasticity	y index val	ues plot in the	CL-ML are														

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

Liquid Limit (LL) Note 1 - Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT.

CLAYEY SILT ML ORGANIC SILT OL

SILTY CLAY

20 25.5

SILTY CLAY-CLAYEY SILT, CL-MI

10

SILT ML (See Note 1)

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

10

70

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)			
BOULDERS	Not Applicable	>300	>12			
COBBLES	Not Applicable	75 to 300	3 to 12			
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75			
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)			
SILT/CLAY	Classified by plasticity	<0.075	< (200)			

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL, SAND and CLAY)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_t), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS

Compactness ²						
	Term	SPT 'N' (blows/0.3m) ¹				
,	Very Loose	0 - 4				
	Loose	4 to 10				
	Compact	10 to 30				
	Dense	30 to 50				
١	/ery Dense	>50				
	Field Meint	ure Condition				
Term						
Term	L	Description				
Dry	Soil flows freely thre	ough fingers.				
Moist	Soils are darker tha may feel cool.	an in the dry condition and				
Moist Wet	may feel cool.	an in the dry condition and ree water forming on hands				

S V	MPI	ES
SA		LES

SAMPLES					
AS	Auger sample				
BS	Block sample				
CS	Chunk sample				
DO or DP	P Seamless open ended, driven or pushed tube sampler – note size				
DS	Denison type sample				
FS	Foil sample				
GS	Grab Sample				
RC	Rock core				
SC	Soil core				
SS	Split spoon sampler – note size				
ST	Slotted tube				
ТО	Thin-walled, open – note size				
TP	Thin-walled, piston – note size				
WS	Wash sample				

SOIL TESTS

SUIL TESTS	
w	water content
PL, w _p	plastic limit
LL, wL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
МН	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight
1. Tests whi	ch are anisotropically consolidated prior to shear are show

Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU. COHESIVE SOILS

CONLOIVE C

Consistency										
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)								
Very Soft	<12	0 to 2								
Soft	12 to 25	2 to 4								
Firm	25 to 50	4 to 8								
Stiff	50 to 100	8 to 15								
Very Stiff	100 to 200	15 to 30								
Hard	>200	>30								

 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

effects; approximate only.

 SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content									
Term	Description								
w < PL	Material is estimated to be drier than the Plastic Limit.								
w ~ PL	Material is estimated to be close to the Plastic Limit.								
w > PL	Material is estimated to be wetter than the Plastic Limit.								

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π In x Iog ₁₀ g t	3.1416 natural logarithm of x x or log x, logarithm of x to base 10 acceleration due to gravity time	w _I or LL w _p or PL I _p or PI Ws I _L IC emax emin	liquid limit plastic limit plasticity index = $(w_l - w_p)$ shrinkage limit liquidity index = $(w - w_p) / I_p$ consistency index = $(w_l - w) / I_p$ void ratio in loosest state void ratio in densest state
II.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
$\gamma \Delta$	shear strain change in, e.g. in stress: $\Delta \sigma$	(b) h	Hydraulic Properties hydraulic head or potential
8 Ev n	linear strain volumetric strain coefficient of viscosity	q v i	rate of flow velocity of flow hydraulic gradient
η υ σ	Poisson's ratio total stress	k	hydraulic conductivity (coefficient of permeability)
σ΄ σ΄ _{νο}	effective stress ($\sigma' = \sigma - u$) initial effective overburden stress principal stress (major, intermediate,	j	seepage force per unit volume
01, 02, 03	minor)	(c) C _c	Consolidation (one-dimensional) compression index
σ_{oct}	mean stress or octahedral stress = $(\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	(normally consolidated range) recompression index
τ u	shear stress porewater pressure	Cs	(over-consolidated range) swelling index
E G	modulus of deformation shear modulus of deformation	Cα mv	secondary compression index coefficient of volume change
ĸ	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch T	coefficient of consolidation (horizontal direction)
III.	SOIL PROPERTIES	Tv U	time factor (vertical direction) degree of consolidation
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	σ΄ _Ρ OCR	pre-consolidation stress over-consolidation ratio = $\sigma'_{P} / \sigma'_{vo}$
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρw(γw) ρs(γs) γ΄	density (unit weight) of water density (unit weight) of solid particles unit weight of submerged soil	τ _ρ , τ _r φ΄ δ	peak and residual shear strength effective angle of internal friction angle of interface friction coefficient of friction = tan δ
DR	$(\gamma' = \gamma - \gamma_w)$ relative density (specific gravity) of solid particles (D _R = ρ_s / ρ_w) (formerly G _s)	μ C΄ Cu, Su	effective cohesion undrained shear strength ($\phi = 0$ analysis)
e n S	void ratio porosity degree of saturation	p p' q q _u St	mean total stress $(\sigma_1 + \sigma_3)/2$ mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$ compressive strength $(\sigma_1 - \sigma_3)$ sensitivity
where	ty symbol is ρ . Unit weight symbol is $\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)	Notes: 1 2	τ = c' + σ' tan φ' shear strength = (compressive strength)/2

WEATHERINGS STATE

Fresh: no visible sign of rock material weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Bedding Plane Spacing
Greater than 2 m
0.6 m to 2 m
0.2 m to 0.6 m
60 mm to 0.2 m
20 mm to 60 mm
6 mm to 20 mm
Less than 6 mm

JOINT OR FOLIATION SPACING

Description	Spacing
Very wide	Greater than 3 m
Wide	1 m to 3 m
Moderately close	0.3 m to 1 m
Close	50 mm to 300 mm
Very close	Less than 50 mm

GRAIN SIZE

<u>Size*</u>
Greater than 60 mm
2 mm to 60 mm
60 microns to 2 mm
2 microns to 60 microns
Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, as measured along the centerline axis of the core, relative to the length of the total core run. RQD varies from 0% for completely broken core to 100% for core in solid segments.

DISCONTINUITY DATA

Fracture Index

A count of the number of naturally occuring discontinuities (physical separations) in the rock core. Mechanically induced breaks caused by drilling are not included.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

MB Mechanical Break

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations		
JN Joint	PL	Planar
FLT Fault	CU	Curved
SH Shear	UN	Undulating
VN Vein	IR	Irregular
FR Fracture	К	Slickensided
SY Stylolite	PO	Polished
BD Bedding	SM	Smooth
FO Foliation	SR	Slightly Rough
CO Contact	RO	Rough
AXJ Axial Joint	VR	Very Rough
KV Karstic Void		

Golder

PROJECT: 1658448

RECORD OF BOREHOLE: 17-1

SHEET 1 OF 1

BORING DATE: January 13, 2017

DATUM: Geodetic PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5012839.8 ;E 367953.0

SAMPLER HAMMER, 64kg; DROP, 760mm

щ	1	ģ	SOIL PROFILE			SA	MPL	ES	DYNA RESIS	MIC PEN TANCE,	ETRATI BLOWS	DN /0.3m	$\overline{\boldsymbol{\lambda}}$	HYDR	AULIC Co k, cm/s	ONDUCT	IVITY,		⊡ بـ	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD		STRATA PLOT		н.		BLOWS/0.30m		1			10		0 ⁻⁶ 1			0-3	ADDITIONAL LAB. TESTING	OR
Ξ₩		ŰNG	DESCRIPTION	TA F	ELEV. DEPTH		TYPE	VS/0.	SHEA Cu, kF	R STREM	IGTH I	nat V. + em V.⊕	Q - ● U - O		ATER C				B. H	INSTALLATION
Ľ		BOR		3TR/	(m)	۲	[SLOV							⊳ ⊢				LA A	
			GROUND SURFACE	0,	89.98				2	20 4	10 (30 E	0	2	0 4	06	30 0i	30		
0			TOPSOIL - (ML) sandy SILT; dark brown; non-cohesive (CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		0.06		ss	5							0					
2	Auger	(Hollow Stem)			87.85		ss	4												
3	Power /	200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff			3	SS	5								—				Bentonite Seal
			(ML-SM) gravelly sandy SILT to SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, compact		86.78 3.20		SS	8												Native Backfill
4						5	ss	26						0						Silica Sand Standpipe
5		.	End of Borehole Auger Refusal		85.48															WL in Standpipe at Elev. 89.58 m on Jan. 30, 2017
7																				
8																				
9																				
10																				

MIS-BHS 001

RECORD OF BOREHOLE: 17-2

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 5012927.0 ;E 368096.0

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 16, 2017

л Д	OCH.		SOIL PROFILE		1	SA			DYNAMIC PENETRA RESISTANCE, BLO	VS/0.3m	Ľ,		cm/s			RGAL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa			Wp H	10 ⁻⁵ ER CONTE	NT PERC	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0 -		GROUND TOPSOIL brown; no (SM) SILT non-cohes	SURFACE - (SM) SILTY SAND, fine; dar n-cohesive Y SAND, fine; brown; sive, moist ILTY CLAY to CLAY; grey		90.52 0.00 90.27 0.25 90.00 0.52			B	20 40	60	80	20	40	60	80		
1		brown, co fissured (\ cohesive,	Land SM) SILTY CLAY,		89.15 1.37	1	SS	7									
2	Power Auger	brown (W cohesive,	SILT and SILTY SAND; grey EATHERED CRUST); w>PL, very stiff		88.39	2	ss	3									
	-	(CI/CH) S brown, fise cohesive,	ILTY CLAY to CLAY; grey sured (WEATHRED CRUST); w>PL, very stiff		2.13	3	ss	4									
3					86.71	4	ss	8									
4		End of Bo Auger Ref			3.81												
5																	
6																	
7																	
8																	
9																	
10																	
DEI	PTH	I SCALE							Gold	er			1			LC	OGGED: PAH

RECORD OF BOREHOLE: 17-2A

LOCATION: N 5012927.0 ;E 368096.0

BORING DATE: January 16, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013008.0 ;E 368232.2

RECORD OF BOREHOLE: 17-3

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: January 10, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SAMPLER HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 30m 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR 20 40 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -0^W Wp H - WI (m) 40 60 80 20 40 60 80 GROUND SURFACE 91.08 0 TOPSOIL - (ML) CLAYEY SILT; brown; 0.00 non-cohesive 90.78 0.30 (ML and SM) SILT, CLAYEY SILT and SILTY SAND; grey brown; non-cohesive, wet, very loose to loose SS 5 0 1 Native Backfill $\nabla \mathbf{k}$ 2 SS 3 89.25 1.83 (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff 2 3 SS 4 0 Bentonite Seal Power Auger n Diam. (Hollow 88.09 3 (SM) gravelly SILTY SAND; grey brown, 2.99 mm Diam. contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, SS 10 4 compact to dense 8 5 SS 34 4 Native Backfill 6 SS 28 0 5 Silica Sand SS 32 7 Standpipe 6 84.98 End of Borehole 6.10 WL in Standpipe at Elev. 89.76 m on Jan. 30, 2017 7 8 M 1658448.GPJ GAL-MIS.GDT 10/10/17 9 10 MIS-BHS 001 DEPTH SCALE LOGGED: PAH Golder 1:50 CHECKED: SAT ssociates

RECORD OF BOREHOLE: 17-4

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 5013152.1 ;E 368203.6

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 10, 2017

ц 	ПОН	SOIL PROFILE	1. 1	s/	AMPLE	RESISTANCE, E	TRATION 3LOWS/0.3m	Ì.		IC CONDUCT cm/s	IVITY,	ZG Z	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m)		TYPE	20 41 SHEAR STREN Cu, kPa		80 ⊢ Q - ● ₱ U - O	10 ⁻⁶ H WAT Wp H	10 ⁻⁵ 10 ER CONTENT	PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	8	GROUND SURFACE				20 4	0 60	80	20	40 6	0 80	_	
0		TOPSOIL - (ML) CLAYEY SILT; dark	91.01									_	
		brown; non-cohesive (ML and SM) SILT, CLAYEY SILT and	90.71 0.30	1									
		SILTY SAND; grey brown; non-cohesive, wet, very loose to loose		-	$\left \right $								
1				1	SS								Ā
													_
				2	SS								
2		(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED	89.03										
		brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		3	SS								
3	w Stem)			\vdash	$\left \right $								
	Power Auger mm Diam. (Hollow Stem)	(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,	87.73 3.28		SS								
	Dov 0 mm Dia	(GLACIAL TILL); non-cohesive, wet, compact to very dense											
4	200			5	ss z								
				6	ss >								
				ľ		Ĭ							
5													
				\vdash	$\left \right $								
				7	ss 2	5							
6													
				8	SS ⁻								
		End of Borehole	84.27 6.74										
7		Auger Refusal											WL in open borehole at 1.10 m depth below
													ground surface upon completion of drilling
8													
9													
10													
DF	PTHS	SCALE					 				I		DGGED: PAH
1:							older ociates						ECKED: SAT

RECORD OF BOREHOLE: 17-5

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 5013072.9 ;E 368083.3

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 10, 2017

ц Д	UCH.		SOIL PROFILE	- L-		SA	MPLI		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ВÅ	PIEZOMETER
METRES	RORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q. • rem V. ⊕ U - O 20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp → → W WI 20 40 60 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		-	GROUND SURFACE TOPSOIL - (ML) CLAYEY SILT; brown; non-cohesive (ML and SM) SILT, CLAYEY SILT and SILTY SAND; grey brown; non-cohesive,		90.40 0.00 90.15 0.25	1	GRAB					
1			wet, very loose to loose			2	SS	4				∑
2			(CI/CH) SILTY CLAY to CLAY; grey brown, fissured, contains clayey silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff		89.03 1.37 88.27		SS	4				
		w Stem)	(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		2.13 87.50	4	SS	3				
3	Power Auger	200 mm Diam. (Hollo	(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		2.90		ss	2				
4									>96 +			
5						6	SS	2				
6			(CI/CH) SILTY CLAY to CLAY; grey, contains clayey silt seams; cohesive, w>PL, very stiff		84.76 5.64 84.46 5.94	_	SS	4	>96 + >96 +			
			(ML) sandy SILT, some gravel; grey (GLACIAL TILL); non-cohesive, wet, very loose to loose End of Borehole		84.15 6.25							VL in open porehole at 0.80 m lepth below ground surface upon completion of
7											Ċ	Irilling
8												
9												
10												
	PTł	-1 S(CALE						Golder		LO	GGED: PAH

RECORD OF BOREHOLE: 17-6

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 5013009.8 ;E 367980.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 9, 2017

	Ŭ H.	╞	SOIL PROFILE	1.1		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	Ì,	k, (IC CONDUCTIVITY, cm/s		lg₽	PIEZOMETER
METRES	BORING METHOD			STRATA PLOT		Я		BLOWS/0.30m		80	10-6		10-3	AUUITIONAL LAB. TESTING	OR STANDPIPE
ME	SING		DESCRIPTION	ATA I	ELEV. DEPTH	NUMBER	TYPE	WS/C	SHEAR STRENGTH nat V. + Cu, kPa rem V. €	- Q - ● 9 U - O			ENT 2		INSTALLATION
i	BOF			STR/	(m)	z	`	BLO		80	Wp — 20	40 60	WI 4	47]	
		+	GROUND SURFACE		90.26			-			20			+	
0	Τ	+	TOPSOIL - (ML) CLAYEY SILT; dark		0.00					1				+	
			brown; non-cohesive (CI/CH-ML and SM) SILTY CLAY,		0.15										
			CLAYEY SILT and SILTY SAND: grev												
			brown (WEATHERED CRUST); cohesive, w>PL, very stiff				1								
						1	SS	3							
1															∇
															- <u></u> -
						2	SS	2							
2															
						3	SS	2				0			
		Stem													
	ger	ollow													
3	Power Auger	mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY. arev		87.21 3.05										
	Pov	m Dia	(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			4	SS	3							
		200 m	UNCOT , CONSIVE, WARE, VELY SUIT												
		×													
4										>96 +					
-					85.99					>96 +					
		F	(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, stiff		4.27										
			CONCORC, WALE, SUIT												
						5	SS	2				0			
5					or 00										
		┢	(SM) gravelly SILTY SAND, some		85.08 5.18										
			gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive,												
			wet, compact			-									
6						6	SS	16			0			мн	
0		+	End of Borehole	9449	84.16 6.10										
														Ņ	VL in open
														d	orehole at 1.22 m epth below
															round surface pon completion of rilling
7														ľ	
8															
9															
10															
DEI	PTH	I SC	CALE											LO	GGED: PAH
									Golder						

LOCATION: N 5012933.6 ;E 367859.5

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 17-7

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: January 5, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER 30m STRATA PLOT 40 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR 20 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -0^W Wp 🛏 - WI (m) 40 20 40 60 80 20 60 80 GROUND SURFACE 90.24 0 FILL/TOPSOIL - (SM) SILTY SAND; 0.00 dark brown; moist 89.94 FILL - (SP-CL/CI) Mixture of SAND and SILTY CLAY; brown to grey brown; non-cohesive, moist, loose to very loose 0.30 1 RA 89.18 2 SS 4 (CI/CH) SILTY CLAY to CLAY, some sand; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff 3 SS 6 2 4 SS 2 3 SS 5 3 đ Power Auger >96 + 4 Diam E 200 6 SS 4 5 SS 2 7 84.45 5.79 (SM) SILTY SAND, some gravel; grey, contains clayey silt seams, cobbles and boulders (GLACIAL TILL); non-cohesive, 6 wet, compact 8 SS 24 7 9 SS 10 10 SS 11 8 82.02 Σſ End of Borehole 9 10 DEPTH SCALE LOGGED: DG Golder 1:50 CHECKED: SAT sociates

1658448.GPJ GAL-MIS.GDT 10/10/17

MIS-BHS 001

RECORD OF BOREHOLE: 17-8

BORING DATE: January 23, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013071.6 ;E 367834.3 SAMPLER HAMMER, 64kg; DROP, 760mm

1_1	오	SOIL PROFILE	1.		34	AMPLE		DYNAMIC PENE RESISTANCE, E	BLOWS	S/0.3m	λ,	HYDRAU k	, cm/s			누일	PIEZOMETER
METRES	BORING METHOD	DECODIDITION	STRATA PLOT	ELEV.	BER	<u></u>	BLOWS/0.30m	20 4	GTH	natV +	80 - Ω - ●	10 ⁻⁶		10 ⁻⁴		ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	ORIN(DESCRIPTION	'RATA	DEPTH (m)	NUMBER	түре	'SWO'	Cu, kPa	511	rem V. €	- U- O					ADD LAB.	INSTALLATION
	ā	GROUND SURFACE	ST			\square	Ы	20 4	0	60	80	20	40	60	80		
0		FILL - (SP/GP) SAND and GRAVEL;	***	89.77 0.00		$\left\{ \cdot \right\}$						\vdash					
		dark grey to black, contains asphaltic concrete fragments; non-cohesive, moist		89.36	1	GRAB	-										
		(SM) SILTY SAND; brown; non-cohesive, moist		0.41 89.16	2	GRAB	-										
		(CI/CH) SILTY CLAY to CLAY; red brown to grey brown, fissured		0.61			-										
1		(WEATHERED CRUST); cohesive, w>PL, very stiff			3	SS	5										
				88.40													
		(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST);		1.37	4	SS	5										
		cohesive, w>PL, very stiff			4	33	5										
2						1											
					5	SS	2										
	v Stem				5												
	Auger (Hollov			86.87 2.90		1											
3	200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown, contains silty fine sand seams (WEATHERED CRUST); cohesive,		2.90	6	SS	2										
	00 mm	w>PL, very stiff			5		-										
	Ñ					1											
4				85.81 3.96							>96 +						
7		(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, stiff		3.96							+						
						$\left \right $											
					7	SS	wн										
5																	
								Ð	+								
										+							
6		End of Borehole	- 1222	83.83 5.94							+						
7																	
8																	
9																	
10																	
		l	-	I							1						1
		SCALE								r ates						1	OGGED: PAH

RECORD OF BOREHOLE: 17-9

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 5013151.7 ;E 367949.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 16, 2017

RECORD OF BOREHOLE: 17-10

BORING DATE: January 16, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013218.5 ;E 368049.9 SAMPLER HAMMER, 64kg; DROP, 760mm

Į,	ТНОВ	SOIL PROFILE			SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3	· · · ·	HYDRAULIC CONDUCTIVI k, cm/s		₽G	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 40 60 SHEAR STRENGTH nat	80 V. + Q-●	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ WATER CONTENT PE	10 ⁻³ RCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
,≥ J	BORIN		STRAT.	DEPTH (m)	NUN	Ľ	BLOW	Cu, kPa rem 20 40 60	V.⊕ U-Ō 80	Wp	WI 80	ADI LAB.	INGTALLATION
0		GROUND SURFACE		90.56									
U		TOPSOIL - (SM) SILTY SAND; dark brown; non-cohesive		0.00 90.33	1	GRAB	-						
		(SM) SILTY SAND; brown;		0.23									
		non-cohesive, moist (CI/CH) SILTY CLAY to CLAY; grey		0.46									
		brown to red brown, fissured (WEATHERED CRUST); cohesive,											
1		w>PL, very stiff			2	SS	6						
				89.19									
		(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey		1.37									
		brown (WEATHERED CRUST);			3	SS	3						
2		cohesive, w>PL, very stiff											
2													
	6				4	SS	3						
	v Stem)												
	Hollov												
3	Power Auger 200 mm Diam. (Hollow S												
	- m				5	SS	3						
	200			86.90									
		(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, firm to stiff		3.66				Φ	+				
4													
					6	SS	wн						
5													
Ű													
								⊕	+				
									+				
				84.62					+				
6		End of Borehole		5.94									
7													
8													
J													
9													
10													
	оти	SCALE											
υE	1113	DUALE						Golder				LUC	GED: PAH

RECORD OF BOREHOLE: 17-10A

LOCATION: N 5013218.0 ;E 368050.0

BORING DATE: January 16, 2017

SHEET 1 OF 1

DATUM: Geodetic

u Z	ПОН	SOIL PROFILE	1.		SA			DYNAMIC PENETRA RESISTANCE, BLOV			C CONDUCTIV cm/s		4GF	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	ШШ		BLOWS/0.30m	20 40	60 80		10 ⁻⁵ 10 ⁻⁴		ADDITIONAL LAB. TESTING	OR
ME	RING	DESCRIPTION	ATAI	DEPTH	NUMBER	TYPE	WS/0	SHEAR STRENGTH Cu, kPa	nat V. + Q - ● rem V. ⊕ U - C		R CONTENT P		ADDI AB. T	INSTALLATION
1	BOI		STR	(m)	Ž		BLO	20 40	60 80		40 60		<u> </u>	
0		GROUND SURFACE		90.56										
J		For soil stratigraphy refer to Record of Borehole 17-10		0.00									$ \top$	
1														
	(m													
2	ov St													
-	r Aug.													
	Powe													
	Power Auger 200 mm Diam. (Hollow Stem)													
	50													
3														
4														
					1	TP	PH							
		End of Dorobolo		86.14										
		End of Borehole		4.42										
5														
6														
7														
8														
9														
10														
			-1					Gold	I I	- I		I		
		SCALE					(Gold	er					GGED: PAH
1:	50							V Assoc	iates				CHE	CKED: SAT

RECORD OF BOREHOLE: 17-11

BORING DATE: January 17, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013297.0 ;E 368157.3 SAMPLER HAMMER, 64kg; DROP, 760mm

1	ПОН	SOIL PROFILE	1.		SA			DYNAMIC PENETRAT RESISTANCE, BLOW	S/0.3m	R.	k,	IC CONDUC cm/s	,	₽₽	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.30m	20 40 SHEAR STRENGTH Cu, kPa	nat V	80 + Q - • • U - O			10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
5	BOF		STR/	(m)	Z		BLO	20 40		80	Wp ⊢ 20		60 80	⊢ A	
0 -		GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark brown; non-cohesive (CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		90.58 0.00 90.38 0.20											
1					2		6 2					0			
2	Auger (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown, contains silty fine sand seams, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		88.60 1.98	3	ss	4								
3	Power Auger 200 mm Diam. (Hollow			86.77	4	SS	2					c	,		
4		(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, stiff		3.81					+	>96 +		0			
5		(ML) sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,		85.25 5.33	5		69	Ð	+		0				
6		End of Borehole		84.6 <u>4</u> 5.94			00								
7															
8															
9															
10															
DEI	PTH S	CALE				<u> </u>		Golde		1			. 1	LO	GGED: PAH

RECORD OF BOREHOLE: 17-12

BORING DATE: January 20, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013161.9 ;E 367790.1 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц Д	CH H		SOIL PROFILE	1.		S/	MPL	_	DYNAMIC PENETF RESISTANCE, BLC	WS/0.3m	K.	HYDRAULI k, c	:m/s		₽₽	PIEZOMETER
METRES	BORING METHOD			STRATA PLOT		ER		BLOWS/0.30m	20 40		80	10 ⁻⁶		10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR
- WE	SING		DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	түре	WS/0	SHEAR STRENGT Cu, kPa	I nat V. + rem V. €	Q - • U - O		R CONTEN	T PERCENT	NDDI 1007	INSTALLATION
i	BOB	3		STR/	(m)	ž		BLO	20 40		80	Wp — 20		60 80		
		+	GROUND SURFACE		89.76								Ť			
0			TOPSOIL - (SM) SILTY SAND; dark \brown; non-cohesive	A	0.00											
			(SM) SILTY SAND; grey brown;			1	GRAE									
			non-cohesive, moist		89.15											
			(CI/CH) SILTY CLAY to CLAY; red brown and grey brown, fissured		0.61											
1			brown and grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			2	SS	5					þ			
						3	SS	5								
2					87.63											
			(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST);		2.13											$\overline{\Delta}$
		Stem)	brown (WEATHERED CRUST); cohesive, w>PL, very stiff			4	SS	2					0			
	ger) wollow			90.00											
3	Power Auger	ш. (Ң	(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED		86.86 2.90		1									
	Pov	m Dia	CRUST); cohesive, w>PL, very stiff			5	SS	2					0			
		200 m														
											>96 +					
4											>96 +					
		ŀ	(CI/CH) SILTY CLAY to CLAY; grey with		85.4 <u>9</u> 4.27											
			black mottling; cohesive, w>PL, firm													
						6	SS	WН								
5																
									⊕ +							
									Ψ							
									+							
6		\rightarrow	End of Borehole		83.82 5.94				+							
0					5.54											\A/I :=
																WL in open borehole at 2.35 m depth below
																around surface
																upon completion of drilling
7																
8																
9																
10																
					•						•	· · · ·			•	•
DC	PT	H S	CALE						Gol	I =					L	OGGED: PAH

RECORD OF BOREHOLE: 17-12A

LOCATION: N 5013162.0 ;E 367790.0

BORING DATE: January 23, 2017

SHEET 1 OF 1

DATUM: Geodetic

ľ,	DOH-	SOIL PROFILE			SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	Ì,	HYDRAULIC C k, cm/s		AL	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION		ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 40 60 I I I SHEAR STRENGTH nat V. Cu, kPa rem V.	80	WATER C	0 ⁻⁵ 10 ⁻⁴ 10 ONTENT PERCEN		OR STANDPIPE INSTALLATION
÷ ۲	BORI		STRA	DEPTH (m)	INN	-	BLOW	20 40 60	⊕ U-O 80	Wp ┣━━━━ 20 4			
0		GROUND SURFACE		89.76									
-		For soil stratigraphy refer to Record of Borehole 17-12		0.00									
1													
2													
	e e												Σ
	Power Auger												-
	Power Auger	2											
3	000												
4													
					1	TP	PH				+ 0	с	
5		End of Borehole		84.73 5.03									
													WL in open borehole at 2.35 m depth below ground surface upon completion of
													ground surface upon completion of drilling
6													unning
Ŭ													
7													
8													
9													
10													
		I											L
DE	PTH	SCALE						Golder				L	OGGED: PAH

RECORD OF BOREHOLE: 17-13

BORING DATE: January 20, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013287.2 ;E 367889.6 SAMPLER HAMMER, 64kg; DROP, 760mm

1	ПОН	SOIL PROFILE	· · · ·		SA	MPLE		DYNAMIC PENETRATIO RESISTANCE, BLOWS/	N \).3m <	HYDRAULIC CONDUCTIVIT k, cm/s	۲, پ ل	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 SHEAR STRENGTH na Cu, kPa re	at V. + Q - ● m V. ⊕ U - O	Wp - O''		STANDPIPE INSTALLATION
	Δ	GROUND SURFACE	S	90.32			ā	20 40 60	80	20 40 60	80	
0		TOPSOIL - (SM) SILTY SAND; dark brown; non-cohesive (SP) SAND, some non-plastic fines; grey brown; non-cohesive, moist		0.00 90.09 0.23 89.59	1	GRAB	-					
1		(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		0.73 0.73 89.10 1.22	2	ss	4					Σ
		(CI/CH) SILTY CLAY to CLAY; red brown and grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		1.22	3	SS	4					
2	ger Mour Stom)	(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		88.19 2.13	4	ss	2					
3	Power Auger	(CI/CH) SILTY CLAY to CLAY; grey, contains silty fine sand seams; cohesive, w>PL, firm		87.20 3.12	5	SS	2					
4								⊕ + +				
5					6	ss v	∨н					
								⊕ – –				
6		End of Borehole		84.38 5.94				+				WL in open borehole at 1.00 m depth below ground surface upon completion of
7												drilling
8												
9												
10												
DE	PTH	SCALE	1			<u>. I</u>	(Golder	I	<u> </u>	I I	LOGGED: PAH

RECORD OF BOREHOLE: 17-14

BORING DATE: January 19, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013422.4 ;E 367850.2 SAMPLER HAMMER, 64kg; DROP, 760mm

ш -	ДОН	SOIL PROFILE	<u> </u>		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ 20 WATER CONTENT PERCENT Wp	PIEZOMETER OR STANDPIPE INSTALLATION
-	BO		STR	(m)			BLC	20 40 60 80		
0		GROUND SURFACE TOPSOIL - (SM) SILTY SAND; dark	EEE	90.50 0.00						
		brown; non-cohesive (SM) SILTY SAND; brown, contains		90.20 0.30						
		clayey silt seams; non-cohesive, wet, loose								
					1	SS	8		0	
1							Ű			Σ
		CI/CH) SILTY CLAY to CLAY; red brown and grey brown, contains silty fine sand seams, fissured (WEATHERED		89.20 1.30						
		sand seams, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			2	ss	3			
2										
								>96 +		
	Stem)							>96 +		
	Auger Hollow	(CI/CH) SILTY CLAY to CLAY; grey,		87.7 <u>6</u> 2.74						
3	Power Auger mm Diam. (Hollow:	contains silty fine sand seams; cohesive, w>PL, firm			3	SS	1			
	200 mm			86.99	3	55				
	8	(CI/CH) SILTY CLAY to CLAY; grey with black mottling; cohesive, w>PL, firm		3.51						
4								⊕ +		
					4	SS	wн		0	
5										
								⊕ +		
								+		
6		End of Borehole		84.56 5.94				+		
										WL in open borehole at 1.00 m
										depth below ground surface
										upon completion of drilling
7										
8										
9										
10										
DEI	PTH S	SCALE						Coldar		LOGGED: PAH
1:								Golder		CHECKED: SAT

RECORD OF BOREHOLE: 17-14A

LOCATION: N 5013422.0 ;E 367850.0

BORING DATE: January 20, 2017

SHEET 1 OF 1

DATUM: Geodetic

щ	ЧОР	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE METRES	BORING METHOD		LOT		£		30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	PIEZOMETER OR STANDPIPE INSTALLATION
METI	NG	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	WATER CONTENT PERCENT	ビビ STANDPIPE 日前 INSTALLATION
LE	BOR		TRA	(m)	R		POV		Wp H OW WI	LAI
		GROUND SURFACE	s			\vdash	ш	20 40 60 80	20 40 60 80	
0		For soil stratigraphy refer to Record of Borehole 17-14		90.50 0.00						
		Borehole 17-14								
1										
										Native Backfill
	Ê									
	Power Auger 200 mm Diam. (Hollow Stem)									
2	Power Auger Diam. (Hollov									
	ower Diam.									
	200									
3										
3										Bentonite Seal
										Silica Sand
										<u>, </u>
4					1	TP	PH			Standpipe
		End of Borehole	+	86.23 4.27						
										WL in Standpipe at Elev. 89.78 m on
5										Jan. 30, 2017
6										
7										
8										
o										
9										
10										
.0										
		1	_			I				
DE	PTH S	SCALE						Golder		LOGGED: PAH
1:	50							Associates		CHECKED: SAT

LOCATION: N 5013372.2 ;E 368018.8

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 17-15

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: January 20, 2017

Ξ	ЮН		SOIL PROFILE	1.		S	AMPL	_	DYNAMIC PE RESISTANCE	, BLOW	S/0.3m	R.	HYDRAULIC k, cm	/s	,	β₽	PIEZOMETER
ETRES	BORING METHOD		DECODIDEION	STRATA PLOT	ELEV.	BER	Ж	BLOWS/0.30m	20 SHEAR STRE	40 NGTH		80 - Q - ●	-	10 ⁻⁵ 10 ⁻⁴		ADDITIONAL LAB. TESTING	OR STANDPIPE
METRES	ORINC		DESCRIPTION	'RATA	DEPTH (m)	NUMBER	түре	.OWS	SHEAR STRE Cu, kPa		rem V. €	9 ŭ- O	WATER Wp I			ADD LAB.	INSTALLATION
	B	_		ST			-	Б	20	40	60	80	20	40 60	80	+	
0			GROUND SURFACE TOPSOIL - (SM) SILTY SAND; dark	EEE	90.66		GRAE	_		_	_					_	
		L	brown; non-cohesive (SP) SAND, fine, some non-plastic fines;		90.43 0.23 90.25		GRAD	-									
		N	brown; non-cohesive, moist (CI/CH) SILTY CLAY to CLAY; red		0.41												
			brown to grey brown, contains silty fine sand seams, fissured (WEATHERED														
1			CRUST); cohesive, w>PL, very stiff to stiff			2	SS	4									Σ
			Jun				-										
						3	SS	4									
2						_											
									Ð			+					
					07.70							>96 +					
3		┢	(CI/CH) SILTY CLAY to CLAY, some sand; grey with black mottling, contains		87.7 <u>6</u> 2.90		1										
			sand; grey with black mottling, contains silty fine sand seams; cohesive, w>PL, firm to stiff			4	SS	2									
		Sten					-										
	Power Auger	(Hollow							Ð		+						
4	ower /	Diam. (.							
	<u>م</u>	um C								+							
		50															
						5	SS	wн									
5																	
									Ð	+							
										+							
6																	
						6	SS	wн									
											+						
7																	
											+						
											+	-					
		+	End of Borehole		82.89 7.77	-											
8																	WL in open borehole at 1.00 m depth below
																	ground surface upon completion of drilling
																	ariling
9				1													
				1													
10																	
												1					
DE	PTH	I SC	CALE					(old	er ates					L	OGGED: PAH

RECORD OF BOREHOLE: 17-16

BORING DATE: January 19, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013504.1 ;E 367981.5 SAMPLER HAMMER, 64kg; DROP, 760mm

	U CH		SOIL PROFILE	1.		SA	AMPL		DYNAMIC P RESISTANC	ENETRAT CE, BLOW	'ION S/0.3m	\mathbf{x}	HYDRAU k	LIC CON , cm/s	DUCTIVI	TY,	RG ZG	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.30m	20 SHEAR STF Cu, kPa	40 RENGTH	60 nat V rem V. 6	80 + Q - ● ⊕ U - O	10 ⁻⁶ WAT Wp H	ER CON	10 ⁻⁴ TENT PE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
)	D B O			STR	(m)	z		BLO	20	40	60	80	20	40	60			
0	-	\square	GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark	222	90.43						-							
			(SM) SILTY SAND; brown, contains		90.18 0.25	1	GRAB	-										
			clayey silt seams; non-cohesive, wet			2	GRAB	-										Σ
1			(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		89.67 0.76 89.21	3	ss	2										
			(CI/CH) SILTY CLAY to CLAY; red brown and grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		1.22	4	SS	2										
2												>96+						
		Stem)			87.84							>96+						
	Power Auger	(Hollow	(CI/CH) SILTY CLAY to CLAY; grey with black mottling; cohesive, w>PL, stiff to firm		2.59													
3	Power	200 mm Diam. (Hollow :				5	SS	wн										
		200 r																
									Ð	+	_							
4											T							
						6	SS	wн										
ŗ																		
5											F							
										+								
			End of Borehole		84.64 5.79					+								
6																		WL in open borehole at 0.60 m depth below
																		ground surface upon completion of drilling
7																		
8																		
9																		
10																		
	рть	 H \$(CALE	1	1	I	1					1		I	1	I		I DGGED: PAH
1:		1.30								Golde Ssoci	r							IECKED: SAT

RECORD OF BOREHOLE: 17-17

BORING DATE: January 17, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013432.3 ;E 368131.3 SAMPLER HAMMER, 64kg; DROP, 760mm

	DOH.	SOIL PROFILE	1.	1	SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG	PIEZOMETER
METRES	BORING METHOD	DECODIDITION	STRATA PLOT	ELEV.	BER	түре	BLOWS/0.30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ψ	IORIN(DESCRIPTION	IRAT≜	DEPTH (m)	NUMBER	۲	LOWS.	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	Wp ⊢ ⊖ ^W WI	ADD LAB.	INSTALLATION
_	Ξ	GROUND SURFACE	S				B	20 40 60 80	20 40 60 80	+	
0		TOPSOIL - (ML) CLAYEY SILT; dark		90.44 0.00							
		brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; red		0.15							
		brown and grey brown, fissured (WEATHERED CRUST); cohesive,									
		w>PL, very stiff									Ā
1					1	SS	7				
				89.07							
		(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND, fine;		1.37							
		grey brown (WEATHERED CRUST); cohesive, w>PL, stiff to very stiff			2	SS	2				
2											
	i				3	SS	2				
	Power Auger	(CI/CH) SILTY CLAY to CLAY; grey;		87.70 2.74							
3	Power Auger										
					4	SS	vvH				
	G	N									
				86.48			e	€ +			
4		(CL/CI) SILTY CLAY to CLAY; grey with black mottling, contains clayey silt		3.96							
		seams; cohesive, w>PL, stiff									
					5	SS	WLI				
Ę					5	33	****1				
5						1					
								⊕ +			
								+			
6		End of Borehole	- FEE	84.50 5.94				+			
-											WL in open
											borehole at 0.80 m depth below
											ground surface upon completion of drilling
7											
8											
9											
10											
DE	PTH	SCALE						Coldar		LC	DGGED: PAH
1:	50							Golder		СН	ECKED: SAT

RECORD OF BOREHOLE: 17-17A

LOCATION: N 5013432.0 ;E 368131.0

BORING DATE: January 17, 2017

SHEET 1 OF 1

DATUM: Geodetic

	DESCRIPTION JND SURFACE oil stratigraphy refer to hole 17-17		STRATA PLOT	ELEV. DEPTH (m) 90.44 0.00	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRE Cu, kPa	NGTH r	60 80 hat V. + rem V. ⊕ 60 80	Q - ● U - O	10 ⁶ WATE Wp - 20	10 ⁻⁵ R CONTEN 			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
GROI For s Borel) Record of		90.44			B	20		<u>30 80</u>		20	40	60 8	80		
For s Borel		D Record of															
	iune 17-17																
200 mm Dlam. (Hollow Stem)																	
200 rm Diam. (Hollow Stem)										1 1			1				
200 mm Diam. (Hollow Stem)									1								
200 rm Diam. (Hollow Stem)							- 1										
200 mm Diam. (Hollow 5																	
200 mm Diam. (H																	
200 mm Di																	
200			1														
I I -																	
					1	TP	PH										
End	of Borehole			86.78 3.66													
									<u> </u>								
									olde: socia			I					
		End of Borehole	End of Borehole		End of Borehole	End of Borehole	End of Borehole 3.66	End of Borehole	End of Borehole 3.66 I I <	End of Borehole	End of Borehole	End of Borehole 3.86	End of Borehole	End of Borehole	End of Borehole	End of Borehole	End of Borehole 3.66

RECORD OF BOREHOLE: 17-18

BORING DATE: January 19, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013586.9 ;E 368115.5 SAMPLER HAMMER, 64kg; DROP, 760mm

L S S S	THOD	SOIL PROFILE			MPLES		MIC PENE STANCE, B			َر, ``	HYDRAULIC k, cr	n/s		NAL	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	 ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.30m	SHEA Cu, kł	20 40 R STRENG Pa 20 40	GTH r r	∟ at V. + em V. ⊕	Q - • U - •	10 ⁻⁶ WATEF Wp		0 ⁻⁴ 10 ⁻³ T PERCENT WI 60 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0 -		GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; red brown and grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff	90.69 0.00 90.39 0.30	1	SS 5							0			Ÿ
2		(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff	<u>89.01</u> 1.68	2	SS 2	Ð			+						
3	Power Auger 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY, some sand; grey with black mottling, contains silty fine sand seams; cohesive, w>PL, firm	87.95 2.74	3	SS 2	Φ	+			>96 +		0			
4	Pow 200 mm Diar	(CI/CH) SILTY CLAY to CLAY; grey with black mottling, contains clayey silt searns; cohesive, w>PL, stiff	<u>85.66</u> 5.03	4	SS W	Ð	+	++				O	0		
7		End of Borehole	<u>83.22</u> 7.47			Ð			+ +	+					WL in open borehole at 1.00 m depth below ground surface upon completion of drilling
9															
DEF	PTH S	GCALE				Â	Go	lde	<u> </u>					LC	GGED: PAH

RECORD OF BOREHOLE: 17-18A

LOCATION: N 5013586.9 ;E 368115.5

BORING DATE: January 19, 2017

SHEET 1 OF 1

DATUM: Geodetic

щ	₽	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ں _	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		LOT		Ř]	30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR
ME T	SING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	WATER CONTENT PERCENT	B. TE	STANDPIPE INSTALLATION
ž	BOF		STR/	(m)	٦٢		BLO	20 40 60 80	Wp	LA A	
		GROUND SURFACE		90.69			\uparrow				
0		For soil stratigraphy refer to Record of Borehole 17-18		0.00							
											¥₩
1											
											Native Backfill
	/ Stem										
2	Hollow										
	Power Auger Diam. (Hollov										
	Power Auger 200 mm Diam. (Hollow Stem)										×
	200										
3											Pontonito Soci
											Bentonite Seal
											Silica Sand
4					1	TP	PH			с	Standpipe
4				86.42							
		End of Borehole		4.27							
											WL in Standpipe at Elev. 90.39 m on
-											Elev. 90.39 m on Jan. 30, 2017
5											
6											
7											
8											
9											
10											
		0415				· · · ·					
DE	PTHS	CALE						Golder		LC	DGGED: PAH

RECORD OF BOREHOLE: 17-19

BORING DATE: January 17, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013512.2 ;E 368260.2 SAMPLER HAMMER, 64kg; DROP, 760mm

Ш.	DOH.	SOIL PROFILE	1.		SA			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ВÅ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa rem V. ⊕ U - O	wp - O Wi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	В	GROUND SURFACE	ی ۲	91.35		$\left \right $	BI	20 40 60 80	20 40 60 80		
0		TOPSOIL - (ML) sandy SILT to CLAYEY SILT; dark brown; non-cohesive (CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		0.00 91.15 0.20		ss	4				Ā
2		(CI/CH) SILTY CLAY to CLAY, some clayey silt seams, fissured (WEATHERED CRUST); cohesive,		<u>89.37</u> 1.98	2	ss	3				
	jer llow Stem)	w>PL, very stiff			3	ss	3	>96 +			
3	Power Auger 200 mm Diam (Hollow Stem)				4	ss	3				
4	20							>96 +			
5		CVCH) SILTY CLAY to CLAY; grey;		86.78 4.57 86.24	5	ss	1				
		(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, compact		5.11		_					
6		End of Borehole		<u>85.25</u> 6.10		SS	24				WL in open borehole at 1.00 m
7											depth below ground surface upon completion of drilling
8											
9											
10											
DE	PTH	SCALE				<u> </u>		Golder			GGED: PAH ECKED: SAT

RECORD OF BOREHOLE: 17-20

BORING DATE: January 18, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013674.4 ;E 368246.4 SAMPLER HAMMER, 64kg; DROP, 760mm

y I	Ц С		SOIL PROFILE			SA	MPL		DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY, k, cm/s	و بـ	PIEZOMETER
METRES	BORING METHOD			LOT		Ř		30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	L ADDITIONAL LAB. TESTING	OR
MET	5NG		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	WATER CONTENT PERCENT	B. TE	STANDPIPE INSTALLATION
ž	BOR	S		STR/	(m)	Z	-	BLO/	20 40 60 80	Wp		
		+	GROUND SURFACE		92.23			-			+	
0		1	TOPSOIL - (SM) SILTY SAND; dark		0.00	4	GRAB	-				
		┝	brown; non-cohesive (SM) SILTY SAND; grey brown;	T	91.98 0.25	I						
			non-cohesive, wet, loose									$\overline{\Delta}$
												<u> </u>
4		╞	(SM) gravelly SILTY SAND: grav brown		91.32 0.91	2	SS	11				
1			(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders		0.01							
			(GLACIAL TILL); non-cohesive, wet, compact to dense		1							
						3	SS	26				
2												
						4	SS	50				
		Stem)										
	ger	ollo										
3	Power Auger	200 mm Diam. (Hollow Stem)										
	Pov	m Dia				5	SS	32				
		m 00				<u> </u>						
		\sim										
4						6	SS	25				
7												
						7	SS	11				
5												
		┟	(SM/GM) SILTY SAND and GRAVEL;		87.05 5.18							
			grey; non-cohesive, wet, compact									
c						8	SS	15				
6		+	End of Borehole	34	86.13 6.10							
											, w	/L in open prehole at 0.61 m
											d d	enth helow
											gi ul	round surface son completion of illing
7												lining
8												
9												
10												
DF	РТ	1.50	CALE								1.00	GED: PAH
									Golder		200	

RECORD OF BOREHOLE: 17-21

SHEET 1 OF 1 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5013613.9 ;E 368382.0

BORING DATE: January 18, 2017

ц ,	DOH.	SOIL PROFILE	1.		S/	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa 20 40 60 80	vvp vvi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	0	94.69			ш	20 40 60 80	20 40 60 80		
0		TOPSOIL - (SM) SILTY SAND; dark brown; non-cohesive		0.00		GRAB	-				×
		(SM) SILTY SAND, some gravel; brown;	1	0.23		1					
		non-cohesive, moist									Native Backfill
		(SM/GM) SILTY SAND and GRAVEL;		93.90	2	SS	>50				
1		grey brown, contains cobbles and boulders; non-cohesive, moist, dense to				1					
		very dense									
											Bentonite Seal
					3	SS	47		0		
2					<u> </u>						
					4	SS	81				⊻₿
			滕	91.79	<u> </u>	$\left \right $					
3		(SM) SILTY SAND, some gravel; grey brown; non-cohesive, wet, compact		2.90							
					5	SS	28		0	мн	
	Stem)	(ML) sandy SILT, some gravel; grey	AN A	91.18		$\left \right $					
	2	(GLACIAL TILL); non-cohesive, wet,				1					
4					6	SS	17		0		
	Power mm Diam				\vdash	$\left \right $					
	200 п				\vdash						Native Backfill
					7	SS	21				
5											
		(SM) gravelly SILTY SAND; grey,		89.51 5.18		$\left \right $					
		contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,			8	SS	12		0	мн	
		compact									
6					-	$\left \right $					
					9	SS	18				
7		(SM) SILTY SAND; grey; non-cohesive,		87.68							
		wet, compact									
											Otana da i
					10	SS	15				Standpipe
8		End of Borehole	_!.!`±.	86.77 7.92							
											WL in Standpipe at Elev. 92.15 m on Jan. 30, 2017
											56.1. 00, 2017
9											
10											
DE	PTH	SCALE						Coldon		L	OGGED: PAH
1:	50							Golder		CH	ECKED: SAT

RECORD OF BOREHOLE: 17-22

BORING DATE: January 24, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013759.1 ;E 368386.0 SAMPLER HAMMER, 64kg; DROP, 760mm

L L		로	SOIL PROFILE		-	SA			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG	PIEZOMETER
METRES		BORING METHOD		STRATA PLOT	ELEV.	ËR	س	BLOWS/0.30m		10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ξ		RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	WS/(SHEAR STRENGTH Cu, kPanat V. + Q - ● rem V. ⊕ U - O		ADDI AB. 1	NSTALLATION
<u>ر</u>		B		STR	(m)	z		BLO	20 40 60 80	20 40 60 80	<u> `_</u>	
0			GROUND SURFACE		91.97							
Ū			TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive		0.00 91.74							
			(CI/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey		0.23							
			brown (WEATHERED CRUST); cohesive, w>PL, very stiff									
			conesive, w>PL, very stim					_				
1						1	SS	5				
		Ê			90.60							
		w Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED		1.37	<u> </u>						
	Auger	(Hollo	CRUST); cohesive, w>PL, very stiff									
2	ower	Diam.			89.99	2	SS	4				
-	L	200 mm Diam. (Hollow S	(ML) sandy SILT, some gravel; grey brown, contains cobbles and boulders		1.98							
		200	(GLACIAL TILL); non-cohesive, wet, compact				1					
						3	SS	17				
3			(SM) SILTY SAND, some gravel; grey,		88.92 3.05							
			contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,			4	SS	10				
	L		compact		88.3 <u>1</u>							
	Γ	Π	Probable Glacial Till		3.66							
4												
5	DCPT	Open Hole										
	8	Open										
6												
					85.57							
			End of Borehole End of DCPT		6.40							
7												
8												
-												
9												
10												
DE	:PT	НS	CALE						Golder		LOGGE	J: PAH

RECORD OF BOREHOLE: 17-23

BORING DATE: January 25, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013679.9 ;E 368527.7 SAMPLER HAMMER, 64kg; DROP, 760mm

	DOH.	SOIL PROFILE	—		SA	MPLI		DYNAMIC PENETRAT RESISTANCE, BLOW		HYDRAULIC CONDUCTIVITY, k, cm/s	2 Z F	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	ER		BLOWS/0.30m	20 40	60 80		ADDITIONAL LAB. TESTING	OR
ΞΨ	RING	DESCRIPTION	ATA	DEPTH	NUMBER	түре	WS/C	SHEAR STRENGTH Cu, kPa	nat V. + Q - ● rem V. ⊕ U - O	WATER CONTENT PERCE		INSTALLATION
ב	BOI		STR	(m)	Ž		BLO	20 40	60 80		WI 4 1	
		GROUND SURFACE		92.56					Ī			
0		TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive		0.00	1	GRAB	-					
		(CI/CH-ML and SM) SILTY CLAY		92.26								
		CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST);										
		cohesive, w>PL, very stiff										
1					2	SS	5					
				91.34								
		(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED		1.22								
	(E	CRUST); cohesive, w>PL, very stiff			3	ss	4					
	Ste											
2	Power Auger 200 mm Diam. (Hollow Stem)											
	^D ower								>96 +			
									>96+			
	200											
3		(CI/CH) SILTY CLAY to CLAY; grey,		89.6 <u>6</u> 2.90								
		contains clayey silt seams; cohesive, w>PL, stiff			4	SS	1					
								Ð	+			
4									+			
		End of Borehole		88.22 4.34								
		Auger Refusal		4.34								
5												
6												
U												
7												
8												
5												
9												
10												
		1		1					1 1		I I	
DE	PTH	SCALE					(Golde	۲		L	DGGED: PAH
1:	50							Golde	ātes		CH	ECKED: SAT

RECORD OF BOREHOLE: 17-23A

LOCATION: N 5013679.9 ;E 368527.7

BORING DATE: January 25, 2017

SHEET 1 OF 1

DATUM: Geodetic

Ш	片	SOIL PROFILE	- I		SA	MPL		DYNAMIC PENETRA RESISTANCE, BLO		k, cm/s	ΊΤΥ,	μŞ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH		TYPE	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa	60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ WATER CONTENT P Wp I	ERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
<u>ں</u>	BO		STR	(m)	Z		BLC	20 40	60 80	20 40 60			
- 0		GROUND SURFACE		92.56 0.00								+	
		For soil stratigraphy refer to Record of Borehole 17-23											
- 1								N					
- 2	<u>ا</u> ا												
	DCPT												
- 3													
- 4													
		End of Borehole		88.29 4.27									
		DCPT Refusal											
- 5													
- 6													
- 7													
- 8													
- 9													
э													
- 10													
10					L								
	יידח			-		<u>.</u>			· · ·				
DE	гιн	SCALE					- (Gold	or			LOG	GED: PAH

RECORD OF BOREHOLE: 17-24

BORING DATE: January 24, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013840.9 ;E 368514.0 SAMPLER HAMMER, 64kg; DROP, 760mm

L L	ДОН		SOIL F	PROFILE	1.		SA	MPL		RESIS	TANCE,	BLOW	'ION S/0.3m	Ì.	HYDR	AULIC C k, cm/s	UNDUC	I IVI I Y,		RF	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DECODIDEIO		STRATA PLOT	ELEV.	BER	ж	BLOWS/0.30m	2 SHEAF		40 L	60 Inat V	80		0 ⁻⁶ 1	1		10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
_ ⊒	30RIN		DESCRIPTIO	IN .	TRAT/	DEPTH (m)	NUMBER	түре	LOWS					+ Q-● ₽ U-O	vv	р ——	—0 ^W		WI	ADC LAB.	INSTALLATION
			ND SURFACE		S	92.58		$\left \right $	ä	2	0 4	10	60	80	2	20 4	10 (50	80	+ +	
0		brown; (CI/CH CLAYE brown	DIL - (ML) sandy SII non-cohesive -ML and SM) SILTY Y SILT and SILTY (WEATHERED CR ve, w>PL, very stiff	′ CLAY, SAND; grey UST);		0.00 92.31 0.27	1	ss	4												
2		(CI/CH brown, CRUS) SILTY CLAY to CI slightly fissured (W T); cohesive, w>PL,	_AY; grey EATHERED stiff		<u>90.60</u> 1.98	2	SS	2							0		0			
3	Power Auger) SILTY CLAY to Cl is silty fine sand sea firm to stiff	AY; grey,		89.5 <u>3</u> 3.05	4	ss	wн	θ	+										
4							5	ss	wн	θ	-	-					0				
5						86.33	6	ss	3			+	+								
7		GLAC (GLAC) very lo End of	andy SILT, some gr is cobbles and boui IAL TILL); non-cohe ose Borehole Refusal	ders		6.25 86.03 6.55															
8																					
9																					
	PTH	SCALE								Â	G	olde	er							LOC	GGED: PAH

RECORD OF BOREHOLE: 17-24A

LOCATION: N 5013841.0 ;E 368514.0

BORING DATE: January 24, 2017

SHEET 1 OF 1

DATUM: Geodetic

Щ	ДОН	SOIL PROFILE	1		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ĢĻ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q ● Cu, kPa rem V. ⊕ U O	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
	B	GROUND SURFACE	ST				BL	20 40 60 80	20 40 60 80		
- 0		For soil stratigraphy refer to Record of Borehole 17-24		92.58							
- 1	Power Auger 200 mm Diam. (Hollow Stern)										Native Backfill Bentonite Seal
- 3		End of Borehole		<u>89.07</u> 3.51	1	TP	PH			с	Standpipe
- 4											WL in Standpipe at Elev. 91.78 m on Jan. 30, 2017
- 5											
- 6											
- 7											
- 8											
- 9											
- 10											
DE 1 : :		SCALE						Golder			DGGED: PAH ECKED: SAT

RECORD OF BOREHOLE: 17-25

BORING DATE: January 25, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013760.8 ;E 368661.4 SAMPLER HAMMER, 64kg; DROP, 760mm

л Н Г	ПНОВ	SOIL PROFILE	T⊢T		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	₽g	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa rem V. ⊕ U O	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
2	BOR		STR4	(m)	٦		BLOV	<u>20 40 60 80</u>	Wp	LA A	
0		GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark	EEE	93.17 0.00			-				
1		brown; non-cohesive (Cl/CH-ML and SM) SILTY CLAY, CLAYEY SILT and SILTY SAND; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff		92.92 0.25 91.95	1	SS	6				Ϋ́
2	Auger (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown, contains clayey silt seams, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		1.22	2	SS	5				
	Power Auger 200 mm Diam. (Hollow				3	SS	5				
3					4	SS	2				
4		(ML) sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,		89.33 3.84 88.98	5	SS	>50	>96 +			
5		Very dense Very list concerts, root, End of Borehole Auger Refusal		4.19							WL in open borehole at 0.30 m depth below ground surface upon completion of drilling
6											
7											
8											
9											
10											
DE	PTH S	SCALE				<u> </u>		Golder		L	DGGED: PAH

RECORD OF BOREHOLE: 17-26

BORING DATE: January 25, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013917.4 ;E 368640.0 SAMPLER HAMMER, 64kg; DROP, 760mm

9 c manuella c manuell	(CI/CH) SILTY CLAY to CLAY; grey.		ELEV. DEPTH (m) 93.09 0.00 92.86 0.23	1 (SS SS	5 BLOWS/0.30m	20 SHEAR ST Cu, kPa 20	40 RENGTH 40	nat V. + rem V. ⊕	30 Q - ● U - ○	10 ⁻⁶ WA ⁻ Wp I 20	TER CON			ADDITIONAL LAB. TESTING	
0 1 200 mm Diam. (Hollow Stem)	GROUND SURFACE TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff	STRATA	93.09 0.00 92.86	2	GRAE	3 -					vvp		-0 ^W	- wi		
0 1 200 mm Diam. (Hollow Stem)	TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		93.09 0.00 92.86	2	GRAE	3 -	20	40	60 8	30						
1 5 20 mm Diam. (Holiow Stem)	TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		0.00 92.86	2												
1 5 20 mm Diam. (Holiow Stem)	brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		92.86	2												
c c c c c c c c c c c c c c c c c c c	(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		0.23	2	ss	5										_
c c b c c c c c c c c c c c c c c c c c	CRUST); cohesive, w>PL, very stiff to stiff (CI/CH) SILTY CLAY to CLAY; grey.				SS	5										
c c b c c c c c c c c c c c c c c c c c	(CI/CH) SILTY CLAY to CLAY; grey.				SS	5										<u>₹</u>
c c b c c c c c c c c c c c c c c c c c	(CI/CH) SILTY CLAY to CLAY; grey.				SS	5										
G b C Power Auger 200 mm Diam. (Hollow Stem) 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey.			3												
G b C Power Auger 200 mm Diam. (Hollow Stem) 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey.			3												
G b C Power Auger 200 mm Diam. (Hollow Stem) 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey.			3												
G b C Power Auger 200 mm Diam. (Hollow Stem) 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey.				SS	4										
G Is C Power Auger 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey.															
2 4 5 Power Auger Auger 200 mm Diam. (Hollow	(CI/CH) SILTY CLAY to CLAY; grey.															
2 4 5 Power Auger 200 mm Diam. (Hollow	(CI/CH) SILTY CLAY to CLAY; grey.						⊕			+						
5	(CI/CH) SILTY CLAY to CLAY; grey, contains clavev silt seams: cohesive.									+						
5	(CI/CH) SILTY CLAY to CLAY; grey, contains clavev silt seams: cohesive.															
5	(CI/CH) SILTY CLAY to CLAY; grey, contains clavev silt seams; cohesive.	<u> </u>	90.04													
5			3.05	4	ss	1										
5	contains clayey silt seams; cohesive, w>PL, stiff															
5																
5	(SP) SAND; grey brown; non-cohesive,		89.28 3.81					+								
	wet, compact			-												
				5	SS	11										
	(SM) gravelly SILTY SAND; brown,	2	88.52 4.57													
	contains cobbles and boulders;		4.37													
6	non-cohesive, wet, compact to very dense															
6		渊														
6			87.57	6	SS	>50										
6	End of Borehole Auger Refusal		5.52													WL in open
																WL in open borehole at 0.50 m depth below
																upon completion of
																drilling
7																
8																
9																
10	1															
													1	1	1	
DEPTH S								Golde <u>ssoci</u>		1	I I		<u> </u>	I		i ogged: pah

RECORD OF BOREHOLE: 17-27

SHEET 1 OF 2 DATUM: Geodetic

LOCATION: N 5013836.4 ;E 368790.7

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: January 25-26, 2017

	Ē	SOIL PROFILE			SA	MPL		DYNAMIC PENETRA RESISTANCE, BLOW			HYDRAULIC CONDUC k, cm/s		μg	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	ER		BLOWS/0.30m	20 40	60 80	`		10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR
Β	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE)/S/(SHEAR STRENGTH Cu, kPa	nat V. + Q - rem V. ⊕ U -	0	WATER CONTEN		ADDI [.] AB. T	INSTALLATION
	BO		STF	(m)	2		BLC	20 40	60 80		20 40	60 80		
0		GROUND SURFACE TOPSOIL - (CL) SILTY CLAY; dark	====	93.85			\square					<u> </u>	-	X
		brown; cohesive		0.00 93.65 0.20										
		(CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED												
		CRUST); cohesive, w>PL, very stiff												
1	/ Stem)				1	SS	6				⊢ – – –	4		
	Auger													
	'ower / Diam. (0			
	Power Auger 200 mm Diam. (Hollow S			92.02	2	SS	4							
2	20((SM) gravelly SILTY SAND; brown, contains cobbles and boulders;		1.83							0			
ŕ		contains cobbles and boulders; non-cohesive, wet, loose	豚			1								Native Backfill
			驟		3	SS	8						мн	
ł						-								🕅
	Rotary Drill NW Tricone				4	RC	DD							
3	Rota NW 1			90.57										🛛 🕅
ľ		Borehole continued on RECORD OF DRILLHOLE 17-27	f	3.28		1								
4														
4														
5														
5														
6														
U														
7														
'														
8														
Ű														
9														
J														
10														
10														
						I			1 1			<u> </u>		I
	PTH S	CALE						Gold) #				L	ogged: Pah

_		ION: N 5013836.4 ;E 368790.7 ATION: -90° AZIMUTH:			NN NN NN	JN	DRI	ILL F	RIG: NG C	CM CON	E: Ja IE 850 TRAC	сто	R: (PL -	C - Plar	nar	P0-	Polist	hed					ken Ro			
	DRILLING RECORD	DESCRIPTION	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SHF VN CJ RE TOT/	R-Shea - Vein - Conj COVE	ar ijugat ERY	R.Q.	-00 -0R - CL -	- Foliati - Contac - Orthog - Cleava - Cleava - RACT. INDEX PER 0.25 m	ict gonal age		UN- ST - IR -	- Step - Irreg SCON RE IS	dulating	Ro - MB- DATA		ensid oth ih nanica	al Bre	eak s	abbrevi of abbr symbol ULIC TIVITY 'sec	viations reviatio ls. YPoint Ini (M	metral t Load MPa)	o list		
Ţ		BEDROCK SURFACE Fresh, thinly to medium bedded, grey,	90.57 3.28	F		Щ	Щ	Ш	\prod	Ш	Ĩ		\prod	Щ	Ĥ			\square	F	Ħ	\square	\square	Ħ	Ш			T KAT
4	NW Tricone	fine grained LIMESTONE REDROCK	3.20	1	100																					Native Backfill	
5	Rotary Drill NQ Core	e00		2	100																					Bentonite Seal Silica Sand	<u> 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888 - 1888</u>
6		End of Drillhole	<u>87.24</u> 6.61	3	100																					Standpipe	
7			0.2.																							WL in Standpipe at Elev. 93.05 m on Jan. 30, 2017	
8																											
9																											
1																											
2																											
3																											

RECORD OF BOREHOLE: 17-27A

LOCATION: N 5013836.4 ;E 368790.7

BORING DATE: January 25, 2017

SHEET 1 OF 1

DATUM: Geodetic

S S S	ETHOD	SOIL PROFILE	DT DT			MPLES		MIC PEN TANCE,			30		k, cm/s			10 ⁻³	NAL TING	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.30m	SHEA Cu, kF	R STREM 'a	IGTH	nat V. + rem V. €	30 Q - ● U - ○	W W	ATER C	0 ⁻⁵ 1 ONTENT	F PERCE	ENT WI	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
\rightarrow		GROUND SURFACE	S.	93.85				20 4	10 (50 8	30	2	20 4	40 (50	80		
0		For soil stratigraphy refer to Record of Borehole 17-27		0.00														
							Ĭ.											
							$\langle \cdot \rangle$											
1																		
'	Ê																	
	Power Auger 200 mm Diam. (Hollow Stem)						!											
	Power Auger n Diam. (Hollo																	
2	m Diar						`·											
	200 m							`·										
									>									
3									<u>\</u>	-								
				90.41							 	138						
ŀ		End of Borehole DCPT Refusal		3.44								130						
4																		
5																		
6																		
7																		
8																		
9																		
10																		
.5																		
	I					<u>. </u>	Â					•						
DEF	PTH S 50	CALE						G	olde	r <u>Mes</u>								ogged: Pah Ecked: Sat

RECORD OF BOREHOLE: 17-28

BORING DATE: January 26, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013987.7 ;E 368751.8 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц	ПОН	SOIL PROFILE	.		SA	MPL		DYNAMIC PENETRA RESISTANCE, BLOV		HYDRAULIC CONDUCTIVITY, k, cm/s	₽Ę	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa 20 40		10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp ├──────────────────── 20 40 60 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
. 0	Stem)	GROUND SURFACE TOPSOIL - (ML) CLAYEY SILT; dark brown; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		93.95 0.00 93.72 0.23	1	SS	5	20 40	60 80			Native Backfill
2	Power Auger 200 mm Diam. (Hollow Stem)	(SM) gravelly SILTY SAND; brown,		<u>91.82</u> 2.13	2	SS	6					Silica Sand
3	DCPT Open Hole	contains cobbles and boulders; non-cohesive, wet, compact to dense		<u>90.75</u> 3.20	3	SS	29					Standpipe Cave
4		DCPT Refusal										WL in Standpipe at Elev. 93.65 m on Jan. 30, 2017
5												
6												
7												
8												
10												
DE 1:		SCALE						Gold	 er			OGGED: PAH IECKED: SAT

RECORD OF BOREHOLE: 17-29

BORING DATE: January 23, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013007.0 ;E 367859.2 SAMPLER HAMMER, 64kg; DROP, 760mm

HOD	SOIL PROFILE			SA	MPL		HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE METRES BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [%LEL] ND = Not Detected 20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp ├───────── WI 20 40 60 80	PIEZOMETER OR STANDPIPE INSTALLATION
M 0 1 2 M 1 2 3 O 1 2 3	GROUND SURFACE FILL - Asphaltic concrete grinding and chunks TOPSOIL - (SM) SILTY SAND; dark			1 2 3 4	GRAE SS SS	5	[%LEL] ND = Not Detected 20 40 60 80 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕	Wp ├────────────I WI	Fush Mount Casing Bentonite Seal Silica Sand 50 mm Diam. PVC #10 Slot Screen WL in Screen at Elev. 89.45 m on Jan. 30, 2017
· 7									
9									

RECORD OF BOREHOLE: 17-30

BORING DATE: January 13, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013004.5 ;E 367889.2 SAMPLER HAMMER, 64kg; DROP, 760mm

ш	ПОН	SOIL PROFILE	-		SA	MPL		HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s	다. 이 아이 아	ER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		н.		.30m		10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	PIEZOMETI OR STANDPIF INSTALLATI	
MET	RING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	NS/0	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS	WATER CONTENT PERCENT		
Ğ	BOF		STR/	(m)	ĭ		BLOWS/0.	[%LEL] <i>ND</i> = <i>Not Detected</i> 20 40 60 80	Wp	^{<} →	
		GROUND SURFACE		89.95							
• 0				0.00				Φ		Flush Mount Casing Silica Sand	
		FILL - (SW-GW) SAND and GRAVEL; dark grey brown (PAVEMENT		0.20				⊕ ⊕			0
		STRŬCŤURE); non-cohesive, moist TOPSOIL - (SM) SILTY SAND, fine;		0.34	1	SS	18	⊕		Bentonite Seal	7
		black and grey; non-cohesive								Silica Sand	
1	Ctam)	(CI/CH) SILTY CLAY to CLAY; grey brown, contains silty fine sand seams,									
	er Swo	fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			2	SS	7	⊕			Å
	r Auge									50 mm Diam BVC	
	Power Auger					1				50 mm Diam. PVC #10 Slot Screen	
	Power Auger				3	SS	3	€			
2	6										
										Cillian Cond	k
										Silica Sand	شر. ا
					4	SS	2	•		Bentonite Seal	
3		End of Borehole	- 1222	87.05 2.90		$\left \right $					
5											
										WL in Screen at Elev. 89.36 m on	
										Jan. 30, 2017	
4											
5											
_											
6											
7											
8											
Ŭ											
9											
10											
DE	РТН	SCALE								LOGGED: PAH	
-	50							Golder		CHECKED: SAT	

RECORD OF BOREHOLE: 17-31

BORING DATE: January 13, 2017

DATUM: Geodetic

LOCATION: N 5013000.4 ;E 367874.4 SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

j.	DOH.	SOIL PROFILE	- I		SA	MPL		HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s	Ę	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	BER	щ	/0.30m	HEADSPACE COMBUSTIBLE	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ξ	ORING	DESCRIPTION	TRATA	DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3	VAPOUR CONCENTRATIONS [%LEL] ND = Not Detected		ADD LAB.	INSTALLATION
_	Ш	GROUND SURFACE	S				Ы	20 40 60 80	20 40 60 80		
0		FILL - (GP) sandy GRAVEL, angular; grey, contains asphalt fragments;	- XXX	90.07 0.00	1	GRAB	-	Đ			Flush Mount Casing Silica Sand
		non-cohesive, moist (CI/CH) SILTY CLAY to CLAY; grey		89.77 0.30							Silica Sand
		brown, contains silty fine sand seams, fissured (WEATHERED CRUST);									Silica Sand
1	Stem)	cohesive, w>PL, very stiff									
	ger ollow St				2	SS	5	0			
	Power Auger Diam. (Hollo										50 mm Diam. PVC #10 Slot Screen
	Power Auger 200 mm Diam. (Hollow				3	SS	6	⊕			
2	200										
											Silica Sand
					4	ss	2	Φ			Bentonite Seal
3		End of Borehole		87.1 <u>7</u> 2.90							
3											WL in Screen at
											Elev. 89.44 m on Jan. 30, 2017
4											
5											
6											
7											
8											
9											
10											
			-								
	50	CALE						Golder			DGGED: PAH ECKED: SAT

RECORD OF BOREHOLE: 17-32

BORING DATE: January 13, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013010.6 ;E 367910.1 SAMPLER HAMMER, 64kg; DROP, 760mm

л Р Г	E E E	SOIL PROFILE			S/	MPL	_	HEADSPACE ORGA CONCENTRATIONS ND = Not Detected 20 40	[PPM]	⊕	HYDRAULIC k, cm	/s			NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE COMB VAPOUR CONCENT [%LEL] ND = Not Det	JSTIBLE RATIONS		10 ⁻⁶ WATER Wp I	CONTEN	T PERCE	10 ⁻³ ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
-+	<u>ه</u>		ST				ВГ	20 40	60 80	_	20	40	60	80		
0	-+	GROUND SURFACE FILL - (SM-GM) SILTY SAND and		89.84 0.00		-									-	
	/ Stem)	CRAVEL; brown; non-cohesive TOPSOIL - (ML) sandy SILT; dark brown to black; non-cohesive (CI/CH) SILTY CLAY to CLAY; grey brown, contains sith fine sand seams, fissured (WEATHERED CRUST);	/EEE	0.00 0.08 89.54 0.30	1	GRAE	-	€								
1	Power Auger 200 mm Diam. (Hollow Stem)	fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			2	ss	7	0								Σ
2	200			87.71	3	ss	3	Φ								
		End of Borehole		2.13												WL in open borehole at 1.30 m depth below ground surface upon completion of
- 3																drilling
· 4																
5																
6																
7																
8																
9																
· 10																
DEF	PTH S	CALE						Gold								DGGED: PAH

RECORD OF BOREHOLE: 17-33

BORING DATE: January 23, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5013039.4 ;E 367857.2 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц	ПОН	SOIL PROFILE			SA	MPLI		CONCE	PACE ORGAN	PPM]	JR ⊕	HYDR	AULIC C k, cm/s		livii ř,		ĘĘ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	HEADS VAPOU [%LEL]	t Detected 40 PACE COMBL R CONCENTF ND = Not Dete	STIBLE ATIONS cted		w w	/ATER C			WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	S	89.99			ш	20	40	60	80		20 4	40 E	50	80		
0		ASPHALTIC CONCRETE	~~~~	0.00						1						1	1 1	
		FILL - Asphaltic concrete	Ж¥	0.12 89.66 0.33		GRAB		Ð										
	Stem)	(ML) CLAYEY SILT; grey with black staining (WEATHERED CRUST); cohesive, w>PL		89.38	2	GRAB	-	⊕										
	er St	(CI/CH) SILTY CLAY to CLAY; grey		0.61														
1	Power Auger	brown and red brown, fissured (WEATHERED CRUST); cohesive,			3	SS	6	ф										
	Powe	w>PL, very stiff					-											
	200 mm Diam (Hollow			88.47														
	20	CLAYEY SILT and SILTY SAND; grey		1.52														
2		brown (WEATHERED CRUST); cohesive, w>PL, very stiff			4	SS	3	Φ										
		End of Borehole	XXX	87.86 2.13														
3																		
5																		
4																		
5																		
6																		
7																		
8																		
9																		
10																		
	ртн	SCALE						Â									10	OGGED: PAH
υE		JUNEL							Golde Associ	r							CH	JOGLD. FAR

RECORD OF BOREHOLE: 17-34

BORING DATE: January 13, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5012981.8 ;E 367911.1 SAMPLER HAMMER, 64kg; DROP, 760mm

	ТНОВ	SOIL PROFILE	F		SA	MPLE		HEADSPAC CONCENTR ND = Not De 20	E ORGANI ATIONS [P ected	C VAPOU PM]	R ⊕		k, cm/s			ING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE VAPOUR CC [%LEL] ND = 20	COMBUS			10 WA Wp 20	TER CO	PERCE	0 ⁻³ NT WI 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		89.99													
		TOPSOIL - (ML) sandy SILT; dark brown; non-cohesive		0.00 89.69	1	GRAB	-	Ð									
1	Power Auger 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey brown, contains silty sand seams, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		0.30	2	SS	6	Ð									Ŷ
2	200				3	SS	3	Ð									
-		End of Borehole		87.86 2.13													
3																	WL in open borehole at 1.06 m depth below ground surface upon completion of drilling
4																	
5																	
6																	
7																	
8																	
9																	
10																	
DEF	PTH S	CALE														LC	OGGED: PAH

RECORD OF BOREHOLE: 17-35

BORING DATE: January 13, 2017

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5012965.0 ;E 367856.7 SAMPLER HAMMER, 64kg; DROP, 760mm

ц	Q	SOIL PROFILE	_		SA	MPL	ES	HEADSPACE (CONCENTRAT	IONS [PF	VAPOUF M]	•	HYDRAU k	LIC CO , cm/s	NDUCI	IVITY,	9 ب	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	CONCENTRAT ND = Not Detec 20 HEADSPACE (VAPOUR CON [%LEL] ND = N 20	COMBUS	TIBLE TIONS ed		10 ⁻⁶ WAT Wp H 20		NTENT	PERCE	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
. 0		GROUND SURFACE		90.45													
	Auger (Hollow Stem)	ASPHALTIC CONCRETE FILL - (SP-GP) SAND and GRAVEL, angular; grey (PAVEMENT STRUCTURE); non-cohesive, moist TOPSOIL - (ML) sandy SILT; dark brown; non-cohesive (SM) SILTY SAND; grey brown, contains		0.06 90.11 0.34 89.84 0.61	1	GRAB	-	⊕									
1	Power Auger 200 mm Diam. (Hollov	clayey silt seams; non-cohesive, wet, loose (CI/CH) SILTY CLAY to CLAY; grey brown, fissured (WEATHERED CRUST); cohesive, w>PL, very stiff		89.23 1.22	2	SS	7	Ð									
2		End of Borehole		88.32 2.13	3	ss	5	Ð									
				2.13													
3																	
4																	
5																	
5																	
6																	
7																	
8																	
9																	
10 DEI	оти с	CALE							older								DGGED: PAH

APPENDIX B

Results of Chemical Analysis Eurofins Environmental Testing Report No. 1702728

Certificate of Analysis

Environment Testing

Client:	Golder Associates Ltd. (Ottawa)	Report Number:	1702728	
	1931 Robertson Road	Date Submitted:	2017-02-23	
	Ottawa, ON	Date Reported:	2017-03-01	
	K2H 5B7	Project:	1658448	
Attention:	Mr. Alex Meacoe	COC #:	815945	
PO#:				
Invoice to:	Golder Associates Ltd. (Ottawa)			

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1282299 Soil 2017-01-16 BH17-9 sa3 5-7	1282300 Soil 2017-01-16 BH17-20 sa3 4.5-6.5
Group	Analyte	MRL	Units	Guideline		
General Chemistry	CI	0.002	%		0.003	<0.002
	Electrical Conductivity	0.05	mS/cm		0.23	0.09
	pH	2.0			7.0	8.4
	Resistivity	1	ohm-cm		4350	11100
	SO4	0.01	%		<0.01	<0.01

 Guideline =
 * = Guideline Exceedence

 All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

 Results relate only to the parameters tested on the samples submitted.

 Methods references and/or additional QA/QC information available on request.

🛟 eurofins

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

+ 27 11 254 4800 + 86 21 6258 5522

+ 61 3 8862 3500

+ 44 1628 851851

South America + 56 2 2616 2000

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada T: +1 (613) 592 9600

