

Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario

Client: *DCR Phoenix Group of Companies*

Type of Document: Draft

Project Name: Phase Two Environmental Site Assessment

Project Number: OTT-00234493-B0

Prepared By: Mark McCalla, P. Geo., Senior Geoscientist

Reviewed By:

Patricia Stelmack, M.Sc., P. Eng.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted: 2021-10-05

100-2650 Queensview Drive | Ottawa, Ontario K2B 8H6 | Canada t: +1.613.688.1899 | f: +1.613.225.7337 | exp.com

i

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Legal Notification

This report was prepared by EXP Services Inc. for the account of DCR Phoenix Group of Companies.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

ii

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Table of Contents

tification	i
gures	v
ppendices	vi
e Summary	vii
oduction	1
Site Description	1
Property Ownership	1
Current and Proposed Future Use	2
Applicable Site Condition Standards	2
kground Information	4
Physical Setting	4
Past Investigations	4
pe of the Investigation	6
Overview of the Site Investigation	6
Scope of Work	6
Media Investigated	6
Phase One Conceptual Site Model	6
Deviations from Sampling and Analysis Plan	7
Impediments	7
estigation Methodology	8
General	8
Borehole Drilling	8
Soil Sampling	8
Field Screening Measurements	9
Groundwater: Monitoring Well Installation	9
Groundwater: Field Measurement and Water Quality Parameters	9
Groundwater: Sampling	10
Sediment: Sampling	10
	gures

	4.9	Analytical Testing	10
	4.10	Residue Management	10
	4.10	Elevation Surveying	11
	4.12	Quality Assurance and Quality Control Measures	11
5	.0 Rev	iew and Evaluation	12
	5.1	Geology	12
	5.1.1	Fill Material	12
	5.1.2	Native Material	12
	5.1.3	Bedrock	12
	5.2	Groundwater: Elevations and Flow Direction	12
	5.3	Groundwater: Hydraulic Gradients	13
	5.4	Soil Texture	13
	5.5	Soil: Field Screening	14
	5.6	Soil: Quality	14
	5.7	Groundwater: Quality	14
	5.7.1	Chemical Transformation and Contaminant Sources	15
	5.7.2	Evidence of Non-Aqueous Phase Liquid	15
	5.8	Maximum Concentrations	15
	5.9	Sediment: Quality	15
	5.10	Quality Assurance and Quality Control Results	15
	5.11	Phase Two Conceptual Site Model	15
	5.11.1	Introduction	15
	5.11.2	Physical Site Description	15
	5.11.3	Geological and Hydrogeological	16
	5.11.4	Utilities	17
	5.11.5	Potentially Contaminating Activities	17
	5.11.6	Areas of Potential Environmental Concern/Potential Contaminants of Concern	17
	5.11.7	Investigation	18
	5.11.8	Soil Sampling	18

ļ	5.11.9	Groundwater Sampling	19
ŗ	5.11.10	Contaminants of Concern	19
ļ	5.11.11	Contaminant Fate and Transport	19
6.0	Conclu	ision	.20
7.0	Refere	nces	.21
8.0	Genera	al Limitations	.22
9.0	Signati	ures	.24

v

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

List of Figures

Fig 1 Site Location Plan Fig 2 Potentially Contaminating Activity (PCA) Fig 3 Site Plan and Utilities Fig 4 Area of Potential Environmental Concern (APEC) Fig 5 Boreholes, Monitoring Wells and APECs Fig 6A Groundwater Contours (2016) Fig 6B Groundwater Contours (2021) Fig 7 Soil Concentrations – PHC and BTEX Fig 8 Soil Concentrations – Metals Fig 9 Groundwater Concentrations – PHC and BTEX Fig 10 Cross Section A-A' – PHC and BTEX Fig 11 Cross Section A-A' Metals Fig 12 Cross Section B-B' – PHC and BTEX Fig 13 Cross Section B-B' Metals

*ехр.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

List of Appendices

Appendix A: Figures Appendix B: Survey Plan Appendix C: Sampling and Analysis Plan Appendix D: Borehole Logs Appendix E: Analytical Summary Tables Appendix F: Laboratory Certificates of Analysis

Executive Summary

EXP Services Inc. (EXP) was retained by DCR Phoenix Group to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 1154, 1176, 1180, 1208 Old Montreal Road, Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objectives of the Phase Two ESA investigation are to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

The most recent use of the Phase Two property is for residential/agricultural use. The proposed use is for multi-storey residential buildings. Consequently, in accordance with Regulation 153/04, as amended, a Record of Site Condition (RSC) is not required.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The APEC and potentially contaminating activity (PCA), relative degree of environmental risk, and recommendations from the EXP Phase I ESA are tabulated below.

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Area near dispensing area for former fuel AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #2	Area around furnace oil AST on 1208 Old Montreal Road		On-Site	PHC and BTEX	Soil and Groundwater
APEC #3	Area around furnace oil AST on 1176 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #4	Area around furnace oil AST on 1180 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #5	Fill material present at 1208 Old Montreal Road	PCA #30 – Importation of fill of unknown quality	On-Site	PHC and BTEX, metals	Soil
APEC #6	Area around generator AST at the communications tower on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater

Table EX.1: Areas of Potential Environmental Concern

The scope of work for the Phase Two ESA was as follows:

- Drilling 19 boreholes on the subject property and completing 11 as monitoring wells;
- Conducting an elevation survey of the boreholes and monitoring wells;
- Submitting selected soil samples from the boreholes for laboratory analysis of the following parameters: petroleum hydrocarbons (PHC); benzene, toluene, ethylbenzene, xylenes (BTEX) and metal parameters;
- Submitting groundwater samples from the monitoring wells for laboratory analysis of PHC and BTEX;
- Comparing the results of the soil and groundwater chemical analyses to applicable Ontario Ministry of the Environment, Conservation and Parks (MECP) 2011 Table 2 site condition standards; and,
- Preparing a report summarizing the results of the assessment activities.

The Phase Two property is located on the south side of Old Montreal Road, at 1154, 1176, 1180, and 1208 Old Montreal Road. The property at 1172 Old Montreal Road is not included in this assessment. At the time of the investigation, the Phase Two property was used for residential and agricultural purposes. The surrounding properties are mostly residential and agricultural. The Phase Two property is occupied by four residences and has an area of approximately 5.6 ha. The Phase Two property has the property identification numbers (PIN): 145260023, 145260025, 145260026, 145260028, and 145262280.

The topography of the Phase Two property consists of a topographic high at the house and barn locations of the site, with a steep slope downwards to the north to Old Montreal Road. The local groundwater flow direction is anticipated to be northerly towards the Ottawa River, at a distance of 1.2 km.

A summary of the soil and groundwater sampling program is as follows:

- A 0.1 m thick layer of grey crushed stone was observed in several boreholes at the ground surface. Brown sand and gravel mixed with silty sand was found in each of the boreholes either below the crushed stone or at the ground surface. The brown sand and gravel ranged in thickness from 0.5 m to 0.8 m. No indications of petroleum impact were identified in the fill. Below the fill was a brown to grey silty clay. The silty clay extended to 21.3 m. Gravelly sand till was found from 21.3 m to 23.0. A sand and gravel till layer was found in BH13 at a depth of 4.16 m. Petroleum odours were detected in soil samples in BH7 from 1.5 m to 3.3 m, BH7A from 1.5 m to 3.2 m, and in BH7C from 0.3 m to 3.0 m;
- Seventeen (17) soil samples were submitted for laboratory analysis of PHC and BTEX. The concentrations of BTEX parameters in BH7, BH7A and BH7C exceeded the MECP 2011 Table 2 SCS. The concentration of PHC F1 in the sample from BH7A also exceeded the MECP 2011 Table 2 SCS. The remaining soil samples had PHC and BTEX concentrations that were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS;
- Five (5) soil samples were submitted for metals analysis. All metals concentrations were less than the MECP 2011 Table 2 SCS;
- Seventeen (17) groundwater and a blind duplicate sample were submitted for chemical analysis of BTEX and PHC. The monitoring wells are labeled BH7 to BH13 and MW-1 to MW-4. The BTEX concentrations measured in the groundwater sample collected from BH7 significantly exceeded the MECP 2011 Table 3 SCS. The concentrations of PHC and BTEX measured in the remaining groundwater samples were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS;
- BTEX and PHC impacted soil and groundwater were identified at the former tractor refuelling area at 1208 Old Montreal Road associated with APEC 1. Based on laboratory results indicating exceedances of the MECP Table 2 SCS and field observations, the maximum thickness of PHC impact of 3.5 m was measured in BH7. The area of impacted soil has been estimated to be between 600 m² and 1,050 m². Assuming an estimated average thickness of impact of 1.5 m, the resulting volume of PHC impacted soil in this zone is estimated to be between 900 m³ and 1,575 m³.

- This impacted soil and groundwater must be removed from the site and confirmatory soil samples collected to demonstrate that the remaining soil concentrations satisfy the MECP Table 2 SCS.
- If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

1.0 Introduction

EXP Services Inc. (EXP) was retained by DCR Phoenix Group to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 1208 Old Montreal Road, Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objectives of the Phase Two ESA investigation are to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

The most recent use of the Phase Two property is for residential/agricultural use. The proposed use is for multi-storey residential buildings. Consequently, in accordance with Regulation 153/04, as amended, a Record of Site Condition (RSC) is not required.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

Leah Wells, P. Eng., was the report author for this project. Ms. Wells was supervised by Mark McCalla, B.Sc., P. Geo. Mr. McCalla is a Qualified Person, as defined by Ontario Regulation 153/04.

1.1 Site Description

The Phase Two property is located on the south side of Old Montreal Road, at 1154, 1176, 1180, and 1208 Old Montreal Road, as shown on Figure 1 in Appendix A. The property at 1172 Old Montreal Road is not included in this assessment. At the time of the investigation, the Phase Two property was used for residential and agricultural purposes. The surrounding properties are mostly residential and agricultural. The Phase Two property is occupied by 4 residences and has an area of approximately 5.6 ha. A site plan is provided in Figure 2 of Appendix A.

The Phase Two property has the property identification numbers (PIN): 145260023, 145260025, 145260026, 145260028, and 145262280.

The legal description of the Phase Two property is:

- 1154 Old Montreal Road PT LT 28 CON 10S CUMBERLAND AS IN RR138993; OTTAWA
- 1176 Old Montreal Road PT LT 27 CON 1OS CUMBERLAND AS IN N752036 T/W RR133367; OTTAWA
- 1180 Old Montreal Road PT LT 27 CON 1OS CUMBERLAND PARTS 1,2 & 3, 50R6772 S/T RR133366; OTTAWA
- 1208 Old Montreal Road FIRSTLY: PART LOT 27, CONCESSION 1OS CUMBERLAND AS IN N759565; SECONDLY: PART LOT 27, CONCESSION 1OS CUMBERLAND, PART 1, PLAN 4R31597; T/W RR133367 CITY OF OTTAWA

The approximate Universal Transverse Mercator (UTM) coordinates for the Phase Two property centroid are Zone 18, 463549 m E and 5038049 m N. The UTM coordinates are based on measurements from Google Earth Pro, published by the Google Limited Liability Company (LLC). The accuracy of the centroid is estimated to be less than 10 m

The topography of the Phase Two property consists of a topographic high at the house and barn locations of the site, with a steep slope downwards to the north to Old Montreal Road. The local groundwater flow direction is anticipated to be northerly towards the Ottawa River, at a distance of 1.2 km. A legal survey of the Phase Two property is presented in Appendix B.

1.2 Property Ownership

The property owner of all of the civic addresses is Phoenix Harbour Old Montreal Road Inc. Authorization to proceed with this investigation was provided by Michael Boucher, Manager of Planning, Phoenix Homes. Contact information for Mr. Boucher is 18 Bentley Avenue, Ottawa, Ontario, K2E 6T8.

1.3 Current and Proposed Future Use

The Phase Two property is currently residential, and the proposed future use of the property is residential. Therefore, a Record of Site Condition (RSC) is not required, per Ontario Regulation 153/04.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 2 SCS in a potable groundwater condition for all types of residential/parkland/institutional property use, fine and medium grained soils. The selection of this category was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- The Phase Two property does not include and is not within 30 m of a water body;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Some residences in the area are supplied by potable water wells;

Soil pH is within acceptable range for surface and subsurface soils;

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

- The Phase Two property is planned for residential use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property is located on the south side of Old Montreal Road, at 1154, 1176, 1180, and 1208 Old Montreal Road, as shown on Figure 1 in Appendix A. The property at 1172 Old Montreal Road is not included in this assessment. At the time of the investigation, the Phase Two property was used for residential and agricultural purposes. The surrounding properties are mostly residential and agricultural. The Phase Two property is occupied by four residences and has an area of approximately 5.6 ha.

The Phase Two property is located in a mixed agricultural/residential area. Potable water on the site and properties on the south side of Montreal Road rely on water wells for potable water. Municipal water is available from the City of Ottawa for the properties north of Montreal Road.

The topography of the Phase Two property consists of a topographic high at the northern portion of the site, with a steep slope downwards in the centre section of the site just south of 1180 Old Montreal Road, and then flat agricultural lands at the southern portion of the site.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. The Phase Two property is not within 30 m of a water body.

Based on the surficial geology map examined, beneath any fill, the surficial geology of the subject site is characterised by fine textured glaciomarine deposits of silt and clay with minor sand and gravel. An examination of the bedrock geology map shows the subject site is underlain by limestone, dolostone and shale of the Ottawa Group. The local groundwater flow direction is anticipated to be west towards Cardinal Creek.

2.2 Past Investigations

EXP prepared a report entitled *Phase I Environmental Site Assessment 1154, 1172, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario* dated August 19, 2016. Based on the results of the Phase One ESA, EXP identified one APEC.

Area of Potential Environmental Concern (APEC) Location of APEC on Phase One Property		Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Area near dispensing area for former fuel AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #2	Area around furnace oil AST on 1208 Old Montreal Road		On-Site	PHC and BTEX	Soil and Groundwater
APEC #3	Area around furnace oil AST on 1176 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater

Table 2.1: Findings of Phase I ESA

5

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #4	Area around furnace oil AST on 1180 Old Montreal Road		On-Site	PHC and BTEX	Soil and Groundwater
APEC #5	APEC #5 Fill material present at 1208 Old Montreal Road		On-Site	PHC and BTEX, metals	Soil
APEC #6	Area around generator AST at the communications tower on 1208 Old Montreal Road		On-Site	PHC and BTEX	Soil and Groundwater

The locations of the APEC are shown in Figure 4 in Appendix A.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

3.0 Scope of the Investigation

3.1 Overview of the Site Investigation

The purpose of the Phase Two ESA was to investigate the soil and groundwater quality at the Phase Two property and to obtain soil and groundwater data to further characterize conditions in the soil and groundwater related to the PCA described above within the APEC shown on Figure 4 in Appendix A.

Subsurface investigations were undertaken in 2016 and in 2021.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Request local public utility locating companies (cable, telephone, gas, hydro) to mark any underground utilities present at the Site;
- Retain a private utility locating company to mark all underground utilities present in the vicinity of the borehole locations and to clear the individual borehole locations;
- Advance a total of 19 boreholes at the Site, and instrument 11 of them with a monitoring well to facilitate groundwater sampling;
- Collect representative soil samples for chemical analysis of petroleum hydrocarbon fractions (PHC) F1-F4 and benzene, toluene, ethylbenzene, xylenes (BTEX), and/or metals;
- Collect groundwater samples from the monitoring wells for chemical analysis of BTEX and PHC.
- Measure groundwater levels of the monitoring wells and complete an elevation survey of the monitoring wells relative to a geodetic benchmark;
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP); and
- Preparing a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater on the Phase Two property. As there are no water bodies on the Phase Two property, no surface water or sediment sampling was required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figures 2 and 4.

The following PCA were identified:

6

- On site: PCA #28 Gasoline and Associated Products Storage in Fixed Tanks
- PCA #30 Importation of fill of unknown quality

The following areas of potential environmental concern (APEC) were identified:

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Area near dispensing area for former fuel AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #2	Area around furnace oil AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #3	Area around furnace oil AST on 1176 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #4	Area around furnace oil AST on 1180 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #5	Fill material present at 1208 Old Montreal Road	PCA #30 – Importation of fill of unknown quality	On-Site	PHC and BTEX, metals	Soil
APEC #6	Area around generator AST at the communications tower on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

No significant deviations from the sampling and analysis plan (SAAP), as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

3.6 Impediments

No physical impediments were encountered during the field investigation. The entire Phase Two property was accessible at the time of the investigation.

4.0 Investigation Methodology

4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

The site investigative activities consisted of the drilling of boreholes to facilitate the collection of soil samples for visual inspection, to record relevant geotechnical information and the installation of monitoring wells for hydrogeological property characterization and the collection of groundwater samples for chemical analysis.

4.2 Borehole Drilling

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

In mid-August 2016, seven boreholes were advanced at the Site by Marathon Drilling Company Ltd., a licensed well contractor. One environmental borehole (BH7) was located in the dispensing area of the former gasoline storage tank. Impacted soil and groundwater were found at this location. On August 19, 2016, three (3) additional boreholes (BH7A to BH7C) were advanced at the Site approximately 5 m north, south and west of BH7 in an attempt to delineate the petroleum impact. Impacted soil and groundwater were found to the north and south, and to a lesser extent to the south.

On August 31, 2016, six (6) boreholes (BH8 to BH13) were drilled to the south (BH10), east (BH8 and BH9), and north (BH11 to BH13) of BH7 in an attempt to delineate the impact to soil and groundwater at the site. This phase of drilling was completed by M3 Drilling, a licensed well contractor.

On August 25 to September 2, 2021, four (4) boreholes were drilled on the Phase Two property. One borehole each were drilled to assess APEC 2 to 4 and APEC 6, and they were completed as monitoring wells. In addition, five (5) hand auger boreholes were drilled to assess APEC 5 (fill quality). The borehole located at APEC 2 was drilled using a manual crew within the basement of the residence near the former location of the heating oil AST.

The drilling was completed under the full-time supervision of EXP staff. The locations of the boreholes and monitoring wells are presented on Figure 5 in Appendix A.

The boreholes were generally advanced to a maximum depth of 8.23 m below ground surface (bgs), using both a power auger drilling rig. Representative soil samples were recovered from the boreholes at regular depth intervals using stainless steel split spoon samplers. Dedicated nitrile gloves (i.e., one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during drilling activities.

4.3 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix D.

Soil samples identified for possible laboratory analysis were collected from the boreholes and placed directly into precleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

4.4 Field Screening Measurements

The remaining portion of each soil sample was placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of potential hydrocarbon vapour concentrations in the soil samples collected during the test pitting investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv, 50 ppmv increments from 1,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within $\pm 10\%$ of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than $\pm 10\%$ of the standard gas value then the instrument is re-calibrated prior to use.

The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix D.

4.5 Groundwater: Monitoring Well Installation

A groundwater monitoring well was installed in boreholes BH7, BH7B, and BH8 to BH13, and MW-1 to MW-4. The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 and were installed by licensed well contractors (Marathon Drilling and M3 Drilling).

The monitoring wells were constructed of a 30 mm diameter, 3.0 m long Schedule 40 PVC screen and appropriate length riser pipe. The well screen has a slot size of approximately 0.25 mm (slot 10) and was sealed at the base with a PVC end cap. The annular space around the well screen was backfilled with silica sand to approximately 0.3 m above the top of the screen. The sand pack was extended above the screen to allow for compaction of the sand pack and expansion of the overlying well seal. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below ground surface. The 2016 monitoring wells were completed with a flush-mount protective steel casing cemented into place. MW-1 to MW-4 did not have a protective casing and the top of casing was above the ground surface. Details of the well installations are provided on the borehole logs in Appendix D.

4.6 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.7.

All measurements of petroleum vapours in the monitor riser were made with an RKI Eagle 2 in methane elimination mode. Immediately after removing the well cap, the collection tube of the Eagle was inserted into the riser and the peak instrument reading was recorded. EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

4.7 Groundwater: Sampling

As part of the Phase Two ESA groundwater samples from eight monitoring wells (MW-7, MW-7B, MW-8 to MW-13) were collected in 2016 via a low flow sampling technique using a YSI 550 multi probe water quality meter. In 2021, the four new monitoring wells (MW-1 to MW-4) and three existing wells (BH7B, and BH8 and BH9) were sampled using low flow techniques. The remaining older wells could not be found due to site clearing and high vegetation. The YSI probe was calibrated using inhouse reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

Seventeen groundwater samples were submitted for analysis of BTEX and PHC. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the contract laboratory. The samples were transported to the laboratory within 24 hours of collection with a chain of custody.

4.8 Sediment: Sampling

As no water body was present at the Phase Two property, sediment sampling was not required.

4.9 Analytical Testing

The contracted laboratory selected to perform chemical analysis on the soil and water samples from 2016 was Paracel Laboratories Ltd. (Paracel). The contract laboratory selected to perform chemical analysis on the soil and water samples from 2021 was Bureau Veritas Ltd. (BVL). Paracel and BVL are accredited laboratories under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.10 Residue Management

The drill cuttings from drilling activities remained on site. Fluids from cleaning drilling equipment were disposed of by the driller at their facility. Purge water from groundwater sampling was stored in pails on the site.

4.10 Elevation Surveying

An elevation survey of the monitoring wells was completed on September 6, 2016 and August 2021. Elevations were referenced to a geodetic benchmark using a high precision global positioning system meter relative to mean sea level (m AMSL).

4.12 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratories. The contracted laboratory selected to perform chemical analysis on the soil and water samples from 2016 was Paracel Laboratories Ltd. (Paracel) and in 2021 the contract laboratory was Bureau Veritas. QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Blind duplicate soil and groundwater samples were collected;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody, to ensure the integrity of the samples is maintained.

Paracel's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

The detailed soil profiles encountered in the borehole are provided on the borehole logs in Appendix D. Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change

5.1.1 Fill Material

A 0.1 m thick layer of grey crushed stone was observed in several boreholes at the ground surface. Brown sand and gravel mixed with silty sand was found in each of the boreholes either below the crushed stone or at the ground surface. The brown sand and gravel ranged in thickness from 0.5 m to 0.8 m. No indications of petroleum impact were identified in the fill.

5.1.2 Native Material

Below the fill was a brown to grey silty clay. This extended to the maximum depth drilled of 8.23 m. A sand a gravel till layer was found in BH13 at a depth of 4.16 m. There were petroleum odours noticed in soil samples in BH7 from 1.5 m to 3.3 m, BH7A from 1.5 m to 3.2 m, and in BH7C from 0.3 m to 3.0 m.

5.1.3 Bedrock

Bedrock was encountered during the investigation at a depth of 13.6 m and 23.3 m. Available information indicates that the bedrock in the area is likely to be shale of the Rockcliffe Formation.

5.2 Groundwater: Elevations and Flow Direction

Groundwater elevations and water levels were measured at the Phase Two property on September 8, 2016 and September 9, 2021. Groundwater was encountered at a depth of 1.24 m to 5.80 m bgs in 2016 and at a depth of 1.96 to. Petroleum sheens and odours were observed in the purge water from BH7. No other petroleum sheens or odours were observed during the sampling event. Monitoring consisted of inspection for general physical condition, groundwater depth, the presence of phase-separated liquid petroleum and petroleum vapour. Groundwater monitoring and elevation data are provided below.

Monitoring Well ID/ Installation ID	Grade Elevation	Top of Casing Elevation (mbTOC)	Screen Depth (mbgs)	Depth to Groundwater (mbTOC) 2016	Groundwater Elevation Sept. 8, 2016	Depth to Groundwater (mbTOC) 2021	Groundwater Elevation Sept. 9, 2021
BH7	85.17	85.17	2.5 to 5.5	1.24	83.93	NM	NA
ВН7В	84.88	84.99	2.5 to 5.5	1.79	83.20	3.06	81.93
BH8	84.57	84.49	3.8 to 6.8	2.48	82.01	3.39	81.18
BH9	85.49	86.29	4.6 to 7.6	2.42	83.87	2.66	82.83
BH10	85.97	85.80	3.8 to 6.8	1.79	84.01	NM	NA
BH11	79.25	79.18	4.6 to 7.6	5.73	73.45	NM	NA
BH12	77.29	77.10	4.2 to 8.2	5.22	71.88	NM	NA

Table 5-1: Monitoring and Elevation Data

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Monitoring Well ID/ Installation ID	Grade Elevation	Top of Casing Elevation (mbTOC)	Screen Depth (mbgs)	Depth to Groundwater (mbTOC) 2016	Groundwater Elevation Sept. 8, 2016	Depth to Groundwater (mbTOC) 2021	Groundwater Elevation Sept. 9, 2021
BH13	75.32	75.14	2.1 to 5.1	2.19	72.95	NM	NA
MW-1	81.39	81.81	2.7 to 5.7	NA	NA	3.38	78.43
MW-2	86.45	88.00	3.1 to 6.1	NA	NA	4.40	83.60
MW-3	85.63	87.30	3.1 to 6.1	NA	NA	4.21	83.09
MW-4	85.45	85.63	3.1 to 6.1	NA	NA	1.96	83.67
BH-14	84.04	NA	8 to 10	NA	NA	2.29	81.75
BH-15	85.03	NA	8 to 10	NA	NA	3.83	81.20
BH-16	85.50	NA	8 to 10	NA	NA	5.09	80.41

Notes: Elevations were measured to a geodetic elevation.

mbgs – metres below ground surface

mbTOC – metres below top of monitor casing

ND – non-detectable

Based on the water levels measured on September 9, 2021, the principal direction of groundwater flow in the overburden materials was to the west northwest. The groundwater contour plan for 2016 is provided as Figure 6A and for 2021 is Figure 6B in Appendix A. The overburden groundwater direction was the same in 2016 and 2021.

EXP notes that groundwater levels can be influenced by seasonal changes, the presence of subsurface structures, or fill.

5.3 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients were estimated for the groundwater flow components identified in the bedrock aquifer based on the September 2016 groundwater elevations.

The horizontal hydraulic gradient is calculated across the using the following equation:

 $i = \Delta h / \Delta s$

Where,

i = horizontal hydraulic gradient; Δh (m) = groundwater elevation difference; and, Δs (m) = separation distance.

The horizontal hydraulic gradient was calculated to be 0.003 m/m to 0.023 m/m in the south part of the site. In the north part of the site the horizontal hydraulic gradient was calculated to be 0.11 m/m 0.14 m/m.

5.4 Soil Texture

Two grain size analyses performed on the silty clay yielded a soil composition of 61 to 69 percent clay, 30 to 37 percent silt and 1 to 2 percent sand. This indicates that the soil texture is fine to medium grained. The pH of the soil ranged from 6.40 to 6.81.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

5.5 Soil: Field Screening

Field screening involved using the combustible vapour meter to measure vapour concentrations, in ppmv, in the collected soil samples in order to assess the presence of soil gases which would imply potential petroleum hydrocarbon impact. The soil sample vapour readings ranged from non-detectable to 1600 ppmv. No staining or odours were observed in any of the soil samples.

5.6 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples from each borehole was based on field screening for combustible vapours and visual and/or olfactory evidence, where observed. Soil analytical results are summarized on Tables 1 and 2 in Appendix E and the Certificates of Analysis are enclosed in Appendix F.

The concentrations of BTEX parameters in BH7, BH7A and BH7C exceeded the MECP 2011 Table 2 SCS. The concentration of PHC F1 in the sample from BH7A also exceeded the MECP 2011 Table 2 SCS. The remaining soil samples had PHC and BTEX concentrations that were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS. The PHC and BTEX soil concentrations are shown on Figures 7, 10 and 12.

Five (5) soil samples were submitted for metals analysis. All metals concentrations were less than the MECP 2011 Table 2 SCS. The metals soil concentrations are shown on Figures 8, 11, and 13.

Maximum soil concentrations are provided in Table 3 in Appendix E.

BTEX and PHC impacted soil was identified at the former tractor refuelling area at 1208 Old Montreal Road and is associated with APEC 1. Based on laboratory results indicating exceedances of the MECP Table 2 SCS and field observations, the maximum thickness of PHC impact of 3.5 m was measured in BH7. The likely area of impacted soil has been estimated to be 600 m². Assuming an estimated average thickness of impact of 1.5 m, the resulting volume of impacted soil in this zone is 900 m³.

5.7 Groundwater: Quality

Chemical analyses were performed on groundwater samples collected fromeleven monitoring wells. All groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Eight groundwater samples (BH7 to BH13 and one field duplicate) were submitted for chemical analysis of BTEX and PHC in 2016. The BTEX concentrations measured in the groundwater sample collected from BH7 significantly exceeded the MECP 2011 Table 2SCS. The concentrations of PHC and BTEX measured in the remaining groundwater samples were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS. The results are presented in Table 4 in Appendix E. The four new monitoring wells (MW-1 to MW-4) and three existing wells (BH7B, and BH8 and BH9) were sampled on September 9 and 10, 2021 and had non-detectable concentrations of PHC and BTEX and therefore, the extent of groundwater impact has not increased. The PHC F2 concentration measured in MW-3 initially exceeded the MECP Table 2 SCS, but this was likely due to sediment, so MW was re-developed and re-sampled on Sep 21, 2021 and result was non-detectable, confirming that the initial result was a false positive. The groundwater PHC concentrations are shown on Figures 9, 10, and 12.

Maximum groundwater concentrations are provided in Table 5 in Appendix E.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.7.1 Chemical Transformation and Contaminant Sources

There are four soil samples located west of the steel barn at 1208 Old Montreal Road that had one or more exceedances of BTEX and PHC F1 of the MECP Table 2 SCS. The groundwater at MW7 also had concentrations of BTEX that exceeded the MECP Table 2 SCS. Chemical transformations are a potential concern at the Site. This impacted soil and groundwater should be removed from the Phase Two property.

5.7.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

5.8 Maximum Concentrations

Maximum soil and groundwater concentrations are provided in Tables 3 and 5, respectively, in Appendix E.

5.9 Sediment: Quality

As there were no water bodies on the Phase Two property, surface water and sediment sampling were not required.

5.10 Quality Assurance and Quality Control Results

Bureau Veritas and Paracel's QA/QC programs consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were mostly within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by Paracel and BV labs are of acceptable quality and further data qualifications are not required.

5.11 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.11.1 Introduction

EXP Services Inc. (EXP) was retained by DCR Phoenix Group to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 1208 Old Montreal Road, Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objectives of the Phase Two ESA investigation are to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

5.11.2 Physical Site Description

The Phase Two property is located on the south side of Old Montreal Road, at 1154, 1176, 1180, and 1208 Old Montreal Road, as shown on Figure 1 in Appendix A. The property at 1172 Old Montreal Road is not included in this assessment. At the time of the investigation, the Phase Two property was used for residential and agricultural purposes. The surrounding

properties are mostly residential and agricultural. The Phase Two property is occupied by 4 residences and several barns/sheds and has an area of approximately 5.6 ha. A site plan is provided in Figure 2 of Appendix A.

The Phase Two property has the property identification numbers (PIN): 145260023, 145260025, 145260026, 145260028, and 145262280.

The legal description of the Phase Two property is:

- 1154 Old Montreal Road PT LT 28 CON 1OS CUMBERLAND AS IN RR138993; OTTAWA
- 1176 Old Montreal Road PT LT 27 CON 10S CUMBERLAND AS IN N752036 T/W RR133367; OTTAWA
- 1180 Old Montreal Road PT LT 27 CON 10S CUMBERLAND PARTS 1,2 & 3, 50R6772 S/T RR133366; OTTAWA
- 1208 Old Montreal Road FIRSTLY: PART LOT 27, CONCESSION 1OS CUMBERLAND AS IN N759565; SECONDLY: PART LOT 27, CONCESSION 1OS CUMBERLAND, PART 1, PLAN 4R31597; T/W RR133367 CITY OF OTTAWA

The approximate Universal Transverse Mercator (UTM) coordinates for the Phase Two property centroid are Zone 18, 463549 m E and 5038049 m N. The UTM coordinates are based on measurements from Google Earth Pro, published by the Google Limited Liability Company (LLC). The accuracy of the centroid is estimated to be less than 10 m

The topography of the Phase Two property consists of a topographic high at the house and barn locations of the site, with a steep slope downwards to the north to Old Montreal Road. The local groundwater flow direction is anticipated to be north towards the Ottawa River, at a distance of 1.2 km.

The Phase Two property is located in a mixed agricultural/residential area. Potable water on the site and properties on the south side of Montreal Road rely on water wells for potable water. Municipal water is available from the City of Ottawa for the properties north of Montreal Road. Thus, in accordance with Section 35 of Ontario Regulation 153/04, potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is a shallow soil property as defined in Section 43.1 of the regulation. The Phase Two property does not include and is not within 30 m of a water body. The Madawaska River is located approximately 30 m west of the Phase Two property.

5.11.3 Geological and Hydrogeological

A 0.1 m thick layer of grey crushed stone was observed in several boreholes at the ground surface. Brown sand and gravel mixed with silty sand was found in each of the boreholes either below the crushed stone or at the ground surface. The brown sand and gravel ranged in thickness from 0.5 m to 0.8 m. No indications of petroleum impact were identified in the fill. Below the fill was a brown to grey silty clay. This extended to the maximum depth drilled of 8.23 m. A sand a gravel till layer was found in BH13 at a depth of 4.16 m. There were petroleum odours noticed in soil samples in BH7 from 1.5 m to 3.3 m, BH7A from 1.5 m to 3.2 m, and in BH7C from 0.3 m to 3.0 m.

Available information indicates that the bedrock in the area is likely to be shale of the Rockcliffe Formation. The depth to bedrock ranges from 13.6 m and 23.3 m across the property.

The groundwater flow direction was determined to be to the north as shown in Figure 6. EXP notes that groundwater levels can be influenced by seasonal changes, the presence of subsurface structures, or fill.

A plan view showing cross-sections is provided as Figure 6A while the Phase Two property geology is depicted in cross-sections on Figures 10 to 13.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

A summary of factors that apply to the Phase Two property is provided in Table 5.2

Characteristic	Description
Minimum Depth to Bedrock	22.8 m
Minimum Depth to Overburden Groundwater	1.34 m at BH7
Shallow Soil Property	No
Proximity to water body or ANSI	60 m
Soil pH	6.40 to 6.81
Soil Texture	Fine and medium grained
Current Property Use	Residential
Future Property Use	Residential
Proposed Future Building	Multi-storey residential

Table 5-2: Site Characteristics

5.11.4 Utilities

Overhead electrical lines are present at the Phase Two property, however active underground utilities are not expected to be present. The sites rely on private wells and septic systems. It is unlikely that the groundwater flow would be influenced by the septic systems.

5.11.5 Potentially Contaminating Activities

Ontario Regulation 153/04 defines a PCA as one of 59 operations set out in Table 2 of Schedule D that occurs or has occurred in a Phase Two study area. The following PCAs were identified:

- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks
- PCA #30 Importation of fill of unknown quality

5.11.6 Areas of Potential Environmental Concern/Potential Contaminants of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 4 in Appendix A:

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Area near dispensing area for former fuel AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #2	Area around furnace oil AST on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #3	Area around furnace oil AST on 1176 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #4	Area around furnace oil AST on 1180 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater
APEC #5	Fill material present at 1208 Old Montreal Road	PCA #30 – Importation of fill of unknown quality	On-Site	PHC and BTEX, metals	Soil
APEC #6	Area around generator AST at the communications tower on 1208 Old Montreal Road	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHC and BTEX	Soil and Groundwater

5.11.7 Investigation

The Phase Two ESA was conducted to assess the soil and groundwater quality at the Phase Two property. The site investigative activities consisted of drilling boreholes and monitoring wells to facilitate the collection of soil and groundwater samples for visual inspection, to record relevant geotechnical information and submit samples for chemical analysis. The analytical program of the Phase Two ESA included testing of soil for metals, BTEX and PHC and groundwater for BTEX and PHC. The borehole and monitoring well locations are shown on Figure 5 in Appendix A.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies.

5.11.8 Soil Sampling

Representative soil samples were recovered from the boreholes at regular depth intervals using stainless steel split spoon samplers. Soil samples identified for possible laboratory analysis were collected from the boreholes and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Paracel Laboratories and Bureau Veritas of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

Seventeen soil samples were submitted for laboratory analysis of PHC and BTEX. The concentrations of BTEX parameters in BH7, BH7A and BH7C exceeded the MECP 2011 Table 2 SCS. The concentration of PHC F1 in the sample from BH7A also exceeded the MECP 2011 Table 2 SCS. The remaining soil samples had PHC and BTEX concentrations that were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS. Five (5) soil samples were submitted for metals analysis. All metals concentrations were less than the MECP 2011 Table 2 SCS. The soil concentrations are shown on Figure 7, 8 and 10 to 13.

BTEX and PHC impacted soil and groundwater was identified at the former tractor refuelling area at 1208 Old Montreal Road and is associated with APEC 1. Based on laboratory results indicating exceedances of the MECP Table 2 SCS and field observations, the maximum thickness of PHC impact of 3.5 m was measured in BH7. The likely area of impacted soil has been estimated to be 600 m². Assuming an estimated average thickness of impact of 1.5 m, the resulting volume of PHC impacted soil in this zone is 900 m³. This area is shown on Figures 7, 10 to 13.

5.11.9 Groundwater Sampling

All groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Seventeen (17) groundwater samples plus a blind duplicate were submitted for chemical analysis of BTEX and PHC. The monitoring wells are labeled BH7 to BH13 and MW-1 to MW-4. The BTEX concentrations measured in the groundwater sample collected from BH7 significantly exceeded the MECP 2011 Table 2 SCS. The concentrations of PHC and BTEX measured in the remaining groundwater samples were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS. The results are presented in Table 4 in Appendix E. The groundwater concentrations are shown on Figure 9 and 10 to 13.

5.11.10 Contaminants of Concern

Based on the results of the investigation, BTEX and PHC in soil and groundwater at the Phase Two property exceeded the applicable MECP Table 2 SCS. The analytical results are provided in Figures 7 and 10 to 13 in Appendix A.

5.11.11 Contaminant Fate and Transport

Inspection of groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

The PHC impacted soil and groundwater was identified at the former tractor refuelling area at 1208 Old Montreal Road and is associated with APEC 1. This area is shown on Figures 7 to 13. The depth of soil impact was found from 1.8 m to 2.4 m. The source of the impact was a fuel dispensing area beside the steel barn.

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

As a result of the various natural attenuation mechanisms in the soil environment, the concentrations of any COCs in soil will be reduced at the Site. It is recommended that the impacted soil be removed from the Phase Two property.

6.0 Conclusion

During the current investigation, the soil and groundwater quality at the Phase Two property were investigated. The investigation included pre- and post-remedial soil sampling and a groundwater sampling program. Results were compared to Regulation 153/04 Table 2 standards for a residential/parkland/institutional property use and fine textured soils in a non-potable groundwater condition.

A summary of the soil and groundwater sampling program is as follows:

- A 0.1 m thick layer of grey crushed stone was observed in several boreholes at the ground surface. Brown sand and gravel mixed with silty sand was found in each of the boreholes either below the crushed stone or at the ground surface. The brown sand and gravel ranged in thickness from 0.5 m to 0.8 m. No indications of petroleum impact were identified in the fill. Below the fill was a brown to grey silty clay. The silty clay extended to 21.3 m. Gravelly sand till was found from 21.3 m to 23.0. A sand and gravel till layer was found in BH13 at a depth of 4.16 m. Petroleum odours were detected in soil samples in BH7 from 1.5 m to 3.3 m, BH7A from 1.5 m to 3.2 m, and in BH7C from 0.3 m to 3.0 m;
- Seventeen (17) soil samples were submitted for laboratory analysis of PHC and BTEX. The concentrations of BTEX parameters in BH7, BH7A and BH7C exceeded the MECP 2011 Table 2 SCS. The concentration of PHC F1 in the sample from BH7A also exceeded the MECP 2011 Table 2 SCS. The remaining soil samples had PHC and BTEX concentrations that were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS;
- Five (5) soil samples were submitted for metals analysis. All metals concentrations were less than the MECP 2011 Table 2 SCS;
- Seventeen (17) groundwater and a blind duplicate sample were submitted for chemical analysis of BTEX and PHC. The monitoring wells are labeled BH7 to BH13 and MW-1 to MW-4. The BTEX concentrations measured in the groundwater sample collected from BH7 significantly exceeded the MECP 2011 Table 3 SCS. The concentrations of PHC and BTEX measured in the remaining groundwater samples were less than the laboratory detection limits and were less than the MECP 2011 Table 2 SCS;
- BTEX and PHC impacted soil and groundwater were identified at the former tractor refuelling area at 1208 Old Montreal Road associated with APEC 1. Based on laboratory results indicating exceedances of the MECP Table 2 SCS and field observations, the maximum thickness of PHC impact of 3.5 m was measured in BH7. The area of impacted soil has been estimated to be between 600 m² and 1,050 m². Assuming an estimated average thickness of impact of 1.5 m, the resulting volume of PHC impacted soil in this zone is estimated to be between 900 m³ and 1,575 m³.
- This impacted soil and groundwater must be removed from the site and confirmatory soil samples collected to demonstrate that the remaining soil concentrations satisfy the MECP Table 2 SCS.
- If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- City of Ottawa. 2011. Characterization of Ottawa's Watersheds: An Environmental Foundation Document with Supporting Information Base. March.
- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- EXP Services Inc. Phase One Environmental Site Assessment 1208, 1353, and 1365 Old Montreal Road, Ottawa, Ontario, dated February 9, 2021.
- Ministry of the Environment [MOE] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, December 1996.
- MOE (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 2011.
- MOE (2011) Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04. Ontario Ministry of the Environment, June 2011.
- MOE (2011) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended as of July 1, 2011.
- Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, last amended to O.Reg.333/13.
- Ontario Water Resources Act R.R.O. 1990, Regulation 903, amended to O.Reg. 128/03, August 2003.
- Groundwater, Freeze and Cherry 1979. Prentice Hall.
- Singer, S.N., C.K. Cheng, M.G. Scafe. 2003. Hydrogeology of Southern Ontario. Hydrogeology of Ontario Series Report 1. Prepared for Ministry of Environment.
- WESA. 2006. Watershed Characterization: Geologic Model and Conceptual Hydrogeological Model, Raisin Region CA and South Nation Conservation, Source Protection Plan Partnership.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or DCR Phoenix Group ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

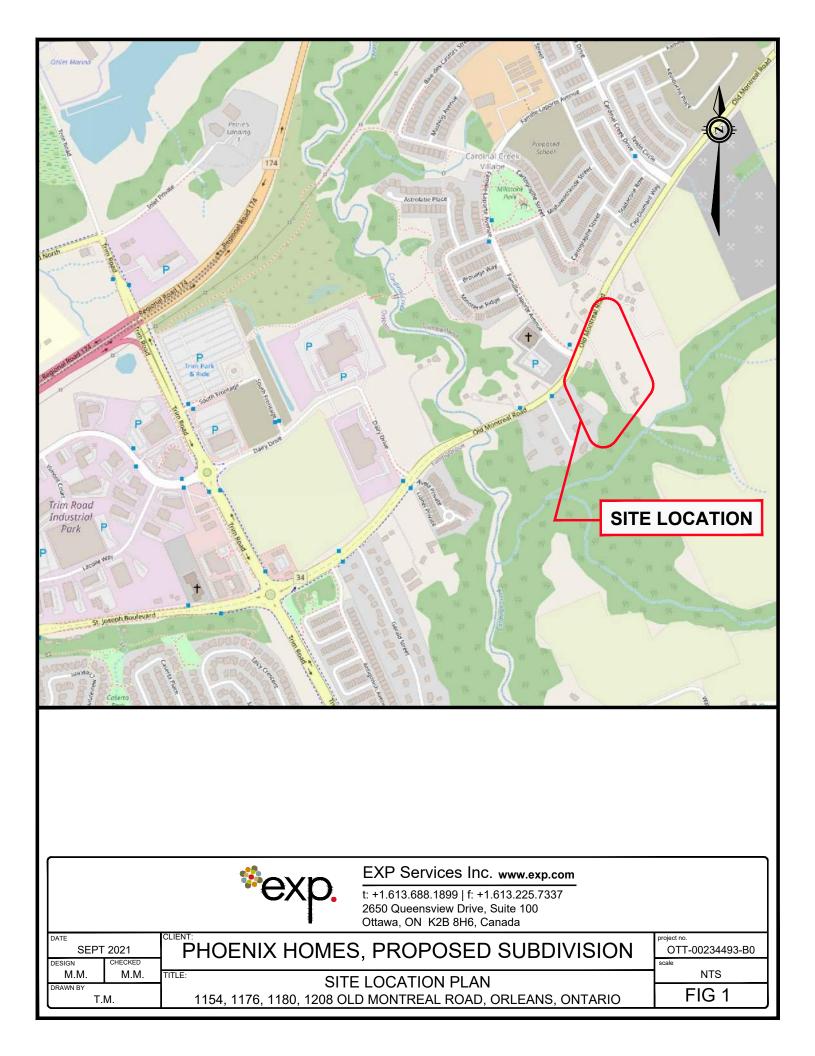
Report Format

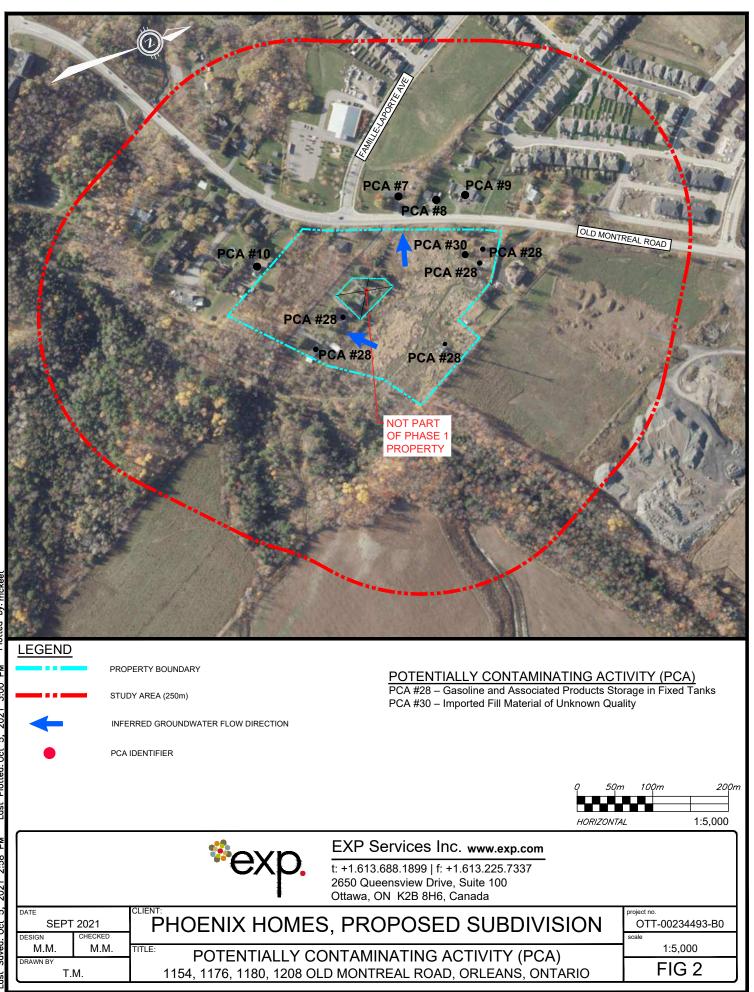
Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

9.0 Signatures

We trust this report meets your current needs. If you have any questions pertaining to the investigation undertaken by EXP, please do not hesitate to contact the understand.

please do not hesitate to contact the Auders MARK G. MCCALLA G PRACTISING MEMDER 0 Mark McCalla, P.Geo., QPESA 0451 Senior Geoscientist +517 Earth and Environment A, AR


Particia Stelmack, M.Sc., P. Eng. Senior Engineer Earth and Environment



DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

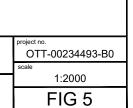
Appendix A: Figures

*ехр.

SYMBOL	AREA OF POTENTIAL ENVIRONMENTAL CONCERN (APEC)		LEGEND PROPERTY BOUNDARY
	APEC 1	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	
	APEC 2	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	
	APEC 3	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	
	APEC 4	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	
	APEC 5	#30 - IMPORTED FILL MATERIAL OF UNKNOWN QUALITY	 0 20m 40m 80m
	APEC 6	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	
			HORIZONTAL 1:2000

^{\$\$}exp.

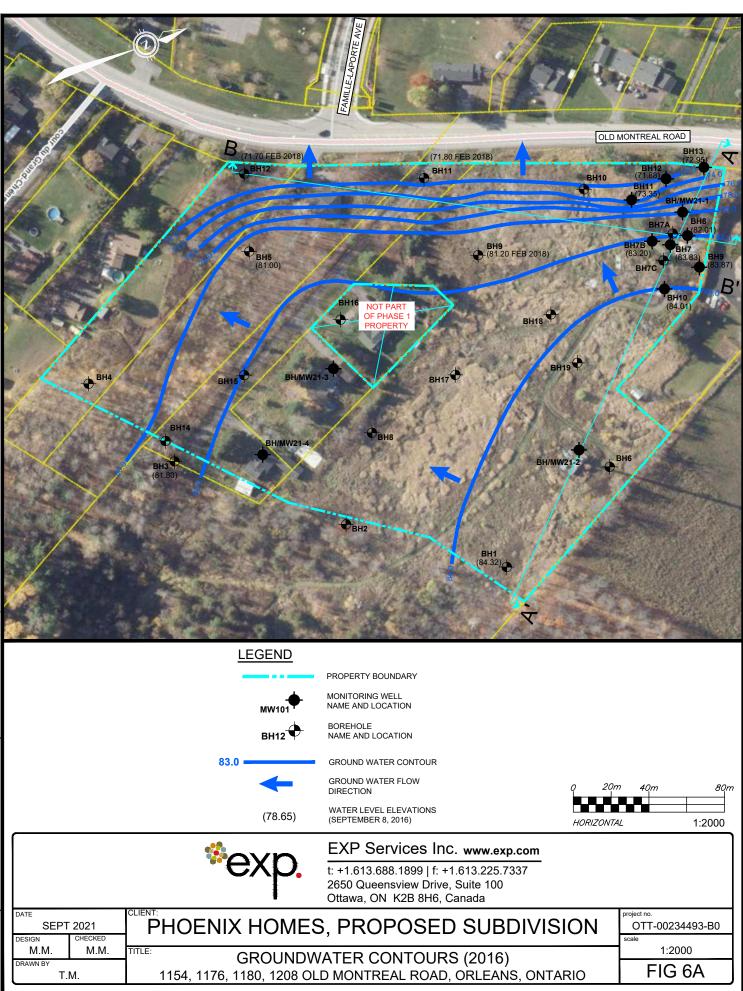
EXP Services Inc. www.exp.com t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

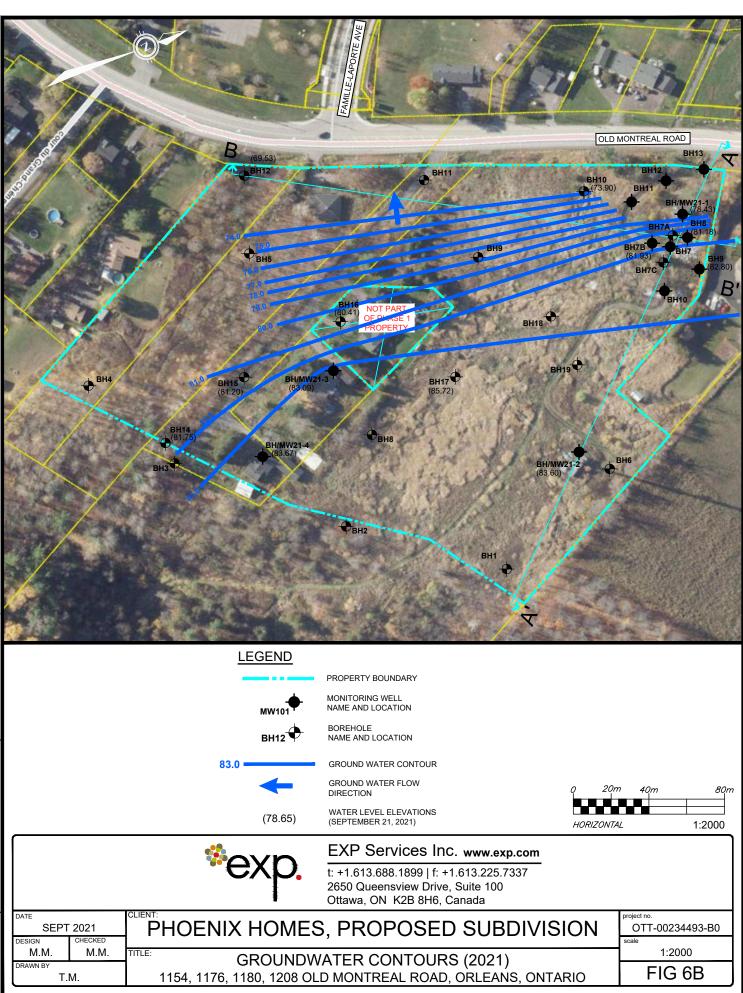

DATE SEPT		PHOENIX HOMES, PROPOSED SUBDIVISION	project no. OTT-00234493-B0
DESIGN M.M.	CHECKED M.M.		scale 1:2000
DRAWN BY		1154, 1176, 1180, 1208 OLD MONTREAL ROAD, ORLEANS, ONTARIO	FIG 4

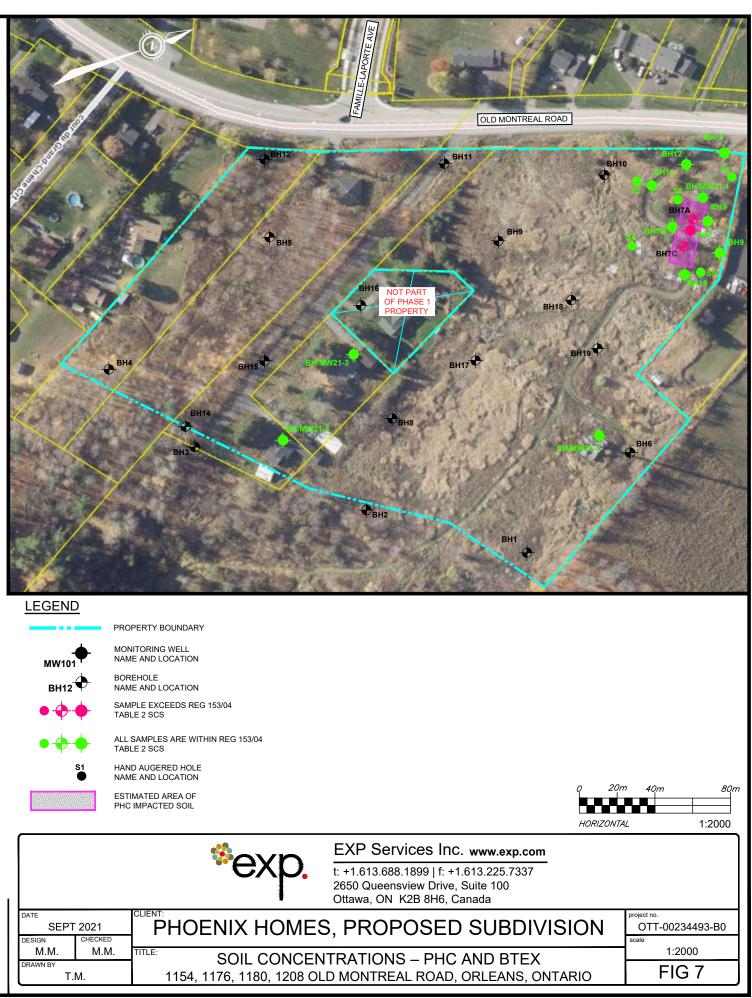
SYMBOL	AREA OF POTENTIAL		<u>LEGEND</u>	PROPERTY BOUNDARY
SYMBOL	ENVIRONMENTAL CONCERN (APEC)			MONITORING WELL
	APEC 1	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS	MW101	NAME AND LOCATION
	OL ENVIRONMENTAL CONCERN (APEC) POTENTIALLY CONTAMINATING ACTIVITY Image: APEC 1 #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS Image: APEC 2 #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS Image: APEC 3 #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS Image: APEC 3 #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS Image: APEC 4 #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS Image: APEC 5 #30 - IMPORTED FILL MATERIAL OF UNKNOWN QUALITY Image: APEC 6 #28 - GASOLINE AND ASSOCIATED PRODUCTS		BH12 🕈	NAME AND LOCATION
	APEC 3		S1 ●	HAND AUGERED HOLE NAME AND LOCATION
	APEC 4			
	APEC 5		0	20m 40m 80m
	APEC 6	#28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS		
			HORIZO	NTAL 1:2000

1154, 1176, 1180, 1208 OLD MONTREAL ROAD, ORLEANS, ONTARIO

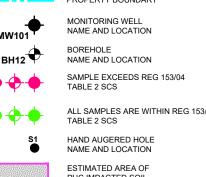
	* ~ ~	EXP Services Inc. www.exp.com
	[%] exp.	t: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada
021 HECKED		6, PROPOSED SUBDIVISION
M.M.	BOREHOLES AND I	MONITORING WELLS AND APECs


DATE

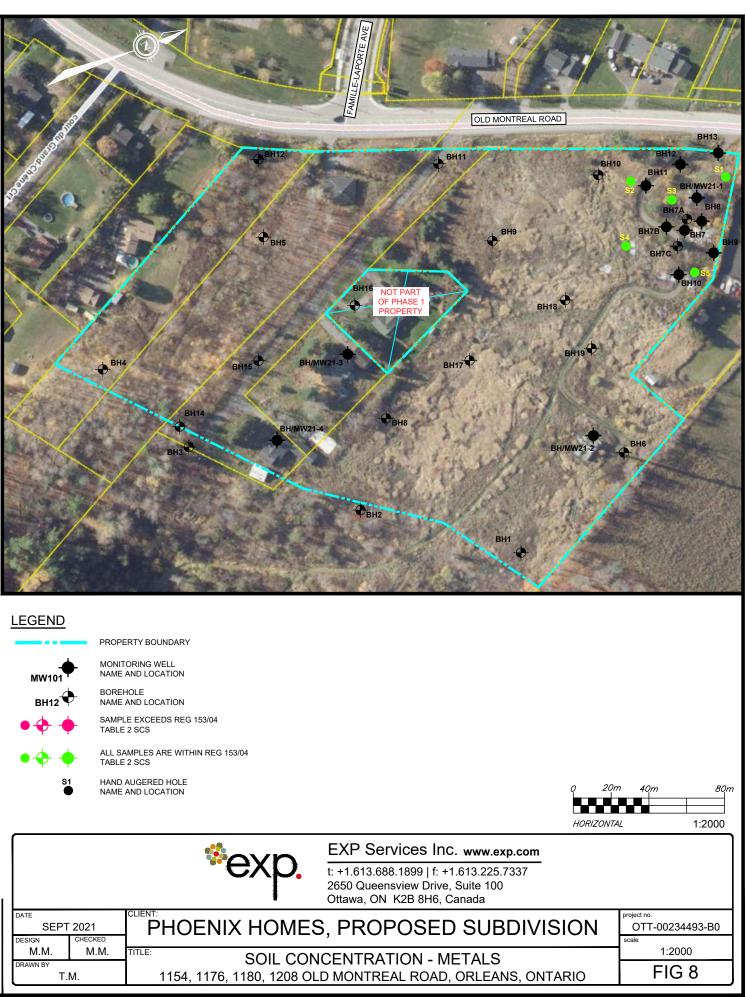

DESIGN M.M.


RAWN BY

SEPT 2021


T.M.

LEGEND


1			$\overset{\text{(b)}}{\overset{\text{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset$	1.6 50
	DATE SEPT DESIGN	CHECKED	PHOENIX HOMES, F	2
	M.M. DRAWN BY	M.M.	TITLE: SOIL CONCENTR/ 1154, 1176, 1180, 1208 OLD M	

ample ID	Date	Depth (m)	B	Т	E	X	F1	F2	F3	F4
3H7 SS4	16-Aug-16	3.1 - 3.7	6.67	3.25	14.7	7.74	27	26	<8	<6
1.10				-	-		F 1	50	50	
ample ID	Date	Depth (m)	B	T	E	X	F1	F2	F3	F4
3H7 SS5	16-Aug-16	4.6 - 5.2	6.74	1.12	0.3	1.63	8	<4	<8	<6
ample ID	Date	Depth (m)	В	т	E	X	F1	F2	F3	F4
H7A SS3	19-Aug-16	2.3 - 2.9	2.62	9.15	18.5	33.1	76	13	<8	<6
1174 355	15-Aug-10	2.3-2.3	2.02	3.13	10.5	33.1	10	15	~0	
ample ID	Date	Depth (m)	В	T	E	X	F1	F2	F3	F4
H7B SS3	19-Aug-16	2.3-2.9	< 0.02	< 0.05	< 0.05	< 0.05	<7	<4	<8	<6
ample ID	Date	Depth (m)	B	T	E	X	F1	F2	F3	F4
H7C SS3	19-Aug-16	2.3-2.9	0,4	1.25	0.67	2.71	<7	47	<8	<6
emple ID	Data	Death (m)	0	т	r	v	E4	50	50	E4
ample ID 3H8 SS6	Date 10	Depth (m)	8 <0.02	T	E	X <0.05	F1 <7	F2 <4	F3	F4
5H8 550	31-Aug-16	4.6 - 5.2	<0.02	<0.05	< 0.05	<0.05	<1	<4	<8	<6
ample ID	Date	Depth (m)	В	т	E	x	F1	F2	F3	F4
3H9 SS6	31-Aug-16	4.6 - 5.2	< 0.02	< 0.05	< 0.05	<0.05	<7	<4	<8	<6
	arring in									
ample ID	Date	Depth (m)	В	Т	E	Х	F1	F2	F3	F4
H10 SS2	31-Aug-16	1.5 - 2.1	<0.02	<0.05	< 0.05	<0.05	<7	<4	<8	<6
			-	-	-				50	
ample ID	Date	Depth (m)	B	T	E	X	F1	F2	F3	F4
H11 SS9	1-Sep-16	6.8 - 7.4	<0.02	<0.05	<0.05	<0.05	<7	<4	<8	<6
ample ID	Date	Depth (m)	В	т	E	x	F1	F2	F3	F4
H12 SS3	1-Sep-16	4.6 - 5.2	< 0.02	< 0.05	< 0.05	<0.05	<7	<4	<8	<6
112 333	1-Seh-10	4.0 - 3.Z	50.02	<0.05	<0.00	×0.05	4	<4	50	<0
ample ID	Date	Depth (m)	В	T	E	X	F1	F2	F3	F4
H13 SS3	1-Sep-16	4.6 - 5.2	< 0.02	< 0.05	< 0.05	< 0.05	<7	<4	<8	<6
ample ID	Date	Depth (m)	B	Т	E	X	F1	F2	F3	F4
IW-1 SS7	3-Sep-21	3.9 - 4.5	< 0.020	< 0.020	< 0.020	< 0.040	<10	<10	<50	<50
				-						
ample ID	Date	Depth (m)	B	T	E	X	F1	F2	F3	F4
W-2 SS7	30-Aug-21	4.6 - 5.2	< 0.020	<0.020	0.025	< 0.040	<10	<10	<50	<50
ample ID	Date	Depth (m)	В	т	E	x	F1	F2	F3	F4
IW-3 SS6	30-Aug-21	4.0 - 4.4	< 0.020	< 0.020	0.028	< 0.040	<10	<10	<50	<50
11-3 550	30-Aug-21	4.0 - 4.4	-0.020	-0.020	0.020	-0.040	\$10	~10	~30	- 20
ample ID	Date	Depth (m)	В	T	E	X	F1	F2	F3	F4
IW-4 SS8	27-Aug-21	5.5 - 6.0	< 0.040	< 0.040	< 0.040	< 0.080	<20	<20	<100	<10
ample ID	Date	Depth (m)	B	T	E	X	F1	F2	F3	F4
S1	30/08/21	0.15 - 0.45	<0.040	<0.040	< 0.040	< 0.080	<20	< 10	860	280
amala ID	Data	Dopth (m)	В	т	F	Y	F1	E2	F3	F4
ample ID S2	Date 30/08/21	Depth (m) 0.15 - 0.45	<0.020	<0.020	E <0.020	X <0.040	<10	F2 <10	53	53
52	30/08/21	0.15 - 0.45	<0.020	<0.020	<0.020	< 0.040	<10	< 10	- 53	53
ample ID	Date	Depth (m)	B	т	E	x	F1	F2	F3	F4
S3	30/08/21	0.15 - 0.40	< 0.040	< 0.040	< 0.040	< 0.080	<20	<10	130	280
	30/08/21	0.15 - 0.40	< 0.020	< 0.020	0.021	< 0.040	<10	<10	110	180
DUP										
DUP		Denth (ma)	B	Т	E	Х	F1	F2	F3	F4
ample ID	Date	Depth (m)			0.000	< 0.040	<10	<10	EA	56
	Date 30/08/21	0.15 - 0.40	<0.020	< 0.020	0.033	< 0.040	<10	<10	54	
ample ID S4	30/08/21	0.15 - 0.40	<0.020							
ample ID				<0.020 T <0.020	E <0.020	×0.040 X <0.040	F1 <10	F2 <10	F3 170	F4 62

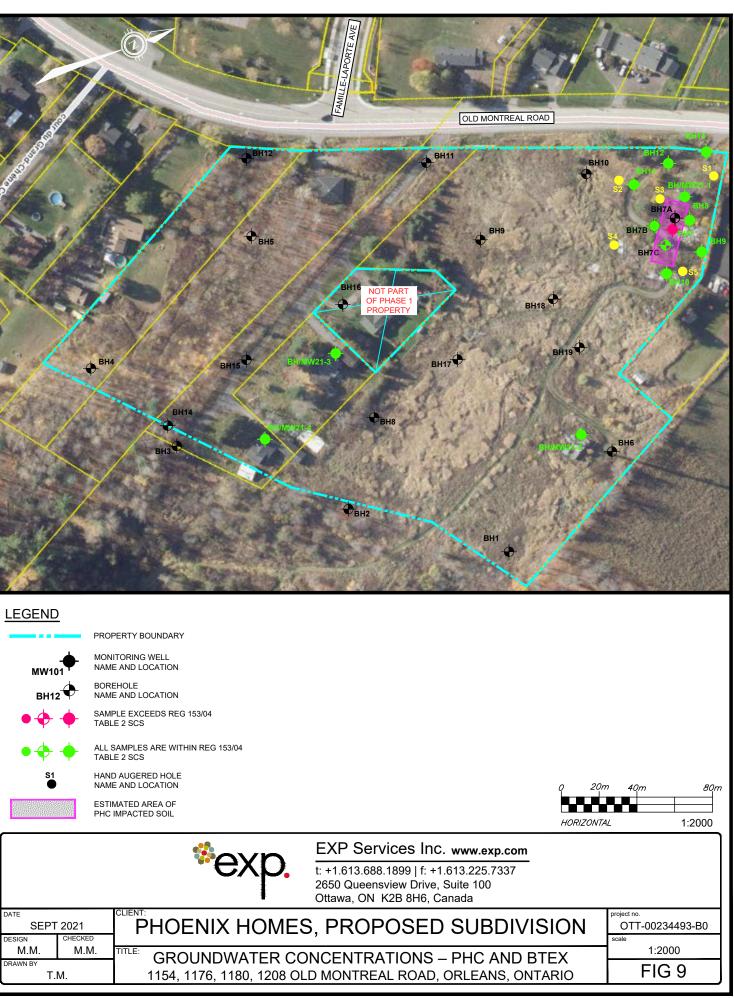
MECP SOIL, GROUND WATER AND SEDIMENT	
STANDARDS FOR USE UNDER PART XV.1 OF	
THE EPA, APRIL 2011, TABLE 2 POTABLE	
RESIDENTIAL SC RAINED SOIL.	
* DENOTES SAMPLE NO LONGER PRESENT	
AFTER PREMEDIATION	
- DENOTES PARAMETER NOT ANALYSED	

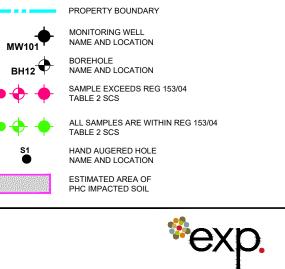
PARAMET ERS	ABBREVIATION	REG 153/04 TABLE 2 ST ANDARD
Benzene	B	0.17
Toluene	T	1.6
Ethy Ibenzene	E	6
Total Xylenes	Х	25
F1 (C6-C10)	F1	65
F2 (C10-C16)	F2	150
F3 (C16-C34)	F3	1300
F4 (C34-C50)	F4	5600

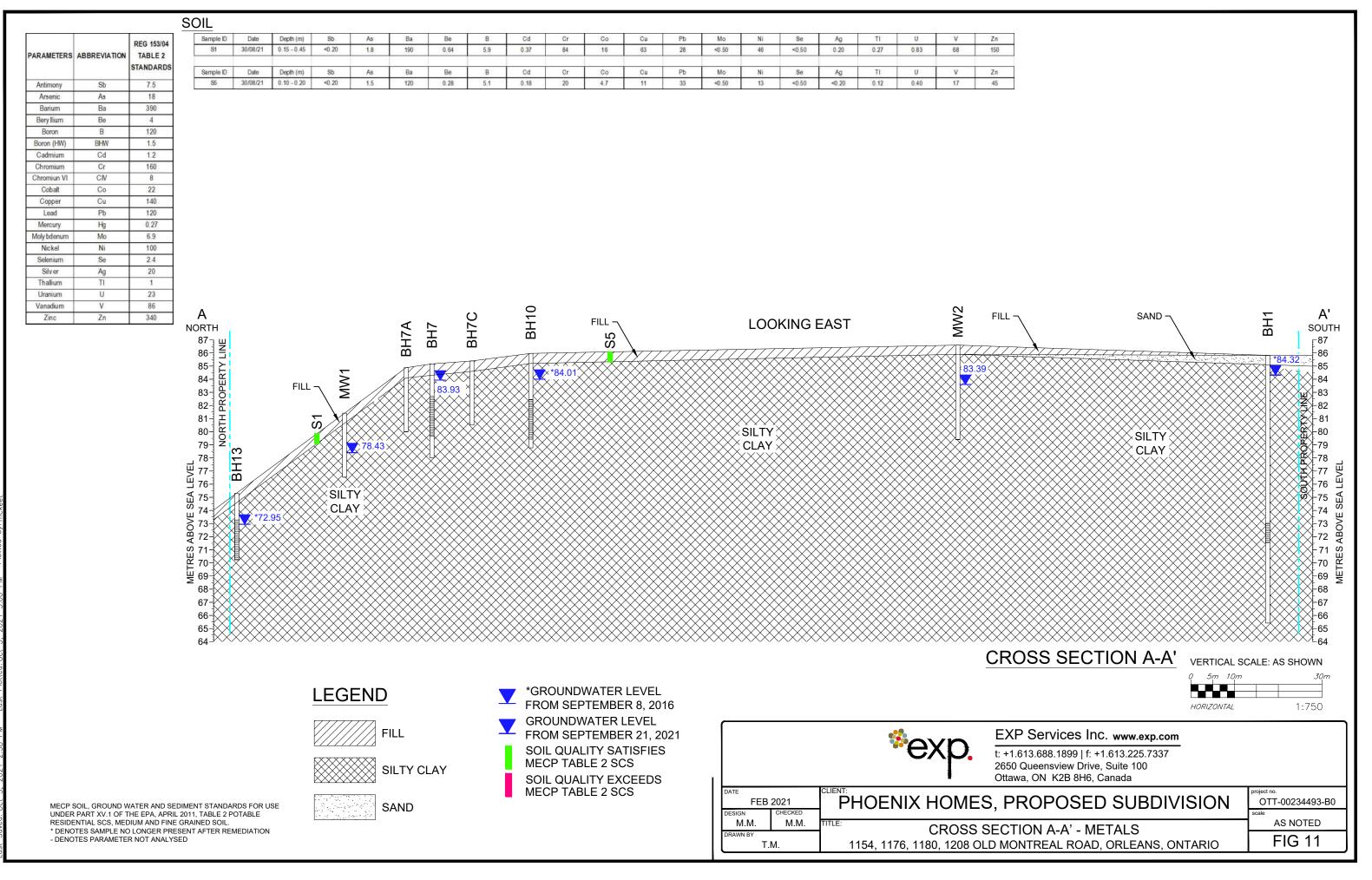
PARAMET ERS	ABBREVIATION	REG 153/04 TABLE 2 ST ANDARD			
Benzene	В	0.17			
Toluene	T	1.6			
Ethy Ibenzene	E	6			
Total Xylenes	Х	25			
F1 (C6-C10)	F1	65			
F2 (C10-C16)	F2	150			
F3 (C16-C34)	F3	1300			
E4 (C34.C50)	F4	5600			

IF	GEND	
ᄂᄂ	GLIND	

Sample ID	Date	Depth (m)	Sb	As	Ba	Be	В	Cd	Cr	Co	Cu	Pb	Mo	Ni	Se	Ag	Π	U	v	Zn
S1	30/08/21	0.15 - 0.45	<0.20	1.8	190	0.64	5.9	0.37	84	16	63	28	<0.50	46	<0.50	0.20	0.27	0.83	68	150
Sample ID	Date	Depth (m)	Sb	As	Ba	Be	в	Cd	Cr	Co	Cu	Pb	Мо	Ni	Se	Ag	π	U	v	Zn
S2	30/08/21	0.15 - 0.45	<0.20	1.6	210	0.70	5.4	0.18	96	18	35	16	<0.50	50	<0.50	<0.20	0.32	0.94	78	110
Sample ID	Date	Depth (m)	Sb	As.	Ba	Be	в	Cd	t0	Co	Cu	Pb	Мо	Ni	Se	Ag	п	U	v	Z
\$3	30/08/21	0.15 - 0.40	0.23	3.3	170	0.27	6.9	0.17	14	5.0	12	21	0.99	12	< 0.50	<0.20	0.21	0.50	17	5
DUP	30/08/21	0.15 - 0.40	<0.20	2.5	150	0.25	6.4	0.13	13	4.3	9.1	16	0.88	11	<0.50	<0.20	0.15	0.46	15	4
Sample ID	Date	Depth (m)	Sb	As	Ba	Be	в	Cd	Cr	Co	Cu	Pb	Мо	NI	Se	Ag	TI	U	v	Z
S4	30/08/21	0.15 - 0.40	<0.20	1.6	120	0.40	<5.0	0.14	37	8.4	22	21	0.76	22	<0.50	<0.20	0.20	0.58	37	6
Sample ID	Date	Depth (m)	Sb	As	Ва	Be	в	Cd	Cr	Co	Cu	Pb	Mo	Ni	Se	Ag	n	Ű	v	Z
95	30/08/21	0.10 - 0.20	<0.20	1.5	120	0.28	5.1	0.18	20	4.7	11	33	<0.50	13	<0.50	<0.20	0.12	0.40	17	


MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SC RAINED SOIL. * DENOTES SAMPLE NO LONGER PRESENT AFTER PREMEDIATION - DENOTES PARAMETER NOT ANALYSED


PARAMETER	S ABBREVIATION	REG 153/04 TABLE 2 STANDARDS		
Antimony	Sb	7.5		
Arsenic	As	18		
Barium	Ba	390		
Bery Ilium	Be	4		
Boron	В	120		
Boron (HW)	BHW	1.5 1.2 160		
Cadmium	Cd			
Chromium	Cr			
Chromiun VI	CIV	8		
Cobalt	Co	22		
Copper	Cu	140		
Lead	Pb	120		
Mercury	Hg	0.27		
Moly bd enum	Mo	6.9		
Nickel	Ni	100		
Selenium	Se	2.4		
Silver	Ag	20		
Thallium	TI	1		
Uranium	U	23		
Vanadium	V	86		
Zinc	Zn	340		


B	T 1000 T <0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2	E 16800 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	X 9900 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4	F1 <25 F1 <25 <25 F1 <25 <25 F1 <25 <25 F1 <25 F1 <25 F1 <25	F2 <100 F2 <100 <100 F2 <100 <100 F2 <100 <100 F2	F3 <100 F3 <100 <200 F3 <100 250 F3 <100 <200 F3 F3	F4 <100 <200 F4 <100 <200 F4 <100 <200
B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2	T <0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2	E 40.5 40.2 E 40.5 5 40.2 E 5 40.2 E 5 40.2 E 5 40.2 E 5 40.2 E E 5 6 0.2 E E 5 6 0.2 E E 5 6 0.2 E	X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4	F1 <25 <25 F1 <25 <25 F1 <25 <25 F1	F2 <100 <100 F2 <100 <100 F2 <100 <100	F3 <100 <200 F3 <100 250 F3 <100 <200	F4 <100 <200 F4 <100 <200 F4 <100 <200
B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.5 C C 0.5 C 0.5 C 0.5 C C 0.5 C 0.5 C 0.5 C C 0.5 C 0.5 C 0.5 C C 0.5 C 0.5 C 0.5 C C 0.5 C C 0.5 C C C 0.5 C C C C C C C C C C C C C	<0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5	<0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E E	<0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4	<25 <25 F1 <25 <25 F1 <25 <25 F1	<100 <100 F2 <100 <100 F2 <100 <100	<100 <200 F3 <100 250 F3 <100 <200	<100 <200 F4 <100 <200 F4 <100 <200
B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.5 C C 0.5 C 0.5 C 0.5 C 0.5 C C 0.5 C 0.5 C C 0 C C 0 C	<0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5	<0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E E	<0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4	<25 <25 F1 <25 <25 F1 <25 <25 F1	<100 <100 F2 <100 <100 F2 <100 <100	<100 <200 F3 <100 250 F3 <100 <200	<100 <200 F4 <100 <200 F4 <100 <200
B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 B 0.5 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.2 C 0.5 C C 0.5 C 0.5 C 0.5 C 0.5 C C 0.5 C 0.5 C C 0 C C 0 C	<0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5	<0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E <0.5 <0.2 E E	<0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4 X <0.5 <0.4	<25 <25 F1 <25 <25 F1 <25 <25 F1	<100 <100 F2 <100 <100 F2 <100 <100	<100 <200 F3 <100 250 F3 <100 <200	<100 <200 F4 <100 <200 F4 <100 <200
B 0.2 B 0.5 0.2 C 0.5 0.2 C 0.5	<0.2 T <0.5 <0.2 T <0.5 <0.2 T <0.5 <0.2	<0.2 E <0.5 <0.2 E <0.5 <0.2 E E E	<0.4 X <0.5 <0.4 X <0.5 <0.4 X X	<25 F1 <25 <25 F1 <25 <25 F1	<100 F2 <100 <100 F2 <100 <100	<200 F3 <100 250 F3 <100 <200	<200 F4 <100 <200 F4 <100 <200
B Q. 5 Q. 2 B Q. 5 Q. 2 B Q. 5 B Q. 5 C C C C C C C C C C C C C	T <0.5 <0.2 T <0.5 <0.2 T <0.5	E 40.5 40.2 E 40.5 40.2 E	X <0.5 <0.4 X <0.5 <0.4 X	F1 <25 <25 F1 <25 <25 F1	F2 <100 <100 F2 <100 <100	F3 <100 250 F3 <100 <200	F4 <100 <200 F4 <100 <200
0.5 0.2 B 0.5 0.2 B 0.5 0.5 0.5	<0.5 <0.2 T <0.5 <0.2 T <0.5	<0.5 <0.2 E <0.5 <0.2 € E	<0.5 <0.4 X <0.5 <0.4 X	<25 <25 F1 <25 <25 F1	<100 <100 F2 <100 <100	<100 250 F3 <100 <200	<100 <200 F4 <100 <200
0.5 0.2 B 0.5 0.2 B 0.5 0.5 0.5	<0.5 <0.2 T <0.5 <0.2 T <0.5	<0.5 <0.2 E <0.5 <0.2 € E	<0.5 <0.4 X <0.5 <0.4 X	<25 <25 F1 <25 <25 F1	<100 <100 F2 <100 <100	<100 250 F3 <100 <200	<100 <200 F4 <100 <200
B 0.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5	<0.2 T <0.5 <0.2 T <0.5	<0.2 E <0.5 <0.2 E	<0.4 X <0.5 <0.4 X	<25 F1 <25 <25 F1	<100 F2 <100 <100	250 F3 <100 <200	<200 F4 <100 <200
B 0.5 0.2 B 0.5	T <0.5 <0.2 T <0.5	E <0.5 <0.2 E	X <0.5 <0.4 X	F1 <25 <25 F1	F2 <100 <100	F3 <100 <200	F4 <100 <200
0.5 0.2 B 0.5	<0.5 <0.2 T <0.5	<0.5 <0.2 E	<0.5 <0.4 X	<25 <25 F1	<100 <100	<100 <200	<100 <200
0.5 0.2 B 0.5	<0.5 <0.2 T <0.5	<0.5 <0.2 E	<0.5 <0.4 X	<25 <25 F1	<100 <100	<100 <200	<100 <200
0.5 0.2 B 0.5	<0.5 <0.2 T <0.5	<0.5 <0.2 E	<0.5 <0.4 X	<25 <25 F1	<100 <100	<100 <200	<100 <200
0.2 B 0.5	<0.2 T <0.5	<0.2 E	<0.4	<25 F1	<100	<200	<200
B ©_5	T <0.5	E	X	F1			
40.5	<0.5	10.00			F2	F3	
40.5	<0.5	10.00			F2	F3	
		⊲0.5	<0.5			0.00	F4
В				<25	<100	<100	<100
В							
	T	E	X	F1	F2	F3	F4
≪0.5	<0.5	<0.5	<0.5	<25	<100	<100	<100
			-				
В	т	E	X	F1	F2	F3	F4
0.5	<0.5	<0.5	<0.5	<25	<100	<100	<100
0.0	50.0	-0.0	40.0	-20	\$100	4100	\$100
	1						(
В	T	E	X	F1	F2	F3	F4
⊲0.5	<0.5	⊲0.5	<0.5	<25	<100	<100	<100
D	т	E	Y	E4	ED	E3	F4
(1961)		(224)	20 N	2004	10277	0.000	<200
-V.L	-0.2	-V.L	-0.4	-20	5100	200	~200
	-						
В	т	E	X	F1	F2	F3	F4
⊲0.2	<0.2	⊲0.2	<0.4	<25	<100	<200	<200
¢0.2	<0.2	≪0.2	<0.4	<25	<100	<200	<200
В	т	E	X	F1	F2	F3	F4
0.2	<0.2	⊲.2	<0.4	<25	220		<200
¢0.2	<0.2	⊲0.2	<0.4	<25	<100	<200	<200
	Ŧ	F	ç	E4	50	E2	F./
D				10.000 000 0			F4 <200
	0.2 0.2 B 0.2 0.2 0.2 0.2 0.2 B	0.2 <0.2 B T 0.2 <0.2 0.2 <0.2 B T 0.2 <0.2 0.2 <0.2 0.2 <0.2 0.2 <0.2	0.2 <0.2 <0.2 <0.2 B T E 0.2 <0.2 <0.2 <0.2 0.2 <0.2 <0.2 <0.2 B T E 0.2 <0.2 <0.2 0.2 <0.2 <0.2 B T E 0.2 <0.2 <0.2 0.2 <0.2 <0.2 B T E 0.2 <0.2 0.2 <0.2 0.2 0.2 E T E E T E E T E T	0.2 <0.2	0.2 <0.2	0.2 <0.2	0.2 <0.2

MECP SOIL, GROUND WATER AND SEDIMENT MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE SCS FOR ALL TYPES OF PROPERTY USE, COARSE GRAINED SOIL. - DENOTES PARAMETER NOT ANALYSED

	<100	<200	<200		•
	F2	F3	F4	Ⅰ	1
	<100	<200	<200] <u>S1</u>	
PAR	AMETERS	ABBREVIATION	REG 153/04 TABLE 2 STANDARD S		いたけていた
Benzene		В	5		
	Toluene	T	2.4		
Eth	ylbenzene	E	24		
Tot	al Xylenes	X	300		
F1	(C6-C10)	F1	750	DATE SEPT	<u>_</u>
F2	(C10-C16)	F2	150		2
F3	(C16-C34)	F3	500	M.M.	Ì
F4	(C34-C50)	F4	500	DRAWN BY	-
		Laboration (1997)		⁻ II т м	Л

3 PIO PhOneESA Plotted by: 00\234000\234493-B0 0ct 5, 2021 3:00 PM ŝ runmental\23 2:58_PM ojects\Env

			SC	DIL																			GF	ROUNDV
			1														p	т	E	×	51	50	E2	E4
	PARAMETERS	ABBREVIATION																-					100000	and the second
												0.00.02.87.0				BH10								
				the second se								the second se							-					-G
				2010/10/02/02/2019/2010/		- 10							2				40.5	<0.5	<0.5	<0.5	\$20	<100	<100	<100
													-				В	т	E	x	F1	F2	F3	F4
																'9/11/2016	<0.5	<0.5	<0.5	<0.5	<25	<100	<100	<100
Important and the state of									Contraction of the second								P	т	E	×	Et	E2	E2	E4
			•	the second s														-	-					
				Sample ID	Date	Depth (m)	В	т	E	х	F1	F2	F3			MW-2								
Important and the state of										< 0.040							1000		20	10000		7153.8	110-211	
Important end in the state								the second s										-					000000	
				Sample ID		-						10.05												
weiter bit loc 0				i contrativo				<0.040		-														
A CROSS SECTION AA: PICA DUBLES:								T <0.020																
SILTY SI					00/00/21	0.10 0.20	0.020	0.020	0.020	0.010	10	10		02										
SILTY SI								_																
SILTY SI					-			110	FIL						EVOL	MZ	FIL	.L ¬			SAND ¬	`		Ŧ
Under the second		NORTH			47F			Ъ		ю /			LO	JKING	EAST	ź						\backslash		苗
SLTY S		86- UI			日	ш ш				S S	/////									<u></u>			· · · · · ·	
ULY ULY ULY ULY ULY ULY ULY ULY		85- ≿		~	T	KA	T (()	*84									83.60							84.32 X X X X
ULY ULY ULY ULY ULY ULY ULY ULY			FI	ul 🗸 🎽		*83.93	\times				>>>>						\times		\times				\times	
ULY ULY ULY ULY ULY ULY ULY ULY		82 0 82		$\setminus 2$			\times		\times		\times	\times		\times			\times	\times		\times	\times			
ULY ULY ULY ULY ULY ULY ULY ULY		81 표		$\overline{5}$			\times		\times					\times			\times	\times	\times					
ULY ULY ULY ULY ULY ULY ULY ULY		80- KO							\times								>>>>							
Subject of the set of		⁷⁹ 2 0			3.43		\times		\times		\times						\times		\times		CLAY	\times		
SLTY CL SLTY							\times		\times		>>>>>						>>>>>		\times				\times	
Metropolity of the EAA APR 2011 TABLE 2 STABLE SILTY CLAY Netropolity of the EAA APR 2011 TABLE 2 STABLE SILTY CLAY Silty C TABLE 2 SCS SOL QUALITY EXCEEDS Sol QUALITY EXCEEDS SOL QUALITY EXCEEDS SOL QUALITY EXCEEDS<		<u>́</u> 76-							\times								\times							
Metropolity of the EAA APR 2011 TABLE 2 STABLE SILTY CLAY Netropolity of the EAA APR 2011 TABLE 2 STABLE SILTY CLAY Silty C TABLE 2 SCS SOL QUALITY EXCEEDS Sol QUALITY EXCEEDS SOL QUALITY EXCEEDS SOL QUALITY EXCEEDS<		V 75- S - 1						\times			\times						>>>>	\times			>>>>>			
BUDGE PARTICID NUMBER AND BEDIMENT STANDARDS FOR ISES SILTY CLAY • "STEE PARAMETER TO ANNAPSE" SILTY CLAY • STILTY CLAY SILTY CLAY • STILTY CLA			*72.95				\times		\times	\times	\times						\times		\times		\times	\times		
BUDGE PARTICID NUMBER AND BEDIMENT STANDARDS FOR ISES SILTY CLAY • "STEE PARAMETER TO ANNAPSE" SILTY CLAY • STILTY CLAY SILTY CLAY • STILTY CLA		0 72-									\times						\times		\times		\times			
Solution water and sediment standards for use		<u>ທີ</u> 71-					\times		\times		\times						\times		\times					
Solution water and sediment standards for use									\times		\times						\times	\times						
CROSS SECTION A-A' BECOMPTISE PRAMERING INTERGENTIATED REAGED CONTROL NOT WITTER AND SEDMENT STANDARDS FOR USE CONTROL NOT WITTER AND SEDMENT		≥ ⁶⁹									\times						>>>>				>>>>>			
B5 B4 CROSS SECTION A-A' CROSS SECTION A-A		- ⊀ X X X					\times																	
64 CROSS SECTION A-A' LEGEND ✓ "GROUNDWATER LEVEL FROM SEPTEMBER 8, 2016 ✓ "GROUNDWATER LEVEL FROM SEPTEMBER 21, 2021 ✓ "SUL QUALITY SATISFIES WEOP TABLE 2 SCS Soll QUALITY SATISFIES WEOP TABLE 2 SCS Soll QUALITY EXCEEDS MEOP TABLE 2 SCS Soll QUALITY EXCEEDS MEOP TABLE 2 SCS Soll QUALITY EXCEEDS MEOP TABLE 2 SCS GROUNDWATER NO LONGER PRESENT AFTER REMEDIATION "DENOTES PRAMMER NO LONGER PRESENT AFTER REMEDIATION "DENOTES PRAMMER NO LONGER PRESENT AFTER REMEDIATION"		*×××					\times				\times						\times							
LEGEND ✓ *GROUNDWATER LEVEL FROM SEPTEMBER 8, 2016 ✓ FILL ✓ GROUNDWATER LEVEL FROM SEPTEMBER 21, 2021 ✓ SILTY CLAY Soil QUALITY SATISFIES MECP TABLE 2 SCS Soil QUALITY EXCEEDS MECP TABLE 2 SCS • Nortes prakart x/1 of THE GRANED SCI. SAND Soil QUALITY EXCEEDS MECP TABLE 2 SCS Soil QUALITY EXCEEDS MECP TABLE 2 SCS • ENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION • ENOTES SAMPLE THE OLOGER PRESENT AFTER REMEDIATION ESTIMATED AREA OF GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS							\times		\times	\times	\times						\times		\times				\times	
LEGEND ✓ *GROUNDWATER LEVEL FROM SEPTEMBER 8, 2016 ✓ FILL ✓ GROUNDWATER LEVEL FROM SEPTEMBER 21, 2021 ✓ SILTY CLAY Soil QUALITY SATISFIES MECP TABLE 2 SCS Soil QUALITY EXCEEDS MECP TABLE 2 SCS • Nortes prakart x/1 of THE GRANED SCI. SAND Soil QUALITY EXCEEDS MECP TABLE 2 SCS Soil QUALITY EXCEEDS MECP TABLE 2 SCS • ENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION • ENOTES SAMPLE THE OLOGER PRESENT AFTER REMEDIATION ESTIMATED AREA OF GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS		40															C	2025	SEC			•		VE
MECP SOLL GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOLL. SILTY CLAY SOIL QUALITY EXCEEDS MECP TABLE 2 SCS SOIL QUALITY METER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL. SOIL QUALITY EXCEEDS MECP TABLE 2 SCS SOIL QUALITY MEETS MECP TABLE 2 SCS SOIL QUALITY MEETS MECP TABLE 2 SCS SOIL QUALITY MEETS MECP TABLE 2 SCS SOIL QUALITY MEETS MECP TABLE 2 SCS OTHE MECP TABLE 2 SCS OTHE MEETS MECP TABLE 2 SCS OTHE MEETS MEETS ME																				71101	• / \ / \	<u> </u>		0
MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 SCAS SILTY CLAY Soil QUALITY SATISFIES MECP TABLE 2 SCS SOIL QUALITY EXCEEDS MECP TABLE 2 SCS Soil QUALITY ESTABLE AREA OF SOIL QUALITY EXCEEDS MECP TABLE 2 SCS Soil QUALITY ESTABLE AREA OF GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS Soil QUALITY ESTABLE AREA OF GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS					1	EGEN	1D																	
FILL FROM SEPTEMBER 21, 2021 Soli QUALITY SATISFIES Soli QUALITY SATISFIES MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE SILTY CLAY MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE SOIL QUALITY EXCEEDS UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE SAND SAND GROUNDWATER QUALITY DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION ESTIMATED AREA OF OENOTES PARAMETER NOT ANALYSED ESTIMATED AREA OF					-									16										HOR
MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION DENDE					F	//////								004							Comila			
MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL * DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION • DENOTES PARAMETER NOL AND FINE GRAINED SOIL * DENOTES PARAMETER NOL AND FINE GRAINED SOIL • DENOTES PARAMETER NOL AND FINE GRAINED SOIL • DENOTES PARAMETER NOL AND FINE GRAINED SOIL • DENOTES PARAMETER NOL ANALYSED SILTY CLAY MEED SOIL QUALITY EXCEEDS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS MECP TA																			'n					
MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL. • DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION • DENOTES PARAMETER NOT ANALYSED SILTY CLAY SOIL QUALITY EXCEEDS MECP TABLE 2 SCS GROUNDWATER QUALITY MEETS MECP TABLE 2 SCS Ottawa, ON K2B 8H6, Canada M.M. M.M. CHECKED M.M. M.M. TITLE: CROSS SECTION A-A' - PHC AND BTEX ORAND OD FOR CAND ON FOR USE ON THE CAND ON THE CAND ON FOR USE ON THE					5	~~~~~	a							5					Y.					337
MECP SOIL, GROUND WATER AND SEDIMENT STANDARDS FOR USE UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL. * DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION · DENOTES PARAMETER NOT ANALYSED MECP TABLE 2 SCS MECP TABLE 2 SCS							SILTY	r CLAY						5	1									
UNDER PART XV.1 OF THE EPA, APRIL 2011, TABLE 2 POTABLE RESIDENTIAL SCS, MEDIUM AND FINE GRAINED SOIL. * DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION - DENOTES PARAMETER NOT ANALYSED MEETS MECP TABLE 2 SCS GROUNDWATER QUALITY CROSS SECTION A-A' - PHC AND BTEX - DENOTES PARAMETER NOT ANALYSED MEETS MECP TABLE 2 SCS M.M. M.M. TITLE: CROSS SECTION A-A' - PHC AND BTEX - DENOTES PARAMETER NOT ANALYSED					Ē		3			M	ECP TA	BLE 2 S	SCS								$\cap \square \cap$			ייפועום
* DENOTES SAMPLE NO LONGER PRESENT AFTER REMEDIATION - DENOTES PARAMETER NOT ANALYSED ESTIMATED AREA OF GROUNDWATER QUALITY - DENOTES PARAMETER NOT ANALYSED ESTIMATED AREA OF GROUNDWATER QUALITY - DENOTES PARAMETER NOT ANALYSED CROSS SECTION A-A' - PHC AND BTEX - DENOTES PARAMETER NOT ANALYSED	UNDER	PART XV.1 OF TH	IE EPA, APRIL 201	11, TABLE 2 POTABLE			SANE)							DESIGN CHECKED					э, г к		SED	SUB	ופועוס
	* DENO	TES SAMPLE NO	LONGER PRESEN		ON T		ECTIM									TITLE:		CROS	S SEC	TION A	∖- Α' - Ρ	HC AN	ID BTE	X
	- DENO	IES PARAMETER	NOT ANALYSED													11	54, 117	6, 1180,	1208 OI	D MON	TREAL I	ROAD, C	ORLEAN	IS, ONTAR

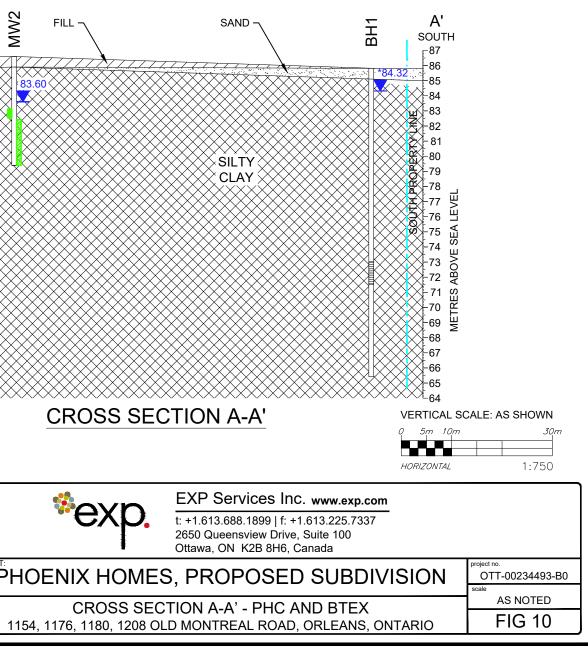
dwb

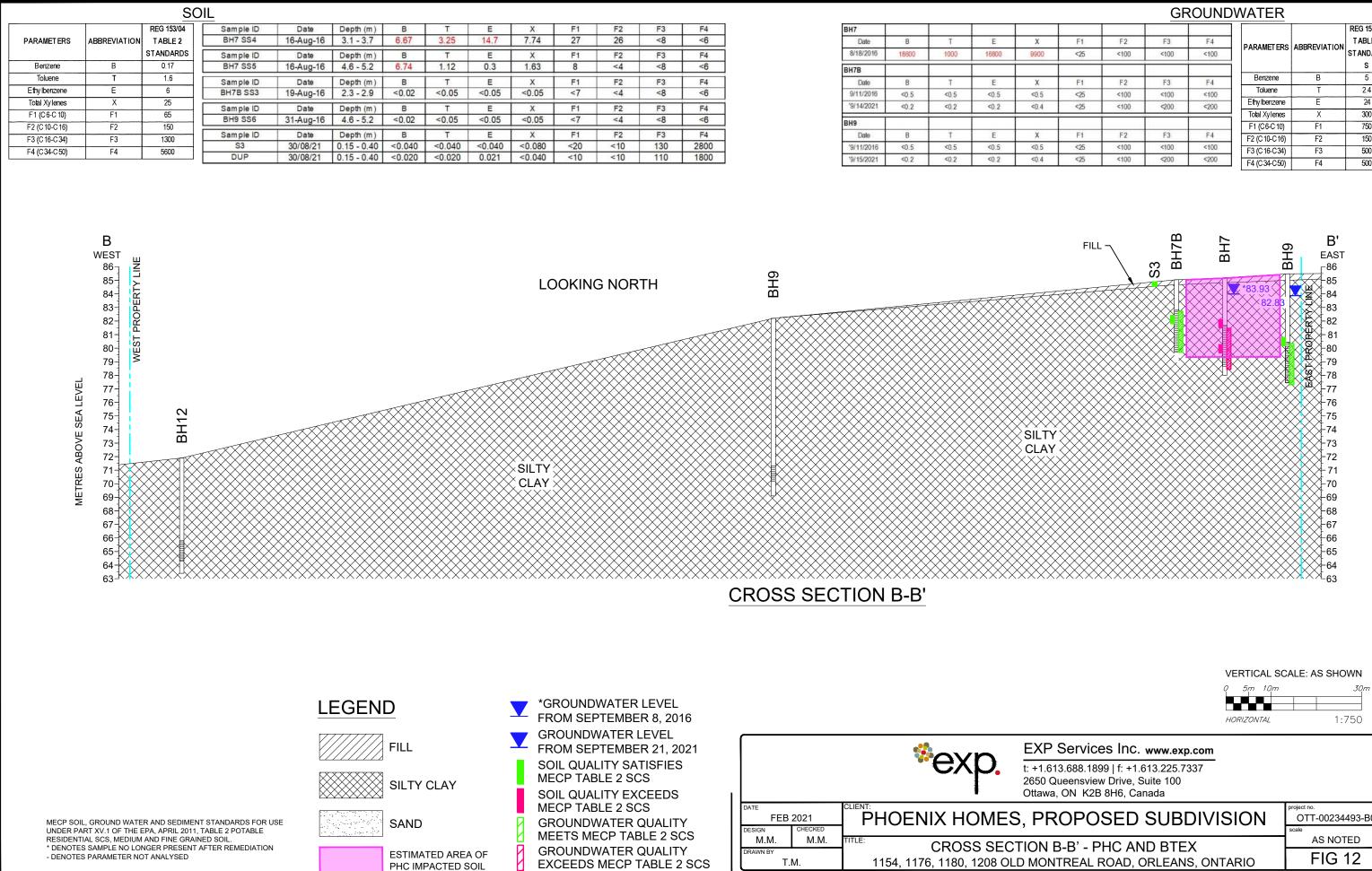
.× à ONS SEC.

ESA\234493-B0

Two 1Se

sb

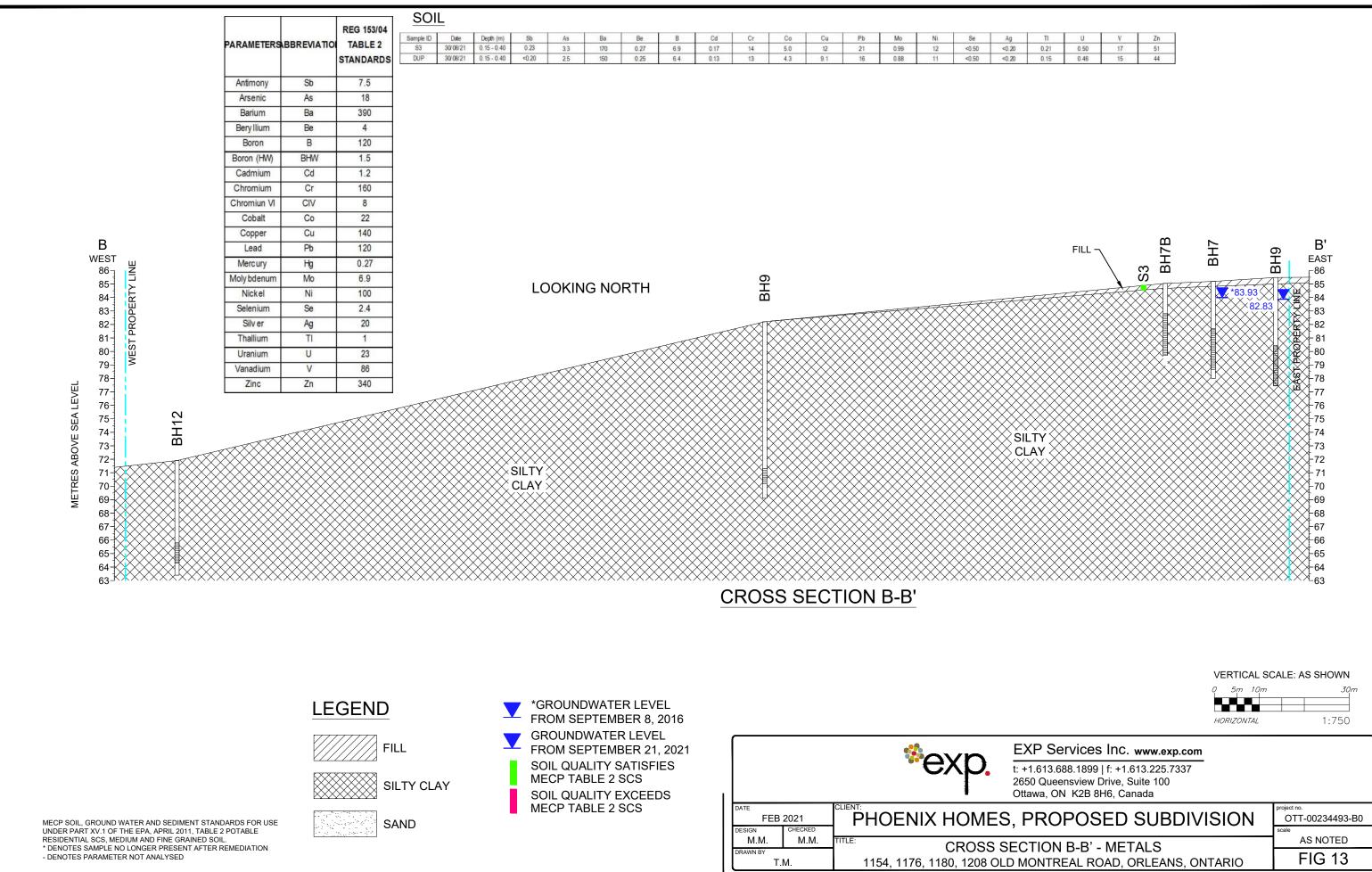

Rd∖Dr


Montreal

old et

GRUU	יטאונ	VATER	

VALEN										
		REG 153/04								
	ABBREVIATION	TABLE 2								
PARAMETERS	ADDREVIATION	STANDARD								
		S								
Benzene	В	5								
Toluene	Т	2.4								
Ethy Ibenzene	E	24								
Total Xylenes	X	300								
F1 (C6-C10)	F1	750								
F2 (C10-C16)	F2	150								
F3 (C16-C34)	F3	500								
F4 (C34-C50)	F4	500								



GROL		۸/ ۸ т	Ъ
GNU	ישיוכ	/VAI	

	F1	F2	F3	F4
0	<25	<100	<100	<100
	F1	F2	F3	F4
5	<25	<100	<100	<100
4	<25	<100	<200	<200
	F1	F2	F3	F4
5	<25	<100	<100	<100
4	<25	<100	<200	<200

VATER										
		REG 153/04								
		TABLE 2								
	ADDICEVIATION	ST AND ARD								
		S								
nzene	В	5								
luene	Т	2.4								
benzene	E	24								
Xylenes	Х	300								
C6-C 10)	F1	750								
10-C16)	F2	150								
16-C34)	F3	500								
34-C50)	F4	500								
	nzene luene benzene Xylenes C6-C 10) 10-C 16) 16-C 34)	Image: Non-Section 2 Image: No								

(P Services Inc. www.exp.com			
1.613.688.1899 f: +1.613.225.7337 i0 Queensview Drive, Suite 100 awa, ON K2B 8H6, Canada			
PROPOSED SUBDIVISION	project no. OTT-00234493-B0 scale		
N B-B' - PHC AND BTEX	AS NOTED		
ONTREAL ROAD, ORLEANS, ONTARIO	FIG 12		

TI	U	V	Zn
0.21	0.50	17	51
0.15	0.46	15	44

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Appendix B: Survey Plan

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Appendix C: Sampling and Analysis Plan

1 Introduction

This appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA) for the property located at 1154, 1176, 1180, 1208 Old Montreal Road in Ottawa, Ontario (hereinafter referred to as the 'site'). The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control measures that will be undertaken to provide for the collection of accurate, reproducible and representative data. These components are described in further detail below.

2 Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the soil and groundwater for chemical analysis of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene and xylenes (collectively known as 'BTEX') and/or metals. The soil sampling media is to consist of the overburden materials. The soil sampling will be location-specific to assess for the potential presence of PHC, BTEX, and/or metals based on the identification of potential areas of potential environmental concern identified in a Phase One ESA completed by EXP in 2021. Vapour readings will also be taken in the field to determine samples to be submitted for laboratory analysis.

Each of the groundwater samples will be submitted for analysis of metals, PHC and BTEX. The monitoring well network is to comprise of eleven monitoring wells.

Vertical control of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a geodetic benchmark. Groundwater flow and direction in the overburden aquifer will also be determined through groundwater level measurements and the elevations established in the site elevation survey.

3 Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;
- Monitoring Well Installation;
- Groundwater Level Measurements;
- Elevation Survey; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in EXP's standard operating procedures and are outlined below:

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 August 15, 2021

3.1 Borehole Drilling

Boreholes will be advanced at the site to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of groundwater monitoring wells. A total of nineteen boreholes are proposed to be advanced at the site, up to a maximum overburden depth of approximately 6 m below grade, to provide for the collection of samples of the surficial and overburden materials beneath the site. The borehole locations will be selected to delineate the extent and magnitude of PCOC related impacts to the soils and the groundwater.

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. The borehole drilling program will be conducted by a licensed driller under the oversight of EXP field staff. All drilling equipment will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geologic property characterization. The soil samples will be collected using 5 cm diameter, 60 cm long, stainless steel split-spoon sampling devices advanced ahead of the direct push drilling equipment at continuous intervals. The split spoon sampling devices will be attached to drill rods and advanced into the soil by means of a standard penetrating hammer. Upon retrieval from the boreholes, the split-spoon samplers will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Samples for chemical analysis will be selected on the basis of visual and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of known impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for analysis of VOC, BTEX and PHC F1-F2 will be collected into 40 ml vials. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field note book. The samples will be submitted to the contract laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Monitoring Well Installation

It is proposed that five boreholes will be instrumented as a groundwater monitoring well installed with slotted screens intercepting either the native overburden material or the shallow bedrock, where the water table aquifer is expected, extending to depths of approximately 6 m below grade. The monitoring wells will be constructed using 37 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screens will be backfilled with silica sand, to an average height of 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells will be completed with either a flush-mounted protective steel casing or above ground protective casings cemented into place.

3.4 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters.

Standing water volumes will be determined by means of an electronic water level meter. Prior to collecting groundwater samples, the monitoring wells will be developed using low flow sampling techniques to reduce the amount of sediment in the samples. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.5 **Groundwater Level Measurements**

Groundwater level measurements will be recorded for the monitoring wells to determine groundwater flow and direction in the water table aquifer beneath the site. Water levels will be measured with respect to the top of the casing by means of an electronic water level meter. The water levels will be recorded on water level log sheets. The water level meter probe will be decontaminated between monitoring well locations.

3.6 Elevation Survey

An elevation survey will be conducted to obtain vertical control of all monitoring well locations. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a known geodetic benchmark, or if unavailable, against a suitable arbitrary benchmark. Elevations measured against using a high precision GPS unit and a benchmark with an assigned elevation will be recorded as meters above mean sea level (m AMSL). The elevation survey will be accurate to within ± 0.5 cm.

3.7 Groundwater Sampling

Groundwater samples will be collected from the monitoring wells for chemical analysis. The wells will be sampled using a "low flow" technique whereby the wells are continuously purged using an electric pump (equipped with dedicated tubing) and parameters within the purged water are monitored using a groundwater chemistry multi-meter at 3 minute intervals. These parameters include: pH, conductivity, temperature, and salinity. Once these parameters are found to deviate less than 10% over three testing events, equilibrium is deemed to have occurred and a sample of the groundwater will be collected. The purge water will also be continuously monitored for visual and olfactory evidence of petroleum and solvent impact (sheen and odour).

Recommended groundwater sample volumes will be collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Each VOC vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space is present. All groundwater samples will be assigned unique identification numbers, and the date, time, project number, company name, location and requested analyses for each sample will be documented in a bound hard cover notebook. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 August 15, 2021

4 Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. The split spoon soil sampling device will be cleaned/decontaminated between sampling intervals in according with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, and purging activities. For hydraulic conductivity tests, the electronic water level meters will be decontamination fluids will be collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration will be calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments will be checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration will be checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

4.3 Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

4.4 Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 August 15, 2021

4.5 Field Quality Control

Field quality controls samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. For soil and groundwater sampling, one (1) field duplicate is to be collected for every ten (10) samples submitted for chemical analysis. The field duplicate samples will be assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Appendix D: Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

- Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- *Till:* the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

- *Desiccated:* having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
- *Stratified:* alternating layers of varying material or color with the layers greater than 6 mm thick.
- *Laminated:* alternating layers of varying material or color with the layers less than 6 mm thick.
- *Fissured:* material breaks along plane of fracture.
- *Varved:* composed of regular alternating layers of silt and clay.
- *Slickensided:* fracture planes appear polished or glossy, sometimes striated.
- *Blocky:* cohesive soil that can be broken down into small angular lumps which resist further breakdown.

- *Lensed:* inclusion of small pockets of different soil, such as small lenses of sand scattered through a mass of clay; not thickness.
- *Seam:* a thin, confined layer of soil having different particle size, texture, or color from materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification.

				IS	SMFE SOIL	CLASSIFIC	CATION				
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		

0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	200
1					1				1	1

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE	
SILT (NONPLASTIC)		SAND	GRAVEL			
UNIFIED SOIL CLASSIFICATION						

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: P	ercent or Proportion of Soil, Pp
	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5≤Pp≤10%
Little	15≤Pp≤25%
Some	30≤Pp≤45%
Mostly	50≤Pp≤100%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

I able b: Apparent Density of	Cohesionless Soil
	'N' Value (blows/0.3 m)
Very Loose	N<5
Loose	5≤N<10
Compact	10≤N<30
Dense	30≤N<50
Very Dense	50≤N

N

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

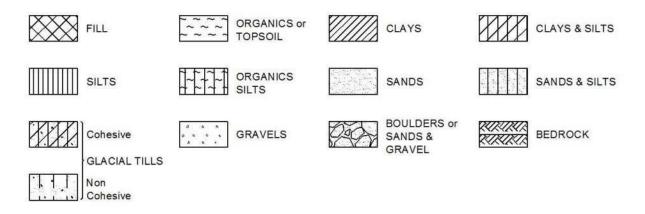

Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Table c: Consistency of Cohesive Soil

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

Open Borehole or Test Pit

Monitoring Well, Piezometer or Standpipe

V

Log of Borehole <u>BH7</u>

Project No: OTT-00234493-A0

*ex	p.

r toject No.	011-00234493-A0	Figure No.	
Project:	Phase II ESA	J I	
Location:	1208 Montreal Road, Ottawa		Page. <u>1</u> of <u>1</u>
Date Drilled:	8/19/16	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME 75	Auger Sample	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus Strain at Failure
Logged by:	MAD Checked by: IT	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

G Y M B O	SOIL DESCRIPTION	Geodetic	De	St	andaro	d Pen 41		Fest N V	alue 80		250	apour Read	750	SAMPLES	Natura Unit W
	SOIL DESCRIPTION	m	D e p t h	Shear	Streng	gth			kPa			sture Cont its (% Dry		Ĺ	kN/m ³
미인이다	FILL	85.17	0		50	10	0 1	50	200		20	40	60	Ī	
	Sand and gravel mixed with silty sand,			7 O										÷М	
	– brown, moist, (loose)	_					···· · · · · · · ·			0				-//\	
		84.3													
	-SILTY CLAY		1	10										-M	
	Brown to grey, moist to wet, petroleum odours from 1.5 m to 3.3 m, (hard to stiff).	83.83								o				1	
	odours from 1.5 m to 3.3 m, (hard to stiff).				• • • • • • •			1.2.4.4.4		0.000		<u></u>	-	Ħ	
				13										M	
		_	2					12.040			290	<u> </u>		ΞΛ	
														H	
		_												-M	
			3											Ш	
				9				12241						M	
		_		0							4	60		-M	
						21		13313						H	
			4											n	
			1											Ľ	
														-M	
				4										M	
			5	0		3.1.		1333		85				IXI	
														÷H	
														A	
			6	0.000		22	0.000	-2-2-2-				5-8-5-6-8 8	- 6846	招	
								1.1.1.1.1				1 - 1 - 1 - 1 - 1		\mathbb{H}	
				ο Φ						<u> </u>				X	
						2.11	<u></u>	12211						Æ	
			7												
E CALLER E C	Perchala Terminated at 7.46 m Denth	78.0	ľ			<u>.</u>	<u></u>						-	·Ш	
	Borehole Terminated at 7.16 m Depth														
1															
OTES:		1	_!	• • • • •						• • • • •			• • • • •		
	ole data requires interpretation by EXP before	WATER	R L		RECO							RILLING F			
use by		ate		Water evel (m		F	lole Op To (m	en	Run No	Dej (n	pth	% Re	ec.	R	QD %

	A Developed at the environmentation by EVD before	WAT	TER LEVEL RECC	RDS	CORE DRILLING RECORD					
LOGS	1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %		
빗	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	5 days	2.1	-						
BOREHOLE	completion.	23 days	1.3							
	3. Field work supervised by an exp representative.									
ЫG	4. See Notes on Sample Descriptions									
ğ	5.Log to be read with EXP Report OTT-00234493-A0									

		Log of Borehole	BH7A	
Project No:	OTT-00234493-A0	•		
			Figure No.	

		Log of Bo	orehole B	H7A		exn)
Project No:	OTT-00234493-A0	•				CAP	•
Project:	Phase II ESA				Figure No.		
Location:	1208 Montreal Road,	Ottawa			Page. <u>1</u> of <u>1</u>	<u> </u>	
Date Drilled:	8/19/16		_ Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill Type:	CME 75		Auger Sample - SPT (N) Value		Natural Moisture Content Atterberg Limits	× H	
Datum:	Geodetic		Dynamic Cone Test – Shelby Tube		Undrained Triaxial at % Strain at Failure	•	
Logged by:	TG Chec	ked by: MM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A	

G Y W B L O L	SOIL DESCRIPTION	G	Geodetic p m t		p 20 40 60 60						Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)					Natura Unit W kN/m ³
	FILL Crushed stone, grey, moist, no odou (loose). FILL Sand, some silt, trace clay, brown to moist, no odours, (loose). SILTY CLAY Brown to grey, moist to wet, petrolege odours from 1.5 m to 3.2 m, (hard to	o grey,	88 (8 1)	0	00	150	200	0	20	40	60) O <e₽-⊥₩0 1600 1600</e₽-⊥₩0 			
	Borehole Terminated at 4.88 m D	Depth 80.	0													
NOTE:	S: I		WATER LEVEL RECORDS										_			
NOTES 1.Bore use	S: ehole data requires interpretation by EXP before by others	V Date	VATERI	EVEL RE Water		S Hole Op	pen	Run		ORE DF	RILLING F			QD %		

3. Field work supervised by an exp representative. 4. See Notes on Sample Descriptions

EHO	3. Field work supervised by an exp representative.
BOF	4. See Notes on Sample Descriptions
G OF BOREHC	5. Log to be read with EXP Report OTT-00234493-A0
ğ	

Log of Borehole	BH7B
-----------------	------

FIUJECI NO.	011-00234493-A0				
Project:	Phase II ESA	Figure No.	1		
Location:	1208 Montreal Road, Ottawa			Page. <u>1</u> of <u>1</u>	
Date Drilled:	8/19/16	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75	Auger Sample —— SPT (N) Value		Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	TG Checked by: MM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A

	S S			D		Stand	lard Pe	netration	Test I	N Val	Le Combustible Vapour Reading (ppm) 250 500 750				m) S A M P	S A M Natural	
G W L	SOIL DESCRIPTION		Geodetic m	e p t h			ength	40	60		kPa	kPa Natural Moisture Content % Atterberg Limits (% Dry Weight)				P L ES	Unit W
	↓ FILL ↓ Crushed stone, grey, moist, no odours,		5.06 5.0	0		50	1	00	150	2	00		20	40	60	S	
	⊣(loose). FILL \Sand, some silt, trace clay, brown to grey		4.3														
	Moist, no odours, (loose).	<u> </u>		1							[0				X	
	Brown to grey, moist to wet, no odours , (hard to stiff).	_	83.2													X	
		-		2													
												5				X	
				3												V	
												0					
		_		4							[5				X	
		_		5						· · · · · · · ·							
1.2	Borehole Terminated at 5.48 m Depth	<u>זי</u>	9.6														
										· · · · · · · · · · · · · · · · · · ·							
NO.	DTES:	I	WATEF	. 			חסר	L:::: 	:1::	 [1::::				RECO		
1.I	.Borehole data requires interpretation by EXP before use by others	Date			Wate	r		Hole O	pen	-	Run	Dep	oth		RECOR		QD %
2.7	A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	20 days	6	L	<u>evel (</u> 1.9	<u>m)</u>		To (n	n <u>)</u>		No.	(m)				

LOG OF BOREHOLE 1 A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion.

3. Field work supervised by an exp representative.

Project No: OTT-00234493-A0

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00234493-A0

		Log of Borehole BH7C	1
Project No:	OTT-00234493-A0		
D · ·	5	Figure No	

	L	og of Bo	rehole _	BH7C		exp
Project No:	OTT-00234493-A0	•				CAP.
Project:	Phase II ESA				Figure No.	1
Location:	1208 Montreal Road, Ottaw	/a			Page. <u>1</u> of <u>1</u>	1
Date Drilled:	8/19/16		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75		Auger Sample		Natural Moisture Content	×
Dim Type.	CINE 75		SPT (N) Value	0	Atterberg Limits	$\vdash \odot$
Datum:	Geodetic		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	TG Checked b	ру <u>: ММ</u>	Shelby Tube Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•

G W L	SYMBOL	SOIL DESCRIPTION	Geodetic m t Standard Penetr 20 40 t Shear Strength			0 6	0	80 kPa	0 250 500 Natural Moisture C Atterberg Limits (% [750 Å M ontent % P U Dry Weight) E		Natura Unit W kN/m ³	
		T <mark>FILL</mark> ∖Crushed stone, grey, moist, no odours, ⊣(loose).	85.39 85.3 	0		50 1	00 1	50 2	00	2	20	40	60	IS	
		Sand, some silt, trace clay, brown to grey, moist, no odours, (loose).	84.6	1						0					
	Brown to grey, moist to wet, petroleun odours from 2.3 m to 3.0 m, (hard to s		_							10					
		-		2								500			
		-	_	3								500			
		-		4						20					
				+						5				ľ	
		Borehole Terminated at 4.88 m Depth	80.5												
NOT		le data requires interpretation by EXP before others		ER L	EVEL RI Water		S Hole Ope	-n	Run	CO Dep		LLING R % Re			QD %
2. 3.F 4.S	ield w See Nc	ork supervised by an exp representative. tes on Sample Descriptions be read with EXP Report OTT-00234493-A0	Date	L	.evel (m)		<u>To (m)</u>		No.	(m)				

Project No: OTT-00234493-A0

*ex	p.

r toject No.	011-00234493-A0		Figure No.
Project:	Phase II ESA		° I
Location:	1208 Montreal Road, Ottawa		Page. <u>1</u> of <u>1</u>
Date Drilled:	8/31/16	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME 75	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus Strain at Failure
Logged by:	TG Checked by: MM	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

G	S Y M	S Y SOIL DESCRIPTION Geodetic P Combustible Vapour Reading 250 500 75 Natural Moisture Content Natural Nat	750	SAZPLIES	Natural													
G W L	S≻MBOL	SOIL DESCRIPTION		m	p t h	Shear	Streng	th			kPa	CORE DRILLING RECORD	L	Unit W kN/m ⁵				
		ר <u>FILL</u>	1	84.57 84.5	0		50	10	0 15	50 2	00		20)	40	60		
		∖Crushed stone, grey, moist, no odours, ⊣(loose).	i											· · · · · · · · · · · · · · · · · · ·				
		FILL √Sand, some silt, trace clay, brown to grey	 y,	83.8														
		moist, no odours, (loose).			'							5						
		Brown to grey, moist to wet, no odours, (hard to stiff).	_	-													\mathbb{N}	
		_	_	_	2	-2 -2 -2 -2				-3-0-1-3		0					-[]	
Y		_	_	82.01													$\frac{1}{2}$	
												15					ľ	
		—	_		3	6 0												
		_	-	-								5						
		_	_	-	4												\mathbb{N}	
		_	_	-													Ľ	
		_	_	5	5							 						
		_	-								•							
		-	-	6		· · · · · · · ·					0.00							
		_	_	-] 0						
: <u>8</u> :		Borehole Terminated at 6.86 m Depth	ı	77.7	-					• • • • • • •			<u></u>	· · · · · · · ·				
								· · ·										
NO	TES:			WATER	- -	EVEL R	FCO	אחצ				·`				RECOR))	
1.I	Boreho use by	ole data requires interpretation by EXP before	Dat			Water .evel (m)			, Hole Ope To (m)		Run No.	D	eptl	h				QD %
2.	An abo standp comple	by e ground monitoring well with a 31 mm slotted ipe was installed in the borehole upon	8 da	iys		2.6	,		<u>10 (11)</u>		INU.	(<u>,,,,</u>					
		vork supervised by an exp representative.																
		otes on Sample Descriptions																
5.	∟og to	be read with EXP Report OTT-00234493-A0		[

Log	of	Bo	reh	ole	<u>BH9</u>

Project No: OTT-00234493-A0

*ex	p.

,			Figure No.	
Project:	Phase II ESA		Page. 1 of 1	
Location:	1208 Montreal Road, Ottawa			
Date Drilled:	8/31/16	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 75	Auger Sample	Natural Moisture Content X	
		SPT (N) Value	Atterberg Limits	
Datum:	Geodetic	Dynamic Cone Test	Undrained Triaxial at	
		Shelby Tube	% Strain at Failure	
Logged by:	TG Checked by: MM	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	

G	S Y		Geodetic	D						2	250	500 7	50	S A M P	Natura
G W L	SY MBOL	SOIL DESCRIPTION	SOLL DESCRIPTION Outcome (m) Control (m) Mature (m) <th< th=""><th>ent % Veight)</th><th>PLES</th><th>Unit W kN/m</th></th<>	ent % Veight)	PLES	Unit W kN/m									
	_ 지하는	FILL	85.49			50	100 1	50 2	200		20	40 6	60 	Š	
		Sand and gravel mixed with silty sand,												•	
		– brown, moist, (loose)	_											-	
			84.6												
		Brown to grey, moist to wet, no odours,		1]X	
		_(hard to stiff).		_	-5-6-6-5								0.000	1	
Ĭ			83.8	57										М	
		_	_	2	2					0				-1/1	
														-	
		_	-											łVI	
					-2-6-1-2					0				i	
		_	-	3	3 <u></u>									M	
										1 0			0000	X	
		_	7											Ή	
		_		4										$\overline{\mathbf{N}}$	
										0				Ň	
		_	_											Ê	
														M	
╞╞		_	-	5	j					20				-12	
┋╏															
Ħ		_			-0-0-1-0					20				X	
Eł		_		6				12200		20	14620		1999	А	
														$\overline{\mathbf{M}}$	
H		_	_		-2-2-2-2					1 0			10000	X	
Ħ		_	_	7	· · · · · · ·									M	
E					-2-0-1-2					0				\mathbb{N}	
H		_	_											-	
		_	_	8						<u>h</u>				IXI	
ł		Perchala Tarminated at 9.22 m Danth	77.3							•				1	
		Borenoie Terminated at 6.23 m Depth													
NO.	TES:	 							_						
1.E	Boreho	ble data requires interpretation by EXP before		=R L		ECORE		en	Run						2D %
		others		l	Level (m)						70 Re		R	אָר יע
2.7	tiush standp	ipe was installed in the borehole upon	8 days		1.6										
	comple														
		ork supervised by an exp representative.													
5.L	_og to	be read with EXP Report OTT-00234493-A0													

Log of Borehole <u>BH10</u>

Project No: OTT-00234493-A0

LOG OF BORE

3. Field work supervised by an exp representative.

5. Log to be read with EXP Report OTT-00234493-A0

4. See Notes on Sample Descriptions

*ex	D.
•••	-

Project:	Phase II ESA			Figure No.	I
Location:	1208 Montreal Road, Ottawa			Page. <u>1</u> of <u>1</u>	
Date Drilled:	8/31/16	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75	Auger Sample — SPT (N) Value	∎ ○	Natural Moisture Content Xatural Moisture Content Atterberg Limits Content	X Đ
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	•	Undrained Triaxial at % Strain at Failure	€
Logged by:	TG Checked by: MM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	▲

	S				D	Sta	andard	rd Penetration Test N Value				e	Combustible Vapour Reading (ppm) 250 500 750) S A	Natural	
G W L	SY MBO	SOIL DESCRIPTION		Geodetic m	D e p t h	Shear	20 Strongt	40) 6	60	80) kPa	N Atte	atural I	Moist	ure C	Conter	nt % Veight)) SAMPLES	Unit Wt.
-	Ľ			85.97			Strengt 50	n 10	0 1	50	20		Alle	20		40		so	ES	kN/m ³
		ך FILL ∖Crushed stone, grey, moist, no odou ⊣(loose).	ırs,	85.9	0										· · · · · ·					
		_ <u>FILL</u>	 r	85.2											· · · · · ·					
		Sand, some silt, trace clay, brown to moist, no odours, (loose).	grey,	-	1			· · · · ·							· (·) ·				H	
		SILTY CLAY										• • • • • • • • •			· (·) · · (·) ·				\square	
		 Brown to grey, moist to wet, no odou (hard to stiff). 	urs, –	1															\mathbb{N}	
¥		_	_	84.01	2	-2-2-2-2									• {• }•				-	
															· · · · · · ·				\square	
		_	-	1					<u></u>						• • • • •				X	
			_	_	3										• • • • •				Ĥ	
								· · · · ·							· · · · · · ·				M	
		_	-	-											• • • • •				-4	
															• • • • • •					
					4										· · · · · ·				X	
		_	-	-											· · · · · ·				H	
									0409 O 2423 C						· · · · · · ·				X	
		_	_	1	5							· · · · · · · · · · ·							ΞΔ	
		_	_	-					·····											
								· · · ·							· · · · · · ·				Ň	
		_	-	-	6													-2-2-1-	\square	
		_	_												• • • • •				X	
						-2-6-1-2													Ĥ	
_		-	-	-	7				<u></u>						- <u></u>				-1	
0/5/2				78.5											• { • } •					
		Borehole Terminated at 7.46 m D	epth																	
WA.G												· · · · ·								
DTTA												· · · · ·							-	
NO NO																				
L TR																				
S.GP																				
19LE																				
я Ч N	OTES:			WATE	211			פחפ			ΙΓ				וופח			ECORI]
890 1	.Boreh	ole data requires interpretation by EXP before others	Dat			Water			lole Op			Run		pth			6 Red			QD %
		mount monitoring well with a 31 mm slotted ipe was installed in the borehole upon	8 da		L	<u>evel (m)</u> 2.0)		<u>To (m</u>)			No.		n)	+			-+		
REHOLE LOGS OF BOREHOLES.GPJ TROW OTTAWA.GDT 10/5/21 0/5/21 0/5/21 0/5/21	standp comple	ope was installed in the borehole upon etion.		-																

Log of Borehole BH11

* AY	n
CA	D .

Project:	Phase II ESA		Figure No.
Location:	1208 Montreal Road, Ottawa		Page. <u>1</u> of <u>1</u>
Date Drilled:	8/31/16	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME 75	Auger Sample - SPT (N) Value	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus % Strain at Failure
Logged by:	TG Checked by: MM	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

	S				D	Si	tandar	d Pei	netration T	est N Va	alue		istible Va 250	apour 500		ng (ppm) 50) S A M P	Natura
G W L	SY MBOL	SOIL DESCRIPTION	Geod	letic	D e p t h	Shear	20 Stren		10 6	0	80 kPa	Na Atter	itural Mo berg Lin	oisture nits (%	Conte 6 Dry V	nt % Veight)		Natura Unit W kN/m
	Ľ		79.25		h 0 -	50			00 150 20		200		20	40		<u>50</u>	ËS	KN/m
		ך <u>FILL</u> ∖Crushed stone, grey, moist, no odours, ⊣(loose).	79.2 															
		_ <u>FILL</u>	78.5															
		Sand, some silt, trace clay, brown to grey, ∖moist, no odours, (loose).	, Д		1			· · · · · ·							· · · · · · · · · · · · · · · · · · ·		W	
		SILTY CLAY										0 					\square	
		Brown to grey, moist to wet, no odours, (hard to stiff).	_		ł													
ĺ			_		2							0					Ň	
ĺ																		
ļ		_	_		+			· · · · · ·							******		-V	
ļ												0					Δ	
ĺ		—	_		3													
ĺ			_									0					ľ	
ļ								· · · · · · ·										
ļ		_	_		4										· · · · · · · · ·		IV	
ļ												Ó					\square	
ļ		—	_		ł													
ł			_		5							† 0					X	
ł								· · · · ·				Ī					μ	
ł		_	_		+			· · · · · ·							· · · · · · · · · · · · · · · · · · ·		-17	
			7	3.35								0					\mathbb{A}	
ł		_	_		6													
1		_	_					• • • • •				<u> </u>					X	
1																	Ľμ	
ļ		_	_		7										· · · · · · · · · · · · · · · · · · ·		$-\nabla$	
												0					Ň	
-		Borehole Terminated at 7.62 m Depth	71.6		_													
		Borenoie Terminated at 7.62 m Depth																
					L			: :						: :	:::			
	TES:		WA	TER	LE	VEL F	RECO	RD	S			CC	ORE DF	RILLI	NG R	ECORI	D	
		ole data requires interpretation by EXP before	Date			Water			Hole Op		Run	De			% Re	с.	R	QD %
\$	A flush standp comple	lipe was installed in the borenole upon	8 days	+	Le	<u>evel (m</u> 5.9	<u>ı)</u>		<u> To (m)</u>		No.	<u>(n</u>	<u>ı)</u>					
		vork supervised by an exp representative.																
		otes on Sample Descriptions																

LOG OF 4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00234493-A0

Project No: OTT-00234493-A0

Log of Borehole <u>BH12</u>

Project No: OTT-00234493-A0

Project:	Phase II ESA			Figure No.	
Location:	1208 Montreal Road, Ottawa			Page. <u>1</u> of <u>1</u>	
Date Drilled:	8/31/16	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75	Auger Sample —— SPT (N) Value		Natural Moisture Content > Atterberg Limits —	< D
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	Ð
Logged by:	TG Checked by: MM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	L

	S Y				D	St	tanda	rd Pe	netra	ition 1	est N Va	alue		Со		stible 50	Vapo 50	our Rea	iding (p 750	opm)	SA	Natura
G W L	S Y B O	SOIL DESCRIPTION		Geodetic m	e p t h	Shear	20 Stre	ngth	40	6			kPa	A	Nat	ural N berg L	/loistu .imits	ure Con (% Dry	tent % Weigl	, ht)	SAMPLES	Unit W kN/m
	L ISIS	FILL	7	7.29	0		50	1	00	1	50	200			2	20	40	0	60		Š	
		Sand and gravel mixed with silty sanc – brown, moist, (loose)	d,																		•	1
			7	6.4																		I
		 – <u>SILTY CLAY</u> Brown to grey, moist to wet, no odour (hard to stiff). 	rs,		1																-	I
			_																		\mathbb{N}	1
		_	_		2								2-0-6 1 2-0-6- 2-0-6-	0 [*]							Å	1
		-	_														<u></u>				-	1
		_	_		3																:	1
		_	_											20						· · · · ·	\mathbb{N}	1
		_	_		4																	1
		_																			-	1
		_			5									35								I
Z				71.88	5																·/ ·	1
		_																			•	I
		_	_		6																	I
		_	_											15							\mathbb{A}	I
		_	_		7																•	I
		_	_																			I
		_		9.1	8								Ę	†] 0 1								1
		Borehole Terminated at 8.23 m De	pth												· · · · · · · · · · · · · · · · · · ·					· · · ·		I
								· · · ·							· · · · · · · · · · · · · · · · · · ·							I
								· · · ·							· · · · · · · · · · · · · · · · · · ·					· · · ·		1
								· · · ·							· · ·							
	TES: Boreho	e data requires interpretation by EXP before		WATEF													RIL	LING		ORD		
ι	use by	others mount monitoring well with a 31 mm slotted ipe was installed in the borehole upon	Date 8 days	;		Water evel (m 5.4			Hole Te	e Op o (m)	en		un lo.		Dep (m		+	% R	lec.	+	R	QD %
0	comple	tion.																				
		ork supervised by an exp representative. otes on Sample Descriptions																				
5.I	_og to	be read with EXP Report OTT-00234493-A0																				

		Log of Borehole <u>BH13</u>	
Project No:	OTT-00234493-A0	-	

*ex	D.
<u>U</u>	

r rojoot no.	011 00201100 / 10			Figure No.	- I
Project:	Phase II ESA			• <u> </u>	
Location:	1208 Montreal Road, Ottawa			Page. <u>1</u> of <u>1</u>	
Date Drilled:	8/31/16	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75	Auger Sample		Natural Moisture Content	×
Dim Type.	CME 75	— SPT (N) Value	0	Atterberg Limits	Θ
Datum:	Geodetic	Dynamic Cone Test		Undrained Triaxial at	\oplus
		Shelby Tube		% Strain at Failure	Ψ
Logged by:	TG Checked by: MM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A

	S			D		andar	d Per	netration -	est N Va	lue			pour Readi 500 7	ng (ppm) 50	SA	Natura
G W L	SY MBO	SOIL DESCRIPTION	Geodetic m	e p t	Shear	20 Stren		0 6	60	30 kPa	Na Atter	tural Mois	sture Conte ts (% Dry V	nt % Veight)	SAMP-LES	Unit W kN/m ³
	L		75.32	h 0		50		0 1	50 2	100 KFa		20		50	Ē	KIN/M
			75.3	ľ												
		_	-													
		SILTY CLAY	74.6												•	
		Brown to grey, moist to wet, no odours, (hard to stiff).	-	1												
			_													
															M	
		_	_	2	-2-1-2-						0			19999 19999		
¥			72.95	5											•	
		—	_													
÷∎:		_		3												
															M	
		-	-								5				-	
		_		4											-	
		_	_													
											85				M	
<u>. П</u> .,		Borehole Terminated at 5.08 m Depth	- 70.2	5							85				4	
						::	: :									
							: :									
	TES:		WATER	٦L	EVEL R	ECC	RD	3			CC	RE DR	ILLING R	ECORD)	
1.	Boreho use by	ole data requires interpretation by EXP before	Date		Water			Hole Op		Run	De	oth	% Re			QD %
2.	A flush		3 days	L	<u>evel (m)</u> 2.4)		<u>To (m</u>		No.	<u>(n</u>	1 <u>)</u>				
	comple	etion.														
		vork supervised by an exp representative.														
		otes on Sample Descriptions														
5.	Log to	be read with EXP Report OTT-00234493-A0														

roject No: roject:	<u>OTT-00234493-A0</u> Phase II ESA							F	igure N	lo			
ocation:	1155-1208 Montreal Road, Ottawa								Pag	ge	1_ of	1	
	September 3rd, 2021		-	Split Spo Auger Sa		ble			Combust Natural M		our Readir Content	ng	×
ill Type:	Manual			SPT (N) Dynamic		oct	0		Atterberg Undraine			H	—Ð
atum:	Geodetic			Shelby T		551			% Strain	at Failur	e		\oplus
ogged by:	JE Checked by: MM			Shear Si Vane Te		ý	+ s		Shear St Penetror				
S Y			D	Sta	andard Pe	enetration	Test N Va	lue			our Readir	ng (ppm) 50	s A M Natura
M B O	SOIL DESCRIPTION	Geodetic m	e p t h		20 Strength	40		30 kPa	Natu Atterb	ural Moist erg Limit	ture Conter s (% Dry W	nt % /eight)	A M Natura P Unit Wt kN/m ³
		85.055 84.8	0		50	100	<u>150 2</u>	00 	2]:	20 4	<u>40 6</u>		s M
−\odou	l and gravel, some clay, brown, dry, no r or staining.												7
	<u>Y CLAY</u> e sand, grey, dry to wet, no odour or							:)				4
stain	ing.		ľ]: : : : : :				X
	-	-						· · · · · · · · · · · · · · · · · · ·)
	-	_	2])				Ň
													Λ
	-												
	-	_	3					Ē)				X
	-	_					· · · · · · · · · · · · · · · · · · ·						7
)				Δ
	-		4					E.]				X
	-	_											
	-	_	5					[[]				Ň
				··· ···			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·]				\bigwedge
В	orehole Terminated at 5.7 m Depth	79.4										/	<u></u>
		1								: : : :			

ш								
	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Щ	2. A 38mm PVC monitoring well was installed upon completion.	Sept. 9, 2021	3.0	5.7				
BOREHOLE	'	Sept. 30, 2021	1.5	5.7				
ORI	3. Fieldwork was supervised by an EXP representative.							
OF B	4. See Notes on Sample Descriptions							
LOG (5.Log to be read with EXP Report OTT-00234493-A0							

Project No: 0	Log of Log of 07T-00234493-A0	f Bo		reh	ole	e <u>N</u>	<u>1W-</u>					*(Э	xp
	Phase II ESA							F	igure N			-		
Location:	1155-1208 Montreal Road, Ottawa							_	Paę	ge	1_of	_1_		
Date Drilled: A	August 27th, 2021			Split Spo	on Sampl	e	\boxtimes		Combus	tible Vapo	our Readi	ing		
Drill Type: <u>T</u>	Frack Mounted			Auger Sa SPT (N)	•				Natural M Atterberg		Content	F		× −⊖
Datum:	Geodetic			Dynamic	Cone Te	st			Undraine % Strain	, ed Triaxia		I		⊕
Logged by: J	IE Checked by: MM			Shelby T Shear St Vane Te	rength by		+ s		Shear St Penetror	rength by	/			
G Y		Geodetic	De				est N Value		2	50 5		50	S A M	Natural
S G W B L O L	SOIL DESCRIPTION	m	e p t h	Shear	Strength	10 6 00 1!	<u>0 80</u> 50 200	kPa			ure Conte s (% Dry V 40 6	ent % Veight) 60		Unit Wt. kN/m ³
	and gravel, brown, moist, no odour or	86.449 86.2	0	1	1			1	0		•••			
		85.7											H	
odour	or staining, (compact).	-	1	16 0					25				X	
	moist to wet, no odour or staining,	-											\mathbb{H}	
	o very stiff).		2	15 O					5				X	
	-	-		9 O					20				X	
	_	-	3										Д	
				7 0				ſ					X	
	_												Ä	
	-	-	4	3 O									Ŋ	
	_	-						1	0				4	
		I	han	nmer									M	
	-	1	5						25				Н	
	-	-		- <u>3</u>									M	
	_	80.3	6						25				Å	

10/2/21	
TROW OTTAWA.GDT	
MW1 TO MW4.GPJ	
S OF BOREHOLES_M	
HOLE LOGS OI	
REH	

	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2.A 50mm PVC monitoring well was installed upon	Sept. 9, 2021	3.1	6.2				
•	Sept. 21, 2021	2.8	6.2				
3. Fieldwork was supervised by an EXP representative.	Date Sept. 9, 2021 Sept. 21, 2021						
4. See Notes on Sample Descriptions							
5.Log to be read with EXP Report OTT-00234493-A0							
	 2.A 50mm PVC monitoring well was installed upon completion. 3. Fieldwork was supervised by an EXP representative. 4. See Notes on Sample Descriptions 	1. Borehole data requires interpretation by EXP before use by others WAT 2. A 50mm PVC monitoring well was installed upon completion. Date 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 4. See Notes on Sample Descriptions Sept. 21, 2021	1. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECO 2. A 50mm PVC monitoring well was installed upon completion. Date Water 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 3.1 4. See Notes on Sample Descriptions Sept. 9, 2021 2.8	Description Water Hole Open 2. A 50mm PVC monitoring well was installed upon completion. Date Water Hole Open 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 3.1 6.2 4. See Notes on Sample Descriptions Sept. 9, 2021 2.8 6.2	I. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS 2. A 50mm PVC monitoring well was installed upon completion. Date Water Hole Open 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 3.1 6.2 4. See Notes on Sample Descriptions Sept. 9, 2021 2.8 6.2	I. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE Dr 2. A 50mm PVC monitoring well was installed upon completion. Date Water Hole Open 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 3.1 6.2 4. See Notes on Sample Descriptions Sept. 9, 2021 2.8 6.2	Derekole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE DRILLING RECORDS 2. A 50mm PVC monitoring well was installed upon completion. Date Water Hole Open 3. Fieldwork was supervised by an EXP representative. Sept. 9, 2021 3.1 6.2 4. See Notes on Sample Descriptions Sept. 21, 2021 2.8 6.2

Borehole Terminated at 6.1 m Depth

Project No:	OTT-00234493-A0									-igure	No.				
Project:	Phase II ESA								_ '	-	_	1 of	_ 1		1
ocation:	1155-1208 Montreal Road, Ott	awa								. a		01	<u> </u>		
ate Drilled:	August 30th, 2021			Split	Spoor	n Sampl	e	\boxtimes		Combus	stible Va	pour Read	ding		
rill Type:	Track Mounted			-	er Sam (N) Va					Natural Atterber		Content		<u> </u>	Х —
atum:	Geodetic			Dyna	amic C	one Te	st			Undrain	-			-	⊕
ogged by:	JE Checked by:	MM		Shea		ie ngth by		■ + s		Shear S	trength l	ру			
				Vane	e Test			_			meter Te				
S Y B O L	SOIL DESCRIPTION		Geodetic m	n	Stand 20 ear Str 50	2 ength	10 6		ue 8 <u>0</u> kPa 00	2	250	pour Read 500 sture Cont its (% Dry 40	750	Â	Natura Unit W kN/m ⁵
	<u>SOIL</u> <u>Y SAND</u> e clay, brown, dry, no odour or	/85	5.626 5.5 5.3	0	19 0					□ 15>		40		Ň	SS1
staini	ing, (compact). <u>Y CLAY</u> , dry to wet, no odour or staining			1	22	<u>.</u>					×				SS2
	ry stiff).	_			20				· · · · · · · · · · · · · · · · · · ·	0 250					19.1
		_		2	Ō					0 250		×			SS3
					14 O					0		×		ľ	SS4 18.1
				3 O						∔ ;=3 [∏ -5		×			SS5
				4 4	· · · · · ·			180 + s=6_				×		$\overline{\mathbf{P}}$	SS6
		_				75 +				10					550
		_		5						5 5			×		SS7
				2						5			×		SS8
B	orehole Terminated at 6.1 m De		9.5	6										÷	
OTES: Borebole data r	equires interpretation by EVB before		WATER	LEVE	L REC	CORD	5			CC	REDR	ILLING F	RECOF	۶D	
use by others	equires interpretation by EXP before	Date		Wat Level			Hole Op To (m)		Run No.	Dep (m		% R	ec.	R	QD %
A 50mm PVC m completion.	onitoring well was installed upon	Sept. 9, 20 Sept. 21, 20		2.3 2.5	3		6.0 6.0								

ו	4. See Notes on Sample	Descriptions

^{5.} Log to be read with EXP Report OTT-00234493-A0

roject No:	OTT-00234493-A0					Figure	No.		_	
roject: ocation:	Phase II ESA	201/2				Pa	ige	<u>1</u> of	_1_	
	1155-1208 Montreal Road, Ott	awa								
	August 27th, 2021		_ Split Spoon S Auger Sample	•				pour Read	ing	×
	Track Mounted		- SPT (N) Value Dynamic Con	e	0		rg Limits		F	0
atum:	Geodetic		- Shelby Tube			% Strai	ned Triax n at Failu Strongth	ure		\oplus
ogged by:	JE Checked by:	MM	Shear Strengt Vane Test	h by	+ s		Strength ometer T			A
S Y B O	SOIL DESCRIPTION	Geodetic m	D e p t Shear Streng	d Penetration Tes 40 60	80		250	apour Read 500 isture Conte its (% Dry	750	S M P Unit W L kN/m ⁵
	SOIL	85.445 85.3	h 50 0	100 150	200		20		60	5
	<u>Y SAND</u> n, dry, no odour or staining,	85.1	0		······································		<	· · · · · · · · · · · · · · · · · · ·		SS1
(com	pact). Y CLAY]								
Vertio	cal seams, grey to brown, dry to lour or staining, (soft to very stif		1 23		÷		×			X ss2
	to a standing, (our to vory sui									🗍 ssa
		_	2				×			18.7
						250 +				Ø
		_	19 ····O		······			×		X ss4
		_	3		······································	244 +++ s=3		<u></u>		Ð
		_	10 		·····	–		×		X sst
						250 + s=3				
		_	4 -7			 		×		X sse
		_		140						Ð
		_	3 0 5	s=4		<u>.</u>		×		X ss7
				130						
		_	2	S=4					×	X ssa
	orobolo Torminatod at 6.1 m Do		6		·:· : · : · : · : · : · : · : · : · : ·	······································		<u></u>		
D	orehole Terminated at 6.1 m De	pui								
TES:]					~				1
	equires interpretation by EXP before	Date	R LEVEL RECO	Hole Open	Ru	in De	pth	RILLING F		RQD %
	onitoring well was installed upon	Sept. 9, 2021	<u>Level (m)</u> 1.9	<u>To (m)</u> 6.0		<u>o. (n</u>	n <u>)</u>			
	supervised by an EXP representative.	Sept. 21, 2021	1.8	6.0						
Can Natan an C	ample Descriptions									

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Appendix E: Analytical Summary Tables

TABLE 1 SOIL ANALYTICAL RESULTS (µg/g) PETROLEUM HYDROCARBONS 1208 Old Montreal Road, Ottawa

Parameter	MECP Table 2 ¹	BH7-SS4	BH7-SS5	BH7A-SS3	BH7B-SS3	BH7C-SS3
Sample Date (d/m/y)	Residential	8/16/2016	8/16/2016	8/19/2016	8/19/2016	8/19/2016
Sample Depth (mbsg)	Residential	3.1 - 3.7	4.6 - 5.2	2.3 - 2.9	2.3 - 2.9	2.3 - 2.9
Laboratory ID		1634172-01	1634297-01	1634410-01	1634410-02	1634410-03
Date of Analysis		'8/20/2016	'8/20/2016	'8/20/2016	'8/20/2016	'8/20/2016
Certificate of Analysis		1631472	1634297	1634410	1634410	1634410
Benzene	0.17	6.67	6.74	2.62	<0.02	0.4
Ethylbenzene	1.6	3.25	1.12	9.15	<0.05	1.25
Toluene	6	14.7	0.3	18.5	<0.05	0.67
Xylenes	25	7.74	1.63	33.1	<0.05	2.71
PHC F ₁ (>C ₆ -C ₁₀)	65	27	8	76	<7	<7
PHC F ₂ (>C ₁₀ -C ₁₆)	150	26	<4	13	<4	47
PHC F ₃ (>C ₁₆ -C ₃₄)	1300	<8	<8	<8	<8	<8
PHC F ₄ (>C ₃₄ -C ₅₀)	5600	<6	<6	<6	<6	<6

Parameter	MECP Table 2 ¹	BH8-SS6	BH9-SS6	BH10-SS2	BH11-SS9	BH12-SS3	BH13-SS3
Sample Date (d/m/y)	Residential	8/31/2016	8/31/2016	8/31/2016	9/1/2016	9/1/2016	9/1/2016
Sample Depth (mbsg)	Residential	4.6 - 5.2	4.6 - 5.2	1.5 - 2.1	6.8 - 7.4	4.6 - 5.2	4.6 - 5.1
Laboratory ID		1636372-01	1636372-02	1636372-03	1636372-04	1636372-05	1636372-06
Date of Analysis		'9/8/2016	'9/8/2016	'9/8/2016	'9/8/2016	'9/8/2016	'9/8/2016
Certificate of Analysis		1638372	1638372	1638372	1638372	1638372	1638372
Benzene	0.17	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	1.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes	25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
PHC F ₁ (>C ₆ -C ₁₀)	65	<7	<7	<7	<7	<7	<7
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<4	<4	<4	<4	<4	<4
PHC F ₃ (>C ₁₆ -C ₃₄)	1300	<8	<8	<8	<8	<8	<8
PHC F ₄ (>C ₃₄ -C ₅₀)	5600	<6	<6	<6	<6	<6	<6

NOTES:

1 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, fine and medium grained soil.

Shaded Concentration exceeds MECP Table 2 residential soil quality standard.

TABLE 1 SOIL ANALYTICAL RESULTS (µg/g) PETROLEUM HYDROCARBONS 1208 Old Montreal Road, Ottawa

Parameter	MECP Table 2 ¹	MW-1 SS7	MW-2 SS7	MW-3 SS6	MW-4 SS8	S1
Sample Date (m/d/y)	Residential	9/3/2021	8/30/2021	8/30/2021	8/27/2021	8/30/2021
Sample Depth (mbsg)	Residential	3.9 - 4.5	4.6 - 5.2	4.0 - 4.4	5.5 - 6.0	0.15 - 0.45
Laboratory ID		QOJ802	QNG057	QNG056	QNG055	QNG058
Date of Analysis		'9/10/2021	'8/30/2021	'8/30/2021	'8/27/2021	'8/30/2021
Certificate of Analysis		C1P4382	C1O8699	C1O8699	C1O8699	C1O8699
Benzene	0.17	<0.020	<0.020	<0.020	<0.040	<0.040
Ethylbenzene	1.6	<0.020	<0.020	<0.020	<0.040	<0.040
Toluene	6	<0.020	0.025	0.028	<0.040	<0.040
Xylenes	25	<0.040	<0.040	<0.040	<0.080	<0.080
PHC F ₁ (>C ₆ -C ₁₀)	65	<10	<10	<10	<20	<20
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<10	<10	<10	<20	<10
PHC F ₃ (>C ₁₆ -C ₃₄)	1300	<50	<50	<50	<100	860
PHC F ₄ (>C ₃₄ -C ₅₀)	5600	<50	<50	<50	<100	280

Parameter	MECP Table 2 ¹	S2	S3	DUP	S4	S5
Sample Date (m/d/y)	Residential	8/30/2021	8/30/2021	Duplicate of	8/30/2021	8/30/2021
Sample Depth (mbsg)	Residential	0.15 - 0.45	0.15 - 0.40	S3	0.15 - 0.40	0.10 - 0.20
Laboratory ID		QNG059	QNG060	QNG063	QNG061	QNG062
Date of Analysis		'8/30/2021	'8/30/2021	'8/30/2021	'8/30/2021	'8/30/2021
Certificate of Analysis		C1O8699	C1O8699	C1O8699	C1O8699	C1O8699
Benzene	0.17	<0.020	<0.040	<0.020	<0.020	<0.020
Ethylbenzene	1.6	<0.020	<0.040	<0.020	<0.020	<0.020
Toluene	6	<0.020	<0.040	0.021	0.033	<0.020
Xylenes	25	<0.040	<0.080	<0.040	<0.040	<0.040
PHC F ₁ (>C ₆ -C ₁₀)	65	<10	<20	<10	<10	<10
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<10	<10	<10	<10	<10
PHC F ₃ (>C ₁₆ -C ₃₄)	1300	53	130	110	54	170
PHC F ₄ (>C ₃₄ -C ₅₀)	5600	53	2800	1800	56	62

NOTES:

1 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, fine and medium grained soil.

Shaded Concentration exceeds MECP Table 2 residential soil quality standard.

TABLE 2 SOIL ANALYTICAL RESULTS (μg/g) METALS 1208 Old Montreal Road, Ottawa

Parameter	MECP Table 2 ¹	S1	S2	S3	DUP	S4	S5
Sample Date (m/d/y)	Residential	8/30/2021	8/30/2021	8/30/2021	Duplicate of	8/30/2021	8/30/2021
Sample Depth (mbgs)	Residentia	0.15 - 0.45	0.15 - 0.45	0.15 - 0.40	S3	0.15 - 0.40	0.10 - 0.20
Laboratory ID		QNG058	QNG059	QNG060	QNG063	QNG061	QNG062
Date of Analysis		'8/30/2021	'8/30/2021	'8/30/2021	'8/30/2021	'8/30/2021	'8/30/2021
Certificate of Analysis		C1O8699	C1O8699	C1O8699	C1O8699	C1O8699	C1O8699
Antimony	7.5	<0.20	<0.20	0.23	<0.20	<0.20	<0.20
Arsenic	18	1.8	1.6	3.3	2.5	1.6	1.5
Barium	390	190	210	170	150	120	120
Beryllium	4	0.64	0.70	0.27	0.25	0.40	0.28
Boron	120	5.9	5.4	6.9	6.4	<5.0	5.1
Cadmium	1.2	0.37	0.18	0.17	0.13	0.14	0.18
Chromium	160	84	96	14	13	37	20
Cobalt	22	16	18	5.0	4.3	8.4	4.7
Copper	140	63	35	12	9.1	22	11
Lead	120	28	16	21	16	21	33
Molybdenum	6.9	<0.50	<0.50	0.99	0.88	0.76	<0.50
Nickel	100	46	50	12	11	22	13
Selenium	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	20	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.27	0.32	0.21	0.15	0.20	0.12
Uranium	23	0.83	0.94	0.50	0.46	0.58	0.40
Vanadium	86	68	78	17	15	37	17
Zinc	340	150	110	51	44	67	45

NOTES:

1

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, fine and medium grained soil.

Shaded/ Bolc Concentration exceeds MECP Table 2 soil quality standard.

mbsg Metres below surface grade

Table 3 - Maximum Concentrations in Soil1208 Old Montreal Road, Ottawa

1208 Old Montreal Road, Ott					Page 1 of
Parameter	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 2
Petroleum Hydrocarbons					1
F1 PHC (C6 - C10) - BTEX	BH7A-SS3	2.3 - 2.9	19-Aug-16	76	65
F2 PHC (C10-C16)	BH7C-SS3	2.3 - 2.9	19-Aug-16	47	150
F3 PHC (C16-C34)	S1	0.15 - 0.45	30-Aug-21	860	1300
F4 PHC (C34-C50)	S3	0.15 - 0.40	30-Aug-21	2800	5600
Benzene	BH7-SS5	4.6 - 5.2	19-Aug-16	6.74	0.17
Ethylbenzene	BH7A-SS3	2.3 - 2.9	19-Aug-16	9.15	1.6
Toluene	BH7A-SS3	2.3 - 2.9	19-Aug-16	18.30	6
Xylenes, total	BH7A-SS3	2.3 - 2.9	19-Aug-16	33.10	25
norganic Parameters					-
Antimony	S3	0.15 - 0.40	30-Aug-21	0.23	7.5
Arsenic	S3	0.15 - 0.40	30-Aug-21	3.3	18
Barium	S2	0.15 - 0.45	30-Aug-21	210	390
Beryllium	S2	0.0 - 0.6	30-Aug-21	0.70	4
Boron	S3	0.15 - 0.40	30-Aug-21	6.9	120
Cadmium	S1	0.15 - 0.40	30-Aug-21	0.37	1.2
Chromium	S2	0.15 - 0.45	30-Aug-21	96.0	160
Cobalt	S2	0.15 - 0.45	30-Aug-21	18.0	22
Copper	S1	0.15 - 0.40	30-Aug-21	63.0	140
_ead	S1	0.15 - 0.40	30-Aug-21	28.0	120
Volybdenum	S3	0.15 - 0.40	30-Aug-21	0.99	6.9
Nickel	S2	0.15 - 0.45	30-Aug-21	50.0	100
Selenium	All Locations	NA	30-Aug-21	<0.50	2.4
Silver	S1	0.15 - 0.40	30-Aug-21	0.2	20
Thallium	S2	0.15 - 0.45	30-Aug-21	0.32	1
Jranium	S2	0.15 - 0.45	30-Aug-21	0.9	23
/anadium	S2	0.15 - 0.45	30-Aug-21	78.0	86
Zinc	S1	0.15 - 0.40	30-Aug-21	150.0	340

NOTES:

Analysis by Maxxam Analytics

All results are in ppm on dry weight basis

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

Results were compared to Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non- Potable Ground Water Condition for Residential/Parkland/Institutional property use and coarse textured soils.

TABLE 4 GROUNDWATER ANALYTICAL RESULTS (μg/L)PHC and BTEX1208 Old Montreal Road, Ottawa

Parameter	MECP	BH7	BH7B	BH7B	BH8	BH8	BH9	BH9	BH10
Sample Date (m/d/y)	Table 2 ¹	8/18/2016	7/9/2016	9/10/2021	7/9/2016	9/9/2021	7/9/2016	9/10/2021	7/9/2016
Laboratory ID		1634298-01	1637215-01	QPP891	1637215-02	QPW362	1637215-03	QPP892	1637215-04
Date of Analysis		'8/17/2016	'9/11/2016	'9/14/2021	'9/11/2016	'9/15/2021	'9/11/2016	'9/14/2021	'9/11/2016
Certificate of Analysis		1634298	1637215	C1Q0105	1637215	C1Q1472	1637215	C1Q0105	1637215
Benzene	5	18600	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5
Ethylbenzene	2.4	1000	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5
Toluene	24	16800	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5
Xylenes	300	9900	<0.5	<0.4	<0.5	<0.4	<0.5	<0.4	<0.5
PHC F_1 (C_6 - C_{10})	750	<25	<25	<25	<25	<25	<25	<25	<25
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<100	<100	<100	<100	<100	<100	<100	<100
PHC F ₃ (>C ₁₆ -C ₃₄)	500	<100	<100	<200	<100	250	<100	<200	<100
PHC F ₄ (>C ₃₄ -C ₅₀)	500	<100	<100	<200	<100	<200	<100	<200	<100

NOTES:

1 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, fine and medium grained soil.

Shaded Concentration exceeds MECP Table 2 residential soil quality standard.

TABLE 4 GROUNDWATER ANALYTICAL RESULTS (μg/L)PHC and BTEX1208 Old Montreal Road, Ottawa

Parameter	MECP	BH11	BH12	BH13	MW21-1	MW-2	Duplicate #1	MW-3	MW-3	MW-4
Sample Date (m/d/y)	Table 2 ¹	7/9/2016	7/9/2016	7/9/2016	9/9/2021	9/9/2021	Duplicate of MW-2	9/9/2021	9/21/2021	9/9/2021
Laboratory ID		1637215-05	1637215-06	1637215-07	QPW361	QPW360	QPW363	QPW358	QSA941	QPW359
Date of Analysis		'9/11/2016	'9/11/2016	'9/11/2016	'9/15/2021	'9/15/2021	'9/15/2021	'9/15/2021	'9/22/2021	'9/15/2021
Certificate of Analysis		1637215	1637215	1637215	C1Q1472	C1Q1472	C1Q1472	C1Q1472	C1R1813	C1Q1472
Benzene	5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	2.4	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	24	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylenes	300	<0.5	<0.5	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
PHC F_1 (C_6 - C_{10})	750	<25	<25	<25	<25	<25	<25	<25	<25	<25
PHC F ₂ (>C ₁₀ -C ₁₆)	150	<100	<100	<100	<100	<100	<100	220	<100	<100
PHC F ₃ (>C ₁₆ -C ₃₄)	500	<100	<100	<100	250	<200	<200	220	<200	<200
PHC F ₄ (>C ₃₄ -C ₅₀)	500	<100	<100	<100	<200	<200	<200	<200	<200	<200

NOTES:

1 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, fine and medium grained soil.

Shaded Concentration exceeds MECP Table 2 residential soil quality standard.

Table 5 - Maximum Concentrations in Groundwater 1208 Old Montreal Road, Ottawa

					Page 1 of 1
Parameter	Sample Location	Screen Interval (mbgs)	Sampling Date	Maximum Concentration	MECP Table 2
Petroleum Hydrocarbons				8	
F1 PHC (C6 - C10) - BTEX	All Locations	NA	9-Jul-16	<25	750
F2 PHC (C10-C16)	All Locations	NA	9-Jul-16	<100	150
F3 PHC (C16-C34)	BH8	3.8 - 6.8	9-Jul-16	250	500
F4 PHC (C34-C50)	All Locations	NA	9-Jul-16	<200	500
Benzene	BH7	2.5 - 5.5	9-Jul-16	18600	5
Ethylbenzene	BH7	2.5 - 5.5	9-Jul-16	1000	2.4
Toluene	BH7	2.5 - 5.5	9-Jul-16	16800	24
Xylenes, total	BH7	2.5 - 5.5	9-Jul-16	9900	300

NOTES:

Analysis by Maxxam Analytics

All results are in ppb

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. Results were compared to Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for all types of property use and coarse textured soils.

TABLE 6 RELATIVE PERCENT DIFFERENCES PETROLEUM HYDROCARBONS - SOIL 1208 Old Montreal Road, Ottawa

Parameter	Units	RDL	S3	DUP	RPD (%)	Alert Limit (%)
			30/8/2021	30/8/2021		
Petroleum Hydrocarbons						
PHC F ₁ (>C ₆ -C10)	ug/g	10	<20	<10	nc	60
PHC F ₂ (>C ₁₀ -C ₁₆)	ug/g	10	<10	<10	nc	60
PHC F ₃ (>C ₁₆ -C ₃₄)	ug/g	50	130	110	nc	60
PHC F ₄ (>C ₃₄ -C ₅₀)	ug/g	50	2800	1800	43	60
Volatiles						
Benzene	ug/g	0.020	<0.040	<0.020	nc	100
Ethylbenzene	ug/g	0.020	<0.040	<0.020	nc	100
Toluene	ug/g	0.020	<0.040	0.021	nc	100
Total Xylenes	ug/g	0.020	<0.080	<0.040	nc	100

NOTES:

Analysis by Maxxam Analytics/BVL

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

Alert Limit- since laboratory duplicate measures laboratory precision while field duplicates measures laboratory and field precision, the alert

limits for field duplicates are two times the laboratory $\ensuremath{\mathsf{RPD}}$.

TABLE 7 RELATIVE PERCENT DIFFERENCES METALS - SOIL 1208 Old Montreal Road, Ottawa

Parameter	Units	RDL	S3	DUP	RPD (%)	Alert Limit (%)	
			30/8/2021	30/8/2021			
Inorganic Parameters							
Antimony	ug/g	0.20	0.23	<0.20	nc	60	
Arsenic	ug/g	1.0	3.3	2.5	nc	60	
Barium	ug/g	0.50	170	150	13	60	
Beryllium	ug/g	0.20	0.27	0.25	nc	60	
Boron	ug/g	5.0	6.9	6.4	nc	60	
Cadmium	ug/g	0.10	0.17	0.13	nc	60	
Chromium	ug/g	1.0	14	13	7	60	
Cobalt	ug/g	0.10	5.0	4.3	15	60	
Copper	ug/g	0.50	12	9.1	27	60	
Lead	ug/g	1.0	21	16	27	60	
Molybdenum	ug/g	0.50	0.99	0.88	nc	60	
Nickel	ug/g	0.50	12	11	9	60	
Selenium	ug/g	0.20	<0.50	<0.50	nc	60	
Silver	ug/g	0.50	<0.20	<0.20	nc	60	
Thallium	ug/g	0.050	0.21	0.15	nc	60	
Uranium	ug/g	0.050	0.50	0.46	8	60	
Vanadium	ug/g	5.0	17	15	nc	60	
Zinc	ug/g	5.0	51	44	15	60	

NOTES:

Analysis by Maxxam Analytics/BVL

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

Alert Limit- since laboratory duplicate measures laboratory precision while field duplicates measures laboratory and field precision, the alert limits for field duplicates are two times the laboratory RPD .

TABLE 8 RELATIVE PERCENT DIFFERENCES PETROLEUM HYDROCARBONS - GROUNDWATER 1208 Old Montreal Road, Ottawa

Parameter	Units	RDL	MW-2	Duplicate #1	RPD (%)	Alert Limit (%)
			09/09/21	09/09/21		. ,
Petroleum Hydrocarbons						
PHC F ₁ (>C ₆ -C10)	ug/L	25	<25	<25	nc	60
PHC F ₂ (>C ₁₀ -C ₁₆)	ug/L	100	<100	<100	nc	60
PHC F ₃ (>C ₁₆ -C ₃₄)	ug/L	100	<200	<200	nc	60
PHC F ₄ (>C ₃₄ -C ₅₀)	ug/L	100	<200	<200	nc	60
Volatiles			_			
Benzene	ug/L	0.20	<0.2	<0.2	nc	60
Ethylbenzene	ug/L	0.20	<0.2	<0.2	nc	60
Toluene	ug/L	0.20	<0.2	<0.2	nc	60
Total Xylenes	ug/L	0.20	<0.4	<0.4	nc	60

NOTES:

Analysis by Maxxam Analytics/BVL

<RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

Alert Limit- since laboratory duplicate measures laboratory precision while field duplicates measures laboratory and field precision, the alert limits for field duplicates are two times the laboratory RPD .

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

Appendix F: Laboratory Certificates of Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Mark Devlin

Client PO: Project: OTT00234493-A Custody: 32454

Report Date: 22-Aug-2016 Order Date: 16-Aug-2016

Order #: 1634172

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** BH7-SS4 1634172-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1634172 Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Project Description: OTT00234493-A

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	18-Aug-16 20-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	18-Aug-16 20-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Aug-16 21-Aug-16
Solids, %	Gravimetric, calculation	18-Aug-16 18-Aug-16

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Project Description: OTT00234493-A

	_		<u> </u>		
	Client ID:	BH7-SS4	-	-	-
	Sample Date:	16-Aug-16	-	-	-
	Sample ID:	1634172-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	67.4	-	-	-
Volatiles					
Benzene	0.02 ug/g dry	6.67	-	-	-
Ethylbenzene	0.05 ug/g dry	3.25	-	-	-
Toluene	0.05 ug/g dry	14.7	-	-	-
m,p-Xylenes	0.05 ug/g dry	4.72	-	-	-
o-Xylene	0.05 ug/g dry	3.02	-	-	-
Xylenes, total	0.05 ug/g dry	7.74	-	-	-
Toluene-d8	Surrogate	101%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	27	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	26	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Order #: 1634172

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Project Description: OTT00234493-A

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.25		ug/g		102	50-140			

Order #: 1634172

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Project Description: OTT00234493-A

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Physical Characteristics									
% Solids	59.9	0.1	% by Wt.	59.7			0.4	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	2.22		ug∕g dry		103	50-140			

Order #: 1634172

Report Date: 22-Aug-2016

Order Date: 16-Aug-2016

Project Description: OTT00234493-A

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	192	7	ug/g		96.0	80-120			
F2 PHCs (C10-C16)	75	4	ug/g		83.8	80-120			
F3 PHCs (C16-C34)	163	8	ug/g		87.6	80-120			
F4 PHCs (C34-C50)	109	6	ug/g		87.9	80-120			
Volatiles									
Benzene	4.22	0.02	ug/g		106	60-130			
Ethylbenzene	4.78	0.05	ug/g		120	60-130			
Toluene	4.23	0.05	ug/g		106	60-130			
m,p-Xylenes	9.04	0.05	ug/g		113	60-130			
o-Xylene	4.60	0.05	ug/g		115	60-130			
Surrogate: Toluene-d8	2.47		ug/g		77.2	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

$\langle $	OPARACEL	1.1	RUST ESPC ELIA	DNSI	VE.			Ottawa, Ont p: 1-800-749 e: paracel@	. Laurent Blvd. ario K1G 4J8)-1947 paracellabs.com			Custod se Only) 32454	
								www.parace	llabs.com		Page]	_ of _/	
Client Nan	ne exp services Inc.	1		Project	Reference:	T-062	344	193-A			Turnaro	und Tim	e:
Contact N	ne: exp Services Inc. anne: Mark Devlih Harryn Gleney 00 - 2650 Queens Mer	Mark	hela	Quote #	r.	nu ligung tao tain gana amina hite				D 1 Day	r	□ 3	Day
Address:	00-2650 Queens Moi	~ DI	-	PÓ #									2
0	Tany			Email /	Address:					- 🗆 2 Day		A R	egular
Felephone	(0)/ (4) 5319	We can also also								Date Re			
Criter	ta: 🖾 O. Reg. 153/04 (As Amended) Table 2 🛛	RSC Filing	0.1	leg. 551	3/00 E PWQO	D CCME D S	UB (Stor	rm) 🖾 SUB (Sanitary) Munic	sipality:	0	Other:	
vlatrix Ty	pe: \$ (Soil/Sed.) GW (Ground Water) \$W (Surface Water)	SS (Storm/Sa	initary Se	wer) P (Paint) A (Air) O (C)ther)	(Req	uired Ana	yses		
Paracel	Order Number:			STS			47						
	1634172		Air Volume	of Containers	Sample	e Taken	CE	五					8
	Sample ID/Location Name	Matrix	ur V	ofC	Date	Time	PHC	50					
1		5		# 2			X			19	omit	1.2	
2	BH7-554			8	Aug 16, 2016	10,000m				- = 0		TVIN	
3			-				-						
4													
5													
6													
7													
8				1								8.	
9				1									
10													
Commei	its:			1	1		1	<u>. </u>			Metho	l of Delivery	
											1	Dalk-	in .
///,	ed By (Sign):	Receive	d by Driv	ver/Depo	nt;	Receiv	ed at Lab		layect	Verified B	5		
- Armfill	ed By (Print): Mark Deulin	Date/Ti	me:			Date/T		ug 16%	64.50	Date/Time	6/08	16	17:0
Date/Time	Aug 16, 2016/4:55p	Temper	ature:		°C	Tempe	rature; 1	3.6 °C		pH Verifi	d ['\$ By:]	~	

Chain of Custody (Blank) - Rev 0.4 Feb 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Taryn Glancy

Client PO: Project: OTT000234493 Custody: 32459

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Order #: 1634297

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1634297-01 BH7 SS5

Approved By:

ZMYC

Tim McCooeye Senior Advisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1634297 Report Date: 22-Aug-2016

Order Date: 18-Aug-2016

Project Description: OTT000234493

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	18-Aug-16 18-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	18-Aug-16 18-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Aug-16 21-Aug-16
Solids, %	Gravimetric, calculation	21-Aug-16 21-Aug-16

Report Date: 22-Aug-2016

Order Date: 18-Aug-2016

Project Description: OTT000234493

	Client ID:	BH7 SS5	-	-	-
	Sample Date:	16-Aug-16	-	-	-
	Sample ID:	1634297-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	63.7	-	-	-
Volatiles					-
Benzene	0.02 ug/g dry	6.74	-	-	-
Ethylbenzene	0.05 ug/g dry	1.12	-	-	-
Toluene	0.05 ug/g dry	0.30	-	-	-
m,p-Xylenes	0.05 ug/g dry	1.03	-	-	-
o-Xylene	0.05 ug/g dry	0.60	-	-	-
Xylenes, total	0.05 ug/g dry	1.63	-	-	-
Toluene-d8	Surrogate	106%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	8	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Order #: 1634297

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.25		ug/g		102	50-140			

Order #: 1634297

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Physical Characteristics % Solids	84.9	0.1	% by Wt.	85.3			0.5	25	

Order #: 1634297

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	192	7	ug/g		96.0	80-120			
F2 PHCs (C10-C16)	75	4	ug/g		83.8	80-120			
F3 PHCs (C16-C34)	163	8	ug/g		87.6	80-120			
F4 PHCs (C34-C50)	109	6	ug/g		87.9	80-120			
Volatiles									
Benzene	4.22	0.02	ug/g		106	60-130			
Ethylbenzene	4.78	0.05	ug/g		120	60-130			
Toluene	4.23	0.05	ug/g		106	60-130			
m,p-Xylenes	9.04	0.05	ug/g		113	60-130			
o-Xylene	4.60	0.05	ug/g		115	60-130			
Surrogate: Toluene-d8	2.47		ug/g		77.2	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

ζ	BARACEL		ESPO	ED. DNSI BLE	VE.			Ottawa, p: 1-800 e: parac	fice 9 St. Laurent Blvc Ontario K1G 4J8 -749-1947 el@paracellabs.com	3		Ng	(Lab Us			
			un meny				-			_	_		C.			
Client Nam			,	10115043	Reference:	2344	93					Tur	rnarou	nd Tir	ne:	
Contact Na	me: Taryn Glancy/ Mark M	Call	là -	Quote #							🗆 1 D	ay			B Day	
	me: Taryn Glancy / Mark M 30 - 2650 Queensview	1		PO # Email A	Address:						□ 2 D	*	ed:_/		Regula A	
Telephone:	() / mar () V / V							3 m (1)	10.00 1.00 1.00	systemet successed	Constant and an opposite of the	cequin)ther:	7	22
Criter	ia: 🖬 O. Reg. 153/04 (As Amended) Table 📿 🗆 R	SC Filing	0,1	Reg. 558	8/00 □ PWQO	I CCME II S	SUB (Stor	m) U S					LI (Julet.		
Matrix Tyj	pe: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	iS (Storm/Sa	mitary Se	wer) P (Paint) A (Air) O (O	ther)			1	Requi	ired An	alyses				
Paracel	Order Number: 1634297 - Soil. 1634298 - Water.	Matrix	Air Volume	of Containers	Sample	Taken Time	PHC->F4	BTEX								
	Sample ID/Location Name	S	<	*	1	1 11110	+	V					-12	mlt	1 Via	
1	6H7 55.5 AU2 CCI	5			Avglo			X		1	1/01	11	104		1, 10	
2	BH7 556	-			10		t			(/	1000	11				
3	NW 7	GW			rg 10		X					1	1			-
4			+		-								-			
5		-			-						-					
6					-		1						1		-	
7								1								
8					8											
9			-			1							1	1	-	-
10											1		Metho	l of Deliv	ery:	
Commen	nts:												101	100	Ki	\sim
Relinquisl	hed By (81gn):	Receiv	ed by Dr	iver/Dep	ot:		ved and ab	207	R	8	and presented and the	Rache	and a select set of the selection of the	ibic	ct	
Relinquist Date/Time	hed By (Print): :: / N C 10/15 / 10.15 / MM	Date/T Tempe			°c	Date/ Temp	Time:	1,19	10:15	à		assessment of the second	a 18 By N	Inforded and come	2.(<u>л</u>

Chain of Custody (Blank) - Rev 0.4 Feb 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Mark McCalla

Client PO: Project: OTT000234493A Custody: 109572

Report Date: 22-Aug-2016 Order Date: 19-Aug-2016

Order #: 1634410

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1634410-01 BH7A 1634410-02 BH7B BH7C 1634410-03

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1634410 Report Date: 22-Aug-2016

Order Date: 19-Aug-2016

Project Description: OTT000234493A

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	21-Aug-16 22-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	21-Aug-16 22-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	20-Aug-16 21-Aug-16
Solids, %	Gravimetric, calculation	21-Aug-16 21-Aug-16

Order #: 1634410

Report Date: 22-Aug-2016 Order Date: 19-Aug-2016

Project Description: OTT000234493A

	_		8.155	i	
	Client ID:	BH7A	BH7B	BH7C	-
	Sample Date:	19-Aug-16	19-Aug-16	19-Aug-16	-
	Sample ID:	1634410-01	1634410-02	1634410-03	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	75.1	75.3	72.2	-
Volatiles					
Benzene	0.02 ug/g dry	2.62	<0.02	0.40	-
Ethylbenzene	0.05 ug/g dry	9.15	<0.05	1.25	-
Toluene	0.05 ug/g dry	18.5	<0.05	0.67	-
m,p-Xylenes	0.05 ug/g dry	22.3	<0.05	2.07	-
o-Xylene	0.05 ug/g dry	10.8	<0.05	0.64	-
Xylenes, total	0.05 ug/g dry	33.1	<0.05	2.71	-
Toluene-d8	Surrogate	100%	97.4%	96.4%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	76	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	13	<4	47	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-

Order #: 1634410

Report Date: 22-Aug-2016 Order Date: 19-Aug-2016

Project Description: OTT000234493A

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.25		ug/g		102	50-140			

Order #: 1634410

Report Date: 22-Aug-2016

Order Date: 19-Aug-2016

Project Description: OTT000234493A

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	96	7	ug/g dry	76			23.8	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	105	8	ug/g dry	75			32.9	30	QR-04
F4 PHCs (C34-C50)	23	6	ug/g dry	21			8.9	30	
Physical Characteristics									
% Šolids	84.9	0.1	% by Wt.	85.3			0.5	25	
Volatiles									
Benzene	2.59	0.02	ug/g dry	2.62			1.0	50	
Ethylbenzene	9.78	0.05	ug/g dry	9.15			6.7	50	
Toluene	17.6	0.05	ug/g dry	18.5			4.9	50	
m,p-Xylenes	23.3	0.05	ug/g dry	22.3			4.4	50	
o-Xylene	11.2	0.05	ug/g dry	10.8			3.8	50	
Surrogate: Toluene-d8	1.43		ug∕g dry		94.7	50-140			

Report Date: 22-Aug-2016 Order Date: 19-Aug-2016

Project Description: OTT000234493A

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	192	7	ug/g		96.0	80-120			
F2 PHCs (C10-C16)	100	4	ug/g		111	80-120			
F3 PHCs (C16-C34)	206	8	ug/g		111	80-120			
F4 PHCs (C34-C50)	138	6	ug/g		111	80-120			
Volatiles									
Benzene	4.22	0.02	ug/g		106	60-130			
Ethylbenzene	4.78	0.05	ug/g		120	60-130			
Toluene	4.23	0.05	ug/g		106	60-130			
m,p-Xylenes	9.04	0.05	ug/g		113	60-130			
o-Xylene	4.60	0.05	ug/g		115	60-130			
Surrogate: Toluene-d8	2.47		ug/g		77.2	50-140			

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

COPARACEL	BE	USTI SPO LIAB		Ε.					30 Oti p:	awa, C 1-800-1	St. Lau Intario 749-194	irent Blvd. K1G 4J8 I7 cellabs.com		(L	ab Use	Custody Dinly) 9572	
			1		7			R.		- V	7	1.7	0	Pag	ge 🗸 (of	
Client Name:				Project Reference	e: 23	349	193	3-	A	Į.		1		Turn	aroun	d Time	e:
Contact Name: Mark Mcalla Tara Address: 100 - 2650 Queensvie	nG	ang	k	Quote #									X 1 D	ay		🗆 3 I	Day
Address: 100-2650 Queensvie	wa			PO #												10.000 - 1 0.000	
Telephone:	10	TTal	WG	Email Address:								ana ana ama		100		□ Re	,
	7 P/12 - P	10.8	550-00		ACHE MOI	10 (0)		-	000.00				Date			Mon	agy
Criteria: 10. Reg. 153/04 (As Amended) Table 2 IRS)B (Sto	rm)	LI 81	OR (2	anıtar	/) Mur	icipality:			Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	SS (Storm/	Sanitary S	Sewer) P	(Paint) A (Air) O	(Other)	Red	quire	d A	naly	ies							
Paracel Order Number:			ers			TEX											
16341410		ame	of Containers	Sampl	e Taken	PHCs F1-F4+BTEX			ICP								
	Matrix	Air Volume	Coi			s F1-	,s	s	Metals by		B (HWS)						
Sample ID/Location Name	Mai	Air	# 01	Date	Time	PHC	VOCs	PAHS	Meta	Hg CrVI	B (H						
1 BH7A	5			Aug 19		+						1	1201	hit	1 vi] -	
2 BH7B						+								1			
3 BHAC	l			V		+								V			
4							-						н.				
5		- 1610															
6								_									
7							-										
8														- 6			
9																	
10																	
Comments:														Method	l of Deli	(etty:	n
Relinquished By (Sign):	Receive	d by Driv	ver/Depo		Repe Sl	ived at I	ab: Pok	2N		DO	RM.	AL	ied By: Rache		ibv	t	
Relinquished By (Print): Date/Time: AS 19/16 1:52/h	Date/Ti Temper		5/	a for the formation of the second	and VIII	Time: perature:	A(1) 14:		1,21	1	03		Time: Time:	440	1971 VA	61	1:00

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Taryn Glancy

Client PO: Project: OTT000234493 Custody: 32571

Report Date: 9-Sep-2016 Order Date: 2-Sep-2016

Order #: 1636372

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1636372-01	BH12 SS3
1636372-02	BH13 SS3
1636372-03	BH11 SS9
1636372-04	BH10 SS2
1636372-05	BH9 SS6
1636372-06	BH8 SS6

Approved By:

Much Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1636372 Report Date: 09-Sep-2016

Order Date: 2-Sep-2016

Project Description: OTT000234493

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	2-Sep-16 7-Sep-16
PHC F1	CWS Tier 1 - P&T GC-FID	2-Sep-16 7-Sep-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-Sep-16 7-Sep-16
Solids, %	Gravimetric, calculation	7-Sep-16 7-Sep-16

Order #: 1636372

Report Date: 09-Sep-2016 Order Date: 2-Sep-2016

Project Description: OTT000234493

	Client ID: Sample Date: Sample ID: MDL/Units	BH12 SS3 01-Sep-16 1636372-01 Soil	BH13 SS3 01-Sep-16 1636372-02 Soil	BH11 SS9 01-Sep-16 1636372-03 Soil	BH10 SS2 31-Aug-16 1636372-04 Soil
Physical Characteristics	_ I I		•		
% Solids	0.1 % by Wt.	64.0	91.1	62.5	67.5
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene-d8	Surrogate	105%	104%	105%	105%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
	Client ID: Sample Date: Sample ID: MDL/Units	BH9 SS6 31-Aug-16 1636372-05 Soil	BH8 SS6 31-Aug-16 1636372-06 Soil		-
Physical Characteristics					
% Solids	0.1 % by Wt.	66.1	66.3	-	-
Volatiles			1		1
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	105%	105%	-	-
Hydrocarbons					-
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	-

Order #: 1636372

Report Date: 09-Sep-2016

Order Date: 2-Sep-2016

Project Description: OTT000234493

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	8.54		ug/g		107	50-140			

Order #: 1636372

Report Date: 09-Sep-2016

Order Date: 2-Sep-2016

Project Description: OTT000234493

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Physical Characteristics									
% Solids	87.6	0.1	% by Wt.	85.5			2.5	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	3.89		ug∕g dry		108	50-140			

Order #: 1636372

Report Date: 09-Sep-2016

Order Date: 2-Sep-2016

Project Description: OTT000234493

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	189	7	ug/g		94.4	80-120			
F2 PHCs (C10-C16)	94	4	ug/g		104	80-120			
F3 PHCs (C16-C34)	220	8	ug/g		118	80-120			
F4 PHCs (C34-C50)	148	6	ug/g		119	80-120			
Volatiles									
Benzene	3.39	0.02	ug/g		84.9	60-130			
Ethylbenzene	3.37	0.05	ug/g		84.2	60-130			
Toluene	3.85	0.05	ug/g		96.3	60-130			
m,p-Xylenes	7.08	0.05	ug/g		88.5	60-130			
o-Xylene	3.29	0.05	ug/g		82.2	60-130			
Surrogate: Toluene-d8	7.66		ug/g		95.7	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL LABORATORIES LTD.			ED . DNSI BLE				Ottawa, On p: 1-800-74 e: paracel @	t. Laurent Blvd. tario K1G 4J8 9-1947 ≬paracellabs.com			ib Use Only) 3257	_
							www.parac	ellabs.com		Page	of	<u>)</u>
Client Name: exo /			Project I	Reference:	234	493				Turna	round Ti	me:
Client Name: Exp Contact Name: Targn Glang Mar Address: 100-2650 Queens view	KM (Calle	Quote #							ay		3 Day
Address: IMP-2650 Quaractice	innerin in adaption of a second	Ennisteren en Ann	PO #								ch.	Der lan
100 001 (0001) 01000			Email A	ddress:					- 0 2 D	đ.		Regular
Telephone: 6/3 - 688 /899.										Required:		
Criteria: 10, Reg. 153/04 (As Amended) Table 2 🗆 R	SC Filing	0,1	Reg. 558	/00 PWQ0	CCME C	SUB (Stor	m) 🗆 SUB	(Sanitary) Muni	cipality:		Other:	
Matrix Type: S.(Soil/Sed.) GW (Ground Water) SW (Surface Water) S	iS (Storm/Sa	mitary Se	wer) P (I	Paint) A (Air) O (O)ther)			Rec	uired Ar	alyses		
Paracel Order Number: 1636372	nix	Air Volume	of Containers	Sample	e Taken	PHC FI-FY	TEA					
Sample ID/Location Name	Matrix	Air	0 #	Date	Time		Ø		_			
1 BH12 SS3	5		2	Seel		4	X	120	- vial			
2 BH13553												
3 BH11559												
4 BH10 552				Avg31								
5 BHI9 556												
6 BH8556			V	\downarrow		V	V	1	/			
7											8	
9												
10												
Comments:						0	1944	-	1		ethod of Deliv	ery: Kin
Relinquished By (Sign): Relinquished By (Print):	Receive • Date/Ti		vet/Depo	it.		Time:	et.	The	Verifie Date/T	Rach	el si	1bject
Date/Time:	Temper			°C			0.4 %	9:180		ified [X] By	N/4	

Chain of Custody (Blank) - Rev 0.4 Feb 2016

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159763

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/10 Report #: R6805021 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4382

Received: 2021/09/03, 11:53

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	1	N/A	2021/09/10	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2021/09/08	2021/09/09	CAM SOP-00316	CCME CWS m
Moisture (1)	1	N/A	2021/09/07	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159763

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/10 Report #: R6805021 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1P4382 Received: 2021/09/03, 11:53

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QOJ802			QOJ802		
Sampling Date		2021/09/03			2021/09/03		
		10:00			10:00		
COC Number		159763			159763		
	UNITS	MW-1-SS7	RDL	QC Batch	MW-1-SS7 Lab-Dup	RDL	QC Batch
Inorganics							
Moisture	%	37	1.0	7562106	38	1.0	7562106
BTEX & F1 Hydrocarbons							
Benzene	ug/g	<0.020	0.020	7565706			
Toluene	ug/g	<0.020	0.020	7565706			
Ethylbenzene	ug/g	<0.020	0.020	7565706			
o-Xylene	ug/g	<0.020	0.020	7565706			
p+m-Xylene	ug/g	<0.040	0.040	7565706			
Total Xylenes	ug/g	<0.040	0.040	7565706			
F1 (C6-C10)	ug/g	<10	10	7565706			
F1 (C6-C10) - BTEX	ug/g	<10	10	7565706			
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7565176			
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	7565176			
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	7565176			
Reached Baseline at C50	ug/g	Yes		7565176			
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	102		7565706			
4-Bromofluorobenzene	%	84		7565706			
D10-o-Xylene	%	104		7565706			
D4-1,2-Dichloroethane	%	104		7565706			
o-Terphenyl	%	99		7565176			
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						
Lab-Dup = Laboratory Initiate	d Duplic	ate					

TEST SUMMARY

BV Labs ID: QOJ802 Sample ID: MW-1-SS7 Matrix: Soil					Collected: 2021/09/03 Shipped: Received: 2021/09/03
	Instrumentation	Datah	Future at a d	Data Analyzad	
Test Description		Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7565706	N/A	2021/09/10	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7565176	2021/09/08	2021/09/09	Ksenia Trofimova
Moisture	BAL	7562106	N/A	2021/09/07	Prgya Panchal
BV Labs ID: QOJ802 Dup Sample ID: MW-1-SS7 Matrix: Soil					Collected: 2021/09/03 Shipped: Received: 2021/09/03
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7562106	N/A	2021/09/07	Prgya Panchal

GENERAL COMMENTS

Ead	h temperature is the	average of up to t	three cooler temperatures taken at receipt
	Package 1	11.0°C	7
	-		—
Res	sults relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7565176	o-Terphenyl	2021/09/09	92	60 - 130	100	60 - 130	103	%		
7565706	1,4-Difluorobenzene	2021/09/10	98	60 - 140	98	60 - 140	101	%		
7565706	4-Bromofluorobenzene	2021/09/10	100	60 - 140	100	60 - 140	90	%		
7565706	D10-o-Xylene	2021/09/10	84	60 - 140	86	60 - 140	85	%		
7565706	D4-1,2-Dichloroethane	2021/09/10	102	60 - 140	96	60 - 140	109	%		
7562106	Moisture	2021/09/07							3.0	20
7565176	F2 (C10-C16 Hydrocarbons)	2021/09/09	106	50 - 130	106	80 - 120	<10	ug/g	NC	30
7565176	F3 (C16-C34 Hydrocarbons)	2021/09/09	104	50 - 130	103	80 - 120	<50	ug/g	NC	30
7565176	F4 (C34-C50 Hydrocarbons)	2021/09/09	103	50 - 130	102	80 - 120	<50	ug/g	NC	30
7565706	Benzene	2021/09/10	102	50 - 140	102	50 - 140	<0.020	ug/g	NC	50
7565706	Ethylbenzene	2021/09/10	110	50 - 140	113	50 - 140	<0.020	ug/g	NC	50
7565706	F1 (C6-C10) - BTEX	2021/09/10					<10	ug/g	NC	30
7565706	F1 (C6-C10)	2021/09/10	96	60 - 140	90	80 - 120	<10	ug/g	NC	30
7565706	o-Xylene	2021/09/10	107	50 - 140	109	50 - 140	<0.020	ug/g	NC	50
7565706	p+m-Xylene	2021/09/10	102	50 - 140	106	50 - 140	<0.040	ug/g	NC	50
7565706	Toluene	2021/09/10	95	50 - 140	97	50 - 140	<0.020	ug/g	NC	50
7565706	Total Xylenes	2021/09/10					<0.040	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

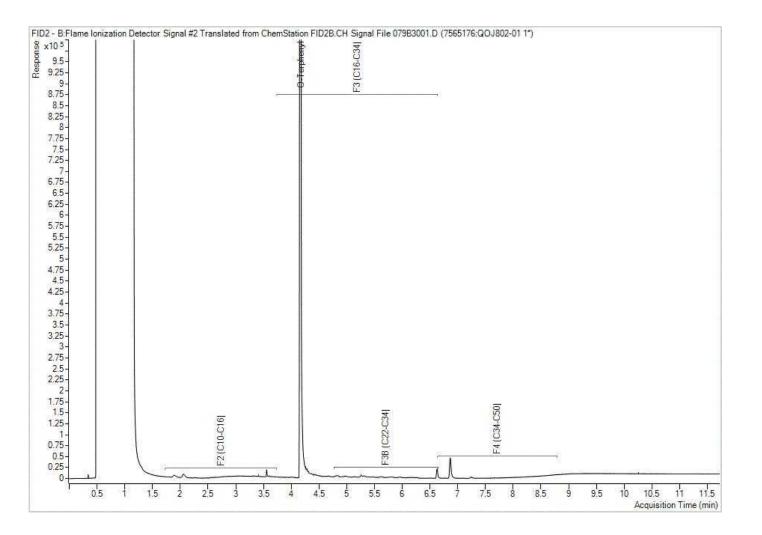
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:



Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		D-01191/6								CH			JSTOD			1:	59763 Page_	the second day of the
	Involce Information		Report Inform			water of the	20.000		_		Project	Information	tion (when	e applicab	le)		Turnaround Time	ALC: NOT THE REAL PROPERTY OF
mpany Name:	EXP Services Inc	Company N	and the second s	PSO		122.10	1.1100	1.000		Quotation I	ŧ						Regular TAT (5-7 days) N	lost analyses
ntact Name:	Accounts Payab			Jark					-	P.O. #/ AFE	128			5			PLEASE PROVIDE ADVANCE NO	TICE FOR RUSH PROJECT
dress:	100-2650 Que	Address:	14	0-2	265	0	Qu	ien	11.20	groject #:	Ø	17-	002	344	13-A	0	Rush TAT (Surcharge	
	Dr-Ottawa -688-1899 Fax unting ottaword e		E	r = 0	+10	w	9	1	15	Site Locatio	n:			10			1 Day 2 Days	3-4 Days
one: <u>613-</u>	-688-1899 Fax:	Phone: 6	513-680-	1299	Fax:					Site #:	<u>.</u>							
ail: <u>ACC</u>	unting, ottaword e	exp-(om Email: [nark.m	ccall	r(e) ex	·P-	com		Site Locatio							Date Required:	
MOE REGULATED D	RINKING WATER OR WATER INTENDED FOR HUMAN CO		and the second	ABORATORIE	5' DRINKI	NG WAT	ER CHAP	N OF CUSTO	ά¥	Sampled By			rem	1EC	las	P	tush Confirmation #:	
Table 1	Regulation 153	Other Regu		_	-	-	-		_	Analysis I	Requeste	d	_	T T	1.1	_	LABORATORY	USE ONLY
Table 2	Res/Park Med/Fine	in the second	Sewer Bylaw ewer Bylaw	allan di	-					1.00	1.	J-1					CUSTODY SEAL	OLER TEMPERATURE
Table 3	Agri/ Other	PWQO Region			Hg/ CrVI						-	-				Ē	Present Intact	
Table	ASE CIRCLE) Y / N	Other (Specify) REG 558 (MIN. 3 DAY 1	AT REQUIRED)	9	1			ß		(8 · 8)							401	0,11,12
Y WALLS TOS		REG 406 Table	- 6.09	ATTM	N.			ORGAN	S	Metals, HWS			1			2		
	Certificate of Analysis: Y / N IUST BE KEPT COOL (< 10 °C) FROM TIME O			ally st	(CIRCLE)	5.		S & INC	METAL	s Meta		11				ANALYZE		
	NOT BE REPT COOL (< 10 °C) FROM TIME O	F SAMPLING UNTIL DELIVERT	O BUREAU VERITAS	ATRIX	TERED	PHC F1	- P.4	METAL	CPMS	METALS I, ICPMS I	2.1					ION C	ODUNG MEDIA PRESENT: Y) N
	SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED M/	ATRIX	GIELD FILTERED	BTEX/ PH	PHCs E2 -	VOCS REG 153 METALS & INORGANICS	REG 153 ICPMS METALS	REG 153 A Hg, Cr VI,						HOLD- DO	COMME	NTS
M	1W-1-557	2021/09/03	1000 5	N	>	X	X		1									
				101		11												
								1										
								-	6.00							101	GN	Jun
				- 10			-	HE	CE	VED	NO		YA			sting	014	0
-							_	-	-									
								_				-						
				100					-							-		
,				-				-	-		_	-					03-50	p-21 11:53
									1.11			Deen-te					Katherine S	
	QUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM)		REC	EIVED		;nature/P	-			1	MM/DD)	110	E: (HH:MM	,	II II I II II I II II II II II II II II II II II I	
M	- Jeremy Ecked	2021/09/03	1100	1	in	-	J	in	4	by	202	10	903		1-5-	3	C1P43	82
				los	In	Cin	111	014	N.	1	200	1.01	.4	08:	UI		DSG EN	V-610

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: OTT-00234493-A0 Your C.O.C. #: 157144

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/07 Report #: R6799633 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1O8699

Received: 2021/08/30, 16:00

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	9	N/A	2021/09/02	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	9	2021/09/01	2021/09/02	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	2	2021/09/03	2021/09/03	CAM SOP-00316	CCME PHC-CWS m
Acid Extractable Metals by ICPMS (1)	6	2021/09/01	2021/09/03	CAM SOP-00447	EPA 6020B m
Moisture (1)	9	N/A	2021/08/31	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-A0 Your C.O.C. #: 157144

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/07 Report #: R6799633 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C108699 Received: 2021/08/30, 16:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID		QNG058	QNG059	QNG060	QNG061	QNG062	QNG063		
Sampling Date		2021/08/30	2021/08/30	2021/08/30	2021/08/30	2021/08/30	2021/08/30		
		14:00	14:05	14:10	14:15	14:20	14:10		
COC Number		157144	157144	157144	157144	157144	157144		
	UNITS	S1	S2	S3	S4	S5	DUP	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	0.23	<0.20	<0.20	<0.20	0.20	7553767
Acid Extractable Arsenic (As)	ug/g	1.8	1.6	3.3	1.6	1.5	2.5	1.0	7553767
Acid Extractable Barium (Ba)	ug/g	190	210	170	120	120	150	0.50	7553767
Acid Extractable Beryllium (Be)	ug/g	0.64	0.70	0.27	0.40	0.28	0.25	0.20	7553767
Acid Extractable Boron (B)	ug/g	5.9	5.4	6.9	<5.0	5.1	6.4	5.0	7553767
Acid Extractable Cadmium (Cd)	ug/g	0.37	0.18	0.17	0.14	0.18	0.13	0.10	7553767
Acid Extractable Chromium (Cr)	ug/g	84	96	14	37	20	13	1.0	7553767
Acid Extractable Cobalt (Co)	ug/g	16	18	5.0	8.4	4.7	4.3	0.10	7553767
Acid Extractable Copper (Cu)	ug/g	63	35	12	22	11	9.1	0.50	7553767
Acid Extractable Lead (Pb)	ug/g	28	16	21	21	33	16	1.0	7553767
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	0.99	0.76	<0.50	0.88	0.50	7553767
Acid Extractable Nickel (Ni)	ug/g	46	50	12	22	13	11	0.50	7553767
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7553767
Acid Extractable Silver (Ag)	ug/g	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7553767
Acid Extractable Thallium (Tl)	ug/g	0.27	0.32	0.21	0.20	0.12	0.15	0.050	7553767
Acid Extractable Uranium (U)	ug/g	0.83	0.94	0.50	0.58	0.40	0.46	0.050	7553767
Acid Extractable Vanadium (V)	ug/g	68	78	17	37	17	15	5.0	7553767
Acid Extractable Zinc (Zn)	ug/g	150	110	51	67	45	44	5.0	7553767
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QNG055			QNG055			QNG056	QNG057		
Sampling Date		2021/08/27 16:00			2021/08/27 16:00			2021/08/30 10:00	2021/08/30 12:00		
COC Number		157144			157144			157144	157144		
	UNITS	MW-4-SS8	RDL	QC Batch	MW-4-SS8 Lab-Dup	RDL	QC Batch	MW-3-SS6	MW-2-SS7	RDL	QC Batch
Inorganics	<u>.</u>		<u>.</u>			·		·		·	
Moisture	%	40	1.0	7552047				35	39	1.0	7552047
BTEX & F1 Hydrocarbons		•			•		•		•		
Benzene	ug/g	<0.040	0.040	7555372	<0.040	0.040	7555372	<0.020	<0.020	0.020	7555372
Toluene	ug/g	<0.040	0.040	7555372	<0.040	0.040	7555372	0.028	0.025	0.020	7555372
Ethylbenzene	ug/g	<0.040	0.040	7555372	<0.040	0.040	7555372	<0.020	<0.020	0.020	7555372
o-Xylene	ug/g	<0.040	0.040	7555372	<0.040	0.040	7555372	<0.020	<0.020	0.020	7555372
p+m-Xylene	ug/g	<0.080	0.080	7555372	<0.080	0.080	7555372	<0.040	<0.040	0.040	7555372
Total Xylenes	ug/g	<0.080	0.080	7555372	<0.080	0.080	7555372	<0.040	<0.040	0.040	7555372
F1 (C6-C10)	ug/g	<20	20	7555372	<20	20	7555372	<10	<10	10	7555372
F1 (C6-C10) - BTEX	ug/g	<20	20	7555372	<20	20	7555372	<10	<10	10	7555372
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<20	20	7554430				<10	<10	10	7554430
F3 (C16-C34 Hydrocarbons)	ug/g	<100	100	7554430				<50	<50	50	7554430
F4 (C34-C50 Hydrocarbons)	ug/g	<100	100	7554430				<50	<50	50	7554430
Reached Baseline at C50	ug/g	Yes		7554430				Yes	Yes		7554430
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	107		7555372	101		7555372	102	102		7555372
4-Bromofluorobenzene	%	87		7555372	95		7555372	96	83		7555372
D10-o-Xylene	%	110		7555372	112		7555372	111	116		7555372
D4-1,2-Dichloroethane	%	91		7555372	94		7555372	92	96		7555372
o-Terphenyl	%	87		7554430				88	89		7554430
RDL = Reportable Detection I QC Batch = Quality Control B	atch										
Lab-Dun - Laboratory Initiate	ad Dunlig	ote									

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

	1	i		1			1				
BV Labs ID		QNG058		QNG059		QNG060		QNG061	QNG062		
Sampling Date		2021/08/30		2021/08/30		2021/08/30		2021/08/30			
		14:00		14:05		14:10		14:15	14:20		ļ
COC Number		157144		157144		157144		157144	157144		
	UNITS	\$1	RDL	S2	RDL	S3	RDL	S4	S5	RDL	QC Batch
Inorganics											
Moisture	%	15	1.0	14	1.0	6.3	1.0	12	8.3	1.0	7552047
BTEX & F1 Hydrocarbons											
Benzene	ug/g	<0.040	0.040	<0.020	0.020	<0.040	0.040	<0.020	<0.020	0.020	7555372
Toluene	ug/g	<0.040	0.040	<0.020	0.020	<0.040	0.040	0.033	<0.020	0.020	7555372
Ethylbenzene	ug/g	<0.040	0.040	<0.020	0.020	<0.040	0.040	<0.020	<0.020	0.020	7555372
o-Xylene	ug/g	<0.040	0.040	<0.020	0.020	<0.040	0.040	<0.020	<0.020	0.020	7555372
p+m-Xylene	ug/g	<0.080	0.080	<0.040	0.040	<0.080	0.080	<0.040	<0.040	0.040	7555372
Total Xylenes	ug/g	<0.080	0.080	<0.040	0.040	<0.080	0.080	<0.040	<0.040	0.040	7555372
F1 (C6-C10)	ug/g	<20	20	<10	10	<20	20	<10	<10	10	7555372
F1 (C6-C10) - BTEX	ug/g	<20	20	<10	10	<20	20	<10	<10	10	7555372
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	<10	10	<10	10	<10	<10	10	7554430
F3 (C16-C34 Hydrocarbons)	ug/g	860	50	53	50	130	50	54	170	50	7554430
F4 (C34-C50 Hydrocarbons)	ug/g	280	50	53	50	380	50	56	62	50	7554430
Reached Baseline at C50	ug/g	Yes		Yes		No		Yes	Yes		7554430
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	103		103		108		111	103		7555372
4-Bromofluorobenzene	%	82		91		93		95	86		7555372
D10-o-Xylene	%	105		92		104		113	101		7555372
D4-1,2-Dichloroethane	%	94		95		101		94	93		7555372
o-Terphenyl	%	86		83		78		88	90		7554430

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QNG063		
Sampling Date		2021/08/30		
		14:10		
COC Number		157144		
	UNITS	DUP	RDL	QC Batch
Inorganics				
Moisture	%	10	1.0	7552047
BTEX & F1 Hydrocarbons				
Benzene	ug/g	<0.020	0.020	7555372
Toluene	ug/g	0.021	0.020	7555372
Ethylbenzene	ug/g	<0.020	0.020	7555372
o-Xylene	ug/g	<0.020	0.020	7555372
p+m-Xylene	ug/g	<0.040	0.040	7555372
Total Xylenes	ug/g	<0.040	0.040	7555372
F1 (C6-C10)	ug/g	<10	10	7555372
F1 (C6-C10) - BTEX	ug/g	<10	10	7555372
F2-F4 Hydrocarbons	-			
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7554430
F3 (C16-C34 Hydrocarbons)	ug/g	110	50	7554430
F4 (C34-C50 Hydrocarbons)	ug/g	290	50	7554430
Reached Baseline at C50	ug/g	No		7554430
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	104		7555372
4-Bromofluorobenzene	%	95		7555372
D10-o-Xylene	%	103		7555372
D4-1,2-Dichloroethane	%	90		7555372
o-Terphenyl	%	87		7554430
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	itch			

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		QNG060	QNG063		
Sampling Date		2021/08/30	2021/08/30 14:10		
COC Number		14:10 157144	14:10		
	UNITS	\$3	DUP	RDL	QC Batch
F2-F4 Hydrocarbons	•				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2800	1800	100	7557923
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

TEST SUMMARY

BV Labs ID: QNG055 Sample ID: MW-4-SS8 Matrix: Soil					Collected: 2021/08/27 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
BV Labs ID: QNG055 Dup Sample ID: MW-4-SS8 Matrix: Soil					Collected: 2021/08/27 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
BV Labs ID: QNG056 Sample ID: MW-3-SS6 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
Sample ID: MW-2-SS7 Matrix: Soil					Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
BV Labs ID: QNG058 Sample ID: S1 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	7553767	2021/09/01	2021/09/03	Viviana Canzonieri
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
Moisture BV Labs ID: QNG059 Sample ID: S2 Matrix: Soil			N/A	2021/08/31	Prgya Panchal Collected: 2021/08/30 Shipped: Received: 2021/08/30
BV Labs ID: QNG059 Sample ID: S2			N/A Extracted		Collected: 2021/08/30 Shipped: Received: 2021/08/30
BV Labs ID: QNG059 Sample ID: S2 Matrix: Soil Test Description	BAL	7552047 Batch	Extracted	Date Analyzed	Collected: 2021/08/30 Shipped: Received: 2021/08/30 Analyst
BV Labs ID: QNG059 Sample ID: S2 Matrix: Soil	BAL	7552047			Collected: 2021/08/30 Shipped: Received: 2021/08/30

Page 8 of 23

Bureau Veritas Laboratories 100 – 36 Antares Dr. Nepean, ON, K2E 7W5 Phone: 613-274-0573 Website: www.bvlabs.com

Moisture

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

TEST SUMMARY

BV Labs ID: QNG059 Sample ID: S2 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
BV Labs ID: QNG060 Sample ID: S3 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
F4G (CCME Hydrocarbons Gravimetric)	BAL	7557923	2021/09/03	2021/09/03	Jignakumari Mistry
Acid Extractable Metals by ICPMS	ICP/MS	7553767	2021/09/01	2021/09/03	Viviana Canzonieri
Moisture	BAL	7552047	N/A	2021/03/03	Prgya Panchal
BV Labs ID: QNG061 Sample ID: S4 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	7553767	2021/09/01	2021/09/03	Viviana Canzonieri
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
BV Labs ID: QNG062 Sample ID: S5 Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	7553767	2021/09/01	2021/09/03	Viviana Canzonieri
Moisture	BAL	7552047	N/A	2021/08/31	Prgya Panchal
BV Labs ID: QNG063 Sample ID: DUP Matrix: Soil					Collected: 2021/08/30 Shipped: Received: 2021/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7555372	N/A	2021/09/02	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7554430	2021/09/01	2021/09/02	(Kent) Maolin Li
F4G (CCME Hydrocarbons Gravimetric)	BAL	7557923	2021/09/03	2021/09/03	Jignakumari Mistry
Acid Extractable Metals by ICPMS	ICP/MS	7553767	2021/09/01	2021/09/03	Viviana Canzonieri
Moisturo	DAL	7552047		2021/00/21	Bren ve Deve ek el

7552047

N/A

2021/08/31

Prgya Panchal

BAL

GENERAL COMMENTS

Each te	ach temperature is the average of up to three cooler temperatures taken at receipt											
[Package 1	5.7°C]									
Sample	QNG055 [MW-4-SS	8] : F1 BTEX and	d F2 - F4 analysis : Detection limits were adjusted for high moisture content									
Sample	nple QNG058 [S1] : F1 BTEX analysis : Detection limits were adjusted for sample weight .											
Sample	ple QNG060 [S3] : F1 BTEX analysis : Detection limits were adjusted for sample weight .											
Results	results relate only to the items tested.											

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7554430	o-Terphenyl	2021/09/01	84	60 - 130	76	60 - 130	71	%		
7555372	1,4-Difluorobenzene	2021/09/02	100	60 - 140	98	60 - 140	102	%		
7555372	4-Bromofluorobenzene	2021/09/02	101	60 - 140	97	60 - 140	92	%		
7555372	D10-o-Xylene	2021/09/02	112	60 - 140	98	60 - 140	91	%		
7555372	D4-1,2-Dichloroethane	2021/09/02	90	60 - 140	87	60 - 140	91	%		
7552047	Moisture	2021/08/31							14	20
7553767	Acid Extractable Antimony (Sb)	2021/09/03	96	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
7553767	Acid Extractable Arsenic (As)	2021/09/03	99	75 - 125	95	80 - 120	<1.0	ug/g	NC	30
7553767	Acid Extractable Barium (Ba)	2021/09/03	99	75 - 125	94	80 - 120	<0.50	ug/g	6.0	30
7553767	Acid Extractable Beryllium (Be)	2021/09/03	101	75 - 125	96	80 - 120	<0.20	ug/g	NC	30
7553767	Acid Extractable Boron (B)	2021/09/03	100	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
7553767	Acid Extractable Cadmium (Cd)	2021/09/03	98	75 - 125	97	80 - 120	<0.10	ug/g	NC	30
7553767	Acid Extractable Chromium (Cr)	2021/09/03	103	75 - 125	99	80 - 120	<1.0	ug/g	2.2	30
7553767	Acid Extractable Cobalt (Co)	2021/09/03	98	75 - 125	94	80 - 120	<0.10	ug/g	8.8	30
7553767	Acid Extractable Copper (Cu)	2021/09/03	98	75 - 125	92	80 - 120	<0.50	ug/g	2.4	30
7553767	Acid Extractable Lead (Pb)	2021/09/03	99	75 - 125	99	80 - 120	<1.0	ug/g	1.1	30
7553767	Acid Extractable Molybdenum (Mo)	2021/09/03	98	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
7553767	Acid Extractable Nickel (Ni)	2021/09/03	102	75 - 125	101	80 - 120	<0.50	ug/g	15	30
7553767	Acid Extractable Selenium (Se)	2021/09/03	101	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
7553767	Acid Extractable Silver (Ag)	2021/09/03	101	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
7553767	Acid Extractable Thallium (TI)	2021/09/03	97	75 - 125	99	80 - 120	<0.050	ug/g	1.1	30
7553767	Acid Extractable Uranium (U)	2021/09/03	98	75 - 125	100	80 - 120	<0.050	ug/g	2.5	30
7553767	Acid Extractable Vanadium (V)	2021/09/03	93	75 - 125	98	80 - 120	<5.0	ug/g	1.7	30
7553767	Acid Extractable Zinc (Zn)	2021/09/03	103	75 - 125	100	80 - 120	<5.0	ug/g	6.8	30
7554430	F2 (C10-C16 Hydrocarbons)	2021/09/02	91	50 - 130	82	80 - 120	<10	ug/g	NC	30
7554430	F3 (C16-C34 Hydrocarbons)	2021/09/02	90	50 - 130	82	80 - 120	<50	ug/g	NC	30
7554430	F4 (C34-C50 Hydrocarbons)	2021/09/02	88	50 - 130	80	80 - 120	<50	ug/g	NC	30
7555372	Benzene	2021/09/02	110	50 - 140	98	50 - 140	<0.020	ug/g	NC	50
7555372	Ethylbenzene	2021/09/02	123	50 - 140	109	50 - 140	<0.020	ug/g	NC	50
7555372	F1 (C6-C10) - BTEX	2021/09/02					<10	ug/g	NC	30
7555372	F1 (C6-C10)	2021/09/02	86	60 - 140	88	80 - 120	<10	ug/g	NC	30
7555372	o-Xylene	2021/09/02	123	50 - 140	105	50 - 140	<0.020	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7555372	p+m-Xylene	2021/09/02	120	50 - 140	104	50 - 140	<0.040	ug/g	NC	50
7555372	Toluene	2021/09/02	112	50 - 140	99	50 - 140	<0.020	ug/g	NC	50
7555372	Total Xylenes	2021/09/02					<0.040	ug/g	NC	50
7557923	F4G-sg (Grav. Heavy Hydrocarbons)	2021/09/03	73	65 - 135	101	65 - 135	<100	ug/g	14	50
Duplicate: Pa	ired analysis of a separate portion of the same sample.	Used to evaluate t	he variance in t	he measurem	ient.	· · · · ·				
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been a	dded. Used to e	valuate samp	le matrix interfe	erence.				

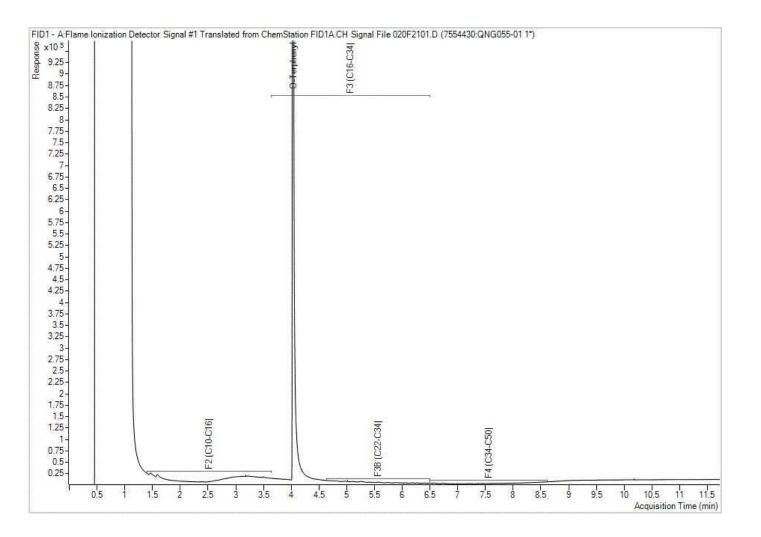
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

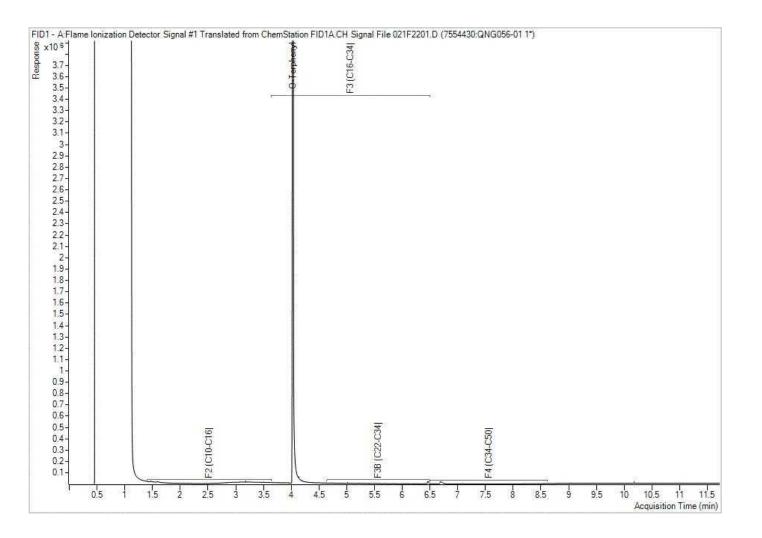
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

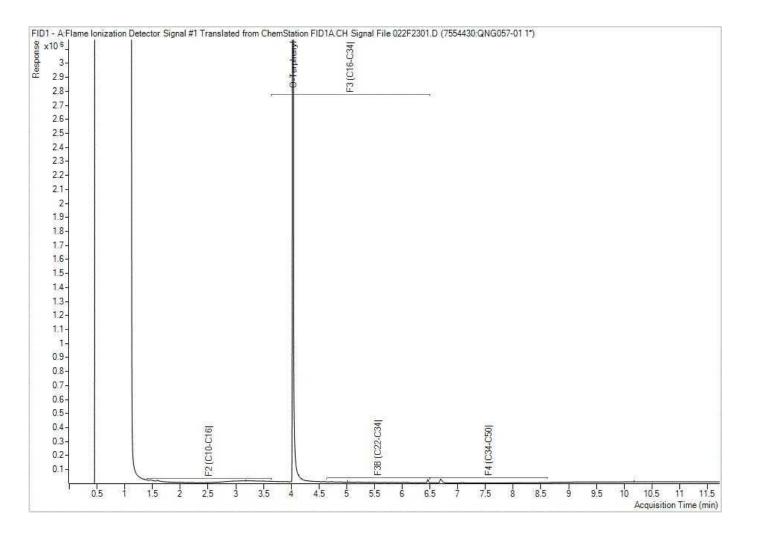

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist


BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

0 8 A U	Phone CAM I Invoice information	e: 905-817,5700 Fax: 905-817- FCD-01191/6	eres seame		¥	×-	СН	AIN OF C		THE COME	57144 Page of			X 1.
FIRE SEA SUPE SUPE									narrow furficies	- Photos - P	Regular TAT (5-7 days) Most analyses	- *		
npany §		11												£.
stact Na	TILLOUTTS TOUT	the second s			KMC						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS			
ăress:		Jeens ver Address		100-3	650	Queen	3 Project #		0023	4493-20	Rush TAT (Surcharges will be applied)			
	Dr. Ottawa, a	JN .			Hand	.00					1 Day 2 Days 3-4 Days			
	513-688-1899 tax	Phone: 6	13-681	5-1897	Fax:		Site 8:		(1)		Date Required:	-		
	accounting-ottawa@						Site Locatio	in Province:	ON	- K L				
ante antos	LEATED DRINKING WATER DR WATER WITENDED FOR HUMAN			DASLABORATOR	ES DRINKING WAT	ER CHAIN OF CUS			myc	clert	Rush Confirmation #:	-	3	
Table	Regulation 153	Other Regul	Sewer Bylaw		TIM	TT	Analysis	requested	TT		LABORATORY USE ONLY	-		
Table		MISA Storm Se			5						(Y I/N COOLER TEMPERATURES			
Table		PWQO Region			te / Cr						Present Intact Vig			
Table FOR S	RSC (PLEASE CIRCLE) Y / N	REG SS8 (MIN. 3 DAY T	AT REQUIRED)	4	talis /)	1	NS-81			-	899			
		REG 406 Table			an (1)	CBGA	uts ut			AZE	4 4 61615	<u>8</u>		
10000	teria on Certificate of Analysis: Y / N APLES MUST BE KEPT COOL (< 10 °C) FROM TIME	OF SAMPLING UNTIL DELIVERY	O BUREAU VER	ITAS	(CINC)	100	45 Met			T ANNAL	6.17.	3		
- And And		· ·			UTINE	- F4 META	I I CPIME I I I CPIME			DO NO.	COOLING MEDIA PRESENT			
	SAMPLE IDENTIFICATION	DATE SAMPLED 1 (YYYY/MM/(DD)	TIME SAMPLED (HH),MM)	MATRIX	tex/P	HCs F2 003 Find to 103	66 153 66 153 46 Cr 1			oto-c	BOLEMEUR			
T	MW-4-558	2021/08/27	1600	C	3 X	X	EJE					-		
-	Mw-3-556	100001		SI			DE					-	*	
-		2021/08/30	1000				JE		+ + -			-		
-	MW-2-557	1 1 1 1 1 1	1200			2						-		
-	31		1400	5		2	X			RECE	VED IN OTTAWA	- 8		-51
_	52	2021/08/30	1405	5 3		2	X					_		
	53	2021/08/30	1410		3 X		X	.3	8		ON SE			
	54	2021/08/30	1415	5 :	$3 \times$	X I	X		2					
	55	2021/08/30	1420	53	$3 \times$		X							
	DUP	2001/08/30	1410	5	3 X	XII	X							
	,	401/00120	1110								30-Aug-21 16:00			
	RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:M	M)	RECEIVED	BY: (Signature)	/Print)	DATE: (YYYY	Y/MM/DD)	TIME: (HH:MM)	Katherine Szozda			
1	11 Jan Edat	2001/08/30	1600	1 1		T		in la	60100		C108600			
1	2 Jereny cipes	001/00/30	1000		11	0	1 8	22110	11	(01000	C1O8699	1.6		
				A	ishel	HARCHI	AVAHIMA	BRID	15/21	08.00.1	V ENW.814			

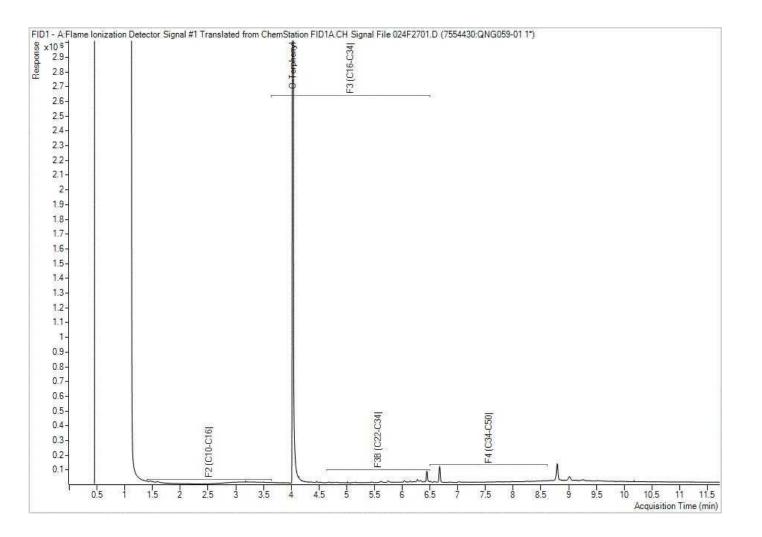
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

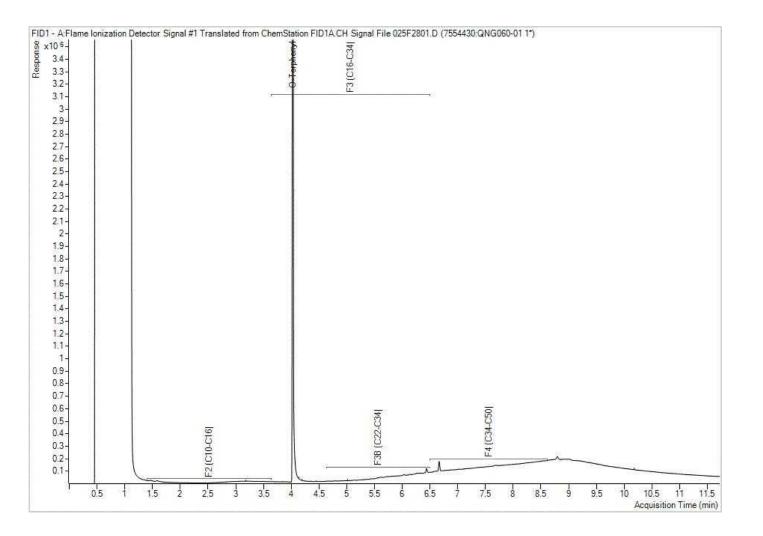
exp Services Inc Client Project #: OTT-00234493-A0 Client ID: MW-2-SS7

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

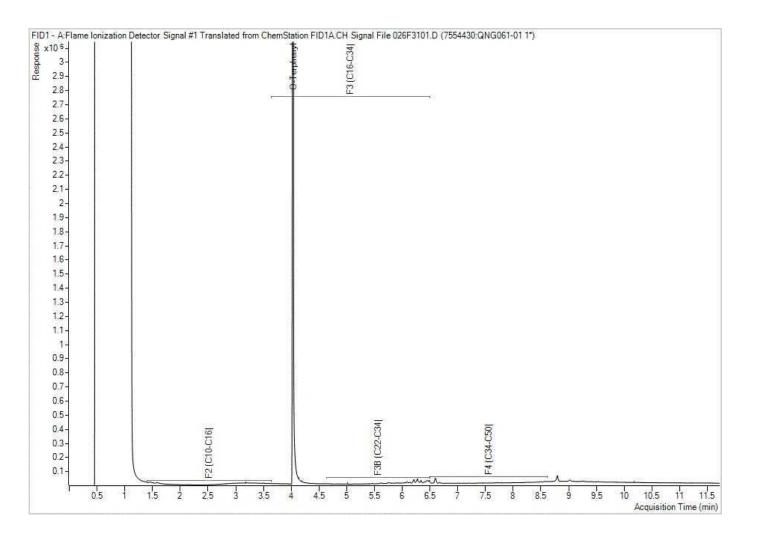


exp Services Inc Client Project #: OTT-00234493-A0 Client ID: S1 Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

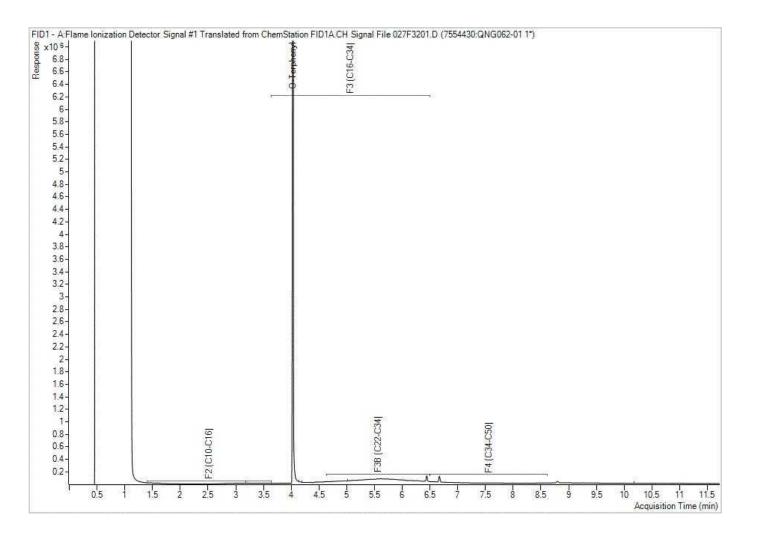
FID1 - A:Flame Ionization Detector Signal #1 Translated from ChemStation FID1A.CH Signal File 023F2401.D (7554430:QNG058-01 1*) es x10 ⁶ 6.6 6.4 F3 (C16-C34) 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3. 2.8 2.6 2.4 2.2 2 F3B [C22-C34] 1.8 1.6 1.4 1.2 F4 (C34-C50) 1 0.8 F2 (C10-C16) 0.6 0.4 0.2 2.5 7.5 1 3 4 4.5 5.5 7 8.5 9.5 10 11 11.5 1.5 2 3.5 5 6 8 10.5 0.5 6.5 9 Acquisition Time (min)


exp Services Inc Client Project #: OTT-00234493-A0 Client ID: S2

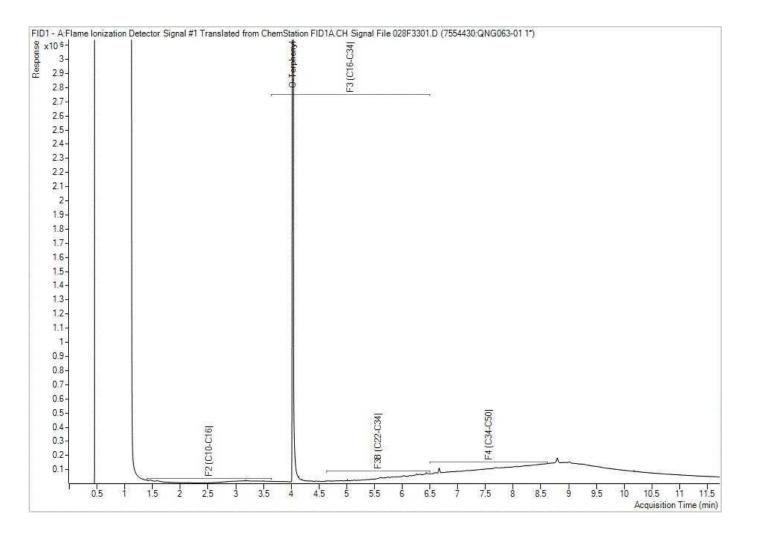
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


exp Services Inc Client Project #: OTT-00234493-A0 Client ID: S3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-00234493-A0 Client ID: S4


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Taryn Glancy

Client PO: Project: OTT000234493 Custody: 32459

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Order #: 1634298

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** MW7 1634298-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1634298

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	18-Aug-16 22-Aug-16
PHC F1	CWS Tier 1 - P&T GC-FID	18-Aug-16 22-Aug-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Aug-16 20-Aug-16

Report Date: 22-Aug-2016

Order Date: 18-Aug-2016

Project Description: OTT000234493

	_				
	Client ID:	MW7	-	-	-
	Sample Date:	18-Aug-16	-	-	-
	Sample ID:	1634298-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles					
Benzene	0.5 ug/L	18600	-	-	-
Ethylbenzene	0.5 ug/L	1000	-	-	-
Toluene	0.5 ug/L	16800	-	-	-
m,p-Xylenes	0.5 ug/L	6330	-	-	-
o-Xylene	0.5 ug/L	3570	-	-	-
Xylenes, total	0.5 ug/L	9900	-	-	-
Toluene-d8	Surrogate	92.2%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
F1 + F2 PHCs	125 ug/L	<125	-	-	-
F3 + F4 PHCs	200 ug/L	<200	-	-	-

Order #: 1634298

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	85.0		ug/L		106	50-140			

Order #: 1634298

Report Date: 22-Aug-2016 Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	84.6		ug/L		106	50-140			

Report Date: 22-Aug-2016

Order Date: 18-Aug-2016

Project Description: OTT000234493

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2240	25	ug/L		112	68-117			
F2 PHCs (C10-C16)	1670	100	ug/L		93.0	60-140			
F3 PHCs (C16-C34)	3160	100	ug/L		85.0	60-140			
F4 PHCs (C34-C50)	2120	100	ug/L		85.3	60-140			
Volatiles									
Benzene	29.5	0.5	ug/L	ND	73.8	50-140			
Ethylbenzene	34.0	0.5	ug/L	ND	84.9	50-140			
Toluene	31.5	0.5	ug/L	ND	78.8	50-140			
m,p-Xylenes	64.5	0.5	ug/L	ND	80.7	50-140			
o-Xylene	32.5	0.5	ug/L	ND	81.3	50-140			
Surrogate: Toluene-d8	<i>69.2</i>		ug/L		86.5	50-140			

Qualifier Notes:

None

Sample Data Revisions None

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL LABORATORIES LTD	T R R	RUS ESP ELIA	TED . ONSI BLE	VE.			Ottawa, p: 1-800 e: parace	iice 9 St. Laurent Blvd. Ontario K1G 4J8 749-1947 eI@paracellabs.com acellabs.com		No	ain of Cu Lab Use Or 32	459	
Client Name:			Designet	Deferences	0	12-				Paj		and the other designments	
		,/	Ouote #	Reference:	2344	93			4	Tur	naround	Time:	
LargenGlance / March	1 (91)	19	PO #							ay		🗆 3 Day	
Address: 160-2650 Queensview			20.051.000						- 0 2 D	av		□ Regul	ar
Telephone: Ottawa JUN			Email A	(ddress:					10.00	20 5	d:_Mov	1 1	tuz
Criteria: 10. Reg. 153/04 (As Amended) Table 2	RSC Filing	□0.1	L Reg. 558	/00 PWQO		SUB (Stor	m) 🗆 SL	B (Sanitary) Muni		cequire		-1	11
Matrix Type: S (Soil-Sed.) GW (Ground Water) SW (Surface Water)			a mantanti antoni a	Contractor and the second		1			uired Ar	alvses			
Paracel Order Number: 1634297 - Soil. 1634298 - Water Sample ID/Location Name 1 BH7 SS.5 2 BH7 SS6 3 MW7 4 5 6 7	xirix GW	Air Volume	# of Containers	Sample Date Avg 16 Ag 18		1 + + + 1 HEC-24	XXX BTEX		Hol	2/)	-120m		
8													
9	_				1				-				
10 Comments:											Method of D	liner	
Relinquished By (8fgn): Relinquished By (Print): Date Time: /h / 0/16 / 0/15 /M	Received Date/Tir Tempera	ne:			Date	and the second second second	112 13.2	18/14	in the second second	1 By: Rochel me: Acc	hea	ect 2:0	

Chain of Custody (Blank) - Rev 0.4 Feb 2016

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159776

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/17 Report #: R6814914 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q0105

Received: 2021/09/10, 13:50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water (1)	2	N/A	2021/09/14	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	2	2021/09/15	2021/09/16	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159776

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/17 Report #: R6814914 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q0105 Received: 2021/09/10, 13:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		QPP891			QPP891			QPP892		
Sampling Date		2021/09/10			2021/09/10			2021/09/10		
		11:40			11:40			12:40		
COC Number		159776			159776			159776		
	UNITS	BH-7B	RDL	QC Batch	BH-7B Lab-Dup	RDL	QC Batch	BH-9	RDL	QC Batch
BTEX & F1 Hydrocarbons	<u> </u>		·						-	
Benzene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
Toluene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
Ethylbenzene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
o-Xylene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
p+m-Xylene	ug/L	<0.40	0.40	7576253				<0.40	0.40	7576253
Total Xylenes	ug/L	<0.40	0.40	7576253				<0.40	0.40	7576253
F1 (C6-C10)	ug/L	<25	25	7576253				<25	25	7576253
F1 (C6-C10) - BTEX	ug/L	<25	25	7576253				<25	25	7576253
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	7578054	<100	100	7578054	<100	100	7578054
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	7578054	<200	200	7578054	<200	200	7578054
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	7578054	<200	200	7578054	<200	200	7578054
Reached Baseline at C50	ug/L	Yes		7578054	Yes		7578054	Yes		7578054
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	101		7576253				101		7576253
4-Bromofluorobenzene	%	93		7576253				84		7576253
D10-o-Xylene	%	99		7576253				101		7576253
D4-1,2-Dichloroethane	%	109		7576253				107		7576253
o-Terphenyl	%	95		7578054	102		7578054	99		7578054
RDL = Reportable Detection I	imit									
QC Batch = Quality Control B	atch									
Lab Dup - Laboratory Initiaty	d Dunlig									

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

BV Labs ID: QPP891 Sample ID: BH-7B Matrix: Water					Collected: Shipped: Received:	2021/09/10 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7576253	N/A	2021/09/14	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnieszka	Brzuzy-Snopko
BV Labs ID: QPP891 Dup Sample ID: BH-7B					Collected: Shipped:	2021/09/10
Matrix: Water					Received:	2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnieszka	Brzuzy-Snopko
BV Labs ID: QPP892 Sample ID: BH-9					Collected: Shipped:	2021/09/10
Matrix: Water					Received:	2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7576253	N/A	2021/09/14	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnioszka	Brzuzy-Snopko

GENERAL COMMENTS

Each t	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	8.7°C	
	•	•	'
Result	s relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7576253	1,4-Difluorobenzene	2021/09/14	96	70 - 130	95	70 - 130	101	%		
7576253	4-Bromofluorobenzene	2021/09/14	104	70 - 130	106	70 - 130	94	%		
7576253	D10-o-Xylene	2021/09/14	94	70 - 130	94	70 - 130	102	%		
7576253	D4-1,2-Dichloroethane	2021/09/14	103	70 - 130	98	70 - 130	103	%		
7578054	o-Terphenyl	2021/09/16	112	60 - 130	96	60 - 130	90	%		
7576253	Benzene	2021/09/14	104	50 - 140	103	50 - 140	<0.20	ug/L	NC	30
7576253	Ethylbenzene	2021/09/14	111	50 - 140	111	50 - 140	<0.20	ug/L	1.8	30
7576253	F1 (C6-C10) - BTEX	2021/09/14					<25	ug/L	NC	30
7576253	F1 (C6-C10)	2021/09/14	93	60 - 140	93	60 - 140	<25	ug/L	NC	30
7576253	o-Xylene	2021/09/14	109	50 - 140	108	50 - 140	<0.20	ug/L	0.67	30
7576253	p+m-Xylene	2021/09/14	106	50 - 140	107	50 - 140	<0.40	ug/L	2.5	30
7576253	Toluene	2021/09/14	102	50 - 140	102	50 - 140	<0.20	ug/L	NC	30
7576253	Total Xylenes	2021/09/14					<0.40	ug/L	2.1	30
7578054	F2 (C10-C16 Hydrocarbons)	2021/09/16	118	60 - 130	112	60 - 130	<100	ug/L	NC	30
7578054	F3 (C16-C34 Hydrocarbons)	2021/09/16	120	60 - 130	116	60 - 130	<200	ug/L	NC	30
7578054	F4 (C34-C50 Hydrocarbons)	2021/09/16	124	60 - 130	116	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

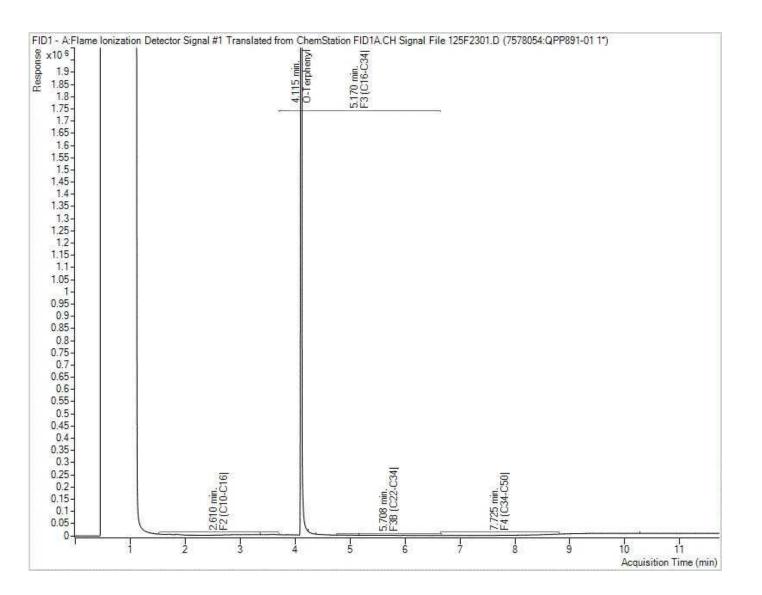
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

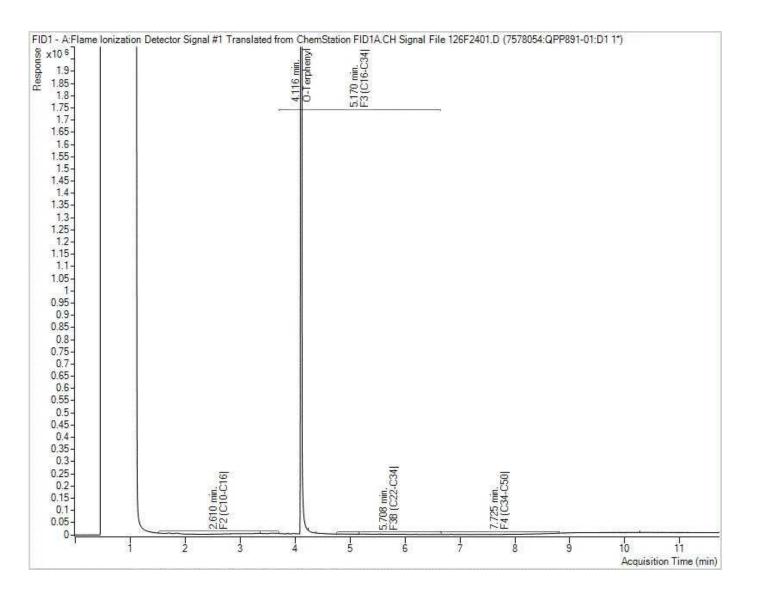
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

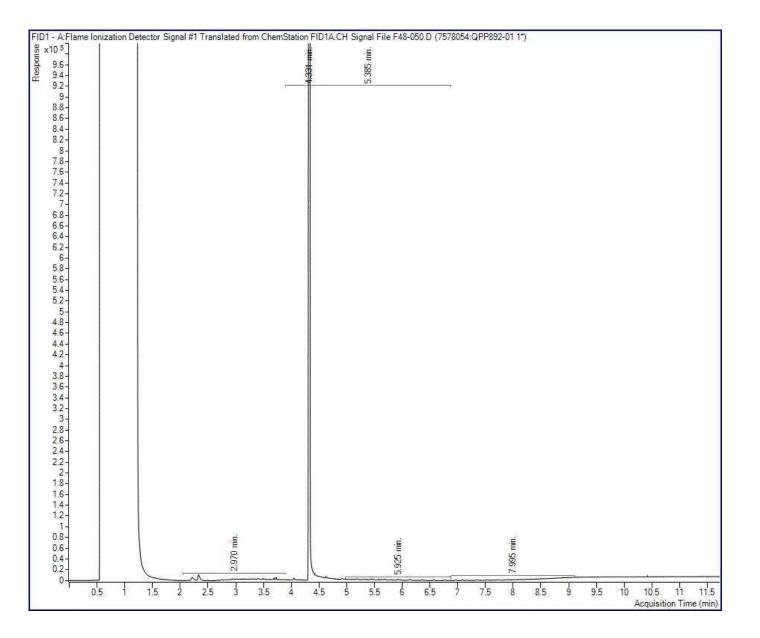

CAM FCD-01191/6 Invoice Information	Repo	t Information	(if diffe	ers from	invoice	:)			Contraction (Contraction)	All and the	104LS1-07_111	Y REC	Constraint Const	-	59776 Page of Turnaround Time (TAT) Required
any Name: Exp Services Inc.	Company Name:	EXF	Se	en;	u.s	Inc		Quotation #	4. B				ily.gl	11	Regular TAT (5-7 days) Most analyses
ct Name: Accounts Payable	Contact Name:	Mar	1< 1	Mc	Ca	lla		P.O. #/ AFE		Sec. 1					PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
ny Name: <u>FXY</u> Services Inc. tName: <u>Accounts</u> Payable s: <u>100-2650</u> Queens vTw <u>Dr-0tawa</u> , ON <u>613-688-1899</u> Fax: <u>accounting-ottawa@exp-com</u>	Address:	100-	26:	50 0	ave	en	svier	Project #:	OT	1-0	023	449:	3-A	10	Rush TAT (Surcharges will be applied)
Dr. Ottawa, ON	1	Dr.	07	tar	Ja	10	N	Site Locatio): 			412 11			1 Day 2 Days 3-4 Days
613-688-1899 Fax: accounting-ottaug@exp-com	Phone: 613-6	8-189	9	Fax:				Site #:				7/e/10-20			Date Required:
and the second								Site Locatio			and	FCK	ert		Rush Confirmation #:
REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE	Other Regulations	VERITAS LABORA	ATORIES' I	DRINKING	WATER	CHAIN OF	CUSTODY	Sampled By: Analysis R	equested	ACI	riy	-0			LABORATORY USE ONLY
able 2 Ind/Comm Coarse MISA able 3 Agri/ Other Other Spe able Other Other Spe OR RSC (PLEASE CIRCLE) Y / N Criteria on Certificate of Analysis: Y / N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL SAMPLE IDENTIFICATION DATE SA (YYYY/N BH-7B 2021/C	AIN. 3 DAY TAT REQUIRE able DELIVERY TO BUREAU MMPLED TIME SAMPLE	D) /ERITAS	4 4 of containers submitted	PIELD FILTERED (CIRCLE) Metals/Hg/C/VI	bittor PHC F1		REG 153 METALS & INORGANICS	Rec 133 METALS (Hus - E)						HOLD- DO NOT AMALYZE	CODLING MEDIA PRESENT: (Y /) N CODLING MEDIA PRESENT: (Y /) N COMMENTS
Katherine Szozda									_		RI	CEIV	ED I	IN C	OTTAWA
	A			Part of the second seco											
КЈҮ ОТТ-001	100		28.5	M											
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MI							ure/Print		DATE: (YYYY/M	M/DD)	1	E: (HH:M		BV JOB #
Me Jeremy Edut 2001/09,	10 1300	3	Ke	~	J	in	y	z	202	10	9/10	1	3 · 5	S	
			m	rl	n	N	101	M	ven	1.9	14	0	4!10		

-

à.


· 1.

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc Client Project #: OTT-00234493-A0 Client ID: BH-7B

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

~
-
-
3
14
-
ω.
\leq
1
100
0
0
ŝ
- 2
1
2
0
-
0
5
1.1
0
17
CD.
~

COC-1004 (06/19)

-

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Mark McCalla

Client PO: Project: OTT000234493A Custody: 32595

Report Date: 12-Sep-2016 Order Date: 8-Sep-2016

Order #: 1637215

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client
1637215-01	BH7B
1637215-02	BH8
1637215-03	BH9
1637215-04	BH10
1637215-05	BH11
1637215-06	BH12
1637215-07	BH13

ID

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1637215

Report Date: 12-Sep-2016 Order Date: 8-Sep-2016

Project Description: OTT000234493A

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	10-Sep-16 11-Sep-16
PHC F1	CWS Tier 1 - P&T GC-FID	10-Sep-16 11-Sep-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	9-Sep-16 9-Sep-16

Order #: 1637215

Report Date: 12-Sep-2016 Order Date: 8-Sep-2016

Project Description: OTT000234493A

	Client ID: Sample Date: Sample ID: MDL/Units	BH7B 08-Sep-16 1637215-01 Water	BH8 08-Sep-16 1637215-02 Water	BH9 08-Sep-16 1637215-03 Water	BH10 08-Sep-16 1637215-04 Water
Volatiles	WDL/OIIItS	Wator	Wator	Wator	Water
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	101%	103%	102%	101%
Hydrocarbons				-	
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
F1 + F2 PHCs	125 ug/L	<125	<125	<125	<125
F3 + F4 PHCs	200 ug/L	<200	<200	<200	<200
	Client ID: Sample Date: Sample ID:	BH11 08-Sep-16 1637215-05 Water	BH12 08-Sep-16 1637215-06 Water	BH13 08-Sep-16 1637215-07 Water	
Volatiles	MDL/Units	Water	Water	Water	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	103%	100%	102%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	-
F1 + F2 PHCs	125 ug/L	<125	<125	<125	-
F3 + F4 PHCs	200 ug/L	<200	<200	<200	-

Order #: 1637215

Report Date: 12-Sep-2016 Order Date: 8-Sep-2016

Project Description: OTT000234493A

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	33.8		ug/L		106	50-140			

Order #: 1637215

Report Date: 12-Sep-2016 Order Date: 8-Sep-2016

Project Description: OTT000234493A

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ua/l	ND				30	
Volatiles	ND	20	ug/L	ND				30	
Benzene Ethylbenzene	ND ND	0.5 0.5	ug/L	ND ND				30 30	
Toluene	ND	0.5	ug/L ug/L	ND				30	
m,p-Xylenes o-Xylene	ND ND	0.5 0.5	ug/L ug/L	ND ND				30 30	
Surrogate: Toluene-d8	32.8	0.5	ug/L ug/L	ND	102	50-140		50	

Report Date: 12-Sep-2016

Order Date: 8-Sep-2016

Project Description: OTT000234493A

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1900	25	ug/L		95.1	68-117			
F2 PHCs (C10-C16)	1740	100	ug/L		96.8	60-140			
F3 PHCs (C16-C34)	3610	100	ug/L		97.1	60-140			
F4 PHCs (C34-C50)	2350	100	ug/L		94.8	60-140			
Volatiles									
Benzene	25.6	0.5	ug/L		64.0	60-130			
Ethylbenzene	39.6	0.5	ug/L		99.0	60-130			
Toluene	49.1	0.5	ug/L		123	60-130			
m,p-Xylenes	96.6	0.5	ug/L		121	60-130			
o-Xylene	51.1	0.5	ug/L		128	60-130			
Surrogate: Toluene-d8	25.5		ug/L		79.7	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	TED . DNSI BLE	VE.			Ottawa, Or p: 1-800-74 e: paracel@	St. Laurent Blvd. htario K1G 4J8 49-1947 @paracellabs.com		Chain of Custody (Lab Use Only) Nº 32595					
www.paracellabs.com								ellabs.com		Page	(of _/		
Client Name: C+P			Project	Reference: 234	493-A			1		Turnar	ound Time	et .	
Contact Name: Mark Melle / Banish Clerk.	,		Quote #						🗆 l Day			Day	
Contact Name: Maria Maria Clark. Address: 100-7650 Queensview DI	J		PO#						_ ¤ 2 Day			egular	
			Email A	ddress: Mel (C.	Me Calla C	Den.	lea			. 1		,guiai	
Telephone: 613 688 1829			1	niel. Clarks					Date Req		PI 04		
Criteria: Ø O. Reg. 153/04 (As Amended) Table 2	I RSC Filing	□0.	Reg. 558	/00 PWQO	CCME D	SUB (Sto	rm) 🗆 SUB				Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sa	mitary Se	ewer) P (]	Paint) A (Air) O (O	ther)			Req	uired Analy	ses			
Paracel Order Number: 1637215	rix	Air Volume	# of Containers	Sample	Taken	4-1-4	tex						
Sample ID/Location Name	Matrix	Air	10 #	Date	Time	P	8						
1 RH7B	64		3	5418/16		X	X						
2 RHS	1		1			1			_		_		
3 BH 9				1					_				
4 BH 10		-	11_						_				
5 BH 11													
6 BH12			11_									contradiction in the second	
1 BH13	V		V	V		V	V						
8		0.0	-			_							
9													
10										Me	thod of Deliver	6	
Comments:											val	Ki	
Relinquished By (Sign): DUUU cluur	-		iver/Dep	ot:		ived at Pat	OF		Venified By	sche	L Sub	ject	
Relinquished By (Print): Paril C Cail -	Date/Ti			°C		Time: perature:	0.3 Pc	3118	Date/Time		XD 81	6 3.5	
Date/Time: SALA S (16	Temper	rature:		<u> </u>	1611	perature. (A		2.100	Upri rennie	- III Dy.	10/11		

Chain of Custody (Blank) - Rev 0.4 Feb 2016

Your Project #: OTT-00234493-A0 Your C.O.C. #: 845168-01-01

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/15 Report #: R6811725 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q1472

Received: 2021/09/10, 08:30

Sample Matrix: Water # Samples Received: 6

	Da	ate	Date		
Analyses	Quantity Ex	xtracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water (1)	6 N,	/A	2021/09/15	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	6 20	021/09/14	2021/09/15	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-A0 Your C.O.C. #: 845168-01-01

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/15 Report #: R6811725 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q1472 Received: 2021/09/10, 08:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		QPW358	QPW359	QPW360	QPW361	QPW362	QPW363		
Sampling Data		2021/09/09	2021/09/09	2021/09/09	2021/09/09	2021/09/09	2021/09/09		
Sampling Date		10:10	11:40	13:00	14:30	15:40	16:30		
COC Number		845168-01-01	845168-01-01	845168-01-01	845168-01-01	845168-01-01	845168-01-01		
	UNITS	MW-3	MW-4	MW-2	MW-1	BH8	DUPLICATE 1	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7577351
Toluene	ug/L	<0.20	<0.20	<0.20	0.25	<0.20	<0.20	0.20	7577351
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7577351
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7577351
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	7577351
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	7577351
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	<25	25	7577351
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	<25	25	7577351
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	220	<100	<100	<100	<100	<100	100	7576822
F3 (C16-C34 Hydrocarbons)	ug/L	220	<200	<200	260	250	<200	200	7576822
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	200	7576822
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes		7576822
Surrogate Recovery (%)								•	
1,4-Difluorobenzene	%	104	102	104	103	102	102		7577351
4-Bromofluorobenzene	%	98	98	80	92	101	97		7577351
D10-o-Xylene	%	107	113	115	113	115	109		7577351
D4-1,2-Dichloroethane	%	101	111	110	113	106	112		7577351
o-Terphenyl	%	105	103	104	105	102	103		7576822
RDL = Reportable Detection L QC Batch = Quality Control B									
QC Batch = Quality Control B	attri								

TEST SUMMARY

BV Labs ID: QPW358 Sample ID: MW-3 Matrix: Water					Collected: 2021/09/09 Shipped: Received: 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7577351	N/A	2021/09/15	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7576822	2021/09/14	2021/09/15	Dennis Ngondu
BV Labs ID: QPW359 Sample ID: MW-4 Matrix: Water					Collected: 2021/09/09 Shipped: Received: 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7577351	N/A	2021/09/15	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7576822	2021/09/14	2021/09/15	Dennis Ngondu
BV Labs ID: QPW360 Sample ID: MW-2 Matrix: Water					Collected: 2021/09/09 Shipped: Received: 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7577351	N/A	2021/09/15	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7576822	2021/09/14	2021/09/15	Dennis Ngondu
BV Labs ID: QPW361 Sample ID: MW-1 Matrix: Water					Collected: 2021/09/09 Shipped: Received: 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7577351	N/A	2021/09/15	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7576822	2021/09/14	2021/09/15	Dennis Ngondu
BV Labs ID: QPW362 Sample ID: BH8 Matrix: Water					Collected: 2021/09/09 Shipped: Received: 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7577351	N/A	2021/09/15	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7576822	2021/09/14	2021/09/15	Dennis Ngondu
BV Labs ID: QPW363					Collected: 2021/09/09 Shipped:
Sample ID: DUPLICATE 1 Matrix: Water					Received: 2021/09/10
Sample ID: DUPLICATE 1	Instrumentation	Batch	Extracted	Date Analyzed	Received: 2021/09/10 Analyst
Sample ID: DUPLICATE 1 Matrix: Water	Instrumentation HSGC/MSFD	Batch 7577351	Extracted N/A	Date Analyzed 2021/09/15	

GENERAL COMMENTS

Each t	emperature is the av	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	2.7°C	
	-		
Result	s relate only to the i	tems tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7576822	o-Terphenyl	2021/09/15	105	60 - 130	103	60 - 130	101	%		
7577351	1,4-Difluorobenzene	2021/09/14	99	70 - 130	100	70 - 130	104	%		
7577351	4-Bromofluorobenzene	2021/09/14	106	70 - 130	105	70 - 130	84	%		
7577351	D10-o-Xylene	2021/09/14	101	70 - 130	101	70 - 130	113	%		
7577351	D4-1,2-Dichloroethane	2021/09/14	102	70 - 130	100	70 - 130	107	%		
7576822	F2 (C10-C16 Hydrocarbons)	2021/09/15	109	60 - 130	108	60 - 130	<100	ug/L	NC	30
7576822	F3 (C16-C34 Hydrocarbons)	2021/09/15	109	60 - 130	111	60 - 130	<200	ug/L	NC	30
7576822	F4 (C34-C50 Hydrocarbons)	2021/09/15	107	60 - 130	108	60 - 130	<200	ug/L	NC	30
7577351	Benzene	2021/09/14	108	50 - 140	109	50 - 140	<0.20	ug/L	NC	30
7577351	Ethylbenzene	2021/09/14	116	50 - 140	119	50 - 140	<0.20	ug/L	NC	30
7577351	F1 (C6-C10) - BTEX	2021/09/14					<25	ug/L	NC	30
7577351	F1 (C6-C10)	2021/09/14	96	60 - 140	99	60 - 140	<25	ug/L	NC	30
7577351	o-Xylene	2021/09/14	114	50 - 140	115	50 - 140	<0.20	ug/L	NC	30
7577351	p+m-Xylene	2021/09/14	114	50 - 140	116	50 - 140	<0.40	ug/L	NC	30
7577351	Toluene	2021/09/14	104	50 - 140	106	50 - 140	<0.20	ug/L	NC	30
7577351	Total Xylenes	2021/09/14					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

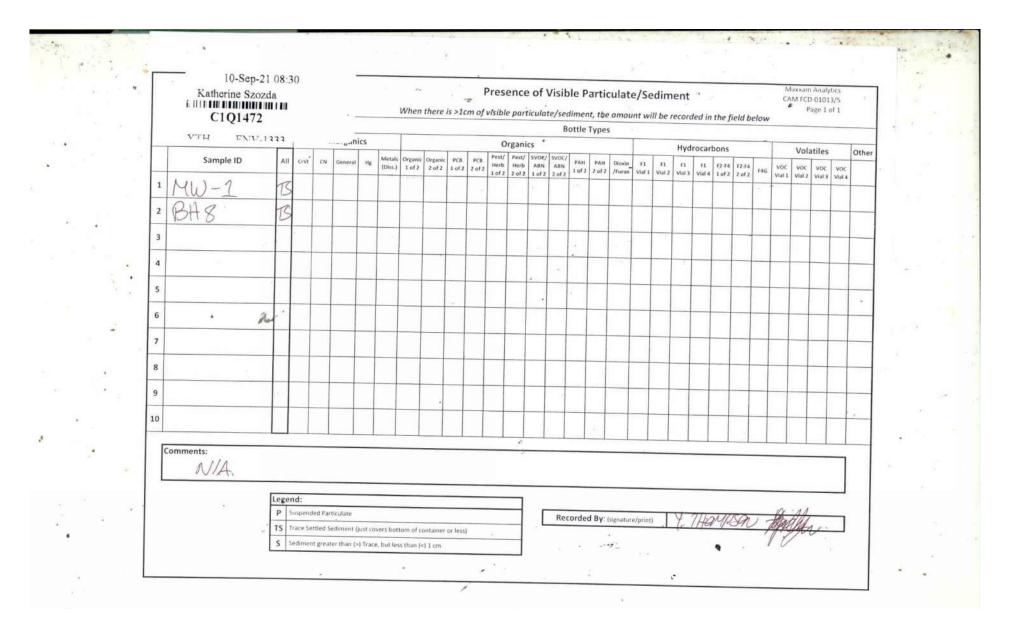
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

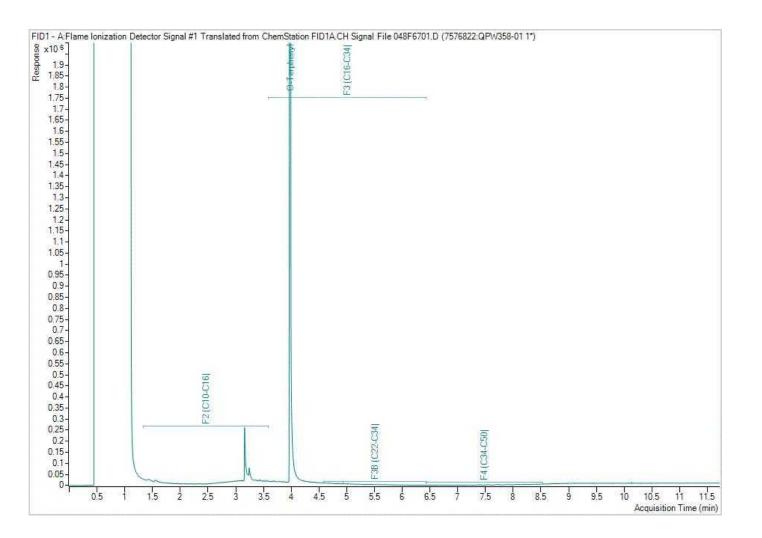
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

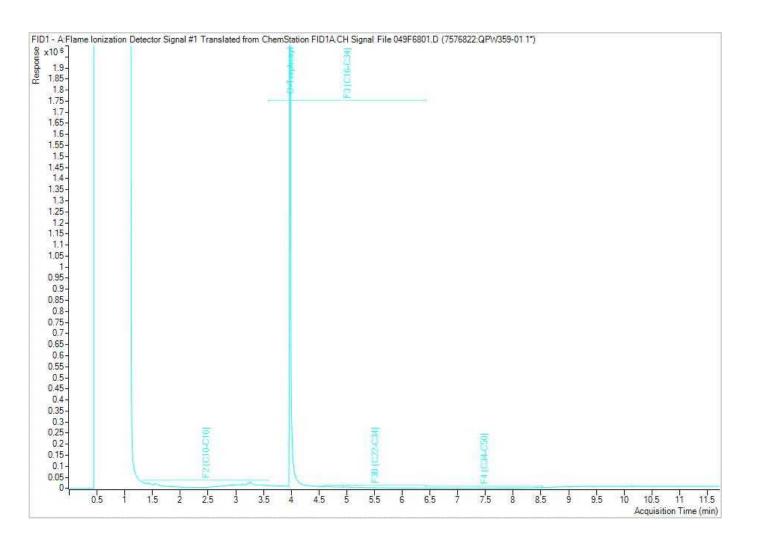
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

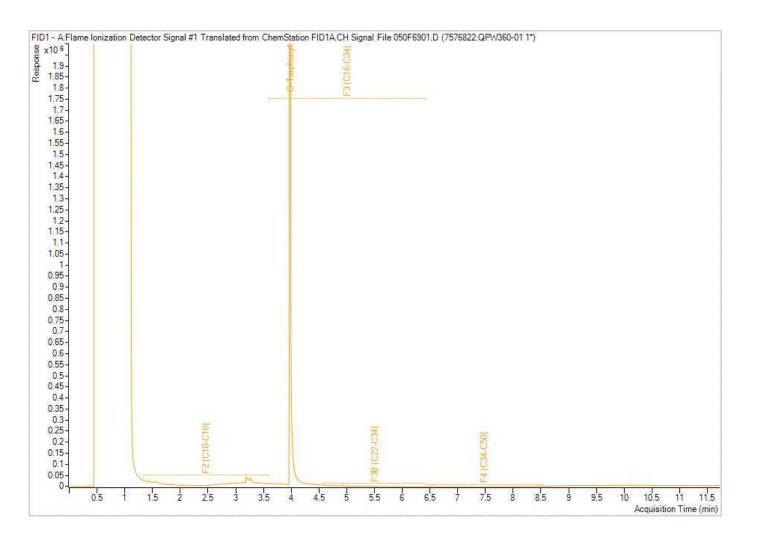
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

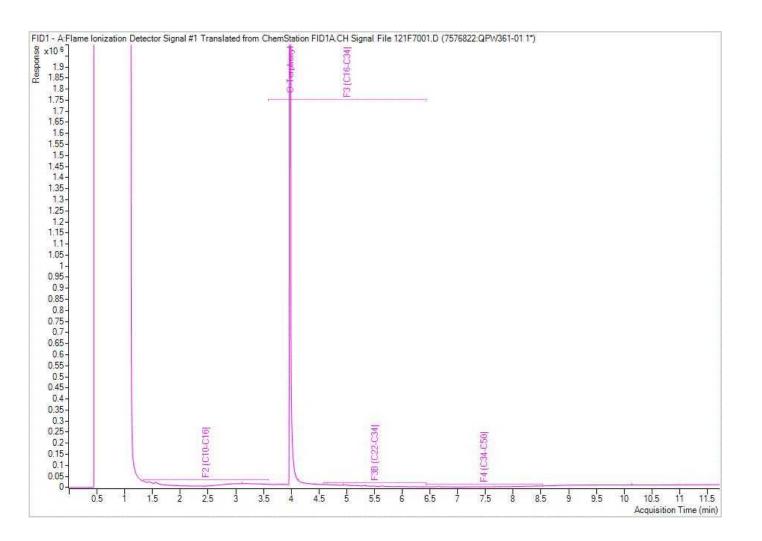

VALIDATION SIGNATURE PAGE

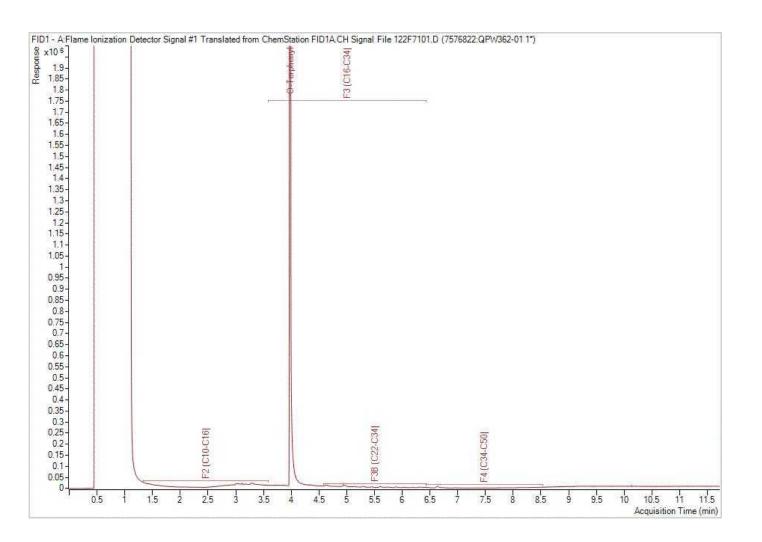
The analytical data and all QC contained in this report were reviewed and validated by:

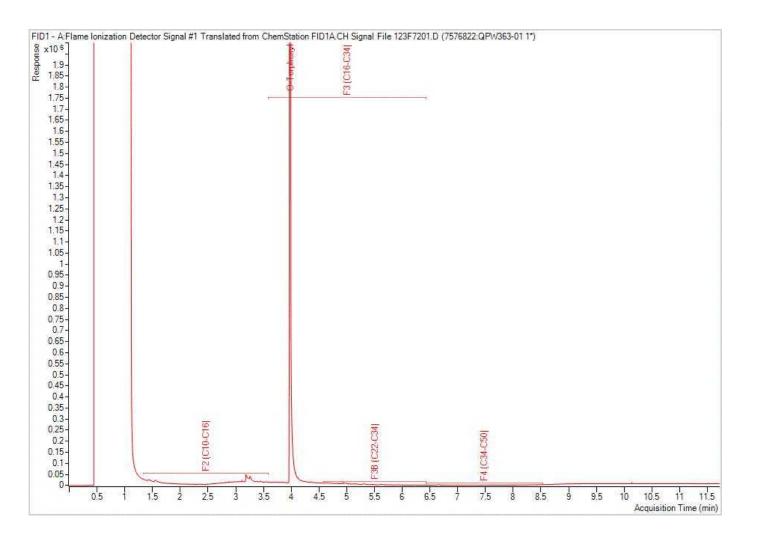

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist


BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.




Minister	ALL ALL		5 107 70					REPOR	T TO-		_	1		PROJECT	INFORMATION:			Laboratory Use C	Dnly:
Nome Product to graphic on the Convertion of the Convert of the Convertion of the Convert of the Convert of th			24		_	il and the second		REFOR		12				TELEPISE (MARCH)		3			and the second se
Dio2280 Queensive Drive Assess Incluit Procision Ottown Origination Code # Procision Procision<		and the second se	es mu				MAR	K ma	Calla						J. IC MENNY				
Other ON K28 8H8 Ock Product Name			ew Drive			100 C	/							OTT-00)234493-A0			501015	845168
APB/gency com, Karen Burkeging com Image: Middle Care Bu									_			Project N	ame					and the second	Project Manager:
MCE ReculateD DRIVENCE WATER OF WAT			Fax (613	3) 225-7337	Tel	. 8	An v	Thall	Fax	- 1.0			-	-01	1-1-0 OL	Vare			Katherine Szozda
Mark Record Mark Water Research water Mark Record	4.	station in the second s	and the second						16 pc	M.C.	Con			D (PLEASE BE	1111	- dine			equired:
mining	New	SUBMITTED ON	THE BV LABS DRIN	IKING WATER	R HUMAN CHAIN OI	CUSTOL	Present.	A STATE OF	profe)									tandard) TAT:	r rusht projects
Include Citeria of Cartification (MRPS) Date Strength Strength Strength Strength <	shie 2	Ind/Comm Coarse	Reg 558	Storm Sewer Byte					d (please d Hg / Cr V	BTEXF1-F							Please noie 3 days - contact	Standard TAT for certain tests such as B your Project Manager for details	
Server Lacity Loot Dark Server Tere Server <thtere server<="" th=""></thtere>	isble	include Criteria e	Other			_			airį +itere Metais /	g 152 P1128		-					Date Required	d Ter	e Required
MW - 3 Sel 01/201 / Ohio GW MW - 4 II/hyo MW - 2 I3hoo MW - 2 I3hoo MW - 1 I4h 3a MW - 1 I4h 3a BHS I5h40 Duplicate 1 I6h 3o Image: Set 1 If Set 1 Image: Set 1 Image: Set 1 Image: Set 1 <td< td=""><td>Samp</td><td></td><td>the later and the broader and price an average and</td><td>section in the section of the sectio</td><td>Done Sorrale</td><td>d Cane S</td><td>ampled</td><td>Matro</td><td>ι.</td><td>0.3e</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td># of Buttes</td><td>Comme</td><td>ents</td></td<>	Samp		the later and the broader and price an average and	section in the section of the sectio	Done Sorrale	d Cane S	ampled	Matro	ι.	0.3e		-					# of Buttes	Comme	ents
MW - 2 13hoo MW - 1 14h 3a BHS 15h40 Duplicate 1 16h 3o Image: State 1 16h 3o <td></td> <td></td> <td>Mw - 3</td> <td>C</td> <td>×pt.09,</td> <td>2001 10</td> <td>hie</td> <td>GW</td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>ļ</td> <td></td>			Mw - 3	C	×pt.09,	2001 10	hie	GW		X							4	ļ	
MW - 1 14h 3a BHS 15h40 Duplicate 1 16h 30 Multiplicate 1 16h 30 </td <td></td> <td></td> <td>mw-4</td> <td>Aur</td> <td>-+-</td> <td>lih</td> <td>40</td> <td></td>			mw-4	Aur	-+-	lih	40												
BHS 15h40 Duplicate 1 16h30 Non Ice Pack In-Sep-21 08:30 Katherine Szozda In-Sep-21 08:30 Katherine Szozda Interviewe						131	100												
On Ice Pack On Ice Pa			mw - 1	+		and a description of								+					
Image: State of the s			<u></u>				0.000	J						++			V	On tre Pa	- k
Katherine Szozda Received IN OTTAWA * RELINGUISHED BY, (Signature!Print) Date: (YY/MM/DD) Time RECEIVED BY. (Signature!Print) Date: (YY/MM/DD) Time Biars used and not submitted to s			Duplicate	1	V	161	30						+	-	,			oncree ra	a
RELINGUISHED BY_(Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY_(Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY_(Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY_(Signature/Print) Date: (YY/MM/DD) Time Custody Seal Yes N											-+	_			and the second second second				
* RELINDUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jar used and not submitted moti subm												_		111111				RECEIVED IN	AWATTO
* RELIQUISHED BY, (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY, (Signature/Print) Date: (YY/M/DD) Time															ENV.			1	
1. 10 1/1, 10		the first of the second s	ature/Print)	-											# jars used and not submitted		C COURT	Control &	eal Yes No
Philo Divera Vicen Vicen Men of 2m/09/11 09:03 3, 2, 3 mat		Anly Ila	- G	121-09	09 1	1030					1					THE SECOND	Temperati 3	Present	


+ 2



exp Services Inc Client Project #: OTT-00234493-A0 Client ID: DUPLICATE 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159776

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/17 Report #: R6814914 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q0105

Received: 2021/09/10, 13:50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water (1)	2	N/A	2021/09/14	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	2	2021/09/15	2021/09/16	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-A0 Your C.O.C. #: 159776

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/17 Report #: R6814914 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1Q0105 Received: 2021/09/10, 13:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		QPP891			QPP891			QPP892		
Sampling Date		2021/09/10			2021/09/10			2021/09/10		
		11:40			11:40			12:40		
COC Number		159776			159776			159776		
	UNITS	BH-7B	RDL	QC Batch	BH-7B Lab-Dup	RDL	QC Batch	BH-9	RDL	QC Batch
BTEX & F1 Hydrocarbons	<u> </u>		·						-	
Benzene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
Toluene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
Ethylbenzene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
o-Xylene	ug/L	<0.20	0.20	7576253				<0.20	0.20	7576253
p+m-Xylene	ug/L	<0.40	0.40	7576253				<0.40	0.40	7576253
Total Xylenes	ug/L	<0.40	0.40	7576253				<0.40	0.40	7576253
F1 (C6-C10)	ug/L	<25	25	7576253				<25	25	7576253
F1 (C6-C10) - BTEX	ug/L	<25	25	7576253				<25	25	7576253
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	7578054	<100	100	7578054	<100	100	7578054
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	7578054	<200	200	7578054	<200	200	7578054
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	7578054	<200	200	7578054	<200	200	7578054
Reached Baseline at C50	ug/L	Yes		7578054	Yes		7578054	Yes		7578054
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	101		7576253				101		7576253
4-Bromofluorobenzene	%	93		7576253				84		7576253
D10-o-Xylene	%	99		7576253				101		7576253
D4-1,2-Dichloroethane	%	109		7576253				107		7576253
o-Terphenyl	%	95		7578054	102		7578054	99		7578054
RDL = Reportable Detection I	imit									
QC Batch = Quality Control B	atch									
Lab Dup - Laboratory Initiaty	d Dunlig									

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

BV Labs ID: QPP891 Sample ID: BH-7B Matrix: Water					Collected: Shipped: Received:	2021/09/10 2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7576253	N/A	2021/09/14	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnieszka	Brzuzy-Snopko
BV Labs ID: QPP891 Dup Sample ID: BH-7B					Collected: Shipped:	2021/09/10
Matrix: Water					Received:	2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnieszka	Brzuzy-Snopko
BV Labs ID: QPP892 Sample ID: BH-9					Collected: Shipped:	2021/09/10
Matrix: Water					Received:	2021/09/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7576253	N/A	2021/09/14	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7578054	2021/09/15	2021/09/16	Agnioszka	Brzuzy-Snopko

GENERAL COMMENTS

Each t	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	8.7°C	
	•	•	'
Result	s relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-A0 Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
7576253	1,4-Difluorobenzene	2021/09/14	96	70 - 130	95	70 - 130	101	%			
7576253	4-Bromofluorobenzene	2021/09/14	104	70 - 130	106	70 - 130	94	%			
7576253	D10-o-Xylene	2021/09/14	94	70 - 130	94	70 - 130	102	%			
7576253	D4-1,2-Dichloroethane	2021/09/14	103	70 - 130	98	70 - 130	103	%			
7578054	o-Terphenyl	2021/09/16	112	60 - 130	96	60 - 130	90	%			
7576253	Benzene	2021/09/14	104	50 - 140	103	50 - 140	<0.20	ug/L	NC	30	
7576253	Ethylbenzene	2021/09/14	111	50 - 140	111	50 - 140	<0.20	ug/L	1.8	30	
7576253	F1 (C6-C10) - BTEX	2021/09/14					<25	ug/L	NC	30	
7576253	F1 (C6-C10)	2021/09/14	93	60 - 140	93	60 - 140	<25	ug/L	NC	30	
7576253	o-Xylene	2021/09/14	109	50 - 140	108	50 - 140	<0.20	ug/L	0.67	30	
7576253	p+m-Xylene	2021/09/14	106	50 - 140	107	50 - 140	<0.40	ug/L	2.5	30	
7576253	Toluene	2021/09/14	102	50 - 140	102	50 - 140	<0.20	ug/L	NC	30	
7576253	Total Xylenes	2021/09/14					<0.40	ug/L	2.1	30	
7578054	F2 (C10-C16 Hydrocarbons)	2021/09/16	118	60 - 130	112	60 - 130	<100	ug/L	NC	30	
7578054	F3 (C16-C34 Hydrocarbons)	2021/09/16	120	60 - 130	116	60 - 130	<200	ug/L	NC	30	
7578054	F4 (C34-C50 Hydrocarbons)	2021/09/16	124	60 - 130	116	60 - 130	<200	ug/L	NC	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

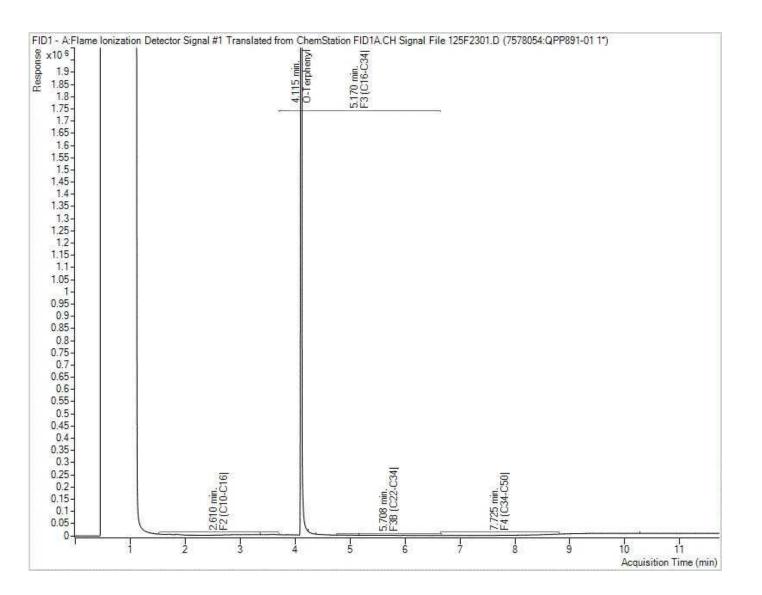
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

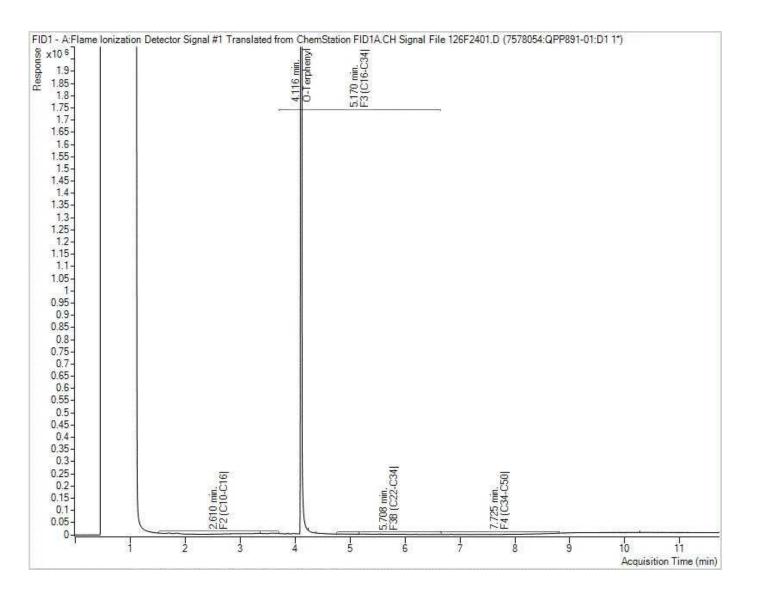
The analytical data and all QC contained in this report were reviewed and validated by:

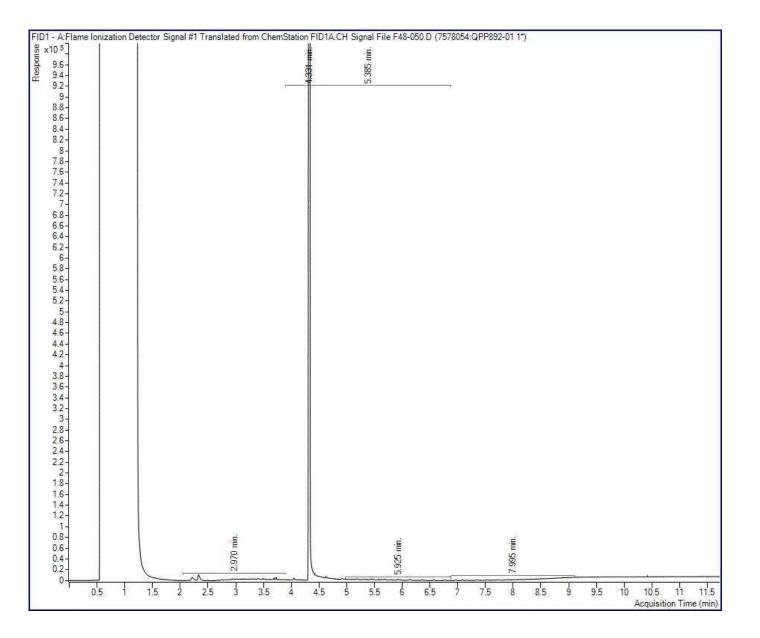
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist


BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM FCD-01191/6 Invoice Information	Repo	t Information	(if diffe	ers from	invoice	:)			Contraction (Contraction)	All and the	104LS1-07-114	Y REC	Constraints and	-	59776 Page of Turnaround Time (TAT) Required
any Name: Exp Services Inc.	Company Name:	EXF	Se	en;	u.s	Inc		Quotation #	机场				ily.gl	11	Regular TAT (5-7 days) Most analyses
ct Name: Accounts Payable	Contact Name:	Mar	1< 1	Mc	Ca	lla		P.O. #/ AFE		Sec. 1					PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
ny Name: <u>FXY</u> Services Inc. tName: <u>Accounts</u> Payable s: <u>100-2650</u> Queens vTw <u>Dr-0tawa</u> , ON <u>613-688-1899</u> Fax: <u>accounting-ottawa@exp-com</u>	Address:	100-	26:	50 0	ave	en	svier	Project #:	OT	1-0	023	449:	3-A	10	Rush TAT (Surcharges will be applied)
Dr. Ottawa, ON	1	Dr.	07	tar	Ja	10	N	Site Locatio): 			412 11			1 Day 2 Days 3-4 Days
613-688-1899 Fax: accounting-ottaug@exp-com	Phone: 613-6	8-189	9	Fax:				Site #:				7/e/10-20			Date Required:
and the second								Site Locatio			and	FCK	ert		Rush Confirmation #:
REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE	Other Regulations	VERITAS LABORA	ATORIES' I	DRINKING	WATER	CHAIN OF	CUSTODY	Sampled By: Analysis R	equested	ACI	riy	-0			LABORATORY USE ONLY
able 2 Ind/Comm Coarse MISA able 3 Agri/ Other Other Spe able Other Other Spe OR RSC (PLEASE CIRCLE) Y / N Criteria on Certificate of Analysis: Y / N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL SAMPLE IDENTIFICATION DATE SA (YYYY/N BH-7B 2021/C	AIN. 3 DAY TAT REQUIRE able DELIVERY TO BUREAU MMPLED TIME SAMPLE	D) /ERITAS	4 4 of containers submitted	PIELD FILTERED (CIRCLE) Metals/Hg/C/VI	bittor PHC F1		REG 153 METALS & INORGANICS	Rec 133 METALS (Hus - E)						HOLD- DO NOT AMALYZE	CODLING MEDIA PRESENT: (Y /) N CODLING MEDIA PRESENT: (Y /) N COMMENTS
Katherine Szozda									_		RI	CEIV	ED I	IN C	OTTAWA
	A			Part of the second seco											
КЈҮ ОТТ-001	100		28.5	M											
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MI							ure/Print		DATE: (YYYY/M	M/DD)	1	E: (HH:M		BV JOB #
Me Jeremy Edut 2001/09,	10 1300	3	Ke	~	J	in	y	z	202	10	9/10	1	3 · 5	S	
			m	rl	n	N	101	M	ven	1.9	14	0	4!10		

-


3


· 1.

exp Services Inc Client Project #: OTT-00234493-A0 Client ID: BH-7B

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

~
-
-
3
14
-
ω.
\leq
1
100
0
0
in the
÷.
1
2
0
-
0
5
1.1
0
6.3
c p
-
~

COC-1004 (06/19)

-

Your Project #: OTT-00234493-AO Your C.O.C. #: 159822

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/23 Report #: R6823323 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1R1813

Received: 2021/09/21, 13:00

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water (1)	1	N/A	2021/09/22	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2021/09/22	2021/09/23	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00234493-AO Your C.O.C. #: 159822

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/23 Report #: R6823323 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1R1813 Received: 2021/09/21, 13:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		QSA941		
Sampling Date		2021/09/21		
		11:00		
COC Number		159822		
	UNITS	MW-3	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	7593986
Toluene	ug/L	<0.20	0.20	7593986
Ethylbenzene	ug/L	<0.20	0.20	7593986
o-Xylene	ug/L	<0.20	0.20	7593986
p+m-Xylene	ug/L	<0.40	0.40	7593986
Total Xylenes	ug/L	<0.40	0.40	7593986
F1 (C6-C10)	ug/L	<25	25	7593986
F1 (C6-C10) - BTEX	ug/L	<25	25	7593986
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	7593829
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	7593829
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	7593829
Reached Baseline at C50	ug/L	Yes		7593829
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	95		7593986
4-Bromofluorobenzene	%	94		7593986
D10-o-Xylene	%	101		7593986
D4-1,2-Dichloroethane	%	104		7593986
o-Terphenyl	%	95		7593829
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

TEST SUMMARY

BV Labs ID: QSA941 Sample ID: MW-3 Matrix: Water					Collected: 2021/09/21 Shipped: Received: 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7593986	N/A	2021/09/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7593829	2021/09/22	2021/09/23	Ravinder Gaidhu

GENERAL COMMENTS

Each temperature is the	average of up to	three cooler temperatures taken at receipt
Package 1	6.0°C	
	<u>.</u>	_
Results relate only to the	a itams tastad	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00234493-AO Sampler Initials: JE

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7593829	o-Terphenyl	2021/09/22	91	60 - 130	94	60 - 130	92	%		
7593986	1,4-Difluorobenzene	2021/09/22	96	70 - 130	97	70 - 130	97	%		
7593986	4-Bromofluorobenzene	2021/09/22	102	70 - 130	102	70 - 130	97	%		
7593986	D10-o-Xylene	2021/09/22	92	70 - 130	91	70 - 130	102	%		
7593986	D4-1,2-Dichloroethane	2021/09/22	104	70 - 130	103	70 - 130	111	%		
7593829	F2 (C10-C16 Hydrocarbons)	2021/09/23	97	60 - 130	95	60 - 130	<100	ug/L	15	30
7593829	F3 (C16-C34 Hydrocarbons)	2021/09/23	101	60 - 130	103	60 - 130	<200	ug/L	NC	30
7593829	F4 (C34-C50 Hydrocarbons)	2021/09/23	107	60 - 130	105	60 - 130	<200	ug/L	NC	30
7593986	Benzene	2021/09/22	103	50 - 140	103	50 - 140	<0.20	ug/L	NC	30
7593986	Ethylbenzene	2021/09/22	107	50 - 140	106	50 - 140	<0.20	ug/L	NC	30
7593986	F1 (C6-C10) - BTEX	2021/09/22					<25	ug/L	NC	30
7593986	F1 (C6-C10)	2021/09/22	94	60 - 140	96	60 - 140	<25	ug/L	NC	30
7593986	o-Xylene	2021/09/22	104	50 - 140	104	50 - 140	<0.20	ug/L	NC	30
7593986	p+m-Xylene	2021/09/22	104	50 - 140	104	50 - 140	<0.40	ug/L	NC	30
7593986	Toluene	2021/09/22	98	50 - 140	97	50 - 140	<0.20	ug/L	NC	30
7593986	Total Xylenes	2021/09/22					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

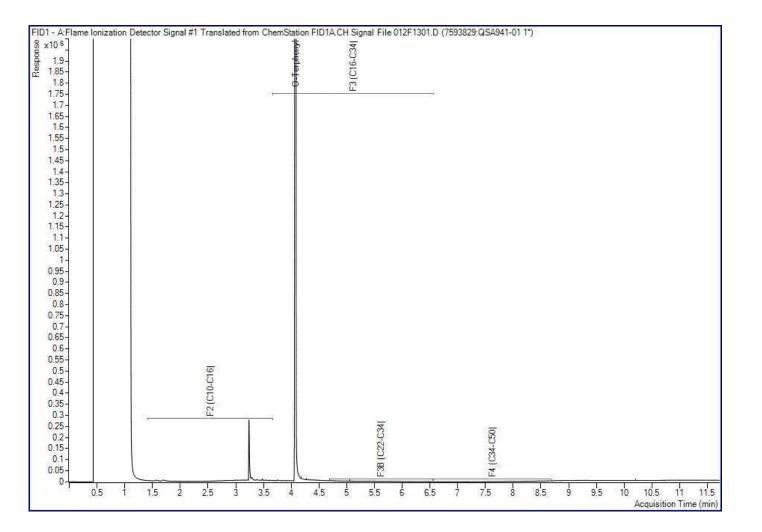
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).


VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM FCD-		n (if differs from invoice)	CHAIN OF CUSTODY R		Page of	
any Name: EXP Services In		The others investigation	Quotation # B91718		(S-7 days) Most analyses	
chanse: Accounts Payal	ble contact Name: Mo	irk McCalla	P.O. R/AFER:		ADVANCE NOTICE FOR RUSH PROJECTS	
= 100-2650 Gue			Project.# 017-00234		(Surcharges will be applied)	
Dr.			Site Location:	= 1 Day	2 2 0 2 9 2 0 2 9 2 0 2 9 2 0 2 9 2	
6B-688-1297 ac	Phone:	Fac	Site #:	Date Required:		
accounting ottawn @ ex	p-com Email Mark-mus	100 CXP - COM		dert Rush Confirmation #	EP.	
REGULATED DRIVING WATER OR WATER INTENDED FOR HUMAN CON Regulation 153	Other Regulations	ATORES' DRIVENSA TRATES COVER OF CONTRACT	Analysis Requested		BORATORY USE ONLY	10 .
able 1 Affes/Park Med/Fine	CCME Sabitary Sewer Bylaw			- CUSTODY SEAL	COOLER TEMPERATURES	
able 2 Ind/Comm Coarse able 3 Agri/ Other	MISA Storm Sewer Bylaw	1 Icon		Present Intac	A LOCAL STATE OF MALEARINGS AND	
able •	Other (Specify) REG SS8 (MIN. 3 DAY TAT REQUIRED)		10.5	YYY	6,6,6	
DR RSC (PLEASE CIRCLE) Y / N	REG 406 Table	AMITTER AMERICA	CS .	E 7 9	51515	
e Criteria on Certificate of Analysis: Y / N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME UF	E SAMPLING UNTIL CELTVERY TO BUREAU VERITAS	15 Sun	WEL2	ANA ANA		
		S (2) (2)	2 2 2 A	5		
		DATADAS NUTRIED PHC FT 12 - 14	IS NOT ALL REPARTS	CODLING MEDIA PRES		
SAMPLE IDENTIFICATION		a of containt relativities artix/ PHC F1 PHCs 12 - F4 VOCS PHCs 153 MITAI	REG 153 XCMG5 HERALS	CODUNG MEDIA PRESI		
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPLED MATRIX	# OF FFEL FFEL FFEC FFEC	Artic 153 X0MS + REC 133 METAL Prec C*VI, EPHAE	CODUING MEDIA PRES		
	DATE SAMPLED (YYYY/MM/DD) (HE/MM) MATRIX	# OF FFEL FFEL FFEC FFEC	RIG LSS KOMAS - RIG LSS KOMAS	CODUNG MEDIA PRES		
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD) (HE/MM) MATRIX	# OF FFEL FFEL FFEC FFEC	RIG 153 (2014) RIG 153 MITAL	CODUNG MEDIA PARS		
sample identification	DATE SAMPLED (YYYY/MM/DD) (HE/MM) MATRIX	# OF FFEL FFEL FFEC FFEC	Into 153 Normal Annual Into 153 Normal Annual Into 153 Normal Annual Into 153 Normal Annual Ann	CODUNG MEDIA PARS		
SAMPLE IDENTIFICATION	олте замирео (уууулал/ро) 2021/09/21 UOO G-6 -Sep-21 13:00	# OF FFEL FFEL FFEC FFEC	AIG 153 107465 AIG 163 A		COMMENTS	
SAMPLE IDENTIFICATION	олте замичео (уууу/мал/ро) 2021/09/21 U00 С-и -Sep-21 13:00	# OF FFEL FFEL FFEC FFEC			COMMENTS	
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MAUDD) TIME SAMPLED (HOYY/MAUDD) MATERN 2021/01/21 U.O.O. Guide Guide	# OF FFEL FFEL FFEC FFEC				
SAMPLE IDENTIFICATION	олте замичео (уууу/мал/ро) 2021/09/21 U00 С-и -Sep-21 13:00	# OF FFEL FFEL FFEC FFEC			COMMENTS	
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MAUDD) TIME SAMPLED (HOYY/MAUDD) MATERN 2021/01/21 U.O.O. Guide Guide	# OF FFEL FFEL FFEC FFEC			COMMENTS	
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MA/DD) TIME SAMPLED (HIME MARK) MATRIE Q021/01/21 UOO G-4 -Sep-21 13:00				COMMENTS	
SAMPLE IDENTIFICATION MW-3 21- Katherine C1R: KJY C	DATE SAMPLED (YYY/MA/DD) TIME SAMPLED (HOYY/MA/DD) MATER (HOYY/MA/DD) 2021/01/21 100 Gui Gui Gui Gui Gui Gui Gui Gui Gui Gui	# OF FIELD BITD PHEC VOIC			COMMENTS EIVED IN OTTAWA	

<	æ		_	
n	U R	-	ELC.	(Participation)
A-LU	ΕA	200		
9	=		-	

Company Name

EXP Services

Inc.

Company Name

Quotation #:

BAILIBO

Regular TAT (5-7 days) Most analyses **Turnaround Time (TAT) Required** Page of

CHAIN OF CUSTODY RECORD 159822

Project Information (where applicable)

Report Information (if differs from invoice)

Invoice Information

CAM FCD-01191/6

Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 6740 Campobello Road, Mississauga, Ontario L5N 2L8

SAMBLES MILET BE KEDT COOL (< 10 °C) EBOM TIM	Include Criteria on Certificate of Analysis: Y / N	FOR RSC (PLEASE CIRCLE) Y / N	Table 2 Ind/Comm Coarse	Table 1 Res/Park Med/ Fine	Regulation 153	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
SAMDI ES MILIST DE VEDT COOL (< 10 °C) EROM TIME DE SAMDI ING LINTIL DE IVERV TO RUBEAU VEDITAS		(Specify 58 (MIN. 06 Table	MISA Storm Sewer Bylaw	CCME Sanitary Sewer Bylaw	Other Regulations	A CARDEN AND A CAR
S & IP META	NO)	Metals / Hg / Metals / Hg / RGANICS	CrVI		Analysis Reque	aniipica al-

2	TIME SAMPLED	DATE SAMPLED	SAMPLE IDENTIFICATION
	San Street Stree	Sa Shannar Sa	
ITA	TO BUREAU VER	ING UNTIL DELIVERY	SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU

	A		
contact Name: Accounts Your able	ole contact Name: Mark Mc Calla	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
100-2650 B Je	Sucepsvice Address:	Project #: 0+7-00234493-40	Rush TAT (Surcharges will be applied)
Dr.		Site Location:	1 Day 2 Days 3-4 Days
Phone: 613-688-1897Fax:	Phone: Fax:	Stite #:	[
Email: accounting, otherwar a exp	- com Email: mark-mialla@exp-com	Site Location Province:	Date Required:
MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSI	MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITA'S LABORATORES' DRIVKING WATER CHAIN OF CUSTODY	BY sampled By: Jerenny Ecllert	Rush Confirmation #:
Regulation 153	Other Regulations	Analysis Requested	LABORATORY USE ONLY
Table 1 Ares/Park Med/ Fine	MISA Storm Sewer Bylaw		CUSTODY SEAL VV N. COOLER TEMPERATURES
Table 3 Agri/ Other	Region		Présent Intact
	tals / H	S-B)	7 7 6 6 6
-	LE) Me	als, HV	
10 °C) FROM	NERS SI	ALS MMS Me	
SAMDIE IDENTIFICATION	DATE SAMPLED TIME SAMPLED MATTERY CONTAIN FILTERIO	53 ICPN 53 MET 'r VI, ICF	COOLING MEDIA PRESENT
	# OF (FIELD BTEX/ PHCs VOCs	REG 1	COMMENTS
1 MW-3	2021/07/21 1100 G-w 4 XX		
2	-		
<u></u>			
4 21-S	21-Sep-21 13:00		
5 Katherine Szozda	Szozda		
6 C1D1913			TTAWA
L L			RECEIVED IN OTHER
8 KJY OT	OTT-001		

COC-1004 (06/19)

and-conditions

10

RELINQUISHED BY: (Signature/Print)

eremy Edut

2021/02/2

DATE: (YYYY/MM/DD)

TIME: (HH:MM) 1200

HISLING MULCAHY

CAMMA

2021/09/21

13:00 TIME: (HH:MM)

DATE: (YYYY/MM/DD)

BV JOB #

RECEIVED BY: (Signature/Print)

9

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Bureau Veritas Laboratories' standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms available at http://www.bulabs.com/terms-

White: BV Labs ~ Yellow: Client

EXP Services Inc.

DCR Phoenix Group of Companies Phase Two Environmental Site Assessment 1154, 1176, 1180, and 1208 Old Montreal Road, Ottawa, Ontario OTT-00234493-BA0 October 5, 2021

