

### Memorandum

To/Attention Mike Giampa - City of Ottawa Date February 16, 2021

Transportation Project Manager

From David Hook Project No 127391

cc Mike Boucher – DCR Phoenix

Subject 1154-1208 Old Montreal Road - Transportation Impact Assessment

Update

#### 1.0 Introduction

IBI Group was retained by DCR Phoenix Development Corporation Ltd. to prepare a Transportation Impact Assessment (TIA) Update to address outstanding transportation-related comments regarding the proposed residential development to be located at 1154-1208 Old Montreal Road. A TIA report was previously prepared by WSP Global Inc. in March 2018 and submitted to the City of Ottawa for circulation and review. Circulation comments have since been received and the proposed Plan of Subdivision has been revised in response to these comments. The purpose of this Update is to summarize the changes to the Plan of Subdivision since the previous submission and provide the results of a revised technical analysis based on the latest development plan.

The following items will be discussed as part of this TIA Update:

- 1. Summarize the revised Plan of Subdivision;
- 2. Identify the proposed on-site pedestrian and cycling facilities;
- 3. Review historical collision data;
- 4. Summarize the expected number of new site-generated trips during the weekday morning and afternoon peak hours based on the revised land use statistics;
- 5. Summarize the projected future background and total traffic conditions;
- 6. Discuss the projected site-generated transit demand and identify any potential capacity issues;
- 7. Review traffic signal and roundabout warrants;
- 8. Complete intersection capacity analyses under future background and total traffic conditions;
- 9. Calculate Multi-Modal Level of Service (MMLOS) for all signalized study area intersections and the segment of Old Montreal Road adjacent to the site;
- 10. Complete auxiliary lane warrant analyses at all study area intersections; and

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

11. Review the proposed private approaches to confirm their compliance with applicable bylaws and guidelines (e.g. Private Approach By-law, Geometric Design Guide for Canadian Roads, etc.)

#### 2.0 Proposed Development

Since the submission of the TIA by WSP Global Inc. in March 2018, the Plan of Subdivision for the proposed development has undergone significant revisions. The previous plan was primarily composed of mid-rise apartment buildings with a small number of semi-detached and townhome units. Four private approaches were previously proposed on Old Montreal Road, two of which were to be restricted to right-in/right-out.

In response to the circulation comments, the Plan of Subdivision has been revised to include just two access intersections on Old Montreal Road - one of which will be restricted to inbound traffic only. The revision also includes a reduction in apartment units and an increase in lower-density residential units. **Table 1** provides a summary of the current dwelling unit breakdown as compared with the previous submission.

|                        |                    |          | Low-Den           | sity Units        |                             |             |
|------------------------|--------------------|----------|-------------------|-------------------|-----------------------------|-------------|
| Plan of<br>Subdivision | Apartment<br>Units | Townhome | Semi-<br>Detached | Urban<br>Townhome | Back-to-<br>back<br>Terrace | Total Units |
| Previous               | B : 400            |          | 16                | 30                | 0                           | 402         |
| Previous               | 432                |          | 5                 | 1                 |                             | 483         |
| Current                | 200                | 37       | 0                 | 43                | 32                          | 400         |
| Current                | 380                | 112      |                   |                   |                             | 492         |

Table 1 - Land Use Statistics

As illustrated above, the overall number of units has increased only marginally, however there have been notable changes in the unit mix.

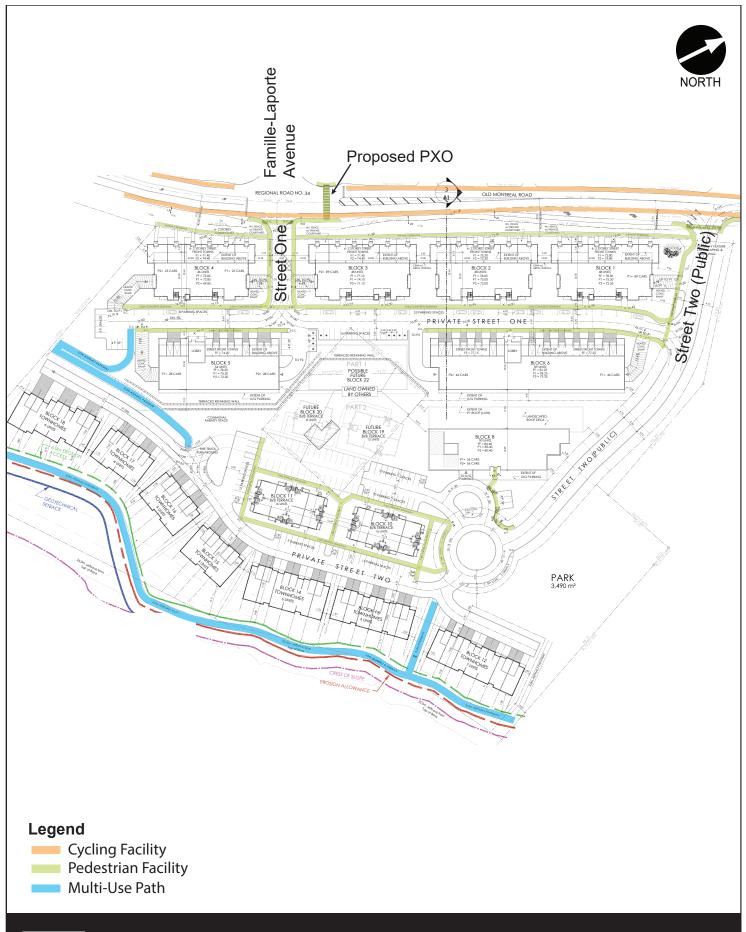
On-site circulation within the proposed development will be accommodated via two new roads each accessed from Montreal Road:

- Street One is a private road and will intersect with Old Montreal Road at the Old Montreal/Famille Laporte intersection. The road will provide 4.25m pavement width at the approach to the intersection and be restricted to inbound traffic only. The basis for this access configuration is that the addition of outbound traffic would trigger the need for traffic signals but would not meet the technical warrants. The remainder of the road will be 6m wide and allow two-way traffic flow throughout the site. On-street parallel parking stalls will be provided along the 6m wide portion.
- Street Two is a local public road with an 18m ROW and 8.5m pavement width, intersecting Old Montreal Road approximately 200m east of the Famille Laporte/Street One intersection. Beyond the turning circle near the southeast corner of the site, Street Two becomes a private road with 7m of pavement width, providing access to the planned townhouse units in Blocks 12 through 18.

The current Plan of Subdivision has been provided in **Appendix A**.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 3.0 Proposed Pedestrian and Cycling Facilities


Based on the current Plan of Subdivision, the following pedestrian and cycling facilities will be provided within the limits of the subject site:

- Concrete sidewalks on both sides of Street One and the Street One private approach;
- A concrete sidewalk on the west side of Street Two between Old Montreal Road and Street One;
- Concrete sidewalks around the two back-to-back terrace home buildings (Blocks 10 & 11);
- A 3.0m wide pedestrian pathway connecting Street One to Street Two; and
- A 3.0m wide multi-use path along the southern boundary of the property with a connection to Street Two forming part of the City's Major Pathway network.

In addition to the above, the following pedestrian and cycling facilities are proposed with the Old Montreal Road right of way:

- A pedestrian crossover (PXO) on the east leg of the Old Montreal Road & Famille-Laporte Avenue / Street One intersection;
- Continuous on-road bicycle lane/paved shoulder (eastbound only) along the site frontage;
- A 1.5m wide temporary asphalt sidewalk on the south side of Old Montreal Road along the site frontage with connections to the urban townhomes fronting onto the street;

The above pedestrian and cycling facilities are illustrated in **Exhibit 1**. These facilities will provide pedestrian and cyclist connectivity to the adjacent transportation network and throughout the site. It should be noted that, given the significant grade on Street Two, a sidewalk is not possible on the planned public segment of this road. Although there are no pathways directly connecting the proposed park with Old Montreal Road, a pedestrian route is provided from the primary site access (Famille Laporte intersection) along the western edge of the site and along Street Two Private.



Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 4.0 Collision Data

The summary of collision trends described in the March 2018 TIA was reviewed for accuracy. Based on a review of the data provided by the City of Ottawa, the interpretation of results of the collision analysis is reasonable. Historical collision data for the period of January 2012 to December 2016 is provided in **Appendix B**.

#### 5.0 Trip Generation

Person-trips generated by the proposed development were calculated using the residential trip generation rates, mode shares and directional splits described in the 2009 TRANS Trip Generation Study and followed the same methodology described in the March 2018 TIA. The revised number of trips generated by the apartment units were estimated using the 'mid-rise apartment' rate while the trips generated by the lower-density units were estimated using the 'townhome' rate. **Table 2** illustrates the estimated number of development-generated person-trips comparing the previous and current Plans of Subdivision.

**PM** AM Plan of **Subdivision** In Out **Total** In Out Total **Previous** 169 292 457 256 227 483 Current 98 263 361 264 186 450

**Table 2 - Development-Generated Person-Trips** 

Under the current Plan of Subdivision, the overall number of development-generated person-trips is expected to be reduced despite the small increase in the total number of units. This is a result of the specific trip generation rates for each unit type and has been calculated to a finer degree of accuracy based on the 2009 TRANS Trip Generation Study. Relevant extracts from this study are provided in **Appendix C**.

Revised development-generated person-trips were subdivided by mode in accordance with the mode share targets described in the March 2018 TIA:

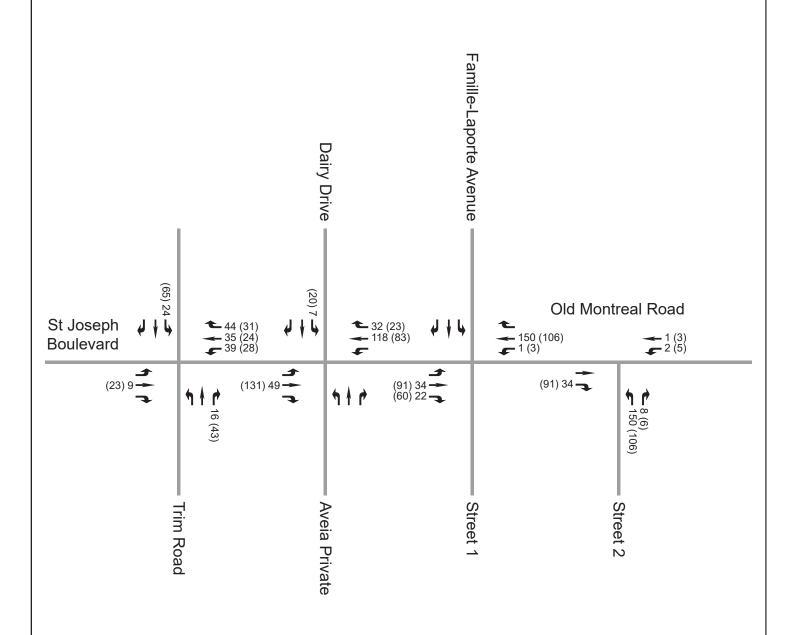
• Auto Driver: 60%

Auto Passenger: 15%

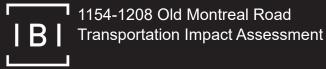
Transit: 20%Bicycle: 5%Walk: 0%

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

**Table 3** summarizes the projected number of development-generated trips by mode of transportation.


Table 3 - Development-Generated Trips by Mode

| Mode              |    | AM  |       | PM  |     |       |  |
|-------------------|----|-----|-------|-----|-----|-------|--|
| Mode              | In | Out | Total | ln  | Out | Total |  |
| Auto Driver       | 59 | 158 | 217   | 158 | 112 | 270   |  |
| Auto<br>Passenger | 15 | 39  | 54    | 40  | 28  | 68    |  |
| Transit           | 19 | 53  | 72    | 53  | 37  | 90    |  |
| Bike              | 5  | 13  | 18    | 13  | 9   | 22    |  |
| Walk              | 0  | 0   | 0     | 0   | 0   | 0     |  |


The March 2018 TIA projected a total of 305 and 323 two-way vehicle-trips and a total of 102 and 108 two-way transit-trips during the weekday morning and afternoon peak hours, respectively. As such, under the current Plan of Subdivision, the overall trip generation of the proposed development is expected to be reduced and is directly attributable to the trip generation characteristics of the revised unit mix.

**Exhibit 2** illustrates the distribution and assignment of site-generated vehicle-trips to the study area intersections in accordance with the methodology described in the March 2018 TIA.









Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 6.0 Transit Demand and Capacity Review

**Table 4** summarizes the projected transit demand generated by the full build-out of the proposed development and the adjacent Cardinal Creek (Phases 1 to 7).

| Cardinal<br>Creek<br>Village <sup>1</sup> |     | AM  |       | РМ  |     |       |  |
|-------------------------------------------|-----|-----|-------|-----|-----|-------|--|
| Development                               | ln  | Out | Total | In  | Out | Total |  |
| Creek                                     | 136 | 292 | 628   | 524 | 144 | 812   |  |
| 1154-1208<br>Old Montreal<br>Road         | 19  | 53  | 72    | 53  | 37  | 90    |  |
| Total                                     | 155 | 345 | 700   | 577 | 181 | 902   |  |

Table 4 - Transit Demand per Development (Ultimate)

#### Notes:

As illustrated above, the combined transit demand of these two developments is expected to be in the order of 700 to 900 passengers during the weekday morning and afternoon peak hours upon full build-out of each. It should be noted that the proposed development transit demand represents only 10% of the adjacent Cardinal Creek demand at full build-out.

Route #221 is a weekday peak period transit route that operates between the Village of Cumberland and Blair Station with four westbound trips in the morning and four eastbound trips in the afternoon and is currently the only transit route within close proximity of the proposed development. Based on pre-pandemic information provided by OC Transpo, Route #221 was found to be operating at 36% and 27% of its available passenger capacity during the weekday morning and afternoon peak hours, respectively. While there are no formal plans to add trips on Route #221 at this time, OC Transpo continually tracks the status of developments and ridership trends and will be reviewing these in the near future in conjunction with the introduction of light rail transit (LRT) service to Trim Station. Service adjustments are made as needed to accommodate growing ridership. The current route capacity, however, will be sufficient to accommodate the projected transit demand of the proposed development.

Should an increased number of residents choose to use the Trim Park and Ride, OC Transpo has indicated that the facility was found to have a peak utilization of only 57-59% in January/February 2020, with a total parking supply of 1,065 spaces. As part of the Stage 2 LRT project, this facility will see a slight increase in parking supply to 1,111 spaces as a result of the station reconfiguration.

Based on the existing transit route capacity and utilization of the Trim Station Park and Ride facility described above, the transit demands of the proposed development will be easily accommodated.

To accommodate the projected transit demand of the proposed development, consideration has given on how transit users will be able to access transit services. Transit users coming from the west will be able to disembark on the south side of Old Montreal Road and access the site without crossing the road. Transit users heading towards the west, however, will be required to cross Old Montreal Road to access one of the westbound bus stops. As there is no existing controlled pedestrian crossing at the Famille-Laporte intersection, analysis has been conducted to determine

<sup>&</sup>lt;sup>1</sup> – Transit trips were calculated based on the trip generation assumptions described in the Cardinal Creek Village Phase 1-7 Transportation Impact Study (IBI Group, October 2013)

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

whether a pedestrian crossover (PXO) is warranted at this location. As noted in subsequent sections of this report, full traffic signalization at the Old Montreal/Street One/Famille Laporte intersection is not warranted.

Based on OTM Book 15, there are four criteria that are used to determine whether a PXO is warranted:

- Are traffic signals not warranted for pedestrians?
- Do the vehicular and pedestrian volumes exceed the thresholds outlines in the guideline?
- Is there a requirement for system connectivity or is the location on a pedestrian desire line?
- Is the site less than 200m from another traffic control device?

Based on the results of the analysis, a PXO was found to be appropriate at this location as traffic signals are not warranted, there is a requirement for system connectivity, and it is over 200m to the nearest traffic control device. Additionally, the future eight-hour vehicular and pedestrian volumes are also likely to meet the volume threshold.

OTM Book 15 also provides a selection matrix for determining which PXO configuration is appropriate for any given context. At the Famille-Laporte intersection, Old Montreal Road experiences eight-hour traffic volumes between 4,500 and 6,000 vehicles/8-hours, has a 60 km/h posted speed limit and has a width of three lanes (two through lanes and an auxiliary left-turn lane). Based on these parameters, a Level 2, Type 'B' PXO is appropriate for this location.

It should be noted that corridor-wide pedestrian and cycling facility improvements on Old Montreal Road (by others) would also provide future residents an opportunity to walk or bike to the Trim Park & Ride rather than use a private vehicle. Given the distance, however, walking is not expected to represent a significant proportion of the mode share while the cyclist mode share may only increase slightly following any potential upgrade from the existing paved shoulders to an exclusive facility (by others). Direct access to transit therefore represents the most effective measure for reducing the automobile dependence of the site. With the suitability of a PXO, it is recommended that OC Transpo give consideration towards the implementation of an additional (eastbound) bus stop on the east side of Famille Laporte Avenue to further-increase the convenience of transit for residents of the proposed development.

#### 7.0 Future Background and Total Traffic Volumes

Based on the 2013 Transportation Master Plan (TMP), there are currently no planned road network or transit network improvements within the timeframe of this study that are expected to have an impact on local traffic patterns or the mode share distribution. The O-Train Confederation Line extension to Trim Road is expected to be open for full revenue service by the end of 2024, however, given the distance between the future Trim Station and the proposed development it has been conservatively assumed that this extension will not have a significant impact on local mode shares. Furthermore, the proposed development is outside the future Trim Station Transit-Oriented Development (TOD) zone.

The TMP indicates that Old Montreal Road and Ottawa Road 174 east of Trim Road may both be widened to four lanes, while west of Trim Road, Ottawa Road 174 may be widened to six lanes. The Rapid Transit & Transit Priority 2031 Network Concept from also indicates that the O-Train Confederation Line may be extended further east along Old Montreal Road. As these network modifications are not likely to occur within the 2027 horizon year of this study, they have not been considered in the analysis.

The most significant network change expected within the timeframe of this study is the planned connection of Cardinal Creek Village to Ottawa Road 174. Although the specific timing is unknown,

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

this connection is required for upcoming phases of the subdivision development and will result in a reduction of volumes on Old Montreal Road along the frontage of the proposed development.

The latest intersection traffic counts were obtained at the following intersections to ensure that traffic volumes were as up to date as possible:

- Trim Road & St Joseph Boulevard / Old Montreal Road (April 2017, City of Ottawa)
- Old Montreal Road & Dairy Drive / Aveia Private (December 2019, City of Ottawa)

Given the ongoing COVID-19 pandemic, new intersection traffic counts could not be collected due to the impact it has on commuter traffic volumes during the weekday peak hours. Reliable traffic data at the primary site access (Montreal Road / Famille Laporte / Street One intersection) could not be obtained, and therefore the revised analysis has been based on the Cardinal Creek Village Phase 1-7 Transportation Impact Study (IBI Group, October 2013) and the approximated status of the development at the time the counts were undertaken.

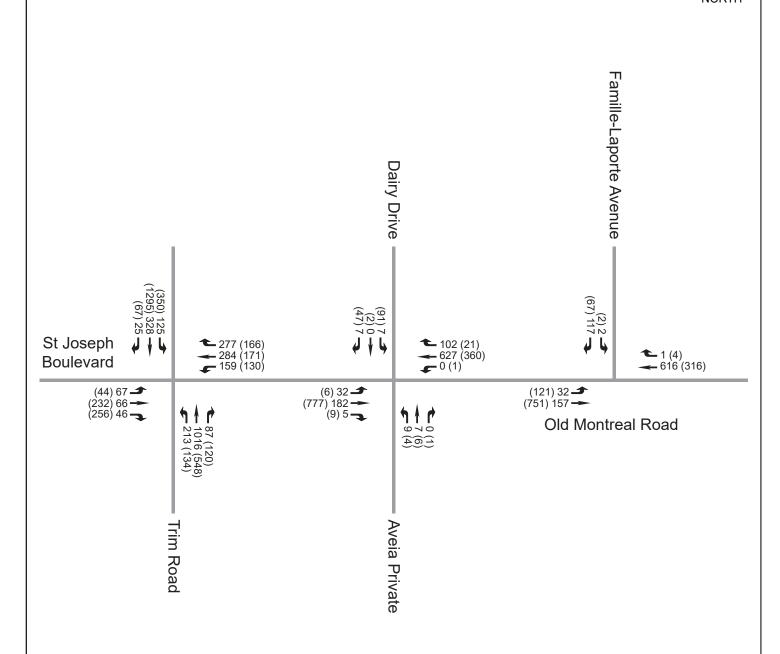
A historical traffic count was also obtained for the Old Montreal Road & Dairy Drive / Aveia Private (December 2014, City of Ottawa) intersection to verify the background growth rate used in the March 2018 TIA. Based on this review, the 1.8% background traffic growth rate is confirmed to be appropriate for estimating background traffic growth from outside the study area.

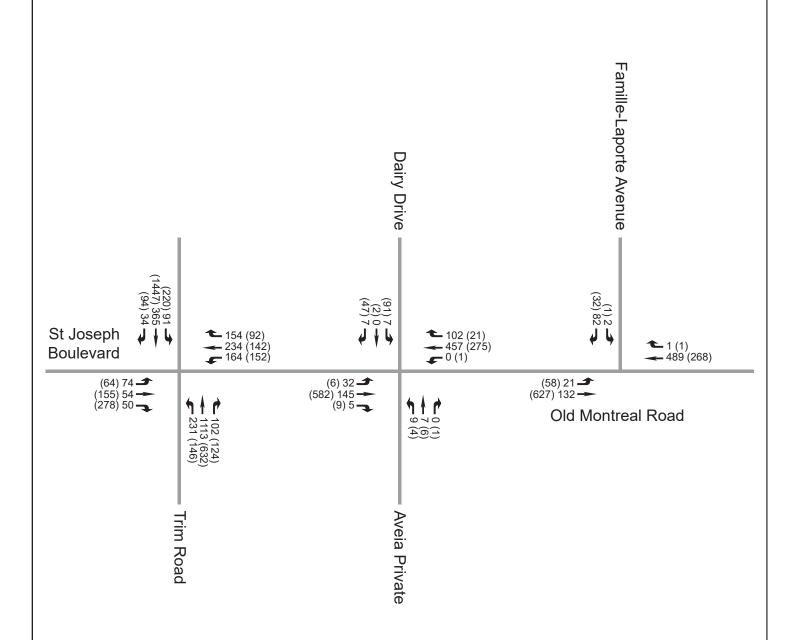
The intersection traffic counts are provided in **Appendix D**.

Traffic generated by all known adjacent developments within the study area was accounted for explicitly in the analysis. There have been no new development applications within the study area since the submission of the March 2018 TIA.

**Exhibits 3 to 6** illustrate the Future (2022 & 2027) Background & Total Traffic volumes at each study area intersection.





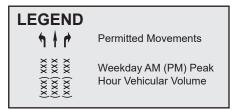
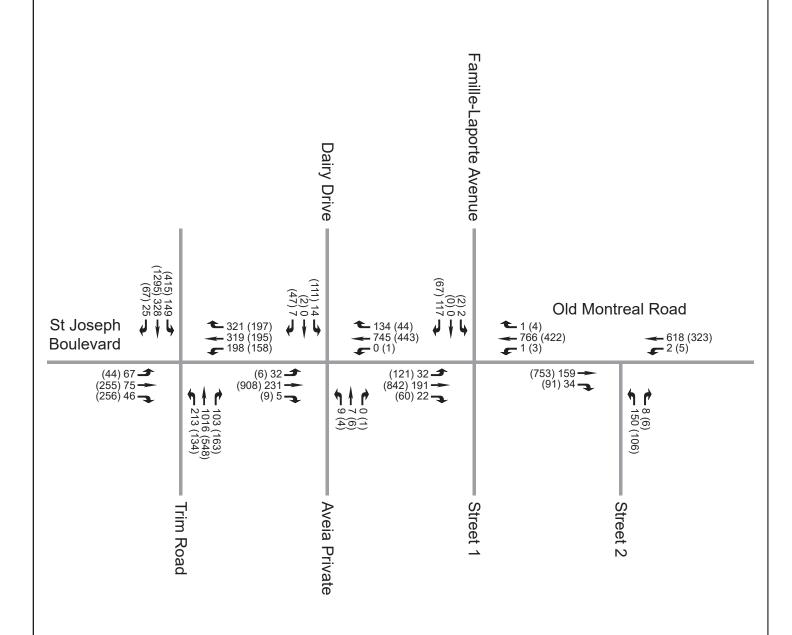




Exhibit 3:

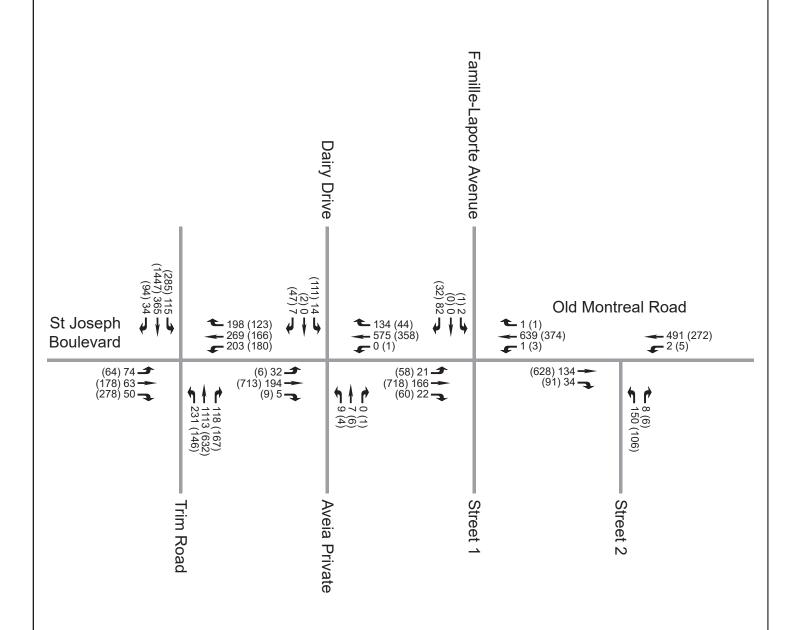
Future (2022)








Note: Per the assumptions of the Cardinal Creek Village (Phase 1-7) TIA, a reduction in volumes is attributable to the planned connection to Ottawa Road 174.


















Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 8.0 Intersection Control

#### **Traffic Signal Warrants**

A traffic signal warrant analysis was completed for all stop-controlled study area intersections. The results of the analysis indicate that <u>none</u> of the intersections warrant traffic signals under Future (2022 & 2027) Background or Total Traffic conditions, including the Old Montreal/Dairy intersection and the Old Montreal/Famille Laporte/Street One intersection. It should be noted that the results of this analysis differ from the March 2018 TIA as they have been based on more recent (2019) data at the Old Montreal/Dairy intersection. The results of the traffic signal warrant analysis are provided in **Appendix E**.

#### **Roundabout Analysis**

The City's Roundabout Implementation Policy indicates that intersections that satisfy any of the following criteria should be screened utilizing the Roundabout Initial Feasibility Screening Tool:

- · At any new City intersection;
- Where traffic signals are warranted; and
- At intersections where capacity or safety problems are being experienced.

As noted in subsequent sections of this report, the Old Montreal Road & Dairy Drive / Aveia Private intersection is expected to experience capacity issues under future traffic conditions. Based on a review of the feasibility of a roundabout at this location, it has been determined that a roundabout would be appropriate at this location and will therefore be considered as a potential means of addressing the capacity issues.

The results of the roundabout feasibility analysis are provided in **Appendix F**.

#### 9.0 Intersection Capacity Analysis

Based on the revised background and total traffic projections, intersection capacity analysis was completed at all study area intersections under Future (2022 & 2027) Background & Total Traffic conditions. All signalized and stop-controlled intersection were analysed using Synchro v11 while roundabouts were analysed using SIDRA Intersections v6.1. The results of the intersection capacity analysis are provided in **Appendix G**.

#### **Analysis Criteria**

#### Signalized Intersections

In qualitative terms, Level of Service (LOS) describes a user's perceived operational conditions of a transportation facility. For vehicular LOS, these conditions are generally defined in terms of delay, speed and travel time, freedom to manoeuvre, traffic interruptions, safety, comfort and convenience. LOS can also be related to the ratio of the volume to capacity (v/c) which is simply the relationship of the traffic volume (either measured or forecast) to the capability of the intersection or road section to accommodate a given traffic volume. This capability varies depending on the factors described above. LOS is given letter designation from A to F. LOS 'A' represents the best operating conditions and LOS 'E' represents the level at which the intersection or an approach to the intersection is carrying the maximum traffic volume that can, practicably, be accommodated. LOS 'F' indicates that the facility is operating beyond its theoretical capacity.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

Table 5 - LOS Thresholds (Signalized)

| LEVEL OF<br>SERVICE | VOLUME TO<br>CAPACITY<br>(V/C) RATIO |
|---------------------|--------------------------------------|
| Α                   | 0 to 0.60                            |
| В                   | 0.61 to 0.70                         |
| С                   | 0.71 to 0.80                         |
| D                   | 0.81 to 0.90                         |
| E                   | 0.90 to 1.00                         |
| F                   | > 1.00                               |

The City of Ottawa has developed a set of thresholds as part of the Transportation Impact Assessment Guidelines which directly relate the volume to capacity (v/c) ratio of a signalized intersection to a LOS designation, as indicated in **Table 5**.

The intersection capacity analysis technique provides an indication of the LOS for each movement at the intersection under consideration and for the intersection as a whole. The overall v/c ratio for an intersection is defined as the sum of equivalent volumes for all critical movements at the intersection divided by the sum of capacities for all critical movements.

The Level of Service calculation is based on locally-specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. The analysis of future conditions considers optimized signal timing plans and the use of a Peak Hour Factor (PHF) of 1.0 to recognize peak spreading beyond a 15-minute period in congested conditions.

#### **Unsignalized Intersections**

The capacity of an unsignalized intersection can also be expressed in terms of the Level of Service it provides. For an unsignalized intersection, the LOS is described in terms of the average movement delays at the intersection. Delay is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this includes the time required for a vehicle to travel from the last-in-queue position to the first-in-queue position. The average delay for any particular minor movement at an unsignalized intersection is a function of the capacity of the approach and the degree of saturation. The overall intersection LOS is representative of the approach with the highest degree of delay.

The Highway Capacity Manual 2010 (HCM), prepared by the Transportation Research Board, includes the following Levels of Service criteria for unsignalized intersections, related to average movement delays at the intersection, as indicated in **Table 6**.

Table 6 - LOS Thresholds (Unsignalized)

| LEVEL OF<br>SERVICE | DELAY<br>(SECONDS /<br>VEHICLE) |
|---------------------|---------------------------------|
| Α                   | <10                             |
| В                   | >10 and <15                     |
| С                   | >15 and <25                     |
| D                   | >25 and <35                     |
| Е                   | >35 and <50                     |
| F                   | >50                             |

The unsignalized intersection capacity analysis technique included in the HCM and used in the current study provides an indication of the Level of Service for each movement of the intersection under consideration. By this technique, the performance of the unsignalized intersection can be compared under varying traffic conditions, using the Level of Service concept in a qualitative sense. One unsignalized intersection can be compared with another unsignalized intersection using this concept. Level of Service 'E' represents the capacity of the movement under consideration and generally, in large urban areas, Level of Service 'D' is considered to represent an acceptable operating condition (Level of Service 'E' is considered an acceptable operating condition for planning purposes for intersections located within Ottawa's Urban Core, Transit-

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

Oriented Development Zones or Traditional Mainstreet/Design Priority Areas). Level of Service 'F' indicates that the movement is operating beyond its design capacity.

#### Future (2022) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2022) Background Traffic volumes presented in **Exhibit 3**, yielding the following results:

Table 7 - Intersection Capacity Analysis: Future (2022) Background Traffic

|                                                              |                         | AM PEA                           | AK HOUR                           | PM PEA                           | K HOUR                            |
|--------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| INTERSECTION                                                 | CONTROL                 | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) |
| Trim Road & St<br>Joseph<br>Boulevard / Old<br>Montreal Road | Roundabout              | D (28.7s)                        | WBTL<br>(28.7s)                   | F (112.9s)                       | SBTL<br>(112.9s)                  |
| Old Montreal                                                 | Unsignalized            | C (21.7s)                        | SBL (21.7s)                       | F (50.8s)                        | SBL (50.8s)                       |
| Road & Dairy<br>Drive / Aveia                                | Signalized <sup>1</sup> | A (0.46)                         | WBTR (0.49)                       | A (0.54)                         | SBL (0.60)                        |
| Private                                                      | Roundabout              | B (14.3s)                        | WBTRL<br>(14.3s)                  | C (19.3s)                        | EBTRL<br>(19.3s)                  |
| Old Montreal<br>Road & Famille-<br>Laporte Avenue            | Unsignalized            | B (14.7s)                        | SBRL (14.7s)                      | B (11.3s)                        | SBRL<br>(11.3s)                   |

#### Notes:

The results of the analysis indicate that the southbound approach of the Trim Road & St Joseph Boulevard / Old Montreal Road roundabout is expected to exceed its theoretical capacity during the weekday afternoon peak hour. As the roundabout was constructed within the past 5 years, it is anticipated that it will remain in its current configuration within the timeframe of this study. As such, subsequent intersection capacity analyses have assumed that no intersection modifications will be implemented at this location.

The Old Montreal Road & Dairy Drive / Aveia Private intersection is also expected to exceed its theoretical capacity during the weekday afternoon peak hour. The implementation of both traffic signals and a roundabout was considered at this intersection, although it should be noted that only a roundabout satisfies the technical warrants at this location. Based on the results of this analysis, the intersection would operate at an acceptable Level of Service (i.e. LOS 'D' or better) under either configuration. Given that there is a bi-directional cycling facility on the northbound leg of the Old Montreal Road & Dairy Drive / Aveia Private intersection, it is recommended that the eastbound and westbound left-turn movements be fully protected in order to minimize vehicle-bicycle conflicts if the intersection were to be signalized.

The intersection of Old Montreal Road & Famille-Laporte Avenue is expected to operate at an acceptable Level of Service (LOS 'D' or better) under Future (2022) Background Traffic conditions as a 3-legged intersection.

<sup>&</sup>lt;sup>1</sup> – Includes fully protected eastbound and westbound left-turn phase.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### **Future (2027) Background Traffic**

An intersection capacity analysis has been undertaken using the Future (2027) Background Traffic volumes presented in **Exhibit 4**, yielding the following results:

Table 8 - Intersection Capacity Analysis: Future (2027) Background Traffic

|                                                              |                                                         | AM PEA                           | K HOUR                            | PM PEA                           | K HOUR                            |
|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| INTERSECTION                                                 | TRAFFIC CONTROL  Roundabout  Unsignalized  Signalized 1 | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) |
| Trim Road & St<br>Joseph<br>Boulevard / Old<br>Montreal Road | Roundabout                                              | D (31.3s)                        | WBTL<br>(31.3s)                   | F (127.7s)                       | SBTL<br>(127.7s)                  |
| Old Montreal                                                 | Unsignalized                                            | C (16.9s)                        | SBL (16.9s)                       | D (26.5s)                        | SBL (26.5s)                       |
| Road & Dairy<br>Drive / Aveia                                | Signalized <sup>1</sup>                                 | A (0.36)                         | WBTR (0.38)                       | A (0.42)                         | SBL (0.60)                        |
| Private                                                      | Roundabout                                              | A (9.9s)                         | WBTRL<br>(9.9s)                   | B (11.6s)                        | EBTRL<br>(11.6s)                  |
| Old Montreal<br>Road & Famille-<br>Laporte Avenue            | Unsignalized                                            | B (12.3s)                        | SBTRL<br>(12.3s)                  | B (10.3s)                        | SBTRL<br>(10.3s)                  |

#### Notes:

By 2027, it is expected that a new major collector road will connect Old Montreal Road to Ottawa Road 174 through the Cardinal Creek Village subdivision. Based on the Cardinal Creek Village Phase 1-7 TIS (IBI Group, October 2013), this will result in a redistribution in traffic generated by the Cardinal Creek development which will reduce overall demand on Old Montreal Road. As such, traffic operations at both the Dairy Drive / Aveia Private intersection and the Famille-Laporte Avenue intersection are expected to improve relative to Future (2022) Background Traffic conditions. Intersection Level of Service at the Trim Road & St Joseph Boulevard / Old Montreal Road is expected to deteriorate relative to Future (2022) Background Traffic conditions, however, due to growth on Trim Road which will be less impacted by the new connection to Ottawa Road 174.

<sup>&</sup>lt;sup>1</sup> – Includes fully protected eastbound and westbound left-turn phase.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### **Future (2022) Total Traffic**

An intersection capacity analysis has been undertaken using the Future (2022) Total Traffic volumes presented in **Exhibit 5**, yielding the following results:

Table 9 - Intersection Capacity Analysis: Future (2022) Total Traffic

|                                                                   |                         | AM PEA                           | K HOUR                            | PM PEA                           | K HOUR                            |
|-------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| INTERSECTION                                                      | TRAFFIC<br>CONTROL      | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) |
| Trim Road & St<br>Joseph<br>Boulevard / Old<br>Montreal Road      | Roundabout              | E (37.1s)                        | WBTL<br>(37.1s)                   | F (152.1s)                       | SBTL<br>(152.1s)                  |
| Old Montreal                                                      | Unsignalized            | D (29.0s)                        | SBL (29.0s)                       | F (148.4s)                       | SBL<br>(148.4s)                   |
| Road & Dairy<br>Drive / Aveia                                     | Signalized <sup>1</sup> | A (0.56)                         | WBTR (0.60)                       | B (0.64)                         | EBTR (0.68)                       |
| Private                                                           | Roundabout              | C (22.3s)                        | WBTRL<br>(22.3s)                  | E (35.4s)                        | EBTRL<br>(35.4s)                  |
| Old Montreal<br>Road & Famille-<br>Laporte Avenue<br>/ Street One | Unsignalized            | C (17.7s)                        | SBTRL<br>(17.7s)                  | B (12.3s)                        | SBTRL<br>(12.3s)                  |
| Old Montreal<br>Road & Street<br>Two                              | Unsignalized            | C (21.9s)                        | NBRL (21.9s)                      | D (34.7s)                        | NBRL<br>(34.7s)                   |

#### Notes:

Under Future (2022) Total Traffic conditions, the addition of site generated traffic to the Trim Road & St Joseph Boulevard / Old Montreal Road roundabout is expected to exacerbate the weekday peak hour capacity issues observed under background traffic conditions.

As observed under Future (2022) Background Traffic conditions, the Old Montreal Road & Dairy Drive / Aveia Private intersection is expected to experience capacity issues as a stop-controlled intersection. Signalization of the intersection is shown to improve Level of Service to LOS 'D' or better. Replacing the intersection with a roundabout is also shown to improve overall traffic operations, however, the eastbound approach during the afternoon peak hour will begin approaching its theoretical capacity. The overall delay on that approach is just above the threshold for LOS 'E' therefore it is expected that small reductions in traffic volumes would be sufficient to achieve a LOS of 'D'. As such, both traffic signals or a roundabout are considered effective means of addressing the capacity issues anticipated at this intersection.

Both site access intersections are anticipated to operate at an acceptable Level of Service (LOS 'D' or better) under Future (2022) Total Traffic conditions.

<sup>&</sup>lt;sup>1</sup> – Assumes fully protected eastbound and westbound left-turn phase will be provided.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### **Future (2027) Total Traffic**

An intersection capacity analysis has been undertaken using the Future (2027) Total Traffic volumes presented in **Exhibit 6**, yielding the following results:

Table 10 - Intersection Capacity Analysis: Future (2027) Total Traffic

|                                                                   |                         | AM PEA                           | AK HOUR                           | PM PEA                           | K HOUR                                  |
|-------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------|
| INTERSECTION                                                      | TRAFFIC<br>CONTROL      | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL MOVEMENTS (V/C OR DELAY) | OVERALL<br>LOS<br>(V/C OR DELAY) | CRITICAL<br>MOVEMENTS<br>(V/C OR DELAY) |
| Trim Road & St<br>Joseph<br>Boulevard / Old<br>Montreal Road      | Roundabout              | E (41.3s)                        | WBTL<br>(41.3s)                   | F (168.5s)                       | SBTL<br>(168.5s)                        |
| Old Montreal                                                      | Unsignalized            | C (21.7s)                        | SBL (21.7s)                       | F (52.7s)                        | SBL (52.7s)                             |
| Road & Dairy<br>Drive / Aveia                                     | Signalized <sup>1</sup> | A (0.45)                         | WBTR (0.48)                       | A (0.52)                         | SBL (0.65)                              |
| Private                                                           | Roundabout              | B (13.6s)                        | WBTRL<br>(13.6s)                  | C (16.8s)                        | EBTRL<br>(16.8s)                        |
| Old Montreal<br>Road & Famille-<br>Laporte Avenue<br>/ Street One | Unsignalized            | B (14.2s)                        | SBTRL<br>(14.2s)                  | B (11.1s)                        | SBTRL<br>(11.1s)                        |
| Old Montreal<br>Road & Street<br>Two                              | Unsignalized            | C (17.3s)                        | NBRL (17.3s)                      | C (24.7s)                        | NBRL<br>(24.7s)                         |

#### Notes:

As discussed previously, by 2027 it is anticipated that Cardinal Creek Drive will provide a connection between Old Montreal Road and Ottawa Road 174 through the Cardinal Creek Village subdivision. This is expected to result in a redistribution of traffic from this subdivision, resulting in an overall reduction in traffic volumes on Old Montreal Road. As such, traffic operations at the Dairy Drive / Aveia Private intersection and both site access intersections is expected to improve relative to Future (2022) Total Traffic conditions. Traffic operations at the Trim Road & St Joseph Boulevard / Old Montreal Road intersection is anticipated to deteriorate, however, due to traffic growth on Trim Road.

As illustrated above, as a stop-controlled intersection the Old Montreal Road & Dairy Drive / Aveia Private is expected to exceed its theoretical capacity during the afternoon peak hour. Signalization of the intersection or implementing a roundabout is expected to address these capacity issues.

<sup>&</sup>lt;sup>1</sup> – Assumes fully protected eastbound and westbound left-turn phase will be provided.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### **Summary of Results**

#### Trim Road & St Joseph Boulevard / Old Montreal Road:

This intersection is currently configured as a two-lane roundabout with auxiliary right-turn slip-lanes on the eastbound and westbound approaches. The intersection capacity analysis indicates that the roundabout is expected to exceed its theoretical capacity under Future (2022 & 2027) Background & Total Traffic conditions. As the roundabout was constructed relatively recently, it is not expected that it will be modified within the timeframe of this study and any improvements can be considered beyond the scope of this study.

#### Old Montreal Road & Dairy Drive / Aveia Private:

The intersection is currently configured as a two-way stop-controlled intersection with auxiliary left-turn lanes on the eastbound and westbound approaches. Under both Future (2022) Background & Total Traffic conditions, the intersection is expected to exceed its theoretical capacity during the afternoon peak hour. Either signalization of the intersection or the implementation of a roundabout is expected to bring the intersection to an acceptable Level of Service.

By 2027, the planned extension of Cardinal Creek Drive from Old Montreal Road to Ottawa Road 174 is anticipated to be complete resulting in a redistribution of traffic from the Cardinal Creek Village subdivision that will reduce overall traffic volumes on Old Montreal Road. As such, under Future (2027) Background Traffic conditions the intersection will operate at an acceptable Level of Service (i.e. LOS 'D' or better). The addition of site-generated traffic will negate some of the reductions expected from the new connection resulting in a similar Level of Service as observed under Future (2022) Background Traffic conditions. Traffic signals or a roundabout are again shown to address the capacity issues.

Given that the intersection meets the suitability criteria for a roundabout and does not meet the traffic signal warrants, it is recommended that consideration be given to implementing a roundabout at this location despite its slightly diminished overall performance as compared to traffic signals. It is important to note that the capacity issues at this location are an existing condition primarily the result of background traffic volumes associated with the Trim Park and Ride as well as extensive development in the broader area.

#### Old Montreal Road & Famille-Laporte Avenue / Street One:

Under Future (2022 & 2027) Background Traffic conditions, this intersection is anticipated to operate at an acceptable Level of Service (i.e. LOS 'D' or better) as an unsignalized intersection. Under Future (2022 & 2027) Total Traffic conditions, the addition of site-generated traffic is expected to slightly increase delays at the intersection, however the intersection is anticipated to continue operating at an acceptable Level of Service (i.e. LOS 'D' or better) as an unsignalized intersection.

#### Old Montreal Road & Street Two:

The intersection capacity analysis indicates that this intersection is expected to operate at an acceptable Level of Service (i.e. LOS 'D' or better) as an unsignalized intersection under all future scenarios.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 10.0 Multi-Modal Level of Service

Segment-based Multi-Modal Level of Service (MMLOS) analysis was completed for the segment of Old Montreal Road adjacent to the site under Existing (2020), Future (2027) and Ultimate (Beyond 2031) conditions. Under Future (2027) conditions, a 1.5m wide (site frontage only) asphalt sidewalk and continuous on-road cycling facility will be provided along the south side of Old Montreal Road, while the roadway cross-section illustrated in **Figure 1** will be implemented on Old Montreal Road beyond the City's 2031 ultimate planning horizon year.

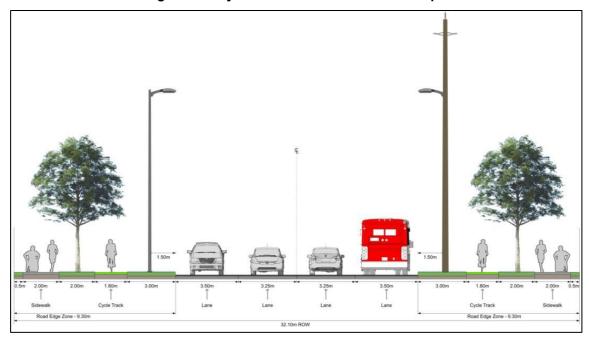



Figure 1 - City of Ottawa Arterial Road Concept

The results of the segment-based MMLOS analysis are summarized in **Table 11**. Details of the MMLOS analysis are provided in **Appendix H**.

|                        | LEVEL OF SERVICE BY MODE          |                                |                                               |                               |  |  |  |  |  |
|------------------------|-----------------------------------|--------------------------------|-----------------------------------------------|-------------------------------|--|--|--|--|--|
| SCENARIO               | PEDESTRIAN<br>(PLOS)<br>TARGET: C | BICYCLE<br>(BLOS)<br>TARGET: C | TRANSIT<br>(TLOS)<br>TARGET: N/A <sup>1</sup> | TRUCK<br>(TkLOS)<br>TARGET: D |  |  |  |  |  |
| Existing (2020)        | F                                 | E                              | D                                             | С                             |  |  |  |  |  |
| Future (2027)          | E                                 | E                              | D                                             | С                             |  |  |  |  |  |
| Ultimate (Beyond 2031) | D                                 | А                              | D                                             | А                             |  |  |  |  |  |

**Table 11 - Segment-Based MMLOS Results** 

#### Notes:

<sup>&</sup>lt;sup>1</sup> – Old Montreal Road is not identified as a transit priority corridor in the TMP therefore there is no TLOS target. As indicated above, both the PLOS and BLOS targets are not met under Existing (2020) conditions as a result of limited active transportation facilities. Under Future (2027) conditions, the addition

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

of a sidewalk and a continuous on-road bicycle facility on the south side of Old Montreal Road along the site frontage is anticipated to improve the PLOS, however, further improvements would be required to reach the PLOS target, in particular system connectivity along the extent of Old Montreal Road corridor. Following the four-lane widening of Old Montreal Road, it is anticipated that all MMLOS targets will be met with the exception of the PLOS target. Based on the analysis, a reduction in operating speeds on Old Montreal Road to 60 km/h or less would result in a PLOS of 'C'.

#### 11.0 Auxiliary Lane Warrant Analysis

Auxiliary left-turn lane warrant analysis was completed for both the Street One access intersection and the Street Two access intersection. As westbound left-turn volumes at both intersections represent less than 1% to 2% of approach volumes, an auxiliary left-turn lane is not warranted at either location.

The Transportation Association of Canada (TAC) suggests that auxiliary right-turn lanes should be considered "when the volume of decelerating or accelerating vehicles compared with through vehicles causes undue hazard." Consideration for auxiliary right-turn lanes is typically given when the right-turning traffic exceeds 10% of the through volume and is at least 60 vehicles per hour. Based on projected Future (2027) Traffic volumes, an auxiliary right-turn lane on the eastbound approach of the Old Montreal & Street Two intersection will be required as the volume of right-turning traffic is expected to be in the order of 90 vehicles during the weekday afternoon peak hour. Based on a design speed of 70 km/h (posted speed limit plus 10 km/h) and 3.5m lane widths, the auxiliary right-turn lane would require a taper length of 60m and a parallel lane of 20m. This has been shown in the attached functional design drawings in **Appendix I**.

#### 12.0 Site Access Review

The proposed development will provide one (1) one-way private approach on Old Montreal Road (Street One) as well as a two-way local road (Street Two). Street Two will become a public roadway and, as such, the requirements of the City of Ottawa Private Approach By-law are not applicable. The proposed Street One access, however, is a private roadway and has been designed in conformance with the City of Ottawa Private Approach By-law 2003-447, with particular confirmation of the following items:

- <u>Width</u>: A private approach shall have a minimum width of 2.4m and a maximum width of 9.0m.
  - The Street One private approach at the Old Montreal/Famille Laporte intersection will be 4.25m wide, appropriate for one-way flow. ✓
- Quantity and Spacing of Private Approaches: For sites with frontage between 46 and 150 metres, one (1) two-way private approach and two (2) one-way private approaches, or two (2) two-way private approaches are permitted. For each additional 90m of frontage in excess of 150m, an additional two-way approach or two (2) additional one-way approaches are permitted. Any two private approaches must be separated by at least 9.0m and can be reduced to 2.0m in the case of two one-way driveways. On lots that abut more than one roadway, these provisions apply to each frontage separately.
  - The frontage on Old Montreal Road is approximately 264m, therefore the one (1) one-way private approach is compliant with the by-law. ✓
- <u>Distance from Property Line</u>: Private approaches must be at least 3.0m from the abutting property line, however this requirement can be reduced to 0.3m provided that the access

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

is a safe distance from the access serving the adjacent property, sight lines are adequate and that it does not create a traffic hazard.

- The proposed Street One private approach will be more than 3.0m from the abutting property line. ✓
- <u>Distance from Nearest Intersecting Street Line:</u> For apartment buildings with more than 300 parking spaces located on a parcel adjacent to or within 46m of an arterial or major collector, all private approaches must be a minimum of 60m from the nearest intersecting street line.
  - The Street One private approach is directly opposite of Famille-Laporte Avenue and therefore the distance to this roadway can be disregarded. The next nearest intersecting street line is more than 60m away. ✓
- <u>Distance from Any Other Private Approach:</u> For apartment buildings with more than 300 parking spaces located on a parcel adjacent to or within 46m of an arterial or major collector, all two-way private approaches must be a minimum of 60m from the any other private approach.
  - There are several other private approaches within 60m of the proposed private approach, however, as they are all associated with single-family homes it is anticipated that this will not result in any safety or operational issues. ✓

The Geometric Design Guide for Canadian Road indicates the clear throat length required for apartment complexes based on the number of apartment units. The two parking garage entrances on the Street One approach provide access to half of the parking spaces of the four apartment blocks adjacent to Old Montreal Road, and as such provide parking for approximately 95 apartment units. For less than 100 apartment units, a minimum clear throat length of 15m is recommended which is less than the 22m provided on Street One.

As both site access intersections require modifications to public roadways, draft Roadway Modification Approval (RMA) drawings have been prepared and presented in **Appendix I**.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

#### 13.0 Conclusion

A Transportation Impact Assessment (TIA) was previously prepared by WSP Global Inc. in March 2018 in support of the proposed residential development at 1154-1208 Old Montreal Road. Based on the circulation comments from the City of Ottawa, the Plan of Subdivision has been since revised. IBI Group was retained by DCR Phoenix Development Corporation Ltd. to prepare a TIA Update to address the outstanding transportation-related comments to support the approval of this development application.

The revised Plan of Subdivision now includes only two access intersections on Old Montreal Road, one of which is restricted to inbound traffic only, and has reduced the number of apartment units while doubling the number of low-density residential units. Pedestrian and cycling facilities have been provided throughout the development in the form of concrete and asphalt sidewalks, pedestrian pathways and a 3.0m wide multi-use pathway along the southern boundary of the property. In addition to this, cycling and pedestrian facilities have been proposed along the Old Montreal Road frontage, including a continuous on-road bicycle facility and a pedestrian crossover (PXO) to facilitate access to public transportation.

Based on the current Plan of Subdivision, the number of person-trips generated by the proposed development is anticipated to be in the order of 360 and 450 two-way person-trips during the weekday morning and afternoon peak hour. This represents a decrease of approximately 30 to 100 person-trips relative to the previous submission. Approximately 220 to 270 two-way vehicle-trips and 70 to 90 two-way transit-trips are expected to be generated by the proposed development during the weekday morning and afternoon peak hours.

Future (2022 & 2027) Background & Total Traffic volumes were developed using the latest intersection traffic counts available from the City of Ottawa. Based on these revised traffic projections, none of the study area intersections were found to meet the technical warrants for signalization, however, the Old Montreal Road & Dairy Drive / Aveia Private intersection was found to meet the criteria for the implementation of a roundabout.

Significant capacity issues were observed under Future (2022) Background & Total Traffic conditions at the Old Montreal Road & Dairy Drive / Aveia Private intersection which were shown to be addressed by the implementation of a roundabout at this location. By 2027, Cardinal Creek Drive is expected to be extended from Old Montreal Road to Ottawa Road 174 resulting in a redistribution of traffic from the Cardinal Creek Village subdivision. This will reduce overall traffic volumes on Old Montreal Road; however, the addition of site-generated traffic will negate any operational benefits that this will provide. Although traffic signals are shown to provide better operational performance, they do not meet the minimum warrants. It is therefore recommended that a roundabout be considered by the City as an alternate mitigation measure to address the existing capacity issues and future traffic demand at the Old Montreal Road & Dairy Drive / Aveia Private intersection.

The Trim Road & St Joseph Boulevard / Old Montreal Road intersection was also shown to exceed its theoretical capacity under all traffic conditions. Given that the roundabout was only constructed within the past 5 years, it is not expected that it will be modified within the timeframe of this study.

Both site access intersections were found to operate at an acceptable Level of Service (i.e. LOS 'D' or better) under Future (2022 & 2027) Total Traffic conditions. In order to facilitate access to nearby transit stops and provide a safe crossing for developments on both sides of Old Montreal Road, it is recommended that a PXO be provided at the intersection of Old Montreal Road & Famille-Laporte Avenue / Street One and that an additional bus stop be located on Famille Laporte Avenue in the northbound direction.

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

A review of pre-pandemic transit ridership and park-and-ride capacity confirmed that the projected demand generated by the proposed development can be accommodated. Multi-Modal Level of Service (MMLOS) analysis was completed for the segment of Old Montreal Road adjacent to the site and at all intersections where traffic signals are operationally required. The results of the segment-based MMLOS analysis largely mirrors the MMLOS results reported in the March 2018 TIA. Potential measures to address MMLOS deficiencies were identified. It should be noted that these deficiencies are not expected to be exacerbated by the addition of site-generated traffic.

Auxiliary lane analysis indicated that the following new auxiliary lanes will be required to accommodate future (2027) total traffic conditions:

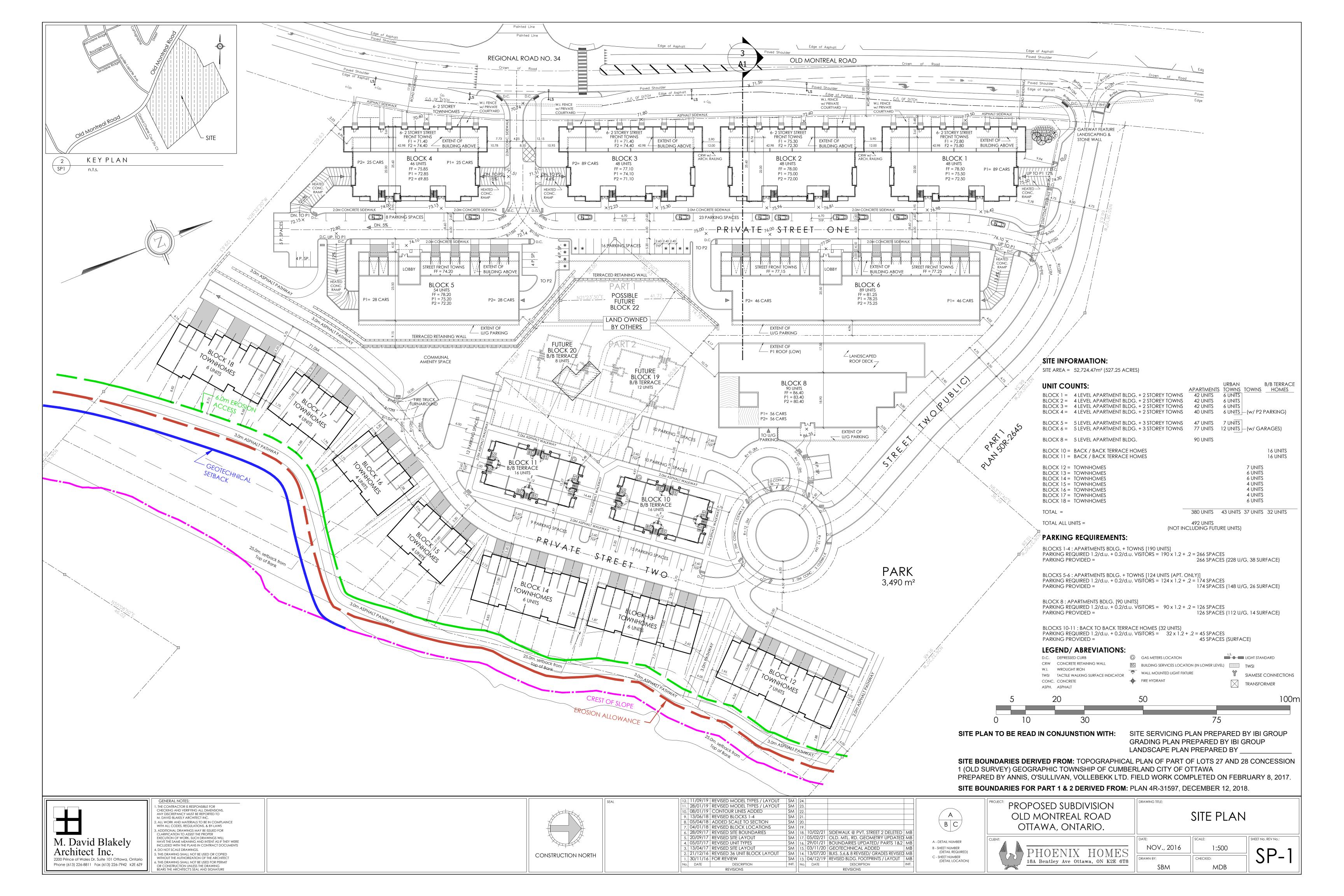
• An eastbound right-turn lane with a 60m taper and 20m of parallel lane is warranted at the Old Montreal Road & Street Two intersection.

The Street One private approach was assessed to determine its conformance with applicable bylaws and design guidelines. Based on this review, no adjustments to the private approach are required to conform to by-laws or design guidelines.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

Prepared By: Reviewed By:

D. H. HOOK 100118095 2D21-02-16


David Hook, P.Eng.

Ein Manen

Eric McLaren, EIT

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

# Appendix A – Plan of Subdivision



Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

# Appendix B – Collision Data



### **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: AVEIA PRIV/DAIRY DR @ OLD MONTREAL RD

Traffic Control: Stop sign Total Collisions: 1

| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver Vehicle type | First Event      | No. Ped |
|------------------------|-------------|-------------|------------------|-------------------|----------|--------------------------------|------------------|---------|
| 2015-Jul-11, Sat,12:11 | Clear       | SMV other   | Non-fatal injury | Dry               | East     | Going ahead Motorcycle         | Skidding/sliding | 0       |

Location: FRANK KENNY RD/TED KELLY LANE @ OLD MONTREAL R

Traffic Control: Stop sign Total Collisions: 5

| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver Vehicle type |                           | First Event         | No. Ped |
|------------------------|-------------|-------------|------------------|-------------------|----------|--------------------------------|---------------------------|---------------------|---------|
| 2013-Feb-02, Sat,17:50 | Snow        | Rear end    | P.D. only        | Ice               | North    | Slowing or stopping            | ng Pick-up truck          | Other motor vehicle | 0       |
|                        |             |             |                  | North             | Stopped  | Pick-up truck                  | Other motor vehicle       |                     |         |
| 2013-May-30, Thu,17:33 | Clear       | Angle       | Non-fatal injury | Dry               | North    | Going ahead                    | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Going ahead                    | Pick-up truck             | Other motor vehicle |         |
| 2014-Feb-06, Thu,11:38 | Clear       | Angle       | Non-fatal injury | Dry               | North    | Going ahead                    | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Going ahead                    | Pick-up truck             | Other motor vehicle |         |
| 2014-Jun-22, Sun,18:40 | Clear       | Angle       | Non-fatal injury | Dry               | North    | Going ahead                    | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Going ahead                    | Automobile, station wagon | Other motor vehicle |         |
| 2014-Sep-20, Sat,16:40 | Rain        | SMV other   | Non-fatal injury | Wet               | West     | Going ahead                    | Automobile, station wagon | Skidding/sliding    | 0       |

Location: OLD MONTREAL RD @ GRAND-CHENE, COUR DU CRT

Traffic Control: Stop sign

Total Collisions: 1

| Date/Day/Time          | Environment | Impact Type | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver | Vehicle type              | First Event      | No. Ped |
|------------------------|-------------|-------------|----------------|-------------------|----------|-------------------|---------------------------|------------------|---------|
| 2012-Apr-18, Wed,11:21 | Clear       | SMV other   | P.D. only      | Dry               | West     | Turning left      | Automobile, station wagon | Skidding/sliding | 0       |

Location: OLD MONTREAL RD btwn GRAND-CH-NE, COUR DU CRT & TED KELLY LANE

Traffic Control: No control

Total Collisions: 16

| Date/Day/Time          | Environment | Impact Type | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuver Vehicle type     | First Event      | No. Ped |
|------------------------|-------------|-------------|----------------|-------------------|----------|------------------------------------|------------------|---------|
| 2012-Jan-06, Fri,09:28 | Snow        | SMV other   | P.D. only      | Loose snow        | West     | Going ahead Automobile, station wa | gon Ran off road | 0       |

November 06, 2020 Page 1 of 9



## **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: OLD MONTREAL RD btwn GRAND-CH-NE, COUR DU CRT & TED KELLY LANE

Traffic Control: No control

Total Collisions: 16

| Date/Day/Time          | Environment   | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve                           | Vehicle type              | First Event           | No. Ped |
|------------------------|---------------|-------------|------------------|-------------------|----------|--------------------------------------------|---------------------------|-----------------------|---------|
| 2012-Jul-05, Thu,15:23 | Clear         | Rear end    | P.D. only        | Dry               | East     | Going ahead                                | Automobile, station wagon | Other motor vehicle   | 0       |
|                        |               |             |                  |                   | East     | Pulling onto<br>shoulder or toward<br>curb | Pick-up truck             | Other motor vehicle   |         |
| 2012-Nov-28, Wed,06:14 | Freezing Rain | SMV other   | P.D. only        | Dry               | West     | Slowing or stopping                        | Automobile, station wagon | Skidding/sliding      | 0       |
| 2012-Dec-02, Sun,22:14 | Rain          | SMV other   | Non-fatal injury | Wet               | West     | Going ahead                                | Automobile, station wagon | Skidding/sliding      | 0       |
| 2012-Dec-20, Thu,22:10 | Drifting Snow | SMV other   | P.D. only        | Loose snow        | East     | Going ahead                                | Passenger van             | Skidding/sliding      | 0       |
| 2013-Feb-19, Tue,22:00 | Clear         | Approaching | P.D. only        | Loose snow        | East     | Going ahead                                | Automobile, station wagon | Other motor vehicle   | 0       |
|                        |               |             |                  |                   | West     | Going ahead                                | Automobile, station wagon | Other motor vehicle   |         |
| 2013-Apr-28, Sun,14:10 | Clear         | Rear end    | P.D. only        | Dry               | West     | Going ahead                                | Automobile, station wagon | Other motor vehicle   | 0       |
|                        |               |             |                  |                   | West     | Slowing or stopping                        | Automobile, station wagon | Other motor vehicle   |         |
| 2013-Jun-21, Fri,07:30 | Clear         | SMV other   | P.D. only        | Dry               | West     | Going ahead                                | Delivery van              | Animal - wild         | 0       |
| 2014-Jan-14, Tue,20:11 | Clear         | SMV other   | Non-fatal injury | Ice               | East     | Going ahead                                | Automobile, station wagon | Skidding/sliding      | 0       |
| 2014-Jan-16, Thu,10:58 | Clear         | SMV other   | P.D. only        | Dry               | West     | Going ahead                                | Automobile, station wagon | Ran off road          | 0       |
| 2014-Feb-26, Wed,07:51 | Clear         | SMV other   | P.D. only        | Loose snow        | West     | Going ahead                                | Automobile, station wagon | Skidding/sliding      | 0       |
| 2014-Feb-27, Thu,07:01 | Snow          | SMV other   | Non-fatal injury | Loose snow        | West     | Going ahead                                | Automobile, station wagon | Skidding/sliding      | 0       |
| 2014-Apr-18, Fri,19:51 | Rain          | SMV other   | P.D. only        | Wet               | West     | Going ahead                                | Automobile, station wagon | Ran off road          | 0       |
| 2014-Sep-29, Mon,16:07 | Clear         | SMV other   | Non-fatal injury | Dry               | West     | Going ahead                                | Pick-up truck             | Ran off road          | 0       |
| 2015-Jan-15, Thu,22:52 | Snow          | SMV other   | P.D. only        | Packed snow       | East     | Going ahead                                | Automobile, station wagon | Other                 | 0       |
| 2015-Aug-12, Wed,18:27 | Clear         | SMV other   | P.D. only        | Dry               | South    | Turning right                              | Truck and trailer         | Pole (utility, power) | 0       |

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Traffic signal Total Collisions: 83

| Date/Dav/Time | Environment | Impact Type | Classification | Surface | Veh. Dir | Vehicle Manoeuver Vehicle type | First Event | No. Ped |
|---------------|-------------|-------------|----------------|---------|----------|--------------------------------|-------------|---------|
| 2 ato, 2 ay,  |             |             | 0.000          |         |          | remote manerator remote type   |             |         |
|               |             |             |                | Cond'n  |          |                                |             |         |

November 06, 2020 Page 2 of 9



# **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Traffic signal Total Collisions: 83

|                              | 3           |                  |                  |                   |          |                    |                             |                     |         |
|------------------------------|-------------|------------------|------------------|-------------------|----------|--------------------|-----------------------------|---------------------|---------|
| Date/Day/Time                | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type             | First Event         | No. Ped |
| 2012-Jan-06, Fri,09:30       | Clear       | Rear end         | Non-fatal injury | Wet               | South    | Going ahead        | Delivery van                | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | South    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
|                              |             |                  |                  |                   | South    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2012-Jan-21, Sat,10:00 Clear | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2012-Jan-22, Sun,09:30       | Clear       | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin | g Passenger van             | Skidding/sliding    | 0       |
|                              |             |                  |                  |                   | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle |         |
| 2012-Feb-29, Wed,11:30       | Clear       | Rear end         | P.D. only        | Dry               | South    | Going ahead        | Pick-up truck               | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | South    | Stopped            | Passenger van               | Other motor vehicle |         |
| 2012-May-24, Thu,16:35       | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Turning left       | Automobile, station wagon   | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | South    | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 2012-Jun-02, Sat,13:13       | Rain        | Rear end         | P.D. only        | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Skidding/sliding    | 0       |
|                              |             |                  |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2012-Aug-06, Mon,17:06       | Clear       | Rear end         | P.D. only        | Dry               | East     | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | East     | Going ahead        | Automobile, station wagon   | Other motor vehicle |         |
| 2012-Sep-04, Tue,15:06       | Rain        | Rear end         | P.D. only        | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle |         |
| 2012-Sep-04, Tue,15:15       | Rain        | Rear end         | Non-fatal injury | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2012-Sep-13, Thu,17:55       | Clear       | Rear end         | P.D. only        | Dry               | South    | Slowing or stoppin | g Pick-up truck             | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | South    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2012-Oct-13, Sat,15:48       | Clear       | Rear end         | P.D. only        | Dry               | North    | Going ahead        | Pick-up truck               | Other motor vehicle | 0       |
|                              |             |                  |                  |                   | North    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
|                              |             |                  |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |

November 06, 2020 Page 3 of 9



# **Collision Details Report - Public Version**

**From:** January 1, 2012 **To:** December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Traffic signal Total Collisions: 83

|                        | 9           |             |                  |                   |          |                    | . Gta. Gomoiono.             |                     |         |
|------------------------|-------------|-------------|------------------|-------------------|----------|--------------------|------------------------------|---------------------|---------|
| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type              | First Event         | No. Ped |
| 2012-Oct-22, Mon,07:46 | Clear       | Rear end    | P.D. only        | Dry               | South    | Going ahead        | Municipal transit bus        | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Slowing or stoppin | ng Automobile, station wagon | Other motor vehicle |         |
|                        |             |             |                  |                   | South    | Slowing or stoppin | ng Automobile, station wagon | Other motor vehicle |         |
| 2012-Oct-31, Wed,10:40 | Rain        | Rear end    | P.D. only        | Wet               | South    | Going ahead        | Automobile, station wagon    | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Pick-up truck                | Other motor vehicle |         |
| 2013-Jan-01, Tue,20:20 | Clear       | Rear end    | P.D. only        | Other             | North    | Slowing or stoppin | ng Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Slowing or stoppin | ng Automobile, station wagon | Other motor vehicle |         |
| 2013-Feb-04, Mon,06:50 | Clear       | Rear end    | Non-fatal injury | Wet               | North    | Slowing or stoppin | ng Passenger van             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Automobile, station wagon    | Other motor vehicle |         |
| 2013-Feb-07, Thu,14:35 | Clear       | Rear end    | P.D. only        | Dry               | East     | Going ahead        | Pick-up truck                | Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Going ahead        | Passenger van                | Other motor vehicle |         |
| 2013-Apr-02, Tue,11:33 | Clear       | Rear end    | Non-fatal injury | Dry               | East     | Going ahead        | Automobile, station wagon    | Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Stopped            | Pick-up truck                | Other motor vehicle |         |
| 2013-Jun-07, Fri,16:35 | Rain        | Rear end    | P.D. only        | Wet               | South    | Going ahead        | Automobile, station wagon    | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Slowing or stoppin | ng Pick-up truck             | Other motor vehicle |         |
| 2013-Jul-04, Thu,19:56 | Clear       | SMV other   | Non-fatal injury | Wet               | North    | Slowing or stoppin | ng Motorcycle                | Skidding/sliding    | 0       |
| 2013-Aug-14, Wed,18:32 | Clear       | Rear end    | P.D. only        | Dry               | South    | Slowing or stoppin | ng Automobile, station wagon | Skidding/sliding    | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Pick-up truck                | Other motor vehicle |         |
| 2013-Oct-15, Tue,14:45 | Clear       | Rear end    | Non-fatal injury | Dry               | South    | Slowing or stoppin | ng Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Automobile, station wagon    | Other motor vehicle |         |
| 2013-Oct-24, Thu,20:00 | Clear       | Rear end    | P.D. only        | Dry               | North    | Slowing or stoppin | ng Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Pick-up truck                | Other motor vehicle |         |
| 2013-Nov-14, Thu,16:01 | Clear       | Rear end    | P.D. only        | Dry               | North    | Going ahead        | Pick-up truck                | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Slowing or stoppin | ng Pick-up truck             | Other motor vehicle |         |

November 06, 2020 Page 4 of 9



# **Collision Details Report - Public Version**

**From:** January 1, 2012 **To:** December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Traffic signal Total Collisions: 83

|                        | 3           |             |                  |                   |          |                    |                             |                     |         |
|------------------------|-------------|-------------|------------------|-------------------|----------|--------------------|-----------------------------|---------------------|---------|
| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | r Vehicle type              | First Event         | No. Ped |
| 2013-Nov-15, Fri,09:18 | Rain        | Rear end    | P.D. only        | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Skidding/sliding    | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2013-Dec-13, Fri,09:27 | Clear       | Rear end    | P.D. only        | Ice               | South    | Slowing or stoppin | g Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2013-Dec-19, Thu,17:45 | Clear       | Angle       | P.D. only        | Wet               | East     | Turning right      | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead        | Passenger van               | Other motor vehicle |         |
| 2013-Dec-23, Mon,14:20 | Clear       | Sideswipe   | P.D. only        | Wet               | North    | Turning left       | Unknown                     | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Passenger van               | Other motor vehicle |         |
| 2014-Feb-03, Mon,16:44 | Clear       | Rear end    | Non-fatal injury | Packed snow       | North    | Slowing or stoppin | g Passenger van             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2014-Feb-05, Wed,10:46 | Clear       | Rear end    | P.D. only        | Dry               | North    | Going ahead        | Pick-up truck               | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2014-Mar-04, Tue,08:13 | Clear       | Rear end    | Non-fatal injury | Packed snow       | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Passenger van               | Other motor vehicle |         |
|                        |             |             |                  |                   | North    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |
| 2014-Apr-05, Sat,11:30 | Rain        | Rear end    | P.D. only        | Wet               | North    | Slowing or stoppin | g Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Pick-up truck               | Other motor vehicle |         |
| 2014-Apr-10, Thu,13:05 | Clear       | Angle       | P.D. only        | Dry               | East     | Going ahead        | Automobile, station wagon   | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Going ahead        | Passenger van               | Other motor vehicle |         |
| 2014-Jun-03, Tue,16:01 | Clear       | Rear end    | P.D. only        | Dry               | North    | Slowing or stoppin | g Truck - dump              | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Passenger van               | Other motor vehicle |         |
| 2014-Jun-12, Thu,13:25 | Rain        | Rear end    | P.D. only        | Wet               | North    | Slowing or stoppin | g Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Stopped            | Automobile, station wagon   | Other motor vehicle |         |

November 06, 2020 Page 5 of 9



# **Collision Details Report - Public Version**

**From:** January 1, 2012 **To:** December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Traffic signal Total Collisions: 83

| Traine Sofition. Traine signal |             |                  |                  |                   |          |                     |                             |                     |         |  |
|--------------------------------|-------------|------------------|------------------|-------------------|----------|---------------------|-----------------------------|---------------------|---------|--|
| Date/Day/Time                  | Environment | Impact Type      | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve    | r Vehicle type              | First Event         | No. Ped |  |
| 2014-Oct-16, Thu,18:00         | Rain        | Rear end         | P.D. only        | Wet               | West     | Going ahead         | Pick-up truck               | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Slowing or stopping | g Automobile, station wagon | Other motor vehicle |         |  |
| 2014-Oct-27, Mon,15:56         | Clear       | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin  | g Automobile, station wagon | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | North    | Stopped             | Automobile, station wagon   | Other motor vehicle |         |  |
| 2014-Nov-05, Wed,06:57         | Clear       | Turning movement | Non-fatal injury | Dry               | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | South    | Turning left        | Pick-up truck               | Other motor vehicle |         |  |
| 2014-Dec-13, Sat,12:53 Clea    | Clear       | Angle            | P.D. only        | Dry               | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |  |
| 2014-Dec-17, Wed,15:59         | Rain        | Angle            | P.D. only        | Wet               | East     | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | North    | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |  |
| 2014-Dec-22, Mon,15:15 (       | Clear       | Rear end         | P.D. only        | Dry               | West     | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Stopped             | Pick-up truck               | Other motor vehicle |         |  |
| 2015-Jan-31, Sat,10:17         | Clear       | Angle            | P.D. only        | Dry               | South    | Merging             | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Going ahead         | Pick-up truck               | Other motor vehicle |         |  |
| 2015-Feb-01, Sun,13:33         | Clear       | Angle            | P.D. only        | Ice               | South    | Going ahead         | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | East     | Going ahead         | Automobile, station wagon   | Other motor vehicle |         |  |
| 2015-Feb-20, Fri,17:42         | Clear       | Rear end         | P.D. only        | Dry               | North    | Slowing or stoppin  | g Pick-up truck             | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | North    | Stopped             | Pick-up truck               | Other motor vehicle |         |  |
| 2015-Apr-19, Sun,13:35         | Clear       | Angle            | P.D. only        | Dry               | South    | Merging             | Automobile, station wagon   | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Going ahead         | Pick-up truck               | Other motor vehicle |         |  |
| 2015-May-29, Fri,12:07         | Clear       | SMV other        | P.D. only        | Dry               | North    | Going ahead         | Automobile, station wagon   | Curb                | 0       |  |
| 2015-Jun-12, Fri,14:39         | Rain        | SMV other        | Non-fatal injury | Wet               | West     | Turning right       | Passenger van               | Pedestrian          | 1       |  |
| 2015-Jun-25, Thu,11:41         | Clear       | Sideswipe        | P.D. only        | Dry               | West     | Changing lanes      | Pick-up truck               | Other motor vehicle | 0       |  |
|                                |             |                  |                  |                   | West     | Going ahead         | Pick-up truck               | Other motor vehicle |         |  |

November 06, 2020 Page 6 of 9



# **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Roundabout Total Collisions: 83

| Date/Day/Time          | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | er Vehicle type           | First Event             | No. Ped |  |
|------------------------|-------------|-------------|------------------|-------------------|----------|------------------|---------------------------|-------------------------|---------|--|
| 2015-Aug-18, Tue,09:10 | Clear       | Angle       | Non-fatal injury | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | West     | Going ahead      | Automobile, station wagon | Other motor vehicle     |         |  |
| 2015-Oct-01, Thu,12:55 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Pick-up truck             | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle     |         |  |
| 2015-Oct-29, Thu,17:06 | Clear       | Sideswipe   | P.D. only        | Dry               | South    | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle     |         |  |
| 2015-Oct-30, Fri,13:45 | Clear       | Sideswipe   | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Pick-up truck             | Other motor vehicle     |         |  |
| 2015-Nov-08, Sun,11:58 | Clear       | Sideswipe   | P.D. only        | Dry               | South    | Going ahead      | Pick-up truck             | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle     |         |  |
| 2015-Nov-12, Thu,23:28 | Rain        | Sideswipe   | P.D. only        | Wet               | South    | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle     |         |  |
| 2015-Nov-26, Thu,07:51 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Pick-up truck             | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Passenger van             | Other motor vehicle     |         |  |
| 2015-Dec-04, Fri,07:06 | Snow        | Sideswipe   | P.D. only        | Wet               | North    | Going ahead      | Pick-up truck             | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle     |         |  |
| 2015-Dec-10, Thu,14:24 | Clear       | Sideswipe   | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Pick-up truck             | Other motor vehicle     |         |  |
| 2015-Dec-11, Fri,13:26 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Pick-up truck             | Other motor vehicle     | 0       |  |
|                        |             |             |                  |                   | North    | Going ahead      | Pick-up truck             | Other motor vehicle     |         |  |
| 2015-Dec-28, Mon,14:33 | Clear       | Sideswipe   | P.D. only        | Dry               | East     | Going ahead      | Automobile, station wagon | Other motor vehicle     | 0       |  |
| , ,                    |             |             |                  |                   | East     | Going ahead      | Pick-up truck             | Other motor vehicle     |         |  |
| 2016-Feb-16, Tue,11:49 | Snow        | SMV other   | P.D. only        | Loose snow        | North    | Going ahead      | Automobile, station wagon | Pole (sign, parking met | er) 0   |  |
|                        |             |             |                  |                   |          |                  |                           |                         |         |  |

November 06, 2020 Page 7 of 9



## **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Roundabout Total Collisions: 83

| Trainic Control. 100   | maaboat     |             |                  |                   |          |                  | Total Collisions.         | . 00                |         |
|------------------------|-------------|-------------|------------------|-------------------|----------|------------------|---------------------------|---------------------|---------|
| ate/Day/Time           | Environment | Impact Type | Classification   | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve | er Vehicle type           | First Event         | No. Ped |
| 2016-Mar-17, Thu,16:35 | Clear       | Rear end    | Non-fatal injury | Wet               | East     | Going ahead      | Municipal transit bus     | Other motor vehicle | 0       |
|                        |             |             |                  |                   | East     | Stopped          | Automobile, station wagon | Other motor vehicle |         |
| 2016-Apr-06, Wed,19:26 | Snow        | SMV other   | P.D. only        | Loose snow        | North    | Going ahead      | Pick-up truck             | Curb                | 0       |
| 2016-Apr-13, Wed,13:26 | Clear       | Rear end    | P.D. only        | Dry               | South    | Going ahead      | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2016-May-01, Sun,12:10 | Rain        | SMV other   | P.D. only        | Wet               | East     | Turning right    | Automobile, station wagon | Skidding/sliding    | 0       |
| 2016-May-10, Tue,12:01 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2016-May-23, Mon,14:21 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Passenger van             | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2016-Jun-02, Thu,16:55 | Clear       | Angle       | P.D. only        | Dry               | South    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2016-Jun-04, Sat,13:19 | Clear       | Angle       | P.D. only        | Dry               | West     | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2016-Jun-16, Thu,06:52 | Clear       | Angle       | P.D. only        | Dry               | South    | Going ahead      | Truck and trailer         | Other motor vehicle | 0       |
|                        |             |             |                  |                   | West     | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2016-Jun-17, Fri,15:50 | Clear       | Angle       | Non-fatal injury | Dry               | East     | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2016-Jun-24, Fri,15:55 | Clear       | Sideswipe   | P.D. only        | Dry               | North    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | North    | Going ahead      | Automobile, station wagon | Other motor vehicle |         |
| 2016-Jun-29, Wed,20:15 | Clear       | Angle       | Non-fatal injury | Dry               | East     | Going ahead      | Motorcycle                | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle |         |
| 2016-Jul-05, Tue,14:49 | Clear       | Sideswipe   | P.D. only        | Dry               | South    | Going ahead      | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                  |                   | South    | Going ahead      | Pick-up truck             | Other motor vehicle |         |

November 06, 2020 Page 8 of 9



## **Collision Details Report - Public Version**

From: January 1, 2012 To: December 31, 2016

Location: ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD

Traffic Control: Roundabout Total Collisions: 83

| Trainic Control. 100   | indubout    |             |                |                   |          |                    | Total Comstons            | . 00                |         |
|------------------------|-------------|-------------|----------------|-------------------|----------|--------------------|---------------------------|---------------------|---------|
| Date/Day/Time          | Environment | Impact Type | Classification | Surface<br>Cond'n | Veh. Dir | Vehicle Manoeuve   | er Vehicle type           | First Event         | No. Ped |
| 2016-Jul-11, Mon,14:55 | Clear       | Angle       | P.D. only      | Dry               | South    | Merging            | Passenger van             | Other motor vehicle | 0       |
|                        |             |             |                |                   | West     | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2016-Aug-02, Tue,15:01 | Clear       | Angle       | P.D. only      | Dry               | South    | Merging            | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                |                   | West     | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2016-Aug-08, Mon,12:38 | Clear       | Angle       | P.D. only      | Dry               | East     | Merging            | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                |                   | South    | Going ahead        | Pick-up truck             | Other motor vehicle |         |
| 2016-Aug-11, Thu,10:30 | Clear       | Sideswipe   | P.D. only      | Dry               | North    | Going ahead        | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Going ahead        | Pick-up truck             | Other motor vehicle |         |
| 2016-Aug-12, Fri,22:40 | Clear       | Sideswipe   | P.D. only      | Dry               | West     | Going ahead        | Unknown                   | Other motor vehicle | 0       |
|                        |             |             |                |                   | West     | Going ahead        | Pick-up truck             | Other motor vehicle |         |
| 2016-Aug-22, Mon,07:33 | Clear       | Angle       | P.D. only      | Dry               | East     | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Going ahead        | Pick-up truck             | Other motor vehicle |         |
| 2016-Sep-03, Sat,13:08 | Clear       | Rear end    | P.D. only      | Dry               | North    | Going ahead        | Automobile, station wagon | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Slowing or stoppin | g Pick-up truck           | Other motor vehicle |         |
| 2016-Sep-12, Mon,08:48 | Clear       | Angle       | P.D. only      | Dry               | West     | Going ahead        | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2016-Sep-25, Sun,12:50 | Clear       | Angle       | P.D. only      | Dry               | South    | Merging            | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                |                   | West     | Going ahead        | Pick-up truck             | Other motor vehicle |         |
| 2016-Oct-25, Tue,10:44 | Clear       | Angle       | P.D. only      | Dry               | West     | Going ahead        | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                |                   | South    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |
| 2016-Nov-14, Mon,14:08 | Clear       | Sideswipe   | P.D. only      | Dry               | North    | Changing lanes     | Pick-up truck             | Other motor vehicle | 0       |
|                        |             |             |                |                   | North    | Going ahead        | Automobile, station wagon | Other motor vehicle |         |

November 06, 2020 Page 9 of 9

#### **IBI GROUP MEMORANDUM**

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

# Appendix C – Trip Generation Data

Table 3.12: Person Trip Generation Rates — (all households with residents not older than 55 years of age)

|                                               | Person Trip Generation Rates  All Households with persons 55 years of age or less  AM and PM Peak Hours |                                                                   |                                                                  |                                 |                             |  |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|-----------------------------|--|--|--|--|--|--|--|
| Geographic<br>Areas<br>Dwelling<br>Unit Types | Core Area  Person  Trip Rate %▽                                                                         | Urban Area<br>(Inside the<br>greenbelt)<br>Person<br>Trip Rate %▽ | Suburban<br>(Outside the<br>greenbelt)<br>Person<br>Trip Rate %▽ | Rural<br>Person<br>Trip Rate %▽ | All Areas  Person Trip Rate |  |  |  |  |  |  |  |
| Single detached: AM PM                        | 0.85 - 7%                                                                                               | 0.99 + 9%                                                         | 0.94 + 3%                                                        | 0.78 - 14%                      | 0.91                        |  |  |  |  |  |  |  |
|                                               | 0.74 - 3%                                                                                               | 0.75 - 1%                                                         | 0.79 + 4%                                                        | 0.71 - 7%                       | 0.76                        |  |  |  |  |  |  |  |
| Semi-detached: AM                             | 0.79 - 10%                                                                                              | 0.97 10%                                                          | 0.89 + 1%                                                        | 0.64 - 27%                      | 0.88                        |  |  |  |  |  |  |  |
| PM                                            | 0.74 - 1%                                                                                               | 0.68 - 9%                                                         | 0.82 + 9%                                                        | 0.60 - 20%                      | 0.75                        |  |  |  |  |  |  |  |
| Row Townhouse: AM PM                          | 0.71 - 3%                                                                                               | 0.78 + 7%                                                         | 0.67 - 8%                                                        | 0.74 + 1%                       | 0.73                        |  |  |  |  |  |  |  |
|                                               | 0.62 - 3%                                                                                               | 0.60 - 6%                                                         | 0.69 + 8%                                                        | 0.56 - 13%                      | 0.64                        |  |  |  |  |  |  |  |
| Apartment: AM                                 | 0.48 - 4%                                                                                               | 0.51 + 2%                                                         | 0.53 + 6%                                                        | 0.36 - 28%                      | 0.50                        |  |  |  |  |  |  |  |
| PM                                            | 0.45 0%                                                                                                 | 0.42 - 7%                                                         | 0.52 + 16%                                                       | 0.52 + 16%                      | 0.45                        |  |  |  |  |  |  |  |
| All Types: AM                                 | 0.62 - 23%                                                                                              | 0.82 + 2%                                                         | 0.86 + 8%                                                        | 0.76 - 5%                       | 0.80                        |  |  |  |  |  |  |  |
| PM                                            | 0.57 - 16%                                                                                              | 0.63 - 7%                                                         | 0.75 + 10%                                                       | 0.69 + 1%                       | 0.68                        |  |  |  |  |  |  |  |
| Note: 5 % (+ or -) represents the             | percentage delta change in t                                                                            | rip rate when compared again                                      | st the average trip rate across                                  | s all geographic areas          |                             |  |  |  |  |  |  |  |

Table 3.13: Mode Shares - (all households with residents not older than 55 years of age)

|                                               | Reported Mode Shares  All Households with persons 55 years of age or less  AM and PM Peak Hours                   |                                                                                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                  |  |  |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Geographic<br>Areas<br>Dwelling<br>Unit Types | Core Area                                                                                                         | Urban Area (Inside the greenbelt)  Vehicle Transit Non-                                                           | Suburban<br>(Outside the<br>greenbelt)<br>Vehicle Transit Non-                                                  | Rural *                                                                                                         | All Areas                                                                                                        |  |  |  |  |  |  |  |
| Single - AM<br>Detached: PM                   | Trips         Share         Motorised           35%         20%         33%           45%         11%         32% | Trips         Share         Motorised           51%         26%         11%           58%         19%         13% | Trips         Share         Motorised           55%         25%         9%           64%         19%         6% | Trips         Share         Motorised           60%         27%         4%           73%         13%         2% | Trips         Share         Motorised           54%         25%         10%           63%         17%         8% |  |  |  |  |  |  |  |
| Semi- AM<br>Detached: PM                      | 38% 30% 26%<br>36% 20% 34%                                                                                        | 44% 35% 10%<br>51% 27% 13%                                                                                        | 52% 24% 12%<br>62% 17% 7%                                                                                       | 64% <b>27%</b> 5% 77% <b>12%</b> 1%                                                                             | 49% <b>28%</b> 12% 58% <b>20%</b> 10%                                                                            |  |  |  |  |  |  |  |
| Row / AM<br>Townhouse: PM                     | 33% 22% 40%<br>39% 15% 42%                                                                                        | 45% 34% 10%<br>53% 28% 8%                                                                                         | 55% 27% 8%<br>61% 22% 6%                                                                                        | 73% 15% 3%<br>74% 15% 1%                                                                                        | 49% 30% 11%<br>57% 24% 9%                                                                                        |  |  |  |  |  |  |  |
| Apartment: AM PM                              | 27% 27% 43%<br>23% 29% 42%                                                                                        | 37% 41% 14%<br>40% 37% 14%                                                                                        | 44% 34% 13%<br>44% 33% 9%                                                                                       | 76% 8% 16%<br>48% 4% 17%                                                                                        | 36% 35% 23%<br>35% 33% 23%                                                                                       |  |  |  |  |  |  |  |
| All Types: AM<br>PM                           | 32% 24% 38%<br>34% 21% 38%                                                                                        | 47% 31% 11%<br>53% 24% 12%                                                                                        | 54% 26% 9%<br>62% 20% 6%                                                                                        | 61% 26% 4%<br>73% 13% 2%                                                                                        | 51% <b>27%</b> 11%<br>59% <b>20%</b> 10%                                                                         |  |  |  |  |  |  |  |
|                                               |                                                                                                                   |                                                                                                                   | sengers have not been tabulated                                                                                 | Vehicle trips reflect the percent     tetien levels are high during the                                         | 0                                                                                                                |  |  |  |  |  |  |  |

Table 6.1: Vehicle Trip Generation Rates

|          | Vehicle Trip Generation Rates  AM and PM Peak Hours |                              |                    |              |              |                 |  |  |  |  |  |  |
|----------|-----------------------------------------------------|------------------------------|--------------------|--------------|--------------|-----------------|--|--|--|--|--|--|
| ITE Land | Data Sc                                             | Vehicle Trip Generation Rate |                    |              |              |                 |  |  |  |  |  |  |
| Use Code | Dwelling<br>Unit Type                               |                              | 2008 Count<br>Data | ITE          | OD<br>Survey | Blended<br>Rate |  |  |  |  |  |  |
| 210      | Single-detached dwellings                           | AM<br>PM                     | 0.66<br>0.89       | 0.75<br>1.01 | 0.56<br>0.53 | 0.66<br>0.81    |  |  |  |  |  |  |
| 224      | Semi-detached dwellings, townhouses, rowhouses      | AM<br>PM                     | 0.40<br>0.64       | 0.70<br>0.72 | 0.46<br>0.46 | 0.52<br>0.61    |  |  |  |  |  |  |
| 231      | Low-rise condominiums (1 or 2 floors)               | AM<br>PM                     | 0.53<br>0.41       | 0.67<br>0.78 | 0.21<br>0.18 | 0.47<br>0.46    |  |  |  |  |  |  |
| 232      | High-rise condominiums (3+ floors)                  | AM<br>PM                     | 0.53<br>0.41       | 0.34<br>0.38 | 0.21<br>0.18 | 0.36<br>0.32    |  |  |  |  |  |  |
| 233      | Luxury condominiums                                 | AM<br>PM                     | 0.53<br>0.41       | 0.56<br>0.55 | 0.21<br>0.18 | 0.43<br>0.38    |  |  |  |  |  |  |
| 221      | Low-rise apartments (2 floors)                      | AM<br>PM                     | 0.19<br>0.21       | 0.46<br>0.58 | 0.21<br>0.18 | 0.29<br>0.32    |  |  |  |  |  |  |
| 223      | Mid-rise apartments (3-10 floors)                   | AM<br>PM                     | 0.19<br>0.21       | 0.30<br>0.39 | 0.21<br>0.18 | 0.23<br>0.26    |  |  |  |  |  |  |
| 222      | High-rise apartments<br>(10+ floors)                | AM<br>PM                     | 0.19<br>0.21       | 0.30<br>0.35 | 0.21<br>0.18 | 0.23<br>0.25    |  |  |  |  |  |  |

Table 6.2: Recommended Vehicle Trip Directional Splits

| Comparison of Directional Splits (Inbound/Outbound)  AM and PM Peak Hours |                           |                |         |              |         |          |              |          |  |  |
|---------------------------------------------------------------------------|---------------------------|----------------|---------|--------------|---------|----------|--------------|----------|--|--|
| ITE Land                                                                  | Area                      | Data<br>Source |         | Count<br>ata | Γ       | TE       | Blended Rate |          |  |  |
| Use Code                                                                  | Dwelling Unit Type        |                | Inbound | Outbound     | Inbound | Outbound | Inbound      | Outbound |  |  |
| 210                                                                       | Single-detached dwellings | AM             | 33%     | 67%          | 25%     | 75%      | 29%          | 71%      |  |  |
| 210                                                                       | Single-detached dwellings | PM             | 60%     | 40%          | 63%     | 37%      | 62%          | 39%      |  |  |
| 224                                                                       | Semi-detached dwellings,  | AM             | 40%     | 60%          | 33%     | 67%      | 37%          | 64%      |  |  |
| 224                                                                       | townhouses, rowhouses     | PM             | 55%     | 45%          | 51%     | 49%      | 53%          | 47%      |  |  |
| 231                                                                       | Low-rise condominiums     | AM             | 36%     | 64%          | 25%     | 75%      | 31%          | 70%      |  |  |
| 231                                                                       | (1 or 2 floors)           | PM             | 54%     | 46%          | 58%     | 42%      | 56%          | 44%      |  |  |
| 000                                                                       | High-rise condominiums    | AM             | 36%     | 64%          | 19%     | 81%      | 28%          | 73%      |  |  |
| 232                                                                       | (3+ floors)               | PM             | 54%     | 46%          | 62%     | 38%      | 58%          | 42%      |  |  |
| 000                                                                       | l                         | AM             | 36%     | 64%          | 23%     | 77%      | 30%          | 71%      |  |  |
| 233                                                                       | Luxury condominiums       | PM             | 54%     | 46%          | 63%     | 37%      | 59%          | 42%      |  |  |
| 004                                                                       | Low-rise apartments       | AM             | 22%     | 78%          | 21%     | 79%      | 22%          | 79%      |  |  |
| 221                                                                       | (2 floors)                | PM             | 62%     | 38%          | 65%     | 35%      | 64%          | 37%      |  |  |
| 222                                                                       | Mid-rise apartments       | AM             | 22%     | 78%          | 25%     | 75%      | 24%          | 77%      |  |  |
| 223                                                                       | (3-10 floors)             | PM             | 62%     | 38%          | 61%     | 39%      | 62%          | 39%      |  |  |
| 000                                                                       | High-rise apartments      | AM             | 22%     | 78%          | 25%     | 75%      | 24%          | 77%      |  |  |
| 222                                                                       | (10+ floors)              | PM             | 62%     | 38%          | 61%     | 39%      | 62%          | 39%      |  |  |

Table 6.3: Recommended Vehicle Trip Generation Rates for Residential Land Uses with Transit Bonus

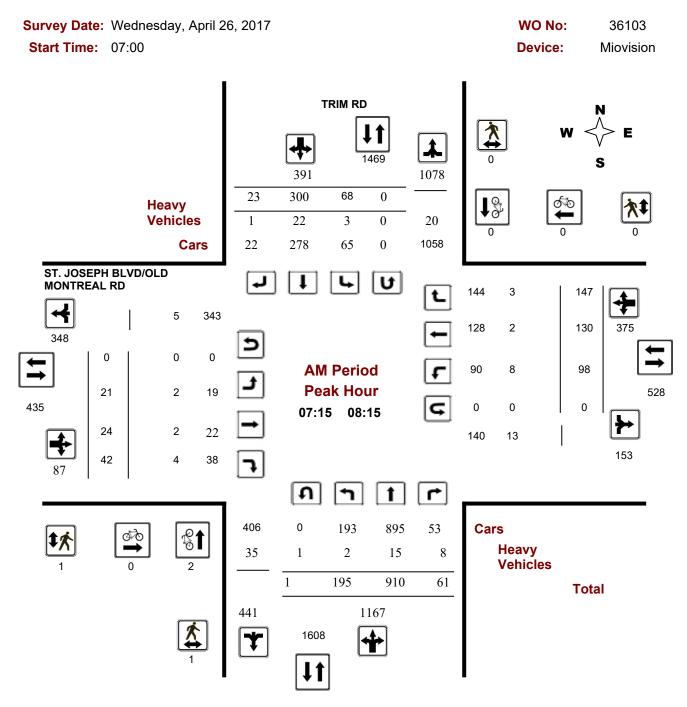
# Recommended Vehicle Trip Generation Rates with Transit Bonus AM and PM Peak Hours

|             |                                      |       |              |                               | Ve           | ehicle Trip R                 | tate         |                               |              |
|-------------|--------------------------------------|-------|--------------|-------------------------------|--------------|-------------------------------|--------------|-------------------------------|--------------|
| ITE         | Geogr                                | aphic | (            | Core                          | U            | Irban                         | Sul          | burban                        | Rural        |
| Land<br>Use | Dwelling                             | Area  |              |                               |              | side the<br>eenbelt)          |              | tside the<br>eenbelt)         |              |
| Code        | Unit Type                            |       | Base<br>Rate | < 600m to<br>Rapid<br>Transit | Base<br>Rate | < 600m to<br>Rapid<br>Transit | Base<br>Rate | < 600m to<br>Rapid<br>Transit | Base<br>Rate |
| 210         | Single-detached                      | AM    | 0.40         | 0.31                          | 0.67         | 0.50                          | 0.70         | 0.49                          | 0.62         |
| 210         | dwellings                            | PM    | 0.60         | 0.33                          | 0.76         | 0.57                          | 0.90         | 0.63                          | 0.92         |
| 224         | Semi-detached dwellings, townhouses, | AM    | 0.34         | 0.34                          | 0.51         | 0.50                          | 0.54         | 0.39                          | 0.62         |
| 224         | rowhouses                            | PM    | 0.39         | 0.38                          | 0.51         | 0.51                          | 0.71         | 0.51                          | 0.67         |
| 231         | Low-rise condominiums                | AM    | 0.34         | 0.34                          | 0.50         | 0.50                          | 0.60         | 0.60                          | 0.71         |
| 201         | (1 or 2 floors)                      | PM    | 0.29         | 0.29                          | 0.49         | 0.49                          | 0.66         | 0.66                          | 0.72         |
| 232         | High-rise condominiums               | AM    | 0.26         | 0.26                          | 0.38         | 0.38                          | 0.46         | 0.46                          | 0.54         |
| 202         | (3+ floors)                          | PM    | 0.20         | 0.20                          | 0.34         | 0.34                          | 0.46         | 0.46                          | 0.50         |
| 233         | Luxury condominiums                  | AM    | 0.31         | 0.31                          | 0.45         | 0.45                          | 0.55         | 0.55                          | 0.65         |
| 200         | Luxury condominants                  | PM    | 0.24         | 0.24                          | 0.40         | 0.40                          | 0.55         | 0.55                          | 0.59         |
| 221         | Low-rise apartments                  | AM    | 0.21         | 0.21                          | 0.31         | 0.31                          | 0.37         | 0.37                          | 0.44         |
| 221         | (2 floors)                           | PM    | 0.20         | 0.20                          | 0.34         | 0.34                          | 0.46         | 0.46                          | 0.50         |
| 223         | Mid-rise apartments                  | AM    | 0.17         | 0.17                          | 0.24         | 0.24                          | 0.29         | 0.29                          | 0.35         |
| 220         | (3-10 floors)                        | PM    | 0.16         | 0.16                          | 0.28         | 0.28                          | 0.37         | 0.37                          | 0.41         |
| 222         | High-rise apartments                 | AM    | 0.17         | 0.17                          | 0.24         | 0.24                          | 0.29         | 0.29                          | 0.35         |
| 222         | (10+ floors)                         | PM    | 0.16         | 0.16                          | 0.27         | 0.27                          | 0.36         | 0.36                          | 0.39         |

Note: The transit bonus was only applied to geographic areas and dwelling unit types where the reported transit mode shares were less than the transit mode share reported for residential development located within the 600m proximity to a rapid transit station. It is noted that condominium and apartment housing categories reported similar levels of transit mode shares independent of location to rapid transit stations.

#### 6.5 Future Data Collection

While the rates presented in were prepared by blending the vehicle trip rates from ITE, the OD Survey and the 2008 local trip generation studies, it is important to stress the importance and need for ongoing local trip generation surveys to monitor changes in travel behaviour. The 2008 trip generation studies undertaken to support this study provide insight into local travel patterns and a well organized ongoing annual data collection program aimed at trip generation surveys of key land uses or requirement for data collection by local developers will continue to provide recent and accurate local trip generation rates. For example the high-rise apartment category of dwelling units reported the lowest peak hour vehicle trip rates.


# IBI GROUP MEMORANDUM Mike Giampa - City of Ottawa Transportation Project Manager – February 16, 2021

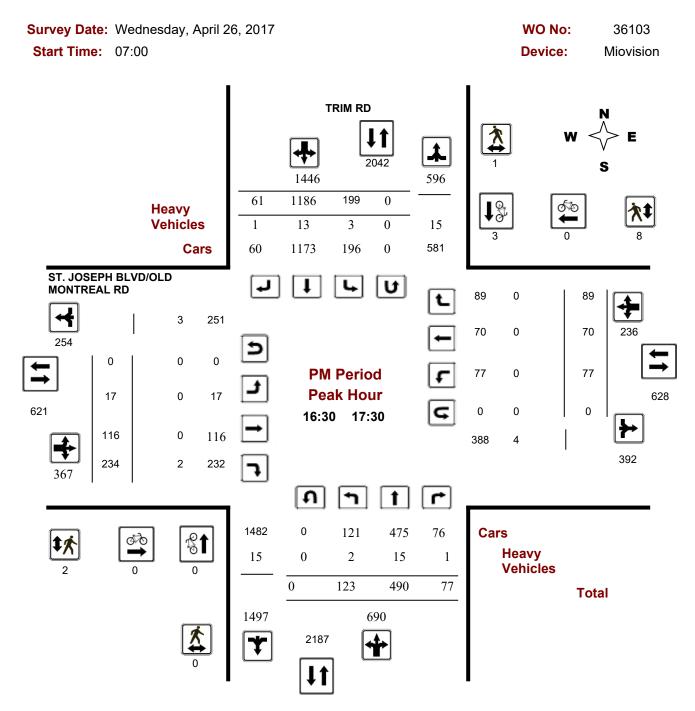
Appendix D – Intersection Traffic Counts



## **Turning Movement Count - Peak Hour Diagram**

## ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD




**Comments** 

2020-Nov-04 Page 1 of 3

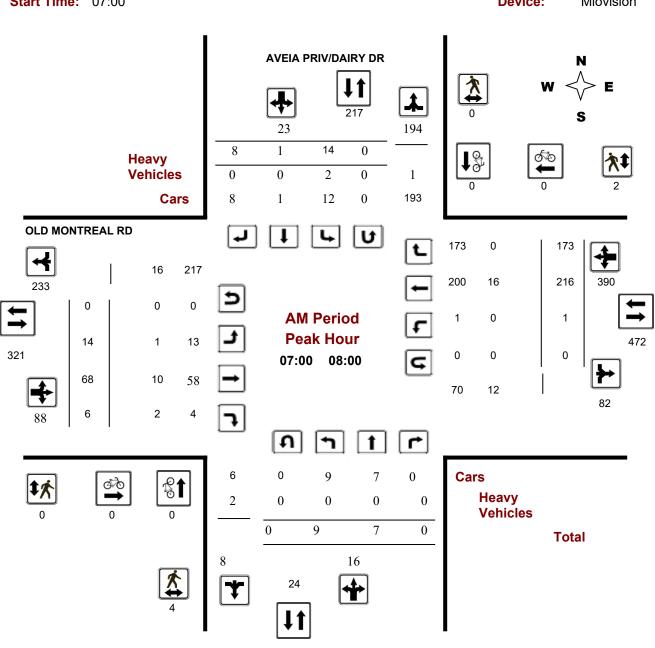


## **Turning Movement Count - Peak Hour Diagram**

## ST. JOSEPH BLVD/OLD MONTREAL RD @ TRIM RD



**Comments** 


2020-Nov-04 Page 3 of 3



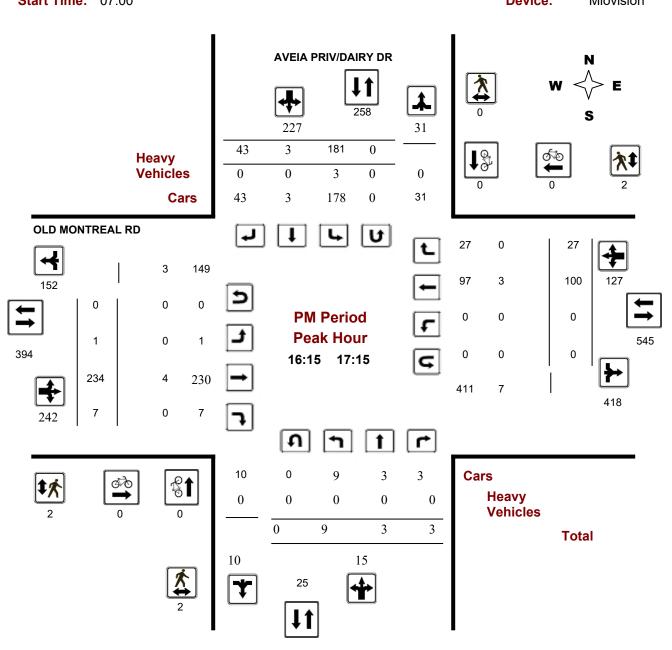
## **Turning Movement Count - Peak Hour Diagram**

## **AVEIA PRIV/DAIRY DR @ OLD MONTREAL RD**

Survey Date: Tuesday, December 09, 2014 WO No: 35144
Start Time: 07:00 Device: Miovision



**Comments** 


2020-Nov-04 Page 1 of 3



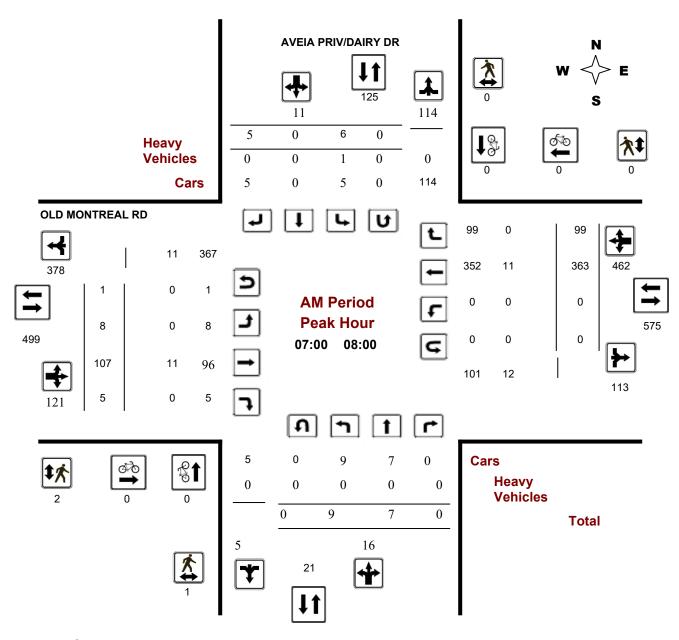
## **Turning Movement Count - Peak Hour Diagram**

## **AVEIA PRIV/DAIRY DR @ OLD MONTREAL RD**

Survey Date: Tuesday, December 09, 2014 WO No: 35144
Start Time: 07:00 Device: Miovision



**Comments** 


2020-Nov-04 Page 3 of 3



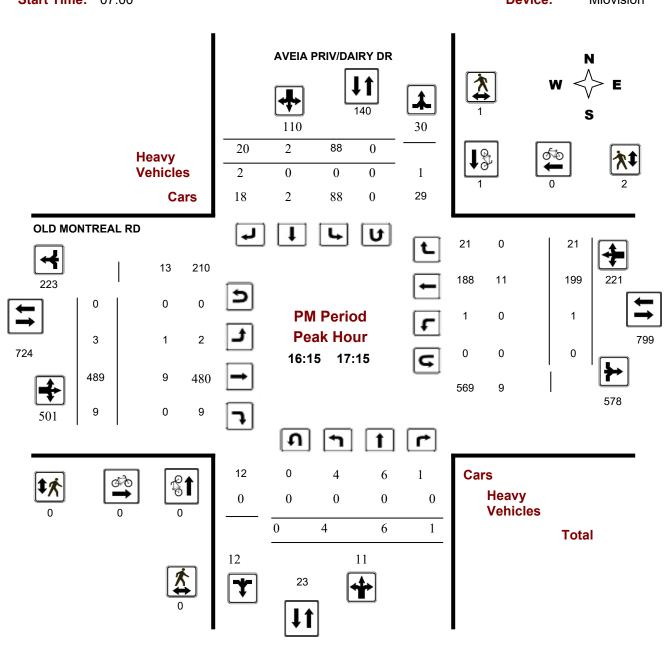
## **Turning Movement Count - Peak Hour Diagram**

## **AVEIA PRIV/DAIRY DR @ OLD MONTREAL RD**

Survey Date: Wednesday, December 04, 2019 WO No: 39171
Start Time: 07:00 Device: Miovision



**Comments** 


2020-Nov-04 Page 1 of 3



## **Turning Movement Count - Peak Hour Diagram**

## **AVEIA PRIV/DAIRY DR @ OLD MONTREAL RD**

Survey Date: Wednesday, December 04, 2019 WO No: 39171
Start Time: 07:00 Device: Miovision



**Comments** 

2020-Nov-04 Page 3 of 3

#### **IBI GROUP MEMORANDUM**

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

# Appendix E – Traffic Signal Warrants



| Project:      | 1154-1208 Old Montrea        | al Road TIA Add | lendum                         | Dat                              | e: February 3, 2021 |
|---------------|------------------------------|-----------------|--------------------------------|----------------------------------|---------------------|
| Project #:    | 127391                       |                 |                                |                                  |                     |
| Location:     | Old Montreal Road            | at              | Dairy Drive / Aveia Private    |                                  |                     |
| Orientation:  | (Major Roadway)<br>East/West |                 | (Minor Roadway)<br>North/South |                                  |                     |
| Municipality: | City of Ottawa               |                 | Scenario:                      | Future (2022) Background Traffic |                     |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         | COMPLIANCE |         |          |         |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|------------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM    | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 978     | 489        | 489     | 489      | 1325    | 663     | 663     | 663     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 100%       | 100%    | 100%     | 100%    | 100%    | 100%    | 100%    | 100%                 |
| B. Vehicle volume along minor |              |                |                         |                           | 30      | 15         | 15      | 15       | 151     | 76      | 76      | 76      |                      |
| roads                         | 120          | 170            | 120                     | 170                       | 25%     | 13%        | 13%     | 13%      | 100%    | 63%     | 63%     | 63%     | 44%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                    | N            | IINIMUM RE     | QUIREMEN                | IT                        |         | COMPLIANCE |         |          |         |         |         |         |                      |
|----------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|------------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                                            | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM    | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along artery                   | 480          | 720            | 480                     | 720                       | 948     | 474        | 474     | 474      | 1174    | 587     | 587     | 587     | 100%                 |
| <b>1</b>                                           |              |                |                         |                           | 100%    | 99%        | 99%     | 99%      | 100%    | 100%    | 100%    | 100%    |                      |
| B. Combined vehicle and pedestrian volume crossing | 50           | 70             | 50                      | 70                        | 25      | 13         | 13      | 13       | 103     | 52      | 52      | 52      | 66%                  |
| artery from minor roads                            | 50           | 70             | 50                      | 70                        | 50%     | 25%        | 25%     | 25%      | 100%    | 100%    | 100%    | 100%    | 00%                  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |          |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|----------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | SECTIONAL  |          |
|                                |                                                                                           | TREETEOW  | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | ENTIRE % |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 577  | 100%       | 200/     |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 144       | 204                    | 46   | 32%        | 32%      |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 576       | 864                    | 531  | 92%        |          |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 32   | 53%        | 53%      |

| Projected Traffic \ | /olun  | nes:           |             |             |                 |   | A | verag   | e Hou         | rly Vo   | olume    | (AHV)          | Equation: | Al      | HV = (         | amPH    | V + p | mPHV)          | )/4     |
|---------------------|--------|----------------|-------------|-------------|-----------------|---|---|---------|---------------|----------|----------|----------------|-----------|---------|----------------|---------|-------|----------------|---------|
|                     |        | AM Pe          | eak H       | our Vo      | olumes          |   |   |         | PM P          | eak H    | our Vo   | olumes         |           | Ave     | erage I        | Hourly  | Volur | nes (Al        | HV)     |
|                     | 7<br>Ľ | 0<br>↓         | 7<br>\\     | K<br>←<br>∠ | 102<br>627<br>0 |   |   | 47<br>Ľ | 2<br>↓        | 91<br>\Z | K<br>← ∀ | 21<br>360<br>1 |           | 14<br>Ľ | 1<br>↓         | 25<br>צ | K ← ∀ | 31<br>247<br>0 |         |
|                     |        | 32<br>182<br>5 | У<br>Э<br>Л | 9           | ↑<br>7          | 0 |   |         | 6<br>777<br>9 | У<br>Э   | 4        | ↑<br>6         | 1         |         | 10<br>240<br>4 | У<br>Э  | 3     | ↑<br>3         | 71<br>0 |



| Hann     | 1   |     | Major | Road | l   |     |     |     | Minor | Road | l   |     | D-4* |
|----------|-----|-----|-------|------|-----|-----|-----|-----|-------|------|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR   | SBL  | SBT | SBR | Ped* |
| 7:00 AM  | 32  | 182 | 5     | 0    | 627 | 102 | 9   | 7   | 0     | 7    | 0   | 7   | 2    |
| 8:00 AM  | 16  | 91  | 3     | 0    | 314 | 51  | 5   | 4   | 0     | 4    | 0   | 4   | 1    |
| 9:00 AM  | 16  | 91  | 3     | 0    | 314 | 51  | 5   | 4   | 0     | 4    | 0   | 4   | 1    |
| 10:00 AM | 16  | 91  | 3     | 0    | 314 | 51  | 5   | 4   | 0     | 4    | 0   | 4   | 1    |
| 3:00 PM  | 6   | 777 | 9     | 1    | 360 | 21  | 4   | 6   | 1     | 91   | 2   | 47  | 2    |
| 4:00 PM  | 3   | 389 | 5     | 1    | 180 | 11  | 2   | 3   | 1     | 46   | 1   | 24  | 1    |
| 5:00 PM  | 3   | 389 | 5     | 1    | 180 | 11  | 2   | 3   | 1     | 46   | 1   | 24  | 1    |
| 6:00 PM  | 3   | 389 | 5     | 1    | 180 | 11  | 2   | 3   | 1     | 46   | 1   | 24  | 1    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

4-legged Intersection

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montrea        | l Road TIA Ad | ddendum                           | Da                               | te: February 3, 2021 |
|---------------|------------------------------|---------------|-----------------------------------|----------------------------------|----------------------|
| Project #:    | 127391                       |               |                                   |                                  |                      |
| Location:     | Old Montreal Road            | at            | Famille-Laporte Avenue / Street 1 |                                  |                      |
| Orientation:  | (Major Roadway)<br>East/West |               | (Minor Roadway)<br>North/South    |                                  |                      |
| Municipality: | City of Ottawa               |               | Scenario:                         | Future (2022) Background Traffic |                      |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 925     | 463     | 463     | 463      | 1261    | 631     | 631     | 631     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 96%     | 96%     | 96%      | 100%    | 100%    | 100%    | 100%    | 99%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 119     | 60      | 60      | 60       | 69      | 35      | 35      | 35      |                      |
| roads                         | 120          | 170            | 180                     | 255                       | 66%     | 33%     | 33%     | 33%      | 38%     | 19%     | 19%     | 19%     | 33%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                                            | N            | IINIMUM RE     | QUIREMEN                | IT                        |             |            |            | COMPL      | JANCE        |             |             |             |                      |
|----------------------------------------------------------------------------|--------------|----------------|-------------------------|---------------------------|-------------|------------|------------|------------|--------------|-------------|-------------|-------------|----------------------|
| WARRANT                                                                    | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM     | 8:00 AM    | 9:00 AM    | 10:00 AM   | 3:00 PM      | 4:00 PM     | 5:00 PM     | 6:00 PM     | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along artery                                           | 480          | 720            | 480                     | 720                       | 806<br>100% | 403<br>84% | 403<br>84% | 403<br>84% | 1192<br>100% | 596<br>100% | 596<br>100% | 596<br>100% | 94%                  |
| B. Combined vehicle and pedestrian volume crossing artery from minor roads | 50           | 70             | 50                      | 70                        | 2           | 1 2%       | 1 2%       | 1 2%       | 2            | 1 2%        | 1 2%        | 1 2%        | 3%                   |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |            |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|------------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %   |
|                                |                                                                                           | FREE FLOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LIVIIKE /6 |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 546  | 95%        | 000/       |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 216       | 306                    | 47   | 22%        | 22%        |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 576       | 864                    | 499  | 87%        |            |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 1    | 2%         | 2%         |

| Projected Traffic | /olum           | ies:   |               |          |               |   | A | verag          | e Hou  | rly Vo        | lume   | (AHV)         | Equation: | Al      | HV = (a | amPH          | V + p    | mPHV)         | )/4 |
|-------------------|-----------------|--------|---------------|----------|---------------|---|---|----------------|--------|---------------|--------|---------------|-----------|---------|---------|---------------|----------|---------------|-----|
|                   |                 | AM Pe  | eak Ho        | our Vo   | olumes        |   |   |                | PM Pe  | eak H         | our Vo | olumes        |           | Ave     | erage F | Hourly        | Volur    | nes (Al       | HV) |
|                   | 117<br><u>Ľ</u> | 0<br>↓ | 2<br>\\       | K<br>↓ ↓ | 1<br>616<br>0 |   |   | 67<br><u>Ľ</u> | 0<br>↓ | 2<br>\\       | K + 7  | 4<br>316<br>0 |           | 46<br>⊭ | 0<br>↓  | 1<br>\        | K<br>← ∠ | 1<br>233<br>0 |     |
|                   |                 | 32     | 7             | K        | $\uparrow$    | 7 |   |                | 121    | 7             | K      | $\uparrow$    | 7         |         | 38      | 7             | K        | $\uparrow$    | 7   |
|                   |                 | 157    | $\rightarrow$ | 0        | 0             | 0 |   |                | 751    | $\rightarrow$ | 0      | 0             | 0         |         | 227     | $\rightarrow$ | 0        | 0             | 0   |
|                   |                 | 0      | Я             |          |               |   |   |                | 0      | Ä             | l      |               |           |         | 0       | Я             | l        |               |     |



| Hour     |     |     | Major | Road | ı   |     |     |     | Minor | Road | ı   |     | D-4* |
|----------|-----|-----|-------|------|-----|-----|-----|-----|-------|------|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR   | SBL  | SBT | SBR | Ped* |
| 7:00 AM  | 32  | 157 | 0     | 0    | 616 | 1   | 0   | 0   | 0     | 2    | 0   | 117 | 0    |
| 8:00 AM  | 16  | 79  | 0     | 0    | 308 | 1   | 0   | 0   | 0     | 1    | 0   | 59  | 0    |
| 9:00 AM  | 16  | 79  | 0     | 0    | 308 | 1   | 0   | 0   | 0     | 1    | 0   | 59  | 0    |
| 10:00 AM | 16  | 79  | 0     | 0    | 308 | 1   | 0   | 0   | 0     | 1    | 0   | 59  | 0    |
| 3:00 PM  | 121 | 751 | 0     | 0    | 316 | 4   | 0   | 0   | 0     | 2    | 0   | 67  | 0    |
| 4:00 PM  | 61  | 376 | 0     | 0    | 158 | 2   | 0   | 0   | 0     | 1    | 0   | 34  | 0    |
| 5:00 PM  | 61  | 376 | 0     | 0    | 158 | 2   | 0   | 0   | 0     | 1    | 0   | 34  | 0    |
| 6:00 PM  | 61  | 376 | 0     | 0    | 158 | 2   | 0   | 0   | 0     | 1    | 0   | 34  | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

3-legged Intersection Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montrea        | al Road TIA Add | endum                          | Date                             | e: February 3, 2021 |
|---------------|------------------------------|-----------------|--------------------------------|----------------------------------|---------------------|
| Project #:    | 127391                       |                 |                                |                                  |                     |
| Location:     | Old Montreal Road            | at              | Dairy Drive / Aveia Private    |                                  |                     |
| Orientation:  | (Major Roadway)<br>East/West |                 | (Minor Roadway)<br>North/South |                                  |                     |
| Municipality: | City of Ottawa               |                 | Scenario:                      | Future (2027) Background Traffic |                     |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 771     | 386     | 386     | 386      | 1045    | 523     | 523     | 523     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 80%     | 80%     | 80%      | 100%    | 100%    | 100%    | 100%    | 93%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 30      | 15      | 15      | 15       | 151     | 76      | 76      | 76      |                      |
| roads                         | 120          | 170            | 120                     | 170                       | 25%     | 13%     | 13%     | 13%      | 100%    | 63%     | 63%     | 63%     | 44%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                       | N            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPI    | JANCE   |         |         |         |                      |
|-------------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                                               | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along<br>artery                   | 480          | 720            | 480                     | 720                       | 741     | 371     | 371     | 371      | 894     | 447     | 447     | 447     | 89%                  |
| artor y                                               | 400          | 120            | 400                     | 720                       | 100%    | 77%     | 77%     | 77%      | 100%    | 93%     | 93%     | 93%     | 0970                 |
| B. Combined vehicle and                               | 50           | 70             | 50                      | 70                        | 25      | 13      | 13      | 13       | 103     | 52      | 52      | 52      | 66%                  |
| pedestrian volume crossing<br>artery from minor roads | 50           | 70             | 50                      | 70                        | 50%     | 25%     | 25%     | 25%      | 100%    | 100%    | 100%    | 100%    | 00%                  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |           |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|-----------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %  |
|                                |                                                                                           | FREE FLOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | ENTIRE 76 |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 455  | 79%        | 32%       |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 144       | 204                    | 46   | 32%        | 3270      |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery<br>(Average Hour)                                        | 480       | 720        | 576       | 864                    | 409  | 71%        |           |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 32   | 53%        | 53%       |

| Projected Traffic Volumes: |                      |  |  |  |  |         | A             | Average Hourly Volume (AHV) Equation: |       |                |        |         |                | AHV = (amPHV + pmPHV)/4      |          |                |         |  |  |
|----------------------------|----------------------|--|--|--|--|---------|---------------|---------------------------------------|-------|----------------|--------|---------|----------------|------------------------------|----------|----------------|---------|--|--|
|                            | AM Peak Hour Volumes |  |  |  |  |         |               |                                       | PM P  | eak H          | our Vo | lumes   |                | Average Hourly Volumes (AHV) |          |                |         |  |  |
|                            |                      |  |  |  |  | 47<br>⊭ | 2<br>↓        | 91<br>\z                              | K ← ∀ | 21<br>275<br>1 |        | 14<br>⊭ | 1<br>↓         | 25<br>25                     | K<br>← ∠ | 31<br>183<br>0 |         |  |  |
|                            | 32                   |  |  |  |  |         | 6<br>582<br>9 | γ<br>→                                | 4     | ↑<br>6         | 1      |         | 10<br>182<br>4 | ⊼<br>→                       | 3        | ↑<br>3         | 71<br>0 |  |  |



|          |     |     | Major | Road | ı   |     |     |     | Ped* |     |     |     |     |
|----------|-----|-----|-------|------|-----|-----|-----|-----|------|-----|-----|-----|-----|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR  | SBL | SBT | SBR | Pea |
| 7:00 AM  | 32  | 145 | 5     | 0    | 457 | 102 | 9   | 7   | 0    | 7   | 0   | 7   | 2   |
| 8:00 AM  | 16  | 73  | 3     | 0    | 229 | 51  | 5   | 4   | 0    | 4   | 0   | 4   | 1   |
| 9:00 AM  | 16  | 73  | 3     | 0    | 229 | 51  | 5   | 4   | 0    | 4   | 0   | 4   | 1   |
| 10:00 AM | 16  | 73  | 3     | 0    | 229 | 51  | 5   | 4   | 0    | 4   | 0   | 4   | 1   |
| 3:00 PM  | 6   | 582 | 9     | 1    | 275 | 21  | 4   | 6   | 1    | 91  | 2   | 47  | 2   |
| 4:00 PM  | 3   | 291 | 5     | 1    | 138 | 11  | 2   | 3   | 1    | 46  | 1   | 24  | 1   |
| 5:00 PM  | 3   | 291 | 5     | 1    | 138 | 11  | 2   | 3   | 1    | 46  | 1   | 24  | 1   |
| 6:00 PM  | 3   | 291 | 5     | 1    | 138 | 11  | 2   | 3   | 1    | 46  | 1   | 24  | 1   |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

4-legged Intersection

Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montre         | al Road TIA Ad | ddendum                           | Date                             | February 3, 202 |
|---------------|------------------------------|----------------|-----------------------------------|----------------------------------|-----------------|
| Project #:    | 127391                       |                |                                   |                                  |                 |
| Location:     | Old Montreal Road            | at             | Famille-Laporte Avenue / Street 1 |                                  |                 |
| Orientation:  | (Major Roadway)<br>East/West |                | (Minor Roadway)<br>North/South    |                                  |                 |
| Municipality: | City of Ottawa               |                | Scenario:                         | Future (2027) Background Traffic |                 |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 727     | 364     | 364     | 364      | 987     | 494     | 494     | 494     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 76%     | 76%     | 76%      | 100%    | 100%    | 100%    | 100%    | 91%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 84      | 42      | 42      | 42       | 33      | 17      | 17      | 17      |                      |
| roads                         | 120          | 170            | 180                     | 255                       | 47%     | 23%     | 23%     | 23%      | 18%     | 9%      | 9%      | 9%      | 20%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                    | N            | IINIMUM RE     | QUIREMEN                | IT                        |         | COMPLIANCE |         |          |         |         |         |         |                      |  |  |
|----------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|------------|---------|----------|---------|---------|---------|---------|----------------------|--|--|
| WARRANT                                            | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM    | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |  |  |
| A. Vehicle volumes, along<br>artery                | 480          | 720            | 480                     | 720                       | 643     | 322        | 322     | 322      | 954     | 477     | 477     | 477     | 87%                  |  |  |
|                                                    |              |                |                         |                           | 100%    | 67%        | 67%     | 67%      | 100%    | 99%     | 99%     | 99%     |                      |  |  |
| B. Combined vehicle and pedestrian volume crossing | 50           | 70             | 50                      | 70                        | 2       | 1          | 1       | 1        | 1       | 1       | 1       | 1       | 2%                   |  |  |
| artery from minor roads                            | 00           | 10             | 00                      | .0                        | 4%      | 2%         | 2%      | 2%       | 2%      | 1%      | 1%      | 1%      | 270                  |  |  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |          |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|----------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE % |
|                                |                                                                                           | FREE FLOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | ENTIRE % |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 429  | 74%        | 13%      |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 216       | 306                    | 29   | 13%        | 1370     |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 576       | 864                    | 400  | 69%        |          |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 1    | 2%         | 2%       |

| Projected Traffic Volumes | Average Hourly Volume (AHV) Equation: |     |   |   |            |          |                      | AHV = (amPHV + pmPHV)/4 |               |   |          |          |               |       |                              |   |  |  |  |  |
|---------------------------|---------------------------------------|-----|---|---|------------|----------|----------------------|-------------------------|---------------|---|----------|----------|---------------|-------|------------------------------|---|--|--|--|--|
| AN                        | AM Peak Hour Volumes                  |     |   |   |            |          | PM Peak Hour Volumes |                         |               |   |          |          |               |       | Average Hourly Volumes (AHV) |   |  |  |  |  |
| 82<br>_ ½                 | 82 0 2 ← 489<br>∠ ↓ 」 ∠ 0             |     |   |   | 32<br>_ ∠′ | 0<br>↓   | 1<br>\               | K                       | 1<br>268<br>0 |   | 29<br>∠′ | 0<br>↓   | 1<br>\        | K ← Y | 1<br>189<br>0                |   |  |  |  |  |
|                           | 21 /                                  | J K | 1 | 7 |            | 58       | 7                    | K                       | $\uparrow$    | 7 |          | 20       | 7             |       | $\uparrow$                   | 7 |  |  |  |  |
| 1                         | 132 -<br>0 \                          |     | 0 | 0 |            | 627<br>0 | $\rightarrow$        | 0                       | 0             | 0 |          | 190<br>0 | $\rightarrow$ | 0     | 0                            | 0 |  |  |  |  |



| Hour     | l   |     | Major | Road | ı   |     |     |     | D- 4* |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|-----|-----|-------|-----|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR   | SBL | SBT | SBR | Ped* |
| 7:00 AM  | 21  | 132 | 0     | 0    | 489 | 1   | 0   | 0   | 0     | 2   | 0   | 82  | 0    |
| 8:00 AM  | 11  | 66  | 0     | 0    | 245 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 9:00 AM  | 11  | 66  | 0     | 0    | 245 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 10:00 AM | 11  | 66  | 0     | 0    | 245 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 3:00 PM  | 58  | 627 | 0     | 0    | 268 | 1   | 0   | 0   | 0     | 1   | 0   | 32  | 0    |
| 4:00 PM  | 29  | 314 | 0     | 0    | 134 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |
| 5:00 PM  | 29  | 314 | 0     | 0    | 134 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |
| 6:00 PM  | 29  | 314 | 0     | 0    | 134 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

3-legged Intersection

Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montrea        | al Road TIA Ad | dendum                         | Date                        | : February 3, 2021 |
|---------------|------------------------------|----------------|--------------------------------|-----------------------------|--------------------|
| Project #:    | 127391                       |                |                                |                             |                    |
| Location:     | Old Montreal Road            | at             | Dairy Drive / Aveia Private    |                             |                    |
| Orientation:  | (Major Roadway)<br>East/West |                | (Minor Roadway)<br>North/South |                             |                    |
| Municipality: | City of Ottawa               |                | Scenario:                      | Future (2022) Total Traffic |                    |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 1184    | 592     | 592     | 592      | 1582    | 791     | 791     | 791     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 100%    | 100%    | 100%     | 100%    | 100%    | 100%    | 100%    | 100%                 |
| B. Vehicle volume along minor |              |                |                         |                           | 37      | 19      | 19      | 19       | 171     | 86      | 86      | 86      |                      |
| roads                         | 120          | 170            | 120                     | 120 170 3                 |         | 15%     | 15%     | 15%      | 100%    | 71%     | 71%     | 71%     | 49%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                       | N            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         |          |         |         |         |         |                      |
|-------------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                                               | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along                             |              |                |                         |                           | 1147    | 574     | 574     | 574      | 1411    | 706     | 706     | 706     | /                    |
| artery                                                | 480          | 720            | 480                     | 720                       | 100%    | 100%    | 100%    | 100%     | 100%    | 100%    | 100%    | 100%    | 100%                 |
| B. Combined vehicle and                               |              | 70             |                         | 70                        | 32      | 16      | 16      | 16       | 123     | 62      | 62      | 62      | 700/                 |
| pedestrian volume crossing<br>artery from minor roads | 50           | 70             | 50                      | 70                        | 64%     | 32%     | 32%     | 32%      | 100%    | 100%    | 100%    | 100%    | 70%                  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |           |  |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|-----------|--|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %  |  |
|                                |                                                                                           | TREETEOW  | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LNTIKE /0 |  |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 692  | 100%       | 36%       |  |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 144       | 204                    | 52   | 36%        | 30%       |  |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 576       | 864                    | 640  | 100%       |           |  |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 38   | 63%        | 63%       |  |

| Projected Traffic Volur | nes:                                                                         |         |             |                 |   | Average Hourly Volume (AHV) Equation |             |          |             |                |                    |         | AHV = (amPHV + pmPHV)/4 |         |       |                |     |
|-------------------------|------------------------------------------------------------------------------|---------|-------------|-----------------|---|--------------------------------------|-------------|----------|-------------|----------------|--------------------|---------|-------------------------|---------|-------|----------------|-----|
|                         | AM P                                                                         | eak H   | our Vo      | olumes          |   | _                                    | PM          | Peak I   | Hour V      | olumes         |                    | Ave     | erage I                 | Hourly  | Volur | nes (A         | HV) |
| 7<br>'\                 | 0<br>↓                                                                       | 14<br>\ | K<br>←<br>∠ | 134<br>745<br>0 |   |                                      | 17 2<br>∠ ↓ | 111<br>ע | K<br>←<br>∠ | 44<br>443<br>1 |                    | 14<br>⊭ | 1<br>↓                  | 31<br>\ | K ← ∀ | 45<br>297<br>0 |     |
|                         | 32                                                                           | 7       | K           | 1               | 7 |                                      | 6           | 7        | K           | $\uparrow$     | 7                  |         | 10                      | 7       | K     | $\uparrow$     | 7   |
|                         | $\begin{array}{c cccc} 231 & \rightarrow & 9 & 7 & 0 \\ 5 & & & \end{array}$ |         |             |                 |   | 908 → 4 6 1<br>9 ⊔                   |             |          |             |                | 285 → 3 3 0<br>4 ⊻ |         |                         |         |       |                |     |



| Hour     | Major Road EBL EBT EBR WBL WBT WE |     |     |     |     |     |     |     | Minor | Road | ı   |     | Ped* |
|----------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-------|------|-----|-----|------|
| Hour     | EBL                               | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR   | SBL  | SBT | SBR | Pea" |
| 7:00 AM  | 32                                | 231 | 5   | 0   | 745 | 134 | 9   | 7   | 0     | 14   | 0   | 7   | 2    |
| 8:00 AM  | 16                                | 116 | 3   | 0   | 373 | 67  | 5   | 4   | 0     | 7    | 0   | 4   | 1    |
| 9:00 AM  | 16                                | 116 | 3   | 0   | 373 | 67  | 5   | 4   | 0     | 7    | 0   | 4   | 1    |
| 10:00 AM | 16                                | 116 | 3   | 0   | 373 | 67  | 5   | 4   | 0     | 7    | 0   | 4   | 1    |
| 3:00 PM  | 6                                 | 908 | 9   | 1   | 443 | 44  | 4   | 6   | 1     | 111  | 2   | 47  | 2    |
| 4:00 PM  | 3                                 | 454 | 5   | 1   | 222 | 22  | 2   | 3   | 1     | 56   | 1   | 24  | 1    |
| 5:00 PM  | 3                                 | 454 | 5   | 1   | 222 | 22  | 2   | 3   | 1     | 56   | 1   | 24  | 1    |
| 6:00 PM  | 3                                 | 454 | 5   | 1   | 222 | 22  | 2   | 3   | 1     | 56   | 1   | 24  | 1    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

4-legged Intersection

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montre         | al Road TIA Ad | ddendum                           | Date                        | : February 3, 2021 |
|---------------|------------------------------|----------------|-----------------------------------|-----------------------------|--------------------|
| Project #:    | 127391                       |                |                                   |                             |                    |
| Location:     | Old Montreal Road            | at             | Famille-Laporte Avenue / Street 1 |                             |                    |
| Orientation:  | (Major Roadway)<br>East/West |                | (Minor Roadway)<br>North/South    |                             |                    |
| Municipality: | City of Ottawa               |                | Scenario:                         | Future (2022) Total Traffic |                    |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 1132    | 566     | 566     | 566      | 1521    | 761     | 761     | 761     |                      |
| approaches                    | 480          | 720            | 576                     | 864                       | 100%    | 98%     | 98%     | 98%      | 100%    | 100%    | 100%    | 100%    | 99%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 119     | 60      | 60      | 60       | 69      | 35      | 35      | 35      |                      |
| roads                         | 120          | 170            | 144                     | 204                       | 83%     | 41%     | 41%     | 41%      | 48%     | 24%     | 24%     | 24%     | 41%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                                            | N            | IINIMUM RE     | QUIREMEN                | IT                        |              | COMPLIANCE |            |            |              |             |             |             |                      |  |
|----------------------------------------------------------------------------|--------------|----------------|-------------------------|---------------------------|--------------|------------|------------|------------|--------------|-------------|-------------|-------------|----------------------|--|
| WARRANT                                                                    | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM      | 8:00 AM    | 9:00 AM    | 10:00 AM   | 3:00 PM      | 4:00 PM     | 5:00 PM     | 6:00 PM     | SECTIONAL<br>PERCENT |  |
| A. Vehicle volumes, along artery                                           | 480          | 720            | 576                     | 864                       | 1013<br>100% | 507<br>88% | 507<br>88% | 507<br>88% | 1452<br>100% | 726<br>100% | 726<br>100% | 726<br>100% | 95%                  |  |
| B. Combined vehicle and pedestrian volume crossing artery from minor roads | 50           | 70             | 60                      | 84                        | 2 3%         | 1 2%       | 1 2%       | 1 2%       | 2 3%         | 1 2%        | 1 2%        | 1 2%        | 2%                   |  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | N/A                          | N/A                               |
| Justification 2 - Delay to Cross<br>Traffic   | N/A                          | IN/A                              |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |            |  |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|------------|--|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %   |  |
|                                |                                                                                           | TREE TEOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LIVIIKE /6 |  |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 720       | 1080                   | 663  | 92%        | 26%        |  |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 180       | 255                    | 47   | 26%        | 20%        |  |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 720       | 1080                   | 616  | 86%        |            |  |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 75        | 113                    | 1    | 1%         | 1%         |  |

| Projected Traffic V | /olum | es:   |               |        |            |   | A۱ | verag   | e Hou  | rly Vo        | olume  | (AHV)         | Equation: | AHV = (amPHV + pmPHV)/4 |         |               |       |               | )/4 |
|---------------------|-------|-------|---------------|--------|------------|---|----|---------|--------|---------------|--------|---------------|-----------|-------------------------|---------|---------------|-------|---------------|-----|
|                     |       | AM Pe | eak H         | our Vo | olumes     |   |    |         | PM Pe  | eak H         | our Vo | olumes        |           | Ave                     | erage I | Hourly        | Volur | nes (Al       | HV) |
|                     |       |       |               |        |            |   |    | 67<br>∠ | 0<br>↓ | 2<br>\\       | K      | 4<br>422<br>3 |           | 46<br>⊭                 | 0<br>↓  | 1<br>\        | K → Y | 1<br>297<br>1 |     |
| •                   |       | 32    | 7             | K      | $\uparrow$ | 7 |    |         | 121    | 7             | K      | $\uparrow$    | 7         |                         | 38      | 7             | K     | $\uparrow$    | 7   |
|                     |       | 191   | $\rightarrow$ | 0      | 0          | 0 |    |         | 842    | $\rightarrow$ | 0      | 0             | 0         |                         | 258     | $\rightarrow$ | 0     | 0             | 0   |
|                     | 22 צ  |       |               |        |            |   | 60 | Я       |        |               |        |               | 21        | Я                       | I       |               |       |               |     |



| Hour     |     |     | Major | Road | ı   |     |     |     | Ped* |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|-----|-----|------|-----|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR  | SBL | SBT | SBR | Pea" |
| 7:00 AM  | 32  | 191 | 22    | 1    | 766 | 1   | 0   | 0   | 0    | 2   | 0   | 117 | 0    |
| 8:00 AM  | 16  | 96  | 11    | 1    | 383 | 1   | 0   | 0   | 0    | 1   | 0   | 59  | 0    |
| 9:00 AM  | 16  | 96  | 11    | 1    | 383 | 1   | 0   | 0   | 0    | 1   | 0   | 59  | 0    |
| 10:00 AM | 16  | 96  | 11    | 1    | 383 | 1   | 0   | 0   | 0    | 1   | 0   | 59  | 0    |
| 3:00 PM  | 121 | 842 | 60    | 3    | 422 | 4   | 0   | 0   | 0    | 2   | 0   | 67  | 0    |
| 4:00 PM  | 61  | 421 | 30    | 2    | 211 | 2   | 0   | 0   | 0    | 1   | 0   | 34  | 0    |
| 5:00 PM  | 61  | 421 | 30    | 2    | 211 | 2   | 0   | 0   | 0    | 1   | 0   | 34  | 0    |
| 6:00 PM  | 61  | 421 | 30    | 2    | 211 | 2   | 0   | 0   | 0    | 1   | 0   | 34  | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

4-legged Intersection

New Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montre         | al Road TIA Addend | dum                            | Da                          | te: February 3, 2021 |
|---------------|------------------------------|--------------------|--------------------------------|-----------------------------|----------------------|
| Project #:    | 127391                       |                    |                                |                             |                      |
| Location:     | Old Montreal Road            | at                 | Street 2                       |                             |                      |
| Orientation:  | (Major Roadway)<br>East/West |                    | (Minor Roadway)<br>North/South |                             |                      |
| Municipality: | City of Ottawa               |                    | Scenario:                      | Future (2022) Total Traffic |                      |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | JANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       | 400          | 700            | 570                     | 22.1                      | 971     | 486     | 486     | 486      | 1284    | 642     | 642     | 642     | 0.40/                |
| approaches                    | 480          | 720            | 576                     | 864                       | 100%    | 84%     | 84%     | 84%      | 100%    | 100%    | 100%    | 100%    | 94%                  |
| B. Vehicle volume along minor |              | 470            | 040                     | 222                       | 158     | 79      | 79      | 79       | 112     | 56      | 56      | 56      | 200/                 |
| roads                         | 120          | 170            | 216                     | 306                       | 73%     | 37%     | 37%     | 37%      | 52%     | 26%     | 26%     | 26%     | 39%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                    | N            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPI    | JANCE   |         |         |         |                      |
|----------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                                            | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along<br>artery                | 480          | 720            | 576                     | 864                       | 813     | 407     | 407     | 407      | 1172    | 586     | 586     | 586     | 89%                  |
|                                                    |              |                |                         |                           | 100%    | 71%     | 71%     | 71%      | 100%    | 100%    | 100%    | 100%    |                      |
| B. Combined vehicle and pedestrian volume crossing | 50           | 70             | 60                      | 84                        | 150     | 75      | 75      | 75       | 106     | 53      | 53      | 53      | 96%                  |
| artery from minor roads                            | 30           | , 0            | 30                      | 54                        | 100%    | 100%    | 100%    | 100%     | 100%    | 88%     | 88%     | 88%     | 0070                 |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | N/A                          | N/A                               |
| Justification 2 - Delay to Cross<br>Traffic   | N/A                          | IN/A                              |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |            |  |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|------------|--|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %   |  |
|                                |                                                                                           | TREE TEOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LITTIAL /0 |  |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 720       | 1080                   | 564  | 78%        | 050/       |  |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 270       | 383                    | 68   | 25%        | 25%        |  |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 720       | 1080                   | 496  | 69%        |            |  |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 75        | 113                    | 64   | 85%        | 69%        |  |

| Projected Traffic \ | Projected Traffic Volumes: |                |          |             |               |   | A | Average Hourly Volume (AHV) Equation: |                |          |             |               |               | AHV = (amPHV + pmPHV)/4 |                |        |         |               | )/4     |
|---------------------|----------------------------|----------------|----------|-------------|---------------|---|---|---------------------------------------|----------------|----------|-------------|---------------|---------------|-------------------------|----------------|--------|---------|---------------|---------|
|                     |                            | AM Pe          | eak H    | our Vo      | lumes         |   |   |                                       | PM Pe          | eak H    | our Vo      | lumes         |               | Ave                     | erage I        | Hourly | Volun   | nes (A        | HV)     |
|                     | 0<br>Ľ                     | 0              | الا<br>0 | K<br>←<br>∠ | 0<br>618<br>2 |   |   | 0<br>Ľ                                | 0              | الا<br>0 | K<br>←<br>∠ | 0<br>323<br>5 |               | 0<br>Ľ                  | 0              | 0<br>\ | K ← ∨   | 0<br>235<br>2 |         |
|                     |                            | 0<br>159<br>34 | У<br>Э   | √<br>150    | ↑<br>0        | 8 |   |                                       | 0<br>753<br>91 | У<br>Э   | ∖<br>106    | ↑<br>0        | <i>⊼</i><br>6 |                         | 0<br>228<br>31 | У<br>Э | K<br>64 | ↑<br>0        | 71<br>4 |



| Hour     | l   |     | Major | Road | I   |     | Minor Road |     |     |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|------------|-----|-----|-----|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL        | NBT | NBR | SBL | SBT | SBR | Ped* |
| 7:00 AM  | 0   | 159 | 34    | 2    | 618 | 0   | 150        | 0   | 8   | 0   | 0   | 0   | 0    |
| 8:00 AM  | 0   | 80  | 17    | 1    | 309 | 0   | 75         | 0   | 4   | 0   | 0   | 0   | 0    |
| 9:00 AM  | 0   | 80  | 17    | 1    | 309 | 0   | 75         | 0   | 4   | 0   | 0   | 0   | 0    |
| 10:00 AM | 0   | 80  | 17    | 1    | 309 | 0   | 75         | 0   | 4   | 0   | 0   | 0   | 0    |
| 3:00 PM  | 0   | 753 | 91    | 5    | 323 | 0   | 106        | 0   | 6   | 0   | 0   | 0   | 0    |
| 4:00 PM  | 0   | 377 | 46    | 3    | 162 | 0   | 53         | 0   | 3   | 0   | 0   | 0   | 0    |
| 5:00 PM  | 0   | 377 | 46    | 3    | 162 | 0   | 53         | 0   | 3   | 0   | 0   | 0   | 0    |
| 6:00 PM  | 0   | 377 | 46    | 3    | 162 | 0   | 53         | 0   | 3   | 0   | 0   | 0   | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

3-legged Intersection

New Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montre         | al Road TIA Add | lendum                         | Da                          | te: February 3, 2021 |
|---------------|------------------------------|-----------------|--------------------------------|-----------------------------|----------------------|
| Project #:    | 127391                       |                 |                                |                             |                      |
| Location:     | Old Montreal Road            | at              | Dairy Drive / Aveia Private    |                             |                      |
| Orientation:  | (Major Roadway)<br>East/West |                 | (Minor Roadway)<br>North/South |                             |                      |
| Municipality: | City of Ottawa               |                 | Scenario:                      | Future (2027) Total Traffic |                      |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         | COMPL    | IANCE   |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 977     | 489     | 489     | 489      | 1302    | 651     | 651     | 651     |                      |
| approaches                    | 480          | 720            | 480                     | 720                       | 100%    | 100%    | 100%    | 100%     | 100%    | 100%    | 100%    | 100%    | 100%                 |
| B. Vehicle volume along minor |              |                |                         |                           | 37      | 19      | 19      | 19       | 171     | 86      | 86      | 86      |                      |
| roads                         | 120          | 170            | 120                     | 170                       | 31%     | 15%     | 15%     | 15%      | 100%    | 71%     | 71%     | 71%     | 49%                  |

#### Justification 2 - Delay to Cross Traffic

|                                                                            | N            | IINIMUM RE     | QUIREMEN                | IT                        |             |            |            |            |              |             |             |             |                      |
|----------------------------------------------------------------------------|--------------|----------------|-------------------------|---------------------------|-------------|------------|------------|------------|--------------|-------------|-------------|-------------|----------------------|
| WARRANT                                                                    | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM     | 8:00 AM    | 9:00 AM    | 10:00 AM   | 3:00 PM      | 4:00 PM     | 5:00 PM     | 6:00 PM     | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, along artery                                           | 480          | 720            | 480                     | 720                       | 940<br>100% | 470<br>98% | 470<br>98% | 470<br>98% | 1131<br>100% | 566<br>100% | 566<br>100% | 566<br>100% | 99%                  |
| B. Combined vehicle and pedestrian volume crossing artery from minor roads | 50           | 70             | 50                      | 70                        | 32<br>64%   | 16<br>32%  | 16<br>32%  | 16<br>32%  | 123<br>100%  | 62<br>100%  | 62<br>100%  | 62<br>100%  | 70%                  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | NO                           | NO                                |
| Justification 2 - Delay to Cross<br>Traffic   | NO                           | NO                                |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |            |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|------------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %   |
|                                |                                                                                           | TREE TEOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LIVIIKE /6 |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 576       | 864                    | 570  | 99%        | 000/       |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 144       | 204                    | 52   | 36%        | 36%        |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 576       | 864                    | 518  | 90%        |            |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 60        | 90                     | 38   | 63%        | 63%        |

| Projected Traffic \ | /olun        | nes:         |               |        |        |   | Average Hourly Volume (AHV) Equation |   |                                       |               |        |        |   | AHV = (amPHV + pmPHV)/4 |              |               |            |            |     |
|---------------------|--------------|--------------|---------------|--------|--------|---|--------------------------------------|---|---------------------------------------|---------------|--------|--------|---|-------------------------|--------------|---------------|------------|------------|-----|
|                     |              | AM P         | eak H         | our Vo | olumes |   |                                      |   | PM P                                  | eak H         | our Vo | olumes |   | Ave                     | erage I      | Hourly        | Volur      | nes (Al    | HV) |
|                     | 7 0 14 ← 575 |              |               |        |        |   |                                      |   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |               |        |        |   |                         |              |               | <b>K</b> ← | 45<br>233  |     |
|                     | V            | $\downarrow$ | И             | V      | 0      |   |                                      | Ľ | $\downarrow$                          | И             | Ľ      | 1      |   | V                       | $\downarrow$ | И             | Ľ          | 0          |     |
|                     |              | 32           | 7             | K      | 1      | 7 |                                      |   | 6                                     | 7             | K      | 1      | 7 |                         | 10           | 7             | K          | $\uparrow$ | 7   |
|                     |              | 194          | $\rightarrow$ | 9      | 7      | 0 |                                      |   | 713                                   | $\rightarrow$ | 4      | 6      | 1 |                         | 227          | $\rightarrow$ | 3          | 3          | 0   |
|                     |              | 5            | $\mathbf{k}$  |        |        |   |                                      |   | 9                                     | И             |        |        |   |                         | 4            | И             |            |            |     |
|                     |              |              |               |        |        |   |                                      |   |                                       |               | -      |        |   |                         |              |               |            |            |     |



|          |     |     | Major | Road | I   |     |     |     | Ped* |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|-----|-----|------|-----|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR  | SBL | SBT | SBR | Pea- |
| 7:00 AM  | 32  | 194 | 5     | 0    | 575 | 134 | 9   | 7   | 0    | 14  | 0   | 7   | 2    |
| 8:00 AM  | 16  | 97  | 3     | 0    | 288 | 67  | 5   | 4   | 0    | 7   | 0   | 4   | 1    |
| 9:00 AM  | 16  | 97  | 3     | 0    | 288 | 67  | 5   | 4   | 0    | 7   | 0   | 4   | 1    |
| 10:00 AM | 16  | 97  | 3     | 0    | 288 | 67  | 5   | 4   | 0    | 7   | 0   | 4   | 1    |
| 3:00 PM  | 6   | 713 | 9     | 1    | 358 | 44  | 4   | 6   | 1    | 111 | 2   | 47  | 2    |
| 4:00 PM  | 3   | 357 | 5     | 1    | 179 | 22  | 2   | 3   | 1    | 56  | 1   | 24  | 1    |
| 5:00 PM  | 3   | 357 | 5     | 1    | 179 | 22  | 2   | 3   | 1    | 56  | 1   | 24  | 1    |
| 6:00 PM  | 3   | 357 | 5     | 1    | 179 | 22  | 2   | 3   | 1    | 56  | 1   | 24  | 1    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

4-legged Intersection

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

Existing Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montreal       | Road TIA A | ddendum                           | Da                          | ite: | February 3, 2021 |
|---------------|------------------------------|------------|-----------------------------------|-----------------------------|------|------------------|
| Project #:    | 127391                       |            |                                   |                             |      |                  |
| Location:     | Old Montreal Road            | at _       | Famille-Laporte Avenue / Street 1 |                             |      |                  |
| Orientation:  | (Major Roadway)<br>East/West |            | (Minor Roadway)<br>North/South    |                             |      |                  |
| Municipality: | City of Ottawa               |            | Scenario:                         | Future (2027) Total Traffic |      |                  |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         |          |         |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 934     | 467     | 467     | 467      | 1247    | 624     | 624     | 624     |                      |
| approaches                    | 480          | 720            | 576                     | 864                       | 100%    | 81%     | 81%     | 81%      | 100%    | 100%    | 100%    | 100%    | 93%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 84      | 42      | 42      | 42       | 33      | 17      | 17      | 17      |                      |
| roads                         | 120          | 170            | 144                     | 204                       | 58%     | 29%     | 29%     | 29%      | 23%     | 11%     | 11%     | 11%     | 25%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                    | N            | IINIMUM RE     | QUIREMEN                | IT                        |         | COMPLIANCE |         |          |         |         |         |         |                      |  |
|----------------------------------------------------|--------------|----------------|-------------------------|---------------------------|---------|------------|---------|----------|---------|---------|---------|---------|----------------------|--|
| WARRANT                                            | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM    | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |  |
| A. Vehicle volumes, along<br>artery                | 480          | 720            | 576                     | 864                       | 850     | 425        | 425     | 425      | 1214    | 607     | 607     | 607     | 90%                  |  |
|                                                    |              |                |                         |                           | 100%    | 74%        | 74%     | 74%      | 100%    | 100%    | 100%    | 100%    |                      |  |
| B. Combined vehicle and pedestrian volume crossing | 50           | 70             | 60                      | 84                        | 2       | 1          | 1       | 1        | 1       | 1       | 1       | 1       | 2%                   |  |
| artery from minor roads                            | 50           | , 0            | 30                      | 54                        | 3%      | 2%         | 2%      | 2%       | 2%      | 1%      | 1%      | 1%      | 270                  |  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |
|-----------------------------------------------|------------------------------|-----------------------------------|
| Justification 1 - Minimum<br>Vehicular Volume | N/A                          | N/A                               |
| Justification 2 - Delay to Cross<br>Traffic   | N/A                          | IV/A                              |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT |                        |      | COMPLIANCE |            |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|------------|------------|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | IONAL      | ENTIRE %   |
|                                |                                                                                           | TREE TEOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %          | LIVIIKE /6 |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 720       | 1080                   | 545  | 76%        | 400/       |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 180       | 255                    | 29   | 16%        | 16%        |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 720       | 1080                   | 516  | 72%        |            |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 75        | 113                    | 1    | 1%         | 1%         |

| Projected Traffic \ | /olun                                 | nes:            |             |        |        |   | A | verag   | e Hou           | rly Vo      | olume       | (AHV)         | Equation: | AHV = (amPHV + pmPHV)/4 |                 |         |             |               |        |
|---------------------|---------------------------------------|-----------------|-------------|--------|--------|---|---|---------|-----------------|-------------|-------------|---------------|-----------|-------------------------|-----------------|---------|-------------|---------------|--------|
|                     |                                       | AM Pe           | eak H       | our Vo | olumes |   |   |         | PM Pe           | eak H       | our Vo      | lumes         |           | Ave                     | erage I         | Hourly  | Volur       | nes (A        | HV)    |
|                     | K 1<br>  82 0 2 ← 639<br>  ∠ ↓ IJ ∠ 1 |                 |             |        |        |   |   | 32<br>⊭ | 0<br>↓          | 1<br>\\     | K<br>←<br>Ľ | 1<br>374<br>3 |           | 29<br>⊭                 | o<br>↓          | 1<br>\\ | K<br>←<br>∠ | 1<br>253<br>1 |        |
|                     |                                       | 21<br>166<br>22 | л<br>→<br>Л | 0      | ↑<br>0 | 0 | • |         | 58<br>718<br>60 | л<br>→<br>Л | 0           | ↑<br>0        | 7<br>0    |                         | 20<br>221<br>21 | л<br>→  | 0           | ↑<br>0        | 7<br>0 |



| Hour     |     |     | Major | Road | ı   |     |     |     | Da dê |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|-----|-----|-------|-----|-----|-----|------|
| nour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT | NBR   | SBL | SBT | SBR | Ped* |
| 7:00 AM  | 21  | 166 | 22    | 1    | 639 | 1   | 0   | 0   | 0     | 2   | 0   | 82  | 0    |
| 8:00 AM  | 11  | 83  | 11    | 1    | 320 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 9:00 AM  | 11  | 83  | 11    | 1    | 320 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 10:00 AM | 11  | 83  | 11    | 1    | 320 | 1   | 0   | 0   | 0     | 1   | 0   | 41  | 0    |
| 3:00 PM  | 58  | 718 | 60    | 3    | 374 | 1   | 0   | 0   | 0     | 1   | 0   | 32  | 0    |
| 4:00 PM  | 29  | 359 | 30    | 2    | 187 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |
| 5:00 PM  | 29  | 359 | 30    | 2    | 187 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |
| 6:00 PM  | 29  | 359 | 30    | 2    | 187 | 1   | 0   | 0   | 0     | 1   | 0   | 16  | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

4-legged Intersection

New Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



| Project:      | 1154-1208 Old Montre         | al Road TIA A | ddendum                        | Date                        | : February 3, 202 |
|---------------|------------------------------|---------------|--------------------------------|-----------------------------|-------------------|
| Project #:    | 127391                       |               |                                |                             |                   |
| Location:     | Old Montreal Road            | at            | Street 2                       |                             |                   |
| Orientation:  | (Major Roadway)<br>East/West |               | (Minor Roadway)<br>North/South |                             |                   |
| Municipality: | City of Ottawa               |               | Scenario:                      | Future (2027) Total Traffic |                   |

#### **Justification 1 - Minimum Vehicle Volume**

|                               | M            | IINIMUM RE     | QUIREMEN                | IT                        |         |         |         |          |         |         |         |         |                      |
|-------------------------------|--------------|----------------|-------------------------|---------------------------|---------|---------|---------|----------|---------|---------|---------|---------|----------------------|
| WARRANT                       | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |
| A. Vehicle volumes, all       |              |                |                         |                           | 819     | 410     | 410     | 410      | 1108    | 554     | 554     | 554     |                      |
| approaches                    | 480          | 720            | 576                     | 864                       | 100%    | 71%     | 71%     | 71%      | 100%    | 96%     | 96%     | 96%     | 88%                  |
| B. Vehicle volume along minor |              |                |                         |                           | 158     | 79      | 79      | 79       | 112     | 56      | 56      | 56      |                      |
| roads                         | 120          | 170            | 216                     | 306                       | 73%     | 37%     | 37%     | 37%      | 52%     | 26%     | 26%     | 26%     | 39%                  |

#### **Justification 2 - Delay to Cross Traffic**

|                                                    | N            | IINIMUM RE     | QUIREMEN                | IT                        | COMPLIANCE |         |         |          |         |         |         |         |                      |  |
|----------------------------------------------------|--------------|----------------|-------------------------|---------------------------|------------|---------|---------|----------|---------|---------|---------|---------|----------------------|--|
| WARRANT                                            | FREE<br>FLOW | RESTR.<br>FLOW | ADJUST.<br>FREE<br>FLOW | ADJUST.<br>RESTR.<br>FLOW | 7:00 AM    | 8:00 AM | 9:00 AM | 10:00 AM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | SECTIONAL<br>PERCENT |  |
| A. Vehicle volumes, along<br>artery                | 480          | 720            | 576                     | 864                       | 661        | 331     | 331     | 331      | 996     | 498     | 498     | 498     | 79%                  |  |
| ,                                                  |              |                |                         | 004                       | 100%       | 57%     | 57%     | 57%      | 100%    | 86%     | 86%     | 86%     |                      |  |
| B. Combined vehicle and pedestrian volume crossing | 50           | 70             | 60                      | 84                        | 150        | 75      | 75      | 75       | 106     | 53      | 53      | 53      | 96%                  |  |
| artery from minor roads                            |              |                |                         |                           | 100%       | 100%    | 100%    | 100%     | 100%    | 88%     | 88%     | 88%     | 2370                 |  |

#### Justification 3 - Volume/Delay Combination

| JUSTIFICATION                                 | SATISFIED TO 80%<br>OR MORE? | BOTH SATISFIED TO<br>80% OR MORE? |  |  |  |  |
|-----------------------------------------------|------------------------------|-----------------------------------|--|--|--|--|
| Justification 1 - Minimum<br>Vehicular Volume | N/A                          | N/A                               |  |  |  |  |
| Justification 2 - Delay to Cross<br>Traffic   | N/A                          | IN/A                              |  |  |  |  |

|                                |                                                                                           |           | MINIMUM RE | QUIREMENT | COMPLIANCE             |      |          |            |  |
|--------------------------------|-------------------------------------------------------------------------------------------|-----------|------------|-----------|------------------------|------|----------|------------|--|
| WARRANT                        | DESCRIPTION                                                                               | FREE FLOW | RESTRICTED | ADJUSTED  | ADJUSTED<br>RESTRICTED | SECT | ENTIRE % |            |  |
|                                |                                                                                           | TREE TEOW | FLOW       | FREE FLOW | FLOW                   | AHV  | %        | LIVIIKE /6 |  |
| 1. MINIMUM VEHICULAR<br>VOLUME | A. Vehicle volumes, all approaches (Average Hour)                                         | 480       | 720        | 720       | 1080                   | 483  | 67%      | 25%        |  |
|                                | B. Vehicle volume along minor roads (Average Hour)                                        | 120       | 170        | 270       | 383                    | 68   | 25%      |            |  |
| 2. DELAY TO CROSS<br>TRAFFIC   | A. Vehicle volumes, along artery (Average Hour)                                           | 480       | 720        | 720       | 1080                   | 415  | 58%      |            |  |
|                                | B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour) | 50        | 75         | 75        | 113                    | 64   | 85%      | 58%        |  |

| Projected Traffic Volumes: |                      |                |        |             |               |                 |  | Average Hourly Volume (AHV) Equation: |                      |        |             |               |                 | AHV = (amPHV + pmPHV)/4 |                |                              |                |               |         |  |  |
|----------------------------|----------------------|----------------|--------|-------------|---------------|-----------------|--|---------------------------------------|----------------------|--------|-------------|---------------|-----------------|-------------------------|----------------|------------------------------|----------------|---------------|---------|--|--|
|                            | AM Peak Hour Volumes |                |        |             |               |                 |  |                                       | PM Peak Hour Volumes |        |             |               |                 |                         |                | Average Hourly Volumes (AHV) |                |               |         |  |  |
|                            | 0<br>Ľ               | 0<br>↓         | η<br>0 | K<br>←<br>∠ | 0<br>491<br>2 |                 |  | 0<br>Ľ                                | o<br>↓               | η<br>0 | K<br>←<br>∠ | 0<br>272<br>5 |                 | 0<br>Ľ                  | o<br>↓         | η<br>0                       | K<br>← ∠       | 0<br>191<br>2 |         |  |  |
|                            |                      | 0<br>134<br>34 | У<br>Э | ↑<br>150    | ↑<br>0        | <i>7</i> 1<br>8 |  |                                       | 0<br>628<br>91       | У<br>Э | ∖<br>106    | ↑<br>0        | <i>⊼</i> 1<br>6 |                         | 0<br>191<br>31 | У<br>Э                       | <b>₹</b><br>64 | ↑<br>0        | 71<br>4 |  |  |



| Hour     |     |     | Major | Road | I   |     |     | Ped* |     |     |     |     |      |
|----------|-----|-----|-------|------|-----|-----|-----|------|-----|-----|-----|-----|------|
| Hour     | EBL | EBT | EBR   | WBL  | WBT | WBR | NBL | NBT  | NBR | SBL | SBT | SBR | Pea" |
| 7:00 AM  | 0   | 134 | 34    | 2    | 491 | 0   | 150 | 0    | 8   | 0   | 0   | 0   | 0    |
| 8:00 AM  | 0   | 67  | 17    | 1    | 246 | 0   | 75  | 0    | 4   | 0   | 0   | 0   | 0    |
| 9:00 AM  | 0   | 67  | 17    | 1    | 246 | 0   | 75  | 0    | 4   | 0   | 0   | 0   | 0    |
| 10:00 AM | 0   | 67  | 17    | 1    | 246 | 0   | 75  | 0    | 4   | 0   | 0   | 0   | 0    |
| 3:00 PM  | 0   | 628 | 91    | 5    | 272 | 0   | 106 | 0    | 6   | 0   | 0   | 0   | 0    |
| 4:00 PM  | 0   | 314 | 46    | 3    | 136 | 0   | 53  | 0    | 3   | 0   | 0   | 0   | 0    |
| 5:00 PM  | 0   | 314 | 46    | 3    | 136 | 0   | 53  | 0    | 3   | 0   | 0   | 0   | 0    |
| 6:00 PM  | 0   | 314 | 46    | 3    | 136 | 0   | 53  | 0    | 3   | 0   | 0   | 0   | 0    |

<sup>\*</sup> Number of pedestrians crossing the major road

#### Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

1 Lane per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

3-legged Intersection New Intersection

- The crossing volumes are defined as the sum of:
   (a) Left-turns from both minor road approaches.
   (b) The heaviest through volume from the minor road.
  - (c) 50% of the heavier left turn movement from major road when both of the following are met:
    - (i) the left-turn volume >120 vph
    - (ii) the left-turn volume plus the opposing volume >720 vph
  - (d) Pedestrians crossing the main road.

<sup>\* &</sup>quot;Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

#### **IBI GROUP MEMORANDUM**

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

## Appendix F – Roundabout Feasibility



# City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more

| 1 | Project Name:                                                                                                                                                                                                                                                                   | 1154-1208 Old Montreal Road                                                                                                                                    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |
| 2 | Intersection:                                                                                                                                                                                                                                                                   | Old Montreal Road & Dairy Drive / Aveia Private                                                                                                                |
|   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |
| 3 | Location and Description of Intersection: Lane Configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control | The intersectio is currently configured as a two-way stop-controlled intersection with a left-turn lane on the eastbound, westbound and southbound approaches. |
| 4 | What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.                                                                                                                              | Traffic signals                                                                                                                                                |
| 5 | What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet                                                                                                                                                                           | Single lane roundabout                                                                                                                                         |
| 6 | Why is a roundabout being considered?                                                                                                                                                                                                                                           | To address capacity issues                                                                                                                                     |



7 Are there contra-indications for

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high

| No. | Contra-Indication                                                                                                                                                                                                                                              | Outcome  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1   | Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent | Yes No x |
| 2   | Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?                                                                                             | Yes No x |
| 3   | Is there an existing uncontrolled approach with a grade in excess of 4 percent?                                                                                                                                                                                | Yes No x |
| 4   | Is the intersection located within a coordinated signal system?                                                                                                                                                                                                | Yes No x |
| 5   | Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?                                                                                                                                            | Yes No x |
| 6   | Are significant differences in directional flows or any situations of sudden high demand expected?                                                                                                                                                             | Yes x No |
| 7   | Are there known visually-impaired pedestrians that cross this intersection?                                                                                                                                                                                    | Yes No x |

Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection.

| No. | Suitability Factor                                                                                                                                                                                         | Outcome  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1   | Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)? | Yes No x |
| 2   | Has there been a fatal crash at the intersection in the last 10 years?                                                                                                                                     | Yes No x |
| 3   | Are capacity problems currently being experienced, or expected in the future?                                                                                                                              | Yes x No |
| 4   | Are traffic signals warranted, or expected to be warranted in the future?                                                                                                                                  | Yes No x |
| 5   | Does the intersection have more than 4 legs, or unusual geometry?                                                                                                                                          | Yes No x |
| 6   | Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?                                                                            | Yes No x |
| 7   | Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?                                 | Yes x No |



9 Conclusions/recommendation whether to proceed with an Intersection Control Study:

Although there may be significant directional flows, capacity issues are anticipated at this intersection and a roundabout could act as a means of speed transition and therefore should be considered as a potential means of traffic control for this intersection.





# City of Ottawa Mini-Roundabout Screening Criteria

Mini roundabouts are best suited and most effective when they meet the following conditions;

| No.        | Criteria                                                                                                             | Outcome                 |
|------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1          | Located at minor collector road intersecting a minor collector road or a local residential road                      | Yes No X                |
| 2          | ADT lesser than 15,000 (estimated ADT in case of new development area)                                               | Yes X No                |
| 3          | At least 10% of the total traffic has generated from minor road (estimated in case of new development area)          | Yes X No                |
| 4          | Operating speed <55km/hr or posted speed ≤ 50km/hr in a new development area                                         | Yes No X                |
| 5          | A right of way wide enough to accommodate a 13 m to 27 m Inscribed Circle Diameter roundabout and adjacent sidewalks | Yes X No                |
| 6          | Situated on a non truck route or roads without heavy truck movements                                                 | Yes No X                |
| 7          | Intersections with no more than four legs                                                                            | Yes X No                |
| Conclusio  | on                                                                                                                   |                         |
| This loca  | tion does not meet several of the screening criteria, there                                                          | fore, a mini-roundabout |
| is not red | commended for this location.                                                                                         |                         |

#### **IBI GROUP MEMORANDUM**

Mike Giampa - City of Ottawa Transportation Project Manager - February 16, 2021

# Appendix G – Intersection Capacity Analysis

## **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Background Traffic AM Peak Hour Roundabout

| Lane Use a          | nd Dorfor   | mana |              | _     |       | _       | _        |             |         |        | _      |      |        |
|---------------------|-------------|------|--------------|-------|-------|---------|----------|-------------|---------|--------|--------|------|--------|
| Lane Use a          | Demand      |      | <del>)</del> | Deg.  | Lane  | Average | Level of | 95% Back of | f Ougus | Lane   | Lane   | Cap. | Prob.  |
|                     | Total       | HV   | Сар.         | Satn  | Util. | Delay   | Service  | Veh         | Dist    | Config | Length | Adj. | Block. |
|                     | veh/h       | %    | veh/h        | v/c   | %     | sec     | 0000     |             | m       |        | m      | %    | %      |
| South: Trim I       | Road        |      |              |       |       |         |          |             |         |        |        |      |        |
| Lane 1 <sup>d</sup> | 727         | 1.7  | 902          | 0.806 | 100   | 22.3    | LOS C    | 7.3         | 56.3    | Full   | 500    | 0.0  | 0.0    |
| Lane 2              | 704         | 3.5  | 873          | 0.806 | 100   | 22.8    | LOS C    | 7.4         | 57.6    | Full   | 500    | 0.0  | 0.0    |
| Approach            | 1430        | 2.6  |              | 0.806 |       | 22.6    | LOS C    | 7.4         | 57.6    |        |        |      |        |
| East: Old Mo        | ntreal Road | t    |              |       |       |         |          |             |         |        |        |      |        |
| Lane 1              | 227         | 6.6  | 360          | 0.630 | 100   | 28.7    | LOS D    | 2.3         | 18.5    | Full   | 500    | 0.0  | 0.0    |
| Lane 2 <sup>d</sup> | 255         | 2.0  | 404          | 0.630 | 100   | 26.1    | LOS D    | 2.4         | 18.5    | Full   | 500    | 0.0  | 0.0    |
| Lane 3              | 301         | 2.0  | 476          | 0.632 | 100   | 22.8    | LOS C    | 2.6         | 19.9    | Short  | 95     | 0.0  | NA     |
| Approach            | 783         | 3.3  |              | 0.632 |       | 25.6    | LOS D    | 2.6         | 19.9    |        |        |      |        |
| North: Trim F       | Road        |      |              |       |       |         |          |             |         |        |        |      |        |
| Lane 1              | 257         | 5.4  | 618          | 0.415 | 100   | 12.0    | LOS B    | 1.4         | 11.4    | Full   | 500    | 0.0  | 0.0    |
| Lane 2 <sup>d</sup> | 263         | 6.7  | 633          | 0.415 | 100   | 11.7    | LOS B    | 1.4         | 10.9    | Full   | 500    | 0.0  | 0.0    |
| Approach            | 520         | 6.1  |              | 0.415 |       | 11.9    | LOS B    | 1.4         | 11.4    |        |        |      |        |
| West: St Jos        | eph Boulev  | ard  |              |       |       |         |          |             |         |        |        |      |        |
| Lane 1 <sup>d</sup> | 73          | 10.0 | 625          | 0.117 | 100   | 7.1     | LOSA     | 0.3         | 2.3     | Full   | 500    | 0.0  | 0.0    |
| Lane 2              | 72          | 8.0  | 615          | 0.117 | 100   | 7.2     | LOS A    | 0.3         | 2.4     | Full   | 500    | 0.0  | 0.0    |
| Lane 3              | 50          | 10.0 | 690          | 0.072 | 100   | 6.0     | LOSA     | 0.2         | 1.4     | Short  | 135    | 0.0  | NA     |
| Approach            | 195         | 9.3  |              | 0.117 |       | 6.9     | LOS A    | 0.3         | 2.4     |        |        |      |        |
| Intersection        | 2927        | 3.8  |              | 0.806 |       | 20.4    | LOSC     | 7.4         | 57.6    |        |        |      |        |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Monday, November 09, 2020 4:19:01 PM

Project: Not Saved

| Intersection                |           |           |              |          |           |              |           |           |              |          |           |              |
|-----------------------------|-----------|-----------|--------------|----------|-----------|--------------|-----------|-----------|--------------|----------|-----------|--------------|
| Int Delay, s/veh            | 0.9       |           |              |          |           |              |           |           |              |          |           |              |
| • •                         | EBL       | EBT       | EBR          | WBL      | WBT       | WBR          | NBL       | NBT       | NBR          | SBL      | SBT       | SBR          |
|                             |           |           | EBK          |          |           | WBK          | INDL      |           | NBK          |          |           | SBK          |
| Lane Configurations         | 7         | 100       | E            | <u>*</u> | 607       | 100          | 0         | 4         | ٥            | <u> </u> | <b>♣</b>  | 7            |
| Traffic Vol, veh/h          | 32        | 182       | 5            | 0        | 627       | 102          | 9         | 7         | 0            | 7        | 0         | 7            |
| Future Vol, veh/h           | 32<br>0   | 182       | 5<br>1       | 0        | 627<br>0  | 102          | 9         | 7         | 0            | 7        | 0         | 7            |
| Conflicting Peds, #/hr      |           | 0         |              |          |           |              |           |           | O Cton       |          |           |              |
| Sign Control RT Channelized | Free<br>- | Free<br>- | Free<br>None | Free     | Free<br>- | Free<br>None | Stop<br>- | Stop<br>- | Stop<br>None | Stop     | Stop<br>- | Stop<br>None |
| Storage Length              | 500       | -         | NOTIE        | 600      | _         | None         | -         | -         | NONE -       | 250      |           | None         |
| Veh in Median Storage, #    |           | 0         |              | -        | 0         |              | -         | 0         | _            | 250      | 0         | -            |
| Grade, %                    | + -       | 0         | _            |          | 0         | -            | -         | 0         | _            |          | 0         | _            |
| Peak Hour Factor            | 100       | 100       | 100          | 100      | 100       | 100          | 100       | 100       | 100          | 100      | 100       | 100          |
| Heavy Vehicles, %           | 0         | 100       | 0            | 0        | 3         | 0            | 0         | 0         | 0            | 17       | 0         | 0            |
| Mymt Flow                   | 32        | 182       | 5            | 0        | 627       | 102          | 9         | 7         | 0            | 7        | 0         | 7            |
| WWITH CIOW                  | 32        | 102       | 0            | U        | 021       | 102          | 9         | 1         | U            | ı        | U         | ı            |
|                             |           |           |              |          |           |              |           |           |              |          |           |              |
|                             | ajor1     |           |              | Major2   |           |              | Minor1    |           |              | Minor2   |           |              |
| Conflicting Flow All        | 729       | 0         | 0            | 188      | 0         | 0            | 934       | 979       | 186          | 930      | 930       | 680          |
| Stage 1                     | -         | -         | -            | -        | -         | -            | 250       | 250       | -            | 678      | 678       | -            |
| Stage 2                     | -         | -         | -            | -        | -         | -            | 684       | 729       | -            | 252      | 252       | -            |
| Critical Hdwy               | 4.1       | -         | -            | 4.1      | -         | -            | 7.1       | 6.5       | 6.2          | 7.27     | 6.5       | 6.2          |
| Critical Hdwy Stg 1         | -         | -         | -            | -        | -         | -            | 6.1       | 5.5       | -            | 6.27     | 5.5       | -            |
| Critical Hdwy Stg 2         | -         | -         | -            | -        | -         | -            | 6.1       | 5.5       | -            | 6.27     | 5.5       | -            |
| Follow-up Hdwy              | 2.2       | -         | -            | 2.2      | -         | -            | 3.5       | 4         | 3.3          | 3.653    | 4         | 3.3          |
| Pot Cap-1 Maneuver          | 884       | -         | -            | 1398     | -         | -            | 248       | 252       | 861          | 233      | 269       | 454          |
| Stage 1                     | -         | -         | -            | -        | -         | -            | 759       | 704       | -            | 418      | 455       | -            |
| Stage 2                     | -         | -         | -            | -        | -         | -            | 442       | 431       | -            | 720      | 702       | -            |
| Platoon blocked, %          |           | -         | -            |          | -         | -            |           |           |              |          |           |              |
| Mov Cap-1 Maneuver          | 884       | -         | -            | 1397     | -         | -            | 237       | 243       | 860          | 222      | 259       | 453          |
| Mov Cap-2 Maneuver          | -         | -         | -            | -        | -         | -            | 237       | 243       | -            | 222      | 259       | -            |
| Stage 1                     | -         | -         | -            | -        | -         | -            | 731       | 678       | -            | 403      | 455       | -            |
| Stage 2                     | -         | -         | -            | -        | -         | -            | 434       | 431       | -            | 687      | 676       | -            |
|                             |           |           |              |          |           |              |           |           |              |          |           |              |
| Approach                    | EB        |           |              | WB       |           |              | NB        |           |              | SB       |           |              |
| HCM Control Delay, s        | 1.3       |           |              | 0        |           |              | 21.1      |           |              | 17.4     |           |              |
| HCM LOS                     |           |           |              |          |           |              | C         |           |              | C        |           |              |
|                             |           |           |              |          |           |              |           |           |              |          |           |              |
| NA: 1 /24 · 24              |           | JDL 4     | ED:          | FRT      |           | 14/51        | MET       | MES       | 2DL 4        | ODL 0    |           |              |
| Minor Lane/Major Mvmt       | ſ         | NBLn1     | EBL          | EBT      | EBR       | WBL          | WBT       |           | SBLn1        |          |           |              |
| Capacity (veh/h)            |           | 240       | 884          | -        | -         | 1397         | -         | -         | 222          | 453      |           |              |
| HCM Lane V/C Ratio          |           | 0.067     | 0.036        | -        | -         | -            | -         |           | 0.032        |          |           |              |
| HCM Control Delay (s)       |           | 21.1      | 9.2          | -        | -         | 0            | -         | -         | 21.7         | 13.1     |           |              |
| HCM Lane LOS                |           | С         | A            | -        | -         | A            | -         | -         | С            | В        |           |              |
| HCM 95th %tile Q(veh)       |           | 0.2       | 0.1          | -        | -         | 0            | -         | -         | 0.1          | 0        |           |              |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                         | ۶        | <b>→</b> | •    | €      | +     | •    | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|-------------------------|----------|----------|------|--------|-------|------|---------|----------|------|----------|----------|------|
| Lane Group              | EBL      | EBT      | EBR  | WBL    | WBT   | WBR  | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ        | ĵ.       |      | ሻ      | ĵ∍    |      |         | 4        |      | ሻ        | f)       |      |
| Traffic Volume (vph)    | 32       | 182      | 5    | 0      | 627   | 102  | 9       | 7        | 0    | 7        | 0        | 7    |
| Future Volume (vph)     | 32       | 182      | 5    | 0      | 627   | 102  | 9       | 7        | 0    | 7        | 0        | 7    |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800 | 1800   | 1800  | 1800 | 1800    | 1800     | 1800 | 1800     | 1800     | 1800 |
| Storage Length (m)      | 50.0     |          | 0.0  | 60.0   |       | 0.0  | 0.0     |          | 0.0  | 25.0     | ,,,,,    | 0.0  |
| Storage Lanes           | 1        |          | 0    | 1      |       | 0    | 0       |          | 0    | 1        |          | 0    |
| Taper Length (m)        | 7.6      |          | •    | 7.6    |       | •    | 2.5     |          | •    | 2.5      |          | •    |
| Lane Util. Factor       | 1.00     | 1.00     | 1.00 | 1.00   | 1.00  | 1.00 | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Ped Bike Factor         |          | 1.00     |      |        |       |      |         | 1.00     |      |          | 0.98     |      |
| Frt                     |          | 0.996    |      |        | 0.979 |      |         | 1.00     |      |          | 0.850    |      |
| Flt Protected           | 0.950    | 0.000    |      |        | 0.010 |      |         | 0.973    |      | 0.950    | 0.000    |      |
| Satd. Flow (prot)       | 1729     | 1651     | 0    | 1820   | 1737  | 0    | 0       | 1771     | 0    | 1478     | 1509     | 0    |
| Flt Permitted           | 0.950    | 1001     | •    | 1020   | 1101  | J    | J       | 0.977    | J    | 1110     | 1000     | ·    |
| Satd. Flow (perm)       | 1729     | 1651     | 0    | 1820   | 1737  | 0    | 0       | 1774     | 0    | 1556     | 1509     | 0    |
| Right Turn on Red       | 1720     | 1001     | Yes  | 1020   | 1101  | Yes  | 0       | 1777     | Yes  | 1000     | 1003     | Yes  |
| Satd. Flow (RTOR)       |          | 2        | 100  |        | 11    | 100  |         |          | 100  |          | 315      | 100  |
| Link Speed (k/h)        |          | 60       |      |        | 60    |      |         | 50       |      |          | 50       |      |
| Link Distance (m)       |          | 225.2    |      |        | 532.9 |      |         | 285.3    |      |          | 278.3    |      |
| Travel Time (s)         |          | 13.5     |      |        | 32.0  |      |         | 20.5     |      |          | 20.0     |      |
| Confl. Peds. (#/hr)     |          | 10.0     | 1    | 1      | 02.0  |      | 2       | 20.0     |      |          | 20.0     | 2    |
| Peak Hour Factor        | 1.00     | 1.00     | 1.00 | 1.00   | 1.00  | 1.00 | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Heavy Vehicles (%)      | 0%       | 10%      | 0%   | 0%     | 3%    | 0%   | 0%      | 0%       | 0%   | 17%      | 0%       | 0%   |
| Adj. Flow (vph)         | 32       | 182      | 5    | 0 70   | 627   | 102  | 9       | 7        | 0    | 7        | 0        | 7    |
| Shared Lane Traffic (%) | 32       | 102      | J    | U      | 021   | 102  | 3       | '        | U    | 1        | U        | 1    |
| Lane Group Flow (vph)   | 32       | 187      | 0    | 0      | 729   | 0    | 0       | 16       | 0    | 7        | 7        | 0    |
| Turn Type               | Prot     | NA       | U    | Prot   | NA    | U    | Perm    | NA       | U    | Perm     | NA       | U    |
| Protected Phases        | 5        | 2        |      | 1 101  | 6     |      | i Giiii | 8        |      | i Giiii  | 4        |      |
| Permitted Phases        | <u> </u> |          |      |        | 0     |      | 8       |          |      | 4        |          |      |
| Detector Phase          | 5        | 2        |      | 1      | 6     |      | 8       | 8        |      | 4        | 4        |      |
| Switch Phase            | <u> </u> |          |      |        | 0     |      | 0       |          |      |          |          |      |
| Minimum Initial (s)     | 5.0      | 5.0      |      | 5.0    | 5.0   |      | 5.0     | 5.0      |      | 5.0      | 5.0      |      |
| Minimum Split (s)       | 11.1     | 34.1     |      | 11.1   | 34.1  |      | 32.7    | 32.7     |      | 32.7     | 32.7     |      |
| Total Split (s)         | 13.0     | 76.1     |      | 11.1   | 74.2  |      | 32.8    | 32.8     |      | 32.8     | 32.8     |      |
| Total Split (%)         | 10.8%    | 63.4%    |      | 9.3%   | 61.8% |      | 27.3%   | 27.3%    |      | 27.3%    | 27.3%    |      |
| Maximum Green (s)       | 6.9      | 70.0     |      | 5.0    | 68.1  |      | 27.1    | 27.1     |      | 27.1     | 27.1     |      |
| Yellow Time (s)         | 4.1      | 4.1      |      | 4.1    | 4.1   |      | 3.6     | 3.6      |      | 3.6      | 3.6      |      |
| All-Red Time (s)        | 2.0      | 2.0      |      | 2.0    | 2.0   |      | 2.1     | 2.1      |      | 2.1      | 2.1      |      |
| Lost Time Adjust (s)    | 0.0      | 0.0      |      | 0.0    | 0.0   |      | ۷.۱     | 0.0      |      | 0.0      | 0.0      |      |
| Total Lost Time (s)     | 6.1      | 6.1      |      | 6.1    | 6.1   |      |         | 5.7      |      | 5.7      | 5.7      |      |
| Lead/Lag                | Lead     | Lag      |      | Lead   | Lag   |      |         | 5.1      |      | 5.1      | 5.1      |      |
| Lead-Lag Optimize?      | Yes      | Yes      |      | Yes    | Yes   |      |         |          |      |          |          |      |
| Vehicle Extension (s)   | 3.0      | 3.0      |      | 3.0    | 3.0   |      | 3.0     | 3.0      |      | 3.0      | 3.0      |      |
| Recall Mode             | None     | C-Max    |      | None   | C-Max |      | None    | None     |      | None     | None     |      |
| Walk Time (s)           | INOTIC   | 7.0      |      | INOTIC | 7.0   |      | 7.0     | 7.0      |      | 7.0      | 7.0      |      |
| Flash Dont Walk (s)     |          | 21.0     |      |        | 21.0  |      | 20.0    | 20.0     |      | 20.0     | 20.0     |      |
| Pedestrian Calls (#/hr) |          | 0        |      |        | 0     |      | 20.0    | 0        |      | 20.0     | 20.0     |      |
| Act Effet Green (s)     | 7.7      | 112.1    |      |        | 101.9 |      | U       | 6.8      |      | 6.7      | 6.7      |      |
| Actuated g/C Ratio      | 0.06     | 0.93     |      |        | 0.85  |      |         | 0.06     |      | 0.06     | 0.06     |      |
| v/c Ratio               | 0.00     | 0.93     |      |        | 0.65  |      |         | 0.06     |      | 0.08     | 0.00     |      |
| V/C Raliu               | 0.29     | U. IZ    |      |        | 0.49  |      |         | 0.10     |      | 0.06     | 0.02     |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | <b>→</b> | •   | •   | •     | •   | 4   | <b>†</b> | /   | -    | ļ     | 1   |
|------------------------|------|----------|-----|-----|-------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT      | EBR | WBL | WBT   | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| Control Delay          | 59.4 | 1.2      |     |     | 6.7   |     |     | 56.8     |     | 54.9 | 0.1   |     |
| Queue Delay            | 0.0  | 0.0      |     |     | 0.0   |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 59.4 | 1.2      |     |     | 6.7   |     |     | 56.8     |     | 54.9 | 0.1   |     |
| LOS                    | Е    | Α        |     |     | Α     |     |     | Е        |     | D    | Α     |     |
| Approach Delay         |      | 9.7      |     |     | 6.7   |     |     | 56.8     |     |      | 27.5  |     |
| Approach LOS           |      | Α        |     |     | Α     |     |     | Е        |     |      | С     |     |
| Queue Length 50th (m)  | 7.3  | 0.0      |     |     | 35.9  |     |     | 3.7      |     | 1.6  | 0.0   |     |
| Queue Length 95th (m)  | 17.2 | 10.2     |     |     | 113.0 |     |     | 10.8     |     | 6.4  | 0.0   |     |
| Internal Link Dist (m) |      | 201.2    |     |     | 508.9 |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |          |     |     |       |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 116  | 1542     |     |     | 1476  |     |     | 400      |     | 351  | 584   |     |
| Starvation Cap Reductn | 0    | 0        |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0        |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0        |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.28 | 0.12     |     |     | 0.49  |     |     | 0.04     |     | 0.02 | 0.01  |     |

Intersection Summary

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.49

Intersection Signal Delay: 8.5 Intersection LOS: A Intersection Capacity Utilization 58.8% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

#### **MOVEMENT SUMMARY**

# ♥ Site: Old Montreal / Dairy FB2022AM

Old Montreal Road & Dairy Drive / Aveia Private Future (2022) Background Traffic AM Peak Hour Roundabout

| Move    | ment Perfo   | rmance - Ve | ehicles |       |         |          |            |          |        |           |         |
|---------|--------------|-------------|---------|-------|---------|----------|------------|----------|--------|-----------|---------|
| Mov     | OD           | Demand      |         | Deg.  | Average | Level of | 95% Back o | of Queue | Prop.  | Effective | Average |
| ID      | Mov          | Total       | HV      | Satn  | Delay   | Service  | Vehicles   | Distance | Queued | Stop Rate | Speed   |
| South   | Aveia Privat | veh/h       | %       | v/c   | sec     |          | veh        | m        |        | per veh   | km/h    |
| 3       | L2           | 9           | 0.0     | 0.019 | 4.2     | LOS A    | 0.1        | 0.5      | 0.33   | 0.20      | 54.4    |
| 8       | T1           | 7           | 0.0     | 0.019 | 4.2     | LOSA     | 0.1        | 0.5      | 0.33   | 0.20      | 54.5    |
| 18      | R2           | 1           | 0.0     | 0.019 | 4.2     | LOSA     | 0.1        | 0.5      | 0.33   | 0.20      | 53.3    |
| Appro   |              | 17          | 0.0     | 0.019 | 4.2     | LOSA     | 0.1        | 0.5      | 0.33   | 0.20      | 54.4    |
| Fact: ( | Old Montreal | Poad        |         |       |         |          |            |          |        |           |         |
| 1       | L2           | 1           | 0.0     | 0.695 | 14.3    | LOS B    | 6.4        | 50.0     | 0.37   | 0.17      | 48.9    |
| 6       | T1           | 627         | 3.0     | 0.695 | 14.3    | LOS B    | 6.4        | 50.0     | 0.37   | 0.17      | 48.9    |
| 16      | R2           | 102         | 0.0     | 0.695 | 14.3    | LOS B    | 6.4        | 50.0     | 0.37   | 0.17      | 48.0    |
| Appro   |              | 730         | 2.6     | 0.695 | 14.3    | LOS B    | 6.4        | 50.0     | 0.37   | 0.17      | 48.7    |
|         |              |             |         |       |         |          |            |          |        |           |         |
|         | Dairy Drive  | _           | 47.0    | 0.000 | 7.0     | 1.00.4   | 0.4        | 0.7      | 0.50   | 0.40      | 54.0    |
| 7       | L2           | 7           | 17.0    | 0.028 | 7.0     | LOSA     | 0.1        | 0.7      | 0.52   | 0.46      | 51.8    |
| 4       | T1           | 1           | 0.0     | 0.028 | 7.0     | LOS A    | 0.1        | 0.7      | 0.52   | 0.46      | 52.8    |
| 14      | R2           | 7           | 0.0     | 0.028 | 7.0     | LOS A    | 0.1        | 0.7      | 0.52   | 0.46      | 51.7    |
| Appro   | ach          | 15          | 7.9     | 0.028 | 7.0     | LOSA     | 0.1        | 0.7      | 0.52   | 0.46      | 51.8    |
| West:   | Old Montrea  | l Road      |         |       |         |          |            |          |        |           |         |
| 5       | L2           | 32          | 0.0     | 0.212 | 5.5     | LOS A    | 8.0        | 6.7      | 0.06   | 0.01      | 54.7    |
| 2       | T1           | 182         | 10.0    | 0.212 | 5.5     | LOS A    | 8.0        | 6.7      | 0.06   | 0.01      | 54.5    |
| 12      | R2           | 5           | 0.0     | 0.212 | 5.5     | LOS A    | 0.8        | 6.7      | 0.06   | 0.01      | 53.6    |
| Appro   | ach          | 219         | 8.3     | 0.212 | 5.5     | LOSA     | 0.8        | 6.7      | 0.06   | 0.01      | 54.5    |
| All Vel | nicles       | 981         | 3.9     | 0.695 | 12.1    | LOS B    | 6.4        | 50.0     | 0.30   | 0.14      | 50.1    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 1:31:29 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_Dairy\_2021-02-09.sip6

| Intersection           |        |       |      |        |      |      |       |       |      |         |      |      |
|------------------------|--------|-------|------|--------|------|------|-------|-------|------|---------|------|------|
| Int Delay, s/veh       | 2.2    |       |      |        |      |      |       |       |      |         |      |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR  | NBL   | NBT   | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    |        | 1→    |      |        | 4    |      |       |       |      |         | 4    |      |
| Traffic Vol, veh/h     | 32     | 157   | 0    | 0      | 616  | 1    | 0     | 0     | 0    | 2       | 0    | 117  |
| Future Vol, veh/h      | 32     | 157   | 0    | 0      | 616  | 1    | 0     | 0     | 0    | 2       | 0    | 117  |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0    | 0     | 0     | 0    | 0       | 0    | 0    |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free | Stop  | Stop  | Stop | Stop    | Stop | Stop |
| RT Channelized         | -      | -     | None | -      | -    | None | -     | -     | None | -       | -    | None |
| Storage Length         | 1450   | -     | -    | -      | -    | -    | -     | -     | -    | -       | -    | -    |
| Veh in Median Storage, | # -    | 0     | -    | -      | 0    | -    | -     | -     | -    | -       | 0    | -    |
| Grade, %               | -      | 0     | -    | -      | 0    | -    | -     | 0     | -    | -       | 0    | -    |
| Peak Hour Factor       | 100    | 100   | 100  | 100    | 100  | 100  | 100   | 100   | 100  | 100     | 100  | 100  |
| Heavy Vehicles, %      | 0      | 11    | 0    | 0      | 2    | 0    | 0     | 0     | 0    | 0       | 0    | 0    |
| Mvmt Flow              | 32     | 157   | 0    | 0      | 616  | 1    | 0     | 0     | 0    | 2       | 0    | 117  |
|                        |        |       |      |        |      |      |       |       |      |         |      |      |
| Major/Minor N          | 1ajor1 |       | ı    | Major2 |      |      |       |       | N    | /linor2 |      |      |
| Conflicting Flow All   | 617    | 0     | 0    | 157    | 0    | 0    |       |       |      | 838     | 838  | 617  |
| Stage 1                | -      | -     | -    | -      | -    | -    |       |       |      | 617     | 617  | -    |
| Stage 2                | -      | -     | -    | -      | -    | -    |       |       |      | 221     | 221  | -    |
| Critical Hdwy          | 4.1    | -     | -    | 4.1    | -    | -    |       |       |      | 6.4     | 6.5  | 6.2  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -    |       |       |      | 5.4     | 5.5  | -    |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -    |       |       |      | 5.4     | 5.5  | -    |
| Follow-up Hdwy         | 2.2    | -     | -    | 2.2    | -    | -    |       |       |      | 3.5     | 4    | 3.3  |
| Pot Cap-1 Maneuver     | 973    | -     | -    | 1435   | -    | -    |       |       |      | 339     | 305  | 494  |
| Stage 1                | -      | -     | -    | -      | -    | -    |       |       |      | 542     | 484  | -    |
| Stage 2                | -      | -     | -    | -      | -    | -    |       |       |      | 821     | 724  | -    |
| Platoon blocked, %     |        | -     | -    |        | -    | -    |       |       |      |         |      |      |
| Mov Cap-1 Maneuver     | 973    | -     | -    | 1435   | -    | -    |       |       |      | 328     | 0    | 494  |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -    |       |       |      | 328     | 0    | -    |
| Stage 1                | -      | -     | -    | -      | -    | -    |       |       |      | 524     | 0    | -    |
| Stage 2                | -      | -     | -    | -      | -    | -    |       |       |      | 821     | 0    | -    |
|                        |        |       |      |        |      |      |       |       |      |         |      |      |
| Approach               | EB     |       |      | WB     |      |      |       |       |      | SB      |      |      |
| HCM Control Delay, s   | 1.5    |       |      | 0      |      |      |       |       |      | 14.7    |      |      |
| HCM LOS                |        |       |      |        |      |      |       |       |      | В       |      |      |
|                        |        |       |      |        |      |      |       |       |      |         |      |      |
| Minor Lane/Major Mvmt  |        | EBL   | EBT  | EBR    | WBL  | WBT  | WBR S | SBLn1 |      |         |      |      |
| Capacity (veh/h)       |        | 973   | -    | -      | 1435 | -    | -     | 490   |      |         |      |      |
| HCM Lane V/C Ratio     |        | 0.033 | -    | -      | -    | -    | -     | 0.243 |      |         |      |      |
| HCM Control Delay (s)  |        | 8.8   | -    | -      | 0    | -    | -     | 14.7  |      |         |      |      |
| HCM Lane LOS           |        | Α     | -    | -      | Α    | -    | -     | В     |      |         |      |      |
| HCM 95th %tile Q(veh)  |        | 0.1   | -    | -      | 0    | -    | -     | 0.9   |      |         |      |      |
|                        |        |       |      |        |      |      |       |       |      |         |      |      |

## **LANE SUMMARY**

# ₩ Site: BG2022PM

Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Background Traffic PM Peak Hour Roundabout

| Lane Use a          |                            |                  | ;             |                     |                    |                         |                     |                    |                    |                |                     |                   |                      |
|---------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|--------------------|--------------------|----------------|---------------------|-------------------|----------------------|
|                     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back of<br>Veh | Queue<br>Dist<br>m | Lane<br>Config | Lane<br>Length<br>m | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: Trim F       | Road                       |                  |               |                     |                    |                         |                     |                    |                    |                |                     |                   |                      |
| Lane 1              | 428                        | 2.7              | 686           | 0.624               | 100                | 16.7                    | LOS C               | 3.1                | 24.3               | Full           | 500                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup> | 443                        | 2.4              | 710           | 0.624               | 100                | 16.2                    | LOS C               | 3.0                | 23.4               | Full           | 500                 | 0.0               | 0.0                  |
| Approach            | 872                        | 2.5              |               | 0.624               |                    | 16.4                    | LOS C               | 3.1                | 24.3               |                |                     |                   |                      |
| East: Old Mo        | ntreal Road                |                  |               |                     |                    |                         |                     |                    |                    |                |                     |                   |                      |
| Lane 1              | 160                        | 0.0              | 616           | 0.260               | 100                | 9.2                     | LOS A               | 0.8                | 5.9                | Full           | 500                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup> | 167                        | 0.0              | 641           | 0.260               | 100                | 8.9                     | LOS A               | 0.7                | 5.7                | Full           | 500                 | 0.0               | 0.0                  |
| Lane 3              | 180                        | 0.0              | 711           | 0.254               | 100                | 8.0                     | LOSA                | 0.7                | 5.6                | Short          | 95                  | 0.0               | NA                   |
| Approach            | 508                        | 0.0              |               | 0.260               |                    | 8.7                     | LOS A               | 0.8                | 5.9                |                |                     |                   |                      |
| North: Trim R       | Road                       |                  |               |                     |                    |                         |                     |                    |                    |                |                     |                   |                      |
| Lane 1              | 918                        | 1.4              | 780           | 1.177               | 100                | 112.9                   | LOS F               | 57.4               | 441.2              | Full           | 500                 | 0.0               | <mark>1.4</mark>     |
| Lane 2 <sup>d</sup> | 943                        | 1.1              | 801           | 1.177               | 100                | 112.2                   | LOS F               | 58.3               | 447.1              | Full           | 500                 | 0.0               | <mark>1.8</mark>     |
| Approach            | 1861                       | 1.2              |               | 1.177               |                    | 112.6                   | LOS F               | 58.3               | 447.1              |                |                     |                   |                      |
| West: St Jose       | eph Bouleva                | ard              |               |                     |                    |                         |                     |                    |                    |                |                     |                   |                      |
| Lane 1              | 144                        | 0.0              | 321           | 0.448               | 100                | 22.3                    | LOS C               | 1.4                | 10.9               | Full           | 500                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup> | 156                        | 0.0              | 349           | 0.448               | 100                | 20.7                    | LOS C               | 1.4                | 10.7               | Full           | 500                 | 0.0               | 0.0                  |
| Lane 3              | 278                        | 1.0              | 435           | 0.640               | 100                | 25.0                    | LOS D               | 2.6                | 19.5               | Short          | 135                 | 0.0               | NA                   |
| Approach            | 578                        | 0.5              |               | 0.640               |                    | 23.2                    | LOS C               | 2.6                | 19.5               |                |                     |                   |                      |
| Intersection        | 3818                       | 1.3              |               | 1.177               |                    | 63.3                    | LOS F               | 58.3               | 447.1              |                |                     |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Monday, November 09, 2020 4:01:15 PM

Project: Not Saved

| Intersection           |          |            |       |               |                  |       |        |               |       |                |             |          |
|------------------------|----------|------------|-------|---------------|------------------|-------|--------|---------------|-------|----------------|-------------|----------|
| Int Delay, s/veh       | 4.2      |            |       |               |                  |       |        |               |       |                |             |          |
| Movement               | EBL      | EBT        | EBR   | WBL           | WBT              | WBR   | NBL    | NBT           | NBR   | SBL            | SBT         | SBR      |
| Lane Configurations    | EDL      | <u>⊏D1</u> | LDK   | WDL           | VVD1<br><b>}</b> | אסוז  | INDL   |               | NDK   | SBL<br>T       | 1 <u>ac</u> | אמט      |
| Traffic Vol, veh/h     | <b>1</b> | <b>777</b> | 9     | <u>។</u><br>1 | 360              | 21    | 4      | <b>♣</b><br>6 | 1     | <b>1</b><br>91 | 2           | 47       |
| Future Vol, veh/h      | 6        | 777        | 9     | 1             | 360              | 21    | 4      | 6             | 1     | 91             | 2           | 47       |
| Conflicting Peds, #/hr | 1        | 0          | 0     | 0             | 0                | 1     | 0      | 0             | 2     | 2              | 0           | 0        |
| Sign Control           | Free     | Free       | Free  | Free          | Free             | Free  | Stop   | Stop          | Stop  | Stop           | Stop        | Stop     |
| RT Channelized         | -        | -          | None  | -             | -                | None  | -      | - Olop        | None  | -              | -           | None     |
| Storage Length         | 500      | _          | -     | 600           | _                | -     | _      | _             | -     | 250            | _           | -        |
| Veh in Median Storage  |          | 0          | _     | -             | 0                | _     | _      | 0             | _     | -              | 0           | _        |
| Grade, %               | -        | 0          | _     | _             | 0                | _     | _      | 0             | _     | _              | 0           | _        |
| Peak Hour Factor       | 100      | 100        | 100   | 100           | 100              | 100   | 100    | 100           | 100   | 100            | 100         | 100      |
| Heavy Vehicles, %      | 33       | 2          | 0     | 0             | 6                | 0     | 0      | 0             | 0     | 0              | 0           | 10       |
| Mvmt Flow              | 6        | 777        | 9     | 1             | 360              | 21    | 4      | 6             | 1     | 91             | 2           | 47       |
|                        |          |            | •     |               |                  |       |        |               |       |                |             |          |
| Major/Minor N          | Major1   |            | ı     | Major2        |                  | ı     | Minor1 |               |       | Minor2         |             |          |
| Conflicting Flow All   | 382      | 0          | 0     | 786           | 0                | 0     | 1191   | 1178          | 784   | 1173           | 1172        | 372      |
| Stage 1                | -        | -          | -     | -             | -                | -     | 794    | 794           | -     | 374            | 374         | -        |
| Stage 2                | _        | _          | -     | _             | _                | _     | 397    | 384           | _     | 799            | 798         | <u>-</u> |
| Critical Hdwy          | 4.43     | _          | _     | 4.1           | _                | _     | 7.1    | 6.5           | 6.2   | 7.1            | 6.5         | 6.3      |
| Critical Hdwy Stg 1    | -        | _          | _     | -             | _                | _     | 6.1    | 5.5           | - 0.2 | 6.1            | 5.5         | -        |
| Critical Hdwy Stg 2    | -        | -          | -     | -             | -                | -     | 6.1    | 5.5           | -     | 6.1            | 5.5         | -        |
| Follow-up Hdwy         | 2.497    | _          | _     | 2.2           | _                | _     | 3.5    | 4             | 3.3   | 3.5            | 4           | 3.39     |
| Pot Cap-1 Maneuver     | 1026     | _          | -     | 842           | -                | -     | 166    | 192           | 396   | 171            | 194         | 656      |
| Stage 1                | -        | _          | -     | -             | -                | -     | 384    | 403           | -     | 651            | 621         | -        |
| Stage 2                | -        | -          | -     | -             | -                | -     | 633    | 615           | -     | 382            | 401         | -        |
| Platoon blocked, %     |          | _          | -     |               | -                | -     |        |               |       |                |             |          |
| Mov Cap-1 Maneuver     | 1025     | -          | -     | 842           | -                | -     | 152    | 190           | 395   | 165            | 192         | 655      |
| Mov Cap-2 Maneuver     | -        | -          | -     | -             | -                | -     | 152    | 190           | -     | 165            | 192         | -        |
| Stage 1                | -        | -          | -     | -             | -                | -     | 382    | 401           | -     | 646            | 620         | -        |
| Stage 2                | -        | -          | -     | -             | -                | -     | 585    | 614           | -     | 372            | 399         | -        |
|                        |          |            |       |               |                  |       |        |               |       |                |             |          |
| Approach               | EB       |            |       | WB            |                  |       | NB     |               |       | SB             |             |          |
| HCM Control Delay, s   | 0.1      |            |       | 0             |                  |       | 26     |               |       | 37.1           |             |          |
| HCM LOS                |          |            |       |               |                  |       | D      |               |       | Е              |             |          |
|                        |          |            |       |               |                  |       |        |               |       |                |             |          |
| Minor Lane/Major Mvm   | nt N     | NBLn1      | EBL   | EBT           | EBR              | WBL   | WBT    | WBR :         | SBLn1 | SBLn2          |             |          |
| Capacity (veh/h)       |          | 182        |       |               |                  | 842   |        | -             | 165   | 596            |             |          |
| HCM Lane V/C Ratio     |          | 0.06       | 0.006 | _             |                  | 0.001 | _      |               | 0.552 |                |             |          |
| HCM Control Delay (s)  |          | 26         | 8.5   | -             | _                | 9.3   | _      | _             | 50.8  | 11.6           |             |          |
| HCM Lane LOS           |          | D          | A     | _             | _                | A     | _      | _             | F     | В              |             |          |
| HCM 95th %tile Q(veh)  | )        | 0.2        | 0     | -             | _                | 0     | -      | -             | 2.8   | 0.3            |             |          |
|                        |          | <b>7.</b>  |       |               |                  |       |        |               |       | 3.0            |             |          |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b>                                | •    | •     | <b>†</b> | <b>/</b> | <b>/</b> | ļ     | 4    |
|-------------------------|-------|----------|------|-------|-----------------------------------------|------|-------|----------|----------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT                                     | WBR  | NBL   | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations     | ሻ     | ĵ.       |      | ሻ     | f.                                      |      |       | 4        |          | ሻ        | ĵ.    |      |
| Traffic Volume (vph)    | 6     | 777      | 9    | 1     | 360                                     | 21   | 4     | 6        | 1        | 91       | 2     | 47   |
| Future Volume (vph)     | 6     | 777      | 9    | 1     | 360                                     | 21   | 4     | 6        | 1        | 91       | 2     | 47   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800                                    | 1800 | 1800  | 1800     | 1800     | 1800     | 1800  | 1800 |
| Storage Length (m)      | 50.0  |          | 0.0  | 60.0  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.0  | 0.0   |          | 0.0      | 25.0     |       | 0.0  |
| Storage Lanes           | 1     |          | 0    | 1     |                                         | 0    | 0     |          | 0        | 1        |       | 0    |
| Taper Length (m)        | 7.6   |          |      | 7.6   |                                         |      | 2.5   |          |          | 2.5      |       | -    |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00                                    | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 1.00  |          |      |       | 1.00                                    |      |       | 1.00     |          | 1.00     | 0.98  |      |
| Frt                     |       | 0.998    |      |       | 0.992                                   |      |       | 0.988    |          |          | 0.856 |      |
| Flt Protected           | 0.950 |          |      | 0.950 | 0.000                                   |      |       | 0.982    |          | 0.950    |       |      |
| Satd. Flow (prot)       | 1300  | 1781     | 0    | 1729  | 1706                                    | 0    | 0     | 1762     | 0        | 1729     | 1392  | 0    |
| Flt Permitted           | 0.950 |          |      | 0.950 |                                         |      |       | 0.910    |          | 0.750    |       | -    |
| Satd. Flow (perm)       | 1298  | 1781     | 0    | 1729  | 1706                                    | 0    | 0     | 1633     | 0        | 1359     | 1392  | 0    |
| Right Turn on Red       |       |          | Yes  |       |                                         | Yes  |       |          | Yes      |          |       | Yes  |
| Satd. Flow (RTOR)       |       | 1        |      |       | 4                                       |      |       | 1        |          |          | 47    |      |
| Link Speed (k/h)        |       | 60       |      |       | 60                                      |      |       | 50       |          |          | 50    |      |
| Link Distance (m)       |       | 225.2    |      |       | 532.9                                   |      |       | 285.3    |          |          | 278.3 |      |
| Travel Time (s)         |       | 13.5     |      |       | 32.0                                    |      |       | 20.5     |          |          | 20.0  |      |
| Confl. Peds. (#/hr)     | 1     |          |      |       |                                         | 1    |       |          | 2        | 2        |       |      |
| Confl. Bikes (#/hr)     |       |          |      |       |                                         |      |       |          |          |          |       | 1    |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00                                    | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)      | 33%   | 2%       | 0%   | 0%    | 6%                                      | 0%   | 0%    | 0%       | 0%       | 0%       | 0%    | 10%  |
| Adj. Flow (vph)         | 6     | 777      | 9    | 1     | 360                                     | 21   | 4     | 6        | 1        | 91       | 2     | 47   |
| Shared Lane Traffic (%) |       |          |      |       |                                         |      |       |          |          |          |       |      |
| Lane Group Flow (vph)   | 6     | 786      | 0    | 1     | 381                                     | 0    | 0     | 11       | 0        | 91       | 49    | 0    |
| Turn Type               | Prot  | NA       |      | Prot  | NA                                      |      | Perm  | NA       |          | Perm     | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6                                       |      |       | 8        |          |          | 4     |      |
| Permitted Phases        |       |          |      |       |                                         |      | 8     |          |          | 4        |       |      |
| Detector Phase          | 5     | 2        |      | 1     | 6                                       |      | 8     | 8        |          | 4        | 4     |      |
| Switch Phase            |       |          |      |       |                                         |      |       |          |          |          |       |      |
| Minimum Initial (s)     | 5.0   | 5.0      |      | 5.0   | 5.0                                     |      | 5.0   | 5.0      |          | 5.0      | 5.0   |      |
| Minimum Split (s)       | 11.1  | 34.1     |      | 11.1  | 34.1                                    |      | 32.7  | 32.7     |          | 32.7     | 32.7  |      |
| Total Split (s)         | 11.4  | 75.8     |      | 11.2  | 75.6                                    |      | 33.0  | 33.0     |          | 33.0     | 33.0  |      |
| Total Split (%)         | 9.5%  | 63.2%    |      | 9.3%  | 63.0%                                   |      | 27.5% | 27.5%    |          | 27.5%    | 27.5% |      |
| Maximum Green (s)       | 5.3   | 69.7     |      | 5.1   | 69.5                                    |      | 27.3  | 27.3     |          | 27.3     | 27.3  |      |
| Yellow Time (s)         | 4.1   | 4.1      |      | 4.1   | 4.1                                     |      | 3.6   | 3.6      |          | 3.6      | 3.6   |      |
| All-Red Time (s)        | 2.0   | 2.0      |      | 2.0   | 2.0                                     |      | 2.1   | 2.1      |          | 2.1      | 2.1   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0                                     |      |       | 0.0      |          | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 6.1   | 6.1      |      | 6.1   | 6.1                                     |      |       | 5.7      |          | 5.7      | 5.7   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag                                     |      |       |          |          |          |       |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes                                     |      |       |          |          |          |       |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0                                     |      | 3.0   | 3.0      |          | 3.0      | 3.0   |      |
| Recall Mode             | None  | C-Max    |      | None  | C-Max                                   |      | None  | None     |          | None     | None  |      |
| Walk Time (s)           |       | 7.0      |      |       | 7.0                                     |      | 7.0   | 7.0      |          | 7.0      | 7.0   |      |
| Flash Dont Walk (s)     |       | 21.0     |      |       | 21.0                                    |      | 20.0  | 20.0     |          | 20.0     | 20.0  |      |
| Pedestrian Calls (#/hr) |       | 0        |      |       | 0                                       |      | 0     | 0        |          | 0        | 0     |      |
| Act Effct Green (s)     | 6.2   | 92.4     |      | 5.6   | 92.1                                    |      |       | 13.4     |          | 13.4     | 13.4  |      |
| Actuated g/C Ratio      | 0.05  | 0.77     |      | 0.05  | 0.77                                    |      |       | 0.11     |          | 0.11     | 0.11  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | •    | <b>←</b> | •   | 1   | <b>†</b> | ~   | -    | <b>↓</b> | 4   |
|------------------------|------|-------|-----|------|----------|-----|-----|----------|-----|------|----------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT      | WBR | NBL | NBT      | NBR | SBL  | SBT      | SBR |
| v/c Ratio              | 0.09 | 0.57  |     | 0.01 | 0.29     |     |     | 0.06     |     | 0.60 | 0.25     |     |
| Control Delay          | 56.5 | 9.3   |     | 55.0 | 6.1      |     |     | 42.7     |     | 66.5 | 16.7     |     |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0      |     |     | 0.0      |     | 0.0  | 0.0      |     |
| Total Delay            | 56.5 | 9.3   |     | 55.0 | 6.1      |     |     | 42.7     |     | 66.5 | 16.7     |     |
| LOS                    | Е    | Α     |     | D    | Α        |     |     | D        |     | Е    | В        |     |
| Approach Delay         |      | 9.7   |     |      | 6.2      |     |     | 42.7     |     |      | 49.0     |     |
| Approach LOS           |      | Α     |     |      | Α        |     |     | D        |     |      | D        |     |
| Queue Length 50th (m)  | 1.4  | 57.1  |     | 0.2  | 19.6     |     |     | 2.2      |     | 20.7 | 0.4      |     |
| Queue Length 95th (m)  | 5.7  | 154.2 |     | 2.1  | 57.2     |     |     | 7.4      |     | 36.0 | 11.2     |     |
| Internal Link Dist (m) |      | 201.2 |     |      | 508.9    |     |     | 261.3    |     |      | 254.3    |     |
| Turn Bay Length (m)    | 50.0 |       |     | 60.0 |          |     |     |          |     | 25.0 |          |     |
| Base Capacity (vph)    | 67   | 1371  |     | 81   | 1310     |     |     | 372      |     | 309  | 352      |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0        |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0        |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0        |     |
| Reduced v/c Ratio      | 0.09 | 0.57  |     | 0.01 | 0.29     |     |     | 0.03     |     | 0.29 | 0.14     |     |

Intersection Summary

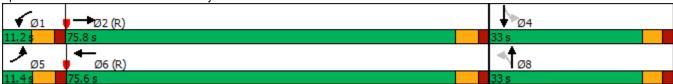
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 13.1 Intersection LOS: B
Intersection Capacity Utilization 65.6% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

#### **MOVEMENT SUMMARY**

# ♥ Site: Old Montreal / Dairy FB2022PM

Old Montreal Road & Dairy Drive / Aveia Private Future (2022) Background Traffic PM Peak Hour Roundabout

| Mov     | OD           | Dem <u>an</u> | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|---------|--------------|---------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| ID      | Mov          | Total         | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |              | veh/h         | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/r    |
| South:  | Aveia Privat | е             |         |       |         |          |          |          |        |           |         |
| 3       | L2           | 4             | 0.0     | 0.024 | 8.1     | LOS A    | 0.1      | 0.6      | 0.60   | 0.56      | 52.0    |
| 8       | T1           | 6             | 0.0     | 0.024 | 8.1     | LOS A    | 0.1      | 0.6      | 0.60   | 0.56      | 52.2    |
| 18      | R2           | 1             | 0.0     | 0.024 | 8.1     | LOS A    | 0.1      | 0.6      | 0.60   | 0.56      | 51.0    |
| Appro   | ach          | 11            | 0.0     | 0.024 | 8.1     | LOSA     | 0.1      | 0.6      | 0.60   | 0.56      | 52.0    |
| East: ( | Old Montreal | Road          |         |       |         |          |          |          |        |           |         |
| 1       | L2           | 1             | 0.0     | 0.364 | 7.2     | LOSA     | 1.8      | 13.9     | 0.11   | 0.03      | 53.9    |
| 6       | T1           | 360           | 6.0     | 0.364 | 7.2     | LOSA     | 1.8      | 13.9     | 0.11   | 0.03      | 53.8    |
| 16      | R2           | 21            | 0.0     | 0.364 | 7.2     | LOSA     | 1.8      | 13.9     | 0.11   | 0.03      | 52.8    |
| Appro   | ach          | 382           | 5.7     | 0.364 | 7.2     | LOSA     | 1.8      | 13.9     | 0.11   | 0.03      | 53.8    |
| North:  | Dairy Drive  |               |         |       |         |          |          |          |        |           |         |
| 7       | L2           | 91            | 0.0     | 0.189 | 6.9     | LOS A    | 0.7      | 5.3      | 0.47   | 0.42      | 51.9    |
| 4       | T1           | 2             | 0.0     | 0.189 | 6.9     | LOS A    | 0.7      | 5.3      | 0.47   | 0.42      | 52.0    |
| 14      | R2           | 47            | 10.0    | 0.189 | 6.9     | LOSA     | 0.7      | 5.3      | 0.47   | 0.42      | 50.5    |
| Appro   | ach          | 140           | 3.4     | 0.189 | 6.9     | LOSA     | 0.7      | 5.3      | 0.47   | 0.42      | 51.4    |
| West:   | Old Montreal | Road          |         |       |         |          |          |          |        |           |         |
| 5       | L2           | 6             | 33.0    | 0.787 | 19.3    | LOS C    | 8.6      | 66.8     | 0.64   | 0.39      | 44.5    |
| 2       | T1           | 777           | 2.0     | 0.787 | 19.3    | LOS C    | 8.6      | 66.8     | 0.64   | 0.39      | 45.9    |
| 12      | R2           | 9             | 0.0     | 0.787 | 19.3    | LOS C    | 8.6      | 66.8     | 0.64   | 0.39      | 45.1    |
| Appro   | ach          | 792           | 2.2     | 0.787 | 19.3    | LOS C    | 8.6      | 66.8     | 0.64   | 0.39      | 45.9    |
| All Vel | nicles       | 1325          | 3.3     | 0.787 | 14.4    | LOS B    | 8.6      | 66.8     | 0.47   | 0.29      | 48.5    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 1:31:30 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_Dairy\_2021-02-09.sip6

| Intersection           |         |          |      |        |      |      |       |       |      |         |      |      |
|------------------------|---------|----------|------|--------|------|------|-------|-------|------|---------|------|------|
| Int Delay, s/veh       | 1.4     |          |      |        |      |      |       |       |      |         |      |      |
| Movement               | EBL     | EBT      | EBR  | WBL    | WBT  | WBR  | NBL   | NBT   | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    | ች       | ĵ.       |      |        | 4    |      |       |       |      |         | 4    |      |
| Traffic Vol, veh/h     | 121     | 751      | 0    | 0      | 316  | 4    | 0     | 0     | 0    | 2       | 0    | 67   |
| Future Vol, veh/h      | 121     | 751      | 0    | 0      | 316  | 4    | 0     | 0     | 0    | 2       | 0    | 67   |
| Conflicting Peds, #/hr | 0       | 0        | 0    | 0      | 0    | 0    | 0     | 0     | 0    | 0       | 0    | 0    |
| Sign Control           | Free    | Free     | Free | Free   | Free | Free | Stop  | Stop  | Stop | Stop    | Stop | Stop |
| RT Channelized         | -       | -        | None | -      | -    | None | -     | -     | None | -       | -    | None |
| Storage Length         | 1450    | -        | -    | -      | -    | -    | -     | -     | -    | -       | -    | -    |
| Veh in Median Storage, |         | 0        | -    | -      | 0    | -    | -     | -     | -    | -       | 0    | -    |
| Grade, %               | -       | 0        | -    | -      | 0    | -    | -     | 0     | -    | -       | 0    | -    |
| Peak Hour Factor       | 100     | 100      | 100  | 100    | 100  | 100  | 100   | 100   | 100  | 100     | 100  | 100  |
| Heavy Vehicles, %      | 0       | 2        | 0    | 0      | 5    | 0    | 0     | 0     | 0    | 0       | 0    | 0    |
| Mvmt Flow              | 121     | 751      | 0    | 0      | 316  | 4    | 0     | 0     | 0    | 2       | 0    | 67   |
|                        |         |          |      |        |      |      |       |       |      |         |      |      |
| Major/Minor N          | /lajor1 |          | ı    | Major2 |      |      |       |       | N    | /linor2 |      |      |
| Conflicting Flow All   | 320     | 0        | 0    | 751    | 0    | 0    |       |       |      | 1311    | 1311 | 318  |
| Stage 1                | -       | -        | -    | -      | -    | -    |       |       |      | 318     | 318  | -    |
| Stage 2                | _       | <u>-</u> | _    | _      | _    | _    |       |       |      | 993     | 993  | _    |
| Critical Hdwy          | 4.1     | _        | _    | 4.1    | _    | _    |       |       |      | 6.4     | 6.5  | 6.2  |
| Critical Hdwy Stg 1    |         | _        | _    | - '    | _    | _    |       |       |      | 5.4     | 5.5  | -    |
| Critical Hdwy Stg 2    | -       | _        | _    | _      | _    | -    |       |       |      | 5.4     | 5.5  | _    |
| Follow-up Hdwy         | 2.2     | -        | -    | 2.2    | -    | -    |       |       |      | 3.5     | 4    | 3.3  |
| Pot Cap-1 Maneuver     | 1251    | -        | _    | 868    | _    | _    |       |       |      | 177     | 160  | 727  |
| Stage 1                | -       | _        | _    | -      | _    | -    |       |       |      | 742     | 657  | -    |
| Stage 2                | -       | _        | -    | -      | -    | -    |       |       |      | 362     | 326  | -    |
| Platoon blocked, %     |         | -        | -    |        | -    | -    |       |       |      |         |      |      |
| Mov Cap-1 Maneuver     | 1251    | -        | -    | 868    | -    | -    |       |       |      | 160     | 0    | 727  |
| Mov Cap-2 Maneuver     | -       | -        | -    | -      | -    | -    |       |       |      | 160     | 0    | -    |
| Stage 1                | -       | -        | -    | -      | -    | -    |       |       |      | 670     | 0    | -    |
| Stage 2                | -       | -        | -    | -      | -    | -    |       |       |      | 362     | 0    | -    |
| _                      |         |          |      |        |      |      |       |       |      |         |      |      |
| Approach               | EB      |          |      | WB     |      |      |       |       |      | SB      |      |      |
| HCM Control Delay, s   | 1.1     |          |      | 0      |      |      |       |       |      | 11.1    |      |      |
| HCM LOS                |         |          |      |        |      |      |       |       |      | В       |      |      |
|                        |         |          |      |        |      |      |       |       |      |         |      |      |
| Minor Lane/Major Mvm   | t       | EBL      | EBT  | EBR    | WBL  | WBT  | WBR S | SBLn1 |      |         |      |      |
| Capacity (veh/h)       |         | 1251     | -    | -      | 868  | _    | -     | 659   |      |         |      |      |
| HCM Lane V/C Ratio     |         | 0.097    | _    | _      | -    | _    | _     | 0.105 |      |         |      |      |
| HCM Control Delay (s)  |         | 8.2      | _    | _      | 0    | -    | -     | 11.1  |      |         |      |      |
| HCM Lane LOS           |         | A        | _    | _      | A    | _    | -     | В     |      |         |      |      |
| HCM 95th %tile Q(veh)  |         | 0.3      | -    | -      | 0    | -    | -     | 0.3   |      |         |      |      |
|                        |         |          |      |        |      |      |       |       |      |         |      |      |

## **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Background Traffic AM Peak Hour Roundabout

| Lana Harri          | and David       |       |              |              |                 |                  |                     |                    |       |                |                |              |                 |
|---------------------|-----------------|-------|--------------|--------------|-----------------|------------------|---------------------|--------------------|-------|----------------|----------------|--------------|-----------------|
| Lane Use a          |                 |       | <del>)</del> | D            | 1               | A                | 11 6                | 050/ D1            | 0     |                | 1              | 0            | Doob            |
|                     | Demand<br>Total | Flows | Сар.         | Deg.<br>Satn | Lane<br>Util.   | Average<br>Delay | Level of<br>Service | 95% Back of<br>Veh | Queue | Lane<br>Config | Lane<br>Length | Cap.<br>Adj. | Prob.<br>Block. |
|                     | veh/h           | %     | veh/h        | v/c          | %               | sec              | Service             | Ven                | m     | Corning        | m              | 7uj.<br>%    | %               |
| South: Trim F       | Road            |       |              |              |                 |                  |                     |                    |       |                |                |              |                 |
| Lane 1 <sup>d</sup> | 798             | 1.7   | 930          | 0.858        | 100             | 26.4             | LOS D               | 9.8                | 75.9  | Full           | 500            | 0.0          | 0.0             |
| Lane 2              | 774             | 3.6   | 901          | 0.858        | 100             | 27.0             | LOS D               | 9.8                | 77.0  | Full           | 500            | 0.0          | 0.0             |
| Approach            | 1572            | 2.6   |              | 0.858        |                 | 26.7             | LOS D               | 9.8                | 77.0  |                |                |              |                 |
| East: Old Mo        | ntreal Road     | t     |              |              |                 |                  |                     |                    |       |                |                |              |                 |
| Lane 1              | 202             | 7.3   | 323          | 0.626        | 100             | 31.3             | LOS D               | 2.2                | 17.7  | Full           | 500            | 0.0          | 0.0             |
| Lane 2 <sup>d</sup> | 230             | 2.0   | 368          | 0.626        | 100             | 28.0             | LOS D               | 2.3                | 17.7  | Full           | 500            | 0.0          | 0.0             |
| Lane 3              | 167             | 2.0   | 439          | 0.381        | 100             | 15.1             | LOS C               | 1.2                | 9.0   | Short          | 95             | 0.0          | NA              |
| Approach            | 600             | 3.8   |              | 0.626        |                 | 25.5             | LOS D               | 2.3                | 17.7  |                |                |              |                 |
| North: Trim F       | Road            |       |              |              |                 |                  |                     |                    |       |                |                |              |                 |
| Lane 1              | 263             | 5.9   | 629          | 0.417        | 100             | 11.9             | LOS B               | 1.4                | 11.6  | Full           | 500            | 0.0          | 0.0             |
| Lane 2 <sup>d</sup> | 270             | 6.6   | 647          | 0.417        | 100             | 11.6             | LOS B               | 1.4                | 11.0  | Full           | 500            | 0.0          | 0.0             |
| Approach            | 533             | 6.2   |              | 0.417        |                 | 11.7             | LOS B               | 1.4                | 11.6  |                |                |              |                 |
| West: St Jos        | eph Boulev      | ard   |              |              |                 |                  |                     |                    |       |                |                |              |                 |
| Lane 1 <sup>d</sup> | 80              | 10.0  | 621          | 0.130        | 100             | 7.3              | LOSA                | 0.3                | 2.6   | Full           | 500            | 0.0          | 0.0             |
| Lane 2              | 59              | 8.0   | 610          | 0.096        | 74 <sup>5</sup> | 7.0              | LOS A               | 0.2                | 2.0   | Full           | 500            | 0.0          | 0.0             |
| Lane 3              | 54              | 10.0  | 667          | 0.081        | 100             | 6.3              | LOSA                | 0.2                | 1.6   | Short          | 135            | 0.0          | NA              |
| Approach            | 193             | 9.4   |              | 0.130        |                 | 6.9              | LOS A               | 0.3                | 2.6   |                |                |              |                 |
| Intersection        | 2898            | 4.0   |              | 0.858        |                 | 22.4             | LOS C               | 9.8                | 77.0  |                |                |              |                 |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

- 5 Lane under-utilisation found by the program
- d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Monday, November 09, 2020 4:03:51 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad 2020-11-09.sip6

| Intersection                 |          |         |         |          |       |       |         |        |           |           |          |      |
|------------------------------|----------|---------|---------|----------|-------|-------|---------|--------|-----------|-----------|----------|------|
| Int Delay, s/veh             | 1        |         |         |          |       |       |         |        |           |           |          |      |
|                              |          | <b></b> | <b></b> | MOL      | 14/DT | 14/00 | NBI     | NET    | NDD       | 0.01      | 007      | 222  |
| Movement                     | EBL      | EBT     | EBR     | WBL      | WBT   | WBR   | NBL     | NBT    | NBR       | SBL       | SBT      | SBR  |
| Lane Configurations          | <u>ነ</u> | ĵ»      | -       | <u> </u> | ĵ.    | 400   | •       | 4      | ^         | 7         | <b>₽</b> | _    |
| Traffic Vol, veh/h           | 32       | 145     | 5       | 0        | 457   | 102   | 9       | 7      | 0         | 7         | 0        | 7    |
| Future Vol, veh/h            | 32       | 145     | 5       | 0        | 457   | 102   | 9       | 7      | 0         | 7         | 0        | 7    |
| Conflicting Peds, #/hr       | 0        | 0       | 1       | 1        | 0     | 0     | 2       | 0      | 0         | 0         | 0        | 2    |
| Sign Control                 | Free     | Free    | Free    | Free     | Free  | Free  | Stop    | Stop   | Stop      | Stop      | Stop     | Stop |
| RT Channelized               | -        | -       | None    | -        | -     | None  | -       | -      | None      | -         | -        | None |
| Storage Length               | 500      | -       | -       | 600      | -     | -     | -       | -      | -         | 250       | -        | -    |
| Veh in Median Storage,       |          | 0       | -       | -        | 0     | -     | -       | 0      | -         | -         | 0        | -    |
| Grade, %<br>Peak Hour Factor | 100      | 100     | 100     | 100      | 100   | 100   | 100     | 100    | 100       | 100       | 100      | 100  |
|                              | 0        | 100     | 0       | 0        | 3     | 0     | 0       | 0      | 0         | 17        | 0        | 0    |
| Heavy Vehicles, % Mvmt Flow  | 32       | 145     | 5       | 0        | 457   | 102   | 9       | 7      | 0         | 7         | 0        | 7    |
| IVIVITIL FIOW                | 32       | 143     | ີ       | U        | 437   | 102   | 9       | 1      | U         | 1         | U        | I    |
|                              |          |         |         |          |       |       |         |        |           |           |          |      |
|                              | ajor1    |         |         | Major2   |       |       | /linor1 |        |           | Minor2    |          |      |
| Conflicting Flow All         | 559      | 0       | 0       | 151      | 0     | 0     | 727     | 772    | 149       | 723       | 723      | 510  |
| Stage 1                      | -        | -       | -       | -        | -     | -     | 213     | 213    | -         | 508       | 508      | -    |
| Stage 2                      | -        | -       | -       | -        | -     | -     | 514     | 559    | -         | 215       | 215      | -    |
| Critical Hdwy                | 4.1      | -       | -       | 4.1      | -     | -     | 7.1     | 6.5    | 6.2       | 7.27      | 6.5      | 6.2  |
| Critical Hdwy Stg 1          | -        | -       | -       | -        | -     | -     | 6.1     | 5.5    | -         | 6.27      | 5.5      | -    |
| Critical Hdwy Stg 2          | -        | -       | -       | -        | -     | -     | 6.1     | 5.5    | -         | 6.27      | 5.5      | -    |
| Follow-up Hdwy               | 2.2      | -       | -       | 2.2      | -     | -     | 3.5     | 4      |           | 3.653     | 4        | 3.3  |
|                              | 1022     | -       | -       | 1442     | -     | -     | 342     | 333    | 903       | 323       | 355      | 567  |
| Stage 1                      | -        | -       | -       | -        | -     | -     | 794     | 730    | -         | 521       | 542      | -    |
| Stage 2                      | -        | -       | -       | -        | -     | -     | 547     | 514    | -         | 754       | 729      | -    |
| Platoon blocked, %           | 1000     | -       | -       | 1111     | -     | -     | 200     | 200    | 000       | 040       | 244      | F00  |
|                              | 1022     | -       | -       | 1441     | -     | -     | 329     | 322    | 902       | 310       | 344      | 566  |
| Mov Cap-2 Maneuver           | -        | -       | -       | -        | -     | -     | 329     | 322    | -         | 310       | 344      | -    |
| Stage 1                      | -        | -       | -       | -        | -     | -     | 769     | 707    | -         | 505       | 542      | -    |
| Stage 2                      | -        | -       | -       | -        | -     | -     | 539     | 514    | -         | 723       | 706      | -    |
|                              |          |         |         |          |       |       |         |        |           |           |          |      |
| Approach                     | EB       |         |         | WB       |       |       | NB      |        |           | SB        |          |      |
| HCM Control Delay, s         | 1.5      |         |         | 0        |       |       | 16.6    |        |           | 14.1      |          |      |
| HCM LOS                      |          |         |         |          |       |       | С       |        |           | В         |          |      |
|                              |          |         |         |          |       |       |         |        |           |           |          |      |
| Minor Lane/Major Mvmt        | N        | NBLn1   | EBL     | EBT      | EBR   | WBL   | WBT     | WRR    | SBLn1     | SBI n2    |          |      |
| Capacity (veh/h)             | <u> </u> | 326     | 1022    | LDI      |       | 1441  | VVDI    | - 1001 | 310       | 566       |          |      |
| HCM Lane V/C Ratio           |          | 0.049   | 0.031   | -        | -     | 1441  | -       |        | 0.023     |           |          |      |
| HCM Control Delay (s)        |          | 16.6    | 8.6     | -        | -     | 0     |         | -      | 16.9      | 11.4      |          |      |
| HCM Lane LOS                 |          | C       | Α       | -        | _     | A     | _       | _      | 10.9<br>C | 11.4<br>B |          |      |
| HCM 95th %tile Q(veh)        |          | 0.2     | 0.1     | <u>-</u> | _     | 0     | _       |        | 0.1       | 0         |          |      |
| HOW JOHN JOHN Q(VEII)        |          | 0.2     | 0.1     |          |       | U     |         |        | 0.1       | U         |          |      |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                         | ۶      | <b>→</b> | •    | •      | +     | •    | •        | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | ✓    |
|-------------------------|--------|----------|------|--------|-------|------|----------|----------|----------|----------|----------|------|
| Lane Group              | EBL    | EBT      | EBR  | WBL    | WBT   | WBR  | NBL      | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ      | ĵ.       |      | ሻ      | 1>    |      |          | 4        |          | ሻ        | ĥ        |      |
| Traffic Volume (vph)    | 32     | 145      | 5    | 0      | 457   | 102  | 9        | 7        | 0        | 7        | 0        | 7    |
| Future Volume (vph)     | 32     | 145      | 5    | 0      | 457   | 102  | 9        | 7        | 0        | 7        | 0        | 7    |
| Ideal Flow (vphpl)      | 1800   | 1800     | 1800 | 1800   | 1800  | 1800 | 1800     | 1800     | 1800     | 1800     | 1800     | 1800 |
| Storage Length (m)      | 50.0   |          | 0.0  | 60.0   |       | 0.0  | 0.0      |          | 0.0      | 25.0     |          | 0.0  |
| Storage Lanes           | 1      |          | 0    | 1      |       | 0    | 0        |          | 0        | 1        |          | 0    |
| Taper Length (m)        | 7.6    |          |      | 7.6    |       | -    | 2.5      |          |          | 2.5      |          |      |
| Lane Util. Factor       | 1.00   | 1.00     | 1.00 | 1.00   | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Ped Bike Factor         |        | 1.00     | 1100 |        |       |      |          | 1.00     |          |          | 0.98     |      |
| Frt                     |        | 0.995    |      |        | 0.973 |      |          |          |          |          | 0.850    |      |
| Flt Protected           | 0.950  | 0.000    |      |        | 0.0.0 |      |          | 0.973    |          | 0.950    | 0.000    |      |
| Satd. Flow (prot)       | 1729   | 1650     | 0    | 1820   | 1728  | 0    | 0        | 1771     | 0        | 1478     | 1509     | 0    |
| Flt Permitted           | 0.950  |          | •    | .020   | 0     |      |          | 0.977    |          |          |          |      |
| Satd. Flow (perm)       | 1729   | 1650     | 0    | 1820   | 1728  | 0    | 0        | 1774     | 0        | 1556     | 1509     | 0    |
| Right Turn on Red       | 1120   | 1000     | Yes  | 1020   | 1120  | Yes  | •        |          | Yes      | 1000     | 1000     | Yes  |
| Satd. Flow (RTOR)       |        | 2        | 100  |        | 15    | 100  |          |          | 100      |          | 428      | 1 00 |
| Link Speed (k/h)        |        | 60       |      |        | 60    |      |          | 50       |          |          | 50       |      |
| Link Distance (m)       |        | 225.2    |      |        | 532.9 |      |          | 285.3    |          |          | 278.3    |      |
| Travel Time (s)         |        | 13.5     |      |        | 32.0  |      |          | 20.5     |          |          | 20.0     |      |
| Confl. Peds. (#/hr)     |        | 10.0     | 1    | 1      | 02.0  |      | 2        | 20.0     |          |          | 20.0     | 2    |
| Peak Hour Factor        | 1.00   | 1.00     | 1.00 | 1.00   | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Heavy Vehicles (%)      | 0%     | 10%      | 0%   | 0%     | 3%    | 0%   | 0%       | 0%       | 0%       | 17%      | 0%       | 0%   |
| Adj. Flow (vph)         | 32     | 145      | 5    | 0      | 457   | 102  | 9        | 7        | 0        | 7        | 0        | 7    |
| Shared Lane Traffic (%) | 02     | 170      | J    | U      | 701   | 102  | <u> </u> | ,        | 0        | '        | · ·      | ,    |
| Lane Group Flow (vph)   | 32     | 150      | 0    | 0      | 559   | 0    | 0        | 16       | 0        | 7        | 7        | 0    |
| Turn Type               | Prot   | NA       |      | Prot   | NA    |      | Perm     | NA       |          | Perm     | NA       |      |
| Protected Phases        | 5      | 2        |      | 1      | 6     |      | 1 01111  | 8        |          | 1 01111  | 4        |      |
| Permitted Phases        |        |          |      |        |       |      | 8        |          |          | 4        | •        |      |
| Detector Phase          | 5      | 2        |      | 1      | 6     |      | 8        | 8        |          | 4        | 4        |      |
| Switch Phase            |        |          |      |        |       |      |          |          |          |          | •        |      |
| Minimum Initial (s)     | 5.0    | 5.0      |      | 5.0    | 5.0   |      | 5.0      | 5.0      |          | 5.0      | 5.0      |      |
| Minimum Split (s)       | 11.1   | 34.1     |      | 11.1   | 34.1  |      | 32.7     | 32.7     |          | 32.7     | 32.7     |      |
| Total Split (s)         | 14.0   | 75.9     |      | 11.1   | 73.0  |      | 33.0     | 33.0     |          | 33.0     | 33.0     |      |
| Total Split (%)         | 11.7%  | 63.3%    |      | 9.3%   | 60.8% |      | 27.5%    | 27.5%    |          | 27.5%    | 27.5%    |      |
| Maximum Green (s)       | 7.9    | 69.8     |      | 5.0    | 66.9  |      | 27.3     | 27.3     |          | 27.3     | 27.3     |      |
| Yellow Time (s)         | 4.1    | 4.1      |      | 4.1    | 4.1   |      | 3.6      | 3.6      |          | 3.6      | 3.6      |      |
| All-Red Time (s)        | 2.0    | 2.0      |      | 2.0    | 2.0   |      | 2.1      | 2.1      |          | 2.1      | 2.1      |      |
| Lost Time Adjust (s)    | 0.0    | 0.0      |      | 0.0    | 0.0   |      | ۷.۱      | 0.0      |          | 0.0      | 0.0      |      |
| Total Lost Time (s)     | 6.1    | 6.1      |      | 6.1    | 6.1   |      |          | 5.7      |          | 5.7      | 5.7      |      |
| Lead/Lag                | Lead   | Lag      |      | Lead   | Lag   |      |          | 0.1      |          | 0.1      | 0.1      |      |
| Lead-Lag Optimize?      | Yes    | Yes      |      | Yes    | Yes   |      |          |          |          |          |          |      |
| Vehicle Extension (s)   | 3.0    | 3.0      |      | 3.0    | 3.0   |      | 3.0      | 3.0      |          | 3.0      | 3.0      |      |
| Recall Mode             | None   | C-Max    |      | None   | C-Max |      | None     | None     |          | None     | None     |      |
| Walk Time (s)           | 140110 | 7.0      |      | 110110 | 7.0   |      | 7.0      | 7.0      |          | 7.0      | 7.0      |      |
| Flash Dont Walk (s)     |        | 21.0     |      |        | 21.0  |      | 20.0     | 20.0     |          | 20.0     | 20.0     |      |
| Pedestrian Calls (#/hr) |        | 0        |      |        | 0     |      | 0        | 0        |          | 0        | 0        |      |
| Act Effct Green (s)     | 7.7    | 112.1    |      |        | 101.9 |      |          | 6.8      |          | 6.7      | 6.7      |      |
| Actuated g/C Ratio      | 0.06   | 0.93     |      |        | 0.85  |      |          | 0.06     |          | 0.06     | 0.06     |      |
| v/c Ratio               | 0.00   | 0.93     |      |        | 0.83  |      |          | 0.06     |          | 0.08     | 0.00     |      |
| v/o ixalio              | 0.23   | 0.10     |      |        | 0.50  |      |          | 0.10     |          | 0.00     | 0.01     |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | •   | •     | •   | 1   | <b>†</b> | ~   | -    | ţ     | 4   |
|------------------------|------|-------|-----|-----|-------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL | WBT   | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| Control Delay          | 59.4 | 1.2   |     |     | 5.3   |     |     | 56.8     |     | 54.9 | 0.0   |     |
| Queue Delay            | 0.0  | 0.0   |     |     | 0.0   |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 59.4 | 1.2   |     |     | 5.3   |     |     | 56.8     |     | 54.9 | 0.0   |     |
| LOS                    | Е    | Α     |     |     | Α     |     |     | Ε        |     | D    | Α     |     |
| Approach Delay         |      | 11.4  |     |     | 5.3   |     |     | 56.8     |     |      | 27.4  |     |
| Approach LOS           |      | В     |     |     | Α     |     |     | Ε        |     |      | С     |     |
| Queue Length 50th (m)  | 7.3  | 0.0   |     |     | 23.3  |     |     | 3.7      |     | 1.6  | 0.0   |     |
| Queue Length 95th (m)  | 17.2 | 8.2   |     |     | 73.7  |     |     | 10.8     |     | 6.4  | 0.0   |     |
| Internal Link Dist (m) |      | 201.2 |     |     | 508.9 |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |       |     |     |       |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 122  | 1541  |     |     | 1469  |     |     | 403      |     | 353  | 673   |     |
| Starvation Cap Reductn | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.26 | 0.10  |     |     | 0.38  |     |     | 0.04     |     | 0.02 | 0.01  |     |

Intersection Summary

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.38

Intersection Signal Delay: 8.2 Intersection LOS: A Intersection Capacity Utilization 49.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

#### **MOVEMENT SUMMARY**

# ♥ Site: Old Montreal / Dairy FB2027AM

Old Montreal Road & Dairy Drive / Aveia Private Future (2027) Background Traffic AM Peak Hour Roundabout

|         |                | rmance - Ve    |         |             |         |          |                 |          |        |                   |               |
|---------|----------------|----------------|---------|-------------|---------|----------|-----------------|----------|--------|-------------------|---------------|
| Mov     | OD             | Demand         |         | Deg.        | Average | Level of | 95% Back o      |          | Prop.  | Effective         | Average       |
| ID      | Mov            | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay   | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate per veh | Speed<br>km/h |
| South   | : Aveia Privat |                | 70      | V/C         | sec     |          | ven             | m        |        | per veri          | KIII/II       |
| 3       | L2             | 9              | 0.0     | 0.018       | 4.1     | LOS A    | 0.1             | 0.5      | 0.30   | 0.17              | 54.5          |
| 8       | T1             | 7              | 0.0     | 0.018       | 4.1     | LOS A    | 0.1             | 0.5      | 0.30   | 0.17              | 54.7          |
| 18      | R2             | 1              | 0.0     | 0.018       | 4.1     | LOS A    | 0.1             | 0.5      | 0.30   | 0.17              | 53.4          |
| Appro   | ach            | 17             | 0.0     | 0.018       | 4.1     | LOSA     | 0.1             | 0.5      | 0.30   | 0.17              | 54.5          |
| East:   | Old Montreal   | Road           |         |             |         |          |                 |          |        |                   |               |
| 1       | L2             | 1              | 0.0     | 0.533       | 9.9     | LOSA     | 3.5             | 26.9     | 0.26   | 0.12              | 51.9          |
| 6       | T1             | 457            | 3.0     | 0.533       | 9.9     | LOSA     | 3.5             | 26.9     | 0.26   | 0.12              | 51.9          |
| 16      | R2             | 102            | 0.0     | 0.533       | 9.9     | LOSA     | 3.5             | 26.9     | 0.26   | 0.12              | 50.9          |
| Appro   | ach            | 560            | 2.4     | 0.533       | 9.9     | LOSA     | 3.5             | 26.9     | 0.26   | 0.12              | 51.7          |
| North:  | Dairy Drive    |                |         |             |         |          |                 |          |        |                   |               |
| 7       | L2             | 7              | 17.0    | 0.023       | 5.8     | LOS A    | 0.1             | 0.6      | 0.46   | 0.36              | 52.6          |
| 4       | T1             | 1              | 0.0     | 0.023       | 5.8     | LOS A    | 0.1             | 0.6      | 0.46   | 0.36              | 53.7          |
| 14      | R2             | 7              | 0.0     | 0.023       | 5.8     | LOS A    | 0.1             | 0.6      | 0.46   | 0.36              | 52.5          |
| Appro   | ach            | 15             | 7.9     | 0.023       | 5.8     | LOSA     | 0.1             | 0.6      | 0.46   | 0.36              | 52.6          |
| West:   | Old Montreal   | Road           |         |             |         |          |                 |          |        |                   |               |
| 5       | L2             | 32             | 0.0     | 0.176       | 5.1     | LOS A    | 0.7             | 5.3      | 0.06   | 0.01              | 54.9          |
| 2       | T1             | 145            | 10.0    | 0.176       | 5.1     | LOS A    | 0.7             | 5.3      | 0.06   | 0.01              | 54.6          |
| 12      | R2             | 5              | 0.0     | 0.176       | 5.1     | LOS A    | 0.7             | 5.3      | 0.06   | 0.01              | 53.8          |
| Appro   | ach            | 182            | 8.0     | 0.176       | 5.1     | LOSA     | 0.7             | 5.3      | 0.06   | 0.01              | 54.7          |
| All Vel | hicles         | 774            | 3.8     | 0.533       | 8.6     | LOSA     | 3.5             | 26.9     | 0.22   | 0.10              | 52.4          |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 1:31:31 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_Dairy\_2021-02-09.sip6

| Movement   EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR   SBT   SBR   Configurations   Traffic Vol, vehrh   21   132   0 0   489   1   0   0   0   2   0   82   Conflicting Peds, #/hr   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intersection         |      |     |     |       |       |       |     |       |          |      |     |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-----|-----|-------|-------|-------|-----|-------|----------|------|-----|------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 1.7  |     |     |       |       |       |     |       |          |      |     |      |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                  |      | EST | EDD | 14/51 | 14/5- | 14/55 | ND  | NET   | NES      | 051  | 007 | 055  |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |      |     | EBR | WBL   |       | WBR   | NBL | NBT   | NBK      | SBL  |     | SBR  |
| Future Vol, veh/h Conflicting Peds, #/hr Sign Control Free Free Free Free Free Free Free Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |      |     | _   | _     |       |       | •   | _     | _        | _    |     | ^^   |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Sign Control         Free RTCANNONE         Free RTCANNONE         Free None         Stop None         None         - | <u> </u>             |      |     |     |       |       |       |     |       |          |      |     |      |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Veh in Median Storage, #         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         0         -         0         0         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>None</td>                                                                                   |                      |      | -   |     |       | -     |       |     | -     |          |      |     | None |
| Grade, % - 0 0 0 0 0 - 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |      | -   |     |       | -     |       |     | -     |          |      |     | -    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                    |      |     |     |       |       |       |     |       |          |      |     |      |
| Mynt Flow         21         132         0         0         489         1         0         0         2         0         82           Major/Minor         Major1         Major2         Minor2         Minor2           Conflicting Flow All         490         0         0         132         0         0         664         664         490           Stage 1         -         -         -         -         -         -         490         490         -           Stage 2         -         -         -         -         -         -         490         490         -           Stage 2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td>                                                                                              |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Major/Minor   Major1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IVIVIIIL I IUW       | ZI   | 132 | U   | U     | 403   |       | U   | U     | U        |      | U   | UZ   |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |      |     |     |       |       |       |     |       | <b>N</b> |      |     |      |
| Stage 2       -       -       -       -       -       -       174       174       -         Critical Hdwy Stg 1       -       -       -       -       -       5.4       5.5       -         Critical Hdwy Stg 2       -       -       -       -       -       5.4       5.5       -         Follow-up Hdwy       2.2       -       -       2.2       -       -       3.5       4       3.3         Pol Cap-1 Maneuver 1084       -       1466       -       -       429       384       582         Stage 1       -       -       -       -       -       620       552       -         Stage 2       -       -       -       -       -       -       -       421       0       582         Mov Cap-1 Maneuver 1084       -       1466       -       -       421       0       582         Mov Cap-2 Maneuver 1084       -       1466       -       -       421       0       -         Stage 1       -       -       -       -       -       861       0       - <td></td> <td>490</td> <td>0</td> <td>0</td> <td>132</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>490</td>                                                                                                                                                                                                                              |                      | 490  | 0   | 0   | 132   | 0     | 0     |     |       |          |      |     | 490  |
| Critical Howy       4.1       -       -       4.1       -       -       6.4       6.5       6.2         Critical Howy Stg 1       -       -       -       -       -       5.4       5.5       -         Critical Howy Stg 2       -       -       -       -       -       5.4       5.5       -         Follow-up Howy       2.2       -       -       2.2       -       -       3.5       4       3.3         Pot Cap-1 Maneuver       1084       -       1466       -       -       620       552       -         Stage 1       -       -       -       -       -       861       759       -         Platoon blocked, %       -       -       -       -       -       861       759       -         Mov Cap-1 Maneuver       1084       -       1466       -       -       421       0       582         Mov Cap-2 Maneuver       -       -       -       -       -       421       0       -         Stage 1       -       -       -       -       -       -       861       0       -         Stage 2       -       - <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>                                                                                                                                                                           |                      | -    | -   | -   | -     | -     | -     |     |       |          |      |     | -    |
| Critical Hdwy Stg 1       -       -       -       -       -       5.4       5.5       -         Critical Hdwy Stg 2       -       -       -       -       -       5.4       5.5       -         Follow-up Hdwy       2.2       -       -       2.2       -       -       3.5       4       3.3         Pot Cap-1 Maneuver       1084       -       -       1466       -       -       429       384       582         Stage 2       -       -       -       -       -       620       552       -         Stage 2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                     |                      |      | -   | -   |       | -     | -     |     |       |          |      |     |      |
| Critical Hdwy Stg 2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                   | _                    | 4.1  | -   | -   | 4.1   | -     | -     |     |       |          |      |     | 6.2  |
| Follow-up Hdwy 2.2 - 2.2 2.2 3.5 4 3.3  Pot Cap-1 Maneuver 1084 - 1466 429 384 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | -    | -   | -   | -     | -     | -     |     |       |          |      |     | -    |
| Pot Cap-1 Maneuver   1084   -   1466   -     429   384   582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |      | -   | -   |       | -     | -     |     |       |          |      |     |      |
| Stage 1       -       -       -       -       -       -       -       861       759       -         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                |                      |      | -   | -   |       | -     | -     |     |       |          |      |     |      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 1084 | -   | -   | 1466  | -     | -     |     |       |          |      |     | 582  |
| Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                    |                      | -    | -   | -   | -     | -     | -     |     |       |          |      |     | -    |
| Mov Cap-1 Maneuver         1084         -         -         1466         -         -         421         0         582           Mov Cap-2 Maneuver         -         -         -         -         -         -         421         0         -           Stage 1         -         -         -         -         -         -         608         0         -           Stage 2         -         -         -         -         -         -         861         0         -           Approach         EB         WB         WB         WB         WB         WB         B           ACM Los         B         B         WB         WBT         WBR SBLn1         WB         WB <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>861</td> <td>759</td> <td>-</td>                                                                              |                      | -    | -   | -   | -     | -     | -     |     |       |          | 861  | 759 | -    |
| Mov Cap-2 Maneuver         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                  |                      | 100  | -   | -   |       | -     | -     |     |       |          | 4.5. |     |      |
| Stage 1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>•</td> <td></td> <td>-</td> <td>-</td> <td>1466</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                   | •                    |      | -   | -   | 1466  | -     | -     |     |       |          |      |     |      |
| Stage 2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                      |                      | -    | -   | -   | -     | -     | -     |     |       |          |      |     |      |
| Approach         EB         WB         SB           HCM Control Delay, s         1.2         0         12.3           HCM LOS         B           Minor Lane/Major Mvmt         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         1084         -         -         1466         -         -         577           HCM Lane V/C Ratio         0.019         -         -         -         0.146           HCM Control Delay (s)         8.4         -         -         0         -         12.3           HCM Lane LOS         A         -         -         A         -         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -    | -   | -   | -     | -     | -     |     |       |          |      |     |      |
| HCM Control Delay, s   1.2   0   12.3     HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stage 2              | -    | -   | -   | -     | -     | -     |     |       |          | 861  | 0   | -    |
| HCM Control Delay, s   1.2   0   12.3     HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| HCM Control Delay, s   1.2   0   12.3     HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach             | EB   |     |     | WB    |       |       |     |       |          | SB   |     |      |
| Minor Lane/Major Mvmt         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         1084         -         -         1466         -         -         577           HCM Lane V/C Ratio         0.019         -         -         -         -         0.146           HCM Control Delay (s)         8.4         -         -         0         -         -         12.3           HCM Lane LOS         A         -         -         A         -         -         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Minor Lane/Major Mvmt         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         1084         -         -         1466         -         -         577           HCM Lane V/C Ratio         0.019         -         -         -         -         0.146           HCM Control Delay (s)         8.4         -         -         0         -         -         12.3           HCM Lane LOS         A         -         -         A         -         -         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Capacity (veh/h)       1084       -       - 1466       -       - 577         HCM Lane V/C Ratio       0.019       -       -       -       0.146         HCM Control Delay (s)       8.4       -       0       -       - 12.3         HCM Lane LOS       A       -       A       -       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| Capacity (veh/h)       1084       -       - 1466       -       - 577         HCM Lane V/C Ratio       0.019       -       -       -       0.146         HCM Control Delay (s)       8.4       -       0       -       - 12.3         HCM Lane LOS       A       -       A       -       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minor Long/Maior NA  |      | EDI | EDT | EDD   | WDI   | WDT   | WDD | 2DL 4 |          |      |     |      |
| HCM Lane V/C Ratio       0.019       -       -       -       0.146         HCM Control Delay (s)       8.4       -       -       0       -       -       12.3         HCM Lane LOS       A       -       -       A       -       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | l    |     |     |       |       | WBI   |     |       |          |      |     |      |
| HCM Control Delay (s) 8.4 0 12.3<br>HCM Lane LOS A A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |      |     |     |       |       | -     |     |       |          |      |     |      |
| HCM Lane LOS A A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |      |     |     |       |       |       |     |       |          |      |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |      |     |     |       |       |       |     |       |          |      |     |      |
| HUNI 93(11 76(IIIE Q(VEN) U. 1 U U.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |      |     |     |       |       |       |     |       |          |      |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HOW YOUN WINE Q(Veh) |      | 0.1 | -   | -     | U     | -     | -   | 0.5   |          |      |     |      |

#### LANE SUMMARY

# ₩ Site: BG2027PM

Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Background Traffic PM Peak Hour Roundabout

| Lane Use a          | nd Borfor   | nance |       |       |                 |         |          |            |            |        |        |      |                  |
|---------------------|-------------|-------|-------|-------|-----------------|---------|----------|------------|------------|--------|--------|------|------------------|
| Laile Use a         | Demand F    |       | ;<br> | Deg.  | Lane            | Average | Level of | 95% Back o | of Ollelle | Lane   | Lane   | Cap. | Prob.            |
|                     | Total       | HV    | Сар.  | Satn  | Util.           | Delay   | Service  | Veh        | Dist       | Config | Length | Adj. | Block.           |
|                     | veh/h       | %     | veh/h | v/c   | %               | sec     |          |            | m          |        | m      | %    | %                |
| South: Trim I       | Road        |       |       |       |                 |         |          |            |            |        |        |      |                  |
| Lane 1              | 484         | 2.7   | 792   | 0.612 | 100             | 14.5    | LOS B    | 3.2        | 25.2       | Full   | 500    | 0.0  | 0.0              |
| Lane 2 <sup>d</sup> | 496         | 2.5   | 811   | 0.612 | 100             | 14.2    | LOS B    | 3.1        | 24.0       | Full   | 500    | 0.0  | 0.0              |
| Approach            | 980         | 2.6   |       | 0.612 |                 | 14.4    | LOS B    | 3.2        | 25.2       |        |        |      |                  |
| East: Old Mo        | ntreal Road |       |       |       |                 |         |          |            |            |        |        |      |                  |
| Lane 1 <sup>d</sup> | 165         | 0.0   | 586   | 0.282 | 100             | 10.0    | LOS A    | 0.8        | 6.3        | Full   | 500    | 0.0  | 0.0              |
| Lane 2              | 154         | 0.0   | 559   | 0.276 | 98 <sup>5</sup> | 10.3    | LOS B    | 8.0        | 6.4        | Full   | 500    | 0.0  | 0.0              |
| Lane 3              | 100         | 0.0   | 656   | 0.152 | 100             | 7.2     | LOSA     | 0.4        | 3.1        | Short  | 95     | 0.0  | NA               |
| Approach            | 420         | 0.0   |       | 0.282 |                 | 9.4     | LOS A    | 8.0        | 6.4        |        |        |      |                  |
| North: Trim F       | Road        |       |       |       |                 |         |          |            |            |        |        |      |                  |
| Lane 1              | 945         | 1.3   | 778   | 1.215 | 100             | 127.7   | LOS F    | 66.2       | 508.2      | Full   | 500    | 0.0  | <mark>5.5</mark> |
| Lane 2 <sup>d</sup> | 969         | 1.1   | 798   | 1.215 | 100             | 127.1   | LOS F    | 67.3       | 515.9      | Full   | 500    | 0.0  | <mark>5.9</mark> |
| Approach            | 1914        | 1.2   |       | 1.215 |                 | 127.4   | LOS F    | 67.3       | 515.9      |        |        |      |                  |
| West: St Jos        | eph Bouleva | ard   |       |       |                 |         |          |            |            |        |        |      |                  |
| Lane 1              | 114         | 0.0   | 322   | 0.354 | 100             | 19.0    | LOS C    | 1.1        | 8.0        | Full   | 500    | 0.0  | 0.0              |
| Lane 2 <sup>d</sup> | 124         | 0.0   | 350   | 0.354 | 100             | 17.6    | LOS C    | 1.0        | 7.8        | Full   | 500    | 0.0  | 0.0              |
| Lane 3              | 302         | 1.0   | 399   | 0.757 | 100             | 36.0    | LOS E    | 3.4        | 26.3       | Short  | 135    | 0.0  | NA               |
| Approach            | 540         | 0.6   |       | 0.757 |                 | 28.2    | LOS D    | 3.4        | 26.3       |        |        |      |                  |
| Intersection        | 3854        | 1.3   |       | 1.215 |                 | 71.9    | LOS F    | 67.3       | 515.9      |        |        |      |                  |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

- 5 Lane under-utilisation found by the program
- d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Monday, November 09, 2020 4:03:42 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad 2020-11-09.sip6

| Intersection                         |          |              |       |          |                |       |           |               |       |                |              |        |
|--------------------------------------|----------|--------------|-------|----------|----------------|-------|-----------|---------------|-------|----------------|--------------|--------|
| Int Delay, s/veh                     | 3.1      |              |       |          |                |       |           |               |       |                |              |        |
|                                      |          | ГОТ          | EDD   | WDI      | WDT            | WDD   | NDI       | NDT           | NDD   | CDI            | CDT          | CDD    |
| Movement Configurations              | EBL      | EBT          | EBR   | WBL      | WBT            | WBR   | NBL       | NBT           | NBR   | SBL            | SBT          | SBR    |
| Lane Configurations                  | ዃ        | <b>♣</b> 582 | 0     | <u>ኝ</u> | <b>1</b> → 275 | 21    | 4         | <b>♣</b><br>6 | 1     | <b>1</b><br>91 | <b>1</b> → 2 | 47     |
| Traffic Vol, veh/h Future Vol, veh/h | 6        | 582          | 9     | 1        | 275            | 21    | 4         | 6             | 1     | 91             | 2            | 47     |
| Conflicting Peds, #/hr               | 1        | 0            | 0     | 0        | 0              | 1     | 0         | 0             | 2     | 2              | 0            | 0      |
| Sign Control                         | Free     | Free         | Free  | Free     | Free           | Free  | Stop      | Stop          | Stop  | Stop           | Stop         | Stop   |
| RT Channelized                       | -        | -            | None  | -        | -              | None  | Stop<br>- | Stop<br>-     | None  | Stop<br>-      | Stop<br>-    | None   |
| Storage Length                       | 500      | _            | -     | 600      | _              | -     | _         | _             | -     | 250            | _            | INOITE |
| Veh in Median Storage                |          | 0            | _     | -        | 0              | _     | _         | 0             |       | 250            | 0            | _      |
| Grade, %                             | -, π     | 0            | _     | <u>-</u> | 0              | _     | <u>-</u>  | 0             | _     | <u>-</u>       | 0            | _      |
| Peak Hour Factor                     | 100      | 100          | 100   | 100      | 100            | 100   | 100       | 100           | 100   | 100            | 100          | 100    |
| Heavy Vehicles, %                    | 33       | 2            | 0     | 0        | 6              | 0     | 0         | 0             | 0     | 0              | 0            | 10     |
| Mvmt Flow                            | 6        | 582          | 9     | 1        | 275            | 21    | 4         | 6             | 1     | 91             | 2            | 47     |
|                                      |          |              | •     |          |                |       | •         |               |       |                | _            |        |
| Major/Minor I                        | Major1   |              | ı     | Major2   |                | ı     | Minor1    |               |       | Minor2         |              |        |
| Conflicting Flow All                 | 297      | 0            | 0     | 591      | 0              | 0     | 911       | 898           | 589   | 893            | 892          | 287    |
| Stage 1                              | <u> </u> | -            | U     | J        | -              | Ū     | 599       | 599           | 509   | 289            | 289          | 201    |
| Stage 2                              | _        | _            | _     | _        | _              | _     | 312       | 299           | _     | 604            | 603          | _      |
| Critical Hdwy                        | 4.43     | _            | _     | 4.1      | _              | _     | 7.1       | 6.5           | 6.2   | 7.1            | 6.5          | 6.3    |
| Critical Hdwy Stg 1                  |          | _            | -     | - T. I   | _              | _     | 6.1       | 5.5           | - 0.2 | 6.1            | 5.5          | -      |
| Critical Hdwy Stg 2                  | _        | _            | _     | -        | _              | _     | 6.1       | 5.5           | -     | 6.1            | 5.5          | _      |
| Follow-up Hdwy                       | 2.497    | _            | -     | 2.2      | -              | -     | 3.5       | 4             | 3.3   | 3.5            | 4            | 3.39   |
| Pot Cap-1 Maneuver                   | 1107     | _            | -     | 995      | -              | -     | 257       | 281           | 512   | 264            | 283          | 733    |
| Stage 1                              | -        | _            | -     | -        | -              | -     | 492       | 494           | -     | 723            | 677          | -      |
| Stage 2                              | -        | -            | -     | -        | -              | -     | 703       | 670           | -     | 489            | 492          | -      |
| Platoon blocked, %                   |          | _            | -     |          | -              | -     |           |               |       |                |              |        |
| Mov Cap-1 Maneuver                   | 1106     | -            | -     | 995      | -              | -     | 238       | 279           | 511   | 257            | 281          | 732    |
| Mov Cap-2 Maneuver                   | -        | -            | -     | -        | -              | -     | 238       | 279           | -     | 257            | 281          | -      |
| Stage 1                              | -        | -            | -     | -        | -              | -     | 490       | 492           | -     | 719            | 676          | -      |
| Stage 2                              | -        | -            | -     | -        | -              | -     | 655       | 669           | -     | 479            | 490          | -      |
|                                      |          |              |       |          |                |       |           |               |       |                |              |        |
| Approach                             | EB       |              |       | WB       |                |       | NB        |               |       | SB             |              |        |
| HCM Control Delay, s                 | 0.1      |              |       | 0        |                |       | 18.7      |               |       | 20.9           |              |        |
| HCM LOS                              | -        |              |       |          |                |       | С         |               |       | С              |              |        |
|                                      |          |              |       |          |                |       |           |               |       |                |              |        |
| Minor Lane/Major Mvm                 | nt N     | NBLn1        | EBL   | EBT      | EBR            | WBL   | WBT       | WRR :         | SBLn1 | SBL n2         |              |        |
| Capacity (veh/h)                     | <u> </u> | 273          | 1106  |          | -              | 995   | -         | -             | 257   | 687            |              |        |
| HCM Lane V/C Ratio                   |          |              | 0.005 | _        |                | 0.001 | _         |               | 0.354 |                |              |        |
| HCM Control Delay (s)                |          | 18.7         | 8.3   | -        | _              | 8.6   | _         | _             | 26.5  | 10.6           |              |        |
| HCM Lane LOS                         |          | C            | A     | -        | -              | A     | -         | _             | D     | В              |              |        |
| HCM 95th %tile Q(veh)                | )        | 0.1          | 0     | -        | _              | 0     | _         | -             | 1.5   | 0.2            |              |        |
|                                      |          |              |       |          |                |       |           |               |       |                |              |        |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                               | iti Cai i |       |               |       |          |      |            |          |          |        |       |      |
|-------------------------------|-----------|-------|---------------|-------|----------|------|------------|----------|----------|--------|-------|------|
|                               | •         | -     | $\rightarrow$ | •     | <b>←</b> | •    | <b>^</b>   | <b>†</b> | <b>/</b> | -      | ţ     | 4    |
| Lane Group                    | EBL       | EBT   | EBR           | WBL   | WBT      | WBR  | NBL        | NBT      | NBR      | SBL    | SBT   | SBR  |
| Lane Configurations           | ሻ         | f)    |               | ሻ     | f)       |      |            | 4        |          | Ť      | ĵ.    |      |
| Traffic Volume (vph)          | 6         | 582   | 9             | 1     | 275      | 21   | 4          | 6        | 1        | 91     | 2     | 47   |
| Future Volume (vph)           | 6         | 582   | 9             | 1     | 275      | 21   | 4          | 6        | 1        | 91     | 2     | 47   |
| Ideal Flow (vphpl)            | 1800      | 1800  | 1800          | 1800  | 1800     | 1800 | 1800       | 1800     | 1800     | 1800   | 1800  | 1800 |
| Storage Length (m)            | 50.0      |       | 0.0           | 60.0  |          | 0.0  | 0.0        |          | 0.0      | 25.0   |       | 0.0  |
| Storage Lanes                 | 1         |       | 0             | 1     |          | 0    | 0          |          | 0        | 1      |       | 0    |
| Taper Length (m)              | 7.6       |       |               | 7.6   |          |      | 2.5        |          |          | 2.5    |       |      |
| Lane Util. Factor             | 1.00      | 1.00  | 1.00          | 1.00  | 1.00     | 1.00 | 1.00       | 1.00     | 1.00     | 1.00   | 1.00  | 1.00 |
| Ped Bike Factor               | 1.00      |       |               |       | 1.00     |      |            | 1.00     |          | 1.00   | 0.98  |      |
| Frt                           |           | 0.998 |               |       | 0.989    |      |            | 0.988    |          |        | 0.856 |      |
| Flt Protected                 | 0.950     |       |               | 0.950 |          |      |            | 0.982    |          | 0.950  |       |      |
| Satd. Flow (prot)             | 1300      | 1781  | 0             | 1729  | 1702     | 0    | 0          | 1762     | 0        | 1729   | 1392  | 0    |
| Flt Permitted                 | 0.950     |       | •             | 0.950 |          | •    | •          | 0.910    | •        | 0.750  |       |      |
| Satd. Flow (perm)             | 1298      | 1781  | 0             | 1729  | 1702     | 0    | 0          | 1633     | 0        | 1359   | 1392  | 0    |
| Right Turn on Red             | 1200      | 1701  | Yes           | 1120  | 1102     | Yes  | J          | 1000     | Yes      | 1000   | 1002  | Yes  |
| Satd. Flow (RTOR)             |           | 1     | 100           |       | 5        | 100  |            | 1        | 100      |        | 47    | 100  |
| Link Speed (k/h)              |           | 60    |               |       | 60       |      |            | 50       |          |        | 50    |      |
| Link Distance (m)             |           | 225.2 |               |       | 532.9    |      |            | 285.3    |          |        | 278.3 |      |
| Travel Time (s)               |           | 13.5  |               |       | 32.0     |      |            | 20.5     |          |        | 20.0  |      |
| Confl. Peds. (#/hr)           | 1         | 10.0  |               |       | 32.0     | 1    |            | 20.5     | 2        | 2      | 20.0  |      |
| Confl. Bikes (#/hr)           |           |       |               |       |          |      |            |          | 2        | 2      |       | 1    |
| Peak Hour Factor              | 1.00      | 1.00  | 1.00          | 1.00  | 1.00     | 1.00 | 1.00       | 1.00     | 1.00     | 1.00   | 1.00  | 1.00 |
| Heavy Vehicles (%)            | 33%       | 2%    | 0%            | 0%    | 6%       | 0%   | 0%         | 0%       | 0%       | 0%     | 0%    | 10%  |
| Adj. Flow (vph)               | 6         | 582   | 9             | 1     | 275      | 21   | 4          | 6        | 1        | 91     | 2     | 47   |
| Shared Lane Traffic (%)       | Ü         | 302   | 9             | I     | 213      | 21   | 4          | U        | ı        | 91     | 2     | 41   |
|                               | 6         | 591   | 0             | 1     | 296      | 0    | 0          | 11       | 0        | 91     | 49    | 0    |
| Lane Group Flow (vph)         | Prot      | NA    | U             | Prot  | NA       | U    | Perm       | NA       | U        | Perm   | NA    | U    |
| Turn Type<br>Protected Phases | 5         | 2     |               | 1     | 6        |      | reiiii     | NA<br>8  |          | reiiii | 4     |      |
| Permitted Phases              | ິວ        | 2     |               | I     | U        |      | 8          | 0        |          | 4      | 4     |      |
| Detector Phase                | 5         | 2     |               | 1     | 6        |      | 8          | 8        |          | 4      | 4     |      |
| Switch Phase                  | ິວ        | 2     |               | I     | U        |      | 0          | 0        |          | 4      | 4     |      |
|                               | F 0       | 5.0   |               | F 0   | E 0      |      | <i>E</i> 0 | E 0      |          | F 0    | F 0   |      |
| Minimum Initial (s)           | 5.0       |       |               | 5.0   | 5.0      |      | 5.0        | 5.0      |          | 5.0    | 5.0   |      |
| Minimum Split (s)             | 11.1      | 34.1  |               | 11.1  | 34.1     |      | 32.7       | 32.7     |          | 32.7   | 32.7  |      |
| Total Split (s)               | 12.0      | 73.0  |               | 12.0  | 73.0     |      | 35.0       | 35.0     |          | 35.0   | 35.0  |      |
| Total Split (%)               | 10.0%     | 60.8% |               | 10.0% | 60.8%    |      | 29.2%      | 29.2%    |          | 29.2%  | 29.2% |      |
| Maximum Green (s)             | 5.9       | 66.9  |               | 5.9   | 66.9     |      | 29.3       | 29.3     |          | 29.3   | 29.3  |      |
| Yellow Time (s)               | 4.1       | 4.1   |               | 4.1   | 4.1      |      | 3.6        | 3.6      |          | 3.6    | 3.6   |      |
| All-Red Time (s)              | 2.0       | 2.0   |               | 2.0   | 2.0      |      | 2.1        | 2.1      |          | 2.1    | 2.1   |      |
| Lost Time Adjust (s)          | 0.0       | 0.0   |               | 0.0   | 0.0      |      |            | 0.0      |          | 0.0    | 0.0   |      |
| Total Lost Time (s)           | 6.1       | 6.1   |               | 6.1   | 6.1      |      |            | 5.7      |          | 5.7    | 5.7   |      |
| Lead/Lag                      | Lead      | Lag   |               | Lead  | Lag      |      |            |          |          |        |       |      |
| Lead-Lag Optimize?            | Yes       | Yes   |               | Yes   | Yes      |      | 0.0        | 0.0      |          | 0.0    | 0.0   |      |
| Vehicle Extension (s)         | 3.0       | 3.0   |               | 3.0   | 3.0      |      | 3.0        | 3.0      |          | 3.0    | 3.0   |      |
| Recall Mode                   | None      | C-Max |               | None  | C-Max    |      | None       | None     |          | None   | None  |      |
| Walk Time (s)                 |           | 7.0   |               |       | 7.0      |      | 7.0        | 7.0      |          | 7.0    | 7.0   |      |
| Flash Dont Walk (s)           |           | 21.0  |               |       | 21.0     |      | 20.0       | 20.0     |          | 20.0   | 20.0  |      |
| Pedestrian Calls (#/hr)       |           | 0     |               |       | 0        |      | 0          | 0        |          | 0      | 0     |      |
| Act Effct Green (s)           | 6.2       | 92.4  |               | 5.6   | 92.1     |      |            | 13.4     |          | 13.4   | 13.4  |      |
| Actuated g/C Ratio            | 0.05      | 0.77  |               | 0.05  | 0.77     |      |            | 0.11     |          | 0.11   | 0.11  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | 1    | ←     | •   | 4   | <b>†</b> | /   | -    | ļ     | 4   |
|------------------------|------|-------|-----|------|-------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT   | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| v/c Ratio              | 0.09 | 0.43  |     | 0.01 | 0.23  |     |     | 0.06     |     | 0.60 | 0.25  |     |
| Control Delay          | 56.5 | 7.2   |     | 55.0 | 5.6   |     |     | 42.7     |     | 66.5 | 16.7  |     |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0   |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 56.5 | 7.2   |     | 55.0 | 5.6   |     |     | 42.7     |     | 66.5 | 16.7  |     |
| LOS                    | Е    | Α     |     | D    | Α     |     |     | D        |     | Е    | В     |     |
| Approach Delay         |      | 7.7   |     |      | 5.8   |     |     | 42.7     |     |      | 49.0  |     |
| Approach LOS           |      | Α     |     |      | Α     |     |     | D        |     |      | D     |     |
| Queue Length 50th (m)  | 1.4  | 35.8  |     | 0.2  | 14.3  |     |     | 2.2      |     | 20.7 | 0.4   |     |
| Queue Length 95th (m)  | 5.7  | 96.6  |     | 2.1  | 42.9  |     |     | 7.4      |     | 36.0 | 11.2  |     |
| Internal Link Dist (m) |      | 201.2 |     |      | 508.9 |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |       |     | 60.0 |       |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 69   | 1371  |     | 85   | 1307  |     |     | 399      |     | 331  | 375   |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.09 | 0.43  |     | 0.01 | 0.23  |     |     | 0.03     |     | 0.27 | 0.13  |     |

#### Intersection Summary

Area Type: Other

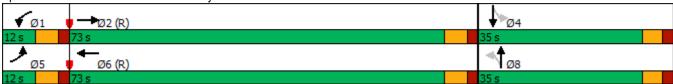
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.60

Intersection Signal Delay: 13.1
Intersection Capacity Utilization 54.7%

Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

#### **MOVEMENT SUMMARY**

# ♥ Site: Old Montreal / Dairy FB2027PM

Old Montreal Road & Dairy Drive / Aveia Private Future (2027) Background Traffic PM Peak Hour Roundabout

| Mov     | OD             | Deman | d Flows | Deg.  | Average | Level of | 95% Back of | of Queue | Prop.  | Effective | Average |
|---------|----------------|-------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| ID      | Mov            | Total | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|         |                | veh/h | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/r    |
| South:  | : Aveia Privat | е     |         |       |         |          |             |          |        |           |         |
| 3       | L2             | 4     | 0.0     | 0.019 | 6.6     | LOS A    | 0.1         | 0.5      | 0.53   | 0.46      | 53.1    |
| 8       | T1             | 6     | 0.0     | 0.019 | 6.6     | LOS A    | 0.1         | 0.5      | 0.53   | 0.46      | 53.3    |
| 18      | R2             | 1     | 0.0     | 0.019 | 6.6     | LOS A    | 0.1         | 0.5      | 0.53   | 0.46      | 52.1    |
| Appro   | ach            | 11    | 0.0     | 0.019 | 6.6     | LOSA     | 0.1         | 0.5      | 0.53   | 0.46      | 53.1    |
| East: 0 | Old Montreal   | Road  |         |       |         |          |             |          |        |           |         |
| 1       | L2             | 1     | 0.0     | 0.283 | 6.2     | LOS A    | 1.2         | 9.7      | 0.10   | 0.03      | 54.7    |
| 6       | T1             | 275   | 6.0     | 0.283 | 6.2     | LOS A    | 1.2         | 9.7      | 0.10   | 0.03      | 54.6    |
| 16      | R2             | 21    | 0.0     | 0.283 | 6.2     | LOS A    | 1.2         | 9.7      | 0.10   | 0.03      | 53.6    |
| Appro   | ach            | 297   | 5.6     | 0.283 | 6.2     | LOSA     | 1.2         | 9.7      | 0.10   | 0.03      | 54.5    |
| North:  | Dairy Drive    |       |         |       |         |          |             |          |        |           |         |
| 7       | L2             | 91    | 0.0     | 0.172 | 6.2     | LOS A    | 0.6         | 4.9      | 0.41   | 0.33      | 52.4    |
| 4       | T1             | 2     | 0.0     | 0.172 | 6.2     | LOS A    | 0.6         | 4.9      | 0.41   | 0.33      | 52.5    |
| 14      | R2             | 47    | 10.0    | 0.172 | 6.2     | LOSA     | 0.6         | 4.9      | 0.41   | 0.33      | 51.0    |
| Appro   | ach            | 140   | 3.4     | 0.172 | 6.2     | LOSA     | 0.6         | 4.9      | 0.41   | 0.33      | 51.9    |
| West:   | Old Montreal   | Road  |         |       |         |          |             |          |        |           |         |
| 5       | L2             | 6     | 33.0    | 0.594 | 11.6    | LOS B    | 4.1         | 31.9     | 0.41   | 0.24      | 49.0    |
| 2       | T1             | 582   | 2.0     | 0.594 | 11.6    | LOS B    | 4.1         | 31.9     | 0.41   | 0.24      | 50.7    |
| 12      | R2             | 9     | 0.0     | 0.594 | 11.6    | LOS B    | 4.1         | 31.9     | 0.41   | 0.24      | 49.7    |
| Appro   | ach            | 597   | 2.3     | 0.594 | 11.6    | LOS B    | 4.1         | 31.9     | 0.41   | 0.24      | 50.6    |
| All Vel | nicles         | 1045  | 3.3     | 0.594 | 9.3     | LOSA     | 4.1         | 31.9     | 0.32   | 0.20      | 51.9    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 1:31:31 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_Dairy\_2021-02-09.sip6

| Intersection                          |             |           |      |            |      |       |       |           |      |            |          |              |
|---------------------------------------|-------------|-----------|------|------------|------|-------|-------|-----------|------|------------|----------|--------------|
| Int Delay, s/veh                      | 0.8         |           |      |            |      |       |       |           |      |            |          |              |
| • •                                   |             | EST       | EDD  | 14/51      | MOT  | 14/55 | MBI   | Not       | NES  | 051        | 057      | 055          |
| Movement                              | EBL         | EBT       | EBR  | WBL        | WBT  | WBR   | NBL   | NBT       | NBR  | SBL        | SBT      | SBR          |
| Lane Configurations                   | <u> </u>    | 4         | ^    | ^          | 4    |       | ^     | •         | ^    |            | 4        | 00           |
| Traffic Vol, veh/h                    | 58          | 627       | 0    | 0          | 268  | 1     | 0     | 0         | 0    | 1          | 0        | 32           |
| Future Vol, veh/h                     | 58          | 627       | 0    | 0          | 268  | 1     | 0     | 0         | 0    | 1          | 0        | 32           |
| Conflicting Peds, #/hr                | 0           | 0         | 0    | 0          | 0    | 0     | 0     | 0         | 0    | 0          | 0        | 0            |
| Sign Control RT Channelized           | Free<br>-   | Free<br>- | Free | Free       | Free | Free  | Stop  | Stop<br>- | Stop | Stop       | Stop     | Stop<br>None |
|                                       | 1450        | -         | None | -          | -    | None  | -     | -         | None | -          | -        | None         |
| Storage Length Veh in Median Storage, |             | 0         |      | -          | 0    | -     | -     | -         | _    |            | 0        |              |
| Grade, %                              | , # -<br>-  | 0         | -    | -          | 0    | -     | -     | 0         | -    | -          | 0        | -            |
| Peak Hour Factor                      | 100         | 100       | 100  | 100        | 100  | 100   | 100   | 100       | 100  | 100        | 100      | 100          |
| Heavy Vehicles, %                     | 0           | 2         | 0    | 0          | 5    | 0     | 0     | 0         | 0    | 0          | 0        | 0            |
| Mymt Flow                             | 58          | 627       | 0    | 0          | 268  | 1     | 0     | 0         | 0    | 1          | 0        | 32           |
| WWIICEIOW                             | - 00        | ULI       |      | - 0        | 200  |       |       | - 0       | - 0  |            |          | UL           |
|                                       |             |           |      |            |      |       |       |           |      |            |          |              |
|                                       | //ajor1     |           |      | Major2     |      |       |       |           |      | Minor2     | 40:-     |              |
| Conflicting Flow All                  | 269         | 0         | 0    | 627        | 0    | 0     |       |           |      | 1012       | 1012     | 269          |
| Stage 1                               | -           | -         | -    | -          | -    | -     |       |           |      | 269        | 269      | -            |
| Stage 2                               | -           | -         | -    | -          | -    | -     |       |           |      | 743        | 743      | -            |
| Critical Hdwy                         | 4.1         | -         | -    | 4.1        | -    | -     |       |           |      | 6.4        | 6.5      | 6.2          |
| Critical Holy Stg 1                   | -           | -         | -    | -          | -    | -     |       |           |      | 5.4        | 5.5      | -            |
| Critical Hdwy Stg 2                   | -           | -         | -    | - 2.2      | -    | -     |       |           |      | 5.4        | 5.5      | 2.2          |
| Follow-up Hdwy                        | 2.2<br>1306 | -         | -    | 2.2<br>965 | -    | -     |       |           |      | 3.5<br>267 | 4<br>241 | 3.3<br>775   |
| Pot Cap-1 Maneuver                    | 1300        | -         | -    | 905        | -    | -     |       |           |      | 781        | 690      | 115          |
| Stage 1<br>Stage 2                    | -           | -         | -    | -          | -    | -     |       |           |      | 474        | 425      | -            |
| Platoon blocked, %                    | _           | _         | _    | -          | _    | _     |       |           |      | 4/4        | 420      | _            |
| Mov Cap-1 Maneuver                    | 1306        | -         | _    | 965        | _    | -     |       |           |      | 255        | 0        | 775          |
| Mov Cap-1 Maneuver                    | -           | _         | _    | -          | _    | _     |       |           |      | 255        | 0        | -            |
| Stage 1                               | _           | _         | _    | -          | _    | _     |       |           |      | 747        | 0        | -            |
| Stage 2                               | _           | _         | -    | _          | _    | _     |       |           |      | 474        | 0        | -            |
|                                       |             |           |      |            |      |       |       |           |      |            |          |              |
| Annragah                              | ED          |           |      | MD         |      |       |       |           |      | CD         |          |              |
| Approach                              | EB          |           |      | WB         |      |       |       |           |      | SB         |          |              |
| HCM LOS                               | 0.7         |           |      | 0          |      |       |       |           |      | 10.2       |          |              |
| HCM LOS                               |             |           |      |            |      |       |       |           |      | В          |          |              |
|                                       |             |           |      |            |      |       |       |           |      |            |          |              |
| Minor Lane/Major Mvm                  | t           | EBL       | EBT  | EBR        | WBL  | WBT   | WBR S | SBLn1     |      |            |          |              |
| Capacity (veh/h)                      |             | 1306      | -    | -          | 965  | -     | -     | 730       |      |            |          |              |
| HCM Lane V/C Ratio                    |             | 0.044     | -    | -          | -    | -     | -     | 0.045     |      |            |          |              |
| HCM Control Delay (s)                 |             | 7.9       | -    | -          | 0    | -     | -     | 10.2      |      |            |          |              |
| HCM Lane LOS                          |             | Α         | -    | -          | Α    | -     | -     | В         |      |            |          |              |
| HCM 95th %tile Q(veh)                 |             | 0.1       | -    | -          | 0    | -     | -     | 0.1       |      |            |          |              |
|                                       |             |           |      |            |      |       |       |           |      |            |          |              |

## **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Total Traffic AM Peak Hour Roundabout

| Lane Use ar         | nd Perfor   | mance | )     |       |       |         |          |            |         |        |        |      |        |
|---------------------|-------------|-------|-------|-------|-------|---------|----------|------------|---------|--------|--------|------|--------|
|                     | Demand      |       |       | Deg.  | Lane  | Average | Level of | 95% Back o | f Queue | Lane   | Lane   | Сар. | Prob.  |
|                     | Total       | HV    | Cap.  | Satn  | Util. | Delay   | Service  | Veh        | Dist    | Config | Length | Adj. | Block. |
| South: Trim R       | veh/h       | %     | veh/h | v/c   | %     | sec     |          |            | m       |        | m      | %    | %      |
|                     |             | 4 7   | 070   | 0.040 | 400   | 05.0    | 1 00 D   | 0.0        | 04.4    | EII    | 500    | 0.0  | 0.0    |
| Lane 1 <sup>d</sup> | 737         | 1.7   | 878   | 0.840 | 100   | 25.6    | LOS D    | 8.3        | 64.1    | Full   | 500    | 0.0  | 0.0    |
| Lane 2              | 711         | 3.7   | 847   | 0.840 | 100   | 26.3    | LOS D    | 8.3        | 65.2    | Full   | 500    | 0.0  | 0.0    |
| Approach            | 1448        | 2.7   |       | 0.840 |       | 25.9    | LOS D    | 8.3        | 65.2    |        |        |      |        |
| East: Old Mon       | itreal Road | t     |       |       |       |         |          |            |         |        |        |      |        |
| Lane 1              | 264         | 6.9   | 359   | 0.736 | 100   | 37.1    | LOS E    | 3.1        | 24.8    | Full   | 500    | 0.0  | 0.0    |
| Lane 2 <sup>d</sup> | 298         | 2.0   | 404   | 0.736 | 100   | 33.7    | LOS D    | 3.2        | 24.9    | Full   | 500    | 0.0  | 0.0    |
| Lane 3              | 349         | 2.0   | 476   | 0.733 | 100   | 29.3    | LOS D    | 3.4        | 26.6    | Short  | 95     | 0.0  | NA     |
| Approach            | 911         | 3.4   |       | 0.736 |       | 33.0    | LOS D    | 3.4        | 26.6    |        |        |      |        |
| North: Trim Ro      | oad         |       |       |       |       |         |          |            |         |        |        |      |        |
| Lane 1              | 269         | 5.2   | 581   | 0.463 | 100   | 13.8    | LOS B    | 1.7        | 13.3    | Full   | 500    | 0.0  | 0.0    |
| Lane 2 <sup>d</sup> | 276         | 6.7   | 597   | 0.463 | 100   | 13.5    | LOS B    | 1.6        | 12.7    | Full   | 500    | 0.0  | 0.0    |
| Approach            | 546         | 6.0   |       | 0.463 |       | 13.6    | LOS B    | 1.7        | 13.3    |        |        |      |        |
| West: St Jose       | ph Boulev   | ard   |       |       |       |         |          |            |         |        |        |      |        |
| Lane 1              | 75          | 9.9   | 572   | 0.131 | 100   | 7.9     | LOS A    | 0.3        | 2.7     | Full   | 500    | 0.0  | 0.0    |
| Lane 2 <sup>d</sup> | 79          | 8.0   | 605   | 0.131 | 100   | 7.5     | LOS A    | 0.3        | 2.6     | Full   | 500    | 0.0  | 0.0    |
| Lane 3              | 50          | 10.0  | 668   | 0.075 | 100   | 6.2     | LOSA     | 0.2        | 1.4     | Short  | 135    | 0.0  | NA     |
| Approach            | 204         | 9.2   |       | 0.131 |       | 7.3     | LOS A    | 0.3        | 2.7     |        |        |      |        |
| Intersection        | 3109        | 3.9   |       | 0.840 |       | 24.6    | LOS C    | 8.3        | 65.2    |        |        |      |        |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Friday, November 20, 2020 3:16:36 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_2020-11-09.sip6

| Intersection           |          |                |      |         |          |      |        |        |          |        |      |      |
|------------------------|----------|----------------|------|---------|----------|------|--------|--------|----------|--------|------|------|
| Int Delay, s/veh       | 1.1      |                |      |         |          |      |        |        |          |        |      |      |
| Movement               | EBL      | EBT            | EBR  | WBL     | WBT      | WBR  | NBL    | NBT    | NBR      | SBL    | SBT  | SBR  |
| Lane Configurations    | ሻ        | <del>(</del> î |      | ሻ       | f)       |      |        | 4      |          | ሻ      | 4    |      |
| Traffic Vol, veh/h     | 32       | 231            | 5    | 0       | 745      | 134  | 9      | 7      | 0        | 14     | 0    | 7    |
| Future Vol, veh/h      | 32       | 231            | 5    | 0       | 745      | 134  | 9      | 7      | 0        | 14     | 0    | 7    |
| Conflicting Peds, #/hr | 0        | 0              | 1    | 1       | 0        | 0    | 2      | 0      | 0        | 0      | 0    | 2    |
| Sign Control           | Free     | Free           | Free | Free    | Free     | Free | Stop   | Stop   | Stop     | Stop   | Stop | Stop |
| RT Channelized         | -        | -              | None | -       | -        | None | -      | -      | None     | -      | -    | None |
| Storage Length         | 500      | -              | -    | 600     | -        | -    | -      | -      | -        | 250    | -    | -    |
| Veh in Median Storage, | # -      | 0              | -    | -       | 0        | -    | -      | 0      | -        | -      | 0    | -    |
| Grade, %               | -        | 0              | -    | -       | 0        | -    | -      | 0      | -        | -      | 0    | -    |
| Peak Hour Factor       | 100      | 100            | 100  | 100     | 100      | 100  | 100    | 100    | 100      | 100    | 100  | 100  |
| Heavy Vehicles, %      | 0        | 10             | 0    | 0       | 3        | 0    | 0      | 0      | 0        | 17     | 0    | 0    |
| Mvmt Flow              | 32       | 231            | 5    | 0       | 745      | 134  | 9      | 7      | 0        | 14     | 0    | 7    |
|                        |          |                |      |         |          |      |        |        |          |        |      |      |
| Major/Minor M          | lajor1   |                | N    | /lajor2 |          | N    | Minor1 |        |          | Minor2 |      |      |
| Conflicting Flow All   | 879      | 0              | 0    | 237     | 0        | 0    | 1117   | 1178   | 235      | 1113   | 1113 | 814  |
| Stage 1                | -        | -              | -    | -       | -        | -    | 299    | 299    | -        | 812    | 812  | -    |
| Stage 2                | <u>-</u> | _              | _    | _       | <u>-</u> | _    | 818    | 879    | <u>-</u> | 301    | 301  | _    |
| Critical Hdwy          | 4.1      | _              | _    | 4.1     | -        | -    | 7.1    | 6.5    | 6.2      | 7.27   | 6.5  | 6.2  |
| Critical Hdwy Stg 1    | -        | _              | _    | -       | _        | _    | 6.1    | 5.5    | _        | 6.27   | 5.5  | -    |
| Critical Hdwy Stg 2    | -        | _              | _    | -       | _        | -    | 6.1    | 5.5    | -        | 6.27   | 5.5  | -    |
| Follow-up Hdwy         | 2.2      | _              | -    | 2.2     | _        | _    | 3.5    | 4      | 3.3      | 3.653  | 4    | 3.3  |
| Pot Cap-1 Maneuver     | 777      | _              | -    | 1342    | -        | -    | 186    | 192    | 809      | 174    | 210  | 381  |
| Stage 1                | -        | _              | -    | -       | _        | -    | 714    | 670    | -        | 352    | 395  | -    |
| Stage 2                | -        | -              | -    | -       | -        | -    | 373    | 368    | -        | 677    | 669  | -    |
| Platoon blocked, %     |          | -              | -    |         | -        | -    |        |        |          |        |      |      |
| Mov Cap-1 Maneuver     | 777      | -              | -    | 1341    | -        | -    | 176    | 184    | 808      | 164    | 201  | 380  |
| Mov Cap-2 Maneuver     | -        | _              | -    | -       | -        | -    | 176    | 184    | -        | 164    | 201  | -    |
| Stage 1                | -        | -              | -    | -       | -        | -    | 684    | 642    | -        | 338    | 395  | -    |
| Stage 2                | -        | -              | -    | -       | -        | -    | 365    | 368    | -        | 642    | 641  | -    |
| -                      |          |                |      |         |          |      |        |        |          |        |      |      |
| Approach               | EB       |                |      | WB      |          |      | NB     |        |          | SB     |      |      |
| HCM Control Delay, s   | 1.2      |                |      | 0       |          |      | 27.1   |        |          | 24.2   |      |      |
| HCM LOS                | 1.2      |                |      | J       |          |      | D      |        |          | C      |      |      |
|                        |          |                |      |         |          |      |        |        |          |        |      |      |
| Minor Long/Major Muset |          | IDI -1         | EBL  | EDT     | EDD      | WDI  | WDT    | W/DD ( | 2DL1     | CDI ~2 |      |      |
| Minor Lane/Major Mvmt  | ľ        | VBLn1          |      | EBT     | EBR      | WBL  | WBT    | WBK    | SBLn1    |        |      |      |
| Capacity (veh/h)       |          | 179            | 777  | -       | -        | 1341 | -      | -      | 164      | 380    |      |      |
| HCM Cartral Dalay (a)  |          | 0.089          |      | -       | -        | -    | -      | -      |          |        |      |      |
| HCM Control Delay (s)  |          | 27.1           | 9.8  | -       | -        | 0    | -      | -      | 29       | 14.7   |      |      |
| HCM Lane LOS           |          | D              | A    | -       | -        | A    | -      | -      | D        | В      |      |      |
| HCM 95th %tile Q(veh)  |          | 0.3            | 0.1  | -       | -        | 0    | -      | -      | 0.3      | 0.1    |      |      |

|                         | ۶     | <b>→</b> | •    | •    | <b>←</b> | •    | 4     | †     | <b>/</b> | <b>/</b> | ţ     | 4    |
|-------------------------|-------|----------|------|------|----------|------|-------|-------|----------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT   | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations     | *     | ĵ»       |      | J.   | ĵ»       |      |       | 4     |          | ř        | f)    |      |
| Traffic Volume (vph)    | 32    | 231      | 5    | 0    | 745      | 134  | 9     | 7     | 0        | 14       | 0     | 7    |
| Future Volume (vph)     | 32    | 231      | 5    | 0    | 745      | 134  | 9     | 7     | 0        | 14       | 0     | 7    |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800 | 1800     | 1800 | 1800  | 1800  | 1800     | 1800     | 1800  | 1800 |
| Storage Length (m)      | 50.0  |          | 0.0  | 60.0 |          | 0.0  | 0.0   |       | 0.0      | 25.0     |       | 0.0  |
| Storage Lanes           | 1     |          | 0    | 1    |          | 0    | 0     |       | 0        | 1        |       | 0    |
| Taper Length (m)        | 7.6   |          |      | 7.6  |          |      | 2.5   |       |          | 2.5      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         |       | 1.00     |      |      |          |      |       | 1.00  |          |          | 0.98  |      |
| Frt                     |       | 0.997    |      |      | 0.977    |      |       |       |          |          | 0.850 |      |
| Flt Protected           | 0.950 |          |      |      |          |      |       | 0.973 |          | 0.950    |       |      |
| Satd. Flow (prot)       | 1729  | 1652     | 0    | 1820 | 1734     | 0    | 0     | 1771  | 0        | 1478     | 1509  | 0    |
| Flt Permitted           | 0.950 |          |      |      |          |      |       | 0.893 |          |          |       |      |
| Satd. Flow (perm)       | 1729  | 1652     | 0    | 1820 | 1734     | 0    | 0     | 1621  | 0        | 1556     | 1509  | 0    |
| Right Turn on Red       |       |          | Yes  |      |          | Yes  |       |       | Yes      |          |       | Yes  |
| Satd. Flow (RTOR)       |       | 2        |      |      | 13       |      |       |       |          |          | 263   |      |
| Link Speed (k/h)        |       | 60       |      |      | 60       |      |       | 50    |          |          | 50    |      |
| Link Distance (m)       |       | 225.2    |      |      | 532.9    |      |       | 285.3 |          |          | 278.3 |      |
| Travel Time (s)         |       | 13.5     |      |      | 32.0     |      |       | 20.5  |          |          | 20.0  |      |
| Confl. Peds. (#/hr)     |       |          | 1    | 1    | <u> </u> |      | 2     |       |          |          |       | 2    |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)      | 0%    | 10%      | 0%   | 0%   | 3%       | 0%   | 0%    | 0%    | 0%       | 17%      | 0%    | 0%   |
| Adj. Flow (vph)         | 32    | 231      | 5    | 0    | 745      | 134  | 9     | 7     | 0        | 14       | 0     | 7    |
| Shared Lane Traffic (%) |       |          |      |      |          |      |       |       |          |          |       |      |
| Lane Group Flow (vph)   | 32    | 236      | 0    | 0    | 879      | 0    | 0     | 16    | 0        | 14       | 7     | 0    |
| Turn Type               | Prot  | NA       |      | Prot | NA       |      | Perm  | NA    |          | Perm     | NA    |      |
| Protected Phases        | 5     | 2        |      | 1    | 6        |      |       | 8     |          |          | 4     |      |
| Permitted Phases        |       |          |      |      |          |      | 8     |       |          | 4        |       |      |
| Detector Phase          | 5     | 2        |      | 1    | 6        |      | 8     | 8     |          | 4        | 4     |      |
| Switch Phase            |       |          |      |      |          |      |       |       |          |          |       |      |
| Minimum Initial (s)     | 5.0   | 5.0      |      | 5.0  | 5.0      |      | 5.0   | 5.0   |          | 5.0      | 5.0   |      |
| Minimum Split (s)       | 11.1  | 34.1     |      | 11.1 | 34.1     |      | 32.7  | 32.7  |          | 32.7     | 32.7  |      |
| Total Split (s)         | 11.4  | 76.1     |      | 11.1 | 75.8     |      | 32.8  | 32.8  |          | 32.8     | 32.8  |      |
| Total Split (%)         | 9.5%  | 63.4%    |      | 9.3% | 63.2%    |      | 27.3% | 27.3% |          | 27.3%    | 27.3% |      |
| Maximum Green (s)       | 5.3   | 70.0     |      | 5.0  | 69.7     |      | 27.1  | 27.1  |          | 27.1     | 27.1  |      |
| Yellow Time (s)         | 4.1   | 4.1      |      | 4.1  | 4.1      |      | 3.6   | 3.6   |          | 3.6      | 3.6   |      |
| All-Red Time (s)        | 2.0   | 2.0      |      | 2.0  | 2.0      |      | 2.1   | 2.1   |          | 2.1      | 2.1   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0  | 0.0      |      |       | 0.0   |          | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 6.1   | 6.1      |      | 6.1  | 6.1      |      |       | 5.7   |          | 5.7      | 5.7   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead | Lag      |      |       |       |          |          |       |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes  | Yes      |      |       |       |          |          |       |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0  | 3.0      |      | 3.0   | 3.0   |          | 3.0      | 3.0   |      |
| Recall Mode             | None  | C-Max    |      | None | C-Max    |      | None  | None  |          | None     | None  |      |
| Walk Time (s)           |       | 7.0      |      |      | 7.0      |      | 7.0   | 7.0   |          | 7.0      | 7.0   |      |
| Flash Dont Walk (s)     |       | 21.0     |      |      | 21.0     |      | 20.0  | 20.0  |          | 20.0     | 20.0  |      |
| Pedestrian Calls (#/hr) |       | 0        |      |      | 0        |      | 0     | 0     |          | 0        | 0     |      |
| Act Effct Green (s)     | 7.7   | 111.8    |      |      | 101.6    |      |       | 7.1   |          | 7.1      | 7.1   |      |
| Actuated g/C Ratio      | 0.06  | 0.93     |      |      | 0.85     |      |       | 0.06  |          | 0.06     | 0.06  |      |
| v/c Ratio               | 0.29  | 0.15     |      |      | 0.60     |      |       | 0.17  |          | 0.00     | 0.02  |      |
|                         | 0.20  | 0.10     |      |      | 0.00     |      |       | V. 17 |          | 0.10     | 0.02  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | •   | •     | •   | 1   | <b>†</b> | ~   | -    | ţ     | 4   |
|------------------------|------|-------|-----|-----|-------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL | WBT   | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| Control Delay          | 59.4 | 1.4   |     |     | 8.7   |     |     | 56.8     |     | 56.3 | 0.1   |     |
| Queue Delay            | 0.0  | 0.0   |     |     | 0.0   |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 59.4 | 1.4   |     |     | 8.7   |     |     | 56.8     |     | 56.3 | 0.1   |     |
| LOS                    | Е    | Α     |     |     | Α     |     |     | Ε        |     | Е    | Α     |     |
| Approach Delay         |      | 8.3   |     |     | 8.7   |     |     | 56.8     |     |      | 37.6  |     |
| Approach LOS           |      | Α     |     |     | Α     |     |     | Ε        |     |      | D     |     |
| Queue Length 50th (m)  | 7.3  | 0.0   |     |     | 51.0  |     |     | 3.7      |     | 3.2  | 0.0   |     |
| Queue Length 95th (m)  | 17.2 | 13.6  |     |     | 167.6 |     |     | 10.7     |     | 9.8  | 0.0   |     |
| Internal Link Dist (m) |      | 201.2 |     |     | 508.9 |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |       |     |     |       |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 111  | 1539  |     |     | 1470  |     |     | 366      |     | 351  | 544   |     |
| Starvation Cap Reductn | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     |     | 0     |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.29 | 0.15  |     |     | 0.60  |     |     | 0.04     |     | 0.04 | 0.01  |     |

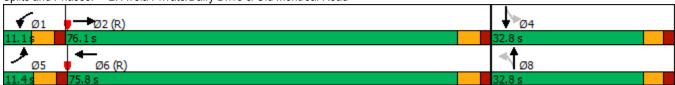
Intersection Summary

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 100


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 9.8 Intersection LOS: A Intersection Capacity Utilization 67.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

#### **MOVEMENT SUMMARY**



# ₩ Site: Old Montreal / Dairy FT2022AM

Old Montreal Road & Dairy Drive / Aveia Private Future (2022) Total Traffic AM Peak Hour Roundabout

| Move   | ment Perfo     | rmance - V | ehicles |       |         |          |            |          |        |           |         |
|--------|----------------|------------|---------|-------|---------|----------|------------|----------|--------|-----------|---------|
| Mov    | OD             | Demand     |         | Deg.  | Average | Level of | 95% Back o |          | Prop.  | Effective | Average |
| ID     | Mov            | Total      | HV      | Satn  | Delay   | Service  | Vehicles   | Distance | Queued | Stop Rate | Speed   |
| South  | : Aveia Privat | veh/h      | %       | v/c   | sec     |          | veh        | m        |        | per veh   | km/h    |
| 3      | L2             | 9          | 0.0     | 0.020 | 4.5     | LOS A    | 0.1        | 0.5      | 0.37   | 0.24      | 54.2    |
|        |                |            |         |       |         |          |            |          |        |           |         |
| 8      | T1             | 7          | 0.0     | 0.020 | 4.5     | LOSA     | 0.1        | 0.5      | 0.37   | 0.24      | 54.3    |
| 18     | R2             | 1          | 0.0     | 0.020 | 4.5     | LOS A    | 0.1        | 0.5      | 0.37   | 0.24      | 53.1    |
| Appro  | ach            | 17         | 0.0     | 0.020 | 4.5     | LOSA     | 0.1        | 0.5      | 0.37   | 0.24      | 54.2    |
| East:  | Old Montreal   | Road       |         |       |         |          |            |          |        |           |         |
| 1      | L2             | 1          | 0.0     | 0.838 | 22.3    | LOS C    | 12.4       | 96.3     | 0.59   | 0.28      | 44.2    |
| 6      | T1             | 745        | 3.0     | 0.838 | 22.3    | LOS C    | 12.4       | 96.3     | 0.59   | 0.28      | 44.2    |
| 16     | R2             | 134        | 0.0     | 0.838 | 22.3    | LOS C    | 12.4       | 96.3     | 0.59   | 0.28      | 43.5    |
| Appro  | ach            | 880        | 2.5     | 0.838 | 22.3    | LOS C    | 12.4       | 96.3     | 0.59   | 0.28      | 44.1    |
| North: | Dairy Drive    |            |         |       |         |          |            |          |        |           |         |
| 7      | L2             | 14         | 17.0    | 0.047 | 8.3     | LOS A    | 0.1        | 1.1      | 0.56   | 0.54      | 50.3    |
| 4      | T1             | 1          | 0.0     | 0.047 | 8.3     | LOS A    | 0.1        | 1.1      | 0.56   | 0.54      | 51.3    |
| 14     | R2             | 7          | 0.0     | 0.047 | 8.3     | LOS A    | 0.1        | 1.1      | 0.56   | 0.54      | 50.2    |
| Appro  | ach            | 22         | 10.8    | 0.047 | 8.3     | LOSA     | 0.1        | 1.1      | 0.56   | 0.54      | 50.3    |
| West:  | Old Montrea    | l Road     |         |       |         |          |            |          |        |           |         |
| 5      | L2             | 32         | 0.0     | 0.262 | 6.1     | LOS A    | 1.1        | 8.7      | 0.10   | 0.03      | 54.3    |
| 2      | T1             | 231        | 10.0    | 0.262 | 6.1     | LOS A    | 1.1        | 8.7      | 0.10   | 0.03      | 54.1    |
| 12     | R2             | 5          | 0.0     | 0.262 | 6.1     | LOS A    | 1.1        | 8.7      | 0.10   | 0.03      | 53.2    |
| Appro  | ach            | 268        | 8.6     | 0.262 | 6.1     | LOSA     | 1.1        | 8.7      | 0.10   | 0.03      | 54.1    |
| All Ve | hicles         | 1187       | 4.0     | 0.838 | 18.2    | LOS C    | 12.4       | 96.3     | 0.47   | 0.23      | 46.3    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 12:42:50 PM

Project: Not Saved

| Intersection                            |          |             |      |        |          |          |       |       |      |         |      |          |
|-----------------------------------------|----------|-------------|------|--------|----------|----------|-------|-------|------|---------|------|----------|
| Int Delay, s/veh                        | 2.1      |             |      |        |          |          |       |       |      |         |      |          |
| Movement                                | EBL      | EBT         | EBR  | WBL    | WBT      | WBR      | NBL   | NBT   | NBR  | SBL     | SBT  | SBR      |
| Lane Configurations                     | *        | î,          |      |        | 4        |          |       |       |      |         | 4    |          |
| Traffic Vol, veh/h                      | 32       | 191         | 22   | 1      | 766      | 1        | 0     | 0     | 0    | 2       | 0    | 117      |
| Future Vol, veh/h                       | 32       | 191         | 22   | 1      | 766      | 1        | 0     | 0     | 0    | 2       | 0    | 117      |
| Conflicting Peds, #/hr                  | 0        | 0           | 0    | 0      | 0        | 0        | 0     | 0     | 0    | 0       | 0    | 0        |
| Sign Control                            | Free     | Free        | Free | Free   | Free     | Free     | Stop  | Stop  | Stop | Stop    | Stop | Stop     |
| RT Channelized                          | -        | -           | None | -      | -        | None     | -     | -     | None | -       | -    | None     |
| Storage Length                          | 1450     | -           | -    | -      | -        | -        | -     | -     | -    | -       | -    | -        |
| Veh in Median Storage,                  | ,# -     | 0           | -    | -      | 0        | -        | -     | -     | -    | -       | 0    | -        |
| Grade, %                                | -        | 0           | -    | -      | 0        | -        | -     | 0     | -    | -       | 0    | -        |
| Peak Hour Factor                        | 100      | 100         | 100  | 100    | 100      | 100      | 100   | 100   | 100  | 100     | 100  | 100      |
| Heavy Vehicles, %                       | 0        | 11          | 0    | 0      | 2        | 0        | 0     | 0     | 0    | 0       | 0    | 0        |
| Mvmt Flow                               | 32       | 191         | 22   | 1      | 766      | 1        | 0     | 0     | 0    | 2       | 0    | 117      |
|                                         |          |             |      |        |          |          |       |       |      |         |      |          |
| Major/Minor N                           | /lajor1  |             | N    | Major2 |          |          |       |       | N    | /linor2 |      |          |
|                                         | 767      | 0           |      | 213    | 0        | 0        |       |       |      | 1035    | 1046 | 767      |
| Conflicting Flow All                    |          |             | 0    |        | 0        | 0        |       |       |      | 769     | 769  |          |
| Stage 1                                 | -        | -           | -    | -      | -        | -        |       |       |      | 266     | 277  | -        |
| Stage 2                                 | 4.1      | -           | -    | 4.1    | -        | -        |       |       |      | 6.4     | 6.5  | 6.2      |
| Critical Hdwy                           | 4.1      |             | -    | 4.1    |          | -        |       |       |      | 5.4     | 5.5  | 0.2      |
| Critical Hdwy Stg 1 Critical Hdwy Stg 2 | -        | -           | -    | -      | -        | -        |       |       |      | 5.4     | 5.5  | -        |
| Follow-up Hdwy                          | 2.2      | -           | -    | 2.2    | -        | -        |       |       |      | 3.5     | 5.5  | 3.3      |
| Pot Cap-1 Maneuver                      | 856      | -           | -    | 1369   | -        | -        |       |       |      | 259     | 230  | 405      |
| Stage 1                                 | 000      | _           | -    | 1309   | -        | -        |       |       |      | 461     | 413  | 405      |
| Stage 1                                 | -        | -           | -    | -      | -        | -        |       |       |      | 783     | 685  | -        |
| Platoon blocked, %                      | -        | _           | _    | -      | _        | _        |       |       |      | 103     | 000  | -        |
| Mov Cap-1 Maneuver                      | 856      |             | _    | 1369   |          |          |       |       |      | 249     | 0    | 405      |
| Mov Cap-1 Maneuver                      | - 050    | _           | _    | 1309   | _        | _        |       |       |      | 249     | 0    | 405      |
| Stage 1                                 | -        |             |      | -      |          |          |       |       |      | 444     | 0    | <u>-</u> |
| Stage 2                                 | <u> </u> | _           | _    | _      | _        | _        |       |       |      | 782     | 0    | _        |
| Olaye Z                                 | <u>-</u> | _           | _    | _      | <u>-</u> | <u>-</u> |       |       |      | 102     | U    | <u>-</u> |
|                                         |          |             |      |        |          |          |       |       |      |         |      |          |
| Approach                                | EB       |             |      | WB     |          |          |       |       |      | SB      |      |          |
| HCM Control Delay, s                    | 1.2      |             |      | 0      |          |          |       |       |      | 17.7    |      |          |
| HCM LOS                                 |          |             |      |        |          |          |       |       |      | С       |      |          |
|                                         |          |             |      |        |          |          |       |       |      |         |      |          |
| Minor Lane/Major Mvm                    | t        | EBL         | EBT  | EBR    | WBL      | WBT      | WBR S | SBLn1 |      |         |      |          |
| Capacity (veh/h)                        |          | 856         | -    |        | 1369     | -        | -     | 401   |      |         |      |          |
| HCM Lane V/C Ratio                      |          | 0.037       | _    |        | 0.001    | _        |       | 0.297 |      |         |      |          |
| HCM Control Delay (s)                   |          | 9.4         | -    | -      | 7.6      | 0        | _     | 17.7  |      |         |      |          |
| HCM Lane LOS                            |          | A           | _    | _      | Α.       | A        | _     | C     |      |         |      |          |
| HCM 95th %tile Q(veh)                   |          | 0.1         | _    | _      | 0        | -        | _     | 1.2   |      |         |      |          |
|                                         |          | <b>J</b> ., |      |        |          |          |       |       |      |         |      |          |

| Intersection           |          |          |         |          |        |       |
|------------------------|----------|----------|---------|----------|--------|-------|
| Int Delay, s/veh       | 3.6      |          |         |          |        |       |
|                        | EDT      | EDD      | WDL     | WDT      | NDI    | NDD   |
| Movement               | EBT      | EBR      | WBL     | WBT      | NBL    | NBR   |
| Lane Configurations    | <b>^</b> | • •      |         | 4        | Y      |       |
| Traffic Vol, veh/h     | 159      | 34       | 2       | 618      | 150    | 8     |
| Future Vol, veh/h      | 159      | 34       | 2       | 618      | 150    | 8     |
| Conflicting Peds, #/hr | 0        | 0        | 0       | 0        | 0      | 0     |
| Sign Control           | Free     | Free     | Free    | Free     | Stop   | Stop  |
| RT Channelized         | -        | None     | -       | None     | -      | None  |
| Storage Length         | -        | -        | -       | -        | 0      | -     |
| Veh in Median Storage, | # 0      | -        | -       | 0        | 0      | -     |
| Grade, %               | 0        | _        | -       | 0        | 0      | -     |
| Peak Hour Factor       | 100      | 100      | 100     | 100      | 100    | 100   |
| Heavy Vehicles, %      | 11       | 0        | 0       | 2        | 0      | 0     |
| Mymt Flow              | 159      | 34       | 2       | 618      | 150    | 8     |
| WWITELLOW              | 100      | 07       |         | 010      | 100    | U     |
|                        |          |          |         |          |        |       |
| Major/Minor N          | lajor1   | N        | /lajor2 | N        | Minor1 |       |
| Conflicting Flow All   | 0        | 0        | 193     | 0        | 798    | 176   |
| Stage 1                | _        | -        | _       | _        | 176    | -     |
| Stage 2                | _        | _        | _       | _        | 622    | _     |
| Critical Hdwy          | _        | _        | 4.1     | _        | 6.4    | 6.2   |
| Critical Hdwy Stg 1    | _        | <u>-</u> | - T. I  | <u>-</u> | 5.4    | - 0.2 |
| , ,                    | -        | _        |         |          | 5.4    |       |
| Critical Hdwy Stg 2    |          | -        | 2.2     | -        |        | -     |
| Follow-up Hdwy         | -        | _        |         | -        | 3.5    | 3.3   |
| Pot Cap-1 Maneuver     | -        | -        | 1392    | -        | 358    | 872   |
| Stage 1                | -        | -        | -       | -        | 859    | -     |
| Stage 2                | -        | -        | -       | -        | 539    | -     |
| Platoon blocked, %     | -        | -        |         | -        |        |       |
| Mov Cap-1 Maneuver     | -        | -        | 1392    | -        | 357    | 872   |
| Mov Cap-2 Maneuver     | -        | -        | -       | -        | 357    | -     |
| Stage 1                | -        | -        | -       | -        | 859    | -     |
| Stage 2                | -        | -        | -       | _        | 538    | -     |
|                        |          |          |         |          |        |       |
|                        |          |          |         |          |        |       |
| Approach               | EB       |          | WB      |          | NB     |       |
| HCM Control Delay, s   | 0        |          | 0       |          | 21.9   |       |
| HCM LOS                |          |          |         |          | С      |       |
|                        |          |          |         |          |        |       |
| Minantana (Maria Adam  |          | IDL 4    | EDT     | EDD      | MDI    | MA    |
| Minor Lane/Major Mvmt  |          | NBLn1    | EBT     | EBR      | WBL    | WBT   |
| Capacity (veh/h)       |          | 368      | -       |          | 1392   | -     |
| HCM Lane V/C Ratio     |          | 0.429    | -       | -        | 0.001  | -     |
| HCM Control Delay (s)  |          | 21.9     | -       | -        | 7.6    | 0     |
| HCM Lane LOS           |          | С        | -       | -        | Α      | Α     |
| HCM 95th %tile Q(veh)  |          | 2.1      | -       | -        | 0      | -     |
| ,                      |          |          |         |          |        |       |

# **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Total Traffic PM Peak Hour Roundabout

| Lane Use and Performance |                |         |         |             |            |              |          |             |           |        |             |           |                   |
|--------------------------|----------------|---------|---------|-------------|------------|--------------|----------|-------------|-----------|--------|-------------|-----------|-------------------|
| Lane Use a               |                |         | ;       |             |            |              |          |             |           |        |             |           |                   |
|                          | Demand F       |         | Сар.    | Deg.        | Lane       | Average      | Level of | 95% Back of |           | Lane   | Lane        | Cap.      | Prob.             |
|                          | Total<br>veh/h | HV<br>% | veh/h   | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Veh         | Dist<br>m | Config | Length<br>m | Adj.<br>% | Block.<br>%       |
| South: Trim              |                | /0      | VCII/II | V/C         | /0         | 366          |          |             | - '''     |        | - '''       | /0        | /0                |
| Lane 1                   | 450            | 2.7     | 658     | 0.685       | 100        | 19.9         | LOS C    | 3.7         | 29.0      | Full   | 500         | 0.0       | 0.0               |
| Lane 2 <sup>d</sup>      | 468            | 2.2     | 684     | 0.685       | 100        | 19.3         | LOS C    | 3.6         | 28.0      | Full   | 500         | 0.0       | 0.0               |
| Approach                 | 918            | 2.5     | 001     | 0.685       | 100        | 19.6         | LOS C    | 3.7         | 29.0      | ı uıı  | 000         | 0.0       | 0.0               |
| Арргоаст                 | 910            | 2.5     |         | 0.005       |            | 19.0         | L03 C    | 3.7         | 29.0      |        |             |           |                   |
| East: Old Mo             | ontreal Road   |         |         |             |            |              |          |             |           |        |             |           |                   |
| Lane 1                   | 188            | 0.0     | 616     | 0.305       | 100        | 9.9          | LOS A    | 1.0         | 7.4       | Full   | 500         | 0.0       | 0.0               |
| Lane 2 <sup>d</sup>      | 196            | 0.0     | 641     | 0.305       | 100        | 9.6          | LOS A    | 0.9         | 7.1       | Full   | 500         | 0.0       | 0.0               |
| Lane 3                   | 214            | 0.0     | 711     | 0.301       | 100        | 8.7          | LOSA     | 0.9         | 7.0       | Short  | 95          | 0.0       | NA                |
| Approach                 | 598            | 0.0     |         | 0.305       |            | 9.4          | LOS A    | 1.0         | 7.4       |        |             |           |                   |
| North: Trim I            | Poad           |         |         |             |            |              |          |             |           |        |             |           |                   |
|                          | 951            | 1.5     | 747     | 1.273       | 100        | 152.1        | LOS F    | 76.6        | 589.5     | Full   | 500         | 0.0       | <mark>10.1</mark> |
| Lane 1                   |                |         |         |             |            |              |          |             |           |        |             |           |                   |
| Lane 2 <sup>d</sup>      | 981            | 1.1     | 770     | 1.273       | 100        | 151.4        | LOS F    | 78.4        | 601.3     | Full   | 500         | 0.0       | <mark>10.7</mark> |
| Approach                 | 1932           | 1.3     |         | 1.273       |            | 151.7        | LOS F    | 78.4        | 601.3     |        |             |           |                   |
| West: St Jos             | seph Bouleva   | ard     |         |             |            |              |          |             |           |        |             |           |                   |
| Lane 1                   | 156            | 0.0     | 328     | 0.475       | 100        | 22.9         | LOS C    | 1.6         | 11.9      | Full   | 500         | 0.0       | 0.0               |
| Lane 2 <sup>d</sup>      | 169            | 0.0     | 356     | 0.475       | 100        | 21.3         | LOS C    | 1.5         | 11.6      | Full   | 500         | 0.0       | 0.0               |
| Lane 3                   | 278            | 1.0     | 454     | 0.613       | 100        | 22.8         | LOS C    | 2.4         | 18.4      | Short  | 135         | 0.0       | NA                |
| Approach                 | 603            | 0.5     |         | 0.613       |            | 22.4         | LOS C    | 2.4         | 18.4      |        |             |           |                   |
|                          |                | 0.0     |         | 2.2.3       |            |              |          | <b>-</b>    |           |        |             |           |                   |
| Intersection             | 4051           | 1.2     |         | 1.273       |            | 81.5         | LOS F    | 78.4        | 601.3     |        |             |           |                   |
|                          |                |         |         |             |            |              |          |             |           |        |             |           |                   |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Friday, November 20, 2020 3:16:38 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad\_2020-11-09.sip6

| Intersection           |         |       |         |        |          |       |        |        |       |        |      |      |
|------------------------|---------|-------|---------|--------|----------|-------|--------|--------|-------|--------|------|------|
| Int Delay, s/veh       | 11.1    |       |         |        |          |       |        |        |       |        |      |      |
|                        |         |       |         |        |          |       |        |        |       |        |      |      |
| Movement               | EBL     | EBT   | EBR     | WBL    | WBT      | WBR   | NBL    | NBT    | NBR   | SBL    | SBT  | SBR  |
| Lane Configurations    |         | Þ     |         | 7      | <b>₽</b> |       |        | 4      |       | 7      | f)   |      |
| Traffic Vol, veh/h     | 6       | 908   | 9       | 1      | 443      | 44    | 4      | 6      | 1     | 111    | 2    | 47   |
| Future Vol, veh/h      | 6       | 908   | 9       | 1      | 443      | 44    | 4      | 6      | 1     | 111    | 2    | 47   |
| Conflicting Peds, #/hr | 1       | 0     | 0       | 0      | 0        | 1     | 0      | 0      | 2     | 2      | 0    | 0    |
| Sign Control           | Free    | Free  | Free    | Free   | Free     | Free  | Stop   | Stop   | Stop  | Stop   | Stop | Stop |
| RT Channelized         | -       | -     | None    | -      | -        | None  | -      | -      | None  | -      | -    | None |
| Storage Length         | 500     | -     | -       | 600    | -        | -     | -      | -      | -     | 250    | -    | -    |
| Veh in Median Storage  | e,# -   | 0     | -       | -      | 0        | -     | -      | 0      | -     | -      | 0    | -    |
| Grade, %               | -       | 0     | -       | -      | 0        | -     | -      | 0      | -     | -      | 0    | -    |
| Peak Hour Factor       | 100     | 100   | 100     | 100    | 100      | 100   | 100    | 100    | 100   | 100    | 100  | 100  |
| Heavy Vehicles, %      | 33      | 2     | 0       | 0      | 6        | 0     | 0      | 0      | 0     | 0      | 0    | 10   |
| Mvmt Flow              | 6       | 908   | 9       | 1      | 443      | 44    | 4      | 6      | 1     | 111    | 2    | 47   |
|                        |         |       |         |        |          |       |        |        |       |        |      |      |
| Major/Minor            | Major1  |       | , and a | Major2 |          | N     | liner1 |        |       | Minor2 |      |      |
|                        | Major1  | ^     |         | Major2 | ^        |       | Minor1 | 1115   |       |        | 1207 | 400  |
| Conflicting Flow All   | 488     | 0     | 0       | 917    | 0        | 0     | 1417   | 1415   | 915   | 1398   | 1397 | 466  |
| Stage 1                | -       | -     | -       | -      | -        | -     | 925    | 925    | -     | 468    | 468  | -    |
| Stage 2                | 4 40    | -     | -       | -      | -        | -     | 492    | 490    | -     | 930    | 929  | -    |
| Critical Hdwy          | 4.43    | -     | -       | 4.1    | -        | -     | 7.1    | 6.5    | 6.2   | 7.1    | 6.5  | 6.3  |
| Critical Hdwy Stg 1    | -       | -     | -       | -      | -        | -     | 6.1    | 5.5    | -     | 6.1    | 5.5  | -    |
| Critical Hdwy Stg 2    | - 0.407 | -     | -       | -      | -        | -     | 6.1    | 5.5    | -     | 6.1    | 5.5  | -    |
| Follow-up Hdwy         | 2.497   | -     | -       | 2.2    | -        | -     | 3.5    | 4      | 3.3   | 3.5    | 4    | 3.39 |
| Pot Cap-1 Maneuver     | 932     | -     | -       | 752    | -        | -     | 116    | 139    | 333   | 119    | 142  | 580  |
| Stage 1                | -       | -     | -       | -      | -        | -     | 325    | 351    | -     | 579    | 565  | -    |
| Stage 2                | -       | -     | -       | -      | -        | -     | 562    | 552    | -     | 323    | 349  | -    |
| Platoon blocked, %     |         | -     | -       |        | -        | -     | 4      | 4      |       |        |      |      |
| Mov Cap-1 Maneuver     | 931     | -     | -       | 752    | -        | -     | 105    | 138    | 332   | 114    | 141  | 579  |
| Mov Cap-2 Maneuver     | -       | -     | -       | -      | -        | -     | 105    | 138    | -     | 114    | 141  | -    |
| Stage 1                | -       | -     | -       | -      | -        | -     | 323    | 349    | -     | 575    | 564  | -    |
| Stage 2                | -       | -     | -       | -      | -        | -     | 514    | 551    | -     | 314    | 347  | -    |
|                        |         |       |         |        |          |       |        |        |       |        |      |      |
| Approach               | EB      |       |         | WB     |          |       | NB     |        |       | SB     |      |      |
| HCM Control Delay, s   | 0.1     |       |         | 0      |          |       | 35.2   |        |       | 106.8  |      |      |
| HCM LOS                | 0.1     |       |         |        |          |       | E      |        |       | F      |      |      |
|                        |         |       |         |        |          |       | _      |        |       |        |      |      |
| Minor Long/Major Maria | at I    | NIDI1 | EDI     | EDT    | EDD      | WDI   | WDT    | W/DD ( | 2DI1  | CDI ~2 |      |      |
| Minor Lane/Major Mvn   | IL I    | NBLn1 | EBL     | EBT    | EBR      | WBL   | WBT    |        | SBLn1 |        |      |      |
| Capacity (veh/h)       |         | 130   | 931     | -      | -        | 752   | -      | -      | 114   | 514    |      |      |
| HCM Lane V/C Ratio     |         | 0.085 | 0.006   | -      |          | 0.001 | -      |        | 0.974 |        |      |      |
| HCM Control Delay (s)  |         | 35.2  | 8.9     | -      | -        | 9.8   | -      |        | 148.4 | 12.7   |      |      |
| HCM Lane LOS           | ,       | E     | A       | -      | -        | A     | -      | -      | F     | В      |      |      |
| HCM 95th %tile Q(veh   |         | 0.3   | 0       | -      | -        | 0     | -      | -      | 6.3   | 0.3    |      |      |

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 1     | †     | <b>/</b> | <b>/</b> | ļ     | 4    |
|-------------------------|-------|----------|------|-------|----------|------|-------|-------|----------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT   | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations     | ř     | ĵ»       |      | Į.    | ĵ»       |      |       | 4     |          | , j      | f)    |      |
| Traffic Volume (vph)    | 6     | 908      | 9    | 1     | 443      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Future Volume (vph)     | 6     | 908      | 9    | 1     | 443      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800  | 1800     | 1800     | 1800  | 1800 |
| Storage Length (m)      | 50.0  |          | 0.0  | 60.0  |          | 0.0  | 0.0   |       | 0.0      | 25.0     |       | 0.0  |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 0     |       | 0        | 1        |       | 0    |
| Taper Length (m)        | 7.6   |          |      | 7.6   |          |      | 2.5   |       |          | 2.5      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 1.00  |          |      |       | 1.00     |      |       | 1.00  |          | 1.00     | 0.98  |      |
| Frt                     |       | 0.999    |      |       | 0.986    |      |       | 0.988 |          |          | 0.856 |      |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      |       | 0.982 |          | 0.950    |       |      |
| Satd. Flow (prot)       | 1300  | 1783     | 0    | 1729  | 1698     | 0    | 0     | 1762  | 0        | 1729     | 1392  | 0    |
| Flt Permitted           | 0.950 |          |      | 0.950 |          |      |       | 0.917 |          | 0.750    |       |      |
| Satd. Flow (perm)       | 1299  | 1783     | 0    | 1729  | 1698     | 0    | 0     | 1645  | 0        | 1359     | 1392  | 0    |
| Right Turn on Red       |       |          | Yes  |       |          | Yes  |       |       | Yes      |          |       | Yes  |
| Satd. Flow (RTOR)       |       | 1        |      |       | 7        |      |       | 1     |          |          | 47    |      |
| Link Speed (k/h)        |       | 60       |      |       | 60       |      |       | 50    |          |          | 50    |      |
| Link Distance (m)       |       | 225.2    |      |       | 532.9    |      |       | 285.3 |          |          | 278.3 |      |
| Travel Time (s)         |       | 13.5     |      |       | 32.0     |      |       | 20.5  |          |          | 20.0  |      |
| Confl. Peds. (#/hr)     | 1     |          |      |       |          | 1    |       |       | 2        | 2        |       |      |
| Confl. Bikes (#/hr)     |       |          |      |       |          |      |       |       |          |          |       | 1    |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)      | 33%   | 2%       | 0%   | 0%    | 6%       | 0%   | 0%    | 0%    | 0%       | 0%       | 0%    | 10%  |
| Adj. Flow (vph)         | 6     | 908      | 9    | 1     | 443      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |       |          |          |       |      |
| Lane Group Flow (vph)   | 6     | 917      | 0    | 1     | 487      | 0    | 0     | 11    | 0        | 111      | 49    | 0    |
| Turn Type               | Prot  | NA       |      | Prot  | NA       |      | Perm  | NA    |          | Perm     | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      |       | 8     |          |          | 4     |      |
| Permitted Phases        | _     |          |      |       | _        |      | 8     |       |          | 4        |       |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 8     | 8     |          | 4        | 4     |      |
| Switch Phase            |       |          |      |       |          |      |       |       |          |          |       |      |
| Minimum Initial (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0   |          | 5.0      | 5.0   |      |
| Minimum Split (s)       | 11.1  | 34.1     |      | 11.1  | 34.1     |      | 32.7  | 32.7  |          | 32.7     | 32.7  |      |
| Total Split (s)         | 11.2  | 75.8     |      | 11.2  | 75.8     |      | 33.0  | 33.0  |          | 33.0     | 33.0  |      |
| Total Split (%)         | 9.3%  | 63.2%    |      | 9.3%  | 63.2%    |      | 27.5% | 27.5% |          | 27.5%    | 27.5% |      |
| Maximum Green (s)       | 5.1   | 69.7     |      | 5.1   | 69.7     |      | 27.3  | 27.3  |          | 27.3     | 27.3  |      |
| Yellow Time (s)         | 4.1   | 4.1      |      | 4.1   | 4.1      |      | 3.6   | 3.6   |          | 3.6      | 3.6   |      |
| All-Red Time (s)        | 2.0   | 2.0      |      | 2.0   | 2.0      |      | 2.1   | 2.1   |          | 2.1      | 2.1   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0      |      |       | 0.0   |          | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 6.1   | 6.1      |      | 6.1   | 6.1      |      |       | 5.7   |          | 5.7      | 5.7   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      |       |       |          |          |       |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      | 2.0   | 2.0   |          | 2.0      | 2.0   |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |          | 3.0      | 3.0   |      |
| Recall Mode             | None  | C-Max    |      | None  | C-Max    |      | None  | None  |          | None     | None  |      |
| Walk Time (s)           |       | 7.0      |      |       | 7.0      |      | 7.0   | 7.0   |          | 7.0      | 7.0   |      |
| Flash Dont Walk (s)     |       | 21.0     |      |       | 21.0     |      | 20.0  | 20.0  |          | 20.0     | 20.0  |      |
| Pedestrian Calls (#/hr) | 0.0   | 00.7     |      | F 0   | 0 0      |      | 0     | 0     |          | 0        | 0     |      |
| Act Effet Green (s)     | 6.2   | 90.7     |      | 5.6   | 90.4     |      |       | 15.1  |          | 15.1     | 15.1  |      |
| Actuated g/C Ratio      | 0.05  | 0.76     |      | 0.05  | 0.75     |      |       | 0.13  |          | 0.13     | 0.13  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | •    | <b>←</b> | •   | 1   | <b>†</b> | ~   | -    | ţ     | 4   |
|------------------------|------|-------|-----|------|----------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT      | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| v/c Ratio              | 0.09 | 0.68  |     | 0.01 | 0.38     |     |     | 0.05     |     | 0.65 | 0.23  |     |
| Control Delay          | 56.5 | 12.9  |     | 55.0 | 7.6      |     |     | 40.8     |     | 66.6 | 15.5  |     |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0      |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 56.5 | 12.9  |     | 55.0 | 7.6      |     |     | 40.8     |     | 66.6 | 15.5  |     |
| LOS                    | Е    | В     |     | D    | Α        |     |     | D        |     | Е    | В     |     |
| Approach Delay         |      | 13.2  |     |      | 7.6      |     |     | 40.8     |     |      | 51.0  |     |
| Approach LOS           |      | В     |     |      | Α        |     |     | D        |     |      | D     |     |
| Queue Length 50th (m)  | 1.4  | 83.3  |     | 0.2  | 29.6     |     |     | 2.1      |     | 25.3 | 0.4   |     |
| Queue Length 95th (m)  | 5.7  | 223.0 |     | 2.1  | 82.6     |     |     | 7.2      |     | 41.9 | 11.0  |     |
| Internal Link Dist (m) |      | 201.2 |     |      | 508.9    |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |       |     | 60.0 |          |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 67   | 1347  |     | 81   | 1280     |     |     | 375      |     | 309  | 352   |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0        |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.09 | 0.68  |     | 0.01 | 0.38     |     |     | 0.03     |     | 0.36 | 0.14  |     |

Intersection Summary

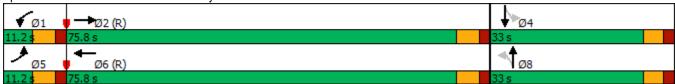
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 100


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68

Intersection Signal Delay: 15.5 Intersection LOS: B
Intersection Capacity Utilization 74.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

# **MOVEMENT SUMMARY**

# ₩ Site: Old Montreal / Dairy FT2022PM

Old Montreal Road & Dairy Drive / Aveia Private Future (2022) Total Traffic PM Peak Hour Roundabout

| Move    | ment Perfo   | rmance - Ve | ehicles |       |         |          |          |          |        |           |         |
|---------|--------------|-------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov     | OD           | Demand      |         | Deg.  | Average | Level of | 95% Back |          | Prop.  | Effective | Average |
| ID      | Mov          | Total       | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South   | Aveia Privat | veh/h       | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/r    |
| 3       | L2           | 4           | 0.0     | 0.028 | 9.4     | LOS A    | 0.1      | 0.6      | 0.65   | 0.65      | 51.1    |
| 8       | T1           | 6           | 0.0     | 0.028 | 9.4     | LOSA     | 0.1      | 0.6      | 0.65   | 0.65      | 51.2    |
|         | R2           | 1           |         |       |         |          |          |          |        |           |         |
| 18      |              | •           | 0.0     | 0.028 | 9.4     | LOSA     | 0.1      | 0.6      | 0.65   | 0.65      | 50.1    |
| Appro   | ach          | 11          | 0.0     | 0.028 | 9.4     | LOSA     | 0.1      | 0.6      | 0.65   | 0.65      | 51.0    |
| East: 0 | Old Montreal | Road        |         |       |         |          |          |          |        |           |         |
| 1       | L2           | 1           | 0.0     | 0.464 | 8.7     | LOSA     | 2.6      | 20.7     | 0.13   | 0.04      | 52.8    |
| 6       | T1           | 443         | 6.0     | 0.464 | 8.7     | LOSA     | 2.6      | 20.7     | 0.13   | 0.04      | 52.7    |
| 16      | R2           | 44          | 0.0     | 0.464 | 8.7     | LOSA     | 2.6      | 20.7     | 0.13   | 0.04      | 51.8    |
| Appro   | ach          | 488         | 5.4     | 0.464 | 8.7     | LOSA     | 2.6      | 20.7     | 0.13   | 0.04      | 52.6    |
| North:  | Dairy Drive  |             |         |       |         |          |          |          |        |           |         |
| 7       | L2           | 111         | 0.0     | 0.234 | 8.0     | LOS A    | 0.9      | 6.7      | 0.52   | 0.51      | 51.0    |
| 4       | T1           | 2           | 0.0     | 0.234 | 8.0     | LOS A    | 0.9      | 6.7      | 0.52   | 0.51      | 51.1    |
| 14      | R2           | 47          | 10.0    | 0.234 | 8.0     | LOSA     | 0.9      | 6.7      | 0.52   | 0.51      | 49.6    |
| Appro   | ach          | 160         | 2.9     | 0.234 | 8.0     | LOSA     | 0.9      | 6.7      | 0.52   | 0.51      | 50.6    |
| West:   | Old Montreal | l Road      |         |       |         |          |          |          |        |           |         |
| 5       | L2           | 6           | 33.0    | 0.934 | 35.4    | LOS E    | 22.9     | 177.4    | 1.00   | 0.77      | 37.3    |
| 2       | T1           | 907         | 2.0     | 0.934 | 35.4    | LOS E    | 22.9     | 177.4    | 1.00   | 0.77      | 38.3    |
| 12      | R2           | 9           | 0.0     | 0.934 | 35.4    | LOS E    | 22.9     | 177.4    | 1.00   | 0.77      | 37.7    |
| Appro   | ach          | 922         | 2.2     | 0.934 | 35.4    | LOS E    | 22.9     | 177.4    | 1.00   | 0.77      | 38.3    |
| All Vel | nicles       | 1581        | 3.3     | 0.934 | 24.2    | LOS C    | 22.9     | 177.4    | 0.68   | 0.52      | 43.0    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 12:42:51 PM

Project: Not Saved

| Intersection           |        |          |      |              |          |        |         |           |      |         |      |      |
|------------------------|--------|----------|------|--------------|----------|--------|---------|-----------|------|---------|------|------|
| Int Delay, s/veh       | 1.3    |          |      |              |          |        |         |           |      |         |      |      |
| Movement               | EBL    | EBT      | EBR  | WBL          | WBT      | WBR    | NBL     | NBT       | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    | ሻ      | f)       |      |              | 4        |        |         |           |      |         | 4    |      |
| Traffic Vol, veh/h     | 121    | 842      | 60   | 3            | 422      | 4      | 0       | 0         | 0    | 2       | 0    | 67   |
| Future Vol, veh/h      | 121    | 842      | 60   | 3            | 422      | 4      | 0       | 0         | 0    | 2       | 0    | 67   |
| Conflicting Peds, #/hr | 0      | 0        | 0    | 0            | 0        | 0      | 0       | 0         | 0    | 0       | 0    | 0    |
| Sign Control           | Free   | Free     | Free | Free         | Free     | Free   | Stop    | Stop      | Stop | Stop    | Stop | Stop |
| RT Channelized         | -      | -        | None | -            | -        | None   | -       | -         | None | -       | -    | None |
| Storage Length         | 1450   | _        | _    | -            | _        | -      | -       | -         | -    | -       | -    | _    |
| Veh in Median Storage  | e,# -  | 0        | -    | -            | 0        | -      | -       | -         | -    | -       | 0    | -    |
| Grade, %               | -      | 0        | -    | -            | 0        | -      | -       | 0         | -    | -       | 0    | -    |
| Peak Hour Factor       | 100    | 100      | 100  | 100          | 100      | 100    | 100     | 100       | 100  | 100     | 100  | 100  |
| Heavy Vehicles, %      | 0      | 2        | 0    | 0            | 5        | 0      | 0       | 0         | 0    | 0       | 0    | 0    |
| Mvmt Flow              | 121    | 842      | 60   | 3            | 422      | 4      | 0       | 0         | 0    | 2       | 0    | 67   |
|                        |        |          |      |              |          |        |         |           |      |         |      |      |
| Major/Minor            | Majort |          | A    | /loior?      |          |        |         |           |      | liner?  |      |      |
|                        | Major1 | ^        |      | Major2       | •        | ^      |         |           |      | /linor2 | 4574 | 404  |
| Conflicting Flow All   | 426    | 0        | 0    | 902          | 0        | 0      |         |           |      | 1544    | 1574 | 424  |
| Stage 1                | -      | -        | -    | -            | -        | -      |         |           |      | 430     | 430  | -    |
| Stage 2                | - 11   | -        | -    | - 1 1        | -        | -      |         |           |      | 1114    | 1144 | -    |
| Critical Hdwy          | 4.1    | -        | -    | 4.1          | -        | -      |         |           |      | 6.4     | 6.5  | 6.2  |
| Critical Hdwy Stg 1    | -      | -        | -    | -            | -        | -      |         |           |      | 5.4     | 5.5  | -    |
| Critical Hdwy Stg 2    | -      | -        | -    | - 2.2        | -        | -      |         |           |      | 5.4     | 5.5  | 2.2  |
| Follow-up Hdwy         | 2.2    | -        | -    | 2.2          | -        | -      |         |           |      | 3.5     | 4    | 3.3  |
| Pot Cap-1 Maneuver     | 1144   | -        | -    | 762          | -        | -      |         |           |      | 128     | 111  | 634  |
| Stage 1                | -      | -        | -    | -            | -        | -      |         |           |      | 660     | 587  | -    |
| Stage 2                | -      | -        | -    | -            | -        | -      |         |           |      | 317     | 277  | -    |
| Platoon blocked, %     | 1111   | -        | -    | 760          | -        | -      |         |           |      | 114     | 0    | 634  |
| Mov Cap 2 Manager      |        | -        | -    | 762          | -        | -      |         |           |      | 114     | 0    |      |
| Mov Cap-2 Maneuver     | -      | -        | -    | <del>-</del> | -        | -      |         |           |      | 590     | 0    | -    |
| Stage 1                | -      | -        | -    | -            | -        |        |         |           |      | 315     | 0    | -    |
| Stage 2                | -      | _        | -    | -            | -        | -      |         |           |      | 313     | U    | -    |
|                        |        |          |      |              |          |        |         |           |      |         |      |      |
| Approach               | EB     |          |      | WB           |          |        |         |           |      | SB      |      |      |
| HCM Control Delay, s   | 1      |          |      | 0.1          |          |        |         |           |      | 12.3    |      |      |
| HCM LOS                |        |          |      |              |          |        |         |           |      | В       |      |      |
|                        |        |          |      |              |          |        |         |           |      |         |      |      |
| Minor Lane/Major Mvm   | nt     | EBL      | EBT  | EBR          | WBL      | WBT    | WBR S   | SRI n1    |      |         |      |      |
| Capacity (veh/h)       | IL.    | 1144     | LDT  | LDIX         | 762      | -      | - VVDIX | 560       |      |         |      |      |
| HCM Lane V/C Ratio     |        | 0.106    | -    |              | 0.004    | -      |         | 0.123     |      |         |      |      |
| HCM Control Delay (s)  |        | 8.5      | -    | -            | 9.7      | 0      | -       | 12.3      |      |         |      |      |
| HCM Lane LOS           |        | 6.5<br>A | -    | -            | 9.7<br>A | A      | -       | 12.3<br>B |      |         |      |      |
| HCM 95th %tile Q(veh   | 1      | 0.4      | -    |              | 0        | -<br>- | -       | 0.4       |      |         |      |      |
| HOW SOUT /OUIE Q(VEI)  | 1      | 0.4      | _    | _            | U        | _      | _       | 0.4       |      |         |      |      |

| Intersection                                             |                |                  |          |      |          |      |
|----------------------------------------------------------|----------------|------------------|----------|------|----------|------|
| Int Delay, s/veh                                         | 3.1            |                  |          |      |          |      |
|                                                          |                |                  | 11/5     |      |          |      |
|                                                          | EBT            | EBR              | WBL      | WBT  | NBL      | NBR  |
| Lane Configurations                                      | ₽              |                  |          | - 4  | W        |      |
| Traffic Vol, veh/h                                       | 753            | 91               | 5        | 323  | 106      | 6    |
| Future Vol, veh/h                                        | 753            | 91               | 5        | 323  | 106      | 6    |
| Conflicting Peds, #/hr                                   | 0              | 0                | 0        | 0    | 0        | 0    |
| Sign Control                                             | Free           | Free             | Free     | Free | Stop     | Stop |
| RT Channelized                                           | -              | None             | -        | None | -        | None |
| Storage Length                                           | -              | -                | -        | -    | 0        | -    |
| Veh in Median Storage, #                                 | <del>4</del> 0 | -                | -        | 0    | 0        | -    |
| Grade, %                                                 | 0              | -                | -        | 0    | 0        | -    |
| Peak Hour Factor                                         | 100            | 100              | 100      | 100  | 100      | 100  |
| Heavy Vehicles, %                                        | 2              | 0                | 0        | 5    | 0        | 0    |
| Mvmt Flow                                                | 753            | 91               | 5        | 323  | 106      | 6    |
|                                                          |                |                  | <u> </u> | 0_0  |          |      |
|                                                          |                |                  |          |      |          |      |
|                                                          | ajor1          |                  | /lajor2  |      | Minor1   |      |
| Conflicting Flow All                                     | 0              | 0                | 844      | 0    | 1132     | 799  |
| Stage 1                                                  | -              | -                | -        | -    | 799      | -    |
| Stage 2                                                  | -              | -                | -        | -    | 333      | -    |
| Critical Hdwy                                            | -              | -                | 4.1      | -    | 6.4      | 6.2  |
| Critical Hdwy Stg 1                                      | -              | -                | -        | -    | 5.4      | -    |
| Critical Hdwy Stg 2                                      | -              | -                | -        | -    | 5.4      | -    |
| Follow-up Hdwy                                           | -              | -                | 2.2      | -    | 3.5      | 3.3  |
| Pot Cap-1 Maneuver                                       | -              | -                | 801      | _    | 227      | 389  |
| Stage 1                                                  | _              | _                | _        | _    | 446      | -    |
| Stage 2                                                  | _              | _                | _        | _    | 731      | _    |
| Platoon blocked, %                                       | _              | _                |          | _    |          |      |
| Mov Cap-1 Maneuver                                       | _              | _                | 801      | _    | 225      | 389  |
| Mov Cap-2 Maneuver                                       | _              | _                | -        | _    | 225      | -    |
| Stage 1                                                  |                |                  |          | _    | 446      | _    |
| Stage 2                                                  | _              | _                | _        |      | 725      | _    |
| Slaye Z                                                  | -              | _                | _        | _    | 120      | -    |
|                                                          |                |                  |          |      |          |      |
| Approach                                                 | EB             |                  | WB       |      | NB       |      |
| HCM Control Delay, s                                     | 0              |                  | 0.1      |      | 34.7     |      |
| HCM LOS                                                  |                |                  |          |      | D        |      |
|                                                          |                |                  |          |      |          |      |
| N. 1. /2.1. 2.1.                                         |                | IDI 4            | EDT      |      | 14/5     | MET  |
| Minor Lane/Major Mvmt                                    | N              | NBLn1            | EBT      | EBR  | WBL      | WBT  |
| Capacity (veh/h)                                         |                | 230              | -        | -    | 801      | -    |
| HCM Lane V/C Ratio                                       |                | 0.487            | -        | -    | 0.006    | -    |
|                                                          |                | ~ 4 -            |          |      | 9.5      | 0    |
| HCM Control Delay (s)                                    |                | 34.7             | -        | -    | 9.0      |      |
| HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh) |                | 34.7<br>D<br>2.4 | -<br>-   | -    | 9.5<br>A | A    |

# **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Total Traffic AM Peak Hour Roundabout

| Lane Use and Performance |                 |      |              |              |                 |                  |                     |                   |         |                |                |              |                 |
|--------------------------|-----------------|------|--------------|--------------|-----------------|------------------|---------------------|-------------------|---------|----------------|----------------|--------------|-----------------|
| Lane Use a               |                 |      | <del>)</del> | Doa          | Long            | Averege          | Lovelof             | 0E0/ Dook o       | f Ougus | Long           | Long           | Con          | Drob            |
|                          | Demand<br>Total | HV   | Cap.         | Deg.<br>Satn | Lane<br>Util.   | Average<br>Delay | Level of<br>Service | 95% Back o<br>Veh | Dist    | Lane<br>Config | Lane<br>Length | Cap.<br>Adj. | Prob.<br>Block. |
|                          | veh/h           | %    | veh/h        | v/c          | %               | sec              | OCIVIOC             | VCII              | m       | Corning        | m              | /\dj.        | %               |
| South: Trim F            | Road            |      |              |              |                 |                  |                     |                   |         |                |                |              |                 |
| Lane 1 <sup>d</sup>      | 808             | 1.7  | 906          | 0.893        | 100             | 31.0             | LOS D               | 11.6              | 89.1    | Full           | 500            | 0.0          | 0.0             |
| Lane 2                   | 781             | 3.8  | 874          | 0.893        | 100             | 31.7             | LOS D               | 11.4              | 89.8    | Full           | 500            | 0.0          | 0.0             |
| Approach                 | 1589            | 2.7  |              | 0.893        |                 | 31.4             | LOS D               | 11.6              | 89.8    |                |                |              |                 |
| East: Old Mo             | ontreal Road    | d    |              |              |                 |                  |                     |                   |         |                |                |              |                 |
| Lane 1                   | 240             | 7.5  | 322          | 0.744        | 100             | 41.3             | LOS E               | 3.0               | 24.2    | Full           | 500            | 0.0          | 0.0             |
| Lane 2 <sup>d</sup>      | 273             | 2.0  | 368          | 0.744        | 100             | 37.1             | LOS E               | 3.2               | 24.4    | Full           | 500            | 0.0          | 0.0             |
| Lane 3                   | 215             | 2.0  | 439          | 0.490        | 100             | 18.3             | LOS C               | 1.7               | 12.8    | Short          | 95             | 0.0          | NA              |
| Approach                 | 728             | 3.8  |              | 0.744        |                 | 32.9             | LOS D               | 3.2               | 24.4    |                |                |              |                 |
| North: Trim F            | Road            |      |              |              |                 |                  |                     |                   |         |                |                |              |                 |
| Lane 1                   | 275             | 5.6  | 591          | 0.465        | 100             | 13.6             | LOS B               | 1.7               | 13.5    | Full           | 500            | 0.0          | 0.0             |
| Lane 2 <sup>d</sup>      | 284             | 6.6  | 610          | 0.465        | 100             | 13.3             | LOS B               | 1.6               | 12.9    | Full           | 500            | 0.0          | 0.0             |
| Approach                 | 559             | 6.1  |              | 0.465        |                 | 13.4             | LOS B               | 1.7               | 13.5    |                |                |              |                 |
| West: St Jos             | eph Boulev      | ard  |              |              |                 |                  |                     |                   |         |                |                |              |                 |
| Lane 1 <sup>d</sup>      | 80              | 10.0 | 590          | 0.136        | 100             | 7.7              | LOSA                | 0.3               | 2.7     | Full           | 500            | 0.0          | 0.0             |
| Lane 2                   | 68              | 8.0  | 577          | 0.119        | 87 <sup>5</sup> | 7.7              | LOS A               | 0.3               | 2.4     | Full           | 500            | 0.0          | 0.0             |
| Lane 3                   | 54              | 10.0 | 646          | 0.084        | 100             | 6.5              | LOSA                | 0.2               | 1.6     | Short          | 135            | 0.0          | NA              |
| Approach                 | 203             | 9.3  |              | 0.136        |                 | 7.4              | LOS A               | 0.3               | 2.7     |                |                |              |                 |
| Intersection             | 3079            | 4.0  |              | 0.893        |                 | 26.9             | LOS D               | 11.6              | 89.8    |                |                |              |                 |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

- 5 Lane under-utilisation found by the program
- d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Friday, November 20, 2020 3:33:19 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad 2020-11-09.sip6

| latara ati ar           |       |           |      |        |          |      |          |       |       |        |      |      |
|-------------------------|-------|-----------|------|--------|----------|------|----------|-------|-------|--------|------|------|
| Intersection            | 4     |           |      |        |          |      |          |       |       |        |      |      |
| Int Delay, s/veh        | 1     |           |      |        |          |      |          |       |       |        |      |      |
| Movement                | EBL   | EBT       | EBR  | WBL    | WBT      | WBR  | NBL      | NBT   | NBR   | SBL    | SBT  | SBR  |
| Lane Configurations     | 7     | f)        |      | - 1    | ₽        |      |          | 4     |       | ሻ      | - ∱  |      |
| Traffic Vol, veh/h      | 32    | 194       | 5    | 0      | 575      | 134  | 9        | 7     | 0     | 14     | 0    | 7    |
| Future Vol, veh/h       | 32    | 194       | 5    | 0      | 575      | 134  | 9        | 7     | 0     | 14     | 0    | 7    |
| Conflicting Peds, #/hr  | 0     | 0         | 1    | 1      | 0        | 0    | 2        | 0     | 0     | 0      | 0    | 2    |
| Sign Control            | Free  | Free      | Free | Free   | Free     | Free | Stop     | Stop  | Stop  | Stop   | Stop | Stop |
| RT Channelized          | -     | _         | None | -      | -        | None | -        | -     | None  | -      | -    | None |
| Storage Length          | 500   | -         | _    | 600    | -        | -    | -        | -     | -     | 250    | -    | -    |
| Veh in Median Storage,  | # -   | 0         | -    | -      | 0        | -    | -        | 0     | -     | -      | 0    | -    |
| Grade, %                | -     | 0         | -    | -      | 0        | -    | -        | 0     | -     | -      | 0    | -    |
| Peak Hour Factor        | 100   | 100       | 100  | 100    | 100      | 100  | 100      | 100   | 100   | 100    | 100  | 100  |
| Heavy Vehicles, %       | 0     | 10        | 0    | 0      | 3        | 0    | 0        | 0     | 0     | 17     | 0    | 0    |
| Mvmt Flow               | 32    | 194       | 5    | 0      | 575      | 134  | 9        | 7     | 0     | 14     | 0    | 7    |
|                         |       |           |      |        |          |      |          |       |       |        |      |      |
| Major/Minor Major/Minor | ajor1 |           | N    | Major2 |          | ı    | Minor1   |       |       | Minor2 |      |      |
| Conflicting Flow All    | 709   | 0         | 0    | 200    | 0        | 0    | 910      | 971   | 198   | 906    | 906  | 644  |
| Stage 1                 | 709   | -         | U    | 200    | -        | -    | 262      | 262   | 190   | 642    | 642  | 044  |
| Stage 2                 | _     | _         | _    | _      | -        | _    | 648      | 709   | _     | 264    | 264  | _    |
| Critical Hdwy           | 4.1   | <u>-</u>  | -    | 4.1    | -        | -    | 7.1      | 6.5   | 6.2   | 7.27   | 6.5  | 6.2  |
| Critical Hdwy Stg 1     | 4.1   | _         | _    | 4.1    | _        | _    | 6.1      | 5.5   | 0.2   | 6.27   | 5.5  | 0.2  |
| Critical Hdwy Stg 2     | -     | _         | _    | _      |          | -    | 6.1      | 5.5   | _     | 6.27   | 5.5  | -    |
| Follow-up Hdwy          | 2.2   | _         |      | 2.2    | _        | _    | 3.5      | 4     | 3.3   |        | 4    | 3.3  |
| Pot Cap-1 Maneuver      | 899   | _         | _    | 1384   | _        | -    | 258      | 255   | 848   | 242    | 278  | 476  |
| Stage 1                 | -     | _         | _    | 1004   | _        | _    | 747      | 695   | 040   | 438    | 472  | 470  |
| Stage 2                 |       | _         | _    | _      | _        |      | 462      | 440   | -     | 709    | 694  | -    |
| Platoon blocked, %      | _     | _         | _    |        | _        | _    | 702      | 770   |       | 103    | 004  |      |
| Mov Cap-1 Maneuver      | 899   | _         | _    | 1383   | _        | -    | 247      | 246   | 847   | 230    | 268  | 475  |
| Mov Cap-1 Maneuver      | -     | _         | _    | 1000   | _        | _    | 247      | 246   | - 047 | 230    | 268  | 413  |
| Stage 1                 | _     | _         |      | _      | _        | _    | 720      | 669   | _     | 422    | 472  | _    |
| Stage 2                 | _     | _         | _    | _      | _        | _    | 454      | 440   | _     | 677    | 668  | _    |
| Olago Z                 |       |           |      |        |          |      | 707      | 770   |       | 511    | 500  |      |
|                         |       |           |      |        |          |      |          |       |       |        |      |      |
| Approach                | EB    |           |      | WB     |          |      | NB       |       |       | SB     |      |      |
| HCM Control Delay, s    | 1.3   |           |      | 0      |          |      | 20.6     |       |       | 18.7   |      |      |
| HCM LOS                 |       |           |      |        |          |      | С        |       |       | С      |      |      |
|                         |       |           |      |        |          |      |          |       |       |        |      |      |
| Minor Lane/Major Mvmt   | N     | NBLn1     | EBL  | EBT    | EBR      | WBL  | WBT      | WBR : | SBLn1 | SBLn2  |      |      |
| Capacity (veh/h)        |       | 247       | 899  |        |          | 1383 | -        |       | 230   | 475    |      |      |
| HCM Lane V/C Ratio      |       |           |      | _      | <u>-</u> | -    | <u>-</u> | _     | 0.061 |        |      |      |
| HCM Control Delay (s)   |       | 20.6      | 9.2  | _      | _        | 0    | _        | _     | 21.7  | 12.7   |      |      |
| HCM Lane LOS            |       | 20.0<br>C | Α.Σ  | _      | _        | A    | _        | _     | C C   | В      |      |      |
| HCM 95th %tile Q(veh)   |       | 0.2       | 0.1  | _      | _        | 0    |          | _     | 0.2   | 0      |      |      |
| How Jour Joure Q(veri)  |       | 0.2       | 0.1  |        |          | U    |          |       | 0.2   | U      |      |      |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 4     | <b>†</b> | ~    | <b>/</b> | ţ     | 1    |
|-------------------------|-------|----------|------|-------|----------|------|-------|----------|------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     | Ť     | ĵ»       |      | , j   | ĵ»       |      |       | 4        |      | 7        | f)    |      |
| Traffic Volume (vph)    | 32    | 194      | 5    | 0     | 575      | 134  | 9     | 7        | 0    | 14       | 0     | 7    |
| Future Volume (vph)     | 32    | 194      | 5    | 0     | 575      | 134  | 9     | 7        | 0    | 14       | 0     | 7    |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800     | 1800  | 1800 |
| Storage Length (m)      | 50.0  |          | 0.0  | 60.0  |          | 0.0  | 0.0   |          | 0.0  | 25.0     |       | 0.0  |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 0     |          | 0    | 1        |       | 0    |
| Taper Length (m)        | 7.6   |          |      | 7.6   |          |      | 2.5   |          |      | 2.5      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         |       | 1.00     |      |       |          |      |       | 1.00     |      |          | 0.98  |      |
| Frt                     |       | 0.996    |      |       | 0.972    |      |       |          |      |          | 0.850 |      |
| Flt Protected           | 0.950 |          |      |       |          |      |       | 0.973    |      | 0.950    |       |      |
| Satd. Flow (prot)       | 1729  | 1651     | 0    | 1820  | 1727     | 0    | 0     | 1771     | 0    | 1478     | 1509  | 0    |
| Flt Permitted           | 0.950 |          |      |       |          |      |       | 0.893    |      |          |       |      |
| Satd. Flow (perm)       | 1729  | 1651     | 0    | 1820  | 1727     | 0    | 0     | 1621     | 0    | 1556     | 1509  | 0    |
| Right Turn on Red       |       |          | Yes  |       |          | Yes  |       |          | Yes  |          |       | Yes  |
| Satd. Flow (RTOR)       |       | 2        |      |       | 16       |      |       |          |      |          | 360   |      |
| Link Speed (k/h)        |       | 60       |      |       | 60       |      |       | 50       |      |          | 50    |      |
| Link Distance (m)       |       | 225.2    |      |       | 532.9    |      |       | 285.3    |      |          | 278.3 |      |
| Travel Time (s)         |       | 13.5     |      |       | 32.0     |      |       | 20.5     |      |          | 20.0  |      |
| Confl. Peds. (#/hr)     |       |          | 1    | 1     |          |      | 2     |          |      |          |       | 2    |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)      | 0%    | 10%      | 0%   | 0%    | 3%       | 0%   | 0%    | 0%       | 0%   | 17%      | 0%    | 0%   |
| Adj. Flow (vph)         | 32    | 194      | 5    | 0     | 575      | 134  | 9     | 7        | 0    | 14       | 0     | 7    |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |          |      |          |       |      |
| Lane Group Flow (vph)   | 32    | 199      | 0    | 0     | 709      | 0    | 0     | 16       | 0    | 14       | 7     | 0    |
| Turn Type               | Prot  | NA       |      | Prot  | NA       |      | Perm  | NA       |      | Perm     | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      |       | 8        |      |          | 4     |      |
| Permitted Phases        |       |          |      |       |          |      | 8     |          |      | 4        |       |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 8     | 8        |      | 4        | 4     |      |
| Switch Phase            |       |          |      |       |          |      |       |          |      |          |       |      |
| Minimum Initial (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0      | 5.0   |      |
| Minimum Split (s)       | 11.1  | 34.1     |      | 11.1  | 34.1     |      | 32.7  | 32.7     |      | 32.7     | 32.7  |      |
| Total Split (s)         | 12.0  | 75.0     |      | 12.0  | 75.0     |      | 33.0  | 33.0     |      | 33.0     | 33.0  |      |
| Total Split (%)         | 10.0% | 62.5%    |      | 10.0% | 62.5%    |      | 27.5% | 27.5%    |      | 27.5%    | 27.5% |      |
| Maximum Green (s)       | 5.9   | 68.9     |      | 5.9   | 68.9     |      | 27.3  | 27.3     |      | 27.3     | 27.3  |      |
| Yellow Time (s)         | 4.1   | 4.1      |      | 4.1   | 4.1      |      | 3.6   | 3.6      |      | 3.6      | 3.6   |      |
| All-Red Time (s)        | 2.0   | 2.0      |      | 2.0   | 2.0      |      | 2.1   | 2.1      |      | 2.1      | 2.1   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0      |      |       | 0.0      |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 6.1   | 6.1      |      | 6.1   | 6.1      |      |       | 5.7      |      | 5.7      | 5.7   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      |       |          |      |          |       |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      |       |          |      |          |       |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0      | 3.0   |      |
| Recall Mode             | None  | C-Min    |      | None  | C-Min    |      | None  | None     |      | None     | None  |      |
| Walk Time (s)           |       | 7.0      |      |       | 7.0      |      | 7.0   | 7.0      |      | 7.0      | 7.0   |      |
| Flash Dont Walk (s)     |       | 21.0     |      |       | 21.0     |      | 20.0  | 20.0     |      | 20.0     | 20.0  |      |
| Pedestrian Calls (#/hr) |       | 0        |      |       | 0        |      | 0     | 0        |      | 0        | 0     |      |
| Act Effct Green (s)     | 7.7   | 111.8    |      |       | 101.6    |      |       | 7.1      |      | 7.1      | 7.1   |      |
| Actuated g/C Ratio      | 0.06  | 0.93     |      |       | 0.85     |      |       | 0.06     |      | 0.06     | 0.06  |      |
| v/c Ratio               | 0.29  | 0.13     |      |       | 0.48     |      |       | 0.17     |      | 0.15     | 0.02  |      |
|                         | 0.20  | 0.10     |      |       | 0.10     |      |       | V. 1 7   |      | 0.10     | 0.02  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | $\rightarrow$ | •   | •   | •     | •   | <b>1</b> | <b>†</b> | /   | -    | ţ     | 4   |
|------------------------|------|---------------|-----|-----|-------|-----|----------|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT           | EBR | WBL | WBT   | WBR | NBL      | NBT      | NBR | SBL  | SBT   | SBR |
| Control Delay          | 59.4 | 1.3           |     |     | 6.7   |     |          | 56.8     |     | 56.3 | 0.0   |     |
| Queue Delay            | 0.0  | 0.0           |     |     | 0.0   |     |          | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 59.4 | 1.3           |     |     | 6.7   |     |          | 56.8     |     | 56.3 | 0.0   |     |
| LOS                    | Е    | Α             |     |     | Α     |     |          | Е        |     | Е    | Α     |     |
| Approach Delay         |      | 9.4           |     |     | 6.7   |     |          | 56.8     |     |      | 37.5  |     |
| Approach LOS           |      | Α             |     |     | Α     |     |          | Е        |     |      | D     |     |
| Queue Length 50th (m)  | 7.3  | 0.0           |     |     | 34.0  |     |          | 3.7      |     | 3.2  | 0.0   |     |
| Queue Length 95th (m)  | 17.2 | 11.4          |     |     | 110.6 |     |          | 10.7     |     | 9.8  | 0.0   |     |
| Internal Link Dist (m) |      | 201.2         |     |     | 508.9 |     |          | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |               |     |     |       |     |          |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 112  | 1538          |     |     | 1464  |     |          | 368      |     | 353  | 621   |     |
| Starvation Cap Reductn | 0    | 0             |     |     | 0     |     |          | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0             |     |     | 0     |     |          | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0             |     |     | 0     |     |          | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.29 | 0.13          |     |     | 0.48  |     |          | 0.04     |     | 0.04 | 0.01  |     |

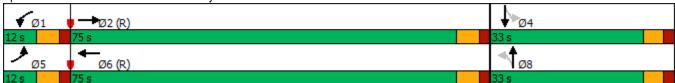
Intersection Summary

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 8.8 Intersection LOS: A Intersection Capacity Utilization 58.0% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Synchro 11 Report ΕM Page 2

# **MOVEMENT SUMMARY**



# ₩ Site: Old Montreal / Dairy FT2027AM

Old Montreal Road & Dairy Drive / Aveia Private Future (2027) Total Traffic AM Peak Hour Roundabout

| Move    | ment Perfo   | rmance - Ve | ehicles |       |         |          |            |          |        |           |         |
|---------|--------------|-------------|---------|-------|---------|----------|------------|----------|--------|-----------|---------|
| Mov     | OD           | Demand      |         | Deg.  | Average | Level of | 95% Back o | of Queue | Prop.  | Effective | Average |
| ID      | Mov          | Total       | HV      | Satn  | Delay   | Service  | Vehicles   | Distance | Queued | Stop Rate | Speed   |
| South   | Aveia Privat | veh/h       | %       | v/c   | sec     |          | veh        | m        |        | per veh   | km/h    |
| 3       | L2           | 9           | 0.0     | 0.020 | 4.3     | LOS A    | 0.1        | 0.5      | 0.34   | 0.21      | 54.3    |
| 8       | <br>T1       | 7           | 0.0     | 0.020 | 4.3     | LOSA     | 0.1        | 0.5      | 0.34   | 0.21      | 54.5    |
| 18      | R2           | 1           | 0.0     | 0.020 | 4.3     | LOSA     | 0.1        | 0.5      | 0.34   | 0.21      | 53.2    |
| Appro   |              | 17          | 0.0     | 0.020 | 4.3     | LOSA     | 0.1        | 0.5      | 0.34   | 0.21      | 54.3    |
| Fact: ( | Old Montreal | Poad        |         |       |         |          |            |          |        |           |         |
| 1       | L2           | 1           | 0.0     | 0.675 | 13.6    | LOS B    | 6.0        | 46.2     | 0.35   | 0.16      | 49.3    |
| 6       | T1           | 575         | 3.0     | 0.675 | 13.6    | LOS B    | 6.0        | 46.2     | 0.35   | 0.16      | 49.3    |
| 16      | R2           | 134         | 0.0     | 0.675 | 13.6    | LOS B    | 6.0        | 46.2     | 0.35   | 0.16      | 48.4    |
| Appro   |              | 710         | 2.4     | 0.675 | 13.6    | LOS B    | 6.0        | 46.2     | 0.35   | 0.16      | 49.2    |
|         |              |             |         | 0.070 | 10.0    | 2002     | 0.0        | 10.2     | 0.00   | 0.10      | 10.2    |
|         | Dairy Drive  |             |         |       |         |          |            |          |        |           |         |
| 7       | L2           | 14          | 17.0    | 0.039 | 6.9     | LOS A    | 0.1        | 1.0      | 0.51   | 0.45      | 51.3    |
| 4       | T1           | 1           | 0.0     | 0.039 | 6.9     | LOS A    | 0.1        | 1.0      | 0.51   | 0.45      | 52.3    |
| 14      | R2           | 7           | 0.0     | 0.039 | 6.9     | LOS A    | 0.1        | 1.0      | 0.51   | 0.45      | 51.2    |
| Appro   | ach          | 22          | 10.8    | 0.039 | 6.9     | LOSA     | 0.1        | 1.0      | 0.51   | 0.45      | 51.3    |
| West:   | Old Montrea  | l Road      |         |       |         |          |            |          |        |           |         |
| 5       | L2           | 32          | 0.0     | 0.226 | 5.7     | LOS A    | 0.9        | 7.2      | 0.09   | 0.03      | 54.6    |
| 2       | T1           | 194         | 10.0    | 0.226 | 5.7     | LOS A    | 0.9        | 7.2      | 0.09   | 0.03      | 54.3    |
| 12      | R2           | 5           | 0.0     | 0.226 | 5.7     | LOS A    | 0.9        | 7.2      | 0.09   | 0.03      | 53.5    |
| Appro   | ach          | 231         | 8.4     | 0.226 | 5.7     | LOSA     | 0.9        | 7.2      | 0.09   | 0.03      | 54.3    |
| All Vel | nicles       | 980         | 4.0     | 0.675 | 11.4    | LOS B    | 6.0        | 46.2     | 0.29   | 0.14      | 50.4    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 12:42:51 PM

Project: Not Saved

| Intersection               |         |              |          |          |          |          |       |           |      |         |      |            |
|----------------------------|---------|--------------|----------|----------|----------|----------|-------|-----------|------|---------|------|------------|
| Int Delay, s/veh           | 1.5     |              |          |          |          |          |       |           |      |         |      |            |
|                            |         |              |          |          |          |          |       |           |      |         |      |            |
| Movement                   | EBL     | EBT          | EBR      | WBL      | WBT      | WBR      | NBL   | NBT       | NBR  | SBL     | SBT  | SBR        |
| Lane Configurations        |         | ₽            |          |          | 4        |          |       |           |      |         | 4    |            |
| Traffic Vol, veh/h         | 21      | 166          | 22       | 1        | 639      | 1        | 0     | 0         | 0    | 2       | 0    | 82         |
| Future Vol, veh/h          | 21      | 166          | 22       | 1        | 639      | 1        | 0     | 0         | 0    | 2       | 0    | 82         |
| Conflicting Peds, #/hr     | 0       | 0            | 0        | 0        | 0        | 0        | 0     | 0         | 0    | 0       | 0    | 0          |
| Sign Control               | Free    | Free         | Free     | Free     | Free     | Free     | Stop  | Stop      | Stop | Stop    | Stop | Stop       |
| RT Channelized             | -       | -            | None     | -        | -        | None     | -     | -         | None | -       | -    | None       |
| Storage Length             | 1450    | -            | -        | -        | -        | -        | -     | -         | -    | -       | -    | -          |
| Veh in Median Storage,     | ,# -    | 0            | -        | -        | 0        | -        | -     | -         | -    | -       | 0    | -          |
| Grade, %                   | -       | 0            | -        | -        | 0        | -        | -     | 0         | -    | -       | 0    | -          |
| Peak Hour Factor           | 100     | 100          | 100      | 100      | 100      | 100      | 100   | 100       | 100  | 100     | 100  | 100        |
| Heavy Vehicles, %          | 0       | 11           | 0        | 0        | 2        | 0        | 0     | 0         | 0    | 0       | 0    | 0          |
| Mvmt Flow                  | 21      | 166          | 22       | 1        | 639      | 1        | 0     | 0         | 0    | 2       | 0    | 82         |
|                            |         |              |          |          |          |          |       |           |      |         |      |            |
| Major/Minor N              | /lajor1 |              | ı        | Major2   |          |          |       |           | N    | /linor2 |      |            |
| Conflicting Flow All       | 640     | 0            | 0        | 188      | 0        | 0        |       |           |      | 861     | 872  | 640        |
| Stage 1                    | 040     | -            | U        | 100      | -        | -        |       |           |      | 642     | 642  | - 040      |
| Stage 1<br>Stage 2         | -       | _            | -        | -        | _        | -        |       |           |      | 219     | 230  | -          |
| Critical Hdwy              | 4.1     | <u>-</u>     | -        | 4.1      | -        | -        |       |           |      | 6.4     | 6.5  | 6.2        |
| Critical Hdwy Stg 1        | 4.1     | -            | -        | 4.1      | _        | -        |       |           |      | 5.4     | 5.5  | 0.2        |
| Critical Hdwy Stg 2        | -       | <u>-</u>     | <u>-</u> |          |          | <u>-</u> |       |           |      | 5.4     | 5.5  |            |
| Follow-up Hdwy             | 2.2     | -            | -        | 2.2      | _        | -        |       |           |      | 3.5     | 5.5  | 3.3        |
| Pot Cap-1 Maneuver         | 954     | -            | -        | 1398     | -        | -        |       |           |      | 329     | 291  | 3.3<br>479 |
|                            | 904     | -            | -        | 1390     | _        | -        |       |           |      | 528     | 472  | 4/9        |
| Stage 1<br>Stage 2         | -       | -            | -        | -        | -        | -        |       |           |      | 822     | 718  | -          |
| Platoon blocked, %         | =       | =            | -        | =        | -        | -        |       |           |      | 022     | 110  | -          |
|                            | 954     | <del>-</del> | -        | 1398     | -        | -        |       |           |      | 321     | 0    | 479        |
| Mov Cap-1 Maneuver         |         | =            | -        | 1396     | -        | -        |       |           |      | 321     | 0    | 4/9        |
| Mov Cap-2 Maneuver Stage 1 | -       | -            | -        | -        | -        | -        |       |           |      | 516     | 0    | -          |
|                            | -       | =            | -        | =        | -        | -        |       |           |      | 821     | 0    | -          |
| Stage 2                    | _       | _            | _        | _        | -        | _        |       |           |      | 021     | U    | _          |
|                            |         |              |          |          |          |          |       |           |      |         |      |            |
| Approach                   | EB      |              |          | WB       |          |          |       |           |      | SB      |      |            |
| HCM Control Delay, s       | 0.9     |              |          | 0        |          |          |       |           |      | 14.2    |      |            |
| HCM LOS                    |         |              |          |          |          |          |       |           |      | В       |      |            |
|                            |         |              |          |          |          |          |       |           |      |         |      |            |
| Minor Lane/Major Mvmt      | t       | EBL          | EBT      | EBR      | WBL      | WBT      | WBR S | SBLn1     |      |         |      |            |
| Capacity (veh/h)           |         | 954          |          |          | 1398     | -        | -     | 473       |      |         |      |            |
| HCM Lane V/C Ratio         |         | 0.022        | _        |          | 0.001    | _        |       | 0.178     |      |         |      |            |
| HCM Control Delay (s)      |         | 8.9          | _        | _        | 7.6      | 0        | _     | 14.2      |      |         |      |            |
| HCM Lane LOS               |         | 0.9<br>A     | _        | -        | 7.0<br>A | A        | _     | 14.2<br>B |      |         |      |            |
| HCM 95th %tile Q(veh)      |         | 0.1          | -        | <u>-</u> | 0        | -        | _     | 0.6       |      |         |      |            |
| HOW JOHN MINE Q(VEII)      |         | 0.1          | _        | _        | U        | _        | _     | 0.0       |      |         |      |            |

| Intersection                  |       |       |         |      |        |           |
|-------------------------------|-------|-------|---------|------|--------|-----------|
| Intersection Int Delay, s/veh | 3.3   |       |         |      |        |           |
| -                             |       |       | 11/5    |      |        |           |
| Movement                      | EBT   | EBR   | WBL     | WBT  | NBL    | NBR       |
| Lane Configurations           | -₽    |       |         | ની   | N/     |           |
| Traffic Vol, veh/h            | 134   | 34    | 2       | 491  | 150    | 8         |
| Future Vol, veh/h             | 134   | 34    | 2       | 491  | 150    | 8         |
| Conflicting Peds, #/hr        | 0     | 0     | 0       | 0    | 0      | 0         |
| Sign Control                  | Free  | Free  | Free    | Free | Stop   | Stop      |
| RT Channelized                | -     | None  | -       | None | -      | None      |
| Storage Length                | -     | -     | -       | -    | 0      | -         |
| Veh in Median Storage,        | # 0   | -     | -       | 0    | 0      | -         |
| Grade, %                      | 0     | -     | -       | 0    | 0      | _         |
| Peak Hour Factor              | 100   | 100   | 100     | 100  | 100    | 100       |
| Heavy Vehicles, %             | 11    | 0     | 0       | 2    | 0      | 0         |
| Mymt Flow                     | 134   | 34    | 2       | 491  | 150    | 8         |
|                               | .51   | O I   | _       | .01  | .00    |           |
|                               |       |       |         |      |        |           |
|                               | ajor1 |       | /lajor2 |      | Minor1 |           |
| Conflicting Flow All          | 0     | 0     | 168     | 0    | 646    | 151       |
| Stage 1                       | -     | -     | -       | -    | 151    | -         |
| Stage 2                       | -     | -     | -       | -    | 495    | -         |
| Critical Hdwy                 | -     | -     | 4.1     | -    | 6.4    | 6.2       |
| Critical Hdwy Stg 1           | _     | -     | -       | -    | 5.4    | _         |
| Critical Hdwy Stg 2           | -     | -     | -       | -    | 5.4    | -         |
| Follow-up Hdwy                | -     | -     | 2.2     | -    | 3.5    | 3.3       |
| Pot Cap-1 Maneuver            | _     | _     | 1422    | _    | 439    | 901       |
| Stage 1                       | _     | _     | -       | _    | 882    | -         |
| Stage 2                       | _     | _     | _       | _    | 617    | _         |
| Platoon blocked, %            | _     | _     |         | _    | 011    |           |
| Mov Cap-1 Maneuver            | _     | _     | 1422    | _    | 438    | 901       |
| Mov Cap-1 Maneuver            | _     | _     | 1422    | -    | 438    | 30 I<br>- |
| •                             | _     | -     | -       |      | 882    | -         |
| Stage 1                       |       |       | -       | -    | 616    |           |
| Stage 2                       | -     | -     | -       | -    | סוס    | -         |
|                               |       |       |         |      |        |           |
| Approach                      | EB    |       | WB      |      | NB     |           |
| HCM Control Delay, s          | 0     |       | 0       |      | 17.3   |           |
| HCM LOS                       | -     |       |         |      | С      |           |
|                               |       |       |         |      |        |           |
|                               |       |       |         |      |        |           |
| Minor Lane/Major Mvmt         | 1     | NBLn1 | EBT     | EBR  | WBL    | WBT       |
| Capacity (veh/h)              |       | 450   | -       |      | 1422   | -         |
| HCM Lane V/C Ratio            |       | 0.351 | -       | -    | 0.001  | -         |
| HCM Control Delay (s)         |       | 17.3  | -       | -    | 7.5    | 0         |
| HCM Lane LOS                  |       | С     | -       | -    | Α      | Α         |
| HCM 95th %tile Q(veh)         |       | 1.6   | -       | -    | 0      | -         |
|                               |       |       |         |      | _      |           |

# **LANE SUMMARY**



Trim Road & St Joseph Boulevard / Old Montreal Road Future (2022) Total Traffic PM Peak Hour Roundabout

| Lane Use ar         | ıd Perfori | nance |       |       |                 |         |          |            |          |        |        |      |                   |
|---------------------|------------|-------|-------|-------|-----------------|---------|----------|------------|----------|--------|--------|------|-------------------|
|                     | Demand F   |       |       | Deg.  | Lane            | Average | Level of | 95% Back o | of Queue | Lane   | Lane   | Сар. | Prob.             |
|                     | Total      | HV    | Cap.  | Satn  | Util.           | Delay   | Service  | Veh        | Dist     | Config | Length | Adj. | Block.            |
| South: Trim R       | veh/h      | %     | veh/h | v/c   | %               | sec     |          |            | m        |        | m      | %    | %                 |
|                     | 506        | 2.7   | 754   | 0.674 | 100             | 17.3    | LOS C    | 3.9        | 30.2     | Full   | 500    | 0.0  | 0.0               |
| Lane 1              |            |       |       | 0.671 |                 |         |          |            |          |        |        |      |                   |
| Lane 2 <sup>d</sup> | 521        | 2.3   | 776   | 0.671 | 100             | 16.9    | LOS C    | 3.7        | 29.0     | Full   | 500    | 0.0  | 0.0               |
| Approach            | 1027       | 2.5   |       | 0.671 |                 | 17.1    | LOS C    | 3.9        | 30.2     |        |        |      |                   |
| East: Old Mon       | treal Road |       |       |       |                 |         |          |            |          |        |        |      |                   |
| Lane 1 <sup>d</sup> | 196        | 0.0   | 586   | 0.334 | 100             | 10.9    | LOS B    | 1.0        | 7.9      | Full   | 500    | 0.0  | 0.0               |
| Lane 2              | 180        | 0.0   | 559   | 0.323 | 97 <sup>5</sup> | 11.1    | LOS B    | 1.0        | 7.9      | Full   | 500    | 0.0  | 0.0               |
| Lane 3              | 134        | 0.0   | 656   | 0.204 | 100             | 7.9     | LOS A    | 0.6        | 4.3      | Short  | 95     | 0.0  | NA                |
| Approach            | 510        | 0.0   |       | 0.334 |                 | 10.2    | LOS B    | 1.0        | 7.9      |        |        |      |                   |
| North: Trim Ro      | oad        |       |       |       |                 |         |          |            |          |        |        |      |                   |
| Lane 1              | 978        | 1.3   | 745   | 1.313 | 100             | 168.5   | LOS F    | 85.6       | 657.9    | Full   | 500    | 0.0  | <mark>13.8</mark> |
| Lane 2 <sup>d</sup> | 1007       | 1.1   | 767   | 1.313 | 100             | 167.9   | LOS F    | 87.6       | 671.6    | Full   | 500    | 0.0  | <mark>14.5</mark> |
| Approach            | 1985       | 1.2   |       | 1.313 |                 | 168.2   | LOS F    | 87.6       | 671.6    |        |        |      |                   |
| West: St Jose       | ph Bouleva | ard   |       |       |                 |         |          |            |          |        |        |      |                   |
| Lane 1              | 126        | 0.0   | 329   | 0.384 | 100             | 19.5    | LOS C    | 1.2        | 8.9      | Full   | 500    | 0.0  | 0.0               |
| Lane 2 <sup>d</sup> | 137        | 0.0   | 357   | 0.384 | 100             | 18.1    | LOS C    | 1.1        | 8.7      | Full   | 500    | 0.0  | 0.0               |
| Lane 3              | 302        | 1.0   | 418   | 0.723 | 100             | 31.6    | LOS D    | 3.2        | 24.3     | Short  | 135    | 0.0  | NA                |
| Approach            | 565        | 0.5   |       | 0.723 |                 | 25.7    | LOS D    | 3.2        | 24.3     |        |        |      |                   |
| Intersection        | 4087       | 1.3   |       | 1.313 |                 | 90.8    | LOS F    | 87.6       | 671.6    |        |        |      |                   |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

- 5 Lane under-utilisation found by the program
- d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Friday, November 20, 2020 3:33:21 PM

Project: D:\Users\eric.mclaren.CANEAST\Desktop\1154-1208OldMontrealRoad 2020-11-09.sip6

| Intersection           |        |       |      |        |      |       |         |      |       |        |      |      |
|------------------------|--------|-------|------|--------|------|-------|---------|------|-------|--------|------|------|
| Int Delay, s/veh       | 5.2    |       |      |        |      |       |         |      |       |        |      |      |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL     | NBT  | NBR   | SBL    | SBT  | SBR  |
| Lane Configurations    | ች      | ĵ.    |      | ች      | ĵ.   |       |         | 4    |       | ች      | î,   |      |
| Traffic Vol, veh/h     | 6      | 713   | 9    | 1      | 358  | 44    | 4       | 6    | 1     | 111    | 2    | 47   |
| Future Vol, veh/h      | 6      | 713   | 9    | 1      | 358  | 44    | 4       | 6    | 1     | 111    | 2    | 47   |
| Conflicting Peds, #/hr | 1      | 0     | 0    | 0      | 0    | 1     | 0       | 0    | 2     | 2      | 0    | 0    |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop    | Stop | Stop  | Stop   | Stop | Stop |
| RT Channelized         | -      | -     | None | -      | -    | None  | -       | -    | None  | -      | -    | None |
| Storage Length         | 500    | -     | -    | 600    | -    | -     | -       | -    | -     | 250    | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -    | -      | 0    | -     | -       | 0    | -     | -      | 0    | -    |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -       | 0    | -     | -      | 0    | -    |
| Peak Hour Factor       | 100    | 100   | 100  | 100    | 100  | 100   | 100     | 100  | 100   | 100    | 100  | 100  |
| Heavy Vehicles, %      | 33     | 2     | 0    | 0      | 6    | 0     | 0       | 0    | 0     | 0      | 0    | 10   |
| Mvmt Flow              | 6      | 713   | 9    | 1      | 358  | 44    | 4       | 6    | 1     | 111    | 2    | 47   |
|                        |        |       |      |        |      |       |         |      |       |        |      |      |
| Major/Minor I          | Major1 |       |      | Major2 |      | I     | /linor1 |      |       | Minor2 |      |      |
| Conflicting Flow All   | 403    | 0     | 0    | 722    | 0    | 0     | 1137    | 1135 | 720   | 1118   | 1117 | 381  |
| Stage 1                | -      | -     | -    | -      | -    | -     | 730     | 730  | -     | 383    | 383  | -    |
| Stage 2                | -      | -     | -    | -      | _    | -     | 407     | 405  | -     | 735    | 734  | -    |
| Critical Hdwy          | 4.43   | -     | -    | 4.1    | -    | -     | 7.1     | 6.5  | 6.2   | 7.1    | 6.5  | 6.3  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.1     | 5.5  | -     | 6.1    | 5.5  | -    |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -     | 6.1     | 5.5  | -     |        | 5.5  | -    |
| Follow-up Hdwy         | 2.497  | -     | -    | 2.2    | -    | -     | 3.5     | 4    | 3.3   | 3.5    | 4    | 3.39 |
| Pot Cap-1 Maneuver     | 1006   | -     | -    | 889    | -    | -     | 181     | 204  | 431   | 186    | 209  | 649  |
| Stage 1                | -      | -     | -    | -      | -    | -     | 417     | 431  | -     | 644    | 616  | -    |
| Stage 2                | -      | -     | -    | -      | -    | -     | 625     | 602  | -     | 414    | 429  | -    |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |         |      |       |        |      |      |
| Mov Cap-1 Maneuver     | 1005   | -     | -    | 889    | -    | -     | 166     | 202  | 430   | 180    | 207  | 648  |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 166     | 202  | -     | 180    | 207  | -    |
| Stage 1                | -      | -     | -    | -      | -    | -     | 414     | 428  | -     | 639    | 615  | -    |
| Stage 2                | -      | -     | -    | -      | -    | -     | 577     | 601  | -     | 404    | 426  | -    |
|                        |        |       |      |        |      |       |         |      |       |        |      |      |
| Approach               | EB     |       |      | WB     |      |       | NB      |      |       | SB     |      |      |
| HCM Control Delay, s   | 0.1    |       |      | 0      |      |       | 24.5    |      |       | 40.1   |      |      |
| HCM LOS                |        |       |      |        |      |       | С       |      |       | Е      |      |      |
|                        |        |       |      |        |      |       |         |      |       |        |      |      |
| Minor Lane/Major Mvm   | nt I   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT     | WBR  | SBLn1 | SBLn2  |      |      |
| Capacity (veh/h)       |        | 196   | 1005 | _      | _    | 889   | _       | _    | 180   | 596    |      |      |
| HCM Lane V/C Ratio     |        | 0.056 |      | _      | _    | 0.001 | _       | _    |       | 0.082  |      |      |
| HCM Control Delay (s)  |        | 24.5  | 8.6  | _      | _    | 9.1   | -       | _    | 52.7  | 11.6   |      |      |
| HCM Lane LOS           |        | C     | A    | _      | _    | A     | _       | _    | F     | В      |      |      |
| HCM 95th %tile Q(veh)  | )      | 0.2   | 0    | -      | -    | 0     | -       | -    | 3.4   | 0.3    |      |      |
|                        |        | 7.2   |      |        |      |       |         |      | V. 1  | 0.0    |      |      |

HCM 2010 TWSC Synchro 11 Report EM Synchro 11 Report

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 1     | †     | <b>/</b> | <b>/</b> | ļ     | 4    |
|-------------------------|-------|----------|------|-------|----------|------|-------|-------|----------|----------|-------|------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT   | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations     | ሻ     | f)       |      | ሻ     | ĵ.       |      |       | 4     |          | ሻ        | ĵ.    |      |
| Traffic Volume (vph)    | 6     | 713      | 9    | 1     | 358      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Future Volume (vph)     | 6     | 713      | 9    | 1     | 358      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800  | 1800     | 1800     | 1800  | 1800 |
| Storage Length (m)      | 50.0  |          | 0.0  | 60.0  |          | 0.0  | 0.0   |       | 0.0      | 25.0     |       | 0.0  |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 0     |       | 0        | 1        |       | 0    |
| Taper Length (m)        | 7.6   |          |      | 7.6   |          |      | 2.5   |       |          | 2.5      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 1.00  |          |      |       | 1.00     |      |       | 1.00  |          | 1.00     | 0.98  |      |
| Frt                     |       | 0.998    |      |       | 0.984    |      |       | 0.988 |          |          | 0.856 |      |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      |       | 0.982 |          | 0.950    |       |      |
| Satd. Flow (prot)       | 1300  | 1781     | 0    | 1729  | 1696     | 0    | 0     | 1762  | 0        | 1729     | 1392  | 0    |
| Flt Permitted           | 0.950 |          |      | 0.950 |          |      |       | 0.917 |          | 0.750    |       |      |
| Satd. Flow (perm)       | 1298  | 1781     | 0    | 1729  | 1696     | 0    | 0     | 1645  | 0        | 1359     | 1392  | 0    |
| Right Turn on Red       |       |          | Yes  |       |          | Yes  |       |       | Yes      |          |       | Yes  |
| Satd. Flow (RTOR)       |       | 1        |      |       | 9        |      |       | 1     |          |          | 47    |      |
| Link Speed (k/h)        |       | 60       |      |       | 60       |      |       | 50    |          |          | 50    |      |
| Link Distance (m)       |       | 225.2    |      |       | 532.9    |      |       | 285.3 |          |          | 278.3 |      |
| Travel Time (s)         |       | 13.5     |      |       | 32.0     |      |       | 20.5  |          |          | 20.0  |      |
| Confl. Peds. (#/hr)     | 1     |          |      |       |          | 1    |       |       | 2        | 2        |       |      |
| Confl. Bikes (#/hr)     |       |          |      |       |          |      |       |       |          |          |       | 1    |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)      | 33%   | 2%       | 0%   | 0%    | 6%       | 0%   | 0%    | 0%    | 0%       | 0%       | 0%    | 10%  |
| Adj. Flow (vph)         | 6     | 713      | 9    | 1     | 358      | 44   | 4     | 6     | 1        | 111      | 2     | 47   |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |       |          |          |       |      |
| Lane Group Flow (vph)   | 6     | 722      | 0    | 1     | 402      | 0    | 0     | 11    | 0        | 111      | 49    | 0    |
| Turn Type               | Prot  | NA       |      | Prot  | NA       |      | Perm  | NA    |          | Perm     | NA    |      |
| Protected Phases        | 5     | 2        |      | 1     | 6        |      |       | 8     |          |          | 4     |      |
| Permitted Phases        | _     |          |      |       |          |      | 8     |       |          | 4        |       |      |
| Detector Phase          | 5     | 2        |      | 1     | 6        |      | 8     | 8     |          | 4        | 4     |      |
| Switch Phase            |       |          |      |       |          |      |       |       |          |          |       |      |
| Minimum Initial (s)     | 5.0   | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0   |          | 5.0      | 5.0   |      |
| Minimum Split (s)       | 11.1  | 34.1     |      | 11.1  | 34.1     |      | 32.7  | 32.7  |          | 32.7     | 32.7  |      |
| Total Split (s)         | 12.0  | 75.0     |      | 12.0  | 75.0     |      | 33.0  | 33.0  |          | 33.0     | 33.0  |      |
| Total Split (%)         | 10.0% | 62.5%    |      | 10.0% | 62.5%    |      | 27.5% | 27.5% |          | 27.5%    | 27.5% |      |
| Maximum Green (s)       | 5.9   | 68.9     |      | 5.9   | 68.9     |      | 27.3  | 27.3  |          | 27.3     | 27.3  |      |
| Yellow Time (s)         | 4.1   | 4.1      |      | 4.1   | 4.1      |      | 3.6   | 3.6   |          | 3.6      | 3.6   |      |
| All-Red Time (s)        | 2.0   | 2.0      |      | 2.0   | 2.0      |      | 2.1   | 2.1   |          | 2.1      | 2.1   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0      |      |       | 0.0   |          | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 6.1   | 6.1      |      | 6.1   | 6.1      |      |       | 5.7   |          | 5.7      | 5.7   |      |
| Lead/Lag                | Lead  | Lag      |      | Lead  | Lag      |      |       |       |          |          |       |      |
| Lead-Lag Optimize?      | Yes   | Yes      |      | Yes   | Yes      |      | 2.0   | 2.0   |          | 2.0      | 2.0   |      |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0   |          | 3.0      | 3.0   |      |
| Recall Mode             | None  | C-Min    |      | None  | C-Min    |      | None  | None  |          | None     | None  |      |
| Walk Time (s)           |       | 7.0      |      |       | 7.0      |      | 7.0   | 7.0   |          | 7.0      | 7.0   |      |
| Flash Dont Walk (s)     |       | 21.0     |      |       | 21.0     |      | 20.0  | 20.0  |          | 20.0     | 20.0  |      |
| Pedestrian Calls (#/hr) | 0.0   | 00.7     |      | F 0   | 0 0      |      | 0     | 0     |          | 0        | 0     |      |
| Act Effet Green (s)     | 6.2   | 90.7     |      | 5.6   | 90.4     |      |       | 15.1  |          | 15.1     | 15.1  |      |
| Actuated g/C Ratio      | 0.05  | 0.76     |      | 0.05  | 0.75     |      |       | 0.13  |          | 0.13     | 0.13  |      |

Lanes, Volumes, Timings

EM

Synchro 11 Report
Page 1

|                        | •    | -     | •   | •    | •     | •   | 1   | <b>†</b> | /   | /    | ţ     | 4   |
|------------------------|------|-------|-----|------|-------|-----|-----|----------|-----|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT   | WBR | NBL | NBT      | NBR | SBL  | SBT   | SBR |
| v/c Ratio              | 0.09 | 0.54  |     | 0.01 | 0.31  |     |     | 0.05     |     | 0.65 | 0.23  |     |
| Control Delay          | 56.5 | 9.5   |     | 55.0 | 6.9   |     |     | 40.8     |     | 66.6 | 15.5  |     |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0   |     |     | 0.0      |     | 0.0  | 0.0   |     |
| Total Delay            | 56.5 | 9.5   |     | 55.0 | 6.9   |     |     | 40.8     |     | 66.6 | 15.5  |     |
| LOS                    | Е    | Α     |     | D    | Α     |     |     | D        |     | Е    | В     |     |
| Approach Delay         |      | 9.9   |     |      | 7.0   |     |     | 40.8     |     |      | 51.0  |     |
| Approach LOS           |      | Α     |     |      | Α     |     |     | D        |     |      | D     |     |
| Queue Length 50th (m)  | 1.4  | 53.7  |     | 0.2  | 22.6  |     |     | 2.1      |     | 25.3 | 0.4   |     |
| Queue Length 95th (m)  | 5.7  | 140.9 |     | 2.1  | 64.5  |     |     | 7.2      |     | 41.9 | 11.0  |     |
| Internal Link Dist (m) |      | 201.2 |     |      | 508.9 |     |     | 261.3    |     |      | 254.3 |     |
| Turn Bay Length (m)    | 50.0 |       |     | 60.0 |       |     |     |          |     | 25.0 |       |     |
| Base Capacity (vph)    | 69   | 1345  |     | 85   | 1279  |     |     | 375      |     | 309  | 352   |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0     |     |     | 0        |     | 0    | 0     |     |
| Reduced v/c Ratio      | 0.09 | 0.54  |     | 0.01 | 0.31  |     |     | 0.03     |     | 0.36 | 0.14  |     |

Intersection Summary

Area Type: Other

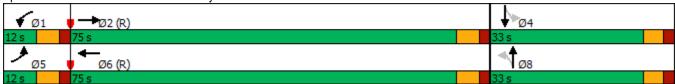
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.65

Intersection Signal Delay: 14.3
Intersection Capacity Utilization 63.2%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Aveia Private/Dairy Drive & Old Montreal Road



Lanes, Volumes, Timings

Synchro 11 Report

Page 2

# **MOVEMENT SUMMARY**

# ₩ Site: Old Montreal / Dairy FT2027PM

Old Montreal Road & Dairy Drive / Aveia Private Future (2027) Total Traffic PM Peak Hour Roundabout

| Move    | ment Perfo   | rmance - Ve | ehicles |       |         |          |            |          |        |           | _       |
|---------|--------------|-------------|---------|-------|---------|----------|------------|----------|--------|-----------|---------|
| Mov     | OD           | Demand      |         | Deg.  | Average | Level of | 95% Back o | of Queue | Prop.  | Effective | Average |
| ID      | Mov          | Total       | HV      | Satn  | Delay   | Service  | Vehicles   | Distance | Queued | Stop Rate | Speed   |
| Courth  | Aveia Privat | veh/h       | %       | v/c   | sec     |          | veh        | m        |        | per veh   | km/h    |
|         | L2           |             | 0.0     | 0.023 | 7.7     | LOS A    | 0.1        | 0.5      | 0.58   | 0.52      | FO 2    |
| 3       |              | 4           |         |       |         |          |            |          |        | 0.53      | 52.3    |
| 8       | T1           | 6           | 0.0     | 0.023 | 7.7     | LOS A    | 0.1        | 0.5      | 0.58   | 0.53      | 52.4    |
| 18      | R2           | 1           | 0.0     | 0.023 | 7.7     | LOS A    | 0.1        | 0.5      | 0.58   | 0.53      | 51.3    |
| Appro   | ach          | 11          | 0.0     | 0.023 | 7.7     | LOSA     | 0.1        | 0.5      | 0.58   | 0.53      | 52.3    |
| East: 0 | Old Montreal | Road        |         |       |         |          |            |          |        |           |         |
| 1       | L2           | 1           | 0.0     | 0.383 | 7.4     | LOSA     | 1.9        | 15.1     | 0.11   | 0.03      | 53.7    |
| 6       | T1           | 358         | 6.0     | 0.383 | 7.4     | LOSA     | 1.9        | 15.1     | 0.11   | 0.03      | 53.6    |
| 16      | R2           | 44          | 0.0     | 0.383 | 7.4     | LOSA     | 1.9        | 15.1     | 0.11   | 0.03      | 52.7    |
| Appro   | ach          | 403         | 5.3     | 0.383 | 7.4     | LOSA     | 1.9        | 15.1     | 0.11   | 0.03      | 53.5    |
| North:  | Dairy Drive  |             |         |       |         |          |            |          |        |           |         |
| 7       | L2           | 111         | 0.0     | 0.214 | 7.2     | LOS A    | 0.8        | 6.2      | 0.48   | 0.43      | 51.6    |
| 4       | T1           | 2           | 0.0     | 0.214 | 7.2     | LOS A    | 0.8        | 6.2      | 0.48   | 0.43      | 51.7    |
| 14      | R2           | 47          | 10.0    | 0.214 | 7.2     | LOSA     | 0.8        | 6.2      | 0.48   | 0.43      | 50.2    |
| Appro   | ach          | 160         | 2.9     | 0.214 | 7.2     | LOSA     | 8.0        | 6.2      | 0.48   | 0.43      | 51.2    |
| West:   | Old Montrea  | l Road      |         |       |         |          |            |          |        |           |         |
| 5       | L2           | 6           | 33.0    | 0.737 | 16.8    | LOS C    | 6.8        | 52.6     | 0.60   | 0.39      | 45.9    |
| 2       | T1           | 712         | 2.0     | 0.737 | 16.8    | LOS C    | 6.8        | 52.6     | 0.60   | 0.39      | 47.3    |
| 12      | R2           | 9           | 0.0     | 0.737 | 16.8    | LOS C    | 6.8        | 52.6     | 0.60   | 0.39      | 46.5    |
| Appro   | ach          | 727         | 2.2     | 0.737 | 16.8    | LOS C    | 6.8        | 52.6     | 0.60   | 0.39      | 47.3    |
| All Vel | nicles       | 1301        | 3.3     | 0.737 | 12.6    | LOS B    | 6.8        | 52.6     | 0.43   | 0.29      | 49.6    |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: IBI GROUP | Processed: Tuesday, February 09, 2021 12:42:52 PM

Project: Not Saved

| Intersection                 |          |          |      |                  |       |      |       |       |      |         |      |          |
|------------------------------|----------|----------|------|------------------|-------|------|-------|-------|------|---------|------|----------|
| Int Delay, s/veh             | 0.7      |          |      |                  |       |      |       |       |      |         |      |          |
| Movement                     | EBL      | EBT      | EBR  | WBL              | WBT   | WBR  | NBL   | NBT   | NBR  | SBL     | SBT  | SBR      |
| Lane Configurations          | ች        | 1>       |      |                  | 4     |      |       |       |      |         | 4    |          |
| Traffic Vol, veh/h           | 58       | 718      | 60   | 3                | 374   | 1    | 0     | 0     | 0    | 1       | 0    | 32       |
| Future Vol, veh/h            | 58       | 718      | 60   | 3                | 374   | 1    | 0     | 0     | 0    | 1       | 0    | 32       |
| Conflicting Peds, #/hr       | 0        | 0        | 0    | 0                | 0     | 0    | 0     | 0     | 0    | 0       | 0    | 0        |
| Sign Control                 | Free     | Free     | Free | Free             | Free  | Free | Stop  | Stop  | Stop | Stop    | Stop | Stop     |
| RT Channelized               | -        | -        | None | -                | -     | None | -     | -     | None | -       | -    | None     |
| Storage Length               | 1450     | -        | -    | -                | -     | -    | -     | -     | -    | -       | -    | -        |
| Veh in Median Storage        | , # -    | 0        | -    | -                | 0     | -    | -     | -     | -    | -       | 0    | -        |
| Grade, %                     | -        | 0        | -    | -                | 0     | -    | -     | 0     | -    | -       | 0    | -        |
| Peak Hour Factor             | 100      | 100      | 100  | 100              | 100   | 100  | 100   | 100   | 100  | 100     | 100  | 100      |
| Heavy Vehicles, %            | 0        | 2        | 0    | 0                | 5     | 0    | 0     | 0     | 0    | 0       | 0    | 0        |
| Mvmt Flow                    | 58       | 718      | 60   | 3                | 374   | 1    | 0     | 0     | 0    | 1       | 0    | 32       |
|                              |          |          |      |                  |       |      |       |       |      |         |      |          |
| Major/Minor                  | Major1   |          | N    | Major2           |       |      |       |       | N    | /linor2 |      |          |
|                              | 375      | 0        | 0    | 778              | 0     | 0    |       |       | I\   | 1245    | 1275 | 375      |
| Conflicting Flow All Stage 1 | 3/5      | -        | -    | 110              | -     | -    |       |       |      | 381     | 381  | 3/5      |
| Stage 2                      | -        | -        | -    | _                | -     | -    |       |       |      | 864     | 894  | -        |
| Critical Hdwy                | 4.1      | -        | -    | 4.1              | -     | -    |       |       |      | 6.4     | 6.5  | 6.2      |
| Critical Hdwy Stg 1          | 4.1      | _        | -    | 4.1              | _     | _    |       |       |      | 5.4     | 5.5  | 0.2      |
| Critical Hdwy Stg 2          | <u>-</u> |          | -    |                  | -     |      |       |       |      | 5.4     | 5.5  |          |
| Follow-up Hdwy               | 2.2      | _        | _    | 2.2              | _     | _    |       |       |      | 3.5     | 4    | 3.3      |
| Pot Cap-1 Maneuver           | 1195     | _        |      | 848              | _     |      |       |       |      | 194     | 168  | 676      |
| Stage 1                      | -        | _        | _    | U <del>1</del> U | _     | _    |       |       |      | 695     | 617  | - 070    |
| Stage 2                      |          | _        |      | _                | _     | -    |       |       |      | 416     | 362  | -        |
| Platoon blocked, %           |          | _        | _    |                  | _     | _    |       |       |      | 710     | 002  |          |
| Mov Cap-1 Maneuver           | 1195     | _        | _    | 848              | _     | _    |       |       |      | 184     | 0    | 676      |
| Mov Cap-2 Maneuver           | -        | _        | _    | -                | _     | _    |       |       |      | 184     | 0    | -        |
| Stage 1                      | _        | _        | _    | _                | _     | _    |       |       |      | 661     | 0    | _        |
| Stage 2                      | _        | <u>-</u> | _    | <u>-</u>         | _     | _    |       |       |      | 414     | 0    | <u>-</u> |
| Jugo 2                       |          |          |      |                  |       |      |       |       |      |         | J    |          |
|                              |          |          |      |                  |       |      |       |       |      |         |      |          |
| Approach                     | EB       |          |      | WB               |       |      |       |       |      | SB      |      |          |
| HCM Control Delay, s         | 0.6      |          |      | 0.1              |       |      |       |       |      | 11.1    |      |          |
| HCM LOS                      |          |          |      |                  |       |      |       |       |      | В       |      |          |
|                              |          |          |      |                  |       |      |       |       |      |         |      |          |
| Minor Lane/Major Mvm         | nt       | EBL      | EBT  | EBR              | WBL   | WBT  | WBR S | SBLn1 |      |         |      |          |
| Capacity (veh/h)             |          | 1195     | -    | -                | 848   | -    | -     | 625   |      |         |      |          |
| HCM Lane V/C Ratio           |          | 0.049    | _    | _                | 0.004 | -    | _     | 0.053 |      |         |      |          |
| HCM Control Delay (s)        |          | 8.2      | -    | -                | 9.3   | 0    | -     | 11.1  |      |         |      |          |
| HCM Lane LOS                 |          | A        | _    | _                | A     | A    | _     | В     |      |         |      |          |
| HCM 95th %tile Q(veh)        | )        | 0.2      | -    | _                | 0     | -    | -     | 0.2   |      |         |      |          |
|                              |          |          |      |                  |       |      |       |       |      |         |      |          |

| Intersection           |         |       |         |            |        |      |
|------------------------|---------|-------|---------|------------|--------|------|
| Int Delay, s/veh       | 2.5     |       |         |            |        |      |
| Movement               | EBT     | EBR   | WBL     | WBT        | NBL    | NBR  |
| Lane Configurations    | ₽       | LDIN  | VVDL    | ₩ <u>₩</u> | ¥/     | NON  |
| Traffic Vol, veh/h     | 628     | 91    | 5       | 272        | 106    | 6    |
| Future Vol, veh/h      | 628     | 91    | 5       | 272        | 106    | 6    |
|                        | 020     | 0     | 0       | 0          | 0      | 0    |
| Conflicting Peds, #/hr |         |       |         |            |        |      |
| Sign Control           | Free    | Free  | Free    | Free       | Stop   | Stop |
| RT Channelized         | -       | None  | -       | None       | -      | None |
| Storage Length         | _       | -     | -       | -          | 0      | -    |
| Veh in Median Storage, |         | -     | -       | 0          | 0      | -    |
| Grade, %               | 0       | -     | -       | 0          | 0      | -    |
| Peak Hour Factor       | 100     | 100   | 100     | 100        | 100    | 100  |
| Heavy Vehicles, %      | 2       | 0     | 0       | 5          | 0      | 0    |
| Mvmt Flow              | 628     | 91    | 5       | 272        | 106    | 6    |
|                        |         |       |         |            |        |      |
| Major/Minor N          | /lajor1 | N     | /lajor2 |            | Minor1 |      |
|                        | 0       | 0     | 719     | 0          | 956    | 674  |
| Conflicting Flow All   |         |       |         |            |        |      |
| Stage 1                | -       | -     | -       | -          | 674    | -    |
| Stage 2                | -       | -     | -       | -          | 282    | -    |
| Critical Hdwy          | -       | -     | 4.1     | -          | 6.4    | 6.2  |
| Critical Hdwy Stg 1    | -       | -     | -       | -          | 5.4    | -    |
| Critical Hdwy Stg 2    | -       | -     | -       | -          | 5.4    | -    |
| Follow-up Hdwy         | -       | -     | 2.2     | -          | 3.5    | 3.3  |
| Pot Cap-1 Maneuver     | -       | -     | 892     | -          | 289    | 458  |
| Stage 1                | -       | -     | -       | -          | 510    | -    |
| Stage 2                | -       | -     | -       | -          | 770    | -    |
| Platoon blocked, %     | -       | -     |         | -          |        |      |
| Mov Cap-1 Maneuver     | -       | -     | 892     | -          | 287    | 458  |
| Mov Cap-2 Maneuver     | -       | -     | -       | -          | 287    | -    |
| Stage 1                | -       | -     | -       | -          | 510    | -    |
| Stage 2                | _       | _     | -       | -          | 765    | -    |
| <u> </u>               |         |       |         |            |        |      |
| Annragah               | ED      |       | WD      |            | ND     |      |
| Approach               | EB      |       | WB      |            | NB     |      |
| HCM Control Delay, s   | 0       |       | 0.2     |            | 24.7   |      |
| HCM LOS                |         |       |         |            | С      |      |
|                        |         |       |         |            |        |      |
| Minor Lane/Major Mvm   | t 1     | NBLn1 | EBT     | EBR        | WBL    | WBT  |
| Capacity (veh/h)       |         | 293   |         |            | 892    |      |
| HCM Lane V/C Ratio     |         | 0.382 | _       |            | 0.006  |      |
|                        |         | 24.7  |         |            | 9.1    | _    |
| HCM Long LOS           |         |       | -       | -          |        | 0    |
| HCM Lane LOS           |         | C     | -       | -          | A      | Α    |
| HCM 95th %tile Q(veh)  |         | 1.7   | -       | -          | 0      | -    |

# Mike Giampa - City of Ottawa Transportation Project Manager – February 16, 2021 Appendix H — Multi-Modal Level of Service

# **Multi-Modal Level of Service**

# November 13, 2020

1154-1208 Old Montreal Road

Scenario: Existing (2020) Conditions

| SEGME                                        | INTO                                   | Old Montreal Road - Adjacent to Site |
|----------------------------------------------|----------------------------------------|--------------------------------------|
| SEGIVIE                                      |                                        | 1 2 3                                |
|                                              | Sidewalk Width                         | No Sidewalk                          |
| _                                            | Boulevard Width                        | N/A                                  |
| <u>.</u>                                     | AADT                                   | N/A                                  |
| str                                          | On-Street Parking                      | N/A                                  |
| Pedestrian                                   | Operating Speed                        | 61 km/h or more                      |
| <u>.                                    </u> | Level of Service                       | F 3                                  |
|                                              | Type of Bikeway                        | Bike Lanes Not Adjacent Parking Lane |
|                                              | Number of Travel Lanes (per direction) | 1 Travel Lane Per Direction          |
|                                              | Raised Median?                         | No                                   |
|                                              | Bike Lane Width                        | ≥1.8 m wide bike lane                |
| +                                            | Bike Lane Plus Parking Lane Width      | N/A                                  |
| <u>s</u>                                     | Operating Speed                        | ≥ 70 km/h                            |
| Cyclist                                      | Bike Lane Blockages (Commercial Areas) | Rare                                 |
| O                                            | Median Refuge                          |                                      |
|                                              | Number of Travel Lanes on Sidestreet   |                                      |
|                                              | Sidestreet Operating Speed             |                                      |
|                                              | Level of Service                       | E                                    |
| ţ                                            | Facility Type                          | Mixed Traffic                        |
| ısı                                          | Friction                               | Limited parking/driveway friction    |
| Transit                                      | Level of Service                       | D                                    |
|                                              | Curb Lane Width                        | ≤3.5                                 |
| 호                                            | Number of Travel Lanes                 | 2                                    |
| Truck                                        |                                        | C                                    |
|                                              |                                        | C                                    |

| IBI          |
|--------------|
|              |
| to Site<br>3 |
| - U          |
|              |
|              |
|              |
|              |
| g Lane       |
| n            |
|              |
|              |
|              |
|              |
|              |
|              |
| tion         |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |

1154-1208 Old Montreal Road Scenario: Future (2027) Conditions



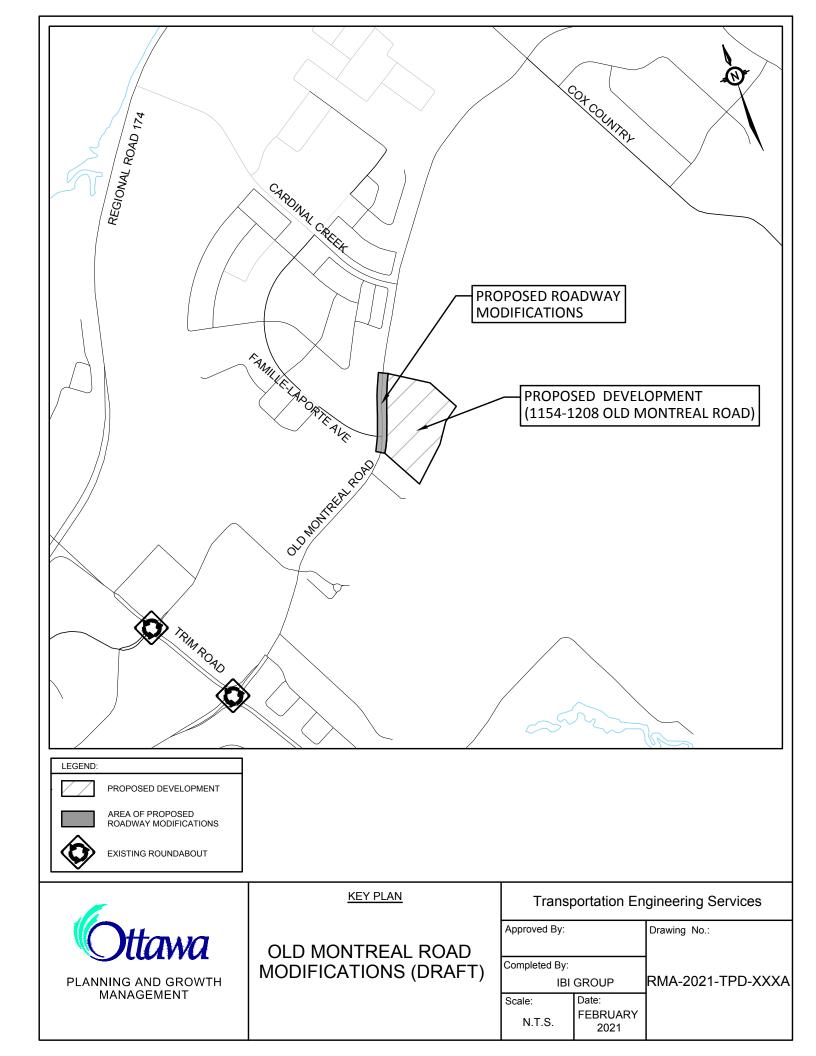
|                                    | ano. Future (2027) Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                             |                                                                                                                                                                  |                                |                                |                                |                                |                                |                                |                                |                                |                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| INITED                             | SECTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trim Rd                        | & St Joseph I                                                               | Blvd / Old Mo                                                                                                                                                    | ntreal Rd                      | Old Mor                        | itreal Rd & D                  | airy Dr / Aveia                | a Private                      | Old Montre                     | eal Rd / Famil                 | le-Laporte Av                  | e / Street 1                   |
| INTER                              | SECTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NORTH leg                      | SOUTH leg                                                                   | EAST leg                                                                                                                                                         | WEST leg                       | NORTH leg                      | SOUTH leg                      | EAST leg                       | WEST leg                       | NORTH leg                      | SOUTH leg                      | EAST leg                       | WEST leg                       |
|                                    | Lanes (do NOT include lanes protected by bulb-outs) Median                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>Modian (>2.4m)            | 6<br>Median (>2.4m)                                                         | 6<br>Modian (>2.4m)                                                                                                                                              | 6<br>Modian (>2.4m)            | 3<br>No Median                 | 2<br>No Median                 | 3<br>Modian (>2.4m)            | 3<br>Median (>2.4m)            | 2<br>No Median                 | 2<br>No Median                 | 3<br>No Median                 | 3<br>No Median                 |
|                                    | Island Refuge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wedian (>2.4m)                 | Median (>2.4m)                                                              | Wedian (>2.4m)                                                                                                                                                   | Wedian (>2.4m)                 | No Median                      | No Median                      | Wedian (>2.4m)                 | Median (72.4m)                 | No Median                      | No Median                      | No Median                      | No Median                      |
|                                    | Conflicting Left Turns (from street to right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protected/permi ssive          | Protected/permi ssive                                                       | Protected/permi ssive                                                                                                                                            | Protected/permi ssive          | Protected                      | Protected                      | Permissive                     | Permissive                     | Permissive                     | Permissive                     | Permissive                     | Permissive                     |
|                                    | Conflicting Right Turns (from street to left)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Permissive or<br>yield control | Permissive or<br>yield control                                              | Permissive or<br>yield control                                                                                                                                   | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control | Permissive or<br>yield control |
|                                    | RTOR? (from street to left)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR allowed                   | RTOR allowed                                                                | RTOR allowed                                                                                                                                                     | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   | RTOR allowed                   |
| _                                  | Ped Leading Interval? (on cross street)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No 15                          | No                                                                          | No 15                                                                                                                                                            | No                             | No 15                          | No                             | No 15                          | No                             | No                             | No                             | No                             | No                             |
| <u>ria</u>                         | Corner Radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > 10m to 15m<br>No right turn  | > 10m to 15m<br>No right turn                                               | > 10m to 15m<br>No right turn                                                                                                                                    | > 10m to 15m<br>No right turn  | > 10m to 15m<br>No right turn  | > 5m to 10m<br>No right turn   | > 10m to 15m<br>No right turn  | > 5m to 10m<br>No right turn   | > 5m to 10m<br>No right turn   | > 3m to 5m<br>No right turn    | > 5m to 10m<br>No right turn   | > 3m to 5m<br>No right turn    |
| Pedestrian                         | Right Turn Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | channel                        | channel                                                                     | channel                                                                                                                                                          | channel                        | channel                        | channel                        | channel                        | channel                        | channel                        | channel                        | channel                        | channel                        |
| ped                                | One a second la Tama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard                       | Standard                                                                    | Standard                                                                                                                                                         | Standard                       | Standard                       | Standard                       | Standard                       | Standard                       | Standard                       | Standard                       | Standard                       | Standard                       |
| <u> </u>                           | Crosswalk Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | transverse<br>markings         | transverse<br>markings                                                      | transverse<br>markings                                                                                                                                           | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         | transverse<br>markings         |
|                                    | LOS (PETSI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                             | 25                                                                          | 25                                                                                                                                                               | 25                             | 78                             | 94                             | 70                             | 71                             | 86                             | 87                             | 71                             | 72                             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                              | F                                                                           | F                                                                                                                                                                | F                              | В                              | A                              | C                              | C                              | В                              | В                              | C                              | C                              |
|                                    | Cycle Length (sec) Pedestrian Walk Time (solid white symbol) (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>7                       | 120<br>7                                                                    | 120<br>7                                                                                                                                                         | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       | 120<br>7                       |
|                                    | LOS (Delay,seconds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.3                           | 54.3                                                                        | 54.3                                                                                                                                                             | 54.3                           | 54.3                           | 54.3                           | 54.3                           | 54.3                           | 54.3                           | 54.3                           | 54.3                           | 54.3                           |
|                                    | LOS (Delay, Secolius)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                              | E                                                                           | Е                                                                                                                                                                | Е                              | Е                              | E                              | E                              | Е                              | E                              | E                              | Е                              | Е                              |
|                                    | Overall Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.I.                           | -                                                                           | P."                                                                                                                                                              | Dil                            |                                |                                | <b>-</b>                       | D.I                            |                                |                                |                                |                                |
|                                    | Type of Bikeway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bike<br>Lanes/Cycle            | Bike<br>Lanes/Cycle                                                         | Bike<br>Lanes/Cycle                                                                                                                                              | Bike<br>Lanes/Cycle            | Mixed Traffic                  | Mixed Traffic                  | Bike<br>Lanes/Cycle            | Bike<br>Lanes/Cycle            | Mixed Traffic                  | Mixed Traffic                  | Mixed Traffic                  | Mixed Traffic                  |
|                                    | Turning Speed (based on corner radius & angle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Track                          | Track                                                                       | Track                                                                                                                                                            | Track                          |                                |                                | Track                          | Track                          |                                |                                |                                |                                |
|                                    | Right Turn Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                             |                                                                                                                                                                  |                                |                                |                                |                                |                                |                                |                                |                                |                                |
| #                                  | Dual Right Turn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                             |                                                                                                                                                                  |                                | V                              | .,                             |                                |                                | V                              | V                              | .,                             | .,                             |
| Cyclist                            | Shared Through-Right? Bike Box / Two-Stage Left-Turn?                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                            | Yes                                                                         | Yes                                                                                                                                                              | Yes                            | Yes<br>No                      | Yes<br>No                      | No                             | No                             | Yes<br>No                      | Yes<br>No                      | Yes<br>No                      | Yes<br>No                      |
| တ်                                 | Number of Lanes Crossed for Left Turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Lanes                       | No Lanes                                                                    | No Lanes                                                                                                                                                         | No Lanes                       | 1 Lane Crossed                 | No Lanes                       |                                | 1 Lane Crossed                 | No Lanes                       | No Lanes                       | 1 Lane Crossed                 |                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Crossed                        | Crossed                                                                     | Crossed                                                                                                                                                          | Crossed                        |                                | Crossed                        |                                |                                | Crossed                        | Crossed                        |                                |                                |
|                                    | Operating Speed on Approach Dual Left Turn Lanes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≥ 60km/h<br>No                 | ≥ 60km/h<br>No                                                              | ≥ 60km/h<br>No                                                                                                                                                   | ≥ 60km/h<br>No                 | ≥ 60km/h<br>No                 | ≤ 40km/h<br>No                 | ≥ 60km/h<br>No                 | ≥ 60km/h<br>No                 | ≥ 60km/h<br>No                 | ≤ 40km/h<br>No                 | ≥ 60km/h<br>No                 | ≥ 60km/h<br>No                 |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                              | С                                                                           | С                                                                                                                                                                | С                              | F                              | В                              | E                              | E                              | D                              | В                              | F                              | F                              |
|                                    | Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                             | C                                                                                                                                                                |                                |                                |                                |                                |                                |                                |                                | F                              |                                |
|                                    | Average Signal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≤40 sec                        | >40 sec                                                                     | ≤10 sec                                                                                                                                                          | ≤10 sec                        |                                |                                | ≤10 sec                        | ≤10 sec                        | ≤20 sec                        |                                | -10                            | ≤10 sec                        |
| Sit                                | Average Olgital Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≤40 Sec                        |                                                                             |                                                                                                                                                                  |                                |                                |                                | =10 000                        |                                |                                |                                | ≤10 sec                        |                                |
| Transit                            | Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E E                            | F                                                                           | B                                                                                                                                                                | В                              |                                |                                | В                              | В                              | C                              |                                | B B                            | В                              |
| ς Transit                          | Level of Service Turning Radius (Right Turn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 to 15m                      | F<br>10 to 15m                                                              | 10 to 15m                                                                                                                                                        | 10 to 15m                      | 10 to 15m                      |                                | B<br>10 to 15m                 |                                |                                | (                              | В                              |                                |
|                                    | Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Е                              | F                                                                           | F B                                                                                                                                                              | В                              | 10 to 15m<br>1<br>E            |                                | В                              |                                |                                | (                              | В                              |                                |
| Truck Transit                      | Level of Service Turning Radius (Right Turn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 to 15m<br>2+                | 10 to 15m<br>2+<br>B                                                        | 10 to 15m<br>2+                                                                                                                                                  | 10 to 15m<br>2+                | 1                              |                                | 10 to 15m                      |                                |                                | (                              | В                              |                                |
|                                    | Level of Service Turning Radius (Right Turn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 to 15m<br>2+                | 10 to 15m<br>2+<br>B                                                        | 10 to 15m<br>2+<br>B                                                                                                                                             | 10 to 15m<br>2+                | 1                              |                                | B<br>10 to 15m<br>1<br>E       |                                |                                |                                | В                              |                                |
|                                    | Level of Service  Turning Radius (Right Turn)  Number of Receiving Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 to 15m<br>2+                | F<br>10 to 15m<br>2+<br>B                                                   | F 10 to 15m 2+ B B  Treal Road - Adjace                                                                                                                          | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                |                                | B<br>Section                   | В                              |
| Truck                              | Level of Service  Turning Radius (Right Turn)  Number of Receiving Lanes  ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 to 15m<br>2+                | F 10 to 15m 2+ B Old Mont                                                   | 10 to 15m<br>2+<br>B                                                                                                                                             | 10 to 15m<br>2+<br>B           | 1                              |                                | B 10 to 15m 1                  |                                |                                | 1                              | Spection                       |                                |
| SEGMI                              | Level of Service  Turning Radius (Right Turn)  Number of Receiving Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 to 15m<br>2+                | 10 to 15m<br>2+<br>B<br>Old Mont<br>1<br>1.5<br>> 2                         | F 10 to 15m 2+ B B  Treal Road - Adjace                                                                                                                          | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT                                                                                                                                                                                                                                                                                                                                                                                                 | 10 to 15m<br>2+                | F                                                                           | F 10 to 15m 2+ B B  Treal Road - Adjace                                                                                                                          | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking                                                                                                                                                                                                                                                                                                                                                                               | 10 to 15m<br>2+                | Old Mont  1 1.5 2 2 3000 No                                                 | B 10 to 15m 2+ B B streal Road - Adjac 2                                                                                                                         | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Truck                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT                                                                                                                                                                                                                                                                                                                                                                                                 | 10 to 15m<br>2+                | 10 to 15m 2+ B Old Mont 1 1.5 > 2 > 3000 No 61 km/h or more                 | B 10 to 15m 2+ B B streal Road - Adjac 2                                                                                                                         | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking                                                                                                                                                                                                                                                                                                                                                                               | 10 to 15m<br>2+                | Old Mont  1 1.5 2 2 3000 No                                                 | B 10 to 15m 2+ B B streal Road - Adjac 2                                                                                                                         | B 10 to 15m 2+ B ent to Site   | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway                                                                                                                                                                                                                                                                                                                            | 10 to 15m<br>2+                | Old Mont  1  1.5  > 2  > 3000  No  61 km/h or more  E  Bike Lane            | B 10 to 15m 2+ B B treal Road - Adjac 2  E s Not Adjacent Pa                                                                                                     | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction)                                                                                                                                                                                                                                                                                     | 10 to 15m<br>2+                | Old Mont  1  1.5  > 2  > 3000  No  61 km/h or more  E  Bike Lane            | B 10 to 15m 2+ B B Ireal Road - Adjac 2  E s Not Adjacent Paavel Lane Per Dire                                                                                   | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median?                                                                                                                                                                                                                                                                      | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Irreal Road - Adjac 2                                                                                                                      | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width                                                                                                                                                                                                                    | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B 10 to 15m 2+ B B  Ireal Road - Adjac 2  E s Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A                                                       | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Width Operating Speed                                                                                                                                                                                                                      | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E  s Not Adjacent Pavel Lane Per Direc No 1.8 m wide bike la N/A ≥ 70 km/h                                           | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| SEGMI                              | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed  Bike Lane Blockages (Commercial Areas)                                                                                                                                                            | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B 10 to 15m 2+ B B  Ireal Road - Adjac 2  E s Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A                                                       | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Width Operating Speed                                                                                                                                                                                                                      | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E  s Not Adjacent Pavel Lane Per Direc No 1.8 m wide bike la N/A ≥ 70 km/h                                           | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed  Bike Lane Blockages (Commercial Areas) Median Refuge                                                                                                                                              | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E  s Not Adjacent Pe avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h                                          | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Width Operating Speed  Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet                                                                                                                           | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E  s Not Adjacent Pe avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h                                          | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                |                                | B<br>Section                   | В                              |
| Cyclist Pedestrian G Truck         | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed  Level of Service  Facility Type                                              | 10 to 15m<br>2+                | Old Mont  1  1.5  > 2  > 3000  No  61 km/h or more  E  Bike Lane  1 Tra  2: | B  To to 15m 2+ B  B  Treal Road - Adjac 2  E  S Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h Rare  E  Mixed Traffic                   | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Cyclist Pedestrian G Truck         | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed  Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed  Level of Service  Facility Type Friction                                    | 10 to 15m<br>2+                | Old Mont  1  1.5  > 2  > 3000  No  61 km/h or more  E  Bike Lane  1 Tra  2: | B  10 to 15m 2+ B  B  treal Road - Adjace 2  E s Not Adjacent Pave Adjace Pavel Lane Per Director No 1.8 m wide bike land N/A ≥ 70 km/h Rare                     | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Pedestrian G Truck                 | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed  Level of Service  Facility Type                                              | 10 to 15m<br>2+                | Old Mont  1  1.5  > 2  > 3000  No  61 km/h or more  E  Bike Lane  1 Tra  2: | B  To to 15m 2+ B  B  Treal Road - Adjac 2  E  S Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h Rare  E  Mixed Traffic                   | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Transit Cyclist Pedestrian G Truck | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed  Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed  Level of Service  Facility Type Friction  Level of Service  Curb Lane Width | 10 to 15m<br>2+                | F   10 to 15m   2+   B                                                      | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E S Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h Rare  E  Mixed Traffic d parking/driveway | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                | 1                              | B<br>Section                   | В                              |
| Cyclist Pedestrian G Truck         | Level of Service  Turning Radius (Right Turn) Number of Receiving Lanes  ENTS  Sidewalk Width Boulevard Width AADT On-Street Parking Operating Speed  Level of Service  Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Bike Lane Plus Parking Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed  Level of Service  Facility Type Friction  Level of Service                   | 10 to 15m<br>2+                | F                                                                           | B  10 to 15m 2+ B  B  Ireal Road - Adjac 2  E S Not Adjacent Pa avel Lane Per Dire No 1.8 m wide bike la N/A ≥ 70 km/h Rare  E  Mixed Traffic d parking/driveway | B 10 to 15m 2+ B ent to Site 3 | 1                              |                                | B 10 to 15m 1                  | В                              |                                |                                | B<br>Section                   | В                              |

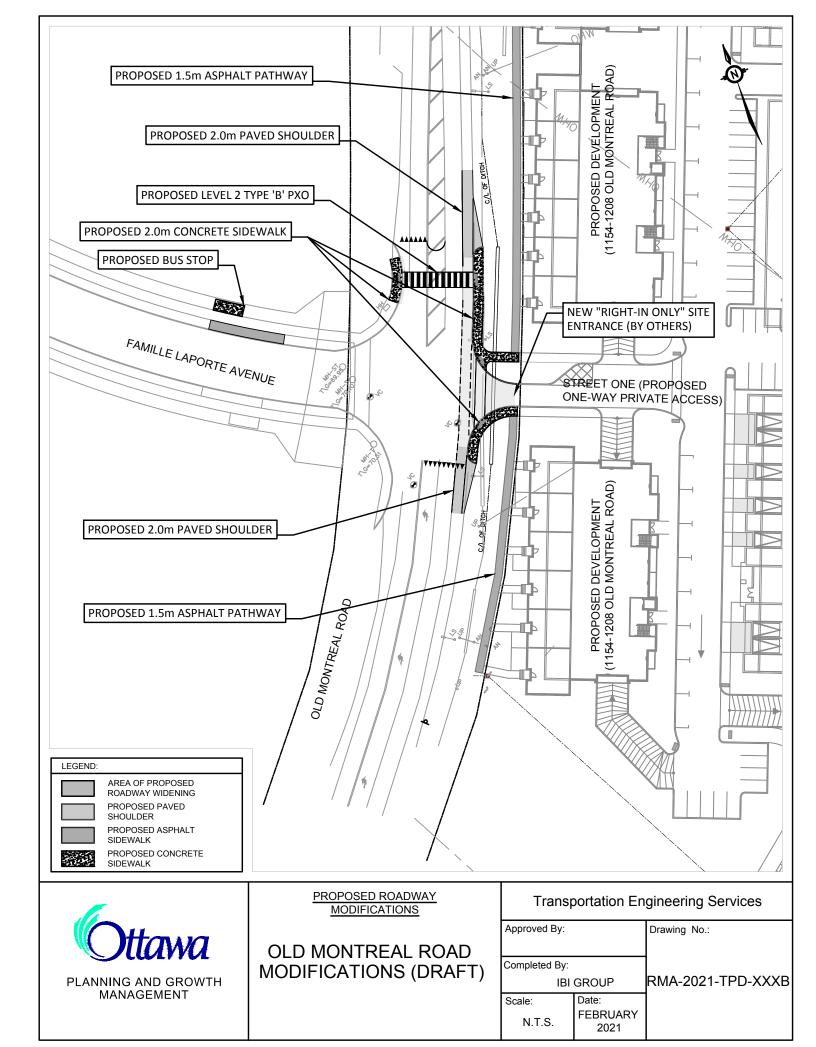
# **Multi-Modal Level of Service**

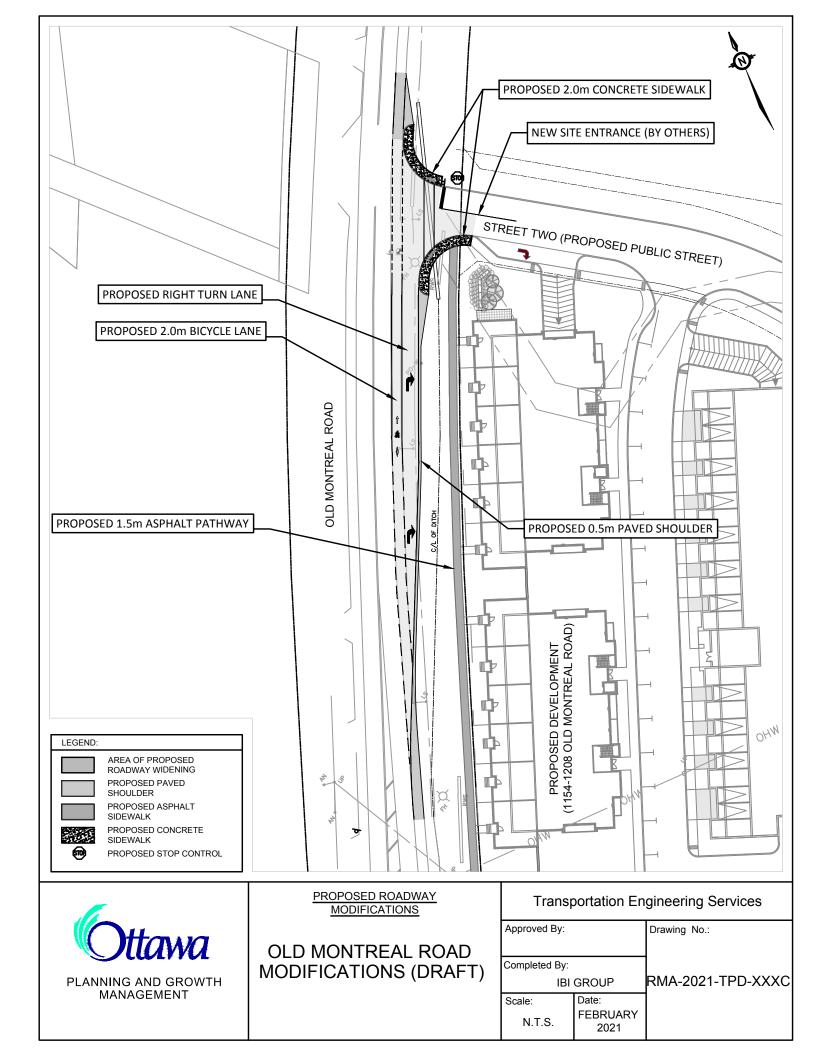
# November 13, 2020

1154-1208 Old Montreal Road

Scenario: Conceptual Complete Street





| SECMENTS   |                                                    |       | Old Montreal Road - Adjacent to Site |                   |       |  |
|------------|----------------------------------------------------|-------|--------------------------------------|-------------------|-------|--|
| SEGMENTS   |                                                    |       | 1                                    | 2                 | 3     |  |
| Pedestrian | Sidewalk Width                                     | 2.0   | or more                              |                   |       |  |
|            | Boulevard Width                                    |       | > 2                                  |                   |       |  |
|            | AADT                                               | >     | 3000                                 |                   |       |  |
|            | On-Street Parking                                  |       | No                                   |                   |       |  |
|            | Operating Speed                                    | 61 km | 61 km/h or more                      |                   |       |  |
|            | Level of Service                                   |       | D                                    | D                 |       |  |
| Cyclist    | Type of Bikeway                                    |       | Physica                              | ally Separated Bi | keway |  |
|            | Number of Travel Lanes (per direction)             |       |                                      |                   |       |  |
|            | Raised Median?                                     |       |                                      |                   |       |  |
|            | Bike Lane Width                                    |       |                                      |                   |       |  |
|            | Bike Lane Plus Parking Lane Width                  |       |                                      |                   |       |  |
|            | Operating Speed                                    |       |                                      |                   |       |  |
|            | Bike Lane Blockages (Commercial Areas)             |       |                                      |                   |       |  |
|            | Median Refuge Number of Travel Lanes on Sidestreet |       |                                      |                   |       |  |
|            | Sidestreet Operating Speed                         |       |                                      |                   |       |  |
|            |                                                    |       |                                      |                   |       |  |
|            | Level of Service                                   |       |                                      | Α                 |       |  |
| Transit    | Facility Type                                      |       | Mixed Traffic                        |                   |       |  |
|            | Friction                                           |       | Limited parking/driveway friction    |                   |       |  |
|            | Level of Service                                   |       |                                      | D                 |       |  |
| Truck      | Curb Lane Width                                    |       | ≤3.5                                 |                   |       |  |
|            | Number of Travel Lanes                             |       | 3+                                   |                   |       |  |
|            |                                                    |       | A                                    |                   |       |  |
|            |                                                    |       | A                                    |                   |       |  |


## **IBI GROUP MEMORANDUM**

Mike Giampa - City of Ottawa Transportation Project Manager – February 16, 2021

# Appendix I – Roadway Modification Approval Drawings





