

Site Servicing and Stormwater Management Report 1158 Second Line Road Ottawa, Ontario

Type of Document: Plan of Subdivision Submission

Client: Theberge Homes

Project Number: OTT-00245003-A0

Prepared By: Jason Fitzpatrick, P.Eng.

Reviewed By: Bruce Thomas, P.Eng.

exp Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Date Submitted: December 05, 2018

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Site Servicing and Stormwater Management Report 1158 Second Line Road, Ottawa, Ontario

Type of Document: Plan of Subdivision Submission

Client: Theberge Homes

Project Number: OTT-00245003-A0

Prepared By: exp 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com ROFESSI ICENSED . FITZPATRICK 2018-12-06 NCE OF ONTARD Jason Fitzpatrick, P.Eng

Project Engineer Infrastructure Services

me ma

Bruce Thomas, P.Eng. Senior Project Manager Infrastructure Services

Date Submitted: December 05, 2018

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Legal Notification

This report was prepared by exp Services Inc. for the account of Theberge Homes.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

*exp.

Table of Contents

1	Introduction1					
	1.1	1.1 Site Description and Proposed Development				
	1.2	Background Documents1				
	1.3	Existing	g Infrastructure	2		
	1.4	Consult	tation and Permits	3		
2	Geote	echnical (Considerations	3		
3	Devia	tions		4		
4	Watermain Servicing					
	4.1	Method	ology	4		
	4.2	Design	Criteria	4		
	4.3	Water [Demands	5		
	4.4	Fire Flo	w Requirements	5		
	4.5	Bounda	ary Conditions	7		
	4.6	Modelli	ng Results	7		
	4.7	Hydran	t Spacing	8		
	4.8	Water A	Age Analysis	9		
5	Sanita	ary Sewe	er Design	.10		
	5.1	Design Criteria				
	5.2	Propos	ed Sanitary Servicing	10		
	5.3	Downst	ream Sanitary Sewer System	11		
6	Storm	water M	anagement	.14		
	6.1	Design	Criteria	14		
		6.1.1	Minor System Design Criteria	14		
		6.1.2	Major System Design Criteria	14		
	6.2	Runoff	Coefficients	15		
	6.3	Calcula	tion of Allowable Release Rate	15		
	6.4	Pre-De	velopment Conditions	16		
	6.5	Propos	ed Conditions	16		
	6.6	Design	Methodology	17		
	6.7	1 [°] Storm Sewer Design				
	6.8	Hydrold	рду	17		
		6.8.1	Catchment Parameters	18		
		6.8.2	Storage Node Parameters	20		
		6.8.3	Dry Retention Pond	20		
		6.8.4	Outlet Node (ICD) Parameters	21		
	6.9	Dual Dr	ainage Modelling Methodology	21		
		6.9.1	Model Development	21		
		6.9.2	Storm Events Modelled	23		

		6.9.3	Inlet Control at Flow-By Conditions	
	6.10	Modellir	ng Results	
		6.10.1	Major System Flows / Depth on Streets	
	6.11	Hydraul	lics	
		6.11.1	Hydraulic Grade Line Analysis	
7	Erosic	on and Se	ediment Control	27
8	Concl	usions		

List of Figures

Figure 1 - Post Development Catchments	
Figure 2 – Model Schematic Showing Minor and Major System Components	
Figure 3 – Representation of Rating Curves for Modelling of Storage at Ponding Locations	
Figure 4 – 100-yr HGL Profile	
Figure A1: Site Location Plan	A
Figure A2: Draft Plan & Easement Plan	A
Figure A3: Water Model Layout, Boundary Condition #1	A
Figure A4: Water Model Layout, Boundary Condition #2	A
Figure A5: Sanitary Drainage Areas	A
Figure A6: Offsite Sanitary Drainage – Morgan's Grant Phase 12	A
Figure A7: Pre-Development Catchment Areas	A
Figure A8: Post-Development Catchment Areas	A
Figure A9: Typical Road Cross-Section	A

List of Tables

Table 4-1:	Summary of Results for Peak Hour (Boundary Location #1)	7
Table 4-2:	Boundary Conditions Provided by City of Ottawa	7
Table 4-3:	Summary of Results for Peak Hour (Boundary Location #1)	8
Table 4-3:	Summary Results for Maximum Day Plus Fire Flow (Boundary Location #1)	8
Table 4-3:	Summary of Results for Peak Hour (Boundary Location #1)	9
Table 6-1:	Summary of Pre-Development Peak Flows from Proposed Site	16
Table 6-1:	General Subcatchment Parameters	18
Table 6-3:	Post-Development Subcatchment Parameters	19
Table 6-4:	Storage Node Parameters	20

Table 6-5: Outlet Node (ICD) Parameters	21
Table 6-6: Rating Curves for Curb Inlet Catchbasin in Flow-By Condition (3% cross fall, 2% slope)	23
Table 6-7: Rating Curves for Surface Catchbasin with Mountable Curb & Gutter in Flow-By Condition	
(3% cross fall, 2% slope)	24
Table 6-7: Peak Flows at Outfalls	24
Table 6-8: Review of Major System Depth and Velocity.	25
Table 6-8: Review of Minor System Flow Spread Criteria	25
Table B1: Water Demand Chart	B
Table B2: Calculation of Fire Flow Requirements (Block 1)	B
Table B3: Calculation of Fire Flow Requirements (Block 2)	B
Table B4: Calculation of Fire Flow Requirements (Block 3)	B
Table B5: Calculation of Fire Flow Requirements (Block 4)	B
Table B6: Calculation of Fire Flow Requirements (Block 5)	B
Table B7: Calculation of Fire Flow Requirements (Block 6)	B
Table B8: Calculation of Fire Flow Requirements (Block 7)	B
Table B9: Calculation of Fire Flow Requirements (Block 8)	B
Table B10: Calculation of Fire Flow Requirements (Block 9)	B
Table B11: Fire Flow Contributions Based on Hydrant Spacing	B
Table D1: Sanitary Design Sheet	D
Table E1: 2-year Storm Sewer Calculation Sheet	E
Table E2: 100-year HGL Storm Sewer Calculation Sheet	E
Table E3: Average Runoff Coefficients (Pre-Development)	E
Table E4: Pre-Development Runoff Calculations	E
Table E5: Allowable Runoff Calculations	E
Table E6: Average Runoff Coefficients (Post-Development)	E
Table E7: Summary of Post Development Runoff (Uncontrolled and Controlled)	E
Table E8: Rating Curves for Modelling of Surface Ponding Areas	E
Table E9: Major System (Street Segment) Characteristics – Curb Inlet Catchbasins	E
Table E10: Major System (Street Segment) Characteristics – Surface Catchbasins	E
Table E11.1: Inlet Control Devices (ICD) Types	E
Table E11.2: Discharge Rates for Various IPEX ICD Models	E

*exp.

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

List of Appendices

Appendix A – Figures

Appendix B – Water Tables

- Appendix C Water Distribution Modelling Results
- Appendix D Sanitary Design Sheet
- Appendix E Stormwater Design Sheets
- Appendix F Stormwater Modelling Results
- Appendix G Correspondence
- Appendix H Manufacturer Information
- Appendix I Background Information
- Appendix J Drawings

1 Introduction

1.1 Site Description and Proposed Development

Theberge Homes retained exp Services Inc. (EXP) to undertake a site servicing and stormwater management study in support of a zoning by-law amendment and plan of subdivision application for a proposed development at 1158 Second Line Road in the City of Ottawa. The property is situated on Second Line Road, 270m south of Old Carp Road as shown on Figure A1 in Appendix A.

The existing property consists of two (2) parcels. The northern parcel (PIN 045261418) consists of Parts 1 & 2 on Plan 4R-26462, whereas the southern parcel (PIN 045260207) consists of Parts 1 & 2 on Plan 5R-1175 and Part 1 on Plan 5R-8154. The two parcels combine for a total of 1.229 hectares, of which, a 0.029-hectare portion along Second Line Road will be reserved for a 3.0m road widening. The total site area being developed will be 1.20 hectares.

The development is comprised of forty-seven (47) townhome units. The 1.20-hectare development being proposed by Theberge Homes will consist of a three (3) 4-unit townhome block, one (1) 5-unit townhome block, six (6), 6-unit townhome block, one (1) stormwater block, and one (1) common roadway block. The proposed site is bounded to the south and north by Phases 11 & 12D of the Morgan's Grant Development respectively, to the west by Second Line Road, and east by City of Ottawa owned land which is subject to an easement in favor of Hydro One.

A 6.7m wide private roadway is proposed, configured in a H-pattern, having two entrances onto Second Line Road. All utilities will be located within the common roadway block. Sanitary and storm sewers and water infrastructure will require an 11m easement extending north from the site to Goward Drive and a 6m easement southerly to Whernside Terrace is required for a second watermain connection. Figure A2 in Appendix A illustrates the proposed blocks and easements.

This report will discuss the adequacy of the adjacent municipal storm sewers, sanitary sewers and watermains to convey the storm runoff, sewage flows and provide the water demands that will result from the proposed development. It will identify any sanitary, storm or watermain servicing requirements, and provide a design brief for submission, along with the engineering drawings, for City of Ottawa approval.

1.2 Background Documents

Various design guidelines were referred to in preparing the current report including:

- Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa including:
- Technical Bulletin ISDTB-2012-4 (20 June 2012)
- Technical Bulletin ISDTB-2014-01 (05 February 2014)
- Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
- Technical Bulletin ISDTB-2018-01 (21 March 2018)
- Technical Bulletin ISDTB-2018-04 (27 June 2018)

[%]ехр.

- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
- Technical Bulletin ISDTB-2014-02 (27 Ma7 2014)
- Technical Bulletin ISTB-2018-02 (21 March 2018)
- Ontario Ministry of Transportation (MTO) Drainage Manual, 1995-1997
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM)
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS)
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing.

As the proposed site is within the Morgan's Grant Development, various Master Servicing and Stormwater Management Reports were reviewed in preparation of this report. The following reports, which were provided by City staff, are identified below:

- Master Servicing Study for the Morgan's; Grant Subdivision. J.L. Richards & Associates Limited, February 2001.
- Morgan's Grant Subdivision, Phase 12D Stormwater Management Report, J.L. Richards & Associates Limited, Sept 22, 2005.
- Morgan's Grant, Phase 12D Subdivision, Stormwater Site Management Plan, J.L. Richards & Associates Limited, August 2005.

The first document above provides the sanitary and storm sewer designs for Phases 1 - 9 of Morgan's Grant along with lands west of the Hydro Corridor and east of Second Line Road. This Master Servicing Study also makes an allowance for sanitary flows from Phases 12A-12D, which includes the proposed 1.2-hectare property at 1158 Second Line Road.

The second and third document noted above, provide stormwater design information specifically for the latest Phase of Morgan's Grant (Phase 12D), however the documents include background information for all Phase 12 stages (12A - 12D), since the entire Phase 12 area is serviced by a downstream stormwater management facility.

Additional information on the sanitary, storm and water system designs taken from each noted report, is provided in subsequent sections of this report.

1.3 Existing Infrastructure

The current 1.2-hectare site contains a single-family home that is serviced by a groundwater well and a septic tank and tile field bed. The septic tank and tile field is located between the building and Second Line Road, and a drilled well is located behind the home. The site is almost entirely sloped towards the hydro corridor; however, with a small percentage of the site sloped to Second Line Road. Runoff to Second Line Road is collected and conveyed in the existing roadside ditch.

There are no available municipal services located within Second Line Road (except for a 300mm sewage forcemain servicing Carp). As the site topography slopes easterly to the Hydro corridor with an almost

[%]exp.

 \pm 4m grade change, the services will be required to connect to the municipal sanitary, storm and water infrastructure within Goward Drive. In addition, a second watermain connection within Whernside Terrace is necessary. Additional information on the water supply requirements is provided later in this report.

An 11.0m wide easement from the site to Goward Drive will be required for the proposed 200mm sanitary sewer, 450mm storm sewer and 200mm watermain. The second 6.0-metre-wide easement extending south towards Whernside Terrace will be necessary for a 200mm watermain. These easements are in accordance with 3.3.1.2 of the City of Ottawa Sewer Design Guidelines, and 3.3.1.2 of the City of Ottawa Water Distribution Design Guidelines.

1.4 Consultation and Permits

A pre-consultation meeting was held between Theberge Homes and the City of Ottawa on July13, 2017 prior to design commencement. This meeting outlined the submission requirements and provided information to assist with the development proposal.

The storm and sanitary sewers will require Environmental Compliance Approvals (ECA's), filed through a direct submission with the MECP. The following summarizes the anticipated Environment Compliance Approvals (ECA's) required by the Ministry of Conservation and Parks (MECP), formerly the Ministry of the Environment and Climate Change (MOECC):

- Municipal and Private Sewage Works for **Sanitary and Storm Sewers**.
- Municipal and Private Sewage Works for the establishment of the **Stormwater Management Works** (SWM) which will include the onsite flow control methods and associated stormwater detention.

Prior to completion of the ECA application, City signoff on the infrastructure design will be necessary and a pre-consultation meeting will be held with the local MECP.

The proposed site is located within the Mississippi Valley Conservation Authority (MVCA) jurisdiction, therefore signoff from the MVCA will be required prior to subdivision and ECA approval. As the proposed site is located within the catchment area tributary to the Morgan's grant SWM Facility (City SWMF-1227), no additional onsite quality control requirements are expected. This will be confirmed with the MVCA.

2 Geotechnical Considerations

A geotechnical investigation was completed by EXP Services Inc, on April 12, 2018, and was prepared to establish the subsurface and groundwater conditions onsite, and to provide and discuss excavation, dewatering, and backfilling requirements. It also provides grade-raise, pavement and foundation design requirements.

In general, the site is treed and contains 150mm to 300mm of topsoil overlaid with sandy silt and silty sand. Below the ground surface, rock refusal depth varied between 0.3m to 1.7m, based on eleven (11) test pits and boreholes.

A maximum grade raise requirement of 2.0m was established for the site.

[%]exp.

3 Deviations

As it is proposed to construct a 6.7m private roadway within the development, some minor modifications to the typical cross-sectional elements are necessary. Figure A9 in Appendix A illustrates the proposed cross-section. The following summaries the deviations to the City's Guidelines:

- A private roadway block will be used to contain the sewer, water, and utilities infrastructure. The width of the private roadway block varies between 10.12 m and 15.50 m. As this is a private roadway, the proposed roadway cross-section does not meet the City's Design Guidelines. The closest approved cross-section is a 16.5m residential roadway having a 16.5m roadway (Drawing ROW-16.5).
- In order to maintain the minimum clearance from the watermain to the curb line and have a 3.0m centre-to-centre distance from the watermain to the sanitary sewer, it was necessary to set the sanitary sewer at 1.15m from the centerline of road. This is a deviation from the City's Guidelines, which places the sanitary sewer at the centerline of the roadway.
- Due to the narrow roadway, the storm sewer is 0.70m from the gutter line. This is a deviation from the City's Guidelines, which would have a distance from the gutter line to the centre of the storm of 2.75m.
- Due to the storm sewer location close to the curb line, curb-inlet catchbasins are proposed in several places to provide additional horizontal clearance.

4 Watermain Servicing

4.1 Methodology

The water distribution system proposed for this development is designed in accordance with the City of Ottawa Design Guidelines (July 2010). The following steps indicate the basic methodology that was used in the hydraulic analysis:

- A water distribution model was created by adding junction nodes at intersections and creating watermains between the junctions.
- For each junction node the water demand was determined based on the number of contributing homes and the corresponding population.
- The water consumption rates were calculated for the maximum day and maximum hour conditions.
- Hydraulic boundary conditions were set from the information obtained from the City of Ottawa.
- The required fire flow was determined, and
- The proposed water distribution model was simulated in and the results compared with the City of Ottawa criteria.

4.2 Design Criteria

A summary of design parameters used in the water distribution model were taken from Section 4.0 of the City's Guidelines, and are as follows:

[®]exp.

•	Population Density (Townhome)	2.7 person/unit
•	Average daily water consumption (Residential)	350 L/cap/day
•	Maximum Day Factor	(4.32 x Avg. Day)
•	Maximum Hour Factor	(6.5 x Avg. Day)
•	C factor (200 mm – 300 mm)	110
•	Minimum Allowable Pressure	275 kPa (40 psi)
•	Maximum Allowable Pressure	690 kPa (100 psi)
•	Minimum Static Pressure (Under Fire Flow Conditions)	140 kPa (20 psi)

Please note that the maximum day and peak hour factors, noted above, were determined based on MOECC GDWS Table 3-3 as the population of the proposed development is less than 500 persons. This requirement is noted in Section 4.2.8 of the City's WDG001.

4.3 Water Demands

The domestic water demands are estimated below, utilizing parameters from the SDG002 and the GDWS. The following summarizes the parameters used.

Population:

•	47-Townhomes x 2.7 person/unit	= 126.9 persons
•	Average daily water consumption	= 350 L/person/day
•	Maximum Day Factor	= 9.5 x Avg. Day (from GDWS, Table 3-3)
•	Maximum Hour Factor	= 14.3 x Avg. Day (from GDWS, Table 3-3)

The average, maximum day and peak hour domestic (residential) demands for the building are as follows:

•	Average Day	= 350x126.9/86,400 = 0.51 L/sec
•	Maximum Day	= 9.50 x 0.51 = 4.88 L/sec
•	Peak Hour	= 14.30 x 0.51 = 7.35 L/sec

Detailed calculations of the domestic water demands are provided in Table B1 of Appendix B.

4.4 Fire Flow Requirements

Water for fire protection will be available utilizing the proposed fire hydrants located along the proposed private roadway. The required fire flows for the proposed site were calculated based on typical values as established by the Fire Underwriters Survey 1999 (FUS). The fire flow requirements were calculated for all blocks. It was determined the most critical building was a 6-unit townhome block (Block #6) having a fire flow requirement of 267 L/sec. For all blocks, the required fire flow (RFF) based on the City's Technical Bulletin ISDTB-2014-02 and ISTB-2018-02 is capped at 167 L/sec.

*exp

The following equation from the Fire Underwriters document "Water Supply for Public Fire Protection", 1991, was used for calculation of the on-site supply rates required to be supplied by the hydrants:

where

F = Required Fire flow in Litres per minute

- C = Coefficient related to type of Construction
- A = Total Floor Area in square metres

A reduction for low hazard occupancy of -15% for residential dwellings, and an increase for fire area exposure ranging from +38% (min) to +72% (max) was used. Below is a sample calculation of the fire flow requirements for Block 6 (the most critical) residential building.

Required Fire Flow Calculation for Block 6

Type of Construction Coeff Related to Construction Ground Floor Area Number of Floors	= Wood Frame = 1.5 = 538 m ² = 2
Fire Flow Requirement, FF	= 200 * 1.5 * √ (A) = 200 * 1.5 * √ (538 * 2) = 10,825 L/min or 11,000 L/min (rounded up)
Occupancy Class Occupancy Charge	= Limited Combustible = -15%
Fire Flow Requirement, FF	= 11,000 *-15% = -1,650 L/min = 9,350 L/min
Sprinkler Protection Credit	= 0%
Charges Due to Exposures	= sum for all sides = 22% + 22% + 14% + 14% = 72%
Required Fire Flow (RFF) = 9,350* (+72%)	= 9,350 L/min + 6,732 L/min = 16,082 L/min = 16,000 L/min (rounded to closest 1,000) = 267 L/sec
City cap on RFF	=167 L/sec

Although the calculated fire flow for Block 6 is 267 L/sec, it is capped at 167 L/sec as it meets the necessary conditions of TB-ISDTB-2014-02, specifically 1) Blocks are less than 7 units and 600 m² of building area, and 2) there is a 10m minimum separation between backs of adjacent units. The following table summarizes the required fire flows for each residential townhome block.

[%]exp.

Townhome Block #	Calculated Fire Flow (L/sec)	Capped at 10,000 L/min (167 L/sec) Based on TB 2014-02 (Yes/No)	Required Fire Flow, RFF (L/sec)
Block 1	233	Yes	167
Block 2	250	Yes	167
Block 3	183	Yes	167
Block 4	217	Yes	167
Block 5	200	Yes	167
Block 6	267	Yes	167
Block 7	167	Yes	167
Block 8	183	Yes	167
Block 9	200	Yes	167

The fire flow requirement for all proposed buildings is **167** L/sec (10,000 L/min) based on the FUS. Please refer to Tables B2 through B10 in Appendix B for detailed calculations using the FUS.

4.5 Boundary Conditions

Boundary conditions were provided for modelling purposes. WaterCAD modelling software was used to calculate pressures and flows under maximum day plus fire flow and peak hour conditions.

Boundary conditions were obtained from City of Ottawa personnel for hydraulic modeling. Boundary conditions were used for the connection points at either Connection Location # 1 on Goward Drive (J-10) or Connection Location # 2 (J-13) on Whernside Terrace. Refer to Appendix I for the boundary system information provided by City of Ottawa staff. As the City did not provide an HGL boundary condition during maximum day demands that could be used during a fire flow analysis, an HGL at the maximum day demand of 3.0 L/sec was interpolated from the City's provided data.

Table 4-2: B	Boundary	Conditions	Provided	by Cit	y of Ottawa
--------------	----------	------------	----------	--------	-------------

Condition	HGL in metres (psi) at Location #1 on Goward Drive	HGL (m) at Location #2 on Whernside Terrace		
Max HGL	150.9m (70.7 psi)	150.9m (70.7 psi)		
Max Day (at 2.5 L/sec)	*147.3m (65.6 psi)	*147.9m (66.5 psi)		
Peak Hour (at 4.5 L/sec)	140.2m (55.5 psi)	142.0m (58.1 psi)		
Max Day plus FF (at 8,000 L/min)	123.8 m (32.2 psi)	124.9 m (33.7 psi)		
Max Day plus FF (at 9,000 L/min)	119.5m (26.1 psi)	120.8m (27.9 psi)		
Max Day plus FF (at 10,000 L/min)	118.3m (24.1 psi)	119.8m (26.5 psi)		
Note: The HGL at a maximum day demand of 3.0 L/sec was interpolated for use in the fire flow analysis.				

4.6 Modelling Results

The results of the WaterCAD modelling under maximum day plus fire flow and peak hourly conditions based on the boundary condition at Location #1, are summarized in Table 4-3 below. Results for both locations #1 and # 2 are included in Appendix D.

*exp

Label	Demand (L/s)	Elevation (m)	Hydraulic Grade (m)	Pressure (psi)
J-1	0.47	103.94	140.11	51.3
J-2	1.88	103.70	140.11	51.7
J-3	2.03	101.62	140.11	54.6
J-4	0.78	102.85	140.11	52.9
J-5	0.47	103.30	139.89	51.9
J-6	0.63	101.21	140.12	55.2
J-7	0.00	101.04	140.15	55.5
J-9	0.00	102.40	140.15	53.6
J-10	0.00	100.76	140.20	56.0
J-11	0.16	101.70	140.11	54.5
J-12	0.07	101.25	140.12	55.2
J-17	0.00	103.80	140.11	51.5
J-18	0.94	102.00	140.11	54.1
J-19	0.00	101.25	140.11	55.2
.1-21	0.00	103.00	140 11	52.7

Table 4-3: Summary of Results for Peak Hour (Boundary Location #1)

Table 4-4: Summary Results for Maximum Day Plus Fire Flow (Boundary Location #1)

Hydrant Label	Fire Flow (Needed), RFF (L/sec)	Flow (Total Available) (L/sec)	Satisfies Fire Flow Constraints?			
H-1	167.0	146.5	Yes (see note)			
H-2	167.0	164.8	Yes (see note)			
H-3	167.0	159.7	Yes (see note)			
Note: The RFF of 167 L/sec is r	Note: The RFF of 167 L/sec is met with contribution of flows from all three (3) hydrants. Refer to Section 4.7					

The calculated minimum and maximum working pressures anticipated within the development are 51.3 psi and 56.0 psi under peak hour conditions, with an estimated fire flow available at the proposed hydrants FH1, FH2, FH3 of 146 L/sec, 165 L/sec and 160 L/sec respectively. Although the individual available fire flows at any individual hydrant does not meet the required fire flow of 167 L/sec, the combined available flow from the three hydrants exceeds the required 167 L/sec. Additional information on the hydrant spacing requirements is provided in the proceeding section.

4.7 Hydrant Spacing

A review of the hydrant spacing was completed to ensure compliance with Appendix I of Technical Bulletin ISTB-2018-02. All hydrants within 150 metres were reviewed to assess the total possible contribution of flow. For each hydrant the distance to the proposed building was determined to arrive at the contribution of fire flow from each. All hydrants are expected to be of Class AA as per Section 5.1 of Appendix I.

*exp

Table 4-5 below summarizes all fire hydrants within a 150m distance from each of the residential blocks. For each hydrant the distance measured along a fire route or roadway was used and its contribution to the required fire flow. A detailed table showing the distances and fire flow from each hydrant to each block can be found in Table B8 of Appendix B.

	Fire Flow Contribution (L/min)								
Hydrant #	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Block 8	Block 9
FH-1	5,700	3,800	3,800	3,800	3,800	5,700	5,700	5,700	5,700
FH-2	3,800	3,800	5,700	5,700	5,700	3,800	3,800	3,800	3,800
FH-3	5,700	5,700	5,700	3,800	3,800	3,800	3,800	5,700	3,800
Total (L/min)	15,200	13,300	15,200	13,300	13,300	13,300	13,300	15,200	13,300
FUS RFF in	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
L/min or (L/sec)	(166.7)	(166.7)	(166.7)	(166.7)	(166.7)	(166.7)	(166.7)	(166.7)	(166.7)
Meets FF Requirement (Y/N)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Table 4-5: Summary of Results for Peak Hour (Boundary Location #1)

From this table the total available contribution of flow from hydrants which are in proximity to each townhome block was estimated at between 13,300 L/min and 15,200 L/min. These values exceed the required fire flows for each residential block as identified in Appendix I of Technical Bulletin ISTB-2018-02.

4.8 Water Age Analysis

A review of the age of the water within the proposed system was completed to ensure than an appropriate size of watermain was selected, which was not unnecessarily oversized. The maximum residence time was estimated based on volume of water within the private system between the connection point on Goward Drive and the property boundary of the proposed site. It was assumed that the most conservative approach was to estimate the total volume of water within the water system assuming a dead-ended system. This analysis assumed the entire site at 1158 Second Line Road would be feed from the connection point at Goward Drive. This is a conservative approach, as in reality water would be feed from both connection (Goward and Whernside Terrace). The following summarizes the watermain lengths, and volumes used in this analysis:

Total length of 200mm watermains	= 341 m
Total length of 38mm watermain services	= 31 m
Total length of 19mm watermain services	= 376 m (47 services at 8m avg. length each)
Volume of water within all watermains/services	= 10.85 m³ or 10,854 litres

Using the demands in Table B1, the time required for full exhaustion of the 10.9 m^3 of water was calculated based on the demands noted in Table B1. In addition, the minimum night demand of 0.051 L/sec was calculated using MOECC Table 3.3 with a minimum peaking factor of 0.10. The following water age estimates are provided in Table 4-6 below.

[%]ехр.

Demand Condition	Demand (L/sec)	Time Required for Full Water Volume Turnover (hours)
Minimum Night	0.051	58.7
Average Day	0.51	5.9
Maximum Day	2.97	1.0
Peak Hour	4.49	0.7

Table 4-4: Water Age Results

Although a time of 58.7 hours (was calculated based on a minimum demand of 0.051 L/sec), it should be noted that this demand rate would apply only during an 8 hours nighttime period. After the 8-hour nighttime period, an average rate of 0.51 L/sec would apply during the 16-hour daytime. Based on this, the time required for the full exhaustion of 10.9 m³, would approximately 8.0+5.1 = 13.1 hours.

Similarly, there are 15 existing single-family homes on Goward Drive that are located west of the proposed connection point. For this 200mm diameter watermain, the estimated volume is 3.9 m^3 6based on 10.0m long 19mm diameter services and 123m of 200mm watermain. The time required for the full exhaustion of 3.9 m^3 , at a minimum night and average day demands of 0.021 and 0.21 L/sec respectively would be approximately 8.0+4.4 = 12.4 hours.

Therefore, the age of the water within the proposed development is expected to be similar to that of the adjacent existing subdivision.

5 Sanitary Sewer Design

5.1 Design Criteria

The sewage flows were calculated using City of Ottawa design criteria as follows:

•	Unit Density (townhomes)	=2.7 person/unit
•	Average Residential Flow Allowance	= 280 L/person/day
•	Peaking Factor (Harmon Formula)	=1 + 14 / (4 + (P/1000) ^{0.5}) * K
•	Correction Factor, K	= 0.8
•	Full Flow Velocity	= 0.80 m/sec to 3.0 m/sec
•	Extraneous Flow Allowance	= 0.33 L/ha/sec

5.2 Proposed Sanitary Servicing

The sanitary sewer system is designed based on a population flow, and an area-based infiltration allowance. Using the above noted design criteria for the sanitary sewers, the sewage flows were calculated as follows:

[%]exp.

Population:

No of Units: Unit Type: Unit Density	= 47 = townhomes = 2.7 person/unit
47-Townhomes x 2.7 person/unit	= 126.9 persons
Sanitary Flow	
Average Residential Flow Allowance Correction Factor, K Peak Factor = 1 + 14 / (4 + (126.9/1000) ^{0.5}) * K	= 280 L/person/day = 0.8 = 3.37
Avg. Domestic Flow = 126.9 x 280 L/person/day x (1/86,400 sec/day) Peak Domestic Flow = 0.41 L/sec x 4.0	= 0.41 L/sec = 1.39 L/sec
Extraneous Flows	
Extraneous Flow Allowance Q Infiltration = 0.33 L/ha/sec x 1.2005 ha	= 0.33 L/ha/sec = 0.40 L/sec
Total Sewage Flow	
Total Sanitary Flow = 1.39 + 0.40	= 1.79 L/sec

The estimated peak sanitary flow rate from the proposed property is **1.79 L/sec** based on City of Ottawa Design Guidelines.

The permitted flow velocities within the sanitary sewer system range between 0.60 m/sec and 3.0 m/sec under full-flow conditions. All new sanitary sewers within the proposed site development will be 200mm in diameter therefore a sewer slope of 0.32% is necessary to meet the minimum velocity requirement of 0.60 m/sec. Similarly, the maximum permitted slope of a 200mm sanitary sewer would be 8.1% to meet the maximum 3.0 m/sec full-flow velocity.

A sanitary sewer design sheet was prepared to confirm the sanitary sewer pipe diameters and full-flow velocities. The selected pipe slopes range from between 0.4% and 3.2%, having full flow velocities in the range of 0.67 m/sec to 1.86 m/sec. The capacities of the sanitary sewers would therefore be between 21.1 L/sec and 59.6 L/sec.

5.3 Downstream Sanitary Sewer System

The proposed sanitary sewer within the development site will discharge to a 200mm sanitary sewer on Goward Drive. This sanitary sewer was installed during the development of Phase 12D of Morgan's Grant Subdivision. The development at 1158 Second Line Road falls within Phase 12 of this subdivision.

A review of the sanitary sewer design provided in the Master Servicing Study, indicated that the original sanitary drainage area and sewage parameters for Phase 12 were based on the following:

*exp

Original Morgan's Grant Phase 12 Sanitary Design

Area Residential Density Population Average Residential Flow Allowance Institution Flow Allowance Residential Peaking Factor Institutional Peaking Factor = 27.0 ha = 4.0 person/unit = 496 persons = 350 L/person/day = 50,000 L/ha/fay = Harmon Formula = 1.5

In Appendix B of the Master Servicing Study a sanitary sewer design sheet identifies a total peak flow from Phase 12 of 35.4 L/sec. The sanitary sewer design sheet from the MSS is provided in Appendix I, with the specific rows highlighted.

To confirm adequate capacity is available in the downstream system a review of the as-constructed conditions was completed and the peak sewage rates were re-calculated based on current City Guidelines.

Figure A6 in Appendix A illustrates Phase 12 area of Morgan's Grant. It consists of residential, institutional and open space uses. Using the City of Ottawa's urban building GIS layer, it was determined that Phase 12 contains 241 single family, 47 townhomes, and one school. The entire area is 27.9 hectares and is made up of 2.90 hectares of institutional, 2.74 hectares of open space, with the remaining 21.13 hectares being residential / municipal roadways.

The sewage flows for Morgan's Grant Phase 12, based on current City Guidelines were re-calculated as follows:

Townhomes Single Family Homes	= 47 = 241
Unit Density (Townhomes)	= 2.7 person/unit
Unit Density (Single Family Homes)	= 3.4 person/unit
47-Townhomes x 2.7 person/unit 241-Single Units x 3.4 person/unit	= 126.9 persons = 819.4 persons
Residential Population = 126.9 + 819.4	= 946.3 persons
Residential Sewage Flow	
Residential Flow Allowance Correction Factor, K Peak Factor = $1 + (14 / (4 + (P/1000)^{0.5})) * K$ Peak Factor = $1 + (14 / (4 + (946.3/1000)^{0.5})) * 0.8$	= 280 L/person/day = 0.8
Peak Factor = $1 + (2.81) * 0.8$	= 3.25
Avg. Domestic Flow = 946.3 x 280 L/person/day x (1/86,400 sec/day) Peak Domestic Flow = 3.07 L/sec x 3.25	= 3.07 L/sec = 9.97 L/sec

[%]exp.

Institutional Sewage Flow

Institutional Flow Allowance Institutional Peaking Factor Peak Institutional Flow = 28,000 x 2.9 x (1/86,400 sec/day) x 1.5	= 28,000 L/day/ha = 1.5 = 1.41 L/sec
Extraneous Flows	
Total Area Extraneous Flow Allowance	= 27.97 hectares = 0.33 L/ha/sec
Extraneous Flows = (0.33 x 27.97)	= 9.23 L/sec
Total Sewage Flow	
Total Sanitary Flow = 9.97 + 1.41 + 9.23	= 20.61 L/sec

The re-calculated peak sewage flows under developed conditions for the Phase 12 Morgan's Grant subdivision is calculated to be 20.6 L/sec. With the additional 1.79 L/sec of additional sewage flows from the proposed 47-unit development at 1158 Second Line Road the total peak sewage flow would be 22.4 L/sec. It should be noted that the original design was completed based on a higher average wastewater flow allowance. The City of Ottawa's residential flow allowance is now 280 L/person/day as per Technical Bulletin ISTB-2018-01. Therefore, the existing infrastructure is conservatively designed in accordance with today's standard guidelines. It can be concluded that the existing sanitary sewer infrastructure in Morgan's Grants Phase 12 subdivision will be adequate to service the additional peak sanitary flows from the 1158 Second Line Road development.

6 Stormwater Management

6.1 Design Criteria

The stormwater system was designed in conformance with the latest version of the City of Ottawa Design Guidelines (October 2012). Section 5 "Storm and Combined Sewer Design", and Section 8 "Stormwater Management" from the design manual were referenced.

The allowable release rate for the site is limited to a 2-year storm event using a time of concentration of 10 minutes and a runoff coefficient of 0.40 as per Section 5.1.5.1 of the SDG002. Flows in excess of the 2-year and up to the 100-year storm event will be detained onsite.

6.1.1 Minor System Design Criteria

- The storm sewers have been designed and sized based on the Rational Method and the Manning's Equation under free flow conditions for the 2-year storm using a 10-minute inlet time.
- Inflow rates into the minor system are limited to 100 L/sec, based on the capture rate established for this site as per the Stormwater Site Management Plan for Morgan's Grant Phase 12D. The design assumed five (5) inlets at 20 L/sec per inlet.
- The storm sewer within the Morgan's Grant Subdivision were designed as a minor (pipe) and major drainage (overland) system, or a dual drainage concept. The minor system was designed to convey runoff based on the 5-year storm under free-flow conditions. Inlet control devices (ICD's) are used within the Morgan's Grant Subdivision to limit the capture rate to the minor system.
- Hydraulic Grade Line (HGL) Analysis within the Morgan's Grant Subdivision was prepared based on the 100-year City of Ottawa IDF parameters. The HGL analysis was based on 100-year captured flows.
- The 100-year HGL elevation in the receiving storm sewer was taken from the Morgan's Grant Subdivision Stormwater report and used as the boundary condition for the establishment of an onsite HGL analysis.

6.1.2 Major System Design Criteria

- Rear yard ponding is permitted as per City of Ottawa Guidelines, up to a maximum of 300mm in depth, however the volume cannot be accounted for.
- The maximum permitted 100-year ponding depth on the private streets is 350mm.
- The product of the depth of flow x velocity must be less than 0.6 m/sec under the 100-year storm as per City Guidelines.
- Overland Flow is permitted to be discharged to the Hydro corridor, with not more than 126 m³ of runoff from the proposed site, as per the Morgan's Grant, Phase 12D SWM report.
- The major system (roadway) has been designed to convey surface runoff easterly to the Hydro One corridor.
- A minimum of 150mm of vertical clearance must be provided between the spill elevation on the street and the ground elevation at the building.

[%]exp.

6.2 Runoff Coefficients

Average runoff coefficients for all catchments were calculated using PCSWMM's area weighting routine. This modelling software has a GIS engine which allows for catchment (or polygon) definition including attributes. The runoff coefficients for all catchments were area weighted to derive at average runoff coefficients based on hard surfaces (concrete or asphalt) having an imperviousness of 100%, soft surfaces (landscaping surfaces) having a zero percent imperviousness. The conversion from an imperviousness percent to a runoff coefficient was taken as $C = (IMP^*0.70) / 100 + 0.20$, with the imperviousness (IMP) as a percentage.

The average runoff coefficient for the overall site area under post-development conditions was calculated as 0.64, whereas the pre-development average runoff coefficient was less than 0.10. Runoff coefficients for individual catchment ranged from 0.39 to 0.92.

6.3 Calculation of Allowable Release Rate

To control runoff from the site it will be necessary to limit post-development flows to the allowable capture based on previous Morgan's Grant, Phase 12D design.

The allowable release rate from the site was set just below the design peak flow rate for the minor system. From the original storm design sheet, the storm sewer was sized based on a 5-year level of service with a runoff coefficient of 0.50 and a time of concentration of 20 minutes. The following parameters will be used to determine the allowable release rates from the proposed site to the existing sewer on Goward Drive, using the Rational Formula.

		where:			
			Qall	=	Peak Discharge (L/sec)
			С	=	Runoff Coefficient (C=0.50)
			I	=	Average Rainfall Intensity for return period (70.25 mm/hr)
				=	732.951/(Tc+6.199) ^{0.810} (5-year)
			Тс	=	Time of concentration (20 mins)
			А	=	Drainage Area (1.20 hectares)
Qall	=	2.78 * 0	C*I*A		
Qall	=	2.78 * 0	.50 * 70	.25 * 1.2	0
Q_{ALL}	=	117.2 L	/sec		

The peak design flow, based on the 5-year storm, was estimated at 117.2 L/sec. This peak storm flow was taken from the third row of the original storm design sheet for the Morgan's Grant Phase 12D, and is attached for reference in Appendix H.

Although the storm sewer system was based on this peak flow, 100 L/sec (or 5 inlets at 20 L/sec/inlet) was used as the minor system capture rate. Since the captured rate of 100 L/sec was used in the Hydraulic Grade Line Analysis for the downstream storm sewers in Morgan's Grant, the allowable discharge rate to the storm sewer system from the site was limited to 100 L/sec. Runoff in excess of the 100 L/sec capture rate will be detained onsite within a dry detention area or will overflow and be stored within the Hydro corridor.

6.4 **Pre-Development Conditions**

The proposed site is 1.2 hectares in area and is currently undeveloped, except for a single residential home. This home will be demolished for re-development of the site. The topography of the site is generally in an easterly direction, however a small area along Second Line flows westerly towards this roadway. A pre-development drainage plan for the site was prepared using PCSWMM. The watershed delineation routine was used to establish the catchment areas, based on the Digital Raster Acquisition Project of Eastern Ontario (DRAPE) 2m x 2m digital terrain models (DTM). The DTM images were loaded into PCSWMM and the watershed delineation tool was used to establish overland flow routes and catchments. Figure A8 in Appendix A, illustrates the pre-development catchment for the property, along with the catchment tributary to the culvert at Goward Drive. This catchment was generated to allow for sizing of new culverts under the proposed roadways, and to confirm the allowable discharge rates to Second Line Road. The pre-development runoff coefficient for the site was determined to be 0.23.

Using a time of concentration of 20 minutes and an average runoff coefficient of 0.23, the predevelopment release rates from the site were estimated at 40.1 L/sec, 54.2 L/sec and 92.5 L/sec for the 2-year, 5-year and 100-year storms respectively. Based on Figure A7, the estimated pre-development flows to each outlet (either Second Line Road or Hydro Corridor) are summarized in Table 6-1 below. Runoff rates based on the Rational Method and PCSWMM compare well.

Outlet Location	100-year Pre-Development Peak Flow (L/sec)			
Guiler Escalion	Rational Method	3hr Chicago Storm (PCSWMM)		
To Second Line Road	7.4	22.9		
To Hydro Corridor	85.1	81.8		
Totals	92.5	104.7		

Table 6-1: Summary of Pre-Development Peak Flows from Proposed Site

6.5 **Proposed Conditions**

Due to the re-development of the site the overall post development runoff coefficient will increase over existing conditions. The increase in runoff is due to an increase in imperviousness levels (additional hard surfaces, roof areas and hard landscaping). The post-development average runoff coefficient for the site was calculated as 0.64, based on an average runoff coefficient of 0.20 for grassed areas and 0.90 for hard surfaces.

The proposed development will consist of 47 townhomes complete with a 6.7m wide roadway. Each townhome will have either a single or shared double asphalt driveway. The storm sewers will be directed easterly and then outlet northerly to the existing 450mm and 525mm storm sewers on Goward Drive. The roadways will be sloped easterly with low points being located at the easterly limits adjacent to a proposed dry retention area. Overland flow from the roadways will be directed to this retention area, which will have a controlled outlet connected into the onsite storm sewer system. Figure A9 in Appendix A illustrate the storm drainage system and associated catchments.

[%]ехр.

6.6 Design Methodology

The methodology for the design stormwater management portion of the storm sewer system is as follows:

- Design storm sewer system based on 2-year storm using the Rational Method.
- Restrict inflow rates to the minor system using inlet control devices installed in catchbasins.
- Place appropriate number and the location of inlets to ensure depth of flow and spread of flow meets City guidelines.
- Meet allowable discharge rate to the Goward Drive Storm sewer of not more than 100 L/sec.
- Ensure no more than 126 m³ of stormwater volume discharges to the Hydro corridor under the 100-year storm event.
- Ensure that resultant 100-year hydraulic grade line does not raise closer than 300mm from the underside of the proposed building footing (USFs).
- Develop a dynamic hydrologic/hydraulic model that provided peak flow hydrographs and water surface profiles which routes runoff from catchments to the outlet.

The site is designed using a dual drainage stormwater model. Dual drainage systems consist of two separate and distinct networks, being a) the minor (or storm sewer) system and b) the major (or street) system. Storm sewer inlets intercept runoff from catchments and links are created between the major system and the minor system.

For this analysis all minor and major system components were included in the PCSWMM model, including inlet control devices (ICDs) in catchbasins, inlet control for catchbasins in flow-by conditions, and storage for catch basins in ponding conditions.

Rating curves were developed for ICD's based on manufactures specifications, for surface and curb-inlet type catchbasins, and for surface ponding areas.

6.7 Storm Sewer Design

Average runoff coefficients were calculated for all drainage areas for sizing of the storm sewers. Postdevelopment drainage areas are illustrated on Figure A8 in Appendix A. Average runoff coefficients were calculated for each catchment and inlet times of 10 minutes were used as per City of Ottawa Guidelines.

A minimum 300mm diameter storm sewer is proposed for the main line storm sewer capturing surface runoff. All new storm sewers were sized for the 2-year peak flow. Design sheets for the 2-year sizing of the storm sewer system are included in Appendix E.

6.8 Hydrology

PCSWMM was used to create a dual drainage hydrologic/hydraulic model of the storm sewer system. The model accounts for both the minor system (storm sewer) and the major system (roads). Catchbasins were modelled in either a flow-by condition or in a ponding condition. For catchbasins in flow-by conditions inlet capture curves were developed based on the type of curbs used (mountable curb in this

[%]exp.

case), and the inlet type (either curb inlet catchbasins or surface inlet catchbasins). Ponding areas were modelled as storage nodes with surface ponding represented by area-depth curves above the inlet control devices (ICDs) located at the outlet pipe invert. Calculations of runoff was completed based on the PCSWMM's EPA SWM 5 engine. Catchment parameters were taken from City of Ottawa's SDG002 Design parameters. The following design parameters and assumptions are noted as follows:

- Infiltration losses based on Horton Equation as per City of Ottawa SDG002.
- Impervious and pervious depression storage as per City of Ottawa SDG002.
- 5-year, 3-hour Chicago storm used to review minor system design based on Rational Method.
- 100-year, 3-hour Chicago storm used assess impact of major event and determine peak flows and depth of runoff.
- Runoff coefficient for all subcatchments were determined using area weighting routine and based on actual hard and soft surface areas. Runoff coefficients were calculated from the impervious levels using the relationship $C = (IMP \times 0.7) + 0.20$.
- Subcatchment areas were derived tributary to each surface inlet (catchbasin).
- Subcatchment widths are equal to the subcatchment area divided by the overland flow path length. As per City Guidelines, the subcatchment width is equal to 2 x length or two-sided catchments.
- Inflows from all catchbasins were restricted with inlet control devices (ICDs) necessary to ensure allowable capture rate of not more than 100 L/sec was maintained.
- The volume of surface ponding at low-points were calculated using the prism-formula (V=1/3*A*H).

6.8.1 Catchment Parameters

Figure A8 in Appendix A illustrates the post-development storm drainage system. Flow path lengths for each subcatchment was determined based on the average overland flow path length, with the catchment width being the area/length. Subcatchment slopes were set at 2% for front yards, and 4% for backyards. The following summarizes the general subcatchment parameters used:

Table 6-2: General Subcatchment Parameters

Parameter	PCSWMM Parameter	Value
Infiltration Loss Method		Horton
Maximum Infiltration Rate	Max. Infil. Rate	76 mm/hr
Minimum Infiltration Rate	Min. Infil. Rate	13.2 mm/hr
Decay Constant (1/hr)	Decay Constant	4.14
Manning N (Impervious)	N Impev	0.013
Manning N (Pervious)	N Perv	0.10
Depression Storage – Pervious Surfaces	Dstore Imperv	1.57 mm
Depression Storage – Impervious Surfaces	Dstore Perv	4.67 mm
Zero Percent Impervious	Zero Imper	25%
Subcatchment Slopes	Slope	2% front yards 4% rear yards

Figure 1 and Table 6.3 below presents the individual subcatchment parameters that were developed and used in the PCSWMM model.

[%]exp.

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Figure 1 - Post Development Catchments

Table 6-3: Post-Development Subcatchment Parameters

Name	Outlet	Area (ha)	Width (m)	Flow Path Length (m)	Slope (%)	IMP (%)	Cavg
S1	Outfall_Second_Line	0.029	26.4	11	2	72.8	0.71
S10	Outfall_Hydro_Corridor	0.0134	44.7	3	2	0	0.2
S11	Outfall_Hydro_Corridor	0.0251	83.7	3	2	0	0.2
S12	CB1	0.0916	83.3	11	4	40.7	0.48
S13	CB6-MAJ	0.1039	148.4	7	2	84.4	0.79
S14	CB2	0.0759	63.3	12	4	42.4	0.5
S15	CB5-maj	0.0607	55.2	11	2	87.1	0.81
S16	Outfall_Second_Line	0.0057	2.9	20	2	29.4	0.41
S17	Outfall_Second_Line	0.0056	18.7	3	2	29.4	0.41
S18	CB9-MAJ	0.0816	74.2	11	2	86.7	0.81
S19	CB10-MAJ	0.0922	83.8	11	2	85.6	0.8
S2	CB3	0.0179	19.9	9	2	82.1	0.77
S20	CB13	0.174	1740	1	4	44.2	0.51
S3	CB3	0.0615	68.3	9	2	87.8	0.81
S4	CB4-MAJ	0.0168	14.0	12	2	69	0.68
S5	CB8-MAJ	0.1704	568	3	4	55.6	0.59
S6	CB12-MAJ	0.1034	94.0	11	2	83.1	0.78
S7	CB8-MAJ	0.0175	35.0	5	2	67	0.67
S8	CB7-MAJ	0.0251	25.1	10	2	70.4	0.69
S9	Drypond	0.0296	11.8	25	2	0	0.2

*exp.

6.8.2 Storage Node Parameters

All catchbasin will be equipped with (ICDs) to ensure that captured flows do not exceed the allowable rates, and therefore ponding will occur at low points. Catchbasins with flow-by conditions were established as storage nodes however no surface ponding volume was assigned. For storage nodes at low points a stage-volume relationship was assigned based on the maximum depth and area of ponding. Rating curves at ponding locations are provided in Table E8 of Appendix E.

Name	¹ Invert (m)	Rim (m)	Depth (m)	Storage Curve	Coeff	Exp	Constant (m²)	Curve Name
CB1	99.73	101.73	2	FUNCTIONAL	0	0	0.36	*
CB10	99.41	101.41	2	TABULAR	0	0	0	CB10-STORAGE
CB12	99.48	101.48	2	FUNCTIONAL	0	0	0.36	*
CB2	100.1	102.1	2	FUNCTIONAL	0	0	0.36	*
CB3	100.85	102.85	2	TABULAR	0	0	0	CB3-PONDING
CB4	100.84	102.84	2	FUNCTIONAL	0	0	0.36	*
CB5	99.84	102.51	2.67	FUNCTIONAL	0	0	0.36	*
CB6	99.13	101.13	2	TABULAR	0	0	0	CB8-PONDING
CB7	99.12	101.12	2	TABULAR	0	0	0	CB7-PONDING
CB8	99.2	101.2	2	TABULAR	0	0	0	CB8-PONDING
CB9	100.99	102.99	2	FUNCTIONAL	0	0	0.36	*
Dry Pond	98.663	100.8	2.137	TABULAR	0	0	0	DRY-POND
Hydro Corridor	100.8	101	0.2	TABULAR	0	0	0	PARK-STORAGE
Note 1. The invert	of the stora	ae node fo	r catchbas	sins is 0.6m below th	e outlet el	levation.	(i.e. sump el	evation)

Table 6-4: Storage Node Parameters

6.8.3 Dry Retention Pond

A dry retention area will be located at the easterly edge of the site and will collect and detain stormwater runoff for large storm events. The size of the retention area is large enough to contain the 100-year event, having a maximum volume of 106 m³ at its spill elevation. During the 100-year event the maximum modelled volume would be 102 m³ at a depth of 0.73m. The flowing summarizes the pond parameters used.

•	Elevation and area at top of detention area	=200 m ² @ 100.85m
•	Elevation and area at bottom of detention area	=50 m ² @ 100.0m
•	Emergency spill elevation to park	=100.85m

This detention area will not be designed for quality treatment of runoff. Runoff form the storm sewer system will be discharged to the downstream stormwater facility within Phase 12 of Morgan's Grant. The facility was designed for a normal level of water protection (70% TSS)

A copy of certificate of Approval for this stormwater facility is provided in Appendix I for reference. Additionally, the Operation and Maintenance Manual for this stormwater facility was provided by the City of Ottawa, which indicated that water quality sampling performed in 2008, 2009 and 2010, resulting the average TSS removal efficiencies of 91%, 87% and 75 % respectively.

*exp

6.8.4 Outlet Node (ICD) Parameters

All catchbasins and the ditch inlet outletting from the dry retention area will be equipped with inlet control devices to ensure that the captured rate entering the Goward Drive storm sewer is less than the allowable rate of 100 L/sec.

Consistent with City guidelines, the ICDs for the rear-yard areas will be located within the roadway catchbasins rather than located in the rear yard catchbasin.

Table 6-5 below summarizes the inlet control devices used in the catchbasin or manholes. Additional information on the outlet node parameters used for modeling of the inlet capacity at flow-by conditions is presented in proceeded sections of this report. Table E10.1 and E10.2 in Appendix E provides the rating curves for various IPEX Tempest inlet control devices.

Name	Location	Туре	Rating Curve	Curve Name	Max Flow [100yr] (L/sec)
C11-ICD	CB10	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	5.91
C3-ICD	CB3	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.73
CB12-ICD	CB12	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.73
CB14-ICD	CB13	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	7.76
CB15-ICD	CB1	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.9
CB4-ICD	CB4	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	5.3
CB5-ICD	CB5	ICD	TABULAR/DEPTH	ICD-IPEX-TYPEA	12.62
CB6-ICD	CB6	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	5.64
CB7-ICD	CB7	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.2
CB8-ICDA	CB8	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.16
CB9-ICD	CB9	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	6.73
POND-ICD	Drypond	ICD	TABULAR/DEPTH	ICD-IPEX-LMF80	8.52

Table 6-5: Outlet Node (ICD) Parameters

6.9 Dual Drainage Modelling Methodology

6.9.1 Model Development

The subcatchment (or storm drainage areas) were developed in Autodesk CIVIL 3D and imported into PCSWMM. PCSWMM was then used to generate impervious levels for each subcatchment with the area-weighting command. Storm sewers and manholes were imported from CIVIL 3D as GIS shape files and the node and conduit elevations and sizes were inputted based on the preliminary sizing completed with the Rational Method analysis. Connections between the catchbasin nodes and the sewer main were converted to OUTLETS to represent the ICDs. Once all the minor system components were inputted, the major system was defined connecting inlets.

The major system was represented as irregular conduits based on a half-street cross-section. The transect editor in PCSWMM was used to establish this transect, which was applied to the majority of the major system. In addition, swale and roadway spill irregular transects were used to represent the overland flows. In flow-by conditions all subcatchments were linked to major system nodes place just upstream (u/s) of the catchbasin storage nodes. Between the u/s node and the catchbasins were represented by a PCSWMM OUTLET. These outlets were established with rating curves to represent the approach-flow and depth, and the inlet capture rate. Additional information on the rating curves under flow-by and ponding conditions is provided in proceeding sections of this report.

[%]exp.

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Figure 2 – Model Schematic Showing Minor and Major System Components

Figure 2 above presents a portion of the PCSWMM model which demonstrates the object connectivity. The subcatchment are illustrates as white polygons, with their area number, area in hectares and percent imperviousness labelled. The yellow lines and circles represent the storm sewer system and manholes, with purple lines representing the OUTLET links (or ICDs). The dashed red lines represent the major system street conduits. Catch basins are shown as red squares and looking closely you can see two OUTLETS connecting the CBs to the storm sewer and the major system nodes. Downstream of each CB represent the ICD, whereas upstream of the CB storage nodes the OUTLET represents the inlet capacity. At ponding locations, the storage nodes were defined based on the depth to the ICD. At all locations the depth from the top of grate to the outlet pipe is 1.4m, therefore the storage of stormwater will only occur starting at a 1.4m depth. The storage rating curves at each catchbasin was modeled similar to the illustration in Figure 3 below.

Figure 3 – Representation of Rating Curves for Modelling of Storage at Ponding Locations

6.9.2 Storm Events Modelled

As this design submission is intended for establishing Draft Plan conditions, seven (7) storm events were modelled at this time. At a later stage during detailed design additional storm distributions and durations will be modelled, however at this stage, the following storm were modelled.

- 3-hour 2-year Chicago storm (timestep 10 mins)
- 3-hour 5-year Chicago storm (timestep 10 mins)
- 3-hour 100-year Chicago storm (timestep 10 mins)
- 3-hour 100-year + 20% Chicago storm (timestep 10 mins)
- Historical storms occurring July 1, 1979, Aug 4, 1988, August 08, 1996

6.9.3 Inlet Control at Flow-By Conditions

The flow-by capture curves are used when an inlet is not located in a ponding area. In this case only a portion of the overland flow is captured, while the remaining flow continues downstream (bypassed). Although the City of Ottawa does not specifically provide rating curves for catchbasins under flow-by conditions, they do provide gutter flow rate curves for either barrier curbs (SC1.1 or OPSD600.110) or mountable curb and gutter (SC1.3 or OPSD 600.020).

The gutter flow rates are provided at longitudinal road slopes of 2%, 4%, 6%, and 8% for flow spreads ranging between 0m to 3m. Along with the gutter flow rates, the inlet capacities of the surface inlets are provided at various spreads.

The inlet capacities of the curb inlet catchbasins were derived from Appendix 7-A.14 through 7-A.17. These pages provide the capture rates (Qc) of the inlets at various approach flows (Qt). Both rating curves for surface type inlets and curb-inlet type catchbasins were based on a roadway with a 3.0% cross fall and longitudinal slopes of 2%. The following Table 6-6 below summarizes the rating curves used for the curb inlet catchbasins in a flow-by condition.

Approach Flow (L/sec)	Total Spread, T (m)	Depth of Flow at Gutter (m)	Inlet Capture Rate (L/sec)
0	0.000	0.000	0
5	0.725	0.022	3
10	0.940	0.028	5
50	1.718	0.052	12
100	2.228	0.067	16
125	2.423	0.073	18
150	2.594	0.078	20
200	2.890	0.087	23
250	3.142	0.094	26

	Table 6-6: Ra	ating Curves f	or Curb Inlet	Catchbasin in Flow-B	y Condition ((3% cross fall.	2% slope
--	---------------	----------------	---------------	-----------------------------	---------------	-----------------	----------

*exp

The following Table 6-7 below summarizes the rating curves used for the surface catchbasins with a curb & gutter type curb in a flow-by condition.

 Table 6-7: Rating Curves for Surface Catchbasin with Mountable Curb & Gutter in Flow-By

 Condition (3% cross fall, 2% slope)

Approach Flow (L/sec)	Total Spread, T (m)	Depth of Flow at Gutter (m)	Inlet Capture Rate (L/sec)
0	0.000	0.006	0
5	0.716	0.023	13
10	0.933	0.029	17
50	1.715	0.053	33
100	2.226	0.068	45
125	2.420	0.074	50
150	2.592	0.079	54
200	2.887	0.088	61
250	3.140	0.096	61

Tables E9 and E10 in Appendix E provides additional information on the development of the rating curves for the catchbasin in flow-by conditions. This exercise was completed since PCSWMM does not have the ability to provide Approach Flow versus Capture Flow at flow-by conditions. PCSWMM requires a depth versus captured flow rate instead.

6.10 Modelling Results

The following summarizes the results of various storm events to ensure the design criteria is met. This includes: 1) total discharge rate to Goward Drive storm sewer is less than 100 L/sec, 2) Total overland flow discharge to Second Line Road is less than pre-development levels, and 3) Maximum permitted overflow volume to Hydro Corridor cannot exceed 126 m³, 4) maximum stored volume in dry pond not to exceed 106m³ at 0.85 metre depth in the 100-year event.

Storm Event	Outfall_Second_Line - Max. Flow (L/sec)	Outfall_Goward_Storm - Max. Flow (L/sec)
Chicago_3h_2yr	5.8	73.4
Chicago_3h_5yr	9.9	83.0
Chicago_3h_100yr	18.8	94.5
Historic_Jul1-79	22.9	96.0
Chicago_3h_100yr + 20%	16.7	93.6
Historic_Aug4-88	12.2	87.6
Historic_Aug8-96	11.3	92.8

Table 6-8: Peak Flows at Outfalls

6.10.1 Major System Flows / Depth on Streets

In order to confirm the design criteria for the major system has been met, the product of the depth of flow and the velocity was reviewed. In addition, the allowable spread of flow in the 100-year event must not exceed half the roadway. The data form PCSWMM for the major street segments are showed below for the 100-year storm. As shown below in Table 6-9 the velocity x depth is less than the required 0.60 for all roadway segments. In addition, the City guidelines requires the during the minor system (2-year) storm, the maximum spread cannot exceed half the lane width. Therefore, based on a 6.7m total roadway, 1/2 of one lane would be 1.68m. Table 6-10 below shows that for all segments the spread would be less than the permitted 1.68m.

Road Segment	Max. Flow (L/sec)	Max. Spread (m)	Max. Velocity (m/s)	¹ Max/Full Depth (ratio)	Velocity x Depth
C7_2-S	42.5	2.21	0.71	0.33	0.035
C4_5-S	29.87	1.68	0.69	0.25	0.026
C8_5-S	75.91	2.14	1.10	0.32	0.053
C9-S_1	3.13	0.54	0.74	0.08	0.009
C9-S_2	2.56	1.47	0.22	0.22	0.007
C15-S	34.49	2.08	0.57	0.31	0.027
Note 1: Max/Full Dep	th is the percentage of	the actual conduit de	epth (i.e. percentag	e of 150mm curb	depth)

Table 6-9:	Review of Ma	ior Svstem	Depth and	Velocity.

Table 6-10:	Review of Minor	System Flow	Spread Criteria
-------------	-----------------	-------------	------------------------

Road Segment	Max. Spread (m)
C7_2-S	1.273
C4_5-S	1.005
C8_5-S	1.206
C9-S_1	0.335
C9-S_2	0.737
C7_2-S	1.273

6.11 Hydraulics

6.11.1 Hydraulic Grade Line Analysis

A hydraulic grade line (HGL) analysis was completed to confirm the 100-year water surface profile will be at least 300mm below the proposed underside of footing elevations of the units.

The downstream boundary condition within the Goward Drive storm sewer was taken from the "Morgan's Grant – Stage 12" Master Design Sheet, which is included in Appendix I. The following summarizes the boundary condition used.

• 100-yr HGL elevation at STMH 907 (connecting manhole) = 98.20m

[%]exp.

A steady-state HLG analysis was completed based on free-flow conditions. Free-flow conditions would be a more conservative approach to ensure that the 100-year levels due to surcharging would still have the appropriate clearance to the underside of footing elevations.

Based on this analysis, we can confirm the maximum 100-yr HGL meet the City's clearance requirements. Using captured flows rather than free-flow conditions would result in the HGL being within the storm sewer pipe and not raise above the obvert of the storm sewer system

In addition, the maximum 100-year HLG was plotted from PCSWMM, based on a fixed boundary condition of 98.20m. A profile through the longest section of the site storm sewer system is shown below in Figure 4. It is shown that during the 100-yr event the maximum water surface elevations will remain within the storm sewer system.

Figure 4 – 100-yr HGL Profile

*exp.

7 Erosion and Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- extent of exposed soils shall be limited at any given time,
- exposed areas shall be re-vegetated as soon as possible,
- filter cloth shall be installed between frame and cover of all new catch basins and catch basin manholes,
- filter cloth shall be installed between frame and cover of the existing catch basins and catch basin manholes as identified on the site grading and erosion control plan,
- light duty silt fencing will be used to control runoff around the construction area. Silt fencing locations are identified on the site grading and erosion control plan.
- visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations,
- In some cases barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed,
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract,
- during the course of construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer, and
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805, and City of Ottawa specifications.

8 Conclusions

This report addresses stormwater runoff from the proposed development located at 1158 Second Line Road in the City of Ottawa. The proposed 1.2-hectare development by Theberge Homes is a comprised of forty-seven (47) townhome units. The following summarizes the servicing and stormwater requirements for the site:

- The allowable capture rate from the proposed site was based on the minor system capture rate established as part of the Morgan's Grant Subdivision Phase 12D which was set at 100 L/sec. This capture rate was set just below the 5-year rate for the 1.2-hectare site using a time of concentration of 20 minutes and a runoff coefficient of 0.50, which was calculated at 117.2 L/sec.
- The 100-year pre-development peak flow rate based on the Rational Method was estimated at 7.4 L/sec and 85.1 L/sec to the Second Line ditch and the Hydro Corridor respectively. Dynamic modelling of pre-development flows resulted in peak flows of 27.2 L/sec & 92.7 L/sec for the same storm events.
- Post-development runoff coefficient for the site was calculated at 0.64, with 2-year, 5-year and 100year peak flows of 189.4 L/sec, 256.8 L/sec and 517.7 L/sec calculated based on the Rational Method. These are total combined peak flows offsite to the west (Seocnd Line) and to the east (Hydro corridor)
- Inlet control devices (ICDs) will be used to control runoff to the allowable discharge rate of 100 L/sec. The Inlet control devices will be installed in all catchbasins as shown on the Site Servicing plan and will control peak flows to a maximum 100-year rate of 94.4 L/sec based on a dual drainage dynamic model.
- Based on dynamic modelling, the total minor system capture rate to the Goward Drive Storm sewer is 73.4 L/sec, 82.9 L/sec and 94.4 L/sec for the 2-year, 5-year and 100-year storm events.
- A dry detention area for stormwater will be used to control runoff. This dry pond will be used for quantity control of runoff only and have a maximum volume of 106 m³ at a depth of 0.85 metres. The 100-year volume was calculated at 102.8 m³.
- The proposed development has an estimated peak sewage flow of 1.79 L/sec based on City of Ottawa Guidelines. A new 200mm sewer will be installed with a minimum slope of 0.40% having a full flow capacity of 21.6 L/sec, and full flow velocity of 0.67 m/sec. The sanitary sewer will be connected into the existing municipal sanitary sewer on Goward Drive. A preliminary review of the downstream capacity in the sanitary sewers in Morgan's Grant indicate adequate capacity is available.
- A hydraulic water model was developed to determine the pressures available under peak hour and maximum day plus fire flow conditions. Two boundary conditions were provided by City staff for modelling. Two connections to the existing city water distribution system are necessary as there will be more that 50 residential units on a single watermain feed.
- The calculated minimum and maximum working pressures anticipated within the development is between 51.3 psi and 56.0 psi under peak hourly conditions. The estimated fire flow available at the three proposed hydrants is ±147 L/sec, ±165 L/sec and ±160 L/sec. The total contribution of flow from the three hydrants onsite is an excess of the required fire flow. The maximum estimated fire flow requirement based on the FUS was calculated at 167 L/sec for the largest 6-unit townhome block.
- All units have an underside of footing elevation a minimum of 0.30 metres above the storm sewer hydraulic grade line. An overland flow route is provided for the major storm event.

[%]exp.

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix A – Figures

Figure A1: Site Location Plan
Figure A2: Draft Plan & Easement Plan
Figure A3: Water Model Layout, Boundary Condition #1
Figure A4: Water Model Layout, Boundary Condition #2
Figure A5: Sanitary Drainage Areas
Figure A6: Offsite Sanitary Drainage – Morgan's Grant Phase 12
Figure A7: Pre-Development Catchment Areas
Figure A8: Post-Development Catchment Areas
Figure A9: Typical Road Cross-Section

*exp.

exp Services inc.			I HOO SLOOND LINE NOAD	1:10000
100-2650 Queensview Drive Ottawa, ON K2B 8H6	• exp.	DRAWN SAB	THEBERGE HOMES	SKETCH NO
www.exp.com	•/ •	DATE NOV 2018	SITE LOCATION	FIG A1
		FILE NO 245003	PLAN	

NOV FILE NO 245

	1158 SECOND LINE ROAD	SCALE 1: 750
G	THEBERGE HOMES	FIGURE NO
2018	POST-DEVELOPMENT	FIG A8
5003	CATCHMENTS PLAN	

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix B – Water Tables

Table B1: Water Demand ChartTable B2: Calculation of Fire Flow Requirements (Block 1)Table B3: Calculation of Fire Flow Requirements (Block 2)Table B4: Calculation of Fire Flow Requirements (Block 3)Table B5: Calculation of Fire Flow Requirements (Block 4)Table B6: Calculation of Fire Flow Requirements (Block 5)Table B7: Calculation of Fire Flow Requirements (Block 6)Table B8: Calculation of Fire Flow Requirements (Block 7)Table B9: Calculation of Fire Flow Requirements (Block 7)Table B9: Calculation of Fire Flow Requirements (Block 8)Table B10: Calculation of Fire Flow Requirements (Block 9)Table B11: Fire Flow Contributions Based on Hydrant Spacing

[%]ехµ

TABLE B1: Water Demand Chart

Г

Location: Project No: Designed by: Checked By: Date Revised: <u>Water Consumption</u> Residential =	1158 Old Se OTT-002450 M. Ghadbar J.Fitzpatrick November 2 350	cond Line 103 1 2018 L/cap/d	ау								Population Single Fami Semi-Detal Duplex Townhome Bachelor A 1 Bedroom 2 Bedroom 3 Bedroom Avg. Aptart	Densities ily nced e (Row) partment Apartment Apartment Apartment ment	3.4 2.7 2.3 2.7 1.4 1.4 2.1 3.1 1.8	person/uni person/uni person/uni person/uni person/uni person/uni person/uni	t t t t t t t t	exp.
				No. of I	Units							-	Demands in (L	/sec)	-	
	Singles/Semis/Towns Apartments						Maximum Demand (L/day)	Peak Hourly Demand (L/day)								
Proposed Buildings	Single Familty	Semi- Detached	Duplexz	Townhome	Bachelor	1 Bedroom	2 Bedroom	3 Bedroom	Avg Apt.	Total Persons (pop)	Average Demand (L/day)	5.79 x Avg Day	8.73 x Avg Day	Avg Day (L/s)	Max Day (L/s)	Max Hour (L/s)
Proposed Buildings																
J-1				3						8.1	2835	16,402	24,745	0.03	0.19	0.29
J-2				12						32.4	11340	65,608	98,978	0.13	0.76	1.15
J-3				13						35.1	12285	71,075	107,227	0.14	0.82	1.24
J-4				5						13.5	4725	27,336	41,241	0.05	0.32	0.48
J-5				3						8.1	2835	16,402	24,745	0.03	0.19	0.29
J-6				4						10.8	3780	21,869	32,993	0.04	0.25	0.38
J-11				1						2.7	945	5,467	8,248	0.01	0.06	0.10
J-18				6						16.2	5670	32,804	49,489	0.07	0.38	0.57
Sub Total for 1158 Second Line Road =				47						126.9	44,415	256,963	387,665.22	0.51	2.97	4.49

TABLE B2: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 1

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		515	1020.0 m2	
Floor Areas (A)	Floor 1		515	1030.0 III-	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				10,591
Fire Flow (F)	Rounded to nearest 1,000				11,000

Task	Options		Multiplier Input Value Used (L/min)								Fire Flow Change (L/min)	Fire Flow Total (L/min)	
	Non-combustible		-25%	, D									
Choose	Limited Combustible		-15%	Ď									
Combustibility of	Combustible		0%				Limited	l Combustibl	е		-15%	-1,650	9,350
Building Contents	Free Burning		15%)	1								
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%	, D	No Sprinkler						0%	0	9,350
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	Ď		Not Standard Water Supply or Unavailable					0%	0	9,350
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%	Ď		Net Fully forest for the N/A						0	9.350
	Not Fully Supervised or N/A	0%			ľ	iot rully 3	upervised of	N/A		070	Ū	9,000	
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	2.4	1	0 to 3	Type A	13.8	2	27.6	1A	22%			
	Side 2	32	5	30.1 to 45	Type A	13.8	2	27.6	5A	5%			
	Front	13.4	3	10.1 to 20	Type A	23	2	46	3B	13%	49%	4,582	13,932
	Back	21	4	20.1 to 30	Type A	36	2	72	40	9%			
	Duck	21	4	20.1 (0 50	туре А	50	Z	al Poquirod	Fire Flow Pr	o //o	Noarost	1 000 L /min -	44.000
Obtain Daminad							10	aritequireu	Tot	ol Doguirod	Eiro Elow (1,000 L/mm =	14,000
Obtain Required	0				-1 -1 40 000	L has in (4)	271/222	han a share 1177				RFF, $L/Sec =$	233
FILE FIOW	- Ca		ai Fire Fi	low be Cappe	ed at 10,000	L/min (10	or L/sec)	based on "II			TB-2018-02	2°, (yes/no) =	Yes
							101	al Required	Fire Flow (R	FF). If RFF	< 167 use	RFF (L/sec) =	167
Exposure Charges for Type A	Exposing Walls of Wood Fram Wood-Frame or non-conbustibl	e Constru e	iction (fro	m Table G5)									
Type B	Ordinary or fire-resisitve with ur	protected	openings										
Type C Tyme D	Ordinary or nire-resistive with semi-protected openings												
туре D	Ordinary of life-resistive with bi	ank wali											
Conditons for Separat	ion												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B3: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 2

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building Frame (C)	Ordinary Construction	1			
	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		515	1020.0 m²	
Floor Areas (A)	Floor 1		515	1030.0 III-	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				10,591
Fire Flow (F)	Rounded to nearest 1,000	11,000			

Task	Options		Multipl	ier	Input						Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,650	9,350
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)	No Sprinkler						0%	0	9,350
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%)		Not Standard Water Supply or Unavailable					0%	0	9,350
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%)		Nee Fully Companying and Mid						0	9 350
	Not Fully Supervised or N/A		0%			Not Fully supervised of N/A						0	9,000
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	24	1	0 to 3	Type A	13.8	2	27.6	1Δ	22%		(-,)	
	Side 2	2.1	1	0 to 3		12.2	2	24.4	14	22%			
	Front	2.4	1	20.1 to 20		35	2	70	40	0%	62%	5,797	15,147
	Profit	24	4	20.1 to 30	туре А	33	2	70	40	970			
	Баск	21	4	20.1 to 30	Туре А	39	2	/8	40	9%			
							lot	al Required	Fire Flow, Ro	ounded to th	ne Nearest	1,000 L/min =	15,000
Obtain Required									Tota	al Required	Fire Flow (RFF), L/sec =	250
Fire Flow	Ca	in the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "Tl	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use I	RFF (L/sec) =	167
		. .											
Exposure Charges for Type A Type B Type C Type D	<u>ses for Exposing Walls of Wood Frame Construction (from Table G5)</u> Wood-Frame or non-conbustible Ordinary or fire-resisitve with unprotected openings Ordinary or fire-resisitve with semi-protected openings Ordinary or fire-resisitve with blank wall												
Conditons for Separat	ion												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B4: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 3

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		340	690.0 m²	
Floor Areas (A)	Floor 1		340	660.0 m-	
	Basement (At least 50% bel	low grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				8,605
Fire Flow (F)	Rounded to nearest 1,000				9,000

Task	Options		Multiplier Input Value Used (L/min)								Fire Flow Total (L/min)		
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,350	7,650
Building Contents	Free Burning	1	15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)	No Sprinkler						0%	0	7,650
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%)		Not Standard Water Supply or Unavailable					0%	0	7,650
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%)		N	lot Eully S	upervised or	N/A		0%	0	7 650
	Not Fully Supervised or N/A		0%				lot rully 5	upervised of			0,0	0	7,000
		_					E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	24	1	0 to 3	Type A	13.8	2	27.6	1A	22%			
	Side 2	50	6	> 45 1	Type A	0	0	0	6	0%			
	Front	24	4	20.1 to 30	Type A	15	2	30	44	8%	38%	2,907	10,557
	Rock	27	4	20.1 to 30	Турс Л	15	2	30	40	8%			
	Dack	22	4	20.1 10 30	туре А	15		30	4A		n Neerest	1.000 L /min -	44.000
							10	ai Requireu					11,000
Obtain Required									lota	al Required	Fire Flow (RFF), L/sec =	183
Fire Flow	Ca	an the Tol	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "Tl	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use I	RFF (L/sec) =	167
Exposuro Charges for	Exposing Walls of Wood From	o Const-	uction (fr-	m Table (CE)									
Type A Type B Type C Type D	es for Exposing Walls of Wood Frame Construction (from Table G5) Wood-Frame or non-conbustible Ordinary or fire-resisitve with unprotected openings Ordinary or fire-resisitve with semi-protected openings Ordinary or fire-resisitve with blank wall												
<u>Conditons for Separat</u> Separation Dist	<u>ion</u> Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B5: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 4

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building Frame (C)	Ordinary Construction	1			
	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		515	1020.0 m²	
Floor Areas (A)	Floor 1		515	1030.0 III-	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				10,591
Fire Flow (F)	Rounded to nearest 1,000	11,000			

Task	Options		Multiplier Input Value Value Used (L/min)								Fire Flow Total (L/min)		
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	е		-15%	-1,650	9,350
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)	No Sprinkler						0%	0	9,350
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%)		Not Standard Water Supply or Unavailable					0%	0	9,350
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System -10%							Not Fully Supervised on N/A					9.350
	Not Fully Supervised or N/A		0%								0,0	5	0,000
						Exposed Wall Length							
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	24	1	0 to 3	Type A	14	2	28	14	22%		(-,,	
	Side 2	50	- 6	> 45 1	Type A	0	-	0	6	0%			
	Front	15	2	10.1 to 20		12.9	2	27.6	3 ^	1.2%	42%	3,927	13,277
	Profit	13	5	10.1 to 20	туре А	10.0	2	27.0	3A	12/0			
	DACK	24	4	20.1 to 30	Туре А	13.8	2	27.6	4A	0 %			
							Tot	al Required	Fire Flow, Ro	ounded to th	ne Nearest	1,000 L/min =	13,000
Obtain Required									Tota	al Required	Fire Flow (RFF), L/sec =	217
Fire Flow	Ca	in the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (16	67 L/sec)	based on "T	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use	RFF (L/sec) =	167
Exposure Charges for Type A Type B Type C Type D	<u>for Exposing Walls of Wood Frame Construction (from Table G5)</u> Wood-Frame or non-conbustible Ordinary or fire-resisitve with unprotected openings Ordinary or fire-resisitve with semi-protected openings Ordinary or fire-resisitve with blank wall												
Conditons for Senarati	ion												
Separation Dist	Condition												
Om to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B6: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 5

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building Frame (C)	Ordinary Construction	1			
	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		428	956 0 m²	
Floor Areas (A)	Floor 1		428	000.0 111-	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				9,655
Fire Flow (F)	Rounded to nearest 1,000	10,000			

Task	Options	Options Multiplier Input Value Used Fire Flow Change (L/min)											Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,500	8,500
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)			No	Sprinkler			0%	0	8,500
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10% Not Standard Water Supply or Unavailable								0%	0	8,500
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%								0%	0	8 500
	Not Fully Supervised or N/A	0% Not Fully Supervised or N/A									070	0	0,000
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	24	1	0 to 3	Type A	13.8	2	27.6	1Δ	22%		(-,)	
	Side 2	50	6	> 45 1		0	0	0	6	0%			
	Front	15	2	10.1 to 20		12	2	26	3 ^	1.2%	47%	3,995	12,495
	Profit	10	5	10.1 to 20	туре А	13	2	20	3A	1270			
	Back	15	3	10.1 to 20	Туре А	27	2	54	3B	13%			
							lot	al Required	Fire Flow, Ro	ounded to th	ne Nearest	1,000 L/min =	12,000
Obtain Required									Tota	al Required	Fire Flow (RFF), L/sec =	200
Fire Flow	Ca	in the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "Tl	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use I	RFF (L/sec) =	167
Company Observe C													
Exposure Charges for Type A Type B Type C Type D	Wood-Frame or non-conbustible Ordinary or fire-resisitve with unprotected openings Ordinary or fire-resisitve with semi-protected openings Ordinary or fire-resisitve with blank wall												
Conditons for Separati	ion												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5	5											
> 45.1m													

TABLE B7: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 6

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		538	1076 0 m ²	
Floor Areas (A)	Floor 1		538	1070.0 11	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				10,825
Fire Flow (F)	Rounded to nearest 1,000				11,000

Task	Options	Options Multiplier Input Value Used Fire Flow Change (L/min) Fire Flow Fire Flow (L/min)											Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,650	9,350
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)			No	Sprinkler			0%	0	9,350
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10% Not Standard Water Supply or Unavailable								0%	0	9,350
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%								0%	0	9.350
	Not Fully Supervised or N/A	0%									070	0	9,000
		_					E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	24	1	0 to 3	Type A	13.8	2	27.6	14	22%		(-/)	
	Side 2	2.1	1	0 to 3	Type A	13.8	2	27.6	14	22%			
	Front	15.1	3	10.1 to 20		40	2	80	30	1/%	72%	6,732	16,082
	Rock	15.1	2	10.1 to 20	Туре А	40	2	00	30	14/0			
	Dack	15.5	5	10.1 to 20	Туре А	40	2	00		1470		1.000 L /main	40.000
							101	ai Required	FILE FIOW, RC			1,000 L/min =	16,000
Obtain Required									lot	al Required	Fire Flow (RFF), L/sec =	267
Fire Flow	Ca	an the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "Tl	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use l	RFF (L/sec) =	167
Exposure Charges for	Exposing Walls of Wood From	Constru	otion (fre	m Tabla GE)									
Type A Type B Type C Type D	Wood-Frame or non-conbustible Ordinary or fire-resisitive with unprotected openings Ordinary or fire-resisitive with semi-protected openings Ordinary or fire-resisitive with blank wall												
Conditons for Separat	ion												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B8: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 7

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		538	1076 0 m ²	
Floor Areas (A)	Floor 1		538	1076.0 m	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				10,825
Fire Flow (F)	Rounded to nearest 1,000				11,000

Task	Options	Options Multiplier Input Value Used Fire Flow Change (L/min) Fire Flow (L/min)											Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,650	9,350
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)			No	Sprinkler			0%	0	9,350
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10% Not Standard Water Supply or Unavailable								0%	0	9,350
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%								0%	0	9 350
	Not Fully Supervised or N/A	0% Not Fully Supervised or N/A									070	Ū	9,000
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	32	5	30 1 to 45	Type A	0	0	0	5A	5%		(-,,	
	Side 2	24	1	0 to 3	Type A	13.8	2	27.6	14	22%			
	Front	13.4	3	10.1 to 20		25	2	50	38	13%	54%	5,049	14,399
	Pook	10.4	2	10.1 to 20	Туре А	20	2	64	30	1.40/			
	Dack	15	5	10.1 to 20	Туре А	32	2	04		1470		1.000 L /main	44.000
							101	ai Required	FILE FIOW, RC		ie ivearest	1,000 L/min =	14,000
Obtain Required									lota	al Required	Fire Flow (RFF), L/sec =	233
Fire Flow	Ca	in the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "Tl	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use I	RFF (L/sec) =	167
Exposure Charges for	Exposing Walls of Wood From	o Conot-	otion (fre	m Tabla GE)									
Type A Type B Type C Type D	Wood-Frame or non-conbustible Ordinary or fire-resisitve with unprotected openings Ordinary or fire-resisitve with semi-protected openings Ordinary or fire-resisitve with blank wall												
Conditons for Separat	ion												
Separation Dist	Condition												
0111 to 3m 3.1m to 10m	1 2												
10 1m to 20m	2												
20 1m to 30m	4												
30.1m to 45m	5												
> 45.1m													

TABLE B9: FIRE FLOW REQURIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 8

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required

F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		400	$900.0 m^2$	
Floor Areas (A)	Floor 1		400	000.0 III-	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				9,334
Fire Flow (F)	Rounded to nearest 1,000				9,000

Task	Options	Options Multiplier Input Value Used Fire Flow Change (L/min) Fire Flow Change											Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
Combustibility of	Combustible		0%				Limited	l Combustibl	e		-15%	-1,350	7,650
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)			No	Sprinkler			0%	0	7,650
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10% Not Standard Water Supply or Unavailable								0%	0	7,650
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10% Not Fully Supervised or N/A									0	7 650
	Not Fully Supervised or N/A	0%									0,0	0	7,000
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	13/	3	10.1 to 20		15	2	30	34	12%		(2,)	
	Side 2	13.4	2	10.1 to 20		15	2	30	3/	12%			
		15.4	2	10.1 to 20	Туре А	10.0	2	30	3A	12/0	41%	3,137	10,787
	Front	15	3	10.1 to 20	Туре А	13.0	2	27.0	3A	12%			
	Васк	32	5	30.1 to 45	Type A	0	0	0	5A	5%			
							Tot	al Required	Fire Flow, Ro	ounded to the	ne Nearest	1,000 L/min =	11,000
Obtain Required									Tota	al Required	Fire Flow (RFF), L/sec =	183
Fire Flow	Ca	in the Tot	al Fire Fl	ow be Cappe	ed at 10,000	L/min (10	67 L/sec)	based on "T	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	al Required	Fire Flow (RI	FF). If RFF	< 167 use I	RFF (L/sec) =	167
		. .											
Exposure Charges for Type A Type B Type C Type D	Wood-Frame or non-conbustible Ordinary or fire-resisitve with blank semi-protected openings Ordinary or fire-resisitve with blank wall												
Conditons for Separat	ion												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B10: FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999

PROJECT: Second Line Road

Building No: Block 9

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Wood Frame	1.5	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		340	$690.0 m^{2}$	
Floor Areas (A)	Floor 1		340	000.0 11	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)				8,605
Fire Flow (F)	Rounded to nearest 1,000				9,000

Task	Options	Options Multiplier Input Value Used Fire Flow (L/min) Fire Flow Tot (L/min)											Fire Flow Total (L/min)
	Non-combustible		-25%	, D									
Choose	Limited Combustible		-15%	, D									
Combustibility of	Combustible		0%				Limited	d Combustibl	е		-15%	-1,350	7,650
Building Contents	Free Burning		15%)	1								
	Rapid Burning		25%)									
	Adequate Sprinkler Conforms to NFPA13		-30%	, D			No	Sprinkler			0%	0	7,650
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10% Not Standard Water Supply or Unavailable								0%	0	7,650
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%									0	7 650
	Not Fully Supervised or N/A		0%								0,0	0	1,000
							E	xposed Wall	Length				
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Length- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1	15	3	10.1 to 20	Type A	13.8	2	27.6	3A	12%			
	Side 2	24	1	0 to 3	Type A	13.8	2	27.6	1A	22%			
	Front	15	3	10.1 to 20	Type A	26	2	52	3B	13%	55%	4,208	11,858
	Back	24	3	20.1 to 20		20	2	52	4B	8%			
	Dack	24	4	20.1 (0 30	туре А	20		JZ	4D		A Negreet	1 000 L/min -	40.000
							10					1,000 L/IIIII -	12,000
Obtain Required									lot	ai Required	FIRE FIOW (RFF), L/sec =	200
Fire Flow	Ca	in the Tot	al Fire Fl	low be Cappe	ed at 10,000	L/min (1	67 L/sec)	based on "T	ECHNCAL B	ULLETIN IS	TB-2018-02	2", (yes/no) =	Yes
							Tot	tal Required	Fire Flow (R	FF). If RFF	< 167 use	RFF (L/sec) =	167
Exposure Charges for	Exposing Walls of Wood Fram	e Constru	ction (fro	m Table G5)									
Type A	Ordinary or fire-resisitve with ur	e	openinge										
Type C	Ordinary or fire-resisitve with se	mi-protect	ed openin	as									
Type D	Ordinary or fire-resisitve with bl	ank wall	ou opormi	90									
51	,												
Conditons for Separat	<u>ion</u>												
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
2 45.1M	b												

[%]exp.

TABLE B11: FIRE FLOW CONTRIBUTIONS BASED ON HYDRANT SPACING

Hydrant #	B	lock 1	Block 2		Block 3		Block 4		Block 5		BI	ock 6	В	lock 7	BI	lock 8	B	lock 9	Fire Flow A Hydrant Bas Res	vailable at ed on Model sults
Hydrant #	¹ Distance (m)	² Fire Flow Contribution (L/min)	Distance (m)	Fire Flow Contribution (L/min)	L/min	(L/sec)														
FH-1	58	5,700	87	3,800	115	3,800	79	3,800	99	3,800	64	5,700	20	5,700	27	5,700	38	5,700	>16,000	> 267
FH-2	122	3,800	81	3,800	39	5,700	65	5,700	40	5,700	83	3,800	124	3,800	132	3,800	95	3,800	>13,000	> 217
FH-3	62	5,700	19	5,700	48	5,700	128	3,800	103	3,800	147	3,800	98	3,800	67	5,700	99	3,800	>13,000	> 217
Total Firflow Avail in		15,200		13,300		15,200		13,300		13,300		13,300		13,300		15,200		13,300		· · · · ·
L/min (L/sec)		(253)		(222)		(253)		(222)		(222)		(222)		(222)		(253)		(222)		
FUS RFF in L/min		10,000		10,000		10,000		10,000		10,000		10,000		10,000		10,000		10,000		
(L/sec)		(167)		(167)		(167)		(167)		(167)		(167)		(167)		(167)		(167)		
Meets Requreiment (Yes/No)		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		
Notos																				

¹Distance is measured along a road or fire route.

²Fire Flow Contribution for Class AA Hydrant from Table 1 of Appendix I, ISTB-2018-02

exp Services Inc.

*exp

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix C – Water Distribution Modelling Results

Boundary Condition 1 Result Tables

- Peak Hour Scenario
 - Junction Table
 - Pipe Table
 - Reservoir Table
- Max Day Plus Fireflow Scenario
 - Junction Table
 - Pipe Table
 - Fire Flow Report
 - Reservoir Table

Boundary Condition 2 Result Tables

- Peak Hour Scenario
 - Junction Table
 - Pipe Table
 - Reservoir Table
- Max Day Plus Fireflow Scenario
 - Junction Table
 - Pipe Table
 - Fire Flow Report
 - Reservoir Table

Peak Hour Scenario - HGL at Location 1

Elevation Hydraulic Label Demand Pressure (L/s) (m) Grade (psi) (m) J-1 0.47 103.94 140.11 51.3 J-2 1.88 103.70 140.11 51.7 2.03 J-3 140.11 101.62 54.6 0.78 J-4 102.85 140.11 52.9 J-5 0.47 103.30 139.89 51.9 J-6 0.63 101.21 140.12 55.2 J-7 140.15 0.00 101.04 55.5 J-9 0.00 102.40 140.15 53.6 0.00 100.76 140.20 56.0 J-10 54.5 J-11 0.16 101.70 140.11 J-12 0.07 101.25 140.12 55.2 0.00 140.11 J-17 103.80 51.5 J-18 0.94 102.00 140.11 54.1 0.00 J-19 101.25 140.11 55.2 J-21 0.00 103.00 140.11 52.7

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled) (m)	Diameter (mm)	Hazen- William s C	Flow (L/s)	Hydraulic Grade (Stop) (m)	Hydraulic Grade (Start) (m)	Velocity (m/s)	Headlos s Gradient (m/m)
0 20	1.21	10	10.4	20	100.0	0.47	120.90	140 11	0.41	0.01100
P-20	J-21	J-5	10.4	30	100.0	0.47	139.09	140.11	0.41	0.01199
P-29	J-1	J-1/	15.3	152	130.0	-0.47	140.11	140.11	0.03	0.00001
P-24	H-1	J-17	4.2	155	100.0	0.00	140.11	140.11	0.00	0.00000
P-25	H-2	J-19	3.7	155	100.0	0.00	140.11	140.11	0.00	0.00000
P-26	H-3	J-18	3.0	155	100.0	0.00	140.11	140.11	0.00	0.00000
P-2	J-2	J-3	76.8	204	110.0	-1.42	140.11	140.11	0.04	0.00002
P-3	J-2	J-4	34.6	204	110.0	-0.93	140.11	140.11	0.03	0.00001
P-10	J-7	J-9	121.8	204	110.0	0.00	140.15	140.15	0.00	0.00000
P-11	J-7	J-10	102.0	204	110.0	-7.43	140.20	140.15	0.23	0.00046
P-13	J-11	J-3	17.2	204	110.0	-0.16	140.11	140.11	0.00	0.00000
P-14	J-7	J-12	65.8	204	110.0	7.43	140.12	140.15	0.23	0.00046
P-15	J-12	J-6	15.3	204	110.0	7.36	140.12	140.12	0.23	0.00046
P-1(2)	J-17	J-2	7.7	204	110.0	-0.47	140.11	140.11	0.01	0.00000
P-6(1)	J-4	J-18	35.0	204	110.0	-2.18	140.11	140.11	0.07	0.00005
P-6(2)	J-18	J-6	41.8	204	110.0	-3.12	140.12	140.11	0.10	0.00009
P-7(1)	J-6	J-19	16.6	204	110.0	3.61	140.11	140.12	0.11	0.00012
P-7(2)	J-19	J-3	18.0	204	110.0	3.61	140.11	140.11	0.11	0.00012
P-27	J-4	J-21	6.0	204	110.0	0.47	140.11	140.11	0.01	0.00000
P-21	R-1	J-10	20.5	600	130.0	7.43	140.20	140.20	0.03	0.00000

245003 Water Model, Rev4.wtg 12/6/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 1 of 8

ID	Label	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
64	R-1	Zone - 1	7.43	140.20

Reservoir Table - Time: 0.00 hours

245003 Water Model, Rev4.wtg 12/6/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 2 of 8

Max Day Plus Fireflow Scenario - HGL at Location 1

Label	Demand (L/s)	Elevation (m)	Hydraulic Grade (m)	Pressure (psi)
J-1	0.31	103.94	147.26	61.5
J-2	1.25	103.70	147.26	61.8
J-3	1.35	101.62	147.26	64.8
J-4	0.52	102.85	147.26	63.0
J-5	0.31	103.30	147.16	62.3
J-6	0.42	101.21	147.26	65.4
J-7	0.00	101.04	147.28	65.6
J-9	0.00	102.40	147.28	63.7
J-10	0.00	100.76	147.30	66.1
J-11	0.10	101.70	147.26	64.7
J-12	0.00	101.25	147.26	65.3
J-17	0.00	103.80	147.26	61.7
J-18	0.62	102.00	147.26	64.2
J-19	0.00	101.25	147.26	65.3
J-21	0.00	103.00	147.26	62.8

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled)	Diameter (mm)	Hazen- William	Flow	Hydraulic Grade	Hydraulic Grade	Velocity (m/s)	Headlos
	noue	noue	(m)	()	s C	(4,3)	(Stop)	(Start)	(11,0)	Gradient
							(m)	(m)		(m/m)
P-28	J-21	J-5	18.4	38	100.0	0.31	147.16	147.26	0.27	0.00555
P-29	J-1	J-17	15.3	152	130.0	-0.31	147.26	147.26	0.02	0.00000
P-24	H-1	J-17	4.2	155	100.0	0.00	147.26	147.26	0.00	0.00000
P-25	H-2	J-19	3.7	155	100.0	0.00	147.26	147.26	0.00	0.00000
P-26	H-3	J-18	3.0	155	100.0	0.00	147.26	147.26	0.00	0.00000
P-2	J-2	J-3	76.8	204	110.0	-0.95	147.26	147.26	0.03	0.00001
P-3	J-2	J-4	34.6	204	110.0	-0.62	147.26	147.26	0.02	0.00000
P-10	J-7	J-9	121.8	204	110.0	0.00	147.28	147.28	0.00	0.00000
P-11	J-7	J-10	102.0	204	110.0	-4.88	147.30	147.28	0.15	0.00021
P-13	J-11	J-3	17.2	204	110.0	-0.10	147.26	147.26	0.00	0.00000
P-14	J-7	J-12	65.8	204	110.0	4.88	147.26	147.28	0.15	0.00021
P-15	J-12	J-6	15.3	204	110.0	4.88	147.26	147.26	0.15	0.00021
P-1(2)	J-17	J-2	7.7	204	110.0	-0.31	147.26	147.26	0.01	0.00000
P-6(1)	J-4	J-18	35.0	204	110.0	-1.45	147.26	147.26	0.04	0.00002
P-6(2)	J-18	J-6	41.8	204	110.0	-2.07	147.26	147.26	0.06	0.00004
P-7(1)	J-6	J-19	16.6	204	110.0	2.40	147.26	147.26	0.07	0.00006
P-7(2)	J-19	J-3	18.0	204	110.0	2.40	147.26	147.26	0.07	0.00006
P-27	J-4	J-21	6.0	204	110.0	0.31	147.26	147.26	0.01	0.00000
P-21	R-1	J-10	20.5	600	130.0	4.88	147.30	147.30	0.02	0.00000

245003 Water Model, Rev4.wtg 12/6/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 3 of 8

Max Day Plus Fireflow Scenario - HGL at Location 1

Label	Fire Flow (Needed) (L/s)	Flow (Total Needed) (L/s)	Fire Flow (Available) (L/s)	Flow (Total Available) (L/s)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Satisfies Fire Flow Constraints?
L 1	0.00	167.00	146.47	146.47	(psi) 0.0	20.0	Falco
11-1	0.00	107.00	140.47	140.47	0.0	20.0	False
H-2	0.00	167.00	164.79	164.79	0.0	20.0	False
H-3	0.00	167.00	159.74	159.74	0.0	20.0	False
J-1	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-2	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-3	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-4	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-5	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-6	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-7	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-9	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-10	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-11	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-12	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-17	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-18	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-19	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-21	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)

Fire Flow Report - Time: 0.00 hours

Reservoir Table - Time: 0.00 hours

ID	Label	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
64	R-1	Zone - 1	4.88	147.30

Peak Hour Scenario - HGL at Location 2

Label Demand Elevation Hydraulic Pressure (L/s) (m) Grade (psi) (m) J-1 0.47 103.94 141.89 53.9 J-2 1.88 103.70 141.89 54.2 J-3 2.03 101.62 141.90 57.2 J-4 0.78 102.85 141.89 55.4 J-5 0.47 103.30 141.67 54.5 J-6 0.63 101.21 141.89 57.7 J-8 0.00 101.91 141.96 56.8 J-11 0.16 101.70 141.90 57.1 J-12 0.07 101.25 141.89 57.7 J-13 0.00 101.19 142.00 57.9 J-17 0.00 103.80 141.89 54.1 J-18 0.94 102.00 141.89 56.6 J-19 0.00 101.25 57.7 141.89 J-21 0.00 103.00 141.89 55.2

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start	Stop	Length	Diameter	Hazen-	Flow	Hydraulic	Hydraulic	Velocity	Headlos
	Node	Node	(Scaled)	(mm)	William	(L/s)	Grade	Grade	(m/s)	S
			(m)		s C		(Stop)	(Start)		Gradient
							(m)	(m)		(m/m)
P-28	J-21	J-5	18.4	38	100.0	0.47	141.67	141.89	0.41	0.01198
P-29	J-1	J-17	15.3	152	130.0	-0.47	141.89	141.89	0.03	0.00001
P-24	H-1	J-17	4.2	155	100.0	0.00	141.89	141.89	0.00	0.00000
P-25	H-2	J-19	3.7	155	100.0	0.00	141.89	141.89	0.00	0.00000
P-26	H-3	J-18	3.0	155	100.0	0.00	141.89	141.89	0.00	0.00000
P-2	J-2	J-3	76.8	204	110.0	-2.50	141.90	141.89	0.08	0.00006
P-3	J-2	J-4	34.6	204	110.0	0.15	141.89	141.89	0.00	0.00000
P-12	J-8	J-11	123.8	204	110.0	7.43	141.90	141.96	0.23	0.00046
P-13	J-11	J-3	17.2	204	110.0	7.27	141.90	141.90	0.22	0.00045
P-15	J-12	J-6	15.3	204	110.0	-0.07	141.89	141.89	0.00	0.00000
P-16	J-13	J-8	85.5	204	110.0	7.43	141.96	142.00	0.23	0.00046
P-1(2)	J-17	J-2	7.7	204	110.0	-0.47	141.89	141.89	0.01	0.00000
P-6(1)	J-4	J-18	35.0	204	110.0	-1.10	141.89	141.89	0.03	0.00001
P-6(2)	J-18	J-6	41.8	204	110.0	-2.04	141.89	141.89	0.06	0.00004
P-7(1)	J-6	J-19	16.6	204	110.0	-2.74	141.89	141.89	0.08	0.00007
P-7(2)	J-19	J-3	18.0	204	110.0	-2.74	141.90	141.89	0.08	0.00007
P-27	J-4	J-21	6.0	204	110.0	0.47	141.89	141.89	0.01	0.00000
P-20	R-2	J-13	24.8	600	130.0	7.43	142.00	142.00	0.03	0.00000

245003 Water Model, Rev4.wtg 12/6/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 5 of 8

Peak Hour Scenario - HGL at Location 2

Reservoir Table - Time: 0.00 hours

ID	Label	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
65	R-2	Zone - 1	7.43	142.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 6 of 8

Max Day Plus Fireflow Scenario - HGL at Location 2

Label	Demand (L/s)	Elevation (m)	Hydraulic Grade (m)	Pressure (psi)
J-1	0.31	103.94	147.25	61.5
J-2	1.25	103.70	147.25	61.8
J-3	1.35	101.62	147.25	64.8
J-4	0.52	102.85	147.25	63.0
J-5	0.31	103.30	147.15	62.2
J-6	0.42	101.21	147.25	65.4
J-8	0.00	101.91	147.28	64.4
J-11	0.10	101.70	147.26	64.7
J-12	0.00	101.25	147.25	65.3
J-13	0.00	101.19	147.30	65.5
J-17	0.00	103.80	147.25	61.7
J-18	0.62	102.00	147.25	64.2
J-19	0.00	101.25	147.25	65.3
J-21	0.00	103.00	147.25	62.8

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start	Stop	Length	Diameter	Hazen-	Flow	Hydraulic	Hydraulic	Velocity	Headlos
	Node	Node	(Scaled)	(mm)	william	(L/S)	Grade	Grade (Start)	(m/s)	S Cradiant
			(11)		SC		(Stop)	(Start)		(m/m)
							(11)	(11)		(11/11)
P-28	J-21	J-5	18.4	38	100.0	0.31	147.15	147.25	0.27	0.00555
P-29	J-1	J-17	15.3	152	130.0	-0.31	147.25	147.25	0.02	0.00000
P-24	H-1	J-17	4.2	155	100.0	0.00	147.25	147.25	0.00	0.00000
P-25	H-2	J-19	3.7	155	100.0	0.00	147.25	147.25	0.00	0.00000
P-26	H-3	J-18	3.0	155	100.0	0.00	147.25	147.25	0.00	0.00000
P-2	J-2	J-3	76.8	204	110.0	-1.65	147.25	147.25	0.05	0.00003
P-3	J-2	J-4	34.6	204	110.0	0.09	147.25	147.25	0.00	0.00000
P-12	J-8	J-11	123.8	204	110.0	4.88	147.26	147.28	0.15	0.00021
P-13	J-11	J-3	17.2	204	110.0	4.78	147.25	147.26	0.15	0.00021
P-15	J-12	J-6	15.3	204	110.0	0.00	147.25	147.25	0.00	0.00000
P-16	J-13	J-8	85.5	204	110.0	4.88	147.28	147.30	0.15	0.00021
P-1(2)	J-17	J-2	7.7	204	110.0	-0.31	147.25	147.25	0.01	0.00000
P-6(1)	J-4	J-18	35.0	204	110.0	-0.74	147.25	147.25	0.02	0.00001
P-6(2)	J-18	J-6	41.8	204	110.0	-1.36	147.25	147.25	0.04	0.00002
P-7(1)	J-6	J-19	16.6	204	110.0	-1.78	147.25	147.25	0.05	0.00003
P-7(2)	J-19	J-3	18.0	204	110.0	-1.78	147.25	147.25	0.05	0.00003
P-27	J-4	J-21	6.0	204	110.0	0.31	147.25	147.25	0.01	0.00000
P-20	R-2	J-13	24.8	600	130.0	4.88	147.30	147.30	0.02	0.00000

245003 Water Model, Rev4.wtg 12/6/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterGEMS CONNECT Edition Update 1 [10.01.01.04] Page 7 of 8

Max Day Plus Fireflow Scenario - HGL at Location 2

Label	Fire Flow (Needed) (L/s)	Flow (Total Needed) (L/s)	Fire Flow (Available) (L/s)	Flow (Total Available) (L/s)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Satisfies Fire Flow Constraints?
H_1	0.00	167.00	134.06	134.06	(PSI)	20.0	Falco
H_2	0.00	167.00	148 23	148 23	0.0	20.0	False
H_3	0.00	167.00	140.23	140.23	0.0	20.0	False
1-1	0.00	(N/A)	(N/Δ)	(N/Δ)	0.0	(N/Δ)	(N/A)
1-2	0.00	(N/A) (N/Δ)	(N/A)	(N/A) (N/Δ)	0.0	(Ν/Α) (Ν/Δ)	(N/A)
1-3	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
1-4	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-5	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-6	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-8	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-11	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-12	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-13	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-17	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-18	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-19	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)
J-21	0.00	(N/A)	(N/A)	(N/A)	0.0	(N/A)	(N/A)

Fire Flow Report - Time: 0.00 hours

Reservoir Table - Time: 0.00 hours

ID	Label	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
65	R-2	Zone - 1	4.88	147.30

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix D – Sanitary Design Sheet

Table D1: Sanitary Design Sheet

TABLE D1: SANITARY SEWER CALCULATION SHEET

	LOCATION RESEDENTIAL AREAS A NUMBER OF UNITS								AND POP	ULAITON	S				(OMMER	CIAL	I	NDUSTRI/	AL .	INSTITU	JTIONAL	IN	FILTRATIO	DN					SEWER D	ATA			
							NUMBER	R OF UNITS	5			POPU	ATION			ARE	A (ha)		ARE	4 (ha)	Peak			ARE	4 (ha)									
_	U/S	D/S		Area			Γ	Batch or			1				Peak			Peak			Factor		ACCU			INFILT	TOTAL	Nom	Actual	Slope	Length	Capacity	Q/Q _{CAP}	Full
Street	мн	мн	Area Number	(ha)	Singles	Semis	Towns	1-Bed	2-Bed	3-Bed	Total			Peak	Flow	INDIV	ACCU	Flow	INDIV	ACCU	(per	AREA	AREA	INDIV	ACCU	FLOW	FLOW	Dia	Dia	(%)	(m)	(L/sec)	(%)	Velocity
				. ,				Apt.	Apt.	Apt.	Units	INDIV	ACCU	Factor	(L/sec)			(L/sec)			MOF)	(Ha)	(Ha)			(L/s)	(L/s)	(mm)	(mm)		• •	,	(, -)	(m/s)
							1			•					(_, ,			(_,,			,	(,	()			(-/-/	(-/-/	()	()	1				(, •)
Private Stree	MH 10	4 MH106	5 1	0.5801			25		1	1	25	67.5	67.5	3.63	0.79					1			1	0.5801	0.5801	0.19	0.99	200	201.2	2.05	106.65	47.72	0.02	1.49
Private Stree	t MH10	7 MH106	5 2	0.1201			2				2	5.4	5.4	3.75	0.07									0.1201	0.1201	0.04	0.11	200	201.2	1.04	12.08	33.99	0.00	1.06
	MH106	6 MH102											72.9	3.62	0.86										0.7002	0.23	1.09	200	201.2	0.64	40.57	26.66	0.04	0.83
Private Stree	: MH10	5 MH101	3	0.1047			4				4	10.8	10.8	3.73	0.13									0.1047	0.1047	0.03	0.17	200	201.2	3.22	31.00	59.80	0.00	1.86
Private Stree	: MH10	0 MH101	4	0.0897			3				3	8.1	8.1	3.74	0.10									0.0897	0.0897	0.03	0.13	200	201.2	2.00	24.10	47.13	0.00	1.47
Private Stree	: MH10	1 MH102	2 5	0.2757			12				12	32.4	51.3	3.65	0.61									0.2757	0.4701	0.16	0.76	200	201.2	1.20	82.79	36.51	0.02	1.14
Private Stree	: MH10	2 MH103	6	0.0592			1				1	2.7	126.9	3.57	1.47									0.0592	1.2295	0.41	1.87	200	201.2	1.32	8.42	38.29	0.05	1.19
	103	108											126.9	3.57	1.47										1.2295	0.41	1.87	200	201.2	0.40	27.69	21.08	0.09	0.66
	108	EXMH											126.9	3.57	1.47										1.2295	0.41	1.87	200	201.2	0.40	40.39	21.08	0.09	0.66
	_		-	1.230			47				47	126.9		-	_	-		-	-		-		-	1.2295			-	_	-	-	373.69	-	-	
																										Designed	l:			Project:				
Residential A	/g. Daily F	low, q (L/	p/day) =		280		Commerc	cial Peak Fa	ctor =		1.5	(when are	ea >20%)		Peak Pop	ulation Flo	w, (L/sec)	=	P*q*M/8	6.4		Unit Type	<u>.</u>	Persons/l	<u> Jnit</u>									
Commercial A	vg. Daily	Flow (L/g	ross ha/day) =		28,000						1.0	(when are	ea <20%)		Peak Extr	aneous Flo	ow, (L/sec)	=	I*Ac			Singles		3.4		J. Fitzpat	rick, P.En	g.		1158 Se	cond Line			
or L/gross h	a/sec =				0.324										Resident	al Peaking	Factor, M	=	1 + (14/(4	+P^0.5)) *	К	Semi-Deta	ached	2.7										
Institutianal A	vg. Daily	Flow (L/c	lay/ha) =		28,000		Institutio	nal Peak Fa	ctor =		1.5	(when area >20%) A _c = Cumulativ					ea (hectare	es)				Townhom	nes	2.7		Checked:				Location	:			
or L/gross h	a/day =				0.324	_					1.0	(when area <20%) P = Population					usands)					Batchelor	or											
Light Industri	al Flow (L	gross ha	′day) =		35,000															113		1-bed Apt	t. Unit	1.4		B. Thoma	as, P.Eng.			Ottawa,	Ontario			
or L/gross h	a/sec =				0.40509		Residenti	al Correctio	on Factor, H	(=	0.80	Sewer Capaci					ap (L/sec)	=	1/N S ^{1/2}	R ⁻ / ³ A _c		2-bed Apt	t. Unit	2.1										
Light Industri	al Flow (L	gross ha	'day) =		55,000		Manning	N =		,	0.013	(Manning's Ec					n)					3-bed Apt	t. Unit	3.1		File Refe	rence:			Page No:				
or L/gross h	a/sec =				0.637		Peak extr	aneous flow	w,I (L/s/ha	1) =	0.33	(Total I/I)										4-bed Apt	t. Unit	3.8		245003 S 2018.xlsx	Sanitary De	esign Sh	eet, Nov	1 of 1				

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix E – Stormwater Design Sheets

Table E1: 2-year Storm Sewer Calculation Sheet
Table E2: 100-year HGL Storm Sewer Calculation Sheet
Table E3: Average Runoff Coefficients (Pre-Development)
Table E4: Pre-Development Runoff Calculations
Table E5: Allowable Runoff Calculations
Table E6: Average Runoff Coefficients (Post-Development)
Table E7: Summary of Post Development Runoff (Uncontrolled and Controlled)
Table E8: Rating Curves for Modelling of Surface Ponding Areas
Table E9: Major System (Street Segment) Characteristics – Curb Inlet Catchbasins
Table E10: Major System (Street Segment) Characteristics – Surface Catchbasins
Table E11.1: Inlet Control Devices (ICD) Types
Table E11.2: Discharge Rates for Various IPEX ICD Models

[%]exp.

TABLE E1: 2-YEAR STORM SEWER CALCULATION SHEET

 Return Period Storm =
 2-year
 (2-year, 5-year, 100-year)

 Default Inlet Time=
 10
 (minutes)

 Manning Coefficient =
 0.013
 (dimensionless)

			AREA	INFO				FLOW (I	JNRESTRIC	TED)				CUMUL SEWER DATA											
													CAP	CAP						Canacity.	Veloci	ty (m/s)	Time in	Hydrau	lic Ratios
From Node	To Node	Area No.	Area (ha)	∑ Area (ha)	Average R	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow	Return Period	Q (L/s)	FLOW (L/s)	FLOW (L/s)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Q _{CAP} (L/sec)	Vf	Va	Pipe, Tt (min)	Q/Q _{CAP}	Va/Vf
STMH 204	STMMH 206	19	0.0916	0.0816	0.91	0.184	0.194	10.00	76.91	14 11	2 1/021	14.1	6.7	6.7	200.4	300	PVC	2.05	100.65	137.67	1.06	1.09	1 70	0.10	0.55
31111204	311/11/11/200	10	0.0010	0.0010	0.01	0.104	0.104	10.00	70.01	14.11	2-year	14.1	0.7	0.7	299.4	300	FVC	2.03	109.05	137.07	1.90	1.00	1.70	0.10	0.55
STMH 207	STMMH 206	19	0.0922	0.0922	0.80	0.205	0.205						6.7	6.7											
		20	0.1739	0.2661	0.51	0.247	0.452	10.00	76.81	18.94	100-year	34.7	6.7	13.4	251.5	250	PVC	1.00	12.03	60.40	1.21	0.86	0.23	0.57	0.71
STMH 206	STMMH 202	5	0 1704	0 5181	0.59	0 279	0 9148						67	26.8											
01111200	01111111202	6	0.1034	0.6215	0.78	0.224	1.1391	1					6.7	33.5						1					+
		7	0.0174	0.6389	0.67	0.032	1.1715							33.5											
		8	0.0251	0.6640	0.69	0.048	1.2196	11.70	70.85	3.41	2-year	86.4	6.7	40.2	366.4	375	PVC	0.64	43.57	131.87	1.27	1.17	0.62	0.66	0.92
STMH 205	STMMH 201	2	0.0179	0.0179	0.77	0.038	0.038																		+
		3	0.0615	0.0794	0.81	0.138	0.177						6.7	6.7											-
		4	0.0167	0.0961	0.68	0.032	0.208	10.00	76.81	2.42	2-year	16.0	6.7	13.4	251.5	250	PVC	3.22	34.00	108.38	2.17	1.28	0.44	0.15	0.59
STMMH 200	STMMH 201							10.00	76.81		2-year				201.2	200	PVC	2.00	24.10	47.10	1.48				
STMMH 201	STMMH 202	14	0.0759	0.1720	0.50	0.106	0.314	40.44	75.45	40.07	2	00.0	0.7	13.4	000.4	075	DV (O	1.00	05 70	400.57	4.74		4.00	0.40	0.04
		15	0.0607	0.2327	0.81	0.137	0.451	10.44	75.15	10.27	2-year	33.9	6.7	20.1	366.4	375	PVC	1.20	85.79	180.57	1.74	1.11	1.28	0.19	0.64
STMMH 202	STMMH 203	13	0.1039	1.0006	0.79	0.228	1.898	12.32	68.92	15.73	2-year	130.8	6.7	67.0	447.9	450	PVC	0.40	5.42	178.05	1.13	1.11	0.08	0.73	0.98
STMMH 203	STMMH 208	9	0.0296	1.0302	0.20	0.016	1.915	12.40	68.68	1.13	2-year	131.5	6.7	73.7	447.9	450	PVC	0.40	24.78	178.05	1.13	1.11	0.37	0.74	0.98
STMMH 208	EX STMMH	12	0.0015	1 1217	0.48	0 122	2 037	12 77	67 58	8 25	2-vear	137.7	67	80.4	447.9	450	PVC	0.40	/3 31	178.05	1 13	1 1 1	0.65	0.77	0.08
01101011200	EX. OTWINIT	12	0.0313	1.1217	0.40	0.122	2.007	12.77	07.50	0.20	2-year	157.7	0.7	00.4	11.5	430	1.00	0.40	40.01	170.00	1.15	1.11	0.00	0.11	0.30
																									<u> </u>
TOTALS =			1.1217		1	2.037							l	I	l										4
															Designed: Pro										
<u>Definitions:</u> Q = 2.78*AIR, w	here					Ottav	va Rainfall Into	ensity Values <u>a</u>	s from Sewei <u>b</u>	r Design Gui <u>C</u>	delines, SDG	6002			J. Fitzpatr		THEBERGE HOMES								
Q = Peak Flow	in Litres per second	(L/s)					2-year	732.951	6.199	0.810					Checked:				Location:						
A = Watershed	Area (hectares)						5-year	998.071	6.053	0.814					B. Thoma	s. P.Ena.			1158 SE		E ROAD				
I = Rainfall Inte	nsity (mm/h)						100-year	1735.688	6.014	0.820														T .	
R = Runoff Coe	tticients (dimension	less)													Dwg Refe	rence:			File Ref:					Sheet No):
														FIGURE A8 245003 Storm Design Sheets, Nov 23, 2018						2018.xlsx	1 of 1				

[%]exp.

TABLE E2: 100-YEAR HGL STORM SEWER CALCULATION SHEET

Return Period Storm = **100-year** (2-year, 5-year, 100-year) Default Inlet Time= 10 (minutes) Manning Coefficient = 0.013 (dimensionless)

From Note Area N.		Hydraulic Grade Line								SEWER DATA								ED)	RESTRICT	FLOW (UI				NFO	AREA IN													
From Node Area	EGL Elevations HGL Elevations	EGL E	Total	o Bends)	Loss(Due t	Head	tion)	Due to Fric	ead Loss (I	н	rcharged	os Sur	ulic Ratio	Hydrau	Time ir	tty (m/s)	Velo	Canacit						CAP	CAP												Γ	
Image: Reference of the series of t		GL	Losses HGL	h _b Minor		Type of	h،	$Vf^2/2\sigma$		Friction	(Yes?)	(t .	Pipe, T		,,		Leng	Slop	1) Type	Dia (mm	Dia (mm)	FLOW	FLOW	Q	Return	Indiv.	(mm/h)	c (mins)	Accum.	Indiv.	Averag	∑ Area	Area	Area No.	To Node	From Node
A A B	U/S (m) D/S (m) U/S (m) D/S (m	t/L) U/S (m)	h _f + h _b (ht/L	Losses	Coeff, K	d/s mh	(m)	(m)	L/D	Factor, f,	Under	/f u	₽ Va/V	Q/Q _{CAF}	(min)	Va	Vf	(L/sec	(m)	(%)	al ''''	Nomina	Actual	(L/s)	(L/s)	(L/s)	Period	Flow	(,,	e (2.78*A*R	2.78*A*R	eR 2	(ha)	(ha)			
STMH 200 STMH 200 1.0 0.010 0.010 0.010 <			(m)	(m)		defl	. ,	. ,			ee Flow	Fre	-	-		-			-	-	-		┝───┘	—— <u>'</u>														
STMH 20 1 0.002 0.025 0.025 0.0000 0.000 0.000	101.38 99.13 101.19 98.93	29% 101.38	2.512 2.299	0.2581	1.32	90 deg	2.254	0.1955	366.28	0.0315	No	7	0.67	0.24	1.39	1.31	1.96	5 137.67	109.0	2.05	PVC	300	299.4	6.7	6.7	32.8	00-vear	32.81	178.56	10.00	0.184	0.184	0.81	0.0816	0.0816	18	STMMH 206	STMH 204
STM 20 19 0.992 0.993 0.993 0.99 0.9 0.993 0.993 0.99 0.99 0.993<		_																									,											
1 1 0																								6.7	6.7						0.205	0.205	0.80	0.0922	0.0922 (19	STMMH 206	STMH 207
A A	98.87 98.75 98.80 98.68	1% 98.87	0.218 1.81%	0.0987	1.32	90 deg	0.119	0.0748	47.84	0.0334	Yes	4	1.04	1.34	0.16	1.26	1.21	60.40	12.0	1.00	PVC	250	251.5	13.4	6.7	80.6	L00-year	44.02	178.56	10.00	0.452	0.247	0.51	0.2661	0.1739	20		
S1MM 200 S1MM 202		<u> </u>										_	_			-	_	_	-	-			──′	26.0	6.7	<u> </u>					0.0140	0.070	0.50	0 5 1 0 1	0 1704 (F		CTMU 200
A A B													-				-	-					┝───┦	20.0	6.7	\rightarrow					1 1391	0.279	0.59	0.5161	0.1704 0	5		51 WH 200
1 1																							├ ──┤	33.5	0.7						1.1715	0.032	0.67	0.6389	0.0174 (7		
Image: Normal Series in the strain of the	99.05 98.76 98.97 98.68	99.05	0.396 0.91%	0.1085	1.32	90 deg	0.288	0.0822	118.91	0.0294	Yes	4	1.04	1.54	0.55	1.32	1.27	131.87	43.5	0.64	PVC	375	366.4	40.2	6.7	203.4	L00-year	8.03	166.76	11.39	1.2196	0.048	0.69	0.6640	0.0251 (8		
STMH 205 STMMH 201 2 0.0179 0.077 0.038 0.038 0																								<u> </u>														
3 0.0015 0.0794 0.81 0.138 0.177												_	-	-	_	-	_	_	-	_	_		└─── ′		0.7	ł					0.038	0.038	0.77	0.0179	0.0179 (2	STMMH 201	STMH 205
4 0.0167 0.0961 0.68 0.032 0.208 1.000 1.7856 5.64 1.00 vert 37.2 6.7 1.34 2.2515 2.250 PVC 3.22 34.00 1.0838 2.17 1.52 0.37 0.34 0.70 No 0.0334 1.3521 0.2409 1.086 90.deg 1.32 0.3179 1.404 4.43%	101 12 100 04 100 88 99 80	13% 101 12	1 404 4 139	0.3179	1.32	90 dea	1 086	0 2409	135 21	0.0334	No	n	0.70	0.34	0.37	1.52	2 17	108.38	34.0	3.22	PVC	250	251.5	6./ 13./	6.7	37.2	00-year	5.64	178 56	10.00	0.177	0.138	0.81	0.0794	0.0615 0	3		
				0.0110		oo aag		0.2100	100.21	0.0001			0.70	0.04	0.07	1.52	2.17	7 100.50	04.0	5.22	1.00	230	201.0	10.4	0.7	51.2	Loo-year	5.04	170.00	10.00	0.200	0.052	0.00	0.0301	0.0107	7		
STMMH 200 STMMH 201 No 0.0359 119.81 0.1111 0.478 0.0022 0.0023	100.20 99.72 100.09 99.61	9% 100.20	0.481 1.99%	0.0022	0.02	0 deg	0.478	0.1111	119.81	0.0359	No						1.48	47.10	24.1	2.00	PVC	200	201.2	'			L00-year		178.56	10.00							STMMH 201	STMMH 200
STMMH 201 STMMH 202 14 0.075 0.172 0.50 0.106 0.314 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00.70 00.00 00.50 00.50	0.10/ 0.0 70	1.005 1.040	0.0004	0.00	0.45.5	4.000	0.45.44	004.40	0.0004	NI.										-		<u> </u>	13.4							0.314	0.106	0.50	0.1720	0.0759 (14	STMMH 202	STMMH 201
15 0.0607 0.2327 0.81 0.137 0.451 10.37 175.2 23.9 100-year 78.9 6.7 20.1 366.4 375 PVC 1.20 85.79 180.57 1.74 1.23 1.16 0.44 0.71 No 0.0294 234.13 0.1541 1.062 0.069 0.02 0.0031 1.065 1.24%	99.72 98.66 99.56 98.50	.4% 99.72	1.065 1.24%	0.0031	0.02	0 deg	1.062	0.1541	234.13	0.0294	No	1	0.71	0.44	1.16	1.23	1.74	9 180.57	85.7	1.20	PVC	375	366.4	20.1	6.7	78.9	L00-year	23.95	175.22	10.37	0.451	0.137	0.81	0.2327	0.0607 (15		
STMMH 202 STMMH 203 13 0.1039 1.0006 0.79 0.228 1.898 11.94 162.56 37.09 100-year 308.6 6.7 6.7 0.447.9 450 PVC 0.40 5.42 178.05 1.13 1.18 0.08 1.73 1.04 Yes 0.0275 12.10 0.0655 0.022 90.deg 1.32 0.0865 0.108 2.00%	98.65 98.63 98.59 98.57	98.65	0.108 2.00%	0.0865	1.32	90 dea	0.022	0.0655	12.10	0.0275	Yes	4	1.04	1 73	0.08	1 18	1 13	178.05	5.4	0.40	PVC.	450	447 9	67.0	67	308.6	00-vear	37.09	162 56	11 94	1 898	0.228	0.79	1 0006	0 1039	13	STMMH 203	STMMH 202
						Jan J									0.00				0.11	0.10			111.0			000.0	loo yeur	01.00	102.00	11101		0.220	0.10		0.1000		200	0111111202
STMMH 203 STMMH 204 9 0.029 1.0302 0.0 0.016 1.915 12.02 161.99 2.67 10.9 2.67 10.9 2.67 10.9 47.9 47.9 45.9 PVC 0.40 24.78 178.05 1.13 1.18 0.35 1.74 1.04 Yes 0.027 55.33 0.0655 0.100 0.49 0.02 0.001 0.101 0.41%	98.55 98.45 98.48 98.38	1% 98.55	0.101 0.41%	0.0013	0.02	0 deg	0.100	0.0655	55.33	0.0275	Yes	4	1.04	1.74	0.35	1.18	5 1.13	178.05	24.7	0.40	PVC	450	447.9	73.7	6.7	310.2	L00-year	2.67	161.99	12.02	1.915	0.016	0.20	1.0302	0.0296	9	STMMH 208	STMMH 203
				0.0005	4.00	00 I	0.474	0.0055	00.70	0.0075	V						_			_				<u> </u>														
STMMH 208 EX.STMMH 12 0.0915 1.1217 0.48 0.122 2.037 12.37 159.46 19.47 100-year 324.8 6.7 80.4 447.9 450 PVC 0.40 43.31 178.05 1.13 1.18 0.61 1.82 1.04 Yes 0.0275 96.70 0.0655 0.174 90 deg 1.32 0.0665 0.261 0.60%	98.44 98.27 98.38 98.204	0% 98.44	0.261 0.60%	0.0865	1.32	90 deg	0.174	0.0655	96.70	0.0275	Yes	4	1.04	1.82	0.61	1.18	5 1.13	178.05	43.3	0.40	PVC	450	447.9	80.4	6.7	324.8	L00-year	19.47	159.46	12.37	2.037	0.122	0.48	1.1217	0.0915	12	EX. STMMH	STMMH 208
	Boundary Condition> 98,197	В											-				-	-					┝───┦	′	\rightarrow	\rightarrow												
																							\square															
												_											<u>لـــــــا</u>	'								0.007			4 4047			TOTALO
TOTALS = 1.1217 2.037																		t:	Proie				Designed:									2.037			1.1217			TOTALS =
Definitions: Ottawa Rainfall Intensity Values from Sever Design Guidelines, SDG002	Headloss Coefficients, k							uation	eisbach Equ	Darcy-We								-	.,.					I		002	elines, SDG	esign Guid	om Sewer	ty Values fi	ainfall Inten	Ottawa I						Definitions:
Q = 2.78*AIR, where \underline{a} \underline{b} \underline{c} THEBERGE HOMES $\underline{H} = f \times (L/D) \times (V^2/2g) + H_{BENDS}$ \underline{Degree} $\underline{k} =$	$H = f x (L/D) x (V^2/2g) + H_{BENDS} $ <u>Degree</u> <u>k</u> =										IES	ERGE HON	THEB		g.	ick, P.Eng	J. Fitzpatri	ľ				<u>c</u>	<u>b</u>	<u>a</u>							e	Q = 2.78*AIR, w						
Q = Peak Flow in Litres per second (L/s) 2-year 732.951 6.199 0.810 Checked: Location: friction factor, $f = 8g \times n^2 / (R^{1/3})$ 0 deg 0.02				0.02	0 deg		ʻ)	g x n ² / (R ^{1/3}	ctor, f=8g	friction fa								on:	Locat				Checked:	ł				0.810	6.199	732.951	2-year					L/s)	itres per second	Q = Peak Flow
A = Watershed Area (hectares) 5-year 998.071 6.053 0.814 $H_{BENDS} = K V^2/2g$ 22 deg 0.14				0.14	22 deg				V ² / 2g	H _{BENDS} = K						`			1150				P. Thoma	ļ				0.814	6.053	998.071	5-year						ea (hectares)	A = Watershee
$1 = Rainfall Intensity (mm/h)$ 100-year 1735.688 6.014 0.820 Difference in the second line road $g = acc. due to gravity (m/s^2) = 9.81$ 45 deg 0.40				0.40	45 deg		9.81	$(m/s^2) =$	ue to gravit	g = acc. di						,	NE KOAI		1100			s, F.Eliy.	D. THOMas	ļ				0.820	6.014	1735.688	100-year						ty (mm/h)	I = Rainfall Inte
R = Runoff Coefficients (dimensionless) File Ref: Sheet No: k = minor loss coefficient 90 deg 1.32				1.32	90 deg			cient	loss coeffic	k = minor			No:	Sheet N				f:	File R			rence:	Dwg Refer	ł												ess)	ients (dimension	R = Runoff Coe
FIGURE A8245003 Storm Design Sheets, Nov 23, 2018.xlsx1 of 1														1 of 1	3,	ets, Nov 2	esign She	3 Storm De Isx	24500 2018.			48	FIGURE A															

Runoff Coeffients		C _{gravel} =	<u>0.80</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>	C _{Conc} =	<u>0.90</u>		
Area No.	Gravel Areas (m ²)	A * C _{GRAV}	Roof Areas (m ²)	A * C _{ROOF}	Grassed Areas (m ²)	A * C _{GRASS}	Conc (m ²)	A * C _{CONC}	Sum AC	Total Area (m ²)	C _{AVG}
Entire Site (for info only)	325.4	260.3	214.9	193.4	11432	2286.4	37.7	33.93	2774.1	12010.0	0.23
PRE-1	25.4	20.3			1015	202.9			223.2	1040.0	0.21
PRE-2	300	240.0	214.9	193.4	10417	2083.5	37.7	33.93	2550.8	10970.0	0.23
Totals	225.4	260.2	214.0	102.4	11 422 0	2 296 4		22.0	2 774 1	12 010 0	0.22
rotals	525.4	200.3	214.9	193.4	11,432.0	2,280.4	57.7	53.9	2,774.1	12,010.0	0.25
Site % IMP =	4.8%					,	Average Rur	off Coeff =	C _{AVG} =	<u>2,774</u> 12,010	= 0.23

TABLE E3 - AVERAGE RUNOFF COEFFICIENTS (Pre Development)

TABLE E4 - PRE-DEVELOPMENT RUNOFF CALCULATIONS

		Time of		Storm = 2 yr	r		Storm = 5 y	r	Storm = 100 yr				
Area Description	Area (ha)	Conc, Tc (min)	I ₂ (mm/hr)	Cavg	Q _{SPRE} (L/sec)	I ₅ (mm/hr)	Cavg	Q _{5PRE} (L/sec)	l ₁₀₀ (mm/hr)	Cavg	Q _{100PRE} (L/sec)		
Entire Site (for info only)	1.2010	20	52.03	0.23	40.1	70.25	0.23	54.2	119.95	0.23	92.5		
PRE-1	0.1040	20	52.03	0.21	3.2	70.25	0.21	4.4	119.95	0.21	7.4		
PRE-2	1.0970	20	52.03	0.23	36.9	70.25	0.23	49.8	119.95	0.23	85.1		
		 '		 '			<u> </u>						
	<u> </u>	<u> </u>		└─── '			 '						
		'		L'			<u> </u>						
Totals	1.2010				40.1			54.2			92.5		
Notes													
2-yr Storm Intensity,	, I = 732.951/((Tc+6.199) ^{0.8.}	¹⁰ (City of Of	ttawa)									
5-yr Storm Intensity,	5-yr Storm Intensity, I = 998.071/(Tc+6.035) ^{0.814} (City of Ottawa)												

100-yr Storm Intensity, I = 1735.688/(Tc+6.014)^{0.820} (City of Ottawa)

Cavg for 100-year is increased by 25%

TABLE E5 - ALLOWABLE RUNOFF CALCULATIONS

		Time of											
		Conc, Tc			Q _{ALLOW}	Q _{ICD}							
Area Description	Area (ha)	(min)	I ₅ (mm/hr)	Cavg	(L/sec)	(L/sec)							
Total Site	1.2010	20	70.29	0.50	117.3	100.0							
Totals	1.2010				117.3	100.0							
<u>Notes</u>													
Allowable Capture R	ate is based o	on 5-year sto	rm at Tc=20 i	minutes.									
QICD is the Controlle	QICD is the Controlled Release Rate as per Morgan's Grant, Phase 12D SWM Report												
5-yr Storm Intensity,	I = 998.071/	(Tc+6.035) ^{0.8}	¹⁴ (City of O	ttawa)									
Runoff Coeffient	5	C _{ASPH/CONC} =	<u>0.90</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>						
---	--------------------------	--------------------------	-------------------------	---------------------	-------------------------	----------------------	--------------------	------------------------	-------------------------------	-------------			
	Asphalt /												
	Conc							1					
	Areas		Roof		Grassed			Total					
Area No.	(m²)	A * C _{ASPH}	Areas (m ²)	A * C_{ROOF}	Areas (m ²)	A * C_{\rm GRASS}	Sum AC	Area (m ²)	² C _{AVG}	Comments			
Entire Site	3211	2889.5	4344.3	3909.9	4454.2	890.8	7690.2	12009	0.64	For Info			
S01								290	0.83	From PCSWMM			
S02								179	0.88	From PCSWMM			
S03								615	0.92	From PCSWMM			
S04								168	0.81	From PCSWMM			
S05								1704	0.73	From PCSWMM			
S06								1034	0.89	From PCSWMM			
S07								175	0.80	From PCSWMM			
S08								251	0.81	From PCSWMM			
S09								296	0.39	From PCSWMM			
S10								134	0.41	From PCSWMM			
S11								251	0.41	From PCSWMM			
S12								916	0.64	From PCSWMM			
S13								1039	0.90	From PCSWMM			
S14								759	0.65	From PCSWMM			
S15								607	0.91	From PCSWMM			
S16								57	0.57	From PCSWMM			
S17								56	0.58	From PCSWMM			
S18								816	0.91	From PCSWMM			
S19								922	0.90	From PCSWMM			
S20								1740	0.67	From PCSWMM			
Total	3,210.5	2,889.5	4,344.3	3,909.9	4,454.2	890.8	7,690.2	12009	0.64				
Site % IMP :	= 63%				Average Rur	noff Coeff =	C _{AVG} =	<u>7,690</u> 12,009	= 0.64				
<u>Notes</u> 1) Areas taken fro 2) Cava From PCSI	m PCSWMM, NMM (Area M	CAD Veiahtina)											

TABLE E6 - AVERAGE RUNOFF COEFFICIENTS (Post Development)

TABLE E7 - SUMMARY OF POST DEVELOPMENT RUNOFF (Uncontrolled and Controlled)

	1	Time of	Storm = 2 vr					Storm	- 5 vr			Storm			
		Time or		Storin	= 2 yi	0		Storm	= 5 yr	0		510111	i = 100 yi		1
		Conc, Ic			Q	Q _{CAP}			Q	Q _{CAP}		I ₁₀₀	Q		
Area No	Area (ha)	(min)	C _{AVG}	l ₂ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	l₅ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	(mm/hr)	(L/sec)	Q _{CAP} (L/sec)	Comments
S01	0.0290	10	0.83	76.81	5.1	5.1	0.83	104.19	7.0	7.0	1.00	178.56	14.4	14.4	Overland to Second Line
S02	0.0179	10	0.88	76.81	3.4	6.4	0.88	104.19	4.6	6.4	1.00	178.56	8.9	6.4	Outlet CB3
S03	0.0615	10	0.92	76.81	12.0	0.4	0.92	104.19	16.3	0.4	1.00	178.56	30.5	0.4	Outlet CB3
S04	0.0168	10	0.81	76.81	2.9	2.9	0.81	104.19	3.9	3.9	1.00	178.56	8.3	6.4	Outlet CB4
S05	0.1704	10	0.73	76.81	26.5	3.2	0.73	104.19	36.0	3.2	0.91	178.56	77.1	3.2	Oulet CB8
S06	0.1034	10	0.89	76.81	19.6	6.4	0.89	104.19	26.6	6.4	1.00	178.56	51.3	6.4	Outlet CB12
S07	0.0175	10	0.80	76.81	3.0	3.0	0.80	104.19	4.0	3.2	0.99	178.56	8.6	3.2	Outlet CB8
S08	0.0251	10	0.81	76.81	4.4	4.4	0.81	104.19	5.9	6.4	1.00	178.56	12.5	6.4	Outlet CB7
S09	0.0296	10	0.39	76.81	2.5	6.4	0.39	104.19	3.4	6.4	0.49	178.56	7.2	6.4	Outlet Drypond (DICB)
S10	0.0134	10	0.41	76.81	1.2	1.2	0.41	104.19	1.6	1.6	0.51	178.56	3.4	3.4	Overland to Hydro Corridor
S11	0.0251	10	0.41	76.81	2.2	2.2	0.41	104.19	3.0	3.0	0.51	178.56	6.3	6.3	Overland to Hydro Corridor
S12	0.0916	10	0.64	76.81	12.5	12.5	0.64	104.19	17.0	12.6	0.80	178.56	36.4	12.6	Outlet CB1
S13	0.1039	10	0.90	76.81	19.9	6.4	0.90	104.19	26.9	6.4	1.00	178.56	51.6	6.4	Outlet CB6
S14	0.0759	10	0.65	76.81	10.6	6.4	0.65	104.19	14.3	6.4	0.81	178.56	30.7	6.4	Outlet CB2
S15	0.0607	10	0.91	76.81	11.8	6.4	0.91	104.19	16.0	6.4	1.00	178.56	30.1	6.4	Outlet CB5
S16	0.0057	10	0.57	76.81	0.7	0.7	0.57	104.19	0.9	0.9	0.71	178.56	2.0	2.0	Overland to Second Line
S17	0.0056	11	0.58	73.17	0.7	0.7	0.58	99.19	0.9	0.9	0.72	169.91	1.9	1.9	Overland to Second Line
S18	0.0816	12	0.91	69.89	14.4	6.4	0.91	94.70	19.5	6.4	1.00	162.13	36.8	6.4	Outlet CB9
S19	0.0922	13	0.90	66.93	15.5	6.4	0.90	90.63	21.0	6.4	1.00	155.11	39.8	6.4	Outlet CB10
S20	0.1740	14	0.67	64.23	20.7	6.4	0.67	86.93	28.0	6.4	0.83	148.72	59.9	6.4	Outlet CB13
Totals	1.2009				189.4	93.4			256.8	100.2			517.7	117.4	

Notes

 Notes

 2-yr Storm Intensity, I = 732.951/(Tc+6.199)
 0.810
 (City of Ottawa)

 5-yr Storm Intensity, I = 998.071/(Tc+6.035)
 0.814
 (City of Ottawa)

 100-yr Storm Intensity, I = 1735.688/(Tc+6.014)
 0.820
 (City of Ottawa)

Time of Concentration (min), Tc = 10 mins Avg. Flow Through LMF80 at 1.3m head (L/s) = 6.4 For Flows under column Qcap which are shown in brackets (0.0), denotes flows that are uncontrolled

100yr Peak to Goward Storm = 89.4 100yr Peak to Second Line = 18.3

100yr Peak to Hydro Corridor = 3.9

Ponding Location		CB3			CB6			CB7			CB8			CB10	
Max. Ponding Surface Area (m2)		4			15			16			17			20	
Max. Pond Elev (m)		102.85			101.15			101.15			101.10			101.45	
Min. Pond (or T/Lid) Elev (m)		102.80			101.05			101.05			101.00			101.35	
Max Ponding Depth (m)		0.050			0.100			0.100			0.100			0.100	
¹ Inv Elev of Storage Node (m)		101.40			99.65			99.65			99.60			99.95	
² Permitted 100yr Depth (m)		0.35			0.35			0.35			0.35			0.35	
³ Allowance for Overland Flow		0.15			0.15			0.15			0.15			0.15	
⁴ Storage Node (or Ponding) Rim Elevation (m)		103.30			101.55			101.55			101.50			101.85	
⁴ Lid Elev - Inv Elev (m)		1.40			1.40			1.40			1.40			1.40	
Max Ponding Elev (m)		102.85			101.15			101.15			101.10			101.45	
Max Prism Volume (m3)		0.07			0.50			0.53			0.57			0.67	
	Total	Ponding	Ponding	Total	Ponding	Ponding	Total	Ponding	Ponding	Total	Ponding	Ponding	Total	Ponding	Ponding
Pondng Depth - Above Grade (m)	Depth	Area	Volume	Depth	Area	Volume	Depth	Area	Volume	Depth	Area	Volume	Depth	Area	Volume
	(m)	(m²)	(m [×])	(m)	(m²)	(m°)									
-1.400	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00
0.000	1.400	0.00	0.00	1.400	0.00	0.00	1.400	0.00	0.00	1.400	0.00	0.00	1.400	0.00	0.00
0.025	1.425	1.00	0.01	1.425	0.94	0.01	1.425	1.00	0.01	1.425	1.06	0.01	1.425	1.25	0.01
0.050	1.450	4.00	0.07	1.450	3.75	0.06	1.450	4.00	0.07	1.450	4.25	0.07	1.450	5.00	0.08
0.075				1.475	8.44	0.21	1.475	9.00	0.23	1.475	9.56	0.24	1.475	11.25	0.28
0.100				1.500	15.00	0.50	1.500	16.00	0.53	1.500	17.00	0.57	1.500	20.00	0.67
0.125															
0.150															
0.175															
0.200															
0.225															
0.250															
0.275															
0.300															
0.325															
0.350								L .							
Max Ponding Area (m ²) and Maximum Ponding Volume (m ³)=		4	0.07		15	0.50		16	0.53		17	0.57		20	0.67
Ponding Depth Interval =	0.025														

TABLE E8: RATING CURVES FOR MODELLING OF SURFACE PONDING AREAS

Notes

1) The invert elevaiton of the storage node represents the invert elevaton in the catchbasin (i.e elevaiton of the ICD)

2) The Permitted Deoth is 0.35m as per Ottawa SDG002

3) The allowance for Overland Flow is an additional 0.15m

4) The Ponding RIM elevation of the storage node is equal to the differnce between the Max Ponding Elev and the Invert Elev plus an additonal 0.5m (0.35m for ponding during 100-yr event plus 0.15m allowance for overland flow

5) Used to Reference Depth from Invert Elev

TABLE E9: MAJOR SYSTEM (STREET SEGMENT) CHARATERISTICS

	Overland Gutter and Roadway Flow Based on Road & Curb Type													
Street Flow	Assumed	Spread on				Road and	Gutter Flow	s (m ³ /sec)						
(L/sec)	Spread (T)	Asphalt,	Ds=Ts*Sx	D=Ds+Dg	0	0	Gutter Flow,	Road Flow,	0					
(1/000)	oproda (1)	Ts=T-Wg			Q _(A+C)	Q(C)	Q _(A)	Q _(B)	Q _(A+B)					
0	0 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.000 5 0.725 0.725 0.022 0.022 0.000 0.0000 0.0000 0.0000 5.00													
5	0 0.000 0.000 0.000 0.000 0.0000													
10	0.940	0.940	0.028	0.028	0.0000	0.0000	0.0000	0.0100	10.00					
50	1.718	1.718	0.052	0.052	0.0000	0.0000	0.0000	0.0500	50.00					
100	2.228	2.228	0.067	0.067	0.0000	0.0000	0.0000	0.1000	100.00					
125	2.423	2.423	0.073	0.073	0.0000	0.0000	0.0000	0.1250	125.00					
150	2.594	2.594	0.078	0.078	0.0000	0.0000	0.0000	0.1500	150.00					
200	2.890	2.890	0.087	0.087	0.0000	0.0000	0.0000	0.2000	200.00					
250	3.142	3.142	0.094	0.094		0.0000		0.2500	250.00					
*Note: Re-iterate	to get Steeet Fl	ow Equal to Q	A+B (use Goal Se	eak Function)										

INLET CAPACITY, AP Lane Crossfall = Gutter Grade =	PROACH FL 0.030 m/m 0.020 m/m	OW & SPRE	AD BASED	ON	
Street Flow, L/sec (m ³ /sec)	Total Spread, T (m)	Spread on Asphalt, T _S (metres)	Depth of Flow at Gutter (m)	Inlet Capture Rate (m3/sec)	Inlet Capture Rate (l/sec)
0 (0.000)	0.000	0.000	0.000	0.000	0
5 (0.005)	0.725	0.725	0.022	0.003	3
10 (0.010)	0.940	0.940	0.028	0.005	5
50 (0.050)	1.718	1.718	0.052	0.012	12
100 (0.100)	2.228	2.228	0.067	0.016	16
125 (0.125)	2.423	2.423	0.073	0.018	18
150 (0.150)	2.594	2.594	0.078	0.020	20
200 (0.200)	2.890	2.890	0.087	0.023	23
250 (0.250)	3.142	3.142	0.094	0.026	26
Note: The Total Spread (T), includes Gutter w	idith, (Wg) plus sp	read on lane, (Ts) for curb & gutter	r type curbs

TABLE E10: MAJOR SYSTEM (STREET SEGMENT) CHARATERISTICS

Asphalt width, W_A (m) =	3.200	From EOP to CL
Total Road Width, W_R (m) =	3.350	Includes gutter
Lane crossfall, S_X (m/m) =	0.030	3.0%
Gutter Grade, S_0 (m/m)	0.020	2.0%
Curb Type =	SC1.3	Mountable Curb and Gutter
Inlet Type =	S19	Curb inlet CB
Curb height, H_{C} (m) =	0.075	
Total curb height, H_T (m) =	0.350	
Curb top width, W_{c} (m) =	0.200	
Curb bottom width, W (m) =	0.350	
Gutter width, $W_G(m) =$	0.150	
Gutter slope, S_G (m/m) =	0.040	$S_G = D_G / W_G$
Gutter depth, D_G (m) =	0.006	
Mannings, N =	0.013	
Max Spread, T_{MAX} (m) =	1.750	Max Permitted Spread = $1/2$ Asphalt width, $W_A + W_G$
Max Spread on Asphalt, T_{SMAX} (m) =	1.600	Max Permitted Spread Over Asphalt =1/2 Asphalt width
Max Depth at EOP, $D_{SMAX}(m) =$	0.048	Based on 1/2 Lane Width
Max depth over gutter, D_{MAX} (m) =	0.054	$D_{MAX} = D_{SMAX} + D_G$

	Overland Gutter and Roadway Flow Based on Road & Curb Type													
Street Flow	Assumed	Spread on				Road and	Gutter Flow	s (m³/sec)						
(L/sec)	Spread (T)	Asphalt,	Ds=Ts*Sx	D=Ds+Dg	0	0	Gutter Flow,	Road Flow,	0					
(1/000)	oprodu ()	Ts=T-Wg			Q(A+C)	Q(C)	Q _(A)	Q _(B)	Q(A+B)					
0	0 0.000 0.000 0.000 0.006 0.001 0.0000 0.001 0.0000 0.12 5 0.716 0.566 0.017 0.023 0.0014 0.0019 0.0024 0.0026 5.00													
5	5 0.716 0.566 0.017 0.023 0.0044 0.0019 0.0024 0.0026 5.00													
10	0.933	0.783	0.023	0.029	0.0085	0.0046	0.0038	0.0062	10.00					
50	1.715	1.565	0.047	0.053	0.0403	0.0292	0.0110	0.0390	50.00					
100	2.226	2.076	0.062	0.068	0.0793	0.0621	0.0173	0.0827	100.00					
125	2.420	2.270	0.068	0.074	0.0987	0.0788	0.0199	0.1051	125.00					
150	2.592	2.442	0.073	0.079	0.1181	0.0957	0.0224	0.1276	150.00					
200	2.887	2.737	0.082	0.088	0.1567	0.1298	0.0269	0.1731	200.00					
250	3.140	2.990	0.090	0.096	0.1952	0.1643	0.0310	0.2190	250.00					
*Note: Re-iterat	te to get Steeet	Flow Equal to	Q _{A+B} (use Goal	Seak Function)									

INLET CAPACITY, APF Lane Crossfall = Gutter Grade =	2ROACH FLO 0.030 m/m 0.020 m/m	OW & SPRE	AD BASED	ON	
Street Flow (L/sec)	Total Spread, T (m)	Spread on Asphalt, T _S (metres)	Depth of Flow at Gutter (m)	Inlet Capture Rate (m3/sec)	Inlet Capture Rate (L/sec)
0	0.000	0.000	0.006	0.000	0
5	0.716	0.566	0.023	0.013	13
10	0.933	0.783	0.029	0.017	17
50	1.715	1.565	0.053	0.033	33
100	2.226	2.076	0.068	0.045	45
125	2.420	2.270	0.074	0.050	50
150	2.592	2.442	0.079	0.054	54
200	2.887	2.737	0.088	0.061	61
250	3.140	2.990	0.096	0.000	61

TABLE E11.1: Inlet Control Devices (ICD) Types

Model	Shape	Coeff	Orifice Dia	Diam	ond Dim	ensions	(mm)	Orifce Area	Orifce Area	H (m)	Q	IPEX MHF Diamond With Slot Detail
			(mm)	а	b	с	d	(mm2)	(mm2)	. ,	(L/sec)	
IPEX-LMF40	Round	0.61	25.2					498.8	0.0005	2.00	1.9	
IPEX-LMF45	Round	0.61	29.4					678.9	0.00068	2.00	2.6	
IPEX-LMF50	Round	0.61	32.6					834.7	0.00083	2.00	3.2	
IPEX-LMF55	Round	0.61	35.6					995.4	0.001	2.00	3.8	
IPEX-LMF60	Round	0.61	38.7					1176.3	0.00118	2.00	4.5	
IPEX-LMF65	Round	0.61	42					1385.4	0.00139	2.00	5.3	
IPEX-LMF70	Round	0.61	45.4					1618.8	0.00162	2.00	6.2	
IPEX-LMF75	Round	0.61	48.6					1855.1	0.00186	2.00	7.1	\wedge
IPEX-LMF80	Round	0.61	52.2					2140.1	0.00214	2.00	8.2	a a
IPEX-LMF85	Round	0.61	55					2375.8	0.00238	2.00	9.1	
IPEX-LMF90	Round	0.61	58.3					2669.5	0.00267	2.00	10.2	90°
IPEX-LMF95	Round	0.61	61.6					2980.2	0.00298	2.00	11.4	c ¥
IPEX-LMF100	Round	0.61	65					3318.3	0.00332	2.00	12.7	t b
IPEX-LMF105	Round	0.61	68					3631.7	0.00363	2.00	13.9	⁰ $\int 45^{\circ}$
IPEX-MHF-TypeA	Diamond	0.61		78.14	58.34	110.50	28	6693.1	0.00669	1.22	20.0	
IPEX MHF-TypeB	Diamond	0.61		94.40	74.60	133.50	28	9499.1	0.0095	1.22	28.3	28m
IPEX MHF-TypeC	Diamond	0.61		108.61	88.81	153.60	28	12384.5	0.01238	1.22	37.0	28m
IPEX-MHF-TypeD	Diamond	0.61		132.37	112.57	187.20	28	18109.9	0.01811	3.05	85.5	
IPEX-MHF-TypeF	Diamond	0.61		152.88	133.08	216.20	28	23959.2	0.02396	3.05	113.1	

TABLE E11.2 : DISCHARGE RATES FOR VARIOUS IPEX ICD MODELS

									10	D Mode	IS								
Head (m)	IPEX-LMF40	IPEX-LMF45	IPEX-LMF50	IPEX-LMF55	IPEX-LMF60	IPEX-LMF65	IPEX-LMF70	IPEX-LMF75	IPEX-LMF80	IPEX-LMF85	IPEX-LMF90	IPEX-LMF95	IPEX- LMF100	IPEX- LMF105	IPEX-MHF- TypeA	IPEX MHF- TypeB	IPEX MHF- TypeC	IPEX-MHF- TypeD	IPEX-MHF- TypeF
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.2	0.6	0.8	1.0	1.2	1.4	1.7	2.0	2.2	2.6	2.9	3.2	3.6	4.0	4.4	8.1	11.5	15.0	21.9	29.0
0.4	0.9	1.2	1.4	1.7	2.0	2.4	2.8	3.2	3.7	4.1	4.6	5.1	5.7	6.2	11.4	16.2	21.2	30.9	40.9
0.6	1.0	1.4	1.7	2.1	2.5	2.9	3.4	3.9	4.5	5.0	5.6	6.2	6.9	7.6	14.0	19.9	25.9	37.9	50.1
0.8	1.2	1.6	2.0	2.4	2.8	3.3	3.9	4.5	5.2	5.7	6.5	7.2	8.0	8.8	16.2	23.0	29.9	43.8	57.9
1	1.3	1.8	2.3	2.7	3.2	3.7	4.4	5.0	5.8	6.4	7.2	8.1	9.0	9.8	18.1	25.7	33.5	48.9	64.7
1.2	1.5	2.0	2.5	2.9	3.5	4.1	4.8	5.5	6.3	7.0	7.9	8.8	9.8	10.7	19.8	28.1	36.7	53.6	70.9
1.4	1.6	2.2	2.7	3.2	3.8	4.4	5.2	5.9	6.8	7.6	8.5	9.5	10.6	11.6	21.4	30.4	39.6	57.9	76.6
1.6	1.7	2.3	2.9	3.4	4.0	4.7	5.5	6.3	7.3	8.1	9.1	10.2	11.3	12.4	22.9	32.5	42.3	61.9	81.9
1.8	1.8	2.5	3.0	3.6	4.3	5.0	5.9	6.7	7.8	8.6	9.7	10.8	12.0	13.2	24.3	34.4	44.9	65.6	86.9
2	1.9	2.6	3.2	3.8	4.5	5.3	6.2	7.1	8.2	9.1	10.2	11.4	12.7	13.9	25.6	36.3	47.3	69.2	91.6
2.2	2.0	2.7	3.3	4.0	4.7	5.6	6.5	7.4	8.6	9.5	10.7	11.9	13.3	14.6	26.8	38.1	49.6	72.6	96.0
2.4	2.1	2.8	3.5	4.2	4.9	5.8	6.8	7.8	9.0	9.9	11.2	12.5	13.9	15.2	28.0	39.8	51.8	75.8	100.3
2.6	2.2	3.0	3.6	4.3	5.1	6.0	7.1	8.1	9.3	10.4	11.6	13.0	14.5	15.8	29.2	41.4	54.0	78.9	104.4
2.8	2.3	3.1	0.0	4.5	5.3	6.3	7.3	8.4	9.7	10.7	12.1	13.5	15.0	16.4	30.3	42.9	56.0	81.9	108.3
3	2.3	3.2	3.9	4.7	5.5	6.5	7.6	8.7	10.0	11.1	12.5	13.9	15.5	17.0	31.3	44.5	58.0	84.8	112.1
3.2	2.4	3.3	4.0	4.8	5.7	6.7	7.8	9.0	10.3	11.5	12.9	14.4	16.0	17.6	32.4	45.9	59.9	87.5	115.8
3.4	2.5	3.4	4.2	5.0	5.9	6.9	8.1	9.2	10.7	11.8	13.3	14.8	16.5	18.1	33.3	47.3	61.7	90.2	119.4
3.6	2.6	3.5	4.3	5.1	6.0	7.1	8.3	9.5	11.0	12.2	13.7	15.3	17.0	18.6	34.3	48.7	63.5	92.8	122.8
3.8	2.6	3.6	4.4	5.2	6.2	7.3	8.5	9.8	11.3	12.5	14.1	15.7	17.5	19.1	35.3	50.0	65.2	95.4	126.2

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix F – Stormwater Modelling Results

PCSWMM Input File (Details)

PCSWMM Output File (Status)

*ехр.

[TITLE] Dual Drianage Model. Removed two CBs and updaed dry pond area

;;Options ;;------FLOW_UNITS Value LPS HORTON DYNWAVE DYNWAVE 02/22/2018 00:00:00 02/22/2018 00:00:00 02/22/2018 06:00:00 01/01 12/21 12/31 0 00:01:00 00:01:00 1 NO PARTIAL 0.75 1 0 BOTH NO H-W ELEVATION 0 8 0.0015 5 5 1 4 [EVAPORATION] ;;Type Parameters ;;-----CONSTANT 0.0 DRY_ONLY NO

[OPTIONS]

[RAINGAGES]

;;	Rain	Time	Snow	Data	
;;Name	Туре	Intrvl	Catch	Source	
;;					
Chicago_3h_100yr	INTENSITY	0:05	1.0	TIMESERIES	Chicago_3h_100yr
Chicago_3h_2yr	INTENSITY	0:05	1.0	TIMESERIES	Chicago_3h_2yr
Historic Aug4 88	INTENSITY	1:00	1.0	TIMESERIES	Historic Storm Aug-4-88
Historic Aug8 96	INTENSITY	1:00	1.0	TIMESERIES	Historic Storm Aug-8-1996
Historic_Jul1_79	INTENSITY	1:00	1.0	TIMESERIES	Historic_Storm_Jul-1-79

;; ;;Name	Raingage		Outlet	Total Area	Pcnt. Imperv	Width	Pcnt. Slope	Curb Length	Snow Pack
s01	Chicago 3h	100yr	Outfall Second I	ine 0.029	72.8	26.364	2	0	
S02	Chicago 3h	100vr	свз – –	0.0179	82.1	19.889	2	0	
S03	Chicago 3h	100vr	CB3	0.0615	87.8	68.333	2	0	
S04	Chicago 3h	100yr	CB4-MAJ	0.0168	69	14	2	0	
S05	Chicago 3h	100yr	CB8-MAJ	0.1704	55.6	568	4	0	
S06	Chicago 3h	100yr	CB12-MAJ	0.1034	83.1	94	2	0	
S07	Chicago 3h	100yr	CB8-MAJ	0.0175	67	35	2	0	
S08	Chicago 3h		CB7-MAJ	0.0251	70.4	25.1	2	0	
S09	Chicago 3h		Drypond	0.0296	0	11.84	2	0	
S10	Chicago 3h	100yr	Outfall Hydro Co	orridor 0.	0134 0	44.667	2	0	
S11	Chicago 3h		Outfall Hydro Co	orridor 0.	0251 0	83.667	2	0	
S12	Chicago 3h		CB1	0.0916	40.7	83.273	4	0	
S13	Chicago_3h	100yr	CB6-MAJ	0.1039	84.4	148.429	2	0	
S14	Chicago_3h	100yr	CB2	0.0759	42.4	63.25	4	0	
S15	Chicago_3h	100yr	CB5-maj	0.0607	87.1	55.182	2	0	
S16	Chicago_3h	100yr	Outfall_Second_I	ine 0.005	7 29.4	2.85	2	0	
S17	Chicago 3h	100yr	Outfall Second I	ine 0.005	6 29.4	18.667	2	0	
S18	Chicago_3h	100yr	CB9-MAJ	0.0816	86.7	74.182	2	0	
S19	Chicago_3h	100yr	CB10-MAJ	0.0922	85.6	83.818	2	0	
S20	Chicago_3h	100yr	CB13	0.174	44.2	1740	4	0	
[SUBAREAS]									
;;Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Route	To Pct	Routed	
;;	0.012	0 1	1 57	4 67	25	OUUUU E			
202	0.013	0.1	1.57	4.07	25	OUTLE	1 m		
502	0.013	0.1	1.57	4.07	25	OUTLE	1 m		
SUS 204	0.013	0.1	1.57	4.07	25	OUTLE	1 T		
205	0.013	0.1	1.57	4.07	25	OUTLE	- -		
505	0.013	0.1	1.57	4 67	25	OUTLE	т т		
S00	0.013	0 1	1 57	4 67	25	OUTLE	- T		
508	0 013	0 1	1.57	4 67	25	OUTLE	т Т		
000	0.010	· · +	±.07		20	00100	-		

S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET				
[INFILTRATION]	MaxRate	MinRate	e Decav	DrvTime	MaxInfil					
;; SO1 SO2 SO3 SO4 SO5 SO6 SO7 SSO8 SO9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20	$\begin{array}{c} 76.2\\$	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	$\begin{array}{c} 4 & 14 \\ \end{array}$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						
[JUNCTIONS]	Invert	Max.	Init.	Surcharge	Ponded					
;;Name ;; 200	Elev. 99.674	Depth 3.576	Depth 0	Depth 0	Area 0					
201 202	99.09 97.986	3.51 3.064	0	0	0					
203	97.904 100.663	3.296 3.587	0	0	0					
205 206 207 208 CB1 CB10-DS CB10-TEE CB12-TEE CB13 CB3-TEE CB4-DS CB4-MAJ CB5-TEE CB5-MAJ CB5-TEE CB6-TEE CB7-TEE CB6-TEE CB8-TEE CB8-TEE CB8-TEE CB9-TEE	100.184 98.414 98.66 97.774 99.73 101.41 98.562 101.48 98.326 98.86 99.35 102.82 102.924 99.338 102.924 99.338 102.51 98.868 101.23 97.978 101.12 98.108 101.2 98.13 102.99 99.813	3.306 3.686 2.36 3.302 2 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 0.016 3.448 0.1 3.338 0.1 7 3.101 0.1 3.109 0.1 3.2								
205 206 207 208 CB10-DS CB10-DS CB10-TEE CB12-MAJ CB12-TEE CB12-MAJ CB12-TEE CB4-DS CB4-DS CB4-TEE CB5-MAJ CB5-TEE CB5-MAJ CB5-TEE CB5-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-MAJ CB9-TEE CB9-MAJ CB9-TEE [OUTFALLS] ;; ;:Name	100.184 98.414 98.66 97.774 99.73 101.41 98.562 102.48 99.35 102.82 102.924 99.38 102.51 98.868 101.23 97.978 101.2 98.108 101.2 98.13 102.99 99.813	3.306 3.686 2.36 3.302 2 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 0.016 3.448 0.1 3.338 0.17 3.101 0.1 3.082 0.1 3.109 0.1 3.2 Outfal1 Type	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
205 206 207 208 CB10-DS CB10-TEE CB12-MAJ CB10-TEE CB12-TEE CB13 CB3-TEE CB4-DS CB4-TEE CB5-MAJ CB5-TEE CB5-MAJ CB5-TEE CB5-MAJ CB6-TEE CB7-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-TEE CB9-MAJ CB9-TEE CB9-MAJ CB9-TEE CB9-TE	100.184 98.414 98.414 99.73 101.41 98.562 101.48 98.326 98.86 99.35 102.82 102.924 99.35 102.51 98.868 101.23 97.978 101.12 98.108 101.2 98.13 102.99 99.813 Invert Elev. Storm 97.5 Line 0	3.306 3.686 2.36 3.302 2 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 0.016 3.448 0.1 3.338 0.1 7 3.101 0.1 3.082 0.1 3.109 0.1 3.2 0utfal: Type FREE FREE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
205 206 207 208 CB10-DS CB10-TEE CB12-MAJ CB12-TEE CB12-MAJ CB2-TEE CB4-DS CB4-DS CB4-TEE CB5-TEE CB5-TEE CB6-MAJ CB7-TEE CB6-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ CB7-TEE (CB7-MAJ (CB7-TEE (CB7-TEE) (CB7-TEE (CB7-TEE) (CB7-TEE (CB7-TEE) (CB7-TEE (CB7-TEE) (CB7-TEE) (CB7-TEE (CB7-TEE) (CD7-TEE)	100.184 98.414 98.66 97.774 99.73 101.41 101.41 98.562 101.48 98.326 99.35 102.82 102.924 99.38 101.23 97.978 101.23 97.978 101.2 98.108 101.2 98.13 102.99 99.813 Invert Elev. 	3.306 3.686 2.36 3.302 2 0.1 0.1 3.582 2.3 3.443 0.1 3.338 0.1 0.1 3.338 0.1 0.1 3.338 0.1 0.1 3.338 0.1 0.1 3.101 0.1 3.109 0.1 3.2 0utfal: Type FREE FREE FREE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Eonded	Eyan		
205 206 207 208 CB10-DS CB10-TEE CB12-TEE CB13 CB3-TEE CB3-TEE CB4-DS CB4-TEE CB5-MAJ CB5-TEE CB5-MAJ CB5-TEE CB6-MAJ CB5-TEE CB7-TEE CB8-TEE CB8-TEE CB9-TEE [OUTFALLS] ;; ;Name ;;	100.184 98.414 98.466 97.774 99.73 101.41 98.562 101.48 98.326 98.86 99.35 102.82 102.924 99.338 101.23 97.978 101.12 98.108 101.23 97.978 101.23 98.13 102.99 99.813 Invert Elev. Invert Elev.	3.306 3.686 2.36 3.302 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 3.448 0.1 3.338 0.1 7 3.101 0.1 3.109 0.1 3.2 0utfal: Type FREE FREE FREE Max. Depth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Ponded Area	Evap. Frac.	Infiltration paramete	215
205 206 207 208 CB10-DS CB10-TEE CB10-TEE CB12-MAJ CB10-TEE CB3-TEE CB4-DS CB4-DS CB4-MAJ CB5-TEE CB5-MAJ CB5-TEE CB5-MAJ CB5-TEE CB6-MAJ CB5-TEE CB7-MAJ CB7-TEE CB7-MAJ CB7-TEE CB7-MAJ CB7-TEE CB7-MAJ CB7-TEE (OUTFALLS) ;; imme ;;	100.184 98.414 98.66 97.774 99.73 101.41 98.562 101.48 98.326 98.86 99.35 102.82 102.924 99.38 102.51 98.868 101.23 97.978 101.2 98.108 101.2 98.13 102.99 99.813 102.99 99.813 Invert Elev. Storm 97.5 Line 0 Invert Elev. 99.41 99.41 99.41	3.306 3.686 2.36 3.302 2 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 0.1 3.338 0.17 3.101 0.1 3.082 0.1 3.109 0.1 3.2 Outfall Type FREE FREE Max. Depth 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.36	Ponded Area 	Evap. Frac.	Infiltration paramete	212
205 206 207 208 CB10-DS CB10-TEE CB10-TEE CB12-MAJ CB12-TEE CB3-TEE CB4-DS CB4-TEE CB5-TEE CB5-TEE CB6-TEE CB6-TEE CB8-MAJ CB7-TEE CB8-MAJ CB7-TEE CB8-MAJ CB7-TEE [OUTFALLS] ;; ;Name ;; CB12-CB3 CB3-TEE [OUTFALLS] ;; ;Name ;; CB10-CB3 CB3-TEE CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB10-CB3 CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; CB3-TEE [CUTFALLS] ;; ; ; CB3-TEE [CUTFALLS] ;; ; ; ; ; ; ; ; ; ; ; ; ;	100.184 98.414 98.66 97.774 99.73 101.41 101.41 98.562 101.48 98.86 99.35 102.82 102.924 99.38 101.23 97.978 101.23 97.978 101.23 97.978 101.23 98.108 101.2 98.13 102.99 99.813 Invert Elev. Storm 97.5 Line 0 Invert Elev. 99.41 99.48 100.1 100.85	3.306 3.686 2.36 3.302 2 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.1 0.16 3.448 0.1 3.3082 0.1 3.101 0.1 3.082 0.1 3.109 0.1 3.2 0.1 3.2 0.1 5.7 FREE FREE FREE FREE FREE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.36 0.36	Ponded Area 	Evap. Frac.	Infiltration paramete	215
205 206 207 208 CB10-DS CB10-TEE CB12-TEE CB13 CB3-TEE CB4-DS CB4-TEE CB5-MAJ CB5-TEE CB5-MAJ CB5-TEE CB6-MAJ CB5-TEE CB8-TEE CB8-TEE CB8-TEE [OUTFALLS] ;; Name ;; CB10 CB12 CB2 CB2 CB3 CB4-TEE CB3-TEE CB3-TEE [OUTFALLS] ;; Name ;; CB10 CB12 CB2 CB3 CB4 CB5 CB4 CB5 CB4 CB5 CB4-TEE CB5-MAJ CB5-TEE [OUTFALLS] ;; Name ;; CB10 CB12 CB2 CB3 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB4 CB5 CB5 CB4-TEE CB5-MAJ CB5-TEE CB7-TEE CB7-TEE CB7-TEE CB7-TEE CB8-TEE CB8-TEE CB8-TEE CB8-TEE CB8-TEE CB8-TEE CB7-TEE CB7-TEE CB8-TEE	100.184 98.414 98.66 97.774 99.73 101.41 98.562 101.48 98.326 98.86 99.35 102.82 102.924 99.38 101.23 97.978 101.12 98.108 101.23 97.978 101.12 98.13 102.99 99.813 Invert Elev. Storm 97.5 Line 0 Invert Elev. 99.41 99.48 100.85 100.85 100.84 99.84	3.306 3.686 2.36 3.302 0.1 0.1 3.37 0.1 3.582 2.3 3.443 0.10 3.38 0.1 3.38 0.1 3.101 0.1 3.109 0.1 3.2 Outfal: Type FREE FREE Max. Depth 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.36 0.36 0.36 0.36	Ponded Area 0 0 0 0 0	Evap. Frac. 0 0 0 0	Infiltration paramete	ars

CB8	99.2 2	0 TABULA	R CB8-PO	NDING	0	0		
CB9	100.99 2	0 FUNCTI	ONAL 0	0	0.36 0	0		
Drypond	98.6 2.25	0 TABULA	R DRY-PO	ND	0	0		
Outfall Hydro Co	rridor 100.8 0.2	0 TABULA	R PARK-S	TORAGE	0	0		
[CONDUITS]								
;;	Inlet	Outlet		Manning	Inlet	Outlet	Init.	Max.
;;Name	Node	Node	Length	N	Offset	Offset	Flow	Flow
;;								
C1	CB2	CB1	68.902	0.01	100.21	101.73	0	0
C1_1	203	208	24.781	0.013	97.904	97.804	0	0
C1_2	208	Outfall_Goward_S	torm 43.322	0.013	97.774	97.6	0	0
;Swale								
C10-S	CB13	Outfall_Hydro_Co	rridor 85.4	57 0.013	101.129	100.8	0	0
;Swale	0.01			F 4 0 01	101 70	100 0	0	0
C12	CBI	Outrall_Hydro_Co	rridor 36.5	54 0.01	101./3	100.8	0	0
C15-S	CB12-MAJ	CB8-MAJ	25.72	0.013	101.48	101.2	0	0
C2	CB/-MAJ	Drypond	4.686	0.013	101.12	100	0	0
22_1	202	CB0-TEE	1.828	0.013	97.986	97.978	0	0
C2_3	CB0-TEE	203	3.38	0.013	97.978	97.964	0	0
03	200	201	22.916	0.013	99.674	99.215	0	0
C4_1	201	CB5-TEE	18.493	0.013	99.09	98.868	0	0
C4_2	CB5-TEE	202 CDC MAT	07.283	0.013	98.868	98.061 101 12	0	0
C4_5-5	CB5-MAJ	CB6-MAJ	70.256	0.013	101.51	101.13	0	0
C6 2	CD3 mer	CD4 mpp	0 402	0.013	100.104	33.33	0	0
C6_2	CB3-IEE CB4-TEE	201	6 302	0.013	33.33	99.330	0	0
C6_0	CD9 MAT	CD7 MAT	11 5	0.013	101 2	101 10	0	0
C0-3	204	CD 0 MEE	12.102	0.013	101.2	101.12	0	0
C7_2	CD0_777	206	42.405	0.013	00.005	99.013	0	0
C7_2_9	CD9-MAT	CP10-MAT	67 717	0.013	102 00	101 41	0	0
C7_2-3	CB6-MAJ	CB7-MAJ	6 532	0.013	101 13	101.41	0	0
C8	CB3	CB4-DS	9 1 9 9	0.013	102.85	102.82	0	0
C8 2	CB7-TEE	202	5 746	0.013	98 108	98 061	0	0
C8 3	206	CB12-TEE	10 776	0.013	98 414	98 326	0	0
C8_3-S	CB10-MAJ	CB10-DS	6 791	0.013	101 41	101 41	0	0
C8 4	CB8-TEE	CB7-TEE	2 619	0.013	98 13	98 108	0	0
C8 5	CB12-TEE	CB8-TEE	24 43	0.013	98 326	98 13	0	0
C8 5-S	CB10-DS	CB7-MA.T	32 797	0.013	101 41	101 12	0	0
C9 1	207	CB10-TEE	9.67	0.013	98.66	98.562	0	0
C9 2	CB10-TEE	206	2.336	0.013	98.562	98.539	0	0
C9-S 1	CB4-MAJ	CB4-DS	1.81	0.013	102.84	102.82	0	0
C9-5 2	CB4-DS	CB8-MAJ	70.656	0.013	102.82	101.2	0	0
CB12-ICD 1	CB2	CB5	22.638	0.01	100.7	100.47	0	0

[OUTLETS]

;;	Inlet	Outlet	Outflo	w Outl	et	Qcoeff/		Flap
;;Name	Node	Node	Height	Type	è	QTable	Qexpon	Gate
;;					·			
C11-ICD	CB10	CB10-TEE	100.01	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
C3-ICD	CB3	CB3-TEE	101.45	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB11-IC	CB10-MAJ	CB10	101.41	TABU	JLAR/DEPTH	CICB-IC		NO
CB12-IC	CB12-MAJ	CB12	101.48	TABU	JLAR/DEPTH	CB-IC		NO
CB12-ICD	CB12	CB12-TEE	100.08	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB14-ICD	CB13	207	99.46	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB15-ICD	CB1	208	100.33	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB2-IC	CB7-MAJ	CB7	101.12	TABU	JLAR/DEPTH	CB-IC		NO
CB4-ICA	CB4-MAJ	CB4	102.84	TABU	JLAR/DEPTH	CB-IC		NO
CB4-ICD	CB4	CB4-TEE	101.44	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB5-IC	CB5-MAJ	CB5	102.51	TABU	JLAR/DEPTH	CICB-IC		NO
CB5-ICD	CB5	CB5-TEE	100.44	TABU	JLAR/DEPTH	ICD-IPEX-TYPEA		NO
CB6-IC	CB6-MAJ	CB6	101.13	TABU	JLAR/DEPTH	CICB-IC		NO
CB6-ICD	CB6	CB6-TEE	99.73	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB7-ICD	CB7	CB7-TEE	99.72	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB8-IC	CB9-MAJ	CB9	102.99	TABU	JLAR/DEPTH	CICB-IC		NO
CB8-ICA	CB8-MAJ	CB8	101.2	TABU	JLAR/DEPTH	CB-IC		NO
CB8-ICDA	CB8	CB8-TEE	99.928	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
CB9-TCD	CB9	CB9-TEE	101.59	TABI	ILAR/DEPTH	TCD-TPEX-LME80		NO
POND-ICD	Drvpond	203	98.6	TABU	JLAR/DEPTH	ICD-IPEX-LMF80		NO
	21							
[XSECTIONS]								
[XSECTIONS] ;;Link	Shape	Geoml	Geom2	Geom3	Geom4	Barrels		
[XSECTIONS] ;;Link ;;	Shape	Geoml	Geom2	Geom3	Geom4	Barrels		
[XSECTIONS] ;;Link ;; C1	Shape IRREGULAR	Geom1 Swale	Geom2 0	Geom3 	Geom4 0	Barrels 1		
[XSECTIONS] ;;Link ;; C1 C1 1	Shape IRREGULAR CIRCULAR	Geom1 Swale 0.45	Geom2 0 0	Geom3 0 0	Geom4 0 0	Barrels 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2	Shape IRREGULAR CIRCULAR CIRCULAR	Geom1 Swale 0.45 0.45	Geom2 0 0	Geom3 0 0 0	Geom4 0 0 0	Barrels 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR	Geom1 Swale 0.45 0.45 Swale	Geom2 0 0 0 0	Geom3 0 0 0 0	Geom4 0 0 0 0	Barrels 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR	Geom1 Swale 0.45 0.45 Swale Swale	Geom2 0 0 0 0 0 0	Geom3 0 0 0 0 0	Geom4 0 0 0 0 0 0	Barrels 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C1_2 C1_2 C10-S C12 C15-S	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR	Geom1 Swale 0.45 0.45 Swale Swale Swale Swale 3.35m Stree	Geom2 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12 C10-S C12 C15-S C2	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR IRREGULAR	Geom1 Swale 0.45 0.45 Swale Swale Half_3.35m_Stree Road-Spill-1	Geom2 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C1_2 C1_2 C1_3 C1_5-S C15-S C2_1 C2_1	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C10-S C12	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR	Geom1 Swale 0.45 Swale Swale Half_3.35m_Stree Road-Spill-1 0.45 0.45	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12 C12-S C12 C15-S C2 C2_1 C2_3 C3	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12-S C15-S C2-1 C2_1 C2_3 C3 C4_1	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 Swale 0.45 Swale Swale Swale Road-Spill-1 0.45 0.45 0.25 0.375	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12-S C12-S C2 C2-1 C2-3 C3 C3 C4_2 C4-2	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C1_2 C10-s C12-s C15-s C2_1 C2_3 C3- C4_1 C4_5-s C4_5-s	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12-S C15-S C2-1 C2_1 C2_1 C2_1 C2_3 C3- C4_1 C4_2 C4_2 C4_5-S C6-	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 Swale 0.45 Swale Swale Road-Spill-1 0.45 0.45 0.45 0.45 0.375 0.375 Half_3.35m_Stree 0.3	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12-S C12-S C2-1 C2-1 C2-3 C3 C4_1 C4-2 C4-5-S C6-2	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C10-S C12_2 C10-S C12_2 C15-S C2_3 C3_5 C2_1 C2_3 C3_5 C4_1 C4_2 C4_5-S C6_6 C6_2 C6_6 C6_2 C6_6	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geoml Swale 0.45 Swale Swale Swale Swale Road-Spill-1 0.45 0.25 0.375 0.375 Half_3.35m_Street 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C10-S C12-2 C15-S C2 C2_1 C2_1 C2_1 C2_2 C2_1 C2_1 C3 C4_2 C4_2 C4_2 C4_2 C4_2 C4_2 C4_2 C4_2	Shape IRREGULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_2 C10-s C12_2 C10-s C12_2 C10-s C2_1 C2_3 C3_3 C3_3 C4_1 C4_2 C4_1 C4_2 C4_5-s C6_6 C6_2 C6_6 C6_5 C7_1	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		
[XSECTIONS] ;;Link ;; C1 C1_1 C1_2 C10-S C12-S C15-S C2- C2_1 C2_3 C3 C4_1 C4_2 C4_2 C4_5-S C4_2 C4_5-S C6_6 C6_2 C6-S C7_2	Shape IRREGULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geoml 	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barrels 1 1 1 1 1 1 1 1 1 1 1 1 1		

C7_2-S C7-S C8 C8_2 C8_3-S C8_4 C8_5 C8_5 C8_5 C8_5 C8_5 C9_1 C9_2 C9-S_1 C9-S_1 C9-S_2 CB12-ICD_1	IRREGULAR IRREGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR IRREGULAR IRREGULAR CIRCULAR	Half_3 Road-S Road-S 0.375 Road-S 0.375 Half_3 0.25 Half_3 Half_3 0.25	.35m_Strepill-1 pill-1 pill-3,4 .35m_Strepils .35m_Strepils	et 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
[TRANSECTS]									
;Half street, wi NC 0.02 0.02 X1 Half_3.35m_St GR 0.1 0	dth = 3.35m, 0.013 reet 4 0	, curb = 0.0 3.35	0.15m , c 3.35 0.15	ross-slope 0.0 3.35	= 0.03m, 0.0 0.2	/m, bank-sl 0.0 5.02	ope = 0.0	0.0 3m/m, bank-height = 0.20m	n.
;Spill at Street ;3.35m at 3% and ;Max depth 0.10m NC 0.013 0.01 X1 Road-Spill-1 GR 0.1 0	1/3 and 1/4 2.94m at 3 3 0.013 3 0	4 .4% 0.0 3.35	0.0	0.0	0.0	0.0	0.0	0.0	
;Spill at Street ;3.33m at 3% and ;Max depth 0.10m NC 0.013 0.01 X1 Road-Spill-3, GR 0.1 0	1/4 and 2/4 20m at 0.50 3 0.013 4 3 0	4 0 3.33	0.0	0.0 23.33	0.0	0.0	0.0	0.0	
;REAR YARD SWALE ;MAX DEPTH 300 M ;WIRHT = 2 M NC 0.01 0.01 X1 Swale GR 0.3 0	: M 0.01 3 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
[LOSSES] ;;Link ;;	Inlet	Outlet	Averag	e Flap	Gate See	epageRate			

[CURVES]	Turne	V. Volue	V. Volue
;;Name	туре	x=varue	1-value
;Inlet Capacity f ;3% Crossfall	for Standard	i CB	
2% Gutter Grade CB-IC CB-IC CB-IC CB-IC CB-IC CB-IC CB-IC CB-IC CB-IC	Rating	0.006 0.023 0.029 0.053 0.068 0.074 0.079 0.088 0.096	0 13 17 33 45 50 54 61 61
;CICB as per S22 ;3% Crossfall ;2% Gutter Grade CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC CICB-IC	Rating	0.000 0.022 0.028 0.052 0.067 0.073 0.073 0.078 0.087 0.087	0 3 5 12 16 18 20 23 26
ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100 ICD-IPEX-LMF100	Rating	0.000 0.200 0.600 0.800 1.200 1.200 1.400 1.600 2.200 2.200 2.400 2.600 2.800 3.000	0.000 3.944 5.578 6.831 7.888 8.819 9.661 10.435 11.155 11.832 12.472 13.081 13.662 14.220 14.757 15.275

ICD-IPEX-LMF100	3.200	15.776
ICD-IPEX-LMF100	3.400	16.261
ICD-IPEX-LMF100	3.600	16.733
ICD-IPEX-LMF100	3.800	17.191
;IPEX-LMF-80		
:MAX FLOW 6 L/SEC AT	1.3m	
ICD-IPEX-LMF80 Ratin	na 0.000	0.000
TCD-TPEX-LMF80	0.200	2.544
TCD-TPEX-LMF80	0.400	3.597
TCD-TPEX-LMF80	0.600	4.406
TCD-TPEY-LME80	0 800	5 087
ICD-IPEX-IME80	1 000	5 688
ICD-IPEX-IME80	1 200	6 230
ICD-IPEX-IME80	1 400	6 730
ICD-IPEX-IME80	1 600	7 194
ICD-IPEX-IME80	1 800	7 631
ICD-IFEX-IME 00	2 000	9 044
ICD-IFEX-IME 00	2.000	9 436
ICD-IFEX-IME 00	2.200	0.430
ICD IDEX IMERO	2.400	0.011
ICD IDEX IMERO	2.000	9.171
ICD-IPEX-LMF80	2.800	9.51/
ICD-IPEX-LMF80	3.000	9.851
ICD-IPEX-LMF80	3.200	10.1/4
ICD-IPEX-LMF80	3.400	10.487
ICD-IPEX-LMF80	3.600	10.792
ICD-IPEX-LMF.80	3.800	11.08/
, 1FEA LIFE A		
JOD TREY WYDER Dotin	0 000	0 000
ICD-IPEX-TIPEA Ratin	1g 0.000	0.000
ICD-IPEX-TIPEA	0.200	8.088
ICD-IPEX-TIPEA	0.400	11.438
ICD-IPEX-TIPEA	0.600	14.008
ICD-IPEX-TYPEA	0.800	10.1/5
ICD-IPEX-TYPEA	1.000	18.085
ICD-IPEX-TYPEA	1.200	19.811
ICD-IPEX-TYPEA	1.400	21.398
ICD-IPEX-TYPEA	1.600	22.875
ICD-IPEX-TYPEA	1.800	24.263
ICD-IPEX-TYPEA	2.000	25.575
ICD-IPEX-TYPEA	2.200	26.824
ICD-IPEX-TYPEA	2.400	28.017
ICD-IPEX-TYPEA	2.600	29.160
ICD-IPEX-TYPEA	2.800	30.261
ICD-IPEX-TYPEA	3.000	31.323

ICD-IPEX-TYPEA		3.200	32.351
ICD-IPEX-TYPEA		3.400	33.346
ICD-IPEX-TYPEA		3.600	34.313
ICD-IPEX-TYPEA		3.800	35.253
;MHF Type C			
ICD-IPEX-TYPE-C	Rating	0.000	0.000
ICD-IPEX-TYPE-C		0.200	14.965
ICD-IPEX-TYPE-C		0.400	21.163
ICD-IPEX-TYPE-C		0.600	25.920
ICD-IPEX-TYPE-C		0.800	29.930
ICD-IPEX-TYPE-C		1.000	33.462
ICD-IPEX-TYPE-C		1.200	36.656
ICD-IPEX-TYPE-C		1.400	39.593
ICD-IPEX-TYPE-C		1.600	42.327
ICD-IPEX-TYPE-C		1.800	44.895
ICD-IPEX-TYPE-C		2.000	47.323
ICD-IPEX-TYPE-C		2.200	49.633
ICD-IPEX-TYPE-C		2.400	51.840
ICD-IPEX-TYPE-C		2.600	53.957
ICD-IPEX-TYPE-C		2.800	55.993
ICD-IPEX-TYPE-C		3.000	57.959
ICD-IPEX-TYPE-C		3.200	59.859
ICD-IPEX-TYPE-C		3.400	61.702
ICD-IPEX-TYPE-C		3.600	63.490
ICD-IPEX-TYPE-C		3.800	65.230
;IPEX TYPE D			
;49 L/sec AT 1m			
ICD-IPEX-TYPED	Rating	0.000	0.000
ICD-IPEX-TYPED		0.200	21.883
ICD-IPEX-TYPED		0.400	30.948
ICD-IPEX-TYPED		0.600	37.903
ICD-IPEX-TYPED		0.800	43.766
ICD-IPEX-TYPED		1.000	48.932
ICD-IPEX-TYPED		1.200	53.603
ICD-IPEX-TYPED		1.400	57.898
ICD-IPEX-TYPED		1.600	61.895
ICD-IPEX-TYPED		1.800	65.650
ICD-IPEX-TYPED		2.000	69.201
ICD-IPEX-TYPED		2.200	72.578
ICD-IPEX-TYPED		2.400	75.806
ICD-IPEX-TYPED		2.600	78.901
ICD-IPEX-TYPED		2.800	81.879
ICD-IPEX-TYPED		3.000	84.753
ICD-IPEX-TYPED		3.200	87.533

TYPED 3.400 90.227 TYPED 3.600 92.843 TYPED 3.800 95.387 TYPEF 0.000 0.000 TYPE-F 0.200 28.951 TYPE-F 0.600 50.145 TYPE-F 0.600 50.145 TYPE-F 1.000 64.737 TYPE-F 1.600 81.886 TYPE-F 1.600 81.886 TYPE-F 2.200 96.020 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.600 122.830 TYPE-F 3.600 125.30	ICD-IPEX-TYPED 3.400 90.22 ICD-IPEX-TYPED 3.600 92.84 ICD-IPEX-TYPED 3.800 95.38 ; IPEX MHF Type F				
TYPED 3.600 92.843 TYPED 3.800 95.387 TYPE-F 0.200 28.951 TYPE-F 0.400 40.943 TYPE-F 0.600 50.145 TYPE-F 0.600 57.962 TYPE-F 1.000 64.737 TYPE-F 1.600 81.886 TYPE-F 1.600 86.854 TYPE-F 2.000 91.552 TYPE-F 2.000 108.326 TYPE-F 2.400 100.290 TYPE-F 3.000 112.128 TYPE-F 3.400 19.369 TYPE-F 3.400 19.369 TYPE-F 3.600 0.00 TYPE-F 3.600 12.128 TYPE-F 3.600 12.6195 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.475 11.25 AGE 1.4475 1.25 AGE 1.400 0.00 NG Storage 0.000 NG 1.425 </td <td>ICD-IPEX-TYPED 3.600 92.44 ICD-IPEX-TYPED 3.800 95.38 ;IPEX MHF Type F ICD-IPEX-TYPE-F Rating 0.000 ICD-IPEX-TYPE-F Rating 0.200 28.95 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 3.000 12.1 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000<td>ICD-IPEX-TYPED</td><td></td><td>3.400</td><td>90.227</td></td>	ICD-IPEX-TYPED 3.600 92.44 ICD-IPEX-TYPED 3.800 95.38 ;IPEX MHF Type F ICD-IPEX-TYPE-F Rating 0.000 ICD-IPEX-TYPE-F Rating 0.200 28.95 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 3.000 12.1 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000 12.6 ICD-IPEX-TYPE-F 3.000 <td>ICD-IPEX-TYPED</td> <td></td> <td>3.400</td> <td>90.227</td>	ICD-IPEX-TYPED		3.400	90.227
TYPED 3.800 95.387 TYPE-F Rating 0.000 0.000 TYPE-F 0.200 28.951 TYPE-F 0.600 50.145 TYPE-F 0.600 57.902 TYPE-F 1.000 64.737 TYPE-F 1.000 64.737 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.600 122.128 TYPE-F 3.600 122.830 TYPE-F 3.600 122.630 TYPE-F 3.600 122.630 TYPE-F 3.600 122.630 TYPE-F 3.600 122.030 TYPE-F 3.600 122.030 Colo 1.450 5.00 AGE 1.450 5.00 AGE	ICD-IPEX-TYPED 3.800 95.38 ; IPEX MHF Type F ICD-IPEX-TYPE-F Rating 0.000 0.000 ICD-IPEX-TYPE-F 0.200 28.95 0.100 0.000 ICD-IPEX-TYPE-F 0.400 40.94 0.100 0.000 ICD-IPEX-TYPE-F 0.600 57.90 0.100 64.73 ICD-IPEX-TYPE-F 1.000 64.73 0.100 100.11 ICD-IPEX-TYPE-F 1.400 76.59 0.01 100.12 100.12 ICD-IPEX-TYPE-F 1.600 81.88 100.100.2 100.2 100.12 <	ICD-IPEX-TYPED		3.600	92.843
Type F TYPE-F Rating 0.000 0.000 TYPE-F 0.200 28.951 TYPE-F 0.600 50.145 TYPE-F 0.600 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 2.000 91.552 TYPE-F 2.000 104.385 TYPE-F 2.000 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.000 112.128 TYPE-F 3.600 112.128 TYPE-F 3.600 112.128 TYPE-F 3.600 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.600 122.630 TYPE-F 3.600 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.425 1.00 NG 1.425 1.00 N	;IPEX MHF Type F ;CD-IFEX-TYPE-F Rating 0.000 0.000 ICD-IFEX-TYPE-F 0.200 28.95 ICD-IFEX-TYPE-F 0.400 40.94 ICD-IFEX-TYPE-F 0.600 50.14 ICD-IFEX-TYPE-F 0.600 57.90 ICD-IFEX-TYPE-F 1.000 64.73 ICD-IFEX-TYPE-F 1.600 81.88 ICD-IFEX-TYPE-F 1.600 81.88 ICD-IFEX-TYPE-F 1.600 81.68 ICD-IFEX-TYPE-F 2.000 96.02 ICD-IFEX-TYPE-F 2.600 104.3 ICD-IFEX-TYPE-F 2.600 104.3 ICD-IFEX-TYPE-F 3.000 112.1 ICD-IFEX-TYPE-F 3.000 112.1 ICD-IFEX-TYPE-F 3.600 122.1 ICD-IFEX-TYPE-F 3.600 122.1 ICD-IFEX-TYPE-F 3.600 122.1 ICD-IFEX-TYPE-F 3.600 122.1 ICD-IFEX-TYPE-F 3.600 122.6 ICD-IFEX-TYPE-F 3.600 122.6 ICD-IFEX-TYPE-F 3.600 126.1 CBIO-STORA	ICD-IPEX-TYPED		3.800	95.387
Type F TYPE-F Rating 0.000 0.000 TYPE-F 0.400 40.943 TYPE-F 0.600 50.145 TYPE-F 0.600 57.902 TYPE-F 1.000 64.737 TYPE-F 1.000 64.737 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.600 86.854 TYPE-F 2.000 91.552 TYPE-F 2.400 100.290 TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 122.030 TYPE-F 3.600 120.000 AGE 1.455 5.00	; IPEX MHF Type F ICD-IPEX-TYPE-F Rating 0.000 0.000 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 57.90 ICD-IPEX-TYPE-F 0.600 57.90 ICD-IPEX-TYPE-F 1.200 70.91 ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 81.68 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 20.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 20.00 CB3-PONDING Storage 0.000 0.00 CB3-PONDING AT CB 6 CB6-PONDING AT CB 6 CB6-PONDING AT CB 6 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 0.94				
TYPE-F Rating 0.000 0.000 TYPE-F 0.200 28.951 TYPE-F 0.600 50.145 TYPE-F 0.600 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.400 6.558 TYPE-F 1.600 81.886 TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 12.128 TYPE-F 3.600 122.830 TYPE-F 3.600 20.000 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 0.00	ICD-IPEX-TYPE-F Rating 0.000 0.000 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.600 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 70.91 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 1	;IPEX MHF Type F			
TYPE-F 0.200 28.951 TYPE-F 0.400 40.943 TYPE-F 0.600 50.145 TYPE-F 0.800 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.600 81.886 TYPE-F 1.600 81.886 TYPE-F 1.600 104.385 TYPE-F 2.000 96.020 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 TYPE-F 3.600 126.195 AGE 1.450 5.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG 1.425 1.00 0.00 NG 1.425 <td>ICD-IPEX-TYPE-F 0.200 28.95 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.800 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.55 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.600 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 19.3 ICD-IPEX-TYPE-F 3.400 19.3 ICD-IPEX-TYPE-F 3.800 122.1 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.00<td>ICD-IPEX-TYPE-F</td><td>Rating</td><td>0.000</td><td>0.000</td></td>	ICD-IPEX-TYPE-F 0.200 28.95 ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.800 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.55 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.600 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 19.3 ICD-IPEX-TYPE-F 3.400 19.3 ICD-IPEX-TYPE-F 3.800 122.1 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.6 ICD-IPEX-TYPE-F 3.600 120.00 <td>ICD-IPEX-TYPE-F</td> <td>Rating</td> <td>0.000</td> <td>0.000</td>	ICD-IPEX-TYPE-F	Rating	0.000	0.000
TYPE-F 0.400 40.943 TYPE-F 0.600 50.145 TYPE-F 0.800 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.600 81.886 TYPE-F 1.600 81.886 TYPE-F 1.600 86.854 TYPE-F 2.000 91.552 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 122.030 TYPE-F 3.600 20.000 AGE 1.455 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG	ICD-IPEX-TYPE-F 0.400 40.94 ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.800 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.200 70.91 ICD-IPEX-TYPE-F 1.400 76.55 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 12.1 ICD-IPEX-TYPE-F 3.600 12.2.8 ICD-IPEX-TYPE-F 3.600 12.2.8 ICD-IPEX-TYPE-F 3.600 12.6.1 ICD-IPEX-TYPE-F 3.600 2	ICD-IPEX-TYPE-F	-	0.200	28.951
TYPE-F 0.600 50.145 TYPE-F 0.800 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.800 66.854 TYPE-F 2.000 91.552 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.450 4.00	ICD-IPEX-TYPE-F 0.600 50.14 ICD-IPEX-TYPE-F 0.800 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 96.02 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 122.5 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 20.00 CBI0-STORAGE 1.425 1.25	ICD-IPEX-TYPE-F		0.400	40.943
TYPE-F 0.800 57.902 TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.600 86.854 TYPE-F 2.000 91.552 TYPE-F 2.600 100.290 TYPE-F 2.600 104.385 TYPE-F 2.800 18.826 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.455 5.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.	ICD-IPEX-TYPE-F 0.800 57.90 ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.400 76.55 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 108.3 ICD-IPEX-TYPE-F 2.600 108.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 126.1 ICD-IPEX-TYPE-F 3.600 126.1 </td <td>ICD-IPEX-TYPE-F</td> <td></td> <td>0.600</td> <td>50.145</td>	ICD-IPEX-TYPE-F		0.600	50.145
TYPE-F 1.000 64.737 TYPE-F 1.200 70.916 TYPE-F 1.400 76.558 TYPE-F 1.600 81.886 TYPE-F 1.600 81.886 TYPE-F 2.000 91.552 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.600 122.830 TYPE-F 3.600 20.000 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.4	ICD-IPEX-TYPE-F 1.000 64.73 ICD-IPEX-TYPE-F 1.200 70.91 ICD-IPEX-TYPE-F 1.400 76.55 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 91.03 ICD-IPEX-TYPE-F 2.000 91.03 ICD-IPEX-TYPE-F 2.000 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 126.1 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 122.1 ICD-IPEX-TYPE-F 3.600 122.6 ICD-STORAGE 1.425 1.25 CBIO-STORAGE 1.425 1.25 <	ICD-IPEX-TYPE-F		0.800	57.902
TYPE-F 1.200 70.916 TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.200 96.020 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.425 1.00	ICD-IPEX-TYPE-F 1.200 70.91 ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.800 126.1 ICD-IPEX-TYPE-F 3.800 126.1 ICD-IPEX-TYPE-F 3.800 126.1 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.455 1.00 CBIO-STORAGE 1.450 5.00 CBIO-STORAGE 1.450 0.00 CBJO-STORAGE 1.450 0.00	ICD-IPEX-TYPE-F		1.000	64.737
TYPE-F 1.400 76.598 TYPE-F 1.600 81.886 TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.200 96.020 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.800 188.326 TYPE-F 3.000 112.128 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 20.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.400 0.00 NG	ICD-IPEX-TYPE-F 1.400 76.59 ICD-IPEX-TYPE-F 1.600 81.86 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.200 96.02 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.4400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.4450 4.00 CB10-STORAGE 1.4450 0.00 CB3-PONDING Storage 0.000 0.00	ICD-IPEX-TYPE-F		1.200	70.916
TYPE-F 1.600 81.886 TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.600 104.385 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.600 122.830 TYPE-F 3.600 122.630 TYPE-F 3.600 122.030 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.450 4.00	ICD-IPEX-TYPE-F 1.600 81.88 ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 124.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.1 ICD-IPEX-TYPE-F 3.600 126.1 ICD-IPEX-TYPE-F 3.600 126.1 ICD-IPEX-TYPE-F 3.600 126.1 ICD-IPEX-TYPE-F 3.600 126.1 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.425 1.25 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 20.00 CBI0-STORAGE 1.450 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00	ICD-IPEX-TYPE-F		1.400	76.598
TYPE-F 1.800 86.854 TYPE-F 2.000 91.552 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 AGE 1.455 0.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG 1.400 0.00 0.00 NG 1.425 1.00 0.00 NG 1.425 1.00 0.00 NG 1.425 1.00 0.00	ICD-IPEX-TYPE-F 1.800 86.85 ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 115.8 ICD-IPEX-TYPE-F 3.600 119.3 ICD-IPEX-TYPE-F 3.600 122.6 ICD-IPEX-TYPE-F 3.600 126.1 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.425 1.25 CBIO-STORAGE 1.450 5.00 CBIO-STORAGE 1.450 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB4-PON	ICD-IPEX-TYPE-F		1.600	81.886
TYPE-F 2.000 91.552 TYPE-F 2.200 96.020 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.600 108.326 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG 1.400 0.00 NG 1.400 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.425 1.00 NG 1.425 1.00	ICD-IPEX-TYPE-F 2.000 91.55 ICD-IPEX-TYPE-F 2.200 96.02 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CB10-STORAGE 1.400 0.000 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.4450 4.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB4-PONDI	ICD-IPEX-TYPE-F		1.800	86.854
TYPE-F 2.200 96.020 TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG Storage 0.000 0.00 NG 1.400 0.00 NO NG 1.400 0.00 NO NG 1.450 4.00 NO	ICD-IPEX-TYPE-F 2.200 96.02 ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 20.00 CBI0-STORAGE 1.450 20.00 CBI0-STORAGE 1.450 1.00 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.425 1.00 1.450 CB6-PONDING Storage 0.000	ICD-IPEX-TYPE-F		2.000	91.552
TYPE-F 2.400 100.290 TYPE-F 2.600 104.385 TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 20.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG 1.425 1.00 NO NG 1.425 1.00 NO NG 1.425 1.00 NO	ICD-IPEX-TYPE-F 2.400 100.2 ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.800 108.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.425 1.25 CBIO-STORAGE 1.425 1.25 CBIO-STORAGE 1.4450 5.00 CBIO-STORAGE 1.4450 5.00 CBIO-STORAGE 1.4450 1.00 CBIO-STORAGE 1.4450 1.00 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.400 0.00 CB3-PONDING 1.450 4.00 CB3-PONDING Storage 0.000 0.00 CB6-PONDING Storage 0.000 0.00 <td>ICD-IPEX-TYPE-F</td> <td></td> <td>2.200</td> <td>96.020</td>	ICD-IPEX-TYPE-F		2.200	96.020
TYPE-F 2.600 104.385 TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.600 122.830 TYPE-F 3.600 122.830 TYPE-F 3.800 126.195 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 20.000 NG Storage 0.000 0.00 NG 1.425 1.25 AGE 1.450 5.00 NG 1.400 0.00 NG 1.400 0.00 NG 1.400 0.00 NG 1.450 4.00	ICD-IPEX-TYPE-F 2.600 104.3 ICD-IPEX-TYPE-F 2.800 108.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.200 115.8 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CBIO-STORAGE Storage 0.000 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.450 5.00 CBIO-STORAGE 1.450 5.00 CBIO-STORAGE 1.450 20.000 CBIO-STORAGE 1.450 5.00 CBIO-STORAGE 1.450 1.00 CBIO-STORAGE 1.450 20.000 CBIO-STORAGE 1.400 0.00 CBIO-STORAGE 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING Storage 0.000 0.00 CB6-PONDING 1.425 0.94	ICD-IPEX-TYPE-F		2.400	100.290
TYPE-F 2.800 108.326 TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 1.400 0.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 AGE 1.450 5.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG 1.400 0.00 NO NG 1.400 0.00 NO NG 1.425 1.00 NO NG 1.450 4.00 DOUD	ICD-IPEX-TYPE-F 2.800 108.3 ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.200 115.8 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.800 126.1 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.00 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.425 1.00 1.400 0.00 CB3-PONDING 1.425 1.00 1.400 0.00 CB3-PONDING 1.425 0.00 0.00 0.00 CB4-PONDING Storage	ICD-IPEX-TYPE-F		2.600	104.385
TYPE-F 3.000 112.128 TYPE-F 3.200 115.805 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.600 126.195 AGE 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.450 20.00 NG Storage 0.000 0.00 NG Storage 0.000 0.00 NG 1.400 0.00 NO NG 1.425 1.00 NO NG 1.425 1.00 NO	ICD-IPEX-TYPE-F 3.000 112.1 ICD-IPEX-TYPE-F 3.200 115.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.600 126.1 CB10-STORAGE Storage 0.000 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.450 4.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING AT CB 6 CB6-PONDING 0.000 CB6-PONDING 1.420 0.94 CB6-PONDING 1.420 0.94	ICD-IPEX-TYPE-F		2.800	108.326
TYPE-F 3.200 115.805 TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 TYPE-F 3.800 126.195 AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.400 0.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG NG 1.400 0.00 NG NG 1.400 0.00 NG NG 1.425 1.00 NG NG 1.450 4.00 NG	ICD-IPEX-TYPE-F 3.200 115.8 ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.800 126.1 CBI0-STORAGE Storage 0.000 0.00 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.425 1.25 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 20.000 CBI0-STORAGE 1.450 20.000 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 0.00 CB4-PONDING 1.425 0.00 CB6-PONDING 1.420 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING	ICD-IPEX-TYPE-F		3.000	112.128
TYPE-F 3.400 119.369 TYPE-F 3.600 122.830 AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE AGE 1.400 0.00 AGE AGE 1.425 1.25 AGE AGE 1.425 1.25 AGE AGE 1.475 11.25 AGE AGE 1.475 1.25 AGE AGE 1.475 1.200 0.000 NG Storage 0.000 0.00 NG 1.425 1.00 NG NG 1.425 1.00 DOWNG	ICD-IPEX-TYPE-F 3.400 119.3 ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.800 126.1 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.00 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING TCB6 CB6-PONDING 1.425 0.00 0.00 CB6-PONDING Storage 0.000 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 3.75 1.450 3.75	ICD-IPEX-TYPE-F		3.200	115.805
TYPE-F 3.600 122.830 TYPE-F 3.800 126.195 AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.500 20.000 NG Storage 0.000 0.00 NG 1.400 0.00 NO NG 1.425 1.00 NO NG 1.450 4.00 DOUDTHO AT OD C	ICD-IPEX-TYPE-F 3.600 122.8 ICD-IPEX-TYPE-F 3.800 126.1 CB10-STORAGE Storage 0.000 0.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.450 20.000 CB0	ICD-IPEX-TYPE-F		3.400	119.369
TYPE-F 3.800 126.195 AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.500 20.000 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	ICD-IPEX-TYPE-F 3.800 126.1 CBI0-STORAGE Storage 0.000 0.00 CBI0-STORAGE 1.400 0.00 CBI0-STORAGE 1.425 1.25 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.450 5.00 CBI0-STORAGE 1.475 11.25 CBI0-STORAGE 1.400 0.000 CBI0-STORAGE 1.400 0.000 CBI0-STORAGE 1.400 0.000 CB3-PONDING 1.400 0.000 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 0.000 CB3-PONDING 1.425 0.00 CB3-PONDING 1.420 0.000 CB4-PONDING 1.400 0.00 CB6-PONDING 1.420 0.94 CB6-PONDING 1.450 3.75	ICD-IPEX-TYPE-F		3.600	122.830
AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.475 1.25 AGE 1.475 11.25 AGE 1.475 11.25 AGE 1.475 10.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE Storage 0.000 0.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING 1.450 4.00 ;SURFACE PONDING 1.425 0.94 CB6-PONDING 1.450 3.75	ICD-IPEX-TYPE-F		3.800	126.195
AGE Storage 0.000 0.00 AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.475 11.25 AGE 1.500 20.000 NG Storage 0.000 0.00 NG 1.400 0.000 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE Storage 0.000 0.00 CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 CB3-PONDING 1.450 0.000 CB4-PONDING 1.400 0.000 CB6-PONDING 1.400 0.000 CB6-PONDING 1.450 3.75				
AGE 1.400 0.00 AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.400 0.000 NG Storage 0.000 0.00 NG 1.400 0.00 NO NG 1.400 0.00 NO NG 1.425 1.00 NG NG 1.450 4.00	CB10-STORAGE 1.400 0.00 CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.4450 5.00 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.400 0.000 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 0.00 CB3-PONDING 1.425 0.00 0.00 CB3-PONDING 0.000 0.00 CB4-PONDING Storage 0.000 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 0.94 0.425 0.94	CB10-STORAGE	Storage	0.000	0.00
AGE 1.425 1.25 AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.500 20.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE 1.425 1.25 CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.500 20.000 CB3-PONDING 1.400 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING 1.450 4.00 ;SURFACE PONDING 1.400 0.00 CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.420 3.75	CB10-STORAGE		1.400	0.00
AGE 1.450 5.00 AGE 1.475 11.25 AGE 1.500 20.000 NG Storage 0.000 0.00 NG 1.400 0.000 NG 1.425 1.00 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE 1.450 5.00 CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.500 20.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 CB3-PONDING 1.450 0.000 CB3-PONDING 1.450 0.000 CB3-PONDING 1.450 0.000 CB3-PONDING 1.450 0.000 CB4-PONDING 1.400 0.000 CB6-PONDING 1.420 0.94 CB6-PONDING 1.425 3.75	CB10-STORAGE		1.425	1.25
AGE 1.475 11.25 AGE 1.500 20.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE 1.475 11.25 CB10-STORAGE 1.500 20.00 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 SURFACE PONDING 1.450 1.400 0.00 CB6-PONDING 5000 0.00 CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 3.75 3.75	CB10-STORAGE		1.450	5.00
AGE 1.500 20.00 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB10-STORAGE 1.500 20.000 CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING TCB 6 CB6-PONDING 1.400 0.00 CB6-PONDING 1.420 0.00 CB6-PONDING 1.420 0.94 CB6-PONDING 1.425 3.75	CB10-STORAGE		1.475	11.25
NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB3-PONDING Storage 0.000 0.00 CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 CB3-PONDING 1.450 4.00 ;SURFACE PONDING AT CB 6 CE6-PONDING 1.400 CB6-PONDING 1.400 0.000 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 3.75	CB10-STORAGE		1.500	20.00
NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB3-PONDING Storage 0.000 0.000 CB3-PONDING 1.400 0.000 CB3-PONDING 1.425 1.00 CB3-PONDING 1.425 1.00 cB3-PONDING 1.450 4.00 ;SURFACE PONDING AT CB 6 CB6-PONDING CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.450 3.75	000 0000000	~ .	0 000	0.00
NG 1.400 0.00 NG 1.425 1.00 NG 1.450 4.00	CB3-PONDING 1.400 0.00 CB3-PONDING 1.425 1.00 cB3-PONDING 1.450 4.00 ;SURFACE PONDING AT CB 6 CB6-PONDING 0.000 0.00 CB6-PONDING 1.400 0.00 CB6 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 CB6-PONDING 1.425 3.75 0.75	CB3-PONDING	Storage	0.000	0.00
NG 1.425 1.00 NG 1.450 4.00	CB3-PONDING 1.425 1.00 ;SURFACE PONDING AT CB 6 CE6-PONDING 0.000 0.00 CB6-PONDING 1.400 0.00 CB0 CB6-PONDING 1.425 0.94 0.00 CB6-PONDING 1.425 0.94 0.00 CB6-PONDING 1.425 0.94 0.90 CB6-PONDING 1.425 0.94 0.95	CB3-PONDING		1.400	0.00
NG 1.450 4.00	CBS-PONDING 1.450 4.00 ;SURFACE PONDING AT CB 6 CB6-PONDING 0.000 0.000 CB6-PONDING 1.400 0.000 CB0 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 CB6-PONDING 1.425 0.94 CB6-PONDING 1.450 3.75	CB3-PONDING		1.425	1.00
DONDING NE OD (;SURFACE PONDING AT CE 6 CB6-PONDING Storage 0.000 0.00 CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 3.75	CB3-PONDING		1.450	4.00
PUNITUME AT LE M	CB6-PONDING Storage 0.000 0.00 CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.425 3.75	SURFACE PONDING	AT CB 6		
NG Storage 0.000 0.00	CB6-PONDING 1.400 0.00 CB6-PONDING 1.425 0.94 CB6-PONDING 1.450 3.75	CB6-PONDING	Storage	0 000	0 00
NG 1.400 0.00	CB6-PONDING 1.425 0.94 CB6-PONDING 1.450 3.75	CB6-PONDING	Scorage	1.400	0.00
NG 1.425 0.94	CB6-PONDING 1.450 3.75	CB6-PONDING		1.425	0.94
NG 1.450 3.75	1.100 0.10	CB6-PONDING		1.450	3.75
1,100 0,10	CB6-PONDING 1.475 8.44	CB6-PONDING		1.475	8.44
NG 1.475 8.44	CDC DONDING 1 500 15 00	CB6-PONDING		1.500	15.00
PONDING AT CB 0 NG Storage 0.000 0.00 NG 1.400 0.00 NG 1.425 0.94 NG 1.450 3.75		;SURFACE PONDING CB6-PONDING CB6-PONDING CB6-PONDING CB6-PONDING	AT CB 6 Storage	0.000 1.400 1.425 1.450	0.00 0.00 0.94 3.75
NG 1.475 8.44		CB0-PONDING		1.500	15.00

CB7-PONDING	Storage	0.000	0.00
CB7-PONDING		1.400	0.00
CB7-PONDING		1.425	1.00
CB7-PONDING		1.450	4.00
CB7-PONDING		1.475	9.00
CB7-PONDING		1.500	16.00
CB8-PONDING	Storage	0.000	0.00
CB8-PONDING		1.400	0.00
CB8-PONDING		1.425	1.06
CB8-PONDING		1.450	4.25
CB8-PONDING		1.475	9.56
CB8-PONDING		1.500	17.00
; DRY POND DRY-POND DRY-POND DRY-POND DRY-POND	Storage	0 1.4 1.401 2.25	0 0 50 200
PARK-STORAGE	Storage	0	3200
PARK-STORAGE		.1	3790
[TIMESERIES] ;;Name	Date	Time	Value
<pre>,Rainfall (mm/hr Chicago 3h 100yr Chicago 3h 100yr</pre>) 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018 02/22/2018	00:00:00 00:05:00 00:15:00 00:25:00 00:25:00 00:35:00 00:40:00 00:40:00 00:55:00 01:00:00 01:05:00 01:10:00 01:15:00 01:25:00	5.126 5.552 6.063 6.688 7.472 8.483 9.839 11.755 14.666 19.606 29.721 60.535 242.704 113.511 62.089 40.024 29.287 23.04

Chicago 3h 100yr	02/22/2018	01:35:00	16.156
Chicago 3h 100yr	02/22/2018	01:40:00	14.074
Chicago 3h 100yr	02/22/2018	01:45:00	12.48
Chicago 3h 100vr	02/22/2018	01:50:00	11.221
Chicago 3h 100vr	02/22/2018	01:55:00	10.202
Chicago 3h 100vr	02/22/2018	02:00:00	9.361
Chicago 3h 100yr	02/22/2018	02.05.00	8 654
Chicago 3b 100yr	02/22/2018	02.10.00	8 052
Chicago 3b 100yr	02/22/2018	02.15.00	7 534
Chicago 3b 100yr	02/22/2018	02.20.00	7 081
Chicago 3b 100yr	02/22/2018	02:25:00	6 684
Chicago 3h 100yr	02/22/2019	02.30.00	6 331
Chicago_3h_100yr	02/22/2010	02.30.00	6 017
Chicago_3h_100yr	02/22/2010	02.33.00	5 734
Chicago_3h_100yr	02/22/2010	02:40:00	5.734
Chicago_3h_100yr	02/22/2010	02:43:00	5.479
Chicago_3h_100yr	02/22/2010	02:50:00	5.247
Chicago_3h_100yr	02/22/2018	02:55:00	5.036
Chicago_3h_100yr	02/22/2018	03:00:00	0
:Rainfall (mm/hr)			
Chicago 3h 2vr	02/22/2018	00.00.00	2 393
Chicago 3h 2yr	02/22/2010	00.05.00	2 588
Chicago 3h 2yr	02/22/2010	00.00.00	2.823
Chicago 3h 2yr	02/22/2010	00.15.00	3 109
Chicago_3h_2yr	02/22/2010	00.13.00	3 466
Chicago_3h_2yr	02/22/2010	00.20.00	3 027
Chicago_Sh_2yr	02/22/2010	00.23.00	1 542
Chicago_Sh_2yr	02/22/2010	00:30:00	4.343
Chicago_3h_2yr	02/22/2018	00:35:00	5.41
Chicago_3h_2yr	02/22/2018	00:40:00	6.721
Chicago_3h_2yr	02/22/2018	00:45:00	8.935
Chicago_3h_2yr	02/22/2018	00:50:00	13.427
Chicago_3h_2yr	02/22/2018	00:55:00	26.893
Chicago_3h_2yr	02/22/2018	01:00:00	103.571
Chicago_3h_2yr	02/22/2018	01:05:00	49.651
Chicago_3h_2yr	02/22/2018	01:10:00	27.587
Chicago_3h_2yr	02/22/2018	01:15:00	17.967
Chicago_3h_2yr	02/22/2018	01:20:00	13.238
Chicago_3h_2yr	02/22/2018	01:25:00	10.466
Chicago_3h_2yr	02/22/2018	01:30:00	8.658
Chicago_3h_2yr	02/22/2018	01:35:00	7.391
Chicago_3h_2yr	02/22/2018	01:40:00	6.455
Chicago_3h_2yr	02/22/2018	01:45:00	5.737
Chicago_3h_2yr	02/22/2018	01:50:00	5.169
Chicago_3h_2yr	02/22/2018	01:55:00	4.707
Chicago_3h_2yr	02/22/2018	02:00:00	4.326
Chicago_3h_2yr	02/22/2018	02:05:00	4.005

Chicago_3h_2yr	02/22/2018	02:10:00	3.731
Chicago_3h_2yr	02/22/2018	02:15:00	3.494
Chicago_3h_2yr	02/22/2018	02:20:00	3.288
Chicago_3h_2yr	02/22/2018	02:25:00	3.107
Chicago_3h_2yr	02/22/2018	02:30:00	2.945
Chicago_3h_2yr	02/22/2018	02:35:00	2.801
Chicago 3h 2yr	02/22/2018	02:40:00	2.672
Chicago_3h_2yr	02/22/2018	02:45:00	2.555
Chicago_3h_2yr	02/22/2018	02:50:00	2.449
Chicago_3h_2yr	02/22/2018	02:55:00	2.351
Chicago_3h_2yr	02/22/2018	03:00:00	0

Chicago 3h 2yr 02/22/2018	02:55:00	2.351	
Chicago_3h_2yr 02/22/2018	03:00:00	0	
:City of Ottawa Historic St	orm		
August 4, 1998	0111		
Historic Storm Aug-4-88	0		0.0
Historic Storm Aug-4-88	5		0.1
Historic Storm Aug-4-88	10		0.1
Historic Storm Aug-4-88	15		0.0
Historic Storm Aug-4-88	20		3.7
Historic Storm Aug-4-88	25		6.2
Historic Storm Aug-4-88	30		101.5
Historic Storm Aug-4-88	35		15.5
Historic Storm Aug-4-88	40		29.3
Historic Storm Aug-4-88	45		19.8
Historic Storm Aug-4-88	50		1.5
Historic_Storm_Aug-4-88	55		1.7
Historic_Storm_Aug-4-88	60		5.4
Historic_Storm_Aug-4-88	65		24.6
Historic_Storm_Aug-4-88	70		26.5
Historic_Storm_Aug-4-88	75		34.9
Historic_Storm_Aug-4-88	80		10.2
Historic_Storm_Aug-4-88	85		27.1
Historic_Storm_Aug-4-88	90		104.4
Historic_Storm_Aug-4-88	95		27.5
Historic_Storm_Aug-4-88	100		62.5
Historic_Storm_Aug-4-88	105		31.8
Historic_Storm_Aug-4-88	110		79.8
Historic_Storm_Aug-4-88	115		67.5
Historic_Storm_Aug-4-88	120		156.2
Historic_Storm_Aug-4-88	125		5.1
Historic_Storm_Aug-4-88	130		0.2
Historic_Storm_Aug-4-88	135		0.2
Historic_Storm_Aug-4-88	140		0.2
Historic_Storm_Aug-4-88	145		0.2
Historic_Storm_Aug-4-88	150		0.2
Historic_Storm_Aug-4-88	155		0.2

Historic Storm Aug-4-88	160	0.2
Historic Storm Aug-4-88	165	0.2
Historic Storm Aug-4-88	170	0.2
Historic Storm Aug-4-88	175	69.0
Historic Storm Aug-4-88	180	63.7
Historic Storm Aug-4-88	185	58.4
Historic Storm Aug-4-88	190	47.8
Historic Storm Aug-4-88	195	15.9
Historic Storm Aug-4-88	200	13.3
Historic Storm Aug-4-88	205	8.0
Historic Storm Aug-4-88	210	5.3
Historic Storm Aug-4-88	215	6.6
Historic Storm Aug-4-88	220	2.7
Historic Storm Aug-4-88	225	4.0
Historic Storm Aug-4-88	230	2.7
Historic Storm Aug-4-88	235	4.0
Historic Storm Aug-4-88	240	2.7
Historic Storm Aug-4-88	245	5.3
Historic Storm Aug-4-88	250	4.0
Historic Storm Aug-4-88	255	2.7
Historic Storm Aug-4-88	2.60	4.0
Historic Storm Aug-4-88	265	2.7
Historic Storm Aug-4-88	270	1.3
Historic Storm Aug-4-88	275	1.3
Historic Storm Aug-4-88	280	0.0
Historic Storm Aug-4-88	285	0.0
Historic Storm Aug-4-88	290	0.0
Historic Storm Aug-4-88	295	0 0
Historic Storm Aug-4-88	300	2 7
Historic Storm Aug-4-88	305	0.0
Historic Storm Aug-4-88	310	0.0
Historic Storm Aug-4-88	315	0.0
Historic Storm Aug-4-88	320	0.0
Historic Storm Aug-4-88	325	0.0
Historic Storm Aug-4-88	330	0.0
Historic Storm Aug-4-88	335	0.0
Historic Storm Aug-4-88	340	1 3
Historic Storm Aug-4-88	345	0.0
miscorre_scorm_rag 4 00	545	0.0
;City of Ottawa Historic Storm		
;August 8, 1996		
Historic_Storm_Aug-8-1996	0	4.0
Historic_Storm_Aug-8-1996	5	11.9
Historic_Storm_Aug-8-1996	10	26.5
Historic_Storm_Aug-8-1996	15	13.3
Historic_Storm_Aug-8-1996	20	0.0

Historic Storm Aug-8-1996	25	2.7
Historic Storm Aug-8-1996	30	0.0
Historic Storm Aug-8-1996	35	8.0
Historic Storm Aug-8-1996	40	18.6
Historic Storm Aug-8-1996	45	10.6
Historic Storm Aug-8-1996	50	21.2
Historic Storm Aug-8-1996	55	2.7
Historic Storm Aug-8-1996	60	2.7
Historic Storm Aug-8-1996	65	15.9
Historic Storm Aug-8-1996	70	66.3
Historic Storm Aug-8-1996	75	55.7
Historic_Storm_Aug-8-1996	80	122.0
Historic_Storm_Aug-8-1996	85	88.9
Historic_Storm_Aug-8-1996	90	9.3
Historic_Storm_Aug-8-1996	95	8.0
Historic_Storm_Aug-8-1996	100	4.0
Historic_Storm_Aug-8-1996	105	0.0
Historic_Storm_Aug-8-1996	110	2.7
Historic_Storm_Aug-8-1996	115	0.0
Historic_Storm_Aug-8-1996	120	0.0
Historic_Storm_Aug-8-1996	125	0.0
Historic_Storm_Aug-8-1996	130	5.3
Historic_Storm_Aug-8-1996	135	0.0
Historic_Storm_Aug-8-1996	140	0.0
Historic_Storm_Aug-8-1996	145	0.0
Historic_Storm_Aug-8-1996	150	0.0
Historic_Storm_Aug-8-1996	155	0.0
Historic_Storm_Aug-8-1996	160	0.0
Historic_Storm_Aug-8-1996	165	4.0
Historic_Storm_Aug-8-1996	170	53.1
Historic_Storm_Aug-8-1996	1/5	69.0
Historic_Storm_Aug-8-1996	180	63.7
Historic_Storm_Aug-8-1996	185	58.4
Historic_Storm_Aug-8-1996	190	47.8
Historic_Storm_Aug-8-1996	195	12.2
Historic_Storm_Aug-0-1996	200	13.3
Historic_Storm_Aug-8-1996	205	0.U E 2
Historic_Storm_Aug-0-1996	210	5.5
Historic_Storm_Aug-0-1990	210	2 7
Historic Storm Aug-8-1996	225	4 0
Historic Storm Aug-8-1996	230	2 7
Historic Storm Aug-8-1996	235	4.0
Historic Storm Aug-8-1996	240	2.7
Historic Storm Aug-8-1996	245	5.3
Historic Storm Aug-8-1996	250	4.0

Historic_Storm_Aug-8-1996	255	2.7
Historic_Storm_Aug-8-1996	260	4.0
Historic_Storm_Aug-8-1996	265	2.7
Historic_Storm_Aug-8-1996	270	1.3
Historic_Storm_Aug-8-1996	275	1.3
Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996	280 285 290 295 300 305	0.0 0.0 0.0 2.7 0.0
Historic_Storm_Aug-8-1996	310	0.0
Historic_Storm_Aug-8-1996	315	0.0
Historic_Storm_Aug-8-1996	320	0.0
Historic_Storm_Aug-8-1996	325	0.0
Historic_Storm_Aug-8-1996	330	0.0
Historic_Storm_Aug-8-1996 Historic_Storm_Aug-8-1996 ;City of Ottawa Historic Storm ;July 1, 1979	340 345	1.3 0.0
Historic_Storm_Jul-1-79	0	0.00
Historic_Storm_Jul-1-79	5	2.30
Historic_Storm_Jul-1-79	10	2.30
Historic_Storm_Jul-1-79	15	8.89
Historic_Storm_Jul-1-79	20	8.89
Historic_Storm_Jul-1-79	25	8.89
Historic_Storm_Jul-1-79 Historic_Storm_Jul-1-79 Historic_Storm_Jul-1-79 Historic_Storm_Jul-1-79 Historic_Storm_Jul-1-79 Historic_Storm_Jul-1-79	30 35 40 45 50 55	8.89 38.10 38.10 38.10 38.10 38.10 38.10
Historic_Storm_Jul-1-79	60	38.10
Historic_Storm_Jul-1-79	65	38.10
Historic_Storm_Jul-1-79	70	50.80
Historic_Storm_Jul-1-79	75	50.80
Historic_Storm_Jul-1-79	80	76.20
Historic_Storm_Jul-1-79	85	106.70
Historic_Storm_Jul-1-79	90	106.70
Historic_Storm_Jul-1-79	95	71.10
Historic_Storm_Jul-1-79	100	71.10
Historic_Storm_Jul-1-79	105	30.50
Historic_Storm_Jul-1-79	110	30.50
Historic_Storm_Jul-1-79	115	30.50

Historic_St	orm_Jul-1-79	120	30.50
Historic_St	corm_Jul-1-79	125	3.80
Historic_St	orm_Jul-1-79	130	3.80
Historic_St	orm_Jul-1-79	135	3.80
Historic_St	orm_Jul-1-79	140	3.80
Historic_St	corm_Jul-1-79	145	3.80
Historic_St	orm_Jul-1-79	150	3.80
Historic_St	corm_Jul-1-79	155	3.80
Historic_St	orm_Jul-1-79	160	3.80
Historic_St	orm_Jul-1-79	165	3.80
Historic_St	orm_Jul-1-79	170	3.8
Historic_St	orm_Jul-1-79	175	3.8
Historic_St	corm_Jul-1-79	180	3.8
[REPORT]			
INPUT	YES		
CONTROLS	NO		
SUBCATCHMEN	NTS ALL		
NODES ALL			
LINKS ALL			
[TAGS]			
Node	200	STMH	
Node	201	STMH	
Node	202	STMH	
Node	203	STMH	
Node	204	STMH	
Node	205	STMH	
Node	206	STMH	
Node	207	STMH	
Node	208	STMH	
Node	CB1	CB	
Node	CB10-DS	Major_System	
Node	CB10-MAJ	Major_System	
Node	CB10-TEE	TEE	
Node	CB12-MAJ	Major_System	
Node	CB12-TEE	TEE	
Node	CB13	CB	
Node	CB3-TEE	TEE	
Node	CB4-DS	Major_System	
Node	CB4-MAJ	Major_System	
Node	CB4-TEE	TEE	
Node	CB5-MAJ	Major_System	
Node	CB5-TEE	TEE	
Node	CB6-MAJ	Major System	
Node	CB6-TEE	TEE -	

UNITS	Meters	
[COORDINATES]		
;;Node	X-Coord	Y-Coord
;;		
200	347940.34	5023370.968
201	347957.305	5023386.371
202	348020.837	5023444.019
203	348024.838	5023447.656
204	347969.614	5023338.73
205	347982.619	5023358.482
206	348050.12	5023411.759
207	348059.005	5023419.829
208	348008.14	5023465.964
CB1	348005.487	5023463.31
CB10-DS	348047.338	5023417.554
CB10-MAJ	348052.046	5023412.663
CB10-TEE	348051.845	5023413.331

[MAP] DIMENSIONS 347912.876234435 5023308.34069922 348086.039777552 5023507.12744658

Link	C9 1	Minor System
Link	C92	Minor System
Link	C9-S 1	Major System
Link	C9-52	Major System
Link	CB12-ICD 1	ICD
Link	C11-ICD -	ICD
Link	C3-ICD	ICD
Link	CB11-IC	INLET-CONTROL
Link	CB12-IC	INLET-CONTROL
Link	CB12-ICD	ICD
Link	CB14-ICD	ICD
Link	CB15-ICD	ICD
Link	CB2-IC	INLET-CONTROL
Link	CB4-ICA	INLET-CONTROL
Link	CB4-ICD	ICD
Link	CB5-IC	INLET-CONTROL
Link	CB5-ICD	ICD
Link	CB6-IC	INLET-CONTROL
Link	CB6-ICD	ICD
Link	CB7-ICD	ICD
Link	CB8-IC	INLET-CONTROL
Link	CB8-ICA	INLET-CONTROL
Link	CB8-ICDA	ICD
Link	CB9-ICD	ICD
Link	POND-ICD	ICD

Node	CB7-MA.T	Major System
Node	CB7-TEE	TEE
Node	CB8-MAJ	Maior System
Node	CB8-TEE	TEE
Node	CB9-MAJ	Major System
Node	CB9-TEE	TEE
Node	CB10	CICB
Node	CB12	CB
Node	CB2	CB
Node	CB3	CB
Node	CB4	CB
Node	CB5	CICB
Node	CB6	CICB
Node	CB7	CB
Node	CB8	CB
Node	CB9	CICB
Node	Drypond Outfall Undra Ca	DICB
Node	Outrall_Hydro_Co.	Major SURFACE
Link	C1 1	Major_System Minor_System
Link	C1_1	Minor_System
Link	C10-8	Major System
Link	C12	Major_System
Link	C15-S	Major_System
Link	C2	Major_System
Link	C2 1	Minor System
Link	C2_3	Minor System
Link	сз	Minor System
Link	C4 1	Minor System
Link	C4_2	Minor System
Link	C4_5-S	Major_System
Link	C6	Minor_System
Link	C6_2	Minor_System
Link	C6_6	Minor_System
Link	C6-S	Major_System
Link	C7_1	Minor_System
Link	C7_2	Minor_System
Link	C7_2-S	Major_System
Link	C7-S	Major_System
Link	08	Major_System
LINK	C0_2	Minor_System
Link	C8 3-9	Major System
Link	C8_4	Minor System
Link	C8 5	Minor System
Link	C8 5-9	Major System
TTIV	00_0-0	Trajor_syscem

348038.251 348074.908 347961.861 347967.08 347966.662 347961.585 347970.995 348022.252 348022.197 348022.197 348022.197 348022.405 348026.405 348026.459 348026.459 348001.912 348001.912 348001.912 348001.912 348001.912 348032.125 347950.03 347966.281 347966.281 347966.281 347966.281 347966.281 348026.391 348020.91 348021.858 348031.111 rridor 348037.533	5023415.01 5023402.406 5023302.406 5023302.406 5023302.406 5023302.403 5023302.403 5023302.403 5023302.886 5023302.886 5023302.886 5023445.237 5023445.237 5023445.237 5023445.237 5023432.644 5023437.824 502345.75 502341.046 502345.037 5023351.695 502341.236 502341.236 5023341.826 5023412.826 5023412.999 502341.239 502342.766 5023440.888 5023471.766
X-Coord	Y-Coord
348078.169	5023413.435
348077.723	5023424.19
348065.431	5023437.717
348065.431	5023446.819
348049.983	5023459.921
348005.485	5023465.243
348012.7	5023465.243
348037.599	5023415.96
348037.599	5023415.599
348037.256	5023417.035
348036.735	5023417.72
348025.838	5023429.755
348025.194	5023431.027
348024.639	5023431.027
348022.539	5023431.027
348022.717	5023432.117
348022.366	5023432.23
348021.599	5023432.477
348022.366	5023432.801
348021.599	5023354.139
348028.118	5023354.139
347986.581	5023417.569
347986.581	5023417.569
347966.554	5023417.695
348046.554	5023418.033
348045.319	5023417.695
348030.992	5023418.033
348026.888	5023418.059
348026.666	5023438.656
348026.425	5023438.552
348026.31	5023438.552
348026.28	5023438.552
348026.28	5023438.552
348026.28	5023438.552
348026.28	5023439.347
348026.28	5023439.616
348026.28	5023440.152
348026.757	5023340.152
348019.343	5023340.257
348017.722	5023386.257
348016.56	5023431.82
348015.29	5023431.06
X-Coord	Y-Coord
347955.691	5023367.554
347967.672	5023354.462
347965.128	5023346.077
347965.426	5023364.56
347942.433	5023365.191
347942.433	5023367.554
347946.556	5023374.501
347955.691	5023367.554
347955.691	5023367.554
347955.691	5023364.56
347942.433	5023364.56
347942.433	5023364.56
	348025.838 348025.838 348024.63 347961.662 347961.655 347970.995 348022.252 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348022.197 348024.639 348021.108 507 348021.108 507 348021.125 348031.111 rridor 348037.533 X-Coord 348020.91 348020.91 348020.91 348020.91 348020.91 348020.91 348020.91 348027.723 348037.111 rridor 348037.533 X-Coord 348077.22 348077.22 348075.23 348037.918 348037.918 348037.918 348037.918 348037.35 348037.

S02 S02 S03 S03 S03 S03 S03 S03 S03 S03 S03 S03	347961.048 347951.048 347958.992 347958.992 347958.992 347961.048 347986.768 347965.128 347965.128 347965.128 347965.128 347970.798 347970.798 347970.798 347970.728 347981.355 347986.002 347986.01048 347961.048 347961.048 347961.048 347961.048 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347970.798 347966.416 347920.634 348022.295 348020.634 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295 348031.936 348022.295	5023386.191 5023386.191 5023374.501 5023386.191 5023386.191 5023386.191 5023386.191 5023387.865 5023341.39 5023341.39 5023346.077 5023354.462 5023374.501 5023374.501 5023372.473 5023377.473 5023367.355 5023372.473 5023382.317 5023409.646 5023418.395 5023411.939 5023377.445 5023341.355 5023372.472 5023440.295
S07 S07 S07 S07 S07 S07 S07 S08 S08 S08 S08 S08 S08 S08 S08 S08 S08	348046.35 348036.587 348036.587 348031.936 348027.316 348028.205 348023.164 348028.484 348028.484 348045.336 348045.336 348045.336 348045.336 348045.592 348045.592 348045.592 348045.764 348045.764 348045.764 348045.886 348045.886 348045.886 348045.886 348045.886 348045.886 348045.886 348046.076 348046.071 348046.071 348046.616 348046.616 348046.616 348046.616 348046.616 348046.616 348046.616 348046.616 348046.616 348046.55 348046.55 348046.55 348046.55 348046.616 348046.55 348046.55 348046.965 348047.104 348047.104 348047.109 348047.309 348047.509 348047.509	5023411.965 5023413.272 5023413.272 5023418.395 5023423.486 5023424.293 5023429.846 5023424.293 5023429.846 5023419.91 5023419.91 5023419.91 5023419.91 5023419.674 5023419.674 5023419.674 5023419.674 5023419.554 5023419.554 5023419.453 5023419.453 5023419.453 5023419.372 5023419.372 5023419.375 5023419.286 5023419.255 5023419.256 5023419.266 5023419.275 5023419.286 5023419.286 5023419.336 5023419.336

S08 S08 S08 S08 S08 S08 S08 S08 S08 S08	348047.701 348047.763 348047.824 348047.824 348047.942 348047.999 348048.055 348048.162 348052.154 348052.154 348052.154 348025.961 348026.343 348022.822 348022.822 348022.822 348022.822 348022.822 348028.426 348028.426 348028.426 348028.426 348028.301 348028.228 348028.313 348028.228 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.134 348028.106 348028.06 348028.06 348028.06 348027.993 348027.995 348027.995 348027.995	5023419.461 5023419.527 5023419.563 5023419.601 5023419.641 5023419.774 5023419.774 5023419.774 5023423.398 5023423.329 5023420.692 5023440.295 5023442.605 5023442.605 5023441.201 5023441.201 5023441.201 5023441.201 5023441.201 5023441.097 5023441.097 5023441.097 5023441.097 5023440.929 5023440.929 5023440.929 5023440.81 5023440.40.81 5023440.40.81 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.428 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.494 5023440.294 5023440.361 5023439.532 5023439.74 5023439.74 5023439.532
S08 S08 S08 S08 S08 S08 S08 S08 S08 S08	348027.997 348028.011 348028.045 348028.066 348028.066 348028.142 348028.142 348028.142 348028.142 348028.203 348028.2237 348028.231 348028.231 348028.332 348028.334 348028.438 348028.438 348028.438 348028.438 348028.438 348028.438 348028.438 348028.498 348052.998 348053.044 348053.125 348053.125 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.295 348053.426 348053.45 348053.45 348053.442	5023439.463 5023439.325 5023439.123 5023439.128 5023439.128 5023439.128 5023439.98 5023438.935 5023438.813 5023438.813 5023438.638 5023438.638 5023438.638 5023438.528 5023438.528 5023438.476 5023438.476 5023426.717 5023426.717 5023426.717 5023426.661 5023426.771 5023426.661 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023426.236 5023426.363 5023426.363 5023426.363 5023426.363 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023426.425 5023425.971 5023425.971 5023425.627 5023425.627 5023425.417 5023425.348 5023425.278 5023425.209 5023425.209 5023425.209

509	348053.429	5023425.071
509	348053 414	5023425 003
809	340053 396	5023420.005
309	240052.276	5023424.955
509	348053.376	5023424.869
509	348053.353	5023424.803
S09	348053.328	5023424.737
S09	348053.301	5023424.673
S09	348053.272	5023424.609
S09	348053.241	5023424.547
S09	348053.207	5023424.486
S09	348053.171	5023424.426
509	348053.134	5023424.367
509	348053 094	5023424 31
509	348053 052	5023424 254
809	349053.002	5023424.234
200	340053.000	5023424.2
200	340052.905	5023424.147
309	340052.915	5023424.095
509	348052.866	5023424.046
S09	348052.815	5023423.998
S09	348052.154	5023423.398
S09	348048.162	5023419.774
S09	348048.109	5023419.728
S09	348048.055	5023419.684
S09	348047.999	5023419.641
S09	348047.942	5023419.601
S09	348047.884	5023419.563
S09	348047.824	5023419.527
509	348047 763	5023419 492
509	348047 701	5023419 461
809	340047 639	5023419.401
200	240047 574	5023419.431 E023410 403
309	340047.374	5023419.403
509	348047.509	5023419.378
509	348047.443	5023419.355
S09	348047.376	5023419.334
S09	348047.309	5023419.316
S09	348047.241	5023419.3
S09	348047.173	5023419.286
S09	348047.104	5023419.275
S09	348047.034	5023419.266
S09	348046.965	5023419.26
S09	348046.895	5023419.256
S09	348046.825	5023419.255
S09	348046.756	5023419.256
S09	348046.686	5023419.259
509	348046.616	5023419.265
509	348046 547	5023419 273
500	0100101011	00201101270
S09	348046.478	5023419.284
S09	348046.409	5023419.297
000	348046 341	5023419 312

309	348046.478	5023419.284
509	348046.409	5023419.297
509	348046.341	5023419.312
509	348046.274	5023419.33
509	348046.207	5023419.35
509	348046.141	5023419.372
309	348046.076	5023419.397
309	348046.011	5023419.424
309	348045.948	5023419.453
309	348045.886	5023419.485
509	348045.824	5023419.519
509	348045.764	5023419.554
509	348045.706	5023419.592
509	348045.648	5023419.632
509	348045.592	5023419.674
509	348045.538	5023419.717
509	348045.485	5023419.763
509	348045.434	5023419.81
509	348045.384	5023419.859
509	348045.336	5023419.91
309	348028.484	5023438.476
309	348028.438	5023438.528
509	348028.394	5023438.582
309	348028.352	5023438.638
309	348028.312	5023438.695
309	348028.274	5023438.753
509	348028.237	5023438.813
509	348028.203	5023438.873
509	348028.171	5023438.935
509	348028.142	5023438.998
309	348028.114	5023439.063
309	348028.089	5023439.127
509	348028.066	5023439.193
509	348028.045	5023439.26
509	348028.027	5023439.327
509	348028.011	5023439.395
509	348027.997	5023439.463
509	348027.986	5023439.532
509	348027.977	5023439.601
509	348027.971	5023439.671
309	348027.967	5023439.74
309	348027.965	5023439.81
509	348027.966	5023439.88
509	348027.969	5023439.95
509	348027.975	5023440.019
509	348027.983	5023440.088

S09 S09 S09 S09 S09 S09 S09 S09 S09 S09	$\begin{array}{r} 348027.994\\ 348028.007\\ 348028.0022\\ 348028.06\\ 348028.06\\ 348028.107\\ 348028.103\\ 348028.134\\ 348028.143\\ 348028.282\\ 348028.263\\ 348028.263\\ 348028.263\\ 348028.263\\ 348028.301\\ 348028.301\\ 348028.382\\ 348028.426\\ 348028.426\\ 348028.426\\ 348028.426\\ 348028.426\\ 348028.518\\ 348028.518\\ 348028.518\\ 348028.282\\ 348033.268\\ 348033.268\\ 348033.268\\ 348033.268\\ 348033.32\\ 348033.487\\ 348033.487\\ 348033.487\\ 348033.487\\ 348033.791\\ 348033.791\\ 348033.986\\ 348033.986\\ 348033.986\\ 348034.12\\ 348034.188\\ 348034.257\\ 348034.257\\ 348034.325\\ 348034.257\\ 348034.325\\ 348034.257\\ 348034.325\\ 348034.257\\ 348034.257\\ 348034.325\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.265\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.257\\ 348034.265\\ 348034.257\\ 348034.265\\ 348034.257\\ 34$	5023440.157 5023440.226 5023440.294 5023440.428 5023440.428 5023440.559 5023440.627 5023440.627 5023440.81 5023440.81 5023440.81 5023440.929 5023440.929 5023441.027 5023441.021 5023441.021 5023441.251 5023441.251 5023441.252 5023441.252 5023445.578 5023445.578 5023445.572 5023445.622 5023445.779 5023445.779 5023445.779 5023445.779 5023445.845 5023445.779 5023445.845 5023445.927 5023445
S09 S09 S09 S09 S09 S09 S09 S09 S09 S09	348034.882 348035.02 348035.02 348035.156 348035.222 348035.222 348035.354 348035.418 348035.4482 348035.544 348035.544 348035.665 348035.724 348035.724 348035.837 348035.944	5023446.032 5023446.002 5023445.993 5023445.995 5023445.995 5023445.981 5023445.881 5023445.881 5023445.881 5023445.881 5023445.781 5023445.771 5023445.771 5023445.771 5023445.674 5023445.674 5023445.583 5023445.583

S09	348034.882	5023446.032
S09	348034.951	5023446.022
S09	348035.02	5023446.009
S09	348035.088	5023445.993
S09	348035.156	5023445.976
S09	348035.222	5023445.955
S09	348035.289	5023445.933
S09	348035.354	5023445.908
S09	348035.418	5023445.881
S09	348035.482	5023445.852
S09	348035.544	5023445.821
S09	348035.605	5023445.787
S09	348035.665	5023445.751
S09	348035.724	5023445.713
S09	348035.781	5023445.674
S09	348035.837	5023445.632
S09	348035.892	5023445.588
S09	348035.944	5023445.543
S09	348035.996	5023445.495
S09	348036.045	5023445.446
S09	348036.093	5023445.395
S10	348034.715	5023448.401
S10	348048.985	5023432.681
S10	348055.032	5023426.02
S10	348077.551	5023401.287
S10	348070.323	5023404.854
S10	348065.569	5023410.092
S10	348061.04	5023415.098
S10	348055.961	5023420.692
S10	348053.566	5023423.329
S10	348052.154	5023423.398
S10	348052.815	5023423.998
S10	348052.866	5023424.046
S10	348052.915	5023424.095
S10	348052.963	5023424.147
S10	348053.008	5023424.2
S10	348053.052	5023424.254
S10	348053.094	5023424.31
S10	348053.134	5023424.367
S10	348053.171	5023424.426
S10	348053.207	5023424.486
S10	348053.241	5023424.547
510	348053.272	5023424.609
510	348053.301	5023424.673
510	348053.328	5023424.737
S10	348053.353	5023424.803

S10	348053.376	5023424.869
S10	348053.396	5023424.935
S10	348053.414	5023425.003
S10	348053 429	5023425 071
s10	349053 442	5023425 14
510	340033.442	5023425.14
S10	348053.453	5023425.209
S10	348053.461	5023425.278
S10	348053.467	5023425.348
S10	348053.47	5023425.417
S10	348053.471	5023425.487
\$10	348053 469	5023425 557
s10	348053 466	5023425 627
310	240052.400	5023425.027
SIU	348053.459	5023425.090
S10	348053.45	5023425.765
S10	348053.439	5023425.834
S10	348053.426	5023425.903
S10	348053.41	5023425.971
S10	348053.391	5023426.038
\$10	348053 371	5023426 105
S10	349053 349	5023426 171
310	340033.340	5025420.171
SIU	348053.322	5023426.236
S10	348053.295	5023426.3
S10	348053.265	5023426.363
S10	348053.233	5023426.425
S10	348053.199	5023426.486
S10	348053.163	5023426.546
S10	348053.125	5023426.604
\$10	348053 084	5023426 661
s10	348053 042	5023426 717
S10	240052.042	5025420.717
SIU	348052.998	5023426.771
SIU	348052.952	5023426.823
S10	348048.244	5023432.009
S10	348036.093	5023445.395
S10	348036.045	5023445.446
S10	348035.996	5023445.495
S10	348035.944	5023445.543
\$10	348035 892	5023445 588
s10	349035 937	5023445 632
310	240025.037	5025445.052
SIU	348035.781	5023445.674
S10	348035.724	5023445.713
S10	348035.665	5023445.751
S10	348035.605	5023445.787
S10	348035.544	5023445.821
S10	348035.482	5023445.852
S10	348035.418	5023445.881
\$10	348035 354	5023445 908
510	540055.554	5025445.500

s10	348035.289	5023445.933
S10	348035.222	5023445.955
S10	348035.156	5023445.976
\$10	348035.088	5023445.993
s10	348035.02	5023446.009
s10	348034.951	5023446.022
s10	348034.882	5023446.032
s10	348034.813	5023446.041
s10	348034.744	5023446.047
s10	348034.674	5023446.05
S10	348034.604	5023446.051
S10	348034.534	5023446.049
S10	348034.465	5023446.045
S10	348034.395	5023446.039
S10	348034.326	5023446.03
S10	348034.257	5023446.019
S10	348034.188	5023446.005
S10	348034.12	5023445.989
S10	348034.053	5023445.971
S10	348033.986	5023445.95
S10	348033.921	5023445.927
s10	348033.855	5023445.902
s10	348033.791	5023445.875
s10	348033.728	5023445.845
S10	348033.666	5023445.813
S10	348033.605	5023445.779
S10	348033.545	5023445.743
S10	348033.487	5023445.704
S10	348033.43	5023445.664
S10	348033.374	5023445.622
S10	348033.32	5023445.578
S10	348033.268	5023445.532
S10	348032.282	5023444.637
S10	348032.349	5023446.05
S10	348029.919	5023448.725
S10	348032.374	5023450.959
S10	348034.715	5023448.401
S11	348012.622	5023472.739
S11	348032.374	5023450.959
S11	348029.919	5023448.725
S11	348027.995	5023450.845
S11	348018.729	5023448.768
S11	348014.09	5023453.877
S11	348009.471	5023458.966
511	348012.622	5023472.739
512	347983.885	5023446.386

;;		
;;Gage	X-Coord	Y-Coord
[SYMBOLS]		
520	3480/0.323	3023404.854
520	348003.369	5023410.092
520	348018.44	5023300.976
520	34/9/8.269	5023330.265 5023366 076
520	24/202.1/3	5023323.303
520	34/30U.1/8	5023322.93
S20 S20	347303.203	50233222 05
S20 S20	340010.000	5023317 376
S20 S20	340030.323	5023317 769
S20 S20	340077.331	5023376 549
\$20	348077 551	5023401 287
C20	340033.901	5023420.092
S19	348055 961	5023420 692
S19	348046 35	5023411 965
S19	348008 662	5023377 744
S19	348018 44	5023366 976
S19	348065 569	5023410 092
S19	348061 04	5023415 098
S19	348055 961	5023420 692
S18	347965 777	5023338 805
S18	347968 127	5023336 211
S18	347973 455	5023335 568
S18	347978.269	5023330.265
S18	348018.44	5023366.976
S18	348008.662	5023377.744
S18	347986.768	5023357.865
S18	347965.777	5023338.805
S17	347973.455	5023335.568

S12	348012.622	5023472.739
S12	348009.471	5023458.966
S12	348014.09	5023453.877
S12	347993.86	5023435.508
S12	347974.061	5023417.533
S12	347970.467	5023414.269
S12	347960.652	5023425.081
S12	347983.885	5023446.386
S13	348014.09	5023453.877
S13	348018.729	5023448.768
S13	348027.995	5023450.845
S13	348029.919	5023448.725
S13	348011.032	5023431.576
S13	347972.779	5023396.843
S13	347963.063	5023407.547
S13	347970.467	5023414.269
S13	347993.86	5023435.508
S13	348014.09	5023453.877
S14	347960.652	5023425.081
S14	347970.467	5023414.269
S14	347932.935	5023380.193
S14	347928.485	5023385.457
S14	347925.711	5023382.939
S14	347920.747	5023388.487
S14	347960.652	5023425.081
S15	347963.063	5023407.547
S15	347972.779	5023396.843
S15	347961.048	5023386.191
S15	347940.082	5023367.153
S15	347937.732	5023369.747
S15	347937.873	5023374.801
S15	347932.935	5023380.193
S15	347963.063	5023407.547
S16	347932.935	5023380.193
S16	347937.873	5023374.801
S16	347937.732	5023369.747
S16	347930.373	5023377.866
S16	347925.711	5023382.939
S16	347928.485	5023385.457
S16	347932.935	5023380.193
S17	347973.455	5023335.568
S17	347978.269	5023330.265
S17	347978.269	5023330.265
S17	347982.773	5023325.305
S17	347980.178	5023322.95
S17	347968.127	5023336.211

"Node 206 to Node Outfall_Goward_Storm" C2_4 C1_1 C1_2 "Node 207 to Node 201" C7_1 C7_2 C8_3 C8_6 C8_5 "Node 207 to Node 201" C8_4 C8_2 "Street 1 " C3 C4_1 C4_2 "Street 2 " C3 C4_1 C4_2 "Street 4 " C8_3 C8_5 C8_4 C8_2 "Outlet " C1_1 C1_2 "full " C7_1 C7_2 C8_3 C8_5 C8_4 "full " C8_2 C2_1 C2_3 C1_1 C1_2 EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Dual Drianage Model. Removed two CBs and updaed dry pond area

WARNING 09: time ser. WARNING 09: time ser. WARNING 09: time ser. WARNING 03: negative WARNING 03: negative WARNING 03: negative WARNING 03: negative WARNING 02: maximum WARNING 02: maxi	ies interval greater ies interval greater offset ignored for offset ignored for offset ignored for elevation drop used offset ignored for offset ignored for depth increased for depth inc	than record than record than record than record than condit Link C4_5-S Link C7-S for Conduit Link C9-S1 Link C8-IC Node C810-M2 Node C810-M2 Node C810-M2 Node C810-M3 Node C84-M3 Node C84-M3 Node C85-MA3 Node C85-MA3 Node C87-MA3 Node C89-MA3	ing interva ling interva C8_3-S A S JJ J J J J J J J	l for Rain l for Rain	Gage Gage	Historic_Aug4_88 Historic_Aug8_96 Historic_Jul1_79
*********************** Raingage Summarv						
****			Data	Recording		
Name	Data Source		Туре	Interval		
Chicago_3h_100yr Chicago_3h_2yr Historic_Aug4_88 Historic_Aug8_96 Historic_Jul1_79	Chicago_3h_100yr Chicago_3h_2yr Historic_Storm_Aug- Historic_Storm_Aug- Historic_Storm_Jul-	4-88 8-1996 1-79	INTENSITY INTENSITY INTENSITY INTENSITY INTENSITY	5 min. 5 min. 60 min. 60 min. 60 min.		

Subcatchment Summary						

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
S01	0.03	26.36	72.80	2.0000 Chicago_3h_100yr	Outfall_Second_Line
S02	0.02	19.89	82.10	2.0000 Chicago_3h_100yr	CB3
S03	0.06	68.33	87.80	2.0000 Chicago_3h_100yr	CB3
S 0 4	0.02	14.00	69.00	2.0000 Chicago_3h_100yr	CB4-MAJ
S05	0.17	568.00	55.60	4.0000 Chicago_3h_100yr	CB8-MAJ
S06	0.10	94.00	83.10	2.0000 Chicago 3h 100yr	CB12-MAJ
S07	0.02	35.00	67.00	2.0000 Chicago 3h 100yr	CB8-MAJ
S08	0.03	25.10	70.40	2.0000 Chicago 3h 100yr	CB7-MAJ
S09	0.03	11.84	0.00	2.0000 Chicago 3h 100yr	Drypond
S10	0.01	44.67	0.00	2.0000 Chicago 3h 100yr	Outfall Hydro Corridor
S11	0.03	83.67	0.00	2.0000 Chicago 3h 100yr	Outfall Hydro Corridor
S12	0.09	83.27	40.70	4.0000 Chicago 3h 100yr	CB1
S13	0.10	148.43	84.40	2.0000 Chicago 3h 100yr	CB6-MAJ
S14	0.08	63.25	42.40	4.0000 Chicago 3h 100yr	CB2
S15	0.06	55.18	87.10	2.0000 Chicago 3h 100yr	CB5-MAJ
S16	0.01	2.85	29.40	2.0000 Chicago 3h 100yr	Outfall Second Line
S17	0.01	18.67	29.40	2.0000 Chicago 3h 100yr	Outfall Second Line
S18	0.08	74.18	86.70	2.0000 Chicago 3h 100yr	CB9-MAJ -
S19	0.09	83.82	85.60	2.0000 Chicago 3h 100vr	CB10-MAJ
S20	0.17	1740.00	44.20	4.0000 Chicago_3h_100yr	CB13

************* Node Summary *****

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
200	JUNCTION	99.67	3.58	0.0	
201	JUNCTION	99.09	3.51	0.0	
202	JUNCTION	97.99	3.06	0.0	
203	JUNCTION	97.90	3.30	0.0	
204	JUNCTION	100.66	3.59	0.0	
205	JUNCTION	100.18	3.31	0.0	

C1	CB2	CB1	CONDUIT	68.9	-2.2066	0.0100
Name	From Node	To Node	Туре	Length	%Slope	Roughness
Link Summary *******						
* * * * * * * * * * * *						
		100.00	0.20			
Outfall Hydro Co	orridor STORAGE	100.80	0.20	0.0		
Drypond	STORAGE	98.60	2.25	0.0		
CB9	STORAGE	100 99	2 00	0 0		
CB8	STORAGE	99.20	2.00	0.0		
CB7	STORAGE	99.12	2.00	0.0		
CB6	STORAGE	99.13	2.00	0.0		
CB5	STORAGE	99.84	2.67	0.0		
CB4	STORAGE	100.84	2.00	0.0		
CB3	STORAGE	100.85	2.00	0.0		
CB2	STORAGE	100 10	2.00	0.0		
CB12	STORAGE	99.41	2.00	0.0		
CB10	STORACE	99.71	2 00	0.0		
Outfall Gogard	Jino OUTFALL	97.50	0.35	0.0		
CB9-TEE	JUNCTION Storm OUNEDLI	99.81	3.20	0.0		
CB9-MAJ	JUNCTION	102.99	0.20	0.0		
CB8-TEE	JUNCTION	98.13	3.11	0.0		
CB8-MAJ	JUNCTION	101.20	0.20	0.0		
CB/-TEE	JUNCTION	98.11	3.08	0.0		
CB/-MAJ	JUNCTION	101.12	0.20	0.0		
CB6-TEE	JUNCTION	97.98	3.10	0.0		
CB6-MAJ	JUNCTION	101.23	0.20	0.0		
CB5-TEE	JUNCTION	98.87	3.34	0.0		
CB5-MAJ	JUNCTION	102.51	0.20	0.0		
CB4-TEE	JUNCTION	99.34	3.45	0.0		
CB4-MAJ	JUNCTION	102.92	0.20	0.0		
CB4-DS	JUNCTION	102.82	0.20	0.0		
CB3-TEE	JUNCTION	99.35	3.44	0.0		
CB13	JUNCTION	98.86	2.57	0.0		
CB12-TEE	JUNCTION	98.33	3.58	0.0		
CB12-MAJ	JUNCTION	101.48	0.20	0.0		
CB10-TEE	JUNCTION	98.56	3.37	0.0		
CB10-MAJ	JUNCTION	101.41	0.20	0.0		
CB10-DS	JUNCTION	101.41	0.20	0.0		
CB1	JUNCTION	99.73	2.30	0.0		
208	JUNCTION	97.77	3.30	0.0		
207	JUNCTION	98.66	2.36	0.0		

C1 1	203	208	CONDUIT	24.8	0.4035	0.0130
C1 2	208	Outfall Goward S	torm CONDUIT	43	.3 0.401	.6 0.0130
C10-S	CB13	Outfall Hydro Co	rridor CONDUIT	8	35.5 0.3	850 0.0100
C12	CB1	Outfall Hydro Co	rridor CONDUIT	3	36.6 2.5	450 0.0100
C15-S	CB12-MAJ	CB8-MAJ	CONDUIT	25.7	1.0887	0.0130
C2	CB7-MAJ	Drypond	CONDUIT	4.7	24.6144	0.0130
C2 1	202	CB6-TEE	CONDUIT	1.8	0.4376	0.0130
C2_3	CB6-TEE	203	CONDUIT	3.6	0.3911	0.0130
C3	200	201	CONDUIT	22.9	2.0034	0.0130
C4 1	201	CB5-TEE	CONDUIT	18.5	1.2005	0.0130
C4_2	CB5-TEE	202	CONDUIT	67.3	1.1995	0.0130
C4 5-S	CB5-MAJ	CB6-MAJ	CONDUIT	70.3	1.8222	0.0130
C6	205	CB3-TEE	CONDUIT	30.9	2.7013	0.0130
C6 2	CB3-TEE	CB4-TEE	CONDUIT	0.4	2.9790	0.0130
C6_6	CB4-TEE	201	CONDUIT	6.4	2.7075	0.0130
C6-S	CB8-MAJ	CB7-MAJ	CONDUIT	11.5	0.6957	0.0130
C7 1	204	CB9-TEE	CONDUTT	42.5	2.0012	0.0130
c7_2	CB9-TEE	206	CONDUTT	66.2	1.9998	0.0130
c7_2-s	CB9-MAJ	CB10-MAJ	CONDUTT	67.7	2.3339	0.0130
C7-S	CB6-MAJ	CB7-MAJ	CONDUTT	6.5	1.6843	0.0130
C.8	CB3	CB4-DS	CONDUTT	9.2	0.3261	0.0130
C8 2	CB7-TEE	202	CONDUTT	5.7	0.8180	0.0130
C8 3	206	CB12-TEE	CONDULT	10.8	0 8167	0 0130
C8 3-S	CB10-MAJ	CB10-DS	CONDULT	6.8	0 0045	0.0130
C8_4	CB8-TEE	CB7-TEE	CONDULT	2.6	0 8400	0.0130
C8 5	CB12-TEE	CB8-TEE	CONDULT	24 4	0 8023	0.0130
C8 5-S	CB10-DS	CB7-MA.T	CONDULT	32 8	0 8843	0.0130
C9_1	207	CB10-TEE	CONDULT	9 7	1 0135	0.0130
C9_2	CB10-TEE	206	CONDULT	23	0 9846	0.0130
C9-S 1	CB4-MA.T	CB4-DS	CONDULT	1 8	5 7554	0.0130
C9-S 2	CB4-DS	CB8-MA.T	CONDULT	70.7	2 2934	0.0130
CB12-ICD 1	CB2	CB5	CONDUIT	22 6	1 0160	0.0100
C11-ICD_1	CB10	CB10-TFF	OUTLET	22.0	1.0100	0.0100
C3-TCD	CB3	CB3-TFF	OUTLET			
CB11-IC	CB10-MA.T	CB10	OUTLET			
CB12-IC	CP12_MAT	CB10	OUTLET			
CB12-ICD	CB12 MAG	CB12-TFF	OUTLET			
CD14 ICD	CD12	207	OUTLET			
CB14-ICD	CBIS	207	OUTLET			
CB13-ICD	CD7 MAT	200	OUTLET			
CD2-IC	CD/-MAU	CD/	OUTLEI			
CD4-ICA	CD4 -MAU	CD4	OUTLEI			
CB4-ICD CB5-IC	CD5_MA T	CD4 TILL CD5	OUTLEI			
CB5-IC	CD5-MAU	CD5_TEE	OUTLEI			
CDS-ICD	CD6_MA T	CDJ-IEE	OUTLEI			
CD0-IC	CD0-MAU	CDC MEE	OUTLET			
CD0-ICD	CDO	CD0-TFF	OOT PR.L			

CB7-ICD	CB7	CB7-TEE	OUTLET
CB8-IC	CB9-MAJ	CB9	OUTLET
CB8-ICA	CB8-MAJ	CB8	OUTLET
CB8-ICDA	CB8	CB8-TEE	OUTLET
CB9-ICD	CB9	CB9-TEE	OUTLET
POND-ICD	Drypond	203	OUTLET

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	Swale	0.30	0.30	0.14	2.00	1	1219.24
C1_1	CIRCULAR	0.45	0.16	0.11	0.45	1	181.12
C1_2	CIRCULAR	0.45	0.16	0.11	0.45	1	180.70
C10-S	Swale	0.30	0.30	0.14	2.00	1	509.28
C12	Swale	0.30	0.30	0.14	2.00	1	1309.41
C15-S	Half_3.35m_Street	0.20	0.54	0.13	5.02	1	1100.69
C2	Road-Spill-1	0.10	0.31	0.05	6.29	1	1624.17
C2_1	CIRCULAR	0.45	0.16	0.11	0.45	1	188.62
C2_3	CIRCULAR	0.45	0.16	0.11	0.45	1	178.30
C3	CIRCULAR	0.25	0.05	0.06	0.25	1	84.18
C4_1	CIRCULAR	0.38	0.11	0.09	0.38	1	192.12
C4_2	CIRCULAR	0.38	0.11	0.09	0.38	1	192.04
C4_5-S	Half_3.35m_Street	0.20	0.54	0.13	5.02	1	1424.00
C 6	CIRCULAR	0.30	0.07	0.07	0.30	1	158.94
C6 2	CIRCULAR	0.30	0.07	0.07	0.30	1	166.91
C6 6	CIRCULAR	0.30	0.07	0.07	0.30	1	159.13
C6-S	Road-Spill-1	0.10	0.31	0.05	6.29	1	273.05
C7 1	CIRCULAR	0.30	0.07	0.07	0.30	1	136.80
C7 2	CIRCULAR	0.30	0.07	0.07	0.30	1	136.76
C7 2-S	Half 3.35m Street	0.20	0.54	0.13	5.02	1	1611.57
C7-S	Road-Spill-1	0.10	0.31	0.05	6.29	1	424.85
C8	Road-Spill-1	0.10	0.31	0.05	6.29	1	186.95
C8 2	CIRCULAR	0.38	0.11	0.09	0.38	1	158.58
C8_3	CIRCULAR	0.38	0.11	0.09	0.38	1	158.45
C8_3-S	Road-Spill-3,4	0.10	1.17	0.05	23.33	1	81.37
C8 4	CIRCULAR	0.38	0.11	0.09	0.38	1	160.71
C8 5	CIRCULAR	0.38	0.11	0.09	0.38	1	157.06
C8_5-S	Half 3.35m Street	0.20	0.54	0.13	5.02	1	991.97
C9 1	CIRCULAR	0.25	0.05	0.06	0.25	1	59.87
C92	CIRCULAR	0.25	0.05	0.06	0.25	1	59.01
C9-S 1	Half 3.35m Street	0.20	0.54	0.13	5.02	1	2530.73
C9-S_2	Half_3.35m_Street	0.20	0.54	0.13	5.02	1	1597.53

CB12-ICD_1	CIRCU	LAR	0.20	0.03	0.05	0.20	1	42.98
* * * * * * * * * * * * *	* * *							
Transect Summ	ary ***							
Transect Half	_3.35m_St	reet						
Area:	0005	0 0020	0 0044	0 0079	0 0123			
0	0177	0.0020	0.0315	0.0079	0.0123			
0	0596	0.0709	0.0832	0.0965	0 1108			
0	.1261	0.1423	0.1595	0.1778	0.1970			
Ő	.2172	0.2383	0.2605	0.2836	0.3078			
0	.3324	0.3570	0.3816	0.4062	0.4309			
0	.4555	0.4801	0.5047	0.5294	0.5540			
0	.5786	0.6032	0.6280	0.6536	0.6801			
0	.7077	0.7363	0.7658	0.7963	0.8278			
0	.8603	0.8937	0.9282	0.9636	1.0000			
Hrad:								
0	.0153	0.0306	0.0459	0.0611	0.0764			
0	.0917	0.1070	0.1223	0.1376	0.1529			
0	.1682	0.1834	0.1987	0.2140	0.2293			
0	.2446	0.2599	0.2752	0.2905	0.3057			
0	.3210	0.3363	0.3516	0.3669	0.3822			
0	.4118	0.4413	0.4706	0.4998	0.5289			
0	.5579	0.5867	0.6154	0.6439	0.6723			
0	.7006	0.7288	0.7570	0.7842	0.8098			
0	.8339	0.8567	0.8781	0.8985	0.9177			
0	.9359	0.9531	0.9695	0.9851	1.0000			
Width:	0067	0 0524	0 0001	0 1000	0 1 2 2 5			
0	.0267	0.0534	0.0801	0.1068	0.1335			
0	2036	0.1009	0.2133	0.2402	0.2009			
0	4271	0.3203	0.3470	0.5737	0.4004			
0	5606	0.5873	0.4000	0.6406	0.6673			
0	6673	0 6673	0 6673	0 6673	0 6673			
0	.6673	0.6673	0.6673	0.6673	0.6673			
0	.6673	0.6673	0.6806	0.7073	0.7339			
0	.7605	0.7871	0.8137	0.8403	0.8669			
0	.8935	0.9202	0.9468	0.9734	1.0000			
Transect Road Area:	-Spill-1							
0	.0004	0.0016	0.0036	0.0064	0.0100			

	0.0144	0.0196	0.0256	0.0324	0.0400
	0.0484	0.0576	0.0676	0.0784	0.0900
	0.1024	0.1156	0.1296	0.1444	0.1600
	0.1764	0.1936	0.2116	0.2304	0.2500
	0.2704	0.2916	0.3136	0.3364	0.3600
	0.3844	0.4096	0.4356	0.4624	0.4900
	0.5184	0.5476	0.5776	0.6084	0.6400
	0.6724	0.7056	0.7396	0.7744	0.8100
	0.8464	0.8836	0.9216	0.9604	1.0000
Hrad:					
	0.0200	0.0400	0.0600	0.0800	0.1000
	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5600	0.5800	0.6000
	0.6200	0.6400	0.6600	0.6800	0.7000
	0.7200	0.7400	0.7600	0.7800	0.8000
	0.8200	0.8400	0.8600	0.8800	0.9000
	0.9200	0.9400	0.9600	0.9800	1.0000
Width:					
	0.0200	0.0400	0.0600	0.0800	0.1000
	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5600	0.5800	0.6000
	0.6200	0.6400	0.6600	0.6800	0.7000
	0.7200	0.7400	0.7600	0.7800	0.8000
	0.8200	0.8400	0.8600	0.8800	0.9000
	0.9200	0.9400	0.9600	0.9800	1.0000
Transect	Road-Spill-	3.4			
Area:		- / -			
	0.0004	0.0016	0.0036	0.0064	0.0100
	0.0144	0.0196	0.0256	0.0324	0.0400
	0.0484	0.0576	0.0676	0.0784	0.0900
	0.1024	0.1156	0.1296	0.1444	0.1600
	0.1764	0.1936	0.2116	0.2304	0.2500
	0.2704	0.2916	0.3136	0.3364	0.3600
	0.3844	0.4096	0.4356	0.4624	0.4900
	0.5184	0.5476	0.5776	0.6084	0.6400
	0.6724	0.7056	0.7396	0.7744	0.8100
	0.8464	0.8836	0.9216	0.9604	1.0000
Hrad:	2.0101	2.2000			210000
	0.0200	0.0400	0.0600	0.0800	0.1000

	0.1200 0.2200 0.3200 0.5200 0.6200 0.6200 0.8200 0.9200	0.1400 0.2400 0.3400 0.5400 0.5400 0.6400 0.7400 0.8400 0.9400	0.1600 0.2600 0.3600 0.5600 0.5600 0.6600 0.7600 0.8600 0.9600	0.1800 0.2800 0.3800 0.4800 0.5800 0.6800 0.7800 0.8800 0.9800	0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
Width:					
	0.0200 0.1200 0.2200 0.3200 0.4200 0.5200 0.6200 0.7200 0.8200 0.9200	0.0400 0.1400 0.2400 0.3400 0.4400 0.5400 0.6400 0.7400 0.8400 0.9400	0.0600 0.1600 0.2600 0.3600 0.4600 0.5600 0.6600 0.7600 0.8600 0.9600	0.0800 0.1800 0.2800 0.3800 0.4800 0.5800 0.6800 0.7800 0.8800 0.9800	0.1000 0.2000 0.3000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
Transect Sw	ale				
Area:					
	0.0004	0.0016	0.0036	0.0064	0.0100
	0.0144	0.0196	0.0256	0.0324	0.0400
	0.0484	0.0576	0.0676	0.0784	0.0900
	0.1024	0.1156	0.1296	0.1444	0.1600
	0.1764	0.1936	0.2116	0.2304	0.2500
	0.2704	0.2916	0.3136	0.3364	0.3600
	0.3844	0.4096	0.4356	0.4624	0.4900
	0.5184	0.5476	0.5776	0.6084	0.6400
	0.6724	0.7056	0.7396	0.7744	0.8100
	0.8464	0.8836	0.9216	0.9604	1.0000
Hrad:	0 0000	0 0 0 0 0	0 0 0 0 0		0 1 0 0 0
	0.0200	0.0400	0.0600	0.0800	0.1000
	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5000	0.5800	0.0000
	0 7200	0 7400	0 7600	0 7800	0 8000
	0.8200	0.8400	0.8600	0.8800	0.9000
	0.9200	0.9400	0.9600	0.9800	1.0000
Width:					
	0.0200	0.0400	0.0600	0.0800	0.1000

0.1200	0.1400	0.1600	0.1800	0.2000
0.3200	0.2400	0.2600	0.2800	0.3000
0.4200	0.4400	0.4600	0.4800	0.5000
0.5200	0.5400	0.5600	0.5800	0.6000
0.6200	0.6400	0.6600	0.6800	0.7000
0.7200	0.7400	0.7600	0.7800	0.8000
0.8200	0.8400	0.8600	0.8800	0.9000
0.9200	0.9400	0.9600	0.9800	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * *		
Analysis Options		
* * * * * * * * * * * * * * *		
Flow Units	LPS	
Process Models:		
Rainfall/Runoff	YES	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Routing Method	DYNWAVE	
Starting Date	02/22/2018	00:00:00
Ending Date	02/22/2018	06:00:00
Antecedent Dry Days	0.0	
Report Time Step	00:01:00	
Wet Time Step	00:01:00	
Dry Time Step	00:01:00	
Routing Time Step	1.00 sec	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	4	
Head Tolerance	0.001500 m	

* * * * * * * * * * * *	* * * * * * * * * * * * * *	Volume	Depth
Runoff Quant	ity Continuity	hectare-m	mm

* * * * * * * * * * * * * * * * * * * *		
Total Precipitation	0.086	71.707
Evaporation Loss	0.000	0.000
Infiltration Loss	0.019	16.022
Surface Runoff	0.066	55.137
Final Storage	0.001	0.737
Continuity Error (%)	-0.263	
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.066	0.662
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.054	0.544
Flooding Loss	0.002	0.019
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.008	0.081
Continuity Error (%)	2.696	

Highest Continuity Errors Node CB2 (42.22%) Node CB4 (7.99%) Node CB4 (7.99%) Node CB9 (2.19%) Node CB9 (2.19%) Node Drypond (1.97%)

Highest Flow Instability Indexes

* * * * * * * *	* * * * * * * * * * * * * * * * *			
Routing *******	Time Step Summary			
Minimum	Time Step	:	1.00	sec
Average	Time Step	:	1.00	sec
Maximum	Time Step	:	1.00	sec
Percent	in Steady State	:	0.00	
Average	Iterations per Step	:	2.00	
Percent	Not Converging	:	0.01	

	Total	Total	Total	Total	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Coeff
Subcatchment	mm	mm	mm	mm	mm	10^6 ltr	LPS	
S01	71.71	0.00	0.00	11.64	59.37	0.02	18.86	0.828
S02	71.71	0.00	0.00	7.65	63.25	0.01	11.81	0.882
S03	71.71	0.00	0.00	5.21	65.62	0.04	40.86	0.915
S04	71.71	0.00	0.00	13.27	57.78	0.01	10.84	0.806
S05	71.71	0.00	0.00	18.95	52.29	0.09	108.81	0.729
S06	71.71	0.00	0.00	7.22	63.67	0.07	68.29	0.888
S07	71.71	0.00	0.00	14.10	56.98	0.01	11.33	0.795
S08	71.71	0.00	0.00	12.66	58.38	0.01	16.27	0.814
S09	71.71	0.00	0.00	43.67	28.11	0.01	9.48	0.392
S10	71.71	0.00	0.00	42.78	29.17	0.00	7.86	0.407
S11	71.71	0.00	0.00	42.78	29.17	0.01	14.72	0.407
S12	71.71	0.00	0.00	25.41	45.97	0.04	56.09	0.641
S13	71.71	0.00	0.00	6.66	64.21	0.07	68.75	0.895
S14	71.71	0.00	0.00	24.69	46.67	0.04	46.45	0.651
S15	71.71	0.00	0.00	5.51	65.33	0.04	40.29	0.911
S16	71.71	0.00	0.00	30.53	40.94	0.00	2.86	0.571
S17	71.71	0.00	0.00	30.18	41.39	0.00	3.45	0.577
S18	71.71	0.00	0.00	5.68	65.16	0.05	54.14	0.909
S19	71.71	0.00	0.00	6.15	64.70	0.06	61.09	0.902
S20	71.71	0.00	0.00	23.80	47.73	0.08	109.57	0.666

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	Occu	rrence	Max Depth
Node	Туре	Meters	Meters	Meters	days	hr:min	Meters
200	JUNCTION	0.00	0.00	99.67	0	00:00	0.00
201	JUNCTION	0.02	0.06	99.15	0	01:06	0.06
202	JUNCTION	0.06	0.18	98.17	0	01:11	0.18
203	JUNCTION	0.10	0.20	98.10	0	01:11	0.20
204	JUNCTION	0.00	0.00	100.66	0	00:00	0.00
205	JUNCTION	0.00	0.00	100.18	0	00:00	0.00
206	JUNCTION	0.03	0.09	98.51	0	01:10	0.09
207	JUNCTION	0.02	0.06	98.72	0	01:03	0.06
208	JUNCTION	0.10	0.21	97.99	0	01:12	0.21
CB1	JUNCTION	0.72	2.07	101.80	0	01:05	2.07
CB10-DS	JUNCTION	0.01	0.08	101.49	0	01:05	0.08
CB10-MAJ	JUNCTION	0.01	0.08	101.49	0	01:05	0.08
CB10-TEE	JUNCTION	0.03	0.08	98.64	0	01:10	0.08
CB12-MAJ	JUNCTION	0.01	0.05	101.53	0	01:05	0.05
CB12-TEE	JUNCTION	0.03	0.11	98.43	0	01:10	0.11
CB13	JUNCTION	0.84	2.46	101.32	0	01:03	2.46
CB3-TEE	JUNCTION	0.02	0.05	99.40	0	01:06	0.05
CB4-DS	JUNCTION	0.00	0.02	102.84	0	01:05	0.02
CB4-MAJ	JUNCTION	0.00	0.02	102.94	0	01:05	0.02
CB4-TEE	JUNCTION	0.02	0.06	99.39	0	01:06	0.06
CB5-MAJ	JUNCTION	0.01	0.05	102.56	0	01:05	0.05
CB5-TEE	JUNCTION	0.03	0.09	98.96	0	01:11	0.09
CB6-MAJ	JUNCTION	0.01	0.06	101.29	0	01:04	0.06
CB6-TEE	JUNCTION	0.06	0.18	98.16	0	01:11	0.18
CB7-MAJ	JUNCTION	0.01	0.05	101.17	0	01:05	0.05
CB7-TEE	JUNCTION	0.05	0.13	98.23	0	01:11	0.13
CB8-MAJ	JUNCTION	0.01	0.07	101.27	0	01:05	0.07
CB8-TEE	JUNCTION	0.05	0.12	98.25	0	01:11	0.12
CB9-MAJ	JUNCTION	0.01	0.05	103.04	0	01:05	0.05
CB9-TEE	JUNCTION	0.01	0.05	99.86	0	01:10	0.05
Outfall Goward Storm	OUTFALL	0.00	0.00	97.50	0	00:00	0.00
Outfall Second Line	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
св10 — —	STORAGE	0.85	1.68	101.09	0	01:25	1.68
CB12	STORAGE	0.78	2.00	101.48	0	00:58	2.00
CB2	STORAGE	0.55	0.84	100.94	0	01:16	0.84
CB3	STORAGE	0.98	2.00	102.85	0	01:10	2.00
CB4	STORAGE	0.54	1.47	102.31	0	01:05	1.47
CB5	STORAGE	0.63	1.09	100.93	0	01:15	1.09
CB6	STORAGE	0.72	1.58	100.71	0	01:15	1.58

CB7	STORAGE	0.87	1.79	100.91	0	01:26	1.79
CB8	STORAGE	1.23	1.90	101.10	0	01:32	1.90
CB9	STORAGE	0.68	2.00	102.99	0	01:04	2.00
Drypond	STORAGE	1.65	2.24	100.84	0	01:28	2.24
Outfall_Hydro_	Corridor STORAGE	0.02	0.02	100.82		0 01:51	0.02

	Tvpe	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Time Occu davs	of Max rrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
.00	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
.01	JUNCTION	0.00	11.82	0	01:06	0	0.0538	-0.014
02	JUNCTION	0.00	62.33	0	01:11	0	0.328	0.063
03	JUNCTION	0.00	76.33	0	01:11	0	0.501	0.073
04	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
05	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
06	JUNCTION	0.00	20.17	0	01:10	0	0.0924	-0.002
07	JUNCTION	0.00	7.76	0	01:03	0	0.034	-0.010
08	JUNCTION	0.00	83.10	0	01:11	0 0 4 0 1	0.523	0.114
BI DA	JUNCTION	56.09	56.09	0	01:05	0.0421	0.0421	1.283
BIU-DS	JUNCTION	0.00	/8.2/	0	01:05	0 0507	0.0523	0.166
BIU-MAJ	JUNCTION	61.09	103.59	0	01:05	0.0597	0.091	0.115
BIU-TEE	JUNCTION	0.00	13.44	0	01:10	0 0 0 0 0	0.072	0.006
BIZ-MAJ	JUNCTION	68.29	68.29	0	01:05	0.0658	0.0658	-0.060
BIZ-TEE	JUNCTION	100.00	26.90	0	01:10	0 0021	0.123	-0.005
BIJ mpp	JUNCTION	109.57	109.57	0	01:05	0.0831	0.0831	0.585
DA DC	TUNCTION	0.00	0.73	0	01:10	0	0.0404	1 715
D4-D3	TUNCTION	10.00	10 04	0	01:05	0 00071	0.00383	1./13
D4 mpp	TUNCTION	10.04	11 02	0	01:05	0.009/1	0.00971	0.002
D4-166	TUNCTION	40.29	10 29	0	01:05	0 0397	0.0338	0.001
-D5-mpp	TUNCTION	40.29	23.40	0	01.05	0.0397	0.0397	-0.290
DG_MAT	TUNCTION	69 75	23.40	0	01.10	0 0667	0.0977	-0.200
D6_TE	TUNCTION	00.75	67.96	0	01.05	0.0007	0.0077	-0.037
B7=MA.T	JUNCTION	16 27	285 45	0	01.05	0 0147	0.332	-0.048
B7-TFF	TUNCTION	10.27	38 98	0	01.00	0.0147	0.229	0.040
B8-MA.T	TUNCTION	120 14	157 12	0	01.05	0 0991	0.121	-0.020
DO MINO	TUNCTION	0.00	32 00	0	01.03	0.0001	0.120	0.020
DO MAI	JUNCTION	54 14	54 14	0	01.05	0 0532	0.103	-0 259

CB9-TEE	JUNCTION	0.00	6.73	0	01:04	0	0.0205	0.002
Outfall Goward Storm	OUTFALL	0.00	83.15	0	01:12	0	0.522	0.000
Outfall Second Line	OUTFALL	25.17	25.17	0	01:05	0.0219	0.0219	0.000
CB10	STORAGE	0.00	20.95	0	01:05	0	0.0386	1.849
CB12	STORAGE	0.00	33.77	0	01:05	0	0.0473	1.027
CB2	STORAGE	46.45	76.51	0	01:05	0.0354	0.047	73.083
CB3	STORAGE	52.67	52.67	0	01:05	0.0517	0.0517	1.366
CB4	STORAGE	0.00	7.70	0	01:05	0	0.00606	8.690
CB5	STORAGE	0.00	14.35	0	01:06	0	0.0456	1.141
CB6	STORAGE	0.00	12.91	0	01:04	0	0.0254	2.836
CB7	STORAGE	0.00	30.92	0	01:05	0	0.0401	1.780
CB8	STORAGE	0.00	48.30	0	01:05	0	0.0671	1.282
CB9	STORAGE	0.00	11.59	0	01:05	0	0.0219	2.243
Drypond	STORAGE	9.48	263.69	0	01:05	0.00832	0.152	2.014
Outfall_Hydro_Corrido	or STORAGE	22.59	143.27		0 01:05	0.0112	0.0675	0.495

No nodes were surcharged.

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	LPS	days hr:min	10^6 ltr	Meters
CB12	0.41	27.04	0 01:05	0.016	0.000
СВЗ	0.17	11.53	0 01:10	0.003	0.000
СВ9	0.11	4.86	0 01:05	0.001	0.000

Storage Volume Summary

Storage Unit	Volume 1000 m3	Pcnt Full	Pcnt Loss	Pcnt Loss	Volume 1000 m3	Pcnt Full	Occu days	hr:min	Outflow LPS
СВ10	0.001	3	0	0	0.010	18	0	01:25	5.91
CB12	0.000	39	0	0	0.001	100	0	00:58	6.73
CB2	0.000	28	0	0	0.000	42	0	01:16	9.72
CB3	0.004	18	0	0	0.020	100	0	01:10	6.73
CB4	0.000	27	0	0	0.001	74	0	01:05	5.30
CB5	0.000	24	0	0	0.000	41	0	01:15	12.62
CB6	0.000	0	0	0	0.003	7	0	01:15	5.64
CB7	0.003	6	0	0	0.017	39	0	01:26	6.20
CB8	0.009	19	0	0	0.031	68	0	01:32	6.16
CB9	0.000	34	0	0	0.001	100	0	01:04	6.73
Drypond	0.047	44	0	0	0.105	99	0	01:28	8.52
Outfall_Hydro_Corridor	0.055		7	0	0.06	7	9	0 01:51	0.00

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
Outfall_Goward_Storm	97.24	24.85	83.15	0.522
Outfall_Second_Line	51.62	1.96	25.17	0.022
System	74.43	26.81	100.67	0.544

Link Flow Summary

		Maximum Flow	Time Occu	of Max rrence	Maximum Veloc	Max/ Full	Max/ Full
Link	Type	LPS	days	hr:min	m/sec	Flow	Depth
C1	CHANNEL	29.97	0	01:05	0.26	0.02	0.62
C1 1	CONDUIT	76.33	0	01:11	1.15	0.42	0.44
C1_2	CONDUIT	83.15	0	01:12	1.17	0.46	0.46
C10-S	CHANNEL	102.17	0	01:05	3.10	0.20	0.34
C12	CHANNEL	18.58	0	01:05	3.23	0.01	0.14

C15-S	CHANNEL	34.49	0	01:05	0.57	0.03	0.31
C2	CHANNEL	254.25	0	01:05	1.73	0.16	0.75
C2_1	CONDUIT	62.33	0	01:11	1.03	0.33	0.41
C2_3	CONDUIT	67.96	0	01:11	1.13	0.38	0.40
C3	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
C4 1	CONDUIT	11.81	0	01:06	0.77	0.06	0.20
C4 2	CONDUIT	23.36	0	01:11	1.07	0.12	0.26
C4 5-S	CHANNEL	29.87	0	01:05	0.69	0.02	0.25
C6	CONDUIT	0.00	0	00:00	0.00	0.00	0.08
C6 2	CONDUIT	6.80	0	01:17	1.10	0.04	0.17
C6_6	CONDUIT	11.82	0	01:06	1.32	0.07	0.18
c6-s	CHANNEL	108.54	0	01:05	0.93	0.40	0.61
C7 1	CONDUIT	0.00	0	00:00	0.00	0.00	0.08
C7_2	CONDUIT	6.73	0	01:10	1.00	0.05	0.15
C7_2-S	CHANNEL	42.50	0	01:05	0.71	0.03	0.33
C7-S	CHANNEL	85.72	0	01:05	1.02	0.20	0.53
C8	CHANNEL	0.00	0	00:00	0.00	0.00	0.09
C8 2	CONDUIT	38.98	0	01:11	1.19	0.25	0.34
C8_3	CONDUIT	20.17	0	01:10	0.87	0.13	0.26
C8_3-S	CHANNEL	78.27	0	01:05	0.13	0.96	0.80
C8_4	CONDUIT	32.88	0	01:11	1.03	0.20	0.33
C8 5	CONDUIT	26.90	0	01:10	0.95	0.17	0.30
C8 5-S	CHANNEL	75.91	0	01:05	1.10	0.08	0.32
C9_1	CONDUIT	7.76	0	01:03	0.68	0.13	0.28
C9 2	CONDUIT	13.44	0	01:10	0.97	0.23	0.32
C9-S 1	CHANNEL	3.13	0	01:05	0.74	0.00	0.08
C9-52	CHANNEL	2.56	0	01:05	0.22	0.00	0.22
CB12-ICD 1	CONDUIT	9.72	0	01:22	0.57	0.23	1.00
C11-ICD -	DUMMY	5.91	0	01:25			
C3-ICD	DUMMY	6.73	0	01:10			
CB11-IC	DUMMY	20.95	0	01:05			
CB12-IC	DUMMY	33.77	0	01:05			
CB12-ICD	DUMMY	6.73	0	00:58			
CB14-ICD	DUMMY	7.76	0	01:03			
CB15-ICD	DUMMY	6.90	0	01:05			
CB2-IC	DUMMY	30.92	0	01:05			
CB4-ICA	DUMMY	7.70	0	01:05			
CB4-ICD	DUMMY	5.30	0	01:05			
CB5-IC	DUMMY	10.37	0	01:05			
CB5-ICD	DUMMY	12.62	0	01:15			
CB6-IC	DUMMY	12.91	0	01:04			
CB6-ICD	DUMMY	5.64	0	01:15			
CB7-ICD	DUMMY	6.20	0	01:26			
CB8-IC	DUMMY	11.59	0	01:05			
CB8-ICA	DUMMY	48.30	0	01:05			
CB8-ICDA	DUMMY	6.16	0	01:32			

CB9-ICD	DUMMY	6.73	0	01:04
POND-ICD	DUMMY	8.52	0	01:28

2	diusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	0.05	0.89	0.00	0.06	0.00	0.00	0.00	0.83	0.00
C1_1	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
C1_2	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
C10-S	1.00	0.16	0.75	0.00	0.01	0.08	0.00	0.00	0.76	0.00
C12	1.00	0.16	0.77	0.00	0.01	0.06	0.00	0.00	0.78	0.00
C15-S	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.98	0.00
C2	1.25	0.00	0.00	0.00	0.80	0.04	0.00	0.16	0.84	0.00
C2 1	1.80	0.06	0.00	0.00	0.93	0.00	0.00	0.00	0.39	0.00
C2_3	1.00	0.07	0.00	0.00	0.32	0.01	0.00	0.60	0.00	0.00
сз	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C4 1	1.00	0.07	0.02	0.00	0.62	0.30	0.00	0.00	0.91	0.00
C4 2	1.00	0.07	0.00	0.00	0.00	0.15	0.00	0.78	0.15	0.00
C4 5-S	1.00	0.25	0.06	0.00	0.58	0.12	0.00	0.00	0.99	0.00
C6	1.00	0.07	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C6 2	10.12	0.07	0.00	0.00	0.44	0.50	0.00	0.00	0.52	0.00
C6_6	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00	0.00
c6-s	1.00	0.00	0.00	0.00	0.09	0.91	0.00	0.00	0.00	0.00
C7 1	1.00	0.07	0.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C7 2	1.00	0.07	0.00	0.00	0.00	0.00	0.00	0.93	0.00	0.00
C7_2-S	1.00	0.21	0.07	0.00	0.62	0.10	0.00	0.00	0.99	0.00
C7-S	1.00	0.00	0.31	0.00	0.23	0.46	0.00	0.00	0.54	0.00
C8	1.00	0.01	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C8 2	1.00	0.06	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00
C8_3	1.00	0.06	0.00	0.00	0.61	0.33	0.00	0.00	0.70	0.00
C8_3-S	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C8_4	1.29	0.06	0.00	0.00	0.47	0.46	0.00	0.00	0.38	0.00
C8 5	1.00	0.06	0.00	0.00	0.78	0.16	0.00	0.00	0.85	0.00
C8_5-S	1.00	0.00	0.02	0.00	0.50	0.48	0.00	0.00	0.52	0.00
C9_1	1.00	0.06	0.16	0.00	0.77	0.01	0.00	0.00	0.93	0.00
C9_2	1.19	0.06	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00
C9-S_1	3.14	0.00	0.00	0.00	0.36	0.63	0.00	0.00	0.93	0.00
C9-S_2	1.00	0.00	0.01	0.00	0.84	0.15	0.00	0.00	0.99	0.00
CB12-ICD_1	1.00	0.10	0.07	0.00	0.15	0.03	0.00	0.64	0.07	0.00

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
C1 C2 CB12-ICD_1	0.01 0.01 0.27	0.01 0.01 0.27	4.96 4.72 0.72	0.01 0.01 0.01	0.01 0.01 0.01

Analysis begun on: Mon Dec 03 12:00:47 2018 Analysis ended on: Mon Dec 03 12:00:48 2018 Total elapsed time: 00:00:01

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix G – Correspondence

Correspondence from City of Ottawa – Hydraulic Boundary Conditions

*exp.

Boundary Conditions 1158 Second Line Road

Information Provided

Date provided: 05 April 2018

Provided Information:

	Demand				
Scenario	L/min	L/s			
Average Daily Demand	30.6	0.5			
Maximum Daily Demand	178.2	3.0			
Peak Hour	269.4	4.5			
Fire Flow Demand	8000	133			
Fire Flow Demand	9000	150			
Fire Flow Demand	11000	183			

of connections

2

Location

Results

Connection 1 - Goward Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	150.9	71.4
Peak Hour	140.2	56.2
Max Day plus Fire (8,000 l/min)	123.8	32.9
Max Day plus Fire (9,000 l/min)	119.5	26.7
Max Day plus Fire (10,000 l/min)	118.3	25.1

¹ Ground Elevation = 100.76 m

Connection 2 - Whernside Terr

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	150.9	70.6
Peak Hour	142.0	55.5
Max Day plus Fire (8,000 l/min)	124.9	33.7
Max Day plus Fire (9,000 l/min)	120.8	27.9
Max Day plus Fire (10,000 l/min)	119.9	26.5

¹ Ground Elevation = 101.19 m

Consideration

 Maximum fire flow city will accommodate for about 1158 Second Line Road property is 10,000 L/min.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.
exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix H – Manufacturer Information

Tempest Inlet Control Devices

Volume III: TEMPEST™ INLET CONTROL DEVICES

Municipal Technical Manual Series

LMF (Low to Medium Flow) ICD HF (High Flow) ICD MHF (Medium to High Flow) ICD

IPEX Tempest™ Inlet Control Devices

Municipal Technical Manual Series

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.

ABOUT IPEX

At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations throughout North America. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items.

More importantly, we are committed to meeting our customers' needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committeed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page.

For specific details about any IPEX product, contact our customer service department.

CONTENTS

TEMPEST INLET CONTROL DEVICES Technical Manual

About IPEX

Section One:	Product Information: TEMPEST Low, Medium Flow (LMF) ICDPurpose4Product Description4Product Function4Product Construction4Product Applications4Chart 1: LMF 14 Preset Flow Curves5Chart 2: LMF Flow Vs. ICD Alternatives5Product Installation
	Instructions to assemble a TEMPEST LMF ICD into a square catch basin:
	Product Technical SpecificationGeneral7Materials7Dimensioning7Installation7
Section Two:	Product Information: TEMPEST High Flow (HF) & Medium, High Flow (MHF) ICDProduct Description8Product Function8Product Construction8Product Applications8Chart 3: HF & MHF Preset Flow Curves9Product Installation
	Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: 10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: 10 Instructions to assemble a TEMPEST HF Sump into a square or round catch basin: 11
	Product Technical SpecificationGeneral11Materials11Dimensioning11Installation11

IPEX

PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

Product Description

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

Product Function

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

Product Construction

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

Product Applications

Will accommodate both square and round applications:

Square Application Round Application Universal Mounting Plate

Universal Mounting Plate Hub Adapter

4

IPEX

Chart 1: LMF 14 Preset Flow Curves

TEMPEST LMF ICD

5

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
 (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX Tempest™ LMF ICD

6

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

IPEX Tempest[™] LMF ICD

PRODUCT INFORMATION: TEMPEST HF & MHF ICD

Product Description

Our HF, HF Sump and MHF ICD's are designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 91ps (143 gpm) and greater

Product Function

TEMPEST HF (High Flow): designed to manage moderate to higher flows 15 L/s (240 gpm) or greater and prevent the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter

and has been designed to limit head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required.

TEMPEST HF (High Flow) Sump: The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these applications, the HF Sump is offered. The

HF Sump offers the same features and benefits as the HF ICD; however, is designed to raise the outlet in a square or round catch basin structure. When installed, the HF sump is fixed in place and not easily removed. Any required service to the device is performed through a clean-out located in the top of the device which can be often accessed from ground level.

TEMPEST MHF (Medium to High Flow):

The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables.

Product Construction

The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.8 Kg (14.6 lbs).

Product Applications

The HF and MHF ICD's are available to accommodate both square and round applications:

The HF Sump is available to accommodate low to no sump applications in both square and round catch basins:

 $\begin{array}{c}
6.0 \\
5.0 \\
4.0 \\
3.0 \\
2.0 \\
1.0 \\
0.0
\end{array}$

Head (m)

0

40

20

Chart 3: HF & MHF Preset Flow Curves

Flow Q (Lps)

100

120

140

160

80

60

IPEX

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST HF or MHF ICD into a Square Catch Basin:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers, (4) nuts, universal mounting plate, ICD device
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- 5. Install the universal wall mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal wall mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST HF or MHF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the round catch basin spigot adaptor to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the spigot CB wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot CB wall plate and the catch basin wall.
- 6. Put solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

10 IPEX Tempest[™] LMF ICD

Instructions to assemble a TEMPEST HF Sump into a Square or Round Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, mastic tape and metal strapping
 - Material: (2) concrete anchor 3/8 x 3-1/2, (2) washers, (2) nuts, HF Sump pieces (2).
- 2. Apply solvent cement to the spigot end of the top half of the sump. Apply solvent cement to the hub of the bottom half of the sump. Insert the spigot of the top half of the sump into the hub of the bottom half of the sump.
- 3. Install the 8" spigot of the device into the outlet pipe. Use the mastic tape to seal the device spigot into the outlet pipe. You should use a level to be sure that the fitting is standing at the vertical.
- Use an impact drill with a 3/8" concrete bit to make a series of 2 holes along each side of the body throat. The depth of the hole should be between 1-1/2" to 2-1/2". Clean the concrete dust from the 2 holes.
- 5. Install the anchors (2) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you hit the anchors. Remove the nuts from the ends of the anchors.
- Cut the metal strapping to length and connect each end of the strapping to the anchors. Screw the nuts in place with a maximum torque of 40 N.m (30 lbf-ft). The device should be completely flush with the catch basin wall.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook shall be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above shall not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices shall consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

TEMPEST HF & MHF ICD

IPEX Tempest™ LMF ICD

SALES AND CUSTOMER SERVICE

Canadian Customers call IPEX Inc. Toll free: (866) 473-9462 www.ipexinc.com

U.S. Customers call IPEX USA LLC Toll free: (800) 463-9572 www.ipexamerica.com

About the IPEX Group of Companies

As leading suppliers of thermoplastic piping systems, the IPEX Group of Companies provides our customers with some of the largest and most comprehensive product lines. All IPEX products are backed by more than 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers across North America, we have established a reputation for product innovation, quality, end-user focus and performance.

Markets served by IPEX group products are:

- Electrical systems
- Telecommunications and utility piping systems
- PVC, CPVC, PP, ABS, PEX, FR-PVDF and PE pipe and fittings (1/4" to 48")
- · Industrial process piping systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- PE Electrofusion systems for gas and water
- Industrial, plumbing and electrical cements
- Irrigation systems

Products manufactured by IPEX Inc. and distributed in the United States by IPEX USA LLC.

Tempest[™] is a trademark of IPEX Branding Inc.

This literature is published in good faith and is believed to be reliable. However it does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

A policy of ongoing product improvement is maintained. This may result in modifications of features and/or specifications without notice.

MNMNTPIP110817 © 2012 IPEX MN0038UC

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix I – Background Information

- Master Design Sheet (Hydraulic Grade Line Analysis). From Stormwater Management Report, Morgan Grant, Phase 12D (Report R-1591.A). 1 page.
- 5-year Storm Design Sheet. From Stormwater Management Report, Morgan Grant, Phase 12D (Report R-1591.A). 2 pages.
- Stormwater Storage / Overland Balance Table. From Stormwater Management Report, Morgan Grant, Phase 12D (Report R-1591.B). 1 page.
- Storm Drainage Plan, Morgan's Grant Phase 12D. From Stormwater Management Report, Morgan Grant, Phase 12D (Report R-1591.B). 1 page.
- Storm Drainage Plan, Morgan's Grant Phase 12D. 1 page.
- Sanitary Drainage Plan, Morgan's Grant Phase 12D. 1 page.
- Morgan's Grant Master Sanitary Flows. From Master Servicing Study for the Morgan's Grant Subdivision (Report R-2168). 3 pages.
- Master Drainage Plan (Sanitary). From Master Servicing Study for the Morgan's Grant Subdivision (Report R-2168). 1 page.
- Pages 3, 4, 5 from Master Servicing Study for the Morgan's Grant Subdivision (Report R-2168). 3 pages.
- ECA for Storm and Sanitary Sewers No: 1005-6J6K7W-14
- ECA for SWM Facility. No: 9327-54JRK4-14
- Morgan's Grant Phase 12D, Goward Drive Plan & Profile, Drawing # 17732-15. 1 page.

[%]exp.

MORGAN'S GRANT - STAGE 12 - Minto Developments Inc. (MASTER DESIGN SHEET) CITY OF OTTAWA JLR No.: 17732

100 YEAR IDF CURVE

	Mannii	ng's Coefficie	nt (n) =	0.013	DESTRICTES	FLOWS (h-)				I OW OFFICE	PATION		T	CR With ICC		1	ur. I				CENT						UDSTREAM						1				1000 04	CIII ATION				1.100 1/8 -	GI I	COVER	Shecked by: L
STREET	From		0.2 0.38	0.4 0.45	0.5 0.5	5 0.6 0.7	7 0.95 2	1: 2.78AR 2	2.78AR Ti CUMM ~	me Int	tens. Peak Flor	W ICD Type V	CUMM	ICD E Flow (1/s)	xternal CUN	1:100 IM Capt w (l/s) Flow /1	yr t. Q _d /Q _c Vs)	p Dia	Slope Q	full V I	full V par	tial Depth of	V surch	ength Flow	Pr. Cente	r Obvert	Obvert In Drop	vert Cove	r Pr. Center	Obvert C	Ibvert Invert	Cover	1	L/D K	V^2/2g	g Straight	Expansion	Bend M	ajor Loss Minor Lo	Total Losse	Applied	ELEVATIO	UL (NS Top	Foot - HGL	COVER - HGL Centerline
															Corp Law Plu							,	(, [mind (il		1										1					100-35 (iii)	opost, U		Lowins.	Spon. DUW
KLONDIKE RD.	667A	667						0.00	14.07 28	.92 84	4.81 1192.95		35	700	212.	912.0	0 0.95	750	0.68 957	7.73 2.1	10 2.41	0.587	2.00	63.00 0.50	103.200	98.758	98	.008 4.442	2 101.950	98.330	97.580	3.620	0.023 8	2.677 1.9	5 0.296	0.044			0.564 0.044	0.608	0.000	98.758 9	.330 1.74	.2 0.920	4.442 3.62
KLONDIKE RD.	667 666	666 665		0.220	0.240	0.030		0.63 1	14.70 28 15.10 29	92 84 39 83	4.81 1246.23 3.83 1265.48	2	37 38	740 760	212.	00 952.0 00 972.0	00 0.58	750	1.98 163 4.00 232	14.25 3.5 2.80 5.0	58 3.80 09 4.87	0.411	2.09 1 2.13	00.00 0.47	101.950	98.330 95.750	97	.580 3.620	99.550 95.000	96.350 91.850	95.600	0 3.200 0 3.150	0.023 13	1.234 3.00 7.953 2.94	4 0.734 8 1.210	0.110			2.221 0.110 3.568 0.182	2.331 3.749	0.000	98.330 9 95.750 9	.350 0.92	.0 0.500 00 0.450	3.620 3.20 3.800 3.15
PIEKOFF CR.	660	661		0.730				0.81	0.81 20	.00 110	0.77 89.92	3	3	60	0.0	0 60.00	0 0.40	300	2.20 149	9.60 2.0	05 1.93	0.134	0.82 1	01.60 0.83	100.500	97.441	97	.141 3.059	9 98.500	95.207	94.907	7 3.293	0.031 33	3.333 10.4	25 0.034	0.005			0.359 0.005	0.365	0.365	97.441 9	.207 0.35	59 0.593	3.059 3.29
	661	663		0.530	0.070			0.69	1.50 20	.83 107	7.57 161.18	3	6	120	0.0	120.0	0.56	300	4.50 214	4.03 2.9	93 3.06	0.162	1.64	78.80 0.45	98.500	95.207	94	.907 3.293	94.900	91.660	91.360	3.240	0.031 25	8.530 8.08	5 0.138		0.138	0.141	1.115 0.279	1.394	1.394	95.207 9	.694 0.59	3 0.506	3.293 3.20
WALLSEND AVE.	655	663		0.120	0.320			0.58	0.58 20	.00 110	0.77 64.05	1	1	20	0.0	20.00	0 0.26	300	0.60 78	.14 1.0	07 0.91	0.104	0.27	73.40 1.14	95.250	92.104	91	.804 3.146	94.900	91.664	91.364	3.236	0.031 24	0.814 7.53	1 0.004	0.001	0.004		0.029 0.004	0.033	0.033	92.104 9	.694 0.44	6 0.506	3.146 3.20
WALLSEND AVE.	663 664	664 665		0.350	0.160			0.00	2.08 21 2.69 21	27 105 66 104	5.92 219.97 4.56 281.08	1	7 8	140 160	0.0	0 140.0	0 0.61 0 0.69	450 450	0.60 230	0.39 1.4 0.39 1.4	40 1.46 40 1.50	0.256	0.85	32.40 0.38 48.30 0.57	94.900 94.600	91.694 91.500	91	244 3.206 .050 3.100	94.600 95.000	91.500 91.210	91.050	0 3.100 0 3.790	0.027 70	0.866 1.93 5.643 2.88	6 0.037 6 0.048	0.006	0.048	0.049	0.072 0.006 0.140 0.098	0.077	0.077 0.238	91.694 9 91.500 9	.500 0.50 .252 0.40	6 0.400 00 1.048	3.206 3.10 3.100 3.74
KLONDIKE RD.	665	665A			0.160			0.22 1	18.01 29	71 83	3.18 1497.73	1	47	940	212.	0 1152.0	00 0.53	750	3.48 216	6.59 4.7	75 4.93	0.389	2.53	50.70 0.21	95.000	91.252	90	.502 3.748	91.800	89.140	88.390	2.660	0.023 7	0.659 1.83	6 1.239	0.186	1.239	3	2.274 1.424	3.698	0.000	91.252 8	.140 1.04	-0.040	3.748 2.66
	665A	648	0.890	0.260	0.160			1.01	10.25 27	92 82	2.75 1490.00	4	111	2220	212.	0 2432.0	00 0.96	1200	0.40 119	230 22	20 2.09	0.713	2.08	22.50 0.21	91.800	88.690	87	406 2 194	91.800	88.600	87.700	3.200	0.022 24	719 1 2	4 0.222	0.033	0.222		0.119 0.256	0.374	0.000	88.690 88	.600 0.41	0.500	3.110 3.20
WIMBLEDON ST.	548A	548	0.000	0.200	0.100			0.00	0.00 20	00 110	0.77 0.00		0	0	0.0	0.00	0.00	300	0.40 63	80 0.8	87 0.00	0.000	0.00	14.00 0.27	91.673	88.908	88	608 2,765	91.500	88.852	88 552	2 648	0.020 0	932 1.4	7 0.000	0.040			0.000 0.000	0.000	0.000	88.908 88	852 0.06	* 0.434	2.765 2.64
	548 547	547			0.720			1.00	1.00 20.	27 109	9.71 109.80	3	3	60 60	0.0	60.00	0 0.52	375	0.40 115	5.68 1.0	01 1.03	0.194	0.53	55.50 0.91 9.00 0.15	91.500 91.400	88.852 88.590	88	.477 2.648	91.400	88.630 88.554	88.255 88.179	2.770	0.029 14	5.669 4.22	9 0.054		0.054	0.004	0.227 0.004	0.232	0.000	88.852 88 88.590 88	.630 -0.05 .554 0.11	2 0.070	2.648 2.77
	546 545	545 647			0.530 0.220		-	0.74	2.06 21. 2.36 22.	33 105 39 102	5.73 217.52 2.08 241.21	3	6 7	120 140	0.0	0 120.0	0 0.64	450 450	0.40 188	3.11 1.1 3.11 1.1	15 1.22 15 1.24	0.261	0.73	73.00 1.06 \$2.00 0.61	91.430 91.470	88.554 88.222	88	104 2.876 772 3.248	91.470 91.400	88.262 88.054	87.812 87.604	2 3.208 3.346	0.027 15	9.668 4.36	2 0.076 0 0.078	0.011	0.078	0.080	0.330 0.011	0.341	0.000	88.554 88 88.222 88	262 0.17 054 0.54	6 0.508 18 0.646	2.876 3.20 3.248 3.34
KLONDIKE RD.	647	646		0.610				0.68 4	13.29 28.	55 85	5.61 3705.83	3	121	2420	212.0	2632.0	00 0.96	1200	0.45 272	8.43 2.3	34 2.68	0.951	2.25	99.00 0.71	91.600	88.266	87	.066 3.334	91.650	87.821	86.621	3.830	0.020 8	.201 1.60	0 0.367	0.055			0.588 0.055	0.643	0.000	88.266 87	821 0.63	34 1 129	3.334 3.83
PENRITH ST.	646 645	645		0.920 0.130		-		1.02 4 0.14 4	14.31 29. 14.45 29.	25 84 86 82	4.11 3726.91 2.87 3684.03	3	124 110	2480 2200	212.0 212.	00 2692.0 00 2412.0	00 0.85	1200 1200	0.60 3150	0.52 2.7 9.68 2.4	70 3.02 46 2.75	0.866	2.31	08.00 0.61 70.30 0.48	91.650 90.400	87.820 87.170	86.	.620 3.830 970 3.230	90.400	87.232 86.820	86.032 85.620	2 3.168 5.180	0.020 80	0.381 1.58 7.661 1.13	4 0.466 6 0.387	0.058		0.476	0.738 0.476	1.214 0.498	0.000 0.000	87.820 87 87.170 86	232 1 13 820 0.53	0 0.468	3.830 3.16 3.230 5.18
BRECHIN CR.	696	695		0.420				0.47 (0.47 20.	00 110	0.77 51.73	2	2	40	0.0	40.00	0 0.40	300	1.00 100	0.88 1.3	38 1.33	0.131	0.55	18.70 0.59	92.850	89.936	89	636 2.914	92.505	89.449	89.149	3.056	0.031 15	9.777 4.99	7 0.090		0.090	0.025	0.450 0.115	0.565	0.000	89.936 85	.449 0.21	4 0.356	2.914 3.05
	695	694		0.340				0.38 (0.85 20.	59 108	8.47 91.67	1	3	60	0.0	60.00	0.39	375	0.70 153	3.03 1.3	34 1.28	0.164	0.53	37.60 1.09	92.505	89.449	89	074 3.056	92.000	88.836	88.461	3.164	0.029 22	9.921 6.67	5 0.083		0.083	0.085	0.554 0.168	0.722	0.000	89.449 88	.836 0.35	3 0.464	3.056 3.16
PENRITH ST.	693	693 692		0.190 0.320				0.21 4 0.36 4	15.51 30. 15.87 30.	34 81 58 81	.93 3728.58 .45 3735.74	1	114	2280 2300	212.0	00 2492.0 00 2512.0	00 0.87	1200	0.50 2870	6.02 2.4 6.02 2.4	46 2.80 46 2.78	0.866	2.13 3	36.50 0.25 36.50 0.25	92.000 91.700	86.820 86.638	85.	620 5.180 438 5.063	91.700 92.000	86.638 86.455	85.438 85.255	5.063	0.020 25	.938 0.59 .938 0.59	0 0.232	0.035		0.014	0.137 0.014 0.139 0.035	0.151	0.151 0.175	88.089 87 87.938 87	938 1.21 763 1.06	1 1.062	3.911 3.76 3.762 4.23
BRECHIN CR.	696	698						0.00 (0.00 20.	00 110	0.77 0.00	_	0	0	0.00	0.00	0.00	300	1.00 100	0.88 1.3	38 0.00	0.000	0.00 :	33.80 0.41	92.850	89.936	89	636 2.914	93.100	89.598	89.298	3.502	0.031 11	0.892 3.46	8 0.000				0.000 0.000	0.000	0.000	89.936 89	598 0.21	4 0.802	2.914 3.50
BRECHIN CR.	703	698	1.940	0.460				1.59	1.59 20.	00 110	0.77 176.14	3	3	60	0.00	60.00	0.33	375	1.00 183	9.28 1.6	51 1.45	0.149	0.53	1.70 0.74	93.100	90.245	. 89.	870 2.855	93.100	89.525	89.150	3.575	0.029 18	8.189 5.46	4 0.107			0.110 (0.587 0.110	0.697	0.000	90.245 89	525 0.15	.5 0.875	2.855 3.57
EALING ST.	698 697	697 692		0.290				0.00	1.59 20.	74 107	7.88 171.54	1	3	60 80	0.00	60.00	0.33	375	1.00 182	2.91 1.6	30 1.45 30 1.58	0.149	0.53	4.00 0.66	93.100	89.461 88.821	89	086 3.639	92.350	88.821 88.282	88.446	3.529	0.029 16	7.979 4.87	7 0.107	0.016	0.124	0.126	0.524 0.016	0.540	0.000	89.461 88	821 0.93	9 0.829	3.639 3.52
PENRITH ST.	592	691		0.240				0.27 4	8.05 30.	83 80	.97 3890.54	1	120	2400	212.0	0 2612.0	0 0.87	1200	0.55 3016	6.39 2.5	58 2.93	0.866	2.24	2.30 0.21	92.000	86.455	85.	255 5.545	91,200	86.277	85.077	4.923	0.020 26	.493 0.52	2 0.255		UNEN	0.260	0.133 0.260	0.394	0.394	87.763 87	369 1.53	7 1.131	4.237 3.83
BRECHIN CR.	704	703	0.860	0.300				0.81 (0.81 20.	00 110	0.77 89.92	3	3	60	0.00	60.00	0.59	300	1.00 100	0.88 1.3	38 1.45	0.168	0.82 6	1.50 0.74	93.000	90.039	89.	739 2.961	93.100	89.424	89.124	3.676	0.031 20	1.772 6.31	0 0.107		0.107	0.110	0.677 0.217	0.894	0.000	90.039 89	424 0.26	0.976	2.961 3.67
HASELMERE AVE.	703 702	702 701		0.290				0.00 0	0.81 20. 1.13 21.	74 107 41 105	7.89 87.58 5.42 119.57	1	3 4	60 80	0.00	60.00 80.00	0.33	375 375	1.00 182 1.36 213	2.91 1.6 3.31 1.8	30 1.45 37 1.75	0.149	0.53 6	4.70 0.67 3.00 0.47	93.100 92.000	89.424 88.775	89.	049 3.676 400 3.225	92.000 91.440	88.777 88.054	88.402 87.679	3.223	0.029 16	9.816 4.93 9.108 4.03	0.107	0.016	0.157	0.160 0	0.530 0.016	0.546	0.000	89.424 88 88.775 88	777 0.97 054 0.52	3 0.523 5 0.686	3.676 3.22 3.225 3.39
BRECHIN CR.	705	706		0.320				0.36 (0.36 20.	00 110	0.77 39.41	1	1	20	0.00	20.00	0.15	300	1.84 136	.84 1.8	38 1.41	0.076	0.27 1	09.80 0.98	92.880	89.720	89.	420 3.160	90.800	87.700	87.400	3.100	0.031 36	0.236 11.2	6 0.004		0.004	0.004 0	0.043 0.008	0.051	0.051	89.720 87	886 0.46	0 0.214	3.160 2.91
PENRITH ST.	707	706		0.680				0.76 (0.76 20.	00 110	0.77 83.76	2	2	40	0.00	40.00	0.22	375	1.00 182	2.91 1.6	30 1.34	0.118	0.35 3	12.20 0.33	90.500	87.912	87.	537 2.588	90.800	87.590	87.215	3.210	0.029 84	.514 2.45	4 0.006	0.001	0.006		0.015 0.007	0.023	0.023	87.912 87	886 -0.11	2 0.214	2.588 2.91
PENRITH ST.	706	701		0.520				0.58	1.69 20.	98 107	7.01 180.87	3	6	120	0.00	120.00	0 0.45	450	0.80 266	.03 1.6	32 1.58	0.215	0.73 6	9.50 0.71	90.800	87.590	87	140 3.210	91.440	87.034	86.584	4.406	0.027 15	2.012 4.15	3 0.027	0.004		(0.113 0.004	0.117	0.117	87.886 87	769 0.21	4 0.971	2.914 3.67
PENRITH ST.	701	691		0.210				0.23 3	3.06 21.	89 103	3.77 317.33	1	11	220	0.00	220.00	0 0.52	450	2.00 420	.63 2.5	56 2.61	0.233	1.34 \$	9.20 0.25	91.440	87.034	86.	584 4.406	91.200	86.250	85.800	4.950	0.027 85	.739 2.34	2 0.092		0.092	0.093 0	0.214 0.185	0.399	0.399	87.769 87	369 0.97	1 1.131	3.671 3.83
HEYSHAM LANE	691	677		0.480				0.53 5	1.64 31.	04 80.	.58 4161.03	2	133	2660	212.0	0 2872.0	0 0.95	1200	0.55 3016	6.39 2.5	58 2.96	0.939	2.46	5.40 0.49	91.300	86.234	85.	034 5.066	91.300	85.819	84.619	5.481	0.020 61	.844 1.21	0.309			0.315 0	0.376 0.315	0.691	0.691	87.369 86	679 1.23	1 1.921	3.931 4.62
	676	675		0.940	0.230			0.00 5	2.47 31.	13 78. 20 79	4123.81		135	2700	212.0	0 2912.0	0 0.97	1200	0.55 3016	5.39 2.50 5.39 2.50 7.30 2.60	58 2.97 58 2.97	0.951	2.49	1.30 0.07	90.160	85.214	84.	014 4.946	90.150	85.152	83.952	4.916	0.020 9	268 0.18	0.317	0.021	0.317	0.089 0	0.058 0.406	0.464	0.464	86.110 85	646 1.35	0 1.804	4.050 4.504
	674	673		0.750	0.110			0.99 5	4.82 32.	76 77.	49 4248.18	3	142	2840	212.0	0 3052.0	0 0.78	1350	0.50 3937	7.30 2.6	36 2.91	0.905	2.02 6	5.80 0.41	89.190	84.704	83.	354 4.486	88.400	84.375	83.025	4.025	0.019 47	.973 0.90	0.218	0.033			0.031	0.230	0.230	85.356 85	125 1.13	4 0.575	3.834 3.275
KETTLEWELL WAY	687 688	688 688A		0.240			0	0.27 (0.27 20.	00 110 58 108	0.77 29.56 8.49 60.32	1	1 2	20 40	0.00	20.00	0.17	300 300	1.40 119 1.40 119	.32 1.6	34 1.25 34 1.51	0.082	0.27 5	7.20 0.58 1.00 0.11	90.940	87.878 87.027	87.	578 3.062 727 3.573	90.600 90.000	87.078 86.873	86.778	3.522	0.031 18	7.664 5.86	0.079			0.022 0	0.464 0.022	0.487	0.000	87.878 87 87.027 86	078 0.36	2 0.822	3.062 3.52 3.573 3.12
PALTON ST.	688A 689	689 673		0.360	0.260		0	0.40 (0.96 20. 1.47 21.	70 108 49 105	8.06 103.34 5.16 154.95	1 2	3	60 100	0.00	60.00 100.00	0 0.51	300 300	1.38 118 1.50 123	1.47 1.6	32 1.64 39 1.88	0.152	0.82 7	7 10 0.79 8.50 0.77	90.000 88.900	86.823 85.422	86.	523 3.177 122 3.478	88.900 88.400	85.760 84.246	85.460 83.946	3.140 4.154	0.031 25	2.953 7.91 7.546 8.05	0.034		0.096	0.035 0	0.273 0.035	0.308	0.308	86.823 86 86.090 85	090 0.47	7 0.110	3.177 2.81 2.810 3.27
WOLISTON CR.	673	672		0.430	0.240		(0.81 5	7.11 33.	17 76.	.79 4385.43	2	149	2980	212.0	0 3192.0	0 0.81	1350	0.50 3937	7.30 2.6	6 2.96	0.933	2.16 8	4.20 0.53	88.400	84.375	83.	025 4.025	87.200	83.954	82.604	3.246	0.019 61	.388 1.16	0.238			0.243 (0.277 0.243	0.519	0.519	85.125 84	606 0.57	5 -0.106	3.275 2.59
WOLISTON CR.	678	681		0.390				0.43 (0.43 20.	00 110	0.77 48.04	2	2	40	0.00	40.00	0.48	300	0.68 82.	.88 1.1	14 1.15	0.146	0.55 8	1.90 1.20	91.228	88.795	88.	495 2.433	91.920	88.242	87.942	3.678	0.031 26	3.701 8.40	0.068			0.019 (0.571 0.019	0.590	0.000	88.795 88	242 -0.26	7 0.978	2.433 3.67
	681	682		0.500			(0.00 0	0.43 21. 0.99 21.	20 106 37 105	5.18 46.05 5.60 104.51	3	2	40 100	0.00	40.00	0 0.51	300	0.60 78. 1.39 119	.14 1.0	07 1.10 33 1.83	0.152 0.213	0.55 1	0.50 0.16	91.920 91.790	88.192 88.079	87.	892 3.728 779 3.711	91.790 90.750	88.129 87.094	87.829 86.794	3.661 3.656	0.031 34	.449 1.07 1.955 7.25	0.061	0.026	0.170	0.017 0	0.066 0.017 1.235 0.196	0.083	0.000	88.192 88 88.079 87	129 1.02 094 1.01	3 0.961 1 0.956	3.728 3.66 3.711 3.65
KETTLEWELL WAY	687	683		0.190				0.21 (0.21 20.	00 110	0.77 23.40	1	1	20	0.00	20.00	0.20	300	1.02 101	.99 1.44	1.10	0.091	0.27 5	5.00 0.66	90.940	87.646	87.	346 3.294	90.750	87.084	86.784	3.666	0.031 18	0.446 5.64	0.061		0.061	0.063 (0.346 0.124	0.470	0.000	87.646 87	084 0.59	4 0.966	3.294 3.66
WOLISTON CR.	683	684		0.650				0.72 1	1.92 22.	09 103	3.08 198.31	4	10	200	0.00	198.31	1 0.49	450	1.88 408	1.04 2.4	19 2.48	0.224	1.21 8	4.90 0.57	90.750	87.094	86.	644 3.656	88.680	85.496	85.046	3.184	0.027 18	5.696 5.07	8 0.313	0.047	0.313		.588 0.360	1.948	0.000	87.094 85	496 0.95	ô 0.484	3.656 3.18
PALTON ST.	689 685	685 684		0.090	0.170		0	0.10 (0.10 20.	00 110	0.77 11.09	1	1	20	0.00	11.09	0.08	375	0.60 141	.68 1.24	24 0.81	0.069	0.10 5	5.00 0.74	88.900	86.185	85.	810 2.715	88.810	85.855	85.480	2.955	0.029 14	1.357 4.19	0.033	0.005	0.006	0.006	0.140 0.005	0.145	0.000	86.185 85	855 0.01	5 0.255	2.715 2.95
WOLISTON CR.	684	670		0.360	0.070			0.50	3.04 22	56 101	1.20 307.23	3	15	300	0.00	300.00	0 0.52	525	1.64 574	.56 2.5	57 2.62	0.272	1.34 8	4.20 0.55	88.680	85,496	84.	971 3,184	87.200	84,115	83.590	3.085	0.026 15	7.855 4.09	0.092		0.092	0.094	0.376 0.186	0.562	0.562	85,496 84	816 0.48	4 -0.316	3.184 2.38
FLAMBOROUGH WAY	670	671			0.620		(0.86 3	3.90 23.	20 99.	.47 387.70	2	17	340 2	1.13 21.1	3 361.13	3 0.62	750	0.25 580	.71 1.2	27 1.32	0.434	0.79 8	9.00 1.16	87.200	84.160	83.	410 3.040	87.130	83.938	83.188	3.193	0.023 11	3.798 2.69	0.032	0.005	0.032		0.086 0.037	0.123	0.123	84.816 84	693 -0.31	6 -0.263	2.384 2.43
	671	672			0.650			0.90 4	4.80 24.	37 96.	.01 460.94	3	20	400 2	4.23 45.3	6 445.36	6 0.61	900	0.15 732	66 1.13	1.16	0.512	0.68 1	09.00 1.63	87.130	83.968	83.	068 3.162	87.200	83.804	82.904	3.396	0.022 11	9.204 2.58	i 0.023	0.004	0.023	(0.061 0.027	0.088	0.088	84.693 84	606 -0.26	J -0.106	2.437 2.59
	672	101	UNRES	TRICTED REAL	YARD FLOW	S-PHASE 12 (ha)		0.00 6	1.91 33.	70 75.	.92 4700.20	1	170	3400	257.3	6 3657.3	36 0.94	1350	0.49 3897	7.72 2.64	34 3.02	1.042	2.48 7	9.20 0.50	87.200	83.884	82.	534 3.316	87.100	83.496	82.146	3.604	0.019 57	.743 1.09	0.312		0.312	0.319 (0.342 0.631	0.973	0.973	84.606 83	633 -0.10	0.767	2.594 3.46
10-0 BLK 248	Hydro Ea.	906						0.00	0.00 26.0	91.	.60 0.00	0	0.00	0	30 30.0	30.00	2																												
GOWARD DRIVE	908 907	907 906		0.202				0.00	0.22 20.0 0.22 21.0	00 110 01 106	0.77 24.88 3.90 24.01	6	6.00 7.00	120 140	0 0.00	144.88	8 0.48 1 0.58	450 525	1.05 304 0.40 283	.78 1.8 .76 1.2	86 1.86 27 1.33	0.219	0.88 1 0.73 1	12.00 1.01 14.87 1.51	102.20 101.34	99.400 98.197	98.9 0.03 97.0	943 2.80 364 3.14	101.34 100.70	98.224 97.738	97.767 97.204	3.12 2.96	0.027 24	1.969 6.69 5.354 5.58	0.176	0.026	0.176	1	.178 0.202 0.507 0.104	1.380 0.612	0.000	99.400 98 98.197 97	224 0.39 738 0.74	0.714	2.800 3.11 3.143 2.96
	004	001						0.00	22.	51 00	77				0	-	0.00		0.40	80 0.0	7 0.07	0.000	0.00	7.49		00.000		766		07.000			0.001	105	0.000					0.000	0.000				2.000
ISHPATINA CHESCEN I	804	906						0.00	0.00 20.0	33 109	9.45 0.00	0	0.00	0	0.00	0.00	0.00	300	0.40 63.	.80 0.8	87 0.00	0.000	0.00 1	7.43 0.33 9.50 1.13	100.96	98.060 97.950	0.04 97.0	345 3.01	100.96	97.990 97.712	97.685	2.97	0.031 57	.1d5 1.78 5.210 6.10	0.000			0	0.000 0.000	0.000	0.000	97 50 97	712 0.60	0.568	2.900 2.970 3.010 2.980
BLK 246	705	704						0.00	0.00 21.	20 20	59 0.00		0.00	0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	50.00																												1	
FINLAYSON CRESCENT	705	704						0.00	0.00 20.	20 110	0.00	0	0.00	0	0 0.0	0.00	0.00	200	1.20 110	.51 1.6	51 0.00	0.000	0.00	8.98 0.10	101.47	08 = 70		365 2.00	101.22	98 562	00.057	277	0.031 20	462 0.00	0.000	1		,	000 0.000	0.000	0.00	98.670 00	562 0.00	8 0.200	2,800 9.70
	704	701						0.00	0.00 20	10 110	0.00	1	1.00	20	0 50.0	70.00	0.63	300	1.20 110	.51 1.5	51 1.60	0.174	0.96	1.34 0.45	101.47	98.522	0.04 98	217 2.00	100.77	98.026	97 721	2.74	0.031 13	5.630 4.24	0.130	1	0.130		0.553 0 1.90	0.683	.000	98.522 98	026 0.40	6 0.342	2.808 2.74
	701 700	700		0.180				0.20	0.20 20.	55 108	3.60 21.74 5.10 21.24	0	1.00	20 20	0 50.0	91.74	0.79	375	0.40 115	.68 1.0	01 1.12	0.255	0.80	0.92 0.67	100.77	98.026	0.15 97	345 2.74 331 2.91	100.62	97.862	97.481	2.76	0.029 10	7.402 3.11 .412 0.97	0.064		0.065	0.003 0	0.199 0.003	0.201	0.000	98.026 97 97.712 97	862 0.342 662 0.50	2 0.356	2.744 2.754 2.908 3.03
									21.	43																	313				01.601														
GOWARD DRIVE	906	905		0.140			(0.16	0.58 22.	51 101 28 99.	1.67 59.02 .24	3	11.00	220	0 80.0	359.02	2 0.84	600	0.45 429	.70 1.4	17 1.66	0.421	1.23 6	7.57 0.76	100.70	97.662	97.0	3.04	100.66	97.357	96.748	3.30	0.025 11	0.843 2.75	0.141	0.021		0	0.388 0.021	0.09	0.000	97.662 97	357 0.63	0.901	3.038 3.30
ISHPATINA CRESCENT	804	803	0.391	0.483				0.75	0.75 20.0	00 110	0.77 83.57	1	1.00	20	0 0.00	103.57	7 1.03	375	0.30 100	.18 0.8	88 1.00	0.324	0.91 6	8.89 1.31	100.96	98.160	97.	779 2.80	100.87	97.953	97.572	2.92	0.029 18	0.814 5.25	0.051			0.014 0	0.268 0.014	0.282	0.000	98.160 97	953 0.398	8 0.515	2.800 2.91
	803 802	902 905		0.049				0.00	0.75 21. 0.81 21.	31 105 53 105	5.81 79.83 5.00 84.94	0	1.00	20 20	0 0.00	99.83 104.94	4 1.00	375	0.30 100 0.30 100	.18 0.8 .18 0.8	38 1.01 38 1.00	0.309	0.88 1 0.92 6	1.88 0.23 7.47 1.28	100.87 100.86	97.913 97.838	0.04 97. 0.04 97.	532 2.96 457 3.02	100.86 100.66	97.878 97.635	97.497 97.254	2.98 3.02	0.029 31	.181 0.90 7.087 5.14	0.052		0.050	0.014 0	0.047 0.014	0.061	0.000	97.913 97 97.838 97	878 0.55 635 0.620	0.580	2.957 2.982 3.022 3.025
																	\bigcirc												0	anna	otion			7					_ /						
																														JUNE	.11()[1]		H 90	1											

Filename: V:\17732.DS\Phase 12D\Design\Morgan's Grant HGL Analysis for Carp Road Pond.XLS

STORM SEWER DESIGN SHEET AND HYDRAULIC GRADE LINE ANALYSIS

Date: September 3, 2003 Revised : December 17, 2004 Revised : August 24, 2005 Designed by: G.F. Checked by: L.J.

U/S HGL = 98.225. D/S HGL = 98.197

2 of 3 SHEET NAME : HGL-PH12D

J.L.Richards ENGINEERS · ARCHITECTS · PLANNERS J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z SM2 Tel: 613 728 3571 Fax: 613 728 6012

CITY OF OTTAWA

50.100 M MINTO DEVELOPMENTS INC. MORGAN'S GRANT SUBDIVISION - PHASE 12D JLR NO. 17732

ESIGN PARAMETERS /anning's Coefficient, n = 0.013 IDF CURVE = 5 year

)				1		11102										. 110. 0. 13	Suca with	Designed by LB
ESIGN PARAMETERS												1										100	01							Designed by: J.B. Checked by: J.J./G E
Janning's Coefficient. n =	0.013		7									1										A To	1 .							Checked by. L.J./G.F.
IDF CURVE =	= 5	year									92 1										0.005	~ 2U	-							
												V									(COD C	k i								
	1		1	Δ	AREAS FOR	"B" in (h	a)	1		PEAK	FLOW COMP	UTATION					SEV	VFR		1		L	PSTREAM	Λ		Γ	DOWNS	STREAM		1
STREET	М.	H. #	0.0		0.4 0.4	- 05		07	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	DIA.	SLOPE	CAPAC.	. VEL.	LENGTH	FL.TIME	RESIDUAL	Pr. Cente	r Obvert	Obvert	Invert	Cover	Pr. Center	Obvert	Invert	Cover	COMMENTS
	FROM	ТО	0.2	0.3	0.4 0.4	5 0.5	0.6	0.7		(CUM.)	(min.)	(mm/hr)	(L/s)	(mm)	(%)	(L/s)	(m/s)	(m)	(min.)	CAP. (L/s)	Line	Drop				Line				
BLK 248	Hydro Ea.	906	0.720		0.118				0.53	0.53	26.00	59.35	31.54	-	-	-	-	-	-											Flow controlled to 30 L/s
	009	007			0.702	1.016			0.47	2.47	20.00	70.05	172 50	450	1.05	204 76	1.96	110.00	1.01	101.10	102.20		00.400	00.042	0.00	101.04	00.004	07 767	0.10	
GOWARD DRIVE	908	907			0.203	1.210)		0.23	2.47	21.01	68.12	213.69	525	0.40	283.74	1.00	112.00	1.01	70.05	102.20	0.027	99.400	97 664	3.14	101.34	97 738	97.767	2.96	FIASE 12D + Fixed flowrate from Blks 247/248 (30 L/s)
I					0.200				0.20	2.110	22.51	00112	210.00	020	0.10	20011		114.07	1.01	10.00	101.01	0.027	00.107	07.001	0.11	100.70	07.700	01.201	2.00	
ISHPATINA CRESCENT	804	801							0.00	0.00	20.00	70.25	0.00	300	0.40	63.80	0.87	17.43	0.33	63.80	100.96	0.040	98.060	97.755	2.90	100.96	97.990	97.685	2.97	PHASE 12D
	801	906		2					0.00	0.00	20.33	69.53	0.00	300	0.40	63.80	0.87	59.50	1.13	63.80	100.96	0.040	97.950	97.645	3.01	100.70	97.712	97.407	2.99	PHASE 12D
											21.47																			
BLK 246	705	704	1.157	(0.191				0.86	0.86	30.00	53.93	46.14	-	-	-	-	-	-	-										Flow controlled to 50 L/s
FINLAYSON CRESCENT	705	704					_		0.00	0.00	20.00	70.25	50.00	300	1.20	110.50	1.51	8.98	0.10	60.50	101.47		98.670	98.365	2.80	101.33	98.562	98.257	2.77	+ Fixed flowrate from Blk 246 (50 L/s)
	704	701			0.360				0.40	0.40	20.10	70.02	79.04	200	1 20	110.50	1.51	41.04	0.45	20.46	101 22	0.040	09 500	09.017	0.01	100 77	09.006	07 701	0.74	DHACE 10D
	701	701			0.300				0.40	0.40	20.55	69.06	91.47	375	0.40	115.67	1.01	41.34	0.45	24.21	101.33	0.040	98.022	97 645	2.01	100.77	97.862	97.721	2.74	PHASE 12D PHASE 12D
	700	906			0.100				0.00	0.60	21.23	67.67	90.63	375	0.40	115.67	1.01	12.73	0.21	25.04	100.62	0.150	97.712	97.331	2.91	100.02	97.662	97.281	3.04	PHASE 12D
											21.44									Margaret Server										
											00.54																			
GOWARD DRIVE	906	905			0.837		_		0.93	4.23	22.51	65.18	355.56	600	0.45	429.67	1.47	67.57	0.76	74.12	100.70		97.662	97.052	3.04	100.66	97.357	96.748	3.30	PHASE 12D
											23.20																			
ISHPATINA CRESCENT	804	803	0.391	(0.823				1.13	1.13	20.00	70.25	79.56	375	0.30	100.18	0.88	68.89	1.31	20.61	100.96		98,160	97.779	2.80	100.87	97.953	97.572	2.92	PHASE 12D
	803	802							0.00	1.13	21.31	67.51	76.46	375	0.30	100.18	0.88	11.88	0.23	23.72	100.87	0.040	97.913	97.532	2.96	100.86	97.878	97.497	2.98	PHASE 12D
	802	905		(0.049				0.05	1.19	21.53	67.06	79.60	375	0.30	100.18	0.88	67.47	1.28	20.57	100.86	0.040	97.838	97.457	3.02	100.66	97.635	97.254	3.02	PHASE 12D
											22.81																			
GOWARD DRIVE	905	904			0.415				0.46	5.88	23.28	63 79	454.85	600	0.70	535.90	1.84	19.61	0.44	81.04	100.66	0.041	97 316	96 707	3.34	100.01	96.976	96 367	3.03	PHASE 12D
	505	004		,	0.410				0.40	0.00	23.72	00.75	404.00	000	0.70	000.00	1.04	40.01	0.44	01.04	100.00	0.041	37.010	30.707	0.04	100.31	30.370	30.307	0.00	FILAGE 12D
-INLAYSON CRESCENT	705	703							0.00	0.00	20.00	70.25	0.00	300	0.35	59.68	0.82	77.42	1.58	59.68	101.47		98.670	98.365	2.80	101.33	98.399	98.094	2.93	PHASE 12D
19D	703	702			0.540				0.00	0.00	21.58	66.97	0.00	300	0.35	59.68	0.82	12.38	0.25	59.68	101.33	0.040	98.359	98.054	2.97	101.23	98.316	98.011	2.91	PHASE 12D
	102	904			0.548				0.61	0.61	21.83	00.47	40.51	300	0.45	67.67	0.93	86.27	1.55	27.16	101.23	0.040	98.276	97.971	2.95	100.91	97.887	97.583	3.02	PHASE 12D
C											20.00																			
GOWARD DRIVE	904	903		(0.552				0.61	7.10	23.72	63.02	527.41	600	1.20	701.66	2.40	77.00	0.53	174.24	100.91	0.963	96.013	95.404	4.90	99.50	95.089	94.480	4.41	PHASE 12C
	903	902							0.00	7.10	24.25	62.11	520.99	600	1.73	842.47	2.89	40.00	0.23	321.49	99.50	0.100	94.990	94.380	4.51	97.59	94.298	93.688	3.29	PHASE 12C
	902	901		(0.355				0.39	7.49	24.48	61.73	542.64	600	1.84	868.37	2.98	40.00	0.22	325.73	97.59	0.600	93.698	93.088	3.89	95.75	92.962	92.353	2.79	PHASE 12C
	901	900			0.417				0.46	7.96	24.71	60.48	561.32	750	1.00	1212 49	2.19	72.50	0.55	239.62	95.75	0.465	92.497	91.812	3.25	94.95	91.882	91.196	3.07	PHASE 12C
	000								0.00	7.00	25.49	00.40	001.02	100	1.03	1212.40	2.00	30.30	0.20	031.10	04.00	0.200	01.000	30.027	0.00	34.03	31.107	30.423	0.00	
																			1											
TESKIWA CRESCENT	903	602		(0.496				0.55	0.55	20.00	70.25	38.75	300	0.50	71.33	0.98	86.90	1.48	32.58	99.50		96.575	96.270	2.93	98.94	96.141	95.836	2.80	PHASE 12C
	602	601		(0.233				0.26	0.81	21.48	67.16	54.44	300	0.75	87.36	1.20	12.30	0.17	32.92	98.94	0.040	96.101	95.796	2.84	98.79	96.008	95.703	2.78	PHASE 12C
	600	116			0.339			-	0.38	1.19	21.65	65.83	79.36	300	2.65	164.21	2.25	64.50	0.51	84.85	98.79	0.040	95.968	95.663	2.82	96.93	94.140	93.835	3.71	PHASE 12C
HALTON TERBACE	116	115		(0.321				0.36	1.54	22.60	65.02	100.43	525	0.70	375.35	1.68	41.10	0.43	274.92	95.50	0.279	91 531	90,998	3.97	95.30	91 244	90,710	4.06	PHASE 120
	115	114		(0.594				0.66	2.21	23.00	64.28	141.74	525	0.70	375.35	1.68	40.80	0.40	233.61	95.30	0.040	91.204	90.670	4.10	94.65	90.918	90.385	3.73	PHASE 12A
											23.41																			
	114	110			0.479				0.50	10.00	05.40	60.10	700.00	0.05	0.00	1150.00	0.10	40.40	0.07	100.00	04.65	0.040	00.070	00.040	0.77	04.05	00.001	00 700	0.45	
HALTON TERRACE	113	1120			0.478				0.53	11.09	25.49	50.56	747.44	825	0.60	1107.06	2.10	46.10	0.37	436.92	94.65	0.040	90.878	90.040	3.77	94.05	90.601	89.763	3.45	PHASE 12A
	112A	112			0.400				1.61	12.82	26.11	59.18	838.48	825	0.65	1207.26	2.19	31.00	0.23	368.79	94.10	0.000	90.357	89.519	3.74	94.25	90.155	89.317	4.09	+School Flow (2.78xAC = 1.61) from CCL
						_					26.11				0.00			0.100	0.2.1											
			_																											
	001	E04	0.510	<u>├</u>	0.040				0.50	0.50	20.00	70.05	20.40	000	0.50	71.00	0.00	00.00	1.10	04.04	05.75		00 150	00.045	0.00	05.01	00.004	00.400	0.01	
I DOEWOUNE CHESCENT	504	503	0.513		0.249		-		0.00	0.56	20.00	67.76	39.49	300	0.50	100.97	1 20	69.30	1.18	31.84	95.75	0.040	93.150	92.845	2.60	95.61	92.804	92.499	2.81	
	503	502	0,408	1 1	0.599			<u> </u>	0.89	1,46	21.33	67.46	98.16	375	0.85	168.62	1,48	98.00	1.10	70.46	95.51	0.040	92.641	92,260	2.87	94,60	91,808	91.427	2.79	PHASE 120 PHASE 12C
<u> </u>	502	501	0.282	0	0.987				1.25	2.71	22.43	65.32	176.99	525	0.35	265.41	1.19	93.00	1.30	88.42	94.60		91.808	91.274	2.79	94.44	91,482	90.949	2.96	PHASE 12C
	501	500							0.00	2.71	23.74	62.99	170.65	525	0.35	265.41	1.19	12.30	0.17	94.76	94.44	0.040	91.442	90.909	3.00	94.38	91.399	90.866	2.98	PHASE 12C
~	500	112			0.586				0.65	3.36	23.91	62.69	210.70	525	1.23	497.55	2.23	79.30	0.59	286.85	94.38	0.134	91.265	90.732	3.12	94.25	90.290	89.756	3.96	PHASE 12C
			1					+			24.31																			· · · · ·
HALTON TERRACE	112	111			0.170				0.19	16.37	26.11	59.18	1048.57	825	1.00	1497.43	2.71	76.70	0.47	448.85	94.25	0.030	90.125	89.287	4.12	92.51	89.358	88.520	3.15	PHASE 12A
				`						1	26.58	1			1		1	1						1				1		

120= 8.462ha

E= 15,949ha

STORM SEWER DESIGN SHEET

Rev. No. 0: MOE Submission for Phase 12D - May 11/ 2005 Rev. No. 1: City Comments for Phase 12D - July 11/ 2005 Rev. No. 2: City Comments for Phase 12D - August 11/ 2006 Rev. No. 3: Issued with Phase 12D SWM Report - August 24/ 2007 Designed by: J.B.

	N.A.	цщ	T	AF	REAS F	OR "R" i	n (ha)		1	PEAK	FLOW COM	PUTATION					SEV	/ER		CONTRACTOR OF THE OWNER OF THE		U	PSTREAM	Л		1	DOWN	STREAM		T
STREET	171.	n. #	0.2	0.3	0.4	0.45	0.5	0.6 0	2.78A	7 2.78AR	TIME	INTENS	PEAK FL.	DIA.	SLOPE	CAPAC.	VEL.	LENGTH	FL.TIME	RESIDUAL	Pr. Cente	r Obvert	Obvert	Invert	Cover	Pr. Cente	r Obvert	Invert	Cover	COMMENTS
	FROM	ТО	0.2	0.5	0.4	0.45	0.5	0.0 0		(CUM.)	(min.)	(mm/hr)	(L/s)	(mm)	(%)	(L/s)	(m/s)	(m)	(min.)	CAP. (L/s)	Line	Drop				Line				
MUSKEGO CRESCENT	402	111		0.	.222				0.25	0.25	20.00	70.25	17.34	300	0.87	94.09	1.29	78.77	1.02	76.75	92.06		89.473	89.168	2.59	92.51	88.788	88.483	3.72	PHASE 12B
											21.02																			
	444	110			2000				0.40	10.00	00.50	50.40	1105.00	005	1.00	1040.05	0.07	70.40	0.44	444.70	00.54	0.017	00 774	07.000	0.74	01.00	07.000	07.004	0.10	
HALTON TERRACE	110	110	-	0.	579				2.46	19.08	26.58	58.48	1195.63	825	1.20	1640.35	2.97	72.40	0.41	444.72	92.51	0.017	88.771	87.933	3.74	91.00	87.902	87.064	3.10	+School Flow (2.78xAC = 2.24) from CCL
	110	105		0.	.575				0.04	19.72	20.99	57.90	1221.74	025	1.20	1040.33	2.97	61.90	0.40	410.01	91.00	0.500	07.342	00.304	3.00	90.10	00.339	00.021	3.74	PHASE 12A
										-	27.40																	-		
MUSKEGO CRESCENT	402	401		0.	.236				0.26	0.26	20.00	70.25	18.44	300	0.80	90.22	1.24	13.84	0.19	71.79	92.06		89.179	88.874	2.88	91.96	89.068	88,763	2.89	PHASE 12B
	401	400	0.334	0.	427				0.66	0.92	20.19	69.84	64.46	300	2.30	153.08	2.10	74.30	0.59	88.62	91.96	0.040	89.028	88.723	2.93	90.24	87.317	87.012	2.92	PHASE 12B
	400	303	0.195	0.	.976				1.19	2.12	20.78	68.59	145.19	375	1.74	241.26	2.12	70.02	0.55	96.07	90.24		87.317	86.936	2.92	88.84	86.099	85.718	2.74	PHASE 12B
											21.33																			
DUNOLLIE CRESCENT	304	303				0.	.154		0.21	0.21	20.00	70.25	15.04	300	0.30	55.25	0.76	11.22	0.25	40.21	88.65		86.134	85.829	2.52	88.84	86.100	85.796	2.74	PHASE 12B
											20.25																			
DUNOLUE OBESCENT	202	100		0	240				0.07	2.60	01.00	67.46	175.05	505	0.00	000.10	1 00	05.04	1 10	00.00	00.04		00.000	05 505	0.74	00.10	05 701	05.057	1.01	
DUNULLIE CRESCENT	303	109		0.	.240				0.27	2.00	21.55	07.40	175.25	525	0.36	209.10	1.20	85.61	1.18	93.93	88.84		86.099	85.565	2.74	90.10	85.791	85.257	4.31	PHASE 12B
											22.51																			
HALTON TERBACE	109	108		0.	130 0	.460 0	147		0.92	23.24	27.45	57.25	1410.62	825	1 20	1640.35	2.97	66.80	0.37	229 73	90.10		85 791	84 953	4.31	88.53	84 990	84 151	3.54	PHASE 12A
									0.02		27.82	01120		020	1.20	1010100	2.07	00.00	0.07	220.10	00.10		00.701	01.000	1.01	00.00	01.000	01.101	0.01	
				-									and the states																	
DUNOLLIE CRESCENT	302A	302	0.216			0.	.085		0.24	0.24	20.00	70.25	16.74	300	0.50	71.33	0.98	15.18	0.26	54.59	88.53		85.387	85.082	3.14	88.45	85.311	85.006	3.14	PHASE 12B
	302	301				0.	.716		1.00	1.23	20.26	69.69	85.96	375	0.35	108.20	0.95	69.40	1.22	22.24	88.45		85.311	84.930	3.14	88.20	85.068	84.687	3.13	PHASE 12B
	301	300				0.	.288		0.40	1.63	21.48	67.17	109.74	375	0.40	115.67	1.01	9.99	0.16	5.94	88.20	0.040	85.028	84.647	3.17	88.27	84.988	84.607	3.28	PHASE 12B
	300	108							0.00	1.63	21.64	66.84	109.21	450	0.20	133.01	0.81	90.70	1.87	23.80	88.27		84.988	84.531	3.28	88.53	84.807	84.350	3.72	PHASE 12B
											23.51																			
	100	107				500			- 0.00	05.50	07.00	50.74	1500.00	1050	0.45	1010.05	0.1.1	01.70	0.05	00110	00.50		04.007	00 740	0.70	00 75	01001	00 507	1.00	
HALTON TERRACE	107	107			0	.500			0.63	25.50	27.82	56.74	1526.82	1050	0.45	1910.95	2.14	31.70	0.25	384.13	88.53	0.040	84.807	83.740	3.72	88.75	84.664	83.597	4.09	PHASE 12A
	107	100		4					0.00	25.50	28.07	50.40	1510.20	1050	0.45	1910.95	2.14	43.10	0.34	392.07	88.75	0.040	84.024	83.557	4.13	88.05	84.430	83.303	3.62	PHASE 12A
										-	20.40																			
MCBRIEN STREET	203	202		0.	130				0.14	0.14	20.00	70.25	10.16	300	1.52	124.37	1.70	98.50	0.96	114.21	90.71		87,706	87.401	3.00	89.09	86,209	85,904	2.88	PHASE 12A
	202	201				0.	.690		0.96	1.10	20.96	68.21	75.28	375	0.85	168.62	1.48	74.40	0.84	93.35	89.09		86.209	85.828	2.88	88.60	85.576	85,195	3.02	PHASE 12A
	201	200							0.00	1.10	21.80	66.53	73.43	375	0.85	168.62	1.48	12.70	0.14	95.20	88.60	0.030	85.546	85.165	3.05	88.35	85.438	85.057	2.91	PHASE 12A
	200	106							0.00	1.10	21.94	66.25	73.12	375	1.75	241.95	2.12	20.90	0.16	168.83	88.35	0.030	85.408	85.027	2.94	87.92	85.043	84.662	2.88	PHASE 12A
											22.11																			
	100																													
HALTON TERRACE	106	105	0.405		010	.447			0.56	27.16	28.40	55.95	1599.90	1050	0.55	2112.63	2.36	41.00	0.29	512.74	88.05	0.040	84.390	83.323	3.66	87.25	84.165	83.098	3.09	PHASE 12A
	105	Ex. 101	0.465	0.	312 0	.652 0.	.084		1.54	28.70	28.69	55.57	1675.06	1200	0.40	2572.29	2.20	88.70	0.67	897.23	87.05	0.215	83.950	82.730	3.10	87.10	83.595	82.376	3.51	PHASE 12A
											29.36		1910																	· · · · ·

Z = 8,885hq Total aug = 24,834ha

J.L. RICHARDS & ASSOCIATES LIMITED, Consulting Engineers, Architects & Planners

CITY OF OTTAWA MORGAN'S GRANT PHASE 12D SUBDIVISION MINTO DEVELOPMENTS INC.

Designed by: J.B. Checked by: G.F. Date: August 2005

1

JLR Project No. 17732

STORMWATER STORAGE / OVERFLOW BALANCE TABLE

DRAINAG	E AREA				INLET	FLOW			STORAGE (m ³)		OVER	FLOW	SURPLUS
CATCHMENT	AREA #	"C"	AREA	INLE	rs (I/s)	Unrest.	Equiv.	REQUIRED	LOCAL +	PROVIDED		то	STORAGE
CATCHMENT	ANEA #	FACTOR	(Ha)	20.00	13.40	RYCBs	Flow	LOCAL (m ³)	OVERFLOW (m ³)	(m ³)	(m ³)	AREA #	m ³
ISHPATINA	#15	0.400	0.340	1	0	0	20	29.51	29.51	20.60	8.91	#11	
FINLAYSON FINLAYSON (at GOWARD)	#14	0.400	0.350	1	0	0	20 20	30.72 11.88	30.72 42.61	0.00	30.72	#13	
GOWARD	#11	0.400	0.618	2	0	0	40	51.73	103.26	131.30	-28.04	#6	28.04
FINLAYSON	#10	0.400	0.360	1	0	0	20	31.95	31.95	0.00	31.95	#6	
RY (73, 74, 75, 76, 77, 78) RY (70, 71, 72, 79, 80)	#9 #8	0.400	0.198 0.180	0	0	34 34	34 34	10.61 8.90	10.61 19.51	0.00	10.61 19.51	#8 #6	
RY (16-23)	#7	0.400	0.140	0	0	62	62	0.00	0.00	0.00	0.00	#6	
GOWARD (at FINLAYSON/ISHPATINA)	#6	0.400	0.494	2	0	0	40	37.97	89.43	0.00	89.43	#4	
GOWARD	#5	0.400	0.500	1	0	0	20	50.26	50.26	0.00	50.26	#4	
GOWARD	#4	0.400	0.203	1	0	0	20	14.47	154.16	27.08	127.08	#1	
FUTURE TOWNHOUSES	#2	0.500	1.216	5	0	0	100	126.46	126.46	0.00	126.46	#1	
RY(8-15)	#3	0.400	0.202	0	0	34	34	10.99	10.99	0.00	10.99	#1	
BLK 246 and RY of units 62-69	#1	0.228	1.348	2.5	0	0	50	64.19	328.72	1213.00	-884.28		884.28

Printed: 9/19/2005 @ 10:33 AM

q (res) = 350 V/cap/day

q (com) = 50,000 V/ha/day

q (inst) = 50,000 Vha/day

I = 0.280 Vs/ha

Singles = 4.0 pers / unit

CITY OF KANATA

MORGAN'S GRANT MASTER SANITARY FLOWS

16087-01

Townhouses =	4.0	pers / un			0.00	B A T # 0-	Deckie		K(F)	DEXL				AT 4		·		IPST	REAM			1		DOWN	STREAM			
STREET	M.	-1, #	POPUL.	AREA	POPUL.	AREA	Factor	FLOW	FLOW	FLOW	DIA.	Skope	CAPAC.	VEL.	LENGTH	Ex.	Pr. Center	Fill	Obvert	Invert	Cover	Ex.	Pr. Center	Fitl	Obvert	Invert	Cover	COMMENTS
	FROM	TO	people	ha	people	ha		Vs	_Vs	Vs	mm	%	Vs	m/s	m	Ground		0.25	01.220	01.120	2.01	Ground		0.90	90.201	89.081	3 32	EXISTING SEWER
HALTON TERRACE	152	151	20	0.51	20	0.51	4.00	0.32	0.14	0.47	200	3.00	56.80	1.81	68.60	94.900	95.250	0.35	91.339	91,135	3.91	91.000	\$2,000	0.00	05.201	00.001	0.02	
PIEKOFF CR.	159	157	20	0.43	20	0.43	4.00	0.32	0.12	0.44	200	2.00	46.38	1.48	79.00	98.500	99,800	1.30	95.718	95.518	4.08	97.600	98.500	0.90	94.138	93.938	4.36	PHEVIOUSLY SUBMITTED FOR C. OF A.
(Easement (0.5 ha) & Residential (2.10 ha)		157	164	2.60	164	2.60	4.00	2.66	0.73	3.39	200	0.60	25.40	0.81	3.00													FUTURE SEWER
PIEKOFF CR.	157	156	20	0.41	204	3.44	4.00	3.31	0.96	4.27	200	0.60	25.40	0.81	81.10	97.650	98.500	0.85	94.093	93.893	4.41	96.600	97.800	1.20	93.606	93.406	4.19	PREVIOUSLY SUBMITTED FOR C. OF A.
RAYBURN ST.	162	156	40	0.65	40	0.65	4.00	0.65	0.18	0.83	200	0.70	27.44	0.87	98.90	97.700	98.350	0.65	94.392	94.192	3.96	96.600	97.800	1.20	93.700	93.500	4.10	PREVIOUSLY SUBMITTED FOR C. OF A.
PIEKOFF CR.	156	154	28	0.38	272	4.47	4.00	4.41	1.25	5.66	200	2.00	46.38	1.48	59.50	96.600	97.800	1.20	93.606	93.406	4,19	95.300	93.600	-1.70	92.416	92.216	1.18	PREVIOUSLY SUBMITTED FOR C. OF A.
	154 153	153 151	32 8	0.54	304 312	5.01 5.24	4.00	4.93 5.06	1.40 1.47	6.33 6.52	200	3.00	56.80 56.80	1.81 1.81	56.20 49.20	95.300 94.500	93,600	-1.70	92.298	92.098 90.376	4,12	94.500 93.100	94.700	0.20	89.100	88.900	4,09	PREVIOUSLY SUBMITTED FOR C. OF A.
		450	0	0.00	100	5 75	4.00	5.29	1.61	00.3	200	0.60	25.40	0.81	41.4	91.800	92,600	0.60	68.481	88.291	4.12	90.800	92.000	1.20	88.233	88.033	3.77	EXISTING SEWER
HALTON TERRACE	151	149	120	0.00	452	6.61	4.00	7.32	1.85	9.17	200	0.60	25.40	0.81	112.80	90.800	92.000	1.20	88.233	88.033 87.256	3.77	90.650	91.730	1.0B 0.B0	87.556	87.356 87.112	4.17 4.49	EXISTING SEWER EXISTING SEWER
	149	148	28	0.24	480	6.85	3.98	7.75	1.92	9.66	200	0.60	25.40	0.81	40.6	90.650	91.730	1.05	07.550	87.350	4.17	91.000	91,000	0.00	07.512		4.40	
UPSTREAM OF MH 714 (West)	214	214	124	2.92	124	2.92	4.00	2.01	0.82	2.83	200	0.70	27.44	0.87	95.00 66.50											Ì	ļ	FUTURE SEWER PHASE 8
HASLEMERE ST.	214	215	16	1.67	152	4.83	4.00	2.46	1.35	3.82	200	0.72	27.83	0.89	90.00]				ĺ		FUTURE SEWER PHASE 8
SCAMPTON ST.	216	218	36	0.46	188	5.29	4.00	3.05	1.48	4.53	200	0.80	29.33	0.93	70.00			Ī			1					Ļ		
PORTADOWN CR.	220 219	219 218	32 0	0.46 0.11	32 32	0.46 0.57	4.00 4.00	0.52 0.52	0.13 0.16	0.65 0.68	200 200	1.62 0.25	41.74 16.40	1.33 0.52	66.00 42.00													FUTURE SEWER PHASE 8
SCAMPTON ST.	218	225	40	0.52	260	6.38	4.00	4.21	1.79	6.00	200	1.50	40.17	1.28	80.50													FUTURE SEWER PHASE 8
PORTADOWN CR.	221	222	20	0.39	20	0.38	4.00	0.32	0.11	0.43	200	2.60	52.88	1.68	67.00													FUTURE SEWER PHASE B
	222	223	4	0.10	24	0.48	4.00	0.39	0.13	0.52	200	1.20	35.93	1.14	8.50													FUTURE SEWER PHASE 8
	223	224	32	0.44	64	1.18	4.00	1.04	0.33	1.37	200	0.52	23.65	0.75	56.00					ļ					1			FUTURE SEWER PHASE B
SCAMPTON ST.	225 227	227 200	36 28	0,49 0.44	360 388	8.05 8.49	4.00 4.00	5.83 6.29	2.25 2.38	8.09 8.66	200 200	1.87	44.85 32.80	1.43 1.04	70.50 74.00													FUTURE SEWER PHASE 8 FUTURE SEWER PHASE 8
	212	212	24	0.62	24	0.62	4 00	0.39	0.17	0.56	200	0.35	19.40	0.62	52.00												l	FUTURE SEWER PHASE 8
WAENNOUL ST.	212	211	52	0.71	76	1.33	4.00	1.23	0.37	1.60	200	1.44	39.35	1.25	97.00			[FUTURE SEWER PHASE 8 FUTURE SEWER PHASE B
	211 206	206 205	60 16	0.78	136	2.11	4.00	2.20	0.59 0.68	2.79 3.14	200	3.49	61.27	1:95	53.50					i i]		FUTURE SEWER PHASE 8
	205	203	0	0.11	152	2.54	4.00	2.46	0.71	3.17	200	3.26	59.21	1.88	24.50					ļ								FUTURE SEWER PHASE 8
HALTON TERRACE	203	202	16 B	0.35	176	3.08	4.00	2.85	0.86	3.71	200	0.68	27.04	0.86	47.50							1						FUTURE SEWER PHASE 8
BEALU Y ST	207	208	8	0.13	8	0,13	4.00	0.13	0.04	0.17	200	0.35	19.40	0.62	25.00						1							FUTURE SEWER PHASE 8
	208	209	28	0.51	36	0.64	4.00	0.58	0.18	0.76	200	0.76	28.59	0.91	70.50								ŀ					FUTURE SEWER PHASE 8
	209	210	9 16	0.17	44 60	1.15	4.00	0.71 0.97	0.23	1.29	200	1.30	37.39	1.19	75.00													FUTURE SEWER PHASE 8
HALTON TERRACE	201	200	16	0.32	252	4.55	4.00	4.08	1.27	5.36	200	0.92	31.46	1.00	79.50													FUTURE SEWER PHASE B
HALTON TERRACE	200	148	0	0.21	640	13.25	3.92	10.15	3.71	13.86	200	1.10	34.40	1.09	80.00								1					FUTURE SEWER PHASE 8
			-																								ļ	
Upstream Areas West of Hydro Easement		167	456	13.01	456	13.01	3.99	7.38	3.64	11.02	250	2.00	B4.09	1.71	100.00				07.500	07.000	4.00	00.000	00.600	0.40	05 290	05 120	4.72	FUTURE SEWER
KLONDIKE RD.	167 166	166 165	92 88	0.84	548 636	13.85	3.95 3.92	8.78 10.09	3.88 4.10	12.65	250 250	2.20	88.20	1.80 2.42	100.00 97.50	101.700 99.200	99.600	0.20	97.580 94.780	97.330 94.530	4.32	99.200 94.400	99.800	0.40	90.880	90.630	4.12	PREVIOUSLY SUBMITTED FOR C. OF A.
			40	0.00	40	0.60	4.00	0.70	0.10	0.97	200	2 20	49.62	1 55	102.10	91 450	100 260	8.81	96.844	96.644	3.42	97,700	98.500	0.80	94.600	94,400	3.90	PREVIOUSLY SUBMITTED FOR C. OF A.
	161	163	48 20	0.89	48 68	1.03	4.00	1.10	0.29	1.39	200	4.50	69.57	2.21	79.10	97.700	98.500	0.80	94,600	94.400	3,90	93.100	94.800	1.70	91.041	90.841	3.76	PREVIOUSLY SUBMITTED FOR C. OF A.
WALLSEND AVE.	155	163	80	0.54	60	0.54	4.00	1.30	0.15	1.45	200	0.60	25.40	0.81	70.70	94.600	95.350	0.75	91.504	91.304	3.85	93.100	94.900	1.80	91.080	90.880	3.82	PREVIOUSLY SUBMITTED FOR C. OF A.
WALLSEND AVE.	163	164	16	0.15	164	1.72	4.00	2.66	0.48	3.14	200	0.60	25.40	0.81	34.00	93.100	94.900	1.80	90.984	90.784	3.92	93.400	94.600	1.20	90.780	90.580	3.82	PREVIOUSLY SUBMITTED FOR C. OF A.
	164	165	16	0.18	180	1.90	4.00	2.92	0.53	3.45	200	0.60	25.40	0.81	45.70	93.400	94,600	1.20	90.180	90.580	3.82	94,400	95,000	0.00	30.300	50.000		
KLONDIKE AD.	165	165A	40	0.35	856	16.90	3.84	13.32	4.73	18.06	250 250	4.30	123.30	2.51	59.30 21.00	94.400 91.800	95.000 91.800	0.60	90.280 87.134	90.030 86.884	4.72 4.67	91.800 91.700	91.800 91.800	0.00 0.10	87.730 87.050	87.480 86.800	4.07	PREVIOUSLY SUBMITTED FOR C. OF A. PREVIOUSLY SUBMITTED FOR C. OF A.
	ACOL	148	U	0.00	000	10.90	0.04	10.02	4,73	10.00		0.40				01.705		0.10	97.046	00.710	4 70	01 400	91 600	0.20	86 675	86 375	4 93	EXISTING SEWER
KLONDIKE RD.	148	147	43	0.28	2019	37.28	3.58	29.30	10.44	39.74	300	0.40	61.15	0.87	85.3	91.700	91.600	0,10	01.010	00.710	4./5	51.400	51.000	0.20	00.075	00.070	1.00	
l	I									ļ		Ι.		1		11	I	ļ		I	I	I	ł	I	1	1	I	1 1

SANITARY SEWER DESIGN SHEET

(Revised: January 31, 2001)

Designed by: G.F.

Checked by: D.G.S.

STREET	M.H	l. (≵	POPUL.	AREA	POPUL.	AREA	Peaking Factor	FLOW	INFIL. FLOW	PEAK FLOW	DIA.	Skope	CAPAC.	ATA VEL.	LENGTH	Ex.	Pr. Center	UPST Fill	REAM Obvert	Invert	Cover	Ex.	Pr. Center	Fill	Obvert	Invert	Cover	COMMENTS
WIMBLEDON ST.	FROM 48A	TO 48	people 12	0.13	people 12	0.13	4.00	0.19	/s	0.23	200	1.00	32.80	1.04	15.0	90.600	91.673	1.07	88.213	88.013	3.46	90.550	91.566	1.02	88.063	87,863	3.50	EXISTING SEWER
	48 47	47 46	28 12	0.38	40 52	0.51	4.00 4.00	0.65 0.84	0.14 0.15	0.79 1.00	200 200	0.60	25.40 25.40	0.81 0.81	53.3 9.1	90.550 90.200	91,566 91,400	1.02 1.20	88.033 87.683	87.833 87.483	3.53 3.72	90.200 90.200	91,400 91,430	1.20	87.713 87.628	87.513 87.428	3.69 3.80	EXISTING SEWER
	46 45	45 147	80 16	0.61 0.17	132 148	1.16	4.00	2.14 2.40	0.32 0.37	2.46 2.77	200 200	0.60	25.40 25.40	0.81 0.81	71.9 41.0	90.200 90.350	91.430 91.470	1.23	87.598 87.167	87.398 86.967	3.83 4.30	90.350 91.000	91.470 91.600	1.12 J.60	87.167 86.921	86.967 86.721	4.30 4.68	EXISTING SEWER EXISTING SEWER
KLONDIKE RD.	147 146	146 145	24 44	0.54 0.52	2191 2235	39.15 39.67	3.55 3.55	31.55 32.12	10.96 11.11	42.51 43.23	300 300	0.40 0.60	61.15 74.90	0.87 1.06	98.5 96.8	91.000 91.250	91.600 91.650	0.60 0.40	86.675 86.281	86.375 85.981	4.92 5.37	91.250 89.900	91.650 90.400	0.40 0.50	86.281 85.700	85.981 85.400	5.37 4.70	EXISTING SEWER EXISTING SEWER
PENRITH ST.	207	206	12	0.17	12	0.17	4.00	0.19	0.05	0.24	200	1.00	32.80	1.04	31.0	89.560	90.500	0.94	87,555	87.355	2.95	89.350	90.700	1.35	87.245	87.045	3.45	FUTURE SEWER PHASE 7
BRECHIN ST.	205	206	60	0.73	60	0.73	4.00	0.97	0.20	1.18	200	2.30	49,74	1.58	105.0	91.600	93.040	1,44	90.440	90.240	2.60	89.350	90.700	1.35	88.007	87.807	2.69	FUTURE SEWER PHASE 7
PENRITH ST.	206	201	20	0.35	92	1.25	4.00	1.49	0.35	1.84	200	0.60	25.40	0.81	69.50	89.350	90.700	1,35	87.245	87.045	3.46	89.910	91.900	1.99	86.828	86.628	5.07	FUTURE SEWER PHASE 7
BRECHIN ST. WOLISTON ST.	204 203 202	203 202 201	24 32 24	0.40 0.38 0.28	24 56 80	0.40 0.78 1.06	4.00 4.00 4.00	0.39 0.91 1.30	0.11 0.22 0.30	0.50 1.13 1.59	200 200 200	1.00 1.07 1.03	32.80 33.92 33.28	1.04 1.08 1.06	61.4 64.0 50.0	91.790 92.000 91.160	93.070 93.100 92.460	1.28 1.10 1.30	90.470 89.816 89.091	90.270 89.616 88.891	2.60 3.28 3.37	92.000 91.160 89.910	93.100 92.460 91.900	1.10 1.30 1.99	89.856 89.131 88.576	89.656 88.931 88.376	3.24 3.33 3.32	FUTURE SEWER PHASE 7 FUTURE SEWER PHASE 7 FUTURE SEWER PHASE 7
PENRITH ST.	201	192	16	0.38	180	2.69	4.00	3.05	0.75	3.80	200	0.60	25.40	0.81	71.50	89.910	91.900	1.99	B6.828	86.628	5.07	90.700	92.200	1.50	86.399	86.199	5.80	FUTURE SEWER PHASE 7
BRECHIN ST.	196	198	12	0.20	12	0.20	4.00	0.19	0.06	0.25	200	0.40	20.74	0.66	29.8	91.790	92.820	1.03	90.220	90.020	2.60	91.750	93.100	1.35	90.101	89.901	3.00	FUTURE SEWER PHASE 7
BRECHIN ST	200	198	20	0.31	20	0.31	4.00	0.32	0.09	0.41	200	0.90	31.11	0.99	65.1	92.000	93.100	1.10	90.500	90.300	2.60	91.750	93.100	1.35	89.914	89.714	3.19	FUTURE SEWER PHASE 7
ORMSBY ST.	198 197	197 192	28 24	0.33 0.29	60 84	0.84 1.12	4.00 4.00	0.97 1.36	0.24 0.31	1 21 1.67	200 200	1.40 1.00	38.80 32.80	1.24 1.04	64.00 49.9	91.750 91.240	93.100 92.500	1.35 1.26	89.874 88.938	89.674 88.738	3.23 3.56	91.240 90.700	92.500 92.200	1.26 1.50	88.978 88.439	88.778 88.239	3.52 3.76	FUTURE SEWER PHASE 7 FUTURE SEWER PHASE 7
PENRITH ST.	192 193	193 194	8 8	0.15 0.15	280 288	3.96 4.11	4.00 4.00	4.54 4.67	1.11 1.15	5.65 5.82	200 200	0.60 0.60	25.40 25.40	0.81 0.81	34.90 35.1	90.700 91.000	92.200 91.700	1.50 0.70	86.369 86.129	86.169 85.929	5.83 5.57	91.000 91.000	91.700 92.200	0.70 1.20	86.160 85.918	85.960 85.718	5.54 6.28	FUTURE SEWER PHASE 7 FUTURE SEWER PHASE 7
BRECHIN ST.	196 195	195 194	16 44	0.47 0.63	16 60	0.47	4.00 4.00	0.26 0.97	0.13 0.31	0.39 1.28	200 200	0.80 0.90	29.33 31.11	0.93 0.99	42.1 85.2	91.810 89.900	92.930 91.400	1.12 1.50	90.330 89.953	90.130 89.753	2.60 1.45	89.900 91.000	91.400 92.200	1.50 1.20	89.993 89.186	89.793 88.986	1.41 3.01	FUTURE SEWER PHASE 7 FUTURE SEWER PHASE 7
PENRITH ST.	194	145	20	0.30	368	5.51	4.00	5.96	1.54	7.51	250	0.40	37.56	0.77	73.30	91.000	92.200	1.20	85.942	85.692	6.26	89.900	90.400	0.50	85.650	85.400	4.75	FUTURE SEWER PHASE 7
LAXFORD DR.	145	27	44	0.59	2647	45.77	3.49	37.40	12.82	50.22	300	0.40	61.15	0.87	103.60	89.900	90.400	0.50	85.672	85.372	4.73	89.950	91.000	1.05	85.258	84.958	5.74	EXISTING SEWER
STREET NO. 4	41 40	40 27	56 16	0.97 0.29	56 72	0.97 1.26	4.00 4.00	0.91 1.17	0.27 0.35	1.1B 1.52	200 200	1.00	32.80 32.80	1.04 1.04	50.00 72.00	90.200 90.000	91.420 91.160	1.22 1.16	87.800 86.626	87.600 86.426	3.62 4.53	90.000 89.950	91.160 91.000	1.16 1.05	87.300 85.906	87.100 85.706	3.86 5.09	EXISTING SEWER EXISTING SEWER
LAXFORD DR.	27 Stub 26 25	Stub 26 25 24	16 0 0 8	1.88 0.00 0.05 1.99	2735 2735 2735 2735 2743	48.91 48.91 48.96 50.95	3.48 3.48 3.48 3.48	38.51 38.51 38.51 38.61	13.69 13.69 13.71 14.27	52.21 52.21 52.22 52.88	300 300 300 300	0.44 0.44 0.43 0.41	64.49 64.49 63.65 61.83	0.91 0.91 0.90 0.87	34.80 29.90 12.00 20.30	89.950 89.950 89.550 89.500	91.000 91.000 90.520 90.450	1.05 1.05 0.97 0.95	85.258 85.103 84.905 84.805	84.958 84.803 84.605 84.505	5.74 5.90 5.61 5.64	89.700 89.550 89.500 89.400	91.050 90.520 90.450 90.200	1.35 0.97 0.95 0.80	85.103 84.970 84.853 84.722	84.803 84.670 84.553 84.422	5.95 5.55 5.60 5.48	EXISTING SEWER EXISTING SEWER EXISTING SEWER EXISTING SEWER
REDCAR CR.	33 34	34 24	40 0	0.58 0.08	40 40	0.58 0.66	4.00 4.00	0.65 0.65	0.16 0.18	0.81 0.83	200 200	0.60 0.60	25.40 25.40	0.81 0.81	79.3 25.0	89.400 89.500	90.400 90.350	1.00 0.85	86.846 85.570	86.646 85.370	3.55 4.78	89.500 89.400	90.350 90.200	0.85 0.80	86.370 85.420	86.170 85.220	3.98 4.78	EXISTING SEWER EXISTING SEWER
LAXFORD DR.	24	22	36	0.60	2819	52.21	3.47	39.57	14.62	54.19	300	0.40	61.15	0.87	95.1	89,400	90.200	0.80	84.720	B4.420	5.48	88.500	89.700	1.20	84.340	84.040	5.36	EXISTING SEWER
STREET No. 1 (PHASE 5B)	13 14 15	14 15 16	4 24 20	0.05 0.42 0.42	4 28 48	0.05 0.47 0.89	4.00 4.00 4.00	0.06 0.45 0.78	0.01 0.13 0.25	0.08 0.59 1.03	200 200 200	0.60 0.60 0.72	25.40 25.40 27.83	0.81 0.81 0.89	11.5 40.0 58.0	90.000 89.900 89.900	91.260 91.400 90.970	1.26 1.50 1.07	88.021 87.922 87.625	87.821 87.722 87.425	3.24 3.48 3.35	89.900 89.900 89.500	91.400 90.970 91.000	1.50 1.07 1.50	87.952 87.682 87.207	87.752 87.482 87.007	3.45 3.29 3.79	FUTURE PHASE 58 FUTURE PHASE 58 FUTURE PHASE 58
LARK LANE	16	22	0	0.00	48	0.89	4.00	0.78	0.25	1.03	200	4.25	67.61	2.15	79.0	89.500	91.000	1.50	87.567	87.367	3.43	68.600	89.700	1.10	64.210	04.010	5.49	
LAXFORD DR.	22	21	12	0.31	2879	53.41	3.46	40.32	14.95	55.20	300	0.40	61.15	0.87	50,1	88.500	89.700	1,20	84.300	84,000	5.40	88.600	89.700	1.10	05.000	05.000	5.00	EXISTING SEWER
REDCAR CR.	33 32 31 30	32 31 30 21	60 B 28 4	0.66 0.06 0.55 0.13	60 68 96 100	0.66 0.72 1.27 1.40	4.00 4.00 4.00 4.00	0.97 1.10 1.56 1.62	0.18 0.20 0.36 0.39	1.16 1.30 1.91 2.01	200 200 200 200	1.46 1.46 0.58 0.68	39.64 39.63 24.98 27.08	1.26 1.26 0.80 0.86	97.5 10.9 73.4 28.7	89.400 87.350 87.000 88.250	90.400 89.350 89.300 88.900	2.00 2.30 0.65	86.624 84.819 84.626 84.196	86.424 84.619 84.426 83.996	4.53 4.67 4.70	87.000 88.250 88.680	89.300 88.900 89.700	2.30 0.65 1.02	84.660 84.200 84.000	84.460 84.000 83.800	4.15 4.64 4.70 5.70	EXISTING SEWER EXISTING SEWER EXISTING SEWER
LAXFORD DR.	21 20	20 138	44 0	0.57 0.00	3023 3023	55.38 55.38	3.44 3.44	42.12 42.12	15.51 15.51	57.63 57.63	300 300	0.81 0.60	87.02 74.90	1.23 1.06	87.2 21.3	88.600 87.400	89.300 88.900	0.70 1.50	83.916 83.178	83.616 82.878	5.38 5.72	87.400 87.170	86.750 86.180	-0.65 -0.99	83.210 83.050	82.910 82.750	3.54 3.13	EXISTING SEWER EXISTING SEWER
KLONDIKE RD NORTH	144A	144	32 68	0.45	32	0.45	4.00	0.52	0.13	0.64	200	0.57	24.69 36.15	0.79	73.4 100.0	90.300 90.000	90.500 90.200	0.20 0.20	86.640 86.224	86.440 86.024	3.86 3.98	90,000 88.200	90.200 88.400	0.20 0.20	86.224 85.008	86.024 84,808	3.98 3.39	PHASE 5B PHASE 5B
GOULBOURN RD (PHASE 5B)	143	143 142A	40	0.42	140	1.64	4.00	2.27	0.46	2.73	200	1.83	44.33	1.41	82.0 69.0	88.200 87.000	88.400 87.300	0.20	85.008 83.510	84.808 83.310	3.39 3.79	87.000 85.500	87.300 85.700	0.30 0.20	83.510 82.300	83.310 82.100	3.79 3.40	PHASE 5B PHASE 5B
HEYSHAM CR.	177 176 175 174	176 175 174 173	52 4 48 36	0.82 0.11 0.69 0.49	52 56 104 140	0.82 0.93 1.62 2.11	4.00 4.00 4.00 4.00 4.00	0.84 0.91 1.69 2.27	0.23 0.26 0.45 0.59	1.07 1.17 2.14 2.86	200 200 200 200	1.10 1.10 1.10 1.10 1.10	34.40 34.40 34.40 34.40	1.09 1.09 1.09 1.09	93.9 11.0 89.80 69.70	90.200 89.000 89.000 88.050	91,400 90,100 90,150 89,190	1.20 1.10 1,15 1.14	88.050 86.967 86.796 85.808	87.850 86.767 86.596 85.608	3.35 3.13 3.35 3.38	89.000 89.000 88.050 87.200	90.100 90.150 89.190 88.400	1.10 1.15 1.14 1.20	87.017 86.846 85.808 85.041	86.817 86.646 85.608 84.841	3.08 3.30 3.38 3.36	FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6
PALTON ST.	189	173	24	0.28	24	0.28	4.00	0.39	0.08	0.47	200	1.05	33.61	1.07	78.50]			FUTURE SEWER PHASE 6
HEYSHAM CR. FLAMBOROUGH WAY	173 172 171	172 171 170	48 40 32	0.43 0.48 0.41	212 252 284	2.82 3.30 3.71	4.00 4.00 4.00	3.44 4.08 4.60	0.79 0.92 1.04	4.22 5.01 5.64	200 250 250	1.50 0.40 0.40	40.18 37.61 37.61	1.28 0.77 0.77	80.30 81.90 90.00	87.200 86.000 85.840	88.400 87.200 87.130	1.20 1.20 1.29	85.041 83.274 82.946	84.841 83.024 82.696	3.36 3.93 4.18	86.000 85.840 85.430	87.200 87.130 87.200	1.20 1.29 1.77	93.836 82.946 82.586	83.636 82.696 82.336	3.36 4.18 4.61	FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6

J.L.RICHARDS & ASSOCIATES LIMITED, Consulting Engineers, Architects & Planners

STREET	M	н ж	POPUL				Peaking Eactor	FLOW	I INFIL.	PEAK FLOW	DIA.	Stope	SEWER D	ATA VEL.	LENGTH	Ex.	Pr. Center	UPS1 Fill	REAM Obvert	Invert	Cover	Ēx.	Pr. Center	DOWN:	STREAM Obvert	Invert	Cover	COMMENTS
SIREE	M. FROM	10	people	ha	people	ha		Vs	Vs	Vs	mm	%	//s			Ground	Line					Ground	Line					
HEYSHAM CR.	177 179 180 181 182	179 180 181 182 183	12 20 4 8 4B	0.19 0.30 0.08 0.26 0.72	12 32 36 44 92	0.19 0.49 0.57 0.83 1.55	4.00 4.00 4.00 4.00 4.00	0.19 0.52 0.58 0.71 1.49	0.05 0.14 0.16 0.23 0.43	0.25 0.66 0.74 0.95 1.92	200 200 200 200 200	0.60 0.60 0.60 0.60 1.40	25.42 25.40 25.36 25.40 38.80	0.81 0.81 0.81 0.81 1.24	32.90 38.00 16.30 10.40 86.10	90.200 90.500 90.890 91.000 90.970	91.400 91.160 91.770 91.980 91.840	1.20 0.66 0.88 0.98 0.87	88.050 87.822 87.564 87.417 87.305	87.850 87.622 87.364 87.217 87.105	3.35 3.34 4.21 4.56 4.53	90,500 90,890 91,000 90,970 89,590	91.160 91.770 91.980 91.840 89.740	0,66 0.88 0.98 0.87 - 0.15	87.852 87.594 87.467 87.355 86.100	87.652 87.394 87.267 87.155 85.900	3.31 4.18 4.51 4.49 3.64	FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6
COLNE COURT	187 187A	187A 183	24 0	0.46 0.00	24 24	0.46 0.46	4.00 4.00	0.39 0.39	0.13 0.13	0.52 0.52	200 200	0.60 0.60	25.40 25.40	0.81 0.91	44.30 34.00													FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6
HEYSHAM CR.	183	184	40	0.58	156	2.59	4.00	2.53	0.73	3.25	200	1.80	44.00	1.40	76.70	89.590	89.740	0.15	85.951	85.751	3.79	87.300	88.600	. 1.30	84.570	84.370	4.03	FUTURE SEWER PHASE 6
COLNE COURT PALTON ST.	187 188 188A 189 185	188 188A 189 185 184	8 8 40 36 24	0.18 0.20 0.52 0.33 0.36	8 16 56 92 116	0.18 0.38 0.90 1.23 1.59	4.00 4.00 4.00 4.00 4.00	0.13 0.26 0.91 1.49 1.88	0.05 0.11 0.25 0.34 0.45	0.18 0.37 1.16 1.84 2.32	200 200 200 200 200	1.40 1.42 1.02 0.60 0.60	38.82 39.08 33.12 25.40 25.40	1.24 1.24 1.05 0.81 0.81	32.60 11.00 81.50 55.00 61.80				86.800 86.293 86.091 85.200 84.870	86.600 86.093 85.891 85.000 84.670					86.343 86.137 85.260 84.870 84.499	86.143 85.937 85.060 84.670 84.299		FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6 FUTURE SEWER PHASE 6
HEYSHAM CR.	184	170	44	0.57	316	4.75	4.00	5.12	1.33	6.45	200	1.80	44.00	1.40	80.30	87.300	88.600	1,30	84.445	84.245	4.15	85.430	87.130	1.70	83.000	82.800	4.13	FUTURE SEWER PHASE 6
FLAMBOROUGH WAY	170	142	0	0,15	600	B.61	3.93	9.56	2.41	11.97	250	0.40	37.61	0.77	82.90	85.430	87.130	1.70	82.586	82.336	4.54	85.500	85.700	0.20	82.254	82.004	3.45	FUTURE SEWER PHASE 6
GOULBOURN RD (PHASE 5B)	142 141	141 140	12 4	0.22 0.14	776 780	10.84 10.98	3.87 3.87	12.16 12.22	3.04 3.07	15.20 15.29	250 250	0.35 0.35	35.18 35.18	0.72 0.72	64.0 28.5	85.500 86.000	85.700 85.500	0.20 -0.50	82.254 82.000	02.004 81.750	3.45 3.50	86.000 86.000	85.500 85.800	-0.50 -0.20	82.030 81.900	81.780 81.650	3.47 3.90	PHASE 5B PHASE 5B
STREET No. 1 (PHASE 5B)	13 12	12 11	36 36	0,57 0.51	36 72	0.57 1.08	4.00 4.00	0.58 1.17	0.16 0.30	0.74 1.47	200 200	2.00 2.00	46.38 46.39	1.48 1.48	70.0 70.0	90.000 89.000	91.260 90.250	1.26 1.25	88.000 86.600	87.800 86.400	3.26 3.65	89.000 88.000	90.250 89.400	1.25 1.40	86.600 85.200	86.400 85.000	3.65 4.20	PHASE 5B PHASE 5B
STREET No. 1 (PHASE 5B)	16 17 18 19	17 18 19 11	44 4 12 0	0.70 0.10 0.20 0.15	44 48 60 60	0.70 0.80 1.00 1.15 2.59	4.00 4.00 4.00 4.00	0.71 0.78 0.97 0.97 2.59	0.20 0.22 0.28 0.32 0.72	0.91 1.00 1.25 1.29 3.31	200 200 200 200 200	2.00 1.00 1.00 0.60 3.80	46.38 32.80 32.80 25.40 63.93	1.48 1.04 1.04 0.81 2.03	79.0 12.5 35.0 38.0 56.0	89.500 88.100 88.000 88.000 88.000	91.000 89.500 89.500 89.200 89.400	1.50 1.40 1.50 1.20 1.40	86.580 85.955 85.800 85.428 85.128	86.380 85.755 85.600 85.228 84.928	4.42 3.55 3.70 3.77 4.27	88.100 88.000 88.000 88.000 86.600	89.500 89.500 89.500 89.400 87.000	1.40 1.50 1.50 1.40 0.40	86.000 85.830 85.450 85.200 83.000	85.800 85.630 85.250 85.000 82.800	3.50 3.67 4.05 4.20 4.00	PHASE 5B PHASE 5B PHASE 5B PHASE 5B PHASE 5B
STHEET NO. 1 (PHASE 58)	10	140	0	0.35	160	2.58	4.00	2.59	0.72	3.31	200	2.00	46.38	1.48	34.0	86.600	87.000	0.40	82.555	82.355	4.45	86.000	85.800	-0.20	81.875	81.675	3.93	PHASE 5B
GOULBOURN RD (PHASE 58)	140 139	139 138	24 48	0.46 0.59	964 1012	14.02 14.61	3.81 3.80	14.88 15.56	3.93 4.09	10.80 19.66	250 250	0.35 0.35	35.18 35.18	0.72 0.72	81.0 67.5	86.000 86.100	85.800 86.300	-0.20 0.20	B1.900 81.616	81.650 81.366	3.90 4.68	86.100 86.400	86.300 86.100	0.20 -0.30	81.616 81.380	81.366 81.130	4.68 4.72	PHASE 5B PHASE 5B
GOULBOURN AD	138	137	4	0.35	4039	70.34	3.33	54.48	19.70	74,17	375	0,40	110.88	1.00	70.4	86.000	86.180	0,18	81.359	80.984	4.82	86.250	86.200	-0.05	81.077	80.702	5.12	
GOULBOURN RD	135 136	136 137	48 20	0.66 0.39	48 68	0.66 1.05	4.00 4.00	0,79 1.10	0.18 0.29	0.96 1.40	200 200	1.39 0,71	38.60 27.63	1.23 0.88	72.2 70.4	88.200 86.200	88.300 86.450	0.10 0.25	84.200 83.200	84.000 83.000	4.10 3.25	86.200 86.100	86.450 86.200	0.25	83.200 82.700	83.000 82.500	3.25 3.50	EXISTING SEWER EXISTING SEWER
OAKHAM RIDGE	137 135 134 133 132	135 134 133 132 130	24 4 28 12	0.40 0.11 0.25 0.23	4107 4131 4135 4163 4175	71.39 71.79 71.90 72.15 72.38	3.32 3.32 3.32 3.32 3.32 3.32	55.29 55.57 55.62 55.95 56.09	19.99 20.10 20.13 20.20 20.27	75.28 75.67 75.75 76.15 76.36	375 375 375 375 375 375	0.40 0.40 0.40 0.40 0.40	110.88 110.88 110.88 110.88 110.88	1.00 1.00 1.00 1.00 1.00	48.0 61.1 5.6 42.9 45.6	86.200 84.200 81.900 81.850 81.500	86.200 85.050 83.110 83.000 82.450	0.00 0.85 1.21 1.15 0.95	81.018 80.826 80.541 80.480 80.307	80.643 80.451 80.166 80.105 79.932	5,18 4.2 2.6 2.5 2.1	85.000 81.900 81.850 81.500 81.800	85.000 83.110 83.000 82.450 82.850	0.00 1.21 1.15 0.95 1.05	80.826 80.582 80.519 80.308 80.125	80.451 80.207 80.144 79.933 79.750	4.17 2.5 2.5 2.1 2.7	EXISTING SEWER EXISTING SEWER EXISTING SEWER EXISTING SEWER EXISTING SEWER
	131	130	52	0.73	52	0.73	4.00	0.84	0.20	1.05	200	2.52	52.09	1.66	110.0	86.200	86.000	-0.20	82.850	82.650	3.1	81.800	82.850	1.05	80.075	79.B75	2.8	EXISTING SEWER
	130 128	128 4	36 32	0.51 0.54	4263 4295	73.62 74.16	3.31 3.31	57.13 57.51	20.61 20.76	77.75 78.28	450 450	0.20 0.17	127.49 117.54	0,80 0.74	96.2 62.8	81.800 80.900	82.850 81.980	1.05 1.08	80.125 79.903	79.675 79.453	2.7 2.1	80.900 82.100	81.980 82,150	1.08 0.05	79.933 79.796	79.483 79.346	2.0 2.4	EXISTING SEWER EXISTING SEWER
Phases 1, 2, 3, 4w, 5, 6, 7, 8, 9 based on 4 pers/unit (Point B)	4	36	2924	48.60	7219	122.76	3.09	90.47	34.37	124.84	600	0.10	194.16	0.69						ļ			i					
Minto Lands West of Hydro Easement based on 4 pers/unit (Point A)		36	2244	23.36	2244	23.36	3.55	32.24	6.54	38.78																		
Total for Morgan's Grant Subdivision north of Terry Fox Drive (4 pers/unit) to Hines Rd San, sewer (Points A & B)	36				9463 .	146.12	2.98	114.18	40.91	155.09																		
Total for Morgan's Grant Subdivision north of Terry Fox Drive (3.05 pers/unit) to Hines Rd San. sewer (Points A & B)	36				7218	146.12	3.09	<u>}</u> 90.43 _⊂	740.91	<u>JJ31.353</u>																	 	
Comm (215 ha) + Rec (27.6 ha)	122 121 120	121 120	24 24 328	0.38 0.28 32.69	24 48 1872	0.38 0.66 33.34	4.00 4.00 3.61	0.39 0.78 27.36	0.11 0.18 9.34	0.50 0.96 36.70	200 200 300	3.78 2.53 0.40	63.76 52.17 61.15	2.03 1.66 0.87	63.5 68.0 69.5	83.500 80.900 79.400	84,450 81,820 80,270	0.95 0.92 0.87	80.400 77.900 75.479	80.200 77.700 75.179	4.0 3.9 4.8	80.900 79.400 79.400	81.820 80.270 80.400	0.92 0.87 1.00	78.000 76.179 75.201	77.800 75.979 74.901	3.8 4.1 5.2	
	116	119	6	0.14	8	0.14	4.00	0.13	0.04	0.17	200	2.00	46.38	1.48	8.1	82.100	83.340	1.24	79.262	79.062	4.1	82.100	83.300	1.20	79.100	78.900	4.2	
	119 118	118 117	24 44	0.22 0.50	32 76	0.36 0.86	4.00 4.00	0.52 1.23	0.10 0.24	0.62 1.47	200 200	2.69 2.21	53.78 48.75	1.71	37.2 81.1	82.100 81,550	93.300 82.320	1.20 0.77	79.000	78.800 77.500	4.3 4.6	81.550 79.400	82.320	0.77	78.000	77.800	4.3	
	117	110	24	0.31	1972	34.51	3.59	28.68	9.66	38.35	300	0.40	61.15	0.87	70.3	79.400	80.400	1.00	75.201	74.901	5.2	79.600	80.800	1.20	74.920	74,620	5. 9	
	111	110	12	0.33	12	12.00	4.00	0.19	3.36	3.55	100	1.91	45.32	1.44	46.0	80.300	81.250	0.95	76.500	76.300	4.8	79.600	80.800	1.20	75.620	75.420	5.2	
	110	109	16	0.30	2000	46.B1	3.59	29.05	13.11	42.16	301	0.40	61.15	0.87	66.0	79.600	80.800	1.20	74.920	74.620	5.9	79.900	80.800	0.90	74.656	74.356	6.1	
	115	114	20	0.32	20	0.32	4.00	0.32	0.09	0.41	200	4,49	69.51	2.21	51.2	84,850	85.450	U.60	81.500	81.300	4.0	82,500	83.500	1.00	79.000	78,800	4.5	
I	116	114	20	0.30	1 20	0.30	4.00	j 0.32	1 0.08	V,41	1 200	0.56	' IP	eak	Sewa	age F	low f	rom	Phas	se 12			1 00.000		1			•
														36.7	0-0.5	50-0.9	96 = 3	35.2	4 L/s	ec								

2.0 SANITARY SEWAGE

2.1 Existing Sanitary Systems

Sanitary sewage generated from the Morgan's Grant Subdivision is conveyed to the following two sanitary sewer outlets:

- a 375 mm dia. sanitary sewer flowing easterly across March Road approximately 200 m north of Morgan's Grant Way, which eventually outlets into the East March Trunk Sewer; and
- a 600 mm dia. sanitary sewer crossing Terry Fox Drive approximately 200 m west of March Road, which outlets to the Hines Road sanitary sewer.

The 375 mm dia. sewer collects sanitary sewage from approximately 65 ha, of which Morgan's Grant accounts for approximately 29 ha. This outlet collects sewage for most of Morgan's Grant Phase 4, the commercial area located north of Morgan's Grant Phase 4, and approximately 36 ha of land located north of Morgan's Grant Phase 6. (i.e. KNUEA)

The 600 mm dia. sewer collects sanitary sewage for approximately 125 ha. This outlet collects sewage from all areas included in Morgan's Grant Phases 1, 2 and 3, the westerly portion of Morgan's Grant Phase 4, all areas included in Morgan's Grant Phases 5, 6, 7, 8 and 9 and some of the lands west of the hydro easement adjacent to Klondike Road. This 600 mm dia. Sanitary sewer will also collect sewage from the remainder of the Morgan's Grant lands, west of the hydro easement, via a future sanitary sewer down Terry Fox Drive.

2.2 Sanitary Flows

The design of local sanitary sewers is summarized in the following table (peaking factors for each are shown in parentheses):

Land Use	Sanita	ary Flow Contribu	ition
	L/cap/day	L/ha/day	L/s/ha
Residential	350 (Harmon)		
Commercial		50,000 (1.5)	
Institutional		50,000 (1.5)	
Infiltration			0.28 (1.0)

The Harmon peaking factor was calculated for each pipe reach to determine the sanitary peak flows in residential development areas. This peaking factor provides an increased peaking factor for smaller urban areas over larger developments. The following formula is used to derive the Harmon peaking factor:

Harmon
$$= 1 + 14$$

(4 + P^{1/2})

A 1.5 peaking factor was utilized for land uses other than residential areas (i.e. institutional, commercial etc.). Sanitary flows estimated with the above information were calculated on the conservative assumption that sanitary peak flows occurred simultaneously.

For purposes of designing flows in local sanitary sewers within the Morgan's Grant Plan of Subdivision, the standard of four persons per unit was used. This results in flows of 38.78 L/s, 125.05 L/s and 49.51 L/s at Points A, B and C on the enclosed Master Drainage Plan (see also enclosed Sanitary Sewer Design Sheet).

Flows from Point A will be conveyed via a future sanitary sewer down Terry Fox Drive to Point B, where flows from Points A and B are combined with the Village of Carp forcemain flows which then travel south through the Trillium easement to the upper end of the Hines Road sewer.

At Terry Fox Drive, the flows from the Morgan's Grant Subdivision are based on 3.05 persons per unit, for consistency with the Region of Ottawa-Carleton Wastewater Master Plan which results in a flow of 131.52 L/s. The Region has advised that, at this point, allowable sanitary flows are as follows:

Morgan's Grant Subdivision	136 L/s	
Village of Carp Forcemain	<u>58 L/s</u>	
	1 9 4 L/s	(i.e. 600 mm dia. sanitary at 0.1% has
		a capacity of 194 L/s)

Sanitary flow from Point C leaving the subdivision, result in projected flows of 49.51 L/s (see enclosed Sanitary Sewer Design Sheet).

The capacity of this sewer crossing under March Road is 96.02 L/s (i.e. 375 mm sanitary at 0.30%).

2.3 Summary

The proposed sanitary sewer servicing scheme has been developed to accommodate all the lands within the boundaries of Morgan's Grant Subdivision as well as the recently acquired KNUEA lands and the Sanitary Sewer Design Sheets demonstrate that all sanitary sewer flows are within the allocations provided by the City of Ottawa (i.e. City of Kanata, Region of Ottawa Carleton)

CONTENT COPY OF ORIGINAL

Ministère de l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4208-6J7J5T Issue Date: November 17, 2005

Minto Developments Inc. 427 Laurier Avenue West, No. 300 Ottawa, Ontario K1R 7Y2

Site Location: Morgan's Grant Subdivision Stage 12D Part of Lots 11 and 12, Concession 3 Ottawa City, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

storm and sanitary sewers to be constructed in the City of Ottawa on Ishpatina Crescent, Goward Drive, and Finlayson Crescent, all in accordance with the application from Minto Developments Inc., dated May 11th, 2005, including final plans and specifications prepared by J.L. Richards & Associates Limited

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;

2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

3. The name of the appellant;

4. The address of the appellant;

- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*	AND	The Director
Environmental Review Tribunal		Section 53, Ontario Water Resources Act
2300 Yonge St., 12th Floor		Ministry of the Environment
P.O. Box 2382		2 St. Clair Avenue West, Floor 12A
Toronto, Ontario		Toronto, Ontario
M4P 1E4		M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

CONTENT COPY OF ORIGINAL

DATED AT TORONTO this 17th day of November, 2005

Aziz Ahmed, P.Eng. Director Section 53, *Ontario Water Resources Act*

EC/

c: District Manager, MOE Ottawa Robert L. Phillips, C.E.T., Program Manager, Infrastructure Approvals West, City of Ottawa Lee Jablonski, P.Eng., J.L. Richards & Associates Limited

Ministère de l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 8692-54QSUG

Minto Developments Inc. 427 Laurier Avenue West, Suite 300 Ottawa, Ontario K1R 7Y2

Site Location: Morgan's Grant Part of Lot 11, Concession 3 Ottawa City,

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

Stormwater management facility to be located in the southern quadrant of the intersection Old Carp Road and March Road in the City of Ottawa as follows:

- a 5.7 metre, 1500 millimetre diameter inlet sewer discharging into the first chamber of a splitter box;
- a splitter box divided into two(2) chambers, containing: a weir in the first chamber, directing the runoff to the sediment forebay; a weir in the second chamber with its crest 0.5 m above the crest elevation in the first chamber, directing run off to the wet cell via an overflow pipe; a spillway with its invert elevation elevation 0.8 m higher than the crest elevation in the first chamber, directing runoff to the wet cell;
- a sediment forebay with an average depth of 1.3 metres, an average width of 24 metres and a length of 82 metres discharging treated runoff to the wet cell via a weir with the crest at the same level as the weir crest in the first chamber;
- a wet cell consisting of a permanent pool volume of 10,250 cubic metres and an active storage of 13,000 cubic metres and an outlet structure containing a weir with crest elevation 3 metres lower than the weir crest in the first chamber of the splitter box; discharging treated runoff to an existing municipal drain via an approximately 150 metres,1650 millimetre diameter outlet storm sewer running along March Road;

all in accordance with the application from Minto Developments Inc. dated August 14 2001, including design brief, final plans, specifications and other supporting documents prepared by Cumming Cockburn Limited

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;

"Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;

"District Manager" means the District Manager of the Ottawa District Office of the Ministry;

"Environmental Appeal Board" means the Environmental Review Tribunal established pursuant to the Environmental Review Tribunal Act;

"Ministry" means the Ontario Ministry of the Environment;

"Owner" means Minto Developments Inc. and includes its successors and assignees;

"works" means the sewage works described in the Owner's application, this certificate and in the supporting documentation referred to herein, to the extent approved by this certificate;

" grab sample " means an individual representative sample of sewage collected in acordance with Section 3.1.1 of the Ministry's publication entitled "Protocol for the Sampling and Analysis of Industrial/Municipal Waste Water", dated January 1999, and as amended from time to time;

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

CONTENT COPY OF ORIGINAL

TERMS AND CONDITIONS

1. GENERAL CONDITION

(a) Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate.

(b) Where there is a conflict between a provision of any submitted document referred to in this Certificate and the Conditions of this Certificate, the Conditions in this Certificate shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

2. EFFLUENT MONITORING AND RECORDING

The Owner shall, establish and carry out, upon commencement of operation of the sewage works, the following monitoring program:

(a) In a given calendar year, at least five rainfall events shall be selected during the period from the beginning of May to the end of September of that year and for each event, composite samples shall be constituted from three (3) grab samples of the storm run off at the inlet to the pond before it discharges to the sediment forebay and four (4) grab samples of the effluent leaving the pond at the outlet structure at approximately 1,2,4,6 and 8 hours from the start of each rainfall event and, the composite samples shall be analyzed for the Total Suspended Solids

(b) The sampling and analyses required in subsection (1) shall be performed in accordance with the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" January 1999 and as amended; or as described in the American Public Health Association's publication "Standard Methods for Examination of Water and Wastewater", 20th Edition, 1998 and as amended;

(c) Pursuant to subsections (1) and (2) the owner shall prepare and submit in writing a monitoring report to the District Manager by the 31st day of October immediately following the monitoring period and which shall include, as a minimum, results of the water quality monitoring program, the stage curve for the outlet weir - validated in the course of the monitoring period - the hyetographs and outlet hydrographs for the storms associated with the said water quality analyses and, an assessment of the facility's performance;

(d) The monitoring program described in subsections (1), (2) and (3) shall begin when approximately 80 % of the land mass tributary to the sewage works have been developed. After its inception, the said monitoring program shall last for a period of no less than three (3) consecutive years.

3. The Owner shall make all necessary investigations, take all necessary steps and obtain all necessary approvals so as to ensure that the physical structure, siting and operations of the stormwater works do not constitute a safety or health hazard to the general public.

4. The Owner shall ensure that sediment and excessive decaying vegetation are removed from the above noted stormwater management system at such a frequency as to prevent the excessive buildup and potential overflow of sediment and/or decaying vegetation into the receiving watercourse.

The reasons for the imposition of these terms and conditions are as follows:

1. Condition 1 is imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Certificate and the practice that the Certificate is based on the most current document, if several conflicting documents are submitted for review.

CONTENT COPY OF ORIGINAL

2. Condition No. 2 is included to ensure that the information relating to the operation of the sewage works is made available to Shirley's Brook.

3. Condition 3 is imposed because it is not in the public interest for the Director to approve facilities which, by reason of potential health and safety hazards do not generally comply with legal standards or approval requirements falling outside the purview of this Ministry.

4. Condition 4 is included as regular removal of sediment and excessive decaying vegetation from this approved stormwater management system are required to mitigate the impact of sediment and/or decaying vegetation on the downstream receiving watercourse. It is also required to ensure that adequate storage is maintained in the stormwater management facilities at all times as required by the design.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;

2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4 The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

AND

DATED AT TORONTO this 21st day of December, 2001

Mohamed Dhalla, P.Eng. Director Section 53, *Ontario Water Resources Act*

SK/ c: District Manager, MOE Ottawa Peter Spal, Cuming Cockburn Limited

																	97)-	רו	90	$\overline{\mathcal{D}}$									
5.663 00					PROP.	C/L F	ROAD G	RADE	$\overline{\mathbf{n}}$		PVI S	STA =	· 9+59	96.600															
					0.70	7%			-+		PVI I	ELEV =	101.	500		•				ORIGINA	L GROU								
										<u>Т</u> ХР.)												1.222%				<u></u>	VI STA VI ELE	= 9 V = 1	<u>+513</u> 00.48
										2.4m (_
											PRO 203r	P. TOP nmø W	OF — /M																
																		┛┖		_					-				
	-CLAY FULL WIDTI	DYKE TRENCH	<u>-H 1.5m</u>	THICK																			-		_				
	PER STAN	CITY OF (DARD DRA	OTTAWA WING S8																										
																				FULL TREN WIDTH & C PER CITY	DEPTH 1 OF OTTA	.5m T WA	ніск						
			1	12.6 112	.00 m – 4	450mmø	ST CONC.	100-D	@ 1.05%	,							C					113.7	82.23m -	- 525mm@	ST CON	C. 100-	0 @ 0.40	%	
			1	<i>13.7</i> 112	.90 m – 2	250mmø :	SAN PVC	DR.35 @	1.20%			0.01	4.5	007								115.5	5 83.66m	- 250mm	nø SAN P	VC DR.3	© 0.409	%	
												201.4	<u>15m -</u>	- 203n			DR-18												
	102.054				101.877					101.701					101.524	VALVE &]	101.236				100.931					100.625
	99.654 <i>99.61</i>				<u>99.477</u> 99.48					<u>99.301</u> <i>99.23</i>					99.124 <i>99.02</i>	HYDRANT, <i>98.87</i>				98.836 - 98.84				98.531- 98.51					98.225 98.26
																		97.52 97.52	97.43										
																	7.16 1943	7.12											
	+675				+650					+625					+600	+593.840	+ 253 2658 29		001.200	+575				+550					+525
	<u>o</u>	HORIZ 0 5m 0 VER	SCALE ONTAL 1 10m 1m TICAL 1:	: 500 15m 2 50			ENG	J.				J 8 8 C C C C S T c S F	.L. Ri Asso 64 Lao 0ttawa 1Z 5M el: 613 ax: 613	chard ociates dy Elle , ON //2 3 728 3 3 728 6	ı <mark>∞</mark> s Limi n Plac Cana 571 012	তা ted ce da	σ	<u>ס</u> <u>ס</u>	DESIGN CHECKEI DRAWN CHECKEI	ю J.B. D L.J. M.B. D	-						10		<u> </u>

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 December 05, 2018

Appendix J – Drawings

Site Plan Drawing

Survey Plan

[%]exp.

PAPER SIZE: ARCH D

PLOT DATE: Monday, October 15, 2018

