Minto Communities and 2559688 Ontario Inc

936 March Road

Transportation
Impact
Study

2018-04

April 2020

936 March Road Transportation Impact Assessment

Step 1 Screening Report

Step 2 Scoping Report

Step 3 Forecasting Report

Step 4 Analysis Report

Prepared for:

Minto Communities 2559688 Ontario Inc. 200-180 Kent Street Ottawa, ON K1P 0B6

Prepared by:

CGH Transportation Inc. 13 Markham Avenue Ottawa, ON K2G 3Z1

April 2020

PN: 2018-04

Table of Contents

1	L Scre	eening	1
2	2 Sco	ping	2
	2.1	Existing and Planned Conditions	2
	2.1.	1 Proposed Development	2
	2.1.	2 Existing Conditions	4
	2.1.	3 Planned Conditions	8
	2.2	Study Area and Time Periods	8
	2.2.	1 Study Area	8
	2.2.	2 Time Periods	8
	2.2.	3 Horizon Years	9
	2.3	Exemption Review	9
3	B Fore	ecasting	9
	3.1	Development-Generated Travel Demand	9
	3.1.	1 Trip Generation and Mode Shares	9
	3.1.	2 Trip Distribution	11
	3.1.	3 Trip Assignment	12
	3.2	Background Network Travel Demands	15
	3.2.	1 Transportation Network Plans	15
	3.2.	2 Background Growth and Other Developments	15
	3.3	Demand Rationalization	17
4	l Ana	lysis	20
	4.1	Development Design	20
	4.1.	1 Design for Sustainable Modes	20
	4.1.	2 Circulation and Access	20
	4.1.	3 New Street Networks	20
	4.2	Parking	20
	4.3	Boundary Street Design	20
	4.4	Access Intersections	22
	4.4.	1 Location and Design of Access	22
	4.4.	2 Intersection Control	22
	4.5	Transportation Demand Management	22
	4.6	Neighbourhood Traffic Management	22
	4.7	Transit	23
	4.8	Review of Network Concept	23
	4.9	Intersection Design	23
	4.9.	1 Intersection Control	23
	4.9.	2 Intersection Design	23
_	. Con	clusions	31

List of Figures

Figure 1: Area Context Plan	7
Figure 2: Concept Plan	
Figure 3: Intersection of Maxwell Bridge Road/Halton Terrace at March Road	
Figure 4: March Road Site Photo - August 8, 2018	
Figure 5: Existing Transit Service	
Figure 6: 2018 Adjusted Traffic Counts	
Figure 7: Traffic Assignment (%)	
Figure 8: Assignment (Volumes)	
Figure 9: Kanata North CDP TMP Excerpt – 2026 Total Traffic Volumes	
Figure 10: 2023 Future Background Traffic	
Figure 11: 2028 Future Background Traffic Volumes	
Figure 12: 2023 Future Total Traffic Volumes	
Figure 13: 2028 Future Total Traffic Volumes	
Figure 14: Transit Walking Distance	
Table of Tables	
Table 1: Intersection Count Date	
Table 2:Collision Summary - March Road @ Halton Terrace / Maxwell Bridge Road	
Table 3: Exemption Review	
Table 4: ITE Trip Generation Person Trip Rates	
Table 5: Total Person Trip Generation	
Table 6: OD Survey Existing Mode Share – Kanata Stittsville	
Table 7: Trip Generation by Mode	
Table 8: OD Survey Existing Mode Share – Kanata/Stittsville	
Table 9: Trip Generation by Transit Mode	
Table 10: 2018 Existing Conditions Operational Analysis	
Table 11: 2023 Future Background Conditions Operational Analysis	
Table 12: 2028 Future Background Conditions Operational Analysis	
Table 13: 2023 Total Future Conditions Operational Analysis	
Table 14: 2028 Total Future Conditions Operational Analysis	
Table 15: PETSI Score Halton Terrace/Maxwell Bridge Road at March Road	
Table 16: PETSI Score Street 1 at March Road	
Table 17: Bicycle LOS Criteria Halton Terrace/Maxwell Bridge Road at March Road	
Table 18: Bicycle LOS Criteria Street 1 at March Road	29

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Collision Data

Appendix D – March Road Cross-Sections

Appendix E – Traffic Signal Warrants

Appendix F – 2018 Existing Synchro

Appendix G – 2023 Future Background Synchro

Appendix H – 2028 Future Background Synchro

Appendix I – 2023 Total Future Synchro

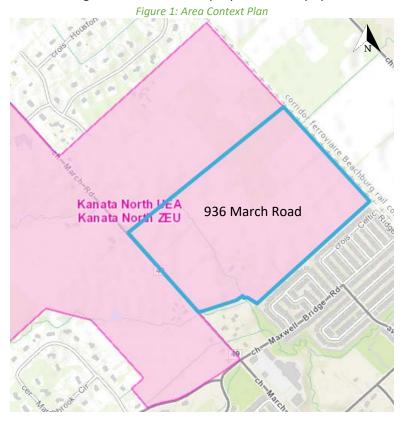
Appendix J – 2028 Total Future Synchro

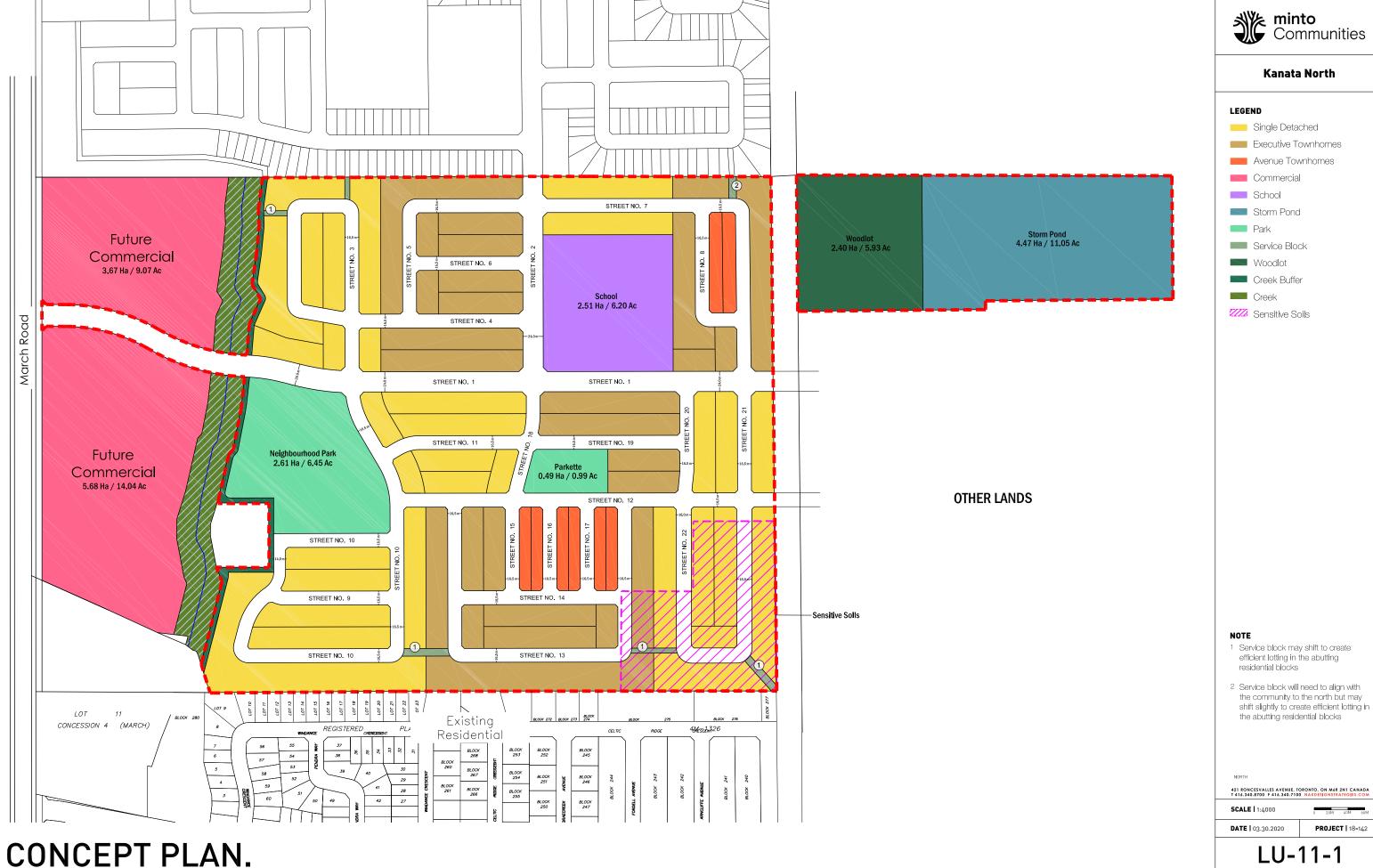
Appendix K – Comment Response Memo

A. TIA Update Context

This report has been updated following the submission of the Step 4 Strategy Report. This update will include incorporating all comments that were previously addressed through comment responses. It will also incorporate an updated unit count and comparison of the trip generation based on the updated unit counts. Based on the small change in unit counts it is anticipated that the trip generation will not be significantly changed and therefore the analysis that was originally presented as part of this TIA will remain unchanged and therefore the conclusions of this TIA will remain unchanged. In the original TIA the development concept included 455 single detached units and 401 townhouse units. The updated concept plan includes 353 single detached units and 575 townhouse units. The resultant change in trip generation will be further discussed in Section 3.1. As a full TIA was triggered and has been completed the original screening form has been included with this updated TIA. For additional context, while most of the comments have been addressed herein, the comment response memo has been appended as requested by the City of Ottawa.

1 Screening


This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component.


2 Scoping

2.1 Existing and Planned Conditions

2.1.1 Proposed Development

The proposed development, located at 936 March Road, is currently a greenfield property within the Kanata North Urban Expansion Area (UEA). The site is in an area that is currently zoned RU Rural Countryside Zone. The current development application would modify the zoning to allow for low-rise residential uses, with a future commercial area along the March Road frontage (commercial area owned by others). The commercial portion has been generally considered in this report, consistent with the Kanata North Community Design Plan, which assumed 300,000 square feet of commercial space. The proposed residential development with a mixture of detached homes and townhouses. The concept plan currently considers a total of approximately 800 units, split between townhouse and detached units. Access to the proposed development will be via one full movements access, located approximately 600 metres north of the signalized intersection of Maxwell Bridge Road / Halton Terrace at March Road. Future accesses are provided to allow connections to the north and the east. These access points are consistent with the Kanata North Community Design Plan (CDP). To the north it is anticipated that this development would connect with the adjacent lands, and the future residential development on those lands. To the east, an access is provided, as per the CDP, however, this is shown as a dead-end connection at the CN Railway Corridor. The anticipated full build-out and occupancy horizon is 2023. No phasing is known at this time. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

LU-11-1

2.1.2 Existing Conditions

2.1.2.1 Area Road Network

March Road

March Road is a City of Ottawa Arterial road with a two-lane rural cross-section including gravel shoulders and an 80 km/h posted speed limit along the frontage of the site. At Maxwell Bridge Road / Halton Terrace, March Road widens to four-lanes and has an urban cross-section including at-grade cycling lanes. The speed limit remains 80km/h. The Ottawa Official Plan reserves a 44.5 metre right of way along the March Road frontage.

2.1.2.2 Existing Intersections

Maxwell Bridge Road / Halton Terrace at March Road

The intersection of Maxwell Bridge Road / Halton Terrace at March Road is a signalized intersection with auxiliary left turn lanes on each approach. The northbound and southbound approaches each also have right turn lanes and at grade cycling lanes, between the through lane and the right turn lane. No turn restrictions were noted.

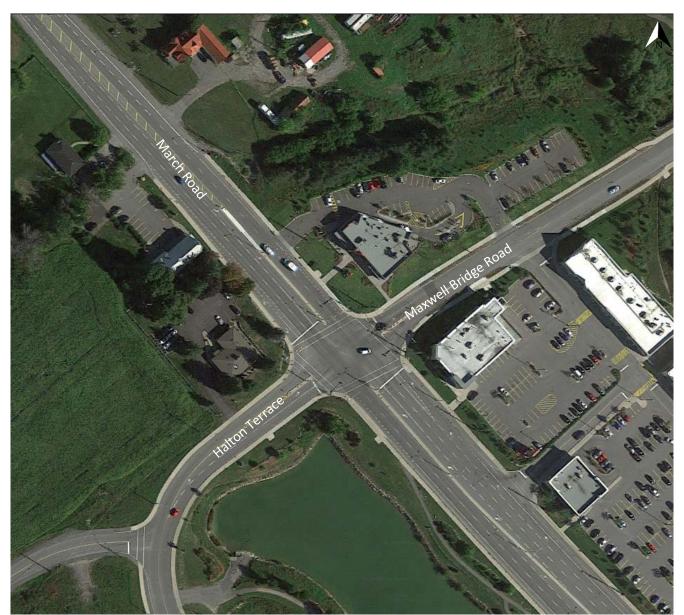


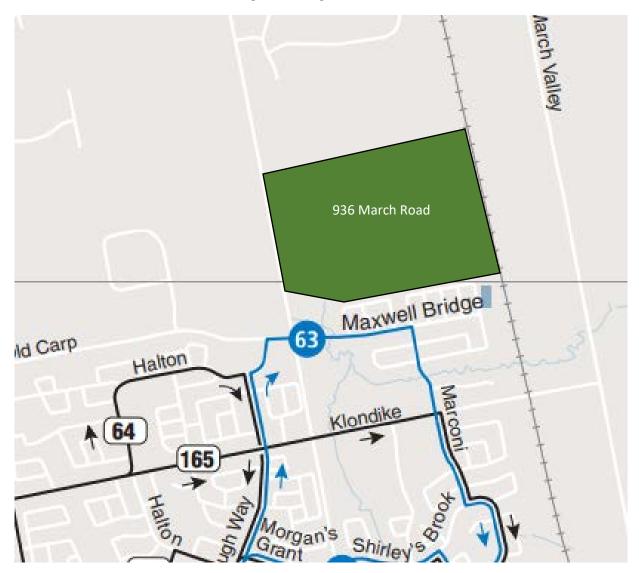
Figure 3: Intersection of Maxwell Bridge Road/Halton Terrace at March Road

2.1.2.3 Existing Driveways

The existing driveway to 936 March Road will remain after the construction of the proposed development. Additionally, just beyond 200 metres in each direction from the proposed access point there is a driveway to a private residence. It is assumed that as this area is built-out the need for those private driveways will be reduced or eliminated. None of the driveways would provide access to significant traffic generators and would therefore have no impact on this TIA.

2.1.2.4 Cycling and Pedestrian Facilities

The section of March Road along the frontage of the proposed development is noted on the City of Ottawa's Existing Cycling Network as a "Paved Shoulder". However, a review of Google Streetview (image dated August 2017) shows that there is a gravel shoulder along this section of March Road. Through a site visit, it has been determined that this is a paved shoulder, where the pavement is in very poor condition, not appropriate for cycling. No pedestrian facilities are noted along the frontage of 936 March Road. Figure 4 documents the condition of the shoulders of March Road along the site frontage.


Figure 4: March Road Site Photo - August 8, 2018

South of the site, March Road transitions to an urban cross-section with sidewalks and at-grade cycling lanes.

2.1.2.5 Existing Transit

There is no existing transit service along the boundary road that would serve the proposed development. South of the site, at the intersection of Maxwell Bridge/Halton Terrace at March Road, Route 63 travels east-west along Maxwell Bridge / Halton Terrace. No other existing routes currently exist.

Figure 5: Existing Transit Service

2.1.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the Study Area.

2.1.2.7 Existing Peak Hour Travel Demand

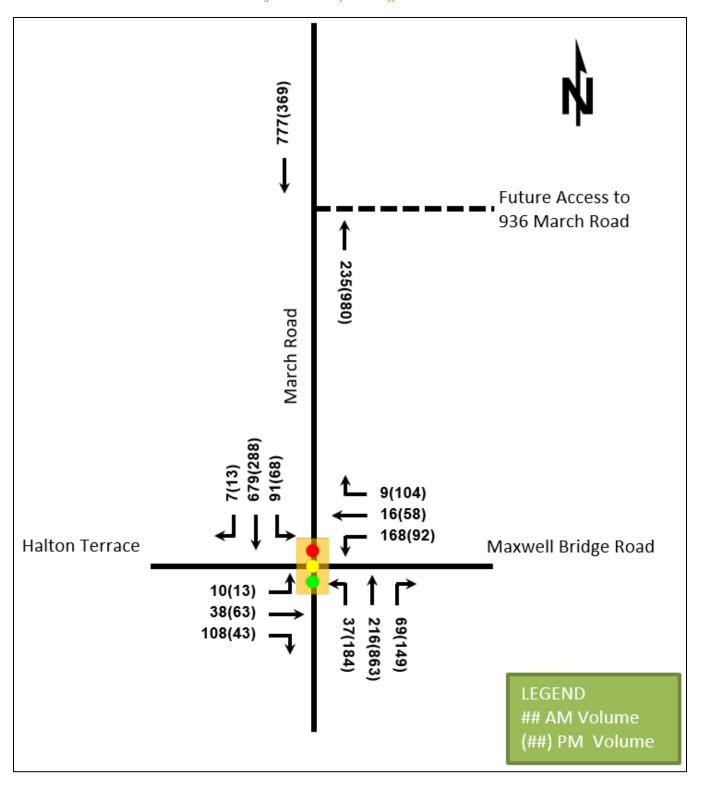

Existing turning movement counts were acquired from the City of Ottawa for the existing Study Area intersection. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date

Intersection	Count Date		
March Road @ Halton Terrace / Maxwell Bridge Road	Wednesday, August 10, 2016		

As the intersection was counted two years prior to the study date, a 0.5%/ annum compound growth rate has been applied to estimate the 2018 adjusted traffic counts. This growth rate is consistent with the Kanata North CDP TMP. Figure 6 illustrates the 2018 adjusted traffic counts.

Figure 6: 2018 Adjusted Traffic Counts

Detailed turning movement count data is included in Appendix B.

2.1.2.8 Collision Analysis

Collision data has been acquired from the City of Ottawa for five years prior to the commencement of this TIA at each of the Study Area intersections. Table 2 summarizes the collisions at the intersection of March Road at Halton Terrace / Maxwell Bridge Road.

Table 2: Collision Summary - March Road @ Halton Terrace / Maxwell Bridge Road

		Number	%
Total Collisions		13	100%
Classification	Fatality	0	0%
	Non-Fatal Injury	5	38%
	Property Damage Only	8	62%
Initial Impact	Angle	2	15%
Type	Rear end	0	0%
	Sideswipe	2	15%
	Turning Movement	5	38%
	SMV Other	3	23%
	Other	1	8%
Road Surface	Dry	7	54%
Condition	Wet	3	23%
	Loose Snow	1	8%
	Slush	0	0%
	Packed Snow	0	0%
	Ice	2	15%
Pedestrian Invol	ved	1	8%

Collisions at the intersection of March Road at Halton Terrace / Maxwell Bridge Road were primarily on the east and west legs, and 40% of the collisions involved a turning movement. It was also noted that 60% of the collisions only involved property damage, indicating low speed collisions, with no fatalities. Collision data is included in Appendix C.

2.1.3 Planned Conditions

2.1.3.1 Changes to the Area Transportation Network

The subject development is within the Kanata North CDP Urban Expansion Area. As such, it is subject to the planning polices outlined in the CDP. The CDP proposes that March Road would be an Arterial Road with a median Bus Rapid (BRT) facility, following the results of the Environmental Assessment (EA) completed for March Road. The widening of March Road, and the extension of a Bus Rapid Transit facility along the frontage of 936 March Road is considered in the City of Ottawa TMP Ultimate Network. Neither of these future transportation infrastructure upgrades are included in the 2031 Affordable Network. March Road is shown in the Ultimate Cycling Network as a Spine Route.

The ultimate and interim cross-section for March Road, considered in the CDP, include northbound and southbound cycling tracks. These will be carried through the intersection of March Road at Street 1.

2.1.3.2 Other Study Area Developments

At the time of this report, no other development applications were available for the adjacent properties. However, the CDP Transportation Master Plan will be used to estimate the impact of adjacent developments.

2.2 Study Area and Time Periods

2.2.1 Study Area

The study area will include the intersection of Maxwell Bridge Road / Halton Terrace at March Road and the 936 March Road access intersection and will include examining March Road as a Boundary Road.

2.2.2 Time Periods

As the proposed development is composed entirely of residential units the AM and PM peak hours will be examined.

2.2.3 Horizon Years

The anticipated build-out year is 2023. As a result, the full build-out plus five years horizon year is 2028.

2.3 Exemption Review

Table 3 summarizes the exemptions for this TIA.

Table 3: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Comp	ponent		
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	Exempt
	4.2.3 New Street Networks	Only required for plans of subdivision	Required
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	Exempt
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt
Network Impact Cor	nponent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 4.6.1 Adjacent Neighbourhood Traffic Management 4.6.1 Adjacent Neighbourhoods		Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt. The development will not rely on local or collector streets for access.
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Required

3 Forecasting

3.1 Development-Generated Travel Demand

3.1.1 Trip Generation and Mode Shares

This TIA has been written within the context of the council approved Kanata North Community Design Plan (CDP) and will reconfirm the findings of the Kanata North Transportation Master Plan that was conducted as part of the CDP. That study used Institute of Transportation Engineers (ITE) Trip Generation Manual trip generation rates. In order to re-confirm the previous work, ITE Trip Generation Manual (10th Edition) Rates will be used. While it is acknowledged that the City of Ottawa's preference is for the Trans Study Rates to be used, in this case those rates would be overly conservative and are not appropriate. This methodology has been discussed with and agreed upon by City Staff and therefore ITE Trip Generation Rates have been used in this report. As there is currently no plan for the commercial spaces the trip generation has been taken directly from the CDP with no modifications.

Vehicle trip rates have been determined using the ITE Trip Generation Manual. To estimate person trip generation a factor of 1.28 has been applied to the rates. Table 4 summarizes the person trip rates for the proposed land uses.

Table 4: ITE Trip Generation Person Trip Rates

Dwelling Type	ITE LUC	Peak Hour	Vehicle Trip Rate	Person Trip Rates
Single Detached	210	AM	0.72	0.92
Single Detached	210	PM	0.96	1.23
Townhouse	220	AM	0.44	0.56
Townhouse	220	PM	0.51	0.65

LUC - Land Use Code

Vehicle Trip Rates have been calculated using the fitted curve equations

Using the above Person Trip rates, the total person trip generation has been estimates. Table 5 below illustrates the total person trip generation by dwelling type.

Table 5: Total Person Trip Generation

Land Has	l loite	AM Peak Hour			PM Peak Hour		
Land Use	Units	In	Out	Total	In	Out	Total
Single Detached	455	105	314	419	353	207	560
Townhouse	401	52	173	225	164	97	261
Total Person Trips		157	487	644	517	304	821

Using the most recent National Capital Region Origin-Destination survey (OD Survey), the existing mode shares for Kanata/Stittsville have been determined (Table 6).

Table 6: OD Survey Existing Mode Share – Kanata Stittsville

Travel Mode	Existing Mode Share
Auto Driver	65%
Auto Passenger	15%
Transit	10%
Non-Auto	10%
Total	100%

The CDP considers a bus rapid transit facility along the centreline of March Road, and the City of Ottawa TMP 2031 Network Concept contemplates a conceptual future transit corridor along the section of March Road adjacent to the proposed development. However, the 2031 Affordable Network does not include any higher order transit facilities along the subject section of March Road. Therefore, as a conservative estimate of the traffic the existing mode share for the Kanata/Stittsville traffic zone was used.

Using the above mode shares and person trip rates the person trips by mode have been projected. Table 7 summarizes the trip generation by mode.

Table 7: Trip Generation by Mode

Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Auto Driver	65%	102	316	418	336	198	534
Auto Passenger	15%	24	73	97	78	46	123
Transit	10%	16	48	65	51	31	82
Non-Auto Modes	10%	16	48	65	51	31	82
Total	100%	157	487	644	517	304	821

As shown above, 390 AM and 781 PM peak hour two-way trips are projected as a result of the proposed development.

No trip reductions factors (i.e. synergy, pass-by, etc.) have been applied as the subject development is composed entirely of residential units.

3.1.2 TIA Trip Generation Update and Comparison

As discussion in the pre-amble to this report, the unit count has changed based on updates to the plan of subdivision. The unit count changes are summarized in Table 8.

Original Unit Updated Unit Change **Percent Change Unit Type** Count Count **Single-Detached Dwellings** 455 353 -102 -22% **Townhouse Units** 401 575 +174 +43%

Table 8: Unit Change Comparison

The unit count has increased overall by 70 units, however, as the mix of unit types has changed, and therefore the trip generation has not necessarily increased. A comparison of the trip generation, using the same factors as Section 3.1.1, has been prepared and is summarized in Table 9

l and lles	Units	AM Peak Hour			PM Peak Hour		
Land Use		In	Out	Total	In	Out	Total
Single Detached	353	81	244	325	276	162	438
Townhouse	575	74	248	322	228	134	362
Total Person Trips		155	492	647	504	296	800

Table 9: Updated Total Person Trip Generation

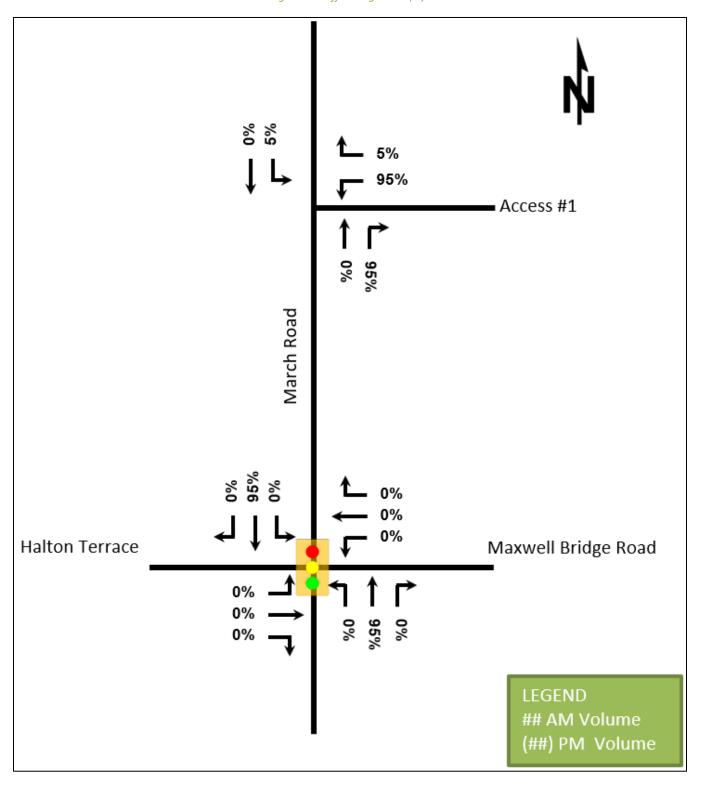
The total updated person trip generation, presented in Table 9, have been compared to the total original person trip generation, presented in Table 10. This comparison is summarized in Table 10.

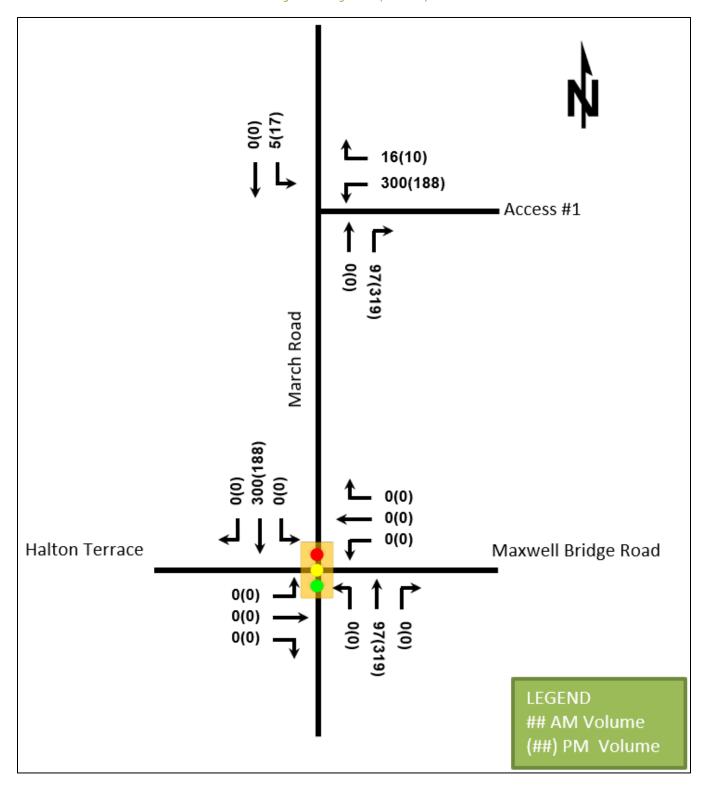
Land Haa		AM Peak Hou	r	PM Peak Hour		
Land Use	In	Out	Total	In	Out	Total
Original Trip Gen	157	487	644	517	304	821
Updated Trip Gen	155	492	647	504	296	800
Change	-2	5	3	-13	-8	-21
Percent Change	-1.3%	1.0%	0.5%	-2.5%	-2.6%	-2.6%

Table 10: Trip Generation Comparison

As shown above, while the overall unit count has changed, due to the change in unit types, the trip generation is very similar to what was analyzed previously. Given the small change in trip generation, less than 3% and generally a reduction in trips, the change in units counts will not impact the results of the analysis presented in this report and therefore the analysis has been carried forward using the original unit count.

3.1.3 Trip Distribution


To understand the travel patterns of the subject development the OD Survey has been reviewed to determine the existing travel patterns. Table 11 below summarizes the distribution.


Table 11: OD Survey Existing Mode Share – Kanata/Stittsville

To/From	Percent of Trips
North	5%
South	60%
East	30%
West	5%
Total	100%

3.1.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the Study Area road network.

3.2 Background Network Travel Demands

3.2.1 Transportation Network Plans

The Kanata North CDP has determined the required March Road interim and ultimate cross-sections. Both cross-sections include two traffic lanes, cycling lanes, and sidewalks, both northbound and southbound. The ultimate cross-section also includes a centreline bus rapid transitway. Appendix D includes the interim and ultimate cross-sections from the CDP.

3.2.2 Background Growth and Other Developments

This TIA is being prepared within the context of the Kanata North CDP – Transportation Master Plan. As a result, the background traffic projections will include all the developments considered as part of that document. Figure 9 is an excerpt from the CDP TMP detailing the 2026 total traffic volumes. This TIA assumes that the subject development will build-out by 2023 and will be the first development to open. The 2028 horizon will include all the development accounted for in the CDP TMP. As per the CDP TMP a 0.5% / annum growth rate will be applied to adjust the existing counts to reflect each future horizon. Figure 10 and Figure 11 illustrate the 2023 and 2028 future background traffic volumes, respectively. The 2028 future background traffic volumes also include the traffic from developments other than 936 March Road that are considered in the CDP TMP.

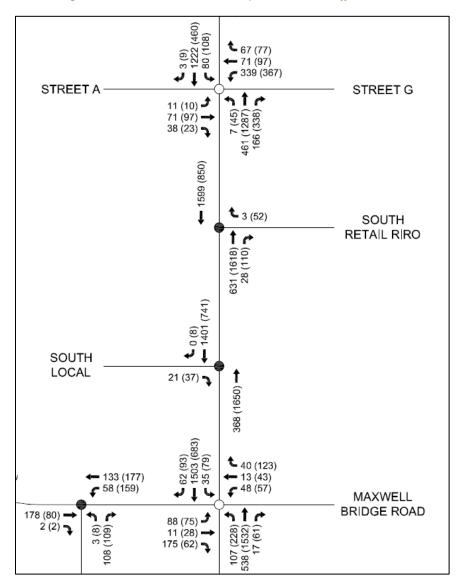


Figure 9: Kanata North CDP TMP Excerpt – 2026 Total Traffic Volumes

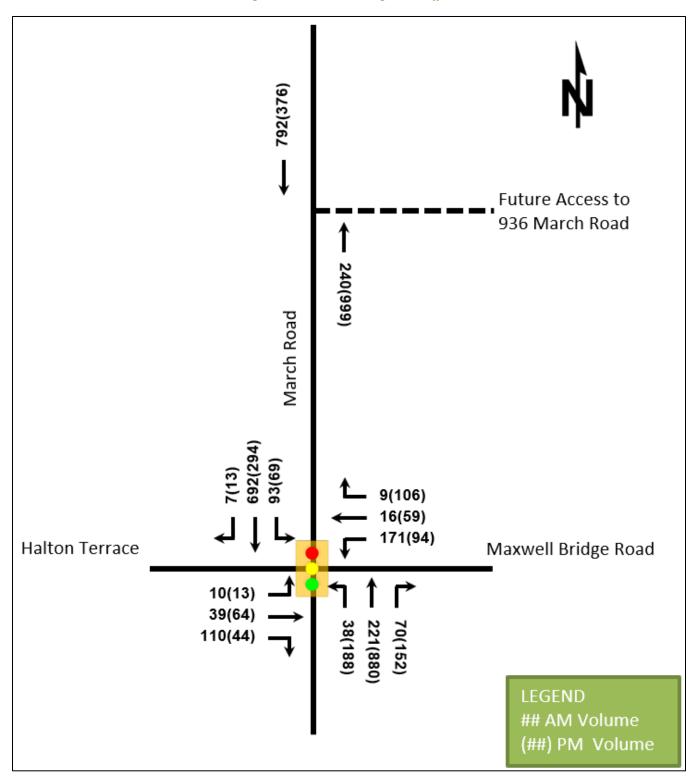
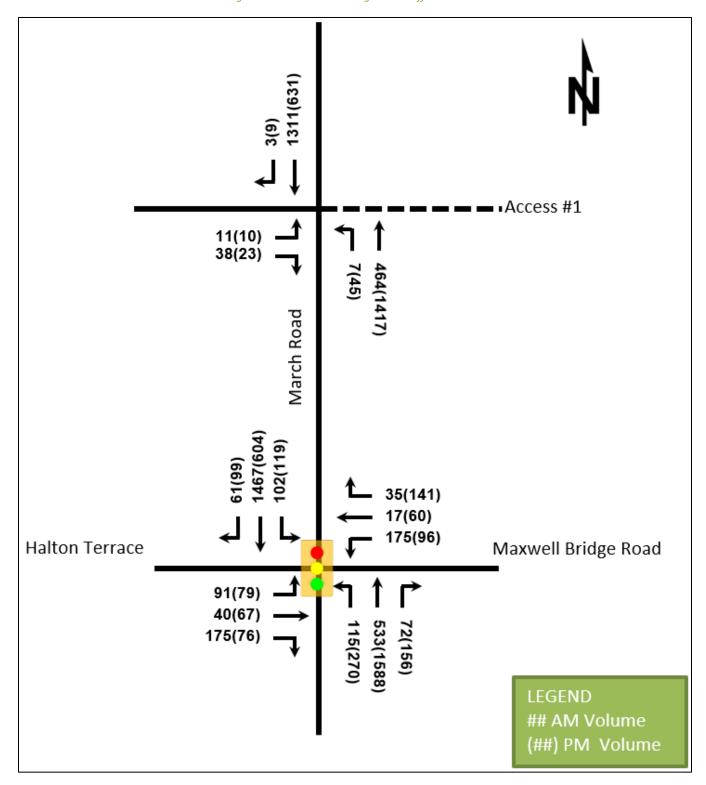



Figure 11: 2028 Future Background Traffic Volumes

3.3 Demand Rationalization

The Kanata CDP TMP examined the network capacity of the Kanata North CDP area. It was determined that the network could accommodate the projected demands. As this study is being written within the context of the council approved CDP, it is not anticipated that the demand will drastically change from what was considered in the CDP TMP. As no adjustments are being made as a result of the demand rationalization, the site generated

traffic documented in Section 3.1 has been added to the Future Background traffic volumes. Figure 12 and Figure 13 illustrate the 2023 and 2028 Future Total traffic volumes, respectively.

Figure 12: 2023 Future Total Traffic Volumes

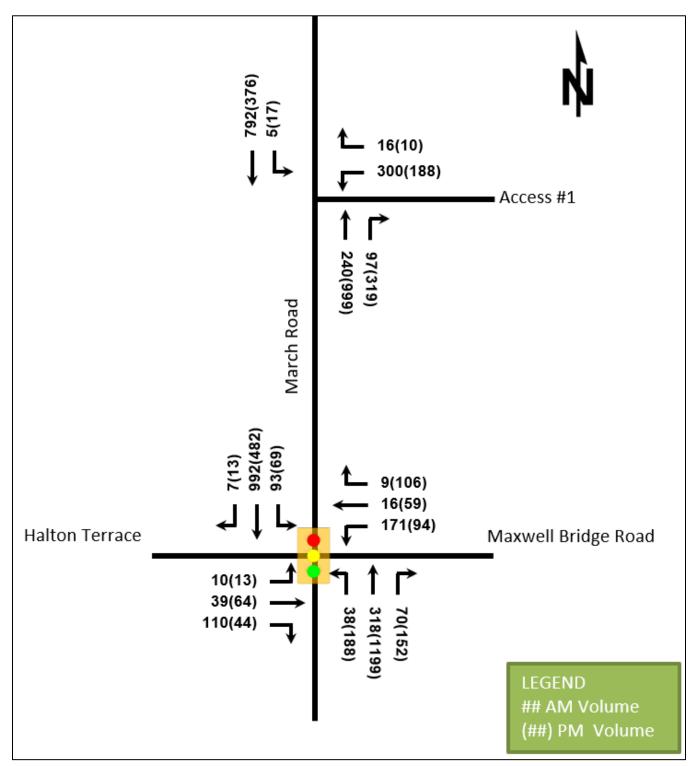
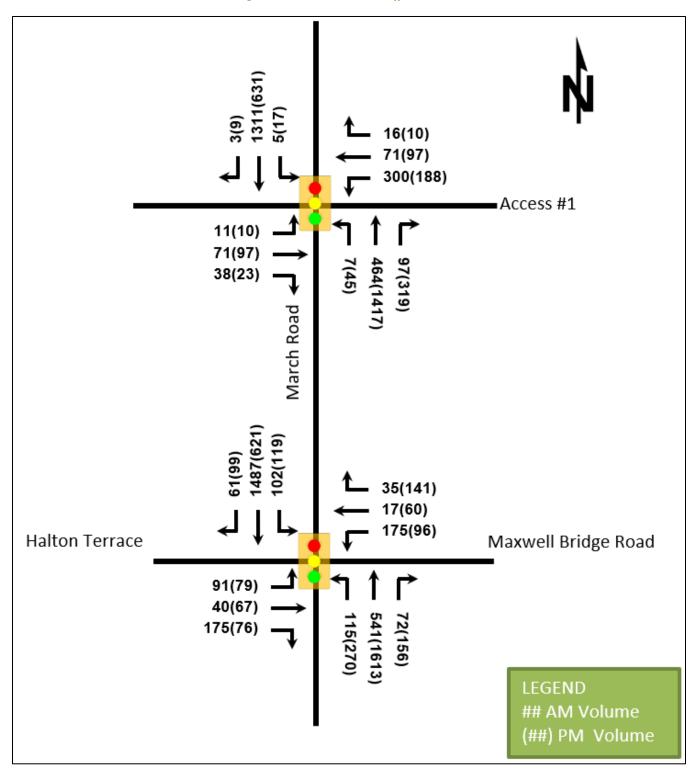



Figure 13: 2028 Future Total Traffic Volumes

4 Analysis

4.1 Development Design

4.1.1 Design for Sustainable Modes

The proposed development is a residential subdivision and therefore auto and bicycle parking areas will be within each resident's home.

Initial sidewalk locations have been proposed based on the Kanata North CDP TMP. Sidewalks are included as needed to provide access to transit, local amenities, and the adjacent road network. Bus stops are proposed on the main east-west collector at two locations. By providing transit service in this manner 80% of the subject development would be within the 400-metre walking distance to a transit stop. The remaining 20% would be within 500-metre walking distance to a transit stop. While ideally 100% of the units would be within a 400-metre walking distance, due to the subdivision layout, this is not possible as it would create a long loop for the buses that would not be efficient. In the fullness of time Street 1 will be extended to the east, allowing bus stops to be located such that most of the development would be within a 400-metre walking distance of the bus stops.

A multi-use pathway (MUP) is proposed in the Kanata North CDP TMP along the collector road. This will be included in the proposed development to provide cycling access to the adjacent arterial road network.

Figure 14 illustrates the transit walking distance, the sidewalk/MUP locations, and the transit stop locations.

4.1.2 Circulation and Access

This TIA is exempt from this element (see Table 3).

4.1.3 New Street Networks

Primary access to the development will be via Street No. 1, a 26-metre right-of-way collector road from March Road to the first local road intersection, where the ROW narrows to a 24 metre right-of-way. Secondary access will be provided through the development to the north, as intended in the Kanata North CDP. This northern link and secondary access will be an extension of Street No. 2 and continue to be a 26-metre cross-section. The street network is generally proposed as a grid with no cul-de-sacs and only one dead end, which is a stub road. most other local roads will serve lots on both sides and will have 16.5-metre ROWs. One section in the southeast corner will have 18 metre ROWs.

4.2 Parking

This TIA is exempt from this Module (see Table 3).

4.3 Boundary Street Design

The subject development is surrounded on four sides by existing and future development lands. For the purposes of this TIA, March Road will be examined as a boundary street as the development will have a direct connection to and will be primarily accessed via March Road. Through the Kanata North CDP an interim and ultimate cross-section for March Road have been created. These cross sections include cycle tracks and sidewalks on both sides of the road and the ultimate cross-section includes a centreline bus rapid transit facility. As per the TIA Guidelines, a complete street concept has already been prepared for the boundary street. Appendix D includes the March Road cross-sections from the CDP TMP.

4.4 Access Intersections

4.4.1 Location and Design of Access

The proposed main access to the site will be via an intersection onto March Road. An additional secondary access through the development to the north is also considered, but it is assumed that residents will primarily use the main access onto March Road. The operational analysis focuses on the intersection of Street 1 and March Road as it is anticipated that traffic generated by this site will use this intersection to access the arterial road network. It is assumed that the adjacent developments will use their own access and that the impact of any cross-over traffic will be minor and is not anticipated to have a significant impact on the proposed access intersection.

A secondary interim access has been confirmed to the north of the proposed development. This will provide temporary secondary access along the road that will ultimately be the final secondary access. This will avoid an unnecessary additional crossing of the creek between the residential and commercial portions of the property.

4.4.2 Intersection Control

Street 1 at March Road

The intersection of Street 1 at March Road has been examined using 2023 and 2028 traffic volumes to determine if signals are warranted. Ontario Traffic Manual (OTM) Book 12 traffic signal warrants have been used, specifically Justification #7. This warrant was shown to reach 161% of the criteria for 2023 volumes/intersection configuration and 194% for 2028 volumes/intersection configuration. When using the Justification 7 warrant for future new intersections, it is required to meet 150% to be considered justified. It is also noted that where the warrant meets 100%, the necessary underground provisions should be made as part of the road works. The warrant is met to 161% for the 2023 volumes and 194% for the 2028 volumes. Therefore, signals will be examined in both the 2023 and 2028 future total horizon. Appendix E contains the traffic signal warrant analysis sheets.

In addition to Traffic Signal Justification Warrants, the City of Ottawa's Roundabout Screening Tool has been used to determine the appropriate traffic control for the intersection of Street 1 at March Road. Using this tool, it was found that there were no contra-indications. It was found that there was only one suitability factor, that traffic signals are warranted. Additionally, the CDP considers a centreline BRT along March Road. This would preclude the use of a roundabout as a traffic control at this location. Therefore, a roundabout is not considered technically feasible at this location.

4.5 Transportation Demand Management

Transportation Demand Management measures are implemented to encourage the use of non-auto modes of travel. This is aimed at reducing the reliance on single occupant auto trips in the City of Ottawa. The proposed development adheres to the City's TDM principles by providing direct connections to adjacent pedestrian, cycling, and transit facilities. The existing mode share for Kanata/Stittsville has been used for all study horizons.

4.6 Neighbourhood Traffic Management

This TIA is exempt from this Module (see Table 3).

4.7 Transit

In Section 3.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 12 summarizes the transit trip generation.

Table 12: Trip Generation by Transit Mode

Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Transit	10%	16	48	65	51	31	82

The anticipated increase in travel demand is anticipated to be reasonable. It is recommended that OC Transpo provide additional transit capacity only as needed once the development is completed. It is expected that once the March Road BRT is constructed, that the transit mode share, and therefore the transit trips generated by the proposed development would increase. This change in transit mode share has not been examined herein as the BRT is not included in the City of Ottawa TMP 2031 Affordable Network.

4.8 Review of Network Concept

The Kanata North CDP TMP examined the adequacy of the network concept via a review of two screenlines, one to the north of the CDP area and one to the south. These screenlines were examined at 2026 and 2031 horizons. At the 2026 horizon, which aligns closely with the 2028 analysis horizon presented herein, the CDP Transportation Area of Interest (TAI) Screenline, south of the proposed development was shown to operate with no deficiencies, indicating that the southbound traffic will have adequate network capacity. North of the subject development the March Road Screenline was shown to exceed the peak direction capacity by approximately 114 vehicles per hour during the peak hour. This minor deficiency does not warrant the construction of additional corridor capacity, and the future BRT will improve this by providing additional person trip capacity, while maintaining the same level of vehicle capacity. Additionally, the 2028 total volume projected in this study would not exceed the screenline capacity (approximately 1400 peak hour vph demand vs approximately 1800 vph capacity).

Therefore, adequate screenline capacity is provided to support the proposed development.

4.9 Intersection Design

4.9.1 Intersection Control

As discussed in Section 4.4.2 signals will be analyzed at the intersection of Street 1 at March Road for the 2028 Future Total Horizon. As roundabouts have been screened out no roundabout analysis will be included.

4.9.2 Intersection Design

To understand the intersection design, an MMLOS analysis of existing, future background, and future total travel demands is required. The following sections will discuss the vehicle LOS at the Study Area intersections, followed by a discussion of the intersection MMLOS for other modes.

4.9.2.1 Existing Conditions

The existing intersection volumes have been analyzed to establish a baseline condition to compare all future horizons to and determine the impact of the subject development on the Study Area road network. Table 13 summarizes the operational analysis of 2018 existing conditions. Appendix F contains the 2018 Existing Conditions Synchro sheets.

Table 13: 2018 Existing Conditions Operational Analysis

lutava a ati a u	Laura		AM Pea	ak Hour			PM Pea	ak Hour	
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)
	EBL	Α	33	0.04	7	Α	46	0.14	9
	EBT/R	Α	14	0.38	25	Α	41	0.48	37
	WBL	D	77	0.85	67	В	70	0.67	42
Halton	WBT/R	Α	25	0.08	11	В	37	0.64	45
Terrace/Maxwell	NBL	Α	9	0.10	9	Α	6	0.27	24
Bridge Road &	NBT	Α	15	0.13	27	Α	12	0.43	88
March Road	NBR	Α	3	0.09	7	Α	2	0.16	9
Signalized	SBL	Α	9	0.14	18	Α	6	0.19	10
	SBT	Α	16	0.38	83	Α	11	0.15	29
	SBR	Α	0	0.01	0	Α	0	0.01	0
	Overall	С	22	-	-	В	19	-	-

The existing intersection has been shown to operate with good LOS, and no operational concerns. No mitigation measures are required or recommended.

4.9.2.2 2023 Future Background

The 2023 future background intersection volumes have been analyzed to allow a comparison between the future volumes with and without the proposed development. Table 14 summarizes the operational analysis of 2023 future background conditions.

Table 14: 2023 Future Background Conditions Operational Analysis

Intovocation	Lana	AM Peak Hour				PM Peak Hour			
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)
	EBL	Α	33	0.04	7	Α	46	0.14	9
	EBT/R	Α	13	0.38	25	Α	41	0.48	38
	WBL	D	77	0.86	68	В	71	0.68	42
Halton	WBT/R	Α	24	0.08	10	В	38	0.65	47
Terrace/Maxwell	NBL	Α	9	0.10	9	Α	6	0.28	25
Bridge Road &	NBT	Α	15	0.13	28	Α	12	0.44	91
March Road	NBR	Α	3	0.09	7	Α	2	0.16	9
Signalized	SBL	Α	9	0.15	19	Α	6	0.20	10
	SBT	Α	16	0.39	86	Α	11	0.16	30
	SBR	Α	0	0.01	0	Α	0	0.01	0
	Overall	С	23	-	-	В	19	-	-

With the addition of background growth to reflect the 2023 horizon, the existing intersection is anticipated to operate with similar operational characteristics to the existing conditions, and well within City of Ottawa operational thresholds. Appendix G contains the 2023 Future Background Synchro Sheets.

4.9.2.3 2028 Future Background

The 2028 future background intersection volumes have been analyzed to allow a comparison between the future volumes with and without the proposed development. Table 15 summarizes the operational analysis of 2028 future background conditions

Intovocation	Lana		AM Pea	ak Hour			PM Pea	PM Peak Hour			
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)		
March Road &	EBL/R	D	30	0.28	1	E	37	0.25	1		
West Access	NBL/T	Α	0	0.02	0	Α	9	0.06	0		
Unsignalized	SBT/R	-	-	-	-	-	-	-	-		
	EBL	Α	37	0.32	32	F	169	1.07	49		
	EBT/R	Α	10	0.45	27	Α	40	0.58	44		
	WBL	Е	92	0.94	72	С	88	0.80	44		
Halton	WBT/R	Α	14	0.14	13	С	38	0.72	53		
Terrace/Maxwell	NBL	Α	24	0.57	32	Α	8	0.45	39		
Bridge Road &	NBT	Α	19	0.29	60	С	21	0.71	196		
March Road	NBR	Α	4	0.10	8	Α	5	0.18	18		
Signalized	SBL	Α	11	0.21	23	Α	15	0.49	23		
	SBT	С	31	0.78	230	Α	14	0.24	50		
	SBR	Α	3	0.08	6	Α	5	0.12	13		
	Overall	С	31	-	-	С	25	-	-		

Table 15: 2028 Future Background Conditions Operational Analysis

With the addition of background growth to reflect the 2028 horizon, including other areas of Kanata North. The west access, opposite the access to the proposed development, is anticipated to operate with LOS E, higher than the target LOS D. The signal warrant was found to be met for the full intersection including the access to the proposed development. This will be examined further in the 2028 total future conditions. Appendix H contains the 2028 Future Background Synchro sheets.

It was noted through comments from the City of Ottawa that the all-red time for the westbound left cannot equal zero. This would be a minor change and has not been incorporated as this change would not impact the conclusions or recommendations of this report.

4.9.2.4 2023 Total Future

The 2023 total future intersection volumes, including the site generated traffic, have been analyzed to understand the impact of the subject development on the Study Area intersections. Table 16 summarizes the operational analysis of 2023 total future conditions.

Table 16: 2023 Total Future Conditions Operational Analysis

1	•		AM Pea	ak Hour			PM Pea	ak Hour	
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)
	WBL	С	43	0.79	82	В	47	0.69	58
	WBR	Α	10	0.05	5	Α	15	0.04	5
Street 1 & March	NBT	Α	9	0.25	38	D	26	0.91	300
Road	NBR	Α	2	0.11	7	Α	2	0.31	12
Signalized	SBL	Α	8	0.01	2	Α	10	0.15	5
	SBT	D	22	0.82	220	Α	7	0.34	52
	Overall	В	19	-	-	В	16	-	-
	EBL	Α	33	0.04	7	Α	43	0.13	9
	EBT/R	Α	13	0.38	25	Α	36	0.42	36
	WBL	D	77	0.86	68	В	66	0.66	42
Halton	WBT/R	Α	24	0.08	10	Α	32	0.57	44
Terrace/Maxwell	NBL	Α	10	0.15	9	Α	6	0.32	24
Bridge Road &	NBT	Α	16	0.19	39	Α	14	0.59	144
March Road	NBR	Α	3	0.09	7	Α	3	0.16	13
Signalized	SBL	Α	9	0.16	19	Α	6	0.24	10
	SBT	Α	19	0.56	137	Α	11	0.25	47
	SBR	Α	0	0.01	0	Α	0	0.01	0
	Overall	С	23	-	-	В	17	-	-

With the addition of site generated traffic, the existing intersection of Halton Terrace/Maxwell Bridge Road & March Road is anticipated to operate with similar LOS and delay as 2023 future background conditions. The access intersection to 936 March Road is anticipated to operate with minimal delays and good LOS. Appendix I contains the 2023 Total Future Synchro sheets.

4.9.2.5 2028 Total Future

The 2028 total future intersection volumes, including the site generated traffic, have been analyzed to understand the impact of the subject development on the Study Area intersections. Table 17 summarizes the operational analysis of 2023 total future conditions.

Table 17: 2028 Total Future Conditions Operational Analysis

lutava atiava	Lana		AM Pea	ak Hour			PM Pea	ak Hour	
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)
	EBL	Α	40	0.09	8	Α	39	0.07	7
	EBT/R	Α	45	0.58	38	Α	50	0.60	44
	WBL	E	78	0.98	119	D	62	0.84	70
Street 1 & March	WBT/R	Α	26	0.21	27	Α	33	0.30	36
Road	NBL	Α	10	0.06	3	Α	8	0.12	9
Signalized	NBT	Α	9	0.25	35	С	14	0.71	143
Signanzea	NBR	Α	2	0.11	7	Α	5	0.34	32
	SBL	Α	8	0.01	2	Α	11	0.15	6
	SBT/R	В	15	0.70	138	Α	8	0.32	45
	Overall	С	26	-	-	В	17	-	-
	EBL	Α	37	0.32	32	F	169	1.07	49
	EBT/R	Α	10	0.45	27	Α	40	0.58	44
	WBL	Е	92	0.94	72	С	88	0.80	44
Halton	WBT/R	Α	14	0.14	13	С	38	0.72	53
Terrace/Maxwell	NBL	В	39	0.66	39	Α	9	0.54	39
Bridge Road &	NBT	Α	20	0.35	75	D	28	0.88	301
March Road	NBR	Α	4	0.10	8	Α	6	0.18	22
Signalized	SBL	Α	12	0.24	23	В	37	0.63	38
	SBT	E	47	0.98	321	Α	15	0.35	73
	SBR	Α	3	0.08	6	Α	5	0.12	13
	Overall	D	51	-	-	С	32	-	-

While it is not included in the 2031 affordable network, for the analysis herein it has assumed the 2028 horizon will include the widening of March Road from two to four lanes.

With the addition of the site traffic and the future background traffic the study area intersections are anticipated to operate with reasonable LOS with a few exceptions. The westbound left at Street 1 and March Road is projected to operate with LOS E in the AM peak hour. While this is movement is anticipated to exceed the City of Ottawa's operational thresholds (LOS D) it is not uncommon for left turns from collector roads to arterial roads to experience poor LOS as the function of the arterial road dictates that the main street (March Road) would receive priority in the signal timing (i.e. more time allocated to it) over the side streets. Therefore, this minor deficiency is acceptable.

At the signalized intersection of Halton Terrace/Maxwell Bridge Road at March Road several deficiencies begin to arise in the 2028 horizon. During the AM peak hour, the westbound left and southbound through are approaching capacity. Like the intersection of Street 1 at March Road, it is not uncommon for a left turn onto an arterial road to operate at or approaching capacity during peak hours. Additionally, the southbound through is projected to approach capacity during the AM peak hour. To increase the southbound through capacity would require additional through lanes, which are not feasible. The future transit priority measures or bus rapid transit facility will provide additional transit capacity, reducing the number of vehicle trips. During the PM peak hour, the eastbound left turn lane is projected to operate at a LOS F. This, again, is a left turn from a collector road onto an arterial road, which, as discussed previously, often operate at or slightly over capacity as the arterial road traffic is prioritized over the side streets. Additionally, the overall intersection LOS meets the City of Ottawa's vehicle LOS target, LOS D. Appendix J contains the 2028 Total Future Synchro sheets.

4.9.2.6 Intersection MMLOS

Intersection MMLOS is undertaken at signalized intersections. Pedestrian LOS (PLOS) is evaluated using the PETSI score methodology which evaluates various intersection geometry elements and assigns those values a score. The intersection of Halton Terrace/Maxwell Bridge Road at March Road has been evaluated using the existing geometry. The intersection of Street 1 at March Road will be evaluated using the assumed 2028 future geometry including a four-lane cross section on March Road and both sides of the intersection constructed. Table 18 summarizes the PETSI score evaluation for the proposed signalized intersection of Halton Terrace/Maxwell Bridge Road at March Road.

	Crossing East	West		Crossing North	South		
Element	Condition	Points		Condition	Points	Points	
Crossing Distance	6 Lanes – No Median	5	5	3 Lanes – No Median	10)5	
Island Refuge	No	-4		No		4	
Signal Phasing / Timing							
Left Turn Type	Protected/Permissive	ssive -8		Permissive	-:	8	
Right Turn Conflict	Permissive	-5		Permissive	-!	5	
Right Turn on Red	RTOR Allowed	-	3	RTOR Allowed	-:	3	
Leading Ped. Interval	No	-	2	No	-:	2	
Corner Radius	>10m to 15m	-	6	>10m to 15m	-(6	
Crosswalk	Standard Markings	-7		Standard Markings		7	
PETSI LOS	Actual	20	F	Actual	70	С	
PE 131 LU3	Target		С	Target		С	

Table 18: PETSI Score Halton Terrace/Maxwell Bridge Road at March Road

The north south pedestrian crossing meets the target PLOS C for a collector road in a development community. The east west pedestrian crossing does not meet the target PLOS C for an arterial road in a developing community. This existing intersection has a very long east-west crossing distance and would be very difficult to improve without removing lanes on March Road, which is not feasible. Therefore, in this case the LOS F should be tolerated as it is not reasonable to achieve the target PLOS.

Table 19 summarizes the PETSI score evaluation for the proposed signalized intersection of Street 1 at March Road.

	Crossing East	West		Crossing North South			
Element	Condition	Points		Condition	Points	;	
Crossing Distance	6 Lanes - Median	nes - Median 60		3 Lanes – No Median	10)5	
Island Refuge	No	-4	1	No	-2	1	
Signal Phasing / Timing							
Left Turn Type	Protected/Permissive	-8		Permissive	-8	3	
Right Turn Conflict	Permissive	-!	5	Permissive	-5	5	
Right Turn on Red	RTOR Allowed	-;	3	RTOR Allowed	-3	3	
Leading Ped. Interval	No	-:	2	No	-2	2	
Corner Radius	>10m to 15m	-(5	>10m to 15m	-6	5	
Crosswalk	Standard Markings	-7		Standard Markings	-7	7	
PETSI LOS	Actual	25	F	Actual	70	С	
PEISILOS	Target		С	Target		С	

Table 19: PETSI Score Street 1 at March Road

The north south pedestrian crossing meets the target PLOS C for a collector road in a development community. The east west pedestrian crossing does not meet the target PLOS C for an arterial road in a developing community. The proposed future cross-section of March Road (CDP cross-section) includes a 5-metre median and two lanes

of travel in each direction. With this configuration it is very difficult to meet the target PLOS. By implementing no right turns on red on the east and west approaches, and a leading pedestrian interval a PLOS E could be achieved. By also adding a raised cross-walk (across March Road) and eliminating permissive left turns on the east and west approaches a PLOS D could be achieved. However, as March Road is an arterial road and is anticipated to have an 80 km/h posted speed limit it is not appropriate to implement raised crosswalks. Therefore, in this case a PLOS F should be tolerated as it is not feasible to achieve the target PLOS.

Bicycle LOS (BLOS) is evaluated by examining elements that impact the level of traffic stress (LTS). For the existing intersection of Halton Terrace/Maxwell Bridge Road at March Road the Pocket Bike Lanes on a Signalized Intersection Approach criteria has been applied along March Road. For the proposed intersection the Bike Lanes or higher order facility on a Signalized Intersection Approach criteria has been applied along March Road. Along the minor streets the Mixed Traffic on a Signalized Intersection Approach has been applied. Table 20 summarizes the BLOS for the intersection of Halton Terrace/Maxwell Bridge Road at March Road.

	East-	West	North-South		
Right-turn Lane and Turning Speed of Motorists	No Right Turn Lanes	N/A	Right-turn lane introduced to the right of the bike lane and > 50 m long, turning speed ≤ 30 km/h (based on curb radii and angle of intersection)	D	
Cyclist Making a Left-turn and Operating Speed of Motorists	1 lane crossed, 50 km/h	D	2 or more lanes crossed, ≥ 50 km/h	F	

Table 20: Bicycle LOS Criteria Halton Terrace/Maxwell Bridge Road at March Road

The BLOS for the north-south approaches are governed by the number of lanes crossed and the operating speed on March Road. A bike box style left turn would have to be implemented to improve the LOS along with eliminating the right turn lanes. This is not considered feasible at this existing intersection. The east-west approaches are governed by the left turning bicycles. Neither approach meets the target BLOS of C for an arterial route in a Developing Community.

Table 21 summarizes the BLOS for the intersection of Street 1 at March Road.

	East-	West	North-South		
Right-turn Lane and Turning Speed of Motorists	No Right Turn Lanes	N/A	No Impact on LTS (Separated Facility)	N/A	
Cyclist Making a Left-turn and Operating Speed of Motorists	See Note below		See Note below		

Table 21: Bicycle LOS Criteria Street 1 at March Road

Note: the intersection design has not been completed, but in order to meet the target BLOS for this intersection, a two-stage, left-turn bike box should be provided. This should be confirmed at the time of a functional design and implemented if feasible.

Transit LOS (TLOS) is evaluated by examining the average signal delay and the relative attractiveness of transit compared to automobile trips. While local transit service is anticipated to be extended to the subject development, the TMP Ultimate Network and Affordable Network do not include higher order transit facilities or transit signal priority (TSP) measures. The CDP does include a centreline Bus Rapid Transit facility, however, as the timing of this facility is not known it cannot be assumed that it will be in place within the development horizons. Therefore, the TLOS for this intersection is F, until such time as TSP or BRT is implemented.

Truck LOS (TkLOS) is evaluated for Developing Communities only along Arterial and Collector Truck Routes. The Street 1 collector is not anticipated to be a Truck Route and therefore no TkLOS has been evaluated at the proposed signalized intersection.

4.9.2.7 Access Intersection Design

The signalized intersection of Street 1 at March Road has been evaluated using the MMLOS methodology, OTM Book 12 Traffic Warrants, and TAC Geometric Standards to determine the appropriate intersection configuration.

Auxiliary Right Turn Lanes

The TAC Geometric Standards suggest that a right turn lane is required where the right turn volume exceed 10% of the approach volume. At the subject intersection, the northbound right turn volume exceeds 10% of the approach volume in the 2023 and 2028 horizon. Therefore, a right turn lane should be provided for the 2023 and 2028 horizons.

Auxiliary Left Turn Lanes

The vehicle LOS has been completed assuming that left turn lanes are provided on all approaches of the signalized intersection. The left turn lanes into and out of the west leg will be further examined by others at the time of a development application for the development adjacent to 936 March Road. The southbound left turn lane and westbound left turn lane provide access into and out of the proposed development. The operational analysis of the proposed intersection has indicated that left-turn lane storage should be provided as follows:

- Westbound Left-turn storage lane 115m
- Southbound Left-turn storage lane 10m

These storage lengths would accommodate the anticipated queue lengths, but the actual storage length should be calculated using geometric design principles including applicable minimums, deceleration length, and taper lengths. The recommended auxiliary left-turn lane storage and taper lengths should be confirmed during the detailed design of the proposed intersection.

4.9.2.8 Design Context

This TIA has been prepared within the context of the Kanata North CDP and the associated TMP. It is understood that development applications are underway for adjacent properties to the north, west, and northwest. This TIA has assumed that the TMP has accurately forecast the growth of these adjacent developments. These forecasts will be refined through upcoming TIAs for those properties. Once those projections are available the design of the access intersection can be refined to ensure the appropriate lane geometry and signal timing is provided. In advance of that, this application should be allowed to proceed and be deemed complete, with the understanding that the developers of the adjacent properties in Kanata North have agreed to enter into cost sharing agreements to complete the construction of shared elements, such as the access intersection.

5 Conclusions

This Transportation Impact Assessment has documented the existing and future transportation conditions, for all travel modes, in the Study Area. The following conclusions can be offered based on the foregoing:

- A. The proposed development, located at 936 March Road, is a greenfield development that will include approximately 800 residential units with a mix of townhouses and detached homes (401 townhouses and 455 detached homes). Additionally, the western portion of the property will include a future commercial development (by others) that has been assumed to consist of 300,000 square feet of retail/commercial space.
 - a. This report has been updated based on an updated unit count, which includes 353 detached homes and 575 townhomes. The trip generation was recalculated based on the updated unit counts. It was found that the change in unit counts will result in a 1.0% increase in site trip generation in the AM peak hour and a 2.5% increase in site trip generation in the PM peak hour. Therefore, the unit count change does not impact the trip generation and the analysis, based on the original unit count, is an accurate representation of the impact of the proposed development.
- B. Access to the proposed development will be via Street 1, which will intersect with March Road at a signalized intersection.
- C. The existing development is not currently served by transit. However, Route 63 currently serves the adjacent developments to the south and could be easily re-routed / extended to also serve 936 March Road.
- D. The previous five years of collision history at the existing intersection of Halton Terrace/Maxwell Bridge Road & March Road has been reviewed. No patterns emerged that indicated that mitigation measures or further monitoring was required.
- E. Using ITE Trip Generation 10th Edition Trip Rates, the residential trip generation rates were calculated. The existing mode shares from the OD Survey were reviewed. Using these factors, the person trip by mode was calculated. It was found that the proposed development can be anticipated to generate 621 AM and 781 PM peak hour two-way person trips.
- F. By providing transit stops at appropriate locations along the collector road (Street 1) it was shown that 85% of the proposed development units would be within a 400m walking distance to transit, with the remaining 15% no more than 500m from transit. To get all units within 500m would require excess transit stops, located in awkward locations. Therefore, the transit stops, as proposed, will provide appropriate transit coverage for the proposed development.
- G. Traffic signal control warrants have been examined for the intersection of Street 1 at March Road. Using OTM Book 12 Justification 7, it was found that the 2023 and 2028 traffic volumes would meet the volume threshold, and traffic control signals are warranted.
- H. The Kanata North CDP TMP examined the network concept and it was shown that adequate screenline capacity will be provided by the road network to support the proposed development.
- I. An auxiliary right turn lane has been found to be warranted on the northbound approach of the Street 1 at March Road access intersection.
- J. Auxiliary left turn lanes are proposed on all four legs of the proposed signalized intersection of Street 1 at March Road.
- K. 936 March Road is one of several proposed developments that are being put forward in similar timelines. This development application is proceeding prior to TIAs being completed for the proposed development across March Road. While the Kanata North CDP TMP has prepared traffic projections for the adjacent developments, these projections will be refined through upcoming TIAs for those properties. Therefore, while the access intersection has been examined herein, the design of the intersection will have to be refined once traffic projections for the west leg of the intersection have been finalized. Proceeding with a functional design in advance of the availability of these projections will create unnecessary duplication of

design efforts. It is recommended that this duplication be avoided by allowing the development application for 936 March Road to be deemed complete and all reports be circulated in advance of the preparation of an RMA or functional design for the subject intersection. Construction of this intersection will not proceed until such time as a functional design that satisfies City Staff is prepared and approved. Minto and CGH Transportation are committed to working with Brigil and their consultant, Stantec, to develop and appropriate RMA for the interim intersection configuration.

The proposed development, with the intersection control discussed herein, will function within the Study Area Road Network. It is recommended that, from a transportation perspective, the proposed development application proceed.

Prepared By:

Mark Crockford, P. Eng. 905-251-4070 Mark.Crockford@CGHTransportation.com

Reviewed By:

Christopher Gordon, P. Eng. 343-999-9117 Christopher.Gordon@CGHTransportation.com

Appendix A

TIA Screening Form and PM Certification Form

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review:
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations;
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\ }$ appropriate field(s)] is either transportation engineering $\sqrt{\ }$ or transportation planning \Box .
- 1,2 License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at <u>Newman</u>	<u>cket</u> this <u>8</u> day of <u>August</u> , 2018
(City)	
Name:	Mark Crockford (Please Print)
Professional Title:	Professional Engineer
	Madford
Signature	e of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)								
Address: 628 Haines Road								
City / Postal Code: Newmarket / L3Y 6V5								
Telephone / Extension: (905) 251-4070								
E-Mail Address: Mark.Crockford@CGHTransportation.com								

CGH TRANSPORTATION INC.

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: July 16, 2018
Project Number: 2018-04
Project Reference: Minto - 936 March Road

Module 1.1 Description of Proposed Development	
Municipal Address	936 March Road
Description of Location	MARCH CON 2 PT LOT 11
Land Use Classification	Residential
Development Size	~800 Units (Mix of Towns and Singles)
Accesses	1 Access on March Road, Connections to adjacent
Phase of Development	1 Phase
Buildout Year	~2023
TIA Requirement	Full TIA Required

Module 1.2 Trip Generation Trigger	
Land Use Type	Single-family homes
Development Size	800 G.F.A.
Trip Generation Trigger	Yes

Module 1.3 Location Triggers	
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit	No
or Spine Bicycle Networks?	NO
Is the development in a Design Priority Area (DPA) or Transit-	No
oriented Development (TOD) zone? Location Trigger	No

Module 1.4. Safety Triggers	
Are posted speed limits on a boundary street are 80 km/hr or greater?	Yes
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	No
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	No
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that serves an existing site?	No
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?	No
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

Appendix B

Turning Movement Counts

Turning Movement Count - 15 Minute Summary Report

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016 **Total Observed U-Turns**

Northbound: Southbound: Eastbound: Westbound:

MARCH RD

HALTON TERR/MAXWELL BRIDGE RD

Note: U-Turns are included in Totals.

TOTAL:

Comment:

2017-Nov-22 Page 1 of 1

Turning Movement Count - Cyclist Volume Report

Work Order 36161

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

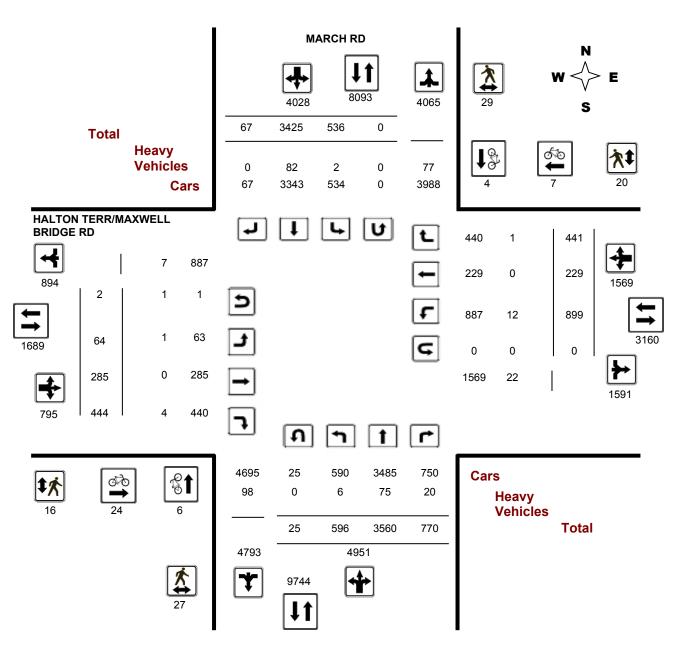
Count Date: Wednesday, August 10, 2016

Start Time: 07:00

		MARCH RD		HALTON T			
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	1	1	2	2
08:00 09:00	0	0	0	4	1	5	5
09:00 10:00	0	0	0	0	1	1	1
11:30 12:30	1	4	5	7	1	8	13
12:30 13:30	2	0	2	1	0	1	3
15:00 16:00	0	0	0	5	1	6	6
16:00 17:00	2	0	2	4	0	4	6
17:00 18:00	1	0	1	2	2	4	5
Total	6	4	10	24	7	31	41

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.



Turning Movement Count - Full Study Diagram

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016 WO#: 36161

Device: Miovision

Comments

W.O. 36161

Turning Movement Count - Heavy Vehicle Report

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016

		N	IARC	H RD			_	HALTON TERR/MAXWELL BRIDGE RD											
	North	oound			South	ound				Eastb	ound			Westbo	ound				
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 08:00	3	12	4	19	0	14	0	14	33	0	0	0	0	0	0	0	0	0	33
08:00 09:00	2	17	2	21	0	13	0	13	34	1	0	1	3	1	0	1	2	5	39
09:00 10:00	0	11	0	11	0	11	0	11	22	0	0	2	2	0	0	0	0	2	24
11:30 12:30	1	5	6	12	1	11	0	12	24	0	0	0	0	2	0	0	2	2	26
12:30 13:30	0	7	2	9	0	11	0	11	20	0	0	1	1	0	0	0	0	1	21
15:00 16:00	0	8	4	12	1	9	0	10	22	0	0	0	0	3	0	0	3	3	25
16:00 17:00	0	11	1	12	0	8	0	8	20	0	0	0	0	3	0	0	3	3	23
17:00 18:00	0	4	1	5	0	5	0	5	10	0	0	0	0	3	0	0	3	3	13
Sub Total	6	75	20	101	2	82	0	84	185	1	0	4	6	12	0	1	13	19	204
U-Turns (Heav	vy Vel	nicles)		0				0	0				1				0	1	1
Total	6	75	20	0	2	82	0	84	185	1	0	4	7	12	0	1	13	20	205

Heavy Vehicles include Buses, Single-Unit Trucks and Articulated Trucks. Further, they ARE included in the Turning Movement Count Summary.

Work Order 36161

Turning Movement Count - Pedestrian Volume Report

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Count Date: Wednesday, August 10, 2016 Start Time: 07:00													
Count Dat	e: Wednesday,	August 10, 2016				Start Time:	07:00						
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total						
07:00 07:15	2	0	2	0	2	2	4						
07:15 07:30	0	0	0	0	0	0	0						
07:30 07:45	1	0	1	0	1	1	2						
07:45 08:00	1	0	1	0	0	0	1						
07:00 08:00	4	0	4	0	3	3	7						
08:00 08:15	0	2	2	0	1	1	3						
08:15 08:30	1	3	4	0	0	0	4						
08:30 08:45	0	1	1	0	0	0	1						
08:45 09:00	1	0	1	0	0	0	1						
08:00 09:00	2	6	8	0	1	1	9						
09:00 09:15	1	2	3	3	2	5	8						
09:15 09:30	3	1	4	0	2	2	6						
09:30 09:45	0	0	0	1	3	4	4						
09:45 10:00	4	1	5	1	0	1	6						
09:00 10:00	8	4	12	5	7	12	24						
11:30 11:45	2	1	3	2	0	2	5						
11:45 12:00	0	1	1	0	1	1	2						
12:00 12:15	0	1	1	0	0	0	1						
12:15 12:30	1	2	3	2	0	2	5						
11:30 12:30	3	5	8	4	1	5	13						
12:30 12:45	0	0	0	0	1	1	1						
12:45 13:00	2	6	8	5	2	7	15						
13:00 13:15	3	1	4	0	0	0	4						
13:15 13:30	0	1	1	0	1	1	2						
12:30 13:30	5	8	13	5	4	9	22						
15:00 15:15	0	0	0	0	0	0	0						
15:15 15:30	0	0	0	0	0	0	0						
15:30 15:45	0	0	0	0	0	0	0						
15:45 16:00	1	0	1	0	0	0	1						
15:00 16:00	1	0	1	0	0	0	1						
16:00 16:15	0	3	3	0	0	0	3						
16:15 16:30	0	1	1	1	0	1	2						
16:30 16:45	0	1	1	0	1	1	2						
16:45 17:00	0	0	0	0	1	1	1						
16:00 17:00	0	5	5	1	2	3	8						
17:00 17:15	0	0	0	0	0	0	0						
17:15 17:30	0	0	0	0	1	1	1						
17:30 17:30 17:45	2	1	3	1	0	1	4						
17:45 18:00	2	0	2	0	1	1	3						
17:43 18:00	4	1	5	1	2	3	8						
		•											
Total	27	29	56	16	20	36	92						

Comment:

Work Order

36161

Turning Movement Count - Full Study Summary Report

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016

Total Observed U-Turns

AADT Factor

Northbound: 25

Eastbound:

Southbound: 0

Westbound: 0

.90

Full Study

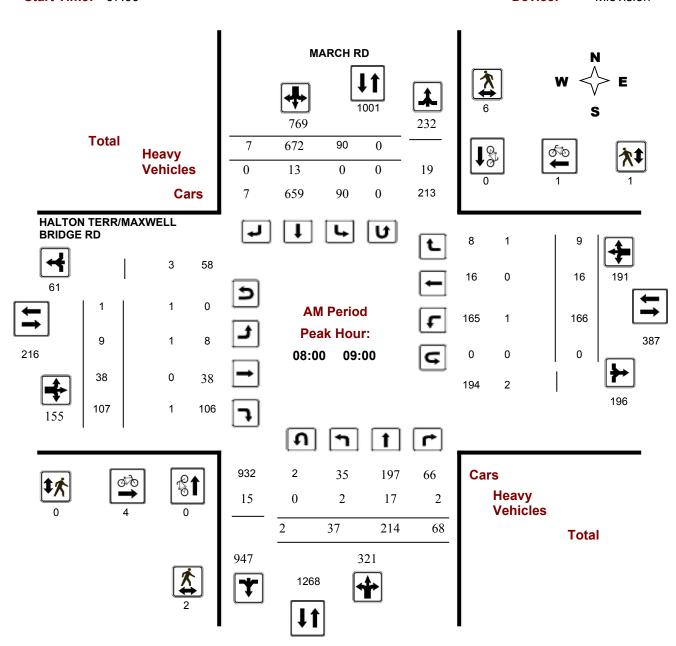
2

	MARCH RD							HALTON TERR/MAXWELL BRIDGE RD											
-	1	Northb	ound		5	Southb	ound		_		Eastbo	ound		1	Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	22	146	38	206	67	709	1	777	983	4	26	62	92	139	2	2	143	235	1218
08:00 09:00	37	214	68	319	90	672	7	769	1088	9	38	107	154	166	16	9	191	345	1433
09:00 10:00	26	248	55	329	63	512	4	579	908	5	23	71	99	102	16	21	139	238	1146
11:30 12:30	67	364	128	559	62	326	17	405	964	8	25	36	69	110	26	44	180	249	1213
12:30 13:30	62	342	110	514	66	329	8	403	917	1	34	48	83	124	21	73	218	301	1218
15:00 16:00	79	607	109	795	61	319	7	387	1182	9	34	36	79	69	42	94	205	284	1466
16:00 17:00	137	812	125	1074	67	276	15	358	1432	15	38	38	91	94	51	94	239	330	1762
17:00 18:00	166	827	137	1130	60	282	8	350	1480	13	67	46	126	95	55	104	254	380	1860
Sub Total	596	3560	770	4926	536	3425	67	4028	8954	64	285	444	793	899	229	441	1569	2362	11316
U Turns				25				0	25				2				0	2	27
Total	596	3560	770	4951	536	3425	67	4028	8979	64	285	444	795	899	229	441	1569	2364	11343
EQ 12Hr	828	4948	1070	6882	745	4761	93	5599	12481	89	396	617	1105	1250	318	613	2181	3286	15767
Note: These	/alues a	re calcu	lated by	y multiply	ying the	totals b	y the ap	propria	te expans	ion fact	or.		•	1.39					
AVG 12Hr	746	4454	963	6194	671	4285	84	5039	11233	80	357	555	995	1125	286	552	1963	2958	14191
Note: These	olumes/	are cal	culated	by multi	plying th	ne Equiv	alent 1	2 hr. tota	als by the	AADT f	actor.		,	.90					
AVG 24Hr	977	5834	1262	8114	878	5613	110	6601	14715	105	467	728	1303	1473	375	723	2571	3874	18589
Note: These	olumes/	are cal	culated	by multi	plying th	ne Avera	ige Dail	y 12 hr.	totals by	12 to 24	4 expans	sion fac	tor.	1.31					

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Full Study Peak Hour Diagram


HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016

Start Time: 07:00

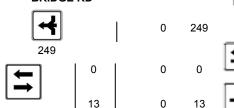
WO No: 36161

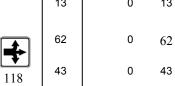
Device: Miovision

Comments

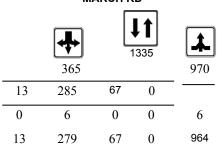
Turning Movement Count - Full Study Peak Hour Diagram

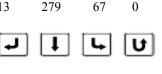
HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

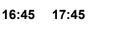

Total

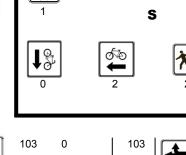

Heavy Vehicles

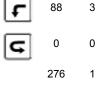
Survey Date: Wednesday, August 10, 2016

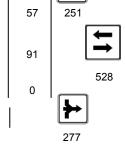

Cars

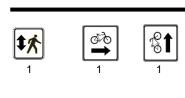





367

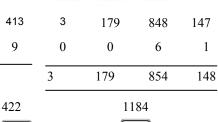



WO No:


4

57

0



36161

7

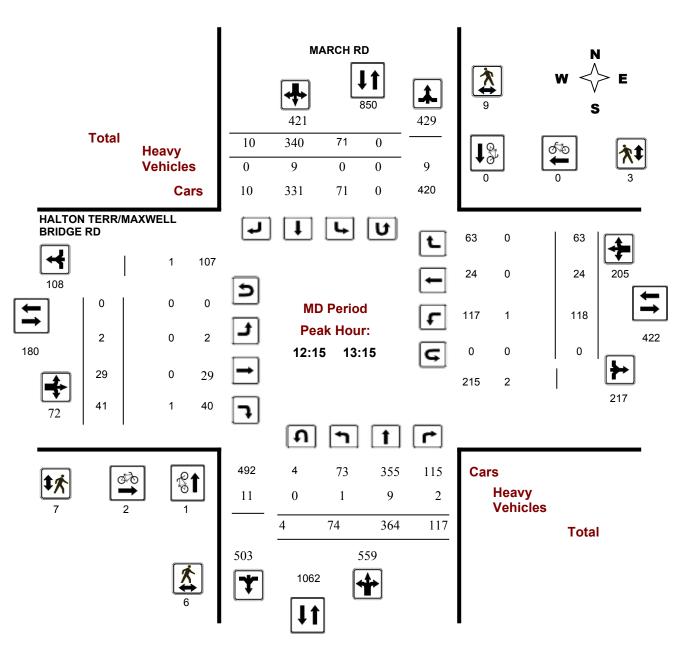
4

Ð

Cars

Heavy Vehicles

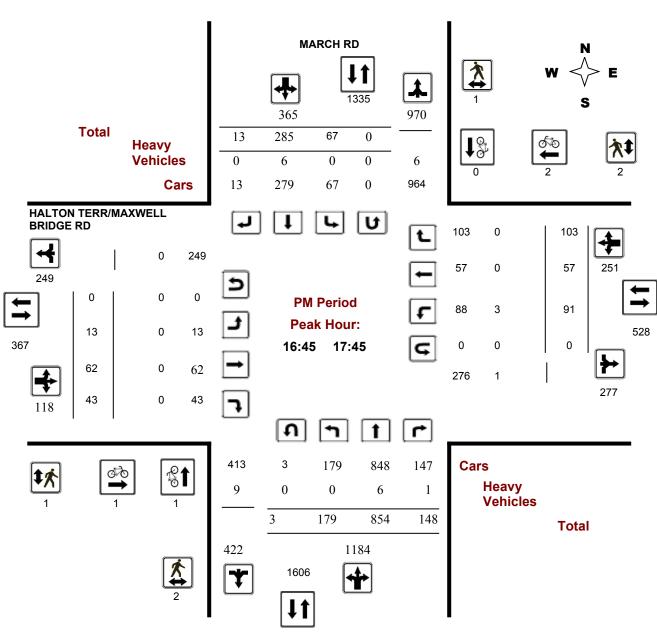
Total


Comments

Turning Movement Count - Full Study Peak Hour Diagram

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016 WO No: 36161
Start Time: 07:00 Device: Miovision


Comments

Turning Movement Count - Full Study Peak Hour Diagram

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date:Wednesday, August 10, 2016WO No:36161Start Time:07:00Device:Miovision

Comments

Turning Movement Count - 15 Min U-Turn Total Report

HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Survey Date: Wednesday, August 10, 2016

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	1	0	0	0	1
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	1	0	0	0	1
08:00	08:15	1	0	0	0	1
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	1	0	1
08:45	09:00	1	0	0	0	1
09:00	09:15	0	0	0	0	0
09:15	09:30	4	0	0	0	4
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	1	0	0	0	1
12:00	12:15	1	0	1	0	2
12:15	12:30	1	0	0	0	1
12:30	12:45	2	0	0	0	2
12:45	13:00	0	0	0	0	0
13:00	13:15	1	0	0	0	1
13:15	13:30	2	0	0	0	2
15:00	15:15	0	0	0	0	0
15:15	15:30	1	0	0	0	1
15:30	15:45	3	0	0	0	3
15:45	16:00	1	0	0	0	1
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	1	0	0	0	1
17:00	17:15	1	0	0	0	1
17:15	17:30	0	0	0	0	0
17:30	17:45	1	0	0	0	1
17:45	18:00	1	0	0	0	1
Тс	otal	25	0	2	0	27

Appendix C

Collision Data

City Operations - Transportation Services

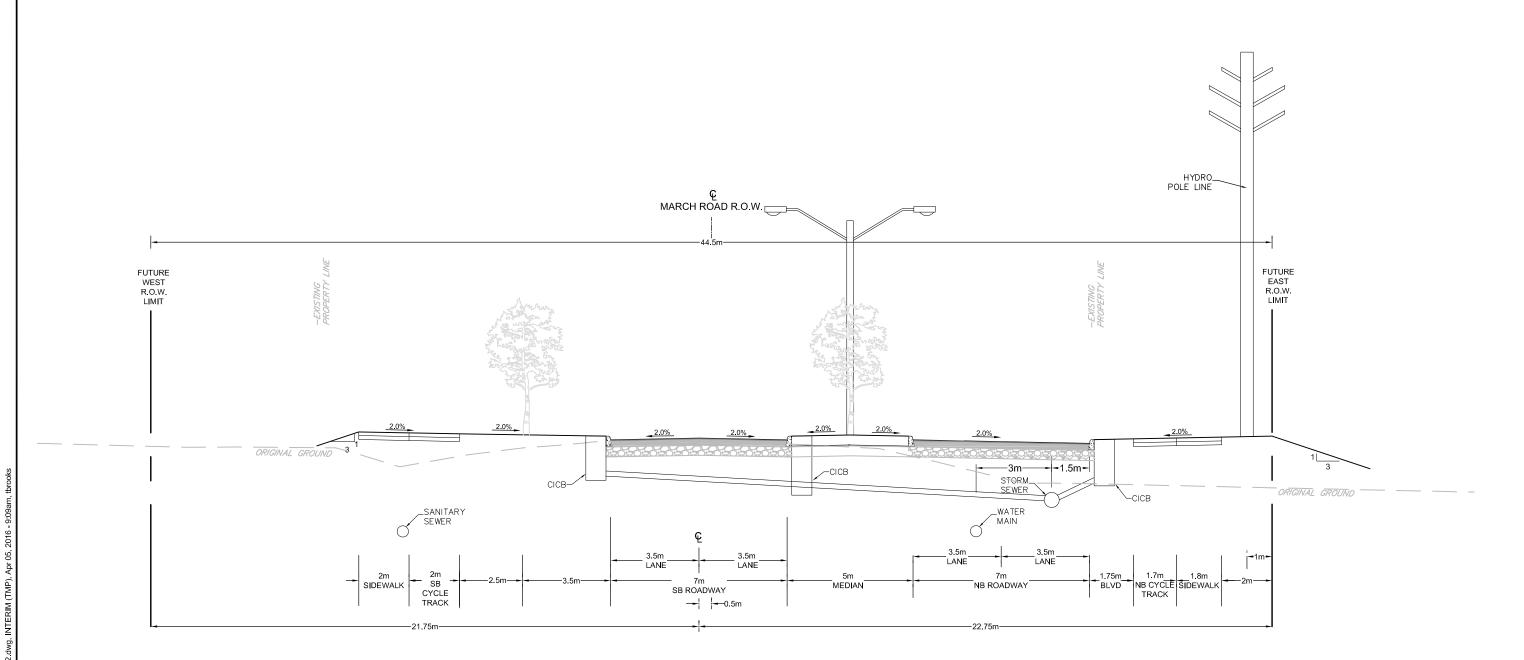
Collision Details Report - Public Version

From: January 1, 2013 **To:** December 31, 2017

Location: HALTON TERR/MAXWELL BRIDGE RD @ MARCH RD

Traffic Control: Traffic signal Total Collisions: 13

	J								
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2013-Apr-10, Wed,15:45	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Pick-up truck	Other motor vehicle	
2013-Aug-11, Sun,03:45	Clear	SMV other	P.D. only	Dry	North	Changing lanes	Unknown	Skidding/sliding	
2013-Oct-01, Tue,07:47	Clear	Turning movement	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2014-Jul-29, Tue,19:40	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Skidding/sliding	
2015-Dec-13, Sun,17:23	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Passenger van	Other motor vehicle	
					North	Going ahead	Passenger van	Other motor vehicle	
2016-Feb-28, Sun,19:57	Freezing Rain	Turning movement	P.D. only	Ice	West	Turning left	Pick-up truck	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	


Wednesday, August 08, 2018 Page 1 of 2

2016-Sep-30, Fri,19:32	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Pick-up truck	Other motor vehicle	
2016-Nov-24, Thu,06:47	Snow	Turning movement	Non-fatal injury	Ice	South	Turning left	Pick-up truck	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Dec-05, Mon,08:23	Snow	Sideswipe	P.D. only	Loose snow	West	Changing lanes	Pick-up truck	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Dec-23, Fri,10:59	Clear	Turning movement	P.D. only	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Apr-19, Wed,14:14	Rain	Angle	Non-fatal injury	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Pick-up truck	Other motor vehicle	
2017-Jun-22, Thu,10:59	Clear	Other	P.D. only	Dry	West	Reversing	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Nov-28, Tue,22:03	Rain	SMV other	Non-fatal injury	Wet	South	Turning left	Automobile, station wagon	Pedestrian	1

Wednesday, August 08, 2018 Page 2 of 2

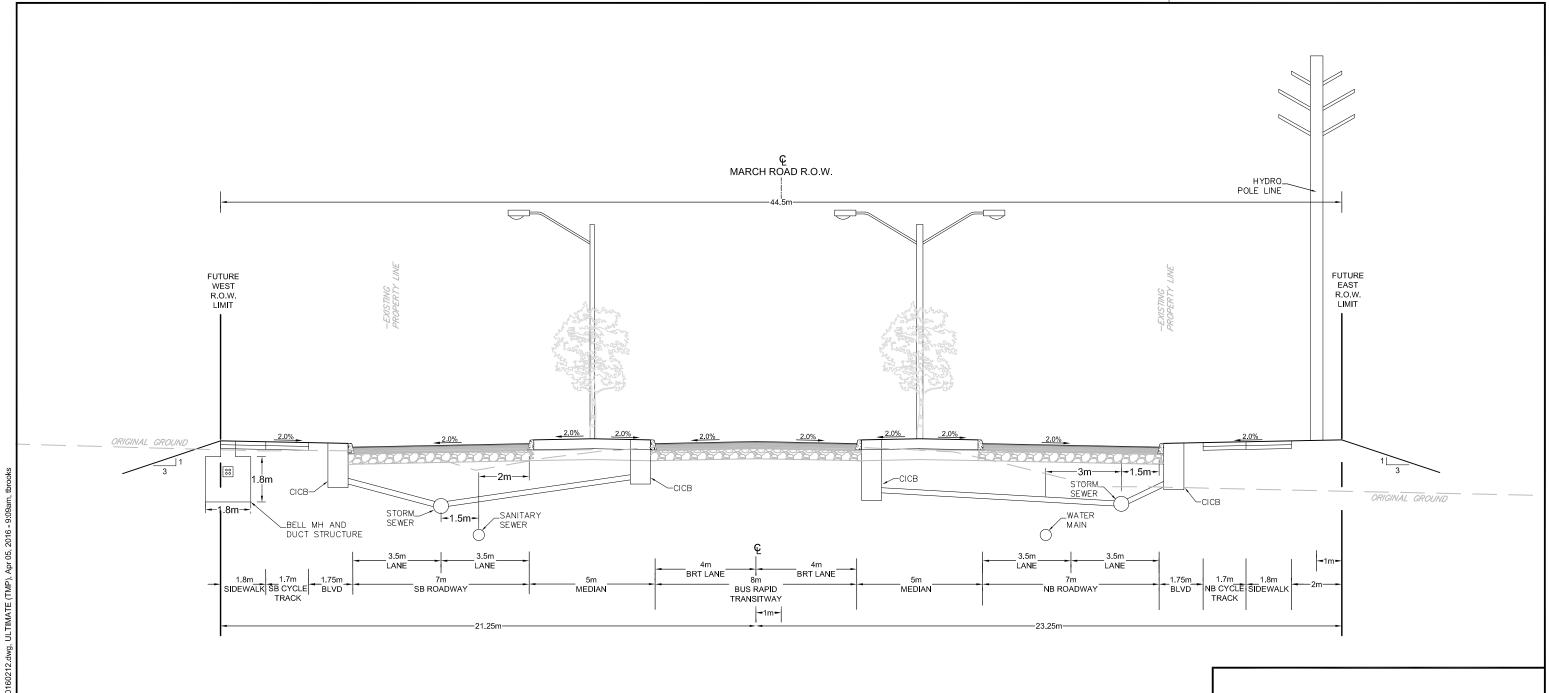
Appendix D

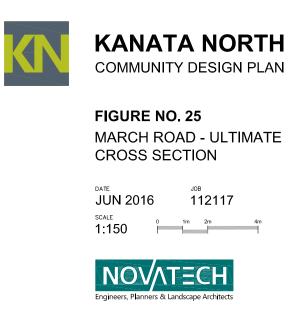
March Road Cross-Sections

KANATA NORTH

COMMUNITY DESIGN PLAN

FIGURE NO. 24


MARCH ROAD - INTERIM
CROSS SECTION


JUN 2016 1

SCALE
1:150 1 1m

JOB 112117

Appendix E

Traffic Signal Warrants

Future Collector @ March Road 2022 Future Total

Justification #7

		Minimum R	Requirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane l	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0	Signal
	A. Vehicle volume, all approaches								
1. Minimum Vehicular	(average hour)	480	720	600	900	891	186%	154%	Yes
	B. Vehicle volume, along minor							134/0	163
	streets (average hour)	120	170	120	170	185	154%		
	A. Vehicle volumes, major street								
	(average hour)	480	420	600	900	706	147%		
2. Delay to Cross	B. Combined vehicle and pedestrian							147%	No
i rattic i	volume crossing artery from minor								
	streets (average hour)	50	75	120	170	117	235%		

Notes

- 1. Refer to OTM Book 12, pg 88, Nov 2007
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estiamted from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Future Collector @ March Road 2027 Future Total

Justification #7

		Minimum R	Requirement	Minimum R	equirement				
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0	Signal
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	1304	217%	190%	Yes
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	228	190%		165
	A. Vehicle volumes, major street (average hour)	480	420	600	900	1076	179%		
татис	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)							179%	Yes
	streets (average nour)	50	75	120	170	165	329%		

Notes

- 1. Refer to OTM Book 12, pg 88, Nov 2007
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estiamted from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Appendix F

2018 Existing Synchro

	۶	-	•	•	←	•	•	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ř	f)		Ť	^	7	7	^	7
Traffic Volume (vph)	10	38	108	168	16	9	37	216	69	91	679	7
Future Volume (vph)	10	38	108	168	16	9	37	216	69	91	679	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.889			0.946				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1569	0	1676	1669	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.739			0.584			0.338			0.579		
Satd. Flow (perm)	1304	1569	0	1031	1669	0	596	3353	1500	1022	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		120			10				91			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			1399.3	
Travel Time (s)		14.6			20.4			15.9			100.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	42	120	187	18	10	41	240	77	101	754	8
Shared Lane Traffic (%)			0		.0		• • •		• •			
Lane Group Flow (vph)	11	162	0	187	28	0	41	240	77	101	754	8
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	20.1	3.6		20.0	3.6	·g	20.1	3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2	.0	1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OITEX	OITEX		OHEX	OHEX		OITEX	OITEX	OITEX	OITEX	OITEX	OHEX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OITLX			OITLX			OITLX			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		nm : nt	NA	Perm	nm i nt	NA	Perm
	Pelli	1NA 4		Pellii	NA 8		pm+pt 5	2	Feilli	pm+pt 1		Pelli
Protected Phases	A	4		0	ŏ				0		6	G
Permitted Phases	4			8			2		2	6		6

	۶	→	•	•	•	•	\triangleleft	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	48.0	48.0		48.0	48.0		20.0	52.0	52.0	20.0	52.0	52.0
Total Split (%)	40.0%	40.0%		40.0%	40.0%		16.7%	43.3%	43.3%	16.7%	43.3%	43.3%
Maximum Green (s)	41.4	41.4		41.4	41.4		13.6	45.4	45.4	13.6	45.4	45.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	25.5	25.5		25.5	25.5		73.5	66.7	66.7	77.8	70.7	70.7
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.61	0.56	0.56	0.65	0.59	0.59
v/c Ratio	0.04	0.38		0.85	0.08		0.10	0.13	0.09	0.14	0.38	0.01
Control Delay	33.2	13.5		76.6	24.7		9.1	14.7	3.0	8.6	15.8	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.2	13.5		76.6	24.7		9.1	14.7	3.0	8.6	15.8	0.0
LOS	С	В		Е	С		Α	В	Α	Α	В	Α
Approach Delay		14.8			69.9			11.6			14.8	
Approach LOS		В			Е			В			В	
Queue Length 50th (m)	2.2	8.5		44.9	3.6		3.1	14.2	0.0	7.8	51.8	0.0
Queue Length 95th (m)	6.6	24.8		66.6	10.5		8.9	26.8	6.8	18.3	82.6	0.0
Internal Link Dist (m)		178.9			259.1			197.3			1375.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	449	619		355	582		520	1863	873	766	1974	920
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.26		0.53	0.05		0.08	0.13	0.09	0.13	0.38	0.01

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 99 (83%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 21.5 Intersection LOS: C Intersection Capacity Utilization 64.8% ICU Level of Service C

Analysis Period (min) 15

936 March Road **CGH Transportation** MC

Page 2

CGH Transportation 936 March Road MC Page 3

	۶	→	•	✓	←	•	1	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	₽		ሻ		7	ሻ		7
Traffic Volume (veh/h)	10	38	108	168	16	9	37	216	69	91	679	7
Future Volume (veh/h)	10	38	108	168	16	9	37	216	69	91	679	7
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	11	42	120	187	18	10	41	240	77	101	754	8
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	399	105	299	271	276	153	403	1791	801	661	1833	820
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.03	0.53	0.53	0.04	0.55	0.55
Sat Flow, veh/h	1377	405	1156	1219	1067	593	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	11	0	162	187	0	28	41	240	77	101	754	8
Grp Sat Flow(s),veh/h/ln	1377	0	1561	1219	0	1660	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	0.7	0.0	10.3	18.0	0.0	1.5	1.3	4.3	3.0	3.2	15.8	0.3
Cycle Q Clear(g_c), s	2.3	0.0	10.3	28.3	0.0	1.5	1.3	4.3	3.0	3.2	15.8	0.3
Prop In Lane	1.00	0.0	0.74	1.00	0.0	0.36	1.00	1.0	1.00	1.00	10.0	1.00
Lane Grp Cap(c), veh/h	399	0	404	271	0	430	403	1791	801	661	1833	820
V/C Ratio(X)	0.03	0.00	0.40	0.69	0.00	0.07	0.10	0.13	0.10	0.15	0.41	0.01
Avail Cap(c_a), veh/h	517	0.00	538	376	0.00	573	542	1791	801	778	1833	820
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.4	0.0	36.8	48.5	0.0	33.5	12.5	14.0	13.7	11.5	15.9	12.4
Incr Delay (d2), s/veh	0.0	0.0	0.6	3.1	0.0	0.1	0.1	0.2	0.2	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	4.5	6.3	0.0	0.7	0.6	2.0	1.3	1.5	7.4	0.1
LnGrp Delay(d),s/veh	34.4	0.0	37.4	51.6	0.0	33.6	12.6	14.2	14.0	11.6	16.6	12.4
LnGrp LOS	C	0.0	D	D D	0.0	C	12.0 B	В	В	В	В	12.4
Approach Vol, veh/h		173			215			358			863	
Approach Delay, s/veh		37.2			49.3			14.0			16.0	
		37.2 D			49.3 D			14.0 B			16.0 B	
Approach LOS		D			D			D			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.6	70.7		37.7	10.1	72.2		37.7				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	45.4		41.4	* 14	45.4		41.4				
Max Q Clear Time (g_c+I1), s	5.2	6.3		12.3	3.3	17.8		30.3				
Green Ext Time (p_c), s	0.2	2.4		1.2	0.1	6.9		8.0				
Intersection Summary												
HCM 2010 Ctrl Delay			22.2									
HCM 2010 LOS			С									
Notes												

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	←	•	•	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		ሻ	f)		ሻ	^	7	Ť	^	7
Traffic Volume (vph)	13	63	43	92	58	104	184	863	149	68	288	13
Future Volume (vph)	13	63	43	92	58	104	184	863	149	68	288	13
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0		•	60.0		-	70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.939	,,,,,		0.903				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		0,000
Satd. Flow (prot)	1676	1657	0	1676	1594	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.443			0.651			0.530	0000	.000	0.277	0000	.000
Satd. Flow (perm)	782	1657	0	1149	1594	0	935	3353	1500	489	3353	1500
Right Turn on Red	, 02	1007	Yes	1110	1001	Yes	000	0000	Yes	100	0000	Yes
Satd. Flow (RTOR)		30	100		80	100			166			91
Link Speed (k/h)		50			50			50	100		50	31
Link Distance (m)		202.9			283.1			221.3			1399.3	
Travel Time (s)		14.6			20.4			15.9			100.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	70	48	102	64	116	204	959	166	76	320	14
Shared Lane Traffic (%)	14	70	40	102	04	110	204	909	100	70	320	14
	14	118	0	102	180	0	204	959	166	76	320	14
Lane Group Flow (vph) Enter Blocked Intersection	No		No	No	No	No	No	No	No	No	No	No
		No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	_	15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	45.0	45.0		45.0	45.0		20.0	55.0	55.0	20.0	55.0	55.0
Total Split (%)	37.5%	37.5%		37.5%	37.5%		16.7%	45.8%	45.8%	16.7%	45.8%	45.8%
Maximum Green (s)	38.4	38.4		38.4	38.4		13.6	48.4	48.4	13.6	48.4	48.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	15.9	15.9		15.9	15.9		88.5	79.9	79.9	81.9	74.7	74.7
Actuated g/C Ratio	0.13	0.13		0.13	0.13		0.74	0.67	0.67	0.68	0.62	0.62
v/c Ratio	0.14	0.48		0.67	0.64		0.27	0.43	0.16	0.19	0.15	0.01
Control Delay	46.1	41.1		69.7	36.9		5.5	11.5	2.0	6.0	10.7	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.1	41.1		69.7	36.9		5.5	11.5	2.0	6.0	10.7	0.0
LOS	D	D		Е	D		Α	В	Α	Α	В	Α
Approach Delay		41.6			48.8			9.4			9.5	
Approach LOS		D			D			Α			Α	
Queue Length 50th (m)	3.1	20.3		24.5	23.5		11.7	56.5	0.0	4.0	16.0	0.0
Queue Length 95th (m)	9.2	37.2		41.6	45.4		24.2	87.8	9.4	10.1	28.9	0.0
Internal Link Dist (m)		178.9			259.1			197.3			1375.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	250	550		367	564		791	2232	1054	495	2087	968
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.21		0.28	0.32		0.26	0.43	0.16	0.15	0.15	0.01

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 50 (42%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67

Intersection Signal Delay: 16.5 Intersection LOS: B Intersection Capacity Utilization 57.7% ICU Level of Service B

Analysis Period (min) 15

936 March Road **CGH Transportation** MC

CGH Transportation 936 March Road MC

Lane Configurations		•	→	•	•	←	•	1	†	/	/	Ţ	1
Traffic Volume (veh/h) 13 63 43 92 58 104 184 883 149 88 288 Number 7 4 1 14 3 8 18 5 2 12 1 6 Initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h) 13 63 43 92 58 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 184 863 149 68 288 104 105 106 100 100 100 100 100 100	Lane Configurations	ሻ	₽		ሻ	₽		ሻ	^↑	7	ሻ	^↑	7
Number 7 4 14 3 8 18 5 2 12 1 1 6 Initial O (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)	13	63	43	92	58	104	184	863	149	68	288	13
Initial Q (Ob), weh	Future Volume (veh/h)	13	63	43	92	58	104	184	863	149	68	288	13
Ped-Biks Adj(A_pbT)	Number	7	4	14	3	8	18	5	2	12	1	6	16
Parking Bus, Adj	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Act Sat Flow, veh/h/ln 1765 1765 1800 1765 176 280 Adj No. of Lanes 1 1 0 1 1 0 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h Adj Flow	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes	Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Adj Flow Rate, veh/h	14	70	48	102	64	116	204	959	166	76	320	14
Percent Heavy Veh, %	Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Cap, veh/h 139 168 115 198 97 176 750 2099 939 362 2005 88 Arrive On Green 0.17 0.17 0.17 0.17 0.17 0.17 0.07 0.63 0.63 0.64 0.60 0.04 Arrive On Green 0.17 0.17 0.17 0.17 0.17 0.07 0.63 0.63 0.64 0.60 0.04 Sat Flow, veh/h 1199 977 670 1269 563 1021 1681 3353 1500 1681 3353 150 Grp Volume(v), veh/h 14 0 118 102 0 180 204 959 166 76 320 Grp Sat Flow(s), veh/h/ln 1199 0 1647 1269 0 1585 1681 1676 1500 1681 1676 150 Q Serve(g_ s), s 1.3 0.0 7.7 9.4 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Q Serve(g_ s), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Prop In Lane 1.00 0.41 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 139 0 284 198 0 273 750 2099 939 362 2005 88 V/C Ratio(X) 0.10 0.00 0.42 0.52 0.00 0.66 0.27 0.46 0.18 0.21 0.16 0.4 Avail Cap(c_ a), veh/h 317 0 527 385 0 507 829 2099 939 488 2005 88 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Arrive On Green	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Sat Flow, veh/h 1199 977 670 1269 563 1021 1681 3353 1500 1681 3353 150 Grp Volume(v), veh/h 14 0 118 102 0 180 204 959 166 76 320 Grp Sat Flow(s), veh/h/ln 1199 0 1647 1269 0 1585 1681 1676 1500 1681 1676 150 1681 1676 150 1681 1676 150 1681 1676 150 1681 1676 150 1681 1676 150 1681 1676 150 1681	Cap, veh/h	139	168	115	198	97	176	750	2099	939	362	2005	897
Grp Volume(v), veh/h Grp Sat Flow(s), veh/h Grp Sat Flow(s), veh/h/ln 1199 0 1647 1269 0 1585 1681 1676 1500 1681 1676 1500 0 Serve(g_s), s 1.3 0.0 7.7 9.4 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 0.41 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Arrive On Green	0.17	0.17	0.17	0.17	0.17	0.17	0.07	0.63	0.63	0.04	0.60	0.60
Grp Sat Flow(s),veh/h/ln 1199 0 1647 1269 0 1585 1681 1676 1500 1681 1676 150 Q Serve(g_s), s 1.3 0.0 7.7 9.4 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 7.7 17.0 0.0 12.7 5.6 18.0 5.6 2.1 5.1 0 Cycle Q Clear(g_c), s 14.1 0.0 0.41 1.00 0.64 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 139 0 284 198 0 273 750 2099 939 362 2005 88 V/C Ratio(X) 0.10 0.00 0.42 0.52 0.00 0.66 0.27 0.46 0.18 0.21 0.16 0.4 Avail Cap(c_a), veh/h 317 0 527 385 0 507 829 2099 939 488 2005 88 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Sat Flow, veh/h	1199	977	670	1269	563	1021	1681	3353	1500	1681	3353	1500
Q Serve(g_s), s	Grp Volume(v), veh/h	14	0	118	102	0	180	204	959	166	76	320	14
Q Serve(g_s), s	Grp Sat Flow(s),veh/h/ln	1199	0	1647	1269	0	1585	1681	1676	1500	1681	1676	1500
Cycle Q Clear(g_c), s		1.3	0.0	7.7	9.4	0.0	12.7	5.6	18.0	5.6	2.1	5.1	0.5
Prop In Lane 1.00 0.41 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		14.1	0.0	7.7		0.0		5.6			2.1	5.1	0.5
Lane Grp Cap(c), veh/h				0.41			0.64	1.00		1.00	1.00		1.00
V/C Ratio(X) 0.10 0.00 0.42 0.52 0.00 0.66 0.27 0.46 0.18 0.21 0.16 0.1 Avail Cap(c_a), veh/h 317 0 527 385 0 507 829 2099 939 488 2005 88 HCM Platoon Ratio 1.00<	·		0			0			2099			2005	897
Avail Cap(c_a), veh/h 317 0 527 385 0 507 829 2099 939 488 2005 88 HCM Platoon Ratio 1.00			0.00			0.00	0.66	0.27			0.21	0.16	0.02
HCM Platoon Ratio													897
Upstream Filter(I)		1.00	1.00			1.00	1.00	1.00			1.00		1.00
Uniform Delay (d), s/veh 52.9 0.0 44.3 51.9 0.0 46.4 7.8 11.8 9.4 9.4 10.7 9 Incr Delay (d2), s/veh 0.3 0.0 1.0 2.1 0.0 2.7 0.2 0.7 0.4 0.3 0.2 0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													1.00
Incr Delay (d2), s/veh	• • • • • • • • • • • • • • • • • • • •					0.0	46.4	7.8	11.8		9.4		9.8
Initial Q Delay(d3),s/veh													0.0
%ile BackOfQ(50%),veh/ln 0.5 0.0 3.6 3.4 0.0 5.8 2.6 8.5 2.4 1.0 2.4 0.0 LnGrp Delay(d),s/veh 53.2 0.0 45.2 53.9 0.0 49.1 8.0 12.5 9.9 9.6 10.9 9.0 LnGrp LOS D D D D D A B A A A B A A B A A A B A A A B A A A B A A A A B A				0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 53.2 0.0 45.2 53.9 0.0 49.1 8.0 12.5 9.9 9.6 10.9 9 LnGrp LOS D D D D D A B A A B Approach Vol, veh/h 132 282 1329 410 Approach Delay, s/veh 46.1 50.8 11.5 10.6 Approach LOS D D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s *6.4 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Max Green Setting (Gmax), s *14 48.4 38.4 *14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 <										2.4	1.0	2.4	0.2
LnGrp LOS D D D D A B A A B Approach Vol, veh/h 132 282 1329 410 Approach Delay, s/veh 46.1 50.8 11.5 10.6 Approach LOS D D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay<			0.0	45.2	53.9		49.1	8.0	12.5	9.9	9.6	10.9	9.8
Approach Vol, veh/h 132 282 1329 410 Approach Delay, s/veh 46.1 50.8 11.5 10.6 Approach LOS D D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.6 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+II), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B										Α			А
Approach Delay, s/veh			132			282			1329			410	
Approach LOS D D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B													
Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B				0	4		•	7					
Phs Duration (G+Y+Rc), s 11.0 81.7 27.3 14.4 78.4 27.3 Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 6.6 Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B				3				/					
Change Period (Y+Rc), s * 6.4 6.6 6.6 * 6.4 6.6 6.6													
Max Green Setting (Gmax), s * 14 48.4 38.4 * 14 48.4 38.4 Max Q Clear Time (g_c+I1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B	\ //												
Max Q Clear Time (g_c+l1), s 4.1 20.0 16.1 7.6 7.1 19.0 Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B													
Green Ext Time (p_c), s 0.1 10.5 0.8 0.4 2.8 1.7 Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B													
Intersection Summary HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B													
HCM 2010 Ctrl Delay 18.6 HCM 2010 LOS B	/					•••							
HCM 2010 LOS B				10.0									
	_												
	Notes			U									

936 March Road **CGH** Transportation MC

Appendix G

2023 Future Background Synchro

2: March Road & H	allon i	errace	/iviaxw	en bne	age Ro	au					936 Mar	on Road
	۶	-	\rightarrow	•	←	•	4	†	<i>></i>	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		7	f)		7	^	7	7	^	7
Traffic Volume (vph)	10	39	110	171	16	9	38	221	70	93	692	7
Future Volume (vph)	10	39	110	171	16	9	38	221	70	93	692	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.889			0.946				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1569	0	1676	1669	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.739			0.580			0.331			0.575		
Satd. Flow (perm)	1304	1569	0	1024	1669	0	584	3353	1500	1015	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		122			10				91			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			1399.3	
Travel Time (s)		14.6			20.4			15.9			100.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	43	122	190	18	10	42	246	78	103	769	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	165	0	190	28	0	42	246	78	103	769	8
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
D W LDI				_			_		_	_		_

8

2

2

6

4

Permitted Phases

6

	۶	→	•	•	←	•	\triangleleft	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	48.0	48.0		48.0	48.0		20.0	52.0	52.0	20.0	52.0	52.0
Total Split (%)	40.0%	40.0%		40.0%	40.0%		16.7%	43.3%	43.3%	16.7%	43.3%	43.3%
Maximum Green (s)	41.4	41.4		41.4	41.4		13.6	45.4	45.4	13.6	45.4	45.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	26.0	26.0		26.0	26.0		73.0	66.1	66.1	77.5	70.2	70.2
Actuated g/C Ratio	0.22	0.22		0.22	0.22		0.61	0.55	0.55	0.65	0.58	0.58
v/c Ratio	0.04	0.38		0.86	0.08		0.10	0.13	0.09	0.15	0.39	0.01
Control Delay	32.8	13.4		76.7	24.4		9.4	15.1	3.1	8.8	16.3	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.8	13.4		76.7	24.4		9.4	15.1	3.1	8.8	16.3	0.0
LOS	С	В		Е	С		Α	В	Α	Α	В	Α
Approach Delay		14.6			70.0			11.9			15.3	
Approach LOS		В			Е			В			В	
Queue Length 50th (m)	2.2	8.6		45.6	3.6		3.2	14.7	0.0	8.1	53.9	0.0
Queue Length 95th (m)	6.6	25.1		67.5	10.4		9.2	27.7	7.2	18.8	85.8	0.0
Internal Link Dist (m)		178.9			259.1			197.3			1375.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	449	621		353	582		511	1847	867	758	1960	914
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.27		0.54	0.05		0.08	0.13	0.09	0.14	0.39	0.01

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 99 (83%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 21.7 Intersection LOS: C
Intersection Capacity Utilization 65.5% ICU Level of Service C

Analysis Period (min) 15

936 March Road 5:00 pm 10-03-2018 2023 Future Background MC

	ၨ	→	•	•	+	•	1	†	/	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	₽		7	^	7	ሻ	^	7
Traffic Volume (veh/h)	10	39	110	171	16	9	38	221	70	93	692	7
Future Volume (veh/h)	10	39	110	171	16	9	38	221	70	93	692	7
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	11	43	122	190	18	10	42	246	78	103	769	8
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	404	107	303	274	281	156	394	1774	794	652	1819	814
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.03	0.53	0.53	0.04	0.54	0.54
Sat Flow, veh/h	1377	407	1154	1216	1067	593	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	11	0	165	190	0	28	42	246	78	103	769	8
Grp Sat Flow(s),veh/h/ln	1377	0	1561	1216	0	1660	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	0.7	0.0	10.5	18.3	0.0	1.5	1.4	4.5	3.1	3.3	16.3	0.3
Cycle Q Clear(g_c), s	2.2	0.0	10.5	28.8	0.0	1.5	1.4	4.5	3.1	3.3	16.3	0.3
Prop In Lane	1.00		0.74	1.00		0.36	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	404	0	410	274	0	436	394	1774	794	652	1819	814
V/C Ratio(X)	0.03	0.00	0.40	0.69	0.00	0.06	0.11	0.14	0.10	0.16	0.42	0.01
Avail Cap(c_a), veh/h	517	0	539	374	0	573	531	1774	794	768	1819	814
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.0	0.0	36.5	48.3	0.0	33.2	12.8	14.4	14.0	11.7	16.3	12.6
Incr Delay (d2), s/veh	0.0	0.0	0.6	3.4	0.0	0.1	0.1	0.2	0.2	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	4.6	6.4	0.0	0.7	0.6	2.1	1.3	1.5	7.8	0.1
LnGrp Delay(d),s/veh	34.0	0.0	37.1	51.7	0.0	33.2	13.0	14.5	14.3	11.8	17.0	12.7
LnGrp LOS	С		D	D		С	В	В	В	В	В	В
Approach Vol, veh/h		176			218			366			880	
Approach Delay, s/veh		36.9			49.3			14.3			16.4	
Approach LOS		D			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.8	70.1		38.1	10.2	71.7		38.1				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	45.4		41.4	* 14	45.4		41.4				
Max Q Clear Time (g_c+I1), s	5.3	6.5		12.5	3.4	18.3		30.8				
Green Ext Time (p_c), s	0.2	2.5		1.3	0.1	7.1		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			22.5									
/												
HCM 2010 LOS			С									

	•	-	•	•	←	•	•	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		*	f.		Ť	^	7	ħ	^	7
Traffic Volume (vph)	13	64	44	94	59	106	188	880	152	69	294	13
Future Volume (vph)	13	64	44	94	59	106	188	880	152	69	294	13
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.939			0.904				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1657	0	1676	1595	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.433			0.645			0.526			0.269		
Satd. Flow (perm)	764	1657	0	1138	1595	0	928	3353	1500	475	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		30			79				169			91
Link Speed (k/h)		50			50			50			50	.
Link Distance (m)		202.9			283.1			221.3			1399.3	
Travel Time (s)		14.6			20.4			15.9			100.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	71	49	104	66	118	209	978	169	77	327	14
Shared Lane Traffic (%)		, ,	40	10-1	00	110	200	070	100		OLI	1-1
Lane Group Flow (vph)	14	120	0	104	184	0	209	978	169	77	327	14
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	3.6	rugin	Lon	3.6	rugiit	Lon	3.6	rugiit	Lon	3.6	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		7.0			7.0			7.0			7.0	
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	1.07	15	25	1.07	1.07	25	1.07	15	25	1.07	15
Number of Detectors	1	2	10	1	2	10	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OITLX	OITLX		OITLX	OITLX		OITLX	OITLX	OITLX	OITLX	OITLX	OITEX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	0.0
, ,												
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	De	0.0		D	0.0			0.0	D		0.0	De
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6

	۶	→	•	•	•	•	•	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	45.0	45.0		45.0	45.0		20.0	55.0	55.0	20.0	55.0	55.0
Total Split (%)	37.5%	37.5%		37.5%	37.5%		16.7%	45.8%	45.8%	16.7%	45.8%	45.8%
Maximum Green (s)	38.4	38.4		38.4	38.4		13.6	48.4	48.4	13.6	48.4	48.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	16.1	16.1		16.1	16.1		88.4	79.7	79.7	81.6	74.4	74.4
Actuated g/C Ratio	0.13	0.13		0.13	0.13		0.74	0.66	0.66	0.68	0.62	0.62
v/c Ratio	0.14	0.48		0.68	0.65		0.28	0.44	0.16	0.20	0.16	0.01
Control Delay	46.0	41.2		70.7	38.1		5.7	11.7	2.0	6.2	10.9	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.0	41.2		70.7	38.1		5.7	11.7	2.0	6.2	10.9	0.0
LOS	D	D		Е	D		Α	В	Α	Α	В	Α
Approach Delay		41.7			49.8			9.6			9.7	
Approach LOS		D			D			Α			Α	
Queue Length 50th (m)	3.1	20.8		25.0	24.7		12.1	58.5	0.0	4.1	16.5	0.0
Queue Length 95th (m)	9.2	37.8		42.1	46.6		25.0	91.0	9.4	10.2	29.9	0.0
Internal Link Dist (m)		178.9			259.1			197.3			1375.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	244	550		364	564		785	2227	1053	485	2078	964
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.22		0.29	0.33		0.27	0.44	0.16	0.16	0.16	0.01

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 50 (42%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68

Intersection Signal Delay: 16.8 Intersection LOS: B
Intersection Capacity Utilization 58.3% ICU Level of Service B

Analysis Period (min) 15

936 March Road 5:00 pm 10-03-2018 2023 Future Background MC

	۶	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		. ነ	₽		ሻ	^	7	ሻ		7
Traffic Volume (veh/h)	13	64	44	94	59	106	188	880	152	69	294	13
Future Volume (veh/h)	13	64	44	94	59	106	188	880	152	69	294	13
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	14	71	49	104	66	118	209	978	169	77	327	14
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	140	171	118	200	100	178	743	2089	934	353	1990	890
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.07	0.62	0.62	0.04	0.59	0.59
Sat Flow, veh/h	1195	974	672	1266	569	1017	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	14	0	120	104	0	184	209	978	169	77	327	14
Grp Sat Flow(s),veh/h/ln	1195	0	1646	1266	0	1585	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	1.3	0.0	7.8	9.6	0.0	13.0	5.8	18.6	5.7	2.1	5.3	0.5
Cycle Q Clear(g_c), s	14.3	0.0	7.8	17.3	0.0	13.0	5.8	18.6	5.7	2.1	5.3	0.5
Prop In Lane	1.00		0.41	1.00		0.64	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	140	0	288	200	0	278	743	2089	934	353	1990	890
V/C Ratio(X)	0.10	0.00	0.42	0.52	0.00	0.66	0.28	0.47	0.18	0.22	0.16	0.02
Avail Cap(c_a), veh/h	313	0	527	383	0	507	819	2089	934	479	1990	890
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.9	0.0	44.0	51.7	0.0	46.2	8.0	12.0	9.6	9.6	11.0	10.0
Incr Delay (d2), s/veh	0.3	0.0	1.0	2.1	0.0	2.7	0.2	0.8	0.4	0.3	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.0	3.6	3.5	0.0	5.9	2.7	8.8	2.5	1.0	2.5	0.2
LnGrp Delay(d),s/veh	53.2	0.0	45.0	53.8	0.0	48.9	8.2	12.8	10.0	10.0	11.2	10.0
LnGrp LOS	D		D	D		D	Α	В	В	A	В	В
Approach Vol, veh/h		134			288			1356			418	
Approach Delay, s/veh		45.8			50.7			11.7			10.9	
Approach LOS		D			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.0	81.4		27.6	14.6	77.8		27.6				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	48.4		38.4	* 14	48.4		38.4				
Max Q Clear Time (g_c+I1), s	4.1	20.6		16.3	7.8	7.3		19.3				
Green Ext Time (p_c), s	0.1	10.6		0.8	0.4	2.9		1.7				
Intersection Summary												
HCM 2010 Ctrl Delay			18.8									
HCM 2010 LOS			В									
Notes												

Appendix H

2028 Future Background Synchro

	۶	•	•	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, M			4₽	∱ }	
Traffic Volume (vph)	11	38	7	464	1311	3
Future Volume (vph)	11	38	7	464	1311	3
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95
Frt	0.895					
Flt Protected	0.989			0.999		
Satd. Flow (prot)	1562	0	0	3350	3353	0
Flt Permitted	0.989			0.999		
Satd. Flow (perm)	1562	0	0	3350	3353	0
Link Speed (k/h)	50			50	50	
Link Distance (m)	280.3			684.3	305.5	
Travel Time (s)	20.2			49.3	22.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	12	42	8	516	1457	3
Shared Lane Traffic (%)						
Lane Group Flow (vph)	54	0	0	524	1460	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.6			3.6	3.6	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						

ICU Level of Service A

Analysis Period (min) 15

Intersection Capacity Utilization 48.4%

latana atia						
Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			414	ħβ	
Traffic Vol, veh/h	11	38	7	464	1311	3
Future Vol, veh/h	11	38	7	464	1311	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	42	8	516	1457	3
IVIVIIIL FIUW	12	42	0	310	1457	3
Major/Minor	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	1733	730	1460	0	-	0
Stage 1	1459	-	-	-	-	-
Stage 2	274	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	_	-	-
Critical Hdwy Stg 2	5.84	_	-	_	-	-
Follow-up Hdwy	3.52	3.32	2.22	_	_	_
Pot Cap-1 Maneuver	79	365	459	_	_	_
Stage 1	180	-	.00	_	_	_
Stage 2	747				_	
	747	-	-		-	_
Platoon blocked, %	77	005	450	-		
Mov Cap-1 Maneuver		365	459	-	-	-
Mov Cap-2 Maneuver	77	-	-	-	-	-
Stage 1	176	-	-	-	-	-
Stage 2	747	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	29.9		0.4		0	
HCM LOS	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		459	-		_	_
HCM Lane V/C Ratio		0.017		0.275	_	_
HCM Control Delay (s)	13	0.2		_	_
HCM Lane LOS	,	В	Α	29.9 D	-	_
HCM 95th %tile Q(veh	,)	0.1	-	1.1	-	
HOW SOUT WITH Q(Ver	1)	U. I	-	1.1	-	-

	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĵ.		ሻ	^	7	*	^	7
Traffic Volume (vph)	91	40	175	175	17	35	115	444	72	102	1187	61
Future Volume (vph)	91	40	175	175	17	35	115	444	72	102	1187	61
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.878			0.899				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1549	0	1676	1586	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.719			0.467			0.101			0.453		
Satd. Flow (perm)	1269	1549	0	824	1586	0	178	3353	1500	799	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		194			39				91			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			684.3	
Travel Time (s)		14.6			20.4			15.9			49.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	101	44	194	194	19	39	128	493	80	113	1319	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	101	238	0	194	58	0	128	493	80	113	1319	68
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6

	•	→	\rightarrow	•	←	•	•	†	<i>></i>	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	48.0	48.0		48.0	48.0		20.0	52.0	52.0	20.0	52.0	52.0
Total Split (%)	40.0%	40.0%		40.0%	40.0%		16.7%	43.3%	43.3%	16.7%	43.3%	43.3%
Maximum Green (s)	41.4	41.4		41.4	41.4		13.6	45.4	45.4	13.6	45.4	45.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	30.1	30.1		30.1	30.1		71.3	61.4	61.4	69.8	60.7	60.7
Actuated g/C Ratio	0.25	0.25		0.25	0.25		0.59	0.51	0.51	0.58	0.51	0.51
v/c Ratio	0.32	0.45		0.94	0.14		0.57	0.29	0.10	0.21	0.78	0.08
Control Delay	36.8	10.0		91.8	13.9		23.7	19.3	3.9	11.4	30.5	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.8	10.0		91.8	13.9		23.7	19.3	3.9	11.4	30.5	2.7
LOS	D	В		F	В		С	В	Α	В	С	Α
Approach Delay		18.0			73.9			18.4			27.8	
Approach LOS		В			Е			В			С	
Queue Length 50th (m)	20.4	8.4		47.1	3.6		11.5	35.6	0.0	10.1	135.2	0.0
Queue Length 95th (m)	32.4	26.7		#72.1	12.7		31.6	60.3	8.4	22.8	#229.8	5.8
Internal Link Dist (m)		178.9			259.1			197.3			660.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	437	661		284	572		281	1715	812	594	1694	803
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.23	0.36		0.68	0.10		0.46	0.29	0.10	0.19	0.78	0.08

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 99 (83%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 28.4 Intersection LOS: C Intersection Capacity Utilization 87.0% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	+	1	1	†	/	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĵ.		*	^	7	ሻ	^	7
Traffic Volume (veh/h)	91	40	175	175	17	35	115	444	72	102	1187	61
Future Volume (veh/h)	91	40	175	175	17	35	115	444	72	102	1187	61
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	101	44	194	194	19	39	128	493	80	113	1319	68
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	445	89	394	274	162	332	203	1581	707	465	1564	700
Arrive On Green	0.31	0.31	0.31	0.31	0.31	0.31	0.06	0.47	0.47	0.05	0.47	0.47
Sat Flow, veh/h	1340	285	1258	1138	517	1061	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	101	0	238	194	0	58	128	493	80	113	1319	68
Grp Sat Flow(s),veh/h/ln	1340	0	1543	1138	0	1578	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	7.0	0.0	15.0	20.0	0.0	3.1	4.7	10.9	3.6	4.2	41.5	3.0
Cycle Q Clear(g_c), s	10.1	0.0	15.0	35.1	0.0	3.1	4.7	10.9	3.6	4.2	41.5	3.0
Prop In Lane	1.00		0.82	1.00		0.67	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	445	0	483	274	0	494	203	1581	707	465	1564	700
V/C Ratio(X)	0.23	0.00	0.49	0.71	0.00	0.12	0.63	0.31	0.11	0.24	0.84	0.10
Avail Cap(c_a), veh/h	487	0	532	310	0	544	297	1581	707	569	1564	700
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.0	0.0	33.5	47.7	0.0	29.4	25.2	19.6	17.7	15.4	28.2	17.9
Incr Delay (d2), s/veh	0.3	0.0	0.8	6.3	0.0	0.1	3.2	0.5	0.3	0.3	5.7	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	0.0	6.5	6.8	0.0	1.4	2.3	5.2	1.6	1.9	20.5	1.3
LnGrp Delay(d),s/veh	33.2	0.0	34.2	54.0	0.0	29.5	28.4	20.2	18.0	15.7	33.9	18.2
LnGrp LOS	С		С	D		С	С	С	В	В	С	В
Approach Vol, veh/h		339			252			701			1500	
Approach Delay, s/veh		33.9			48.4			21.4			31.8	
Approach LOS		С			D			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.6	63.2		44.2	13.2	62.6		44.2				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	45.4		41.4	* 14	45.4		41.4				
Max Q Clear Time (g_c+l1), s	6.2	12.9		17.0	6.7	43.5		37.1				
Green Ext Time (p_c), s	0.2	4.8		2.3	0.2	1.5		0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			31.0									
HCM 2010 LOS			C									
Notes												

	•	•	•	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			414	∱ }	
Traffic Volume (vph)	10	23	45	1417	631	9
Future Volume (vph)	10	23	45	1417	631	9
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95
Frt	0.905				0.998	
Flt Protected	0.985			0.998		
Satd. Flow (prot)	1573	0	0	3346	3346	0
Flt Permitted	0.985			0.998		
Satd. Flow (perm)	1573	0	0	3346	3346	0
Link Speed (k/h)	50			50	50	
Link Distance (m)	256.5			684.3	375.4	
Travel Time (s)	18.5			49.3	27.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	26	50	1574	701	10
Shared Lane Traffic (%)						
Lane Group Flow (vph)	37	0	0	1624	711	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.6			3.6	3.6	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						

ICU Level of Service D

Analysis Period (min) 15

Intersection Capacity Utilization 74.8%

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		1,00	41	†	0511
Traffic Vol, veh/h	10	23	45	1417	631	9
Future Vol, veh/h	10	23	45	1417	631	9
Conflicting Peds, #/hr	0	0	0	0	031	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siop -				- Free	
Storage Length	0	-	_	-	_	None -
Veh in Median Storage			-	0	0	-
Grade, %	9, # 0	<u>-</u>	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	90	2	90	2	2
Mvmt Flow	11	26	50	1574	701	10
IVIVIIIL FIOW	H	26	50	15/4	701	10
Major/Minor I	Minor2	N	Major1	N	Major2	
Conflicting Flow All	1593	356	711	0	-	0
Stage 1	706	-	-	-	-	-
Stage 2	887	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	98	640	884	-	-	-
Stage 1	450	-	-	-	_	_
Stage 2	363	_	-	-	-	-
Platoon blocked, %	330			-	_	-
Mov Cap-1 Maneuver	54	640	884		_	
Mov Cap-2 Maneuver	54	J TU	- 30-7	_	_	_
Stage 1	247	_	_	-	_	-
_	363	-	-	-	-	-
Stage 2	303	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	36.9		2.2		0	
HCM LOS	Е					
Minor Law - /NA ' Law	.+	NIDI	NIDT	EDI- 4	ODT	ODD
Minor Lane/Major Mvm	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)	nt	884	-	149	-	-
Capacity (veh/h) HCM Lane V/C Ratio		884 0.057	-	149 0.246	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		884 0.057 9.3	- - 2	149 0.246 36.9	- - -	- - -
Capacity (veh/h) HCM Lane V/C Ratio		884 0.057	-	149 0.246	-	-

	•	-	•	•	←	•	•	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		7	£		ř	^	7	7	^	7
Traffic Volume (vph)	79	67	76	96	60	141	270	1294	156	119	433	99
Future Volume (vph)	79	67	76	96	60	141	270	1294	156	119	433	99
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.920			0.895				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1624	0	1676	1579	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.328			0.530			0.456			0.117		
Satd. Flow (perm)	579	1624	0	935	1579	0	805	3353	1500	206	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		50			103				126			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			684.3	
Travel Time (s)		14.6			20.4			15.9			49.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	88	74	84	107	67	157	300	1438	173	132	481	110
Shared Lane Traffic (%)			0.		0.			00		.02		
Lane Group Flow (vph)	88	158	0	107	224	0	300	1438	173	132	481	110
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6		20.0	3.6		20.1	3.6		20.0	3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	.0	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OITEX	OITEX		OITEX	OITEX		OITEX	OITEX	OITEX	OITEX	OITEX	OITEX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
		CI+EX			CI+EX			CI+EX			CI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Darra	0.0		Daves	0.0		nm	0.0	Daves	nm 1	0.0	Daves
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4		_	8		5	2	_	1	6	
Permitted Phases	4			8			2		2	6		6

	٠	→	\rightarrow	•	←	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	45.0	45.0		45.0	45.0		20.0	55.0	55.0	20.0	55.0	55.0
Total Split (%)	37.5%	37.5%		37.5%	37.5%		16.7%	45.8%	45.8%	16.7%	45.8%	45.8%
Maximum Green (s)	38.4	38.4		38.4	38.4		13.6	48.4	48.4	13.6	48.4	48.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	17.1	17.1		17.1	17.1		85.3	72.5	72.5	81.7	70.7	70.7
Actuated g/C Ratio	0.14	0.14		0.14	0.14		0.71	0.60	0.60	0.68	0.59	0.59
v/c Ratio	1.07	0.58		0.80	0.72		0.45	0.71	0.18	0.49	0.24	0.12
Control Delay	168.6	39.9		88.0	38.3		7.8	20.8	4.9	14.5	13.6	4.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	168.6	39.9		88.0	38.3		7.8	20.8	4.9	14.5	13.6	4.7
LOS	F	D		F	D		Α	С	Α	В	В	Α
Approach Delay		85.9			54.4			17.3			12.4	
Approach LOS		F			D			В			В	
Queue Length 50th (m)	~24.4	25.1		26.1	28.9		19.4	120.6	4.4	7.6	27.9	1.8
Queue Length 95th (m)	#49.4	44.4		44.1	53.0		38.7	196.1	18.3	22.7	49.6	12.5
Internal Link Dist (m)		178.9			259.1			197.3			660.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	185	553		299	575		691	2026	956	318	1976	921
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.29		0.36	0.39		0.43	0.71	0.18	0.42	0.24	0.12

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 50 (42%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 95

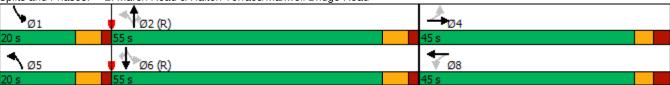
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.07

Intersection Signal Delay: 25.3 Intersection LOS: C Intersection Capacity Utilization 87.4% ICU Level of Service E

Analysis Period (min) 15

CGH Transportation MC Page 4


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

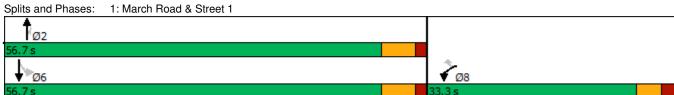
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	ၨ	→	•	•	←	•	1	†	/	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		7	ĵ.		*	^	7	ሻ	^	7
Traffic Volume (veh/h)	79	67	76	96	60	141	270	1294	156	119	433	99
Future Volume (veh/h)	79	67	76	96	60	141	270	1294	156	119	433	99
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	88	74	84	107	67	157	300	1438	173	132	481	110
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	176	173	196	238	108	252	579	1852	829	221	1697	759
Arrive On Green	0.23	0.23	0.23	0.23	0.23	0.23	0.10	0.55	0.55	0.06	0.51	0.51
Sat Flow, veh/h	1152	756	858	1223	470	1101	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	88	0	158	107	0	224	300	1438	173	132	481	110
Grp Sat Flow(s),veh/h/ln	1152	0	1613	1223	0	1570	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	8.9	0.0	10.0	9.8	0.0	15.4	10.0	40.3	7.0	4.5	9.9	4.7
Cycle Q Clear(g_c), s	24.3	0.0	10.0	19.9	0.0	15.4	10.0	40.3	7.0	4.5	9.9	4.7
Prop In Lane	1.00		0.53	1.00		0.70	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	176	0	369	238	0	360	579	1852	829	221	1697	759
V/C Ratio(X)	0.50	0.00	0.43	0.45	0.00	0.62	0.52	0.78	0.21	0.60	0.28	0.14
Avail Cap(c_a), veh/h	281	0	516	349	0	503	599	1852	829	318	1697	759
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.5	0.0	39.5	48.0	0.0	41.6	11.5	21.1	13.6	21.2	17.1	15.8
Incr Delay (d2), s/veh	2.2	0.0	8.0	1.3	0.0	1.8	0.7	3.3	0.6	2.6	0.4	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.9	0.0	4.6	3.4	0.0	6.8	4.7	19.4	3.0	2.3	4.7	2.0
LnGrp Delay(d),s/veh	54.7	0.0	40.3	49.4	0.0	43.4	12.2	24.3	14.2	23.8	17.5	16.2
LnGrp LOS	D		D	D		D	В	С	В	С	B	В
Approach Vol, veh/h		246			331			1911			723	
Approach Delay, s/veh		45.5			45.3			21.5			18.5	
Approach LOS		D			D			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.0	72.9		34.1	18.6	67.3		34.1				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	48.4		38.4	* 14	48.4		38.4				
Max Q Clear Time (g_c+l1), s	6.5	42.3		26.3	12.0	11.9		21.9				
Green Ext Time (p_c), s	0.2	4.9		1.2	0.2	4.9		1.9				
Intersection Summary												
HCM 2010 Ctrl Delay			25.1									
HCM 2010 LOS			С									
Notes												

Appendix I

2023 Total Future Synchro


	•	•	†	<i>></i>	-	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	<u> </u>	7	ሻ	<u> </u>
Traffic Volume (vph)	300	16	240	97	5	792
Future Volume (vph)	300	16	240	97	5	792
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	1.00
Flt Protected	0.950	0.000		0.000	0.950	
Satd. Flow (prot)	1676	1500	1765	1500	1676	1765
Fit Permitted	0.950	1300	1/03	1300	0.595	1/03
		1500	1765	1500		1765
Satd. Flow (perm)	1676	1500	1765	1500	1050	1765
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	50	18	5 0	108		50
Link Speed (k/h)	50		50			50
Link Distance (m)	145.2		387.2			760.6
Travel Time (s)	10.5		27.9			54.8
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	333	18	267	108	6	880
Shared Lane Traffic (%)						
Lane Group Flow (vph)	333	18	267	108	6	880
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		3.6			3.6
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	15		15	25	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	2.0	2.0	10.0	2.0	2.0	10.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(III) Detector 1 Size(m)	2.0	2.0	0.6	2.0	2.0	0.6
()						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	2.0	2.2	2.2	2.2	2.2	2.2
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)			9.4			9.4
Detector 2 Size(m)			0.6			0.6
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
	5.0	5.0	5.0	5.0	5.0	5.0

936 March Road CGH Transportation MC Page 1

	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Split (s)	33.3	33.3	38.2	38.2	38.2	38.2
Total Split (s)	33.3	33.3	56.7	56.7	56.7	56.7
Total Split (%)	37.0%	37.0%	63.0%	63.0%	63.0%	63.0%
Maximum Green (s)	28.0	28.0	50.5	50.5	50.5	50.5
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6	4.6
All-Red Time (s)	2.0	2.0	1.6	1.6	1.6	1.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	6.2	6.2	6.2	6.2
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0	25.0	25.0	25.0	25.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0
Act Effct Green (s)	21.0	21.0	50.9	50.9	50.9	50.9
Actuated g/C Ratio	0.25	0.25	0.61	0.61	0.61	0.61
v/c Ratio	0.79	0.05	0.25	0.11	0.01	0.82
Control Delay	43.1	10.2	9.2	2.2	8.2	22.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.1	10.2	9.2	2.2	8.2	22.3
LOS	D	В	Α.Δ	Α.Δ	Α.Δ	ZZ.0
Approach Delay	41.4		7.2	, ,	,,	22.2
Approach LOS	D		Α.Δ			C
Queue Length 50th (m)	51.7	0.0	18.8	0.0	0.4	105.1
Queue Length 95th (m)	81.6	4.9	37.7	6.8	2.2	#219.8
Internal Link Dist (m)	121.2	4.3	363.2	0.0	۷.۷	736.6
,	121.2		303.2			730.0
Turn Bay Length (m)	564	517	1076	956	640	1076
Base Capacity (vph)						
Starvation Cap Reducts	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.59	0.03	0.25	0.11	0.01	0.82
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 83	3.4					
Natural Cycle: 90						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.82						
Intersection Signal Delay:	22.9			lı	ntersectio	n LOS: C
Intersection Capacity Utili	zation 71.1%			10	CU Level	of Service
Analysis Period (min) 15						
,						

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Movement WBL WBR NBT NBR SBL SBT
Traffic Volume (veh/h) 300 16 240 97 5 792 Future Volume (veh/h) 300 16 240 97 5 792 Number 3 18 2 12 1 6 Initial Q (Qb), veh 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 Cap, veh/h 386 345 1107 941 652 1107 Arrive On Green 0.23 0.23 0.63 0.63 0.63 Sat Flow, veh/h/n 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 333 18 267 108 6 880 Grp Sat Flow(s),veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Traffic Volume (veh/h) 300 16 240 97 5 792 Future Volume (veh/h) 300 16 240 97 5 792 Number 3 18 2 12 1 6 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1
Future Volume (veh/h) 300 16 240 97 5 792 Number 3 18 2 12 1 6 Initial Q (Qb), veh 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 Cap, veh/h 386 345 1107 941 652 1107 Arrive On Green 0.23 0.23 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c, veh/h 386 345 1107 941 652 1107 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 2 Cap, veh/h 386 345 1107 941 652 1107 Arrive On Green 0.23 0.23 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 1681 1500 1765 1500 1003 1765 Grp Sat Flow(s),veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 2 Cap, veh/h 386 345 1107 941 652 1107 Arrive On Green 0.23 0.23 0.63 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 0 0 0 0
Adj Sat Flow, veh/h/ln 1765 1765 1765 1765 1765 1765 Adj Flow Rate, veh/h 333 18 267 108 6 880 Adj No. of Lanes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Adj Flow Rate, veh/h Adj No. of Lanes 1 1 1 1 1 1 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 2 2 2 2 2 Cap, veh/h Arrive On Green 0.23 0.23 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Adj No. of Lanes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Percent Heavy Veh, % 2 8 2
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cap, veh/h 386 345 1107 941 652 1107 Arrive On Green 0.23 0.23 0.63 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 333 18 267 108 6 880 Grp Sat Flow(s), veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Arrive On Green 0.23 0.23 0.63 0.63 0.63 0.63 0.63 Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 333 18 267 108 6 880 Grp Sat Flow(s), veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Sat Flow, veh/h 1681 1500 1765 1500 1003 1765 Grp Volume(v), veh/h 333 18 267 108 6 880 Grp Sat Flow(s), veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Grp Volume(v), veh/h 333 18 267 108 6 880 Grp Sat Flow(s),veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Grp Sat Flow(s),veh/h/ln 1681 1500 1765 1500 1003 1765 Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Q Serve(g_s), s 15.3 0.8 5.3 2.3 0.2 29.8 Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Cycle Q Clear(g_c), s 15.3 0.8 5.3 2.3 5.6 29.8 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Lane Grp Cap(c), veh/h 386 345 1107 941 652 1107 V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
V/C Ratio(X) 0.86 0.05 0.24 0.11 0.01 0.79 Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Avail Cap(c_a), veh/h 585 522 1107 941 652 1107
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00
Uniform Delay (d), s/veh 29.8 24.2 6.6 6.0 7.8 11.2
Incr Delay (d2), s/veh 8.4 0.1 0.5 0.2 0.0 5.9
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 8.0 0.3 2.8 1.0 0.1 16.2
LnGrp Delay(d),s/veh 38.1 24.2 7.1 6.3 7.8 17.1
LnGrp LOS D C A A A B
Approach Vol, veh/h 351 375 886
Approach Delay, s/veh 37.4 6.9 17.0
Approach LOS D A B
Timer 1 2 3 4 5 6 7 8
Assigned Phs 2 6 8
Phs Duration (G+Y+Rc), s 56.7 56.7 23.8
Change Period (Y+Rc), s * 6.2 * 6.2 5.3
Max Green Setting (Gmax), s * 51 * 51 28.0
Max Q Clear Time (g_c+l1), s 7.3 31.8 17.3
Green Ext Time (p_c), s 2.7 7.8 1.2
ntersection Summary
HCM 2010 Ctrl Delay 19.1
HCM 2010 LOS
Notes

936 March Road CGH Transportation MC Page 3

936 March Road CGH Transportation MC Page 4

Lanes, Volumes, Timings 2: March Road & Halton Terrace/Maxwell Bridge Road

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	î,		ሻ	f)		7	^	7	7	^	7
Traffic Volume (vph)	10	39	110	171	16	9	38	318	70	93	992	7
Future Volume (vph)	10	39	110	171	16	9	38	318	70	93	992	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.889			0.946				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1569	0	1676	1669	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.739			0.580			0.201			0.518		
Satd. Flow (perm)	1304	1569	0	1024	1669	0	355	3353	1500	914	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		122			10				91			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			297.1	
Travel Time (s)		14.6			20.4			15.9			21.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	43	122	190	18	10	42	353	78	103	1102	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	165	0	190	28	0	42	353	78	103	1102	8
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
									•			

CGH Transportation 936 March Road MC Page 5

	۶	→	•	•	←	•	•	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	48.0	48.0		48.0	48.0		20.0	52.0	52.0	20.0	52.0	52.0
Total Split (%)	40.0%	40.0%		40.0%	40.0%		16.7%	43.3%	43.3%	16.7%	43.3%	43.3%
Maximum Green (s)	41.4	41.4		41.4	41.4		13.6	45.4	45.4	13.6	45.4	45.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	26.0	26.0		26.0	26.0		73.0	66.1	66.1	77.5	70.2	70.2
Actuated g/C Ratio	0.22	0.22		0.22	0.22		0.61	0.55	0.55	0.65	0.58	0.58
v/c Ratio	0.04	0.38		0.86	0.08		0.15	0.19	0.09	0.16	0.56	0.01
Control Delay	32.8	13.4		76.7	24.4		10.0	15.5	3.1	8.9	19.2	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.8	13.4		76.7	24.4		10.0	15.5	3.1	8.9	19.2	0.0
LOS	С	В		Е	С		Α	В	Α	Α	В	Α
Approach Delay		14.6			70.0			13.0			18.2	
Approach LOS		В			Е			В			В	
Queue Length 50th (m)	2.2	8.6		45.6	3.6		3.2	22.0	0.0	8.1	88.7	0.0
Queue Length 95th (m)	6.6	25.1		67.5	10.4		9.2	39.0	7.2	18.8	137.3	0.0
Internal Link Dist (m)		178.9			259.1			197.3			273.1	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	449	621		353	582		385	1847	867	702	1960	914
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.27		0.54	0.05		0.11	0.19	0.09	0.15	0.56	0.01

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 99 (83%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 22.1 Intersection LOS: C Intersection Capacity Utilization 74.3% ICU Level of Service D

Analysis Period (min) 15

936 March Road **CGH Transportation** MC

2: March Road & Halton Terrace/Maxwell Bridge Road Splits and Phases: ₽ Ø2 (R) Ø6 (R) Ø8

CGH Transportation 936 March Road MC Page 7

	۶	→	•	√	←	•	•	†	~	>		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		ሻ	₽		7	^	7	ሻ	^	7
Traffic Volume (veh/h)	10	39	110	171	16	9	38	318	70	93	992	7
Future Volume (veh/h)	10	39	110	171	16	9	38	318	70	93	992	7
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	11	43	122	190	18	10	42	353	78	103	1102	8
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	404	107	303	274	281	156	274	1774	794	587	1819	814
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.03	0.53	0.53	0.04	0.54	0.54
Sat Flow, veh/h	1377	407	1154	1216	1067	593	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	11	0	165	190	0	28	42	353	78	103	1102	8
Grp Sat Flow(s),veh/h/ln	1377	0	1561	1216	0	1660	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	0.7	0.0	10.5	18.3	0.0	1.5	1.4	6.6	3.1	3.3	26.9	0.3
Cycle Q Clear(g_c), s	2.2	0.0	10.5	28.8	0.0	1.5	1.4	6.6	3.1	3.3	26.9	0.3
Prop In Lane	1.00		0.74	1.00		0.36	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	404	0	410	274	0	436	274	1774	794	587	1819	814
V/C Ratio(X)	0.03	0.00	0.40	0.69	0.00	0.06	0.15	0.20	0.10	0.18	0.61	0.01
Avail Cap(c_a), veh/h	517	0	539	374	0	573	411	1774	794	702	1819	814
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.0	0.0	36.5	48.3	0.0	33.2	14.8	14.9	14.0	11.8	18.7	12.6
Incr Delay (d2), s/veh	0.0	0.0	0.6	3.4	0.0	0.1	0.3	0.3	0.2	0.1	1.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	4.6	6.4	0.0	0.7	0.6	3.2	1.3	1.5	12.8	0.1
LnGrp Delay(d),s/veh	34.0	0.0	37.1	51.7	0.0	33.2	15.0	15.1	14.3	12.0	20.2	12.7
LnGrp LOS	С	.=-	D	D		С	В	В	В	В	С	В
Approach Vol, veh/h		176			218			473			1213	
Approach Delay, s/veh		36.9			49.3			15.0			19.5	
Approach LOS		D			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.8	70.1		38.1	10.2	71.7		38.1				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	45.4		41.4	* 14	45.4		41.4				
Max Q Clear Time (g_c+I1), s	5.3	8.6		12.5	3.4	28.9		30.8				
Green Ext Time (p_c), s	0.2	3.4		1.3	0.1	8.4		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			23.0									
HCM 2010 LOS			С									
Notes												

936 March Road CGH Transportation MC Page 8

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

936 March Road **CGH** Transportation MC

	•	•	†	/	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†	7	*	↑
Traffic Volume (vph)	188	10	999	319	17	376
Future Volume (vph)	188	10	999	319	17	376
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	1.00
Flt Protected	0.950	0.000		0.000	0.950	
Satd. Flow (prot)	1676	1500	1765	1500	1676	1765
Flt Permitted	0.950	1300	1703	1300	0.106	1703
Satd. Flow (perm)	1676	1500	1765	1500	187	1765
	10/0	Yes	1700	Yes	107	1700
Right Turn on Red		res 11		320		
Satd. Flow (RTOR)	F0	П	FO	320		F.0
Link Speed (k/h)	50		50			50
Link Distance (m)	297.2		377.9			733.5
Travel Time (s)	21.4		27.2			52.8
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	209	11	1110	354	19	418
Shared Lane Traffic (%)						
Lane Group Flow (vph)	209	11	1110	354	19	418
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		3.6			3.6
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	15		15	25	
Number of Detectors	1	1	1	1	1	1
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	2.0	2.0	10.0	2.0	2.0	10.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	2.0	10.0	2.0	2.0	10.0
, ,			CI+Ex		CI+Ex	CI+Fx
Detector 1 Type	CI+Ex	CI+Ex	OI+EX	CI+Ex	OI+EX	OI+EX
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.3	33.3	38.2	38.2	38.2	38.2
Total Split (s)	33.3	33.3	66.7	66.7	66.7	66.7
Total Split (%)	33.3%	33.3%	66.7%	66.7%	66.7%	66.7%
Maximum Green (s)	28.0	28.0	60.5	60.5	60.5	60.5
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6	4.6
TOHOW THIE (5)	ა.ა	٥.٥	4.0	4.0	4.0	4.0

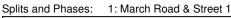
	•	•	†	~	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
All-Red Time (s)	2.0	2.0	1.6	1.6	1.6	1.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	6.2	6.2	6.2	6.2
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0	25.0	25.0	25.0	25.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0
Act Effct Green (s)	16.5	16.5	63.6	63.6	63.6	63.6
Actuated g/C Ratio	0.18	0.18	0.69	0.69	0.69	0.69
v/c Ratio	0.69	0.04	0.91	0.31	0.15	0.34
Control Delay	46.8	15.1	25.7	1.9	9.5	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.8	15.1	25.7	1.9	9.5	7.2
LOS	D	В	С	Α	Α	Α
Approach Delay	45.2		19.9			7.3
Approach LOS	D		В			Α
Queue Length 50th (m)	35.0	0.0	143.7	1.7	1.0	26.4
Queue Length 95th (m)	58.0	4.5	#299.5	12.3	5.2	52.4
Internal Link Dist (m)	273.2		353.9			709.5
Turn Bay Length (m)						
Base Capacity (vph)	512	466	1225	1139	129	1225
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.02	0.91	0.31	0.15	0.34

Intersection Summary

Area Type: Other

Cycle Length: 100
Actuated Cycle Length: 91.6
Natural Cycle: 100

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.91

Intersection Signal Delay: 19.9 Intersection LOS: B
Intersection Capacity Utilization 76.1% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

•	•	†	/	-	ļ	
WBL	WBR	NBT	NBR	SBL	SBT	
ħ	7	†	7	7	†	
188	10	999	319	17	376	
188	10	999	319	17	376	
3	18	2	12	1	6	
0	0	0	0	0	0	
1.00	1.00		1.00	1.00		
1.00	1.00	1.00	1.00	1.00	1.00	
1765	1765	1765	1765	1765	1765	
209	11	1110	354	19	418	
1	1	1	1	1	1	
0.90	0.90	0.90	0.90	0.90	0.90	
2	2	2	2	2	2	
256	229	1257	1068	166	1257	
0.15	0.15	0.71	0.71	0.71	0.71	
1681	1500	1765	1500	361	1765	
209	11	1110	354	19	418	
1681	1500	1765	1500	361	1765	
10.2	0.5	41.5	7.6	3.7	7.6	
10.2	0.5	41.5	7.6	45.1	7.6	
1.00	1.00		1.00	1.00		
256	229	1257	1068	166	1257	
0.82	0.05	0.88	0.33	0.11	0.33	
554	494	1257	1068	166	1257	
1.00	1.00	1.00	1.00	1.00	1.00	
1.00	1.00	1.00	1.00	1.00	1.00	
34.8	30.7	9.5	4.6	27.0	4.6	
6.2	0.1	9.2	0.8	1.4	0.7	
0.0	0.0	0.0	0.0	0.0	0.0	
5.2	0.2	23.0	3.3	0.4	3.8	
41.1	30.8	18.7	5.4	28.4	5.3	
D	С	В	Α	С	Α	
220		1464			437	
40.6		15.5			6.3	
D		В			Α	
1	2	3	1	5	6	7 8
		0		<u> </u>		8
						18.3
						5.3
						28.0
						12.2
	11.6				2.8	0.8
		16.0				
		16.2 B				
	188 188 3 0 1.00 1.00 1.00 1765 209 1 0.90 2 256 0.15 1681 209 1681 10.2 1.00 256 0.82 554 1.00 1.00 34.8 6.2 0.0 5.2 41.1 D 220 40.6	188 10 188 10 188 10 3 18 0 0 1.00 1.00 1.00 1.00 1.765 1765 209 11 1 1 1 0.90 0.90 2 2 2 256 229 0.15 0.15 1681 1500 209 11 1681 1500 10.2 0.5 10.2 0.5 10.0 1.00 256 229 0.82 0.05 554 494 1.00 1.00 256 229 0.82 0.05 554 494 1.00 1.00 1.00 34.8 30.7 6.2 0.1 0.0 0.0 5.2 0.2 41.1 30.8 D C 220 40.6 D 1 2 66.7 * 6.2 * 61 43.5	188 10 999 188 10 999 3 18 2 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1765 1765 1765 209 11 1110 1 1 1 0.90 0.90 0.90 2 2 2 2 256 229 1257 0.15 0.15 0.71 1681 1500 1765 10.2 0.5 41.5 10.2 0.5 41.5 10.2 0.5 41.5 10.0 1.00 256 229 1257 0.82 0.05 0.88 554 494 1257 1.00 1.00 256 229 1257 0.82 0.05 0.88 554 494 1257 1.00 1.00 1.00 1.00 1.00 1.00 34.8 30.7 9.5 6.2 0.1 9.2 0.0 0.0 0.0 5.2 0.2 23.0 41.1 30.8 18.7 D C B 220 1464 40.6 15.5 D B 1 2 3	188 10 999 319 188 10 999 319 3 18 2 12 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.10 354 1 1 1 1 0.90 0.90 0.90 0.90 2 2 2 2 256 229 1257 1068 0.15 0.15 0.71 0.71 1681 1500 1765 1500 10.2 0.5 41.5 7.6 10.2 0.5 41.5 7.6 10.0 1.00 1.00 1.00 1.00	188 10 999 319 17 188 10 999 319 17 3 18 2 12 1 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 209 11 1110 354 19 1681 1500 1765 1500 361 209 11 1110 354 19 1681 1500 1765 1500 361 10.2 0.5 41.5 7.6 3.7 10.2 0.5 41.5 7.6 45.1 1.00 1.00 1.00 1.00 256 229	188 10 999 319 17 376 188 10 999 319 17 376 3 18 2 12 1 6 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 3.61 1765 1765 1500 361 1765 1.02 0.5 41.5 7.6 3.7 7.6

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

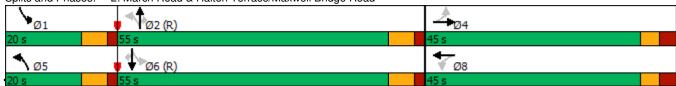
	۶	→	•	•	+	•	•	†	<i>></i>	/		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		*	f)		ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	13	64	44	94	59	106	188	1199	152	69	482	13
Future Volume (vph)	13	64	44	94	59	106	188	1199	152	69	482	13
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.939			0.904				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1657	0	1676	1595	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.390			0.566			0.411			0.157		
Satd. Flow (perm)	688	1657	0	999	1595	0	725	3353	1500	277	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		31			81				138			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			306.4	
Travel Time (s)		14.6			20.4			15.9			22.1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	71	49	104	66	118	209	1332	169	77	536	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	14	120	0	104	184	0	209	1332	169	77	536	14
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6	- C		3.6	- C		3.6	Ū		3.6	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	1		1	1		1	1	1	1	1	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4	•		8			2	_	2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase								_	_			
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	45.0	45.0		45.0	45.0		20.0	55.0	55.0	20.0	55.0	55.0
Total Opiit (3)	+5.0	+3.0		+3.0	+3.0		20.0	55.0	55.0	20.0	55.0	55.0

CGH Transportation 936 March Road MC Page 5

	٠	→	•	•	+	•	•	†	<i>></i>	/		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (%)	37.5%	37.5%		37.5%	37.5%		16.7%	45.8%	45.8%	16.7%	45.8%	45.8%
Maximum Green (s)	38.4	38.4		38.4	38.4		13.6	48.4	48.4	13.6	48.4	48.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	-2.6	-2.6		-2.6	-2.6		-2.4	-2.6	-2.6	-2.4	-2.6	-2.6
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	19.1	19.1		19.1	19.1		91.5	81.3	81.3	86.8	76.8	76.8
Actuated g/C Ratio	0.16	0.16		0.16	0.16		0.76	0.68	0.68	0.72	0.64	0.64
v/c Ratio	0.13	0.42		0.66	0.57		0.32	0.59	0.16	0.24	0.25	0.01
Control Delay	43.1	36.4		65.8	31.9		5.5	13.5	3.0	6.1	10.6	0.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.1	36.4		65.8	31.9		5.5	13.5	3.0	6.1	10.6	0.0
LOS	D	D		Е	С		Α	В	Α	Α	В	Α
Approach Delay		37.1			44.1			11.5			9.8	
Approach LOS		D			D			В			Α	
Queue Length 50th (m)	3.0	19.9		24.6	23.4		11.1	87.6	2.4	3.7	27.2	0.0
Queue Length 95th (m)	8.9	36.2		41.6	44.4		23.6	144.1	13.1	9.7	47.2	0.0
Internal Link Dist (m)		178.9			259.1			197.3			282.4	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	235	586		341	598		686	2272	1061	398	2146	993
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.20		0.30	0.31		0.30	0.59	0.16	0.19	0.25	0.01
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												
Actuated Cycle Length: 12	0											
Offset: 50 (42%), Reference	ed to phase	2:NBTI :	and 6:SB	TL Start	of Green							

Offset: 50 (42%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66

Intersection Signal Delay: 15.8 Intersection LOS: B
Intersection Capacity Utilization 61.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: March Road & Halton Terrace/Maxwell Bridge Road

	ၨ	→	•	•	←	•	1	†	/	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		7	f)		7	^	7	ሻ	^	7
Traffic Volume (veh/h)	13	64	44	94	59	106	188	1199	152	69	482	13
Future Volume (veh/h)	13	64	44	94	59	106	188	1199	152	69	482	13
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	14	71	49	104	66	118	209	1332	169	77	536	14
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	165	189	131	225	110	197	668	2171	971	302	2093	937
Arrive On Green	0.19	0.19	0.17	0.19	0.19	0.17	0.08	0.65	0.65	0.06	0.62	0.62
Sat Flow, veh/h	1195	974	672	1266	569	1017	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	14	0	120	104	0	184	209	1332	169	77	536	14
Grp Sat Flow(s),veh/h/ln	1195	0	1646	1266	0	1585	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	1.3	0.0	7.7	9.3	0.0	12.8	4.9	27.9	5.4	1.8	8.6	0.4
Cycle Q Clear(g_c), s	14.1	0.0	7.7	17.0	0.0	12.8	4.9	27.9	5.4	1.8	8.6	0.4
Prop In Lane	1.00		0.41	1.00		0.64	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	165	0	320	225	0	308	668	2171	971	302	2093	937
V/C Ratio(X)	0.09	0.00	0.38	0.46	0.00	0.60	0.31	0.61	0.17	0.25	0.26	0.01
Avail Cap(c_a), veh/h	341	0	562	412	0	542	755	2171	971	428	2093	937
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.5	0.0	42.5	49.4	0.0	44.9	6.2	12.4	8.4	9.8	10.1	8.5
Incr Delay (d2), s/veh	0.2	0.0	0.7	1.5	0.0	1.9	0.3	1.3	0.4	0.4	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	3.6	3.4	0.0	5.8	2.3	13.2	2.3	0.9	4.0	0.2
LnGrp Delay(d),s/veh	50.8	0.0	43.2	50.9	0.0	46.7	6.5	13.7	8.8	10.2	10.4	8.6
LnGrp LOS	D		D	D		D	А	В	А	В	В	А
Approach Vol, veh/h		134			288			1710			627	
Approach Delay, s/veh		44.0			48.2			12.3			10.3	
Approach LOS		D			D			12.0			В	
Approach 200												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.0	81.7		27.3	13.8	78.9		27.3				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	48.4		38.4	* 14	48.4		38.4				
Max Q Clear Time (g_c+l1), s	3.8	29.9		16.1	6.9	10.6		19.0				
Green Ext Time (p_c), s	0.1	11.7		0.8	0.4	5.0		1.7				
Intersection Summary												
HCM 2010 Ctrl Delay			17.2									
HCM 2010 LOS			В									
Notes												

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

936 March Road **CGH** Transportation MC

Appendix J

2028 Total Future Synchro

1. Watch Road & W		0000,0										
	۶	-	•	•	•	•	1	Ť	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	1>		ሻ	^	7	ሻ	∱ ⊅	
Traffic Volume (vph)	11	71	38	300	71	16	7	464	97	5	1311	3
Future Volume (vph)	11	71	38	300	71	16	7	464	97	5	1311	3
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		0.0	90.0		0.0	35.0		35.0	35.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	35.0			35.0			35.0			35.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.948			0.972				0.850			
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1673	0	1676	1715	0	1676	3353	1500	1676	3353	0
Flt Permitted	0.694			0.476			0.117			0.458		
Satd. Flow (perm)	1225	1673	0	840	1715	0	206	3353	1500	808	3353	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		22			11				108			
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		280.3			196.5			684.3			305.5	
Travel Time (s)		20.2			14.1			49.3			22.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	12	79	42	333	79	18	8	516	108	6	1457	3
Shared Lane Traffic (%)												
Lane Group Flow (vph)	12	121	0	333	97	0	8	516	108	6	1460	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	2	4		3	8		,,,,,	2	,,	,,	6	
Permitted Phases	4			8			2		2	6		

	۶	→	*	•	+	•	•	†	~	/	↓	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		3	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	37.1	37.1		10.0	37.1		34.2	34.2	34.2	34.2	34.2	
Total Split (s)	37.1	37.1		15.0	52.1		67.9	67.9	67.9	67.9	67.9	
Total Split (%)	30.9%	30.9%		12.5%	43.4%		56.6%	56.6%	56.6%	56.6%	56.6%	
Maximum Green (s)	32.0	32.0		12.0	47.0		61.7	61.7	61.7	61.7	61.7	
Yellow Time (s)	3.3	3.3		3.0	3.3		4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.8	1.8		0.0	1.8		1.6	1.6	1.6	1.6	1.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.1	5.1		3.0	5.1		6.2	6.2	6.2	6.2	6.2	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	25.0	25.0			25.0		21.0	21.0	21.0	21.0	21.0	
Pedestrian Calls (#/hr)	0	0			0		0	0	0	0	0	
Act Effct Green (s)	11.2	11.2		28.3	26.2		61.8	61.8	61.8	61.8	61.8	
Actuated g/C Ratio	0.11	0.11		0.28	0.26		0.62	0.62	0.62	0.62	0.62	
v/c Ratio	0.09	0.58		0.98	0.21		0.06	0.25	0.11	0.01	0.70	
Control Delay	40.0	45.3		78.1	26.0		10.1	9.1	2.1	8.4	15.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	40.0	45.3		78.1	26.0		10.1	9.1	2.1	8.4	15.4	
LOS	D	D		Е	С		В	Α	Α	Α	В	
Approach Delay		44.8			66.4			7.9			15.4	
Approach LOS		D			Е			Α			В	
Queue Length 50th (m)	2.2	19.2		60.0	13.5		0.6	22.4	0.0	0.4	95.3	
Queue Length 95th (m)	7.7	37.5		#118.5	26.7		3.1	35.2	6.8	2.3	138.1	
Internal Link Dist (m)		256.3			172.5			660.3			281.5	
Turn Bay Length (m)	35.0			90.0			35.0		35.0	35.0		
Base Capacity (vph)	395	554		340	818		128	2085	973	502	2085	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	

Intersection Summary

Storage Cap Reductn

Reduced v/c Ratio

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 99.3

Natural Cycle: 95

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 23.3

Intersection LOS: C

0

0.12

0

0.06

0

0.25

0

0.11

0

0.01

0

0.70

0

0.98

Intersection Capacity Utilization 72.0% ICU Level of Service C

0

0.22

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

0

0.03

Queue shown is maximum after two cycles.

Splits and Phases: 1: March Road & West Access/Street 1 **√**ø3 Ø8

936 March Road MC

	۶	→	•	•	←	•	•	†	~	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	î,		ň	f)		7	^	7	Ť	∱ β	
Traffic Volume (veh/h)	11	71	38	300	71	16	7	464	97	5	1311	3
Future Volume (veh/h)	11	71	38	300	71	16	7	464	97	5	1311	3
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1800
Adj Flow Rate, veh/h	12	79	42	333	79	18	8	516	108	6	1457	3
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	202	108	57	316	352	80	204	2118	948	524	2169	4
Arrive On Green	0.10	0.10	0.10	0.12	0.25	0.25	0.63	0.63	0.63	0.63	0.63	0.63
Sat Flow, veh/h	1293	1086	577	1681	1392	317	362	3353	1500	797	3433	7
Grp Volume(v), veh/h	12	0	121	333	0	97	8	516	108	6	711	749
Grp Sat Flow(s),veh/h/ln	1293	0	1663	1681	0	1709	362	1676	1500	797	1676	1763
Q Serve(g_s), s	0.8	0.0	6.9	12.0	0.0	4.4	1.4	6.5	2.8	0.3	26.5	26.5
Cycle Q Clear(g_c), s	8.0	0.0	6.9	12.0	0.0	4.4	27.9	6.5	2.8	6.9	26.5	26.5
Prop In Lane	1.00		0.35	1.00		0.19	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	202	0	165	316	0	432	204	2118	948	524	1059	1114
V/C Ratio(X)	0.06	0.00	0.73	1.05	0.00	0.22	0.04	0.24	0.11	0.01	0.67	0.67
Avail Cap(c_a), veh/h	497	0	545	316	0	822	204	2118	948	524	1059	1114
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	40.0	0.0	42.8	37.1	0.0	28.9	20.5	7.8	7.1	9.3	11.5	11.5
Incr Delay (d2), s/veh	0.1	0.0	6.2	65.4	0.0	0.3	0.4	0.3	0.2	0.0	3.4	3.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	3.4	13.2	0.0	2.1	0.2	3.1	1.2	0.1	13.1	13.7
LnGrp Delay(d),s/veh	40.1	0.0	49.0	102.5	0.0	29.2	20.8	8.1	7.4	9.4	14.9	14.7
LnGrp LOS	D		D	F		С	С	Α	Α	A	В	В
Approach Vol, veh/h		133			430			632			1466	
Approach Delay, s/veh		48.2			86.0			8.1			14.8	
Approach LOS		D			F			Α			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6		8				
Phs Duration (G+Y+Rc), s		67.9	15.0	14.8		67.9		29.8				
Change Period (Y+Rc), s		* 6.2	3.0	5.1		* 6.2		5.1				
Max Green Setting (Gmax), s		* 62	12.0	32.0		* 62		47.0				
Max Q Clear Time (g_c+I1), s		29.9	14.0	8.9		28.5		6.4				
Green Ext Time (p_c), s		5.4	0.0	8.0		16.5		0.7				
Intersection Summary												
HCM 2010 Ctrl Delay			26.4									
HCM 2010 LOS			С									
Notes												

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

936 March Road **CGH** Transportation MC

Lanes, Volumes, Timings 2: March Road & Halton Terrace/Maxwell Bridge Road

	۶	→	•	•	←	•	•	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, Y	f)		7	£		, j	^	7	*	^	7
Traffic Volume (vph)	91	40	175	175	17	35	115	541	72	102	1487	61
Future Volume (vph)	91	40	175	175	17	35	115	541	72	102	1487	61
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.878			0.899				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1549	0	1676	1586	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.719			0.467			0.065			0.389		
Satd. Flow (perm)	1269	1549	0	824	1586	0	115	3353	1500	686	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		194			39				91			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			684.3	
Travel Time (s)		14.6			20.4			15.9			49.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	101	44	194	194	19	39	128	601	80	113	1652	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	101	238	0	194	58	0	128	601	80	113	1652	68
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6			3.6			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel					2.2			2.2			2.2	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6

CGH Transportation 936 March Road MC Page 6

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	48.0	48.0		48.0	48.0		20.0	52.0	52.0	20.0	52.0	52.0
Total Split (%)	40.0%	40.0%		40.0%	40.0%		16.7%	43.3%	43.3%	16.7%	43.3%	43.3%
Maximum Green (s)	41.4	41.4		41.4	41.4		13.6	45.4	45.4	13.6	45.4	45.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	30.1	30.1		30.1	30.1		71.3	61.4	61.4	69.8	60.7	60.7
Actuated g/C Ratio	0.25	0.25		0.25	0.25		0.59	0.51	0.51	0.58	0.51	0.51
v/c Ratio	0.32	0.45		0.94	0.14		0.66	0.35	0.10	0.24	0.98	0.08
Control Delay	36.8	10.0		91.8	13.9		39.1	20.1	3.9	11.7	47.2	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.8	10.0		91.8	13.9		39.1	20.1	3.9	11.7	47.2	2.7
LOS	D	В		F	В		D	С	Α	В	D	Α
Approach Delay		18.0			73.9			21.5			43.4	
Approach LOS		В			Е			С			D	
Queue Length 50th (m)	20.4	8.4		47.1	3.6		15.3	45.1	0.0	10.1	202.2	0.0
Queue Length 95th (m)	32.4	26.7		#72.1	12.7		39.1	74.7	8.4	22.8	#320.7	5.8
Internal Link Dist (m)		178.9			259.1			197.3			660.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	437	661		284	572		248	1715	812	536	1694	803
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.23	0.36		0.68	0.10		0.52	0.35	0.10	0.21	0.98	0.08

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 99 (83%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 37.6 Intersection LOS: D
Intersection Capacity Utilization 95.8% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

AM Peak Hour

Queue shown is maximum after two cycles.

936 March Road **CGH** Transportation Page 8 MC

	ᄼ	→	•	•	←	•	1	†	/	/	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	₽		ሻ	^	7	ሻ		7
Traffic Volume (veh/h)	91	40	175	175	17	35	115	541	72	102	1487	61
Future Volume (veh/h)	91	40	175	175	17	35	115	541	72	102	1487	61
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1765
Adj Flow Rate, veh/h	101	44	194	194	19	39	128	601	80	113	1652	68
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	445	89	394	274	162	332	156	1581	707	417	1564	700
Arrive On Green	0.31	0.31	0.31	0.31	0.31	0.31	0.06	0.47	0.47	0.05	0.47	0.47
Sat Flow, veh/h	1340	285	1258	1138	517	1061	1681	3353	1500	1681	3353	1500
Grp Volume(v), veh/h	101	0	238	194	0	58	128	601	80	113	1652	68
Grp Sat Flow(s),veh/h/ln	1340	0	1543	1138	0	1578	1681	1676	1500	1681	1676	1500
Q Serve(g_s), s	7.0	0.0	15.0	20.0	0.0	3.1	4.7	13.8	3.6	4.2	56.0	3.0
Cycle Q Clear(g_c), s	10.1	0.0	15.0	35.1	0.0	3.1	4.7	13.8	3.6	4.2	56.0	3.0
Prop In Lane	1.00		0.82	1.00		0.67	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	445	0	483	274	0	494	156	1581	707	417	1564	700
V/C Ratio(X)	0.23	0.00	0.49	0.71	0.00	0.12	0.82	0.38	0.11	0.27	1.06	0.10
Avail Cap(c_a), veh/h	487	0	532	310	0	544	250	1581	707	520	1564	700
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.0	0.0	33.5	47.7	0.0	29.4	27.8	20.4	17.7	15.8	32.0	17.9
Incr Delay (d2), s/veh	0.3	0.0	8.0	6.3	0.0	0.1	10.9	0.7	0.3	0.3	39.3	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	0.0	6.5	6.8	0.0	1.4	2.6	6.6	1.6	1.9	34.4	1.3
LnGrp Delay(d),s/veh	33.2	0.0	34.2	54.0	0.0	29.5	38.7	21.1	18.0	16.1	71.4	18.2
LnGrp LOS	С		С	D		С	D	С	В	В	F	В
Approach Vol, veh/h		339			252			809			1833	
Approach Delay, s/veh		33.9			48.4			23.6			66.0	
Approach LOS		С			D			С			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.6	63.2		44.2	13.2	62.6		44.2				
Change Period (Y+Rc), s	* 6.4	6.6		6.6	* 6.4	6.6		6.6				
Max Green Setting (Gmax), s	* 14	45.4		41.4	* 14	45.4		41.4				
Max Q Clear Time (g_c+l1), s	6.2	15.8		17.0	6.7	58.0		37.1				
Green Ext Time (p_c), s	0.2	5.8		2.3	0.2	0.0		0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			50.6									
HCM 2010 LOS			D									

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

936 March Road **CGH** Transportation MC

Lanes, Volumes, Timings 1: March Road & West Access/Street 1

	۶	-	•	•	←	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		ř	f)		Ť	^	7	Ť	∱ }	
Traffic Volume (vph)	10	97	23	188	97	10	45	1417	319	17	631	9
Future Volume (vph)	10	97	23	188	97	10	45	1417	319	17	631	9
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		0.0	90.0		0.0	35.0		35.0	35.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	35.0			35.0			35.0			35.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.971			0.986				0.850		0.998	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1714	0	1676	1740	0	1676	3353	1500	1676	3346	0
Flt Permitted	0.681			0.448			0.366			0.106		
Satd. Flow (perm)	1202	1714	0	791	1740	0	646	3353	1500	187	3346	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		10			5				155		2	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		256.5			190.9			684.3			375.4	
Travel Time (s)		18.5			13.7			49.3			27.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	108	26	209	108	11	50	1574	354	19	701	10
Shared Lane Traffic (%)	• •	100	20	200	100		00	1074	004	10	701	10
Lane Group Flow (vph)	11	134	0	209	119	0	50	1574	354	19	711	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	LOIL	3.6	rtigiti	Lon	3.6	riigiit	LOIL	3.6	rugiit	LOIL	3.6	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		4.0			4.0			4.0			4.0	
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25	1.07	1.07	25	1.07	1.07	25	1.07	1.07	25	1.07	1.07
Number of Detectors	1	2	13	1	2	13	1	2	1	1	2	13
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel	OI+EX	OI+EX		CI+EX	OI+EX		OI+EX	OI+EX	OI+EX	CI+EX	OI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m) Detector 2 Size(m)		9.4			9.4			9.4			9.4	
· /		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		2.2						2.2				
Detector 2 Extend (s)	F.	0.0			0.0		F.	0.0	Б	F.	0.0	
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2		2	6		

CGH Transportation 936 March Road MC Page 1

	۶	→	•	•	←	•	4	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		3	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	37.1	37.1		10.0	37.1		35.0	35.0	35.0	34.2	34.2	
Total Split (s)	37.1	37.1		10.0	47.1		72.9	72.9	72.9	72.9	72.9	
Total Split (%)	30.9%	30.9%		8.3%	39.3%		60.8%	60.8%	60.8%	60.8%	60.8%	
Maximum Green (s)	32.0	32.0		6.7	42.0		66.7	66.7	66.7	66.7	66.7	
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.8	1.8		0.0	1.8		1.6	1.6	1.6	1.6	1.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.1	5.1		3.3	5.1		6.2	6.2	6.2	6.2	6.2	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	25.0	25.0			25.0		21.0	21.0	21.0	21.0	21.0	
Pedestrian Calls (#/hr)	0	0			0		0	0	0	0	0	
Act Effct Green (s)	12.6	12.6		24.4	22.6		66.8	66.8	66.8	66.8	66.8	
Actuated g/C Ratio	0.13	0.13		0.24	0.22		0.66	0.66	0.66	0.66	0.66	
v/c Ratio	0.07	0.60		0.84	0.30		0.12	0.71	0.34	0.15	0.32	
Control Delay	39.1	50.0		62.3	33.0		7.9	13.5	5.2	11.1	8.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	39.1	50.0		62.3	33.0		7.9	13.5	5.2	11.1	8.1	
LOS	D	D		Е	С		Α	В	Α	В	Α	
Approach Delay		49.2			51.7			11.9			8.1	
Approach LOS		D			D			В			Α	
Queue Length 50th (m)	2.0	24.4		37.3	19.5		3.4	96.9	14.2	1.3	29.4	
Queue Length 95th (m)	7.4	44.0		#69.5	35.6		9.3	143.3	32.4	5.7	45.4	
Internal Link Dist (m)		232.5			166.9			660.3			351.4	
Turn Bay Length (m)	35.0			90.0			35.0		35.0	35.0		
Base Capacity (vph)	382	552		250	729		428	2223	1046	123	2220	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.03	0.24		0.84	0.16		0.12	0.71	0.34	0.15	0.32	

Intersection Summary

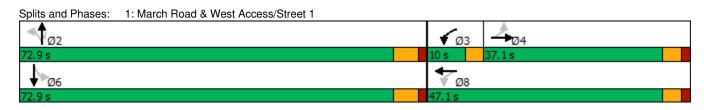
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 100.7

Natural Cycle: 95

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.84

Intersection Signal Delay: 16.8 Intersection LOS: B
Intersection Capacity Utilization 68.4% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

MC

		_	•	₹		_	7	ı		*	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	₽		ሻ	^	7	ሻ	∱ ∱	
Traffic Volume (veh/h)	10	97	23	188	97	10	45	1417	319	17	631	9
Future Volume (veh/h)	10	97	23	188	97	10	45	1417	319	17	631	9
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1765	1765	1800	1765	1765	1800	1765	1765	1765	1765	1765	1800
Adj Flow Rate, veh/h	11	108	26	209	108	11	50	1574	354	19	701	10
Adj No. of Lanes	1	1	0	1	1	0	1	2	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	207	145	35	224	326	33	510	2274	1017	164	2295	33
Arrive On Green	0.11	0.11	0.11	0.07	0.21	0.21	0.68	0.68	0.68	0.68	0.68	0.68
Sat Flow, veh/h	1268	1375	331	1681	1576	161	736	3353	1500	230	3384	48
Grp Volume(v), veh/h	11	0	134	209	0	119	50	1574	354	19	347	364
Grp Sat Flow(s),veh/h/ln	1268	0	1706	1681	0	1736	736	1676	1500	230	1676	1756
Q Serve(g_s), s	0.8	0.0	7.5	6.7	0.0	5.7	2.9	28.0	9.8	5.4	8.3	8.3
Cycle Q Clear(g_c), s	0.8	0.0	7.5	6.7	0.0	5.7	11.2	28.0	9.8	33.4	8.3	8.3
Prop In Lane	1.00		0.19	1.00		0.09	1.00		1.00	1.00		0.03
Lane Grp Cap(c), veh/h	207	0	180	224	0	359	510	2274	1017	164	1137	1191
V/C Ratio(X)	0.05	0.00	0.75	0.93	0.00	0.33	0.10	0.69	0.35	0.12	0.31	0.31
Avail Cap(c_a), veh/h	486	0	555	224	0	742	510	2274	1017	164	1137	1191
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	39.7	0.0	42.7	40.3	0.0	33.2	8.7	9.6	6.7	19.7	6.4	6.4
Incr Delay (d2), s/veh	0.1	0.0	6.0	42.0	0.0	0.5	0.4	1.8	0.9	1.4	0.7	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	3.8	7.5	0.0	2.8	0.6	13.2	4.3	0.4	4.0	4.2
LnGrp Delay(d),s/veh	39.8	0.0	48.8	82.3	0.0	33.7	9.1	11.4	7.6	21.2	7.1	7.1
LnGrp LOS	D		D	F		С	Α	В	Α	С	Α	Α
Approach Vol, veh/h		145			328			1978			730	
Approach Delay, s/veh		48.1			64.7			10.6			7.5	
Approach LOS		D			Е			В			Α	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	<u>'</u>	8				
Phs Duration (G+Y+Rc), s		72.9	10.0	15.5		72.9		25.5				
Change Period (Y+Rc), s		* 6.2	3.3	5.1		* 6.2		5.1				
Max Green Setting (Gmax), s		* 67	6.7	32.0		* 67		42.0				
Max Q Clear Time (g_c+l1), s		30.0	8.7	9.5		35.4		7.7				
Green Ext Time (p_c), s		23.9	0.0	0.9		6.8		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			17.2									
HCM 2010 LOS			В									

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	*	•	←	•	4	†	<i>></i>	/	ļ	</th
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		*	f)		7	^	7	ሻ	^	7
Traffic Volume (vph)	79	67	76	96	60	141	270	1597	156	119	612	99
Future Volume (vph)	79	67	76	96	60	141	270	1597	156	119	612	99
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	60.0		0.0	60.0		15.0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (m)	60.0			60.0			70.0			70.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.920			0.895				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1676	1624	0	1676	1579	0	1676	3353	1500	1676	3353	1500
Flt Permitted	0.328			0.530			0.351			0.057		
Satd. Flow (perm)	579	1624	0	935	1579	0	619	3353	1500	101	3353	1500
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		50			103				102			91
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		202.9			283.1			221.3			684.3	
Travel Time (s)		14.6			20.4			15.9			49.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	88	74	84	107	67	157	300	1774	173	132	680	110
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	158	0	107	224	0	300	1774	173	132	680	110
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.6	•		3.6	•		3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6

CGH Transportation 936 March Road MC Page 6

	•	→	•	•	←	•	\triangleleft	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.6	38.6		38.6	38.6		11.4	34.6	34.6	11.4	34.6	34.6
Total Split (s)	45.0	45.0		45.0	45.0		20.0	55.0	55.0	20.0	55.0	55.0
Total Split (%)	37.5%	37.5%		37.5%	37.5%		16.7%	45.8%	45.8%	16.7%	45.8%	45.8%
Maximum Green (s)	38.4	38.4		38.4	38.4		13.6	48.4	48.4	13.6	48.4	48.4
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.3	3.3		3.3	3.3		1.8	2.0	2.0	1.8	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	6.6		6.6	6.6		6.4	6.6	6.6	6.4	6.6	6.6
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	25.0	25.0		25.0	25.0			21.0	21.0		21.0	21.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effct Green (s)	17.1	17.1		17.1	17.1		85.6	72.5	72.5	81.4	70.5	70.5
Actuated g/C Ratio	0.14	0.14		0.14	0.14		0.71	0.60	0.60	0.68	0.59	0.59
v/c Ratio	1.07	0.58		0.80	0.72		0.54	0.88	0.18	0.63	0.35	0.12
Control Delay	168.6	39.9		88.0	38.3		9.3	27.9	6.3	37.4	14.9	4.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	168.6	39.9		88.0	38.3		9.3	27.9	6.3	37.4	14.9	4.7
LOS	F	D		F	D		Α	С	Α	D	В	Α
Approach Delay		85.9			54.4			23.7			16.9	
Approach LOS		F			D			С			В	
Queue Length 50th (m)	~24.4	25.1		26.1	28.9		19.4	180.8	6.8	15.6	42.7	1.9
Queue Length 95th (m)	#49.4	44.4		44.1	53.0		38.7	#300.8	22.0	38.1	72.6	12.5
Internal Link Dist (m)		178.9			259.1			197.3			660.3	
Turn Bay Length (m)	30.0			30.0			60.0			60.0		15.0
Base Capacity (vph)	185	553		299	575		579	2026	947	256	1968	918
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.29		0.36	0.39		0.52	0.88	0.18	0.52	0.35	0.12

Intersection Summary

Area Type: Other

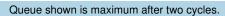
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 50 (42%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 125

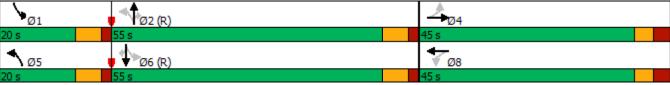
Control Type: Actuated-Coordinated


Maximum v/c Ratio: 1.07

Intersection Signal Delay: 28.8 Intersection Capacity Utilization 96.2% Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.


CGH Transportation 936 March Road MC Page 7

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ሻ	ĵ»		ሻ	f)		7	44	7	7	^	7
79	67	76	96	60	141	270	1597	156	119	612	99
79	67	76	96	60	141	270	1597	156	119	612	99
7	4	14	3	8	18	5	2	12	1	6	16
0	0	0	0	0	0	0	0	0	0	0	0
1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1765	1765	1800	1765	1765	1800	1765	1765	1765		1765	1765
88	74	84	107	67	157	300	1774	173	132	680	110
1	1	0	1	1	0	1		1	1	2	1
0.90	0.90	0.90	0.90	0.90	0.90	0.90		0.90		0.90	0.90
2	2	2	2	2	2	2	2	2	2	2	2
176	173	196	238	108	252	491	1852	829	164	1697	759
	0.23	0.23	0.23	0.23	0.23	0.10	0.55	0.55	0.06	0.51	0.51
1152	756	858	1223	470	1101	1681	3353	1500	1681	3353	1500
88	0	158	107	0	224	300	1774	173	132	680	110
1152	0	1613	1223	0	1570	1681	1676	1500	1681	1676	1500
8.9	0.0	10.0	9.8	0.0	15.4	10.0	60.4	7.0	4.5	15.1	4.7
24.3	0.0	10.0	19.9	0.0	15.4	10.0	60.4	7.0	4.5	15.1	4.7
1.00		0.53	1.00		0.70	1.00		1.00	1.00		1.00
176	0	369	238	0	360	491	1852	829	164	1697	759
	0.00		0.45	0.00	0.62	0.61	0.96	0.21		0.40	0.14
281	0	516	349	0	503	510	1852	829	262	1697	759
1.00	1.00		1.00		1.00	1.00	1.00	1.00			1.00
1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00			1.00
			48.0								15.8
	0.0	0.8	1.3	0.0	1.8	2.0	13.1	0.6	9.1	0.7	0.4
0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0
2.9	0.0	4.6	3.4	0.0	6.8			3.0	2.6		2.0
	0.0	40.3		0.0	43.4				36.7		16.2
D		D	D		D	В	D	В	D	В	B
	246			331			2247			922	
	45.5			45.3			33.5			21.3	
	D			D			С			С	
1	2	3	4	5	6	7	8				
1	2		4	5	6		8				
13.0	72.9		34.1	18.6	67.3		34.1				
* 6.4	6.6		6.6	* 6.4	6.6		6.6				
* 14	48.4		38.4	* 14	48.4		38.4				
6.5	62.4		26.3	12.0	17.1		21.9				
0.2	0.0		1.2	0.2	7.0		1.9				
		32.3									
		С									
	EBL 79 79 79 7 0 1.00 1.00 1765 88 1 0.90 2 176 0.23 1152 88 1152 8.9 24.3 1.00 176 0.50 281 1.00 1.00 52.5 2.2 0.0 2.9 54.7 D	EBL EBT 79 67 79 67 7 4 0 0 1.00 1.00 1.00 1.00 1765 88 74 1 1 0.90 0.90 2 2 176 173 0.23 0.23 1152 756 88 0 1152 756 88 0 1152 0 8.9 0.0 24.3 0.0 1.00 176 0 0.50 0.00 281 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.2 0.0 0.0	EBL EBT EBR 79 67 76 79 67 76 7 4 14 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.0	EBL EBT EBR WBL 79 67 76 96 79 67 76 96 7 4 14 3 0 0 0 0 0 1.00 1.00 1.00 1.00 1.765 1765 1800 1765 88 74 84 107 1 1 0 1 0.90 0.90 0.90 0.90 2 2 2 2 2 176 173 196 238 0.23 0.23 0.23 0.23 1152 756 858 1223 88 0 158 107 1152 0 1613 1223 88 0 158 107 1152 0 1613 1223 8.9 0.0 10.0 9.8 24.3 0.0 10.0 19.9 1.00 0.53 1.00 176 0 369 238 0.50 0.00 0.43 0.45 281 0 516 349 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.	EBL EBT EBR WBL WBT 79 67 76 96 60 79 67 76 96 60 7 4 14 3 8 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.90 2.2 2 2 2 2 1.76 173 196 238 108 0.23 0.23 0.23 0.23 0.23 0.23 1152 756 858 1223 470 88 0 158 <t< td=""><td> FBL</td><td>EBL EBT EBR WBL WBT WBR NBL 79 67 76 96 60 141 270 79 67 76 96 60 141 270 7 4 14 3 8 18 5 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td> Fig. Fig. </td><td> FBL</td><td> Fig. Fig. </td><td> FBL</td></t<>	FBL	EBL EBT EBR WBL WBT WBR NBL 79 67 76 96 60 141 270 79 67 76 96 60 141 270 7 4 14 3 8 18 5 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Fig. Fig.	FBL	Fig. Fig.	FBL

2028 Future Background
PM Peak Hour

* HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

Appendix K

Comment Response Table

Technical Memorandum

То:	Rosanna Baggs, Project Manager – Transportation Approvals	Date:	July 31, 2019
Cc:	Mark Crockford, P.Eng., Christopher Gordon, P.Eng.		
From:	Andrew Harte, P.Eng.	Project Number:	2018-04

Re: 936 March Road - Consolidated Transportation Comments Response

The City of Ottawa provided comments on the planned residential subdivision development at 936 March Road in Kanata North, including Step 4 of the TIA process, on May 23, 2019. The following summarizes the comments and the response to the comments.

	Comment	Response
Traff	ic Signal Design	
77	Traffic Signal Design and Specification reserves the right to make future comments based on subsequent submissions.	Noted
Traff	ic Signal Operations	
78	The report indicates that the intersection of March Road and Street 1 will experience LOS F for the WBL (westbound left turn) movement. Given that this is the only access to this 800-unit neighbourhood, consideration is needed for emergency access until future connections are completed. Provide recommendations to mitigate this shortfall.	A secondary interim access has been confirmed to the north of the proposed development. This will provide temporary secondary access along the road that will ultimately be the final secondary access. This will avoid an unnecessary additional crossing of the creek between the residential and commercial portions of the property.
79	Indicate if cycling facilities will be included at March Road and Street 1 intersection. This may affect the intersection size, geometry, signal operation, vehicle phasing, and LOS.	The ultimate and interim cross-section considered in the CDP include northbound and southbound cycling tracks. These will be carried through the intersection of March Road at Street 1.
80	All-red time cannot equal zero for WBL 2028 AM and PM Peak Hour March Road and West Access/Street 1; this change will force an increase in WBL Minimum Split and affect various LOS.	This minor change to the signal timing has a negligible impact on the operational characteristics of the proposed intersection and will not impact the conclusions or recommendations of the TIA.
Tran	sit Services	
81	Bus service through this project will service both Street No. 1 and Street No. 2. Stops identified at the intersection of Streets No. 1 and No. 4 as identified on page 19 are acceptable. Stops identified on the intersection of Streets No. 1 and No. 2 will need to be positioned to service this turn movement, otherwise suggested location is acceptable. This future route will service the	Noted. Transit service will be located such that it provides service on Streets No. 1 and No.2

	Comment	Response
	planned Park and Ride to be located along March	
	Road north of Maxwell Bridge Road.	
	Future service would require the following	
	conditions:	
	a. The applicant shall design and construct, at no cost to the City, Street No. 1 and Street No. 2 who are identified for potential transit service to Transportation Association of Canada standards. This includes right-of-way width, horizontal and vertical geometry, pavement structure and the construction of sidewalks on	Noted.
	both sides of the streets.	
	 For service to be provided within this development, a temporary turn-around at the north end of Street No. 2 would be required if subsequent development is not complete. This temporary turn-around will be provided prior to registration, to the satisfaction of the City to accommodate interim transit routes. 	Noted.
	c. The Owner shall ensure that the staging of the subdivision, including dwellings, roadways, walkways, and paved passenger standing areas, or shelter pads and shelters, will be constructed in a sequence that permits the operation of an efficient, high quality transit service at all stages of development.	Noted.
82	d. The Owner shall design and construct, at no cost to the City, paved passenger standing areas, concrete shelter pads and/or shelter at the locations identified as bus stops to the specification of Transit Services. Bus infrastructure shall be constructed to the specifications of standard drawings SC11 and SC12 of the City.	Noted. Minto will provide paved passenger standing area or concrete pads for the bus stop locations.
	e. The developer shall provide trees in the vicinity of proposed bus stops to improve customer experience while waiting for transit vehicles.	Noted.
	f. The Owner shall inform all prospective purchasers, through a clause in all agreements of Purchase and Sale and indicate on all plans used for marketing purposes, those streets identified for potential transit services, the location of the bus stops, paved passenger standing areas, or shelters pads and shelters, which may be located in front of or adjacent to the purchaser's lot at any time.	Noted.
	g. Wherever a bus stop must be located adjacent to a home the developer shall	Noted. Where possible, this will be explored although lotting restricts the ability to re-orient lots and access.

	Comment	Response
	reorient lots to ensure that bus stops are	
	located adjacent to a side-lot.	N
T.,	h. No further comment regarding TIA content.	Noted.
Iran	sportation Engineering Services	The intersection of March Board at Street 1 is a
83	Provide left turn lane warrant analysis for the proposed left turn lanes on March Street and Street 1.	The intersection of March Road at Street 1 is a proposed signalized intersection. Left turn lane warrants are utilized to examine unsignalized intersections. Left turn lanes are provided at all signalized intersections (where feasible). As this is a greenfield development there is no reason to preclude left turn lanes on all legs of the proposed intersections.
84	Confirm that site generated volumes for this development match the projected volumes provided in the Kanata North CDP transportation master plan.	The CDP does not break down the traffic generation for each development. Overall, the operational performance of the main intersection, through which all the site traffic will pass, is similar or better than the results projected in the CDP TMP. Therefore, the site generated traffic volumes are similar to those considered in the CDP TMP.
85	We support the recommendation that the RMA and functional design for the March Road/Street 1 intersection is not required to deem the application complete. However, an RMA will be required for the interim condition if the timing to coordinate the required intersection modifications for the complete intersection design cannot be finalized within the application period.	Noted.
86	Provide a subdivision plan showing cycling and pedestrian infrastructure needs in the Strategy Report. Consider possible connections to the future park and ride.	Figure 14 illustrates the cycling and pedestrian infrastructure. As the plan has been updated, an updated plan will be created showing the cycling and pedestrian infrastructure.
87	Both Street 1 and Street 2 (26m ROW) are fronting the school lot. This property will likely require bus lay by and student drop off layby along each of these streets. If possible, consider this requirement when designing the road cross sections.	Noted. Street 2 right-of-way has been updated in the revised plan and the school block relocated. With respect to the lay-bys, The School Board would not provide an answer until they proceed with development of the site. Therefore, until such time as a school is committed to the site, those elements should not be constructed as they would have to be removed if the School Board does not utilize the site.
88	The City is currently reviewing the approved collector road cross sections. All draft cross sections include cycle tracks on the 26m ROW. Signalized intersections are more challenging to design with a MUP as a cycling facility. Consider the new collector road cross section options when developing Street 1 and Street 2. This includes Street 1 east of Street 2.	Noted. The right-of-way for Street 1 east of Street 2, and Street 2 north of Street 1, are planned to be 24 metre right of ways. The proposed cross-sections for these roads are consistent with the approved cross-sections within the CDP for this area.

	Comment	Response
89	Consider ride share opportunities for the subdivision.	Noted. OC Transpo has noted that service will be provided through the planned Park and Ride located along March Road north of Maxwell Bridge Road.
90	The site is located within 300 m of Beachburg rail corridor. The City of Ottawa will not be responsible for any complaints or claims arising from use of such facilities and/or operations on, over or under the aforesaid rights-of-way.	Noted.
Deve	lopment Review – Transportation Engineering Service	es
91	As per the CDP, A 16.5m right-of-way may only be considered where soil conditions will permit planting of street trees within the reduced right-of-way.	Noted.
92	Confirm Development Charge By-law eligibility for intersection access needs with Ann Selfe at ann.selfe@ottawa.ca.	Ann Selfe has been contacted and discussions are ongoing.
93	Temporary cul-du-sacs will be required at the east end of Street 9, and north end of Street 2 (if the connection to the neighbouring development cannot be made prior to registration).	Noted.
94	Geometric Road Design (GRD) drawings will be required with the first submission of underground infrastructure and grading drawings. These drawings should include such items as, but is not limited to: a. Road Signage and Pavement Marking for the subdivision; b. Intersection control measure at new internal intersections; and c. Location of depressed curbs and TWSIs; d. More details can be provided upon request	Noted these drawings will be provided along with engineering submission.
95	A pedestrian and traffic calming plan will be required prior to the submission of the GRD, especially since draft plan is different from the CDP Proposed Plans.	Noted.
96	Sidewalks (and/or MUPS) are required along all street frontages for the park and school blocks.	The previous plan provided this. The updated plan similarly accounts for this.
97	The MUP in Block 59 will be required to connect to Celtic Ridge Cres.	See Block 481 on the updated plan.
98	Include traffic calming measures on roads within the limits of their subdivision to limit vehicular speed and improve pedestrian safety. Traffic calming measures shall reference best management practices from the Canadian Guide to Neighbourhood Traffic Calming, published by the Transportation Association of Canada, and/or Ontario Traffic Manual, and/or the City of Ottawa's Draft Traffic Calming Design Guidelines. These measures may include either vertical or horizontal	Noted these drawings will be provided along with engineering submission.

	Comment	Response
	features (such measures shall not interfere with	
	stormwater management and overland flow	
	routing), including but not limited to:	
	 a. intersection or mid block narrowings, 	
	chicanes, medians;	
	b. speed humps, speed tables, raised	
	intersections, raised pedestrian crossings;	
	c. road surface alterations (for example, use	
	of pavers or other alternate materials,	
	provided these are consistent with the	
	City's Official Plan polices related to Design	
	Priority Areas);	
	d. pavement markings/signage; and	
	e. temporary/seasonal installations such as	
	flexi posts or removable bollards.	
	Refer to the CDP and supporting TMP for guidance	
	on the above.	
	Ensure to pair driveways where possible;	
99	consideration for fire hydrant placement should be	Noted.
	included in this exercise.	
	Cross sections will be required for Street 1 east of	
	Street 2 to demonstrate the interim local road	
	profile and how it will be upgraded to a collector	The 24.0 metre right-of-way cross-section will be
100	road in the future. Cross section should encourage	constructed. No interim road will be provided.
	minimal throwaway and minimal infrastructure	Constitution in the management of the constitution of the constitu
	relocation requirement. An estimate of the cost	
	associated with the upgrade is to be provided.	
101	v/c of less than 0.9 must be achieved as per TMP	Noted. Optimizing intersection operation for all
	2013.	modes will be revisited during the RMA process.
	The CDP assumes dual Westbound left turn lanes at	
	the intersection of March and Street A/G(1).	
	Since the operation of the WBL will remain	
	protected-only from day-1 through 100% build-out	Noted. Optimizing intersection operation for all
400	scenario, it may be beneficial to utilize both WBL	modes will be revisited during the RMA process.
102	lanes to mitigate any failures.	Natad As went of the City's assessment manifesting
	Under all build-out scenarios (even with the dual WBL lanes in full operation), the potential will	Noted. As part of the City's ongoing monitoring
	· · · · · · · · · · · · · · · · · · ·	process of existing intersections, the operation of the
	remain for WBL to spill out of its storage lane(s) as	March Road at Halton Terrace/Maxwell Bridge Road
	sufficient green time must be provided on March	intersection will be adjusted to accommodate all of
	(downstream) to create capacity for WBL to exit. Please be advised street light design is a	the growth in Kanata North.
103	requirement for this development.	Noted.
	Pertaining to the bi-directional bicycle facility	
	(MUP) at the intersection of March Road and Street	Bicycle facilities will be provided at the intersection
	1, additional ROW is likely required on Street 1 due	of March Road and Street 1. The RMA will examine
104	to the requirement of installing fully protected left-	the need for additional ROW near the intersection of
	turn phases and centre medians. Confirm that	March Road at Street 1.
	bicycle facilities will be provided on March Road as	Maich Noud at Street 1.
	bicycle facilities will be provided off March Road as	

	Comment	Response
	part of the intersection design. Details of the intersection design need to be considered now to address ROW needs.	
105	The widening of March Road is not currently part of the City's 2031 Affordable Road Network. Given that the March Road screen line will operate above capacity following build out, no viable solution has been proposed to address the expected road capacity deficiency in the absence of widening March Road which is not expected until sometime post-2031 as the Traffic Impact Assessment was written assuming the widening would occur. The City has already completed this task and has identified a preferred long term solution to widening March Road, yet this is unaffordable before 2031. The applicant should consider phasing implementation build-out to coincide with the timing of the March Road widening project or other solutions to address the expected capacity deficiency.	Noted.